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Preface

Introduction

This book describes the programming interface to the Unix system—the system call
interface and many of the functions provided in the standard C library. It is intended
for anyone writing programs that run under Unix.

Like most operating systems, Unix provides numerous services to the programs
that are running—open a file, read a file, start a new program, allocate a region of mem-
ory, get the current time-of-day, and so on. This has been termed the system call interface.
Additionally, the standard C library provides numerous functions that are used by
almost every C program (format a variable’s value for output, compare two strings,
etc.).

The system call interface and the library routines have traditionally been described
in Sections 2 and 3 of the Unix Programmer’s Manual. This book is not a duplication of
these sections. Examples and rationale are missing from the Unix Programmer’s Manual,
and that's what this book provides.

Unix Standards

The proliferation of different versions of Unix during the 1980s has been tempered by
the various international standards that were started during the late 1980s. These
indude the ANSI standard for the C programming language, the IEEE POSIX family
(still being developed), and the X/Open portability guide.

This book also describes these standards. But instead of just describing the stan-
dards by themselves, we describe them in relation to popular implementations of the
standards—System V Release 4 and the forthcoming 4.4BSD. This provides a real-
world description, which is often lacking from the standard itself and from books that
describe only the standard.
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Organization of the Book
This book is divided into six parts:

1. An overview and introduction to basic Unix programming concepts and termi-
nology (Chapter 1), with a discussion of the various Unix standardization efforts
and different Unix implementations (Chapter 2).

2. I/O—unbuffered 1/O (Chapter 3), properties of files and directories
(Chapter 4), the standard 1/0 library (Chapter 5), and the standard system data
files (Chapter 6).

3. Processes—the environment of a Unix process (Chapter 7), process control
(Chapter 8), the relationships between different processes (Chapter 9), and sig-
nals (Chapter 10).

4. MoreI/O—terminal I/O (Chapter 11), advanced 1/O (Chapter 12), and daemon
processes (Chapter 13).

IPC—Interprocess communication (Chapters 14 and 15).

Examples—a database library (Chapter 16), communicating with a PostScript
printer (Chapter 17), a modem dialing program (Chapter 18), and using pseudo
terminals (Chapter 19).

A reading familiarity with C would be beneficial as would some experience using
Unix. No prior programming experience with Unix is assumed. This text is intended
for programmers familiar with Unix and programmers familiar with some other operat-
ing system who wish to learn the details of the services provided by most Unix systems.

Examples in the Text

This book contains many examples—approximately 10,000 lines of source code. All the
examples are in the C programming language. Furthermore, these examples are in
ANSI C. You should have a copy of the Unix Programmer’s Manual for your system
handy while reading this book, since reference is made to it for some of the more eso-
teric and implementation-dependent features.

Almost every function and system call is demonstrated with a small, complete pro-
gram. This lets us see the arguments and return values and is often easier to compre-
hend than the use of the function in a much larger program. But since some of the small
programs are contrived examples, a few bigger examples are also included (Chapters
16,17, 18, and 19). These larger examples demonstrate the programming techniques in
larger, real-world examples.

All the examples have been included in the text directly from their source files. A
machine-readable copy of all the examples is available via anonymous FTP from the
Internet host ftp.uu.net in the file published/books/stevens.advprog.tar. 2.
Obtaining the source code allows you to modify the programs from this text and experi-
ment with them on your system.
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Systems Used to Test the Examples

Unfortunately all operating systems are moving targets. Unix is no exception. The fol-
lowing diagram shows the recent evolution of the various versions of System V and

4 xBSD.
4.3+BSD
43BSD 43BSD Tahoe 4.3BSD Reno 4.4BSD?
l l BSD Net 1 l BSD Net 2
v v v
e 1 T T /B A - S s ' B S T RS -/ R U7 B
A A A
| | ? 1
SVR3.0 SVR3.1 SVR32 | | SVR4 |
XPG3 ANSIC POSIX.1

4.xBSD are the various systems from the Computer Systems Research Group at the Uni-
versity of California at Berkeley. This group also distributes the BSD Net 1 and BSD Net
2 releases—publicly available source code from the 4.xBSD systems. SVRx refers to
System V Release x from AT&T. XPG3 is the X/Open Portability Guide, Issue 3, and
ANSI C is the ANSI standard for the C programming language. POSIX.1 is the IEEE
and ISO standard for the interface to a Unix-like system. We'll have more to say about
these different standards and the various versions of Unix in Sections 2.2 and 2.3.

In this text we use the term 4.3+BSD to refer to the Unix system from
Berkeley that is somewhere between the BSD Net 2 release and 4.4BSD.

At the time of this writing, 4.4BSD was not released, so the system could not be called 4.4BSD.
Nevertheless a simple name was needed to refer to this system and 4.3+BSD is used through-
out the text.

Most of the examples in this text have been run on four different versions of Unix:

1. Unix System V/386 Release 4.0 Version 2.0 (“vanilla SVR4”) from U.H. Corp.
(UHQ), on an Intel 80386 processor.

2. 4.3+BSD at the Computer Systems Research Group, Computer Science Division,
University of California at Berkeley, on a Hewlett Packard workstation.

3. BSD/386 (a derivative of the BSD Net 2 release) from Berkeley Software Design,
Inc., on an Intel 80386 processor. This system is almost identical to what we call
4.3+BSD.

4. SunOS 4.1.1 and 4.1.2 (systems with a strong Berkeley heritage but many
System V features) from Sun Microsystems, on a SPARCstation SLC.

Numerous timing tests are provided in the text and the systems used for the test are
identified.
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1.1

1.2

Introduction

Introduction

All operating systems provide services for programs they run. Typical services are exe-
cute a new program, open a file, read a file, allocate a region of memory, get the current
time-of-day, and so on. The focus of this text is to describe the services provided by var-
ious versions of the Unix operating system.

Describing Unix in a strictly stepwise fashion, without any forward references to
terms that haven’t been described yet, is nearly impossible (and would probably be bor-
ing). This chapter is a whirlwind tour of Unix from a programmer’s perspective. We'll
give some brief descriptions and examples of terms and concepts that will be encoun-
tered throughout the text. We describe these features in much more detail in later chap-
ters. This chapter also provides an introduction and overview of the services provided
by Unix, for programmers new to Unix.

Logging In

Login Name

When we log in to a Unix system we enter our login name, followed by our password.
Our login name is then looked up in the system’s password file, usually the file
/etc/passwd. If we look at our entry in the password file we see that it's composed of
seven colon-separated fields: our login name, encrypted password, numeric user ID
(224), numeric group ID (20), a comment field, home directory (/home/stevens), and
shell program (/bin/ksh).
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Shells

Many newer systems have moved the encrypted password to a different file. In
Chapter 6 we'll look at these files and some functions to access them.

Once we log in, some system information messages are typically displayed, and then
we are able to enter commands to the shell program. A shell is a command line inter-
preter that reads user input and executes commands. The user input to a shell is nor-
mally from the terminal (an interactive shell) or sometimes from a file (called a shell
script). The common shells in use are

* the Bourne shell, /bin/sh
® the Cshell, /bin/csh
* the KornShell, /bin/ksh

The system knows which shell to execute for us from the final field in our entry in the
password file.

The Bourne shell has been in use since Version 7 and is provided with almost every
Unix system in existence. The C shell was developed at Berkeley and is provided with
all the BSD releases. Additionally the C shell was provided by AT&T with
System V /386 Release 3.2 and is also in System V Release 4 (SVR4). (We'll have more to
say about these different versions of Unix in the next chapter.) The KornShell is consid-
ered to be a successor to the Bourne shell and is provided in SVR4. The KornShell runs
on most Unix systems, but before SVR4 it was usually an extra cost add-on, so it is not
as widespread as the other two shells.

The Bourne shell was developed by Steve Bourne at Bell Labs. Its control flow constructs are
reminiscent of Algol 68. The C shell was done at Berkeley by Bill Joy. It was built on the 6th
Edition shell (not the Bourne shell). Its control flow looks more like the C language, and it
supports additional features that weren’t provided by the Bourne shell—job control, a history
mechanism, and command-line editing. We return to Bell Labs with the KornShell, where it
was developed by David Korn. It is upward-compatible from the Bourne shell and includes
those features that made the C shell popular—ijob control, command line editing, etc.

Throughout the text we will use parenthetical notes such as this to describe historical notes
and comparisons between different Unix implementations. Often the reason for a particular
implementation technique becomes clear when the historical reasons are described.

Throughout this text we’ll show shell examples to execute a program that we've
developed. This interactive use will use features common to both the Bourne shell and
the KornShell.
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1.3 Files and Directories

Filesystem

The Unix filesystem is a hierarchical arrangement of directories and files. Everything
starts in the directory called root whose name is the single character /.

A directory is a file that contains directory entries. Logically we can think of each
directory entry as containing a filename along with a structure of information describ-
ing the attributes of the file. The attributes of a file are things such as: type of file, size of
the file, owner of the file, permissions for the file (e.g., can other users access this file?),
time of last modification of the file, and the like. The stat and fstat functions return
a structure of information containing all the attributes of a file. In Chapter 4 we’ll exam-
ine all the attributes of a file in great detail.

Filename

The names in a directory are called filenames. The only two characters that cannot
appear in a filename are the slash character (/) and the null character. The slash sepa-
rates the filenames that form a pathname (described next) and the null character termi-
nates a pathname. Nevertheless, it's good practice to restrict the characters in a
filename to a subset of the normal printing characters. (The reason we restrict it to a
subset is because if we use some of the shell’s special characters in the filename, we
have to use the shell’s quoting mechanism to reference the filename.)

Two filenames are automatically created whenever a new directory is created: .
(called dot) and . . (called dot-dot). Dot refers to the current directory and dot-dot refers
to the parent directory. In the ultimate parent directory, the root, dot-dot is the same as
dot.

Some Unix filesystems restrict a filename to 14 characters. BSD versions extended
this limit to 255 characters.

Pathname

A sequence of zero or more filenames, separated by slashes, and optionally starting
with a slash, forms a pathname. A pathname that begins with a slash is called an absolute
pathname, otherwise it's called a relative pathname.
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Example

Listing the names of all the files in a directory is not hard. Program 1.1 is a bare bones
implementation of the 1s(1) command.

#include <sys/types.h>

#include <dirent.h>
#include "ourhdr.h"
int

main(int argc, char *argv[])

{
DIR *dp;
struct dirent *dirp;

if (argc !'= 2)
err_quit("a single argument (the directory name) is required");

if ( (dp = opendir(argv[1l])) == NULL)
err_sys(“can’t open %s", argv([1]);

while ( (dirp = readdir(dp)) != NULL)
printf ("%s\n", dirp->d_name);

closedir (dp) ;
exit (0);

Program 1.1 List all the files in a directory.

The notation 1s(1) is the normal way to reference a particular entry in the Unix
manual set. It refers to the entry for 1s in Section 1. The sections are normally num-
bered 1 through 8, and all the entries within each section are arranged alphabetically.
We assume throughout this text that you have a copy of the Unix manuals for your sys-
tem.

Older Unix systems lumped all eight sections together into what was called the Unix Program-
mer’s Manual. The trend today is to distribute the sections among separate manuals: one for
the users, one for the programmers, and one for the system administrators, for example.

Some Unix systems further divide the manual pages within a given section using an uppercase
letter. For example, all the standard I/O functions in AT&T [1990e] are indicated as being in
Section 35, as in fopen(35).

Some Unix systems, notably Xenix-based systems, don’t number the manual sections numeri-
cally. Instead they use the notation C for commands (Section 1), S for services (normally Sec-
tions 2 and 3), and so on.

If your manuals are on-line, the way to see the manual pages for the 1s command
would be something like

man 1 ls
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Program 1.1 just prints the name of every file in a directory, and nothing else. If the
source file is named my1ls . c, we compile it into the default a . out executable file by

cc myls.c
Some sample output is
$ a.out /dev

MAKEDEV
console
tty
mem
kmem
null
many more lines that aren’t shown
printer
5 a.out /var/spool/mgqueue
can’t open /var/spool/mgueue: Permission denied
$ a.out /dev/tty
can’t open /dev/tty: Not a directory

Throughout this text we’ll show commands that we enter and the resulting output in
this fashion: characters that we enter are shown in this font while output from pro-
grams is shown like this. If we need to add comments to this output we’ll show the
comments in italics. The dollar sign that precedes our input is the prompt that is
printed by the shell. We'll always show the shell prompt as a dollar sign.

Note that the directory listing is not in alphabetical order. The ordering that we are
familiar with is done by the 1s command itself.

There are many details to consider in this 20-line program:

e First, we include a header of our own, ourhdr .h. We include this header in almost
every program in this text. It includes some standard system headers and defines
numerous constants and function prototypes that we use throughout the examples
in the text. A listing of this header is in Appendix B.

e The declaration of the main function uses the new style supported by the ANSI C
standard. (We’ll have more to say about the ANSI C standard in the next chapter.)

* We take an argument from the command line, argv[1], as the name of the directory
to list. In Chapter 7 we’'ll look at how the main function is called, and how the
command-line arguments and environment variables are accessible to the program.

* Since the actual format of directory entries varies from one Unix system to another,
we use the functions opendir, readdir, and closedir to manipulate the direc-
tory.

* The opendir function returns a pointer to a DIR structure, and we pass this pointer
to the readdir function. We don’t care what’s in the DIR structure. We then call
readdir in a loop, to read each directory entry. It returns a pointer to a dirent
structure, or a null pointer when it’s finished with the directory. All we examine in
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the dirent structure is the name of each directory entry (d_name). Using this name
we could then call the stat function (Section 4.2) to determine all the attributes of
the file.

* We call two functions of our own to handle the errors: err sys and err_quit. We
can see from the output above that the err_sys function prints an informative mes-
sage describing what type of error was encountered (“Permission denied” or “Not a
directory”). These two error functions are shown and described in Appendix B. We
also talk more about error handling in Section 1.7.

* When the program is done it calls the function exit with an argument of 0. The
function exit terminates a program. By convention an argument of 0 means OK,
and an argument between 1 and 255 means an error occurred. In Section 8.5 we
show how any program (such as a shell or a program that we write) can obtain the
exit status of a program that it executes. O

Working Directory

Every process has a working directory (sometimes called the current working directory).
This is the directory from which all relative pathnames are interpreted. A process can
change its working directory with the chdir function.

For example, the relative pathname doc/memo/ joe refers to the file (or directory)
joe, in the directory memo, in the directory doc, which must be a directory within the
working directory. From looking just at this pathname we know that both doc and
memo have to be directories, but we can't tell if joe is a file or directory. The pathname
/usr/lib/lint is an absolute pathname that refers to the file (or directory) 1int in
the directory 1ib, in the directory usr, which is in the root directory.

Home Directory
When we log in, the working directory is set to our home directory. Our home directory
is obtained from our entry in the password file (recall Section 1.2).

1.4 Input and Output

File Descriptors

File descriptors are small nonnegative integers that the kernel uses to identify the files
being accessed by a particular process. Whenever the kernel opens an existing file, or
creates a new file, it returns a file descriptor that we use when we want to read or write
the file.
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Standard Input, Standard Output, and Standard Error

By convention, all shells open three descriptors whenever a new program is run: the
standard input, standard output, and standard error. If nothing special is done, as in
the simple command

1s

then all three are connected to our terminal. Most shells provide a way to redirect any
or all of these three descriptors to any file. For example,

ls > file.list

executes the 1s command with its standard output redirected to the file named
file.list.

Unbuffered I/O

Unbuffered 1/0 is provided by the functions open, read, write, 1seek, and close.
These functions all work with file descriptors.

Example

If we're willing to read from the standard input and write to the standard output, then
Program 1.2 copies any Unix file.

#include "ourhdr.h"
#define BUFFSIZE 8192

int
main (void)
{
int n;
char buf [BUFFSIZE] ;

while ( (n = read(STDIN FILENO, buf, BUFFSIZE)) > 0)
if (write(STDOUT_FILENO, buf, n) '= n)
err_sys("write error"};

if (n < 0)
err_sys("read error"):

exit (0);

Program 1.2 Copy standard input to standard output.
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The <unistd.h> header (that's included by ourhdr.h) and the two constants
STDIN_FILENO and STDOUT_FILENO are part of the POSIX standard (about which
we'll have a lot more to say in the next chapter). In this header are function prototypes
for many of the Unix system services, such as the read and write functions that we
call. Function prototypes are part of the ANSI C standard, and we talk more about
them later in this chapter.

The two constants STDIN FILENO and STDOUT_FILENO are defined in the
<unistd.h> header, and specify the file descriptors for standard input and standard
output. These values are typically 0 and 1, respectively, but we'll use the new names for
portability.

In Section 3.9 we'll examine the BUFFSIZE constant in detail, seeing how various
values affect the efficiency of the program. Regardless of the value of this constant,
however, this program still copies any Unix file.

The read function returns the number of bytes that are read, and this value is used
as the number of bytes to write. When the end of the input file is encountered, read
returns 0 and the program stops. If a read error occurs, read returns —1. Most of the
system functions return —1 when an error occurs.

If we compile the program into the standard a . out file and execute it as

a.out > data

standard input is the terminal, standard output is redirected to the file data, and stan-
dard error is also the terminal. If this output file doesn’t exist, the shell creates it by
default. =

In Chapter 3 we describe the unbuffered 1/0 functions in more detail.

Standard /O

The standard 1/O functions provide a buffered interface to the unbuffered 1/0 func-
tions. Using standard I/O prevents us from having to worry about choosing optimal
buffer sizes, such as the BUFFSIZE constant in Program 1.2. Another advantage of
using the standard 1/O functions is when we're dealing with lines of input (a common
occurrence in Unix applications). The £gets function, for example, reads an entire line.
The read function, on the other hand, reads a specified number of bytes.

The standard 1/0O function that we're most familiar with is printf. In the pro-
grams that call printf, we’ll always include <stdio.h> (normally by including
ourhdr . h), since this header contains the function prototypes for all the standard 1/O
functions.

Example
Program 1.3, which we’ll examine in more detail in Section 5.8, is like the previous pro-

gram that called read and write. It copies standard input to standard output and can
copy any Unix file.
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#include "ourhdr.h"

int
main{veid)
{

int c;

while ( (c = getc{stdin}) != EOF)
if (putc(c, stdout) == EOF)
err sys("output error");

if (ferror(stdin))}
err_sys("input error");

exit (0);

Program 1.3 Copy standard input to standard output using standard 1/0.

The function getc reads one character at a time, and this character is written by putc.
After the last byte of input has been read, getc returns the constant EOF. The standard
I/O constants stdin and stdout are defined in the <stdio.h> header and refer to
the standard input and standard output. O

1.5 Programs and Processes

Program

A program is an executable file residing in a disk file. A program is read into memory
and executed by the kernel as a result of one of the six exec functions. We'll cover
these functions in Section 8.9.

Processes and Process ID

An executing instance of a program is called a process. We'll encounter this term on
almost every page of the text. Some operating systems use the term task to refer to a
program that is being executed.

Every Unix process is guaranteed to have a unique numeric identifier called the
process ID. The process ID is always a nonnegative integer.

Example

Program 1.4 prints its process ID.
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#include "ourhdr.h"

int

main (void)

{

printf("hello world from process ID %d\n", getpid()};
exit (0);

Program 1.4 Print the process ID.

If we compile this program into the file a. out and execute it, we have

$ a.out
hello world from process ID 851
$ a.out
hello world from process ID 854

When this program runs it calls the function getpid to obtain its process ID. (]

Process Control

There are three primary functions used for process control: fork, exec, and waitpid.
(There are six variants of the exec function, but we often refer to them collectively as
just the exec function.)

Example

The process control features of Unix can be demonstrated using a simple program
(Program 1.5) that reads commands from standard input and executes the commands.
This is a bare bones implementation of a shell-like program. There are several features
to consider in this 30-line program.

We use the standard I/O function fgets to read one line at a time from the
standard input. When we type the end of file character (often Control-D) as the
first character of a line, fgets returns a null pointer, the loop stops, and the pro-
cess terminates. In Chapter 11 we describe all the special terminal characters
(end of file, backspace one character, erase entire line, etc.) and how to change
them.

Since each line returned by fgets is terminated with a newline character, fol-
lowed by a null byte, we use the standard C function strlen to calculate the
length of the string, and then replace the newline with a null byte. We do this
because the execlp function wants a null terminated argument, not a newline
terminated argument.

We call fork to create a new process. The new process is a copy of the caller,
and we say the caller is the parent and the newly created process is the child.
Then fork returns the nonnegative process ID of the new child process to the
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#include <sys/types.h>
#include <sys/wait.h>
#include "ourhdr.h"

int

main (void)

{

char buf [MAXLINE] ;
pid t pid;
int status;

printf("%% "); /* print prompt (printf requires %% to print %) */
while (fgets(buf, MAXLINE, stdin) != NULL) {

}

buf [strlen(buf) - 1] = 0; /* replace newline with null */

if ( (pid = fork()) < 0)
err_sys("fork error");

else if (pid == 0) { /* child */
execlp(buf, buf, (char *) 0);
err ret ("couldn’'t execute: %s", buf):
exit (127);

}

/* parent */

if ( (pid = waitpid(pid, &status, 0)) < 0)
err_ sys("waitpid error");

printf("%% ");

exit (0);

Program 1.5 Read commands from standard input and execute them.

parent, and it returns 0 to the child. Since fork creates a new process, we say
that it is called once (by the parent) but returns twice (in the parent and in the
child).

In the child we call execlp to execute the command that was read from the
standard input. This replaces the child process with the new program file. The
combination of a fork, followed by an exec, is what some operating systems
call spawning a new process. In Unix the two parts are separated into individu-
al functions. We'll have a lot more to say about these functions in Chapter 8.

Since the child calls execlp to execute the new program file, the parent wants
to wait for the child to terminate. This is done by calling waitpid, specifying
which process we want to wait for (the pid argument, which is the process ID of
the child). The waitpid function also returns the termination status of the child
(the status variable), but in this simple program we don’t do anything with
this value. We could examine it to determine exactly how the child terminated.
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* The most fundamental limitation of this program is that we can’t pass argu-
ments to the command that we execute. We can’t, for example, specify the name
of a directory to list. We can only execute 1s on the working directory. To allow
arguments would require that we parse the input line, separating the arguments
by some convention (probably spaces or tabs) and then pass each argument as a
separate argument to the execlp function. Nevertheless, this program is still a
useful demonstration of the process control functions of Unix.

If we run this program we get the following results. Notice that our program has a dif-
ferent prompt (the percent sign).

$ a.out

% date

Fri Jun 7 15:50:36 MST 1991

% who

stevens console Jun 5 06:01

stevens ttyp0 Jun 5 06:02

% pwd

/home/stevens/doc/apue/proc

% 1s

Makefile

a.out

shelll.c

$ "D type our end-of-file character
$ the regular shell prompt is output

1.6 ANSI C Features

All the examples in this text are written in the version of the C programming language
that is called ANSI C.

Function Prototypes

The header <unistd.h> includes function prototypes for many of the Unix system ser-
vices, such as the read, write, and getpid functions that we’ve called. Function pro-
totypes are part of the ANSI C standard. These function prototypes probably look like

ssize t read(int, void *, size t);
ssize_t write(int, void *, size_t);
pid t getpid(void);

The final one says that getpid takes no arguments (void) and returns a value that has
the data type pid_t. By providing these function prototypes we are able to let the com-
piler do additional checking at compile time, to verify that we are calling functions with
the correct arguments. In Program 1.4, if we had called getpid with an argument, as in
getpid (1), we would get an error message of the form
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line 8: too many arguments to function "getpid"

from an ANSI C compiler. Also, since the compiler knows the data types of the argu-
ments, it is able to cast the arguments to their required data types, if possible.

Generic Pointers

Another difference that we'll note in the function prototypes shown previously is that
the second argument for read and write is now of type void *. All earlier Unix sys-
tems used char * for this pointer. This change is because ANSI C uses void * as the
generic pointer, instead of char *.

Combining function prototypes and generic pointers lets us remove many of the ex-
plicit type casts that are needed with non-ANSI C compilers. For example, given the
prototype for write earlier, we can write

float datal[l00];

write(fd, data, sizeof (data));

With a non-ANSI compiler, or without the function prototype, we need to write
write(fd, (void *) data, sizeof(data)):;

We'll also use this feature of void * pointers with the malloc function (Section 7.8).
The prototype for malloc is now

void *malloc{size_t};
This lets us write
int “#ptr;

ptr = malloc(1000 * sizeof(int));

without explicitly casting the returned pointer to an int *.
Primitive System Data Types

The prototype for the getpid function shown earlier defines its return value as being of
type pid_t. This is also new with POSIX. Earlier versions of Unix defined this func-
tion as returning an integer. Similarly both read and write return a value of type
ssize_t and require a third argument of type size t.

These data types that end in _t are called the primitive system data types. They are
usually defined in the header <sys/types.h> (which the header <unistd.h> must
have included). They are usually defined with the C typedef declaration, which has
been in C for over 15 years (so it doesn’t require ANSI C). Their purpose is to prevent
programs from using specific data types (such as int, short, or long, for example) to
allow each implementation to choose which data type is required for a particular sys-
tem. Everywhere we need to store a process ID, we’ll allocate a variable of type pid_t.
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1.7

(Notice that we did this for the variable named pid in Program 1.5.) While the defini-
tion of this data type might differ from one implementation to another, the differences
are restricted to one header. All we have to do is recompile the application on another
system.

Error Handling

When an error occurs in one of the Unix functions, a negative value is often returned,
and the integer errno is usually set to a value that gives additional information. For
example, the open function returns either a nonnegative file descriptor if all is OK, or
-1 if an error occurs. In the case of an error from open, there are about 15 different
errno values (file doesn’t exist, permission problem, etc.). Some functions use a con-
vention other than returning a negative value. For example, most functions that return
a pointer to an object return a null pointer to indicate an error.

The file <errno.h> defines the variable errno and constants for each value that
errno can assume. Each of these constants begins with the character E. Also, the first
page of Section 2 of the Unix manuals, named intro(2), usually lists all these error con-
stants. For example, if errno is equal to the constant EACCES, this indicates a permis-
sion problem (we don’t have permission to open the requested file, for example).
POSIX defines errno as

extern int errno;

This POSIX.1 definition of errno is stricter than the definition in the C standard. The C stan-
dard allows exrno to be a macro that expands into a modifiable lvalue of type integer (such as
a function that returns a pointer to the error number).

There are two rules to be aware of with respect to errno. First, its value is never
cleared by a routine if an error does not occur. Therefore, we should examine its value
only when the return value from a function indicates that an error occurred. Second,
the value of errno is never set to 0 by any of the functions, and none of the constants
defined in <errno.h> have a value of 0.

Two functions are defined by the C standard to help with the printing of error mes-
sages.

#include <string.h>
char *strerror(int errnum);

Returns: pointer to message string

This function maps errnum (which is typically the errno value) into an error message
string and returns a pointer to the string.
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The perror function produces an error message on the standard error (based on
the current value of errno) and returns.

#include <stdio.h>

void perror {(const char *msg);

It first outputs the string pointed to by msg, followed by a colon and a space, followed
by the error message corresponding to the value of errno, followed by a newline.

Example

Program 1.6 shows the use of these two error functions.

#include <errno.h>
#include "ourhdr.h"
int

main(int argc, char *argv(])
{
fprintf (stderr, "EACCES: %s\n", strerror(EACCES));

errno = ENOENT;
perror(argv[0]);

exit (0) ;

Program 1.6 Demonstrate strerror and perror.

If this program is compiled into the file a . out, we have

$ a.out
EACCES: Permission denied
a.out: No such file or directory

Note that we pass the name of the program (argv[0], whose value is a.out) as the
argument to perror. This is a standard Unix convention. By doing this, if the program
is executed as part of a pipeline, as in

progl < inputfile | prog2 | prog3 > outputfile

we are able to tell which of the three programs generated a particular error message. O

Instead of calling either strerror or perror directly, all the examples in this text
use the error functions shown in Appendix B. The error functions in this appendix let
us use the variable argument list facility of ANSI C to handle error conditions with a
single C statement.
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1.8 User lIdentification

User ID

The user ID from our entry in the password file is a numeric value that identifies us to
the system. This user ID is assigned by the system administrator when our login name
is assigned and we cannot change it. It is normally assigned so that every user has a
unique user ID. We'll see how the user ID is utilized by the kernel to check if we have
the appropriate permissions to perform certain operations.

We call the user whose user ID is 0 either root or the superuser. The entry in the
password file normally has a login name of root and we refer to the special privileges
of this user as superuser privileges. As we'll see in Chapter 4, if a process has superuser
privileges, most file permission checks are bypassed. Some operating system functions
are restricted to only the superuser. The superuser has free reign over the system.

Example

Program 1.7 prints the user ID and the group ID (described next).

#include "ourhdr.h"

int

main{void)

{
printf("uid = %d, gid = %d\n", getuid(), getgid());
exit (0);

Program 1.7 Print user ID and group ID.

We call the functions getuid and getgid to return the user ID and group ID. Running
the program yields

$ a.out

uid = 224, gid = 20

Group ID

Our entry in the password file also specifies our numeric group ID. This group ID is also
assigned by the system administrator when our login name is assigned. Typically there
are multiple entries in the password file that specify the same group ID. Groups are
normally used under Unix to collect users together into projects or departments. This
allows the sharing of resources (such as files) between members of the same group.
We'll see in Section 4.5 that we can set the permissions on a file so that all members of a
group can access the file, while others outside the group cannot.
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There is also a group file that maps group names into numeric group IDs. The
group file is usually /etc/group.

The use of numeric user IDs and numeric group IDs for permissions is historical.
The directory entry for every file on the system contains both the user ID and the group
ID of the owner of the file. Storing both of these values in the directory entry requires
only four bytes, assuming each is stored as a two-byte integer. If the full eight-byte
login name and eight-byte group name were used instead, additional disk space would
be required. Users, however, work better with names instead of numbers, so the pass-
word file maintains the mapping between login names and user IDs, and the group file
provides the mapping between group names and group IDs. The Unix 1s -1 com-
mand, for example, prints the login name of the owner of a file, using the password file
to map the numeric user ID into the corresponding login name.

Supplementary Group IDs

1.9

In addition to the group ID specified in the password file for a login name, some ver-
sions of Unix allow a user to belong to additional groups. This started with 4.2BSD,
which allowed a user to belong to up to 16 additional groups. These supplementary
group IDs are obtained at login time by reading the file /etc/group and finding the
first 16 entries that list the user as a member.

Signals

Signals are a technique used to notify a process that some condition has occurred. For
example, if a process divides by zero, the signal whose name is SIGFPE is sent to the
process. The process has three choices for dealing with the signal:

1. Ignore the signal. This isn’t recommended for signals that denote a hardware
exception, such as dividing by zero, or referencing memory outside the address
space of the process, since the results are undefined.

2. Let the default action occur. For a divide by zero the default is to terminate the
process.

3. Provide a function that is called when the signal occurs. By providing a func-
tion of our own, we'll know when the signal occurs and we can handle it as we
wish.

Many conditions generate signals. There are two terminal keys, called the interrupt
key (often the DELETE key or Control-C) and the quit key (often Control-backslash).
These are used to interrupt the currently running process. Another way to generate a
signal is by calling the function named kill. We can call this function from a process
to send a signal to another process. Naturally there are limitations: we have to be the
owner of the other process to be able to send it a signal.
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Example

Recall the bare bones shell example (Program 1.5). If we invoke this program and type
the interrupt key, the process terminates. The reason is that the default action for this
signal (named SIGINT) is to terminate the process. The process hasn't told the kernel to
do anything other than the default with this signal, so the process terminates.

To change this program so that it catches this signal, it needs to call the signal
function, specifying the name of the function to call when the SIGINT signal is gener-
ated. The function is named sig_int and when it’s called it just prints a message and
a new prompt. Adding 12 lines to Program 1.5 gives us the version in Program 1.8.
(The 12 new lines are indicated with a plus sign at the beginning of the line.)

#include <sys/types.h>

#include <sys/wait _h>
+ #include <signal.h>

#include "ourhdr.h"
+ static void sig_int(int); /* our signal-catching function */
+

int

main (void)

{
char buf [MAXLINE] ;
pid t  pid;

int status;
+ if (signal (SIGINT, sig_int) == SIG_ERR}
+ err_sys("signal error");
+
printf("%% "); /* print prompt (printf requires %% to print %) */
while (fgets(buf, MAXLINE, stdin) != NULL) ({
buf([strlen(buf) - 1] = 0; /* replace newline with null */
if ( (pid = fork()) < 0)
err sys("fork error");
else if (pid == 0) ({ /* child */
execlp(buf, buf, (char *) 0);
err ret ("couldn't execute: %s", buf);
exit (127);
}
/* parent */
if ( (pid = waitpid(pid, &status, 0)) < 0)
err_sys("waitpid error");
print£{("s% ");
}
exit (0) ;
+ }
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+ void

+ sig_int(int signo)

+ 1

+ printf ("interrupt\n%% ");

}

Program 1.8 Read commands from standard input and execute them.

In Chapter 10 we'll take a long look at signals, since most nontrivial applications
deal with them. O

Unix Time Values
Historically, two different time values have been maintained by Unix systems.

1. Calendar time. This value counts the number of seconds since the Epoch, which
is 00:00:00 January 1, 1970, Coordinated Universal Time (UTC). (Older manuals
refer to UTC as Greenwich Mean Time.) These time values are used to record
the time that a file was last modified, for example.

The primitive system data type time_t holds these time values.

2. Process time. This is also called CPU time and measures the central processor
resources used by a process. Process time is measured in clock ticks, which
have historically been 50, 60, or 100 ticks per second.

The primitive system data type clock t holds these time values. Further,
POSIX defines the constant CLK_TCK to specify the number of ticks per second.
(The constant CLK_TCK is now obsolete. We'll show how to obtain the number
of clock ticks per second with the sysconf function in Section 2.5.4.)

When we measure the execution time of a process, as in Section 3.9, we'll see that
Unix maintains three values for a process:

e clock time
* user CPU time
¢ system CPU time

The dlock time is sometimes called wall clock time. 1t is the amount of time the process
takes to run, and its value depends on the number of other processes being run on the
system. Whenever we report the clock time, the measurements are made with no other
activities on the system.

The user CPU time is the CPU time that is attributed to user instructions. The sys-
tem CPU time is the CPU time that can be attributed to the kernel, when it executes on
behalf of the process. For example, whenever a process executes a system service, such
as read or write, the time spent within the kernel performing that system service is
charged to the process. The sum of the user CPU time and system CPU time is often
called the CPU time.
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It is easy to measure the clock time, user time, and system time of any process—just
execute the t ime(1) command with the argument to the t ime command being the com-
mand we want to measure. For example,

% ed fusr/include
$ time grep _POSIX SOURCE */*.h > /dev/null

real Oml9.81s
user Om0.43s
sys Om4.53s

The output format from the t ime command depends on the shell being used.
In Section 8.15 we see how to obtain these three times from a running process. The
general topic of times and dates is covered in Section 6.9.

System Calls and Library Functions

All operating systems provide service points through which programs request services
from the kernel. All variants of Unix provide a well-defined, limited number of entry
points directly into the kernel called system calls. The system calls are one feature of
Unix that we cannot change. Unix Version 7 provided about 50 system calls, 4.3+BSD
provides about 110, and SVR4 has around 120.

The system call interface has always been documented in Section 2 of the Unix Pro-
grammer’s Manual. Tts definition is in the C language, regardless of the actual implemen-
tation technique used on any given system to invoke a system call. This differs from
many older operating systems, which traditionally defined the kernel entry points in
the assembler language of the machine.

The technique used on Unix systems is for each system call to have a function of the
same name in the standard C library. The user process calls this function, using the
standard C calling sequence. This function then invokes the appropriate kernel service,
using whatever technique is required on the system. For example, the function may put
one or more of the C arguments into general registers and then execute some machine
instruction that generates a software interrupt in the kernel. For our purposes, we can
consider the system calls as being C functions.

Section 3 of the Unix Programmer’s Manual defines the general purpose functions
available to programmers. These functions are not entry points into the kernel,
although they may invoke one or more of the kernel’s system calls. For example, the
printf function may invoke the write system call to perform the output, but the
functions st rcpy (copy a string) and atoi (convert ASCII to integer) don’t involve the
operating system at all.

From an implementor’s point of view, the distinction between a system call and a
library function is fundamental. But from a user’s perspective, the difference is not as
critical. From our perspective in this text, both system calls and library functions
appear as normal C functions. Both exist to provide services for application programs.
We should realize, however, that we can replace the library functions if desired, whereas
the system calls usually cannot be replaced.
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Consider the memory allocation function malloc as an example. There are many
ways to do memory allocation and its associated garbage collection (best fit, first fit,
etc.). No single technique is optimal for all programs. The Unix system call that han-
dles memory allocation, sbrk(2), is not a general purpose memory manager. It
increases or decreases the address space of the process by a specified number of bytes.
How that space is managed is up to the process. The memory allocation function,
malloc(3), implements one particular type of allocation. If we don't like its operation
we can define our own malloc function, which will probably use the sbrk system call.
There are, in fact, numerous software packages that implement their own memory allo-
cation algorithms, with the sbrk system call. Figure 1.1 shows the relationship
between the application, the malloc function, and the sbrk system call.
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Figure 1.1 Separation of malloc function and sbrk system call.

Here we have a clean separation of duties—the system call in the kernel allocates
an additional chunk of space to the process. The library function malloc manages this
space.
Another example to illustrate the difference between a system call and a library
function is the interface provided by Unix to determine the current time and date.
Some operating systems provide one system call to return the time and another to
return the date. Any special handling, such as the switch to or from daylight savings
time, is handled by the kernel or requires human intervention. Unix, on the other hand,
provides a single system call that returns the number of seconds since the Epoch: mid-
night, January 1, 1970, Coordinated Universal Time. Any interpretation of this value,
such as converting it to a human-readable time and date using the local time zone, is left
to the user process. Routines are provided in the standard C library to handle most
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cases. These library routines handle details such as the various daylight savings time
algorithms.

An application can call either a system call or a library routine. Also realize that
many library routines invoke a system call. This is shown in Figure 1.2.

! application

i

user process

system calls

kernel

Figure 1.2 Difference between C library functions and system calls.

Another difference between system calls and library functions is that system calls
usually provide a minimal interface while library functions often provide more elabo-
rate functionality. We’ve seen this already in the difference between the sbrk system
call and the malloc library function. We'll see this difference later when we compare
the unbuffered I/O functions in Chapter 3 and the standard I/0 functions in Chapter 5.

The process control system calls (fork, exec, and wait) are usually invoked by the
user’s application code directly. (Recall the bare bones shell in Program 1.5.) But some
library routines exist to simplify certain common cases: the system and popen library
routines, for example. In Section 8.12 we’'ll show an implementation of the system
function that invokes the basic process control system calls. We’ll enhance this example
in Section 10.18 to handle signals correctly.

To define the interface to the Unix system that most programmers utilize, we have
* to describe both the system calls and some of the library functions. If we described only
the sbrk system call, for example, we would skip the malloc library function that
many applications utilize.

In this text we’ll use the term function to refer to both system calls and library func-
tions, except when the distinction is necessary.
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1.12

Summary

This chapter has been a whirlwind tour of Unix. We’ve described some of the funda-
mental terms that we'll encounter over and over again. We’'ve seen numerous small
examples of Unix programs to give us a feel for what the remainder of the text talks
about.

The next chapter is about Unix standardization and the effect of recent work in this
area on current systems. Standards, particularly the ANSI C standard and the POSIX.1
standard, will affect the rest of the text.

Exercises

1.1 Verify on your system that the directories dot and dot-dot are not the same, except in the
root directory.

12  In the output from Program 1.4, what happened to the processes with process IDs 852 and
853?

13 In Section 1.7 the argument to perror is defined with the ANSI C attribute const, while
the integer argument to st rerror isn't defined with this attribute. Why?

14 In the error handling function err_sys in Appendix B, why is the value of errno saved
when the function is called?

1.5 If the calendar time is stored as a signed 32-bit integer, in what year will it overflow?

1.6 If the process time is stored as a signed 32-bit integer, and if the system counts 100 ticks per
second, after how many days will the value overflow?



2.1

2.2

Unix Standardization and
Implementations

Introduction

Much work has gone into standardizing the various flavors of Unix and the C program-
ming language. Although Unix applications have always been quite portable between
different versions of Unix, the proliferation of versions and differences during the 1980s
led many large users (such as the U.S. government) to lead the call for standardization.

In this chapter we first look at the various standardization efforts that are under-
way. We then discuss the effects of these standards on the actual Unix implementations
that are described in this book. An important part of all the standardization efforts is
the specification of various limits that each implementation must define, so we look at
these limits and the various ways to determine their values.

Unix Standardization

2.21 ANSIC

In late 1989 the ANSI Standard X3.159-1989 for the C programming language was
approved [ANSI 1989]. This standard has also been adopted as international standard
ISO/IEC 9899:1990. ANSI is the American National Standards Institute. It is a non-
profit organization composed of vendors and users. It is the national clearinghouse for
voluntary standards in the United States and is the U.S. member in the International
Organization for Standardization (ISO).

The intent of the ANSI C standard is to provide portability of conforming C pro-
grams to a wide variety of operating systems, not just Unix. This standard defines not

25
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only the syntax and semantics of the programming language but also a standard library
[Chapter 4 of ANSI 1989; Plauger 1992; Appendix B of Kernighan and Ritchie 1988].
This library is important to us because many newer Unix systems (such as the ones
described in this book) provide the library routines that are specified in the C standard.

This library can be divided into 15 areas based on the headers defined by the stan-
dard. Figure 2.1 lists the headers defined by the C standard, along with the headers
- defined by the other two standards that we describe in the following sections (POSIX.1
and XPG3). We also list which of these headers are supported by the two implementa-
tions (SVR4 and 4.3+BSD) that are described later in this chapter.

2.2.2 IEEE POSIX

POSIX is a family of standards developed by the IEEE (Institute of Electrical and Elec-
tronics Engineers). POSIX stands for Portable Operating System Interface for Computer
Environments. It originally referred only to the IEEE Standard 1003.1-1988 (the operat-
ing system interface), but the IEEE is currently working on other related standards in
the POSIX family. For example, 1003.2 will be a standard for shells and utilities, and
1003.7 will be a standard for system administration. There are over 15 other subcom-
mittees in the 1003 working group.

Of specific interest to this book is the 1003.1 operating system interface standard.
This standard defines the services that must be provided by an operating system if it is
to be “POSIX compliant” and is being adopted by most computer vendors. Although
the 1003.1 standard is based on the Unix operating system, the standard is not restricted
to Unix and Unix-like systems. Indeed, there are vendors that supply proprietary oper-
ating systems who claim that these systems will be made POSIX compliant (while still
leaving all their proprietary features in place).

Because the 1003.1 standard specifies an interface and not an implementation, no dis-
tinction is made between system calls and library functions. All the routines in the stan-
dard are called functions.

Standards are continually evolving, and the 1003.1 standard is no exception. The
1988 version of this standard, IEEE Standard 1003.1-1988, was modified and submitted
to the International Organization for Standardization. No new interfaces or features
were added but the text was revised. The resulting document was published as IEEE
Std 1003.1-1990 [IEEE 1990]. This is also the international standard 1SO/IEC
9945-1:1990. This standard is commonly referred to as POSIX.1, which we’ll use in this
text.

The IEEE 1003.1 working group then made more changes, which should be
approved by 1993. These changes (currently called 1003.1a) should be published by the
IEEE as a supplement to IEEE Standard 1003.1-1990. These changes affect this text, pri-
marily because Berkeley-style symbolic links will probably be added as a required fea-
ture. The changes will probably become an addendum to ISO/IEC 9945-1:1990. In this
text we describe the 1003.1a version of POSIX.1 with notes specifying which features
will probably be added with 1003.1a.

POSIX.1 does not include the noticn of a superuser. Instead, certain operations
require “appropriate privileges,” although POSIX.1 leaves the definition of this term up
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e Standards Implementations Description
ANSIC POSIX1 XPG3| SVR4 4.3+BSD P

<assert.h> . . . verify program assertion
<cpio.h> . . cpio archive values
<ctype.h> . . . character types
<dirent .h> . . . . directory entries (Section 4.21)
<errno.h> . . . error codes (Section 1.7)
<fentl.h> . . . . file control (Section 3.13)
<float.h> . . . floating point constants
<ftw.h> . { file tree walking (Section 4.21)
<grp.h> . . . group file (Section 6.4)
<langinfo.h> . language information constants
<limits.h> . implementation constants (Section 2.5)
<locale.h> . locale categories
<math.h> . mathematical constants
<nl_types.h> . . message catalogs
<pwd.h> . . . . password file (Section 6.2)
<regex.h> . . . regular expressions
<search.h> . . search tables
<setjmp.h> . . . nonlocal goto (Section 7.10)
<signal.h> . . . signals (Chapter 10)
<stdarg.h> . . . variable argument lists
<stddef.h> . . . standard definitions
<stdio.h> . . - standard 1/0 library (Chapter 5)
<stdlib.h> . . « | utility functions
<string.h> . . . string operations
<tar.h> . tar archive values
<termios.h> - . . . terminal 1/ O (Chapter 11)
<time.h> . . . time and date (Section 6.9)
<ulimit.h> . . user limits i
<unistd.h> . . . symbolic constants
<utime.h> . . . file times (Section 4.19)
<sys/ipc.h> . . «  |IPC (Section 14.6)
<sys/msg.h> . . message queues (Section 14.7)
<sys/sem.h> . . semaphores (Section 14.8)
<gys/shm.h> . . - shared memory (Section 14.9)
<sys/stat.h> . . . . file status (Chapter 4)
<sys/times.h> . . . . process times (Section 8.15)
<sys/types.h> . . . . primitive system data types (Section 2.7)
<sys/utsname.h> . . . system name (Section 6.6)
<sys/wait.h> . . . . process control (Section 8.6)

Figure 2.1 Headers defined by the various standards and implementations.

to the implementation. Some newer Unix systems, which conform to the Department of
Defense security guidelines, have many different levels of security. In this text, how-
ever, we use the traditional Unix terminology and refer to operations that require super-

user privilege.
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2.3

2.23 X/Open XPG3

X/Open is an international group of computer vendors. They have produced a seven-
volume portability guide called the X/Open Portability Guide, Issue 3 [X/Open 19891.
We'll call this XPG3. Volume 2 of XPG3 (XSI System Interface and Headers) defines an
interface to a Unix-like system that is built on the IEEE Std. 1003.1-1988 interface. But
XPG3 contains additional features that are not in POSIX.1.

For example, one feature that is in XPG3 but not in POSIX.1 is the X/Open messag-
ing facility. This facility can be used by applications to display text messages in differ-
ent languages.

One thing to be aware of is that the XPG3 interface was built on the draft ANSI C
standard, not the final standard. For this reason a few features in the XPG3 interface
specification are out of date. These will probably be fixed in a future release of the XPG
specification. (Work is underway on XPG4, and it will probably be completed by 1993.)

2.2.4 FIPS

FIPS stands for Federal Information Processing Standard, and these standards are pub-
lished by the U.S. government. They are used for procurement of computer systems by
the U.S. government. FIPS 151-1 (April 1989) is based on the IEEE Std. 1003.1-1988
and a draft of the ANSI C standard. FIPS 151-1 requires some features that POSIX.1
lists as optional. This FIPS is sometimes called the POSIX.1 FIPS. Section 2.5.5 lists the
POSIX.1 options required by the FIPS.

The effect of the POSIX.1 FIPS is to require any vendor who wishes to sell
POSIX.1-compliant computer systems to the U.S. government to support some of the
optional features of POSIX.1. We won’t consider the POSIX.1 FIPS as another standard,
since practically it is just a tightening of the POSIX.1 standard.

Unix Implementations

The previous section described three standards done by independent organizations:
ANSI C, IEEE POSIX, and the X/Open XPG3. Standards, however, are interface specifi-
cations. How do these standards relate to the real world? These standards are taken by
vendors and turned into actual implementations. In this book we are interested in both
these standards and their actual implementation.

Section 1.1 of Leffler et al. [1989] gives a detailed history (and a nice picture) of the
Unix family tree. Everything starts from the Sixth Edition (1976) and Seventh Edition
(1979) of the Unix Time-Sharing System on the PDP-11 (usually called Version 6 and
Version 7). These were the first releases widely distributed outside of Bell Labs. Three
branches of the tree evolved: (a) one at AT&T that led to System III and System V (the
so-called commercial versions of Unix), (b) one at the University of California at Berke-
ley that led to the 4xBSD implementations, (c) the research version of Unix, under con-
tinuing development at the Computing Science Research Center of AT&T Bell
Laboratories, that led to the 8th, 9th, and 10th Editions.
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2.3.1 System V Release 4

System V Release 4 (SVR4) is a product of AT&T’s Unix System Laboratories. It is a
merging of AT&T Unix System V Release 3.2 (SVR3.2), Sun Microsystem’s SunOS sys-
tem, the 4.3BSD release from the University of California, and the Xenix system from
Microsoft. (Xenix was originally developed from Version 7, with many features later
taken from System V.) The source code was released in late 1989 with the first end-user
copies being available during 1990. SVR4 conforms to both the POSIX 1003.1 standard
and the X/Open XPG3 standard.

AT&T also publishes the System V Interface Definition (SVID) [AT&T 1989]. Issue 3
of the SVID specifies the functionality that a Unix system must offer to qualify as Unix
System V Release 4. As with POSIX.1, the SVID specifies an interface and not an imple-
mentation. No distinction is made in the SVID between system calls and library func-
tions. The reference manual for an actual implementation of SVR4 must be consulted to
see this distinction [AT&T 1990e].

SVR4 contains a Berkeley compatibility library [AT&T 1990c] that provides func-
tions and commands that operate like their 4.3BSD counterparts. Some of these func-
tions, however, differ from their POSIX counterparts. None of the SVR4 examples in
this text use this compatibility library. This library should be used only if you have an
older application that you do not want to convert. New applications should not use it.

2.3.2 4.3+BSD

The Berkeley Software Distributions (BSD) are produced and distributed by the Com-
puter Systems Research Group at the University of California at Berkeley. 4.2BSD was
released in 1983 and 4.3BSD in 1986. Both of these releases ran on the VAX minicom-
puter. The next release, 4.3BSD Tahoe in 1988, also ran on a particular minicomputer
called the Tahoe. (The book by Leffler et al. [1989] describes the 4.3BSD Tahoe release.)
This was followed in 1990 with the 4.3BSD Reno release. 4.3BSD Reno supported many
of the POSIX.1 features. The next major release, 4.4BSD, should be released in 1992.

The original BSD systems contained proprietary AT&T source code and were cov-
ered by AT&T licenses. To obtain the source code to the BSD system you had to have an
AT&T source license for Unix. This has been changing as more and more of the AT&T
source code has been replaced over the years with non-AT&T source code, and many of
the new features added to the Berkeley system were derived from non-AT&T sources.

In 1989 Berkeley identified much of the non-AT&T source code in the 4.3BSD Tahoe
release and made it publicly available as the BSD Networking Software, Release 1.0.
This was followed in 1991 with Release 2.0 of the BSD Networking Software, which was
derived from the 4.3BSD Reno release. The intent is that most, if not all, of the 4.4BSD
system will be free of any AT&T license restrictions. This will make the source code
available to all.

As we mentioned in the preface, throughout the text we use the term 4.3+BSD to refer to the
BSD system being described. This system is between the BSD Networking Software
Release 2.0 and the forthcoming 4.4BSD.
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2.4

2.5

The Unix development done at Berkeley started with PDP-11s, then moved to the
VAX minicomputer, and has since moved to other so-called workstations. During the
early 1990s support was provided to Berkeley for the popular 80386-based personal
computers, leading to what is called 386BSD. This was done by Bill Jolitz and is docu-
mented in a series of monthly articles in Dr. Dobb’s Journal throughout 1991. Much of
this code appears in the BSD Networking Software, Release 2.0.

Relationship of Standards and Implementations

The standards that we’'ve mentioned define a subset of any actual system. Although the
IEEE POSIX efforts plan to define standards in other required areas (such as the net-
working interface, communication between different processes, and system administra-
tion), these additional standards don’t exist at the time of this writing.

The focus of this book is to describe two real Unix systems: SVR4 and 4.3+BSD.
Since both claim to be POSIX compliant we will also concentrate on the features that are
required by the POSIX.1 standard, noting any differences between POSIX and the actual
implementations of these two systems. Those features and routines that are specific
only to SVR4 or 4.3+BSD are clearly marked. Since XPG3 is a superset of POSIX.1, we'll
also note any features that are part of XPG3 but not part of POSIX.1.

Be aware that both of the implementations (SVR4 and 4.3+BSD) provide backward
compatibility for features in earlier releases (such as SVR3.2 and 4.3BSD). For example,
SVR4 supports both the POSIX.1 specification for nonblocking [/0O (0_NONBLOCK) and
the traditional System V method (O_NDELAY). In this text we’'ll use only the POSIX.1
feature, although we’ll mention the nonstandard feature that it replaces. Similarly, both
SVR3.2 and 4.3BSD provided reliable signals in a way that differs from the POSIX.1
standard. In Chapter 10 we describe only the POSIX.1 signal mechanism.

Limits

There are many magic numbers and constants that are defined by the implementation.
Many of these have been hard coded into programs or were determined using ad hoc
techniques. With the various standardization efforts that we've described, more
portable methods are now provided to determine these magic numbers and implemen-
tation-defined limits. This can greatly aid the portability of our software.

Three types of features are needed:

* compile-time options (does the system support job control?)
¢ compile-time limits (what's the largest value of a short integer?)
* run-time limits (how many characters in a filename?)

The first two features, compile-time options and compile-time limits, can be defined in
headers that any program can include at compile time. But run-time limits require the
process to call a function to obtain the value of the limit.
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Additionally, some limits can be fixed on a given implementation (and could there-
fore be defined statically in a header) yet vary on another implementation (and would
require a run-time function call). An example of this type of limit is the maximum num-
ber of characters in a filename. System V has historically allowed only 14 characters in a
filename while Berkeley-derived systems increased this to 255. SVR4 allows us to spec-
ify, for each filesystem that we create, whether it is a System V filesystem or a BSD file-
system, and each has a different limit. This is the case of a run-time limit that depends
where in the filesystem the file in question is located. A filename in the root filesystem,
for example, could have a 14-character limit, while a filename in some other filesystem
could have a 255-character limit.

To solve these problems, three types of limits are provided:

1. compile-time options and limits (headers);

2. run-time limits that are not associated with a file or directory (the sysconf
function);

3. run-time limits that are associated with a file or directory (the pathconf and
fpathconf functions).

To further confuse things, if a particular run-time limit does not vary on a given system,
it can be defined statically in a header. If it is not defined in a header, however, the
application must call one of the three conf functions (which we describe shortly) to
determine its value at run time.

2.5.1 ANSI C Limits

All the limits defined by ANSI C are compile-time limits. Figure 2.2 shows the limits
from the C standard that are defined in the file <limits.h>. These constants are
always defined in the header and don’t change in a given system. The third column
shows the minimum acceptable values from the ANSI C standard. This allows for a
system with 16-bit integers using 1’s-complement arithmetic. The fourth column shows
the values from a current system with 32-bit integers using 2’s-complement arithmetic.
Note that none of the unsigned data types has a minimum value, as this value must be 0
for an unsigned data type.

One difference that we will encounter is whether a system provides signed or
unsigned character values. From the fourth column in Figure 2.2 we see that this partic-
ular system uses signed characters. We see that CHAR_MIN equals SCHAR MIN and
CHAR MAX equals SCHAR MAX. If the system uses unsigned characters we would have
CHAR_MIN equal to 0 and CHAR_MAX equal to UCHAR_MAX.

There is a similar set of definitions for the floating point data types in the header
<float .h>. Anyone doing serious floating point work should examine this file.

Another constant from ANSI C that we'll encounter is FOPEN_MAX, the minimum
number of standard I/O streams that can be open at once. This value is in the
<stdio.h> header, and its minimum value is 8. The POSIX.1 value STREAM MAX, if
defined, must have the same value as FOPEN_MAX.
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Name Description acczdp:;—;:Teu\?;lwe Typical value
CHAR_BIT bits in a char 8 8
CHAR_MAX max value of char (see later) 127
CHRR_MIN min value of char (see later) -128
SCHAR_MAX max value of signed char 127 127
SCHAR_MIN min value of signed char -127 -128
UCHRR_MAX max value of unsigned char 255 255
INT_MAX max value of int 32,767 2,147 483,647
INT_MIN min value of int -32,767 -2,147,483,648
UINT MAX max value of unsigned int 65,535 4,294,967,295
SHRT MIN min value of short -32,767 —32,768
SHRT_MAX ' max value of short 32,767 32,767
USHRT MAX | max value of unsigned short 65,535 65,535
LONG_MAX max value of long 2,147 483,647 2,147 483,647
LONG_MIN min value of long -2,147 483,647 —2,147 483,648
ULONG_MAX max value of unsigned long 4,294,967 ,295 4,294 967,295
MB LEN MAX | max number of bytes in a 1 1

multibyte character constant

Figure 2.2 Sizes of integral values from <limits.h>.

ANGSI C also defines the constant TMP_MAX in <stdio.h>. Itis the maximum num-
ber of unique filenames generated by the tmpnam function. We’ll have more to say
about this constant in Section 5.13.

2.5.2 POSIX Limits

POSIX.1 defines numerous constants that deal with implementation limits of the operat-
ing system. Unfortunately, this is one of the more confusing aspects of POSIX.1. (Read-
ing and comprehending Sections 2.8 and 2.9 of the POSIX.1 standard are an exercise in
deciphering “standardese.”)

There are 33 different limits and constants. These are divided into the following

eight categories:

Invariant minimum values (the 13 constants in Figure 2.3).
Invariant value: SSIZE_MAX

-
—

Run-time increasable value: NGROUPS_MAX.

Ead e A

Run-time invariant values (possibly indeterminate): ARG MAX, CHILD MAX,
OPEN_MAX, STREAM_MAX, and TZNAME_MAX.

5. Pathname variable values (possibly indeterminate): LINK_MAX, MAX CANON,
MAX INPUT,NAME MAX, PATH MAX, and PIPE BUF.

6. Compile-time symbolic constants: _POSIX_SAVED_IDS, _POSIX VERSION,
and POSTX_ JOB_CONTROL.
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7. Execution-time symbolic constants: _POSIX NO TRUNC, POSIX VDISABLE,
and POSIX CHOWN_ RESTRICTED.

8. Obsolete constant: CLK_TCK.

Of these 33 limits and constants, 15 are always defined and others may or may not be
defined, depending on certain conditions. We describe the limits and constants that
may or may not be defined (items 4-8) in Section 2.5.4, when we describe the sysconf,
pathconf, and fpathconf functions. We summarize all the limits and constants in
Figure 2.7. The 13 invariant minimum values are shown in Figure 2.3.

Name _ Description: minimum acceptable value for Value

_POSIX BRG MAX length of arguments to exec functions 4096
_POSIX CHILD_MAX number of child processes per real user ID 6
_POSIX LINK MAX number of links to a file 8
_POSIX _MAX CANON number of bytes on a terminal’s canonical input queue 255
_POSIX MAX INPUT space available on a terminal’s input queue 255
_POSIX NAME MAX number of bytes in a filename 14
_POSIX_NGROUPS MAX | number of simultaneous supplementary group IDs per process 0
_POSIX OPEN_ MAX number of open files per process 16
_POSIX PATH MAX number of bytes in a pathname 255
_POSIX _PIPE BUF number of bytes that can be written atomically to a pipe 512
_POSIX SSIZE MAX value that can be stored in ssize t object 32767
_POSIX_STREAM MAX | number of standard I/O streams a process can have open at once 8
_POSIX_TZNAME_MAX | number of bytes for the name of a time zone 3

Figure 2.3 POSIX.1 invariant minimum values from <limits.h>.

These values are invariant—they do not change from one system to another. They
specify the most restrictive values for these features. A conforming POSIX.1 implemen-
tation must provide values that are at least this large. This is why they are called mini-
mums, although their names all contain MAX. Also, a portable application must not
require a larger value. We describe what each of these constants refers to as we proceed
through the text.

Unfortunately, some of these invariant minimum values are too small to be of prac-
tical use. For example, most Unix systems today provide far more than 16 open files per
process. Even Version 7 in 1978 provided 20 open files per process! Also, the minimum
limit of 255 for POSIX PATH MAX is too small. Pathnames can exceed this limit. This
means that we can’t use - the two constants _POSIX OPEN_MAX and POSIX PATH MAX
as array sizes at compile time, for example.

Each of the 13 invariant minimum values in Figure 2.3 has an associated implemen-
tation value whose name is formed by removing the POSIX prefix from the name in
Figure 2.3. The names without the leading POSIX were intended to be the actual val-
ues that a given implementation supports. (These 13 implementation values are items
2-5 from our list earlier in this section: the invariant value, the run-time increasable
value, the run-time invariant values, and the pathname variable values.) The problem
is that not all of the 13 implementation values are guaranteed to be defined in the
<limits.h> header. The reason a particular value may not be defined in the header is
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because its actual value for a given process may depend on the amount of memory on
the system, for example. If they're not defined in the header, we can’t use them as array
bounds at compile time. So, POSIX.1 decided to provide three run-time functions for us
to call, sysconf, pathconf, and fpathconf, to determine the actual implementation
value at run time. There is still a problem, however, because some of the values are
defined by POSIX.1 as being possibly “indeterminate” (logically infinite). This means
that the value has no practical upper bound. For example, the limit on the number of
open files per process in SVR4 is virtually unlimited, so OPEN_MAX is considered inde-
terminate under SVR4. We'll return to this problem of indeterminate run-time limits in
Section 2.5.7.

2.5.3 XPG3 Limits

XPG3 defines seven constants that always appear in the <limits.h> header. POSIX.1
would call these invariant minimum values. They are listed in Figure 2.4. Most of these
values deal with message catalogs.

Name Description amh;izﬁlel?alue Typical value

NI ARGMAX maximum value of digit in calls to print £ 9 9
and scanf

NL_LANGMAX | maximum number of bytes in LANG 14 14
environment variable

NL_MSGMAX maximum message number 32,767 32,767

NL NMAX maximum number of bytes in N-to-1 | 1
mapping characters

NL_SETMAX maximum set number 255 255

NL TEXTMAX | maximum number of bytes in a message 255 255
string

NZERO | default process priority _ 20 _ 20

Figure 2.4 XPG3 invariant minimum values from <limits.h>.

XPG3 also defines the value PASS MAX, which can appear in <limits.h> as the
maximum number of significant characters in a password (not including the terminat-
ing null byte). POSIX.1 would call this value a run-time invariant value (possibly inde-
terminate). The minimum acceptable value is 8. The value of PASS MAX can also be
obtained at run time with the sysconf function, as described in Section 2.5.4.

2.5.4 sysconf, pathconf, and fpathconf Functions

We've listed various minimum values that an implementation must support, but how
do we find out the limits that a particular system actually supports? As we mentioned
earlier, some of these limits might be available at compile time and others must be
determined at run time. We’ve also mentioned that some don’t change in a given sys-
tem, while others are associated with a file or directory. The run-time limits are
obtained by calling one of the following three functions.
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#include <unistd.h>
long sysconf (int name) ;
long pathconf (const char *pathname, int name) ;

long fpathconf (int filedes, int name) ;

All three return: corresponding value if OK, —1 on error (see later)

The difference between the last two functions is that one takes a pathname as its argu-
ment and the other takes a file descriptor argument.

Figure 2.5 lists the name arguments that are used by these three functions. Con-
stants beginning with _SC_ are used as arguments to sysconf and arguments begin-
ning with _PC_ are used as arguments to either pathconf or fpathconf.

There are some restrictions for the pathname argument to pathconf and the filedes
argument to fpathconf. If any of these restrictions aren’t met, the results are unde-

fined.

1.

The referenced file for _PC _MAX_CANON, _PC MAX INPUT, and
_PC_VDISABLE must be a terminal file.

The referenced file for PC_LINK MAX can be either a file or directory. Ifitis a
directory, the return value applies to the directory itself (not the filename entries
within the directory).

The referenced file for _PC_NAME_MAX and _PC_NO_TRUNC must be a directory.
The return value apphes to filenames within the directory.

The referenced file for PC_PATH MAX must be a directory. The value returned
is the maximum length of a relative pathname when the specified directory is
the working directory. (Unfortunately this isn’t the real maximum length of an
absolute pathname, which is what we want to know. We'll return to this prob-
lem in Section 2.5.7.)

The referenced file for PC_PIPE BUF must be a pipe, FIFO, or directory. In the
first two cases (pipe or FIFO) the return value is the limit for the referenced pipe
or FIFO. For the other case (a directory) the return value is the limit for any
FIFO created in that directory.

The referenced file for PC_CHOWN RESTRICTED must be either a file or direc-
tory. If it is a directory, the return value indicates whether this option applies to
files within that directory.

We need to specify in more detail the different return values from these three func-

tions.

1.

All three functions return —1 and set errno to EINVAL if the name isn’t one of
the appropriate constants from the third column of Figure 2.5.
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" Name of limit
ARG MAX
CHILD_MAX
clock ticks/second
NGROUPS MAX

OPEN_MAX
PASS_MAX

STREAM_MAX

TZNAME MAX

Description

maximum length of argumenbs to the exec
functions (in bytes)

maximum number of processes per real user ID

number of clock ticks per second

maximum number of simultaneous supplemen-
tary process group IDs per process

maximum number of open files per process

maximum number of significant characters in a
password (XPG3 and SVR4, not POSIX.1)

maximum number of standard [/O streams per
process at any given time—if defined, it must
have the same value as FOPEN MAX

maximum number of bytes for the name of a time
zone

_POSIX JOB_CONTROL
_POSIX_SAVED_IDS

_POSIX_VERSION
XOPEN_VERSION

name argument

_SC_ARG_MAX
_SC_CHILD MAX
_SC_CLK TCK
_SC_NGROUPS_MAX

_SC_OPEN MAX
_SC_PASS MAX

_SC_STREAM MAX

_SC_TZNAME_MAX

indicates if the implementation supports job
control

indicates if the implementation supports the saved
set-user-ID and the saved set-group-ID

indicates the POSIX.1 version

indicates the XPG version (not POSIX.1)

LINK MAX
MAX_CANON

MAX_INPUT
NAME MAX
PATH MAX

PIPE_BUF

maximum value of a file’s link count
maximum number of bytes on a terminal’s
canonical input queue

| number of bytes for which space is available on

terminal’s input queue

maximum number of bytes in a filename (does not
include a null at end)

maximum number of bytes in a relative pathname
{does not include a null at end)

maximum number of bytes that can be written
atomically to a pipe

_POSIX CHOWN RESTRICTED

_POSIX_NO_TRUNC

_POSTX_VDISABLE

indicates 1f use of chown is restricted
indicates if pathnames longer than NAME MAX
generate an error

| if defined, terminal special characters can be

disabled with this value

_SC_JOB_CONTROL
_SC_SAVED_IDS

_SC_VERSION
_SC_XOPEN VERSTION

| _pc_LINK Max
_PC_MAX CANON
_PC_MAX_INPUT
_PC_NAME_MAX
_PC PATH MAX
_PC_PIPE BUF
_PC_CHOWN_RESTRICTED

_PC_NO_TRUNC

_PC VDISABLE

Figure 2.5 Limits and name arguments to syscon£, pathconf, and fpathconf.

2. The 12 names that contain MAX and the name PC_PIPE BUF can return either
the value of the variable (a return value > 0) or an indication that the value is
indeterminate. An indeterminate value is indicated by returning —1 and not
changing the value of errno.

3. The value returned for _SC_CLK_TCK is the number of clock ticks per second,
for use with the return values from the t imes function (Section 8.15).
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Example

The value returned for _SC_VERSION indicates the four-digit year and two-
digit month of the standard. This can be either 198808L or 199009L, or some
other value for a later version of the standard.

The value returned for _SC_XOPEN_VERSION indicates the version of the XPG
that the system complies with. Its current value is 3.

The two values SC JOB_CONTROL and _SC_SAVED_IDS represent optional
features. If sysconf returns -1 without changing errno for either of these, the
feature isn’t supported. Both of these features can also be determined at com-
pile time from the <unistd.h> header.

_PC_CHOWN RESTRICTED and PC NO TRUNC, return —1 without changing
errno if the feature is not supported for the specified pathname or filedes.

_PC_VDISABLE returns —1 without changing errno if the feature is not sup-
ported for the specified pathname or filedes. If the feature is supported, the return
value is the character value to be used to disable the special terminal input char-
acters (Figure 11.6).

Program 2.1 prints all these limits, handling the case where a limit is not defined.

#include <errno.h>
#include "ourhdr.h"
static void pr_sysconf{(char *, int);

static

int

void pr_pathconf (char *, char *, int):;

main(int argc, char *argvl[])

{
if

Pr_
Pr_
PI_
| sho
pr_

#ifdef

Pr_

#endif
#ifdef

Pr_

#endif

Pr_:
pr_:
pr_

(argc '= 2)

err _quit ("usage: a.out <dirname>");

sysconf ("ARG_MAX =", _SC ARG MAX);
sysconf ("CHILD MAX =", _SC CHILD_ MAX);
sysconf ("clock ticks/second =", _SC CLK TCK);
sysconf ("NGROUPS_MAX =", _SC_NGROUPS_MAX) ;
sysconf ("OPEN MAX =", _SC_OPEN_MAX);
_SC_STREAM MAX
sysconf ("STREAM MAX =", _SC_STREAM MAX);
_SC_TZNAME MAX

sysconf ("TZNAME MAX =", _SC_TZNAME MAX);

sysconf (*_POSIX_JOB _CONTROL =", _SC_JOB_CONTROL) ;
sysconf ("_POSIX SAVED IDS =", SC SAVED IDS);
sysconf (" _POSIX VERSION =", _SC_VERSION);
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pr_pathconf ("MAX CANON =", "/dev/tty", _PC_MAX CANON);
pr_pathconf ("MAX INPUT =", "/dev/tty", _PC MAX INPUT);
pr_pathconf (™ _POSIX VDISABLE =", "/dev/tty", _PC_VDISABLE);
pr_pathconf ("LINK MAX =", argv[l], _PC_LINK MAX);
pr_pathconf ("NAME MAX =", argv[l], _PC NAME MAX);
pr pathcont ("PATH MAX =", argv[l], _PC_PATH MAX);
pr_pathconf ("PIPE_BUF =", argv[l], _PC_PIPE BUF);

pr_pathconf ("_POSIX NO_TRUNC =", argv([1l], _PC_NO_TRUNC);
pr_pathconf ("_POSIX CHOWN RESTRICTED =",
argv[l], _PC CHOWN_ RESTRICTED);
exit (0);
}

static void
pr_sysconf (char *mesg, int name)

{

long val;

fputs (mesg, stdout);
errno = (;
if ( {(val = sysconf(name)) < 0) {
if (errno '= 0)
err sys("sysconf error");
fputs(" (not defined)\n", stdout);
} else
printf (" %1d\n", wval);
}

static void
pr_pathconf (char *mesg, char *path, int name)

{

long val;

fputs (mesg, stdout):
errnc = {;
if ( (val = pathconf (path, name)) < 0) {
if (errno !'= 0)
err sys("pathconf error, path = %s", path);
fputs (" (no limit)\n", stdout);
} else
printf (" %1d\n", val);

Program 2.1 Print all possible sysconf and pathconf values.

We have conditionally included two constants that were added to POSIX.1 but were not
part of the JEEE Std 1003.1-1988 version of the standard. Figure 2.6 shows sample out-
put from Program 2.1 for some different systems. The entries “not def” mean the con-
stant is not defined. We'll see in Section 4.14 that the SVR4 S5 filesystem is the
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Ay SVR4
Limit Sun054.1.1 S5 filesys UFS filesys 4.3+BSD

ARG_MAX 1048576 5120 5120 20480
CHILD MAX 133 30 30 40
clock ticks/second 60 100 100 60
NGROUPS_MAX 16 16 16 16
OPEN_MAX 64 64 64 64
_POSIX_JOB_CONTROL 1 1 1 1
_POSIX_SAVED_ IDS 1 1 1 not def
_POSIX_VERSION 198808 198808 198808 198808
MAX_CANON 256 256 256 255
MAX INPUT 256 512 512 255
_POSIX VDISABLE 0 0 0 255
LINK_ MAX 32767 1000 1000 32767
NAME MAX 255 14 255 255

PATH MAX 1024 1024 1024 1024
PIPE BUF 4096 5120 5120 512
_POSIX_NO_TRUNC 1 not def 1 1

_POSIX_CHOWN_RESTRICTED 1 not def not def 1

Figure 2.6 Examples of configuration limits.

traditional System V filesystem, that dates back to Version 7. UFS is the SVR4 imple-
mentation of the Berkeley fast filesystem.

2.5.5 FIPS 151—1 Requirements

O

The FIPS 1511 standard that we mentioned in Section 2.2.4 tightens the POSIX.1 stan-
dard by requiring the following features.

¢ The following POSIX.1 optional features are required: POSIX JOB CONTROL,
_POSIX_SAVED_IDS, POSIX_NO_TRUNC, POSIX_CHOWN_ RESTRICTED, and

_POSIX_VDISABLE.

¢ The minimum value of NGROUPS_MAX is 8.

¢ The group ID of a newly created file or directory must be set to the group ID of
the directory in which the file is created. (We describe this feature in

Section 4.6.)

¢ Ifa read or write is interrupted by a signal that is caught after some data has
been transferred, the function must return the number of bytes that have been

transferred. (We discuss interrupted system calls in Section 10.5.)

* A login shell must define the environment variables HOME and LOGNAME.

Since the U.S. government purchases many computer systems, most vendors of POSIX
systems will support these added FIPS requirements.
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Compile-time

Constant name Header  Required?|  Run-time name Minimum value
ARG_MAX <limits.h> optional | _SC ARG MAX _POSIX_ARG_MAX = 409
CHAR BIT <limits.h> required 8
CHAR_MAX <limits.h> required 127
CHAR MIN <limits.h> required 0
CHILD_ MAX <limits.h> optional | _SC CHILD MAX _POSIX_CHILD MAX=6
clock ticks/second _S8C_CLK _TCK
FOPEN_MAX <stdio.h> required 8
INT MAX <limits.h> required 32,767
INT MIN <limits.h> required -32,768
LINK_MAX <limits.h> optional | PC_LINK MAX _POSIX_LINK MAX=8
LONG_MAX <limits.h> required 2,147 483,647
LONG_MIN <limits.h> required —2,147,483,648
MAX CANON <limits.h> opltional | PC_MAX CANON _POSIX_MAX CANON =255
MAX INPUT <limits.h> optional | PC_MAX INPUT _POSIX_MAX INPUT =255
MB_LEN MAX <limits.h> required
NAME MAX <limits.h> optional | PC_NRME MAX _POSIX_NAME MAX=14
NGROUPS MAX <limits.h> required | SC NGROUPS_MAX _POSIX_NGROUPS MAX=0
NL ARGMAX <limits.h> required 9
NL_LANGMAX <limits.h> required 14
NL_MSGMAX <limits.h> required 32,767
NL_NMAX <limits.h> required
NL_SETMAX <limits.h> required 255
NL TEXTMAX <limits.h> required 255
NZERO <limits.h> required 20
OPEN_MAX <limits.h> optional | SC_OPEN_MAX _POSIX OPEN MAX=16
PASS MAX <limits.h> optional | _SC_PASS MAX 8
PATH MAX <limits.h> optional | PC_PATH_MAX _POSIX PATH MAX =255
PIPE BUF <limits.h> optional | PC_PIPE_BUF _POSIX PIPE_BUF =512
SCHAR_MAX <limits.h> required 127
SCHAR_MIN <limits.h> required -127
SHRT MAX <limits.h> required 32,767
SHRT_MIN <limits.h> required -32,768
SSIZE MAX <limits.h> required _POSTX_SSIZE_MAX = 32767
STREAM MAX <limits.h> optional |_SC_STREAM MAX _POSIX STREAM MAX=8
TMP MAX <stdio.h> required 10,000
TZNAME MAX <limits.h> optional | SC TZNAME MAX _POSTX_TZNAME MAX=3
UCHAR_MAX <limits.h> required 255
UINT MAX <limits.h> required 65,535
ULONG MAX <limits.h> required 4,294,967,295
USHRT MAX <limits.h> required 65,535

POSIX _CHOWN_RESTRICTED|<unistd.h> optional | _PC_CHOWN_RESTRICTED
_POSTX_JOB_CONTROL <unistd.h> optional |_SC_JOB_ CONTROL
_POSIX_NO_TRUNC <unistd.h> optiongl | _PC_NO_ TRUNC
_POSIX SAVED_ IDS <unistd.h> optional | _SC_SAVED_IDS
_POSIX_VDISABLE <unistd.h> optional | PC_VDISABLE
_POSIX VERSION <unistd.h> required | SC_VERSION
_XOPEN_VERSTON <unistd.h> required | SC_XOPEN _VERSION

Figure 2.7 Summary of compile-time and run-time limits.
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25.6 Summary of Limits

We've described various limits and magic constants, some of which always appear in a
header, some of which may optionally appear in a header, and others that can be deter-
mined at run time. Figure 2.7 summarizes all these constants alphabetically and the
various ways to obtain their values. A run-time name that begins with _SC_ is an argu-
ment to the sysconf function, and a name that begins with _PC__is an argument to the
pathconf and fpathconf functions. If the constant has a minimum value, it is listed.
Note that the 13 POSIX.1 invariant minimum values from Figure 2.3 appear in the right-
most column of Figure 2.7.

2.5.7 Indeterminate Run-Time Limits

We mentioned that some of the values from Figure 2.7 can be indeterminate. These val-
ues are the ones with a third column of optional, whose names contain MAX, and the
value PIPE BUF. The problem we encounter is that if these aren’t defined in the
<limits.h> header we can’t use them at compile time. But they might not be defined
at run time if their value is indeterminate! Let's look at two specific cases—allocating
storage for a pathname and determining the number of file descriptors.

Pathnames

Lots of programs need to allocate storage for a pathname. Typically the storage has
been allocated at compile time and various magic numbers (few of which are the correct
value) have been used by different programs as the array size: 256, 512, 1024, or the
standard 1/O constant BUFSIZ. The 4.3BSD constant MAXPATHLEN in the header
<sys/param.h> is the correct value, but many 4.3BSD applications didn’t use it.

POSIX.1 tries to help with the PATH MAX value, but if this value is indeterminate,
we're still out of luck, Program 2.2 is a function that we'll use throughout this text to
allocate storage dynamically for a pathname.

If the constant PATH MAX is defined in <limits.h> then we're all set. If it’s not,
we need to call pathconf. Since the value returned by pathconf is the maximum size
of a relative pathname when the first argument is the working directory, we specify the
root as the first argument and add 1 to the result. If pathconf indicates that
PATH MAX is indeterminate, we have to punt and just guess some value. The +1 in the
call to malloc is for the null byte at the end (which PATH_MAX doesn’t account for).

The correct way to handle the case of an indeterminate result depends on how the
allocated space is being used. If we were allocating space for a call to getcwd, for
example (to return the absolute pathname of the current working directory, see
Section 4.22) and if the allocated space is too small, an error is returned and errno is set
to ERANGE. We could then increase the allocated space by calling realloc (see
Section 7.8 and Exercise 4.18) and try again. We could keep doing this until the call to
getcwd succeeded.
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#include <errno.h>
#include <limits.h>
#include "ourhdr.h"

#ifdef PATH MAX

static int pathmax = PATH MAX;
#else

static int pathmax
#endif

0;

#define PATH MAX GUESS 1024 /* if PATH MAX is indeterminate */
/* we’re not guaranteed this is adequate */
char *
path_alloc(int *size)
/* also return allocated size, if nonnull */
{
char *ptr;

if (pathmax == 0) { /* first time through */
errno = 0;
if ( (pathmax = pathconf("/", _PC_PATH MAX)) < 0) {

if (errnc == 0)
pathmax = PATH MAX GUESS; /* it’'s indeterminate */
else
err sys("pathconf error for _PC_PATH MAX");
} else
pathmax++; /* add one since it’s relative to root */
}
if ( (ptr = malloc(pathmax + 1)) == NULL)

err sys("malloc error for pathname"):;

if (size !'= NULL)
*gize = pathmax + 1;
return(ptr);

Program 2.2 Dynamically allocate space for a pathname.

Maximum Number of Open Files

A common sequence of code in a daemon process (a process that runs in the back-
ground, not connected to a terminal) is one that closes all open files. Some programs
have the code sequence

#include <sys/param.h>

for (i = 0; 1 <€ NOFILE; i++)
close (i) ;
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assuming the constant NOFILE was defined in the <sys/param.h> header. Other pro-
grams use the constant NFILE that some versions of <stdio.h> provide as the upper
limit. Some hard code the upper limit as 20.

We would hope to use the POSIX.1 value OPEN MAX to determine this value
portably, but if the value is indeterminate we still have a problem. If we wrote

#include <unistd.h>

for (i = 0; i < sysconf(_SC OPEN_MAX); i++)
close (i) ;

and if OPEN_MAX was indeterminate, the loop would never execute, since sysconf
would return -1. Our best option in this case is just to close all descriptors up to some
arbitrary limit (say 256). As with our pathname example, this is not guaranteed to work
for all cases, but it’s the best we can do. We show this technique in Program 2.3.

#include <errno.h>

#include <limits.h>

#include "ourhdr.h"

#ifdef OPEN_MAX

static int openmax = OPEN_MAX;

#else

static int openmax = 0;

#endif

#define OPEN_MAX GUESS 256 /* if OPEN_MAX is indeterminate */
/* we’re not guaranteed this is adequate */

int

open_max (void)
{
if (openmax == 0) { /* first time through */
errno = 0;
if ( (openmax = sysconf(_SC OPEN MAX)) < 0) {
if (errno == 0)
openmax = OPEN MAX GUESS; /* it’s indeterminate */
else
err_sys{"sysconf errcr for _SC OPEN_ MAX");
}
}

return (openmax) ;

Program 2.3 Determine the number of file descriptors.

We might be tempted to call close until we get an error return, but the error return
from close (EBADF) doesn’t distinguish between an invalid descriptor and a descriptor
that wasn’t open. If we tried this technique and descriptor 9 was not open but descrip-
tor 10 was, we would stop on 9 and never close 10. The dup function (Section 3.12) does
return a specific error when OPEN_MAX is exceeded, but duplicating a descriptor a cou-
ple of hundred times is an extreme way to determine this value.
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2.6

2.7

The SVR4 and 4.3+BSD getrlimit(2) function (Section 7.11) and the 4.3+BSD function
getdtablesize(2) return the maximum number of descriptors that a process can have open.
Calling these two functions, however, isn't portable.

The OPEN_MAX value is called run-time invariant by POSIX, meaning its value should not
change dunng the lifetime of a process. But under SVR4 and 4.3+BSD we can call the
setrlimit(2) function (Section 7.11) to change this value from a running process. (This value
can also be changed from the C Shell with the 1imit command, and from the Bourne shell
and KornShell with the ulimit command.) If our system supports this functionality we could
change Program 2.3 to call sysconf every time it is called, not just the first time.

Feature Test Macros

The headers define numerous POSIX.1 and XPG3 symbols, as we've described. But
most implementations can add their own definitions to these headers, in addition to the
POSIX.1 and XPG3 definitions. If we want to compile a program so that it depends only
on the POSIX definitions and doesn’t use any implementation-defined limits, we need
to define the constant POSIX SOURCE. All the POSIX.1 headers use this constant to
exclude any implementation-defined definitions when POSIX SOURCE is defined.

The constant POSIX SOURCE, and its corresponding constant _XOPEN_SOURCE,
are called feature test macros. All feature test macros begin with an underscore. When
used, they are typically defined in the cc command as in

cc -D POSIX SOURCE file.c

This causes the feature test macro to be defined before any header files are included by
the C program. We can also set the first line of a source file to

#define _POSTX SOURCE 1

if we want to use only the POSIX.1 definitions.

Another feature test macro is __STDC__, which is automatically defined by the C
compiler if the compiler conforms to the ANSI C standard. This allows us to write C
programs that compile under both ANSI C compilers and non-ANSI C compilers. For
example, a header could look like

$ifdef _ STDC

void *myfunc(const char *, int);
telse

void ‘*myfunc();

#endif

to take advantage of the ANSI C prototype feature, if supported. Be aware that the two
consecutive underscores at the beginning and end of the name __STDC__, often print
as one long underscore (as in the preceding sample source code).

Primitive System Data Types

Historically certain C data types have been associated with certain Unix variables. For
example, the major and minor device numbers have historically been stored in a 16-bit
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short integer, with 8 bits for the major device number and 8 bits for the minor device
number. But many larger systems need more than 256 values for these device numbers,
so a different technique is needed. (Indeed, SVR4 uses 32 bits for the device number:
14 bits for the major and 18 bits for the minor.)

The header <sys/types.h> defines some implementation-dependent data types,
called the primitive system data types. More of these data types are defined in other head-
ers also. These data types are defined in the headers with the C typedef facility. Most
end in _t. Figure 2.8 lists the primitive system data types that we’ll encounter in this
text.

Type Description
caddr_t core address (Section 12.9)
clock_t counter of clock ticks (process time) (Section 1.10)
comp_t compressed clock ticks (Section 8.13)
dev_t device numbers (major and minor) (Section 4.23)
fd set file descriptor sets (Section 12.5.1)
fpos_t file position (Section 5.10)
gid t numeric group IDs
ino_t i-node numbers (Section 4.14)
mode_t file type, file creation mode (Section 4.5)
nlink t link counts for directory entries (Section 4.14)
off_t file sizes and offsets (signed) (1seek, Section 3.6)
pid_t process IDs and process group IDs (signed) (Sections 8.2 and 9.4)
ptrdiff t result of subtracting two pointers (signed)
rlim t resource limits (Section 7.11)
sig_atomic_t | datatype that can be accessed atomically (Section 10.15)
sigset t signal set (Section 10.11)
size t sizes of objects (such as strings) (unsigned) (Section 3.7)
ssize t functions that return a count of bytes (signed) (read, write, Section 3.7)
time_t counter of seconds of calendar time (Section 1.10)
uid_t numeric user IDs
wchar_t can represent all distinct character codes

Figure 28 Primitive system data types.

By defining these data types this way, we do not build into our programs imple-
mentation details that can change from one system to another. We describe what each
of these data types is used for when we encounter them later in the text.

Conflicts Between Standards

All in all these different standards fit together nicely. Our main concern is any differ-
ences between the ANSI C standard and POSIX.1, since XPG3 is an older standard (and
is being revised) and FIPS is a tightening of POSIX.1. There are some differences.

ANSI C defines the function clock to return the amount of CPU time used by the
process. The value returned is a clock_t value. To convert this value to seconds we
divide it by CLOCKS_PER_SEC, which is defined in the <time.h> header. POSIX.1
defines the function times that returns both the CPU time (for the caller and all its
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terminated children) and the clock time. All these time values are clock t values.
The IEEE Std. 1003.1-1988 defined the symbol CLK_TCK as the number of ticks per sec-
ond that these clock_t values were measured in. With the 1990 POSIX.1 standard the
symbol CLK_TCK is declared obsolete and we should use the sysconf function instead,
to obtain the number of clock ticks per second for use with the return values from the
times function. What we have is the same term, clock ticks per second, defined differ-
ently by ANSI C and POSIX.1. Both standards also use the same data type (clock t)
to hold these different values. The difference can be seen in SVR4, where clock returns
microseconds (hence CLOCKS PER SEC is 1 million) while CLK_TCK is usually 50, 60,
or 100, depending on the CPU type.

Another area of potential conflict is when the ANSI C standard specifies a function,
but doesn’t specify it as strongly as POSIX.1. This is the case for functions that require a
different implementation in a POSIX environment (with multiple processes) than an
ANSI C environment (where very little can be assumed about the host operating sys-
tem). Nevertheless, many POSIX-compliant systems implement the ANSI C function,
for compatibility. The signal function is an example. If we unknowingly use the
signal function provided by SVR4 (hoping to write portable code that can be run in
ANSI C environments and under older Unix systems), it'll provide different semantics
than the POSIX.1 sigaction function. We'll have more to say about the signal func-
tion in Chapter 10.

Summary

Much has been happening over the past few years with the standardization of the dif-
ferent versions of Unix. We've described the three dominant standards—ANSI C,
POSIX, and XPG3—and the effect of these standards on the two implementations that
we'll examine in this text: SVR4 and 4.3+BSD. These standards try to define certain
parameters that can change with each implementation, but we’ve seen that these limits
are imperfect. We'll encounter all these limits and magic constants as we proceed
through the text.

The bibliography lists how one can order copies of these standards that we’ve dis-
cussed.

Exercises

21 We mentioned in Section 2.7 that some of the primitive system data types are defined in
more than one header. For example, size t is defined in six different headers. Since a
program could #include all six of these different headers and since ANSI C does not allow
multiple t ypede fs for the same name, how must the headers be written?

2.2 Examine your system’s headers and list the actual data types used to implement the primi-
tive system data types.
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File 1/0

Introduction

We'll start our discussion of the Unix system by describing the functions available for
file I/O—open a file, read a file, write a file, and so on. Most Unix file I/O can be per-
formed using only five functions: open, read, write, lseek, and close. We then
examine the effect of different buffer sizes on the read and write functions.

The functions described in this chapter are often referred to as unbuffered I/O (in
contrast to the standard 1/O routines, which we describe in Chapter 5). The term
unbuffered refers to the fact that each read or write invokes a system call in the ker-
nel. These unbuffered 1/0O functions are not part of ANSI C, but are part of POSIX.1
and XPG3.

Whenever we describe the sharing of resources between multiple processes, the
concept of an atomic operation becomes important. We examine this concept with
regard to file I/O and the arguments to the open function. This leads to a discussion of
how files are shared between multiple processes and the kernel data structures
involved. Once we've described these features, we describe the dup, fcntl, and
ioct1 functions.

File Descriptors

To the kernel all open files are referred to by file descriptors. A file descriptor is a non-
negative integer. When we open an existing file or create a new file, the kernel returns a
file descriptor to the process. When we want to read or write a file, we identify the file
with the file descriptor that was returned by open or creat as an argument to either
read orwrite.
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3.3

File 1/O

By convention the Unix shells associate file descriptor 0 with the standard input of a
process, file descriptor 1 with the standard output, and file descriptor 2 with the stan-
dard error. This is a convention employed by the Unix shells and many Unix
applications—it is not a feature of the kernel. Nevertheless, many Unix applications
would break if these associations weren’t followed.

The magic numbers 0, 1, and 2 should be replaced in POSIX.1 applications with the
symbolic constants STDIN FILENO, STDOUT_FILENO, and STDERR FILENO. These
are defined in the <unistd.h> header.

File descriptors range from 0 through OPEN MAX. (Recall Figure 2.7.) Older ver-
sions of Unix had an upper limit of 19 (allowing a maximum of 20 open files per pro-
cess) but this was increased to 63 by many systems. '

With SVR4 and 4.3+BSD the limit is essentially infinite, bounded by the amount of memory on
the system, the size of an integer, and any hard and soft limits configured by the system
administrator.

open Function

A file is opened or created by calling the open function.

#include <sys/types.h>
#include <sys/stat.h>
#include <fentl.h>

int open(const char *pathname, int oflag, ... /* , mode_t mode */ ):

Returns: file descriptor if OK, -1 on error

We show the third argument as . . ., which is the ANSI C way to specify that the num-
ber and types of the remaining arguments may vary. For this function the third argu-
ment is only used when a new file is being created, as we describe later. We show this
argument as a comment in the prototype.

The pathname is the name of the file to open or create. There are a multitude of
options for this function, which are specified by the oflag argument. This argument is
formed by OR’ing together one or more of the following constants (from the
<fentl.h> header).

O_RDONLY Open for reading only.
O_WRONLY Open for writing only.
O_RDWR Open for reading and writing.

Most implementations define O_RDONLY as 0, O_WRONLY as 1, and 0_RDWR as 2, for
compatibility with older programs.

One and only one of these three constants must be specified. The following constants
are optional:
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O_APPEND Append to the end of file on each write. We describe this option in
detail in Section 3.11.

O_CREAT Create the file if it doesn’t exist. This option requires a third argument
to the open function, the mode, which specifies the access permission
bits of the new file. (When we describe a file’s access permission bits in
Section 4.5, we’ll see how to specify the mode, and how it can be modi-
fied by the umask value of a process.)

0 _EXCL Generate an error if O_CREAT is also specified and the file already
exists. This test for whether the file already exists and the creation of
the file if it doesn’t exist is an atomic operation. We describe atomic
operations in more detail in Section 3.11.

O_TRUNC If the file exists, and if the file is successfully opened for either write-
only or read-write, truncate its length to 0.

O_NOCTTY If the pathname refers to a terminal device, do not allocate the device as
the controlling terminal for this process. We talk about controlling ter-
minals in Section 9.6.

O_NONBLOCK If the pathname refers to a FIFO, a block special file, or a character spe-
cial file, this option sets the nonblocking mode for both the opening of
the file and for subsequent I/O. We describe this mode in Section 12.2.

In earlier releases of System V the 0_NDELAY (no delay) flag was introduced. This
option is similar to the O_] NONBLOCK {nonblocking) option, but an ambiguity was
introduced in the return value from a read operation. The no-delay option causes a
read to return O if there is no data to be read from a pipe, FIFO, or device, but this
conflicts with a return value of 0 indicating an end of file. SVR4 still supports the
no-delay option, with the old semantics, but new applications should use the non-
blocking option instead.

0 SYNC Have each write wait for physical I/O to complete. We use this
option in Section 3.13.

The G_SYNC option is not part of POSIX.1. It is supported by SVR4.

The file descriptor returned by open is guaranteed to be the lowest numbered
unused descriptor. This is used by some applications to open a new file on standard
input, standard output, or standard error. For example, an application might close stan-
dard output (normally file descriptor 1) and then open some other file, knowing that it
will be opened on file descriptor 1. We'll see a better way to guarantee that a file is open
on a given descriptor in Section 3.12 with the dup2 function.

Filename and Pathname Truncation

What happens if NAME MAX is 14 and we try to create a new file in the current directory
with a filename containing 15 characters? Traditionally, earlier releases of System V
allowed this to happen, silently truncating the filename beyond the 14th character,
while Berkeley-derived systems return the error ENAMETOOLONG. This problem does
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not apply just to the creation of new files. If NAME MAX is 14 and a file exists whose
name is exactly 14 characters, then any function that accepts a pathname argument
(open, stat, etc.) has to deal with this problem.

With POSIX.1 the constant _POSIX_NO_TRUNC determines whether long filenames
and long pathnames are truncated or whether an error is returned. As we saw in
Chapter 2, this value can vary on a per-filesystem basis.

FIPS 151-1 requires that an error be returned.

SVR4 does not generate an error for a traditional System V filesystem (S5). (See Figure 2.6.)
For a Berkeley-style filesystem (UFS), however, SVR4 does generate an error.

4.3+BSD always returns an error.

If POSIX NO_TRUNC is in effect, then the error ENAMETOOLONG is returned if
either the entire pathname exceeds PATH_MAX, or if any filename component of the
pathname exceeds NAME MAX.

creat Function

A new file can also be created by

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>

int creat (const char *pathname, mode t mode) ;

Returns: file descriptor opened for write-only if OK, -1 on error

Note that this function is equivalent to
open (pathname, O_WRONLY | O _CREAT | O_TRUNC, mode) ;

In earlier versions of Unix the second argument to cpen could only be 0, 1, or 2. There was no
way to open a file that didn’t already exist. Therefore a separate system call, creat, was
needed to create new files. With the 0_CREAT and O_TRUNC options now provided by open, a
separate creat function is no longer needed.

We'll show how to specify mode in Section 4.5 when we describe a file’s access permis-
sions in detail.

One deficiency with creat is that the file is opened only for writing. Before the
new version of open was provided, if we were creating a temporary file that we wanted
to write and then read back, we had to call creat, close, and then open. A better
way is to use the new open function, as in

open (pathname, O_RDWR | O_CREAT | O_TRUNC, mode) ;
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close Function

An open file is closed by

#include <unistd.h>

int close(int filedes) ;

Returns: 0 if OK, -1 on error

Closing a file also releases any record locks that the process may have on the file. We'll
discuss this in Section 12.3.

When a process terminates, all open files are automatically closed by the kernel.
Many programs take advantage of this fact and don't explicitly close open files. See
Program 1.2, for example.

1seek Func_tion

Every open file has an associated “current file offset.” This is a nonnegative integer that
measures the number of bytes from the beginning of the file. (We describe some excep-
tions to the “nonnegative” qualifier later in this section.) Read and write operations
normally start at the current file offset and cause the offset to be incremented by the
number of bytes read or written. By default, this offset is initialized to 0 when a file is
opened, unless the O_ APPEND option is specified.

An open file can be explicitly positioned by calling 1seek.

#include <sys/types.h>
#include <unistd.h>

off t lseek (int filedes, off t offset, int whence) ;

Returns: new file offset if OK, —1 on error

The interpretation of the offset depends on the value of the whence argument.

e If whence is SEEK_SET, the file’s offset is set to offset bytes from the beginning of
the file.

e If whence is SEEK_CUR, the file’s offset is set to its current value plus the offset.
The offset can be positive or negative.

» If whence is SEEK_END, the file’s offset is set to the size of the file plus the offset.
The offset can be positive or negative.
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Since a successful call to 1seek returns the new file offset, we can seek zero bytes from
the current position to determine the current offset.

off t currpos;

currpos = lseek(fd, 0, SEEK_CUR);

This technique can also be used to determine if the referenced file is capable of seeking;
if the file descriptor refers to a pipe or FIFO, 1seek returns —1 and sets errno to
EPIPE.

The three symbolic constants, SEEK_SET, SEER_CUR, and SEEK_END, were introduced with
System V. Before System V whence was specified as 0 (absolute), 1 (relative to current offset), or
2 (relative to end of file). Much software still exists with these numbers hard coded.

The character 1 in the name lseek means “long integer.” Before the introduction of the
off_t data type, the offset argument and the return value were long integers. lseek was

introduced with Version 7 when long integers were added to C. (Similar functionality was
provided in Version 6 by the functions seek and tell.)

Example

Program 3.1 tests its standard input to see if it is capable of seeking.

#include <sys/types.h>
#include "ourhdr.h"

int
main (void)
{
if (lseek (STDIN FILENO, 0, SEEK_CUR) == -1)
printf ("cannot seek\n");
else
printf ("seek OK\n");
exit (0) ;

Program 3.1 Test if standard input is capable of seeking.

If we invoke this program interactively, we get

$ a.out < /etc/motd

seek OK

$ cat < /etc/motd | a.out
cannot seek

$ a.out < [var/spool/cron/FIFO

cannct seek 0

Normally a file’s current offset must be a nonnegative integer. It is possible, how-
ever, that certain devices could allow negative offsets. But for regular files the offset
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must be nonnegative. Since negative offsets are possible, we should be careful to com-
pare the return value from 1seek as being equal to or not equal to ~1 and not test if it's
less than 0.

The /dev/kmem device on SVR4 for the 80386 supports negative offsets.

Since the offset (of£_t) is a signed data type (Figure 2.8), we lose a factor of 2 in the maximum
file size. For example, if of £_t is a 32-bit integer, the maximum file size is 2" bytes.

1seek only records the current file offset within the kernel—it does not cause any
I/0 to take place. This offset is then used by the next read or write operation.

The file’s offset can be greater than the file’s current size, in which case the next
write to the file will extend the file. This is referred to as creating a hole in a file and is
allowed. Any bytes in a file that have not been written are read back as 0.

Example

Program 3.2 creates a file with a hole in it.

#include <sys/types.h>

#include <sys/stat.h>
#include <fentl.h>
#include "ourhdr.h"

char bufl[] = "abcdefghij®:

char buf2(] "ABCDEFGHIJ";
int
main({void)

{
int fd;

if ( (fd = creat("file.hole", FILE MODE)) < 0)
err_sys("creat error");

if (write(fd, bufl, 10) != 10)
err_sys("bufl write error"):;
/* offset now = 10 */

if (lseek(fd, 40, SEEK SET) == -1)
err_sys("lseek error");
/* offset now = 40 */

if (write(fd, buf2, 10) '= 10)
err_sys("bufZ write error");
/* offset now = 50 */

exit (0);

Program 3.2 Create a file with a hole in it.
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Running this program gives us

5 a.out

$ 1s -1 file.hole check its size

—-rw-r——r—— 1 stevens 50 Jul 31 05:50 file.hole

$ od —¢c file.hole let’s look at the actual contents

0000000 a b ¢ d e £ g h i 3 N0 \NO \O \O \O \O
0000020 \O \O \O \O \O \O \O \O \O \O \O \O \O \O \O \O
0000040 N0 NO NONONONONONO A B C D E F G H
0000060 I J

0000062

We use the od(1) command to look at the actual contents of the file. The —c flag tells it
to print the contents as characters. We can see that the 30 unwritten bytes in the middle
are read back as zero. The seven-digit number at the beginning of each line is the byte
offset in octal. In this example we call the write function (Section 3.8). We'll have
more to say about files with holes in Section 4.12. o

read Function

Data is read from an open file with the read function.

#include <unistd.h>

ssize t read(int filedes, void *buff, size t nbyfes) ;

Returns: number of bytes read, 0 if end of file, -1 on error

If the read is successful, the number of bytes read is returned. If the end of file is
encountered, 0 is returned.

There are several cases in which the number of bytes actually read is less than the
amount requested:

* When reading from a regular file, if the end of file is reached before the
requested number of bytes has been read. For example, if there are 30 bytes
remaining until the end of file and we try to read 100 bytes, read returns 30.
The next time we call read it will return 0 (end of file).

* When reading from a terminal device, normally up to one line is read at a time
(we’ll see how to change this in Chapter 11).

* When reading from a network, buffering within the network may cause less
than the requested amount to be returned.

* Some record-oriented devices, such as a magnetic tape, return up to a single
record at a time.

The read operation starts at the file’s current offset. Before a successful return, the
offset is incremented by the number of bytes actually read.
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3.8

3.9

POSIX.1 changed the prototype for this function in several ways. The classic defini-
tion is

int read(int filedes, char *buff, unsigned nbytes);

First, the second argument was changed from a char * to a void * to be consistent
with ANSI C: the type void * is used for generic pointers. Next, the return value must
be a signed integer (ssize_t) to return either a positive byte count, 0 (for end of file),
or -1 (for an error). Finally, the third argument historically has been an unsigned inte-
ger, to allow a 16-bit implementation to read or write up to 65534 bytes at a time. With
the 1990 POSIX.1 standard the new primitive system data type ssize t was intro-
duced to provide the signed return value, and the unsigned size t was used for the
third argument. (Recall the SSIZE_MAX constant from Figure 2.7.)

write Function

Data is written to an open file with the write function.

#include <unistd.h>

ssize_t write(int filedes, const void *buff, size_t nbyles);

Returns: number of bytes written if OK, —1 on error

The return value is usually equal to the nbytes argument, otherwise an error has
occurred. A common cause for a write error is either filling up a disk or exceeding the
file size limit for a given process (Section 7.11 and Exercise 10.11).

For a regular file, the write starts at the file’s current offset. If the O_APPEND option
was specified in the open, the file’s offset is set to the current end of file before each
write operation. After a successful write, the file’s offset is incremented by the number
of bytes actually written.

I/0 Efficiency

Using only the read and write functions, Program 3.3 copies a file. The following
caveats apply to Program 3.3:

* [t reads from standard input and writes to standard output. This assumes that
these have been set up by the shell before this program is executed. Indeed, all
normal Unix shells provide a way to open a file for reading on standard input
and to create (or rewrite) a file on standard output. This prevents the program
from having to open the input and output files.

e Many applications assume that standard input is file descriptor 0 and standard
output is file descriptor 1. In this example we use the two defined names
STDIN FILENOand STDOUT_FILENO from <unistd.h>.
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#include "ourhdr.h"
#define BUFFSIZE 8192
int
main(void)
{
int n;
char buf [BUFFSIZE];
while ( (n = read(STDIN FILENO, buf, BUFFSIZE)) > 0)
if (write(STDOUT FILENO, buf, n) != n)
err sys("write error");
if (n < 0)
err_sys("read error");
exit (0);
}
an;mmaa-CbpysmndmﬂhqmtbsﬁnmndouumL

* The program doesn’t close the input file or output file. Instead it uses the fact

that whenever a process terminates, Unix closes all open file descriptors.

* This example works for both text file and binary files, since there is no difference

between the two to the Unix kernel.

One question we haven’t answered, however, is how we chose the BUFFSIZE
value. Before answering that, let's run the program using different values for
BUFFSIZE. In Figure 3.1 we show the results for reading a 1,468,802 byte file, using 18
different buffer sizes.

The file was read using Program 3.3 with standard output redirected to
/dev/null. The filesystem used for this test was a Berkeley fast filesystem with
8192-byte blocks. (The st_blksize, which we describe in Section 4.12, is 8192.) This
accounts for the minimum in the system time occurring at a BUFFSIZE of 8192,
Increasing the buffer size beyond this has no effect.

We'll return to this timing example later in the text. In Section 3.13 we show the
effect of synchronous writes, and in Section 5.8 we compare these unbuffered I1/0 times
with the standard I/0 library.

3.10 File Sharing

Unix supports the sharing of open files between different processes. Before describing
the dup function, we need to describe this sharing. To do this we’'ll examine the data
structures used by the kernel for all 1/0.
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User CPU | System CPU | Clock time
BUFFSIZE | (. onds) | (seconds) | (seconds) | "O°F®
1 238 397.9 4234 | 1468802
2 123 202.0 215.2 734401
4 6.1 100.6 107.2 367201
8 3.0 50.7 54.0 183601
16 15 253 27.0 91801
2 07 12.8 137 45901
64 03 6.6 7.0 22950
128 02 33 36 11475
256 01 18 1.9 5738
512 0.0 1.0 11 2860
1024 0.0 06 06 1435
2048 0.0 04 0.4 718
409% 0.0 0.4 04 359
8192 0.0 0.3 03 180
16384 0.0 0.3 03 90
32768 00 03 03 45
65536 0.0 03 03 23
131072 0.0 03 03 12

Figure 3.1 Timing results for reading with different buffer sizes.

Three data structures are used by the kernel, and the relationships among them

determines the effect one process has on another with regard to file sharing.

ix

Every process has an entry in the process table. Within each process table entry is a
table of open file descriptors, which we can think of as a vector, with one entry per
descriptor. Associated with each file descriptor are

(@) the file descriptor flags,

(b) a pointer to a file table entry.

The kernel maintains a file table for all open files. Each file table entry contains
(a) the file status flags for the file (read, write, append, sync, nonblocking, etc.),
(b) the current file offset,

(c) a pointer to the v-node table entry for the file.

Each open file (or device) has a v-node structure. The v-node contains information
about the type of file and pointers to functions that operate on the file. For most
files the v-node also contains the i-node for the file. This information is read from
disk when the file is opened, so that all the pertinent information about the file is
readily available. For example, the i-node contains the owner of the file, the size of
the file, the device the file is located on, pointers to where the actual data blocks for
the file are located on disk, and so on. (We talk more about i-nodes in Section 4.14
when we describe the typical Unix filesystem in more detail.)
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We're ignoring some implementation details that don’t affect our discussion. For exam-
ple, the table of open file descriptors is usually in the user area and not the process ta-
ble. In SVR4 this data structure is a linked list of structures. The file table can be
implemented in numerous ways—it need not be an array of file table entries. In
4.3+BSD the v-node contains the actual i-node, as we’'ve shown. SVR4 stores the v-node
in the i-node for most of its filesystem types. These implementation details don’t affect
our discussion of file sharing.

Figure 3.2 shows a pictorial arrangement of these three tables for a single process
that has two different files open—one file is open on standard input (file descriptor 0)
and the other is open on standard output (file descriptor 1).

_ processtableentry file table v-node table
file status flags v-node
current file offset informati_o_n
-node ptr i-node
fd 0 e pr i L | i_niotmation |
?"di ; \ current file size |
file status flags
current file offset
_/ v-node I
v-node ptr information
i-node
information
| current file size

Figure 3.2 Kernel data structures for open files.

The arrangement of these three tables has existed since the early versions of Unix
[Thompson 1978], and this arrangement is critical to the way files are shared between
different processes. We'll return to this figure in later chapters, as we describe addi-
tional ways that files are shared.

The v-node structure is a recent addition. It evolved when support was provided for multiple
filesystem types on a given system. This work was done independently by Peter Weinberger
(Bell Laboratories) and Bill Joy (Sun Microsystems). Sun called this the Virtual File System and
called the filesystem independent portion of the i-node the v-node [Kleiman 1986]. The v-node
propagated through various vendor implementations as support for Sun’s Network File Sys-
tem (NFS) was added. The first release from Berkeley to provide v-nodes was the 4.3BSD Reno
release, when NFS was added.

In SVR4 the v-node replaced the filesystem independent i-node of SVR3.

If two independent processes have the same file open we could have the arrange-
ment shown in Figure 3.3. We assume here that the first process has the file open on
descriptor 3, and the second process has that same file open on descriptor 4. Each pro-
cess that opens the file gets its own file table entry, but only a single v-node table entry
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process table entry
fd flags ptr
fd 0:
f‘g 1:
2:
£d 3 — file table
file status flags
e current file offset v-node table
v-node ptr 1 % v-node
information
process table entry
fd flags pir file status flags current file size
:ﬂ? current file offset
Eﬂgz v-node ptr  —
fd 4:

Figure 3.3 Two independent processes with the same file open.

is required for a given file. One reason each process gets its own file table entry is so
that each process has its own current offset for the file.

Given these data structures we now need to be more specific about what happens
with certain operations that we’ve already described.

e After each write is complete, the current file offset in the file table entry is
incremented by the number of bytes written. If this causes the current file offset
to exceed the current file size, the current file size in the i-node table entry is set
to the current file offset (e.g., the file is extended).

* If a file is opened with the O_APPEND flag, a corresponding flag is set in the file
status flags of the file table entry. Each time a write is performed for a file with
this append flag set, the current file offset in the file table entry is first set to the
current file size from the i-node table entry. This forces every write to be
appended to the current end of file.

e The 1seek function only modifies the current file offset in the file table entry.
No I/0O takes place.

 Ifafile is positioned to its current end of file using 1seek, all that happens is the
current file offset in the file table entry is set to the current file size from the
i-node table entry.
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It is possible for more than one file descriptor entry to point to the same file table
entry. We'll see this when we discuss the dup function in Section 3.12. This also hap-
pens after a fork when the parent and child share the same file table entry for each
open descriptor (Section 8.3).

Note the difference in scope between the file descriptor flags and the file status
flags. The former apply only to a single descriptor in a single process, while the latter
apply to all descriptors in any process that point to the given file table entry. When we
describe the fcnt1 function in Section 3.13 we'll see how to fetch and modify both the
file descriptor flags and the file status flags.

Everything that we’ve described so far in this section works fine for multiple pro-
cesses that are reading the same file. Each process has its own file table entry with its
own current file offset. Unexpected results can arise, however, when multiple processes
write to the same file. To see how to avoid some surprises, we need to understand the
concept of atomic operations.

Atomic Operations

Appending to a File

Consider a single process that wants to append to the end of a file. Older versions of
Unix didn’t support the O_APPEND option to open, so the program was coded as

if (lseek(fd, 0L, 2) < 0) /* position to EQF */
err sys("lseek error");
if (write(fd, buff, 100) != 100) /* and write */

err sys("write error");

This works fine for a single process, but problems arise if multiple processes use this
technique to append to the same file. (This scenario can arise if multiple instances of the
same program are appending messages to a log file, for example.)

Assume two independent processes, A and B, are appending to the same file. Each
have opened the file but without the 0_APPEND flag. This gives us the same picture as
Figure 3.3. Each process has its own file table entry, but they share a single v-node table
entry. Assume process A does the 1seek and this sets the current offset for the file for
process A to byte offset 1500 (the current end of file). Then the kernel switches pro-
cesses and B continues running. It then does the 1seek, which sets the current offset
for the file for process B to byte offset 1500 also (the current end of file). Then B calls
write, which increments B’s current file offset for the file to 1600. Since the file’s size
has been extended, the kernel also updates the current file size in the v-node to 1600.
Then the kernel switches processes and A resumes. When A calls write, the data is
written starting at the current file offset for A, which is byte offset 1500. This overwrites
the data that B wrote to the file.

The problem here is that our logical operation of “position to the end of file and
write” requires two separate function calls (as we’ve shown it). The solution is to have
the positioning to the current end of file and the write be an atomic operation with
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regard to other processes. Any operation that requires more than one function call can-
not be atomic, as there is always the possibility that the kernel can temporarily suspend
the process between the two function calls (as we assumed previously).

Unix provides an atomic way to do this operation if we set the O_APPEND flag when
a file is opened. As we described in the previous section, this causes the kernel to posi-
tion the file to its current end of file before each write. We no longer have to call
1seek before each write.

Creating a File

3.12

We saw another example of an atomic operation when we described the O_CREAT and
O_EXCL options for the open function. When both of these options are specified, the
open will fail if the file already exists. We also said that the check for the existence of
the file and the creation of the file was performed as an atomic operation. If we didn’t
have this atomic operation we might try

if { (fd = open(pathname, O WRONLY)) < 0)
if {errno == ENOENT) {
if ( (fd = creat(pathname, mode)) < 0)
err_sys("creat error”);
} else
err_sys("open error”);

The problem occurs if the file is created by another process between the open and the
creat. If the file is created by another process between these two function calls, and if
that other process writes something to the file, that data is erased when this creat is
executed. By making the test for existence and the creation an atomic operation, this
problem is avoided.

In general, the term atomic operation refers to an operation that is composed of multi-
ple steps. If the operation is performed atomically, either all the steps are performed, or
none is performed. It must not be possible for a subset of the steps to be performed.
We'll return to the topic of atomic operations when we describe the 1ink function in
Section 4.15 and record locking in Section 12.3.

dup and dup2 Functions

An existing file descriptor is duplicated by either of the following functions:

#include <unistd.h>
int dup(int filedes) ;

int dup2 (int filedes, int filedes2) ;

Both return: new file descriptor if OK, -1 on error
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The new file descriptor returned by dup is guaranteed to be the lowest numbered avail-
able file descriptor. With dup2 we specify the value of the new descriptor with the
filedes? argument. If filedes2 is already open, it is first closed. If filedes equals filedes2,
then dup2 returns filedes2 without closing it.

The new file descriptor that is returned as the value of the functions shares the same
file table entry as the filedes argument. We show this in Figure 3.4.

process table entry
fd flags_ptr file table v-node table
ﬁ '1) 7 file status flags v-node
4 g current file offset information
v-node ptr  —| i-node
o information
| current file size |

Figure 3.4 Kernel data structures after dup(1).

In this figure we're assuming that the process executes

newfd = dup(l);
when it’s started. We assume the next available descriptor is 3 (which it probably is,
since 0, 1, and 2 are opened by the shell). Since both descriptors point to the same file

table entry they share the same file status flags (read, write, append, etc.) and the same
current file offset.

Each descriptor has its own set of file descriptor flags. As we describe in the next

section, the close-on-exec file descriptor flag for the new descriptor is always cleared by
the dup functions.

Another way to duplicate a descriptor is with the fentl function, which we
describe in the next section. Indeed, the call

dup(filedes);
is equivalent to

fentl(filedes, F_DUPFD, 0):
and the call

dup2 (filedes, filedes2);
is equivalent to

close(filedes2) ;
fecntl (filedes, F_DUPFD, filedes2);

In this last case, the dup2 is not exactly the same as a close followed by an fent 1.
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The differences are

1. dup2 is an atomic operation, while the alternate form involves two function
calls. It is possible in the latter case to have a signal catcher called between the
close and fentl that could modify the file descriptors. (We describe signals
in Chapter 10.)

2. There are some errno differences between dup2 and fcntl.

The dup2 system call originated with Version 7 and propagated through the BSD releases. The
fent 1 method for duplicating file descriptors appeared with System IIf and continued with
System V. SVR3.2 picked up the dup2 function and 4.2BSD picked up the font 1 function and
the F_DUPFD functionality. POSIX.1 requires both dup2 and the F_DUPFD feature of font 1.

3.13 fcntl Function

The fent 1 function can change the properties of a file that is already open.

#include <sys/types.h>

#include <unistd.h>

#include <fentl.h>

int_fentl(int filedes, int emd, ... /* int arg */ );

Returns: depends on cmd if OK (see following), —1 on error

In the examples we show in this section, the third argument is always an integer, corre-
sponding to the comment in the function prototype just shown. But when we describe
record locking in Section 12.3, the third argument becomes a pointer to a structure.

The fent1 function is used for five different purposes:

[ ]

duplicate an existing descriptor (cmd =F_DUPFD),

get/set file descriptor flags (cmd = F_GETFD or F_SETFD),

get/set file status flags (cmd = F_GETFL or F_SETFL),

get/set asynchronous I/0 ownership (cmd = F_GETOWN or F_ SETOWN),
e get/set record locks (cmd = F_GETLK, F_SETLK, or F_SETLKW).

[ ]

[ ]

We'll now describe the first seven of these 10 cmd values. (We'll wait until Section 12.3
to describe the last three, which deal with record locking,) Refer to Figure 3.2 since
we'll be referring to both the file descriptor flags associated with each file descriptor in
the process table entry and the file status flags associated with each file table entry.
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F_DUPFD

F_GETFD

F_SETFD

F GETFL

F_SETFL

F_GETOWN

Duplicate the file descriptor filedes. The new file descriptor is returned as
the value of the function. It is the lowest numbered descriptor that is not
already open, that is greater than or equal to the third argument (taken as
an integer). The new descriptor shares the same file table entry as filedes.
(Refer to Figure 3.4.) But the new descriptor has its own set of file descrip-
tor flags and its FD_CLOEXEC file descriptor flag is cleared. (This means
that the descriptor is left open across an exec, which we discuss in
Chapter 8.)

Return the file descriptor flags for filedes as the value of the function. Cur-
rently only one file descriptor flag is defined: the FD_CLOEXEC flag.

Set the file descriptor flags for filedes. The new flag value is set from the
third argument (taken as an integer).

Be aware that many existing programs that deal with the file descriptor flags don't
use the constant FD_CLOEXEC. Instead the programs set the flag to either 0 (don't
close-on-exec, the default) or 1 (do close-on-exec).

Return the file status flags for filedes as the value of the function. We
described the file status flags when we described the open function. They
are listed in Figure 3.5.

File status flag Description
O_RDONLY open for reading only

O_WRONLY open for writing only

O_RDWR open for reading and writing
O_APPEND append on each write
O_NONBLOCK | nonblocking mode

O_SYNC wait for writes to complete
O_ASYNC asynchronous I/0 (4.3+BSD only)

Figure 3.5 File status flags for fcnt1.

Unfortunately, the three access mode flags (0O_RDONLY, O WRONLY, and
O_RDWR) are not separate bits that can be tested. (As we mentioned ear-
lier, these three often have the values 0, 1, and 2, respectively, for historical
reasons; also these three values are mutually exclusive—a file can have
only one of the three enabled.) Therefore we must first use the
O_ACCMODE mask to obtain the access mode bits and then compare the
result against any of the three values.

Set the file status flags to the value of the third argument (taken as an inte-
ger). The only flags that can be changed are O_APPEND, O NONBLOCK,
O_SYNC, and O_ASYNC.

Get the process ID or process group ID currently receiving the SIGIO and
SIGURG signals. We describe these 4.3+BSD asynchronous I/0O signals in
Section 12.6.2.
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F_SETOWN Set the process ID or process group ID to receive the SIGIO and SIGURG
signals. A positive arg specifies a process ID. A negative arg implies a
process group ID equal to the absolute value of arg.

The return value from fcntl depends on the command. All commands return -1
on an error or some other value if OK. The following three commands have special
return values: F_DUPFD, F_GETFD, F_GETFL, and F_GETOWN. The first returns the new
file descriptor, the next two return the corresponding flags, and the final one returns a

positive process ID or a negative process group ID.
Example

Program 3.4 takes a single command-line argument that specifies a file descriptor and
prints a description of the file flags for that descriptor.

#include <sys/types.h>

#include <fentl.h>
#include "ourhdr.h"
int

main(int arge, char *argv[])
{
int accmode, val;

if (argc !'= 2)
err_quit ("usage: a.out <descriptor#>");

if ( (val = fentl(atoi(argv({l]), F_GETFL, 0)) < 0)
err_sys("fentl error for fd %d", atoi(argv(l])):

accmode = val & O_ACCMODE;

if (accmode == O_RDONLY) printf ("read only™):;
else if (accmode == O WRONLY) printf ("write only"):
else if (accmode == O_RDWR) printf ("read write");

else err_ dump ("unknown access mode");

if (val & O_APPEND) printf (", append");

if (val & O _NONBLOCK) printf (", nonblocking™):
#if !defined(_EOSIX_SOURCE} && defined(O_SYNC)

if (val & O_SYNC) printf (", synchronous writes™);
$endif

putchar (\n”);

exit (0):

Program 3.4 Print file flags for specified descriptor.

Notice that we use the feature test macro POSIX_SOURCE and conditionally compile
the file access flags that are not part of POSIX.1. The following script shows the opera-
tion of the program, when invoked from a KornShell.
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$ a.out 0 < /dev/tty

read only

$ a.out 1 > temp.foo

$ cat temp.foo

write only

$ a.out 2 2>>temp.foo
write only, append

$ a.out 5 5<>temp.foo
read write

The KornShell clause 5<>temp . foo opens the file temp. foo for reading and writing
on file descriptor 5. ]
Example

When we modify either the file descriptor flags or the file status flags we must be care-
ful to fetch the existing flag value, modify it as desired, and then set the new flag value.
We can’t just do an F_SETFD or an F_SETFL, as this could turn off flag bits that were

previously set.
Program 3.5 shows a function that sets one or more of the file status flags for a
descriptor.
#include <fentl.h>
#include "ourhdr.h"
void

set_fl(int fd, int flags) /* flags are file status flags to turn on */
{
int val;

if ( (val = fentl(fd, F_GETFL, 0)) < 0)
err sys("fentl F_GETFL error");

val |= flags; /* turn on flags */

if (fentl (£4d, F_SETFL, val) < 0)
err_sys("fentl F_SETFL error");

Program 3.5 Turn on one or more of the file status flags for a descriptor.

If we change the middle statement to
val &= "“flags; /* turn flags off */

we have a function named clr_f£1 that we’ll use in some later examples. This state-
ment logically ANDs the 1’s-complement of £1ags with the current val.
If we call set_£1 from Program 3.3 by adding the line

set_£1 (STDOUT_FILENO, O_SYNC);
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at the beginning of the program, we'll turn on the synchronous-write flag. This causes
each write to wait for the data to be written to disk before returning. Normally in
Unix, a write only queues the data for writing, and the actual I/O operation can take
place sometime later. A database system is a likely candidate for using O_SYNC, so that
it knows on return from a write that the data is actually on the disk, in case of a system
crash.

We expect the O_SYNC flag to increase the clock time when the program runs. To
test this we can run Program 3.3, copying a 1.5 Mbyte file from one file on disk to
another and compare this with a version that does the same thing with the 0_SYNC flag
set. The results are in Figure 3.6.

User CPU | System CPU | Clock time

Spsation (seconds) (seconds) (seconds)
read time from Figure 3.1 for BUFFSIZE = 8192 0.0 03 0.3
normal Unix write to disk file 0.0 1.0 23
write to disk file with O_S¥NC set 0.0 14 13.4

Figure 3.6 Timing results using synchronous writes (0_SYNC).

The three rows in Figure 3.6 were all measured with a BUFFSIZE of 8192. The
results in Figure 3.1 were measured reading a disk file and writing to /dev/null, so
there was no disk output. The second row in Figure 3.6 corresponds to reading a disk
file and writing to another disk file. This is why the first and second rows in Figure 3.6
are different. The system time increases when we write to a disk file because the kernel
now copies the data from our process and queues the data to for writing by the disk
driver. The clock time increases also when we write to a disk file. When we enable syn-
chronous writes, the system time increases slightly and the clock time increases by a fac-
tor of 6. O

With this example we see the need for £cntl. Our program operates on a descrip-
tor (standard output), never knowing name of the file that was opened by the shell on
that descriptor. We can’t set the O_SYNC flag when the file is opened, since the shell
opened the file. fcntl allows us to modify the properties of a descriptor, knowing only
the descriptor for the open file. We'll see another need for fcntl when we describe
nonblocking pipes (Section 14.2), since all we have with a pipe is a descriptor.

ioctl Function

The ioctl function has always been the catchall for I/O operations. Anything that
couldn’t be expressed using one of the other functions in this chapter usually ended up
being specified with an ioctl. Terminal I/O was the biggest user of this function.
(When we get to Chapter 11 we’ll see that POSIX.1 has replaced the terminal I/O opera-
tions with new functions.)
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#include <unistd.h> /* SVR4 */
#include <sys/ioctl.h> /* 4,3+BSD */

int ioctl(int filedes, int request, ...):

Returns: —1 on error, something else if OK

The ioctl function is not part of POSIX.1. Both SVR4 and 4.3+BSD, however, use it for many
miscellaneous device operations.

The prototype that we show corresponds to SVR4. 4.3+BSD and earlier Berkeley
systems declare the second argument as an unsigned long. This detail doesn’t mat-
ter, since the second argument is always a #defined name from a header.

For the ANSI C prototype an ellipsis is used for the remaining arguments. Nor-
mally, however, there is just one more argument, and it's usually a pointer to a variable
or a structure.

In this prototype we show only the headers required for the function itself. Nor-
mally additional device-specific headers are required. For example, the ioct1s for ter-
minal I/O, beyond the basic operations specified by POSIX.1, all require the
<termios.h> header.

What are ioctls used for today? We can divide the 4.3+BSD operations into the
categories shown in Figure 3.7.

Constant Number of
Category Names Header ioctls
disk labels DIOxxx <disklabel.h> 10
filel/O FIOxxx <ioctl.h> 7
mag tape1/O | MTIOxxx | <mtio.h> 4
socket I/O SIOxxx <ioctl.h> 25
terminal I/O | TIOxxx <ioctl.h> 35

Figure 3.7 4.3+BSD ioct1 operations.

The mag tape operations allow us to write end-of-file marks on a tape, rewind a tape,
space forward over a specified number of files or records, and the like. None of these
operations is easily expressed in terms of the other functions in the chapter (read,
write, lseek, etc) so the easiest way to handle these devices has always been to
access their operations using ioct1.

We use the ioct1 function in Section 11.12 to fetch and set the size of a terminal’s
window, in Section 12.4 when we describe the streams system, and in Section 19.7 when
we access the advanced features of pseudo terminals.
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3.15 /dev/fd

Newer systems provide a directory named /dev/£d whose entries are files named 0, 1,
2, and so on. Opening the file /dev/fd/n is equivalent to duplicating descriptor n
(assuming that descriptor n is open).

The /dev/fd feature was developed by Tom Duff and appeared in the 8th Edition of the
Research Unix System. It is supported by SVR4 and 4.3+BSD. It is not part of POSD(1.

In the function call
fd = open("/dev/£d/0", mode);

most systems ignore the specified mode, while others require that it be a subset of the
mode used when the referenced file (standard input in this case) was originally opened.
Since the open above is equivalent to

fd = dup(0);

the descriptors 0 and £d share the same file table entry (Figure 3.4). For example, if
descriptor 0 was opened read-only, we can only read on fd. Even if the system ignores
the open mode, and the call

fd = open("/dev/fd/0", O_RDWR);

succeeds, we still can’t write to £d.

We can also call creat with a /dev/fd pathname argument, as well as specifying
O_CREAT in a call to open. This allows a program that calls creat to still work if the
pathname argument is /dev/£d/1, for example.

Some systems provide the pathnames /dev/stdin, /dev/stdout, and
/dev/stderr. These are equivalent to /dev/£d/0, /dev/£d/1,and /dev/£d/2.

The main use of the /dev/£d files is from the shell. It allows programs that use
pathname arguments to handle standard input and standard output in the same man-
ner as other pathnames. For example, the cat(l) program specifically looks for an
input filename of — and uses this to mean standard input. The command

filter file2 | cat filel - file3 | lpr

is an example. First cat reads filel, next its standard input (the output of the
filter program on file2), then file3. If /dev/fd is supported, the special han-
dling of -~ can be removed from cat, and we can enter

filter fileZ | cat filel /dev/fd/0 file3 | lpr

The special meaning of - as a command-line argument to refer to the standard
input or standard output is a kludge that has crept into many programs. There are also
problems if we specify — as the first file, since it looks like the start of another
command-line option. /dev/fd is a step toward uniformity and cleanliness.
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3.16 Summary

This chapter has described the traditional Unix I/0 functions. These are often called
the unbuffered I/0 functions because each read or write invokes a system call into
the kernel. Using only read and write we looked at the effect of different [/O sizes on
the amount of time required to read a file.

Atomic operations were introduced when multiple processes append to the same
file and when multiple processes create the same file. We also looked at the data struc-
tures used by the kernel to share information about open files. We’ll return to these
data structures later in the text.

We also described the ioct1 and fent1 functions. We return to both of these func-
tions in Chapter 12—we’ll use ioctl with the streams /O system, and fcnt1 is used
for record locking,.

Exercises
31 When reading or writing a disk file, are the functions described in this chapter really
unbuffered? Explain.

3.2 Write your own function called dup2 that performs the same service as the dup2 function
we described in Section 3.12, without calling the fentl function. Be sure to handle errors

correctly.
3.3 Assume a process executes the following three function calls:
fdl = open(pathname, oflags):;
fd2 = dup(£fdl);
fd3 = open(pathname, oflags);

Draw the resulting picture, similar to Figure 3.4. Which descriptors are affected by an
fentl on £d1 with a command of F_SETFD? Which descriptors are affected by an fent1
on f£d1 with a command of F_SETFL?

3.4 The following sequence of code has been observed in various programs:

dup2 (fd, 0);
dup2 (fd, 1);
dup2(fd, 2);
if (£d > 2)
close(fd);

To see why the if test is needed, assume f£d is 1 and draw a picture of what happens to the
three descriptor entries and the corresponding file table entry with each call to dup2. Then
assume f£d is 3 and draw the same picture.



71

3.5

3.6

The Bourne shell and KornShell notation
digit1>&digit2
says to redirect descriptor digit1 to the same file as descriptor digit2. What is the difference
between the two commands
a.out > outfile 2>&l
a.out 2>&1 > outfile
(Hint: the shells process their command lines from left to right.)

If you open a file for read—write with the append flag, can you still read from anywhere in
the file using 1seek? Can you use 1seek to replace existing data in the file? Write a pro-

gram to verify this.
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Files and Directories

Introduction

In the previous chapter we covered the basic functions that perform I/O. The discus-
sion centered around I/O for regular files—opening a file, and reading or writing a file.
We'll now look at additional features of the filesystem and the properties of a file. We'll
start with the stat functions and go through each member of the stat structure, look-
ing at all the attributes of a file. In this process we’ll also describe each of the functions
that modify these attributes (change the owner, change the permissions, etc.). Well also
look in more detail at the structure of a Unix filesystem and symbolic links. We finish
this chapter with the functions that operate on directories and develop a function that
descends through a directory hierarchy.

stat, fstat, and lstat Functions

The discussion in this chapter is centered around the three stat functions and the
information they return.

#include <sys/types.h>
#include <sys/stat.h>

int stat(const char *pathname, struct stat *buf);
int fstat (int filedes, struct stat *buf);

int lstat (const char *pathname, struct stat *buf);

All three return: 0 if OK, -1 on error
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Given a pathname, the stat function returns a structure of information about the named
file. The fstat function obtains information about the file that is already open on the
descriptor filedes. The 1stat function is similar to stat, but when the named file is a
symbolic link, 1stat returns information about the symbolic link, not the file refer-
enced by the symbolic link. (We’ll need 1stat in Section 4.21 when we walk down a
directory hierarchy. We describe symbolic links in more detail in Section 4.16.)

The 1stat function is not in the POSIX 1003.1-1990 standard, but will probably be added to
1003.1a. It is supported by SVR4 and 4.3+BSD.

The second argument is a pointer to a structure that we must supply. The function
fills in the structure pointed to by buf. The actual definition of the structure can differ
among implementations, but it could look like

struct stat {

mode t st _mode; /* file type & mode (permissions) */
ino t st_ino; /* i—node number (serial number) */
dev t st _dev; /* device number (filesystem) */

dev t st_rdev; /* device number for special files */
nlink t st_nlink; /* number of links */

uid t  st_uid; /* user ID of owner */

gid t st_gid; /* group ID of owner */

off t st_size; /* size in bytes, for regular files */
time t st_atime; /* time of last access */

time t st mtime; /* time of last modification */

time_t st_ctime; /* time of last file status change */
long st_blksize: /* best I/O block size */

long st_blocks; /* number of 512-byte blocks allocated */

The fields st_rdev, st_blksize, and st_blocks are not defined by POSIX.1. These fields
are in SVR4 and 4.3+BSD.

Note that each member, other than the last two, is specified by a primitive system data
type (see Section 2.7). We'll go through each member of this structure, to examine the
attributes of a file.

The biggest user of the stat functions is probably the 1s -1 command, to learn all
the information about a file.

File Types

We've talked about two different types of files so far—regular files and directories.
Most files on a Unix system are either regular files or directories, but there are addi-
tional types of files:

1. Regular file. The most common type of file, which contains data of some form.
There is no distinction to the Unix kernel whether this data is text or binary.
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Any interpretation of the contents of a regular file is left to the application pro-
cessing the file.

Directory file. A file that contains the names of other files and pointers to infor-
mation on these files. Any process that has read permission for a directory file
can read the contents of the directory, but only the kernel can write to a direc-

tory file.

Character special file. A type of file used for certain types of devices on a sys-
tem.

Block special file. A type of file typically used for disk devices. All devices on a
system are either character special files or block special files.

FIFO. A type of file used for interprocess communication between processes.
It's sometimes called a named pipe. We describe FIFOs in Section 14.5.

Socket. A type of file used for network communication between processes. A
socket can also be used for nonnetwork communication between processes on a
single host. We use sockets for interprocess communication in Chapter 15.

A file type of socket is returned only by 4.3+BSD. Although SVR4 supports sockets for
interprocess communication, this is currently done through a library of socket functions,
not through a file type of socket within the kernel. Future versions of SVR4 may support
the socket type.

Symbolic link. A type of file that points to another file. We talk more about
symbolic links in Section 4.16.

The type of a file is encoded in the st_mode member of the stat structure. We can
determine the file type with the macros shown in Figure 4.1. The argument to each of
these macros is the st_mode member from the stat structure.

Example

Macro Type of file

§_ISREG() regular file

S ISDIR() | directory file

S_ISCHR() character special file

S_ISBLK() block special file

S _ISFIFO() | pipe or FIFO

S_ISLNK() symbolic link (not in POSIX.1 or SVR4)
S_ISSOCK() | socket (not in POSIX.1 or SVR4)

Figure 4.1 File type macros in <sys/stat.h>.

Program 4.1 takes its command-line arguments and prints the type of file for each
command-line argument.
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#include <sys/types.h>

#include <sys/stat.h>
#include "ourhdr.h"
int

main(int argc, char *argv[])

{

int

i;

struct stat buf;
char *ptr;

for (1 = 1; i < argc; i++) {

printf("%s: ", argvl[i]):
if (lstat (argv[i], &buf) < 0) {
err_ret("lstat error");

continue;
}
if (S_ISREG(buf.st mode)) ptr =
else if (S_ISDIR(buf.st mode)) ptr =
else if (5_ISCHR(buf.st mode)) ptr =
else if (S_ISBLK(buf.st mode)) ptr =
else if (S_ISFIFO(buf.st_mode)) ptr =
$ifdef S_ISLNK
else if (S_ISLNK(buf.st mode)) ptr =
#endif
#ifdef S_ISSOCK
else if (S_ISSOCK(buf.st mode)) ptr =
#endif
else ptr = "** unknown
printf ("%s\n", ptr);
)
exit (0);

"regular”™;
"directory":
"character special";
"block special™;
"fifo";

"symbolic link";

"socket™;

mode **";

Program 4.1 Print type of file for each command-line argument.

Sample output from Program 4.1 is

$ a.out /vmunix /etc /dev/ttya /dev/sd0a /var/spool/cron/FIFO \
> /bin /dev/printer

/vmunix: regular

/etc: directory

/dev/ttya: character special
/dev/sdla: block special
/var/spool/cron/FIFO: fifo
/bin: symbolic link
/dev/printer: socket

(Here we have explicitly entered a backslash at the end of the first command line, telling
the shell that we want to continue entering the command on another line. The shell
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then prompts us with its secondary prompt, >, on the next line.) We have specifically
used the 1stat function instead of the stat function, to detect symbolic links. If we
used the stat function, we would never see symbolic links. O

Earlier versions of Unix didn’t provide the S_ISxxx macros. Instead we had to
logically AND the st_mode value with the mask S_IFMT and then compare the result
with the constants whose names are S_IFxxx. SVR4 and 4.3+BSD define this mask and
the related constants in the file <sys/stat.h>. If we examine this file we'll find the
S_ISDIR macro defined as

#define S_ISDIR (mode) ({(mode) & S _IFMT) == S_IFDIR)

We've said that regular files are predominant, but it is interesting to see what per-
centage of the files on a given system are of each file type. Figure 4.2 shows the counts
and percentages for a medium-sized system. This data was obtained from the program
that we show in Section 4.21.

File type Count | Percentage
regular file 30,369 9.7 %
directory 1,901 5.7
symbuolic link 416 13
character special 373 1.1
block special 61 02
socket 5 0.0
FIFO 1 00

Figure 4.2 Counts and percentages of different file types.

Set-User-ID and Set-Group-ID

Every process has six or more IDs associated with it. These are shown in Figure 4.3.

real user ID

real group ID
effective user ID
effective group ID used for file access permission checks
supplementary group IDs
saved set-user-ID

saved set-group-1D

who we really are

saved by exec functions

Figure 43 User IDs and group IDs associated with each process.

* The real user ID and real group ID identify who we really are. These two fields
are taken from our entry in the password file when we log in. Normally these
values don’t change during a login session, although there are ways for a super-
user process to change them, which we describe in Section 8.10.
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¢ The effective user ID, effective group ID, and supplementary group IDs deter-
mine our file access permissions, as we describe in the next section. (We defined
supplementary group IDs in Section 1.8.)

e The saved set-user-ID and saved set-group-ID contain copies of the effective
user ID and the effective group ID when a program is executed. We describe the
function of these two saved values when we describe the setuid function in
Section 8.10.

The saved IDs are optional with POSIX.1. An application can test for the constant
_POSIX SAVED_IDS at compile time, or call sysconf with the _SC_SAVED_IDS argu-
ment at run time, to see if the implementation supports this feature. SVR4 supports this
feature.

FIPS 151-1 requires this optional POSIX.1 feature.

Normally the effective user ID equals the real user ID, and the effective group ID equals
the real group ID.

Every file has an owner and a group owner. The owner is specified by the st_uid
member of the stat structure, and the group owner by the st _gid member.

When we execute a program file the effective user ID of the process is usually the
real user ID, and the effective group ID is usually the real group ID. But the capability
exists to set a special flag in the file’s mode word (st_mode) that says “when this file is
executed, set the effective user ID of the process to be the owner of the file (st_uiqg).”
Similarly, another bit can be set in the file’s mode word that causes the effective group
ID to be the group owner of the file (st_gid). These two bits in the file’s mode word
are called the set-user-ID bit and the set-group-ID bit.

For example, if the owner of the file is the superuser and if the file’s set-user-ID bit
is set, then while that program file is running as a process, it has superuser privileges.
This happens regardless of the real user ID of the process that executes the file. As an
example, the Unix program that allows anyone to change his or her password,
passwd(1), is a set-user-ID program. This is required so that the program can write the
new password to the password file, typically either /etc/passwd or /etc/shadow,
files that should be writable only by the superuser. Since a process that is running set-
user-ID to some other user usually assumes extra permissions, it must be written care-
fully. We'll discuss these types of programs in more detail in Chapter 8.

Returning to the stat function, the set-user-ID bit and the set-group-ID bit are con-
tained in the file’s st_mode value. These two bits can be tested against the constants
S_ISuiD and S_ISGID.

File Access Permissions

The st_mode value also encodes the access permission bits for the file. When we say
file we mean any of the file types that we described earlier. All the file types (directo-
ries, character special files, etc.) have permissions. Many people think only of regular
files as having access permissions.
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There are nine permission bits for each file, divided into three categories. These are

shown in Figure 4.4.

st_mode mask Meaning
S_IRUSR user-read
8 _IWUSR user-write
S IXUSR user-execute
S_IRGRP group-read
S_IWGRP group-write
S_IXGRP group-execute
S_IROTH other-read
S_IWOTH other-write
S_IXOTH other-execute

Figure 44 The nine file access permission bits, from <sys/stat . h>.

The term user in the first three rows in Figure 4.4 refers to the owner of the file. The
chmod(1) command, which is typically used to modify these nine permission bits,
allows us to specify u for user (owner), g for group, and o for other. Some books refer
to these three as owner, group, and world; this is confusing since the chmod command
uses o to mean other, not owner. We'll use the terms user, group, and other, to be con-
sistent with the chmod command.

The three categories in Figure 4.4—read, write, and execute—are used in various
ways by different functions. We’ll summarize them here, and return to them when we
describe the actual functions.

e The first rule is that whenever we want to open any type of file by name we must
have execute permission in each directory mentioned in the name, including the cur-
rent directory if it is implied. This is why the execute permission bit for a directory
is often called the search bit.

For example, to open the file /usr/dict/words we need execute permission in the
directory /, execute permission in the directory /usr, and execute permission in the
directory /usr/dict. We then need appropriate permission for the file itself,
depending on how we’re trying to open it (read-only, read—-write, etc.).

If the current directory is /usr/dict then we need execute permission in the cur-
rent directory to open the file words. This is an example of the current directory
being implied, not specifically mentioned. It is identical to our opening the file
. /words.

Note that read permission for a directory and execute permission for a directory
mean different things. Read permission lets us read the directory, obtaining a list of
all the filenames in the directory. Execute permission lets us pass through the direc-
tory when it is a component of a pathname that we are trying to access (i.e., search
the directory looking for a specific filename).
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Another example of an implicit directory reference is if the PATH environment vari-
able (described in Section 8.9) specifies a directory that does not have execute per-
mission enabled. In this case the shell will never find executable files in that
directory.

* The read permission for a file determines if we can open an existing file for reading:
the O_RDONLY and O_RDWR flags for the open function.

* The write permission for a file determines if we can open an existing file for writing:
the O_WRONLY and O_RDWR flags for the open function.

* We must have write permission for a file to specify the O TRUNC flag in the open
function.

* We cannot create a new file in a directory unless we have write permission and exe-
cute permission in the directory.
* To delete an existing file, we need write permission and execute permission in the

directory containing the file. We do not need read permission or write permission
for the file itself.

* Execute permission for a file must be on if we want to execute the file using any of
the six exec functions (Section 8.9). The file also has to be a regular file.

The file access tests that the kernel performs each time a process opens, creates, or
deletes a file depend on the owners of the file (st_uid and st_gid), the effective IDs
of the process (effective user ID and effective group ID), and the supplementary group
IDs of the process (if supported). The two owner IDs are properties of the file, while the
two effective IDs and the supplementary group IDs are properties of the process. The
tests performed by the kernel are

1. If the effective user ID of the process is 0 (the superuser), access is allowed. This
gives the superuser free reign throughout the entire filesystem.

2. 1If the effective user ID of the process equals the owner ID of the file (i.e., the pro-
cess owns the file):

a. if the appropriate user access permission bit is set, access is allowed,
b. else permission is denied.

By appropriate access permission bit we mean if the process is opening the file for
reading, the user-read bit must be on. If the process is opening the file for writ-
ing, the user-write bit must be on. If the process is executing the file, the user-
execute bit must be on.

3. If the effective group ID of the process or one of the supplementary group IDs of
the process equals the group ID of the file:

a. if the appropriate group access permission bit is set, access is allowed,

b. else permission is denied.
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4.6

4. If the appropriate other access permission bit is set, access is allowed, else per-
mission is denied.

These four steps are tried in sequence. Note that if the process owns the file (step 2)
then access is granted or denied based only on the user access permissions—the group
permissions are never looked at. Similarly, if the process does not own the file, but the
process belongs to an appropriate group, then access is granted or denied based only on
the group access permissions—the other permissions are not looked at.

Ownership of New Files and Directories

When we described the creation of a new file in Chapter 3, using either open or creat,
we never said what values were assigned to the user ID and group ID of the new file.
We'll see how to create a new directory in Section 4.20 when we describe the mkdir
function. The rules for the ownership of a new directory are identical to the rules in this
section for the ownership of a new file.

The user ID of a new file is set to the effective user ID of the process. POSIX.1
allows an implementation to choose one of the following options to determine the
group ID of a new file.

1. The group ID of a new file can be the effective group ID of the process.

2. The group ID of a new file can be the group ID of the directory in which the file
is being created.

With SVR4 the group ID of a new file depends on whether the set-group-1D bit is set for the
directory in which the file is being created. If this bit is set for the directory, the group ID of the
new file is set to the group ID of the directory; otherwise the group 1D of the new file is set to
the effective group ID of the process.

4.3+BSD always uses the group ID of the directory as the group 1D of the new file.

Other systems allow the choice between these two POSIX.1 options to be done on a filesystem
basis, using a special flag to the mount (1) command.

FIPS 1511 requires that the group ID of a new file be the group ID of the directory in which
the file is created.

Using the second POSIX.1 option (inheriting the group ID of the directory) assures
us that all files and directories created in that directory will have the group ID belong-
ing to the directory. This group ownership of files and directories will then propagate
down the hierarchy from that point. This is used, for example, in the /var/spool
directory.

As we mentioned, this option for group ownership is the default for 4.3+BSD but an option for
SVR4. Under SVR4 we have to enable the set-group-ID bit. Furthermore, the SVR4 mkdir
function has to propagate a directory’s set-group-ID bit automatically (as it does, described in
Section 4.20} for this to work.
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access Function

As we described earlier, when accessing a file with the open function, the kernel per-
forms its access tests based on the effective user ID and the effective group ID. There
are times when a process wants to test accessibility based on the real user ID and the
real group ID. One instance where this is useful is when a process is running as some-
one else, using either the set-user-ID or the set-group-ID feature. Even though a process
might be set-user-ID to root, it could still want to verify that the real user can access a
given file. The access function bases its tests on the real user ID and the real group ID.
(Go through the four steps at the end of Section 4.5 and replace effective with real.)

#include <unistd.h>
int access (const char *pathname, int mode) ;

Returns: 0 if OK, -1 on error

The mode is the bitwise OR of any of the constants shown in Figure 4.5.

mode Description

R _CK | test for read permission

W _OK | test for write permission

X OK | test for execute permission
F_OK | test for existence of file

Figure 4.5 The mode constants for access function, from <unistd.h>.

Example

Program 4.2 shows the use of the access function. Here is a sample session with this
program.

$ 1s -1 a.out

—TWKrwXr-x 1 stevens 105216 Jan 18 08:48 a.out

S a.out a.out

read access COK

open for reading OK

$ 1s -1 /etc/uucp/Systems

—Irw—r————-— 1 uucp 1441 Jul 18 15:05 /etc/uucp/Systems
$ a.out fetc/uucp/Systems

access error for /etc/uucp/Systems: Permission denied

open error for /etc/uucp/Systems: Permission denied

$ su become superuser
Password: enter superuser password
# chown uucp a.out change file's user ID to uucp

# chmod u+s a.out and turn on set-user-I1D bit
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#include <sys/types.h>
#include <fentl.h>
#include "ourhdr.h"

int
main {int argc, char *argv([])
{
if (argc '= 2)
err_quit ("usage: a.out <pathname>");

if (access(argv[l], R _OK) < 0)
err_ret("access error for %s", argv([1l]):;
else
printf ("read access OK\n"}:

if (open(argv[1], O_RDONLY) < 0)

err_ret ("open error for %s", argv([l]);
else

printf ("open for reading OK\n");

exit (0);
}
Program 4.2 Example of access function.
$# 1s ~1 a.out check owner and SUID bit
—rwsrwxr-x 1 uucp 105216 Jan 18 08:48 a.out
# exit go back to normal user

$ a.out fetc/uucp/Systems
access error for /etc/uucp/Systems: Permission denied
open for reading CK

In this example, the set-user-ID program can determine that the real user cannot nor-
mally read the file, even though the open function will succeed. m)

In the preceding example and in Chapter 8, we'll sometimes switch to become the superuser,
to demonstrate how something works. If you're on a multiuser system and do not have super-
user permission, you won't be able to duplicate these examples completely.

umask Function

Now that we’ve described the nine permission bits associated with every file, we can
describe the file mode creation mask that is associated with every process.

The umask function sets the file mode creation mask for the process and returns the
previous value. (This is one of the few functions that doesn’t have an error return.)
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#include <sys/types.h>
#include <sys/stat.h>

mode_t umask (mode_t cmask) ;

Returns: previous file mode creation mask

The cmask argument is formed as the bitwise OR of any of the nine constants from
Figure 4.4: s IRUSR, S_IWUSR, and so on.

The file mode creation mask is used whenever the process creates a new file or a
new directory. (Recall Sections 3.3 and 3.4 where we described the open and creat
functions. Both accepted a mode argument that specified the new file’s access permis-
sion bits.) We describe how to create a new directory in Section 4.20. Any bits that are
on in the file mode creation mask are turned off in the file’s mode.

Example

Program 4.3 creates two files, one with a umask of 0 and one with a umask that disables
all the group and other permission bits. If we run this program

$ umask first print the current file mode creation mask
02
$ a.out
$ 1s -1 foo bar
—rw-———-—=- 1 stevens 0 Nov 16 16:23 bar
-rw-rw-rw—- 1 stevens 0 Nov 16 16:23 foo
$ umask see if the file mode creation mask changed
02
we can see how the permission bits have been set. |

Most Unix users never deal with their umask value. It is usually set once, on log in,
by the shell’s start-up file, and never changed. Nevertheless, when writing programs
that create new files, if we want to assure that specific access permission bits are
enabled, we must modify the umask value while the process is running. For example, if
we want to assure that anyone can read a file, we should set the umask to 0. Otherwise,
the umask value that is in effect when our process is running can cause permission bits
to be turned off.

In the preceding example we use the shell’s umask command to print the file mode
creation mask before we run the program and after. This shows us that changing the
file mode creation mask of a process doesn’t affect the mask of its parent (often a shell).
All three of the shells have a built-in umask command that we can use to set or print the
current file mode creation mask.
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#include <sys/types.h>
#include <sys/stat.h>
#include <fentl.h>
#include "ourhdr.h"

int
main (void)
{
umask (0) ;
if (creat("foo", S _IRUSR | S _IWUSR | S_IRGRP | S_IWGRF |
S IROTH | S_IWOTH) < 0)
err_sys("creat error for foo");

umask (S_TIRGRP | S_IWGRP | S IROTH | S_IWOTH);
if (creat("bar"™, S_IRUSR | S _IWUSR | S_IRGRP | S_TIWGRF |
S_TROTH | S_IWOTH) < 0)
err_sys("creat error for bar");
exit (0);

Program 4.3 Example of umask function.

49 chmod and fchmod Functions

These two functions allow us to change the file access permissions for an existing file.

#include <sys/types.h>
#include <sys/stat.h>

int chmod(const char *pathname, mode_t mode) ;

int fchmod(int filedes, mode_t mode) ;

Both return: 0 if OK, -1 on error

The chmod function operates on the specified file while the fchmod function operates
on a file that has already been opened.

The fchmod function is not part of POSIX.1. It is an extension provided by SVR4 and
4.3+BSD.

To change the permission bits of a file, the effective user ID of the process must
equal the owner of the file, or the process must have superuser permissions.
The mode is specified as the bitwise OR of the constants shown in Figure 4.6.
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mode Description
5_ISUID set-user-1D on execution
§_ISGID set-group-ID on execution
S_ISVTX saved-text (sticky bit)
S _IRWKU read, write, and execute by user (owner)

§ IRUSR | read by user (owner)
S_IWUSR | write by user (owner)
S_IXUSR | execute by user (owner)
S_IRWXG read, write, and execute by group
8 _IRGRP | read by group
S_IWGRP | write by group
S_IXGRP | execute by group
§_IRWXO read, write, and execute by other (world)
S_IROTH | read by other (world)
S_IWOTH | write by other (world)
S_IXOTH | execute by other (world)

Figure 4.6 The mode constants for chmed functions, from <sys/stat .h>.

Note that nine of the entries in Figure 4.6 are the nine file access permission bits from
Figure 4.4. We've added the two set-ID constants (S_IS[UG]ID), the saved-text con-
stant (S_ISVTX), and the three combined constants (S_IRWX[UGO]). (Here we are
using the standard Unix character class operator []. We mean any one of the characters
contained within the square brackets. The final example, S_IRWX [UGO], refers to the
three constants S_IRWXU, S_TRWXG, and S_IRWXO. This character class operator is a
form of a regular expression that is provided by most Unix shells and many standard
Unix applications.)

The saved-text bit (S_ISVTX) is not part of POSIX.1. We describe its purpose in the next sec-
tion.

Example

Recall the final state of the files foo and bar when we ran Program 4.3 to demonstrate
the umask function:

$ 1s -1 foo bar
-rw——————— 1 stevens 0 Nov 16 16:23 bar
~rw-rWw-rw— 1 stevens 0 Nov 16 16:23 foo

Program 4.4 modifies the mode of these two files. After running Program 4.4 we see the
final state of the two files is

$ 1s -1 foo bar
-rw-r——r-— 1 stevens 0 Nov 16 16:23 bar
-rw-rwlrw- 1 stevens 0 Nov 16 16:23 foo

In this example we have set the permissions of foo relative to their current state. To do
this we first call stat to obtain the current permissions and then modify them. We
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#include <sys/types.h>
#include <sys/stat.h>
#include "ourhdr.h"

int
main (void)

{
struct stat statbuf;

/* turn on set—group-ID and turn off group-execute */

if (stat ("foo", &statbuf) < 0)
err sys("stat error for foo");

if (chmod("foo", (statbuf.st_mode & ~S_IXGRP) | S_ISGID) < 0)
err_sys("chmod error for foo");

/* set absolute mode to "rw-r——-r—-" */

if (chmod("bar", S IRUSR | S_IWUSR | S_IRGRP | S_IROTH) < 0)
err sys("chmod error for bar");

exit (0);

Program 4.4 Example of chmod function.

have explicitly turned on the set-group-ID bit and turned off the group-execute bit.
Doing this for a regular file enables mandatory record locking, which we’ll discuss in
Section 12.3. Note that the 1s command lists the group-execute permission as 1 to sig-
nify that mandatory record locking is enabled for this file. For the file bar, we set the
permissions to an absolute value, regardless of the current permission bits.

Finally note that the time and date listed by the 1s command did not change after
we ran Program 4.4. We'll see in Section 4.18 that the chmod function updates only the
time that the i-node was last changed. By default the 1s -1 lists the time the contents
of the file were last modified. O

The chmod functions automatically clear two of the permission bits under the fol-
lowing conditions.

e If we try to set the sticky bit (S_ISVTX) of a regular file and we do not have
superuser privileges, the sticky bit in the mode is automatically turned off. (We
describe the sticky bit in the next section.) This means that only the superuser
can set the sticky bit of a regular file. The reason is to prevent malicious users
from setting the sticky bit and trying to fill up the swap area, if the system sup-
ports the saved-text feature.

» It is possible that the group ID of a newly created file is a group that the calling
process does not belong to. Recall from Section 4.6 that it's possible for the
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group ID of the new file to be the group ID of the parent directory. Specifically,
if the group ID of the new file does not equal either the effective group ID of the
process or one of the process’s supplementary group IDs and if the process does
not have superuser privileges, then the set-group-ID bit is automatically turned
off. This prevents a user from creating a set-group-ID file owned by a group that
the user doesn’t belong to.

4.3+BSD and other Berkeley-derived systems add another security feature to try to prevent
misuse of some of the protection bits. If a process that does not have superuser privileges
writes to a file, the set-user-ID and set-group-ID bits are automatically turned off. If a mali-
cious user finds a set-group-ID or set-user-ID file they can write to, even though they can mod-
ify the file, they lose the special privileges of the file.

4.10 Sticky Bit

The S_ISVTX bit has an interesting history. On earlier versions of Unix this bit was
known as the sticky bit. If it was set for an executable program file, then the first time
the program was executed a copy of the program’s text was saved in the swap area
when the process terminated. (The text portion of a program is the machine instruc-
tions.) This caused the program to load into memory faster the next time it was exe-
cuted, because the swap area was handled as a contiguous file, compared to the
possibly random location of data blocks in a normal Unix filesystem. The sticky bit was
often set for common application programs such as the text editor and the passes of the
C compiler. Naturally, there was a limit to the number of sticky files that could be con-
tained in the swap area before running out of swap space, but it was a useful technique.
The name sticky came about because the text portion of the file stuck around in the
swap area until the system was rebooted. Later versions of Unix referred to this as the
saved-text bit, hence the constant S_ISVTX. With today’s newer Unix systems, most of
which have a virtual memory system and a faster filesystem, the need for this technique
has disappeared.

Both SVR4 and 4.3+BSD allow the sticky bit to be set for a directory. If the bit is set
for a directory, a file in the directory can be removed or renamed only if the user has
write permission for the directory, and either

¢ owns thefile,
* owns the directory, or
¢ is the superuser.

The directories /tmp and /var/spool/uucppublic are candidates for the sticky
bit—they are directories in which any user can typically create files. The permissions
for these two directories are often read, write, and execute for everyone (user, group,
and other). But users should not be able to delete or rename files owned by others.

The sticky bit is not defined by POSIX 1. It is an extension supported by both SVR4 and
4.3+BSD.
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411 chown, fchown, and lchown Functions

The chown functions allow us to change the user ID of a file and the group ID of a file.

#include <sys/types.h>
#include <unistd.h>

int chown(const char *pathname, uid_t owner, gid t group);
int fchown (int filedes, uid_t owner, gid_t group);

int lchown (const char *pathname, uid t owner, gid t group);

All three return: 0 if OK, -1 on error

These three functions operate similarly unless the referenced file is a symbolic link. In
that case 1chown changes the owners of the symbolic link itself, not the file pointed to
by the symbolic link.

The £chown function is not in the POSIX 1003.1-1990 standard, but will probably be added to
1003.1a. Itis supported by SVR4 and 4.3+BSD.

The lchown function is unique to SVR4. Under the non-SVR4 systems (POSIX.1 and
4.3+BSD), if the pathnarne for chown is a symbolic link then the ownership of the symbolic link
is changed, not the ownership of the file referenced by the symbolic link. To change the own-
ership of the file referenced by the symbolic link we have to specify the pathnarme of the actual
file itself, not the pathname of a symbolic link that points to the file.

SVR4, 4.3+BSD, and XPG3 allow us to specify either of the arguments owner or group as -1 to
leave the corresponding ID unchanged. This is not part of POSIX.1.

Historically, Berkeley-based systems have enforced the restriction that only the
superuser can change the ownership of a file. This is to prevent users from giving away
their files to others, thereby defeating any disk space quota restrictions. System V, how-
ever, has allowed any user to change the ownership of any files they own.

POSIX.1 allows either form of operation, depending on the value of
_POSIX CHOWN RESTRICTED. FIPS 151-1 requires POSIX_CHOWN_RESTRICTED.

With SVR4 this functionality is a configuration option, while 4.3+BSD always enforces the
chown restriction.

Recall from Figure 2.5 that this constant can optionally be defined in the header
<unistd.h> and can always be queried using either the pathconf or fpathconf
functions. Also recall that this option can depend on the referenced file—it can be
enabled or disabled on a per-fﬂesystem basis. We'll use the phrase, if
_POSIX_CHOWN RESTRICTED is in effect, to mean if it applies to the particular file that
we're talking about, regardless whether this actual constant is defined in the header.
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If _POSIX CHOWN_RESTRICTED is in effect for the specified file, then

1. only a superuser process can change the user ID of the file;
2. anonsuperuser process can change the group ID of the file if

a. the process owns the file (the effective user ID equals the user ID of the file),
and

b. owner equals the user ID of the file and group equals either the effective
group ID of the process or one of the process’s supplementary group IDs.

This means that when _POSTX_CHOWN_RESTRICTED is in effect you can’t change the
user ID of other users’ files. You can change the group ID of files that you own, but only
to groups that you belong to.

If these functions are called by a process other than a superuser process, on success-
ful return both the set-user-ID and the set-group-ID bits are cleared.

File Size

The st_size member of the stat structure contains the size of the file in bytes. This
field is meaningful only for regular files, directories, and symbolic links.

SVR4 also defines the file size for a pipe as the number of bytes that are available for reading
from the pipe. We’ll discuss pipes in Section 14.2.

For a regular file, a file size of 0 is allowed—we'll get an end-of-file indication on
the first read of the file.

For a directory, the file size is usually a multiple of a number such as 16 or 512. We
talk about reading directories in Section 4.21.

For a symbolic link, the file size is the actual number of bytes in the filename. For
example, in the case

lrwxrwxrwx 1 root 7 Sep 25 07:14 1lib -> usr/lib

the file size of 7 is the length of the pathname usr/1ib. (Note that symbolic links do
not contain the normal C null byte at the end of the name, since the length is always
specified by st_size.)

SVR4 and 4.3+BSD also provide the fields st_blksize and st_blocks. The first
is the preferred block size for 1/O for the file and the latter is the actual number of
512-byte blocks that are allocated. Recall from Section 3.9 that we encountered the mini-
mum amount of time required to read a file when we used st_blksize for the read
operations. The standard /O library, which we describe in Chapter 5, also tries to read
or write st_blksize bytes at a time, for efficiency.

Be aware that different versions of Unix use units other than 512-byte blocks for st_blocks.
Using this value is nonportable.



File Truncation 91

Holes in a File

4.13

In Section 3.6 we mentioned that a regular file can contain “holes.” We showed an
example of this in Program 3.2. Holes are created by seeking past the current end of file
and writing some data. As an example, consider the following:

$ 1s -1 core
-rw—r——r—— 1 stevens 8483248 Nov 18 12:18 core
S du -s core
272 core

The size of the file core is just over 8 megabytes, yet the du command reports that the
amount of disk space used by the file is 272 512-byte blocks (139,264 bytes). (The du
command on many Berkeley-derived systems reports the number of 1024-byte blocks;
SVR4 reports the number of 512-byte blocks.) Obviously this file has many holes.

As we mentioned in Section 3.6, the read function returns data bytes of 0 for any
byte positions that have not been written. If we execute

5 we —c core
8483248 core

we can see that the normal 1/O operations read up through the size of the file. (The
wc(1) command with the -c option counts the number of characters (bytes) in the file.)

If we make a copy of this file, using a utility such as cat(1), all these holes are writ-
ten out as actual data bytes of 0.

$ cat core > core.copy
$ 1ls -1 core*
-rw-r-—-r—— 1 stevens 8483248 Nov 18 12:18 core

-rw-rw-r—-— 1 stevens 8483248 Nov 18 12:27 core.copy
5 du -s core*
272 core

16592  core.copy

Here the actual number of bytes used by the new file is 8,495,104 (512 x 16,592). The dif-
ference between this size and the size reported by 1s is caused by the number of blocks
used by the filesystem to hold pointers to the actual data blocks.

Interested readers should refer to Section 4.2 of Bach [1986] and Section 7.2 of Lef-
fler et al. [1989] for additional details on the physical layout of files.

File Truncation

There are times when we would like to truncate a file by chopping off data at the end of
the file. Emptying a file, which we can do with the 0_TRUNC flag to open, is a special
case of truncation.
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#include <sys/types.h>
#include <unistd.h>

int truncate(const char *pathname, off t length) ;
int ftruncate(int filedes, off t length);

Both return: 0 if OK, -1 on error

These two functions truncate an existing file to length bytes. If the previous size of the
file was greater than length, the data beyond length is no longer accessible. If the previ-
ous size was less than length, the effect is system dependent. If the implementation does
extend a file, data between the old end-of-file and the new end-of-file will read as 0 (i.e.,
a hole is probably created in the file).

These two functions are provided by SVR4 and 4.3+BSD. They are not part of POSIX.1 or
XPG3.

SVR4 truncates or extends a file. 4.3+BSD only truncates a file with these functions—they
can’t be used to extend a file.

There has never been a standard way of truncating a file with Unix. Truly portable applica-
tions must make a copy of the file, copying only the desired bytes of data.

SVR4 also includes an extension to fent1 (F_FREESP) that allows us to free any part of a file,
not just a chunk at the end of the file.

We use ftruncate in Program 12.5 when we need to empty a file after obtaining a
lock on the file.

Filesystems

To appreciate the concept of links to a file, we need a conceptual understanding of the
structure of the Unix filesystem. Understanding the difference between an i-node and a
directory entry that points to an i-node is also useful.

There are various implementations of the Unix filesystem in use today. SVR4, for
example, supports two different types of disk filesystems: the traditional Unix System V
filesystem (called S5), and the Unified File System (called UFS). We saw one difference
between these two filesystem types in Figure 2.6. UFS is based on the Berkeley fast file-
system. SVR4 also supports additional nondisk filesystems, two distributed filesystems,
and a bootstrap filesystem, none of which affects the following discussion. In this sec-
tion we describe the traditional Unix System V filesystem. This type of filesystem dates
back to Version 7.

We can think of a disk drive being divided into one or more partitions. Each parti-
tion can contain a filesystem, as shown in Figure 4.7.



Filesystems 93
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Figure 4.7 Disk drive, partitions, and a filesystem.

The i-nodes are fixed-length entries that contain most of the information about the file.

In Version 7 an i-node occupied 64 bytes; with 4.3+BSD an i-node occupies 128 bytes. Under
SVR4 the size of an i-node on disk depends on the filesystem type: an S5 i-node occupies 64
bytes while a UFS i-node occupies 128 bytes.

If we examine the filesystem in more detail, ignoring the boot blocks and super block,
we could have what is shown in Figure 4.8.

- directory blocks and data blocks -

Figure 4.8 Filesystem in more detail.
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Note the following points from Figure 4.8:

We show two directory entries that point to the same i-node entry. Every i-node has
a link count that contains the number of directory entries that point to the i-node.
Only when the link count goes to 0 can the file be deleted (i.e., can the data blocks
associated with the file be released). This is why the operation of “unlinking a file”
does not always mean “deleting the blocks associated with the file.” This is why the
function that removes a directory entry is called unlink and not delete. In the stat
structure the link count is contained in the st_nlink member. Its primitive system
data type is nlink t. These types of links are called hard links. Recall from
Figure 2.7 that the POSIX.1 constant LINK_MAX specifies the maximum value for a
file’s link count.

The other type of link is called a symbolic link. With a symbolic link, the actual con-
tents of the file (the data blocks) contains the name of the file that the symbolic link
points to. In the example

lrwxrwxrwx 1 root 7 Sep 25 07:14 1lib -> usr/lib

the filename in the directory entry is the three-character string 1ib and the 7 bytes of
data in the file are usr/1ib. The file type in the i-node would be S_IFLNK so that
the system knows that this is a symbolic link.

The i-node contains all the information about the file: the file type, the file’s access
permission bits, the size of the file, pointers to the data blocks for the file, and so on.
Most of the information in the stat structure is obtained from the i-node. Only two
itemns are stored in the directory entry: the filename and the i-node number. The
data type for the i-node number is ino _t.

Since the i-node number in the directory entry points to an i-node in the same file-
system, we cannot have a directory entry point to an i-node in a different filesystem.
This is why the 1n(1) command (make a new directory entry that points to an exist-
ing file) can’t cross filesystems. We describe the 1ink function in the next section.

When renaming a file without changing filesystems, the actual contents of the file
need not be moved—all that needs to be done is to have a new directory entry point
to the existing i-node and have the old directory entry removed. For example, to
rename the file /usr/1ib/foo to /usr/foo, if the directories /usr/1lib and /usr
are on the same filesystem, the contents of the file foo need not be moved. This is
how the mv(1) command usually operates.

We've talked about the concept of a link count for a regular file, but what about the

link count field for a directory? Assume that we make a new directory in the working
directory, as in

$ mkdir testdir

Figure 4.9 shows the result. Note in this figure we explicitly show the entries for dot
and dot-dot.
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Figure 49 Sample filesystem after creating the directory testdir.

The i-node whose number is 2549 has a type field of “directory” and a link count equal
to 2. Any leaf directory (a directory that does not contain any other directories) always
has a link count of 2. The value of 2 is from the directory entry that names the directory
(testdir) and from the entry for dot in that directory. The i-node whose number is
1267 has a type field of “directory” and a link count that is greater than or equal to 3.
The reason we know the link count is greater than or equal to 3 is because minimally it
is pointed to from the directory entry that names it (which we don’t show in Figure 4.9),
from dot, and from dot-dot in the testdir directory. Notice that every directory in the
working directory causes the working directory’s link count to be increased by 1.

As we said, this is the classic format of the Unix filesystem, which is described in
detail in Chapter 4 of Bach [1986]. Refer to Chapter 7 of Leffler et al. [1989] for addi-
tional information on the changes made with the Berkeley fast filesystem.

link, unlink, remove, and rename Functions

As we saw in the previous section, any file can have multiple directory entries pointing
to its i-node. The way we create a link to an existing file is with the 1ink function.

#include <unistd.h>

int link(const char *existingpath, const char *newpath);

Returns: 0 if OK, -1 on error
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This function creates a new directory entry, newpath, that references the existing file
existingpath. If the newpath already exists an error is returned.

The creation of the new directory entry and the increment of the link count must be
an atomic operation. (Recall the discussion of atomic operations in Section 3.11)

Most implementations, such as SVR4 and 4.3+BSD, require that both pathnames be
on the same filesystem.

POSIX.1 allows an implementation to support linking across filesystems.

Only a superuser process can create a new link that points to a directory. The rea-
son is that doing this can cause loops in the filesystem, which most utilities that process
the filesystem aren’t capable of handling. (We show an example of a loop introduced by
a symbolic link in Section 4.16.)

To remove an existing directory entry we call the un1ink function.

#include <unistd.h>

int unlink{const char *pathname) ;

Returns: 0 if OK, -1 on error

This function removes the directory entry and decrements the link count of the file ref-
erenced by pathname. If there are other links to the file, the data in the file is still accessi-
ble through the other links. The file is not changed if an error occurs.

We've mentioned before that to unlink a file we must have write permission and
execute permission in the directory containing the directory entry, since it is the direc-
tory entry that we may be removing. Also, we mentioned in Section 4.10 that if the
sticky bit is set in this directory we must have write permission for the directory and
either

* own the file,
* own the directory, or
* have superuser privileges.

Only when the link count reaches 0 can the contents of the file be deleted. One
other condition prevents the contents of a file from being deleted—as long as some pro-
cess has the file open, its contents will not be deleted. When a file is closed the kernel
first checks the count of the number of processes that have the file open. If this count
has reached 0 then the kernel checks the link count, and if it is 0, the file’s contents are
deleted.

Example

Program 4.5 opens a file and then unlinks it. It then goes to sleep for 15 seconds
before terminating.
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#include <sys/types.h>
#include <sys/stat.h>
#include <fentl.h>
#include "ourhdr.h"”
int
main (void)
{
if (open(“tempfile", O RDWR) < 0)
err sys("open error"};
if (unlink{"tempfile®) < 0)
err sys{"unlink error");
printf("file unlinked\n");
sleep(15);
printf{"done\n");
exit (0);
}
Program 4.5 Open a file and then unlink it.
Running this program gives us
$ 1s -1 tempfile look at how big the file is
-rw-r——-r—— 1 stevens 9240990 Jul 31 13:42 tempfile
$ df /home check how much free space is available
Filesystem kbytes used avail capacity Mounted on
/dev/sd0h 282908 181979 72638 71% /home
$ a.out & run Program 4.5 in the background
1364 the shell prints its process 1D
$ file unlinked the file is unlinked
1ls -1 tempfile see if the filename is still there
tempfile not found the directory entry is gone
$ df /home see if the space is available yet
Filesystem kbytes used avail capacity Mounted on
/dev/sd0h 282908 181979 72638 71% /home
$ done the program is done, all open files are closed
df /home now the disk space should be available
Filesystem kbytes used avail capacity Mounted on
/dev/sd0h 282908 172939 81678 68% /home
now the 9.2 Mbytes of disk space are available -

This property of unlink is often used by a program to assure that a temporary file
it creates won’t be left around in case the program crashes. The process creates a file
using either open or creat and then immediately calls unlink. The file is not deleted,
however, because it is still open. Only when the process either closes the file or termi-
nates (which causes the kernel to close all its open files) is the file deleted.
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If pathname is a symbolic link, unlink references the symbolic link, not the file ref-
erenced by the link.

The superuser can call unlink with pathname specifying a directory, but the func-
tion rmdir should be used instead to unlink a directory. We describe the rmdir func-
tion in Section 4.20.

We can also unlink a file or directory with the remove function. For a file, remove
is identical to unlink. For a directory, remove is identical to rmdir.

#include <stdio.h>

int remove (const char *pathname) ;

Returns: 0 if OK, -1 on error

ANSI C specifies the remove function to delete a file. The name was changed from the histori-
cal Unix name of unlink since most non-Unix systems that implement the C standard don’t
support the concept of links to a file.

A file or directory is renamed with the rename function.

#include <stdio.h>
int rename (const char *oldname, const char *newname) ;

Returns: 0 if OK, -1 on error

This function is defined by ANSI C for files. (The C standard doesn’t deal with directories.)
POSIX.1 expanded the definition to include directories.

There are two conditions to describe, depending whether oldname refers to a file or a
directory. We must also describe what happens if newname already exists.

1. If oldname specifies a file that is not a directory then we are renaming a file. In
this case if newname exists, it cannot refer to a directory. If newname exists (and is
not a directory), it is removed and oldname is renamed to newname. We must
have write permission for the directory containing oldname and for the directory
containing newname, since we are changing both directories.

2. If oldname specifies a directory then we are renaming a directory. If newname
exists, it must refer to a directory and that directory must be empty. (When we
say that a directory is empty, we mean that the only entries in the directory are
dot and dot-dot.) If newname exists (and is an empty directory), it is removed
and oldname is renamed to newname. Additionally, when we're renaming a
directory, newname cannot contain a path prefix that names oldname. For exam-
ple, we can’t rename /usr/foo to /usr/foo/testdir since the old name
(/usr/£foo) is a path prefix of the new name and cannot be removed.
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3. As a special case, if the oldname and newname refer to the same file, the function
returns successfully without changing anything.

If newname already exists, we need permissions as if we were deleting it. Also, since
we're removing the directory entry for oldname and possibly creating a directory entry
for newname, we need write permission and execute permission in the directory contain-
ing oldname and in the directory containing newnarmne.

Symbolic Links

A symbolic link is an indirect pointer to a file, unlike the hard links from the previous
section, which pointed directly to the i-node of the file. Symbolic links were introduced
to get around the limitations of hard links: (a) hard links normally require that the link
and the file reside in the same filesystem, and (b} only the superuser can create a hard
link to a directory. There are no filesystem limitations on a symbolic link and what it
points to, and anyone can create a symbolic links to a directory. Symbolic links are typi-
cally used to move a file or an entire directory hierarchy to some other location on a sys-
tem.

Symbolic links were introduced with 4.2BSD and subsequently supported by SVR4. With
SVR4 symbolic links are supported for both the traditional System V filesystem (55) and the
Unified File System (UFS).

The original POSIX 1003.1-1990 standard does not include symbolic links. These will proba-
bly be added in 1003.1a.

When using functions that refer to a file by name we always need to know whether
the function follows a symbolic link or not. If the function follows a symbolic link, a
pathname argument to the function refers to the file pointed to by the symbolic link.
Otherwise a pathname argument refers to the link itself, not the file pointed to by the
link. Figure 4.10 summarizes whether the functions described in this chapter follow a
symbolic link or not. The function rmdir is not in this figure since it is not defined for
symbolic links (it returns an error). Also, the functions that take a file descriptor argu-
ment (fstat, fchmod, etc.) are not listed, since the handling of a symbolic link is done
by the function that returns the file descriptor (usually open). Whether chown follows
a symbolic link or not depends on the implementation—refer to Section 4.11 for details
on the differences.

Example

It is possible to introduce loops into the filesystem using symbolic links. Most functions
that look up a pathname return an errno of ELOOP when this occurs. Consider the fol-
lowing commands:
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Does not follow Follows

Function | = mboliclink | symbolic link

access
chdir
chmod
chown .
creat
exec
1lchown .
link
lstat .
mkdir
mkfifo
mknod
open
opendir
pathconf
readlink
remove
rename
stat
truncate
unlink .

L] - 8 ® 8 @ ®

Figure 4.10 Treatment of symbolic links by various functions.

$ mkdir foo make a new directory
$ touch foo/a create a O-length file
$ 1n -8 ../foo foo/testdir create a symbolic link
$ 1s -1 foo

total 1
-rw-rw-r-— 1 stevens 0 Dec 6 06:06 a
lrwxrwxrwx 1 stevens 6 Dec 6 06:06 testdir -> ../foo

This creates a directory foo that contains the file a and a symbolic link that points to
foo. We show this arrangement in Figure 4.11, drawing a directory as a circle and a file
as a square. If we write a simple program that uses the standard function ftw(3) to
descend through a file hierarchy, printing each pathname encountered, the output is

foo
foo/a
foo/testdir
foo/testdir/a
foo/testdir/testdir
foo/testdir/testdir/a
foo/testdir/testdir/testdir
foo/testdir/testdir/testdir/a
(many more lines)
ftw returned -1: Too many levels of symbolic links
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foo

a testdir

Figure 4.11 Symbolic link testdir that creates a loop.

We provide our own version of the £tw function in Section 4.21 that uses 1stat instead
of stat, to prevent it from following symbolic links.

A loop of this form is easy to remove—we are able to unlink the file
foo/testdir since unlink does not follow a symbolic link. But if we create a hard
link that forms a loop of this type, its removal is much harder.t This is why the 1ink
function will not form a hard link to a directory unless the process has superuser privi-
leges.

When we open a file, if the pathname passed to open specifies a symbolic link,
open follows the link to the specified file. If the file pointed to by the symbolic link
doesn’t exist, open returns an error saying that it can’t open the file. This can confuse
users who aren’t familiar with symbolic links. For example,

$ 1n —s /no/such/file myfile create a symbolic link
5 1s myfile

myfile 1s saysit's there

$ cat myfile so we try to look at it
cat: myfile: No such file or directory

$ 1s -1 myfile try —1 option

lrwxrwxrwx 1 stevens 13 Dec 6 07:27 myfile -> /no/such/file

The file my file does exist, yet cat says there is no such file, because myfile is a sym-
bolic link and the file pointed to by the symbolic link doesn’t exist. The —1 option to 1s
gives us two hints: the first character is an 1, which means a symbolic link, and the
sequence —> also indicates a symbolic link. The 1s command has another option (-F)
that appends an at-sign to filenames that are symbolic links, which can help spot sym-
bolic links in a directory listing without the -1 option. 0

+ Indeed, the author did this on his own system as an experiment while writing this sec-
tion. The filesystem got corrupted and the normal £sck(1) utility couldn’t fix things. The
deprecated tools c1ri(8) and dcheck(8) were needed to repair the filesystem.
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A symbolic link is created with the sym1ink function.

#include <unistd.h>

int symlink{(const char *actualpath, const char *sympath) ;

Returns: 0 if OK, —1 on error

A new directory entry, sympath, is created that points to actualpath. It is not required
that actualpath exist when the symbolic link is created. (We saw this in the example at
the end of the previous section.) Also, actualpath and sympath need not reside in the

same filesystem.

Since the open function follows a symbolic link, we need a way to open the link
itself and read the name in the link. The readlink function does this.

#include <unistd.h>

int readlink(const char *pathname, char *buf, int bufsize) ;

Returns: number of bytes read if OK, —1 on error

This function combines the actions of open, read, and close.
If the function is successful it returns the number of bytes placed into buf. The con-
tents of the symbolic link that are returned in buf are not null terminated.

File Times

Figure 4.12.

Three time fields are maintained for each file. Their purpose is summarized in
Field Description Example 1s(1) option
st_atime | last-access time of file data read -u
st_mtime | last-medification time of file data | write default
st_ctime | last-change time of i-node status chmod, chown -c

Figure 412 The three time values associated with each file.

Note the difference between the modification time (st_mt ime) and the changed-status
time (st_ctime). The modification time is when the contents of the file were last mod-
ified. The changed-status time is when the i-node of the file was last modified. We've
described many operations in this chapter that affect the i-node without changing the
actual contents of the file: changing the file access permissions, changing the user ID,
changing the number of links, and so on. Since all the information in the i-node is
stored separate from the actual contents of the file, we need the changed-status time, in

addition to the modification time.
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Note that the system does not maintain the last-access time for an i-node. This is
why the functions access and stat, for example, don’t change any of the three times.

The access time is often used by system administrators to delete files that have not
been accessed for a certain amount of time. The classic example is the removal of files
named a.out or core that haven’t been accessed in the past week. The £ind(1) com-
mand is often used for this type of operation.

The modification time and the changed-status time can be used to archive only
those files that have had their contents modified or their i-node modified.

The 1s command displays or sorts only on one of the three time values. By default
(when invoked with either the —1 or —t option), it uses the modification time of a file.
The —u option causes it to use the access time, and the —c option causes it to use the
changed-status time.

Figure 4.13 summarizes the effects of the various functions that we've described on
these three times. Recall from Section 4.14 that a directory is just a file containing direc-
tory entries (filenames and associated i-node numbers). Adding, deleting, or modifying
these directory entries can affect the three times associated with that directory. This is
why Figure 4.13 contains one column for the three times associated with the file (or
directory), and another column for the three times associated with the parent directory
of the referenced file (or directory). For example, creating a new file affects the directory
that contains the new file, and it affects the i-node for the new file. Reading or writing a
file, however, affects only the i-node of the file and has no effect on the directory. (The
mkdir and rmdir functions are covered in Section 4.20. The utime function is covered
in the next section. The six exec functions are described in Section 8.9. We describe the
mkfifo and pipe functions in Chapter 14.)

utime Function

The access time and the modification time of a file can be changed with the ut ime func-
tion.

#include <sys/types.h>
#include <utime.h>

int utime (const char *pafhname, const struct utimbuf *times) ;

Returns: 0 if OK, -1 on error

The structure used by this function is

struct utimbuf {
time_t actime; /* access time */
time_t modtime; /* modification time */

}

The two time values in the structure are calendar times, which count seconds since the
Epoch, as described in Section 1.10.
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Parent directory
Function Referenced file | of referenced file Note
| (or directory) (or directory)

a m C a m c
chmod, fchmod - T
chown, fchown .
creat . . . . ® | O _CREAT new file
creat . . O_TRUNC existing file
exec -
lchown .
link - - .
mkdir - [ ] L] L] [ ]
mkfifo - - L] - -
open . . . . * | O_CREAT new file
opern . L O_TRUNC existing file
P :i.pe . - -
read L]
remove b O . remove file=unlink
remove . . remove directory = rmdir
rename . . * | for both arguments
rmdir - .
truncate, ftruncate - L
unlink - - -
utime | . - -
write . -

Figure 413 Effect of various functions on the access, modification, and changed-status times.

The operation of this function, and the privileges required to execute it, depend on
whether the times argument is NULL.

1. If times is a null pointer, the access time and modification time are both set to the
current time. To do this, either (a) the effective user ID of the process must
equal the owner ID of the file, or (b) the process must have write permission for
the file.

2. If times is a nonnull pointer, the access time and the modification time are set to
the values in the structure pointed to by times. For this case the effective user ID
of the process must equal the owner ID of the file, or the process must be a
superuser process. Merely having write permission for the file is not adequate.

Note that we are not able to specify a value for the changed-status time, st _ctime (the
time the i-node was last changed), since this field is automatically updated when the
utime function is called.

On some versions of Unix the touch(l) command uses this function. Also, the
standard archive programs, tar(1) and cpio(1), optionally call utime to set the times
for a file to their values when they were archived.
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Example

Program 4.6 truncates files to zero-length with the O_TRUNC option with the open func-
tion, but does not change their access time or modification time. To do this it first
obtains the times with the stat function, truncates the file, and then resets the times
with the ut ime function.

#include <sys/types.h>
#include <sys/stat.h>
#include <fentl.h>

#include <utime.h>
#include "ourhdr.h"
int

main(int argc, char *argv([])
{
int i;
struct stat statbuf;
struct utimbuf timebuf;

for (1 = 1; 1 < argc; i++) {
if (stat(argv[i], &statbuf) < 0) { /* fetch current times */
err_ret ("%s: stat error", argv[il);
continue;
}
if (open(argv([i], O RDWR | O_TRUNC) < 0) { /* truncate */
err_ret("%s: open error", argv([il);
continue;
}
timebuf.actime = statbuf.st_atime;
timebuf.modtime = statbuf.st_mtime;
if (utime(argv[i], &timebuf) < 0) { /* reset times */
err ret ("%s: utime error", argv[i]);
continue;
}
}
exit (0);

Program 4.6 Example of utime function.

We can demonstrate Program 4.6 with the following script:

$ 1s -1 changemod times look at sizes and last-modification times
-IrwWwXrwxr—-x 1 stevens 24576 Dec 4 16:13 changemod
-rwXrwxr-x 1 stevens 24576 Dec 6 09:24 times

$ 1s -1lu changemod times look at last-access times
—rwxrwxr-x 1 stevens 24576 Feb 1 12:44 changemod
-rwxrwxr-x 1 stevens 24576 Feb 1 12:44 times

$ date - print today’s date

Sun Feb 3 18:22:33 MST 1991
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$ a.out changemod times run Program 4.6

$ 1s -1 changemod times and check the results
-rwxrwxr-x 1 stevens O Dec 4 16:13 changemod
-rwxrwxr-x 1 stevens 0 Dec 6 09:24 times

$ 1s -lu changemod times check the last-access times also
—IrwXrwxr-x 1 stevens 0 Feb 1 12:44 changemod
—rwxrwxr-x 1 stevens 0 Feb 1 12:44 times

$ 1s -lc changemod times and the changed-status times
—rwxrwxr-x 1 stevens 0 Feb 3 1B:23 changemod
-rwxrwxr-x 1 stevens 0 Feb 3 1B:23 times

As we expect, the last-modification times and the last-access times are not changed. The
changed-status times, however, are changed to the time that the program was run. (The
reason the last-access times are identical for the two files is because that was the time
the directory was archived using tar.) m|

mkdir and rmdir Functions

Directories are created with the mkdir function and deleted with the rmdi r function.

#include <sys/types.h>
#include <sys/stat.h>

int mkdir(const char *pathname, mode_ t mode) ;

Returns: 0 if OK, -1 on error

This function creates a new, empty directory. The entries for dot and dot-dot are auto-
matically created. The specified file access permissions, mode, are modified by the file
mode creation mask of the process.

A common mistake is to specify the same mode as for a file (read and write permis-
sions only). But for a directory we normally want at least one of the execute bits
enabled, to allow access to filenames within the directory. (See Exercise 4.18.)

The user ID and group ID of the new directory are established according to the
rules we described in Section 4.6.

SVR4 also has the new directory inherit the set-group-TD bit from the parent directory. This is
so that files created in the new directory will inherit the group ID of that directory.

4.3+B5D does not require this inheriting of the set-group-ID bit, since newly created files and
directories always inherit the group ID of the parent directory, regardless of the set-group-ID
bit.

Earlier versions of Unix did not have the mkdir function. It was introduced with 4.2BSD and
SVR3. In the earlier versions a process had to call the mknod function to create a new direc-
tory. But use of the mknod function was restricted to superuser processes. To circumvent this,
the normal command that created a directory, mkdir(1), had to be owned by root with the set-
user-ID) bit on. To create a directory from a process, the mkdi r(1) command had to be invoked
with the system(3) function.
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An empty directory is deleted with the rmdi r function.

#include <unistd.h>
int rmdir(const char *pathname) ;

Returns: 0 if OK, -1 on error

If the link count of the directory becomes 0 with this call, and no other process has the
directory open, then the space occupied by the directory is freed. If one or more pro-
cesses have the directory open when the link count reaches 0, the last link is removed
and the dot and dot-dot entries are removed before this function returns. Additionally,
no new files can be created in the directory. The directory is not freed, however, until
the last process closes it. (Even though some other process has the directory open, they
can't be doing much in the directory since the directory had to be empty for the rmdir
function to succeed.)

Reading Directories

Directories can be read by anyone who has access permission to read the directory. But
only the kernel can write to a directory (to preserve filesystem sanity). Recall from
Section 4.5 that the write permission bits and execute permission bits for a directory
determine if we can create new files in the directory and remove files from the
directory—they don’t specify if we can write to the directory itself.

The actual format of a directory depends on the Unix implementation. Earlier sys-
tems, such as Version 7, had a simple structure: each directory entry was 16 bytes, with
14 bytes for the filename and two bytes for the i-node number. When longer filenames
were added to 4.2BSD each entry became variable length, which means any program
that reads a directory is now system dependent. To simplify this, a set of directory rou-
tines were developed and are now part of POSIX.1.

I' #include <sys/types.h>
#include <dirent.h>

DIR *opendir(const char *pathname) ;
Returns: pointer if OK, NULL on error

struct dirent *readdir(DIR *dp):

Returns: pointer if OK, NULL on error
void rewinddir (DIR *dp);

int closedir (DIR *dp);

Returns: 0 if Oi—_!_c?n error
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Recall our use of these functions in Program 1.1, our bare bones implementation of the
1s command.

The dirent structure defined in the file <dirent.h> is implementation depen-
dent. SVR4 and 4.3+BSD define the structure to contain at least the following two mem-
bers:

struct dirent {

ino_t d_ino; /* i-node number */

char d name[NAME MAX + 1]; /* null-terminated filename */
}

The d_ino entry is not defined by POSIX.1, since it’s an implementation feature. POSIX.1
defines only the d_name entry in this structure.

Note that NAME_MAX is not a defined constant with SVR4—its value depends on the
filesystem in which the directory resides, and its value is usually obtained from the
fpathconf function. A common value for NAME_MAX on a BSD-type filesystem is 255.
(Recall Figure 2.7.) Since the filename is null terminated, however, it doesn’t matter
how the array d_name is defined in the header.

The DIR structure is an internal structure used by these four functions to maintain
information about the directory being read. It serves a purpose similar to the FILE
structure that is maintained by the standard 1/O library (which we describe in
Chapter 5).

The pointer to a DIR structure that is returned by opendir is then used with the
other three functions. opendir initializes things so that the first readdir reads the
first entry in the directory. The ordering of entries within the directory is implementa-
tion dependent. It is usually not alphabetical.

Example

We'll use these directory routines to write a program that traverses a file hierarchy. The
goal is to produce the count of the different types of files that we show in Figure 4.2.
Program 4.7 takes a single argument, the starting pathname, and recursively descends
the hierarchy from that point. System V provides a function, £tw(3), that performs the
actual traversal of the hierarchy, calling a user-defined function for each file. The prob-
lem with this function is that it calls the stat function for each file, which causes the
program to follow symbolic links. For example, if we start at the root and have a sym-
bolic link named /1ib that points to /usr/1ib, all the files in the directory /usr/1ib
are counted twice. To correct this, SVR4 provides an additional function, nftw(3), with
an option that stops it from following symbolic links. While we could use nftw, we'll
write our own simple file walker to show the use of the directory routines.

#include <sys/types.h>
#include <sys/stat.h>
#include <dirent.h>
#include <limits.h>
finclude "ourhdr.h"
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typedef int Myfunc (const char *, const struct stat *, int);
/* function type that’s called for each filename */

static Myfunc  myfunc;
static int myftw(char *, Myfunc *);
static int dopath (Myfunc *);

static long nreg, ndir, nblk, nchr, nfifo, nslink, nsock, ntot;

int
main (int argc, char *argv[])
{

int ret;

if (argc != 2)
err_quit ("usage: ftw <starting-pathname>");

ret = myftw(argv[l], myfunc); /* does it all */
if ( (ntot = nreg + ndir + nblk + nchr + nfifo + nslink + nsock) == 0)
ntot = 1; /* avoid divide by 0; print 0 for all counts */

printf ("regular files = %71d, %5.2f %%\n", nreg, nreg*100.0/ntot);
printf ("directories = %71d, %5.2f %%\n", ndir, ndir*100.0/ntot);
printf ("block special = %71ld, %5.2f %%\n", nblk, nklk*100.0/ntot):;
printf ("char special $71ld, %5.2f %%\n", nchr, nchr*100.0/ntot);

printf ("FIFOs = %71d, %5.2f %%\n", nfifo, nfifo*100.0/ntot);
printf ("symbolic links = %71d, %5.2f %%\n", nslink,nslink*100.0/ntot);
printf ("sockets = %$71d, %5.2f %%\n", nsock, nsock*100.0/ntot);

exit (ret):
}
/*
* Descend through the hierarchy, starting at "pathname".
* The caller’s func() is called for every file.

*/

#define FTW F 1 /* file other than directory */

#define FTW D 2 /* directory */

#define FTW_DNR 3 /* directory that can’t be read */

#define FTW NS 4 /* file that we can’'t stat */

static char *fullpath; /* contains full pathname for every file */
static int /* we return whatever func() returns */

myftw(char *pathname, Myfunc *func)
{

fullpath = path_alloc (NULL) ; /* malloc’s for PRTH MAX+1 bytes */
/* (Program 2.2) */
strcpy (fullpath, pathname); /* initialize fullpath */

return (dopath(func));
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* Descend through the hierarchy, starting at "fullpath".
* If "fullpath" is anything other than a directory, we lstat() it,
* call func(), and return. For a directory, we call ourself
* recursively for each name in the directory.
*/
static int /* we return whatever func() returns */
dopath (Myfunc* func)
{

struct stat statbuf;
struct dirent *dirp;
DIR *dp;

int ret;
char *ptLr;

if (lstat(fullpath, &statbuf) < 0)
return(func (fullpath, &statbuf, FTW NS)); /* stat error */

if (S_ISDIR(statbuf.st_mode) == 0)
return(func (fullpath, &statbuf, FIW F)); /* not a directory */

J*
* It’s a directory. First call func() for the directory,
* then process each filename in the directory.

*/

if ( (ret = func(fullpath, &statbuf, FTW_D)) '= 0)
return(ret) ;

ptr = fullpath + strlen(fullpath): /* point to end of fullpath */
*ptr++ = " /7;
*otr = 0;

if ( (dp = opendir(fullpath)) == NULL)
return(func(fullpath, &statbuf, FTW _DNR));
/* can’t read directory */

while ( (dirp = readdir(dp)) !'= NULL) ({
if (stremp(dirp->d _name, ".") == 0 ||
stremp (dirp—->d_name, "..") == 0)
continue; /* ignore dot and dot-dot */

strcpy(ptr, dirp->d_name); /* append name after slash */

if ( (ret = dopath(func)) != 0) /* recursive */
break; /* time to leave */
}
ptr[-11 = 0; /* erase everything from slash onwards */

if (closedir(dp) < 0)
err ret("can’t close directory %s", fullpath);

return(ret);
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static int
myfunc (const char *pathname, const struct stat *statptr, int type)
{

switch (type) {

case FTIW_F:
switch (statptr->st mode & S_IFMT) {
case S_IFREG: nreg++; break;
case S_IFBLK: nblk++; break;
case S_IFCHR: nchr++; break;
case S_IFIFO: nfifo++; break;
case S_IFLNK: nslink++; break;
case S_IFSOCK: nsock++; break;

case S_IFDIR:
err dump("for S_IFDIR for %s", pathname);
/* directories should have type = FTW D */

}

break;

case FIW D:
ndir++;
break;

case FIW_DNR:
err_ret("can’t read directory %s", pathname);
break:

case FIW NS:
err_ret ("stat error for %s", pathname);
break;

default:
err_dump ("unknown type %d for pathname %s", type, pathname);
}

return (0) ;

Program 4.7 Recursively descend a directory hierarchy, counting file types.

We have provided more generality in this program than needed. This was done to
illustrate the actual ftw function. For example, the function myfunc always returns 0,
even though the function that calls it is prepared to handle a nonzero return. O

For additional information on descending through a filesystem and the use of this
technique in many standard Unix commands (find, 1s, tar, etc), refer to Fowler,
Korn, and Vo [1989]. 4.3+BSD provides a new set of directory traversal functions—see
the £ts(3) manual page.
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chdir, fchdir, and getcwd Functions

Every process has a current working directory. This directory is where the search for all
relative pathnames starts (all pathnames that do not begin with a slash). When a user
logs in to a Unix system, the current working directory normally starts at the directory
specified by the sixth field in the /etc/passwd file—the user’s home directory. The
current working directory is an attribute of a process; the home directory is an attribute
of a login name. We can change the current working directory of the calling process by
calling the chdir or fchdir functions.

#include <unistd.h>
int chdir (const char *pathname) ;

int fchdir(int filedes) ;

Both return: 0 if OK, -1 on error

We can specify the new current working directory as either a pathname or through an
open file descriptor.

The fchdir function is not part of POSIX.1. It is an extension supported by SVR4 and
4.3+BSD.

Example

Since the current working directory is an attribute of a process it cannot affect processes
that invoke the process that executes the chdir. (We describe the relationship between
processes in more detail in Chapter 8.) This means that Program 4.8 doesn’t do what we
expect. If we compile Program 4.8 and call the executable mycd we get the following:

5 pwd

/usr/lib

5 myed

chdir to /tmp succeeded

$ pwd
/usr/lib

The current working directory for the shell that executed the mycd program didn't
change. For this reason, the chdir function has to be called directly from the shell, so
the cd command is built into the shells. |

Since the kernel must maintain knowledge of the current working directory, we
should be able to fetch its current value. Unfortunately, all the kernel maintains for each
process is the i-node number and device identification for the current working directory.
The kernel does not maintain the full pathname of the directory.
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#include "ourhdr.h"

int
main(void)
{
if (chdir("/tmp") < 0)
err_sys("chdir failed");

printf("chdir to /tmp succeeded\n");
exit(0);

Program 4.8 Example of chdir function.

What we need is a function that starts at the current working directory (dot) and
works its way up the directory hierarchy (using dot-dot to move up one level). At each
directory it reads the directory entries until it finds the name that corresponds to the
i-node of the directory that it just came from. Repeating this procedure until the root is
encountered yields the entire absolute pathname of the current working directory. For-
tunately a function is already provided for us that does this task.

#include <unistd.h>

char *getcwd(char *buf, size_t size);

Returns: buf if OK, NULL on error

We must pass this function the address of a buffer, buf, and its size. The buffer must be
large enough to accommodate the absolute pathname plus a terminating null byte, or an
error is returned. (Recall the discussion of allocating space for a maximum-sized path-
name in Section 2.5.7.)

Some implementations of getcwd allow the first argument buf to be NULL. In this case the
function calls malloc to allocate size number of bytes dynamically. This is not part of POSIX.1
or XPG3 and should be avoided.

Example

Program 4.9 changes to a specific directory and then calls getcwd to print the working
directory. If we run the program we get

$ a.out

cwd = /var/spool/uucppublic

$ 1s -1 /usr/spool

lrwxrwxrwx 1 root 12 Jan 31 07:57 /usr/spool —> ../var/spool
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#include "ourhdr.h"

int

main (void)

{
char *ptr;
int size;

if (chdir("/usr/spool/uucppublic") < 0)
err sys("chdir failed"):

ptr = path alloc(&size); /* our own function */
if (getcwd(ptr, size) == NULL)
err_sys("getcwd failed");

printf("cwd = %s\n", ptr);
exit (0);

Program 4.9 Example of getcwd function,

Notice that chdir follows the symbolic link (as we expect it to, from Figure 4.10) but
when getcwd goes up the directory tree, it has no idea when it hits the /var/spool
directory that it is pointed to by the symbolic link /usr/spool. This is a characteristic
of symbolic links. |

Special Device Files

The two fields st_dev and st_rdev are often confused. We'll need to use these fields
in Section 11.9 when we write the ttyname function. The rules are simple.

* Every filesystem is known by its major and minor device number. This device
number is encoded in the primitive system data type dev t. Recall from
Figure 4.7 that a disk drive often contains several filesystems.

* We can usually access the major and minor device numbers through two macros
defined by most implementations: major and minor. This means we don’t care
how the two numbers are stored in a dev_t object.

Early systems stored the device number in a 16-bit integer with 8 bits for the major num-
ber and 8 bits for the minor number. SVR4 uses 32 bits: 14 for the major and 18 for the
minor. 4.3+BSD uses 16 bits: 8 for the major and 8 for the minor.

POSIX.1 states that the dev_t type exists, but doesn’t define what it contains or how to
get at its contents. The macros major and minor are defined by most implementations.
Which header they are defined in depends on the system.
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e The st_dev value for every filename on a system is the device number of the
filesystem containing that filename and its corresponding i-node.

e Only character special files and block special files have an st _rdev value. This
value contains the device number for the actual device.

Example

Program 4.10 prints the device number for each command-line argument. Additionally,
if the argument refers to a character special file or a block special file, the st_rdev
value for the special file is also printed.

#include <sys/types.h> /* BSD: defines major() and minor ()} */
#include <sys/stat.h>
#include "ourhdr.h"
int
main(int argc, char *argv(])
{
int iz

struct stat buf;

for (i = 1; i < argc; i++) |
printf("%$s: ", argv[i]):
if (lstat(argv[i], &buf) < 0) {
err_ret ("lstat error");
continue;
}

printf("dev = %d/%d", major(buf.st_dev), minor(buf.st_dev));

if (S_ISCHR(buf.st_mode) || S_ISBLK(buf.st_mode)) {
printf (" (%s) rdev = %d/%4d",
(S_ISCHR(buf.st_mode)) ? "character" : "block",
major (buf.st_rdev), minor(buf.st_rdev));:
}
printf("\n");
}
exit (0);

Program 410 Print st_dev and st_rdev values.

Under SVR4 the header <sys/sysmacros.h> must be included to define the macros
major and minor. Running this program gives us the following output:

$ a.out / /home/stevens /[dev/tty[ab]
/: dev = 7/0

/home/stevens: dev = 7/7

/dev/ttya: dev = 7/0 (character) rdev
/dev/ttyb: dev = 7/0 (character) rdev

12/0
12/1
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$ mount which directories are mounted on which devices?
/dev/sdl0a on /

/dev/sd0h on /home

$ 1s -1 /dev/sd0[ah] /dev/tty[ab]

brw-r-————— 1 root 7, 0 Jan 31 08:23 /dev/sd0Oa
brw-r———- 1 root 7T, 7 Jan 31 08:23 /dev/sd0Oh
Crw—-rw-rw— 1 root 1z, 0 Jan 31 08:22 /dev/ttya
crw-rw-rw— 1 root 12, 1 Jul 9 10:11 /dev/ttyb

The first two arguments to the program are directories (root and /home/stevens),
and the next two are the device names /dev/tty[ab]. We expect the devices to be
character special files. The output from the program shows that the root directory has a
different device number than the /home/stevens directory. This indicates that they
are on different filesystems. Running the mount (1) command verifies this. We then use
1s to look at the two disk devices reported by mount and the two terminal devices.
The two disk devices are block special files, and the two terminal devices are character
special files. (Normally the only types of devices that are block special files are those
that can contain random-access filesystems: disk drives, floppy disk drives, and
CD-ROMs, for example. Older versions of Unix supported magnetic tapes for file-
systems, but this was never widely used.) Note that the filenames and i-nodes for the
two terminal devices (st _dev) are on device 7/0 (the root filesystem, which contains
the /dev filesystem) but their actual device numbers are 12/0 and 12/1. |

sync and fsync Functions

Traditional Unix implementations have a buffer cache in the kernel through which most
disk I/0O passes. When we write data to a file the data is normally copied by the ker-
nel into one of its buffers and queued for [/O at some later time. This is called delayed
write. (Chapter 3 of Bach [1986] discusses this buffer cache in detail.)

The kernel eventually writes all the delayed-write blocks to disk, normally when it
needs to reuse the buffer for some other disk block. To ensure consistency of the actual
filesystem on disk with the contents of the buffer cache, the sync and fsync functions
are provided.

#include <unistd.h>
void sync (void);

int fsync(int filedes) ;

Returns: 0 if OK, —1 on error

sync just queues all the modified block buffers for writing and returns; it does not wait
for the actual I/O to take place.

The function sync is normally called every 30 seconds from a system daemon
(often called update). This guarantees regular flushing of the kernel’s block buffers.
The command sync(1) also calls the sync function.
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The function fsync refers only to a single file (specified by the file descriptor
filedes), and waits for the I/O to complete before returning. The intended use of fsync
is for an application such as a database that needs to be sure that the modified blocks
have been written to the disk. Compare f£sync, which updates a file’s contents when
we say so, with the O_SYNC flag (described in Section 3.13), which updates a file’s con-
tents every time we write to the file.

sync and fsync are supported by both SVR4 and 4.3+BSD. Neither is part of POSIX.1, but
fsync is required by XPG3.

Summary of File Access Permission Bits

We've covered all the file access permission bits, some of which serve multiple pur-
poses. Figure 4.14 summarizes all these permission bits and their interpretation when
applied to a regular file versus their interpretation when applied to a directory.

Constant | Description Effect on regular file Effect on directory

S_ISUID | set-user-ID set effective user ID on execution (not used)

s _ISGID | set-groupID | if group-execute set then set set group ID of new files created in
effective group ID on execution; directory to group ID of directory
otherwise enable mandatory
record locking

S_ISVTX | sticky bit save program text in swap area restrict removal and renaming of files in
(if supported) directory

S_IRUSR | user-read user permission to read file user permission to read directory

entries

S _IWUSR | user-write user permission to write file user permission to remove and create

files in directory

S _IXUSR | user-execute user permission to execute file user permission to search for given

pathname in directory

S_IRGRF | group-read group permission to read file group permission to read directory

entries

S_IWGRP | group-write group permission to write file group permission to remove and create

files in directory

S_IXGRP | group-execute | group permission to execute file group permission to search for given

pathname in directory

S_TROTH | other-read other permission to read file other permission to read directory

entries

S_IWOTH | other-write other permission to write file other permission to remove and create

files in directory

S_IXOTE | other-execute | other permission to execute file other permission to search for given

pathname in directory

Figure 4.14 Summary of file access permission bits.
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The final nine constants can also be grouped into threes, since

S_IRWXU = S_IRUSR | S_IWUSR | S_IXUSR

S_IRWXG = S_IRGRP | S_IWGRP | S_IXGRP

S_IRWXO = S_IROTH | S_IWOTH | S_IXOTH
Summary

This chapter has been centered around the stat function. We've gone through each
member in the stat structure in detail. This in turn has led us to examine all the
attributes of Unix files. A thorough understanding of all the properties of a file and all
the functions that operate on files is essential to all Unix programming,
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Modify Program 4.1 to use stat instead of lstat. What changes if one of the
command-line arguments is a symbolic link?

We indicated in Figure 4.1 that SVR4 doesn’t currently provide the S ISLNK macro. But
SVR4 does support symbolic links and defines S _IFLNK in <sys/stat.h>. (Perhaps
someone forgot to define S_ISLNK?) Devise a way around this omission that can be placed
in ourhdr . h, so any programs that need the S_ISLNK macro can use it.

What happens if the file mode creation mask is set to 777 (octal)? Verify the results using
your shell’s umask command.

Verify that turning off user-read permission for a file that you own denies your access to the
file.

Run Program 4.3 after creating the files foo and bar. What happens?

In Section 4.12 we said that a file size of 0 is valid for a regular file. We also said that the
st_size field is defined for directories and symbolic links. Should we ever see a file size
of 0 for a directory or a symbolic link?

Write a utility like cp(1) that copies a file containing holes, without writing the bytes of 0 to
the output file.

Note in output from the 1s command in Section 4.12 that the files core and core. copy
have different access permissions. If the umask value didn’t change between the creation of
the two files, explain how the difference could have occurred.

When running Program 4.5 we check the available disk space with the df(1) command.
Why didn’t we use the du(1) command?

In Figure 4.13 we show the unlink function as modifying the changed-status time of the
file itself. How can this happen?

In Section 4.21 how does the system’s limit on the number of open files affect the myftw
function?

In Section 4.21 our version of ftw never changes its directory. Modify this routine so that
each time it encounters a directory it does a chdir to that directory, allowing it to use the
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filename and not the pathname for each call to 1stat. When all the entries in a directory
have been processed, execute chdir (".."). Compare the time used by this version and
the version in the text.

Each process also has a root directory that is used for resolution of absolute pathnames.
This root directory can be changed with the chroot function. Look up the description for
this function in your manuals. When might this function be useful?

How can you set only one of the two time values with the ut ime function?

Some versions of the finger(l) command output “New mail received ..” and “unread
since ...” where ... are the corresponding times and dates. How can the program determine
these two times and dates?

Examine the archive formats by the cpio(1) and tar(l) commands. (These descriptions are
usually found in Section 5 of the Unix Programmer’s Manual.) How many of the three possi-
ble time values are saved for each file? When a file is restored, what value do you think the
access time is set to, and why?

The command £ile(1) tries to determine the logical type of a file (C program, Fortran pro-
gram, shell script, etc.) by reading the first part of the file, examining the contents, and
applying some heuristics. Also, some Unix systems provide a command that allows us to
execute another command and obtain a trace of all the system calls executed by the com-
mand. (Under SVR4 the command is truss(l). Under 43+BSD the commands are
ktrace(l) and kdump(1). The following example uses the SunOS trace(l) command.) If
we run a system call trace of the £ile command

trace file a.out
we find it calls the following functions

lstat ("a.out"™, Oxf7fff650) = 0

open ("a.out", 0, 0) = 3

read (3, "".., 512) = 512

fstat (3, Oxf7££f160) =0

write (1, "a.out: demand paged execu".., 44) = 44
a.out: demand paged executable not stripped
utime ("a.out", Oxf7f£££1b0) = 0

Why is the £ile command calling utime?

Does Unix have a fundamental limitation on the depth of a directory tree? To find out,
write a program that creates a directory and then changes to that directory, in a loop. Make
certain that the length of the absolute pathname of the leaf of this directory is greater than
your system’s PATH_MAX limit. Can you call getcwd to fetch the directory’s pathname?
How do the standard Unix tools deal with this long pathname? Can you archive the direc-
tory using either tar or cpio?

In Section 3.15 we described the /dev/fd feature. For any user to be able to access these
files, their permissions must be rw-rw-rw-. Some programs that create an output file
delete the file first, in case it already exists (ignoring the return code).

unlink (path) ;
if ( (fd = creat(path, FILE MODE)) < 0)
err_sys(...);

What happens if path is /dev/£d/1?
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Standard 1/0O Library

Introduction

In this chapter we describe the standard I/O library. This library is specified by the
ANSI C standard because it has been implemented on many operating systems other
than Unix. This library handles details such as buffer allocation and performing 1/0O in
optimal-sized chunks, obviating our need to worry about using the correct block size (as
in Section 3.9). This makes the library easy to use, but at the same time introduces
another set of problems if we're not cognizant of what’s going on.

The standard 1/0 library was written by Dennis Ritchie around 1975. It was a major revision
of the Portable 1/0 library written by Mike Lesk. Surprisingly, little has changed in the stan-
dard 1/0 library after more than 15 years.

Streams and FILE Objects

In Chapter 3 all the 1/0 routines centered around file descriptors. When a file is opened
a file descriptor is returned, and that descriptor is then used for all subsequent 1/O
operations. With the standard 1/0 library the discussion centers around streams. (Do
not confuse the standard I/O term stream with the STREAMS 1/0 system that is part of
System V.) When we open or create a file with the standard 1/0 library we say that we
have associated a stream with the file.

When we open a stream, the standard I/O function fopen returns a pointer to a
FILE object. This object is normally a structure that contains all the information
required by the standard 1/0O library to manage the stream: the file descriptor used for
actual I/0, a pointer to a buffer for the stream, the size of the buffer, a count of the num-
ber of characters currently in the buffer, an error flag, and the like.
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Application software should never need to examine a FILE object. To reference the
stream we pass its FILE pointer as an argument to each standard 1/0O function.
Throughout this text we'll refer to a pointer to a FILE object, the type FILE * as a file
pointer.

Throughout this chapter we describe the standard 1/O library in the context of a
Unix-based system. As we mentioned, this library has already been ported to a wide
variety of operating systems other than Unix. But to provide some insight about how
this library can be implemented, we need to talk about its typical Unix implementation.

Standard Input, Standard Output, and Standard Error

Three streams are predefined and automatically available to a process: standard input,
standard output, and standard error. These refer to the same files as the file descriptors
STDIN FILENO, STDOUT FILENO, and STDERR FILENO, which we mentioned in
Section 3.2.

These three standard 1/O streams are referenced through the predefined file point-
ers stdin, stdout, and stderr. These three file pointers are defined in the
<stdio.h> header.

Buffering

The goal of the buffering provided by the standard 1/0O library is to use the minimum
number of read and write calls. (Recall Figure 3.1 where we showed the amount of
CPU time required to perform 1/O using different buffer sizes.) Also, it tries to do its
buffering automatically for each I/O stream, obviating the need for the application to
worry about it. Unfortunately, the single aspect of the standard 1/O library that gener-
ates the most confusion is its buffering.

There are three types of buffering provided.

1. Fully buffered. For this case actual 1/O takes place when the standard 1/0 buff-
er is filled. Files that reside on disk are normally fully buffered by the standard
1/0 library. The buffer that's used is normally obtained by one of the standard
1/0 functions calling malloc (Section 7.8) the first time I /O is performed on a
stream.

The term flush describes the writing of a standard 1/0 buffer. A buffer can be
flushed automatically by the standard 1/O routines (such as when a buffer fills),
or we can call the function £f1ush to flush a stream. Unfortunately, in the Unix
environment flush means two different things. In terms of the standard 1/0
library it means writing out the contents of a buffer (which may be partially
filled). In terms of the terminal driver (such as the tcflush function in
Chapter 11) it means to discard the data that’s already stored in a buffer.
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2. Line buffered. In this case the standard 1/0O library performs I/O when a new-
line character is encountered on input or output. This allows us to output a sin-
gle character at a time (with the standard I/O fputc function), knowing that
actual I/O will take place only when we finish writing each line. Line buffering
is typically used on a stream when it refers to a terminal (e.g., standard input
and standard output).

There are two caveats with respect to line buffering. First, since the size of the
buffer that the standard 1/0 library is using to collect each line is fixed, actual
1/0 might take place if we fill this buffer before writing a newline. Second,
whenever input is requested through the standard /O library from either (a) an
unbuffered stream or (b) from a line-buffered stream (that requires data to be
requested from the kernel), it is intended that this causes all line-buffered output
streams to be flushed. The reason for the qualifier on (b) is that the requested
data may already be in the buffer, which doesn’t require data to be read from the
kernel. Obviously, any input from an unbuffered stream, item (a), requires data
to be obtained from the kernel.

3. Unbuffered. The standard 1/O library does not buffer the characters. If we
write 15 characters with the standard 1/O fputs function, for example, we
expect these 15 characters to be output as soon as possible (probably with the
write function from Section 3.8).

The standard error stream, for example, is normally unbuffered. This is so that
any error messages are displayed as quickly as possible, regardless whether
they contain a newline or not.

ANSI C requires the following buffering characteristics:

1. Standard input and standard output are fully buffered, if and only if they do not
refer to an interactive device.

2. Standard error is never fully buffered.

This, however, doesn’t tell us whether standard input and standard output can be
unbuffered or line buffered if they refer to an interactive device and whether standard
error should be unbuffered or line buffered. Both SVR4 and 4.3+BSD default to the fol-
lowing types of buffering:

¢ Standard error is always unbuffered.

o All other streams are line buffered if they refer to a terminal device; otherwise
they are fully buffered.

If we don't like these defaults for any given stream, we can change the buffering by call-
ing either of the following two functions.
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#include <stdio.h>
void setbuf (FILE *fp, char *buf):

int setvbuf (FILE *fy, char *buf, int mode, size t size) ;

Returns: 0 if OK, nonzero on error

These functions must be called after the stream has been opened (obviously, since each
requires a valid file pointer as their first argument) but before any other operation is per-
formed on the stream.

With setbuf we can turn buffering on or off. To enable buffering, buf must point to
a buffer of length BUFSIZ (a constant defined in <stdio.h>). Normally the stream is
then fully buffered, but some systems may set line buffering if the stream is associated
with a terminal device. To disable buffering, we set buf to NULL.

With setvbuf we specify exactly which type of buffering we want. This is done
with the mode argument:

_IOFBF fully buffered
_IOLBF line buffered
_IONBF unbuffered

If we specify an unbuffered stream, the buf and size arguments are ignored. If we spec-
ify fully buffered or line buffered, buf and size can optionally specify a buffer and its
size. If the stream is buffered and buf is NULL, then the standard 1/0 library will auto-
matically allocate its own buffer of the appropriate size for the stream. By appropriate
size we mean the value specified by the st_blksize member of the stat structure
from Section 4.2. If the system can’t determine this value for the stream (if the stream
refers to a device or a pipe, for example), then a buffer of length BUFSI2 is allocated.

Using the st_blksize value for the buffer size came from the Berkeley systems. Earlier ver-
sions of System V used the standard 1/0 constant BUFS 1z (typically 1024). Even 4.3+BSD still
sets BUFSIZ to 1024, even though it uses st_blksi ze to determine the optimal standard 1/0
buffer size.

Figure 5.1 summarizes the actions of these two functions and their various options.

Function mode buf Buffer & length Type of buffering
nonnull user Euf of length BUFSIZ fully buffered or line buffered
setbut NULL (no buffer) unbuffered
= — AT =
IOFBF B | user buf of length sice fully buffered
- NULL system buffer of appropriate length y
f: th si:

setvbu . nonnull user buf of length size . line buffered

- NULL system buffer of appropriate length

_IONBF | (ignored) | (no buffer) unbuffered

Figure 5.1 Summary of the setbuf and setvbuf functions.
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Be aware that if we allocate a standard I/O buffer as an automatic variable within a
function, we have to close the stream before returning from the function. (We'll discuss
this more in Section 7.8.) Also, SVR4 uses part of the buffer for its own bookkeeping, so
the actual number of bytes of data that can be stored in the buffer is less than size. In
general, we should let the system choose the buffer size and automatically allocate the
buffer. When we do this the standard I/O library automatically releases the buffer
when we close the stream.

At any time we can force a stream to be flushed.

#include <stdio.h>
int f£flush(FILE *fp);

Returns: 0 if OK, EQOF on error

This function causes any unwritten data for the stream to be passed to the kernel. As a
special case, if fp is NULL this function causes all output streams to be flushed.

The ability to pass a null pointer to force all output streams to be flushed is new with ANSI C.
Non-ANSI C libraries (e.g., earlier releases of System V and 4.3BSD) do not support this fea-
ture.

Opening a Stream

The following three functions open a standard [/O stream.

#include <stdio.h>

FILE *fopen(const char *pathname, const char *ype);

FILE *freopen(const char *pathname, const char *iype, FILE *fp);
FILE *fdopen(int filedes, const char *fype);

All three return: file pointer if OK, NULL on error

The differences in these three functions are as follows:

1. fopen opens a specified file.

2 freopen opens a specified file on a specified stream, closing the stream first, if
it is already open. This function is typically used to open a specified file as one
of the predefined streams: standard input, standard output, or standard error.

3. fdopen takes an existing file descriptor (which we could obtain from the open,

dup, dup2, fcntl, or pipe functions) and associates a standard I/O stream
with the descriptor. This function is often used with descriptors that are
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returned by the functions that create pipes and network communication chan-
nels. Since these special types of files cannot be opened with the standard /0
fopen function, we have to call the device-specific function to obtain a file
descriptor, and then associate this descriptor with a standard 1/0 stream using
fdopen.

fopen and freopen are part of ANSI C. fdopen is part of POSIX.1, since ANSI C doesn't
deal with file descriptors.

ANSI C specifies 15 different values for the type argument, shown in Figure 5.2.

type Description
r or rb open for reading
w or wb truncate to 0 length or create for writing
a or ab append; open for writing at end of file, or create for writing

T+ or r+b or rb+ | open for reading and writing
w+ Or wtb Or wb+ | truncate to 0 length or create for reading and writing
a+ or a+b or ab+ | open or create for reading and writing at end of file

Figure 52 The type argument for opening a standard I/O stream,

Using the character b as part of the type allows the standard 1/0 system to differentiate
between a text file and a binary file. Since the Unix kernel doesn’t differentiate between
these types of files, specifying the character b as part of the type has no effect.

With fdopen the meanings of the type argument differ slightly. Since the descriptor
has already been opened, opening for write does not truncate the file. (If the descriptor
was created by the open function, for example, and the file already existed, the
O_TRUNC flag would determine if the file were truncated or not. The fdopen function
cannot just truncate any file it opens for writing.) Also, the standard I/O append mode
cannot create the file (since the file has to exist if a descriptor refers to it).

When a file is opened with a type of append, each write will take place at the then
current end of file. If multiple processes open the same file with the standard I/O
append mode, the data from each process will be correctly written to the file.

Versions of fopen from Berkeley before 4.3+BSD, and the simple version shown on page 177
of Kernighan and Ritchie [1988] do not handle the append mode correctly. These versions do
an 1seek to the end of file when the stream is opened. To correctly support the append mode
when multiple processes are involved, the file must be opened with the O_APPEND flag, which
we discussed in Section 3.3. Doing an 1seek before each write won't work either, as we dis-
cussed in Section 3.11.

When a file is opened for reading and writing (the plus sign in the type) the follow-
ing restrictions apply:

* Output cannot be directly followed by input without an intervening ££1lush,
fseek, fsetpos, or rewind.

* Input cannot be directly followed by output without an intervening £seek,
fsetpos, or rewind, or an input operation that encounters an end of file.
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We can summarize the six different ways to open a stream from Figure 52 in

Figure 5.3.
B Restriction ! r w | a | r+ | wt a+‘
file must already exist ' | e . | i h
previous contents of file discarded ‘ . .
stream can be read - e | e
stream can be written e | @ .
stream can be written only at end [ e | .

Figure 5.3 Six different ways to open a standard 1/O stream.

Note that if a new file is created by specifying a type of either w or a, we are not able
to specify the file’s access permission bits (as we were able to do with the open function
and the creat function in Chapter 3). POSIX.1 requires that the file be created with the
following permissions

S _TRUSR | S_IWUSR | S_IRGRP | S_IWGRP | S_IROTH | S_IWOTH

By default, the stream that is opened is fully buffered, unless it refers to a terminal
device, in which case it is line buffered. Once the stream is opened, but before we do
any other operation on the stream, we can change the buffering if we want Lo, with the
setbuf or setvbuf functions from the previous section.

An open stream is closed by calling fclose.

#include <stdio.h>
int fclose (FILE *fp);

Returns: 0 if OK, EOF on error

Any buffered output data is flushed before the file is closed. Any input data that may
be buffered is discarded. If the standard I/O library had automatically allocated a buff-
er for the stream, that buffer is released.

When a process terminates normally, either by calling the exit function directly, or
by returning from the main function, all standard [/O streams with unwritten buffered
data are flushed, and all open standard /O streams are closed.

Reading and Writing a Stream

Once we open a stream we can choose among three different types of unformatted 1/0O.
(We describe the formatted 1/0 functions, such as print £ and scanf, in Section 5.11.)

1. Character-at-a-time I/0O. We can read or write one character at a time, with the
standard I/O functions handling all the buffering (if the stream is buffered).
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2. Line-at-a-time I/O. If we want to read or write a line at a time, we use fgets
and fputs. Each line is terminated with a newline character, and we have to
specify the maximum line length that we can handle when we call fgets. We
describe these two functions in Section 5.7.

3. Direct I/O. This type of I/O is supported by the fread and fwrite functions.
For each I/O operation we read or write some number of objects, where each
object is of a specified size. These two functions are often used for binary files
where we read or write a structure with each operation. We describe these two
functions in Section 5.9.

The term direct I/O is from the ANSI C standard. It's known by many names: binary
/0, object-at-a-time I/0, record-oriented I/0, or structure-oriented 1/0.

Input Functions

Three functions allow us to read one character at a time.

#include <stdio.h>
int getc(FILE *fp);
int fgetc(FILE *fp);
int getchar (void);

All three return: next character if OK, EOF on end of file or error

The function getchar is defined to be equivalent to getc (stdin). The difference
between the first two functions is that getc can be implemented as a macro while
fgetc cannot be implemented as a macro. This means three things:

1. The argument to getc should not be an expression with side effects.

2. Since fgetc is guaranteed to be a function, we can take its address. This allows
us to pass the address of fgetc as an argument to another function.

3. Calls to fgetc probably take longer than calls to getc, since it usually takes
more time to call a function. Indeed, examining most implementations of the
<stdio.h> header shows that getc is a macro that has been coded for effi-
ciency.

These three functions return the next character as an uns igned char converted to
an int. The reason for specifying unsigned is so that the high-order bit, if set, doesn’t
cause the return value to be negative. The reason for requiring an integer return value
is so that all possible character values can be returned, along with an indication that
either an error occurred or the end of file has been encountered. The constant EOF in
<stdio.h> is required to be a negative value. Its value is often 1. This representation
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also means that we cannot store the return value from these three functions in a charac-
ter variable, and compare this value later against the constant ECF.

Notice that these functions return the same value whether an error occurs or the
end of file is reached. To distinguish between the two we must call either ferror or
feof.

#include <stdio.h>
int ferror (FILE *fp};
int feof (FILE *fp);

Both return: nonzero (true) if condition is true, 0 (false) otherwise

void clearerr (FILE *fp);

In most implementations, two flags are maintained for each stream in the FILE object:

* anerror flag,
¢ an end-of-file flag.

Both flags are cleared by calling clearerr.
After reading from a stream we can push back characters by calling ungetc.

#include <stdio.h>

int ungetc(int ¢, FILE *fp);

Returns: ¢ if OK, EOF on error

The characters that are pushed back are returned by subsequent reads on the stream in
reverse order of their pushing. Be aware, however, that although ANSI C allows an
implementation to support any amount of pushback, an implementation is required to
provide only a single character of pushback. We should not count on more than a single
character.

The character that we push back does not have to be the same character that was
read. We are not able to push back EOF. But when we’ve reached the end of file, we can
push back a character. The next read will return that character, and the read after that
will return EOF. This works because a successful call to ungetc clears the end-of-file
indication for the stream.

Pushback is often used when we're reading an input stream and breaking into
words or tokens of some form. Sometimes we need to peek at the next character to
determine how to handle the current character. It’s then easy to push back the character
that we peeked at, for the next call to getc to return. If the standard 1/0 library didn’t
provide this pushback capability, we would have to store the character in a variable of
our own, along with a flag telling us to use this character instead of calling getc the
next time we need a character.
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Output Functions

5.7

We’ll find an output function that corresponds to each of the input functions that we've
already described.

#include <stdio.h>
int putc(int ¢, FILE *fp);
int fputc(int ¢, FILE *fp);

int putchar (int c¢);

All three return: ¢ if OK, EOF on error

Like the input functions, putchar (c) is equivalent to putc (¢, stdout), and putc
can be implemented as a macro while fputc cannot be implemented as a macro.

Line-at-a-Time 1/0

Line-at-a-time input is provided by the following two functions.

#include <stdio.h>
char *fgets(char *huf, int n, FILE *f);

char *gets(char *buf);

Both return: buf if OK, NULL on end of file or error

Both specify the address of the buffer to read the line into. gets reads from standard
input while fgets reads from the specified stream.

With fgets we have to specify the size of the buffer, n. This function reads up
through and including the next newline, but no more than n—1 characters, into the buff-
er. The buffer is terminated with a null byte. If the line, including the terminating new-
line, is longer than #-1, then only a partial line is returned, but the buffer is always null
terminated. Another call to fgets will read what follows on the line.

gets is a deprecated function. The problem is that it doesn’t allow the caller to
specify the buffer size. This allows the buffer to overflow, if the line is longer than the
buffer, writing over whatever happens to follow the buffer in memory. For a descrip-
tion of how this flaw was used as part of the Internet worm of 1988, see the June 1989
issue (vol. 32, no. 6) of Communications of the ACM . An additional difference with gets
is that it doesn’t store the newline in the buffer, as does fgets.

This difference in newline handling between the two functions goes way back in the evolution
of Unix. Even the Version 7 manual (1979) states “gets deletes a newline, fgets keeps it, all
in the name of backward compatibility.”
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Even though ANSI C requires an implementation to provide gets, it should never be
used.

Line-at-a-time output is provided by fputs and puts.

#include <stdio.h>
int fputs(const char *str, FILE *fp);

int puts(const char *sir);

Both return: nonnegative value if OK, EOF on error

The function fputs writes the null terminated string to the specified stream. The null
byte at the end is not written. Note that this need not be line-at-a-time output, since the
string need not contain a newline as the last nonnull character. Usually this is the case
(the last nonnull character is a newline), but it’s not required.

puts writes the null terminated string to the standard output (without writing the
null byte). But puts then writes a newline character to the standard output.

puts is not unsafe like its counterpart gets. Nevertheless, we’ll avoid using it to
prevent having to remember whether it appends a newline or not. If we always use
fgets and fputs we know that we always have to deal with the newline character at
the end of each line.

Standard /0O Efficiency

Using the functions from the previous section we can get an idea of the efficiency of the
standard I/O system. Program 5.1 is like Program 3.3: it just copies standard input to
standard output, using getc and putc. These two routines can be implemented as
macros.

#include "ourhdr.h"
int
main (void)
{
int c;
while ( {(c = getc(stdin)) != EOF)

if (putc(c, stdout) == EOF)
err_sys("output error"):

if (ferror(stdin))
err sys("input error"};

exit (0);

Program 5.1 Copy standard input to standard output using getc and putc.
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We can make another version of this program that uses fgetc and fputc, which
should be functions and not macros. (We don’t show this trivial change to the source
code.)

Finally we have a version that reads and writes lines, Program 5.2.

#$include "ourhdr.h"

int
main (void)
{
char buf [MAXLINE] ;

while (fgets(buf, MAXLINE, stdin) != NULL)
if (fputs(buf, stdout) == EOQF)
err_sys("output error™);

if (ferror(stdin))
err_ sys("input error");

exit (0);

Program 5.2 Copy standard input to standard output using fgets and fput s.

Note that we do not close the standard 1/O streams explicitly in Program 5.1 or
Program 5.2. Instead, we know that the exit function will flush any unwritten data
and then close all open streams. (We'll discuss this in Section 8.5.) It is interesting to
compare the timing of these three programs with the timing data from Figure 3.1. We
show this data when operating on the same file (1.5 Mbytes with 30,000 lines) in
Figure 5.4.

Function User CPU | System CPU | Clock time Bytes of
{seconds) (seconds) (seconds) | program text
best time from Figure 3.1 0.0 03 03 |
fgets, fputs 22 0.3 26 . 184
getc, putc 43 03 48 384
fgeteg, fputc 4.6 0.3 5.0 152
single byte time from Figure 3.1 238 397.9 4234 ,

Figure 5.4 Timing results using standard 1/O routines.

For each of the three standard [/O versions, the user CPU time is larger than the best
read version from Figure 3.1, because the character-at-a-time standard I/O versions
have a loop that is executed 1.5 million times, and the loop in the line-at-a-time version
is executed 30,000 times. In the read version, its loop is executed only 180 times (for a
buffer size of 8192). This difference in user CPU times accounts for the difference in
clock times, since the system CPU times are all the same.

The system CPU time is the same as before, because the same number of kernel
requests are being made. Note that an advantage of using the standard I/O routines is
that we don’t have to worry about buffering or choosing the optimal 1/O size. We do
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have to determine the maximum line size for the version that uses fgets, but that's
easier than trying to choose the optimal [/O size.

The final column in Figure 5.4 is the number of bytes of text space (the machine
instructions generated by the C compiler) for each of the main functions. We can see
that the version using getc expands the getc and putc macros inline, which takes
more instructions than calling the fgetc and fputc functions. Looking at the differ-
ence in user CPU times between the getc version and the fgetc version, we see that
expanding the macros inline versus calling two functions doesn’t make a big difference
on the system used for these tests.

The version using line-at-a-time I/O is almost twice as fast as the character-at-a-
time version (both the user CPU time and the clock time). If the fgets and fputs
functions are implemented using getc and putc (see Section 7.7 of Kernighan and
Ritchie [1988], for example) then we would expect the timing to be similar to the getc
version. Actually, we might expect the line-at-a-time version to take longer, since we
would be adding 3 million macro invocations to the existing 60,000 function calls. What
is happening with this example is that the line-at-a-time functions are implemented
using memccpy(3). Often the memccpy function is implemented in assembler, instead
of C, for efficiency.

The last point of interest with these timing numbers is that the fgetc version is so
much faster than the BUFFSIZE=1 version from Figure 3.1. Both involve the same
number of function calls (about 3 million), yet the fgetc version is over 5 times faster
in user CPU time, and almost 100 times faster in clock time. The difference is that the
version using read executes 3 million function calls, which in turn execute 3 million
system calls. With the fgetc version we still execute 3 million function calls but this
ends up being only 360 system calls. System calls are usualiy much more expensive
than ordinary function calls.

As a disclaimer you should be aware that these timing results are valid only on the
single system they were run on. The results depend on many implementation features
that aren’t the same on every Unix system. Nevertheless, having a set of numbers such
as these, and explaining why the various versions differ, helps us understand the sys-
tem better. The basic fact that we’ve learned from this section and Section 3.9 is that the
standard I/O library is not much slower than calling the read and write functions
directly. The approximate cost that we’ve seen is about 3.0 seconds of CPU time to copy
a megabyte of data using getc and putc. For most nontrivial applications, the largest
amount of the user CPU time is taken by the application and not by the standard 1/O
routines.

Binary 1/0

The functions from Section 5.6 operated with one character at a time or one line at a
time. If we're doing binary I/O we often would like to read or write an entire structure
at a time. To do this using getc or putc we have to loop through the entire siructure,
one byte at a time, reading or writing each byte. We can’t use the line-at-a-time func-
tions, since fputs stops writing when it hits a null byte, and there might be null bytes
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within the structure. Similarly, fgets won’t work right on input if any of the data
bytes are nulls or newlines. Therefore, the following two functions are provided for
binary I/O.

#include <stdio.h>
size_t fread(void *pir, size t size, size_t nobj, FILE *fp);

size t fwrite(const void *plr, size_t size, size_t nobj, FILE *fp);

Both return: number of objects read or written

There are two common uses for these functions.

1. Read or write a binary array. For example, to write elements 2 through 5 of a
floating point array, we could write

float data[l0];

if (fwrite(&datal[2], sizeof(float), 4, fp) != 4)
err_sys("fwrite error");

Here we specify size as the size of each element of the array, and nobj as the
number of elements.

2. Read or write a structure. For example, we could write

struct {

short count;

long total;

char name [NAMESIZE] ;
} item;

if (fwrite(&item, sizeof(item}, 1, fp) !'= 1)
err_sys("fwrite error"):

Here we specify size as the size of structure, and nobj as one (the number of
objects to write).

The obvious generalization of these two cases is to read or write an array of structures.
To do this size would be the sizeof the structure, and nobj would be the number of ele-
ments in the array.

Both fread and fwrite return the number of objects read or written. For the read
case, this number can be less than nobj if an error occurs or if the end of file is encoun-
tered. In this case ferror or feof must be called. For the write case, if the return
value is less than the requested nobj, an error has occurred.

A fundamental problem with binary I/O is that it can be used to read only data that
has been written on the same system. While this was OK many years ago (when all the
Unix systems were PDP-11s), today it is the norm to have heterogeneous systems con-
nected together with networks. It is common to want to write data on one system and
process it on another. These two functions won’t work because
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1. The offset of a member within a structure can differ between compilers and sys-
tems (due to different alignment requirements). Indeed, some compilers have
an option allowing structures to be packed tightly (to save space with a possible
run-time performance penalty) or aligned accurately to optimize run-time
access of each member. This means even on a single system the binary layout of
a structure can differ, depending on compiler options.

2. The binary formats used to store multibyte integers and floating-point values
differs between different machine architectures.

The real solution for exchanging binary data between different systems is to use a
higher level protocol. Refer to Section 18.2 of Stevens [1990] for a description of some
techniques used by various network protocols to exchange binary data.

We’ll return to the fread function in Section 8.13 when we’ll use it to read a binary
structure, the Unix process accounting records.

Positioning a Stream
There are two ways to position a standard I/O stream.

1. ftell and fseek. These two functions have been around since Version 7, but
they assume that a file’s position can be stored in a long integer.

2. fgetpos and fsetpos. These two functions are new with ANSI C. They
introduce a new abstract data type, fpos t, that records a file’s position.
Under non-Unix systems this data type can be made as big as necessary to
record a file’s position.

Portable applications that need to move to non-Unix systems should use fgetpos and
fsetpos.

#include <stdio.h>
long ftell (FILE *fp);

Returns: current file position indicator if OK, 1L on error
int fseek(FILE *fp, long offset, int whence) ;

Returns: 0 if OK, nonzero on error

void rewind(FILE *fp);

For a binary file, a file’s position indicator is measured in bytes from the beginning of
the file. The value returned by ftell for a binary file is this byte position. To position
a binary file using fseek we must specify a byte offset and how that offset is inter-
preted. The values for whence are the same as for the 1seek function from Section 3.6:
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SEEK_SET means from the beginning of the file, SEEK_CUR means from the current file
position, and SEEK_END means from the end of file. ANSI C doesn’t require an imple-
mentation to support the SEEK_END specification for a binary file, since some systems
require a binary file to be padded at the end with zeroes to make the file size a multiple
of some magic number. Under Unix, however, SEEK_END is supported for binary files.

For text files, the file’s current position may not be measurable as a simple byte off-
set. Again, this is mainly under non-Unix systems that might store text files in a differ-
ent format. To position a text file, whence has to be SEEK_SET and only two values for
offset are allowed: 0 (meaning rewind the file to its beginning) or a value that was
returned by ftell for that file. A stream can also be set to the beginning of the file
with the rewind function.

As we mentioned, the following two functions are new with the C Standard.

#include <stdio.h>
int fgetpos(FILE *fp, fpos_t *pos);
int fsetpos(FILE *fp, const fpos t *pos);

Both return: 0 if OK, nonzero on error

fgetpos stores the current value of the file’s position indicator in the object pointed to
by pos. This value can be used in a later call to fsetpos to reposition the stream to that
location.

Formatted /O

Formatted Output

Formatted output is handled by the three print £ functions.

#include <stdio.h>
int printf(const char *format, ...);
int fprintf(FILE *fp, const char *format, ...);
Both return: number of characters output if OK, negative value if output error

int sprintf(char *buf, const char *format, ...);

Returns: number of characters stored in array

printf writes to the standard output, fprintf writes to the specified stream, and
sprintf places the formatted characters in the array buf. sprintf automatically
appends a null byte at the end of the array, but this null byte is not included in the
return value.
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4.3BSD defines sprint £ as returning a char *, its first argument (the buffer pointer), instead
of an integer. ANSI C requires that sprintf return an integer.

Note that it's possible for sprint £ to overflow the buffer pointed to by buf. It's the caller’s
responsibility to assure the buffer is large enough.

We will not go through all the gory details of the different format conversions possi-
ble with these three functions. Refer to your local Unix manual or Appendix B of
Kernighan and Ritchie [1988].

The following three variants of the print £ family are similar to the previous three,
but the variable argument list (. . .) is replaced with arg.

#include <stdarg.h>
#include <stdio.h>

int vprintf (const char *format, va_list arg);
int vfprintf (FILE *fp, const char *format, va list arg);
Both return: number of characters output if OK, negative value if output error

int vsprintf(char *buf, const char *format, va_list arg):

Returns: number of characters stored in array

We use the vsprint f function in the error routines in Appendix B.

Refer to Section 7.3 of Kernighan and Ritchie [1988] for additional details on han-
dling variable length argument lists with ANSI Standard C. Be aware that the variable
length argument list routines provided with ANSI C (the <stdarg.h> header and its
associated routines) differ from the <varargs.h> routines that were provided with
SVR3 (and earlier) and 4.3BSD.

Formatted Input

Formatted input is handled by the three scanf functions.

#include <stdio.h>

int scanf (const char *format, ...)}:

int fscanf(FILE *fp, const char *format, ...):

int sscanf(const char *buf, const char *format, ...);

All three return: number of input items assigned,
EOF if input error or end of file before any conversion

As with the print £ family, refer to your Unix manual for all the details on the various
format options.
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9.12 Implementation Details

As we've mentioned, under Unix the standard 1/0O library ends up calling the /O rou-
tines that we described in Chapter 3. Each standard 1/O stream has an associated file
descriptor, and we can obtain the descriptor for a stream by calling fileno.

#include <stdio.h>

int fileno(FILE *fp);

Returns: the file descriptor associated with the stream

We need this function if we want to call the dup or fent1 functions, for example.

To look at the implementation of the standard 1/0O library on your system, the place
to start is with the header <stdio.h>. This will show how the FILE object is defined,
the definitions of the per-stream flags, and any standard 1/O routines that are defined
as macros (such as getc). Section 8.5 of Kernighan and Ritchie [1988] has a sample
implementation that shows the flavor of many Unix implementations. Chapter 12 of
Plauger [1992] provides the complete source code for an implementation of the standard
[/O library. The implementation of the standard 1/O library in 4.3+BSD (written by
Chris Torek) is also publicly available.

Example

Program 5.3 prints the buffering for the three standard streams and for a stream that is
associated with a regular file. Note that we perform I/O on each stream before printing
its buffering status, since the first I/O operation usually causes the buffers to be allo-
cated for a stream. The structure members _flag and bufsiz and the constants
_IONBF and _IOLBF are defined by the system used by the author. Be aware that other
Unix systems may have different implementations of the standard 1/0O library.

If we run Program 5.3 twice, once with the three standard streams connected to the
terminal and once with the three standard streams redirected to files, the result is

5 a.out stdin, stdout, and stderr connected to terminal
enter any character
we type a newline
one line to standard error
stream = stdin, line buffered, buffer size = 128
stream = stdout, line buffered, buffer size = 128
stream = stderr, unbuffered, buffer size = 8
stream = /etc/motd, fully buffered, buffer size = 8192
$ a.out < fetc/termcap > std.out 2> std.err
run it again with all three streams redirected

$ cat std.err

one line to standard error

$ cat std.out

enter any character

stream = stdin, fully buffered, buffer size = 8192
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#include "ourhdr.h"
void pr_stdio(const char *, FILE *);
int

main (void)

{
FILE *fp;

fputs ("enter any character\n", stdout);
if (getchar () == EOF)
err sys("getchar error");
fputs ("one line to standard error\n", stderr);

pr_stdio("stdin", stdin);
pr_stdio("stdout", stdout);
pr_stdio("stderr", stderr):

if ( (fp = fopen("/etc/motd™, "r")) == NULL)
err_sys("fopen error");
if (getc(fp) == EOF)
err sys("getc error");
pr_stdio("/etc/motd", fp);
exit (0);
}

void

pr_stdioc(const char *name, FILE *fp)

{
printf ("stream = %s, ", name);:

/* following is nonportable */

if (fp—>_flag & _IONBF) printf ("unbuffered");
else if (fp—>_flag & _IOLBF) printf("line buffered"):;
else /* if neither of above */ printf("fully buffered");
printf(", buffer size = %d\n", fp-> bufsiz):

Program 5.3 Print buffering for various standard I/0 streams.

stream = stdout, fully buffered, buffer size = 8192
stream stderr, unbuffered, buffer size = 8
stream = /etc/motd, fully buffered, buffer size = 8192

We can see that the default for this system is to have standard input and standard out-
put line buffered when they’re connected to a terminal. The line buffer is 128 bytes.
Note that this doesn’t restrict us to 128-byte input and output lines, that’s just the size of
the buffer. Writing a 512-byte line to standard output will require four write system
calls, When we redirect these two streams to regular files they become fully buffered,
with buffer sizes equal to the preferred I/0O size (the st_blksize value from the stat
structure) for the filesystem. We also see that the standard error is always unbuffered
(as it should be) and that a regular file defaults to fully buffered. O
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5.13 Temporary Files

The standard I/O library provides two functions to assist in creating temporary files.

#include <stdio.h>
char *tmpnam(char *pir);

Returns: pointer to unique pathname
FILE *tmpfile (void);

Returns: file pointer if OK, NULL on error

tmpnam generates a string that is a valid pathname and that is not the same name as an
existing file. It generates a different pathname each time it is called, up to TMP_MAX
times. TMP_MAX is defined in <stdio.h>.

Although TMP_MAX is defined by ANSI C, the C standard requires only that its value be at
least 25. XPG3, however, requires that its value be at least 10,000. While this minimum value
allows an implementation to use four digits (0000-9999), most Unix implementations use low-
ercase or uppercase characters. |

If ptr is NULL, the generated pathname is stored in a static area, and a pointer to this
static area is returned as the value of the function. Subsequent calls to tmpnam can
overwrite this static area. (This means if we call this function more than once and we
want to save the pathname, we have to save a copy of the pathname, not a copy of the
pointer.) If ptr is not NULL, it is assumed that it points to an array of at least I,_tmpnam
characters. (The constant L_tmpnam is defined in <stdio.h>.) The generated path-
name is stored in this array, and pir is also returned as the value of the function.

tmpfile creates a temporary binary file (type wb+) that is automatically removed
when it is closed or on program termination. The fact that this file is a binary file makes
no difference under Unix.

Example

Program 5.4 demonstrates these two functions. If we execute Program 5.4 we get

$ a.out

/usr/tmp/aaaa00470
/usr/tmp/baaa00470
one line of output

The five-digit suffix added to each of the temporary names is the process ID. This is
how the generated pathnames are known to be unique to each process that may call
tmpnam. O

The standard Unix technique often used by the tmpfile function is to create a
unique pathname by calling tmpnam, then create the file, and immediately unlink it.
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#include "ourhdr.h"

int

main (void)

{
char name[L tmpnam], line[MAXLINE];
FILE *fp;

printf ("%s\n", tmpnam(NULL)):; /* first temp name */

tmpnam (name) ; /* second temp name */
printf ("%s\n", name);

if ( (fp = tmpfile()) == NULL) /* create temp file */
err_sys("tmpfile error");
fputs("one line of output\n", fp): /* write to temp file */

rewind (fp) ; /* then read it back */
if (fgets(line, sizeof(line), fp) == NULL)
err_sys ("fgets error");
fputs(line, stdout); /* print the line we wrote */
exit (0);

Program 5.4 Demonstrate tmpnam and tmp£ile functions.

Recall from Section 4.15 that unlinking a file does not delete its contents until the file is
closed. This way, when the file is closed, either explicitly or on program termination,
the contents of the file are deleted.

tempnam is a variation of tmpnam that allows the caller to specify both the direc-
tory and a prefix for the generated pathname.

#$include <stdio.h>
char *tempnam(const char *directory, const char *prefix);

Returns: pointer to unique pathname

There are four different choices for the directory, and the first one that is true is used:

1. If the environment variable TMPDIR is defined, it is used as the directory. (We
describe environment variables in Section 7.9.)

2. If directory is not NULL, it is used as the directory.
The string P_tmpdir in <stdio.h> is used as the directory.
4. Alocal directory, usually /tmp is used as the directory.

w
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If the prefix argument is not NULL, it should be a string of up to five characters to be
used as the first characters of the filename.

This function calls the malloc function to allocate dynamic storage for the con-

structed pathname. We can free this storage when we're done with the pathname.
(We describe themalloc and free functions in Section 7.8.)

Although tempnam is not part of POSIX.1 or ANSIC, it is part of XPG3.

The implementation that we've described corresponds to SVR4 and 4.3+BSD. The XPG3 ver-
sion is identical, except the XPG3 version does not support the TMPDIR environment variable.

Example
Program 5.5 shows use of tempnam.
#include "ourhdr.h"
int

main(int argc, char *argv[])
{
if (argc '= 3)
err_quit ("usage: a.out <directory> <prefix>"):

printf("%s\n", tempnam( argv[l][0] != " ' ? argv[1] : NULL,

argv([2][0] '= " * ? argv[2] : NULL) );
exit (0);

Program 5.5 Demonstrate tempnam function.

Note that if either command-line argument (the directory or the prefix) begins with a
blank, we pass a null pointer to the function. We can now show the various ways to use
it:

$ a.out /home/stevens TEMP specify both directory and prefix
/home/stevens/TEMPAARa00571

$ a.out " " PFX use default directory: P_tmpdir
/usr/tmp/PFXAAAa00572

$ TMPDIR=/tmp a.out /usr/tmp " "  useenvironment variable; no prefix
/tmp/AARa00573 environment variable overrides directory

$ TMPDIR=/no/such/dir a.out /tmp QQQQ

/tmp/QQQQAAAa00574 invalid environment directory is ignored

$ TMPDIR=/no/such/file a.out /etc/uucp MMMMM
/usxr/tmp/MMMMMAAAEQ0575 invalid environment; invalid directory; both ignored

As the four steps that we listed earlier for specifying the directory name are tried in or-
der, this function also checks if the corresponding directory name makes sense. If the
directory doesn’t exist (the /no/such/dir example) or if we don’t have write permis-
sion in the directory (the /etc/uucp example), that case is skipped and the next choice
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for the directory name is tried. From this example we can see how the process ID is
used as part of the pathname, and we can also see that for this implementation the
P_tmpdir directory is /usr/tmp. The technique that we used to set the environment
variable, specifying TMPDIR= before the program name, is used by both the Bourne
shell and the KornShell. D

Alternatives to Standard 1/O

The standard I/O library is not perfect. Korn and Vo [1991] list numerous
defects—some in the basic design, but most in the various, different implementations.

One inefficiency inherent in the standard 1/0O library is the amount of data copying
that takes place. When we use the line-at-a-time functions, fgets and fputs, the data
is usually copied twice: once between the kernel and the standard I/O buffer (when the
corresponding read or write is issued) and again between the standard 1/O buffer
and our line buffer. The Fast I/O library [£io(3) in AT&T 1990a] gets around this by
having the function that reads a line return a pointer to the line instead of copying the
line into another buffer. Hume [1988] reports a threefold increase in the speed of a ver-
sion of the grep(1) utility, just by making this change.

Korn and Vo [1991] describe another replacement for the standard 1/0O library: sfio.
This package is similar in speed to the fio library and normally faster than the standard
I/0 library. sfio also provides some new features that aren’t in the others: I/O streams
are generalized to represent both files and regions of memory, processing modules can
be written and stacked on an I/O stream to change the operation of a stream, and better
exception handling.

Krieger, Stumm, and Unrau [1992] describe another alternative that uses mapped
files—the mmap function that we describe in Section 12.9. This new package is called
ASI, the Alloc Stream Interface. The programming interface resembles the Unix mem-
ory allocation functions (malloc, realloc, and free, described in Section 7.8). As
with the sfio package, ASI attempts to minimize the amount of data copying by using
pointers.

Summary

The standard 1/0 library is used by most Unix applications. We have looked at all the
functions provided by this library, and some implementation details and efficiency con-
siderations. Be aware of the buffering that takes place with this library, as this is the
area that generates the most problems and confusion.
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Exercises

51 Implement setbuf using setvbuf.

5.2 Type in the program that copies a file using line-at-a-time I/O (fgets and fputs) from
Section 5.8, but use a MAXLINE of 4. What happens if you copy lines that exceed this
length? Explain what is happening,.

5.3 What does a return value of 0 from print f mean?

54 The following code works correctly on some machines, but not on others. What could be
the problem?

#include <stdio.h>
int
main (void)

{

char c;

while ( (c = getchar()) != EOF )
putchar (c) ;
}
5.5 Why does tempnam restrict the prefix to five characters?
5.6 How would you use the £sync function (Section 4.24) with a standard 1/0O stream?

5.7 In Programs 1.5 and 1.8 the prompt that is printed does not contain a newline and we don’t
call ££1ush. What causes the prompt to be output?
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6.2

System Data Files and
Information

Introduction

There are numerous data files required for normal operation: the password file
/etc/passwd and the group file /etc/group are two files that are frequently used by
various programs. For example, the password file is used every time a user logs in to a
Unix system and every time someone executes an 1s -1 command.

Historically, these data files have been ASCII text files and were read with the stan-
dard I/O library. But for larger systems a sequential scan through the password file
becomes time consuming. We want to be able to store these data files in a format other
than ASCII text, but still provide an interface for an application program that works
with any file format. The portable interfaces to these data files are the subject of this
chapter. We also cover the system identification functions and the time and date func-
tions.

Password File

The Unix password file, called the user database by POSIX.1, contains the fields shown
in Figure 6.1. These fields are contained in a passwd structure that is defined in
<pwd.h>.

Note that POSIX.1 specifies only five of the seven fields in the passwd structure. The other
two elements are supported by both SVR4 and 4.3+BSD.

145
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Description | struct passwd [ pog
member _

user name char  *pw_name .

encrypted password char  *pw_passwd

numerical user ID uid_t pw_uid

numerical group ID ‘ gid t pw_gid

comment field char *pw_gecos

initial working directory char  *pw_dir
initial shell (user program) | char  *pw _shell

Figure 6.1 Fields in /etc/passwd file.

Historically the password file has been stored in /etc/passwd and has been an
ASCII file. Each line contains the seven fields described in Figure 6.1, separated by
colons. For example, three lines from the file could be

root:jheVopR58x9Fx:0:1:The superuser:/:/bin/sh
nobody:*:65534:65534::/:
stevens:3hKVDBR58r9Fx:224:20:Richard Stevens:/home/stevens:/bin/ksh

Note the following points about these entries.

There is usually an entry with the user name root. This entry has a user ID of 0
(the superuser).

The encrypted password field contains a copy of the user’s password that has
been put through a one-way encryption algorithm. Since this algorithm is one-
way, we can’t guess the original password from the encrypted version. The
algorithm that is currently used (see Morris and Thompson [1979]) always gen-
erates 13 printable characters from the 64-character set [a—zA-z0-9./]. Since
the entry for the user name nobody contains a single character, an encrypted
password will never match this value. This user name can be used by network
servers that allow us to log in to a system, but with a user ID and group ID
(65534) that provide no privileges. The only files that we can access with this
user ID and group ID are those that are readable or writable by the world. (This
assumes that there are no files specifically owned by used ID 65534 or group ID
65534, which should be the case.) We'll discuss a recent change to the password
file (shadow passwords) later in this section.

Some fields in a password file entry can be empty. If the encrypted password
field is empty, it usually means the user does not have a password. (This is not
recommended.) The entry for nobody has two blank fields: the comment field
and the initial shell field. An empty comment field has no effect. The default
value for an empty shell field is usually /bin/sh.

Some Unix systems that support the finger(1) command support additional
information in the comment field. Each of these fields are separated by a
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comma: the user’s name, office location, office phone number, and home phone
number. Additionally, if the user’s name in the comment field is an ampersand,
it is replaced with the login name (capitalized). For example, we could have

stevens:3hKVDBR58r9Fx:224:20:Richard &, B232, 555-1111, 555-2222:/home/stevens:/bin/ksh

Even if your system doesn’t support the fingexr command, these fields can still
go into the comment field, since that field is just a comment and not interpreted
by system utilities.

POSIX.1 defines only two functions to fetch entries from the password file. These
two functions allow us to look up an entry given a user’s login name or numerical user
ID.

#include <sys/types.h>
#include <pwd.h>

struct passwd *getpwuid(uid_t wid);

struct passwd *getpwnam({const char *name) ;

Both return: pointer if OK, NULL on error

getpwuid is used by the 1s(1) program, to map the numerical user ID contained in an
i-node into a user’s login name. getpwnam is used by the 1ogin(1) program, when we
enter our login name.

Both functions return a pointer to a passwd structure that the functions fill in. This
structure is usually a static variable within the function, so its contents are overwrit-
ten each time we call either of these functions.

These two POSIX.1 functions are fine if we want to look up either a login name or a
user ID, but there are programs that need to go through the entire password file. The
following three functions can be used for this.

#include <sys/types.h>
#include <pwd.h>

struct passwd *getpwent (void);

Returns: pointer if OK, NULL on error or end of file

void setpwent (void);

void endpwent (void);

While not part of POSIX.1, these three functions are supported by SVR4 and 4.3+BSD.

We call getpwent to return the next entry in the password file. As with the two
POSIX.1 functions, getpwent returns a pointer to a structure that it has filled in. This
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structure is normally overwritten each time we call this function. If this is the first call
to this function, it opens whatever files it uses. There is no order implied when we use
this function—the entries can be in any order. (This is because some systems use a
hashed version of the file /etc/passwd.)

The function setpwent rewinds whatever files it uses, and endpwent closes these
files. When using getpwent we must always be sure to close these files by calling
endpwent when we're through. getpwent is smart enough to know when it has to
open its files (the first time we call it} but it never knows when we're through.

Example

6.3

Program 6.1 shows an implementation of the function getpwnam.

#include <sys/types.h>
#include <pwd.h>
#include <stddef.h>
#include <string.h>

struct passwd *
getpwnam(const char *name)
{

struct passwd *ptr;

setpwent () ;
while ( (ptr = getpwent()) !'= NULL) {
if (strcmp(name, ptr->pw_name) == 0)
break; /* found a match */
}
endpwent () ;
return(ptr); /* ptr is NULL if no match found */

Program 6.1 The getpwnam function.

The call to setpwent at the beginning is self defense—we assure that the files are
rewound, in case the caller has already opened them by calling getpwent. The call to
endpwent when we’re done is because neither getpwnam nor getpwuid should leave
any of the files open. m]

Shadow Passwords

We mentioned in the previous section that the encryption algorithm normally used for
Unix passwords is a one-way algorithm. Given an encrypted password, we can’t apply
an algorithm that inverts it and returns the plaintext password. (The plaintext pass-
word is what we enter at the Password: prompt.) But we could guess a password, run
it through the one-way algorithm, and compare the result with the encrypted password.
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If user passwords were randomly chosen, this brute force approach wouldn’t be too
useful. Users, however, tend to choose nonrandom passwords (spouse’s name, street
names, pet names, etc.). A frequently repeated experiment is for someone to obtain a
copy of the password file and try guessing the passwords. (Chapter 2 of Garfinkel and
Spafford [1991] contains additional details and history on Unix passwords and the pass-
word encryption scheme.)

To make it harder to obtain the raw materials (the encrypted passwords), some sys-
tems store the encrypted password in another file, often called the shadow password file.
Minimally this file has to contain the user name and the encrypted password. Other
information relating to the password is also stored here. For example, systems with
shadow passwords often require the user to choose a new password at certain intervals.
This is called password aging, and the time between having to choose new passwords is
often stored in the shadow password file also.

In SVR4 the shadow password file is /et c/shadow. In 4.3+BSD the encrypted passwords are
stored in /etc/master.passwd.

The shadow password file should not be readable by the world. Only a few pro-
grams need to access encrypted passwords, 1ogin(1) and passwd(1), for example, and
these programs are often set-user-ID root. With shadow passwords the regular pass-
word file, /etc/passwd, can be left readable by the world.

Group File

The Unix group file, called the group database by POSIX.1, contains the fields shown in
Figure 6.2. These fields are contained in a group structure that is defined in <grp.h>.

struct group

Description member POSIX.1
group name char  *gr name .
encrypted password char  *gr_passwd
numerical group ID int gr_gid
array of pointers to individual user names | char  **gr mem

Figure 6.2 Felds in /etc/group file.

POSIX.1 defines only three of the four fields. The other field, gr_passwd, is supported by
both SVR4 and 4.3+BSD.

The field gr mem is an array of pointers to the user names that belong to this group.
This array is terminated by a null pointer.

We can look up either a group name or a numerical group ID with the following
two functions, which are defined by POSIX.1.
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6.5

#include <sys/types.h>
#include <grp.h>

struct group *getgrgid(gid t gid);

struct group *getgrnam(const char *wname);

Both return: pointer if OK, NULL on error

As with the password file functions, both of these functions normally return pointers to
a static variable, which is overwritten on each call.

If we want to search the entire group file we need some additional functions. The
following three functions are like their counterparts for the password file.

#include <sys/types.h>
#include <grp.h>

struct group *getgrent (void);
Returns: pointer if OK, NULL on error or end of file

void setgrent (void);

void endgrent (void) ;

These three functions are provided by SVR4 and 4.3+BSD. They are not part of POSIX.1.

setgrent opens the group file (if it’s not already open) and rewinds it. getgrent
reads the next entry from the group file, opening the file first, if it’s not already open.
endgrent closes the group file.

Supplementary Group IDs

The use of groups in Unix has changed over time. With Version 7 each user belonged to
a single group at any point in time. When we logged in we were assigned the real
group ID corresponding to the numerical group ID in our password file entry. We could
change this at any point by executing newgrp(1). If the newgrp command succeeded
(refer to the manual page for the permission rules), our real group ID was changed to
the new group’s ID, and this was used for all subsequent file access permission checks.
We could always go back to our original group by executing newgrp without any argu-
ments.

This form of group membership persisted until it was changed in 4.2BSD (circa
1983). With 4.2BSD the concept of supplementary group IDs was introduced. Not only
did we belong to the group corresponding to the group ID in our password file entry,
we could also belong to up to 16 additional groups. The file access permission checks
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were modified so that not only was the effective group ID compared to the file’s group
ID, but all the supplementary group IDs were also compared to the file’s group ID.

Supplementary group IDs are an optional feature of POSIX.1. The constant NGROUPS_MAX
(Figure 2.7) specifies the number of supplementary group IDs. A common value is 16. This
constant is 0 if supplementary group IDs aren’t supported.

Both SVR4 and 4.3+BSD support supplementary group IDs.

FIPS 151-1 requires the support of supplementary group IDs and requires that NGROUPS_MAX
be at least 8.

The advantage in using supplementary group IDs is that we no longer have to
change groups explicitly. It is not uncommon to belong to multiple groups (i.e., partici-
pate in multiple projects) at the same time.

Three functions are provided to fetch and set the supplementary group IDs.

#include <sys/types.h>
#include <unistd.h>

int getgroups (int gidsetsize, gid t grouplist[]):
Returns: number of supplementary group IDs if OK, —1 on error
int setgroups (int ngroups, const gid t grouplist[]);

int initgroups (const char *username, gid_t basegid) ;

Both return: 0 if OK, —1 on error

Of these three functions, only getgroups is specified by POSIX.1. Since setgroups and
initgroups are privileged operations, they are not part of POSIX.1. SVR4 and 4.3+BSD,
however, support all three functions.

getgroups fills in the array grouplist with the supplementary group IDs. Up to
gidsetsize elements are stored in the array. The number of supplementary group IDs
stored in the array is returned by the function. If the system constant NGROUPS_MAX is
0, the function returns 0, not an error.

As a spedial case, if gidsetsize is 0, the function returns only the number of supple-
mentary group IDs. The array grouplist is not modified. (This allows the caller to deter-
mine the size of the grouplist array to allocate.)

setgroups can be called by the superuser to set the supplementary group ID list
for the calling process. grouplist contains the array of group IDs, and ngroups specifies
the number of elements in the array.

The only use of setgroups is usually from the initgroups function, which reads
the entire group file (with the functions getgrent, setgrent, and endgrent, which
we described earlier) and determines the group membership for username. It then calls
setgroups to initialize the supplementary group ID list for the user. One must be
superuser to call initgroups since it calls setgroups. In addition to finding all the
groups that username is a member of in the group file, initgroups also includes
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basegid in the supplementary group ID list. basegid is the group ID from the password
file for username.

initgroups is called by only a few programs—the login(1) program, for exam-
ple, calls it when we log in.

Other Data Files

We’ve discussed only two of the system’s data files so far—the password file and the
group file. Numerous other files are used by Unix systems in normal day-to-day opera-
tion. For example, the BSD networking software has one data file for the services pro-
vided by the various network servers (/etc/services), one for the protocols
(/etc/protocols), and one for the networks (/etc/networks). Fortunately the
interfaces to these various files are like the ones we’ve already described for the pass-
word and group files.
The general principle is that every data file has at least three functions:

1. A get function that reads the next record, opening the file if necessary. These
functions normally return a pointer to a structure. A null pointer is returned
when the end of the data file is reached. Most of the get functions return a
pointer to a static structure, so we always have to copy it if we want to save
it.

2. A set function that opens the file (if not already open) and rewinds the file.

This function is used when we know we want to start again at the beginning of
the file.

3. Anend entry that closes the data file. As we mentioned earlier, we always have
to call this when we're done, to close all the files.

Additionally, if the data file supports some form of keyed lookup, routines are provided
to search for a record with a specific key. For example, two keyed lookup routines are
provided for the password file: get pwnam looks for a record with a specific user name,
and getpwuid looks for a record with a specific user ID.

Figure 6.3 shows some of these routines, which are common to both SVR4 and
4.3+BSD. In this figure we show the functions for the password file and group file,
which we discussed earlier in this chapter, and some of the networking functions.
There are get, set, and end functions for all the data files in this figure.

Under SVR4 the last four data files in Figure 6.3 are symbolic links to files of the same name in
the directory /etc/inet.

Both SVR4 and 4.3+BSD have additional functions that are like these, but the additicnal func-
tions tend to deal with system administration files and are specific to each implementation.
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Description Data file Header Structure Additional keyed lookup functions
passwords | /etc/passwd <pwd.h> passwd getpwnam, getpwuid

groups /etc/group <grp.h> group getgrnam, getgrgid

hosts /etc/hosts <netdb.h> | hostent gethostbyname, gethostbyaddr
networks /etc/networks <netdb.h> | netent getnetbyname, getnetbyaddr
protocols /etc/protocols | <netdb.h> | protoent | getprotobyname, getprotobynumber
services /etc/services <netdb.h> | servent getservbyname, getservbyport

Figure 6.3 Similar routines for accessing system data files.

Login Accounting

Two data files that have been provided with most Unix systems are the utmp file, which
keeps track of all the users currently logged in, and the wtmp file, which keeps track of
all logins and logouts.

With Version 7, one type of record was written to both files, a binary record consist-
ing of the following structure:

struct utmp {

char ut_line([8]; /* tty line: "ttyhO", "ttyd0O", "ttyp0", ... */
char ut_name[8]; /* login name */
long ut_time; /* seconds since Epoch */

Jif]

On login, one of these structures was filled in and written to the utmp file by the 1login
program, and the same structure was appended to the wtmp file. On logout, the entry
in the utmp file was erased (filled with 0 bytes) by the init process, and a new entry
was appended to the wtmp file. This logout entry in the wtmp file had the ut_name
field zeroed out. Special entries were appended to the wtmp file to indicate when the
system was rebooted and right before and after the system’s time and date was
changed. The who(1) program read the utmp file and printed its contents in a readable
form. Later versions of Unix provided the last(1) command, which read through the
wtmp file and printed selected entries.

Most versions of Unix still provide the utmp and wtmp files, but as expected, the
amount of the information in these files has grown. The 20-byte structure that was writ-
ten by Version 7 grew to 36 bytes with SVR2, and the extended utmp structure with
SVR4 takes over 350 bytes!

The detailed format of these records in SVR4 is given in the utmp(4) and utmpx(4) manual
pages. With SVR4 both files are in the /var/adm directory. SVR4 provides numerous func-
tions described in getut(3) and getutx(3) to read and write these two files.

The 4.3+BSD utmp(5) manual page gives the format of its version of these login records. The
pathnames of these two files are /var/run/utmp and /var/log/wtmp.
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System Identification

POSIX.1 defines the uname function to return information on the current host and oper-
ating system.

finclude <sys/utsname.h>

int uname (struct utsname *name) ;

Returns: nonnegative value if OK, -1 on error

We pass the address of a ut sname structure, and the function fills it in. POSIX.1 defines
only the minimum fields in the structure (which are all character arrays), and it's up to
each implementation to set the size of each array. Some implementations provide addi-
tional fields in the structure. Historically, System V has allocated 8 bytes for each ele-
ment, with room for a null byte at the end.

struct utsname {

char sysname[9]; /* name of the operating system */

char nodename([9]; /* name of this node */

char release[9]; /* current release of operating system */
char wversion[9]; /* current version of this release */
char machine[9]; /* name of hardware type */

}i

The information in the utsname structure can usually be printed with the uname(1)
command.

POSIX.1 warns that the nodename element may not be adequate to reference the host on a
communications network. This function is from System V, and in older days the nodename
element was adequate for referencing the host on a UUCP network.

Realize also that the information in this structure does not give any information on the
POSIX.1 level. This should be obtained using _POSIX VERSION as described in Section 2.5.2.

Finally, this function gives us a way only to fetch the information in the structure— there is
nothing specified by POSIX.1 about initializing this information. Most versions of System V
have this information compiled into the kernel when the kernel is built.

Berkeley-derived systems provide the gethostname function to return just the
name of the host. This name is usually the name of the host on a TCP/IP network.

#include <unistd.h>
int gethostname (char *name, int namelen) ;

Returns: 0 if OK, —1 on error

The string returned through name is null terminated, unless insufficient room is pro-
vided. The constant MAXHOSTNAMELEN in <sys/param.h> specifies the maximum
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length of this name (normally 64 bytes). If the host is connected to a TCP/IP network,
the host name is normally the fully qualified domain name of the host.

There is also a hostname(1) command that can fetch or set the host name. (The
host name is set by the superuser using a similar function, sethostname.) The host
name is normally set at bootstrap time from one of the start-up files invoked by
/etc/rc.

Although this function is Berkeley-specificc SVR4 provides the gethostname and
sethostname functions, and the hostname command as part of the BSD compatibility pack-
age. SVR4 also extends MAXHOSTNAMELEN to 256 bytes.

Time and Date Routines

The basic time service provided by the Unix kernel is to count the number of seconds
that have passed since the Epoch: 00:00:00 January 1, 1970, UTC. In Section 1.10 we said
that these seconds are represented in a time_t data type, and we call them calendar
times. These calendar times represent both the time and date. Unix has always differed
from other operating systems in (a) keeping time ip UTC instead of the local time, (b)
automatically handling conversions such as daylight saving time, and (c) keeping the
time and date as a single quantity.
The time function returns the current time and date.

#include <time.h>
time t time(time_t *calptr);

Returns: value of time if OK, —1 on error

The time value is always returned as the value of the function. If the argument is non-
null, the time value is also stored at the location pointed to by calptr.

In many Berkeley-derived systems time(3) is just a function that invokes the
gettimeofday(2) system call.

We haven’t said how the kernel’s notion of the current time is initialized. Under SVR4 the
st ime(2) function is called, while Berkeley-derived systems use settimeofday(2).

The BSD gettimeofday and settimeofday functions provide greater resolution (up to a
microsecond) than the time and st ime functions. This is important for some applications.

Once we have this large integer value that counts the number of seconds since the
Epoch, we normally call one of the other time functions to convert it to a human-
readable time and date. Figure 6.4 shows the relationships between the various time
functions. (The four functions in this figure that are shown with dashed lines,
localtime, mktime, ctime, and strftime, are all affected by the TZ environment
variable, which we describe later in this section.)
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Figure 6.4 Relationship of the various time functions.

The two functions localtime and gmtime convert a calendar time into what's
called a broken-down time, a tm structure.

struct tm { /* a broken-down time */
int tm sec; /* seconds after the minute: [0, 61] */
int tm min; /* minutes after the hour: [0, 59] */
int tm _hour; /* hours after midnight: [0, 23] */
int tm_mday; /* day of the month: [1, 31] */
int tm mon; /* month of the year: [0, 11] */
int tm_year; /* years since 1900 */
int tm wday; /* days since Sunday: (0, 6] */
int tm_yday; /* days since January 1: [0, 365] */
int tm_isdst; /* daylight saving time flag: <0, 0, >0 */
i

The reason that the seconds can be greater than 59 is to allow for leap seconds. Notice
that all the fields except the day of the month are 0-based. The daylight saving time flag
is positive if daylight saving time is in effect, 0 if it's not in effect, and negative if the
information isn’t available.

#include <time.h>
struct tm *gmtime (const time_t *calptr);
struct tm *localtime(const time_t *calptr) ;

Both return: pointer to broken-down time
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The difference between localtime and gmtime is that the first converts the calendar
time to the local time (taking into account the local time zone and daylight saving time
flag), while the latter converts the calendar time into a broken-down time expressed as
UTC.

The function mkt ime takes a broken-down time (expressed as a local time) and con-
verts it into a time_t value.

$include <time.h>

time_t mktime(struct tm *impir);

Returns: calendar time if OK, -1 on error

The asct ime and ctime functions produce the familiar 26-byte string that is simi-
lar to the default output of the date(1) command:

Tue Jan 14 17:49:03 1992\n\0

#include <time.h>
char *asctime (const struct tm *imptr);
char *ctime (const time_t *calptr):

Both return: pointer to null terminated string

The argument to asctime is a pointer to a broken-down string, while the argument to
ctime is a pointer to a calendar time.

The final time function is the most complicated. strftime is a printf-like func-
tion for time values.

#include <time.h>

size t strftime(char *buf, size_t maxsize, const char *format,
const struct tm *fmpir);

Returns: number of characters stored in array if room, else 0

The final argument is the time value to format, specified by a pointer to a broken-down
time value. The formatted result is stored in the array buf whose size is maxsize charac-
ters. If the size of the result, including the terminating null, fits in the buffer, the func-
tion returns the number of characters stored in buf (excluding the terminating null).
Otherwise the function returns 0.

The format argument controls the formatting of the time value. Like the printf
functions, conversion specifiers are given as a percent followed by a special character.
All other characters in the format string are copied to the output. Two percents in a row
generate a single percent in the output. Unlike the printf functions, each conversion
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specified generates a fixed size output string—there are no field widths in the format
string. Figure 6.5 describes the 21 different ANSI C conversion specifiers.

| Format Description Example
$a abbreviated weekday name Tue
SR full weekday name Tuesday
$b abbreviated month name Jan
%B full month name January
%C date and time Tue Jan 14 19:40:30 1992
&d day of the month: [01, 31] 14

$H hour of the 24-hour day: [00,23] | 19
%1 hour of the 24-hour day: [01, 12] | 07

5 day of the year: [001, 366] 014

%m month: [01, 12] 01

%M minute: [00, 59] 40

$p AM/PM PM

%5 second: [00, 61] 30

%U Sunday week number: [00, 53] 0z

Sw weekday: [0=Sunday; 6] 2 |
| &W Monday week number: [00, 53] 02

%3 date 01/14/92

X time 19:40:30

%y year without century: [00, 991 92

%Y | year with century 1992

%2 time zone name MST

I —_—

Figure 6.5 Conversion specifiers for st rftime.

The third column of this figure is from the output of strftime under SVR4 corre-
sponding to the time and date

Tue Jan 14 19:40:30 MST 1992

The only two specifiers that are not self-evident are $U and 2W. The first is the week
number of the year where the week containing the first Sunday is week 1. %W is the
week number of the year where the week containing the first Monday is week 1.

Both SVR4 and 4.3+BSD support additional, nonstandard extensions to the format string for
strftime.

We mentioned that the four functions in Figure 6.4 with dashed lines were affected
by the TZ environment variable: localtime, mktime, ctime, and strftime. If
defined, the value of this environment variable is used by these functions instead of the
default time zone. If the variable is defined to be a null string (e.g., TZ=) then UTC is
normally used. The value of this environment variable is often something like
TZ=ESTSEDT, but POSIX.1 allows a much more detailed specification. Refer to
Section 8.1.1 of the POSIX.1 standard [IEEE 1990], the SVR4 environ(5) manual page
[AT&T 1990e], or the 4.3+BSD ct ime(3) manual page for all the details on the TZ vari-
able.

T
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All the time and date functions described in this section are defined by the ANSI C standard.
POSIX.1, however, added the TZ environment variable.

Five of the seven functions in Figure 6.4 date back to Version 7 (or earlier): time, localtime,
gmt ime, asctime, and ctime. Many of the recent additions to the Unix time keeping have
dealt with non-U.S. time zones and the changing rules for daylight saving time.

6.10 Summary

The password file and group file are used on all Unix systems. We’ve looked at the var-
jous functions that read these files. We’ve also talked about shadow passwords, which
can help system security. Supplementary group IDs are becoming common and pro-
vide a way to participate in multiple groups at the same time. We also looked at how
similar functions are provided by most systems to access other system-related data files.
We finished the chapter with a look at the time and date functions provided by ANSI C
and POSIX.1.

Exercises

6.1 If the system uses a shadow file and we need to obtain the encrypted password, how do we
doit?

62 If you have superuser access and your system uses shadow passwords, implement the pre-
vious exercise.

63 Write a program that calls uname and prints all the fields in the utsname structure. Com-
pare the output to the output from the uname(1) command.

64 Write a program to obtain the current time and print it using strftime so that it looks like
the default output from date(1). Set the TZ environment variable to different values and
see what happens.
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7.2

The Environment of a
Unix Process

introduction

Before looking at the process control primitives in the next chapter, we need to examine
the environment of a single process. We'll see how the main function is called when the
program is executed, how command-line arguments are passed to the new program,
what the typical memory layout looks like, how to allocate additional memory, how the

ess can use environment variables, and different ways for the process to terminate.
Additionally we’ll look at the longjmp and setjmp functions and their interaction
with the stack. We finish the chapter by examining the resource limits of a process.

main Function

A C program starts execution with a function called main. The prototype for the main
function is

int main(int argc, char *argv[l]):;

argc is the number of command-line arguments and argv is an array of pointers to the
arguments. We describe these in Section 7.4.

When a C program is started by the kernel (by one of the exec functions, which we
describe in Section 8.9), a special start-up routine is called before the main function is
called. The executable program file specifies this start-up routine as the starting address
for the program—this is set up by the link editor when it is invoked by the C compiler,
usually cc. This start-up routine takes values from the kernel (the command-line argu-
ments and the environment) and sets things up so that the main function is called as
shown earlier.

161
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7.3 Process Termination
There are five ways for a process to terminate.

1. Normal termination:
(a) return frommain
(b) calling exit
() calling exit

2. Abnormal termination:
(@) calling abort (Chapter 10)
(b) terminated by a signal (Chapter 10)

The start-up routine that we mentioned in the previous section is also written so that if

the main function returns, the exit function is called. If the start-up routine were
coded in C (it is often coded in assembler) the call to main could look like

exit ( main(argc, argv) );

exit and _exit Functions

Two functions terminate a program normally: _exit, which returns to the kernel

immediately, and exit, which performs certain cleanup processing and then returns to
the kernel.

#include <stdlib.h>
volid exit (int status) ;
#include <unistd.h>

void _exit {(int status) ;

We'll discuss the effect of these two functions on other processes, such as the children
and the parent of the terminating process, in Section 8.5.

The reason for the different headers is that exit is specified by ANSI C, while _exit is speci-
fied by POSIX.1.

Historically the exit function has always performed a clean shutdown of the stan-
dard 1/0O library: the fclose function is called for all open streams. Recall from
Section 5.5 that this causes all buffered output data to be flushed (written to the file).

Both the exit and _exit functions expect a single integer argument, which we call
the exit status. Most Unix shells provide a way to examine the exit status of a process. If
(a) either of these functions is called without an exit status, (b) main does a return
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without a return value, or (c) main “falls off the end” (an implicit return), the exit status
of the process is undefined. This means that the classic example

#include <stdio.h>

main()
{
printf("hello, world\n");

}

is incomplete, since the main function falls off the end, returning to the C start-up rou-
tine, but without returning a value (the exit status). Adding either

return(0);

exit (0);

provides an exit status of 0 to the process that executed this program (often a shell).
Also, the declaration of main should really be

int main{void)

In the next chapter we’ll see how any process can cause a program to be executed, wait
for the process to complete, then fetch its exit status.

The declaration of main as returning an integer and the use of exit (instead of return) pro-
duces needless warnings from some compilers and the Unix 1int(1) program. The problem is
that these compilers don’t know that an exit from main is the same as a return. The warn-
ing message is something like “control reaches end of nonvoid function.” One way around
these warnings (which become annoying after a while) is to use return instead of exit from
main. But doing this prevents us from using the Unix grep utility to locate all calls to exit
from a program. Another solution is to declare main as returning void, instead of int, and
continue calling exit. This gets rid of the compiler warnings but doesn’t look right (espe-
cially in a programming text). In this text we show main as returning an integer, since that is
the definition specified by both ANSI C and POSIX.1. We'll just put up with the extraneous
compiler warnings.

atexit Function

With ANSI C a process can register up to 32 functions that are automatically called by
exit. These are called exit handlers and are registered by calling the atexit function.

#include <stdlib.h>

int atexit (void (*func) (void));

Returns: 0 if OK, nonzero on error

This declaration says that we pass the address of a function as the argument to atexit.
When this function is called it is not passed any arguments and it is not expected to
return a value. The exit function calls these functions in reverse order of their registra-
tion. Each function is called as many times as it was registered.
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These exit handlers are new with ANSI C. They are provided by both SVR4 and 4.3+BSD. Ear-
lier releases of System V and 4.3BSD did not provide these exit handlers,

With ANSI C and POSIX.1, exit first calls the exit handlers and then fcloses all
open streams. Figure 7.1 summarizes how a C program is started and the various ways
it can terminate.

r--=—-- - — — = - — = - — - - - — - —

! user
functions

main
function

C startup
routine

kernel

_exit

Figure 7.1 How a C program is started and how it terminates.

Note that the only way a program is executed by the kernel is when one of the exec
functions is called. The only way a process voluntarily terminates is when _exit is
called, either explicitly or implicitly (by calling exit). A process can also be involuntar-
ily terminated by a signal (not shown in Figure 7.1).

Example

Program 7.1 demonstrates the use of the atexit function. Executing Program 7.1
yields

$ a.out

main is done

first exit handler

first exit handler

second exit handler

Note that we don’t call exit, instead we return from main. O
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#include "ourhdr.h"

static void my exitl(void), my exit2(void);
int

main (void)

{

if (atexit (my exit2) != 0)
err_sys("can't register my_exit2");

if (atexit (my_exitl) != 0)
err _sys("can’'t register my exitl");
if (atexit (my exitl) != 0)
err_sys("can’t register my exitl");

printf("main is done\n");
return (0) ;

}

static void
my_exitl (void)
{
printf("first exit handler\n");
}

static void
my_exit2 (void)
{
printf("second exit handler\n");
}

Program 7.1 Example of exit handlers.

74 Command-Line Arguments

When a program is executed, the process that does the exec can pass command-line
arguments to the new program. This is part of the normal operation of the Unix shells.
We have already seen this in many of the examples from earlier chapters.

Example

Program 7.2 echoes all its command-line arguments to standard output. (The normal
Unix echo(1) program doesn’t echo the zeroth argument.) If we compile this program
and name the executable echoarg, we have

$ ./echoarg argl TEST foo
argv[0]: ./echoarg
argv[l]: argl

argv[2]: TEST

argv[3): foo



166 The Environment of a Unix Process
#include "ourhdr.h"
int
main(int argc, char *argv[])
{
int i;
for (i = 0; 1 < argc; i++) /* echo all command-line args */
printf ("argv[%d]: %s\n", i, argv([i]);
exit (0);
}
Program 7.2 Echo all command-line arguments to standard output.
We are guaranteed by both ANSI C and POSIX.1 that argv[argc] is a null pointer.
This lets us alternatively code the argument processing loop as
for (i = 0; argv[i] !'= NULL; i++) o
7.5 Environment List

Each program is also passed an environment list. Like the argument list, the environ-
ment list is an array of character pointers, with each pointer containing the address of a
null-terminated C string. The address of the array of pointers is contained in the global
variable environ.

extern char **environ;

For example, if the environment consisted of five strings it could look like

environment environment environment
pointer list strings

environ: E—r e HOME=/home /stevens\0

—t————p PATH=: /bin: /usr/bin\0

——— = SHELL=/bin/sh\0

——— = USER=stevens\0

- LOGNAME=st evens\0

NULL

Figure 7.2 Environment consisting of five C character strings.

Here we explicitly show the null bytes at the end of each string. We'll call environ the
environment pointer, the array of pointers the environment list, and the strings they
point to the environment strings.
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1.6

By convention the environment consists of
name=value

strings, as shown in Figure 7.2. Most predefined names are entirely uppercase, but this
is only a convention.

Historically, most Unix systems have provided a third argument to the main func-
tion that is the address of the environment list:

int main(int argc, char *argu[], char *enwvp(]):;

Since ANSI C specifies that the main function be written with two arguments, and since
this third argument provides no benefit over the global variable environ, POSIX.1
specifies that environ should be used instead of the (possible) third argument. Access
to specific environment variables is normally through the getenv and putenv func-
tions (described in Section 7.9), instead of through the environ variable. But to go
through the entire environment, the environ pointer must be used.

Memory Layout of a C Program
Historically a C program has been composed of the following pieces:

* Text segment. This is the machine instructions that are executed by the CPU.
Usually the text segment is sharable so that only a single copy needs to be in
memory for frequently executed programs (text editors, the C compiler, the
shells, etc.). Also, the text segment is often read-only, to prevent a program from
accidentally modifying its instructions.

* Initialized data segment. This is usually just called the data segment and it con-
tains variables that are specifically initialized in the program. For example, the
C declaration

int maxcount = 99;

appearing outside any function causes this variable to be stored in the initialized
data segment with its initial value.

¢ Uninitialized data segment. This segment is often called the “bss” segment,
named after an ancient assembler operator that stood for “block started by sym-
bol.”” Data in this segment is initialized by the kernel to 0 before the program
starts executing. The C declaration

leng  sum[1000];

appearing outside any function causes this variable to be stored in the un-
initialized data segment.

¢ Stack. This is where automatic variables are stored, along with information that
is saved each time a function is called. Each time a function is called, the
addiess of where to return to, and certain information about the caller’s environ-
ment (such as some of the machine registers) is saved on the stack. The newly
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called function then allocates room on the stack for its automatic and temporary
variables. By utilizing a stack in this fashion, C functions can be recursive.

* Heap. Dynamic memory allocation usually takes place on the heap. Histori-
cally the heap has been located between the top of the uninitialized data and the
bottom of the stack.

Figure 7.3 shows the typical arrangement of these segments. This is a logical picture of
how a program looks—there is no requirement that a given implementation arrange its
memory in this fashion. Nevertheless, this gives us a typical arrangement to describe.

high address command-line arguments
and environment variables

heap
uninitialized data initialized to
{bss) zero by exec
initialized data |
program file
text by exec

low address

Figure 7.3 Typical memory arrangement.

With 4.3+BSD on a VAX, the text segment starts at location 0 and the top of the stack
starts just below Ox7£££££££f. On the VAX the unused virtual address space between
the top of the heap and the bottom of the stack is large.

Note from Figure 7.3 that the contents of the uninitialized data segment are not
stored in the program file on disk. This is because the kernel sets it to 0 before the pro-
gram starts running. The only portions of the program that need to be saved in the pro-
gram file are the text segment and the initialized data.

The size(1) command reports the sizes in bytes of the text, data, and bss segments.
For example

$ size /bin/cc /bin/sh

text data bss dec _ hex
81920 16384 664 98968 18298 /bin/cc
90112 16384 0 106496 1a000 /bin/sh

The fourth and fifth columns are the total of the sizes in decimal and hexadecimal.
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7.7

7.8

Shared Libraries

Many Unix systems today support shared libraries. Arnold [1986] describes an early
implementation under System V and Gingell et al. [1987] describe a different implemen-
tation under SunOS. Shared libraries remove the common library routines from the exe-
cutable file, instead maintaining a single copy of the library routine somewhere in
memory that all processes reference. This reduces the size of each executable file but
may add some run-time overhead, either when the program is first execed, or the first
time each shared library function is called. Another advantage of shared libraries is that
library functions can be replaced with new versions without having to re-link edit every
program that uses the library. (This assumes that the number and type of arguments
haven’t changed.)

Different systems provide different ways for a program to say that it wants to use or
not use the shared libraries. Options for the cc(1) and 1d(1) commands are typical. As
an example of the size differences, the following executable file (the classic hello.c
program) was first created without shared libraries.

$ 1s -1 a.out

—-rwxrwxr-x 1 stevens 104859 Aug 2 14:25 a.out
$ size a.out

text data bss dec hex

49152 49152 0 98304 18000

If we compile this program to use shared libraries, the text and data sizes of the exe-
cutable file are greatly decreased.

$ 1s -1 a.out

-rwxrwxr-x 1 stevens 24576 Bug 2 14:26 a.out
$ size a.out

text data bss dec hex

8192 8192 0 16384 4000

Memory Allocation
There are three functions specified by ANSI C for memory allocation.

1. malloc. Allocates a specified number of bytes of memory. The initial value of
the memory is indeterminate.

2. calloc. Allocates space for a specified number of objects of a specified size.
The space is initialized to all 0 bits.

3. realloc. Changes the size of a previously allocated area (increases or
decreases). When the size increases, it may involve moving the previously allo-
cated area somewhere else, to provide the additional room at the end. Also,
when the size increases, the initial value of the space between the old contents
and the end of the new area is indeterminate.



170

The Environment of a Unix Process

#include <stdlib.h>
void *malloc(size_t size);
void *calloc(size_t nobj, size t size);
void *realloc(void *ptr, size_ t mnewsize) ;
All three return: nonnull pointer if OK, NULL on error

void free(void *pir);

The pointer returned by the three allocation functions is guaranteed to be suitably
aligned so that it can be used for any data object. For example, if the most restrictive
alignment requirement on a particular system requires that doubles must start at mem-
ory locations that are multiples of 8, then all pointers returned by these three functions
would be so aligned.

Recall our discussion of the generic void * pointer and function prototypes in
Section 1.6. Since the three alloc functions return generic pointers, if we #include
<stdlib.h> (to obtain the function prototypes), we do not explicitly have to cast the
pointer returned by these functions when we assign it to a pointer of a different type.

The function free causes the space pointed to by ptr to be deallocated. This freed
space is usually put into a pool of available memory and can be allocated in a later call
to one of the three alloc functions.

realloc lets us increase or decrease the size of a previously allocated area. (The
most common usage is to increase an area.) For example, if we allocate room for 512
elements in an array that we fill in at run time, and find we need room for more than
512 elements, we can call realloc. If there is room beyond the end of the existing
region for the requested space, then realloc doesn’t have to move anything, it just
allocates the additional area at the end and returns the same pointer that we passed it.
But if there isn’t room at the end of the existing region, realloc allocates another area
that is large enough, copies the existing 512-element array to the new area, frees the old
area, and returns the pointer to the new area. Since the area may move, we shouldn’t
have any pointers into this area. Exercise 4.18 shows the use of realloc with getcwd
to handle any length pathname. Program 15.27 shows an example that uses realloc
to avoid arrays with fixed, compile-time sizes.

Notice that the final argument to realloc is the newsize of the region, not the dif-
ference between the old and new sizes. As a special case, if ptr is a null pointer,
realloc behaves likemalloc and allocates a region of the specified newsize.

This feature is new with ANSI C. Older versions of realloc can fail miserably if passed a
null pointer.

Older versions of these routines allowed us to realloc a block that we had freed since the
last call tomalloc, reallocg, or calloe. This trick dates back to Version 7 and exploited the
search strategy of malloc to perform storage compaction. 4.3+BSD still supports this feature,
but SVR4 doesn’t. This feature is deprecated and should not be used.
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The allocation routines are usually implemented with the sbrk(2) system call. This
system call expands (or contracts) the heap of the process. (Refer to Figure 7.3.) A sam-
ple implementation of malloc and free is given in Section 8.7 of Kernighan and
Ritchie [1988].

Although sbrk can expand or contract the memory of a process, most versions of
malloc and free never decrease their memory size. The space that we free is avail-
able for a later allocation, but the freed space is not returned to the kernel—it is kept in
themalloc pool.

It is important to realize that most implementations allocate a little more space that
is requested and use the additional space for record keeping—the size of the allocated
block, a pointer to the next allocated block, and the like. This means that writing past
the end of an allocated area could overwrite this record keeping information in a later
block. These types of errors are often catastrophic, but hard to find, because the error
may not show up until much later. Also, it is possible to overwrite this record keeping
in the current block by moving the pointer to the block backward.

Other possible errors that can be fatal are freeing a block that was already freed and
calling free with a pointer that was not obtained from one of the three alloc func-
tions. If a process calls malloc and thinks it's calling free, but its memory usage con-
tinually increases, this is called leakage. It is usually caused by not calling free to
return unused space.

Since memory allocation errors are hard to track down, some systems provide ver-
sions of these functions that do additional error checking every time one of the three
alloc functions or free is called. These versions of the functions are often specified
by including a special library for the link editor. There are also publicly available
sources (such as the one provided with 4.3+BSD) that you can compile with special flags
to enable additional run-time checking.

Since the operation of the memory allocator is often crucial to the run-time perfor-
mance of certain applications, some systems provide additional capabilities. For exam-
ple, SVR4 provides a function named mallopt that allows a process to set certain
variables that control the operation of the storage allocator. A function called
mallinfo is also available to provide statistics on the memory allocator. Check the
malloc(3) manual page for your system to see if any of these features are available.

alloca Function

One additional function is also worth mentioning. The function alloca has the same
calling sequence as malloc, however instead of allocating memory from the heap, the
memory is allocated from the stack frame of the current function. The advantage to this
is that we don’t have to free the space—it goes away automatically when the function
returns. alloca increases the size of the stack frame. The disadvantage is that some
systems can’t support alloca, if it's impossible to increase the size of the stack frame
after the function has been called. Nevertheless, many software packages use it, and
implementations exist for a wide variety of systems.
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7.9

Environment Variables

As we mentioned earlier, the environment strings are usually of the form

name=valie

The Unix kernel never looks at these strings—their interpretation is up to the various
applications. The shells, for example, use numerous environment variables. Some are
set automatically at login (HOME, USER, etc.) and others are for us to set. We normally
set environment variables in a shell start-up file to control the shell’s actions. If we set
the environment variable MAILPATH, for example, it tells the Bourne shell and Korn-
Shell where to look for mail.

ANSI C defines a function that we can use to fetch values from the environment,
but this standard says that the contents of the environment are implementation defined.

#include <stdlib.h>

char *getenv(const char *name) ;

Returns: pointer to walue associated with name, NULL if not found

Note that this function returns a pointer to the value of a name=value string. We should
always use getenv to fetch a specific value from the environment, instead of accessing
environ directly.

Some environment variables are defined by POSIX.1 and XPG3. Figure 7.4 lists the
ones defined by these standards and which are supported by SVR4 and 4.3+BSD. There
are many additional implementation-dependent environment variables used in SVR4
and 4.3+BSD. Note that ANSI C doesn’t define any environment variables.

FIPS 151-1 requires that a login shell must define the environment variables HOME and

LOGNAME.
) Standards Implementations S
Voriable I hGSIXT XPG3 | SVRE  43+BSD Description

HOME . . . . home directory
LANG . . . name of locale
LC_ALL . . s name of locale
LC COLLATE . . . name of locale for collation
LC CTYPE . . . name of locale for character classification
LC_MONETARY . . . name of locale for monetary editing
LC_NUMERIC . . . name of locale for numeric editing
LC_TIME . . . name of locale for date/time formatting
LOGNAME . . . . login name
NLSPATH . . sequence of templates for message catalogs
PATH . . . List of path prefixes to search for executable file
TERM . . . terminal type
TZ . . . time zone information

Figure 74 Environment variables.
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In addition to fetching the value of an environment variable, sometimes we want to
set an environment variable. We may want to change the value of an existing variable,
or add a new variable to the environment. (In the next chapter we’ll see that we can
affect the environment of only the current process and any child processes that we
invoke. We cannot affect the environment of the parent process, which is often a shell.
Nevertheless, it is still useful to be able to modify the environment list.) Unfortunately,
not all systems support this capability. Figure 7.5 shows the various functions that are
supported by the different standards and implementations.

Funchion Standards Implementations
ANSIC | POSIX.1 XPG3 SVR4 4.3+BSD
getenv L] ® . . L]
putenv (maybe) . . .
setenv .
unsetenv .
clearenv (maybe)

Figure 7.5 Support for various environment list functions.

The Rationale in the POSIX.1 standard states that putenv and clearenv are being considered
for an amendment to POSIX.1.

The prototypes for the middle three functions listed in Figure 7.5 are

#include <stdlib.h>

int putenv(const char *str);

void unsetenv(const char *name);

Both return: 0 if OK, nonzero on error

int setenv(const char *name, const char *walue, int rewrite) ;

The operation of these three functions is

* putenv takes a string of the form name=value and places it in the environment
list. If the name already exists, its old definition is first removed.

* setenv sets name to value. If name already exists in the environment then (a) if
rewrite is nonzero, the existing definition for name is first removed; (b) if rewrite is
0, an existing definition for name is not removed (and name is not set to the new

value, and no error occurs).

* unsetenv removes any definition of name. It is not an error if such a definition

does not exist.

It is interesting to examine how these functions must operate when modifying the
environment list. Recall Figure 7.3 where the environment list (the array of pointers to
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the actual name=value strings) and the environment strings are typically stored at the
top of a process’s memory space (above the stack). Deleting a string is simple—wre just
find the pointer in the environment list and move all subsequent pointers down
one—but adding a string, or modifying an existing string, is harder. The space at the
top of the stack cannot be expanded because it is often at the top of the address space of
the process. Since it's at the top it can’t expand upward and it can’t be expanded down-
ward because all the stack frames below it can’t be moved.

1. If we're modifying an existing name:

(@) If the size of the new walue is less than or equal to the size of the existing
value, we can just copy the new string over the old string,.

(b) If the new walue is larger than the old one, however, we must malloc to
obtain room for the new string, copy the new string to this area, then
replace the old pointer in the environment list for name with the pointer to
this malloced area.

2. If we're adding a new name it's more complicated. First we have to call malloc
to allocate room for the name=value string and copy the string to this area.

(@) Then, if it’s the first time we’ve added a new name, we have to call malloc
to obtain room for a new list of pointers. We copy the old environment list
to this new area and store a pointer to the name=value string at the end of
this list of pointers. We also store a null pointer at the end of this list, of
course. Finally we set environ to point to this new list of pointers. Note
from Figure 7.3 that if the original environment list was contained above
the top of the stack (as is common), then we have moved this list of point-
ers to the heap. But most of the pointers in this list still point to name=uvalue
strings above the top of the stack.

(b) If this isn't the first time we’'ve added new strings to the environment list,
then we know we’ve already malloced room for the list on the heap, so we
just call realloc to allocate room for one more pointer. The pointer to the
new name=value string is stored at the end of the list (on top of the previous
null pointer), followed by a null pointer.

710 setjmp and longjmp Functions

In C we can’t goto a label that's in another function. Instead we must use the set jmp
and longjmp functions to perform this type of branching. As we'll see, these two func-
tions are useful for handling error conditions that occur in a deeply nested function call.

Consider the skeleton in Program 7.3. It consists of a main loop that reads lines
from standard input and calls the function do_1ine to process each line. This function
then calls get_token to fetch the next token from the input line. The first token of a
line is assumed to be a command of some form and a switch statement selects each
command. For the single command shown, the function cmd_add is called.
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#include "ourhdr.h"

fidefine TOK_ADD 5

void do_line(char *);
void emd_add (void) ;
int get token(void);
int

main (void)
{
char line [MAXLINE] ;

while (fgets(line, MAXLINE, stdin) != NULL)
do_line(line);

exit (0);
}
char *tok_ptr; /* global pointer for get _token() */
void
do line(char *ptr) /* process one line of input */
{
int cmd;

tok_ptr = ptr;

while ( (cmd = get token()) > 0) {
switch (emd) { /* one case for each command */
case TOK ADD:

cmd _add() ;
break;
}
}
}
void
cmd_add (void)
{
int token;

token = get_token():
/* rest of processing for this command */
}

int
get_token (void)
{
/* fetch next token from line pointed to by tok ptr */
}

Program 7.3 Typical program skeleton for command processing.
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Program 7.3 is typical for programs that read commands, determine the command
pe, and then call functions to process each command. Figure 7.6 shows what the stack
could look like after cmd_add has been called.

top of stack
stack frame

for main

stack frame
fordo_line

stack frame

direction of l for cmd_add

stack growth

Figure 7.6 Stack frames after cmd_add has been called.

Storage for the automatic variables is within the stack frame for each function. The
array line is in the stack frame for main, the integer cmd is in the stack frame for
do_1line, and the integer token is in the stack frame for cmd_add.

As we've said, this type of arrangement of the stack is typical, but not required.
Stacks do not have to grow toward lower memory addresses. On systems that don't
have built-in hardware support for stacks, a C implementation might use a linked list
for its stack frames.

The coding problem that’s often encountered with programs like Program 7.3 is
how to handle nonfatal errors. For example, if the cmd_add function encounters an
error, say an invalid number, it might want to print an error, ignore the rest of the input
line, and return to the main function to read the next input line. But when we're deeply
nested numerous levels down from the main function, this is hard to do in C. (In this
example, in the cmd_add function, we're only two levels down from main, but it's not
uncommon to be 5 or more levels down from where we want to return to.) It becomes
messy if we have to code each function with a special return value that tells it to return
one level.

The solution to this problem is to use a nonlocal goto—the setjmp and longjmp
functions. The adjective nonlocal is because we're not doing a normal C goto state- |
ment within a function; instead we’re branching back through the call frames to a func-
tion that is in the call path of the current function.

#include <setjmp.h> |
int setjmp(jmp buf env);

Returns: 0 if called directly, nonzero if returning from a call to longjmp

void longijmp (jmp_buf env, int wval);
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We call setjmp from the location that we want to return to, which in this example
is in the main function. set jmp returns 0 in this case, because we called it directly. In
the call to set jmp the argument env is of the special type jmp_buf. This data type is
some form of array that is capable of holding all the information required to restore the
status of the stack to the state when we call longjmp. Normally the env variable is a
global variable, since we’ll need to reference it from another function.

When we encounter an error, say in the cmd _add function, we call 1ongjmp with
two arguments. The first is the same env that we used in a call to set jmp, and the sec-
ond, val, is a nonzero value that becomes the return value from set jmp. The reason for
the second argument is to allow us to have more than one longjmp for each setjmp.
For example, we could longjmp from cmd_add with a val of 1 and also call Longjmp
from get token with a val of 2. In the main function, the return value from set jmp is
either 1 or 2, and we can test this value (if we want) and determine if the longjmp was
from cmd_add or get_token.

Let’s return to the example. Program 7.4 shows both the main and cmd add func-
tions. (The other two functions, do_1line and get_token haven’t changed.)

#include <setjmp.h>
#include "ourhdr.h"

#define TOK_ADD 5
jmp_buf jmpbuffer:

int
main (void)
{
char line [MAXLINE];

if (setjmp (jmpbuffer) != Q)
printf ("error");

while (fgets(line, MAXLINE, stdin) != NULL)
do_line(line):

exit (0) ;

void
cmd_add (void)
{

int token;

token = get token();

if (token < 0) /* an error has occurred */
longjmp ( jmpbuffer, 1);

/* rest of processing for this command */

Program 7.4 Example of set jmp and longjmp.
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When main is executed, we call set jmp and it records whatever information it needs to
in the variable jmpbuf fer and returns 0. We then call do_1ine, which calls cmd_add,
and assume an error of some form is detected. Before the call to longjmp in emd_add,
the stack looks like that in Figure 7.6. But longjmp causes the stack to be “unwound”
back to the main function, throwing away the stack frames for cmd add and do line.
Calling longjmp causes the set jmp in main to return, but this time it returns with a
value of 1 (the second argument for 1ongjmp).

Automatic, Register, and Volatile Variables

The next question is “what are the states of the automatic variables and register vari-
ables in the main function?” When main is returned to by the longjmp, do these vari-
ables have values corresponding to when the set jmp was previously called (ie., are
their values rolled back), or are their values left alone so that their values are whatever
they were when do_line was called (which caused cmd add to be called, which
caused longjmp to be called)? Unfortunately, the answer is “it depends.” Most imple-
mentations do not try to roll back these automatic variables and register variables, but
all that the standards say is that their values are indeterminate. If you have an automat-
ic variable that you don’t want rolled back, define it with the volatile attribute. Vari-
ables that are declared global or static are left alone when 1ongjmp is executed.

Example

Program 7.5 demonstrates the different behavior that can be seen with automatic, regis-
ter, and volatile variables, after calling longjmp. If we compile and test Program 7.5,
with and without compiler optimizations, the results are different:

$ cc testjmp.c compile without any optimization
$ a.out

in f1(): count = 97, val = 98, sum = 99

after longjmp: count = 97, val = 98, sum = 99

$ cc -0 testjmp.c compile with full optimization

$ a.out

in f1(): count = 97, val = 98, sum = 99

after longjmp: count = 2, val = 3, sum = 99

Note that the volatile variable (sum) isn't affected by the optimizations—its value
after the longjmp is the last value that it assumed. The set jmp(3) manual page on one
system states that variables stored in memory will have values as of the time of the
longjmp, while variables in the CPU and floating point registers are restored to their
values when set jmp was called. This is indeed what we see when we run Program 7.5.
Without optimization all three variables are stored in memory (ie., the register hint
is ignored for val). When we enable optimization, both count and val go into regis-
ters (even though the former wasn’t declared register) and the volatile variable
stays in memory. The thing to realize with this example is that you must use the
volatile attribute if you're writing portable code that uses nonlocal jumps. Anything
else can change from one system to the next. a
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#include <setjmp.h>
#include "ourhdr.h"

static void fl(int, int, int);
statiec void £2 (void) ;

static jmp_buf jmpbuffer;
int

main (void)

{

int count;
register int val;
velatile int sum;

count = 2; val = 3; sum = 4;
if (setjmp(jmpbuffer) != 0) {
printf ("after longjmp: count = %d, val = %d, sum = %d\n",
count, wval, sum);
exit (0);
}
count = 97; val = 98; sum = 99;
/* changed after setjmp, before longjmp */
fl({count, val, sum); /* never returns */

}

static void

fl(int i, int j, int k)

{
printf("in f1(): count = %d, val = %d, sum = %d\n", i, j, k);
£2():

}

static wvoid
£2 (void)
{
longjmp (jmpbuffer, 1);
}

Program 7.5 Effect of 1ongjmp on automatic, register, and volatile variables.

We'll return to these two functions, set jmp and longjmp in Chapter 10 when we
discuss signal handlers and their signal versions sigset jmp and siglongjmp.

tial Problem with Automatic Variables

Having looked at the way stack frames are usually handled, it is worth looking at a
potential error in dealing with automatic variables. The basic rule is that an automatic
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711

variable can never be referenced after the function that declared the automatic variable |

returns. There are numerous warnings about this throughout the Unix manuals.
Program 7.6 is a function called open_data that opens a standard 1/0O stream and |
sets the buffering for the stream.

#include <stdio.h>
#tdefine DATAFILE "datafile”

FILE *
open_data (void)
{

FILE *fp;

char databuf [BUFSIZ]; /* setvbuf makes this the stdio buffer */
if ( (fp = fopen(DATAFILE, "r")) == NULL)
return (NULL) ;
if (setvbuf(fp, databuf, BUFSIZ, _IOLBF) != ()
return (NULL) ;
return (fp) ; /* error */

Program 7.6 Incorrect usage of an automatic variable.

The problem is that when open data returns, the space it used on the stack will be
used by the stack frame for the next function that is called. But the standard 1/0O library
will still be using that portion of memory for its buffer for the stream. Chaos is sure to
result. To correct this problem the array databuf needs to be allocated from global
memory, either statically (static or extern) or dynamically (one of the alloc func-
tions).

getrlimit and setrlimit Functions

Every process has a set of resource limits, some of which can be queried and changed by
the getrlimit and setrlimit functions.

#include <sys/time.h>
#include <sys/resource.h>

int getrlimit (int respurce, struct rlimit *riptr) ;
int setrlimit (int resource, censt struct rlimit *riptr) ;

Both return: 0 if OK, nonzero on error

Each call to these two functions specifies a single resource and a pointer to the fol
lowing structure.
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struct rlimit {
rlim t rlim_cur; /* soft limit: current limit */
rlim t rlim max; /* hard limit: maximum value for rlim cur */

|

These two functions are not part of POSIX 1, but SVR4 and 4.3+BSD provide them.

SVR4 uses the primitive system data type rlim t in the preceding structure. Other systems
define these two members as integers or long integers.

The resource limits for a process are normally established by process 0 when the system is ini-
tialized and then inherited by each successive process. In SVR4 the defaults can be examined
in the file /fetc/conf/cf.d/mtune. In 4.3+BSD the defaults are scattered among various

headers.

Three rules govern the changing of the resource limits:

1. A soft limit can be changed by any process to a value less than or equal to its

hard limit.

2. Any process can lower its hard limit to a value greater than or equal to its soft
limit. This lowering of the hard limit is irreversible for normal users.

3. Only a superuser process can raise a hard limit.

An infinite limit is specified by the constant RLIM INFINITY.
The resource argument takes on one of the following values. Note that not all
resources are supported by both SVR4 and 4.3+BSD.

RLIMIT CORE

RLIMIT CPU

RLIMIT DATA

RLTIMIT FSIZE

RLIMIT MEMLOCK

RLIMIT NOFILE

(SVR4 and 4.3+BSD) The maximum size in bytes of a core file. A
limit of 0 prevents the creation of a core file.

(SVR4 and 4.3+BSD) The maximum amount of CPU time in sec-
onds. When the soft limit is exceeded, the SIGXCPU signal is sent
to the process.

(SVR4 and 4.3+BSD) The maximum size in bytes of the data seg-
ment. This is the sum of the initialized data, uninitialized data,
and heap from Figure 7.3.

(SVR4 and 4.3+BSD) The maximum size in bytes of a file that may
be created. When the soft limit is exceeded, the SIGXFSZ signal is
sent to the process.

(4.3+BSD only) Locked-in-memory address space (not imple-
mented yet).

(SVR4 only) The maximum number of open files per process.
Changing this limit affects the value returned by the sysconf
function for its _SC_OPEN MAX argument (Section 2.5.4). See
Program 2.3 also.
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RLIMIT NPROC

RLIMIT OFILE
RLIMIT RSS

RLIMIT_STACK

RLIMIT VMEM

(4.3+BSD only) The maximum number of child processes per real
user ID. Changing this limit affects the value returned for

_SC_CHILD MAX by the sysconf function (Section 2.5.4).

(4.3+BSD) Same as the SVR4 RLIMIT NOFILE.

(4.3+BSD only) Maximum resident set size (RSS) in bytes. If
physical memory is tight, the kernel takes memory from processes
that exceed their RSS.

(SVR4 and 4.3+BSD) The maximum size in bytes of the stack. See
Figure 7.3.

(SVR4 only) The maximum size in bytes of the mapped address
space. This affects the mmap function (Section 12.9).

The resource limits affect the calling process and are inherited by any of its children.
This means that the setting of resource limits really needs to be built into the shells to
affect all our future processes. Indeed, the Bourne shell and KornShell have the built-in
ulimit command, and the C shell has the built-in 1imit command. (The umask and

chdir functions also

have to be handled as shell built-ins.)

Older Bourne shells, such as the one distributed by Berkeley, don't support the ulimit com-

mand.

Newer versions of the KornShell have undocumented —H and -s options for the ulimit com-
mand, to examine or modify the hard or soft limits, respectively.

Example

Program 7.7 prints out the current soft limit and the hard limit for all the resource limits
supported on the system. To run this program under both SVR4 and 4.3+BSD we have
conditionally compiled the resource names that differ.

#include <sys/types.h>

#include <sys/time.h>
$include <gys/resource.h>
#include "ourhdr.h"

#define doit (name)

pr_limits(#name, name)

static void pr_ limits(char *, int);

int
main (void)

{

doit {RLIMIT_CORE) ;
doit (RLIMIT CPU);
doit (RLIMIT DATA) ;
doit (RLIMIT FSIZE);
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#ifdef RLIMIT MEMLOCK
doit (RLIMIT MEMLOCK) ;
#endif
#ifdef RLIMIT NOFILE /* SVR4 name */
doit (RLIMIT_NOFILE) ;
#endif
#ifdef RLIMIT OFILE /* 4.3+BSD name */
doit (RLIMIT OFILE);
#endif
#ifdef RLIMIT NPROC
doit (RLIMIT_NPROC) ;
#endif
#ifdef RLIMIT RSS
doit (RLIMIT RSS);
#endif
doit (RLIMIT STACK) ;
#1ifdef RLIMIT VMEM
doit (RLIMIT VMEM)
#endif
exit (0);

}

static void
pr_limits{char *name, int resource)
{

struct rlimit limit;

if (getrlimit (resource, &limit) < 0)
err sys("getrlimit error for %s", name);
printf ("%-14s ", name);
if (limit.rlim cur == RLIM INFINITY)
Cprintf (" (infinite) ");
else
printf ("%101d ", limit.rlim_ cur);
if (limit.rlim max == RLIM_INFINITY)
printf (" (infinite)\n");
else
printf ("%$101ld\n", limit.rlim max);

Program 7.7 Print the current resource limits.

Note that we've used the new ANSI C string-creation operator (#) in the doit
macro, to generate the string value for each resource name. When we say

doit (RLIMIT CORE) ;
b this is expanded by the C preprocessor into
pr_limits ("RLIMIT CORE", RLIMIT CORE);
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7.12

Running this program under SVR4 gives us the following;

$ a.out

RLIMIT CORE 1048576 1048576
RLIMIT CPU (infinite) {(infinite)
RLIMIT DATA 16777216 16777216
RLIMIT FSIZE 2097152 2097152
RLIMIT NOFILE 64 1024
RLIMIT STACK 16777216 16777216
RLIMIT VMEM 16777216 16777216

4.3+BSD gives us the following results:

$ a.out

RLIMIT CORE {infinite) {infinite)
RLIMIT_CPU (infinite) (infinite)
RLIMIT DATA 8388608 16777216
RLIMIT FSIZE (infinite) (infinite)
RLIMIT MEMLOCK (infinite) (infinite)
RLIMIT_OFILE 64 (infinite)
RLIMIT NPROC 40 (infinite)
RLIMIT_RSS 27070464 27070464
RLIMIT STACK 524288 16777216

Exercise 10.11 continues the discussion of resource limits, after we’ve covered signals.

Summary

Understanding the environment of a C program in a Unix environment is a requisite to
understanding the process control features of Unix. In this chapter we've looked at how
a process is started, how it can terminate, and how it's passed an argument list and an
environment. Although both are uninterpreted by the kernel, it is the kernel that passes
both from the caller of exec to the new process.

We've also examined the typical memory layout of a C program and how a process
can dynamically allocate and free memory. It is worthwhile to look in detail at the func-
tions available for manipulating the environment, since they involve memory alloca-
tion. The functions set jmp and longjmp were presented, providing a way to perform
nonlocal branching within a process. We finished the chapter describing the resource
limits that are provided by SVR4 and 4.3+BSD.

Exercises

7.1 On an 80386 system under both SVR4 and 4.3+BSD, if we execute the program that prints
“hello, world”, without calling exit or return, the termination status of the program
(which we can examine with the shell) is 13. Why?
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7.2

7.3

7.4

7.5

7.6

7.7

7.8

7.9

710

When is the output from the print £s in Program 7.1 actually output?

Is there any way for a function that is called by main to examine the command-line argu-
ments, without (a) passing argc and argv as arguments from main to the function, or (b)
having main copy argc and argv into global variables?

Some Unix implementations purposely arrange that, when a program is executed, location
0 in the data segment is not accessible. Why?

Use the typdef facility of C to define a new data type Exit func for an exit handler. Redo
the prototype for atexit using this data type.

If we allocate an array of 1ongs using calloc is the array initialized to 02 If we allocate an
array of pointers using calloc is the array initialized to null pointers?

In the output from the size command at the end of Section 7.6, why aren’t any sizes given
for the heap and the stack?

In Section 7.7 the two file sizes (104859 and 24576) don’t equal the sums of their respective
text and data sizes. Why?

In Section 7.7 why is there such a difference in the size of the executable file when using
shared libraries for such a trivial program?

At the end of Section 7.10 we showed how a function can’t return a pointer tc an automatic
variable. Is the following code correct?

int
fl(int val)
{

int *ptr;

if (val == 0) {
int val;
val = 5;
ptr = &val;

}
return (*ptr + 1);
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Introduction

We now turn to the process control provided by Unix. This includes the creation of new
processes, executing programs, and process termination. We also look at the various
IDs that are the property of the process—real, effective, and saved; user and group
IDs—and how they’re affected by the process control primitives. Interpreter files and
the system function are also covered. We conclude the chapter by looking at the pro-
cess accounting that is provided by most Unix systems. This lets us look at the process
control functions from a different perspective.

Process Identifiers

Every process has a unique process ID, a nonnegative integer. Since the process ID is
the only well-known identifier of a process that is always unique, it is often used as a
piece of other identifiers, to guarantee uniqueness. The tmpnam function in Section 5.13
created unique pathnames by incorporating the process ID in the name.

There are some special processes. Process ID 0 is usually the scheduler process and
is often known as the swapper. No program on disk corresponds to this process—it is
part of the kernel and is known as a system process. Process ID 1 is usually the init
process and is invoked by the kernel at the end of the bootstrap procedure. The pro-
gram file for this process was /etc/init in older versions of Unix and is /sbin/init
in newer versions. This process is responsible for bringing up a Unix system after the
kernel has been bootstrapped. init usually reads the system-dependent initialization
files (the /etc/rc* files) and brings the system to a certain state (such as multiuser).
The init process never dies. Itis a normal user process (not a system process within
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the kernel like the swapper), although it does run with superuser privileges. Later in
this chapter well see how init becomes the parent process of any orphaned child pro-
cess.

On some virtual memory implementations of Unix, process ID 2 is the pagedaemon.
This process is responsible for supporting the paging of the virtual memory system.
Like the swapper, the pagedaemon is a kernel process.

In addition to the process 1D, there are other identifiers for every process. The fol-
lowing functions return these identifiers.

#include <sys/types.h>

#include <unistd.h>

pid t getpid(veid); Returns: process ID of calling process
pid t getppid(void): Returns: parent process ID of calling process
uid t getuid(void); Returns: real user ID of calling process
uid t geteuid(void); Returns: effective user ID of calling process
gid_t getgid(void): Returns: real group ID of calling process
gid_t getegid(void); . Returns: effective group ID of calling process |

Note that none of these functions has an error return. We'll return to the parent process
ID in the next section when we discuss the fork function. The real and effective user
and group IDs were discussed in Section 4.4.

fork Function

The only way a new process is created by the Unix kernel is when an existing process
calls the fork function. (This doesn’t apply to the special processes that we mentioned
in the previous section—the swapper, init, and the pagedaemon. These processes are
created specially by the kernel as part of the bootstrapping.)

#include <sys/types.h>
#include <unistd.h>

pid t fork(void); |

Returns: 0 in child, process ID of child in parent, -1 on error

The new process created by fork is called the child process. This function is called once
but returns twice. The only difference in the returns is that the return value in the child
is 0 while the return value in the parent is the process ID of the new child. The reason
the child’s process ID is returned to the parent is because a process can have more than
one child, so there is no function that allows a process to obtain the process IDs of its
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children. The reason fork returns O to the child is because a process can have only a
single parent, so the child can always call getppid to obtain the process ID of its par-
ent. (Process ID 0 is always in use by the swapper, so it’s not possible for 0 to be the
process ID of a child.)

Both the child and parent continue executing with the instruction that follows the
call to fork. The child is a copy of the parent. For example, the child gets a copy of the
parent’s data space, heap, and stack. Note that this is a copy for the child—the parent
and child do not share these portions of memory. Often the parent and child share the
text segment (Section 7.6), if it is read-only.

Many current implementations don’t perform a complete copy of the parent’s data,
stack, and heap, since a fork is often followed by an exec. Instead, a technique called
copy-on-write (COW) is used. These regions are shared by the parent and child and have
their protection changed by the kernel to read-only. If either process tries to modify
these regions, the kernel then makes a copy of that piece of memory only, typically a
“page” in a virtual memory system. Section 9.2 of Bach [1986] and Section 5.7 of Leffler
et al. [1989] provide more detail on this feature.

Example

Program 8.1 demonstrates the fork function. If we execute this program we get

$ a.out
a write to stdout
before fork
pid = 430, glob = 7, var = 89 child’s variables were changed
pid = 429, glob = 6, var = B8 parent’s copy were not changed
$ a.out > temp.ocut
- $§ cat temp.out
a write to stdout
before fork
pid = 432, gleb = 7, var = 89
before fork
pid = 431, glob = 6, var = 88

In general, we never know if the child starts executing before the parent or vice versa.
This depends on the scheduling algorithm used by the kernel. If it’s required that the
child and parent synchronize with each other, some form of interprocess communica-
tion is required. In Program 8.1 we just have the parent put itself to sleep for 2 seconds,
to let the child execute. There is no guarantee that this is adequate, and we talk about
this and other types of synchronization in Section 8.8 when we talk about race condi-
tions. In Section 10.16 we show how to synchronize a parent and child after a fork
using signals.

Note the interaction of fork with the 1/0 functions in Program 8.1. Recall from
Chapter 3 that the write function is not buffered. Since write is called before the
fork, its data is written once to standard output. The standard 1/0 library, however, is
buffered. Recall from Section 5.12 that standard output is line buffered if it's connected
to a terminal device, otherwise it's fully buffered. When we run the program interac-
tively we get only a single copy of the print£ line, because the standard output buffer
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#include <sys/types.h>

#include "ourhdr.h"

int glob = 6; /* external variable in initialized data */
char buf[] = "a write to stdout\n";

int

main (void)

{

int var; /* automatic variable on the stack */
pid t pid;
var = 88;

1f (write(STDOUT FILENO, buf, sizeof (buf)-1) != sizeof (buf)-1)
err sys{"write error");
printf ("before fork\n"): /* we don’t flush stdout */

if ( (pid = fork()) < 0)
err sys("fork error");

else if (pid == 0) { /* child */
glob++; /* modify variables */
vart++;

} else
sleep(2); /* parent */

printf("pid = %d, glocb = %d, var = %d\n", getpid(), glob, wvar);
exit (0);

Program 8.1 Example of fork function.

is flushed by the newline. But when we redirect standard output to a file we get two
copies of the printf line. What has happened in this second case is that the printf
before the fork is called once, but the line remains in the buffer when fork is called.
This buffer is then copied into the child, when the parent’s data space is copied to the
child. Both the parent and child now have a standard I/0 buffer with this line in it.
The second printf, right before the exit, just appends its data to the existing buffer.
When each process terminates, its copy of the buffer is finally flushed. O

File Sharing

Another point to note from Program 8.1 is, when we redirect the standard output of the
parent, the child’s standard output is also redirected. Indeed, one characteristic of fork
is that all descriptors that are open in the parent are duplicated in the child. We say
“duplicated” because it's as if the dup function had been called for each descriptor. The
parent and child share a file table entry for every open descriptor (recall Figure 3.4).

Consider a process that has three different files opened for standard input, standard
output, and standard error. On return from fork we have the arrangement shown in
Figure 8.1.
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rent process table entry file table v-node table
l file status flags 4 v-node
current file offset / s,
i-node
fd flags_ptr vnodeptr information
fd 0: ]
f'gi current file size
4| file status flags
current file offset v !
. v-node |
v-node ptr — information
child process table entry "~ inode
information |
current file size |
file status flags —
fd U:Ed Aags P“__f current file offset
g % v-nodeptr ———
50 v-node
information
inode
information
current file size

Figure 8.1 Sharing of open files between parent and child after fork.

It is important that the parent and child share the same file offset. Consider a pro-
cess that forks a child, then waits for the child to complete. Assume that both pro-
cesses write to standard output as part of their normal processing. If the parent has its
standard output redirected (by a shell, perhaps) it is essential that the parent’s file offset
be updated by the child, if the child writes to standard output. In this case the child can
write to standard output while the parent is waiting for it, and on completion of the
child the parent can continue writing to standard output, knowing that its output will
be appended to whatever the child wrote. If the parent and child did not share the
same file offset, this type of interaction would be harder to accomplish and would
require explicit actions by the parent.

If both parent and child write to the same descriptor, without any form of synchro-
nization (such as having the parent wait for the child), their output will be intermixed
(assuming it's a descriptor that was open before the fork). While this is possible (we
saw it in Program 8.1), it’s not the normal mode of operation.

There are two normal cases for handling the descriptors after a fork.

1. The parent waits for the child to complete. In this case, the parent does not need
to do anything with its descriptors. When the child terminates, any of the
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shared descriptors that the child read from or wrote to will have their file offsets
updated accordingly.

The parent and child each go their own way. Here, after the fork, the parent
closes the descriptors that it doesn’t need and the child does the same thing.
This way neither interferes with the other’s open descriptors. This scenario is
often the case with network servers.

Besides the open files, there are numerous other properties of the parent that are
inherited by the child:

.

.

real user ID, real group ID, effective user ID, effective group ID
supplementary group IDs

process group ID

session ID

controlling terminal

set-user-ID flag and set-group-ID flag

current working directory

root directory

file mode creation mask

signal mask and dispositions

the close-on-exec flag for any open file descriptors
environment

attached shared memory segments

resource limits

The differences between the parent and child are

the return value from fork
the process IDs are different

the two processes have different parent process IDs—the parent process ID of
the child is the parent; the parent process ID of the parent doesn’t change

the child’s values for tms_utime, tms_stime, tms cutime, and tms_ustime
aresetto 0

file locks set by the parent are not inherited by the child
pending alarms are cleared for the child
the set of pending signals for the child is set to the empty set

Many of these features haven’t been discussed yet—we’ll cover them in later chapters.

|
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The two main reasons for fork to fail are (a) if there are already too many processes
in the system (which usually means something else is wrong), or (b) if the total number
of processes for this real user ID exceeds the system’s limit. Recall from Figure 2.7 that
CHILD_MAX specifies the maximum number of simultaneous processes per real user ID.

There are two uses for fork.

1. When a process wants to duplicate itself so that the parent and child can each
execute different sections of code at the same time. This is common for network
servers—the parent waits for a service request from a client. When the request
arrives, the parent calls fork and lets the child handle the request. The parent
goes back to waiting for the next service request to arrive.

2. When a process wants to execute a different program. This is common for
shells. In this case the child does an exec (which we describe in Section 8.9)
right after it returns from the fork.

Some operating systems combine the operations from step 2 (a fork followed by an
exec) into a single operation called a spawn. Unix separates the two as there are
numerous uses for fork without doing an exec. Also, separating the two allows the
child to change the per-process attributes between the fork and exec, such as 1/0
redirection, user ID, signal disposition, and so on. We'll see numerous examples of this
in Chapter 14.

84 vfork Function

The function vfork has the same calling sequence and same return values as fork.
But the semantics of the two functions differ.

vfork originated with the early virtual-memory releases of 4BSD. In Section 5.7 of Leffler et
al. [1989] they state, “Although it is extremely efficient, vfork has peculiar semantics and is
generally considered to be an architectural blemish.”

Nevertheless, both SVR4 and 4.3+BSD support vfork.

Some systems have a header <vfork . h> that should be included when calling vfork.

vfork is intended to create a new process when the purpose of the new process is
to exec a new program (step 2 at the end of the previous section). The bare bones shell
in Program 1.5 is also an example of this type of program. vfork creates the new pro-
cess, just like fork, without fully copying the address space of the parent into the child,
since the child won’t reference that address space—the child just calls exec (or exit)
right after the vfork. Instead, while the child is running, until it calls either exec or
exit, the child runs in the address space of the parent. This optimization provides an
efficiency gain on some paged virtual-memory implementations of Unix. (As we men-
tioned in the previous section, some implementations use copy-on-write to improve the
efficiency of a fork followed by an exec.)
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Another difference between the two functions is that vfork guarantees that the
child runs first, until the child calls exec or exit. When the child calls either of these
functions, the parent resumes. (This can lead to deadlock if the child depends on fur-
ther actions of the parent before calling either of these two functions.)

Example

Let’s look at Program 8.1, replacing the call to fork with vfork. We've removed the
write to standard output. Also, we don’t need to have the parent call sleep, since
we're guaranteed that it is put to sleep by the kernel until the child calls either exec or
exit.

#include <sys/types.h>

#include "ourhdr.h"
int glob = 6; /* external variable in initialized data */
int

main (void)

{

int var; /* automatic variable on the stack */
pid t  pid:

var = 88;
printf ("before vfork\n"); /* we don't flush stdio */

if ( (pid = vfork()) < 0)
err_sys ("vfork error");

else if (pid == 0) { /* child */
glob++; /* modify parent’'s variables */
var++;
_exit (0); /* child terminates */

}

/* parent */
printf("pid = %d, glob = %d, var = %d\n", getpid(), glob, var):
exitc (0);

Program 8.2 Example of vfork function.

Running this program gives us

$ a.out
before vfork
pid = 607, glob = 7, var = 89

Here the incrementing of the variables done by the child changes the values in the par-
ent. Since the child runs in the address space of the parent, this doesn’t surprise us.
This behavior, however, differs from fork.
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8.5

Notice in Program 82 that we call _exit instead of exit. As we described in
Section 8.5, exit does not perform any flushing of standard 1/0 buffers. If we call
exit instead, the output is different.

5 a.out
before vfork

Here the output from the parent’s printf has disappeared! What's happening here is
that the child calls exit, which flushes and closes all the standard [/O streams. This
includes standard output. Even though this is done by the child, it's done in the par-
ent’s address space, so all the standard I/O FILE objects that are modified are modified
in the parent. When the parent calls printf later, standard output has been closed,
and print f returns —1. 0

Section 5.7 of Leffler et al. [1989] contains additional information on the implemen-
tation issues of fork and vfork. Exercises 8.1 and 8.2 continue the discussion of
vfork.

exit Functions

There are three ways for a process to terminate normally, as we described in Section 7.3,
and two forms of abnormal termination.

1. Normal termination:

(a) Executing a return from the main function. As we saw in Section 7.3, this
is equivalent to calling exit.

(b) Calling the exit function. This function is defined by ANSI C and
includes the calling of all exit handlers that have been registered by calling
atexit and closing all standard I/0O streams. Since ANSI C does not deal
with file descriptors, multiple processes (parents and children), and job
control, the definition of this function is incomplete for a Unix system.

(¢) Calling the _exit function. This function is called by exit and handles
the Unix-specific details. _exit is specified by POSIX.1.

In most Unix implementations exit(3) is a function in the standard C library
while _exit(2) is a system call.

2. Abnormal termination:

(a) Calling abort. This is a special case of the next item, since it generates the
SIGABRT signal.

(b) When the process receives certain signals. (We describe signals in more
detail in Chapter 10). The signal can be generated by the process itself (e.g.,
calling the abort function), by some other process, or by the kernel. Exam-
ples of signals generated by the kernel could be because the process refer-
ences a memory location not within its address space or dividing by 0.
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Regardless how a process terminates, the same code in the kernel is eventually exe-
cuted. This kernel code closes all the open descriptors for the process, releases the
memory that it was using, and the like.

For any of the preceding cases we want the terminating process to be able to notify
its parent how it terminated. For the exit and _exit functions this is done by passing
an exit status as the argument to these two functions. In the case of an abnormal termi-
nation, however, the kernel (not the process) generates a termination status to indicate
the reason for the abnormal termination. In any case, the parent of the process can
obtain the termination status from either the wait or waitpid function (described in
the next section).

Note that we're differentiating between the “exit status” (which is the argument to
either exit or _exit, or the return value from main) and the “termination status.”
The exit status is converted into a termination status by the kernel when _exit is
finally called (recall Figure 7.1). Figure 8.2 describes the different ways the parent can
examine the termination status of a child. If the child terminated normally, then the
parent can obtain the exit status of the child.

When we described the fork function it was obvious that the child has a parent
process after the call to fork. Now we're talking about returning a termination status
to the parent, but what happens if the parent terminates before the child? The answer is
that the init process becomes the parent process of any process whose parent termi-
nates. We say that the process has been inherited by init. What normally happens is
that whenever a process terminates the kernel goes through all active processes to see if
the terminating process is the parent of any process that still exists. If so, the parent pro-
cess ID of the still existing process is changed to be 1 (the process ID of init). This way
we're guaranteed that every process has a parent.

Another condition we have to worry about is when the child terminates before the
parent. If the child completely disappeared, the parent wouldn’t be able to fetch its ter-
mination status, when (and if) the parent were finally ready to check if the child had ter-
minated. The answer is that the kernel has to keep a certain amount of information for
every terminating process, so that the information is available when the parent of the
terminating process calls wait or waitpid. Minimally, this information consists of the
process ID, the termination status of the process, and the amount of CPU time taken by
the process. The kernel can discard all the memory used by the process and close its
open files. In Unix terminology the process that has terminated, but whose parent has
not yet waited for it, is called a zombie. The ps(1) command prints the state of a zombie
process as Z. If we write a long running program that forks many child processes,
unless we wait for these processes to fetch their termination status, they become zom-
bies.

System V provides a nonstandard way to avoid zombies, as we describe in Section 10.7.

The final condition to consider is this: what happens when a process that has been
inherited by init terminates? Does it become a zombie? The answer is “no,” because
init is written so that whenever one of its children terminates, init calls one of the
wait functions to fetch the termination status. By doing this init prevents the system
from being clogged by zombies. When we say “one of init’s children” we mean either




wait and waitpid Functions 197

8.6

a process that init generates directly (such as getty, which we describe in Section 9.2)
or a process whose parent has terminated and has been inherited by init.

wait and waitpid Functions

When a process terminates, either normally or abnormally, the parent is notified by the
kernel sending the parent the SIGCHLD signal. Since the termination of a child is an
asynchronous event (it can happen at any time while the parent is running) this signal is
the asynchronous notification from the kernel to the parent. The parent can choose to
ignore this signal, or it can provide a function that is called when the signal occurs (a
signal handler). The default action for this signal is to be ignored. We describe these
options in Chapter 10. For now we need to be aware that a process that calls wait or
waitpidcan

* block (if all of its children are still running), or

* return immediately with the termination status of a child (if a child has termi-
nated and is waiting for its termination status to be fetched), or

¢ return immediately with an error (if it doesn’t have any child processes).

If the process is calling wait because it received the SIGCHLD signal, we expect wait to
return immediately. But if we call it at any random point in time, it can block.

#include <sys/types.h>
#include <sys/wait.h>

pid t wait (int *statloc) ;
pid_t waitpid(pid_t pid, int *statloc, int options);

Both return: process ID if OK, 0 (see later), or -1 on error

The differences between these two functions are

¢ wait canblock the caller until a child process terminates, while waitpid has an
option that prevents it from blocking.

* waitpid doesn’t wait for the first child to terminate—it has a number of
options that control which process it waits for.

If a child has already terminated and is a zombie, wait returns immediately with that
child’s status. Otherwise it blocks the caller until a child terminates. If the caller blocks
and has multiple children, wait returns when one terminates. We can always tell
which child terminated because the process ID is returned by the function.

For both functions the argument statloc is a pointer to an integer. If this argument is
not a null pointer, the termination status of the terminated process is stored in the
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location pointed to by the argument. If we don’t care about the termination status, we
just pass a null pointer as this argument.

Traditionally the integer status that is returned by these two functions has been
defined by the implementation with certain bits indicating the exit status (for a normal
return), other bits indicating the signal number (for an abnormal return), one bit to indi-
cate if a core file was generated, and so on. POSIX.1 specifies that the termination status
is to be looked at using various macros that are defined in <sys/wait.h>. There are
three mutually exclusive macros that tell us how the process terminated, and they all
begin with WIF. Based on which of these three macros is true, other macros are used to
obtain the exit status, signal number, and the like. These are shown in Figure 8.2. We'll
discuss how a process can be stopped in Section 9.8 when we discuss job control.

Macro Description
WIFEXITED (status) True if status was returned for a child that terminated normally. In this
case we can execute
WEXITSTATUS (status)
to fetch the low-order 8 bits of the argument that the child passed to

exit or exit.

WIFSIGNALED (status) | True if status was returned for a child that terminated abnormally (by 1
receipt of a signal that it didn’t catch). In this case we can execute

WTERMSIG (status)
to fetch the signal number that caused the termination.
Additionally, SVR4 and 4.3+BSD (but not POSIX.1) define the macro
WCOREDUMP (status)

' that returns true if a core file of the terminated process was generated.

WIFSTOPPED {status) ‘ True if status was returned for a child that is currently stopped. In this
case we can execute

‘ WSTOPSIG (status)
to fetch the signal number that caused the child to stop.

Figure 8.2 Macros to examine the termination status returned by wait and waitpid.
Example

The function pr_exit in Program 83 uses the macros from Figure 8.2 to print a
description of the termination status. We'll call this function from numerous programs
in the text. Note that this function handles the WCOREDUMP macro, if it is defined.

Program 8.4 calls the pr_exit function, demonstrating the different values for the
termination status. If we run Program 8.4 we get

$ a.out

normal termination, exit status = 7

abnormal termination, signal number = 6 (core file generated)
abnormal termination, signal number = 8 (core file generated)
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#include <sys/types.h>

#include <sys/wait.h>
#include "ourhdr.h"
void

pr_exit (int status)
{
if (WIFEXITED (status))
printf ("normal termination, exit status = %d\n",
WEXITSTATUS (status)) ;
else if (WIFSIGNALED (status))
printf ("abnormal termination, signal number = %d%s\n",
WTERMSIG (status),
#ifdef WCOREDUMP
WCOREDUMP (status) ? " (core file generated)" : "");
#else
nw } ’.
$endif
else if (WIFSTOPPED (status))
printf ("child stopped, signal number = %d\n",
WSTOPSIG(status)):

Program 8.3 Print a description of the exit status.

Unfortunately, there is no portable way to map the signal numbers from WTERMSIG into
descriptive names. (See Section 10.21 for one method.) We have to look at the
<signal.h> header to verify that SIGABRT has a value of 6, and STGFPE has a value
of 8. O

As we mentioned, if we have more than one child, wait returns on termination of
any of the children. What if we want to wait for a specific process to terminate (assum-
ing we know which process ID we want to wait for)? In older versions of Unix we
would have to call wait and compare the returned process ID with the one we’re inter-
ested in. If the terminated process isn’t the one we want, we have to save the process ID
and termination status and call wait again. We continue doing this until the desired
process terminates. The next time we want to wait for a specific process we would go
through the list of already-terminated processes to see if we had already waited for it,
and if not, call wait again. What we need is a function that waits for a specific process.
This functionality (and more) is provided by the POSIX.1 waitpid function.

The waitpid function is new with POSIX.1. It is provided by both SVR4 and 4.3+BSD. Ear-
lier releases of System V and 4.3BSD, however, didn’t support it.
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#include <sys/types.h>

#include <sys/wait.h>
#include "ourhdr.h"
int

main (void)

{

pid_t pid;

int status;

if ( (pid = fork()) < O0)
err sys("fork error");

else if (pid == 0) /*
exit (7):

if (wait (&status) != pid)
err sys("wait error");

child */

/* wait for child */

pr_exit (status); /* and print its status */
if ( (pid = fork()) < 0)
err sys("fork error");
else if (pid == 0) /* child */
abort () ; /* generates SIGABRT */
if (wait (&status) != pid) /* wait for child */
err sys("wait error");
pr_exit (status); /* and print its status */
if ( (pid = fork()) < O)
err sys("fork error");
else if (pid == Q) /* child */
status /= 0; /* divide by 0 generates SIGFPE */
if (wait (&status) != pid) /* wait for child */
err_sys("wait error"):;
pr_exit (status); /* and print its status */
exit (0);
}
Program 84 Demonstrate different exit statuses.
Constant Description

WNOHANG waitpid will not block if a child specified by pid is not immediately
available. In this case the return value is 0.

WUNTRACED | If the implementation supports job control, the status of any child
specified by pid that has stopped, and whose status has not been
reported since it has stopped, is returned. The WIFSTOPPED macro
determines if the return value corresponds to a stopped child process.

Figure 8.3 The options constants for waitpid.
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The interpretation of the pid argument for waitpid depends on its value:

pid == ~1 waits for any child process. In this respect, waitpid is equivalent
towait.

pid > 0 waits for the child whose process ID equals pid.

pid == waits for any child whose process group ID equals that of the call-
ing process.

pid < -1 waits for any child whose process group ID equals the absolute
value of pid.

(We describe process groups in Section 9.4.) waitpid returns the process ID of the
child that terminated, and its termination status is returned through statloc. With wait
the only error is if the calling process has no children. (Another error return is possible,
in case the function call is interrupted by a signal. We'll discuss this in Chapter 10.)
With waitpid, however, it’s also possible to get an error if the specified process or pro-
cess group does not exist or is not a child of the calling process.

The options argument lets us further control the operation of waitpid. This argu-
ment is either 0 or is constructed from the bitwise OR of the constants in Figure 8.3.

SVR4 supports two additional, but nonstandard, option constants. WNOWAIT has the system
keep the process whose termination status is returned by waitpid in a wait state, so that it
may be waited for again. With WCONTINUED, the status of any child specified by pid that has
been continued, and whose status has not been reported, is returned.

The waitpid function provides three features that aren’t provided by the wait
function.

1. waitpid lets us wait for one particular process (whereas wait returns the sta-
tus of any terminated child). We'll return to this feature when we discuss the
popen function.

2. waitpid provides a nonblocking version of wait. There are times when we
want to fetch a child’s status, but we don’t want to block.

3. waitpid supports job control (with the WUNTRACED option).
Example

Recall our discussion in Section 8.3 about zombie processes. If we want to write a pro-
cess so that it forks a child but we don’t want to wait for the child to complete and we
don’t want the child to become a zombie until we terminate, the trick is to call fork
twice. Program 8.5 does this.

We call sleep in the second child to assure that the first child terminates before
printing the parent process ID. After a fork either the parent or child can continue
executing—we never know which will resume execution first. If we didn’t put the sec-
ond child to sleep, and if it resumed execution after the fork before its parent, the par-
ent process ID that it printed would be that of its parent, not process ID 1.
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#include <sys/types.h>
#include <sys/wait.h>
#include "ourhdr.h"
int
main (void)
{
pid t  pid;
if ( (pid = fork()) < 0)
err_sys("fork error");
else if (pid == 0) | /* first child */
if ( (pid = fork()) < 0)
err sys("fork error");
else if (pid > 0)
exit (0); /* parent from second fork == first child */

8.7

/* We're the second child; our parent beccmes init as scon
as cur real parent calls exit() in the statement above.
Here’'s where we’d continue executing, knowing that when
we’'re done, init will reap our status. */

sleep(2):
printf("second child, parent pid = %d\n", getppid());
exit (0);
}
if (waitpid(pid, NULL, 0) != pid) /* wait for first child */

err_sys("waitpid error");

/* We're the parent (the original process); we continue executing,
knowing that we’re not the parent of the second child. */

exit (0);
}
Program 8.5 Avoid zombie processes by forking twice.
Executing Program 8.5 gives us
$ a.out

$ second child, parent pid = 1

Note that the shell prints its prompt when the original process terminates, which is
before the second child prints its parent process ID. O
wait3 and wait4 Functions

4.3+BSD provides two additional functions, wait3 and wait4. The only feature pro-
vided by these two functions that isn’t provided by the POSIX.1 functions wait and
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waitpid is an additional argument that allows the kernel to return a summary of the
resources used by the terminated process and all its child processes.

#include <sys/types.h>
#include <sys/wait.h>
#include <sys/time.h>
tinclude <sys/rescurce.h>

pid_t wait3(int *statloc, int options, struct rusage *rusage) ;

pid t wait4(pid_t pid, int *statloc, int options, struct rusage *rusage);

Both return: process ID if OK, 0, or -1 on error

SVR4 also provides the wait3 function in the BSD compatibility library.

The resource information includes information such as the amount of user CPU
time, the amount of system CPU time, number of page faults, number of signals
received, and the like. Refer to the getrusage(2) manual page for additional details.
This resource information is available only for terminated child processes, not for
stopped child processes. (This resource information differs from the resource limits we
described in Section 7.11.) Figure 8.4 details the different arguments supported by the
various wait functions.

Function pid aptions rusage || POSIX.1 SVR4 4.3+BSD
wait . . .
waitpid . . . . .
wait3 . . . .
waitd . .

Figure 8.4 Arguments supported by various wait functions on different systems.

Race Conditions

For our purposes a race condition occurs when multiple processes are trying to do
something with shared data and the final outcome depends on the order in which the
processes run. The fork function is a lively breeding ground for race conditions, if any
of the logic after the fork either explicitly or implicitly depends on whether the parent
or child runs first after the fork. In general we cannot predict which process runs first.
Even if we knew which process would run first, what happens after that process starts
running depends on the system load and the kernel’s scheduling algorithm.

We saw a potential race condition in Program 8.5 when the second child printed its
parent process ID. If the second child runs before the first child, then its parent process
will be the first child. But if the first child runs first and has enough time to exit, then
the parent process of the second child is init. Even calling sleep, as we did, guaran-
tees nothing. If the system was heavily loaded, the second child could resume after
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sleep returns, before the first child has a chance to run. Problems of this form can be
hard to debug because they tend to work “most of the time.”

If a process wants to wait for a child to terminate, it must call one of the wait func-
tions. If a process wants to wait for its parent to terminate, as in Program 8.5, a loop of
the following form could be used

while (getppid() '= 1)
sleep (1) ;

The problem with this type of loop (called polling) is that it wastes CPU time, since the
caller is woken up every second to test the condition.

To avoid race conditions and to avoid polling, some form of signaling is required
between multiple processes. Signals can be used, and we describe one way to do this in
Section 10.16. Various forms of interprocess communication (IPC) can also be used.
We'll discuss some of these in Chapters 14 and 15.

For a parent and child relationship, we often have the following scenario. After the
fork both the parent and child have something to do. For example, the parent could
update a record in a log file with the child’s process ID, and the child might have to cre-
ate a file for the parent. In this example we require that each process tell the other when
it has finished its initial set of operations, and that each wait for the other to complete,
before heading off on its own. The scenario is

#include “"ourhdr.h"
TELL WAIT(); /* set things up for TELL xxx & WAIT xxx */

if ( (pid = fork()) < 0)
err sys("fork error"):;

else if (pid == 0) { /* child */
/* child does whatever is necessary ... */
TELL_PARENT (getppid()); /* tell parent we're done */
WAIT PARENT(); /* and wait for parent */
/* and the child continues on its way ... */
exit (0);

}

/* parent does whatever is necessary ... */

TELL CHILD (pid): /* tell child we’re done */

WAIT CHILD(); /* and wait for child */

/* and the parent continues on its way ... */

exit (0);

We assume that the header ourhdr . h defines whatever variables are required. The five
routines TELL_WAIT, TELL_PARENT, TELL _CHILD, WAIT PARENT, and WAI T CHILD
can be either macros or actual functions.
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We'll show various ways to implement these TELL and WAIT routines in later chap-
ters: Section 10.16 shows an implementation using signals, Section 15.2 shows an imple-
mentation using stream pipes. Let’s look at an example that uses these five routines.

ple

Program 8.6 outputs two strings: one from the child and one from the parent. It con-
tains a race condition because the output depends on the order in which the processes
are run by the kernel and for how long each process runs.

#include <sys/types.h>
#include "ourhdr.h"

static void charatatime (char *);
int
main(void)

{
pid t  pid;

if ( (pid = fork()) < 0)
err sys("fork erroxr"):;
else if (pid = 0) {
charatatime ("output from child\n");
} else {
charatatime ("output from parent\n"):
}
exit (0);
}

static void
charatatime (char *str)

{

char *ptr;
int c;
setbuf (stdout, NULL): /* set unbuffered */

for (ptr = str; c = *ptr++; )
putc(c, stdout);

Program 8.6 Program with a race condition.

We set the standard output unbuffered, so that every character output generates a
write. The goal in this example is to allow the kernel to switch between the two pro-
cesses as often as possible to demonstrate the race condition. (If we didn’t do this we
might never see the type of output that follows. Not seeing the erroneous output
doesn’t mean that the race condition doesn’t exist, it just means that we can’t see it on
this particular system.) The following actual output shows how the results can vary.
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$ a.out

cutput from child

output from parent

$ a.out

oouuttppuutt ffrroomm cphairledn
t

S a.out

ocouuttppuutt ffrroomm pcahrielndt

$ a.out
ccutput from parent
utput from child

We need to change Program 8.6 to use the TELL and WAIT functions. Program 8.7 does
this. The lines preceded by a plus sign are new lines.

#include <sys/types.h>
#include "ourhdr.h"

static void charatatime (char *);

int
main (void)
{
pid t pid;

+ TELL WAIT();
1if ( (pid = fork()) < 0)

err_sys ("fork error");
else if (pid == 0) {

+ WAIT PARENT () /* parent goes first */
charatatime ("output from child\n");
} else {
charatatime ("output from parent\n"});
+ TELL_CHILD(pid};
}
exit (0);

}

static veoid
charatatime (char #*str)

{

char *ptr;
int c;
setbuf (stdout, NULL); /* set unbuffered */

for (ptr = str; c = *ptr++; )
putc(c, stdout);

Program 8.7 Modification of Program 8.6 to avoid race condition.
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When we run this program the output is as we expect—there is no intermixing of out-
put from the two processes.
In Program 8.7 the parent goes first. If we change the lines following the fork to be

else if (pid == 0) {
charatatime ("output from child\n");
TELL PARENT (getppid());
} else {
WAIT CHILD(); /* child goes first */
charatatime ("output from parent\n"):
}

the child goes first. Exercise 8.3 continues this example. m]

exec Functions

We mentioned in Section 8.3 that one use of the fork function was to create a new pro-
cess (the child) that then causes another program to be executed by calling one of the
exec functions. When a process calls one of the exec functions, that process is com-
pletely replaced by the new program, and the new program starts executing at its main
function. The process ID does not change across an exec because a new process is not
careated. exec merely replaces the current process (its text, data, heap, and stack seg-
ments) with a brand new program from disk.

There are six different exec functions, but we'll often just refer to “the exec func-
tion,” which means we could use any of the six different functions. These six functions
round out the Unix process control primitives. With fork we can create new processes,
and with the exec functions we can initiate new programs. The exit function and the
twowait functions handle termination and waiting for termination. These are the only
process control primitives we need. We'll use these primitives in later sections to build
additional functions such as popen and system.

#include <unistd.h>
int execl(const char *pathname, const char *argd, ... /* (char *) 0 */ );
int execv(const char *pathname, char *const argu[]):

int execle(const char *pathname, const char *arg0,
/* (char *) 0, char *const envpl] */ );

int execve (const char *pathname, char *const argv[]l, char *const envp[]);
int execlp (const char *filename, const char *argd, ... /* (char *) 0 */ );

int execvp (const char *filename, char *const argu([]);

All six return: -1 on error, no return on success
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The first difference in these functions is that the first four take a pathname argument
while the last two take a filename argument. When a filename argument is specified

* if filename contains a slash, it is taken as a pathname,

* otherwise, the executable file is searched for in the directories specified by the
PATH environment variable.

The PATH variable contains a list of directories (called path prefixes) that are separated
by colons. For example, the name=value environment string

PATH=/bin:/usr/bin:/usr/local/bin/:.
specifies four directories to search. (A zero-length prefix also means the current direc-

tory. It can be specified as a colon at the beginning of the value, two colons in a row, ora
colon at the end of the value.)

There are security reasons for never including the current directory in the search path. See
Garfinkel and Spafford [1991].

If either of the two functions, execlp or execvp, finds an executable file using one
of the path prefixes, but the file isn’t a machine executable that was generated by the
link editor, it assumes the file is a shell script and tries to invoke /bin/sh with the file-
name as input to the shell.

The next difference concerns the passing of the argument list (1 stands for list and v
stands for vector). The functions execl, execlp, and execle require each of the
command-line arguments to the new program to be specified as separate arguments,
We mark the end of the arguments with a null pointer. For the other three functions
(execv, execvp, and execve) we have to build an array of pointers to the arguments,
and the address of this array is the argument to these three functions.

Before using ANSI C prototypes, the normal way to show the command-line argu-
ments for the three functions execl, execle, and execlp was

char *arg0, char *argl, ..., char *argn, (char *) 0

This specifically shows that the final command-line argument is followed by a null
pointer. If this null pointer is specified by the constant 0, we must explicitly cast it to a
pointer, because if we don’t it's interpreted as an integer argument. If the size of an
integer is different from the size of a char *, the actual arguments to the exec function
will be wrong,

The final difference is the passing of the environment list to the new program. The
two functions whose name ends in an e (execle and execve) allow us to pass a
pointer to an array of pointers to the environment strings. The other four functions,
however, use the environ variable in the calling process to copy the existing environ-
ment for the new program. (Recall our discussion of the environment strings in
Section 7.9 and Figure 7.5. We mentioned that if the system supported functions such as
setenv and putenv we could change the current environment and the environment of
any subsequent child processes, but we couldn’t affect the environment of the parent
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process.) Normally a process allows its environment to be propagated to its children,

but there are cases when a process wants to specify a certain environment for a child.

One example of the latter is the login program when a new login shell is initiated.

Normally login creates a specific environment with only a few variables defined and

lets us, through the shell start-up file, add variables to the environment when we log in.
Before using ANSI C prototypes, the arguments to execle were shown as

char *pathname, char *arg0d, ..., char *argn, (char *) 0, char *envp[]

This specifically shows that the final argument is the address of the array of character
pointers to the environment strings. The ANSI C prototype doesn’t show this, since all
the command-line arguments, the null pointer, and the envp pointer are shown with the
ellipsis notation (. . .).

The arguments for these six exec functions are hard to remember. The letters in the
function names help somewhat. The letter p means the function takes a filename argu-
ment and uses the PATH environment variable to find the executable file. The letter 1
means the function takes a list of arguments and is mutually exclusive with the letter v,
which means it takes an argv[] vector. Finally the letter e means the function takes an
envp[] array, instead of using the current environment. Figure 8.5 shows the differ-
ences between these six functions.

Function pathname filename Arg list argv(] environ envp ]
execl . .
execlp . .
execle . - -
execv .
execvp .
Eexecve . - .
(letter in name) P 1 v e

Figure 8.5 Differences between the six exec functions.

Every system has a limit on the total size of the argument list and the environment
list. From Figure 2.7 this limit is given by ARG MAX. This value must be at least 4096
bytes on a POSIX.1 system. We sometimes encounter this limit when using the shell’s
filename expansion feature to generate a list of filenames. For example, the command

grep POSIX SOURCE /usr/include/*/*.h
can generate a shell error of the form
arg list too long

on some systems.

Historically, System V has had a limit of 5120 bytes. 4.3BSD and 4.3+BSD are distributed with
a limit of 20,480 bytes. The system used by the author (see the output from Program 2.1)
allows up to a megabyte!
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We've mentioned that the process ID does not change after an exec, but there are
additional properties that the new program inherits from the calling process:

* process ID and parent process ID
¢ real user ID and real group ID
¢ supplementary group IDs

* process group ID

* session ID

* controlling terminal

e time left until alarm clock

* current working directory

* root directory

 file mode creation mask

* file locks

® process signal mask

¢ pending signals

* resource limits

® tms_utime,tms_stime, tms_cutime, and tms_ustime values

The handling of open files depends on the value of the close-on-exec flag for each
descriptor. Recall from Figure 3.2 and our mention of the FD_CLOEXEC flag in
Section 3.13, that every open descriptor in a process has a close-on-exec flag. If this flag
is set, the descriptor is closed across an exec. Otherwise the descriptor is left open
across the exec. Note that the default is to leave the descriptor open across the exec,
unless we specifically set the close-on-exec flag using fcntl.

POSIX.1 specifically requires that open directory streams (recall the opendir func-
tion from Section 4.21) be closed across an exec. This is normally done by the
opendir function calling fcntl to set the close-on-exec flag for the descriptor corre-
sponding to the open directory stream.

Note that the real user ID and the real group ID remain the same across the exec,
but the effective IDs can change, depending on the status of the set-user-ID and the set-
group-ID bits for the program file that is executed. If the set-user-ID bit is set for the
new program, the effective user ID becomes the owner ID of the program file. Other-
wise the effective user ID is not changed (it’s not set to the real user ID). The group ID
is handled in the same way.

In many Unix implementations only one of these six functions, execve, is a system
call within the kernel. The other five are just library functions that eventually invoke
this system call. We can picture the relationship between these six functions as shown
in Figure 8.6. In this arrangement the library functions execlp and execvp process
the PATH environment variable, looking for the first path prefix that contains an exe-
cutable file named filename.
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execlp execl execle
build argv build argv build argv
Y
execv try each = execv i execve
P PATH prefix environ (system call)

Figure 8.6 Relationship of the six exec functions.

mple

Program 8.8 demonstrates the exec functions.

#include <sys/types.h>
#include <sys/wait .h>
#include "ourhdr.h"

char *env_init[] = { "USER=unknown", "PATH=/tmp", NULL };

int
main (void)
{
pid t pid;

if ( (pid = fork()) < 0)
err_sys("fork error");

else if (pid == 0) { /* specify pathname, specify environment */

if (execle("/home/stevens/bin/echoall”,
"echoall”, "myargl", "MY ARG2", (char *) O,
env_init) < 0)
err sys("execle error");
}
if (waitpid(pid, NULL, 0) < 0}
err sys("wait error"):

if ( (pid = fork()) < 0)
err sys("fork error");
else if (pid == 0} {( /* specify filename, inherit environment
if (execlp("echoall",
"echoall"™, "only 1 arg"”, (char *) 0} < 0)
err sys("execlp error");
}
exit (0);

Program 8.8 Example of exec functions.
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We first call execle, which requires a pathname and a specific environment. The
next call is to execlp, which uses a filename and passes the caller’s environment to the
new program. The only reason the call to execlp works is because the directory
/home /stevens/bin is one of the current path prefixes. Note also that we set the first
argument, argv[0] in the new program, to be the filename component of the path-
name. Some shells set this argument to be the complete pathname.

The program echoall that is execed twice in Program 8.8 is shown in

Program 8.9. It is a trivial program that echoes all its command-line arguments and its
entire environment list.

#include "ourhdr.h"

int

main (int argc, char *argv(])

{

int ir
char **ptr;
extern char **environ;

for (i = 0; i < argc; i++) /* echo all command-line args */
printf("argv[%dl: %s\n", i, argv([i]);

for (ptr = environ; *ptr != 0; ptr++) /* and all env strings */
printf (*$s\n", *ptr);

exit (0);

Program 8.9 Echo all command-line arguments and all environment strings.

When we execute Program 8.8 we get

$ a.out
argv[0]: echoall
argv([1l]: myargl
argv[2]: MY ARGZ
USER=unknown
PATH=/tmp
argv[0]: echoall
$ argv[1l]: only 1 arg
USER=stevens
HOME=/home/stevens
LOGNAME=stevens

31 moré lines that aren’t shown
EDITOR=/usr/ucb/vi

Notice that the shell prompt appeared between the printing of argv[0] and argv[1]
from the second exec. This is because the parent did not wait for this child process to
finish.

O
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8.10 Changing User IDs and Group IDs

We can set the real user ID and effective user ID with the setuid function. Similarly
we can set the real group ID and the effective group ID with the setgid function.

#include <sys/types.h>
#include <unistd.h>

int setuid(uid t wid);

int setgid(gid t gid);

Both return: 0 if OK, =1 on error

There are rules for who can change the IDs. Let’s consider only the user ID for now.
(Everything we describe for the user ID also applies to the group ID.)

1.

2,

If the process has superuser privileges, the setuid function sets the real user
ID, effective user ID, and saved set-user-ID to wuid.

If the process does not have superuser privileges, but uid equals either the real
user ID or the saved set-user-ID, setuid sets only the effective user ID to uid.
The real user ID and the saved set-user-ID are not changed.

If neither of these two conditions is true, errno is set to EPERM and an error is
returned.

Here we are assuming that POSIX SAVED IDS is true. If this feature isn’t provided,
then delete all references above to the saved set-user-1D.

FIPS 1511 requires this feature.
SVR4 supports the POSIX_SAVED_IDS feature.

We can make a couple of statements about the three user IDs that the kernel main-

tains.

1.

2.

£

Only a superuser process can change the real user ID. Normally the real user ID
is set by the login(1) program when we log in and never changes. Since
login is a superuser process, when it calls setuid it sets all three user IDs.

The effective user ID is set by the exec functions, only if the set-user-ID bit is
set for the program file. If the set-user-ID bit is not set, the exec functions leave
the effective user ID as its current value. We can call setuid at any time to set
the effective user ID to either the real user ID or the saved set-user-ID. Natu-
rally, we can’t set the effective user ID to any random value.

The saved set-user-ID is copied from the effective user ID by exec. This copy is
saved after exec stores the effective user ID from the file’s user ID (if the file’s
set-user-ID bit is set).
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Figure 8.7 summarizes the different ways these three user IDs can be changed.

exec setuid (uid)

. set-user-ID bit off set-user-1D bit on superuser unpeivilcges
real user D unchanged unchanged settouid | unchanged
effective user ID | unchanged set from user ID of settouid | set to uid

program file
saved set-user ID | copied from effective | copied from effective || settouid | unchanged
user ID user ID

Figure 8.7 Different ways to change the three user IDs.

Note that we can obtain only the current value of the real user ID and the effective user
ID with the functions getuid and geteuid from Section 8.2. We can’t obtain the cur-
rent value of the saved set-user-ID.

Example

To see the utility of the saved set-user-ID feature, let's examine the operation of a pro-
gram that uses it. We'll look at the Berkeley t ip(1) program. (The System V cu(1) pro-
gram is similar) Both programs connect to a remote system, either through a direct
connection or by dialing a modem. When tip uses a modem, it has to obtain exclusive
use of the modem through the use of a lock file. This lock file is also shared with the
UUCP program, since both programs can want to use the same modem at the same
time. The following steps take place.

1. The tip program file is owned by the user name uucp and has its set-user-ID
bit set. When we exec it, we have

real user ID = our user ID
effective user ID = uucp
saved set-user-ID = uucp

2. tip accesses the required lock files. These lock files are owned by the user
name uucp, but since the effective user ID is uucp, file access is allowed.

3. tip executes setuid(getuid()). Since we are not a superuser process, this
changes only the effective user ID. We have

real user ID = our user ID (unchanged)
effective user ID = our user ID
saved set-user-ID = uucp (unchanged)

Now the tip process is running with our user ID as its effective user ID. This
means we can access only the files that we have normal access to. We have no
additional permissions.
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4. When we are done, tip executes setuid (uucpuid), where uucpuid is the
numerical user ID for the user name uucp. (This was probably saved by tip
when it started by calling geteuid. We are not implying that it searches the
password file for this numerical user ID.) This call is allowed because the argu-
ment to setuid equals the saved set-user-ID. (This is why we need the saved
set-user-ID.) Now we have

real user ID = our user ID (unchanged)
effective user ID = uucp
saved set-user-ID = uucp (unchanged)

5. tip can now operate on its lock files, to release them, since its effective user ID
is uucp.

By using the saved set-user-ID in this fashion, we can use the extra privileges allowed
us by the set-user-ID of the program file at the beginning of the process and at the end
of the process. Most of the time the process is running, however, it runs with our nor-
mal permissions. If we weren't able to switch back to the saved set-user-ID at the end,
we might be tempted to retain the extra permissions the whole time we were running
(which is asking for trouble).

Let’s look at what happens if tip spawns a shell for us while its running. (The
shell is spawned using fork and exec.) Since the real user ID and effective user ID are
both our normal user ID (step 3 above), the shell has no extra permissions. The shell
can’t access the saved set-user-ID that is set to uucp while tip is running, because the
saved set-user-ID for the shell is copied from the effective user ID by exec. So in the
child process that does the exec, all three user IDs are our normal user ID.

Our description of how the setuid function is used by tip is not correct if the pro-
gram is set-user-ID to root. This is because a call to setuid with superuser privileges
sets all three user IDs. For the example to work as described, we need setuid to set
only the effective user ID. u}

setreuid and setregid Functions

4.3+BSD supports the swapping of the real user ID and the effective user ID with the
setreuid function.

#include <sys/types.h>
#include <unistd.h>

int setreuid(uid t ruid, uid t euid);
int setregid(gid t rgid, gid_t egid);

Both return: 0 if OK, —1 on error
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The rule is simple: an unprivileged user can always swap between the real user ID and
the effective user ID. This allows a set-user-ID program to swap to the user’s normal
permissions and swap back again later for set-user-ID operations. When the saved set-
user-ID feature was introduced with POSIX.1, the rule was enhanced to also allow an
unprivileged user to set its effective user ID to its saved set-user-ID.

SVR4 also provides these two functions in the BSD compatibility library.

4.3BSD didn’t have the saved set-user-ID feature described earlier. It used setreuid and
setregid instead. This allowed an unprivileged user to swap back and forth between the
two values, and the tip program under 4.3BSD was written to use this feature. Be aware,
however, that when this version of tip spawned a shell it had to set the real user ID to the
normal user ID before the exec. If it didn’t do this, the real user ID could be uucp (from the
swap done by setreuid) and the shell process could call setreuid to swap the two and
assume the permissions of uucp. tip sets both the real user ID and the effective user ID to the
normal user ID in the child as a defensive programming measure.

seteuid and setegid Functions

A proposed change to POSIX.1 includes the two functions seteuid and setegid.
Only the effective user ID or effective group ID is changed.

#include <sys/types.h>
#include <unistd.h>

int seteuid(uid_t wuid);

int setegid(gid t gid);

Both return: 0 if OK, -1 on error

An unprivileged user can set its effective user ID to either its real user ID or its saved
set-user-ID. For a privileged user only the effective user ID is set to uid. (This differs
from the setuid function, which changes all three user IDs:) This proposed POSIX.1
change also requires that the saved set-user-ID always be supported.

Both SVR4 and 4.3+BSD support these two functions.

Figure 8.8 summarizes all the functions that we've described in this section that
modify the three different user IDs.

Group IDs

Everything that we’ve said so far in this section also applies in a similar fashion to
group IDs. The supplementary group IDs are not affected by the setgid function.
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superuser superuser superuser
setreuid (ruid, euid) setuid (uid) seteuid (uid)

Uiy wd
ruid
y \ ‘_/
real unpriviliged ™| effective unpriviliged saved
user ID oy setreuid user ID setreuid set-user-ID
__________-_____________--".
exec of
set-user-1D
unpriviliged unpriviliged
setuid or seteuid setuidor seteuid

Figure 8.8 Summary of all the functions that set the different user IDs.

Interpreter Files

Both SVR4 and 4.3+BSD support interpreter files. These files are text files that begin
with a line of the form

#! pathname [ optional-argument |

The space between the exclamation point and the pathname is optional. The most com-
mon of these begin with the line

#!/bin/sh

The pathname is normally an absolute pathname, since no special operations are per-
formed on it (i.e.,, PATH is not used). The recognition of these files is done within the
kernel as part of processing the exec system call. The actual file that gets execed by
the kernel is not the interpreter file, but the file specified by the pathname on the first line
of the interpreter file. Be sure to differentiate between the interpreter file (a text file that
begins with #!) and the interpreter (specified by the pathname on the first line of the
interpreter file).

Be aware that many systems have a limit of 32 characters for the first line of an
interpreter file. This includes the #!, the pathname, the optional argument, and any
spaces.
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Example

Let’s look at an actual example, to see what the kernel does with the arguments to the
exec function when the file being execed is an interpreter file and the optional argu-
ment on the first line of the interpreter file. Program 8.10 execs an interpreter file.

#include <sys/types.h>

#include <sys/wait.h>
#include "ourhdr.h"
int

main (void)
{
pid t pid;
if ( (pid = fork()) < 0)
err_sys("fork error");

else if (pid == 0) { /* child */
if (execl("/home/stevens/bin/testinterp”,
"testinterp”, "myargl®, "MY ARG2", (char *) 0) < 0)

err sys("execl error"):

}

if (waitpid(pid, NULL, 0) < 0) /* parent */
err_ sys("waitpid error");
exit (0);

Program 8.10 A program that execs an interpreter file.

The following shows the contents of the one line interpreter file that is execed, and the
result from running Program 8.10:

$ cat /home/stevens/bin/testinterp
#!/home/stevens/bin/echoarg foo

$ a.out

argv[0]: /home/stevens/bin/echcarg
argv[l]: foo

argv([2]: /home/stevens/bin/testinterp
argv[3]: myargl

argv[4]: MY ARG2

The program echoarg (the interpreter) just echoes each of its command-line argu-
ments. (This is Program 7.2.) Note that when the kernel execs the interpreter
(/home/stevens/bin/echoarg), argv([0] is the pathname of the interpreter,
argv[1] is the optional argument from the interpreter file, and the remaining argu-
ments are the pathname (/home/stevens/bin/testinterp) and the second and
third arguments from the call to execl in Program 8.10 (myargl and MY ARG2).
argv[1l] and argv([2] from the call to execl have been shifted right two positions.
Note that the kernel takes the pathname from the execl call, instead of the first argu-
ment (testinterp), on the assumption that the pathname might contain more informa-
tion than the first argument. o
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ple

A common use for the optional argument following the interpreter pathname is to spec-
ify the —£ option for programs that support this option. For example, an awk(1) pro-
gram can be executed as

awk —-f myfile
which tells awk to read the awk program from the file myfile.

There are two versions of the awk language on many systems. awk is often called “old awk”
and corresponds to the original version distributed with Version 7. nawk (new awk) contains
numerous enhancements and corresponds to the language described in Aho, Kernighan, and
Weinberger [1988]. This newer version provides access to the command-line arguments, which
we need for the example that follows. SVR4 provides both, with awk and ocawk being the
same, and a note that awk will be nawk in a future release. The POSIX.2 draft specifies the new
language as just awk, and that’s what we’ll use in this text.

Using the —f option with an interpreter file lets us write

#!/bin/awk -f

(awk program follows in the interpreter file)
For example, Program 8.11 shows /usr/local/bin/awkexample (an interpreter file).
#!/bin/awk —-f

BEGIN {
for (i = 0; i < BRGC; i++)
printf "ARGV([%d] = %s\n", i, ARGVI[i]
exit

Program 8.11 An awk program as an interpreter file.

If one of the path prefixes is /usr/local/bin, we can execute Program 8.11 (assuming
we've turned on the execute bit for the file) as

$ awkexample filel FILENAME2 f£3
ARGV([0] = /bin/awk

ARGV[1l] = filel

ARGV([2] = FILENAME2

ARGV[3] £3

When /bin/awk is executed, its command-line arguments are
/bin/awk -f /usr/local/bin/awkexample filel FILENAMEZ f3

The pathname of the interpreter file (/usr/local/bin/awkexample) is passed to the
interpreter. The filename portion of this pathname (what we typed to the shell) isn’t
adequate, because the interpreter (/bin/awk in this example) can’t be expected to use
the PATH variable to locate files. When awk reads the interpreter file it ignores the first
line, since the pound sign is awk’s comment character.
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We can verify these command-line arguments with the following commands.

$ su become superuser

Password: enter superuser password

# mv /bin/awk /bin/awk.save save the original program

# cp /home/stevens/bin/echoarg /bin/awk and replace it temporarily

# suspend suspend the superuser shell using job control
[1] + Stopped su

$ awkexample filel FILENAME2 f£3
argv([0]: /bin/awk

argv(l]: -f

argv[2]: /usr/local/bin/awkexample
argv[3]: filel

argv[4]: FILENAMEZ2

argv[5]: £3

$ fg resume superuser shell using job control
su

# mv /bin/awk.save /bin/awk restore the original program

# exit and exit the superuser shell

In this example the - f option for the interpreter is required. As we said, this tells awk
where to look for the awk program. If we remove the —f option from the interpreter
file, the results are

$ awkexample filel FILENAME2 f£3
/bin/awk: syntax error at source line 1
context is

>>> /usr/local <<< /bin/awkexample
/bin/awk: bailing out at source line 1

This is because the command-line arguments in this case are
/bin/awk /usr/local/bin/awkexample filel FILENAMEZ f£3

and awk is trying to interpret the string /usr/local/bin/awkexample as an awk
program. If we couldn’t pass at least a single optional argument to the interpreter (-£
in this case), these interpreter files would be usable only with the shells. o

Are interpreter files required? Not really. They provide an efficiency gain for the
user at some expense in the kernel (since it's the kernel that recognizes these files).
Interpreter files are useful for the following reasons.

1. They hide the fact that certain programs are scripts in some other language. For
example, to execute Program 8.11 we just say

awkexample optional-arguments

instead of needing to know that the program is really an awk script that we
would otherwise have to execute as

awk —-f awkexample optional-arguments
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8.12

2.

Interpreter scripts provide an efficiency gain. Consider the previous example
again. We could still hide the fact that the program is an awk script, by wrap-
ping it in a shell script:
awk 'BEGIN {
for (i = 0; 1 < ARGC; 1i++)
printf "ARGV[%d] = %s\n", i, ARGV[i]
exit
pros*
The problem with this solution is that more work is required. First the shell
reads the command and tries to execlp the filename. Since the shell script is an
executable file, but isn’t a machine executable, an error is returned and execlp
assumes the file is a shell script (which it is). Then /bin/sh is execed with the
pathname of the shell script as its argument. The shell correctly runs our seript,
but to run the awk program, it does a fork, exec, and wait. There is more
overhead in replacing an interpreter script with a shell script.

Interpreter scripts let us write shell scripts using shells other than /bin/sh.
When execlp finds an executable file that isn’t a machine executable it has to
choose a shell to invoke, and it always uses /bin/sh. Using an interpreter
script, however, we can just write

#!/bin/csh
(C shell script follows in the interpreter file)

Again, we could wrap this all in a /bin/sh script (that invokes the C shell), as
we described earlier, but more overhead is required.

None of this would work as we've shown if the three shells and awk didn’t use the
pound sign as their comment character.

system Function

It is convenient to execute a command string from within a program. For example,
assume we want to put a time and date stamp into a certain file. We could use the func-
tions we describe in Section 6.9 to do this—call time to get the current calendar time,
next call localtime to convert it to a broken-down time, then call st rft ime to format
the result, and write the results to the file. It is much easier, however, to say

system("date > file");

ANSI C defines the system function, but its operation is strongly system dependent.

The system function is not defined by POSIX.1 because it is not an interface to the operating
system, but really an interface to a shell. Therefore it is being standardized by POSIX.2. The
following description corresponds to Draft 11.2 of the POSIX.2 standard.
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#include <stdlib.h>

int system(const char *cmdstring) ;

Returns: (see below)

If cmdstring is a null pointer, system returns nonzero only if a command processor
is available. This feature determines if the system function is supported on a given
operating system. Under Unix system is always available.

Since system is implemented by calling fork, exec, and waitpid, there are three
different types of return values:

1. If either the fork fails or waitpid returns an error other than EINTR, system
returns —1 with errno set to indicate the error.

2. If the exec fails (implying that the shell can’t be executed) the return value is as
if the shell had executed exit (127).

3. Otherwise all three functions succeed (fork, exec, and waitpid) and the
return value from system is the termination status of the shell, in the format
specified for waitpid.

Many current implementations of system return an error if waitpid is interrupted
by a caught signal (EINTR). The requirement that system not return an error in this
case was added to a recent draft of POSIX.2. (We discuss interrupted system calls in
Section 10.5.)

Program 8.12 is an implementation of the system function. The one feature that it
doesn't handle is signals. We'll update this function with signal handling in
Section 10.18.

The shell’s —c option tells it to take the next command-line argument (cmdstring in
this case) as its command input (instead of reading from standard input or from a given
file). The shell parses this null terminated C string and breaks it up into separate
command-line arguments for the actual command. The actual command string that is
passed to the shell can contain any valid shell commands. For example, input and out-
put redirection using < and > can be used.

If we didn’t use the shell to execute the command, but tried to execute the com-
mand ourself, it would be harder. First, we would want to call execlp instead of
execl, to use the PATH variable, like the shell. We would also have to break up the null
terminated C string into separate command-line arguments for the call to execlp.
Finally, we wouldn’t be able to use any of the shell metacharacters.

Note that we call _exit instead of exit. This is to prevent any standard 1/0
buffers (which would have been copied from the parent to the child across the fork)
from being flushed in the child.
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#include <sys/types.h>
#include <sys/wait.h>
#include <errno.h>
#include <unistd.h>
int
system(const char *cmdstring) /* wversion without signal handling */
{
pid t pid;
int status;
if (cmdstring == NULL)
return(1); /* always a command processor with Unix */
if ( (pid = fork()) < 0) {
status = -1; /* probably out of processes */
} else if (pid == 0) { /* child */
execl ("/bin/sh", "sh", "-c", cmdstring, {(char *) 0);
_exit(127); /* execl error */
} else { /* parent */
while (waitpid(pid, &status, 0) < 0)
if (errnc '= EINTR) {
status = —-1; /* error cther than EINTR from waitpid() */
break;
t
}
return (status);

Program 8.12 The system function (without signal handling).

We can test this version of system with Program 8.13. (The pr_exit function was

defined in Program 8.3.) Running Program 8.13 gives us

$ a.out

Thu Aug 29 14:24:19 MST 1991

normal termination, exit status = 0 for date

sh: nosuchcommand: not found

normal terminaticn, exit status = 1 ﬂw nosuchcommand

stevens console Aug 25 11:49
stevens ttyp0 2ug 29 05:56
stevens ttypl Aug 29 05:56
stevens ttyp2 Aug 29 05:56
normal termination, exXit status

44 for exit
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#include <sys/types.h>
¥include <sys/wait.h>
#include "ourhdr.h"
int

main (void)
{
int status;

if ( (status = system("date")) < 0)
errx_sys("system() error");
pr_exit (status);

if ( (status = system("nosuchcommand™)) < 0)
err sys("system() error");
pr_exit (status);

if ( (status = system("who; exit 44")) < 0)
err_sys("system() errcr");
Pr_exit (status);

exit (0);

Program 8.13 Calling the system function.

The advantage in using system, instead of using fork and exec directly, is that
system does all the required error handling and (in our next version of this function in
Section 10.18) all the required signal handling.

Earlier versions of Unix, including SVR3.2 and 4.3BSD, didn’t have the waitpid
function available. Instead, the parent waited for the child, using a statement such as

while ((lastpid = wait (&status)) != pid && lastpid != -1)

r

A problem occurs if the process that calls system has spawned its own children before
calling system. Since the while statement above keeps looping until the child that
was generated by system terminates, if any children of the process terminate before the
process identified by pid, then the process ID and termination status of these other chil-
dren is just discarded by the while statement. Indeed, this inability to wait for a spe-
cific child is one of the reasons given in the POSIX.1 Rationale for including the
waitpid function. We'll see in Section 14.3 that the same problem occurs with the
popen and pclose functions, if the system doesn’t provide a waitpid function.

Set-User-ID Programs

What happens if we call system from a set-user-ID program? This is a security hole
and should never be done. Program 8.14 is a simple program that just calls system for
its command-line argument.
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#include "ourhdr.h"

int
main(int argc, char *argv[])
{

int status;

if (argc < 2)
err_quit ("command-line argument required");

if ( (status = system{argv([1])}) < 0)
err_sys("system() error");
pr__exit {status);

exit (0);

Program 8.14 Execute the command-line argument using system.

We’ll compile this program into the executable file t sys.
Program 8.15 is another simple program that prints its real and effective user IDs.

#include "ourhdr.h"

int

main (veoid)

{
printf("real uid = %d, effective uid = %d\n", getuid(), geteuid()):;
exit (0);

Program 8.15 Print real and effective user IDs.

We'll compile this program into the executable file printuids. Running both pro-
grams gives us the following.

$ tsys printuids normal execution, no special privileges
real uid = 224, effective uid = 224
nermal termination, exit status = 0

§ su become superuser

Password: enter superuser password

# chown root tsys change owner

# chmod u+s tsys make set-user-ID

# 1s -1 tasys verify file’s permissions and owner
—rwsrwxr-x 1 rcot 105737 Aug 18 11:21 tsys

# exit leave superuser shell

$ tsys printuids

real uid = 224, effective uid = 0 oops, this is a security hole

normal termination, exit status = 0

The superuser permissions that we gave the t sys program are retained across the fork
and exec that are done by system.
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8.13

If a process is running with special permissions (either set-user-ID or set-group-ID)
and it wants to spawn another process, it should use fork and exec directly, being cer-
tain to change back to normal permissions after the fork, before calling exec. The
system function should never be used from a set-user-ID or a set-group-ID program.

One reason for this admonition is that system invokes the shell to parse the command string
and the shell uses its IFS variable as the input field separator. Older versions of the shell
didn’t reset this variable to a normal set of characters when invoked. This allowed a malicious
user to set IF'S before system was called, causing system to execute a different program

Process Accounting

Most Unix systems provide an option to do process accounting. When enabled the ker-
nel writes an accounting record each time a process terminates. These accounting
records are typically 32 bytes of binary data with the name of the command, the amount
of CPU time used, the user ID and group ID, the starting time, and so on. We'll take a
closer look at these accounting records in this section, since it gives us a chance to look
at processes again, and a chance to use the fread function from Section 5.9.

Process accounting is not specified by any of the standards. What we describe in this section
corresponds to the implementation under SVR4 and 4.3+BSD. SVR4 provides numerous pro-
grams to process this raw accounting data—see runacet and acctcom, for example,
4.3+BSD provides the sa(8) command to process and summarize the raw accounting data.

A function we haven’t described (acct) enables and disables process accounting.
The only use of this function is from the SVR4 and 4.3+BSD accton(8) command. A
superuser executes accton with a pathname argument to enable accounting. The path-
name is usually /var/adm/pacct, although on older systems it is /usr/adm/acct.
Accounting is turned off by executing accton without any arguments.

The structure of the accounting records is defined in the header <sys/acct.h>
and looks like

typedef u_short comp t; /* 3-bit base 8 exponent; 13-bit fraction */

struct acct
{
char ac_flag; /* flag (see Figure 8.9) */
char ac_stat; /* termination status (signal & core flag only) */
/* (not provided by BSD systems) */
uid t ac _uid; /* real user ID */
gid t ac_gid; /* real group ID */
dev_t ac_tty; /* controlling terminal */
time t ac_btime; /* starting calendar time */
comp_t ac_utime; /* user CPU time (clock ticks) */
comp_t ac_stime; /* system CPU time (clock ticks) */
comp_t ac_etime; /* elapsed time (clock ticks) */
comp _t ac_mem; /* average memory usage */
comp_t ac_io; /* bytes transferred (by read and write) */
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comp t ac_rw; /* blocks read or written */
char ac_comm([8];/* command name: [8] for SVR4, [10] for 4.3+BSD */
}i
Historically, Berkeley systems, including 4.3+BSD, don’t provide the ac_stat variable.

The ac_flag member records certain events during the execution of the process.

These are described in Figure 8.9.
ac_flag Description
BFORK process is the result of fork, but never called exec
ASU process used superuser privileges
BCOMPAT | process used compatibility mode (VAXes only)

BCORE process dumped core (not in SVR4)
AXSIG process was killed by a signal (not in SVR4)

Figure 8.9 Values for ac_flag from accounting record.

The data required for the accounting record (CPU times, number of characters
transferred, etc.) are all kept by the kernel in the process table and initialized whenever
a new process is created (e.g., in the child after a fork). Each accounting record is writ-
ten when the process terminates. This means that the order of the records in the
accounting file corresponds to the termination order of the processes, not the order in
which they were started. To know the starting order we would have to go through the
accounting file and sort by the starting calendar time. But this isn’t perfect, since calen-
dar times are in units of seconds (Section 1.10) and it’s possible for many processes to be
started in any given second. Alternatively, the elapsed time is given in clock ticks,
which are usually between 50 and 100 ticks per second. But we don’t know the ending
time of a process, all we know is its starting time and ending order. This means that
even though the elapsed time is more accurate than the starting time, we still can’t
reconstruct the exact starting order of various processes, given the data in the account-
ing file.

The accounting records correspond to processes, not programs. A new record is ini-
tialized by the kernel for the child after a fork, not when a new program is execed.
Although exec doesn’t create a new accounting record, the command name changes
and the AFORK flag is cleared. This means that, if we have a chain of three programs (A
execs B, then B execs C, and C exits), only a single accounting record is written. The
command name in the record corresponds to program C but the CPU times, for exam-
ple, are the sum for programs A, B, and C.

Example

To have some accounting data to examine, we'll run Program 8.16, which calls fork
four times. Each child does something different and then terminates. A picture of what
this program is doing is shown in Figure 8.10.

Program 8.17 prints out selected fields from the accounting records.
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#include <signal.h>
#include "ourhdr.h"

main (void)

pid t pid;

if ( (pid = fork()) < 0)
err sys("fork error"):
else if (pid != 0) {
sleep(2);
exit(2);

if ( (pid = fork()) < 0)
err sys("fork error");
else if (pid != Q) {
sleep(4);
abort () ;

if ( (pid = fork()) < 0)
err sys("fork erroxr");
else if (pid '= 0) {

/t
/*

/*

/*

execl ("/usr/bin/dd", "dd",

exit (7);

if ( (pid = fork()) < 0)
err_sys("fork error"):
else if (pid != 0) {
sleep (B);
exit (0);

sleep(6);
kill (getpid (), SIGKILL):
exit (6):

/*

/t

/*

I/ *

/*
/*

parent */

terminate with exit status 2 */

first child */

terminate with core dump */

second child */

"if=/boot", "of=/dev/null", NULL) ;
shouldn’t get here */

third child */

normal exit */

fourth child */

terminate with signal, no core dump */
shouldn’t get here */

Program 8.16 Program to generate accounting data.
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%mnﬂdﬂd

execl

fusr/bin/dd

%&\ third child

sleep(B)
exit (0)

Figure 8.10 Process structure for accounting example.

parent
sleep(2) % first child
exit (2)
sleep(4)
abort ()
We then do the following steps:

%&\ fourth child

sleep (6)
kill()

1. Become superuser and enable accounting, with the accton command. Note
that, when this command terminates, accounting should be on, therefore the
first record in the accounting file should be from this command.

2 Run Program 8.16. This should append five records to the accounting file (one
for the parent and one for each of the four children).

A new process is not created by the execl in the second child. There is only a
single accounting record for the second child.

3. Become superuser and turn accounting off. Since accounting is off when this
accton command terminates, it should not appear in the accounting file.

4. Run Program 8.17 to print the selected fields from the accounting file.

The output from step 4 follows. We have appended to each line the description of the
process in italics, for the discussion later.

accton
dd
a.out
a.out
a.out
a.out

e

om0 o

7,
37,
128,
274,
360,
484,

chars
chars
chars
chars
chars
chars

64,
221888,
0!’

o,

0,

o,

stat
stat
stat
stat

stat =
stat =

O Wb ooo

oo

second child
parent

first child
fourth child
third child



#include <sys/types.h>

#include <sys/acct.h>
#include "ourhdr.h"
#define ACCTFILE " /var/adm/pacct™
static unsigned long compt2ulong (comp_t);
int
main (void)
{
struct acct acdata;
FILE *fp;

if ( (fp = fopen(ACCTFILE, "r")) == NULL)
err_sys("can't open %s", ACCTFILE);
while (fread(&acdata, sizeof(acdata), 1, fp) == 1) {
printf("%-*.*s e = %6ld, chars = %71d, "
"stat = %3u: %c %c %c %c\n", sizeof (acdata.ac_comm),
sizeof (acdata.ac_comm), acdata.ac_comm,
compt2ulong (acdata.ac_etime), compt2ulong (acdata.ac_io),
(unsigned char) acdata.ac_stat,
#ifdef ACORE /* SVR4 doesn’t define ACORE */
acdata.ac flag & ACCRE ? 'D" : ' ',

felse
r J’

#endif
#ifdef AXSIG /* SVR4 doesn’'t define AXSIG */
acdata.ac_flag & AXSIG ? "X’ : ' ’,

#else
r l,

#endif

acdata.ac_flag & AFORK ? 'F’ : '
acdata.ac_flag & ASU ? 'S’ : '

-
—
-~

}
if (ferror(fp))
err sys("read error"):;
exit (0);
}

static unsigned long
compt2ulong (comp_t comptime) /* convert comp_t to unsigned long */

{
unsigned long val;
int exp;

val comptime & 017777; /* 13-bit fraction */
exp = (comptime >> 13) & 7; /* 3-bit exponent (0-7) */
while (exp—— > 0)
val *= 8;
return(val);

Program 8.17 Print selected fields from system’s accounting file.
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The elapsed time values are measured in units of CLK_TCK. From Figure 2.6 the
value on this system is 60. For example, the sleep (2) in the parent corresponds to the
elapsed time of 128 clock ticks. For the first child the sleep(4) becomes 274 clock
ticks. Notice that the amount of time a process sleeps is not exact. (We'll return to the
sleep function in Chapter 10.) Also, the calls to fork and exit take some amount of
time.

Note that the ac_stat member is not the true termination status of the process. It
corresponds to a portion of the termination status that we discussed in Section 8.6. The
only information in this byte is a core-flag bit (usually the high-order bit) and the signal
number (usually the seven low-order bits), if the process terminated abnormally. If the
process terminated normally, we are not able to obtain the exit status from the
accounting file. For the first child this value is 128+6. The 128 is the core flag bit and 6
happens to be the value on this system for SIGABRT (which is generated by the call to
abort). The value 9 for the fourth child corresponds to the value of SIGKILL. We
can’t tell from the accounting data that the parent’s argument to exit was 2, and the
third child’s argument to exit was 0.

The size of the file /boot that the dd process copies in the second child is 110,888
bytes. The number of characters of [/O is just over twice this value. It is twice the
value since 110,888 bytes are read in, then 110,888 bytes are written out. Even though
the output goes to the null device, they are still accounted for.

The ac_flag values are as we expect. The F flag is set for all the child processes
except the second child that does the execl. TheF flag is not set for the parent because
the interactive shell that executed the parent did a fork and then an exec of the a. out
file. The core dump flag (D) is on for the first child process that calls abort. Since
abort generates a SIGABRT signal to generate the core dump, the X flag is also on for
this process, since it was terminated by a signal. The X flag is also on for the fourth
child, but the SIGKILL signal does not generate a core dump—it only terminates the

As a final note, the first child has a 0 count for the number of characters of I/0, yet
this process generated a core file. It appears that the [/O required to write the core
file is not charged to the process. O

User Identification

Any process can find out its real and effective user ID and group ID. Sometimes, how-
ever, we want to find out the login name of the user who's running the program. We
could call getpwuid (getuid () ), but what if a single user has multiple login names,
each with the same user ID? (A person might have multiple entries in the password file
with the same user ID to have a different login shell for each entry) The system nor-
mally keeps track of the name we log in under (Section 6.7), and the get 1ogin function
provides a way to fetch that login name.
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#include <unistd.h>

char *getlogin(void) ;

Returns: pointer to string giving login name if OK, NULL on error

This function can fail if the process is not attached to a terminal that a user logged info.
We normally call these processes daemons. We discuss them in Chapter 13.

Given the login name, we can then use it to look up the user in the password file (to
determine the login shell, for example) using get pwnam.

To find the login name, Unix systems have historically called the ttyname function
(Section 11.9) and then tried to find a matching entry in the utmp file (Section 6.7). 4.3+BSD
stores the login name in the process table entry and provides system calls to fetch and store
this name.

- System V provided the cuserid function to return the login name. This function called

getlogin and, if that failed, did a getpwuid (getuid () ). The IEEE Std. 1003.1-1988 speci-
fied cuserid, but it called for the effective user ID to be used, instead of the real user ID. The
final 1990 version of POSIX.1 dropped the cuserid function.

FIPS 151-1 requires a login shell to define the environment variable LOGNAME with the user’s
login name. In 4.3+BSD this variable is set by login and inherited by the login shell. Realize,
however, that a user can modify an environment variable, so we shouldn’t use LOGNAME to
validate the user in any way. Instead, get 1login should be used.

8.15 Process Times

In Section 1.10 we described three times that we can measure: wall clock time, user CPU
time, and system CPU time. Any process can call the times function to obtain these
values for itself and any terminated children.

#include <sys/times.h>

clock_t times (struct tms *buf);

Returns: elapsed wall clock time in clock ticks if OK, —1 on error

This function fills in the tms structure pointed to by buf.

struct tms {

}

r

clock_t tms_utime; /* user CPU time */

clock_t tms_stime; /* system CPU time */

clock_t tms_cutime; /* user CPU time, terminated children */
clock t tms_cstime; /* system CPU time, terminated children */
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Note that the structure does not contain any measurement for the wall clock time.
Instead, the function returns the wall clock time as the value of the function, each time
it's called. This value is measured from some arbitrary point in the past, so we can’t use
its absolute value, instead we use its relative value. For example, we call times and
save the return value. At some later time we call t imes again, and subtract the earlier
return value from the new return value. The difference is the wall clock time. (It is pos-
sible, though unlikely, for a long running process to overflow the wall clock time—see
Exercise 1.6.)

The two structure fields for child processes contain values only for children that we
have waited for.

All the clock_t values returned by this function are converted to seconds using
the number of clock ticks per second—the _SC_CLK_TCK value returned by sysconf
(Section 2.5.4).

Berkeley-derived systems, including 4.3BSD, inherited a version of times from Version 7 that
did not return the wall clock time. Instead, this older version returned 0 if OK or —1 on error.
4.3+BSD supports the POSIX.1 version.

4.3+BSD and SVR4 (in the BSD compatibility library) provide the getrusage(2) function.
This function returns the CPU times, and 14 other values indicating resource usage.

Example

Program 8.18 executes each command-line argument as a shell command string, timing
the command and printing the values from the tms structure. If we run this program
we get:

$ a.out "sleep 5" "date”

command: sleep 5

real: 5.25
user: 0.00
sys: 0.00
child user: 0.02
child sys: 0.13

normal termination, exit status = 0

command: date
Sun Aug 18 09:25:38 MST 1991

real: 0.27
user: 0.00
sys: 0.00
child user: 0.05
child sys: 0.10

normal termination, exit status = 0

In these two examples all the CPU time appears in the child process, which is where the
shell and the command execute.
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#include <sys/times.h>
#include "ourhdr.h"

static void pr_times(clock t, struct tms *, struct tms *);
static void do_cmd(char *);

int

main(int argc, char *argv([])

{

int i;
for (i = 1; i1 < argec: i++)

do_cmd(argv([il); /* once for each command-line arg */
exit (0);

}
static wvoid
do_cmd(char *cmd) /* execute and time the "cmd" */
{
struct tms tmsstart, tmsend:
clock _t start, end;
int status;

fprintf (stderr, "\ncommand: %s\n", cmd);

if ( (start = times(&tmsstart)) == -1) /* starting values */
err_sys("times error");

if ( (status = system(cmd)) < 0) /* execute command */
err_ sys("system() error");

if ( (end = times (&tmsend)) == -1) /* ending wvalues */
err sys{"times error");

pr_times (end-start, &tmsstart, &tmsend);
pr_exit (status);
}
static void
pr_ times(clock_t real, struct tms *tmsstart, struct tms *tmsend)
{

static long clktck = 0;
if (clktck == 0) /* fetch clock ticks per second first time */
if ( (clktck = sysconf(_SC CLK TCK)) < 0)
err sys("sysconf error");
fprintf(stderr, " real: %7.2f\n", real / (double) clktck);
fprintf (stderr, " wuser: %7.2f\n",

(tmsend->tms_utime - tmsstart->tms utime) / (double) clktck);
fprintf (stderr, " sys: %7.2f\n",

(tmsend->tms_stime - tmsstart->tms_stime) / (double) clktck):
fprintf (stderr, " child user: %7.2f\n",

(tmsend->tms_cutime - tmsstart->tms cutime) / (double) clktck);
fprintf (stderr, " child sys: %7.2£\n",

(tmsend->tms_cstime - tmsstart->tms_cstime) / (double) clktck):

Program 8.18 Time and execute all command-line arguments.
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8.16

Let’s rerun the example from Section 1.10.
$ a.out "cd /usr/include; grep _POSIX SOURCE */*.h > /dev/null”

command: cd /usr/include; grep _POSIX SOURCE */*.h > /dev/null

real: 18.67
user: 0.00
sys: 0.02
child user: 0.43
child sys: 4.13

normal termination, exit status = 0

As we expect, all three values (the real time and the child CPU times) are similar to the
values in Section 1.10. m

Summary

A thorough understanding of Unix process control is essential for advanced program-
ming. There are only a few functions to master: fork, the exec family, exit, wait,
and waitpid. These primitives are used in many applications. The fork function also
gave us an opportunity to look at race conditions.

Our examination of the system function and process accounting gave us another
look at all these process control functions. We also looked at another variation of the
exec functions: interpreter files and how they operate. An understanding of the differ-
ent user IDs and group IDs that are provided (real, effective, and saved) is critical to
writing safe set-user-ID programs.

Given an understanding of a single process and its children, in the next chapter we
examine the relationship of a process to other processes—sessions and job control. We
then complete our discussion of processes in Chapter 10 when we describe signals.

Exercises

81 InProgram 8.2 we said that replacing the call to _exit with a call to exit causes the stan-
dard output to be closed. Modify the program to verify that print £ does return —1.

82 Recall the typical arrangement of memory in Figure 7.3. Since the stack frames correspond-
ing to each function call are usually stored in the stack, and since after a vfork the child
runs in the address space of the parent, what happens if the call to vfork is from a function
other than main, and the child does a return from this function after the vfork? Write a
test program to verify this and draw a picture of what’s happening.

8.3 When we execute Program 8.7 one time, as in
$ a.out
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8.5
8.6

8.7

the output is correct. But if we execute the program multiple times, one right after the
other, asin

$ a.out ; a.out ; a.out
output from parent
ooutput from parent
ouotuptut from child
put from parent

output from child
utput from child

the output is not correct. What's happening? How can we correct this? Can this problem
happen if we let the child write its output first?

In Program 8.10 we call execl, specifying the pathname of the interpreter file. If we called
execlp Instead, specifying a filename of testinterp, and if the directory
/home/stevens/bin was a path prefix, what would be printed as argv[2] when the
program is run?

How can a process obtain its saved set-user-ID?

Write a program that creates a zombie and then call system to execute the ps(1) command
to verify that the process is a zombie.

We mentioned in Section 8.9 that POSIX.1 requires that open directory streams be closed
across an exec. Verify this as follows: call opendir for the root directory, peek at your sys-
tem’s implementation of the DIR structure, and print the close-on-exec flag. Then open the
same directory for reading and print the close-on-exec flag.




9'1

9.2

Process Relationships

Introduction

We learned in the previous chapter that there are relationships between different pro-
cesses. First, every process has a parent process. The parent is notified when the child
terminates, and the parent can obtain the child’s exit status. We also mentioned process
groups when we described the waitpid function (Section 8.6) and how we can wait for
any process in a process group to terminate.

In this chapter we’ll look at process groups in more detail, and the new concept of
sessions that was introduced by POSIX.1. We also look at the relationship between the
login shell that is invoked for us when we log in and all the processes that we start from
our login shell.

It is impossible to describe these relationships without talking about signals, and to
talk about signals we need many of the concepts in this chapter. If you are unfamiliar
with Unix signals you may want to skim through Chapter 10 at this point.

Terminal Logins

Let’s start by looking at the programs that are executed when we log in to a Unix sys-
tem. In early Unix systems, such as Version 7, users logged in using dumb terminals
that were connected to the host with RS-232 connections. The terminals were either
local (directly connected) or remote (connected through a modem). In either case, these
logins came through a terminal device driver in the kernel. For example, on PDP-11s
the common devices were DH-11s and DZ-11s. There were a fixed number of these ter-
minal devices on a host, so there was a known upper limit on the number of simultane-
ous logins. The procedure that we now describe is used to log in to a Unix system using
an R5-232 terminal.

237
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4.3+BSD Terminal Logins

This procedure has not changed much over the past 15 years. The system administrator
creates a file, usually /etc/ttys, that has one line per terminal device. Each line spec-
ifies the name of the device and other parameters that are passed to the getty pro-
gram. These parameters specify the baud rate of the terminal, for example. When the
system is bootstrapped the kernel creates process ID 1, the init process, and it is init
that brings the system up multiuser. init reads the file /etc/ttys and, for every ter-
minal device that allows a login, init does a fork followed by an exec of the pro-
gram getty. This gives us the processes shown in Figure 9.1.

process ID 1
init
fork forksopoe
per terminal
init
l each child
exec
execs getty
getty

Figure 9.1 Processes invoked by init to allow terminal logins.

All the processes shown in Figure 9.1 have a real user ID of 0 and an effective user ID of
0 (i.e., they all have superuser privileges). init also execs the getty program with an
empty environment.

Itis getty that calls open for the terminal device. The terminal is opened for read-
ing and writing. If the device is a modem, the open may delay inside the device driver
until the modem is dialed and the call is answered. Once the device is open, file
descriptors 0, 1, and 2 are set to the device. Then getty outputs something like
login: and waits for us to enter our user name. If the terminal supports multiple
speeds, getty can detect special characters that tell it to change the terminal’s speed
(baud rate). Consult your Unix manuals for additional details on the getty program
and the data files (gettytab) that can drive its actions.

getty is done when we enter our user name. It then invokes the 1ogin program,
similar to

execle("/usr/bin/login", "login", "-p", username, (char *) 0, envp);

(There can be options in the gettytab file to have it invoke other programs, but the
default is the login program.) init invokes getty with an empty environment.
getty creates an environment for login (the envp argument) with the name of the ter-
minal (something like TERM=foo, where the type of terminal foo is taken from the
gettytab file) and any environment strings that are specified in the gettytab. The
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-p flag to 1login tells it to preserve the environment that it is passed and to add to that
environment, not replace it. Figure 9.2 shows the state of these processes right after
login has been invoked.

process ID 1
init forks once per terminal;
create empty environment

5 o

init

}reads /etc/ttys;

exec

l opens terminal device

(file descriptors 0, 1, 2);

reads user name;

l initial environment set
exec

getty

login

Figure 9.2 State of processes after 1ogin has been invoked.

All the processes shown in Figure 9.2 have superuser privileges, since the original init
process has superuser privileges. The process ID of the bottom three processes in
Figure 9.2 is the same, since the process ID does not change across an exec. Also, all
the processes other than the original init process have a parent process ID of one.

Now login does many things. Since it has our user name it can call getpwnam to
fetch our password file entry. It then calls getpass(3) to display the prompt
Password: and read our password (with echoing disabled, of course). It calls
crypt(3) to encrypt the password that we entered and compares the encrypted result
with the pw_passwd field from our password file entry. If the login attempt fails
because of an invalid password (after a few tries), Llogin calls exit with an argument
of 1. This termination will be noticed by the parent (init) and it will do another fork
followed by an exec of getty, starting the procedure over again for this terminal.

If we log in correctly, 1ogin changes to our home directory (chdir). The owner-
ship of our terminal device is changed (chown) so we are the owner and group owner.
The access permissions are also changed for the terminal device, so that user-read, user-
write, and group-read are enabled. Our group IDs are set, by calling setgid and then
initgroups. The environment is then initialized with all the information that 1ogin
has: our home directory (HOME), shell (SHELL), user name (USER and LOGNAME), and a

default path (PATH). Finally it changes to our user ID (setuid) and invokes our login
shell, as in

execl (" /bin/sh", "-sh", (char *) 0);

The minus sign as the first character of argv[0] is a flag to all the shells that they are
being invoked as a login shell. The shells can look at this character and modify their
start-up accordingly.
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login really does more than we’ve described here. It optionally prints the mes-
sage-of-the-day file, checks for new mail, and does other functions. We're interested
only in the features that we’ve described.

Recall from our discussion of the setuid function in Section 8.10 that since setuid
is called by a superuser process it changes all three user IDs: the real user ID, effective
user ID, and saved set-user-ID. The call to setgid that was done earlier by 1ogin has
the same effect on all three group IDs.

At this point our login shell is running. Its parent process ID is the original init
process (process ID 1), so when our login shell terminates, init is notified (it is senta
SIGCHLD signal) and it can start the whole procedure over again for this terminal. File
descriptors 0, 1, and 2 for our login shell are set to the terminal device. Figure 9.3 shows
this arrangement.

process ID 1

init

| }th.rough getty and login

login shell
]

fdo,1,2

\
terminal
device driver

user ata
terminal

Figure 9.3 Arrangement of processes after everything is set for a terminal login.

RS5-232 connection

Our login shell now reads its start-up files (.profile for the Bourne shell and
KornShell, .cshrc and .1login for the C shell). These start-up files usually change
some of the environment variables and add many additional variables to the environ-
ment. For example, most users set their own PATH and often prompt for the actual ter-

minal type (TERM). When the start-up files are done, we finally get the shell’s prompt
and can enter commands.

SVR4 Terminal Logins

SVR4 supports two forms of terminal logins: (a) getty style, as described previously
for 4.3+BSD, and (b) ttymon logins, a new feature with SVR4. Normally getty is used
for the console and ttymon is used for other terminal logins.

ttymon is part of a larger facility termed SAF, the Service Access Facility. For our
purposes we end up with the same picture as in Figure 9.3, with a different set of steps
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between init and the login shell. init is the parent of sac (the service access con-
troller), which does a fork and exec of the ttymon program when the system enters
multiuser state. ttymon monitors all the terminal ports listed in its configuration file
and does a fork when we've entered our login name. This child of ttymon does an
exec of login, and login prompts us for our password. Once this is done it execs
our login shell, and we're at the position shown in Figure 9.3. One difference is that the
parent of our login shell is now ttymon, whereas the parent of the login shell from a
gettyloginis init.

Network Logins

4.3+BSD Network Logins

With the terminal logins that we described in the previous section, init knows which
terminal devices are enabled for logins and spawns a getty process for each device. In
the case of network logins, however, all the logins come through the kernel’s network
interface drivers (e.g., the Ethernet driver), and we don’t know ahead of time how many
of these will occur. Instead of having a process waiting for each possible login, we now
have to wait for a network connection request to arrive. In 4.3+BSD there is a single
process that waits for most network connections, the inetd process, sometimes called
the Internet superserver. In this section we'll look at the sequence of processes involved
in network logins for a 4.3+BSD system. We are not interested in the detailed network
programming aspects of these processes—refer to Stevens [1990] for all the details.

As part of the system start-up, init invokes a shell that executes the shell script
/etc/xrc. One of the daemons that is started by this shell script is inetd. Once the
shell script terminates, the parent process of inetd becomes init. inetd waits for
TCP/IP connection requests to arrive at the host, and when a connection request arrives
for it to handle, it does a fork and exec of the appropriate program.

Let’s assume that a TCP connection request arrives for the TELNET server.
TELNET is a remote login application that uses the TCP protocol. A user on another
host (that is connected to the server’s host through a network of some form) or on the
same host initiates the login by starting the TELNET client:

telnet hostname

The client opens a TCP connection to hostname and the program that’'s started on
hostname is called the TELNET server. The client and server then exchange data across
the TCP connection using the TELNET application protocol. What has happened is that
the user who started the client program is now logged into the server’s host. (This
assumes, of course, that the user has a valid account on the server’s host.) Figure 9.4
shows the sequence of processes that are involved in executing the TELNET server,
called telnetd.

The telnetd process then opens a pseudo-terminal device and splits into two pro-
cesses using fork. (In Chapter 19 we talk about pseudo terminals in detail.) The
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process 1D 1
init
| fork/exec of /bin/sh which
! executes shell script /ete/rc
¥ when system comes up multiuser
TCP connection request :
from TELNET client inetd
Fork when connection request
arrives from TELNET client
inetd
exec
telnetd

Figure 9.4 Sequence of processes involved in executing TELNET server.

parent handles the communication across the network connection, and the child does an

exec of the login program. The parent and

child are connected through the pseudo

terminal. Before doing the exec, the child sets up file descriptors 0, 1, and 2 to the

pseudo terminal. If we log in correctly, 1ogin
Section 9.2—it changes to our home directory,

performs the same steps we described in
sets our group IDs and user ID, and our

initial environment. Then login replaces itself with our login shell by calling exec.
Figure 9.5 shows the arrangement of the processes at this point.

process ID 1

ll init —!

¥

login shell

Ide, 1,2

pseudo-terminal
device driver

i

user e_\t a
terminal

through inetd, telnetd,
and login

network connection through
telnetdserver and telnet client

Figure 9.5 Arrangement of processes after everything is set for a network login.
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Obviously a lot is going on between the pseudo-terminal device driver and the actual
user at the terminal. We show all the processes involved in this type of arrangement in
Chapter 19 when we talk about pseudo terminals in more detail.

The important thing to understand is whether we log in through a terminal
(Figure 9.3) or a network (Figure 9.5) we have a login shell with its standard input, stan-
dard output, and standard error connected to either a terminal device or a pseudo-
terminal device. We'll see in the coming sections that this login shell is the start of a
POSIX.1 session, and the terminal or pseudo terminal is the controlling terminal for the
session.

SVR4 Network Logins

9.4

The scenario for network logins under SVR4 is almost identical to the steps under
4.3+BSD. The same inetd server is used, but instead of its parent being init, under
SVR4 inetd is invoked as a service by the service access controller, sac. We end up
with the same overall picture as in Figure 9.5.

Process Groups

In addition to having a process ID, each process also belongs to a process group. We'll
encounter process groups again when we discuss signals in Chapter 10.

A process group is a collection of one or more processes. Each process group has a
unique process group ID. Process group IDs are similar to process IDs—they are posi-
tive integers and they can be stored in a pid t data type. The function getpgrp
returns the process group ID of the calling process.

#include <sys/types.h>
#include <unistd.h>

pid_t getpgrp(void);

Returns: process group ID of calling process

In many Berkeley-derived systems, including 4.3+BSD, this function takes a pid argument and
returns the process group for that process. The prototype shown is the POSIX.1 version.

Each process group can have a process group leader. The leader is identified by
having its process group ID equal its process ID.

It is possible for a process group leader to create a process group, create processes in
the group, and then terminate. The process group still exists, as long as there is at least
one process in the group, regardless whether the group leader terminates or not. This is
called the process group lifetime—the period of time that begins when the group is cre-
ated and ends when the last remaining process in the group leaves the group. The last
remaining process in the process group can either terminate or enter some other process

group.
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9.5

A process joins an existing process group, or creates a new process group by calling
setpgid. (In the next section we’ll see that set sid also creates a new process group.)

r_ #include <sys/types.h>
#include <unistd.h>

int setpgid(pid_t pid, pid t pgid) ;

Returns: 0 if OK, -1 on error

This sets the process group ID to pgid of the process pid. If the two arguments are equal,
the process specified by pid becomes a process group leader.

A process can set the process group ID of only itself or one of its children. Further-
more, it can’t change the process group ID of one of its children after that child has
called one of the exec functions.

If pid is 0, the process ID of the caller is used. Also, if pgid is 0, the process ID speci-
fied by pid is used as the process group ID.

If the system does not support job control (we talk about job control in Section 9.8),
_POSIX JOB_CONTROL won't be defined, and this function returns an error with
errno set to ENOSYS.

In most job-control shells this function is called after a fork to have the parent set
the process group ID of the child, and to have the child set its own process group ID.
One of these calls is redundant, but by doing both we are guaranteed that the child is
placed into its own process group before either process assumes that is has happened.
If we didn’t do this we have a race condition, since it depends on which process exe-
cutes first.

When we discuss signals we'll see how we can send a signal to either a single pro-
cess (identified by its process ID) or to a process group (identified by its process group
ID). Similarly, the waitpid function from Section 8.6 lets us wait for either a single
process or one process from a specified process group.

Sessions

A session is a collection of one or more process groups. For example, we could have the
arrangement shown in Figure 9.6. Here we have three process groups in a single ses-
sion. The processes in a process group are usually grouped together into the process
group by a shell pipeline. For example, the arrangement shown in Figure 9.6 could
have been generated by shell commands of the form

procl | proc2 &
proc3 | proc4 | proch

A process establishes a new session by calling the setsid function.
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Figure 9.6 Arrangement of processes into process groups and sessions.

#include <sys/types.h>
#include <unistd.h>

pid_t setsid(void);

Returns: process group ID if OK, -1 on error

If the calling process is not a process group leader, this function creates a new session.
Three things happen:

1. The process becomes the session leader of this new session. (A session leader is
the process that creates a session.) The process is the only process in this new
session.

2. The process becomes the process group leader of a new process group. The new
process group ID is the process ID of the calling process.

3. The process has no controlling terminal. (We discuss controlling terminals in
the next section.) If the process had a controlling terminal before calling
setsid, that association is broken.

This function returns an error if the caller is already a process group leader. To ensure
this is not the case, the usual practice is to call fork and have the parent terminate and
the child continue. We are guaranteed that the child is not a process group leader
because the process group ID of the parent is inherited by the child, but the child gets a
new process ID. Hence it is impossible for the child’s process ID to equal its inherited

process group ID.
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POSIX.1 talks only about a “session leader.” There is no “session ID” similar to a process ID or
a process group ID. Obviously a session leader is a single process that has a unique

ID, so we could talk about a session ID that is the process ID of the session leader. SVR4 does
just this and both the SVID and the SVR4 manual page for setsid(2) talk about a session ID
defined in this way. This is an implementation detail that is not part of POSIX.1 and is not
supported by 4.3+BSD.

SVR4 has a get sid function that returns the session ID of a process. This function is not part
of POSIX.1 and is not available under 4.3+BSD.

9.6 Controlling Terminal

There are a few other characteristics of sessions and process groups.

A session can have a single controlling terminal. This is usually the terminal de-
vice (in the case of a terminal login) or pseudo-terminal device (in the case of a
network login) on which we log in.

The session leader that establishes the connection to the controlling terminal is
called the controlling process.

The process groups within a session can be divided into a single foreground pro-
cess group and one or more background process groups.

If a session has a controlling terminal, then it has a single foreground process
group, and all other process groups in the session are background process
groups.

Whenever we type our terminal’s interrupt key (often DELETE or Control-C) or
quit key (often Control-backslash) this causes either the interrupt signal or the
quit signal to be sent to all processes in the foreground process group.

If a modem disconnect is detected by the terminal interface, the hang-up signal
1s sent to the controlling process (the session leader).

These characteristics are shown in Figure 9.7.
Usually we don’t have to worry about our controlling terminal—it is established
automatically for us when we log in.

How a system allocates a controlling terminal is left to the implementation by POSIX.1. We
show the actual steps in Section 19.4.

SVR4 allocates the controlling terminal for a session when the session leader opens the first ter-
minal device that is not already associated with a session. This assumes that the call to open
by the session leader does not specify the O_NOCTTY flag (Section 3.3).

4.3+BSD allocates the controlling terminal for a session when the session leader calls ioctl
with a request of TTOCSCTTY (the third argument is a null pointer). The session cannot already
have a controlling terminal for this call to succeed. (Normally this call to ioct1 follows a call
to setsid, which guarantees that the process is a session leader without a controlling termi-
nal) The POSIX.1 0_NOCTTY flag to open is not used by 4.3+BSD.
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Figure 9.7 Process groups and sessions showing controlling terminal.

There are times when a program wants to talk to the controlling terminal, regardless
whether the standard input or standard output is redirected. The way a program guar-
antees that it is talking to the controlling terminal is to open the file /dev/tty. This
special file is a synonym within the kernel for the controlling terminal. Naturally, if the
program doesn’t have a controlling terminal, the open of this device will fail.

The classic example is the getpass(3) function that reads a password (with termi-
nal echoing turned off, of course). This function is called by the crypt(1) program and
can be used in a pipeline. For example

crypt < salaries | 1lpr

decrypts the file salaries and pipes the output to the print spooler. Because crypt
reads its input file on its standard input, standard input can’t be used to enter the pass-
word. Also, a design feature of crypt is that we should have to enter the encryption
password each time we run the program, to prevent us from saving the password in a
file.

There are known ways to break the encoding used by the crypt program. See
Garfinkel and Spafford [1991] for more details on encrypting files.

7 tcgetpgrp and tcsetpgrp Functions

We need a way to tell the kernel which process group is the foreground process group,
so that the terminal device driver knows where to send the terminal input and the ter-
minal-generated signals (Figure 9.7).
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9.8

#include <sys/types.h>
#include <unistd.h>

pid_t tcgetpgrp(int filedes) ;
Returns: process group ID of foreground process group if OK, -1 on error

int tcsetpgrp(int filedes, pid t pgrpid) ;

Returns: 0 if OK, -1 on error

The function tcgetpgrp returns the process group ID of the foreground process group
associated with the terminal open on filedes.

If the process has a controlling terminal, the process can call tcsetpgrp to set the
foreground process group ID to pgrpid. The value of pgrpid must be the process group
ID of a process group in the same session. filedes must refer to the controlling terminal
of the session.

Most applications don’t call these two functions directly. They are normally called
by job-control shells. Both of these functions are defined only if
_POSIX_JOB_CONTROL is defined. Otherwise they both return an error.

Job Control

Job control is a feature added by Berkeley around 1980. It allows us to start multiple
jobs (groups of processes) from a single terminal and control which jobs can access the
terminal and which jobs are to run in the background. Job control requires three forms
of support. '

1. A shell that supports job control.

2. The terminal driver in the kernel must support job control.

3. Support for certain job-control signals must be provided.
A different form of job control, termed shell layers, was provided by SVR3. The Berkeley form
of job control, however, was selected by POSIX.1 and is what we describe here. Recall from

Figure 2.7 that the constant _POSIX_JOB_CONTROL defines whether the system supports job
control.

FIPS 151-1 requires POSIX.1 job control.
Both SVR4 and 4.3+BSD support POSIX 1 job control.

From our perspective, using job control from a shell, we can start a job in either the
foreground of the background. A job is just a collection of processes, often a pipeline of
processes. For example,

vi main.c

starts a job consisting of one process in the foreground. The commands
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pr *.c | lpr &
make all &

start two jobs in the background. All the processes invoked by these background jobs
are in the background.

As we said, we need to be using a shell that supports job control, to use the features
provided by job control. With older systems it was simple to say which shells sup-
ported job control and which didn’t. The C shell supported job control, the Bourne shell
didn’t, and it was an option with the KornShell, depending whether the host supported
job control or not. But the C shell has been ported to systems that don’t support job
control (e.g., earlier versions of System V) and the SVR4 Bourne shell, when invoked by
the name jsh instead of sh, supports job control. The KornShell continues to support
job control if the host does. We'll just talk generically about a shell that supports job
control, versus one that doesn’t, when the difference between the various shells doesn’t
matter.

When we start a background job, the shell assigns it a job identifier and prints one
or more of the process IDs. The following script shows how the KornShell handles this.

$ make all > Make.out &

[1] 1475

$pr *.c | 1lpr &

[2] 1490

$ just press RETURN
[2] + Docne pr *.c | lpr &

[1] + Done make all > Make.out &

The make is job number 1 and the starting process ID is 1475. The next pipeline is job
number 2 and the process ID of the first process is 1490. When the jobs are done and
when we press RETURN, the shell tells us that the jobs are complete. The reason we
have to press RETURN is to have the shell print its prompt. The shell doesn’t print the
changed status of background jobs at any random time—only right before it prints its
prompt, to let us enter a new command line. If it didn’t do this, it could output while
we were entering an input line.

The interaction with the terminal driver arises because there is a special terminal
character that we can enter that affects the foreground job—the suspend key (typically
Control-Z). Entering this character causes the terminal driver to send the SIGTSTP sig-
nal to all processes in the foreground process group. The jobs in any background pro-
cess groups aren’t affected. The terminal driver really looks for three special characters,
which generate signals to the foreground process group:

¢ the interrupt character (typically DELETE or Control-C) generates SIGINT
 the quit character (typically Control-backslash) generates SIGQUIT
e the suspend character (typically Control-Z) generates SIGTSTP

In Chapter 11 we'll see how we can change these three characters to be any characters
we choose, and how we can disable the terminal driver’s processing of these special
characters.
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Another condition can arise with job control that must be handled by the terminal
driver. Since we can have a foreground job and one or more background jobs, which of
these receives the characters that we enter at the terminal? Only the foreground job
receives terminal input. It is not an error for a background job to try to read from the
terminal, but the terminal driver detects this and sends a special signal to the back-
ground job: SIGTTIN. This normally stops the background job, and by using the shell
we are notified of this, and we can bring the job into the foreground so that it can read
from the terminal. The following demonstrates this.

$ cat > temp.foo & start in background, but it’ll read from standard input
[1] 1681

8 we press RETURN

[1] + Stopped (tty input) cat > temp.foo &

$ fg %1 bring job number 1 into the foreground

cat > temp.foo the shell tells us which job is now in the foreground
hello, world enter one line

°D type our end-of-file character

$ cat temp.foo check that the one line was put into the file

hello, world

The shell starts the cat process in the background, but when cat tries to read its stan-
dard input (the controlling terminal), the terminal driver, knowing that it is a back-
ground job, sends the SIGTTIN signal to the background job. The shell detects this
change in status of its child (recall our discussion of the wait and waitpid function in
Section 8.6) and tells us that the job has been stopped. We then move the stopped job
into the foreground with the shell’s fg command. (Refer to the manual page for the
shell that you are using, for all the details on its job control commands, such as fg and
bg, and the various ways to identify the different jobs.) Doing this causes the shell to
place the job into the foreground process group (tcsetpgrp) and send the continue
signal (SIGCONT) to the process group. Since the job is now in the foreground process
group it can read from the controlling terminal.

What happens if a background job outputs to the controlling terminal? This is an
option that we can allow or disallow. Normally we use the stty(l) command to
change this option. (We'll see in Chapter 11 how we can change this option from a pro-
gram.) The following shows how this works.

$ cat temp.foo & execute in background

(1] 1719

$ hello, world the output from the background job appears after the prompt
we press RETURN

[1] + Done cat temp.foo &

$ stty tostop disable ability of background jobs to output to controlling terminal

$ cat temp.foo & try it again in the background

[1] 1721

$ we press RETURN and find the job is stopped

[1] + Stopped(tty output) cat temp.foo &

$ fg %1 resume stopped job in the foreground

cat temp.foo the shell tells us which job is now in the foreground

hello, world and here is its output
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Figure 9.8 summarizes some of the features of job control that we’ve been describing.

init or inetd

getty or
telnetd

exec, after setsid, then

“establishing controlling terminal

login

-——m e m e m m——E e m mE mE e m e m mm m e m — — = e m e — — e — = ——— ——— — ——

Figure 9.8 Summary of job control {eatures with foreground and background jobs, and terminal driver.

The solid lines through the terminal driver box mean that the terminal 1/O and the ter-
minal-generated signals are always connected from the foreground process group to the
actual terminal. The dashed line corresponding to the SIGTTOU signal means that
whether the output from a process in the background process group appears on the ter-
minal is an option.
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9.9

Is job control necessary or desirable? This is a controversial topic that some users
have strong opinions about. Job control was originally designed and implemented
before windowing terminals were widespread. Some people claim that a well-designed
windowing system removes any need for job control. Some complain that the imple-
mentation of job control—requiring support from the kernel, the terminal driver, the
shell, and some applications—is a hack. Some use job control with a windowing sys-
tem, claiming a need for both. Regardless of your opinion, job control is part of POSIX.1
and FIPS 151-1 and will be around for a while.

Shell Execution of Programs

Let’s examine how the shells execute programs and how this relates to the concepts of
process groups, controlling terminals, and sessions. To do this we'll use the ps com-
mand again.

First we’ll use a shell that doesn’t support job control—the classic Bourne shell. If
we execute

ps —xj
the output is

PPID PID PGID SID TPGID COMMAND
1 163 163 163 163 -sh
163 168 163 163 163 ps

(We have removed some columns that don’t interest us—the terminal name, user ID,
and CPU time, for example.) Both the shell and the ps command are in the same ses-
sion and foreground process group (163). We say 163 is the foreground process group
because that is the process group shown under the TPGID column. The parent of the
ps command is the shell, which we would expect. Note that the login shell is invoked
by login with a hyphen as its first character.

Unfortunately, the output of the ps(1) command differs in almost every version of Unix.
Under SVR4 similar fields are output by the command ps -3l, although SVR4 never prints
the TPGID field. Under 4.3+BSD the command is ps -xj -Otpgid.

Note that it is a misnomer to associate a process with a terminal process group ID
(the TPGID column). A process does not have a terminal process control group. A pro-
cess belongs to a process group, and the process group belongs to a session. The session
may or may not have a controlling terminal. If it does have a controlling terminal, then
the terminal device knows the process group ID of the foreground process. This value
can be set in the terminal driver with the tcsetpgrp function, as we show in
Figure 9.8. The foreground process group ID is an attribute of the terminal, not the pro-
cess. This value from the terminal device driver is what ps prints as the TPGID. If ps
finds that the session doesn’t have a controlling terminal, it prints —1.

If we execute the command in the background,

Ps —-x]j &

the only value that changes is the process ID of the command.
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PPID PID PGID SID TPGID COMMAND
1 163 163 163 163 -sh
163 169 163 163 163 ps

The background job is not put into its own process group, and the controlling terminal
isn’t taken away from the background job, because this shell doesn’t know about job
control.

Let’s now look at how the Bourne shell handles a pipeline. When we execute

ps —xj | catl
the output is

PPID PID PGID SID TPGID COMMAND
1 163 163 163 163 -sh
163 200 163 163 163 catl
200 201 163 163 163 Ps

(The program cat1 is just a copy of the standard cat program, with a different name.
We have another copy of cat with the name cat2, which we’ll use later in this section.
When we have two copies of cat in a pipeline, the different names let us differentiate
between the two programs.) Note that the last process in the pipeline is the child of the
shell, and the first process in the pipeline is a child of the last process. It appears that
the shell forks a copy of itself and this copy then forks to make each of the previous
processes in the pipeline.
If we execute the pipeline in the background

ps —-xj | catl &

only the process IDs change. Since the shell doesn’t handle job control, the process
group ID of the background processes remains 163, as does the terminal process group
ID.

What happens in this case if a background process tries to read from its controlling
terminal? For example if we execute

cat > temp.foo &

With job control this is handled by placing the background job into a background pro-
cess group, which causes the signal SIGTTIN to be generated if the background job tries
to read from the controlling terminal. The way this is handled without job control is
that the shell automatically redirects the standard input of a background process to
/dev/null, if the process doesn’t redirect standard input itself. A read from
/dev/null generates an end of file. This means that our background cat process
immediately reads an end of file and terminates normally.

The previous paragraph adequately handles the case of a background process
accessing the controlling terminal through its standard input, but what happens if a
background process specifically opens /dev/tty and reads from the controlling termi-
nal? The answer is “it depends,” but it's probably not what we want. For example,

crypt < salaries | lpr &
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is such a pipeline. We run it in the background, but the crypt program opens
/dev/tty, changes the terminal characteristics (to disable echoing), reads from the de-
vice, and resets the terminal characteristics. When we execute this background pipeline,
the prompt Password: from crypt is printed on the terminal, but what we enter (the
encryption password) is read by the shell and the shell tries to execute a command of
that name. The next line we enter to the shell is taken as the password, and the file is
not encrypted correctly, sending junk to the printer. Here we have two processes trying
to read from the same device at the same time, and the result depends on the system.
Job control, as we described earlier, handles this multiplexing of a single terminal
between multiple processes in a better fashion.
Returning to our Bourne shell example, executing three processes in the pipeline

ps —-xj | catl | cat2
lets us examine the process control employed by this shell.

PPID PID PGID SID TPGID  COMMAND
1 163 163 163 163 =sh
163 202 163 163 163 catZ
202 203 163 163 163 Ps
202 204 163 163 163 catl

Again, the last process in the pipeline is the child of the shell, and all previous processes
in the pipeline are children of the last process. Figure 9.9 shows what is happening,

sh exec_| ps

& (203) (203)

£° T
sh fork sh : . a
= (202) ’plpehne

g i

0%‘_ '

exec sh exec catl

' (204) T (209

e

Figure 9.9 Processes in the pipeline “ps -xj | catl | cat2” when invoked by Bourne shell.

Since the last process in the pipeline is the child of the login shell, when that process
(cat 2) terminates, the shell is notified.

Now let’s examine the same examples using a job-control shell. This shows the way
these shells handle background jobs. We'll use the KornShell in this example—the C
shell results are almost identical.

pPs —X]

gives us
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PPID PID PGID SID TPGID COMMAND
1 700 700 700 708 —ksh
700 708 708 700 708 Ps

(Starting with this example we show the foreground process group in abolder font.)
We immediately have a difference from our Bourne shell example. The KornShell
places the foreground job (ps) into its own process group (708). The ps command is the
process group leader and the only process in this process group. Furthermore this pro-
cess group is the foreground process group since it has the controlling terminal. Our
login shell is a background process group while the ps command executes. Note, how-
ever, that both process groups, 700 and 708, are members of the same session. Indeed,
we’'ll see that the session never changes through our examples in this section.
Executing this process in the background

ps —x]j &
gives us

PPID PID PGID SID TPGID COMMAND
1 700 700 700 700 —ksh
700 709 709 700 700 Ps

Again, the ps command is placed into its own process group but this time the process
group (709) is no longer the foreground process group. It is a background process
group. The TPGID of 700 indicates that the foreground process group is our login shell.

Executing two processes in a pipeline, as in

ps -%xJ | catl
gives us

PPID PID PGID SID TPGID  COMMAND

1 700 700 700 710 -ksh

700 710 710 700 710 ps
700 711 710 700 710 catl

Both processes, ps and catl, are placed into a new process group (710), and this is the
foreground process group. We can also see another difference between this example
and the similar Bourne shell example. The Bourne shell created the last process in the
pipeline first, and this final process was the parent of the first process. Here the Korn-
Shell is the parent of both processes. But if we execute this pipeline in the background

ps —xj | catl &

the results show that now the KornShell generates the processes in the same fashion as
the Bourne shell.

PPID PID PGID SID TPGID COMMAND
1 700 700 700 700 —ksh
700 712 712 700 700 catl
712 713 712 700 700 ps

Both processes, 712 and 713, are placed into a background process group, 712.
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9.10 Orphaned Process Groups

We've talked about the fact that a process whose parent terminates is called an orphan
and is inherited by the init process. We now look at entire process groups that can be
orphaned and how POSIX.1 handles this.

Example

Consider a process that forks a child and then terminates. While this is nothing abnor-
mal (it happens all the time), what happens if the child is stopped (using job control)
when the parent terminates? How will the child ever be continued, and does the child
know that it has been orphaned? Program 9.1 shows a specific example. There are
some new features in this program that we describe below. Figure 9.10 shows the status
after Program 9.1 has been started and the parent has forked the child.

roc 442
processGrony S O

-
| [ parent
I 1 | (PID512)
:
I
]
]
|
|

FD{{‘

child
(PID 513)
L

| processgroupsiz - - ]

Figure 9.10 Example of a process group about to be orphaned.

Here we are assuming a job-control shell. Recall from the previous section that the shell
places the foreground process into its own process group (512 in this example) and the
shell stays in its own process group (442). The child inherits the process group of its
parent (512). After the fork,

* The parent sleeps for 5 seconds. This is our (imperfect) way of letting the child exe-
cute before the parent terminates.

* The child establishes a signal handler for the hang-up signal (STGHUP). This is so we
can see if STGHUP is sent to the child. (We discuss signal handlers in Chapter 10.)

* The child sends itself the stop signal (SIGTSTP) with the kill function. This stops
the child, similar to our stopping a foreground job with our terminal’s suspend char-
acter (Control-Z).
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#include <sys/types.h>
#include <errno.h>
#include <fentl.h>
#include <signal.h>
#include "ourhdr.h"

static veoid sig_hup(int);
static veid pr_ids(char *);

int
main (void)
{
char c:
pid t pid;
pr_ids("parent™);
if ( (pid = fork()) < 0)
err_ sys("fork error");

else if (pid > 0) { /* parent */

sleep(5): /* sleep to let child stop itself */
exit (0): /* then parent exits */

} else { /* child */
pr_ids("child");
signal (SIGHUP, sig_hup); /* establish signal handler */
kill (getpid(), SIGTSTP): /* stop ourself */
pr_ids("child"); /* this prints eonly if we’re continued */

if (read(0, &c, 1) != 1)
printf ("read error from control terminal, errno = %d\n", errno);
exit (0):

}

static void

sig_hup(int signo)

{
printf ("SIGHUP received, pid = %d\n", getpid());
return;

1

static wvoid
pr_ids(char *name)
{
printf("%s: pid = %d, ppid = %d, pgrp = %d\n",
name, getpid(), getppid()., getpgrp()};
fflush(stdout};

Program 9.1 Creating an orphaned process group.



Process Relationships

* When the parent terminates, the child is orphaned, so the child’s parent process ID
becomes 1, the init process ID.,

* At this point the child is now a member of an orphaned process group. The POSIX.1
definition of an orphaned process group is one in which the parent of every member
is either itself a member of the group or is not a member of the group’s session.
Another way of wording this is that the process group is not orphaned as long as
there is a process in the group that has a parent in a different process group but in
the same session. If the process group is not orphaned, there is a chance that one of
those parents in a different process group but in the same session will restart a
stopped process in the process group that is not orphaned.

Here the parent of every process in the group (e.g., process 1 is the parent of process
513) belongs to another session.

* Since the process group is orphaned when the parent terminates, POSIX.1 requires
that every process in the newly orphaned process group that is stopped (as our child
is) be sent the hang-up signal (SIGHUP) followed by the continue signal (SIGCONT).

* This causes the child to be continued, after processing the hang-up signal. The
default action for the hang-up signal is to terminate the process, which is why we
have to provide a signal handler to catch the signal. We therefore expect the printf
in the sig_hup function to appear before the print f in the pr_ids function.

Here is the output from Program 9.1.

$ a.out

parent: pid = 512, ppid = 442, pgrp = 512
child: pid = 513, ppid = 512, Pgrp = 512

$ SIGHUP received, pid = 513

child: pid = 513, ppid = 1, pgrp = 512

read error from control terminal, errno = 5

Note that our shell prompt appears with the output from the child, since two processes,
our login shell and the child, are writing to the terminal. As we expect, the parent pro-
cess ID of the child has become 1.

Note that after calling pr_ids in the child, the program tries to read from standard
input. As we saw earlier in this chapter, when a background process group tries to read
from its controlling terminal, SIGTTIN is generated for the background process group.
But here we have an orphaned process group—if the kernel were to stop it with this
signal, the processes in the process group would probably never be continued. POSIX.1
specifies that the read is to return an error with errno set to EI0 (whose value is 5 on
this system).

Finally, notice that our child becomes a background process group when the parent
terminates, since the parent was executed as a foreground job by the shell. 0

We'll see another example of orphaned process groups in Section 19.5 with the pty
program.
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9.11 4.3+BSD Implementation

Having talked about the various attributes of a process, process group, session, and con-
trolling terminal, it's worth looking at how all of this can be implemented. We'll look
briefly at the implementation used by 4.3+BSD. Some details of the SVR4 implementa-
tion of these features can be found in Williams [1989]. Figure 9.11 shows the various

data structures used by 4.3+BSD.
tty structure session structure
—% | s_count
s_leader
t_session - 5_ttyvp -
EPITP s fs_ttyp vnode structure
ProgeZoung
t_termios Css
= Eroy; pgrp structure
t_winsize -
——
: ctual
g id .
s i-node
pg_session for device
linked list of mem
process group members P9
proc structure proc structure proc structure
— = | p_Pgrpnxt = | p_pPYgrpnxt ———————& | p_PYrpnxt
p_pid p_pid p_pid
pP_pptr P_pptr P_pptr
P_Pgrp P_pgrp P_pgarp

Figure 9.11 4.3+BSD implementation of sessions and process groups.

Let’s look at all the fields that we've labeled. We'll start with the session struc-

ture. One of these structures is allocated for each session (e.g., each time setsid is
called).

* s _count is the number of process groups in the session. When this counter is
decremented to 0, the structure can be freed.
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* s_leader is a pointer to the proc structure of the session leader. As we men-
tioned earlier, 4.3+BSD doesn’t keep a session ID field, as SVR4 does.

* s_ttyvpisa pointer to the vnode structure of the controlling terminal.
® s_ttypisa pointer to the tty structure of the controlling terminal.

When setsid is called, a new session structure is allocated within the kernel.
s_count is set to 1, s_leader is set to point to the proc structure of the calling pro-
cess, and s_ttyvp and s_ttyp are set to null pointers, since the new session doesn'’t
have a controlling terminal.

Let’s move to the tty structure. There is one of these structures in the kernel for
each terminal device and each pseudo-terminal device. (We talk more about pseudo
terminals in Chapter 19.)

* t_session points to the session structure that has this terminal as its control-
ling terminal. (Note that the tty structure points to the session structure and
vice versa.) This pointer is used by the terminal to send a hang-up signal to the
session leader if the terminal loses carrier (Figure 9.7).

* t_pgrp points to the pgrp structure of the foreground process group. This field
i1s used by the terminal driver to send signals to the foreground process group.
The three signals generated by entering special characters (interrupt, quit, and
suspend) are sent to the foreground process group.

® t_termios is a structure containing all the special characters and related infor-
mation for this terminal (e.g., baud rate, is echo on or off, etc.). We'll retum to
this structure in Chapter 11.

® t_winsize isawinsize structure that contains the current size of the terminal
window. When the size of the terminal window changes, the STGWINCH signal
is sent to the foreground process group. We show how to set and fetch the ter-
minal’s current window size in Section 11.12.

Note that to find the foreground process group of a particular session the kernel has to
start with the session structure, follow s_ttyp to get to the controlling terminal’s tty
structure, and then follow t_pgrp to get to the foreground process group’s pgrp struc-
ture.

The pgrp structure contains the information for a particular process group.

* pg_idis the process group ID.

* Pg_session points to the session structure that this process group belongs
to.

* Pg_menis a pointer to the proc structure of the first process that is a member of
this process group. The p_pgrpnxt in that proc structure points to the next
process in the group, and so on, until a null pointer is encountered in the proc
structure of the last process in the group.
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9.12

The proc structure contains all the information for a single process.

* p pid contains the process ID.
* p pptr isa pointer to the proc structure of the parent process.

e p pgrp points to the pgrp structure of the process group that this process
belongs to.

* p_pgrpnxt is a pointer to the next process in the process group, as we men-
tioned earlier.

Finally we have the vnode structure. This structure is allocated when the control-
ling terminal device is opened. All references to /dev/tty in a process go through this
vnode structure. We show the actual i-node as being part of the v-node. In Section 3.10
we said that this is the implementation used by 4.3+BSD, while SVR4 stores the v-node
in the i-node.

Summary

This chapter has described the relationships between groups of processes—sessions,
which are made up of process groups. Job control is a feature supported by many Unix
systems today, and we’ve described how it's implemented by a shell that supports job
control. The controlling terminal for a process, /dev/tty, is also involved in these pro-
cess relationships.

We've made numerous references to the signals that are used in all these process
relationships. The next chapter continues the discussion of signals, looking at all the
Unix signals in detail.

Exercises

9.1 Refer back to our discussion of the utmp and wtmp files in Section 6.7. Why are the logout
records written by the 4.3+BSD init process? Is this handled the same way for a network
login?

9.2 Write a small program that calls fork and has the child create a new session. Verify that

the child becomes a process group leader, and that the child no longer has a controlling ter-
minal.
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Signals

Introduction

Signals are software interrupts. Most nontrivial application programs need to deal with
signals. Signals provide a way of handling asynchronous events: a user at a terminal
typing the interrupt key to stop a program or the next program in a pipeline terminat-
ing prematurely.

Signals have been provided since the early versions of Unix, but the signal model
provided with systems such as Version 7 was not reliable. Signals could get lost and it
was hard for a process to turn off selected signals when executing critical regions of
code. Both 4.3BSD and SVR3 made changes to the signal model, adding what are called
reliable signals. But the changes made by Berkeley and AT&T were incompatible. Fortu-
nately POSIX.1 standardizes the reliable signal routines, and that is what we describe in
this chapter.

In this chapter we start with an overview of signals and a description of what each
signal is normally used for. Then we look at the problems with earlier implementations.
It is often important to understand what is wrong with an implementation, before see-
ing how to do things correctly. This chapter contains numerous examples that are not
100% correct and a discussion of the defects.

Signal Concepts

First, every signal has a name. These names all begin with the three characters SIG. For
example, SIGABRT is the abort signal that is generated when a process calls the abort
function. SIGALRM is the alarm signal that is generated when the timer set by the
alarm function goes off. Version 7 had 15 different signals; SVR4 and 4.3+BSD both
have 31 different signals.

263



Signals

These names are all defined by positive integer constants (the signal number) in the
header <signal.h>. No signal has a signal number of 0. We'll see in Section 10.9 that
the kill function uses the signal number of 0 for a special case. POSIX.1 calls this
value the null signal.

Numerous conditions can generate a signal.

The terminal-generated signals occur when users press certain terminal keys.
Pressing the DELETE key on the terminal normally causes the interrupt signal to
be generated (SIGINT). This is how to stop a runaway program. (We'll see in
Chapter 11 how this signal can be mapped to any character on the terminal.)

Hardware exceptions generate signals: divide by 0, invalid memory reference,
and the like. These conditions are usually detected by the hardware, and the
kernel is notified. The kernel then generates the appropriate signal for the pro-
cess that was running at the time the condition occurred. For example,
SIGSEGV is generated for a process that executes an invalid memory reference.

The ki11(2) function allows a process to send any signal to another process or
process group. Naturally there are limitations: we have to be the owner of the
process that we're sending the signal to, or we have to be the superuser.

The ki11(1) command allows us to send signals to other processes. This pro-
gram is just an interface to the kill function. This command is often used to
terminate a runaway background process.

Software conditions can generate signals when something happens that the pro-
cess should be made aware of. These aren’t hardware-generated conditions (as
is the divide-by-0 condition) but software conditions. Examples are SIGURG
(generated when out-of-band data arrives over a network connection), SIGPTPE
(generated when a process writes to a pipe after the reader of the pipe has termi-
nated), and SIGALRM (generated when an alarm clock set by the process
expires).

Signals are classic examples of asynchronous events. They occur at what appear to
be random times to the process. The process can’t just test a variable (such as errno) to
see if a signal has occurred, instead the process has to tell the kernel “if and when this
signal occurs, do the following.”

There are three different things that we can tell the kernel to do when a signal
occurs. We call this the disposition of the signal or the action associated with a signal.

1.

Ignore the signal. This works for most signals, but there are two signals that can
never be ignored: SIGKILL and SIGSTOP. The reason these two signals can’t
be ignored is to provide the superuser with a surefire way of either killing or
stopping any process. Also, if we ignore some of the signals that are generated
by a hardware exception (such as illegal memory reference or divide-by-0) the
behavior of the process is undefined.
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2. Catch the signal. To do this we tell the kernel to call a function of ours when-
ever the signal occurs. In our function we can do whatever we want to handle
the condition. If we're writing a command interpreter, for example, when the
user generates the interrupt signal at the keyboard, we probably want to return
to the main loop of the program, terminating whatever command we were exe-
cuting for the user. If the SIGCHLD signal is caught, it means a child process has
terminated, so the signal-catching function can call waitpid to fetch the
cess ID of the child and its termination status. As another example, if the pro-
cess has created temporary files we may want to write a signal-catching
function for SIGTERM signal (the termination signal that is the default signal
sent by the kill command) to clean up the temporary files.

3. Let the default action apply. Every signal has a default action, shown in
Figure 10.1. Notice that the default action for most signals is to terminate the
process.

Figure 10.1 lists the names of all the signals and an indication of which systems support
the signal and the default action for the signal. The POSIX.1 column contains e if the
signal is required, or “job” if the signal is a job-control signal (which is required only if
job control is supported).

When the default action is labeled “terminate w/core” it means that a memory
image of the process is left in the file named core of the current working directory of
the process. (The fact that the file is named core shows how long this feature has been
part of Unix.) This file can be used with most Unix debuggers to examine the state of
the process at the time it terminated. The file will not be generated if (a) the process was
set-user-ID and the current user is not the owner of the program file, or (b) the process
was set-group-ID and the current user is not the group owner of the file, (c) the user
does not have permission to write in the current working directory, or (d) the file is too
big (recall the RLIMIT CORE limit in Section 7.11). The permissions of the core file
(assuming the file doesn’t already exist) are usually user-read, user-write, group-read,
and other-read.

The generation of the core file is an implementation feature of most versions of Unix. It is not
part of POSIX.1.

Unix Version 6 didn’t check for conditions (a) and (b) and the source code contained the com-
ment “If you are looking for protection glitches, there are probably a wealth of them here when
this occurs to a set-user-ID command.”

4.3+BSD now generates a file with the name core . prog, where prog is the first 16 characters of
the program name that was executed. This is a nice feature as it gives some identity to the core
file.

The signals in Figure 10.1 with a description “hardware fault” correspond to imple-
mentation-defined hardware faults. Many of these names are taken from the original

PDP-11 implementation of Unix. Check your system’s manuals to determine exactly
what type of error these signals correspond to.
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Name Description ANSIC POSIX.1|SVR4 4.3+BSD| Default action
SIGABRT |abnormal termination (abort) . . . ®  |terminate w/core
SIGALRM |time out(alarm) . . . terminate
SIGBUS hardware fault . . terminate w/core
SIGCHLD change in status of child job * - ignore
SIGCONT |continue stopped process job . . continue/ignore
SIGEMT hardware fault . . terminate w/core
SIGFPE arithmetic exception . . . . terminate w/core
SIGHUP hangup . . terminate
SIGILL illegal hardware instruction . . - terminate w/core
SIGINFC |status request from keyboard . ignore
SIGINT terminal interrupt character . . . . terminate
SIGIO asynchronous I/0O . *  [terminate/ignore
SIGIOT hardware fault . . terminate w/core
SIGKILL (termination . . terminate
SIGPIPE |write to pipe with no readers . . terminate
SIGPOLL |pollable event (poll) . terminate
SIGPROF | profiling time alarm (setitimer) - . terminate
SIGPWR  |power fail/restart . ignore
SIGQUIT |terminal quit character . - . terminate w/core
SIGSEGV |invalid memory reference . . . . terminate w/ core

| SIGSTOP  |stop job . . stop process
SIGSYS invalid system call . . terminate w/core
SIGTERM |termination . . . . terminate
SIGTRAP |hardware fault . . terminate w/core
SIGISTP |terminal stop character job . . stop process
SIGTITIN |background read from control tty job . . stop process

| SIGTTOU | background write to control tty job . . stop process
SIGURG urgent condition . . ignore
SIGUSR1 user-defined signal . . . terminate
SIGUSR2 |user-defined signal . . *  |terminate
SIGVTALRM | virtual time alarm (setitimer) . * |terminate
SIGWINCH |terminal window size change . . ignore
SIGXCPU |CPU limit exceeded (setrlimit) . . terminate w/core
SIGXFSZ |file size limit exceeded (setrlimit) . * terminate w/core

Figure 10.1

Unix signals.

We'll now describe each of these signals in more detail.

SIGABRT

SIGALRM

SIGBUS

This signal is generated by calling the abort function (Section 10.17). The
process terminates abnormally.

This signal is generated when a timer that we’ve set with the alarm func-
tion expires. See Section 10.10 for more details.

This signal is also generated when an interval timer set by the
setitimer(2) function expires.

This indicates an implementation-defined hardware fault.
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SIGCHLD

SIGCONT

SIGEMT

SIGFPE

SIGHUP

SIGILL

Whenever a process terminates or stops, the SIGCHLD signal is sent to the
parent. By default this signal is ignored, so the parent must catch this sig-
nal if it wants to be notified whenever a child’s status changes. The nor-
mal action in the signal-catching function is to call one of the wait
functions to fetch the child’s process ID and termination status.

Earlier releases of System V had a similar signal named SIGCLD (without
the H). This signal had nonstandard semantics, and as far back as SVR2
the manual page warned that its use in new programs was strongly dis-
couraged. Applications should use the standard SIGCHLD signal. We dis-
cuss these two signals in Section 10.7.

This job-control signal is sent to a stopped process when it is continued. If
the process was stopped the default action is to continue the process, oth-
erwise the default action is to ignore the signal. The vi editor, for exam-
ple, catches this signal and redraws the terminal screen. Refer to
Section 10.20 for additional details.

This indicates an implementation-defined hardware fault.

The name EMT comes from the PDP-11 “emulator trap” instruction.

This signals an arithmetic exception, such as divide-by-0, floating point
overflow, and so on.

This signal is sent to the controlling process (session leader) associated
with a controlling terminal if a disconnect is detected by the terminal
interface. Referring to Figure 9.11 the signal is sent to the process pointed
to by the s_leader field in the session structure. This signal is gener-
ated for this condition only if the terminal’s CLOCAL flag is not set. (The
CLOCAL flag for a terminal is set if the attached terminal is local. It tells
the terminal driver to ignore all modem status lines. We describe how to
set this flag in Chapter 11.) Note that the session leader that receives this
signal may be in the background; see Figure 9.7 for an example. This dif-
fers from the normal terminal-generated signals (interrupt, quit, and sus-
pend) that are always delivered to the foreground process group.

This signal is also generated if the session leader terminates. In this case
the signal is sent to each process in the foreground process group.

This signal is commonly used to notify daemon processes (Chapter 13) to
reread their configuration files. The reason SIGHUP is chosen for this is
because a daemon should not have a controlling terminal and would nor-
mally never receive this signal.

This signal indicates that the process has executed an illegal hardware
instruction.

4.3BSD generated this signal from the abort function. SIGABRT is now used
for this.
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SIGINFO

SIGINT

SIGIO

SIGIOT

SIGKILL

SIGPIPE

SIGPOLL

SIGPROF

SIGPWR

This 4.3+BSD signal is generated by the terminal driver when we type the
status key (often Control-T). It is sent to all processes in the foreground
process group (refer to Figure 9.8). This signal normally causes status
information on processes in the foreground process group to be displayed
on the terminal.

This signal is generated by the terminal driver when we type the interrupt
key (often DELETE or Control-C). It is sent to all processes in the fore-
ground process group (refer to Figure 9.8). This signal is often used to ter-
minate a runaway program, especially when it’s generating a lot of output
on the screen that we don’t want.

This signal indicates an asynchronous I/O event. We discuss it in
Section 12.6.2.

In Figure 10.1 we labeled the default action for SIGIO as either terminate or
ignore. Unfortunately the default depends on the system. Under SVR4 51610
is identical to SIGPOLL, so its default action is to terminate the process. Under
4.3+BSD (the signal originated with 4 2BSD), the default is to be ignored.

This indicates an implementation-defined hardware fault.

The name IOT comes from the PDP-11 mnemonic for the “input/output TRAP*
instruction.

Earlier versions of System V generated this signal from the abort function.
SIGABRT is now used for this.

This signal is one of the two that can’t be caught or ignored. It provides
the system administrator a sure way to kill any process.

If we write to a pipeline but the reader has terminated, STGPIPE is gener-
ated. We describe pipes in Section 14.2. This signal is also generated
when a process writes to a socket when the other end has terminated.

This SVR4 signal can be generated when a specific event occurs on a pol-
lable device. We describe this signal with the poll function in
Section 12.5.2. 1t loosely corresponds to the 4.3+BSD SIGIO and SIGURG

signals.
This signal is generated when a profiling interval timer set by the
setitimer(2) function expires.

This SVR4 signal is system dependent. Its main use is on a system that
has an uninterruptible power supply (UPS). If power fails, the UPS takes
over and the software can usually be notified. Nothing needs to be done
at this point, as the system continues running on battery power. But if the
battery gets low (if the power is off for an extended period), the software
is usually notified again, and at this point it behooves the system to shut
everything down within about 15-30 seconds. This is when SIGPWR
should be sent. Most systems have the process that is notified of the low
battery condition send the SIGPWR signal to the init process, and init
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SIGQUIT

SIGSEGV

SIGSTOP

SIGSYS

SIGTERM
SIGTRAP

SIGTSTP

SIGTTIN

SIGTTOU

handles the shutdown. Many System V implementations of init provide
two entries in the inittab file for this purpose: powerfail and
powerwait.

This signal is becoming more important with the availability of low cost
UPS systems that can easily notify the computer of a low battery condition
with an RS-232 serial connection.

This signal is generated by the terminal driver when we type the terminal
quit key (often Control-backslash). It is sent to all processes in the fore-
ground process group (refer to Figure 9.8). This signal not only terminates
the foreground process group (as does SIGINT), but it generates a core
file.

This signal indicates that the process has made an invalid memory refer-
ence.

The name SEGV stands for “segmentation violation.”

This job-control signal stops a process. It is like the interactive stop signal
(SIGTSTP), but SIGSTOP cannot be caught or ignored.

This signals an invalid system call. Somehow the process executed a
machine instruction that the kernel thought was a system call, but the
parameter with the instruction that indicates the type of system call was
invalid.

This is the termination signal sent by the ki11(1) command by default.
This indicates an implementation-defined hardware fault.

The signal name comes from the PDP-11 TRAP instruction.

This interactive stop signal is generated by the terminal driver when we
type the terminal suspend key (often Control-Z).t It is sent to all pro-
cesses in the foreground process group (refer to Figure 9.8).

This signal is generated by the terminal driver when a process in a back-
ground process group tries to read from its controlling terminal. (Refer to
the discussion of this topic in Section 9.8.) As special cases, if either (a) the
reading process is ignoring or blocking this signal or (b) the process group
of the reading process is orphaned, then the signal is not generated and
instead the read operation returns an error with errno set to EIO.

This signal is generated by the terminal driver when a process in a back-
ground process group tries to write to its controlling terminal. (Refer to

1 Unfortunately the term stop has different meanings. When discussing job control and
signals we talk about stopping and continuing jobs. The terminal driver, however, has
historically used the term stop to refer to stopping and starting the terminal output using
the Control-S and Control-Q characters. Therefore the terminal driver calls the character
that generates the interactive stop signal the suspend character, not the stop character.
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10.3

SIGURG

SIGUSR1
SIGUSR2
SIGVTALRM

SIGWINCH

SIGKCPU

SIGXFSZ

the discussion of this topic in Section 9.8.) Unlike the SIGTTIN signal just
described, a process has a choice of allowing background writes to the
controlling terminal. We describe how to change this option in
Chapter 11.

If background writes are not allowed, then like the SIGTTIN signal there
are two special cases: if either (a) the writing process is ignoring or block-
ing this signal or (b) the process group of the writing process is orphaned,
then the signal is not generated and instead the write operation returns an
error with errno set to EIO.

Regardless whether background writes are allowed or not, certain termi-
nal operations (other than writing) can also generate the SIGTTOU signal:
tcsetattr, tcsendbreak, tcdrain, tcflush, tcflow, and
tcsetpgrp. We describe these terminal operations in Chapter 11.

This signal notifies the process that an urgent condition has occurred. This
is optionally generated when out-of-band data is received on a network
connection.

This is a user-defined signal, for use in application programs.
This is a user-defined signal, for use in application programs.

This signal is generated when a virtual interval timer set by the
setitimer(2) function expires.

The SVR4 and 4.3+BSD kernels maintain the size of the window associ-
ated with each terminal and pseudo terminal. A process can get and set
the window size with the ioctl function, which we describe in
Section 11.12. If a process changes the window size from its previous
value, with the ioctl set-window-size command, the kernel generates
the SIGWINCH signal for the foreground process group.

SVR4 and 4.3+BSD support the concept of resource limits; refer to
Section 7.11. If the process exceeds its soft CPU time limit, the SIGXCPU
signal is generated.

This signal is generated by SVR4 and 4.3+BSD if the process exceeds its
soft file size limit; refer to Section 7.11.

signal Function

The simplest interface to the signal features of Unix is the signal function.

#include <signal.h>

void (*signal (int signo, void (*func) (int))) (int);

Returns: previous disposition of signal (see following)
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The signal function is defined by ANSI C. Since ANSI C doesn't involve multiple processes,
process groups, terminal 1/0, and the like, its definition of signals is vague enough to be
almost useless for Unix systems. Indeed, the ANSI C description of signals takes 2 pages while
the POSIX.1 description takes over 15 pages.

SVR4 also provides the signal function, but using it causes SVR4 to provide the old SVR2
unreliable signal semartics. (We describe these older semantics in Section 10.4.) This function
is provided for backward compatibility for applications that require the older semantics. New
applications should not use these unreliable signals.

4 3+BSD also provides the signal function, but it is defined in terms of the sigaction func-
tion (which we describe in Section 10.14), so using it under 4.3+BSD provides the newer reli-
able signal semantics.

When we describe the sigaction function we provide an implementation of signal that
uses it. All the examples in this text use the signal function that we show in Program 10.12.

The signo argument is just the name of the signal from Figure 10.1. The value of
func is either (a) the constant SIG_IGN, (b) the constant SIG_DFL, or (c) the address of a
function to be called when the signal occurs. If we specify SIG_IGN we are telling the
system to ignore the signal. (Remember that there are two signals; SIGKILL and
SIGSTOP, that we cannot ignore.) By specifying SIG_DFL we are setting the action
associated with the signal to its default action (see the final column in Figure 10.1).
When we specify the address of a function to be called when the signal occurs, we call
this “catching” the signal. We call the function either the signal handler or the
signal-catching function.

The prototype for the signal function states that the function requires two argu-
ments and returns a pointer to a function that returns nothing (void). The first argu-
ment, signo, is an integer. The second argument is a pointer to a function that takes a
single integer argument and returns nothing. The function whose address is returned
as the value of signal takes a single integer argument (the final (int)). In plain
English, this declaration says that the signal handler is passed a single integer argument
(the signal number) and it returns nothing. When we call signal to establish the sig-
nal handler, the second argument is a pointer to the function. The return value from
signal is the pointer to the previous signal handler.

Many systems call the signal handler with additional, implementation-dependent arguments.
We mention the optional SVR4 and 4.3+BSD arguments in Section 10.21.

The perplexing prototype shown at the beginning of this section for the signal
function can be made much simpler through the use of the following typedef [Plauger

1992].
typedef void Sigfunc(int});
Then the prototype becomes

Sigfunc *signal (int, Sigfunc *);

We've included this typedef in ourhdr.h (Appendix B) and use it with the functions
in this chapter.
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If we examine the system’s header <signal.h> we probably find declarations of
the form

#define SIG ERR  (void (*)())-1
#define SIG_DFL (void (*)())0
#define SIG_IGN (void (*)())1

These constants can be used in place of the “pointer to a function that takes an integer
argument and returns nothing,” the second argument to signal, and the return value
from signal. The three values used for these constants need not be -1, 0, and 1. They
must be three values that can never be the address of any declarable function. Most
Unix systems use the values shown.

Example

Program 10.1 shows a simple signal handler that catches either of the two user defined
signals and prints the signal number. We describe the pause function in
Section 10.10—it just puts the calling process to sleep.

#include <signal.h>
#include "ourhdr.h"

static void sig_usr(int); /* one handler for both signals */
int
main(void)
{
if (signal (SIGUSR1, sig_usr) == SIG_ERR)
err_sys("can’t catch SIGUSR1");
if (signal (SIGUSR2, sig_usr) == SIG_ERR)
err_sys("can’t catch SIGUSR2");

for ( ; ;)
pause () ;
}

static void
sig usr(int signo) /* argument is signal number */
{
if (signo == SIGUSR1)
printf ("received SIGUSR1\n");
else if (signo == SIGUSR2)
printf ("received SIGUSR2\n");
else
err dump("received signal %d\n", signo);
return;

Program 10.1 Simple program to catch SIGUSR1 and SIGUSR2.
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We invoke the program in the background and use the ki11(1) command to send it
signals. Note that the term kill in Unix is a misnomer. The ki11(1) command and the
ki11(2) function just send a signal to a process or process group. Whether or not that
signal terminates the process depends on which signal is sent and whether the process
has arranged to catch the signal.

$ a.out & start process in background

[1] 4720 Job-control shell prints job number and process ID
$ kill -USR1l 4720 send it SIGUSR1

received SIGUSRI1

$ kill -USR2 4720 send it SIGUSR2

received SIGUSR2

$ kill 4720 now send it SIGTERM

[1] + Terminated a.out &

When we send the SIGTERM signal the process is terminated, since it doesn’t catch the
signal and the default action for the signal is termination. m

Program Start-up

When a program is execed the status of all signals is either default or ignore. Normally
all signals are set to their default action, unless the process that calls exec is ignoring
the signal. Specifically, the exec functions change the status of any signals that are
being caught to their default action and leave the status of all other signals alone. (Nat-
urally a signal that is being caught by a process that calls exec cannot be caught in the
new program, since the address of the signal-catching function in the caller probably
has no meaning in the new program file that is execed.)

One specific example that we encounter daily (but may not be cognizant of) is how
an interactive shell treats the interrupt and quit signals for a background process. With
a non-job-control shell, when we execute a process in the background, as in

cc main.c &

the shell automatically sets the disposition of the interrupt and quit signals in the back-
ground process to be ignored. This is so that if we type the interrupt character it doesn’t
affect the background process. If this weren't done, and we typed the interrupt charac-
ter, not only would it terminate the foreground process, but it would also terminate all
the background processes.

Many interactive programs that catch these two signals have code that looks like

int  sig_int(), sig_gquit();

if (signal (SIGINT, SIG_IGN} != SIG_IGN)
signal (SIGINT, sig_int);

if (signal (SIGQUIT, SIG IGN) != SIG_IGN)
signal (SIGQUIT, sig_quit);

Doing this, the process catches only the signal if the signal is not currently being
ignored.
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These two calls to signal also show a limitation of the signal function: we are
not able to determine the current disposition of a signal without changing the disposi-
tion. We'll see later in this chapter how the sigaction function allows us to determine
a signal’s disposition without changing it.

Process Creation

104

When a process calls fork the child inherits the parent’s signal dispositions. Here,
since the child starts off with a copy of the parent’s memory image, the address of a sig-
nal-catching function has meaning in the child.

Unreliable Signals

In earlier versions of Unix (such as Version 7), signals were unreliable. By this we mean
that signals could get lost—a signal could occur and the process would never know
about it. Also, a process had little control over a signal—it could catch the signal or
ignore it. Sometimes we would like to tell the kernel to block a signal—don’t ignore i,
just remember if it occurs, and tell us later when we’re ready.

Changes were made with 4.2BSD to provide what are called reliable signals. A different set of
changes was then made in SVR3 to provide reliable signals under System V. POSIX.1 chose the
BSD model to standardize.

One problem with these early versions is that the action for a signal was reset to its
default each time the signal occurred. (In the previous example, when we ran
Program 10.1, we avoided this detail by catching each signal only once.) The dassic
example from many programming books that described these earlier systems concerns
how to handle the interrupt signal. The code that was described usually looked like

int sig int(): /* my signal handling function */

signal (SIGINT, sig_int); /* establish handler */

sig int ()
{
signal (SIGINT, sig_int);
/* reestablish handler for next occurrence */

/* process the signal ... */
}

(The reason the signal handler is declared as returning an integer is that these early sys-
tems didn’t support the ANSI C void data type.)

The problem with this code fragment is that there is a window of time after the sig-
nal has occurred, but before the call to signal in the signal handler, when the interrupt
signal could occur another time. This second signal would cause the default action to
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10.5

occur, which for this signal terminates the process. This is one of those conditions that
works correctly most of the time, causing us to think that it is correct, when it isn’t.

Another problem with these earlier systems is that the process was unable to turn a
signal off when it didn’t want the signal to occur. All the process could do was ignore
the signal. There are times when we would like to tell the system “prevent the follow-
ing signals from occurring, but remember if they do occur.” The classic example that
demonstrates this flaw is shown by a piece of code that catches a signal and sets a flag
for the process that indicates that the signal occurred.

int sig _int_flag; /* set nonzero when signal occurs */

main ()

{
int sig_int(); /* my signal handling function */

signal (SIGINT, sig_int); /* establish handler */

while (sig_int_ flag == 0)
pause(); /* go to sleep, waiting for signal */

}

sig_int ()

{
signal (SIGINT, sig_int); /* reestablish handler for next time */
sig_int flag = 1; /* set flag for main loop to examine */

}

Here the process is calling the pause function to put it to sleep, until a signal is caught.
When the mgnal is caught, the signal handler just sets the flag sig_int_flag nonzero.
The process is automatically woken up by the kernel after the signal handler returns,
notices the flag is nonzero, and does whatever it needs to do. But there is a window of
time when things can go wrong. If the signal occurs after the test of sig_int_flag,
but before the call to pause, the process could go to sleep forever (assuming the signal
is never generated again). This occurrence of the signal is lost. This is another example
of some code that isn’t right, yet it works most of the time. Debugging this type of
problem can be hard.

Interrupted System Calls

A characteristic of earlier Unix systems is that if a process caught a signal while the pro-
cess was blocked in a “slow” system call, the system call was interrupted. The system
call returned an error and errno was set to EINTR. This was done under the assump-
tion that since a signal occurred and the process caught it, there is a good chance that
something has happened that should wake up the blocked system call.

Here we have to differentiate between a system call and a function. It is a system call within
the kernel that is interrupted when some signal is caught.
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To support this feature all the system calls are divided into two categories: the
“slow” system calls, and all the others. The slow system calls are those that can block
forever. Included in this category are

* reads from files that can block the caller forever if data isn’t present (pipes, ter-
minal devices, and network devices),

® writes to these same files that can block the caller forever if the data can’t be
accepted immediately,

* opens of files that block until some condition occurs (such as an open of a termi-
nal device that waits until an attached modem answers the phone),

* pause (which by definition puts the calling process to sleep until a signal is
caught) and wait,

* certain ioct1 operations,
* some of the interprocess communication functions (Chapter 14).

The notable exception to these slow system calls is anything related to disk I1/0.
Although the read or a write of a disk file can block the caller temporarily (while the
disk driver queues the request and then the request is executed), unless a hardware
error occurs, the I/O operation always returns and unblocks the caller quickly.

One condition that is handled by interrupted system calls, for example, is when a
process initiates a read from a terminal device and the user at the terminal walks away
from the terminal for an extended period. In this example the process could be blocked
for hours or days and would remain so unless the system was taken down.

The problem with interrupted system calls is that we now have to handle the error
return explicitly. The typical code sequence (assuming a read operation and assuming
we want to restart the read even if it’s interrupted) would be

again:
if ( (n = read(fd, buff, BUFFSIZE)) < 0) {
if (errno == EINTR)
gotc again; /* just an interrupted system call */
/* handle other errors */
}

To prevent the applications from having to handle interrupted system calls 4.2BSD
introduced the automatic restarting of certain interrupted system calls. The system calls
that were automatically restarted are ioct1, read, readv, write, writev, wait, and
waitpid. As we’ve mentioned, the first five of these functions are interrupted by a sig-
nal only if they are operating on a slow device. wait and waitpid are always inter-
rupted when a signal is caught. Since this caused a problem for some applications that
didn’t want the operation restarted if it was interrupted, 4.3BSD allowed the process to
disable this feature on a per-signal basis.

POSIX.1 allows an implementation to restart system calls, but it is not required.
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System V has never restarted system calls by default. But when sigaction is used with
SVR4 (Section 10.14), the SA_RESTART option can be specified to restart system calls that are
interrupted by that signal.

With 4.3+BSD the automatic restarting of system calls depends on which function is called to
set the signal’s disposition. The older, 4.3BSD-compatible sigvec function, causes system
calls interrupted by that signal to be restarted automatically. But using the newer,
POSIX.1-compatible sigact ion causes them not to be restarted. As with SVR4, however, the
SA_RESTART option can be used with sigaction to have the kernel restart system calls inter-
rupted by that signal.

One of the reasons 4.2BSD introduced the automatic restart feature is because some-
times we don’t know that the input or output device is a slow device. If the program
we write can be used interactively, then it might be reading or writing a slow device,
since terminals fall into this category. If we catch signals in this program, and if the sys-
tem doesn’t provide the restart capability, then we have to test every read or write for
the interrupted error return and reissue the read or write.

Figure 10.2 summarizes the different signal functions and their semantics provided
by the different implementations.

Automatic
. Signal handler Ability to restart of
g S remains installed | block signals | interrupted
system calls?
V7,5VR2,
signal SVR3, SVR4 mever
sigset, sighold, sigrelse SVR3, SVR4 . R —
sigignore, sigpause ’
signal, sigvec, sigblock 4.2BSD . . always
sigsetmask, sigpause 4.3BSD, 4.3+BSD . . default
POSIX.1 . . unspecified
sigaction, sigprocmask -
sigpending, sigsuspend SVR4 ® * opt?onal
4.3+BSD . . optional

Figure 10.2 Features provided by different signal implementations.

Be aware that Unix systems from other vendors can have values different from those
shown in this figure. For example, sigaction under SunOS 4.1.2 restarts an inter-
rupted system call by default, different from both SVR4 and 4.3+BSD.

In Program 10.12 we provide our own version of the signal function that automat-
ically tries to restart interrupted system calls (other than for the SIGALRM signal). In
Program 10.13 we provide another function, signal_intr, that tries to never do the
restart.

In all our code examples, we purposely show the return from a signal handler (if
it returns) to remind ourselves that the return may interrupt a system call.

We talk more about interrupted system calls in Section 12.5 with regard to the
select and poll functions.
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10.6 Reentrant Functions

When a signal that is being caught is handled by a process, the normal sequence of
instructions being executed by the process are temporarily interrupted by the signal
handler. The process then continues executing, but the instructions in the signal han-
dler are now executed. If the signal handler returns (instead of calling exit or
longjmp, for example) then the normal sequence of instructions that the process was
executing when the signal was caught continues executing. (This is similar to what
happens when a hardware interrupt occurs.) But in the signal handler we can’t tell
where the process was executing when the signal was caught. What if the process was
in the middle of allocating additional memory on its heap using malloc, and we call
malloc from the signal handler? Or, what if the process was in the middle of a call to a
function such as getpwnam (Section 6.2) that stores its result in a static location, and we
call the same function from the signal handler? In the malloc example, havoc can
result for the process, since malloc usually maintains a linked list of all its allocated
areas, and it may have been in the middle of changing this list. In the case of get pwnam
the information returned to the normal caller can get overwritten with the information
returned to the signal handler.

POSIX.1 specifies the functions that are guaranteed to be reentrant. Figure 10.3 lists
these reentrant functions. The four functions marked with an asterisk in this figure are
not specified as being reentrant by POSIX.1, but are listed in the SVR4 SVID [AT&T
1989] as being reentrant.

_exit fork pipe stat
abort* fstat read sysconf
access getegid rename tcdrain
alarm geteuid rmdir tcflow
cfgetispeed | getgid setgid tcflush
cfgetospeed | getgroups | setpgid tegetattr
cfsetispeed | getpgrp setsid tcgetpgrp
cfsetospeed | getpid setuid tcsendbreak
chdir getppid sigaction tcsetattr
chmod getuid sigaddset tcsetpgrp
chown kill sigdelset time
close link sigemptyset | times
creat longjmp* sigfillset umask

dup lseek sigismember | uname
dup2 mkdir signal* unlink
execle mkfifo sigpending utime
execve open sigprocmask | wait
exit* pathconf sigsuspend waitpid
fentl pause sleep write

Figure 10.3 Reentrant functions that may be called from a signal handler.

Most functions that are not in Figure 10.3 are missing because (a) they are known to use
static data structures, (b) they call malloc or free, or (c) they are part of the standard
I/0O library. Most implementations of the standard 1/0 library use global data struc-
tures in a nonreentrant way.
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Be aware that even if we call a function listed in Figure 10.3 from a signal handler,
there is only one errno variable per process, and we might modify its value. Consider
a signal handler that is invoked right after main has set errno. If the signal handler
calls read, for example, this call can change the value of errno, wiping out the value
that was just stored in main. Therefore, as a general rule, when calling the functions
listed in Figure 10.3 from a signal handler, we should save and restore errno. (Be
aware that a commonly caught signal is SIGCHLD and its signal handler usually calls
one of the wait functions. All the wait functions can change errno.)

POSIX.1 does not include longjmp and siglongjmp in Figure 10.3. (We describe
the latter function in Section 10.15.) This is because the signal may have occurred while
the main routine was updating a data structure in a nonreentrant way. Not returning
from the signal handler, but calling siglongjmp instead, could leave this data struc-
ture half updated. If the application is going to do things such as update global data
structures as we describe here, while catching signals that cause sigset jmp to be exe-
cuted, then we need to block the signal while we’re updating the data structure.

Example

10.7

Program 10.2 calls the nonreentrant function getpwnam from a signal handler that is
called every second. We describe the alarm function in Section 10.10. We use it here to
generate a STGALRM every second.

When this program was run the results were random. Usually the program would
be terminated by a SIGSEGV signal when the signal handler returned the first time. An
examination of the core file showed that the main function had called getpwnam, but
some internal pointers had been corrupted when the signal handler called the same
function. Occasionally the program would run for several seconds before crashing with
a SIGSEGV error. When the main function did run correctly after the signal had been
caught, sometimes the return value was corrupted and sometimes it was fine. Once the
call to getpwnam from the signal handler returned an error of EBADF (invalid file
descriptor).

As shown by this example, if we call a nonreentrant function from a signal handler,
the results are unpredictable. O

SIGCLD Semantics

Two signals that continually generate confusion are SIGCLD and SIGCHLD. First,
SIGCLD (without the H) is the System V name, and this signal has different semantics
from the BSD signal, named SIGCHLD. The POSIX.1 signal is also named SIGCHLD.

The semantics of the BSD STIGCHLD signal are normal, in that its semantics are simi-
lar to all other signals. When the signal occurs, the status of a child has changed and we
need to call one of the wait functions to determine what has happened.

System V, however, has traditionally handled the SIGCLD signal differently from
other signals. SVR4 continues this questionable tradition (i.e., compatibility constraint),
if we set its disposition using either signal or sigset (the older, SVR3-compatible



Signals

#include <pwd.h>
#include <signal.h>
#include "ourhdr.h"

static void my alarm(int);
int
main {void)

{
struct passwd *ptr;

signal (SIGALRM, my alarm);
alarm(l);

for ( ; ;) |
if ( (ptr = getpwnam("stevens")) == NULL)
err_ sys("getpwnam error®);
if (strcmp(ptr->pw_name, "stevens") != 0)
printf ("return value corrupted!, pw_name = %s\n",
ptr—->pw_name) ;

}

static wvoid
my_alarm(int signo)
{
struct passwd *rootptr;

printf{"in signal handler\n");

if ( (rootptr = getpwnam("root")) == NULL)
err sys("getpwnam(root) error"):

alarm(l);

return;

Program 10.2 Call a nonreentrant function from a signal handler.

functions to set the disposition of a signal). This older handling of SIGCLD consists of
the following;:

1. If the process specifically sets its disposition to SIG_IGN, children of the calling
process will not generate zombie processes. Note that this is different from its
default action (SIG_DFL), which from Figure 10.1 is to be ignored. Instead, on
termination the status of these child processes is just discarded. If the calling
process subsequently calls one of the wait functions, it will block until all of its
children have terminated, and then wait returns -1 with errno set to ECHILD.
(The default disposition of this signal is to be ignored, but this default will not
cause the above semantics to occur. Instead, we specifically have to set its dis-
position to SIG_IGN.)
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POSIX.1 does not specify what happens when SIGCHLD is ignored, so this behavior is
allowed.

4.3+BSD always generates zombies if STGCHLD is ignored. If we want to avoid zombies,
we have to wait for our children.

With SVRY, if either signal or sigset is called to set the disposition of STGCHLD to be
ignored, zombies are never generated. Also, with the SVR4 version of sigaction, we
can set the SA_NOCLDWAIT flag (Figure 10.5) to avoid zombies.

2. If we set the disposition of SIGCLD to be caught, the kernel immediately checks
if there are any child processes ready to be waited for and, if so, calls the
SIGCLD handler.

Item 2 changes the way we have to write a signal handler for this signal.

Example

Recall in Section 10.4 we said the first thing to do on entry to a signal handler is to call
signal again, to reestablish the handler. (This was to minimize the window of time
when the signal is reset back to its default, and could get lost) We show this in
Program 10.3. This program doesn’t work. If we compile and run it under SVR2 the
output is a continual string of SIGCLD received lines. Eventually the process runs
out of stack space and terminates abnormally.

The problem with this program is that the call to signal at the beginning of the
signal handler invokes item 2 from the preceding discussion—the kernel checks if there
is a child that needs to be waited for (which there is, since we're processing a SIGCLD
signal), so it generates another call to the signal handler. The signal handler calls
signal, and the whole process starts over again.

To fix this program we have to move the call to signal after the call to wait. By
doing this we call signal after fetching the child’s termination status—the signal is
generated again by the kernel only if some other child has since terminated.

POSIX.1 states that when we establish a signal handler for STGCHLD, and there exists a termi-
nated child who we have not yet waited for, it is unspecified whether the signal is generated.
This allows the behavior described previously. But since POSIX.1 does not reset a signal’s dis-
position to its default when the signal occurs (assuming we're using the POSIX.1 sigaction
function to set its disposition), there is no need for us to ever establish a signal handler for

SIGCHLD within that handler. O

Be cognizant of the semantics that your implementation associates with the
SIGCHLD signal. Be especially aware of some systems that #define SIGCHLD to be
SIGCLD or vice versa. Changing the name may allow you to compile a program that
was written for another system, but if that program depends on the other semantics, it
may not work.
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10.8

#include <sys/types.h>
#include <signal.h>
#include <stdio.h>

static void sig_cld():

int

main ()

{

}

pid_t pid;

if (signal(SIGCLD, sig_cld) == -1)
perror ("signal error"):

if ( (pid = fork()) < 0)
perror ("fork error"™);

else if (pid == 0) { /* child */
sleep(2);
_exit (0);

}

pause() ; /* parent */

exit (0);

static void
sig_cld()

{

pid t  pid;
int status;

printf ("SIGCLD received\n");
if (signal(SIGCLD, sig_cld) == -1) /* reestablish handler */
perror ("signal error");

if ( (pid = wait(&status)) < 0) /* fetch child status */
perror ("wait error");

printf("pid = %d\n", pid);

return; /* interrupts pause() */

Program 103 System V SIGCLD handler that doesn’t work.

Reliable Signal Terminology and Semantics

There are terms used throughout our discussion of signals that we need to define. First,
a signal is generated for a process (or sent to a process) when the event that causes the
signal occurs. The event could be a hardware exception (e.g., divide by 0), a software
condition (e.g., an alarm timer expiring), a terminal-generated signal, or a call to the

kill function. When the signal is

in the process table.

generated the kernel usually sets a flag of some form
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10.9

We say that a signal is delivered to a process when the action for a signal is taken.
During the time between the generation of a signal and its delivery, the signal is said to
be pending.

A process has the option of blocking the delivery of a signal. If a signal that is
blocked is generated for a process, and if the action for that signal is either the default
action or to catch the signal, then the signal remains pending for the process until the
process either (a) unblocks the signal or (b) changes the action to ignore the signal. The
system determines what to do with a blocked signal when the signal is delivered, not
when it's generated. This allows the process to change the action for the signal before
it's delivered. The sigpending function (Section 10.13) can be called by a process to
determine which signals are blocked and pending.

What happens if a blocked signal is generated more than once before the process
unblocks the signal? POSIX.1 allows the system to deliver the signal either once or
more than once. If the system delivers the signal more than once, we say that the sig-
nals are queued. Most Unix systems, however, do not queue signals. Instead the Unix
kernel just delivers the signal once.

The manual pages for earlier versions of System V claimed that the SIGCLD signal was
queued, but it really wasn’t. Instead the signal was regenerated by the kernel as we described
in Section 10.7.

The sigaction(2) manual page in AT&T [1990e] claims that the SA SIGINFO flag
(Figure 10.5) causes signals to be reliably queued. This is wrong. Apparently this feature
exists within the kernel, but it is not enabled in SVR4.

What happens if more than one signal is ready to be delivered to a process?
POSIX.1 does not specify the order in which the signals are delivered to the process.
The Rationale for POSIX.1 does suggest, however, that signals related to the current
state of the process, such as SIGSEGV, be delivered before other signals.

Each process has a signal mask that defines the set of signals currently blocked from
delivery to that process. We can think of this mask as having one bit for each possible
signal. If the bit is on for a given signal, that signal is currently blocked. A process can
examine and change its current signal mask by calling sigprocmask, which we
describe in Section 10.12.

Since it is possible for the number of signals to exceed the number of bits in an inte-
ger, POSIX.1 defines a new data type, sigset_t that holds a signal set. The signal
mask, for example, is stored in one of these signal sets. We describe five functions that
operate on signal sets in Section 10.11.

kill and raise Functions

The ki11 function sends a signal to a process or a group of processes. The raise func-
tion allows a process to send a signal to itself.

raise is defined by ANSI C, not POSIX.1. Since ANSI C does not deal with multiple pro-
cesses it could not define a function such as ki1l that requires a process ID argument.
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#include <sys/types.h>
#include <signal.h>

int kill(pid t pid, int signo);

int raise(int signo) ;

Both return: 0 if OK, -1 on error

There are four different conditions for the pid argument to kill.

pid > 0 The signal is sent to the process whose process ID is pid.

pid == The signal is sent to all processes whose process group ID equals the pro-
cess group ID of the sender and for which the sender has permission to
send the signal.

The term “all processes” excludes an implementation-defined set of sys-
tem processes. For most Unix systems this set of system processes
includes the swapper (pid 0), init (pid 1), and the pagedaemon (pid 2).

pid <0 The signal is sent to all processes whose process group ID equals the
absolute value of pid and for which the sender has permission to send the

signal.

Again, the set of “all processes” excludes certain system processes, as
described earlier.

pid == -1  POSIX.1 leaves this condition as unspecified.

SVR4 and 4.3+BSD use this for what they call broadcast signals. These broadcast sig-
nals are never sent to the set of system processes described previously. 4.3+BSD also
never sends a broadcast signal to the process sending the signal. If the caller is the
superuser, the signal is sent to all processes. If the caller is not the superuser, the sig-
nal is sent to all processes whose real user ID or saved set-user-ID equals the real
user ID or effective user ID of the caller. These broadcast signals should be used
only for administrative purposes (such as a superuser process that is about to shut
down the system).

As we've mentioned, a process needs permission to send a signal to some other pro-
cess. The superuser can send a signal to any process. For others, the basic rule is that
the real or effective user ID of the sender has to equal the real or effective user ID of the
receiver. If the implementation supports _POSIX_SAVED_IDS (as does SVR4) then the
saved set-user-ID of the receiver is checked instead of its effective user ID.

There is also one special case for the permission testing: if the signal being sent is
SIGCONT then a process can send it to any other process that is a member of the same
session,

POSIX.1 defines signal number 0 as the null signal. If the signo argument is 0, then
the normal error checking is performed by kill, but no signal is sent. This is often
used to determine if a specific process still exists. If we send the process the null signal
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10.10

and it doesn’t exist, ki1l returns —1 and errno is set to ESRCH. Be aware, however,
that Unix systems recycle process IDs after some amount of time, so the existence of a
process with a given process ID does not mean it’s the process that you think it is.

If the call to ki11 causes the signal to be generated for the calling process and, if the
signal is not blocked, either signo or some other pending, unblocked signal is delivered
to the process before kill returns.

alarm and pause Functions

The alarm function allows us to set a timer that will expire at a specified time in the
future. When the timer expires, the SIGALRM signal is generated. If we ignore or don’t
catch this signal, its default action is to terminate the process.

#include <unistd.h>

unsigned int alarm(unsigned int seconds) ;

Returns: 0 or number of seconds until previously set alarm

The seconds value is the number of clock seconds in the future when the signal should
be generated. Be aware that when that time occurs, the signal is generated by the ker-
nel, but there could be additional time before the process gets control to handle the sig-
nal because of processor scheduling delays.

Earlier versions of Unix warned that the signal could also be sent up to 1 second early.
POSIX.1 does not allow this.

There is only one of these alarm clocks per process. If, when we call alarm, there is
a previously registered alarm clock for the process that has not yet expired, the number
of seconds left for that alarm clock is returned as the value of this function. That previ-
ously registered alarm clock is replaced by the new value.

If there is a previously registered alarm clock for the process that has not yet
expired and if the seconds value is 0, the previous alarm clock is cancelled. The number
of seconds left for that previous alarm clock is still returned as the value of the function.

Although the default action for STGALRM is to terminate the process, most processes
that use an alarm clock catch this signal. If the process then wants to terminate, it can
perform whatever cleanup is required before terminating.

The pause function suspends the calling process until a signal is caught.

#include <unistd.h>

int pause(void):

Returns: —1 with errno set to EINTR

The only time pause returns is if a signal handler is executed and that handler returns.
In that case, pause returns —1 with errno set to EINTR.
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Example

Using alarm and pause we can put ourself to sleep for a specified amount of time.
The sleepl function in Program 10.4 does this.

#include <signal.h>
#include <unistd.h>

static void
sig _alrm(int signo)
{
return; /* nothing to do, just return to wake up the pause */
)

unsigned int
sleepl (unsigned int nsecs)
{
if (signal (SIGALRM, sig _alrm) == SIG ERR)
return(nsecs) ;
alarm(nsecs) ; /* start the timer */
pause() ; /* next caught signal wakes us up */
return( alarm(0) ); /* turn off timer, return unslept time */

Program 104 Simple, incomplete implementation of s1eep.

This function looks like the s1eep function, which we describe in Section 10.19, but this
simple implementation has problems.

1. If the caller already has an alarm set, that alarm is erased by the first call to
alarm.

We can correct this by looking at the return value from the first call to alarm. If
the number of seconds until some previously set alarm is less than the argu-
ment, then we should wait only until the previously set alarm expires. If the
previously set alarm will go off after ours, then before returning we should reset
this alarm to occur at its designated time in the future.

2. We have modified the disposition for SIGALRM. If we're writing a function for
others to call, we should save the disposition when we're called and restore it
when we’re done.

We can correct this by saving the return value from signal and resetting the
disposition before we return.

3. There is a race condition between the first call to alarm and the call to pause.
It's possible on a busy system for the alarm to go off and the signal handler be
called before we call pause. If that happens, the caller is suspended forever in
the call to pause (assuming some other signal isn’t caught).

Earlier implementations of sleep looked like our program, with problems 1 and 2 cor-
rected as described. There are two ways to correct problem 3. The first uses set jmp,
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which we show later. The other uses sigprocmask and sigsuspend, and we
describe it in Section 10.19. ) m

Example

The SVR2 implementation of sleep used set jmp and longjmp (Section 7.10) to avoid
the race condition described in problem 3 earlier. A simple version of this function,
called sleep2 is shown in Program 10.5. (To reduce the size of this example, we don't
handle problems 1 and 2 described earlier.)

#include <setjmp.h>
#include <signal.h>
#include <unistd.h>

static jmp_buf env_alrm;

static void
sig alrm(int signo)
{
longjmp (env_alrm, 1);
}

unsigned int
sleep2 (unsigned int nsecs)
{
if (signal (SIGALRM, sig_alrm) == SIG_ERR)
return (nsecs);
if (setjmp(env_alrm) == 0) {

alarm(nsecs) ; /* start the timer */
pause() ; /* next caught signal wakes us up */
}
return( alarm(0) ): /* turn off timer, return unslept time */

Program 10.5 Another (imperfect) implementation of sleep.

In this function the race condition from Program 10.4 has been avoided. Even if the
pause is never executed, when the SIGALRM occurs, the sleep2 function returns.

There is, however, another subtle problem with the sleep2 function that involves
its interaction with other signals. If the SIGALRM interrupts some other signal handler,
when we call 1ongjmp it aborts the other signal handler. Program 10.6 shows this sce-
nario. The loop in the SIGINT handler was written so that it executes for longer than 5
seconds on the system used by the author. We just want it to execute longer than the
argument to sleep2. The integer j is declared volatile to prevent an optimizing
compiler from discarding the loop. Executing Program 10.6 gives us

$ a.out

i we type our interrupt character
sig_int starting

sleep2 returned: 0
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#include <signal.h>
#include "ourhdr.h"

unsigned int sleep2(unsigned int);
static void sig_int (int);
int
main (void)
{
unsigned int unslept;

if (signal (SIGINT, sig_int) == SIG_ERR)
err_sys{"signal (SIGINT) error");

unslept = sleep2(5);
printf("sleep2 returned: %u\n", unslept);

exit (0); |
}

static void |
gig int(int signo) |
{

int i;

volatile int 3z

printf ("\nsig int starting\n");

for (i = 0; 1 < 2000000; i++)
Jo4=1i * i;

printf("sig_int finished\n");

return;

Program 10.6 Calling s1eep2 from a program that catches other signals.

We can see that the 1ongjmp from the sleep2 function aborted the other signal han-
dler, sig_int, even though it wasn't finished. This is what you'll encounter if you mix
the SVR2 s1eep function with other signal handling. See Exercise 10.3. 0

The purpose of these two examples, the s1eepl and sleep2 functions, is to show
the pitfalls in dealing naively with signals. The following sections will show ways
around all these problems, so we can handle signals reliably, without interfering with
other pieces of code.

Example

A common use for alarm, in addition to implementing the s1eep function, is to put an
upper time limit on operations that can block. For example, if we have a read operation
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on a device that can block (a “slow” device, as described in Section 10.5) we might want
the read to timeout after some amount of time. Program 10.7 does this, reading one
line from standard input and writing it to standard output.

#include <signal.h>
#include "ourhdr.h"

static void sig_alrm(int);

int
main (void)
{
int n;
char line [MAXLINE] ;

if (signal (SIGALRM, sig alrm) == SIG_ERR)
err_sys("signal (SIGALRM) erroxr");

alarm(10);

if ( {n = read(STDIN FILENO, line, MAXLINE)) < 0)
err_sys(“"read error");

alarm(0);

write (STDOUT FILENO, line, n);

exit (0);
}

static void
sig_alrm(int signo)
{
return; /* nothing to do, just return to interrupt the read */
}

Program 10.7 Calling read with a time out.

This sequence of code is seen in many Unix applications, but there are two problems
with this program.

1. Program 10.7 has the same flaw that we described in Program 10.4: there is a
race condition between the first call to alarm and the call to read. If the kernel
blocks the process between these two function calls for longer than the alarm
period, the read could block forever. Most operations of this type use a long
alarm period, such as a minute or more, making this unlikely, but nevertheless it
is a race condition.

2. If system calls are automatically restarted, the read is not interrupted when the
SIGALRM signal handler returns. In this case the time out does nothing.

Here we specifically want a slow system call to be interrupted. POSIX.1, however, does
not give us a portable way to do this. O



Example

Let’s redo the preceding example using longjmp. This way we don’t need to WOITy
whether a slow system call is interrupted or not.

#include <set jmp.h>
#include <signal.h>
#include "ourhdr.h"
static void sig_alrm(int);

static jmp_buf env_alrm;
int
main (void)
{
int n;
char line [MAXLINE] ;

if (signal (SIGALRM, sig_alrm) == SIG_ERR)
err sys("signal (SIGRLRM) error");

if (setjmp(env_alrm) != Q)
err_quit ("read timeout”);

alarm(10) ;

if ( (n = read(STDIN FILENO, line, MAXLINE)) < 0)
err_sys("read error");

alarm(0);

write (STDOUT _FILENO, line, n);

exit (0);
}

static wvoid
sig alrm(int signo)
{
longjmp(env_alrm, 1);
}

Program 10.8 Calling read with a time out, using 1ongjmp.

This version works as expected, regardless of whether the system restarts interrupted
system calls or not. Realize, however, that we still have the problem of interactions with
other signal handlers, as in Program 10.5. o

If we want to set a time limit on an I/O operation we need to use longjmp, as
shown previously, realizing its possible interaction with other signal handlers. Another
option is to use the select or poll functions, described in Sections 12.5.1 and 12.5.2.
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10.11 Signal Sets

We need a data type to represent multiple signals—a signal set. We'll use this with func-
tions such as sigprocmask (in the next section) to tell the kernel not to allow any of
the signals in the set to occur. As we mentioned earlier, the number of different signals
can exceed the number of bits in an integer, so in general we can’t use one bit per signal
in an integer. POSIX.1 defines the data type sigset_t to contain a signal set and the
following five functions to manipulate signal sets.

#include <signal.h>
int sigemptyset (sigset t *set):
int sigfillset (sigset_t *sef);
int sigaddset (sigset t *set, int signo);
int sigdelset (sigset_ t *sef, int signo) ;
All four return: 0 if OK, —1 on error

int sigismember (const sigset_t *set, int signo);

Returns: 1 if true, 0 if false

The function sigemptyset initializes the signal set pointed to by set so that all signals
are excluded. The function sigfillset initializes the signal set so that all signals are
included. All applications have to call either sigemptyset or sigfillset once for
each signal set, before using the signal set. This is because we cannot assume that the C
initialization for external and static variables (0) corresponds to the implementation of
signal sets on a given system.

Once we have initialized a signal set, we can add and delete specific signals in the
set. The function sigaddset adds a single signal to an existing set, and sigdelset
removes a single signal from a set. We'll see in all the functions that take a signal set as
an argument that we always pass the address of the signal set as the argument.

Implementation

If the implementation has fewer signals than bits in an integer, a signal set can be imple-
mented using one bit per signal. Most implementations of 4.3+BSD, for example, have
31 signals and 32-bit integers. sigemptyset zeroes the integer and sigfillset turns
on all the bits in the integer. These two functions can be implemented as macros in the
<signal.h> header:

#define sigemptyset (ptr) ( *(ptr) = 0)
#define sigfillset(ptr) ( *(ptr) = ~(sigset_t)0, 0 )
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Note that sigfillset must return 0, in addition to setting all the bits on in the signal
set, so we use C's comma operator, which returns the value after the comma as the
value of the expression.

Using this implementation sigaddset turns on a single bit and sigdelset turns
off a single bit. sigismember tests a certain bit. Since there is never a signal numbered
0, we subtract 1 from the signal number to obtain the bit to manipulate. Program 10.9
implements these functions.

#include <signal.h>
#include <errno.h>
fdefine SIGBAD (signo) ((signo) <= 0 || (signo) >= NSIG)

/* <signal.h> usually defines NSIG to include signal number 0 */
int
sigaddset (sigset_t *set, int signo)

{
if (SIGBAD(signo)) { errno = EINVAL; return(-1); }

*set |= 1 << (signo — 1): /* turn bit on */
return (0) ;

}

int

sigdelset (sigset t *set, int signo)

{
if (SIGBAD(signo))} { errno = EINVAL; return{(-1); }

*set &= " (1 << (signo - 1)); /* turn bit off */
return{0);

}

int

sigismember (const sigset_t *set, int signo)

{
if (SIGBAD(signo)) { errno = EINVAL; return{-1); }

return{ (*set & (1 << (signo - 1}))) '= 0 ):

Program 10.9 An implementation of sigaddset, sigdelset, and sigismember.

We might be tempted to implement these three functions as one-line macros in the
<signal.h> header, but POSIX.1 requires us to check the signal number argument for
validity and set errno if it is invalid. This is harder to do in a macro than a function.

sigprocmask Function
Recall from Section 10.8 that the signal mask of a process is the set of signals currently

blocked from delivery to that process. A process can examine or change (or both) its
signal mask by calling the following function.
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#include <signal.h>
int sigprocmask (int how, const sigset_t *sef, sigset_t *osef);

Returns: 0 if OK, —1 on error

First, if oset is a nonnull pointer, the current signal mask for the process is returned
through oset.

Second, if sef is a nonnull pointer, then the how argument indicates how the current
signal mask is modified. Figure 10.4 describes the different values for how. SIG_BLOCK
is an inclusive-OR operation while SIG_SETMASK is an assignment.

how Description
SIG_BLOCK The new signal mask for the process is the union of its current signal mask

and the signal set pointed to by set. That is, set contains the additional
signals that we want to block.

SIG_UNBLOCK | The new signal mask for the process is the intersection of its current signal
mask and the complement of the signal set pointed to by sef. That is, sef
contains the signals that we want to unblock.

SIG_SETMASK | The new signal mask for the process is the value pointed to by sef.

Figure 10.4 Ways to change current signal mask using sigprocmask.

If set is a null pointer, the signal mask of the process is not changed, and the value of
how is not significant.

If there are any pending, unblocked signals after the call to sigprocmask, at least
one of these signals is delivered to the process before sigprocmask returns.

Example

Program 10.10 shows a function that prints the names of the signals in the signal mask
of the calling process. We call this function from Program 10.14 and Program 10.15. To
save space we don't test the signal mask for every signal that we listed in Figure 10.1.
(See Exercise 10.9.) O

10.13 sigpending Function

sigpending returns the set of signals that are blocked from delivery and currently
pending for the calling process. The set of signals is returned through the set argument.

#include <signal.h>
int sigpending(sigset_t *set);

Returns: 0 if OK, -1 on error




#include <errnoc.h>
#include <signal.h>
#include "ourhdr.h"
void

pr_mask (const char *str)
{
sigset_t sigset;
int errno_save;

errnc_save = errno; /* we can be called by signal handlers */
if (sigprocmask (0, NULL, &sigset) < 0)
err sys("sigprocmask error");

printf("%s", str):

if (sigismember (&sigset, SIGINT)) printf ("SIGINT *);

if (sigismember (&sigset, SIGQUIT)) printf("SIGQUIT "):

if (sigismember (&sigset, SIGUSR1l)) printf ("SIGUSR1 "):

if (sigismember (&sigset, SIGALRM)) printf("SIGALRM ") ;
/* remaining signals can go here */

printf("\n");

€rrno = errno_save:

Program 10.10 Print the signal mask for the process.

Example

Program 10.11 shows many of the signal features that we've been describing. The pro-
cess blocks SIGQUIT, saving its current signal mask (to reset later), and then goes to
sleep for 5 seconds. Any occurrence of the quit signal during this period is blocked and
won’t be delivered until the signal is unblocked. At the end of the 5 second sleep we
check if the signal is pending and unblock the signal.

Note that we saved the old mask when we blocked the signal. To unblock the sig-
nal we did a SIG_SETMASK of the old mask. Alternately, we could SIG_UNBLOCK only
the signal that we had blocked. Be aware, however, if we write a function that can be
called by others and if we need to block a signal in our function, we can’t use
SIG_UNBLOCK to unblock the signal. In this case we have to use SIG_SETMASK and
reset the signal mask to its prior value, because it's possible that the caller had specifi-
cally blocked this signal before calling our function. We’ll see an example of this in the
system function in Section 10.18.

If we generate the quit signal during this sleep period, the signal is now pending
and unblocked, so it is delivered before sigprocmask returns. We'll see this occur
because the print £ in the signal handler is output before the print £ that follows the
call to sigprocmask.
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#include <signal.h>
#include "osurhdr.h"

static veoid sig _quit(int);

int
main (void)

{
sigset_t newmask, oldmask, pendmask;

if (signal (SIGQUIT, sig _quit) == SIG_ERR)
err sys("can't catch SIGQUIT"):

sigemptyset (&newmask) ;
sigaddset (&newmask, SIGQUIT);
/* block SIGQUIT and save current signal mask */
if (sigprocmask(SIG BLOCK, &newmask, &oldmask) < 0)
err_sys("SIG_BLOCK error");

sleep(5); /* SIGQUIT here will remain pending */

if (sigpending(&pendmask) < 0)
err_sys("sigpending error");

if (sigismember (&pendmask, SIGQUIT))
printf ("\nSIGQUIT pending\n");

/* reset signal mask which unblocks SIGQUIT */
if (sigprocmask(SIG_SETMASK, &oldmask, NULL) < 0)
err_sys("SIG_SETMASK error");
printf ("SIGQUIT unblocked\n");

sleep(5); /* SIGQUIT here will terminate with core file */

exit (0);
}

static veoid
sig _quit (int signo)

{
printf ("caught SIGQUIT\n");

if (signal (SIGQUIT, SIG DFL) == SIG ERR)
err sys{("can't reset SIGQUIT"):;
return;

Program 10.11 Example of signal sets and sigprocmask.
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The process then goes to sleep for another 5 seconds. If we generate the quit signal
during this sleep period, it should terminate the process, since we reset the handling of
the signal to its default when we caught it. In the following output, the terminal prints
"\ when we input Control-backslash, the terminal quit character.

S a.out

“\ generate signal once (before 5 seconds are up)
SIGQUIT pending after return from sleep

caught SIGQUIT in signal handler

SIGQUIT unblocked after return from sigprocmask

“\Quit (coredump) generate signal again

$ a.out

A W W W W N N W R R} generate signal 10 times (before 5 seconds are up)
SIGQUIT pending

caught SIGQUIT signal is generated only once

SIGQUIT unblocked

“\Quit (coredump) generate signal again

(The message Quit (coredump) is printed by the shell when it sees that its child termi-
nated abnormally.) Notice that when we run the program the second time we generate
the quit signal 10 times while the process is asleep, yet the signal is delivered only once
to the process when it's unblocked. This demonstrates that signals are not queued on
this system. O

sigaction Function

The sigaction function allows us to examine or modify (or both) the action associated
with a particular signal. This function supersedes the signal function from earlier
releases of Unix. Indeed, at the end of this section we show an implementation of
signal using sigaction.

#include <signal.h>

int sigaction(int signo, const struct sigaction *act,
struct sigaction *oact) ;

Returns: 0 if OK, -1 on error

The argument signo is the signal number whose action we are examining or modifying.
If the act pointer is nonnull, we are modifying the action. If the oact pointer is nonnull,
the system returns the previous action for the signal. This function uses the following
structure

struct sigaction {

void (*sa_handler) (); /* addr of signal handler,
or SIG_IGN, or SIG_DFL */
sigset_t sa mask; /* additional signals to block */

int sa flags; /* signal options, Figure 10.5 */
s
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When changing the action for a signal, if the sa_handler points to a signal-
catching function (as opposed to the constants SIG_IGN or SIG_DFL) then the
sa_mask field specifies a set of SJgnals that are added to the signal mask of the process
before the signal-catching function is called. If and when the signal-catching function
returns, the signal mask of the process is reset to its previous value. This way we are
able to block certain signals whenever a signal handler is invoked. This new signal
mask that is installed by the system when the signal handler is invoked automatically
includes the signal being delivered. Hence, we are guaranteed that whenever we are
processing a given signal, another occurrence of that same signal is blocked until we're
finished processing the first occurrence. Recall from Section 10.8 that additional occur-
rences of the same signal are usually not queued. If the signal occurs five times while
its blocked, when we unblock the signal the signal-handling function for that signal will
usually be invoked only one time.

Once we install an action for a given signal, that action remains installed until we
explicitly change it by calling sigaction. Unlike earlier systems with their unreliable
signals, POSIX.1 requires that a signal handler remain installed until explicitly changed.

The sa_flags field of the act structure specifies various options for the handling of
this signal. Figure 10.5 details the meaning of these options when set.

Option POSIX.1 | SVR4 4.3+BSD Description

SA_NOCLDSTOP . . . If signo is SIGCHLD, do not generate this signal when a
child process stops (job control). This signal is still
generated, of course, when a child terminates (but see the
SVR4-specific SA_NOCLDWAIT option below).

SAh_RESTART U . System calls interrupted by this signal are automatically
restarted. (Refer to Section 10.5.)
SA_ONSTACK . . If an alternate stack has been declared with

sigaltstack(2), this signal is delivered to the process on
the alternate stack.

SA_NOCLDWAIT . If signo is STGCHLD, this option causes the system not to
create zombie processes when children of the calling
process terminate. If the calling process subsequently calls
wait, it blocks until all its child processes have terminated
and then returns -1 with errno set to ECHILD. (Recall
Section 10.7.)

SA NODEFER . When this signal is caught, the signal is not automatically
blocked by the system while the signal-catching function
executes. Note that this type of operation corresponds to
the earlier unreliable signals.

SA_RESETHAND . The disposition for this signal is reset to SIG_DFL on entry
to the signal-catching function. Note that this type of
operation corresponds to the earlier unreliable signals.

SA_SIGINFO . This option provides additional information to a signal
handler. Refer to Section 10.21 for additional details.

Figure 10.5 Option flags (sa_flags) for the handling of each signal.
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Example—signal Function

Let’s now implement the signal function using sigaction. This is what 4.3+BSD
does (and what a note in the POSIX.1 Rationale states was the intent of POSIX). SVR4,
on the other hand, provides a signal function that provides the older, unreliable signal
semantics. Unless you specifically require these older, unreliable semantics (for back-
ward compatibility), under SVR4 you should use the following implementation of
signal or call sigaction directly. (As you might guess, an implementation of
signal under SVR4 with the old semantics could call sigaction specifying
SA_RESETHAND and SA_NODEFER.) All the examples in this text that call signal call
the function shown in Program 10.12.

/* Reliable version of signal(), using POSIX sigaction(). */
#include <signal.h>

#include "ourhdr.h"

sigfunc *

signal (int signo, Sigfunc *func)
{
struct sigaction act, oact;

act.sa_handler = func;
sigemptyset (éact.sa_mask);
act.sa_flags = 0;
if (signo == SIGALRM) {
#ifdef SA INTERRUPT
act.sa_flags |= SA_INTERRUPT; /* SunCs */

#endif
} else {
#ifdef SA RESTART
act.sa_flags |= SA RESTART; /* SVR4, 4.3+BSD */
#endif

}

if (sigaction(signo, &act, &ocact) < 0)
return(SIG_ERR) ;

return(ocact.sa handler);

Program 10.12 An implementation of signal using sigaction.

Note that we must use sigemptyset to initialize the sa_mask member of the struc-
ture. We're not guaranteed that

act.sa mask = 0;

does the same thing.

We intentionally try to set the SA_RESTART flag, for all signals other than SIGALRM,
so that any system call interrupted by these other signal is automatically restarted. The
reason we don’t want SIGALRM restarted is to allow us to set a time out for I/O opera-
tions. (Recall the discussion of Program 10.7.)
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Some systems (such as SunOS) define the SA_INTERRUPT flag. These systems re-
start interrupted system calls by default, so specifying this flag causes system calls to be

interrupted. O

Example—signal_intr Function

10.15

Program 10.13 is a version of the signal function that tries to prevent any interrupted
system calls from being restarted.

#include <signal.h>
#include "ourhdr.h"

Sigfunc *
signal_intr (int signo, Sigfunc *func)
{

struct sigaction act, oact;

act.sa_handler = func;
sigemptyset (sact.sa_mask);
act.sa_flags = 0;

#ifdef SA INTERRUPT /* Sun0s */
act.sa_ flags |= SA_INTERRUPT;

fendif
if (sigaction(signo, &act, &oact) < 0)

return (SIG_ERR);

return(ocact.sa_handler);

Program 10.13 The signal_intr function.

We specify the SA_INTERRUPT flag, if defined by the system, to prevent interrupted
system calls from being restarted. O

sigsetjmp and siglongijmp Functions

In Section 7.10 we described the setjmp and longjmp functions that can be used for
nonlocal branching. The longjmp function is often called from a signal handler to
return to the main loop of a program, instead of returning from the handler. Indeed, the
ANSI C standard states that a signal handler can either return or call abort, exit, or
longjmp. We saw this in Programs 10.5 and 10.8.

There is a problem in calling longjmp. When a signal is caught, the signal-catching
function is entered with the current signal automatically being added to the signal mask
of the process. This prevents subsequent occurrences of that signal from interrupting
the signal handler. If we 1ongjmp out of the signal handler, what happens to the signal
mask for the process?

Under 4.3+BSD set jmp and 1longjmp save and restore the signal mask. SVR4, however, does
not do this. 4.3+BSD provides the functions _set jmp and _longjmp that do not save and
restore the signal mask.
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To allow either form of behavior, POSIX.1 does not specify the effect of set jmp and
longjmp on signal masks. Instead, two new functions, sigset jmp and siglongjmp,
are defined by POSIX.1. These two functions should always be used when branching
from a signal handler.

#include <setijmp.h>
int sigsetjmp(sigjmp_buf env, int savemask) ;

Returns: 0 if called directly, nonzero if returning from a call to siglongjmp

void siglongjmp(sigjmp_buf env, int wal);

The only difference between these functions and the set jmp and 1ongjmp functions is
that sigset jmp has an additional argument. If savemask is nonzero then sigset jmp
also saves the current signal mask of the process in env. When siglongjmp is called, if
the env argument was saved by a call to sigset jmp with a nonzero savemask, then
siglongjmp restores the saved signal mask.

Example
Program 10.14 demonstrates how the signal mask that is installed by the system whena

signal handler is invoked automatically includes the signal being caught. It also illus-
trates the use of the sigset jmp and siglongjmp functions.

#include <signal.h>
#include <setjmp.h>
#include <time.h>

#include "ourhdr.h"

static wvoid sig_usrl(int), sig alrm(int);
static sigjmp buf jmpbuf;

static volatile sig_atomic_t canjump;

int

main (void)
{
if (signal (SIGUSR1, sig_usrl) == SIG_ERR}
err_sys("signal (SIGUSR1l) error"}:
if (signal (SIGALRM, sig_alrm) == SIG_ERR}
err sys("signal (SIGALRM) error");
pr_mask ("starting main: "); /* Program 10.10 */

if (sigsetjmp (jmpbuf, 1)) {
pr_mask("ending main: ");

exit(0);
}
canjump = 1; /* now sigsetjmp() is OK */
for ( ; ¢ )

pause () ;
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static void
sig_usrl (int signo)
{
time t starttime;

if (canjump == 0}
return; /* unexpected signal, ignore */

pr_mask ("starting sig usrl: ");

alarm(3); /* SIGALRM in 3 seconds */
starttime = time (NULL);
for (; ;) /* busy wait for 5 seconds */
if (time (NULL) > starttime + 5)
break;

pr_mask("finishing sig usrl: "});

canjump = 0;
siglongjmp (jmpbuf, 1); /* jump back to main, don‘t return */
}

static void

sig_alrm(int signo)

{
pr_mask("in sig alrm: ");
return;

Program 10,14 Example of signal masks, sigset jmp, and siglongjmp.

This program demonstrates another technique that should be used whenever
siglongjmp is being called from a signal handler. We set the variable canjump
nonzero only after we've called sigset jmp. This variable is also examined in the sig-
nal handler, and siglongjmp is called only if the flag canjump is nonzero. This pro-
vides protection against the signal handler being called at some earlier or later time,
when the jump buffer isn’t initialized by sigset jmp. (In this trivial program we termi-
nate quickly after the siglongjmp, but in larger programs the signal handler may
remain installed long after the siglongjmp.) Providing this type of protection usually
isn’t required with 1ongjmp in normal C code (as opposed to a signal handler). Since a
signal can occur at any time, however, we need the added protection in a signal handler.

Here we use the data type sig_atomic_t, which is defined by the ANSI C stan-
dard to be the type of variable that can be written without being interrupted. By this we
mean that a variable of this type should not extend across page boundaries on a system
with virtual memory and can be accessed with a single machine instruction, for exam-
ple. We always include the ANSI type qualifier volatile for these data types too,
since the variable is being accessed by two different threads of control—the main func-
tion and the asynchronously executing signal handler.

Figure 10.6 shows a time line for this program. We can divide Figure 10.6 into three
parts: the left part (corresponding to main), the center part (sig_usr1), and the right
part (sig_alrm). While the process is executing in the left part its signal mask is 0 (no
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signal ()
signal ()
r_mask ()
sigsetjmp ()}
pause ()
SIGUSR1 delivered ’l sig_usrl —|
pr _mask()
aTarm()
time ()
time ()
time ()
Y SIGALRMdelivered .’ aginEs
pr mask()
return from signal handler rétuzn()
_ pr_mask()
sigsetjmp() -4—————— siglongjmp()
pr_mask ()
exit ()

Figure 10.6 Time line for example program handling two signals.

signals are blocked). While executing in the center part its signal mask is SIGUSRL.
While executing in the right part its signal mask is SIGUSR1 | SIGALRM.
Let’s examine the actual output when Program 10.14 is executed.

$ a.out & start process in background

starting main:

(1] 531 the job-control shell prints its process ID
$ kill -USR1 531 send the process SIGUSR1

starting sig_usrl: SIGUSR1
$ in sig_alrm: SIGUSR1 SIGALRM
finishing sig usrl: SIGUSR1
ending main:
just press RETURN
[1] + Done a.out &

The output is as we expect: when a signal handler is invoked, the signal being caught is
added to the current signal mask of the process. The original mask is restored when the
signal handler returns. Also, siglongjmp restores the signal mask that was saved by
sigset jmp.

If we change Program 10.14 so that the calls to sigsetjmp and siglongjmp are
replaced with calls to _set jmp and _longjmp instead, under 4.3+BSD the final line of
output becomes

ending main: SIGUSR1
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This means that the main function is executing with the SIGUSR1 signal blocked, after
the call to _set jmp. This probably isn’t what we want. O

sigsuspend Function

We have seen how we can change the signal mask for a process to block and unblock
selected signals. We can use this to protect critical regions of code that we don’t want
interrupted by a signal. What if we want to unblock a signal and then pause, waiting
for the previously blocked signal to occur? Assuming the signal is SIGINT, the incor-
rect way to do this is

sigset_t newmask, oldmask;

sigemptyset (&newmask) ;
sigaddset (&newmask, SIGINT);
/* block SIGINT and save current signal mask */
if (sigprocmask (SIG_BLOCK, &newmask, &oldmask) < 0)
err sys("SIG_BLOCK error");

/* critical region of code */

/* reset signal mask, which unblocks SIGINT */
if (sigprocmask (SIG_SETMASK, &oldmask, NULL) < 0)
err_ sys("SIG_SETMASK error");

pause(); /* wait for signal to occur */
/* continue processing */

There is a problem if the signal occurs between the unblocking and the pause. Any
occurrence of the signal in this window of time is lost. This is another problem with the
earlier unreliable signals.

To correct this problem we need a way to both reset the signal mask and put the
process to sleep in a single atomic operation. This feature is provided by the
sigsuspend function.

#include <signal.h>
int sigsuspend(const sigset t *sigmask) ;

Returns: —1 with errno set to EINTR

The signal mask of the process is set to the value pointed to by sigmask. The process is
also suspended until a signal is caught or until a signal occurs that terminates the pro-
cess. If a signal is caught and if the signal handler returns, then sigsuspend returns
and the signal mask of the process is set to its value before the call to sigsuspend.
Note that there is no successful return from this function. If it returns to the caller, it
always returns —1 with errno set to EINTR (indicating an interrupted system call).



static void sig_int(int);

int

main(void)

{

}

sigset_t newmask, oldmask, zeromask;

if (signal (SIGINT, sig_int) == SIG_ERR)
err sys("signal (SIGINT) error");

sigemptyset (&zeromask) ;

sigemptyset (&newmask) ;
sigaddset (&newmask, SIGINT);
/* block SIGINT and save current
if (sigprocmask (SIG_BLOCK, &newmask, &oldmask) <
err_sys("SIG_BLOCK error");

/* critical region of code */
pr_mask("in critical region: ");

/* allow all signals and pause */
if (sigsuspend (&zeromask) != -1)
err sys("sigsuspend error"};
pr_mask("after return from sigsuspend: "};

signal mask */
0)

/* reset signal mask which unblocks SIGINT */

if (sigprocmask (SIG_SETMASK, &oldmask, NULL) < 0)
err_sys(“SIG_SETMASK error™) ;

/* and continue processing ... */
exit (0);

static void
sig_int (int signo)

{

pr_mask("\nin sig_int: “);
return;

304 Signals
Example
Program 10.15 shows the correct way to protect a critical region of code from a specific
signal.
#include <signal.h>
#include "ourhdr.h"

Program 10.15 Protecting a critical region from a signal.



igsuspend Function 305

Note that when sigsuspend returns it sets the signal mask to its value before the call.
In this example the SIGINT signal will be blocked. We therefore reset the signal mask
to the value that we saved earlier (cldmask).

Running Program 10.15 produces the following output.

$ a.out
in critical region: SIGINT
-2 type our interrupt character

in sig_int: SIGINT
after return from sigsuspend: SIGINT

We can see that when sigsuspend returns, it restores the signal mask to its value
before the call. m

Example

Another use of sigsuspend is to wait for a signal handler to set a global variable. In
Program 10.16 we catch both the interrupt signal and the quit signal, but want only to
wake up the main routine when the quit signal is caught. Sample output from this pro-

gram is

$ a.out

- type our interrupt character

interrupt

- type our interrupt character again

interrupt

"2 and again

interrupt

"\ $ now terminate with quit character o
For portability between non-POSIX systems that support ANSI C, and POSIX.1 systems, the
only thing we should do within a signal handler is assign a value to a variable of type
sig_atomic_t, and nothing else. POSIX.1 goes farther and specifies a list of functions that
are safe to call from within a signal handler (Figure 10.3), but if we do this our code may not
run correctly on non-POSIX systems.

Example

As another example of signals we show how signals can be used to synchronize a par-
ent and child. Program 10.17 implements the five routines TELL_WAIT, TELL PARENT,

TELL _CHILD, WAIT PARENT, and WAIT _CHILD from Section 8. 8. We use the two user-
defined signals: STGUSR1 is sent by the parent to the child, and SIGUSR2 is sent by the
child to the parent. In Program 14.3 we show another implementation of these five
functions using pipes. o
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#include <signal.h>
#include "ourhdr.h"

volatile sig_atomic_t quitflag: /* set nonzero by signal handler */

int
main (void)
{
void sig_int(int):;
sigset _t newmask, oldmask, zeromask;

if (signal (SIGINT, sig_int) == SIG_ERR)
err sys("signal (SIGINT) error");

if (signal (SIGQUIT, sig _int) == SIG_ERR)
err_sys("signal (SIGQUIT) error");

sigemptyset (&zeromask) ;

sigemptyset (&newmask) ;
sigaddset (&newmask, SIGQUIT);
/* block SIGQUIT and save current signal mask */
if (sigprocmask(SIG_BLOCK, &newmask, &ocldmask) < 0)
err_sys ("SIG_BLOCK error");

while (quitflag == 0})
sigsuspend(&zeromask) ;

/* SIGQUIT has been caught and is now blocked; do whatever */
quitflag = 0;
/* reset signal mask which unblocks SIGQUIT */
if (sigprocmask (SIG_SETMASK, &oldmask, NULL) < 0)
err sys("SIG_SETMASK error");

exit (0);
}

void
sig_int (int signo) /* one signal handler for SIGINT and SIGQUIT */
{
if (signo == SIGINT)
printf("\ninterrupt\n"};
else if (signo == SIGQUIT)
quitflag = 1; /* set flag for main loop */
return;

Program 10.16 Using sigsuspend to wait for a global variable to be set.
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#include <signal.h>
#include "ourhdr.h"

static volatile sig atomic t sigflag;
/* set nonzero by signal handler */

static sigset_t newmask, oldmask, zeromask;

static void
sig_usr(int signo) /* one signal handler for SIGUSR1 and SIGUSR2 */
!

sigflag = 1;

return;

}

void
TELL_WAIT ()
{
if (signal (SIGUSR1, sig usr) == SIG_ERR)
err_sys("signal (SIGINT) error");
if (signal (SIGUSR2, sig_usr) == SIG_ERR)
err_sys("signal (SIGQUIT) error");

sigemptyset (&zeromask) ;

sigemptyset (&newmask) ;
sigaddset (&newmask, SIGUSR1):
sigaddset (&newmask, SIGUSR2);
/* block SIGUSR1 and SIGUSR2, and save current signal mask */
if (sigprocmask (SIG_BLOCK, &newmask, &oldmask) < 0)
err_sys("SIG_BLCCK error");
}

void

TELL_PARENT (pid_t pid)
( )
kill (pid, SIGUSR2); /* tell parent we’re done */

}

void
WALT PARENT (void)
{
while (sigflag == 0)
sigsuspend (&zeromask); /* and wait for parent */

sigflag = 0;
/* reset signal mask to original value */
if (sigprocmask (SIG_SETMASK, &oldmask, NULL) < 0)
err_ sys("SIG_SETMASK error");
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void
TELL CHILD(pid t pid)
{
kill (pid, SIGUSR1); /* tell child we’re done */
}

void
WAIT CHILD (void)
{
while (sigflag == 0)
sigsuspend(&zeromask); /* and wait for child */

sigflag = 0;
/* reset signal mask to original value */
if (sigprocmask (SIG_SETMASK, &oldmask, NULL) < 0)
err sys("SIG_SETMASK error");

Program 10.17 Routines to allow a parent and child to synchronize.

The sigsuspend function is fine if we want to go to sleep while waiting for a sig-
nal to occur (as we’ve shown in the previous two examples), but what if we want to call
other system functions while we're waiting? Unfortunately there is no bulletproof solu-
tion to this problem.

In Program 17.13 we encounter this scenario. We catch both SIGINT and SIGALRY,
setting a global variable in each of the signal handlers if the signal occurs. Both signal
handlers are installed using the signal_intr function, so that they interrupt any slow
system call that is blocked. The signals are most likely to occur when we're blocked in a
call to the select function (Section 12.5.1), waiting for input from a slow device. (This
is especially true for STGALRM, since we set the alarm clock to prevent us from blocking
forever waiting for input.) The best we can do is the following,

if (intr flag) /* flag set by our SIGINT handler */
handle_intr();
if (alrm flag) /* flag set by our SIGALRM handler */

handle alrm();
/* signals occurring in here are lost */
while (select( ... ) < 0) {
if (errno == EINTR) {
if (alrm flag)
handle alrm();
else if (intr_ flag)
handle intr():
} else
/* some other error */
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We test each of the global flags before calling select and again if select returns an
interrupted system call error. The problem occurs if either signal is caught between the
first two if statements and the subsequent call to select. Signals occurring in here
are lost, as indicated by the code comment. The signal handlers are called, and they set
the appropriate global variable, but the select never returns (unless some data is
ready to be read).

What we would like to be able to do is the following sequence of steps, in order.

1. Block SIGINT and SIGALRM.

2. Test the two global variables to see if either signal has occurred and, if so, han-
dle the condition.

3. Call select (or any other system function, such as read) and unblock the two
signals, as an atomic operation.

The sigsuspend function helps us only if step 3 is a pause operation.

10.17 abort Function

We mentioned earlier that the abort function causes abnormal program termination.

#include <stdlib.h>
void abort (void) :

This function never returns

- This function sends the SIGABRT signal to the process. A process should not ignore this
signal.

ANSI C requires that if the signal is caught and the signal handler returns, abort
still doesn’t return to its caller. If this signal is caught, the only way the signal handler
can’t return is if it calls exit, _exit, longjmp, or siglongjmp. (Section 10.15 dis-
cusses the differences between 1ongjmp and siglongjmp.) POSIX.1 also specifies that
abort overrides the blocking or ignoring of the signal by the process.

The intent of letting the process catch the SIGABRT is to allow it to perform any
cleanup that it wants to do, before the process terminates. If the process doesn’t termi-
nate itself from this signal handler, POSIX.1 states that, when the signal handler returns,
abort terminates the process.

The ANSI C specification of this function leaves it up to the implementation
whether output streams are flushed and whether temporary files (Section 5.13) are
deleted. POSIX.1 goes further and requires that if the call to abort terminates the pro-
cess, then it shall have the effect of calling fclose on all open standard 1/0O streams.
But if the call to abort doesn’t terminate the process, then it should have no effect on
open streams. As we see later, this requirement is hard to implement.
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Earlier versions of System V generated the SIGIOT signal from the abort function. Further-
more it was possible for a process to ignore this signal or to catch it and return from the signal
handler, in which case abort returned to its caller.

4.3BSD generated the SIGILL signal. Before doing this the 4.3BSD function unblocked the sig-
nal and reset its disposition to SIG_DFL (terminate with core file). This prevented a process
from either ignoring the signal or catching it.

SVR4 closes all standard I/O streams before generating the signal. On the other hand,
4.3+BSD does not. For defensive programming, if we want standard I/O streams to be
flushed, we specifically do it before calling abort. We do this in the err_dump function
(Appendix B).

Since most Unix implementations of tmpfile call unlink immediately after creating the file,
the ANSI C warning about temporary files does not usually concern us.

Example

10.18

Program 10.18 implements the abort function, as specified by POSIX.1. The required
handling of open standard I/O streams is hard to accomplish. We first see if the default
action will occur, and if so we flush all the standard I/O streams. This is not equivalent
to an fclose on all the open streams (since it just flushes them and doesn’t close them),
but when the process terminates the system closes all open files. If the process catches
the signal and returns, we flush all the streams. (If the process catches the signal and
doesn’t return, we're not supposed to touch the standard I/O streams.) The only condi-
tion we don’t handle is if the process catches the signal and calls exit. In this case
any unflushed standard I/O buffers in memory are discarded. We assume that a caller
who catches the signal and specifically calls _exit, doesn’t want the buffers flushed.
Recall from Section 10.9 that if calling kil1 causes the signal to be generated for the
caller, and if the signal is not blocked (which we guarantee in Program 10.18), then the
signal is delivered to the process before kill returns. This way we know that, if the
call to ki1l returns, the process caught the signal and the signal handler returned. @

system Function

In Section 8.12 we showed an implementation of the system function. That version,
however, did not do any signal handling. POSIX.2 requires that system ignore STGINT
and SIGQUIT and block SIGCHLD. Before showing a version that correctly handles
these signals, let’s see why we need to worry about signal handling.
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#include <sys/signal.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

void
abort (void) /* POSIX-style abort() function */
{

sigset_t mask;

struct sigaction action;

/* caller can’t ignore SIGABRT, if so reset to default */
sigaction (SIGABRT, NULL, &action);
if (action.sa handler == SIG_IGN) {

action.sa_handler = SIG DFL;

sigaction(SIGABRT, &action, NULL);
}

if (action.sa_handler == SIG DFL)
fflush (NULL) ; /* flush all open stdio streams */

/* caller can’t block SIGABRT; make sure it’s unblocked */
sigfillset (&mask) ;
sigdelset (&mask, SIGABRT); /* mask has only SIGABRT turned off */
sigprocmask (SIG_SETMASK, &mask, NULL);
kill (getpid (), SIGABRT); /* send the signal */

/* if we’re here, process caught SIGABRT and returned */
fflush (NULL) ; /* flush all open stdio streams */

action.sa_handler = SIG DFL;

sigaction (SIGABRT, &action, NULL); /* reset disposition to default */
sigprocmask (SIG_SETMASK, &mask, NULL); /* just in case ... */

kill (getpid(), SIGABRT): /* and one more time */

exit(1l); /* this should never be executed ... */

Program 10.18 POSIX.1 implementation of abort.
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Example

Program 10.19 uses the version of system from Section 8.12 to invoke the ed(1) editor.
(This editor has been part of Unix systems for a long time. We use it here because it is
an interactive program that catches the interrupt and quit signals. 1f we invoke ed from
a shell, and type the interrupt character, it catches the interrupt signal and prints a ques-
tion mark. Italso sets the disposition of the quit signal so that it is ignored.)

#include <sys/types.h>
#include <signal.h>
#include "ourhdr .h"

static void sig_int(int), sig chld(int);
int
main (void)

{
int status;

if (signal (SIGINT, sig_int) == SIG ERR)
err_sys("signal (SIGINT) error");

if (signal (SIGCHLD, sig_chld) == SIG_ERR)
err_sys("signal (SIGCHLD) error"):

if ( (status = system("/bin/ed")) < 0)
err_ sys("system() error"):;
exit (0);
}

static wvoid

sig_int (int signo)

{
printf ("caught SIGINT\n"):
return;

}

static void

sig_chld(int signo)

{
printf ("caught SIGCHLD\n");
return;

Program 10.19 Using system to invoke the ed editor.

Program 10.19 catches both SIGINT and STIGCHLD. If we invoke it we get

$ a.out

a append text to the editor’s buffer
Here is one line of text

and another

period on a line by itself stops append mode
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1,%p print first through last lines of buffer to see what’s there
Here is one line of text
and another

w temp.foo write the buffer to a file
37 editor says it wrote 37 bytes
q and leave the editor

caught SIGCHLD

What is happening when the editor terminates is that SIGCHLD is generated for the par-
ent (the a. out process). We catch it and return from the signal handler. But if the par-
ent is catching the STGCHLD signal, it should be doing so because it has created its own
children, so that it knows when its children have terminated. The catching of this signal
in the parent should be blocked while the system function is executing. Indeed, this is
what POSIX.2 specifies. Otherwise, when the child created by system terminates, it
would fool the caller of system into thinking that one of its own children terminated.

If we execute the program again, this time sending an interrupt signal to the editor,
we get

$ a.out

a append text to the editor’s buffer

hello, world
period on a line by itself stops append mode

1, $p print first through last lines to see what's there
hello, world -

w temp.£foo write the buffer to a file

13 editor says it wrote 13 bytes

"2 type our interrupt character

? editor catches signal, prints question mark
caught SIGINT and so does the parent process

q leave editor

caught SIGCHLD

Recall from Section 9.6 that typing the interrupt character causes the interrupt signal to
be sent to all the processes in the foreground process group. Figure 10.7 shows the
arrangement of the processes when the editor is running.

o A P T . 1
I ! ] [
| . y  fork fork . fork . I
: login shell : oxec r a.out oxec™ /bin/sh oxec™ /bin/ed :
oy LPSySeS_ _ _ SN 4
background process group foreground process group

Figure 10.7 Foreground and background process groups for Program 10.19.

In this example SIGINT is sent to all three foreground processes. (The shell ignores it.)
As we can see from the output, both the a. out process and the editor catch the signal.
But when we’re running another program with the system function, we shouldn’t have
both the parent and the child catching the two terminal-generated signals: interrupt and
quit. These two signals should really be sent to the program that is running: the child.
Since the command that is executed by system can be an interactive command (as is
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the ed program in this example) and since the caller of system gives up control while
the program executes, waiting for it to finish, the caller of system should not be receiv-
ing these two terminal-generated signals. This is why POSIX.2 specifies that the caller

of system should ignore these two signals. a
Example
Program 10.20 shows an implementation of the system function with the required sig-
nal handling.
#include <sys/types.h>
#include <sys/wait.h>
#include <errno.h>
#include <signal.h>
#include <unistd.h>
int
system(const char *cmdstring) /* with appropriate signal handling */
{
pid t pid;
int status;
struct sigaction ignore, saveintr, savequit;:
sigset_t chldmask, savemask;
if (cmdstring == NULL)
return(l); /* always a command processor with Unix */
ignore.sa_handler = SIG IGN; /* ignore SIGINT and SIGQUIT */

sigemptyset (&ignore.sa_mask) ;

ignore.sa flags = 0;

if (sigaction(SIGINT, &ignore, &saveintr) < 0)
return(-1);

if (sigaction(SIGQUIT, &ignore, &savequit) < 0)
return(-1);

sigemptyset (&chldmask) ; /* now block SIGCHLD */

sigaddset (&chldmask, SIGCHLD);

if (sigprocmask (SIG_BLOCK, &chldmask, &savemask) < 0)
return(-1);

if ( (pid = fork()) < 0) {
status = -1; /* probably out of processes */

} else if (pid == 0) { /* child */
/* restore previous signal actions & reset signal mask */
sigaction(SIGINT, &saveintr, NULL);
sigaction(SIGQUIT, &savequit, NULL);
sigprocmask (SIG_SETMASK, &savemask, NULL);

execl ("/bin/sh", "sh", "-c", cmdstring, (char *) 0);
_exit(127); /* exec error */
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} else { /* parent */
while (waitpid(pid, &status, 0) < 0)
if (errno != EINTR) {
status = ~-1; /* error other than EINTR from waitpid() */
break;

/* restore previous signal actions & reset signal mask */
if (sigaction(SIGINT, &saveintr, NULL) < 0)
return(-1);
if (sigaction(SIGQUIT, &savequit, NULL) < 0)
return(-1);
if (sigprocmask (SIG_SETMASK, &savemask, NULL) < 0)
return(-1);

return(status):;

Program 10.20 Correct POSIX.2 implementation of system function.

Many older texts show the ignoring of the interrupt and quit signals as follows:

if ( (pid = fork()) < 0)
err_sys("fork error");

else if (pid == 0) { /* child */
execl(...):
_exit (127);

}

/* parent */

0ld_intr = signal (SIGINT, SIG_IGN);

old_quit = signal (SIGQUIT, SIG_IGN);

waitpid(pid, &status, 0)

signal (SIGINT, old_intr);

signal (SIGQUIT, old_quit):

The problem with this sequence of code is that we have no guarantee after the fork
whether the parent or child runs first. If the child runs first and the parent doesn’t run
for some time after, it’s possible for an interrupt signal to be generated before the parent
is able to change its disposition to be ignored. For this reason, in Program 10.20 we
change the disposition of the signals before the fork.

Notice that we have to reset the dispositions of these two signals in the child before
the call to execl. This allows execl to change their dispositions to the default, based
on the caller’s dispositions, as we described in Section 8.9. O

Return Value from system

Beware of the return value from system. It is the termination status of the shell, which
isn’t always the termination status of the command string. We saw some examples in
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Program 8.13, and the results were as we expected: if we execute a simple command
such as date, the termination status is 0. Executing the shell command exit 44 gave
us a termination status of 44. What happens with signals?

Let’s run Program 8.14 and send some signals to the command that’s executing.

$ tsys "sleep 30"

“?normal termination, exit status = 130 we type our interrupt key
$ tsys "sleep 30"

“\sh: 946 Quit we type our quit key
normal termination, exit status = 131

When we terminate the sleep with the interrupt signal, the pr exit function
(Program 8.3) thinks it terminated normally. The same thing happens when we kill the
sleep with the quit key. What is happening here is that the Bourne shell has a poorly
documented feature that its termination status is 128 plus the signal number, when the
command it was executing is terminated by a signal. We can see this with the shell
interactively.

$ sh muake sure we're running the Bourne shell
$ sh -¢ "sleep 30"

"2 type our interrupt key

$ echo §? print termination status of last command
130

$ sh —c "sleep 30"

"\sh: 962 Quit - core dumped type our quit key

$ echo $7 print termination status of last command
131

$ exit leave Bourne shell

On the system being used, SIGINT has a value of 2 and SIGQUIT has a value of 3, giv-
ing us the shell’s termination statuses of 130 and 131.

Let’s try a similar example, but this time we’ll send a signal directly to the shell and
see what gets returned by system.

$ tsys "sleep 30" & start it in background this time
(1] 980
$ ps look at the process IDs
PID TT STAT TIME COMMAND
980 p3 S 0:00 tsys sleep 30
981 p3 s 0:00 sh -c sleep 30
982 p3 s 0:00 sleep 30
985 p3 R 0:00 ps
$ kill -KILL 981 kill the shell itself
abnormal termination, signal number = 9
{1] + Done tsys "sleep 30" &

Here we can see that the return value from system reports an abnormal termination
only when the shell itself abnormally terminates.

When writing programs that use the system function, be sure to interpret the
return value correctly. If we call fork, exec, and wait ourself, the termination status
is different than if we call system.
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10.19 sleep Function

We've used the sleep function in numerous examples throughout the text, and we
showed two flawed implementations of it in Programs 10.4 and 10.5.

#include <unistd.h>

unsigned int sleep(unsigned int seconds) ;

Returns: 0 or number of unslept seconds

This function causes the calling process to be suspended until either

1. the amount of wall clock time specified by seconds has elapsed, or
2. asignal is caught by the process and the signal handler returns.

As with an alarm signal, the actual return may be at a time later than requested,
because of other system activity.

In case 1 the return value is 0. When sleep returns early, because of some signal
being caught (case 2), the return value is the number of unslept seconds (the requested
time minus the actual time slept).

sleep can be implemented with the alarm function (Section 10.10), but this isn’t
required. If alarm is used, however, there can be interactions between the two func-
tions. The POSIX.1 standard leaves all these interactions unspecified. For example, if
we do an alarm{(10) and 3 wall clock seconds later do a sleep (5), what happens?
The sleep will return in 5 seconds (assuming some other signal isn’t caught in that
time), but will another STGALRM be generated 2 seconds later? These details depend on
the implementation.

SVR4 implements sleep using alarm The sleep (3) manual page says that a previously
scheduled alarm is properly handled. For example, in the preceding scenario, before sleep
returns it will reschedule the alarm to happen 2 seconds later. sleep returns O in this case.
(Obviously, s1leep must save the address of the signal handler for SIGALRM and reset it before
returning,) Also, if we do an alarm(6) and 3 wall dlock seconds later do a sleep (5), the
sleep returns in 3 seconds (when the alarm goes off), not in 5 seconds. Here the return value
from sleep is 2 (the number of unslept seconds).

43+BSD, on the other hand, uses another technique: the interval timer provided by
setitimer(2). This timer is independent of the alarm function, but there can still be interac-
tion between a previously set interval timer and sleep. Also, even though the alarm timer
(alarm) and interval timer (setitimer) are separate, they (unfortunately) use the same
SIGALRM signal. Since sleep temporarily changes the address of the signal handler for this
signal to its own function, there can still be unwanted interactions between alarmand sleep.

The moral in all this is to be intimately aware of how your system implements sleep if you
have any intentions of mixing calls to s1eep with any other timing functions.

Previous Berkeley-derived implementations of s1eep did not provide any useful return infor-
mation. This has been fixed in 4.3+BSD.
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Example

Program 10.21 shows an implementation of the POSIX.1 sleep function. This function
is a modification of Program 10.4 that handles signals reliably, avoiding the race condi-
tion in the earlier implementation. We still do not handle any interactions with previ-

ously set alarms. (As we mentioned, these interactions are explicitly undefined by
POSIX.1.)

#include <signal.h>
#include <stddef.h>
#include "ourhdr.h"

static void
sig alrm(void)
{
return; /* nothing to do, just returning wakes up sigsuspend() */
}

unsigned int
sleep(unsigned int nsecs)
{

struct sigaction newact, oldact;
sigset_t newmask, oldmask, suspmask;
unsigned int unslept;

newact.sa_handler = sig_alrm;
sigemptyset (&newact.sa_mask) ;
newact.sa flags = 0:
sigaction (SIGALRM, &newact, &oldact):
/* set our handler, save previous information */

sigemptyset (&newmask) ;
sigaddset (&newmask, SIGALRM) ;

/* block SIGALRM and save current signal mask */
sigprocmask (SIG_BLOCK, &newmask, &oldmask);

alarm(nsecs);

suspmask = oldmask;
sigdelset (&suspmask, SIGALRM): /* make sure SIGALRM isn’t blocked */

sigsuspend{&suspmask) ; /* wait for any signal to be caught */
/* some signal has been caught, SIGALRM is now blocked */

unslept = alarm(0);
sigaction (SIGALRM, &oldact, NULL); /* reset previous action */

/* reset signal mask, which unblocks SIGALRM */
sigprocmask (SIG_SETMASK, &oldmask, NULL);

return (unslept) ;

Program 10.21 Reliable implementation of sleep.
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It takes more code to write this reliable implementation than Program 10.4. We don’t
use any form of nonlocal branching (as we did in Program 10.5 to avoid the race condi-
tion between the alarm and pause), so there is no effect on other signal handlers that
may be executing when the SIGALRM is handled. O

10.20 Job-Control Signals

From Figure 10.1 there are six signals that POSIX.1 considers the job-control signals.
SIGCHLD Child process has stopped or terminated.
SIGCONT Continue process, if stopped.
SIGSTOP Stop signal (can’t be caught or ignored).
SIGTSTP Interactive stop signal.

SIGTTIN Read from controlling terminal by member of a background process
group.

SIGTTOU Write to controlling terminal by member of a background process
group.

Although POSIX.1 requires the system to support SIGCHLD only if the system supports job
control, almost every version of Unix supports the signal. We have already described how this
signal is generated when a child process terminates.

Most application programs don’t handle these signals—interactive shells usually
do all the work required to handle these signals. When we type the suspend character
(usually Control-Z), SIGTSTP is sent to all processes in the foreground process group.
When we tell the shell to resume a job in the foreground or background, the shell sends
all the processes in the job the SIGCONT signal. Similarly, if SIGTTIN or SIGTTOU is
delivered to a process, the process is stopped by default, and the job-control shell recog-
nizes this and notifies us.

An exception is a process that is managing the terminal—the vi(1) editor, for exam-
ple. It needs to know when the user wants to suspend it, so that it can restore the termi-
nal’s state to the way it was when vi was started. Also, when it resumes in the
foreground it needs to set the terminal state back to way it wants it, and it needs to
redraw the terminal screen. We see how a program such as vi handles this in the exam-
ple that follows.

There are some interactions between the job-control signals. When any of the four
stop signals are generated for a process (SIGTSTP, SIGSTOP, SIGTTIN, or SIGTTOU),
any pending SIGCONT signal for that process is discarded. Similarly, when the
SIGCONT signal is generated for a process, any pending stop signals for that same pro-
cess are discarded.

Notice that the default action for SIGCONT is to continue the process, if it is
stopped, otherwise the signal is ignored. Normally we don’t have to do anything with
this signal. When SIGCONT is generated for a process that is stopped, the process is
continued, even if the signal is blocked or ignored.
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10.21

Program 10.22 demonstrates the normal sequence of code used when a program han-
dles job control. This program just copies its standard input to its standard output, but
comments are given in the signal handler for typical actions performed by a program
that manages a screen. When Program 10.22 starts, it arranges to catch the SIGTSTP
signal only if the signal’s disposition is SIG_DFL. The reason is that when the program
is started by a shell that doesn’t support job control (/bin/sh, for example), the signal’s
disposition should be set to SIG_IGN. Actually, the shell doesn’t explicitly ignore this
signal, init sets the disposition of the three job-control signals SIGTSTP, SIGTTIN,
and SIGTTOU to SIG_IGN. This disposition is then inherited by all login shells. Only a
job-control shell should reset the disposition of these three signals to SIG_DFL.

When we type the suspend character, the process receives the SIGTSTP signal, and
the signal handler is invoked. At this point we would do any terminal-related process-
ing: move the cursor to the lower left corner, restore the terminal mode, and so on. We
then send ourself the same signal, SIGTSTP, after resetting its disposition to its default
(stop the process) and unblocking the signal. We have to unblock it since we're cur-
rently handling that same signal, and the system blocks it automatically while it's being
caught. At this point the system stops the process. It is continued only when someone
(usually the job-control shell, in response to an interactive fg command) sends it a
SIGCONT signal. We don’t catch SIGCONT. Its default disposition is to continue the
stopped process, and when this happens the program continues as though it returned
from the kill function. When the program is continued we reset the disposition for
the SIGTSTP signal and do whatever terminal processing we want (we could redraw
the screen, for example). 0

We'll see another way to handle the special job-control suspend character in
Chapter 18, when we don’t use the signal, but recognize the special character ourself.

Additional Features

In this section we describe some additional implementation-dependent features of sig-
nals.

Signal Names

Some systems provide the array
extern char *sys_siglist(];

The array index is the signal number, giving a pointer to the character string name of
the signal.
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#include <signal.h>
#include "ourhdr.h"

#define BUFFSIZE 1024
static void sig_tstp(int);

int
main (void)
{
int n;
char buf [BUFFSIZE]:

/* only catch SIGTSTP if we’re running with a job-control shell */
if (signal (SIGTSTP, SIG_IGN) == SIG_DFL)
signal (SIGTSTF, sig_tstp):

while ( (n = read(STDIN FILENO, buf, BUFFSIZE)) > 0)

if (write(STDOUT FILENO, buf, n) != n)
err_sys("write error");
if (n < 0)

err_sys("read error");

exit (0);
}

static void
sig_tstp(int signo) /* signal handler for SIGISTP */
{

sigset_t mask;

/* ... move cursor to lower left corner, reset tty mode ... */

/* unblock SIGTSTP, since it’s blocked while we’re handling it */
sigemptyset (&mask) ;

sigaddset (&mask, SIGTSTP};

sigprocmask (SIG_UNBLOCK, &mask, NULL);

signal (SIGTSTP, SIG _DFL); /* reset disposition to default */

kill (getpid (), SIGTSTP): /* and send the signal to ourself */
/* we won’t return from the kill until we’re continued */

signal (SIGTSTP, sig tstp); /* reestablish signal handler */

/* ... reset tty mode, redraw screen ... */
return;

Program 10.22 How to handle SIGTSTP.
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These systems normally provide the function psignal also.

#include <signal.h>

void psignal (int signo, const char *msg);

The string msg (which is normally the name of the program) is output to the standard
error, followed by a colon and a space, followed by a description of the signal, followed
by a newline. This function is similar to perror (Section 1.7).

Both SVR4 and 4.3+BSD provide sys_siglist and the psignal function.
Additional Arguments to SVR4 Signal Handler

When we call sigaction to set the disposition for a signal, we can specify an
sa_flags value of SA_SIGINFO (Figure 10.5). This causes two additional arguments
to be passed to the signal handler. The integer signal number is always passed as the
first argument. The second argument is either a null pointer or a pointer to a siginfo
structure. (The third argument provides information about different threads of control
within a single process, which we don’t discuss.)

struct siginfo {

int si_signo; /* signal number */

int si_errno; /* if nonzero, errno value from <errno.h> */
int si_code; /* additional info (depends on signal) */
pid_t si_pid; /* sending process ID */

uvid t si_uid; /* sending process real user ID */

/* other fields also */
}:

For hardware generated signals, such as SIGFPE, the si_code value gives additional
information: FPE_INTDIV means integer divide by 0, FPE_FLTDIV means floating
point divide by 0, and so on. If si_code is less than or equal to 0, it means the signal
was generated by a user process that called ki11(2). In this case the two elements
si_pidand si_uid give additional information on the process that sent us the signal.
Other information is available that depends on the signal being caught; see the SVR4
siginfo(5) manual page.

Additional Arguments to 4.3+BSD Signal Handler

4.3+BSD always calls a signal handler with three arguments.

handler (int signo, int code, struct sigcontext *sep);

The argument signo is the signal number, and code gives additional information for cer-
tain signals. For example, a code of FPE_INTDIV_TRAP for SIGFPE means integer
divide by 0. The third argument, scp, is hardware dependent.



10.22 Summary

Signals are used in most nontrivial applications. An understanding of the hows and
whys of signal handling is essential to advanced Unix programming. This chapter has
been a long and thorough look at Unix signals. We started by looking at the warts in
previous implementations of signals and how they manifest themselves. We then pro-
ceeded to the POSIX.1 reliable signal concept and all the related functions. Once we
covered all these details, we were able to provide implementations of the POSIX.1
abort, system, and sleep functions. We finished with a look at the job-control sig-
nals.

Exercises

101 In Program 10.1 remove the for (; ;) statement? What happens and why?
10.2 Implement the raise function.
10.3 Draw pictures of the stack frames when we run Program 10.5.

104 In Program 10.8 we showed a technique that's often used to set a time out on an 1/0O opera-
tion using set jmp and longjmp. The following code has also been seen:

signal (SIGALRM, sig alrm);

alarm(60);

if (setjmp(env_alrm) !'= 0) {
/* handle time out */

What else is wrong with this sequence of code?

10.5 Using only a single timer (either alarm or the higher precision setitimer) provide a set
of functions that allows a process to set any number of timers.

106 Write the following program to test the parent—child synchronization functions in
Program 10.17. The process creates a file and writes the integer 0 to the file. The process
then calls fork and the parent and child alternate incrementing the counter in the file. Each
time the counter is incremented, print which process is doing the increment (parent or
child).

10.7 In Program 10.18 if the caller catches SIGABRT and returns from the signal handler, why do
we go to the trouble of resetting the disposition to its default and call ki11 the second time,
instead of just calling _exit?




324

Signals

10.8 Why do you think the designers of the SVR4 siginfo feature (Section 10.21) chose to pass
the real user ID, instead of the effective user ID, in the si_uid field?

109 Rewrite Program 10.10 to handle all the signals from Figure 10.1. The function should con-

sist of a single loop that iterates once for every signal in the current signal mask (not once
for every possible signal).

10.10 Write a program that calls sleep (60) in an infinite loop. Every five times through the
loop (every 5 minutes) fetch the current time-of-day and print the tm_sec field. Run the
program overnight and explain the results. How would a program such as the BSD cron
daemeon, which runs every minute on the minute, handle this?

10.11 Modify Program 3.3 as follows: (a) change BUFFSIZE to 100; (b) catch the SIGXFSZ signal
using the signal_intr function, printing a message when it's caught, and returning from
the signal handler; and (c) print the return value from write if the requested number of
bytes weren’t written. Modify the soft RLIMIT FSIZE resource limit (Section 7.11) to 1024
bytes and run your new program, copying a file that is larger than 1024 bytes. (Try to set
the soft resource limit from your shell. If you can’t do this from your shell, call setrlimit
directly from the program.) Run this program on the different systems that you have access
to. What happens and why?

10.12 Write a program that calls fwrite with a large buffer (a few megabytes). Before calling
fwrite, call alarm to schedule a signal in 1 second. In your signal handler print that the
signal was caught and return. Does the call to fwrite complete? What's happening?
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I

Terminal 1/0

Introduction

The handling of terminal 1/0 is a messy area, regardless of the operating system. Unix
is no exception. The manual page for terminal I/0O is usually one of the longest in most
editions of the Unix manuals. The termio manual page in the SVID exceeds 16 pages.

With Unix, a schism formed in the late 1970s when System III developed a different
set of terminal routines from Version 7. The System III style of terminal I/O continued
through System V, and the Version 7 style became the standard for the Berkeley-derived
systems. As with signals, this difference between the two worlds has been conquered
by POSIX.1. In this chapter we look at all the POSIX.1 terminal functions, and some of
the SVR4 and 4.3+BSD additions.

Part of the complexity of the terminal I/O system is because people use terminal
I/O for so many different things: terminals, hardwired lines between computers,
modems, printers, and so on. In later chapters we develop two programs to demon-
strate terminal I/O: one communicates with a PostScript printer (Chapter 17) and the
other allows us to talk to a modem and log in to a remote computer (Chapter 18).

Overview

There are two different modes for terminal 1/0:

1. Canonical mode input processing. In this mode terminal input is processed as
lines. The terminal driver returns at most one line per read request.

2. Noncanonical mode input processing. The input characters are not assembled
into lines.

325
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If we don’t do anything special, canonical mode is the default. For example, if the shell
redirects standard input to the terminal and we copy standard input to standard output
using read and write, the terminal is in the canonical mode and each read returns at
most one line. Programs that manipulate the entire screen, such as the vi editor, use
noncanonical mode, since the commands may be single characters and are not termi-
nated by newlines. Also, this editor doesn’t want processing by the system of the spe-
cial characters since the special characters may overlap with the editor commands. For
example, the Control-D character is often the end-of-file character for the terminal, but
it’s also a vi command to scroll down one-half screen.

The Version 7 and BSD-style terminal drivers support three different modes for terminal input:
(2) cooked mode (the input is collected into lines and the special characters are processed), (b)
raw mode (the input is not assembled into lines and there is no processing of special charac-
ters), and (c} cbreak mode (the input is not assembled into lines, but some of the special charac-

ters are processed). Program 11.10 shows a POSIX.1 function that places a terminal in cbreak
or raw mode.

POSIX.1 defines 11 special input characters, 9 of which we can change. We've been
using some of these throughout the text: the end-of-file character (usually Control-D)
and the suspend character (usually Control-Z), for example. Section 11.3 describes each
of these characters.

We can think of a terminal device as being controlled by a terminal driver, probably
within the kernel. Each terminal device has an input queue and an output queue,
shown in Figure 11.1.

next character next character
written by process read by process
. ====5
output queue -‘ - if echo enabled input queve !
e __]
l 4* MAX INPUT —
next character to next character
transmit to device read from device

Figure 11.1 Logical picture of input and output queues for a terminal device.

There are several points to consider from this picture.

* There is an implied link between the input queue and the output queue, if echo-
ing is enabled.
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The size of the input queue, MAX INPUT (refer to Figure 2.5), may be finite.
What the system does when the input queue for a particular device fills is imple-
mentation dependent. Most Unix systems echo the bell character when this hap-

pens.

There is another input limit that we don’t show here, MAX CANON. This is the
maximum number of bytes in a canonical input line.

Although the output queue is normally of a finite size, there are no constants
defining its size that are accessible to the program. This is because when the
output queue starts to fill up, the kernel just puts the writing process to sleep
until room is available.

We'll see how the tcflush flush function allows us to flush either the input
queue or the output queue. Similarly, when we describe the tcsetattr func-
tion, we'll see how we can tell the system to change the attributes of a terminal
device only after the output queue is empty. (We want to do this, for example, if
we're changing the output attributes.) We can also tell the system that when it
changes the terminal attributes, to discard everything in the input queue also.
(We want to do this if we're changing the input attributes or changing between
canonical and noncanonical modes, so that previously entered characters aren’t
interpreted in the wrong mode.)

Most Unix systems implement all the canonical processing in a module called the

terminal line discipline. We can think of this as a box that sits between the kernel’s gener-
ic read and write functions and the actual device driver. We show this in Figure 11.2.

read and write
functions

terminal

1
i

I

I

|

[

1
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[

: line discipline kernel
1

1

I

1

[

i

]

[

terminal
device driver

actual device

Figure 11.2 Terminal line discipline.

We'll return to this picture in Section 12.4 when we discuss the stream 1/0 system, and
in Chapter 19 when we discuss pseudo terminals.
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All the characteristics of a terminal device that we can examine and change are con-
tained in a termios structure. This is defined in the header <termios. h>, which we
use throughout this chapter.

struct termios {

tcflag t c_iflag; /* input flags */
tcflag t ¢ _oflag; /* output flags */
tcflag t c_cflag; /* control flags */
tcflag t c_lflag:; /* local flags */

cc t c_cc[NCCS]; /* control characters */

b
Roughly speaking, the input flags control the input of characters by the terminal device
driver (strip eighth bit on input, enable input parity checking, etc.), the output flags con-
trol the driver output (perform output processing, map newline to CR/LF, etc.), the con-
trol flags affect the RS-232 serial lines (ignore modem status lines, one or two stop bits
per character, etc.), and the local flags affect the interface between the driver and the
user (echo on or off, visually erase characters, enable terminal-generated signals, job
control stop signal for background output, etc.).

The type tcflag_t is big enough to hold each of the flag values. It is often defined
as an unsigned long. The c_cc array contains all the special characters that we can
change. NCCS is the number of elements in this array and is typically between 11 and 18
(since most Unix implementations support more than the 11 POSIX-defined special
characters). The cc_t type is large enough to hold each special character and is typi-
cally an unsigned char.

Earlier versions of System V had a header named <termio.h> and a structure named
termio. POSIX.1added an s to the names, to differentiate them from their predecessors.

Figure 11.3 lists all the terminal flags that we can change to affect the characteristics
of a terminal device. Note that even though POSIX.1 defines a common subset that both
SVR4 and 4.3+BSD start from, both of these implementations have their own additions.
These additions come from the historical differences between the two systems. We'll
discuss each of these flag values in detail in Section 11.5.

Given all the options presented in Figure 11.3, how do we examine and change
these characteristics of a terminal device? Figure 11.4 summarizes the various functions
defined by POSIX.1 that operate on terminal devices. (We described tcgetpgrp and
tecsetpgrp in Section 9.7.)

Note that POSIX.1 doesn’t use the classic ioct1 on terminal devices. Instead, it
uses the 12 functions shown in Figure 11.4. The reason is that the ioctl function for
terminal devices uses a different data type for its final argument, which depends on the
action being performed. This makes type checking of the arguments impossible.

Although only 12 functions operate on terminal devices, realize that the first two
functions in Figure 11.4, tcgetattr and tcsetattr, manipulate about 50 different
flags (Figure 11.3). The large number of options available for terminal devices and try-
ing to determine which options are required for a particular device (be it a terminal,
modem, laser printer, or whatever) complicates the handling of terminal devices.
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SVR4 4.3+BSD
Field Flag Description POSIX.1 extension
c_iflag BRKINT generate SIGINT on BREAK .
ICRNL map CR to NL on input .
IGNBRK ignore BREAK condition .
IGNCR ignore CR .
IGNPAR ignore characters with parity errors .
IMAXBEL ring bell on input queue full . .
INLCR map NL to CR on input .
INPCK enable input parity checking .
ISTRIF strip eighth bit off input characters .
1UCLC map uppercase to lowercase on input .
IXANY enable any characters to restart output . .
IXOFF enable start/ stop input flow control .
IXON enable start/ stop output flow control .
PARMRK mark parity errors .
c_oflag BSDLY backspace delay mask .
CRDLY CR delay mask .
FFDLY form feed delay mask .
NLDLY NL delay mask .
OCRNL map CR to NL on output .
OFDEL fill is DEL, else NUL .
OFILL use fill character for delay .
OLCUC map lowercase to uppercase on output .
ONLCR map NL to CR-NL (ala CRMOD) ¢ *
ONLRET NL performs CR function .
ONOCR no CR output at column 0 .
ONOEOT discard EOTs ("D} on output .
OFOST perform output processing -
OXTABS expand tabs to spaces .
TAEDLY horizontal tab delay mask .
VIDLY vertical tab delay mask .
¢ _cflag CCTS_OFLOW | CTS flow control of output .
CIGNORE ignore control flags -
CLOCAL ignore modem status lines
CREAD enable receiver
CRTS_IFLOW | RTS flow control of input .
CSIZE character size mask .
CSTOFB send two stop bits, else one .
HUPCL hangup on last close .
MDMBUF flow control output via Carrier .
PRRENB parity enable
PARODD odd parity, else even
c_lflag ALTWERASE use alternate WERASE algorithm .
ECHO enable echo .
ECHOCTL echo control chars as “(Char) . .
ECHOE visually erase chars =
ECHOR echo kill .
ECHOKE visual erase for kill . .
ECHONL echo NL .
ECHOPRT visual erase mode for hardcopy . .
FLUSHO output being flushed . .
ICANON canonical input .
IEXTEN enable extended input char processing .
ISIG enable terminal-generated signals .
NOFLSH disable flush after interrupt or quit .
NOKERNINFO | no kernel output from STATUS .
PENDIN retype pending input . .
TOSTOP send SIGTTOU for background output L
XCASE canonical upper/lower presentation .

Figure 11.3 Terminal flags.
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The relationships among

Figure 11.5.

struct
termios

Figure 11.4 Summary of POSIX.1 terminal I/0 functions.

Function Description
tcgetattr fetch attributes (termios structure)
tesetattr set attributes (termios structure)
cfgetispeed | getinput speed
cfgetospeed | getoutput speed
cfsetispeed | setinput speed
cfsetospeed | set output speed
tcdrain wait for all output to be transmitted
tcflow suspend transmit or receive
tcflush flush pending input and/or output
tcsendbreak | send BREAK character
tcgetpgrp get foreground process group ID
tcsetpgrp set foreground process group ID
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the 12 functions shown in Figure 11.4 are shown in
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Figure 11.5 Relationship between the terminal-related functions.

POSIX.1 doesn’t specify where in the termios structure the baud rate information is stored,

that is an implementation feature. Many

older systems stored this information in the ¢ _cflag

field. 4.3+BSD has two separate fields in the structure—one for the input speed and one for

the output speed.
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11.3 Special Input Characters

POSIX.1 defines 11 different characters that are handled specially on input. SVR4 adds
another 6 special characters and 4.3+BSD adds 7. Figure 11.6 summarizes these special

characters.
- c_cc Enabled b ical SVR4 4.3+BSD
SRer Description sub;cript field Jt:'lag 135;1:: Foghal extension
CR carriage return (can’t change) [c_1flag ICANON \r .
DISCARD |discard output VDISCARD |c_1flag IEXTEN 0 .
DSUSP | delayed suspend (SIGTSTF) | VDSUSE c_lflag ISIG Y -
EOF end-of-file VEOF c_lflag ICANON D .
EOL end-of-line VEOL c_lflag ICANON .
EOL2 alternate end-of-line VEQL2 c_lflag ICANON . .
ERASE  |backspace one character VERASE c_1flag ICANON H .
INTR interrupt signal (SIGINT) |VINTR c_lflag ISIG 7,°C b
KILL erase line VKILL c_1flag ICANON U .
LNEXT |literal next VLNEXT c_lflag IEXTEN v . .
NL linefeed (can’t change) |c_1flag ICANON n
QuIT quit signal (STGQUIT) VQUIT c_1flag ISIG N\
REPRINT |reprint all input VREFRINT |c_lflag ICANON R . .
START  |resume output VSTART c_iflag IXON/LXOFF| "5 .
STATUS |status request VSTATUS c_lflag ICANON T -
sToP stop output VSTOP c_iflag IXON/IXOFF| °Q .
sSusP suspend signal (SIGTSTP) |VSUSE c_1flag ISIG °Z .
WERASE |backspace one word VWERASE c 1flag ICANON W . .

Figure 11.6 Summary of special terminal input characters.

Of the 11 POSIX.1 special characters, we can change nine of them to almost any value
that we like. The exceptions are the newline and carriage-return characters, (\n and \r
respectively), and perhaps the STOP and START characters (depends on the implemen-
tation). To do this we modify the appropriate entry in the c_cc array of the termios
structure. The elements in this array are referred to by name, with each name beginning
with a V (the third column in Figure 11.6).
POSIX.1 optionally allows us to disable these characters. If POSIX VDISABLE is
in effect, then the value of _POSIX_VDISABLE can be stored in the appropriate entry in
the c_cc array to disable that special character. This feature can be queried with the
pathconf and fpathconf functions (Section 2.5.4).

Example

FIPS 151-1 requires support for _POSIX VDISABLE.

SVR4 and 4.3+BSD also support this feature. SVR4 defines _POSIX VDISABLE as 0, while
4.3+BSD defines it as octal 377.

Some earlier Unix systems disabled a feature if the corresponding special input character was 0.

Before describing all the special characters in detail, let's look at a small program that
changes them. Program 11.1 disables the interrupt character and sets the end-of-file
character to Control-B.
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#include <termios.h>
#include "ourhdr.h"
int

main (void)

{
struct termios term;
long vdisable;

if (isatty(STDIN_FILENO) == 0)
err quit ("standard input is not a terminal device");

if ( (vdisable = fpathconf (STDIN FILENO, _PC VDISABLE)) < 0)
err_gquit ("fpathconf error or _POSIX VDISABLE not in effect");

if (tcgetattr(STDIN_FILENO, &term) < 0) /* fetch tty state */
err sys("tcgetattr error");

term.c_cc[VINTR]
term.c_cc[VEOQOF]

vdisable; /* disable INTR character */
2; /* EOF is Control-B */

if (tcsetattr(STDIN_FILENO, TCSAFLUSH, &term) < 0)
err sys("tcsetattr error");

exit (0);

Program 11.1 Disable interrupt character and change end-of-file character.

There are a few things to note in this program.

1. We modify the terminal characters only if standard input is a terminal device.
We call isatty (Section 11.9) to check this.

2. Wefetch the POSIX VDISABLE value using fpathconf.

3. The function tcgetattr (Section 11.4) fetches a termios structure from the
kernel. After we've modified this structure we call tcsetattr to set the
attributes. The only attributes that change are the ones we specifically modified.

4. Disabling the interrupt key is different from ignoring the interrupt signal. All
Program 11.1 does is disable the special character that causes the terminal driver

to generate SIGINT. We can still use the kill function to send the process the
signal. o

We now describe each of the special characters in more detail. We call these the spe-
cial input characters, but two of the characters, STOP and START (Control-S and
Control-Q), are also handled specially when output. Note that most of these special
characters, when they are recognized by the terminal driver and processed specially, are
then discarded: they are not returned to the process in a read operation. The exceptions
to this are the newline characters (NL, EOL, EOL2) and the carriage return (CR).
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CR

DISCARD

DsuspP

EOF

EOL

ERASE

The POSIX.1 carriage return character. We cannot change this character.
This character is recognized on input in canonical mode. When both
ICANON (canonical mode) and ICRNL (map CR to NL) are set and IGNCR
(ignore CR) is not set, the CR character is translated to NL and has the same
effect as an NL character.

This character is returned to the reading process (perhaps after being trans-
lated to an NL).

The SVR4 and 4.3+BSD discard character. This character is recognized on
input in extended mode (IEXTEN). It causes subsequent output to be dis-
carded, until another DISCARD character is entered or the discard condi-
tion is cleared (see the FLUSHO option). This character is discarded when
processed (i.e., it is not passed to the process).

The SVR4 and 4.3+BSD delayed-suspend job-control character. This charac-
ter is recognized on input in extended mode (IEXTEN) if job control is sup-
ported and if the ISIG flag is set. Like the SUSP character, this delayed-
suspend character generates the SIGTSTP signal that is sent to all processes
in the foreground process group (refer to Figure 9.7). But the delayed-
suspend character is sent to the process group only when a process reads
from the controlling terminal, not when the character is typed. This charac-
ter is discarded when processed (i.e., it is not passed to the process).

The POSIX.1 end-of-file character. This character is recognized on input in
canonical mode (ICANON). When we type this character, all bytes waiting
to be read are immediately passed to the reading process. If there are no
bytes waiting to be read, a count of 0 is returned. Entering an EOF charac-
ter at the beginning of the line is the normal way to indicate an end-of-file
to a program. This character is discarded when processed in canonical
mode (i.e., it is not passed to the process).

The POSIX.1 additional line delimiter character, like NL. This character is
recognized on input in canonical mode (ICANON).

This character is not normally used. This character is returned to the read-
Ing process.

The SVR4 and 4.3+BSD additional line delimiter character, like NL. This
character is recognized on input in canonical mode (ICANON).

This character is not normally used. This character is returned to the read-
ing process.

The POSIX.1 erase character (backspace). This character is recognized on
input in canonical mode (ICANON). It erases the previous character in the
line, not erasing beyond the beginning of the line. This character is dis-
carded when processed in canonical mode (i.e., it is not passed to the pro-
cess).
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INTR

KILL

QUIT

REPRINT

START

STATUS

The POSIX.1 interrupt character. This character is recognized on input if
the ISIG flag is set. It generates the SIGINT signal that is sent to all pro-
cesses in the foreground process group (refer to Figure 9.7). This character
is discarded when processed (i.e., it is not passed to the process).

The POSIX.1 kill character. (The name “kill” is once again a misnomer
This character should be called the line erase character.) It is recognized on
input in canonical mode (ICANON). It erases the entire line. It is discarded
when processed (i.e., it is not passed to the process).

The SVR4 and 4.3+BSD literal-next character. This character is recognized
on input in extended mode (IEXTEN). It causes any special meaning of the
next character to be ignored. This works for all the special characters men-
tioned in this section. Using this we can type any character to a program.
The LNEXT character is discarded when processed, but the next character
entered is passed to the process.

The POSIX.1 newline character, which is also called the line delimiter. We
cannot change this character. This character is recognized on input in
canonical mode (ICANON).

This character is returned to the reading process.

The POSIX.1 quit character. This character is recognized on input if the
ISIG flag is set. It generates the SIGQUIT signal that is sent to all processes
in the foreground process group (refer to Figure 9.7). This character is dis-
carded when processed (i.e., it is not passed to the process).

Recall from Figure 10.1 that the difference between INTR and QUIT is that
the QUIT character not only terminates the process by default, but it also
generates a core file.

The SVR4 and 4.3+BSD reprint character. This character is recognized on
input in extended, canonical mode (both TEXTEN and ICANON flags set). It
causes all unread input to be output (reechoed). This character is discarded
when processed (i.e., it is not passed to the process).

The POSIX.1 start character. This character is recognized on input if the
IXON flag is set, and it is automatically generated as output if the TXOFF
flag is set. A received START character with IXON set causes stopped out-
put (from a previously entered STOP character) to restart. In this case the
START character is discarded when processed (i.e., it is not passed to the
process).

When IXOFF is set, the terminal driver automatically generates a START
character to resume input that it had previously stopped, when the new
input will not overflow the input buffer.

The 4.3+BSD status-request character. This character is recognized on input
in extended, canonical mode (both TEXTEN and ICANON flags set). It gener-
ates the SIGINFO signal that is sent to all processes in the foreground
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process group (refer to Figure 9.7). Additionally, if the NOKERNINFO flag is
not set, status information on the foreground process group is also dis-
played on the terminal. This character is discarded when processed (i.e., it
is not passed to the process).

STOP The POSIX.1 stop character. This character is recognized on input if the
IXON flag is set, and it is automatically generated as output if the IXOFF
flag is set. A received STOP character with IXON set stops the output. In
this case the STOP character is discarded when processed (i.e., it is not
passed to the process). The stopped output is restarted when a START
character is entered.

When IXOFF is set, the terminal driver automatically generates a STOP
character to prevent the input buffer from overflowing.

SuUsP The POSIX.1 suspend job-control character. This character is recognized on
input if job control is supported and if the ISIG flag is set. It generates the
SIGTSTP signal that is sent to all processes in the foreground process group
(refer to Figure 9.7). This character is discarded when processed (i.e,, it is
not passed to the process).

WERASE The SVR4 and 4.3+BSD word erase character. This character is recognized
on input in extended, canonical mode (both IEXTEN and ICANON flags set).
It causes the previous word to be erased. First it skips backward over any
whitespace (spaces or tabs), then backward over the previous token, leav-
ing the cursor positioned where the first character of the previous token
was located. Normally the previous token ends when a whitespace charac-
ter is encountered. We can change this, however, by setting the ALTWERASE
flag. This flag causes the previous token to end when the first nonalphanu-
meric character is encountered. The word erase character is discarded
when processed (i.e., it is not passed to the process).

Another “character” that we need to define for terminal devices is the BREAK char-
acter. BREAK is not really a character, but a condition that occurs during asynchronous
serial data transmission. A BREAK condition is signaled to the device driver in various
ways, depending on the serial interface. Most terminals have a key labeled BREAK that
generates the BREAK condition, which is why most people think of BREAK as a charac-
ter. For asynchronous serial data transmission, a BREAK is a sequence of zero-valued
bits that continues for longer than the time required to send one byte. The entire
sequence of zero-valued bits is considered a single BREAK. In Section 11.8 we'll see
how to send a BREAK.

Getting and Setting Terminal Attributes

We call two functions to get and set a termios structure: tcgetattr and tcsetattr.
This is how we examine and modify the various option flags and special characters to
make the terminal operate the way we want it to.
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#include <termios.h>
int tcgetattr(int filedes, struct termios *fermptr);

int tcsetattr(int filedes, int opf, const struct termios *fermptr);

Both return: 0 if OK, —1 on error

Both functions take a pointer to a termios structure and either return the current ter-
minal attributes or set the terminal’s attributes. Since these two functions operate only
on terminal devices, if filedes does not refer to a terminal device, an error is returned and
errno is set to ENOTTY.

The argument opt for tcsetattr lets us specify when we want the new terminal
attributes to take effect. opt is specified as one of the following constants:

TCSANOW The change occurs immediately.

TCSADRAIN The change occurs after all output has been transmitted. This option
should be used if we are changing the output parameters.

TCSAFLUSH The change occurs after all output has been transmitted. Further-
more, when the change takes place, all input data that has not been
read is discarded (flushed).

The return status of tcsetattr confuses the programming. This function returns
OK if it was able to perform any of the requested actions, even if it couldn’t perform all
the requested actions. If the function returns OK it is our responsibility to see if all the
requested actions were performed. This means that after we call tcsetattr to set the
desired attributes, we need to call tcgetattr and compare the actual terminal’s
attributes with the desired attributes to detect any differences.

Terminal Option Flags

In this section we list all the various terminal option flags, expanding the descriptions of
all the options from Figure 11.3. This list is alphabetical, and indicates in which of the
four terminal flag fields the option appears. (The field a given option is controlled by is
usually not apparent from just the option name.) We also list whether each option is
POSIX defined or supported by either SVR4 or 4.3+BSD.

All the flags listed specify one or more bits that we turn on or clear, unless we call
the flag a mask. A mask defines multiple bits. We have a defined name for the mask,
and a name for each value. For example, to set the character size, we first zero the bits
using the character-size mask CSIZE, and then set one of the values CS5, CS6, CS7, or
Cs8.

The six delay values supported by SVR4 are also masks: BSDLY, CRDLY, FFDLY,
NLDLY, TABDLY, and VIDLY. Refer to the termio(7) manual page in AT&T [1991] for
the length of each delay value. In all cases a delay mask of 0 means no delay. If a delay
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is specified, the OF ILL and OFDEL flags determine if the driver does an actual delay or
if fill characters are transmitted instead.

Example

Program 11.2 demonstrates the use of these masks to extract a value and to set a value.

#include <termios.h>
#include "ourhdr.h"
int

main (void)

{

struct termios term;
int size;

if (tcgetattr(STDIN FILENO, &term) < 0)
err sys("tcgetattr error");

size = term.c_cflag & CSIZE;

if (size == CS5) printf ("5 bits/byte\n");
else if (size == CS6) printf ("6 bits/byte\n");
else if (size == CS7) printf ("7 bits/byte\n");
else if (size == CS8) printf ("8 bits/byte\n");

else printf ("unknown bits/byte\n");
term.c_cflag &= “CSIZE; /* zero out the bits */
term.c_cflag |= CS8; /* set B bits/byte */

if (tcsetattr(STDIN _FILENO, TCSANOW, &term) < 0)
err_ sys("tcsetattr error");

exit (0):

Program 11.2 Example of tcgetattr.

We now describe each of the flags.

ALTWERASE (c_lflag, 4.3+BSD) When set, an alternate word erase algorithm is

used when the WERASE character is entered. Instead of moving back-
ward until the previous whitespace character, this flag causes the
WERASE character to move backward until the first nonalphanumeric
character is encountered.

BRKINT (c_iflag, POSIX.1) If this flag is set and IGNBRK is not set, when a

BREAK is received the input and output queues are flushed and a
SIGINT signal is generated. This signal is generated for the foreground
process group if the terminal device is a controlling terminal.
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BSDLY

CCTS_OFLOW
CIGNORE
CLOCAL

CRDLY

CREAD

CRTS_IFLOW
CSIZE

CSTOPB

ECHO

ECHOCTL

ECHOE

If neither IGNBRK nor BRKINT is set, then a BREAK is read as a single
character \0, unless PARMRK is set, in which case the BREAK is read as
the three byte sequence \377, \ 0, \0.

(c_oflag, SVR4) Backspace delay mask. The values for the mask are
BSO or BS1.

(c_cflag, 4.3+BSD) CTS flow control of output. (See Exercise 11.4.)
(c_cflag, 4.3+BSD) Ignore control flags.

(c_cflag, POSIX.1) If set, the modem status lines are ignored. This
usually means that the device is locally attached. When this flag is not
set, an open of a terminal device usually blocks until the modem is
answered, for example.

(c_oflag, SVR4) Carriage return delay mask. The values for the mask
are CRQ, CR1, CRZ2, or CR3.

(c_cflag, POSIX.1) If set, the receiver is enabled and characters can be
received.

(c_cflag, 4.3+BSD) RTS flow control of input. (See Exercise 11.4.)

(c_cflag, POSIX.1) This field is a mask that specifies the number of
bits per byte for both transmission and reception. This size does not
include the parity bit, if any. The values for the field defined by this
mask are CS5, CS6, CS7, and CS8, for 5, 6, 7, and 8 bits per byte, respec-
tively.

(c_cflag, POSIX.1) If set, two stop bits are used, otherwise one stop
bit is used.

(c_1flag, POSIX.1) If set, input characters are echoed back to the ter-
minal device. Input characters can be echoed in either canonical or non-
canonical mode.

(c_1flag, SVR4 and 4.3+BSD) If set and if ECHO is set, ASCII control
characters (those character in the range 0 through octal 37, inclusive)
other than the ASCII TAB, the ASCII NL, and the START and STOP
characters, are echoed as “X, where X is the character formed by adding
octal 100 to the control character. This means the ASCII Control-A char-
acter (octal 1) is echoed as "A. Also, the ASCIl DELETE character (octal
177) is echoed as ~ 2. If this flag is not set, the ASCII control characters
are echoed as themselves. As with the ECHO flag, this flag affects the
echoing of control characters in both canonical and noncanonical modes.

Be aware that some systems echo the EOF character differently, since its
typical value is Control-D. (Control-D is the ASCII EOT character,
which can cause some terminals to hangup.) Check your manual.

(c_1flag, POSIX.1) If set and if TCANON is set, the ERASE character
erases the last character in the current line from the display. This is
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ECHOK

ECHOKE

ECHONL

ECHOPRT

FFDLY

FLUSHO

HUPCL

ICANON

ICRNL

usually done in the terminal driver by writing the three-character
sequence: backspace, space, backspace.

If the WERASE character is supported, ECHOE causes the previous word
to be erased using one or more of the same three-character sequence.

If the ECHOPRT flag is supported, the actions described here for ECHOE
assume that the ECHOPRT flag is not set.

(c_1flag, POSIX.1) If set and if ICANON is set, the KILL character
erases the current line from the display or outputs the NL character (to
emphasize that the entire line was erased).

If the ECHOKE flag is supported, this description of ECHOK assumes that
ECHOKE is not set.

(c_1flag, SVR4 and 4.3+BSD) If set and if TCANON is set, the KILL
character is echoed by erasing each character on the line. The way in
which each character is erased is selected by the ECHOE and ECHOPRT
flags.

(c_1flag, POSIX.1) If set and if ICANON is set, the NL character is
echoed, even if ECHO is not set.

(c_1flag, SVR4 and 4.3+BSD) If set and if both ICANON and IECHO are
set, then the ERASE character (and WERASE character, if supported)
cause all the characters being erased to be printed as they are erased.
This is often useful on a hardcopy terminal to see exactly which charac-
ters are being deleted.

(c_oflag, SVR4) Form feed delay mask. The values for the mask are
FFO or FF1.

(c_1flag, SVR4 and 4.3+BSD) If set, output is being flushed. This flag
is set when we type the DISCARD character, and it is cleared when we
type another DISCARD character. We can also set or clear this condition
by setting or clearing this terminal flag.

(c_cflag, POSIX.1) If set, when the last process closes the device, the
modem control lines are lowered (i.e., the modem connection is broken).

(c_1flag, POSIX.1) If set, canonical moede is in effect (Section 11.10).
This enables the following characters: EOF, EOL, EOL2, ERASE, KILL,
REPRINT, STATUS, and WERASE. The input characters are assembled
into lines.

If canonical mode is not enabled, read requests are satisfied directly
from the input queue. A read does not return until at least MIN bytes
have been received or the time-out value TIME has expired between
bytes. Refer to Section 11.11 for additional details.

(c_iflag, POSIX.1) If set and if IGNCR is not set, a received CR charac-
ter is translated into an NL character.
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IEXTEN (c_1flag, POSIX.1) If set, the extended, implementation-defined spe-
cial characters are recognized and processed.
IGNBRK (c_iflag, POSIX.1) When set, a BREAK condition on input is ignored.

See BRKINT for a way to have a BREAK condition either generate a
SIGINT signal, or be read as data.

IGNCR (c_iflag, POSIX.1) If set, a received CR character is ignored. If this
flag is not set, it is possible to translate the received CR into an NL char-
acter if the TCRNL. flag is set.

IGNPAR (c_iflag, POSIX.1) When set, an input byte with a framing error
(other than a BREAK) or an input byte with a parity error is ignored.

IMAXBEL (c_iflag, SVR4 and 4.3+BSD) Ring bell when input queue is full.

INLCR (c_iflag, POSIX.1) If set, a received NL character is translated into a
CR character.
INPCK (c_iflag, POSIX.1) When set, input parity checking is enabled. If

INPCK is not set, input parity checking is disabled.

Parity “generation and detection” and “input parity checking” are two
different things. The generation and detection of parity bits is controlled
by the PARENB flag. Setting this flag usually causes the device driver for
the serial interface to generate parity for outgoing characters and to ver-
ify the parity of incoming characters. The flag PARODD determines if the
parity should be odd or even. If an input character arrives with the
wrong parity, then the state of the INPCK flag is checked. If this flag is
set, then the IGNPAR flag is checked (to see if the input byte with the
parity error should be ignored); and if the byte should not be ignored,
then the PARMRK flag is checked to see what characters should be passed
to the reading process.

ISIG (c_lflag, POSIX.1) If set, the input characters are compared against
the special characters that cause the terminal-generated signals to be
generated (INTR, QUIT, SUSP, and DSUSP), and if equal, the corre-
sponding signal is generated.

ISTRIP (c_iflag, POSIX.1) When set, valid input bytes are stripped to seven
bits. When this flag is not set, all eight bits are processed.

IUCLC (c_iflag, SVR4) Map uppercase to lowercase on input.

IXANY (c_iflag, SVR4 and 4.3+BSD) Enable any characters to restart output.

IXOFF (c_iflag, POSIX.1) If set, start-stop input control is enabled. When

the terminal driver notices that the input queue is getting full, it outputs
a STOP character. This character should be recognized by the device
that is sending the data and cause the device to stop. Later, when the
characters on the input queue have been processed, the terminal driver
will output a START character. This should cause the device to resume
sending data.
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IXON

MDMBUF

NLDLY

NOFLSH

NOKERNINFOQ

OCRNL
OFDEL

OFILL

QLCUC
ONLCR
ONLRET

ONOCR
ONOCEOQT

QOPOST

OXTABS

PARENB

(c_iflag, POSIX.1) If set, start-stop output control is enabled. When
the terminal driver receives a STOP character, output stops. While the
output is stopped, the next START character resumes the output. If this
flag is not set, the START and STOP characters are read by the process as
normal characters.

(c_cflag, 43+BSD) Flow control the output according to the modem
carrier flag.
(c_oflag, SVR4) Newline delay mask. The values for the mask are
NLO or NL1.

(c_1flag, POSIX.1) By default, when the terminal driver generates the
SIGINT and SIGQUIT signals, both the input and output queues are
flushed. Also, when it generates the STGSUSP signal, the input queue is
flushed. If the NOFLSH flag is set, this normal flushing of the queues
does not occur when these signals are generated.

(c_lflag, 4.3+BSD) When set, this flag prevents the STATUS character
from printing information on the foreground process group. Regardless
of this flag, however, the STATUS character still causes the SIGINFO sig-
nal to be sent to the foreground process group.

(c_oflag, SVR4) If set, map CR to NL on output.

(c_oflag, SVR4) If set, the output fill character is ASCII DEL, other-
wise it's ASCII NUL. See the OF ILL flag.

(c_oflag, SVR4) If set, fill characters (either ASCII DEL or ASCII NUL,
see the OFDEL flag) are transmitted for a delay, instead of using a timed
delay. See the six delay masks: BSDLY, CRDLY, FFDLY, NLDLY, TABDLY,
and VTDLY.

(c_oflag, SVR4) If set, map lowercase to uppercase on output.
(c_oflag, SVR4 and 4.3+BSD) If set, map NL to CR-NL on output.

(c_oflag, SVR4) If set, the NL character is assumed to perform the car-
riage-return function on output.

(c_oflag, SVR4) If set, a CR is not output at column 0.

(c_oflag, 4.3+BSD) If set, EOT characters ("D) are discarded on out-
put. This may be necessary on some terminals that interpret the
Control-D as a hangup.

(c_oflag, POSIX.1) If set, implementation-defined output processing
takes place. Refer to Figure 11.3 for the various implementation-defined
flags for the c_oflag word.

(c_oflag, 4.3+BSD) If set, tabs are expanded to spaces on output. This
produces the same effect as setting the horizontal tab delay (TABDLY) to
XTABS or TAB3.

(c_cflag, POSIX.1) If set, parity generation is enabled for outgoing
characters, and parity checking is performed on incoming characters.
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PARMRK

PARCDD

PENDIN

TABDLY

TOSTOP

VTDLY

XCASE

The parity is odd if PARODD is set, otherwise it is even parity. See also
the discussion of the INPCK, IGNPAR, and PARMRK flags.

(c_iflag, POSIX.1) When set and if IGNPAR is not set, a byte witha
framing error (other than a BREAK) or a byte with a parity error, is read
by the process as the three character sequence \377, \0, X, where X is
the byte received in error. If ISTRIP is not set, a valid \377 is passed to
the process as \377, \377. If neither IGNPAR nor PARMRK is set, a byte
with a framing error (other than a BREAK) or a byte with a parity error
is read as a single character \ 0.

(c_cflag, POSIX.1) If set, the parity for outgoing and incoming charac-
ters is odd parity. Otherwise, the parity is even parity. Note that the
PARENB flag controls the generation and detection of parity.

(c_lflag, SVR4 and 4.3+BSD) If set, any input that has not been read
is reprinted by the system when the next character is input. This action
is similar to what happens when we type the REPRINT character.

(c_oflag, SVR4) Horizontal tab delay mask. The values for the mask
are TABO, TAB1, TAB2, or TAB3.

The value XTABS is equal to TAB3. This value causes the system to
expand tabs into spaces. The system assumes a tab stop every eight
spaces, and we can’t change this assumption.

(c_1flag, POSIX.1) If set and if the implementation supports job con-
trol, the SIGTTOU signal is sent to the process group of a background
process that tries to write to its controlling terminal. By default, this sig-
nal stops all the processes in the process group. This signal is not gener-
ated by the terminal driver if the background process that is writing to
the controlling terminal is either ignoring or blocking the signal.

(c_oflag, SVR4) Vertical tab delay mask. The values for the mask are
VTO or VT1.

(c_1flag, SVR4) If set and if ICANON is also set, the terminal is
assumed to be uppercase only, and all input is converted to lowercase.
To input an uppercase character, precede it with a backslash. Similarly,
an uppercase character is output by the system by being preceded by a
backslash. (This option flag is obsolete today, since most, if not all,
uppercase only terminals have disappeared.)

stty Command

All the options described in the previous section can be examined and changed from
within a program, with the tcgetattr and tcsetattr functions (Section 11.4), or
from the command line (or a shell script), with the stty(1) command. This command
is just an interface to the first six functions that we listed in Figure 11.4. If we execute
this command with its —a option, it displays all the terminal options.
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$ stty -a

speed 9600 baud; 34 rows; 80 columns;

1flags: icanon isig iexten echo echoe echok echoke -echonl echoctl
~echoprt -altwerase —noflsh -tostop -mdmbuf -flusho -pendin
-nokerninfo -—-extproc

iflags: istrip icrnl -inlcr —-igncr ixon -—-ixoff ixany imaxbel -ignbrk
brkint -inpck -ignpar -parmrk

oflags: opost onlcr -oxtabs

cflags: cread cs7 parenb —-parodd hupcl -clocal -cstopb -crtscts

cchars: discard = “0; dsusp = "¥Y; eof = "D; eol = <undef>;
eocl? = <undef>; erase = "H; intr = ~?; kill = "U; lnext = "V;
quit = "\; reprint = "R; start = "Q; status = "T; stop = "S;
susp = "Z; werase = "W;

Option names preceded by a hyphen are disabled. The last four lines display the cur-
rent settings for each of the terminal special characters (Section 11.3). The first line dis-
plays the number of rows and columns for the current terminal window—we discuss
this in Section 11.12.

Since the stty command is a user command and not an operating system function,
it is specified by POSIX.2, not POSIX.1.

Historically, System V versions of stty operate on the standard input and write any cutput to
standard output. Version 7 and BSD systems operate on the standard output and write any
output to standard error. The current draft of POSIX.2 follows the System V convention, as
does the 4.3+BSD version.

The Version 7 manual page for stty required a single page, while the SVR4 version requires
over six pages. Terminal drivers tend to acquire more and more options over time.

Baud Rate Functions

The term baud rate is a historical term that should be referred to today as “bits per sec-
ond.” Although most terminal devices use the same baud rate for both input and out-
put, the capability exists to set the two to different values, if the hardware allows this.

#include <termios.h>
speed_t cfgetispeed (const struct termios *termptr) ;
speed_t cfgetospeed(const struct termios *termptr) ;
Both return: baud rate value
int cfsetispeed(struct termios *termptr, speed t speed) ;

int cfsetospeed (struct termios *termptr, speed_t speed);

Both return: 0 if OK, -1 on error
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The return value from the two cfget functions and the speed argument to the two
cfset functions are one of the following constants: B50, B75, B110, B134, B150, B200,
B300,B600,B1200, B1800, B2400, B4800, B9600, B19200, or B38400. The constant
B0 means “hangup.” When B0 is specified as the output baud rate when tcsetattr is
called, the modem control lines are no longer asserted.

To use these functions we must realize that the input and output baud rates are
stored in the device’s termios structure, as shown in Figure 11.5. Before calling either
of the cfget functions we first have to obtain the device’s termios structure using
tcgetattr. Similarly, after calling either of the two c£set functions, all we've done is
set the baud rate in a termios structure. For this change to affect the device we have to
call tcsetattr.

If there is an error in either of the baud rates that we set, we may not find out about
the error until we call tcsetattr.

Line Control Functions

The following four functions provide line control capability for terminal devices. All
four require that filedes refer to a terminal device, otherwise an error is returned with
errno set to ENOTTY.

#include <termios.h>

int tecdrain(int filedes) ;

int tcflow(int filedes, int action) ;
int tcflush(int filedes, int queue) ;

int tcsendbreak (int filedes, int duration) ;

All four return: 0 if OK, —1 on error

The tedrain function waits for all output to be transmitted. tcflow gives us con-
trol over both input and output flow control. The action argument must be one of the
following four values:

TCOOFF  Output is suspended.
TCOON  Output that was previously suspended is restarted.

TCIOFF The system transmits a STOP character. This should cause the terminal
device to stop sending data.

TCION  The system transmits a START character. This should cause the terminal
device to resume sending data.
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The tcflush function lets us flush (throw away) either the input buffer (data that
has been received by the terminal driver, which we have not read) or the output buffer
(data that we have written, which has not yet been transmitted). The guene argument
must be one of the following three constants:

TCIFLUSH The input queue is flushed.
TCOFLUSH  The output queue is flushed.
TCIOFLUSH Both the input and output queues are flushed.

The tcsendbreak function transmits a continuous stream of zero bits for a speci-
fied duration. If the duration argument is 0, the transmission lasts between 0.25 and 0.5
seconds. POSIX.1 specifies that if duration is nonzero, the transmission time is imple-
mentation dependent.

The SVR4 SVID states that if duration is nonzero, no zero bits are transmitted. The SVR4 manu-
al page, however, states that if duration is nonzero, then tcsendbreak behaves like tcdrain.
Yet another system’s manual page states that if duration is nonzero, the time that the zero bits
are transmitted is durationxN, where N is between 0.25 and 0.5 seconds. Clearly there is little
agreement on how to handle this condition.

Terminal Identification

Historically, the name of the controlling terminal in most versions of Unix has been
/dev/tty. POSIX.1 provides a run-time function that we can call to determine the
name of the controlling terminal.

#include <stdio.h>

char *ctermid{char *pir);

Returns: (see following)

If ptr is nonnull, it is assumed to point to an array of at least I._ctermid bytes and the
name of the controlling terminal of the process is stored in the array. The constant
L_ctermid is defined in <stdio.h>. If ptr is a null pointer, the function allocates
room for the array (usually as a static variable). Again, the name of the controlling ter-
minal of the process is stored in the array.

In both cases, the starting address of the array is returned as the value of the func-
tion. Since most Unix systems use /dev/tty as the name of the controlling terminal,
this function is intended to aid portability to other operating systems.

Example—ctermid Function

Program 11.3 is an implementation of the POSIX.1 ctermid function. O
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#include <stdio.h>
#include <string.h>

static char ctermid name[L ctermid];

char *
ctermid(char *str)
{
if (str == NULL)
str = ctermid name:
return (strcpy (str, "/dev/tty")); /* strepy() returns str */

Program 11.3 Implementation of POSIX.1 termid function.

Two functions that are more interesting for a Unix system are isatty, which
returns true if a file descriptor refers to a terminal device, and ttyname, which returns
the pathname of the terminal device that is open on a file descriptor.

#include <unistd.h>

int isatty(int filedes) ;

. Returns: 1 (true) if terminal device, 0 (false) otherwise

char *ttyname (int filedes) ;

Returns: pointer to pathname of terminal, NULL on error

Example—isatty Function

The isatty function is trivial to implement as we show in Program 11.4. We just try
one of the terminal-specific functions (that doesn’t change anything if it succeeds) and

look at the return value.
#include <termios.h>
int

isatty(int £d)
{

struct termios term;

return(tcgetattr(fd, &term) != -1); /* true if no error (is a tty) */

Program 11.4 Implementation of POSIX.1 isatty function.
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#include "ourhdr.h"

int

main (void)

{
printf("£fd 0: %s\n", isatty(0) ? "tty" : "not a tty"):
printf ("fd 1: %s\n", isatty(l) ? "tty" : "not a tty"):
printf£("£fd 2: %s\n", isatty(2) ? "tty" : "not a tty"):;
exit (0);

Program 11.5 Test the i satty function.

We test our isatty function with Program 11.5, giving us

S a.out

fd 0: tty
fd 1: tty
fd 2: tty

5 a.out </etc/passwd 2>/dev/null
fd 0: not a tty

fd 1: tty

fd 2: not a tty

Example—ttyname Function

The ttyname function (Program 11.6) is longer, as we have to search all the device
entries, looking for a match. The technique is to read the /dev directory, looking for an
entry with the same device number and i-node number. Recall from Section 4.23 that
each filesystem has a unique device number (the st_dev field in the stat structure,
from Section 4.2), and each directory entry in that filesystem has a unique i-node num-
ber (the st_ino field in the stat structure). We assume in this function that when we
hit a matching device number and matching i-node number, we've located the desired
directory entry. We could also verify that the two entries have matching st _rdev fields
(the major and minor device numbers for the terminal device) and that the directory
entry is also a character special file. But since we've already verified that the file
descriptor argument is both a terminal device and a character special file, and since a
matching device number and i-node number is unique on a Unix system, there is no
need for the additional comparisons.

We can test this implementation with Program 11.7. Running Program 11.7 gives us

$ a.out < /dev/console 2> /dev/null
fd 0: /dev/console

fd 1: /dev/ttyp3

fd 2: not a tty



Terminal 1/0

#include <sys/types.h>

#include <sys/stat.h>

#include <dirent.h>

#include <limits.h>

#include <string.h>

#include <termios.h>

#include <unistd.h>

#define DEV "/dev/" /* device directory */

#define DEVLEN sizeof (DEV)-1 /* sizeof includes null at end */

char *
ttyname (int £d)

{

struct stat fdstat, devstat;

DIR *dp;

struct dirent *dirp;

static char pathname[ POSIX PATH MAX + 1];
char *rval;

if (isatty(fd) == 0)
return (NULL) ;

if (fstat(fd, &fdstat) < 0)
return (NULL) ;

if (S_ISCHR(fdstat.st_mode) == 0)
return (NULL) ;

strcpy (pathname, DEV):;
if ( (dp = opendir (DEV)) == NULL)
return (NULL) ;
rval = NULL;
while ( (dirp = readdir(dp)) != NULL) {
if (dirp->d ino != fdstat.st_ino)
continue; /* fast test to skip most entries */

strncpy (pathname + DEVLEN, dirp->d_name, _POSIX PATH MAX ~ DEVLEN);
if (stat(pathname, &devstat) < 0)

continue;
if (devstat.st_ino == fdstat.st_ino &&
devstat.st dev == fdstat.st_dev) { /* found a match */
rval = pathname;
break;

}
}
closedir(dp):
return(rval) ;

Program 11.6 Implementation of POSIX.1 ttyname function.
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{

int
main(void)

#include "ourhdr.h"

printf("fd 0: %s\n", isatty(0) ? ttyname(0) : "not a tty"):

printf("fd 1: %$s\n", isatty(l) ? ttyname(l) : "not a tty");
printf("fd 2: %s\n", isatty(2) ? ttyname(2) : "not a tty"):
exit (0);

Program 11.7 Test the ttyname function.

11.10 Canonical Mode

Canonical mode is simple—we issue a read and the terminal driver returns when a line
has been entered. Several conditions cause the read to return:

e The read returns when the requested number of bytes has been read. We don’t

have to read a complete line. If we read a partial line, no information is
lost—the next read starts where the previous read stopped.

The read returns when a line delimiter is encountered. Recall from Section 11.3
that the following characters are interpreted as “end-of-line” in canonical mode:
NL, EOL, EOL2, and EOF. Also, from Section 11.5 recall that if ICRNL is set, and
if IGNCR is not set, then the CR character also terminates a line since it acts just
like the NL character.

Realize that of these five line delimiters, one (EOF) is discarded by the terminal
driver when it’s processed. The other four are returned to the caller as the last
character of the line.

The read also returns if a signal is caught and if the function is not automatically
restarted (Section 10.5).

Example—getpass Function

We now show the function getpass that reads a password of some type from the user
at a terminal. This function is called by the Unix login(1) and crypt(1) programs. To
read the password it must turn off echoing, but it can leave the terminal in canonical
mode, as whatever we type as the password forms a complete line. Program 11.8 shows
a typical Unix implementation.
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#include <signal.h>
#include <stdio.h>
#include <termios.h>

#define MAX PASS_LEN 8 /* max #chars for user to enter */
char *
getpass (const char *prompt)
{
static char buf [MAX PASS_LEN + 1]; /* null byte at end */
char *ptr;
sigset t sig, sigsave;
struct termios term, termsave;
FILE *fp;
int c;
if ( (fp = fopen(ctermid(NULL), "r+")) == NULL)

return (NULL) ;
setbuf (fp, NULL);

sigemptyset (&sig); /* block SIGINT & SIGTSTP, save signal mask */
sigaddset (&sig, SIGINT);

sigaddset (&sig, SIGTSTP);

sigprocmask (SIG_BLOCK, &sig, &sigsave);

tcgetattr (fileno(fp), &termsave): /* save tty state */
term = termsave; /* structure copy */
term.c _1flag &= " (ECHO | ECHOE | ECHOK | ECHONL);
tesetattr (fileno(fp), TCSAFLUSH, &term);

fputs (prompt, f£fp);

ptr = buf;
while ( (c = getc(fp)) != EOF && c '= "\n') {
if (ptr < &buf[MAX_PASS_LEN])
*ptr++ = c;
}
*ptr = 0; /* null terminate */
putc(’\n’, fp); /* we echo a newline */

/* restore tty state */
tcsetattr(fileno(fp), TCSAFLUSH, &termsave);

/* restore signal mask */
sigprocmask (SIG_SETMASK, &sigsave, NULL);
fclose (fp) ; /* done with /dev/tty */

return (buf) ;

Program 11.8 Implementation of getpass function.
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There are several points to consider in this example.

We call the function ctermid to open the controlling terminal, instead of hard-
wiring /dev/tty into the program.

We read and write only to the controlling terminal and return an error if we
can’t open this device for reading and writing. There are other conventions to
use. The 4.3+BSD version of getpass reads from standard input and writes to
standard error if the controlling terminal can’t be opened for reading and writ-
ing. The SVR4 version always writes to standard error but only reads from the
controlling terminal.

We block the two signals SIGINT and SIGTSTP. If we didn’t do this, entering
the INTR character would abort the program and leave the terminal with echo-
ing disabled. Similarly, entering the SUSP character would stop the program
and return to the shell with echoing disabled. We choose to block the signals
while we have echoing disabled. If they are generated while we're reading the
password, they are held until we return. There are other ways to handle these
signals. Some versions just ignore SIGINT (saving its previous action) while in
getpass, resetting the action for this signal to its previous value before return-
ing. This means that any occurrence of the signal while it's ignored is lost.
Other versions catch SIGINT (saving its previous action) and if the signal is
caught, then after resetting the terminal state and signal action, just send them-
selves the signal with the kill function. None of the versions of getpass
catch, ignore, or block SIGQUIT, so entering the QUIT character aborts the pro-
gram and probably leaves the terminal with echoing disabled.

Be aware that some shells, notably the KornShell, turn echoing back on when-
ever they read interactive input. These shells are the ones that provide
command-line editing and therefore manipulate the state of the terminal every
time we enter an interactive command. So, if we invoke this program under one
of these shells and abort it with the QUIT character, it may reenable echoing for
us. Other shells that don’t provide this form of command-line editing, such as
the Bourne shell and C shell, will abort the program and leave the terminal in a
noecho mode. If we do this to our terminal, the stty command can reenable
echoing.

We use standard /0O to read and write the controlling terminal. We specifically
set the stream to be unbuffered, otherwise there might be some interactions
between the writing and reading of the stream (we would need some calls to
£f£1lush). We could have also used unbuffered 1/O (Chapter 3), but we would
have to simulate the get c function using read.

We store only up to eight characters as the password. Any additional characters
that are entered are just ignored.

Program 11.9 calls getpass and prints what we entered. This is just to let us verify
that the ERASE and KILL characters work (as they should in canonical mode).
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#include "ourhdr.h"
char *getpass (const char *);
int
main (void)
{
char *ptr;
if ( (ptr = getpass("Enter password:")) == NULL)
err sys("getpass error");
printf ("password: %s\n", ptr);
/* now use password (probably encrypt it) ... */
while (*ptr != 0)
*ptr++ = 0; /* zero it out when we’re done with it */

11.11

exit (0);

Program 11.9 Call the getpass function.

Whenever a program that calls getpass is done with the cleartext password, it
should zero it out in memory, just to be safe. If the program were to generate a core
file that others could read (recall from Section 10.2 that the default permissions on a
core file allow everyone to read it), or if some other process were somehow able to
read our memory, they might be able to read the cleartext password. (By “cleartext” we
mean the password that we type at the prompt that is printed by getpass. Most Unix
programs then modify this cleartext password into an “encrypted” password. The field
pw_passwd in the password file, for example, contains the encrypted password, not the
cleartext password.) O

Noncanonical Mode

Noncanonical mode is specified by turning off the ICANON flag in the c_1flag field of
the termios structure. In noncanonical mode the input data is not assembled into
lines. The following special characters (Section 11.3) are not processed: ERASE, KILL,
EOF, NL, EOL, EOL2, CR, REPRINT, STATUS, and WERASE.

As we said, canonical mode is easy—the system returns up to one line at a time,
But with noncanonical mode, how does the system know when to return data to us? If
it returned one byte at a time, there would be excessive overhead. (Recall Figure 3.1
where we saw how much overhead there was in reading one byte at a time. Each time
we doubled the amount of data returned we halved the system call overhead.) The sys-
tem can’t always return multiple bytes at a time, since sometimes we don’t know how
much data to read, until we start reading it.

The solution is to tell the system to return when either a specified amount of data
has been read or after a given amount of time has passed. This technique uses two
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variables in the c_cc array in the termios structure: MIN and TIME. These two ele-
ments of the array are indexed by the names VMIN and VTIME.

MIN specifies the minimum number of bytes before a read returns. TIME specifies
the number of tenths-of-a-second to wait for data to arrive. There are four cases.

Case A: MIN >0, TIME >0

TIME specifies an interbyte timer that is started only when the first byte is
received. If MIN bytes are received before the timer expires, read returns MIN
bytes. If the timer expires before MIN bytes are received, read returns the
bytes received. (At least one byte is returned if the timer expires, because the
timer is not started until the first byte is received.) In this case the caller blocks
until the first byte is received. If data is already available when read is called,
it is as if the data had been received immediately after the read.

Case B: MIN >0, TIME ==

The read does not return until MIN bytes have been received. This can cause a
read to block indefinitely.

Case C: MIN ==0, TIME >0

TIME specifies a read timer that is started when read is called. (Compare this
to case A, where a nonzero TIME represented an interbyte timer that was not
started until the first byte was received.) read returns when a single byte is
received or when the timer expires. If the timer expires, read returns 0.

Case D: MIN ==0, TIME ==

If some data is available, read returns up to the number of bytes requested. If
no data is available, read returns 0 immediately.

Realize in all these cases that MIN is only a minimum. If the program requests more
than MIN bytes of data, it's possible to receive up to the requested amount. This also
applies to cases C and D where MIN is 0.

Figure 11.7 summarizes the four different cases for noncanonical input. In this fig-
ure nbyfes is the third argument to read (the maximum number of bytes to return).

MIN > 0 MIN ==
A: read returns [MIN, nbytes] C: read returns [1, nbytes]
before timer expires; before timer expires;
TIME > 0 read returns [1, MIN) read returns 0 _
if timer expires. if timer expires.
(TIME = interbyte timer. (TIME = read timer.)
Caller can block indefinitely.)
B: read returns [MIN, nbytes] D: read returns [0, nbytes]
TIME == when available. immediately.
(Caller can block indefinitely.)

Figure 11.7 Four cases for noncanonical input.
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Be aware that POSIX.1 allows the subscripts VMIN and VTIME to have the same values as VEOF
and VEOL, respectively. Indeed, SVR4 does this. This provides backward compatibility for
older versions of System V. The problem is that in going from noncanonical to canonical
mode, we must now restore VEOF and VEOL also. If we don’t do this, and VMIN equals VEOF,
and we set VMIN to its typical value of 1, the end-of-file character becomes Control-A. The eas-
iest way around this problem is to save the entire termios structure when going into non-
canonical mede and restore it when going back to canonical mode.

Example

Program 11.10 defines the functions tty_cbreak and tty_raw that set the terminal in
a cbreak mode and a raw mode. (The terms cbreak and raw come from the Version 7 termi-
nal driver) We can reset the terminal to its prior state by calling the function
tty reset. Two additional functions are also provided: tty atexit can be estab-
lished as an exit handler to assure that the terminal mode is reset by exit, and
tty_ termios returns a pointer to the original canonical mode termios structure. We
use all these functions in the modem dialer in Chapter 18.

#include <termios.h>
#include <unistd.h>

static struct termios save_termios;

static int ttysavefd = -1;

static enum { RESET, RAW, CBREARK } ttystate = RESET;

int

tty cbreak(int fd) /* put terminal into a cbreak mode */

{
struct termios buf;

if (tcgetattr(fd, &save termios) < 0)
return(-1);

buf = save_termios; /* structure copy */

buf.c_lflag &= ~(ECHC | ICANON);
/* echo off, canonical mode off */

buf.c_cc[VMIN] = 1; /* Case B: 1 byte at a time, no timer */
buf.c_cc[VTIME] = 0;

if (tcsetattr(fd, TCSAFLUSH, &buf) < 0)
return(-1);
ttystate = CBRERK;
ttysavefd = fd;
return(0) ;
}
int
tty raw(int £d) /* put terminal into a raw mode */
{
struct termios buf;

if (tcgetattr (fd, &save_termios) < 0)
return(-1);
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buf = save_termios; /* structure copy */

buf.c_lflag &= " (ECHO | ICANON | IEXTEN | ISIG);

/* echo off, canonical mode off, extended input

processing off, signal chars off */

buf.c_iflag &= ~(BRKINT | ICRNL | INPCK | ISTRIP | IXON);

/* no SIGINT on BREAK, CR-to-NL off, input parity

check off, don’'t strip Bth bit on input,
cutput flow control off */

buf.c_cflag &= ~(CSIZE | PARENB);

/* clear size bits, parity checking off */
buf.c_cflag |= CS8;

/* set 8 bits/char */

buf.c_oflag &= " (OPOST);
/* output processing off */

buf.c_cc[VMIN] = 1;
buf.c_cc[VTIME] = 0;

if (tcsetattr (fd, TCSAFLUSH, &buf) < 0)
return(-1);

ttystate = RAW;

ttysavefd = fd;

return(0);

/* Case B: 1 byte at a time, no timer */

}

int
tty reset (int f£d) /* restore terminal’s mode */
{
if (ttystate '= CBRERK && ttystate != RAW)
return{0) ;
if (tcsetattr(fd, JCSAFLUSH, &save_termios) < 0)
return(-1);
ttystate = RESET;
return(0);
}
void
tty atexit (void) /* can be set up by atexit(tty atexit) */

{
if (ttysavefd >= 0)
tty_ reset(ttysavefd);
}

struct termios *
tty termios(void) /* let caller see original tty state */
{
return(&save_termios);
}

Program 11.10 Set terminal mode to raw or cbreak.
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Our definition of cbreak mode is the following:

Noncanonical mode. As we mentioned at the beginning of this section, this
mode turns off some input character processing. It does not turn off signal han-
dling, so the user can always type one of the terminal-generated signals. Be
aware, that the caller should catch these signals, or there’s a chance that the sig-
nal will terminate the program, and the terminal will be left in cbreak mode.

As a general rule, whenever we write a program that changes the terminal
mode, we should catch most signals. This allows us to reset the terminal mode
before terminating,

Echo off.

One byte at a time input. To do this we set MIN to 1 and TIME to 0. This is Case
B from Figure 11.7. A read won't return until at least one byte is available.

We define raw mode as follows:

Noncanonical mode. Additionally we turn off processing of the signal-
generating characters (ISIG) and the extended input character processing
(IEXTEN). We also disable a BREAK character from generating a signal by turn-
ing off BRKINT.

Echo off.
We disable the CR-to-NL mapping on input (ICRNL), input parity detection

(INPCK), the stripping of the eighth bit on input (ISTRIP), and output flow con-
trol (IXON).

Eight bit characters (CS8), and parity checking is disabled (PARENE).
All output processing is disabled (OPOST).
One byte at a time input (MIN = 1, TIME = 0).

Program 11.11 tests the raw and cbreak modes. Running Program 11.11 we can see what
happens with these two terminal modes.

$ a.out
Enter raw mode characters, terminate with DELETE

1

4
33
133
62
63
60
172

type DELETE

Enter cbreak mode characters, terminate with SIGINT
type Control-A
type backspace

10

signal caught type interrupt key
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#include <signal.h>
#include "ourhdr.h"

static void sig_catch(int):

int

main (void)

{

}

int i
char c;

if (signal (SIGINT, sig _catch) == SIG_ERR) /* catch signals */

err_sys ("signal (SIGINT) error");

if (signal (SIGQUIT, sig_catch) == SIG_ERR)
err_sys("signal (SIGQUIT) error");

if (signal (SIGTERM, sig_catch) == SIG_ERR)
err_sys("signal (SIGTERM) error”);

if (tty_raw(STDIN_FILENO) < 0)
err_sys("tty_raw error");

printf ("Enter raw mode characters, terminate with DELETE\n"):

while ( (i = read(STDIN FILENO, &c, 1)) == 1) {
if ((c &= 255) == 0177) /* 0177 = ASCII DELETE */
break;

printf("%o\n", c);
}
if (tty reset (STDIN_FILENO) < 0)
err sys("tty reset error");
if (1 <= 0)
err_sys("read error");

if (tty cbreak (STDIN_FILENO) < 0)
err sys("tty_raw erroxr");

printf ("\nEnter cbreak mode characters, terminate with SIGINT\n"):;

while ( (i = read(STDIN_FILENO, &c, 1)) == 1) {
c &= 255;
printf ("%o\n", c¢);

}

tty reset (STDIN_FILENO) ;

if (i <= 0)
err_sys("read error");

exit (0);

static void
sig_catch(int signo)

{

printf (“signal caught\n");
tty_reset(STDIN_FILENO]:
exit (0);

Program 11.11 Test the raw and cbreak modes.
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11.12

In raw mode the characters entered were Control-D (04) and the special function key F7.
On the terminal being used, this function key generated six characters: ESC (033), [
(0133), 2 (062), 3 (063), 0 (060), and z (0172). Notice with the output processing turned
off in raw mode (~OPOST) we do not get a carriage-return output after each character.
Also notice that special character processing is disabled in cbreak mode (so Control-D,
the end-of-file character, and backspace aren’t handled specially), while the terminal-
generated signals are still processed. 8]

Terminal Window Size

SVR4 and Berkeley systems provide a way to keep track of the current terminal window
size and to have the kernel notify the foreground process group when the size changes.
The kernel maintains a winsize structure for every terminal and pseudo terminal.

struct winsize {
unsigned short ws_row; /* rows, in characters */
unsigned short ws_col; /* columns, in characters */
unsigned short ws_xpixel; /* horizontal size, pixels (not used) */

unsigned short ws_ypixel; /* vertical size, pixels (not used) #/
bi

The rules for this structure are as follows:

1. We can fetch the current value of this structure using an ioct1 (Section 3.14) of
TIOCGWINSZ.

2. We can store a new value of this structure in the kernel using an ioctl of
TIOCSWINSZ. If this new value differs from the current value stored in the ker-
nel, a SIGWINCH signal is sent to the foreground process group. (Note from
Figure 10.1 that the default action for this signal is to be ignored.)

3. Other than storing the current value of the structure and generating a signal
when the value changes, the kernel does nothing else with the values in this

structure. Interpreting the values in the structure is entirely up to the applica-
tion.

The reason for providing this feature is to notify applications (such as the vi editor)
when the window size changes. When the application receives the signal it can fetch
the new size and redraw the screen.

Example

Program 11.12 prints the current window size and goes to sleep. Each time the window
size changes, SIGWINCH is caught and the new size is printed. We have to terminate
this program with a signal.



erminal Window Size 359

finclude <gignal.h>

#include <termios.h>

#ifndef TIOCGWINSZ

#include <sys/ioctl.h> /* 4.3+BSD requires this too */
#endif

#include "ourhdr.h"

static void pr_winsize(int), sig winch(int};

int

main {void)

{ .

if (isatty (STDIN FILENO) == 0)
exit (1)

if (signal (SIGWINCH, sig_winch) == SIG_ERR)
err_sys(“"signal error");

pr_winsize (STDIN FILENO); /* print initial size */
for ( ; ;) /* and sleep forever */
pause () ;

}

static void
pr_winsize(int £d)
{

struct winsize size;

if (ioctl(fd, TIOCGWINSZ, (char *) &size) < 0)
err_ sys ("TIOCGWINSZ error");
printf("%d rows, %d columns\n", size.ws_row, size.ws_col};

}

static void

sig_winch{int signo)

{
printf ("SIGWINCH received\n");
pr_winsize (STDIN_FILENO);
return;

Program 11.12 Print window size.

Running Program 11.12 on a windowed terminal gives us

5 a.out

35 rows, 80 columns initial size

SIGWINCH received change window size: signal is caught
40 rows, 123 columns

SIGWINCH received and again

42 rows, 33 columns

"? s type the interrupt key to terminate
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11.13 termcap, terminfo, and curses

11.14

termcap stands for “terminal capability,” and it refers to the text file /etc/termcap
and a set of routines to read this file. The termcap scheme was developed at Berkeley
to support the vi editor. The termcap file contains descriptions of various terminals:
what features the terminal supports (how many lines and rows, does the terminal sup-
port backspace, etc.) and how to make the terminal perform certain operations (clear the
screen, move the cursor to a given location, etc.). By taking this information out of the
compiled program and placing it into a text file that can easily be edited, it allows the
vi editor to run on many different terminals.

The routines that support the termcap file were then extracted from the vi editor
and placed into a separate curses library. Lots of features were added to make this
library usable for any program that wanted to manipulate the screen.

The termcap scheme was not perfect. As more and more terminals were added to
the data file, it took longer to scan the file looking for a specific terminal. The data file
also used two-character names to identify the different terminal attributes. These defi-
ciencies led to development of the terminfo scheme and its associated curses library.
The terminal descriptions in terminfo are basically compiled versions of a textual
description and can be located faster at run time. terminfo appeared with SVR2 and
has been in all System V releases since then.

SVR4 uses terminfo, while 4.3+BSD uses termcap.

A description of terminfo and the curses library is provided by Goodheart [1991].
Strang, Mui, and O'Reilly [1991] provide a description of termcap and terminfo.
Neither termcap nor terminfo, by itself, addresses the problems we've been
looking at in this chapter—changing the terminal’s mode, changing one of the terminal
special characters, handling the window size, and so on. What they do provide is a way
to perform typical operations (clear the screen, move the cursor) on a wide variety of
terminals. On the other hand, curses does help with some of the details that we've
addressed in this chapter. Functions are provided by curses to set raw mode, set
cbreak mode, turn echo on and off, and the like. But curses is designed for character-
based dumb terminals, while the trend today is toward pixel-based graphics terminals.

Summary

Terminals have many features and options, most of which we’re able to change to suit
our needs. In this chapter we’ve described numerous functions that change a terminal’s
operation—special input characters and the option flags. We’ve looked at all the termi-
nal special characters and the many options that can be set or reset for a terminal device.

There are two modes of terminal input—canonical (line at a time) and noncanoni-
cal. We showed examples of both modes and provided functions that map between the
POSIX.1 terminal options and the older BSD cbreak and raw modes. We also described
how to fetch and change the window size of a terminal. Chapters 17 and 18 show addi-
tional examples of terminal I/O.
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Exercises

11.1

11.2

11.3

11.4

Write a program that calls tty raw and terminates (without resetting the terminal mode).
If your system provides the reset(1) command (both SVR4 and 4.3+BSD provide it) use it
to restore the terminal mode.

The PARODD flag in the c_cflag field allows us to specify even or odd parity. The BSD
tip program, however, also allows the parity bit to be 0 or 1. How does it do this?

If your system’s stty(1) command outputs the MIN and TIME values, do the following
exercise. Log in to the system twice and start the vi editor from one login. Use the stty
command from your other login to determine what values vi sets MIN and TIME to (since
it sets the terminal to noncanonical mode).

As the terminal interface moves to faster line speeds (19,200 and 38,400 are becoming com-
mon nowadays) the need for hardware flow control becomes important. This involves the
RS-232 RTS (request to send) and CTS (clear to send) signals, instead of the XON and XOFF
characters. Hardware flow control is not specified by POSIX.1. Under SVR4 and 4.3+BSD
how can a process enable or disable hardware flow control?



