UNIX Network Programming

Volume 2
Second Edition

Interprocess Communications

by W. Richard Stevens

L

Prentice Hall PTR
Upper Saddle River, NJ 07458 | :
www.phptr.com 9780 130!

Abbreviated Table of Confents

Part 1. Introduction 1
Chapter 1. Introduction 3
Chapter 2. Posix IPC 19
Chapter 3. System V IPC 27
Part 2. Message Passing 4
Chapter 4. Pipes and FIFOs 43
Chapter 5. Posix Message Queues 75
Chapter 6. System V Message Queues 129
Part 3. Synchronization 57
Chapter 7. Mutexes and Condition Variables 159
Chapter 8. Read-Write Locks 177
Chapter 9. Record Locking 183
Chapter 10. Posix Semaphores 219
Chapter 11. System V Semaphores 281
Part 4. Shared Memory - 301
Chapter 12. Shared Memory Introduction 303
Chapter 13. Posix Shared Memory 325
Chapter 14, Systern V Shared Memory 343
Part 5. Remote Procedure Calls 353
Chapter 15. Doors 355
Chapter 16. Sun RPC 309
Appendix A. Perdformance Measuremenis 457
Appendix B. A Threads Primer 501
Appendix C. Miscellaneous Source Code 505

Appendix D. Solutions to Selected Exercises 515

Table of Contents

Preface

Chapter 1.

11
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

Chapter 2.

21
22
2.3
2.4
2.5

introduction

Introduction 3

Processes, Threads, and the Sharing of Information 5
Persistence of IPC Objects -]

Name Spaces 7

Effect of fark, exec, and exit on IPC Objects a
Error Handling: Wrapper Functions 11

Unix Standards 13

Road Map to IPC Examples in the Text 15

summary 16

Posix IPC

Introduction 19

IPC MNames 19

Creating and Opening IPC Channels 22
IPC Permissions 25

Summary 26

xiii

19

vii

viii UNIX Network Programming Contents

Chapter 3. System V IPC 27

31 Introduction 27

32 key_t Keys and frok Function 28

33 ipe _perm Structure 30

| 3.4 Creating and Opening IPC Channels 30
35 IPC Permissions 32

: 36 Identifier Reuse 34

aT ipcs and ipcrm Programs 36

3 38 Kernel Limits 36

i 3.9 Summary a8

Part 2. Message Passing _ 41
! Chapter 4. Pipes and FIFOs 43
4.1 Introduction 43

: 4.2 A Simple Client-Server Example 43

i 43 Pipes 44

4.4 Full-Duplex Pipes 50

4.5 popen and pclose Functions 52

4.6 FIFOs 54

A7 Additional Properties of Pipes and FIFOs 58
4.8 One Server, Multiple Clients 60

49 lterative versus Concurrent Servers 66
410 Streams and Messages 67

411 Pipe and FIFD Limits T2

412 Summary 73

Chapter 5. Posix Message Queues 75
51 Introduction 75
52 me_opern, mg_closea, and mg_unlink Functions 78
5.3 mo_getattr and mg _setattr Functions 79
5.4 my_send and mg_receive Functions a2
5.5 Message Queue Limits 86
5.6 mg_notify Function ar
57 Posix Realtime Signals 98
5.8 Implementation Using Memory-Mapped 11O 106
59 Surmmary 126
Chapter 6. System V Message Queues 129
B.1 Introduction 129
6.2 msgget Function 130
6.3 megsnd Function 13
6.4 megroy Function 132
6.5 megeotl Function 134

6.6 Simple Programs 135
6.7 Client-Server Example 140
6.8 Multiplexing Messages 142

- UNIX Network Programming Contents ix

4 6.9 Message Queues with select and poll 151
8.10 Message Queue Limits 152
6.11 Summary 155
Part 3. Synchronization 157
Chapter 7. Mutexes and Condition Variables 159
7.1 Introduction 159
7.2 Mutexes: Locking and Uniocking 158
7.3 Producer—Consumer Problem 161
1 7.4 Locking wersus Waiting 165

3 7.5 Condition Variables: Waiting and Signaling 167

3 7.6 Condition Variables: Timed Waits and Broadcasts 171
7.7 Mutexes and Condition Variable Attributes 172
7.8 Summary 174

Chapter 8. Read-Write Locks 177

8.1 Introduction 177

8.2 Obtaining and Releasing Read-Write Locks 178

8.3 Read-Write Lock Attributes 179

8.4 Implementation Using Mutexes and Condition Variables 178
8.5 Thread Cancellation 187

B.6 Summary 192

Chapter 9. Record Locking 193
9.1 Introduction 183
e 9.2 Record Locking versus File Locking 197

9.3 Posix foncl Aecord Locking 199

9.4 Advisory Locking 203

8.5 Mandatory Locking 204

9.8 Priorities of Readers and Writers 207

8.7 Starting Only One Copy of a Dasmon 213
9.8 Lock Files 214

9.9 NFS Locking 216

9.10 Summary 218

Chapter 10. Posix Semaphores 219
29 10.1 Introduction 219
10.2 sem_open, sem_close, and sem_unlink Functions 225
10,3 zem_wait and sem_trywait Functions 226

104 sem_post and sem_getvalue Functions 237
10.5 Simple Programs 228

10.6 Producer—Consumer Problem 233

10.7 File Locking 238

10.8 sem_init and sem_destroy Functions 238
10.9 Multipie Producers, One Consumer 242

10,10 Multiple Producers, Multiple Consumers 245

UNIX Network Programming

10.11 Multiple Buffers 249
10.12 Sharing Semaphores between Processes
10.43 Semaphore Limits 257

10.14 Implementation Using FIFOs 257
10.15 Implementation Using Memory-Mapped Iie] 262
10.16 Implementation Using System V Semaphores 27
1017 Summary 278

256

Chapter 11. System V Semaphores 281

11.1 Introduction 281

11.2 semget Function 282
11.3 semop Function 285
11.4 semctl Function 287
115 Simple Programs 289
11.6 File Locking 294

1.7 Semaphore Limits 206
11.8 Summary 300

Part 4. Shared Memory - 301

Chapter 12. Shared Memory Introduction 303

121 Introduction a03

12.2 mmap, munmap, and msync Functions 307

12.3 Increment Counter in a Memary-Mapped File 31
124 4 ABSD Anonymous Memory Mapping 315

125 SVRA4 /dev/zero Memory Mapping 316

12,8 Referencing Memory-Mapped Objects 7

127 Summary 322

Chapter 13. Posix Shared Memory 325

13.1 Introduction 325

13.2 shm_open and shm_unlink Functions 326
133 frruncate and fstat Functions 327
134 Simple Programs 328

135 Incrementing & Shared Counter 333

136 Sending Messages 10 a Server 338

137 Summary 342

Chapter 14. System V Shared Memory 343

14.1 Introduction 343

142 shmget Function 343

143 chmat Functicn 344

14.4 ehmdr Function 345

14.5 enmetl Function 345

14.6 Simple Programs 346

14.7 Shared Memaory Limits 349
14.8 Summary 351

m

1

01

325

343

UNIX Metwork Programming

Contents xi

Part 5. Remote Procedure Calls 353
Chapter 15. Doors 355
151 Introduction 355
15.2 door_call Function 361
15.3 door_create Function 363
15.4 daoor return Function 364
15.5 door_cred Function 365
15.6 door_info Function 365
157 Examples 366
15.8 Descriptor Passing ars
15.9 dnor_server_create Function 384
1510 door_bind, decr_unbind, and door_revoke Functions 380
1511 Premature Termination of Client or Sarver 380
1512 Summary 397
Chapter 16. Sun RPC 399
16.1 Introduction 399
16.2 Multithreading 407
16.3 Server Binding 411
16.4 Authentication 414
16.5 Timeout and Retransmission 417
16.6 Call Semantics 422
16.7 Premature Termination of Client or Server 424
16.8 XDR: External Data Representation 426
16.9 RPC Packst Formats 444
16.10 Summary 449
Epilogue 453
Appendix A. Performance Measurements 457
A Introduction 457
A2 Results 458
A3 Message Passing Bandwidth Programs 467
A4 Message Passing Latency Programs 480
AS Thread Synchronization Programs 486
A6 Process Synchronization Programs 497
Appendix B. A Threads Primer 501
B.1 Introduction 501
B.2 Basic Thread Functions: Creation and Termination 502
Appendix C. Miscellaneous Source Code 505
Ci unpipe . h Header 505
cz config.h Header 508

ca3

Standard Error Functions 510

o ———— - -

:
5
J

xii

UNIX Network Programming

515

Appendix D. Solutions to Selected Exercises

Bibliography
Index

539

Preface

Intreduction

Most nontrivial programs involve some form of IPC or Interprocess Communication. This
is a natural effect of the design principle that the better approach is to design an applica-
tion as a group of small pieces that communicate with each other, instead of designing
one huge monolithic program. Historically, applications have been built in the follow-
ing ways:

1. One huge monolithic program that does everything. The various pieces of the
program can be implemented as functions that exchange information as func-
tion parameters, function return values, and global variables.

2. Multiple programs that communicate with each other using some form of IPC.
Many of the standard Unix tools were designed in this fashion, using shell
pipelines (a form of IPC) to pass information from one program to the next.

3. One program comprised of multiple threads that communicate with each other
using some type of IPC. The term IPC describes this communication even
though it is between threads and not between processes.

Combinations of the second two forms of design are also possible: multiple processes,
each consisting of one or more threads, involving communication between the threads
within a given process and between the different processes.

What 1 have described is distributing the work involved in performing a given
application between multiple processes and perhaps among the threads within a pro-
cess. On a system containing multiple processors (CPUs), multiple processes might be

xiii

T .-

xiv UNIX Network Programming Preface

able to run at the same time (on different CPUs), or the multiple threads of a given pro-
cess might be able to run at the same time. Therefore, distributing an application
among multiple processes or threads might reduce the amount of time required for an
application to perform a given task.

This book describes four different forms of [PC in detail:

1. message passing (pipes, FIFOs, and message queues),

2. synchronization (mutexes, condition variables, read-write locks, file and record
locks, and semaphores),

shared memory (anonymous and named), and
remote procedure calls (Solaris doors and Sun RPC).

This book does not cover the writing of programs that communicate across a computer
network. This form of communication normally involves what is called the sockets APl
(application program interface) using the TCP/IP protocol suite; these topics are cov-
ered in detail in Volume 1 of this series [Stevens 1998].

One could argue that single-host or nonnetworked IPC (the subject of this volume)
should not be used and instead all applications should be written as distributed appli-
cations that run on various hosts across a network, Practically, however, single-host [PC
is often much faster and sometimes simpler than communicating across a network.
Techniques such as shared memory and synchronization are normally available only on
a single host, and may not be used across a network. Experience and history have
shown a need for both nonnetworked IPC (this volume) and IPC across a network
(Volume 1 of this series).

This current volume builds on the foundation of Volume 1 and my other four books,
which are abbreviated throughout this text as follows:

UNPv1: UNIX Network Programming, Volume 1 [Stevens 1998],

APUE: Advanced Programming in the UNIX Environment [Stevens 1992],
TCPv1: TCP/IP Ilustrated, Volume 1 [Stevens 1994],

TCPv2: TCP/IP lllustrated, Volume 2 [Wright and Stevens 1995], and
TCPw3: TCP/IP Mustrated, Volume 3 [Stevens 19961,

Although covering IPC in a text with “network programming” in the title might
seem odd, IPC is often used in networked applications. As stated in the Preface of the
1990 edition of UNIX Network Programming, “A requisite for understanding how to
develop software for a network is an understanding of interprocess communication

(IPC).”

Changes from the First Edition

This volume is a complete rewrite and expansion of Chapters 3 and 18 from the 1990
edition of LINIX Network Programming. Based on a word count, the material has
expanded by a factor of five. The following are the major changes with this new edi-
tion:

W

UNIX Network Programming Preface Xv

e In addition to the three forms of “System V [PC” (message queues, semaphores,
and shared memory), the newer Posix functions that implement these three
types of [PC are also covered. (I say more about the Posix family of standards in
action 1.7.) In the coming years, | expect a movement to the Posix IPC func-
tions, which have several advantages over their System V counterparts.

» The Posix functions for synchronization are covered: mutex locks, condition
variables, and read—write locks. These can be used to synchronize either threads
or processes and are often used when accessing shared memory.

+ This volume assumes a Posix threads environment (called “Pthreads”), and
many of the examples are built using multiple threads instead of multiple pro-

Cesses.
e« The coverage of pipes, FIFOs, and record locking focuses on their Posix defini-
tions.
: « In addition to describing the IPC facilities and showing how to use them, [also

develop implementations of Fosix message queues, read-write locks, and Posix
semaphores (all of which can be implemented as user libraries). These imple-
mentations can tie together many different features (e.g., one implementation of
1 Posix semaphores uses mutexes, condition variables, and memory-mapped 1/0)
4 and highlight conditions that must often be handled in our applications (such as
3 race conditions, error handling, memory leaks, and variable-length argument
4 lists). Understanding an implementation of a certain feature often leads to a
; greater knowledge of how to use that feature.

e The RPC coverage focuses on the Sun RPC package. 1 precede this with a
description of the new Solaris doors API, which is similar to RPC but on a single
host. This provides an introduction to many of the features that we need to
worry about when calling procedures in another process, without having to
worry about any networking details.

Readers

This text can be used either as a tutorial on IPC, or as a reference for experienced pro-

ht .
; grammers. The book is divided into four main parts:

e
4]
oyl

message passing,
synchronization,
shared memory, and
remote procedure calls

but many readers will probably be interested in specific subsets. Most chapters can be
read independently of others, although Chapter 2 summarizes many features common
to all the Posix IPC functions, Chapter 3 summarizes many features common to all the
System V IPC functions, and Chapter 12 is an introduction to both Posix and System V
shared memory. All readers should read Chapter 1, especially Section 1.6, which
describes some wrapper functions used throughout the text. The Posix IPC chapters are

LA K

UNIX Network Programming Preface

independent of the System V IPC chapters, and the chapters on pipes, FIFOs, and record
locking belong to neither camp. The two chapters on RPC are also independent of the
other IPC techniques.

To aid in the use as a reference, a thorough index is provided, along with sum-
maries on the end papers of where to find detailed descriptions of all the functions and
structures. To help those reading topics in a random order, numerous references to
related topics are provided throughout the text.

Source Code and Errata Availability

The source code for all the examples that appear in this book is available from the
author’s home page (listed at the end of this Preface). The best way to learn the IPC
techniques described in this book is to take these programs, modify them, and enhance
them. Actually writing code of this form is the only way to reinforce the concepts and
techniques. Numerous exercises are also provided at the end of each chapter, and most
answers are provided in Appendix D.

A current errata for this book is also available from the author’s home page.

Acknowledgments

Although the author’s name is the only one to appear on the cover, the combined effort
of many people is required to produce a quality text book. First and foremost is the
author's family, who put up with the long and weird hours that go into writing a book.
Thank you once again, Sally, Bill, Ellen, and David.

My thanks to the technical reviewers who provided invaluable feedback (135
printed pages) catching lots of errors, pointing out areas that needed more explanation,
and suggesting alternative presentations, wording, and coding: Gavin Bowe, Allen
Briggs, Dave Butenhof, Wan-Teh Chang, Chris Cleeland, Bob Friesenhahn, Andrew
Gierth, Scott Johnson, Marty Leisner, Larry McVoy, Craig Metz, Bob Nelson, Steve Rago,
Jim Reid, Swamy K. Sitarama, Jon C. Snader, lan Lance Taylor, Rich Teer, and Andy
Tucker.

The following people answered email questions of mine, in some cases Py quUEs:
tions, all of which improved the accuracy and presentation of the text: David Bausum,
Dave Butenhof, Bill Gallmeister, Mukesh Kacker, Brian Kernighan, Larry McVoy, Steve
Rago, Keith Skowran, Bart Smaalders, Andy Tucker, and John Wait.

A special thanks to Larry Rafsky at GSquared, for lots of things. My thanks as
usual to the National Optical Astronomy Observatories (NOAQ), Sidney Wolff, Richard
Wolff, and Steve Grandi, for providing access to their networks and hosts. Jim Bound,
Matt Thomas, Mary Clouter, and Barb Glover of Digital Equipment Corp. provided the
Alpha system used for most of the examples in this text. A subset of the code in this
book was tested on other Unix systems: my thanks to Michael Johnson of Red Hat Soft-
ware for providing the latest releases of Red Hat Linux, and to Dave Marquardt and
Jessie Haug of IBM Austin for an RS/6000 system and access to the latest releases of
AlX

R UNIX MNetwork Programming Preface xvii

o My thanks to the wonderful staff at Prentice Hall—my editor Mary Franz, along

£ with Noreen Regina, Sophie Papanikolaou, and Patti Guerrieri—for all their help, espe-
cially in bringing everything together on a tight schedule.

-

i Colophon

[produced camera-ready copy of the book (PostScript), which was then typeset for the

final book. The formatting system used was James Clark’s wonderful groff package,

on a SparcStation running Solaris 2.6. (Reports of troff's death are greatly exaggerated.)

I typed in all 138,897 words using the vi editor, created the 72 illustrations using the
g the gpic program {(using many of Gary Wright's macros), produced the 35 tables using the
HEPC gtbl program, performed all the indexing (using a set of awk scripts written by Jon
ance Bentley and Brian Kernighan), and did the final page layout. Dave Hanson's 1oom pro-
and gram, the GNU indent program, and some scripts by Gary Wright were used to
most include the 8,046 lines of C source code in the book.

[welcome email from any readers with comments, suggestions, or bug fixes.

Tueson, Arizona W. Richard Stevens
ot Tuly 1998 rstevens@kchala.com
 the http://www.kohala.com/~rstevens
ok,
gion,

&1ken
grew
k2z0,
Lndy
RIS~
SEm,
eve
= as
Fard
_rsstel
g the
i this
Bt

Part |

Introduction

1.1

Introduction

Introduction

IPC stands for interprocess communication. Traditionally the term describes different
ways of message passing between different processes that are running on some operating
system. This text also describes numerous forms of synchronization, because newer
forms of communication, such as shared memory, require some form of synchronization
to operate,

In the evolution of the Unix operating system over the past 30 years, message pass-
ing has evolved through the following stages:

* Pipes (Chapter 4) were the first widely used form of IPC, available both within
programs and from the shell. The problem with pipes is that they are usable
only between processes that have a common ancestor (i.e., a parent—child rela-
tionship), but this was fixed with the introduction of named pipes or FIFOs (Chap-
ter 4).

* System V message queues (Chapter 6) were added to System V kernels in the early
1980s. These can be used between related or unrelated processes on a given
host. Although these are still referred to with the “System V" prefix, most ver-
sions of Unix today support them, regardless of whether their heritage is
Systern V or not.

When describing Unix processes, the term related means the processes have some ancestor
in commaon. This is another way of saying that these related processes were generated

3

E] Introduction Chapter 1

from this ancestor by one or more forks. A common example is when a process calls
fork twice, generating two child processes. We then say that these two children are
related. Similarly, each child is related to the parent. With regard to [PC, the parent can
establish some form of IPC before calling £ork (a pipe or message queue, for example),
knowing that the two children will inherit this IPC object across the fork, We talk more
about the inheritance of the various IPC objects with Figure 1.6. We must also note that
all Unix processes are theoretically related to the inic process, which starts everything
going when a system is bootstrapped. Practically speaking, however, process relation-
ships start with a login shell {called a session} and all the processes generated by that shell.
Chapter 9 of APUE talks about sessions and process relationships in more detail.

Throughout the text, we use indented, parenthetical notes such as this one to describe
implementation details, historical points, and minutiae.

 Posix message queues (Chapter 5) were added by the Posix realtime standard
(1003.1b-1993, which we say more about in Section 1.7). These can be used
between related or unrelated processes on a given host.

e Remote Procedure Calls (RPCs, which we cover in Part 5) appeared in the
mid-1980s as a way of calling a function on one system (the server) from a pro-
gram on another system (the client), and was developed as an alternative to
explicit network programming. Since information is normally passed between
the client and server (the arguments and return values of the function that is
called), and since RPC can be used between a client and server on the same host,
RPC can be considered as another form of message passing.

Looking at the evolution of the various forms of synchronization provided by Unix
is also interesting,

+ Early programs that needed some form of synchronization {often to prevent
multiple processes from modifying the same file at the same time) used quirks of
the filesystem, some of which we talk about in Section 9.8.

+ Record locking (Chapter 9) was added to Unix kernels in the early 1980s and then
standardized by Posix.1 in 1988.

o System V semaphores (Chapter 11) were added along with System V shared memory
(Chapter 14) at the same time System ¥V message queues were added (early
1980s). Most versions of Unix support these today.

e Posix semaphores (Chapter 10) and Posix shared memory (Chapter 13) were also
added by the Posix realtime standard (1003.1b-1993, which we mentioned with

regard to Posix message queues earlier).

s+ Mutexes and condition oariables (Chapter 7) are two forms of synchronization
defined by the Posix threads standard (1003.1c-1995). Although these are often
used for synchronization between threads, they can also provide synchroniza-
tion between different processes.

s Read-write locks (Chapter 8) are an additional form of synchronization. These
have not yet been standardized by Posix, but probably will be soon.

&

l

" LR S

L

Bl

L

=

«7 W

L

-y

L L

Section 1.2 Processes, Threads, and the Sharing of Information 5

1.2 Processes, Threads, and the Sharing of Information

In the traditional Unix programming model, we have multiple processes running on a
system, with each process having its own address space. Information can be shared
between Unix processes in various ways, We summarize these in Figure 1.1.

! I shared

| ; . I .
. | | ews | _— | — | ess |
| process | i process | Process ! : pracess i [process I .m{'l]'l.{!l':'.-' I Priscess
| L L |) TSP) - —
5 4 > A i i [

\ ..'" x\ ;;, B R —
e T " #’I_ e
1 L { [shared |

kernel ..' / | info
I'|_ ,'III
Ay
o~ T,
k:ﬁf_ilesy‘slewj/:

Figure 1.1 Three ways to share information between Unix processes.

1. The two processes on the left are sharing some information that resides in a file
in the filesystem. To access this data, each process must go through the kernel
le.g., read, write, lseek, and the like). Some form of synchronization is
required when a file is being updated, both to protect multiple writers from each
other, and to protect one or more readers from a writer.

2. The two processes in the middle are sharing some information that resides
within the kernel. A pipe is an example of this type of sharing, as are System V
message queues and System V semaphores, Each operation to access the shared
information now involves a system call into the kernel.

3. The two processes on the right have a region of shared memory that each pro-
cess can reference. Once the shared memory is set up by each process, the pro-
cesses can access the data in the shared memory without involving the kernel at
all. Some form of synchronization is required by the processes that are sharing
the memory.

Mote that nothing restricts any of the [PC techniques that we describe to only two pro-
cesses. Any of the techniques that we describe work with any nu mber of processes. We
show only two processes in Figure 1.1 for simplicity.

Threads
Although the concept of a process within the Unix system has been used for a long time,

the concept of multiple threads within a given process is relatively new. The Posix.1
threads standard (called “Pthreads”) was approved in 1995, From an IPC perspective,

6 Introduction Chapter 1

all the threads within a given process share the same global variables (e.g., the concept
of shared memory is inherent to this model). What we must worry about, however, is
synchronizing access to this global data among the various threads. Indeed, synchro-
nization, though not explicitly a form of IPC, is used with many forms of IPC to control
access to some shared data.
i In this text, we describe IPC between processes and IPC between threads. We
? assume a threads environment and make statements of the form “if the pipe is empty,
the calling thread is blocked in its call to read until some thread writes data to the
pipe.” If your system does not support threads, vou can substitute “process” for
“thread” in this sentence, providing the classic Unix definition of blocking in a read of
an empty pipe. But on a system that supports threads, only the thread that calls read
on an empty pipe is blocked, and the remaining threads in the process can continue to
execute. Writing data to this empty pipe can be done by another thread in the same
process or by some thread in another process.

Appendix B summarizes some of the characteristics of threads and the five basic
Pthread functions that are used throughout this text.

1.3 Persistence of IPC Objects

We can define the persistence of any type of IPC as how long an object of that type
remains in existence. Figure 1.2 shows three types of persistence.

| '] process-persistent [PC:
| process »exists until last process with
_ IPC object open closes the object

1

' 7 kernel-persistent [PC:
kernel | exists until kernel reboots
| ar IPC object is explicitly deleted

(‘:’ filesystem
e

"

exists until [PC object is

_,_d—J—-_ filesystem-persistent 1PC:
| explicitly deleted

S

Figure 1.2 Persistence of IPC objects.

1. A process-persistent IPC object remains in existence until the last process that
holds the object open closes the object. Examples are pipes and FIFOs.

2. A kernel-persistent IPC object remains in existence until the kernel reboots or
until the obiject is explicitly deleted. Examples are System V message queues,
semaphores, and shared memory. Posix message queues, semaphores, and
shared memory must be at least kernel-persistent, but may be file-
system-persistent, depending on the implementation.

il
vt L

e

Section 1.4 Name Spaces 7

1.4

3. A filesystem-persistent IPC object remains in existence until the object is explicitly
deleted. The object retains its value even if the kernel reboots. Posix message
queues, semaphores, and shared memory have this property, if they are imple-
mented using mapped files (not a requirement).

We must be careful when defining the persistence of an IPC object because it is not
always as it seems. For example, the data within a pipe is maintained within the kernel,
but pipes have process persistence and not kernel persistence—after the last process
that has the pipe open for reading closes the pipe, the kernel discards all the data and
removes the pipe. Similarly, even though FIFOs have names within the filesystem, they
also have process persistence because all the data in a FIFO is discarded after the last
process that has the FIFO open closes the FIFO.

Figure 1.3 summarizes the persistence of the IPC objects that we describe in this
text.

~ Typeof IPC | Persistence :

Fipe process |
FIFO | process

S WS sbutitett |
Posix mutex | process
Posix condition variable | process
Posix read-write lock process
[fontl record focking process
Posix mu!;!iagy. Queus kernel

Posix named semaphore kernel |

Posix memory-based semaphore | process

| Posix shared memuory | kernel |

| Syatem ¥V message queus ! kernel |

| System V semaphore [kernel |
{ System V shared memory | kernel
rTLT‘ socke! Provess
| UDP socket process
Umix domain socket process

Figure 1.3 Persistence of various types of IPC objects,

Mote that no type of IPC has filesystem persistence, but we have mentioned that the
three tyvpes of Posix IPC may, depending on the implementation. Obviously, writing
data to a file provides filesystem persistence, but this is normally not used as a form of
IPC. Most forms of IPC are not intended to survive a system reboot, because the pro-
cesses do not survive the reboot. Requiring filesystem persistence would probably
degrade the performance for a given form of IPC, and a common design goal for IPC is
high performance.

Name Spaces

When two unrelated processes use some type of IPC to exchange information between
themselves, the IPC object must have a name or identifier of some form so that one

Introduction Chapter 1

process (often a server) can create the IPC object and other processes (often one or more
clients) can specify that same IP'C object.

Pipes do not have names (and therefore cannot be used between unrelated pro-
cesses), but FIFOs have a Unix pathname in the filesystem as their identifier (and can
therefore be used between unrelated processes). As we move to other forms of IPC in
the following chapters, we use additional naming conventions. The set of possible
names for a given type of IPC is called its name space. The name space is important,
because with all forms of IPC other than plain pipes, the name is how the client and
server connect with each other to exchange messages.

Figure 1.4 summarizes the naming conventions used by the different forms of IPC.

MName space | Identification Posix1 | . -
Type of [PC. to open or create after IPC opened 1996 Unix 98

| Pipe {no name) . descriptor . .
FIFD pathname descriptor . -
Posix mutex i Ino name) prhread_mutex_tptr | *® o
Posix condition variable | (no name) pthread_cond_L pir | . .
Posix read—write lock (o mame) pthread rwlock_t pir .
fentl record locking pathname descriptor - *

| Posix message queue Posix IPC name mgd_t value . .

| Posix named semaphore Posix IPC name sem_t pointer . *
Pusix memory-based semaphore (no name) sem_t pointer . * |
Posix shared memory Posix [PC name descriptor . * |

. i 1 . .

System V message queue | key_t key | Syetem V IPC identifier | | .
System V semaphore key_t key System V IPC identifier *
System V shared memory key_t key System V IPC identifier .
Daors pathname descriptor
Sun RIPC program / version RPC handle
TCF socket IF addr & TCE port descriptor | 1g .
LUDP socket P addr & UDE port descriptor 1g L
Unix domain socket ! pathname i descriptor | g . J

Figure 1.4 Name spaces for the various forms of IPC,

We also indicate which forms of IPC are standardized by the 1996 version of Posix.1 and
Unix 98, both of which we say more about in Section 1.7. For comparison purposes, we
include three types of sockets, which are described in detail in UNPwv1. Note that the
sockets API (application program interface) is being standardized by the Posix.1g work-
ing group and should eventually become part of a future Posix.1 standard.

Even though Posix.1 standardizes semaphores, they are an optional feature. Fig-
ure 1.5 summarizes which features are specified by Posix.1 and Unix 98. Each feature is
mandatory, not defined, or optional. For the optional features, we specify the name of
the constant (e.g., _POSIX_THREADS) that is defined (normally in the <unistd.h>
header) if the feature is supported. Note that Unix 98 is a superset of Posix.1.

e |

F EOTe

i pro-
it Can
BC in
pesible
prtant,
mt and

%1 and
e, We

¢ the
pwork-

g Fig-
gire 15
e 0of
s,

b

SR

B R

Ay

R P e e R

Caa—

(S b S L e DR S

G

R

e

Section 1.5 Effect of fork, exec, and exit on IPC Objects 9

1.5

| Typeof IPC ~ Posix.1 1996 | Unix 98
| Pipe . r-rla.l:'uclatnr:r - i__ mandatory
| FIFD miandatory | mandatory {
' Posix mutex ; _POSIX_THREADS ’ mandatory
| Posix condition variable | _POSIX_THREADS [mandatory
process-shared mutex/CV | _POSIX_THREEAD PROCESS _SHARED ! mandatory |
Posix read-write lock | (not defined) mandatory i
fentl record locking mandatory mandatory |
Posix message queue _POSIXE_MESESRGE_ pp.ssnc_, | _XOPEN_REALTIME [
Posix semaphores _POSIX_SEMAPHORES | _MOPEN_FEALTIME |
Posix shared memory _POSIX_SHARED_MEMORY_OBJECTS | _XOPEM_REALTIME |
| Systemn V message queye If:l.ur dgﬁned} : mandatory
Svstem V semnaphore ! (not defined) mandatory
b}fstmn "r" Hih'llL‘d MEmory (not defined) mandatory |
Dhoors | (not defined) { (ot defined?
Sun RPC {not defined) (naot deﬁned} |
ST _POETX_MARPPED_FILES or i manda hm"l.r —I
_POSIX_SHARED MEMORY_OBJECTS | ‘I
| Realtime signals _POSIX_REALTIME_SIGNALS | _XOPEN, nui: rm

Figure 1.5 Awailability of the various forms of [PC,

Effect of fork, exec, and exit on IPC Objects

We need to understand the effect of the fork, exec, and _exit functions on the vari-
ous forms of IPC that we discuss. (The latter is called by the exit function.) We sum-
marize this in Figure 1.6.

Most of these features are described later in the text, but we need to make a few
points. First, the calling of fork from a multithreaded process becomes messy with
regard to unnamed synchronization variables (mutexes, condition variables, read-write
locks, and memory-based semaphores). Section 6.1 of [Butenhof 1997] provides the
details. We simply note in the table that if these variables reside in shared memory and
are created with the process-shared attribute, then they remain accessible to any thread
of any process with access to that shared memory. Second, the three forms of Syatem V
II’C have no notion of being open or closed. We will see in Figure 6.8 and Exercises 11.1
and 14.1 that all we need to know to access these three forms of IPC is an identifier. So
these three forms of IPC are available to any process that knows the identifier, although
some special handling is indicated for semaphores and shared memory.

Introduction

Chapter |

Type of IPC fork exec _exit]
| Pipes child gets copies of all all open descriptors remain | all open descriptors closed; |
| and parent’s open descriptors | open unliss descriptor’s all data removed from pipe |

FIFOs FD_CLOEXEC bit set | or FIFO on last close
Posix | child gets copies of all all open message queue all open message queue
message parent's Open message descripturs are closed descriptors are closed
queues quene descriptors
System V no effect no effect no effect
TI'IE'SSBE‘Q‘
I;IIJE'I..IES-
| Posix shared if in shared vanishes unless in shared vanishes unless in shared
mutexes and memory and process- memory that stays open memory that stays open
condition shared attribute and process-shared and process-shared
variables attribute attribute
Posix shared if in shared vanishes unless in shared vanishes unless in shared
| read-write | memory and process- memory that stays open memory that stays open
locks shared attribute and process-shared and process-shared
| attribute | attribute
Posix || shared if in shared vanishes unless in shared vanishes unless in shared
memory-based || memory and process- memory that stavs open memory that stays open
semaphores shared attribute and process-shared and process-shared
attribute | attribute
Posix all open in parent remain any open are closed | any open are closed
named || open in child
semaphores
| System V | all semad]i values in child all semad] values carried all semad] values are
sermaphores are set to ! over to new program added to corresponding
semaphore value

fenkl || locks held by parent are locks are unchanged as all outstanding locks

record not inherited by child long as descriptor remains | owned by process are

| locking open unlocked

mmag MEMOTY MAPPIngs in | memory mappings are TEmory mappings are

Memory parent are retained by unmapped unmapped

mappings child

Posix memory mappings in memory mappings are memory mappings are

shared parent are retained by unmapped | unmapped

memary child

System ¥ attached shared memory attached shared memory attached shared memory

shared segments remain attached segments are detached segments are detached

| memory | by child
Doors child gets copies of all all door descriptors should | all open descriptors closed
parent’s open deseriptors | be closed because they are
but only parent is a server created with Fo_CLOEXEC
for door invocations on bit set
| door descriptors

Figure 1.6 Effect of calling fork, exec, and _exit on [PC.

e

i

B R S

Lot e,

R

T e P R e

Section 1.6 Error Handling: Wrapper Functions 11

1.6

Error Handling: Wrapper Functions

In any real-world program, we must check every function call for an error return, Since
terminating on an error is the common case, we can shorten our programs by defining a
wrapper function that performs the actual function call, tests the return value, and termi-
nates on an error. The convention we use is to capitalize the name of the function, as in

Sem_posti{ptrl;

Our wrapper function is shown in Figure 1.7,

_— lit/wwrapuniz.c
3BT woid

388 Sem_postisem_t *szem)

i8g {

190 if (sem_post{zem} == -1}

391 err_sys("sem_post error"):

332 }

A ik fwrapunix.c
Figure 1.7 Chur wrapper function for the sem_post function.

Whenever you encounter a function name in the text that begins with a capital let-
ter, that is a wrapper function of our own. It calls a function whose name is the
same but begins with the lowercase letter. The wrapper function always terminates
with an error message if an error is encountered.

When describing the source code that is presented in the text, we always refer to the
lowest-level function being called (e.g., sem_post) and not the wrapper function
(e.g., Sem_post). Similarly the index always refers to the lowest level function
being called, and not the wrapper functions,

The format of the source code just shown is used throughout the text. Each nonblank line is
numbered. The text describing portions of the code begins with the starting and ending line
numbers in the left margin. Sometimes the paragraph is preceded by a short descriptive bold
heading, providing & summary statement of the code being described.

The horizontal rules at the beginning and end of the code fragment specify the source code
filename: the file wrapuniz. c in the directory 11k for this example. Since the source code for
all the examples in the text is freely available (see the Preface), you can locate the appropriate
source file. Compiling, running, and especially modifving these programs while reading this
text is an excellent way to learn the concepts of interprocess communications.

Although these wrapper functions might not seem like a big savings, when we dis-
cuss threads in Chapter 7, we will find that the thread functions do not set the standard
Unix errno variable when an error occurs; instead the errnc value is the return value
of the function. This means that every time we call one of the pthread functions, we
must allocate a variable, save the return value in that variable, and then set errno to
this value before calling our err_sys function (Figure C4). To avoid cluttering the
code with braces, we can use ('s comma operator to combine the assignment into
errno and the call of err_sys into a single statement, as in the following:

12 Introduction Chapter 1

int n;

if [(n = pthread_mutex_lock{&ndone_mutex)) != Q)
errno = n, err_sya("pthread _mutex lock error”);

Alternately, we could define a new error function that takes the system’s error number
as an argument. But we can make this piece of code much easier to read as just

Prhread_mutex_lock(&ndone _mutex) ;

by defining our own wrapper function, shown in Figure 1.8.
[ih {wrappthread.c

Figure 1.8 Our wrapper function for pthread_mutex_ lock,

125 void
126 Pthread_mutex_locki{pthread mutex_t “mpLr)
27 i
128 int n;:
o 129 if [(n = pthread_mutex locki{mptr)) == 0]
_- 130 rerLurn;
5 131 eEINQ = 0;
?g‘ 132 err_sys ["pthread_mutex_ lock error");
5 133 1} o
§ lib{wwrappthread.c

With careful C coding, we could use macros instead of functions, providing a little run-time
efficiency, but these wrapper functions are rarely, if ever, the performance bottleneck of a pro-

gram.

Our choice of capitalizing the first character of the function name is a compromise. Many
other styles were considered: prefixing the function name with an e {as done on p. 182 of
[Kernighan and Pike 1984]), appending _e to the function name, and so on. Cur style seems
the least distracting while still providing a visual indication that some other function is really

being called.

This technigue has the side benefit of checking for errors from functions whose error returns
are often ignored: close and pthread mutex_lock, for example.

Throughout the rest of this book, we use these wrapper functions unless we need to
check for an explicit error and handle it in some form other than terminating the pro-
cess. We do not show the source code for all our wrapper functions, but the code is
freely available (see the Preface).

Unix errnec Value

When an error occurs in a Unix function, the global variable errno is set to a positive
value, indicating the type of error, and the function normally returns —1. Our err_sys
function looks at the value of errno and prints the corresponding error message string
(e.g., "Resource temporarily unavailable” if errno equals EAGAIN).

The value of errno is set by a function only if an error occurs. Its value is unde-
fined if the function does not return an error. All the positive error values are constants
with an all-uppercase name beginning with E and are normally defined in the

Blany
L of

AT

LT AT

R A

Section 1.7 Unix Standards 13

1.7

POSIX

<sys/errno.h> header. No error has the value of (0.

With multiple threads, each thread must have its own errno variable. Providing a
per-thread errno is handled automatically, although this normally requires telling the
compiler that the program being compiled must be reentrant. Specifying something
like -D_REENTRANT or -D0_POSTX_C_SOURCE=199506L to the compiler is typically
required. Often the <errno.h> header defines errno as a macro that expands into a
function call when _REENTRANT is defined, referencing a per-thread copy of the error
variable.

Throughout the text, we use phrases of the form “the mg_send function returns
EMSGSIZE" as shorthand to mean that the function returns an error (typically a return
value of -1) with errno set to the specified constant.

Unix Standards

Most activity these days with regard to Unix standardization is being done by Posix and
The Open Group.

Posix is an acronym for “Portable Operating System Interface.” Posix is not a single
standard, but a family of standards being developed by the Institute for Electrical and
Electronics Engineers, Inc., normally called the IEEE. The Posix standards are also
being adopted as international standards by ISO (the International Organization for
Standardization) and IEC (the International Electrotechnical Commission), called
[SO/IEC. The Posix standards have gone through the following iterations.

* [IEEE Std 1003.1-1988 (317 pages) was the first of the Posix standards. It specified
the C language interface into a Unix-like kernel covering the following areas: process
primitives (fork, exec, signals, timers), the environment of a process (user [Ds, pro-
cess groups), files and directories (all the [/0 functions), terminal I/0, the system
databases (password file and group file), and the tar and cpiec archive formats.

The first Posix standard was a trial use version in 1986 known as “IEEEIX." The name Posix
was suggested by Richard Stallman.

* [EEE 5td 1003.1-1990 (356 pages) was next and it was also International Standard
I5O/IEC 9945-1: 1990. Minimal changes were made from the 1988 version to the
1990 version. Appended to the title was “Part 1: System Application Program Inter-
face (AP [C Language]” indicating that this standard was the C language API

* [EEE Std 1003.2-1992 was published in two volumes, totaling about 1300 pages, and
its title contained “Part 2: Shell and Utilities.” This part defines the shell (based on
the System V Bourne shell) and about 100 utilities (programs normally executed
from a shell, from awk and basename to vi and yace). Throughout this text, we
refer to this standard as Posix.2.

14 Introduction Chapter 1

« IEEE Std 1003.1b-1993 (590 pages) was originally known as IEEE P1003.4. This was
an update to the 1003.1-1990 standard to include the realtime extensions developed
by the P1003.4 working group: file synchronization, asynchronous 1,/0, semaphores,
memory management (mmap and shared memory), execution scheduling, clocks and
timers, and message queues,

« IEEE Std 1003.1, 1996 Edition [IEEE 1996] (743 pages) includes 1003.1-1990 (the base
APD), 1003.1b-1993 (realtime extensions), 1003.1¢-1995 (Pthreads), and 1003.1i-1995
(technical corrections to 1003,1b). This standard is also called ISO/ IEC 9945-1: 1996.
Three chapters on threads were added, along with additional sections on thread syn-
chronization (mutexes and condition variables), thread scheduling, and synchroniza-
tion scheduling. Throughout this text, we refer to this standard as Posix.1.

Over one-quarter of the 743 pages are an appendix titled “Rationale and Notes.” This ratio-
nale containe historical information and reasons why certain features were included or omit-
ted, Often the rationale is as informative as the official standard,

Unfortunately, the IEEE standards are not freely available on the Internet. Ordering informa-
tion is given in the Bibliography entry for [IEEE 1996].

Mote that semaphores were defined in the realtime standard, separately from mutexes and
condition variables (which were defined in the Pthreads standard), which accounts for sotre of
the differences that we see in their APls.

Finally, note that read—write locks are not (yet) part of any Posix standard. We say more about
this in Chaprer .

Sometime in the future, a new version of IEEE Std 1003.1 should be printed to
include the P1003.1g standard, the networking APls (sockets and XTI), which are
described in UNPv1.

The Foreword of the 1996 Posix.1 standard states that ISO/IEC 9945 consists of the
following parts:

« Part 1: System application program interface (APD) [C languagel,
e Part 2: Shell and utilities, and
« Part 3: System administration (under development).

Parts 1 and 2 are what we call Posix.1 and Posix.2.

Work on all of the Posix standards continues and it is a moving target for any book
that attempts to cover it. The current status of the various Posix standards is available
from http://www.pasc.org/standing/sdll. html.

The Open Group

The Open Group was formed in 1996 by the consolidation of the X/Open Company
(founded in 1984) and the Open Software Foundation (OSF, founded in 1988). It is an
international consortium of vendors and end-user customers from industry, govern-
ment, and academia. Their standards have gone through the following iterations:

= was

aoed

pihores,
= and

B base
f3-1995
Bl sy

ok S

BEs ratio-

b omit-

AREOTTTA-

= and
fsome of

g about

ged O
pch are

% of the

e book
gailable

gEmpany
¥ = an
T

L LR

R

e p R R R A

Section 1.8 Road Map to IPC Examples in the Text 15

* X /Open published the X/Open Portability Guide, Issue 3 (XPG3) in 1989,

* Issue 4 was published in 1992 followed by Issue 4, Version 2 in 1994, This latest ver-
sion was also known as “Spec 1170, with the magic number 1170 being the sum of
the number of system interfaces (926), the number of headers (70}, and the number
of commands (174). The latest name for this set of specifications is the “X/Open Sin-
gle Unix Specification,” although it is also called “Unix 95.”

* In March 1997, Version 2 of the Single Unix Specification was announced. Products
conforming to this specification can be called “Unix 98,” which is how we refer to
this specification throughout this text. The number of interfaces required by Unix 98
increases from 1170 to 1434, although for a workstation, this jumps to 3030, because
it includes the CDE (Common Desktop Environment), which in turn requires the X
Window System and the Motif user interface. Details are available in [Josey 1997]
and http://www.UNIX-systems.org,/version2,

Much of the Single Unix Specification is freely available on the Internet from this site.

Unix Versions and Portability

1.8

Most Unix systems today conform to some version of Posix.1 and Posix.2. We use the
qualifier “some” because as updates to Posix occur (e.g., the realtime extensions in 1993
and the Pthreads addition in 1996), vendors take a year or two (sometimes more) to
incorporate these latest changes.

Historically, most Unix systems show either a Berkeley heritage or a System V her-
itage, but these differences are slowly disappearing as most vendors adopt the Posix
standards. The main differences still existing deal with system administration, one area
that no Posix standard currently addresses.

Throughout this text, we use Solaris 2.6 and Digital Unix 4.0B for most examples.
The reason is that at the time of this writing (late 1997 to early 1998), these were the only
two Unix systems that supported System V IPC, Posix IPC, and Posix threads.

Road Map to IPC Examples in the Text

Three patterns of interaction are used predominantly throughout the text to illustrate
various features:

1. File server: a client-server application in which the client sends the server a
pathname and the server returns the contents of that file to the client.

2. Producer-consumer: one or more threads or processes Epmducers} place data
into a shared buffer, and one or more threads or processes (consumers) operate
on the data in the shared buffer.

16 Introduction Chapter 1

3. Sequence-number-increment: one or more threads or processes increment a
shared sequence number. Sometimes the sequence number is in a shared file,
and sometimes it is in shared memory.

The first example illustrates the various forms of message passing, whereas the other
two examples illustrate the various types of synchronization and shared memory.

To provide a road map for the different topics that are covered in this text, Figures
1.9, 1.10, and 1.11 summarize the programs that we develop, and the starting figure
number and page number in which the source code appears.

1.9 Summary

IPC has traditionally been a messy area in Unix. Various solutions have been imple-
mented, none of which are perfect. Our coverage is divided into four main areas:

message passing (pipes, FIFOs, message queues),

synchronization (mutexes, condition variables, read-write locks, semaphores),
shared memory (anonymous, named), and

procedure calls (Solaris doors, Sun RIPC).

B p

We consider IPC between multiple threads in a single process, and between multiple
processes.

The persistence of each type of IPC can be process-persistent, kernel-persistent, or
filesystem-persistent, based on how long the IPC object stays in existence. When choos-
ing the type of IPC to use for a given application, we must be aware of the persistence of
that IPC object.

Another feature of each type of IPC is its name space: how IPC objects are identified
by the processes and threads that use the IPC object. Some have no name (pipes,
mutexes, condition variables, read-write locks), some have names in the filesystem
(FIFOs), some have what we describe in Chapter 2 as Posix IPC names, and some have
other types of names (what we describe in Chapter 3 as System V IPC keys or identi-
fiers). Typically, a server creates an IPC object with some name and the clients use that
name to access the IPC object.

Throughout the source code in the text, we use the wrapper functions described in
Section 1.6 to reduce the size of our code, vet still check every function call for an error
return. Qur wrapper functions all begin with a capilal letter.

The IEEE Posix standards—Posix.1 defining the basic C interface to Unix and
Posix.2 defining the standard commands—have been the standards that most vendors
are moving toward. The Posix standards, however, are rapidly being absorbed and
expanded by the commercial standards, notably The Open Group's Unix standards,
such as Unix 8.

ater | Section 1.9 Summary 17
BT -_: a .Ii’ig-ﬁ"re“‘ Page | Description) B
e file 4.8 47 | Uses two pipes, parent-child
415 53 | Uses popen and cat
: 4.16 55 | Uses two FIFOs, parent—child
p other 418 57 | Uses two FIFOs, stand-alone server, unrelated client
. 423 [i¥s Uses FIFOs, stand-alone iterative server, multiple clients
tﬂu _— 413 | E»B LUses pipe or FIFC builds records on top of I:n.-'tu.‘ stream
4 ‘éﬂdl‘& "9 !4! Lsﬁ fwo System V message queuses
E' = 6,13 144 | Uses one Systemn V message queue, multiple clients
; 620 | 148 | Usesone System V message queue per client, multiple clients |
15.18 81 Uses descriptor passing across a door i
Figure 1.9 Different versions of the file server client-server example,
Enple- ."Fq"'lhg'ﬁre Page | _ Description S
72 1a2 Mutex only, mu]tlpte pmducers, ONE CONSUmMer
76 168 | Mutex and condition variable, multiple producers, one consumer
!E 10,57 236 | Posix named semaphores, one producer, one consumer
TR 1020 | 242 | Posix memory-based semaphores, one producer, one consumer
0.0 243 | Posix memory-based semaphores, multiple producers, one consumer
10.24 246 | Posix memory-based semaphores, multiple producers, multiple consumers
. 10,33 234 | Posix memory-based semaphores, one producer, one consumer: multiple buffers
mitiple
: Figure 1.10 Different versions of the producer-consumer example.,
Enit, or
k005
e of | Figure | Page | Description
. o1 194 | Seq# in file, no locking
dified 93 201 | Seq#in file, fent] locking
':g;-.: pes, 912 215 | Seg# in file, filesystemn locking using open
] 10.19 239 | Seq# in file, Posix named semaphore locking
é have 1210 312 | Seq#in mmap shared memory, Posix named semaphore locking
- enti- 1212 314 | Seq# in mmap shared memory, Posix memory-based semaphore locking
=2l 1214 e | Seg# in 44B5D anonymous shared memory, Posix named semaphore locking
= that 1215 | 316 | Seq#in SVR4 /dev/zerc shared memory, Posix named semaphore locking
| 137 | 33 | Seq# in Posix shared memory, Posix memory-based semaphﬂre Iockmg
_fh‘.\;‘ in A4 | 487 | Performance measurement: mutex locking between threads
B ETTOr A6 489 Performance measurement: read=write locking between threads
A9 | 491 | Performance measurement: Posix memory-based semaphore locking between threads
i and Adl 453 | Performance measurement: Posix named semaphore locking between threads
.ﬂ- "' - A4 4594 | Performance measurement: System V semaphore locking between threads
EERIOTS | A4S | 496 | Performance measurement: £ontl record locking between threads
b and | AR 499 | Performance measurement: mutex Jocking between processes
pedards,

Figure 1.11 Different versions of the sequence-number-increment example.

18 Introduction Chapter 1

Exercises

1.1 In Figure 1.1 we show two processes accessing a single file. If both processes are just
appending new data to the end of the file (a log file perhaps), what kind of synchronization

is required?
1.2 Look at your system's <errno.h> header and see how it defines errno.
1.3 Update Figure 1.5 by noting the features supported by the Unix systems that you use.

1

! -

ame rust
B 0N

S s

g

Posix IPC

2.1 Introduction

The three types of IPC,

* Posix message queues (Chapter 5),
* Posix semaphores (Chapter 10), and
* Posix shared memory (Chapter 13)

are collectively referred to as “Posix IPC."” They share some similarities in the functions
that access them, and in the information that describes them. This chapter describes all
these common properties: the pathnames used for identification, the flags specified
when opening or creating, and the access permissions.

A summary of their functions is shown in Figure 2.1.

2.2 IPC Names

In Figure 1.4, we noted that the three types of Posix IPC use “Posix [PC names” for their
identification. The first argument to the three functions mg cpen, sem_open, and
shm_cpen is such a name, which may or may not be a real pathname in a filesystem.
All that Posix.1 says about these names is:

* [t must conform to existing rules for pathnames (must consist of at most
PATH_MAX bytes, including a terminating null byte).

 If it begins with a slash, then different calls to these functions all reference the
same queue. If it does not begin with a slash, the effect is implementation
dependent.

19

20 Posix 1PC Chapter 2
— — T T . g
Mes-sag.e : Semaphores | Shared |
queues MEMOTY
Header - “mguens h= | <semaphore.h> | =sys/mman. h>
Functions o create, aper, or delete Tr.q_uper'a_m_ “sem_open | shm_open '
mg_cloae sem_closa | shm_unlink
mg unlink | sem_unlink
sem_init
sem_destroy
| Functions for control operations | mg_getattr ftruncate
| mg_setattr fatat
Functions for IPC operations mg_send sem_wall mmagp
mg_receive sem_trywait MATIEE
| meg notify Rem_posh
! i sen_getvalueg

Figure 2.1 Summary of Posix [PC functions.

e The interpretation of additional slashes in the name is implementation defined.

So, for portability, these names must begin with a slash and must not contain any other
slashes. Unfortunately, these rules are inadequate and lead to portability problems.

Solaris 2.6 requires the initial slash but forbids any additional slashes. Assuming a
message queue, it then creates three files in /tmp that begin with .M0. For example, if
the argument to m3g open is Joueue. 1234, then the three files are
/tmp/ . MQDgueue. 1234, /tmp/.MQOLgueue. 1234, and /tmp/.MOQPgueue. 1234,
Digital Unix 4.0B, on the other hand, creates the specified pathname in the filesystem.

The portability problem occurs if we specify a name with only one slash (as the first
character): we must have write permission in that directory, the root directory. For
example, /tmp.1234 abides by the Posix rules and would be OK under Solaris, but
Digital Unix would try to create this file, and unless we have write permission in the
root directory, this attempt would fail. 1f we specify a name of /tmp/test. 1234, this
will succeed on all systems that create an actual file with that name (assuming that the
/tmp directory exists and that we have write permission in that directory, which is nor-
mal for most Unix systems), but fails under Solaris.

To avoid these portability problems we should always #define the mame in a
header that is easy to change if we move our application to another system.

This case is one in which the standard tries to be so general (in this case, the realtime standard
was trying to allow message queue, semaphore, and shared memory implementations all
within existing Unix kernels and as stand-alone diskless systems) that the standard’s splution
is nonportable. Within Posix, this is called “a standard way of being nonstandard.”

Posix.1 defines the three macros

S_TYPEISMG (buf)
&_TYPEISSEM ibuf)
S_TYPEISSHM (buf |

e first
y. For
. but
i the
£, this
it the
& TOT-

Fm a

Section 2.2 [PC Mames 21

that take a single argument, a pointer to a stat structure, whose contents are filled in
by the fstat, lstat, or stat functions. These three macros evaluate to a nonzero
value if the specified IPC object (message queue, semaphore, or shared memory object)
is implemented as a distinct file type and the stat structure references such a file type.
Otherwise, the macros evaluate to 0,

Unfortunately, these macros are of little use, since there is no guarantee that these three types
of IPC are implemented using a distingt file type. Under Solaris 2.6, for example, all three
macres always evaluate to 0,

All the other macros that test for a given file type have names beginning with 5_I3 and their
single argument is the st_mode member of a stat structure, Since these three new macros
have a different argument, their names were changed to begin with 5_T¥PEIE.

px_ipe name Function

Another solution to this portability problem is to define our own function named
px_ipc_name that prefixes the correct directory for the location of Posix IPC names.

#include “unpipc.h*

char *px_ipc_name (const char *rame}

|
i
1
1
|
i
1
! Returns: nonnull pointer if OK, NULL on error

This is the notation we use for functions of our own throughout this book that are not standard
system functions: the box around the function prototype and return value is dashed. The
header that is included at the beginning is usually our unpipe . h header (Figure C.1)

The name argument should not contain any slashes. For example, the call
px_ipc_name("testl")

returns a pointer to the string /testl under Solaris 2.6 or a pointer to the string
Jtmp/testl under Digital Unix 4.0B. The memory for the result string is dynamically
allocated and is returned by calling free. Additionally, the environment variable
PX_TIPC_NAME can override the default directory.

Figure 2.2 shows our implementation of this function.

This tmay be vour frst encounter with snprint £ Lots of existing code calls sprint £ instead,
but sprintf cannot check for overflow of the destination buffer, snprintf, on the other
hand, requires that the second argument be the size of the destination buffer, and this buffer
will not be overflowed. Providing input that intentionally overflows a program's sprintf
buffer has been used for many yvears by hackers breaking into syetems.

snprintf is not yet part of the ANSI C standard but is being considered for a revision of the
standard, currently called CSX, Nevertheless, many vendors are providing it as part of the
standard C library, We use snprintf throughout the text, providing our own version that
just calls sprintf when it is not provided.

12 Posix [PC Chapter 2

— Jib|px_ipc_name.c

1 #include runpipe.h"”
2 char *
3 px_ipc_namelconst char *name}
4 1
5 char *dir, *dst, *slash;
& if { (dst = malloc (PATH_MAX} | == NULL)
7 raturn {NULL) ;
H /% pan override default directory with environment wariable =/
9 1f { [dir = getenv("PX_IBC_NAME")} == MULL) |
10 #ifdef POSIX_IPC_FPREFIK
11 dir = POSIX_IPC_PREFIX; /% from "config.h® */
12 #else
13 dir = “Jemp/"y /* default */
14 #endif
15 H
16 f* dir must end in a slash =/
17 slash = {dir[strlenidir) - 1] == /') 72 "% o "
18 snprintf (dsc, PATH_MAX, "%shsha”, dir, slash, name};
9 raturn (dst]: i/* caller can free() this peointer =/

libp_ipe_name.c

Figure 22 Our px_ipc_name function.

2.3 Creating and Opening IPC Channels

The three functions that create or open an IPC object, mg_open, sem_opern, and
shm_open, all take a second argument named oflag that specifies how to open the
requested object. This is similar to the second argument to the standard cpen function,
The various constants that can be combined to form this argument are shown in Fig-

ure 2.3.

) - Mpl‘iuﬂ o | rr'q_npn.an i .sem__{!npe.n_ sh;-n__n_:_';er. |
read-only O_RDOMLY | 0_RODONLY
write-only | O_WRONLY E

| read-write | o ROWR : O_RDWE |

[create if it does not already exist | O_CREAT O_CREAT {_CREAT i

| exclusive creabe O_EXCL | O_EXCL |
nonblocking mode O_HOMBLOCE | |

| truncate if it already exists | _l O_TRUNC

| S— - - S 1 — S— |

Figure 2.3 Various constants when opening or creating a Posix IPC object.

The first three rows specify how the object is being opened: read-only, write-only, or
read-write. A message queue can be opened in any of the three modes, whereas none

. MEETME.C

= and
e the

ction.
I Fig-

4

Section 2.3

Creating and Opening [PC Channels 23

of these three constants is specified for a semaphore (read and write access is required
for any semaphore operation), and a shared memory object cannot be opened write-

omly.

The remaining C©_xxx flags in Figure 2.3 are optional.

O_CREAT

0_EXCL

Create the message queue, semaphore, or shared memory object if it
does not already exist. (Also see the O_EXCL flag, which is
described shortly.)

When creating a new message queue, semaphore, or shared mem-
ory object at least one additional argument is required, called mode.
This argument specifies the permission bits and is formed as the bit-
wise-OR of the constants shown in Figure 2.4.

Constant | Description

5_IRUSE | user read
5_IWUSE | user write

| 5_TRGRF | groupread
S_IWGRFE | group write |
S_TROTH | otherread |
S_TIWOTH | other write |

Figure 2.4 mode constants when a new [PC object is created.

These constants are defined in the <sys/stat.h> header. The
specified permission bits are modified by the file mode creation mask
of the process, which can be set by calling the umask function
(pp. 83—85 of APUE) or by using the shell’s umask command.

As with a newly created file, when a new message queue,
semaphore, or shared memory object is created, the user 1D is set to
the effective user ID of the process. The group 1D of a semaphore or
shared memory object is set to the effective group 1D of the process
or to a system default group ID. The group 1D of a new message
queue is set to the effective group ID of the process. (Pages 77-78 of
APUE talk more about the user and group IDs.)

« This difference in the setting of the group ID between the three types of Posix
IPC is strange. The group ID of a new fle created by open is either the effec-
Hve group 1D of the process or the group [D of the directory in which the file is
created, but the IPC functions cannot assume that a pathname in the filesystem
is created for an IPC object

If this flag and O_CREAT are both specified, then the function creates
a new message queue, semaphore, or shared memory object only if
it does not already exist. If it already exists, and if O_CREAT |
O_EXCL is specified, an error of EEXIST is returned.

24 Posix 11PC Chapter 2

The check for the existence of the message queue, semaphore, or
shared memory object and its creation (if it does not already exist)
must be atomic with regard to other processes. We will see two simi-
lar flags for System V IPC in Section 3.4.

O_NONBLOCK This flag makes a message queue nonblocking with regard to a read
on an empty queue or a write to a full queue. We talk about this
more with the mg_receive and mg_send functions in Section 5.4.

O_TRUNC If an existing shared memory object is opened read—write, this flag
specifies that the object be truncated to 0 length.

Figure 2.5 shows the actual logic flow for opening an IPC object. We describe what we
mean by the test of the access permissions in Section 2.4. Another way of looking at
Figure 2.5 is shown in Figure 2.6.

) ; QK
start here create new object
|
| no
[‘ :
| . ves ErTOr return
i) bles y ¥ .
‘ i_ System @ les full errng = ENQJSPC
new ohject | [I ! i
is created © i | ves
[| des object no | no error return
| . i REAT set 7 — - :
! { already exist 7 | ot errne = ENOENT
L ['
yes
[A |
are both O_CREAT yes error return,
I and O_EXCL set ? errno = EENIST
existing [-
object is no
referenced I Y
are the access | no EFTOT Peturm,
| permissions OF 7 | errnc = EACCES
I_‘ ! -
v
oK
Figure 2.5 Logic for opening or creating an 1FC object.
o oflag angument | Object does not exist | Object already exists
no special flags | error, errne = ENOENT | OK, references existing object
O_CREAT | OK, creates new object | OK, references existing object
| CLCREAT | O_EXCL | OK, creates new object | erron errns = EEXIST

Figure 26 Logic for creating or opening an [PC object,

ghat we
king at

Section 2.4 IMC Permissions 25

2.4

Mote that in the middle line of Figure 2.6, the 0_CREAT flag without 0_EXCL, we do not
get an indication whether a new entry has been created or whether we are referencing
an existing entry.

IPC Permissions

A new message queue, named semaphore, or shared memory object is created by
mg_open, sem_oper, or shim_open when the oflag argument contains the O_CREAT
flag. As noted in Figure 2.4, permission bits are associated with each of these forms of
IPC, similar to the permission bits associated with a Unix file.

When an existing message queue, semaphore, or shared memory object is opened
by these same three functions (either ©_CREAT is not specified, or O_CREAT is specified
without 0_EXCL and the object already exists), permission testing is performed based
on

1. the permission bits assigned to the IPC object when it was created,
2. the type of access being requested (0_RDONLY, O_WRONLY, or O_RDWR), and

e

the effective user [D of the calling process, the effective group ID of the calling
process, and the supplementary group IDs of the process (if supported).

The tests performed by most Unix kernels are as follows:

1. If the effective user 1D of the process is 0 (the superuser), access is allowed.

2. [If the effective user ID of the process equals the owner ID of the [PC object: if the
appropriate user access permission bit is set, access is allowed, else access is
denied.

By appropriate access permission hit, we mean if the process is opening the IPC
object for reading, the user-read bit must be on. If the process is opening the
[PC object for writing, the user-write bit must be on.

3. If the effective group ID of the process or one of the supplementary group IDs of
the process equals the group ID of the IPC object: if the appropriate group
access permission bit is set, access is allowed, else permission is denied.

4. If the appropriate other access permission bit is set, access is allowed, else per-
mission is denied.

These four steps are tried in sequence in the order listed. Therefore, if the process owns
the IPC object (step 2), then access is granted or denied based only on the user access
permissions—the group permissions are never considered. Similarly, if the process
does not own the IPC object, but the process belongs to an appropriate group, then
access is granted or denied based only on the group access permissions—the other per-
missions are not considered.

L T L L e T A T Y SR I P e

i
s

26 Posix IPC Chapter 2
We note from Figure 2.3 that sem_cpen does not use the o _RDONLY, O_WRONLY, or O_RDWER
flag. We note in Section 10.2, however, that some Uix implementations assume O_RDOWE, since
any use of a semaphore involves reading and writing the semaphore value.

25 Summary

The three types of Posix [PC—message queues, semaphores, and shared memory—ate
identified by pathnames. But these may or may not be real pathnames in the filesystem,
and this discrepancy can be a portability problem. The solution that we employ
throughout the text is to use our own px_ipc_name functon.

When an IPC object is created or opened, we specify a set of flags that are similar to
those for the open function. When a new IPC object is created, we must specify the per-
missions for the new object, using the same S_xxx constants that are used with open
(Figure 2.4). When an existing IPC object is opened, the permission testing that is per-
formed is the same as when an existing file is opened.

Exercises

21 In what way do the set-user-ID and set-group-ID bits (Section 4.4 of APUE) of a program
that uses Posix IPC affect the permission testing described in Section 2,47

2.2 When a program opens a Posix IPC object, how can it determine whether a new object was
created or whether it is referencing an existing object?

E?‘—&I‘E
gwstem,
employ

ﬂar to
the per-

b ooen

35 per-

Bect was

3.1

System V IPC

introduction

The three types of IPC,

» System V message queues (Chapter 6),
* System V semaphores (Chapter 11), and
* System V shared memory (Chapter 14)

are collectively referred to as “System V IPC.” This term is commonly used for these
three IPC facilities, acknowledging their heritage from System V Unix. They share
many similarities in the functions that access them, and in the information that the ker-
nel maintains on them. This chapter describes all these common properties.

A summary of their functions is shown in Figure 3.1.

5
st | g | et
Header <sys/msg.h> | <sys/sem.h> | <sys/shm.h> |
Function to create or open msgget samgel shmget |
Function for control operations megetl — shmerl |
| Functions for IPC operations mE:Esnd semop shmat :
mEgrov shmdt R

Figure 3.1 Summary of System V IPC functions.

Information on the design and development of the System V IPC functions is hard to find.
[Rochkind 1985] provides the following information: System V message queues, semaphores,
and shared memory were developed in the late 1970s at a branch laboratory of Bell

27

T A T A T T L e s

e ph e

ST LR

28 System V IPC Chapter 3

Laboratories in Columbus, Ohio, for an internal version of Unix called {(not surprisingly)
“Columbus Unix™ or just “CB Unix.” This version of Lnix was used for “Orperation Support
Systems,” transacHon processing systems that automated telephone company administration
and recordkeeping. Systermn ¥V IPC was added to the commercial Unix system with System V
around 1953,

3.2 key t Keys and £tok Function

In Figure 1.4, the three types of System V IPC are noted as using key_t values for their
names. The header <sys/types.h> defines the key_t datatype, as an integer, nor-
mally at least a 32-bit integer. These integer values are normally assigned by the frok
function,

The function ftok converts an existing pathname and an integer identifier into a
key_t value (called an IPC key).

| #tinclude <sys/ipec._ hs | y
| 1

. | 4
| key_t ftokiconst char “*pathname. int i)
i 3
{ Beturns: [PC key if OK, -1 on error ! |

This function takes information derived from the pathname and the low-order 8 bits of
id, and combines them into an integer IPC key.

This function assumes that for a given application using System V IPC, the server
and clients all agree on a single pathname that has some meaning to the application. It
could be the pathname of the server daemon, the pathname of a common data file used
by the server, or some other pathname on the system. If the client and server need only
a single IPC channel between them, an id of one, say, can be used. If multiple IPC chan-
nels are needed, say one from the client to the server and another from the server to the
client, then one channel can use an id of one, and the other an id of two, for example.
Once the pathname and id are agreed on by the client and server, then both can call the
frok function to convert these into the same IPC key.

Typical implementations of £tok call the stat function and then combine

1. information about the filesystem on which pathname resides (the st_dev mem-
ber of the stat structure),

2. the file's i-node number within the filesystem (the st_ino member of the stat
structure), and

3. the low-order 8 bits of the id (which must not be 0).

The combination of these three values normally produces a 32-bit key. No guarantee
exists that two different pathnames combined with the same i generate different keys,
because the number of bits of information in the three items just listed (filesystem iden-
tifier, i-node, and id) can be greater than the number of bits in an integer. (See Exer-
cise 3.5.)

g Section 3.2 key_t Keys and ftok Function 29
e | The i-node number is never 0, so most implementations define TPC_PRIVATE (which we F
mEport describe in Section 3.4) to be 0. !
il . i
e, If the pathname does not exist, or is not accessible to the calling process, ftok i3
returns —1. Be aware that the file whose pathname is used to generate the key must not £
be a file that is created and deleted by the server during its existence, since each time it E
is created, it can assume a new i-node number that can change the key returned by
frok to the next caller. f 1
=
i Example i1
i
L TMOT- -] i
1. The program in Figure 3.2 takes a pathname as a command-line argument, calls stat, i
T calls ftok, and then prints the st_dev and st_ino members of the stat structure, i
o A and the resulting IPC key. These three values are printed in hexadecimal, so we can eas-
ily see how the IPC key is constructed from these two values and our id of 0x57.
. svipe | ftak.c
1 #include "unpipc.h* pelf
2 int
3 main(int arge, char "*argv)
4 1
i__ 5 struct stat stat;
) B if f(arge != 2Z)
uts of 7 err_guit{"usage: ftok <pathname>");
erver] Stat{argv([l], kstat):;
s It 9 princfirst_dev: %1lx, st_ino: %lx, key: %x\n",
; B d in {u_long) stat.st_dev, (u_long} stat.st_ine,
Cigans 11 Froklargv(l], O0x57));:
§ only
d‘lﬂﬂ.— 12 exit (0] ;
13 1}
5o the — s | flok.c
EPLE- Figure 3.2 Obtain and print filesystem information and resulting IFC key.
the
Executing this under Solaris 2.6 gives us the following:
zolaris ¥ ftok /etc/system
st_dev: B000L8, st_ino: dalb, key: 57012alb
T - zolariz & ftok fusr/tmp
st_dev: B00015, st_ino: 10b78, key: 57015b78
Eos ot solaris & feok /home/rstevens/Mail.out
i st_dev: 80001Ff, st_ino: 3b03, key: STOLEDO3
Apparently, the id is in the upper § bits, the low-order 12 bits of st_dev in the next
12 bits, and the low-order 12 bits of st_ino in the low-order 12 bits.
ntee Our purpose in showing this example is not to let us count on this combination of
L= B . - ¥ - a
evs information to form the IPC key, but to let us see how one implementation combines the
de N pathname and id. Other implementations may do this differently.
L= i
Exer- FreeBSD uses the lower 8 bits of the id, the lower 8 bits of st_dev, and the lower 16 bits of

gt_ino.

30 System V IPC Chapter 3

MNote that the mapping done by ftok is one-way, since some bits from st_dev and st_ino
are not used. That is, given a key, we cannot determine the pathname that was used to create
the key.

3.3 ipc perm Structure

The kernel maintains a structure of information for each IPC object, similar to the infor-
mation it maintains for files.

struct ipc_perm |

uid_t uid; /* owner's user id */

gid_t gid; f* owner's group id */

uid_t cuid; f* creator's user id */

gid_t cgid; /* creator's group id */

made_t mode ; [* read-write permissions */
ulong_t seq; /* slot usage seguence number */
key_t kay; f* IPC hey */

Ti

This structure, and other manifest constants for the System V IPC functions, are defined
in the <sys/ipc.h> header. We talk about all the members of this structure in this
chapter.

3.4 Creating and Opening IPC Channels

The three get XXX functions that create or open an IPC object (Figure 3.1) all take an
IPC key value, whose type is key_t, and return an integer identifier. This identifier is
nof the same as the il argument to the ftok function, as we see shortly. An application

has two choices for the key value that is the first argument to the three get XXX func-
tions:

1. call frok, passing it a pathname and id, or

2. specify a key of IPC_PRIVATE, which guarantees that a new, unique [PC object
is created.

The sequence of steps is shown in Figure 3.3.

Ay ——— — : - : :
1 '“LJ msgget(} | int Mmh.ﬁ” :rr.:=..gcu.1 {1, megsnd(), msgrev(]

| [Ml ek i ol
ey of 1PC'_£*R1‘-.PATE_‘4 semget (| m{zemctl (1, semopi

L

1

shmget ([} | isl‘mctll |, shmak ()}, shmdti)
- | L

Open Or create acoess [PC channel

1M channel

Figure 3.3 Generating [PC identifiers from [PC kevs.

Section 3.4 Creating and Opening IPC Channels 31

All three get XXX functions (Figure 3.1) also take an oflag argument that specifies the
read-write permission bits (the mode member of the ipc_perm structure) for the [PC
object, and whether a new IPC object is being created or an existing one is being refer-
enced. The rules for whether a new IPC object is created or whether an existing one is
referenced are as follows:

* Specifying a key of TPC_PRIVATE guarantees that a unique IPC object is created.
No combinations of pathname and id exist that cause ftok to generate a key value
of IFC_PRIVATE.

* Selting the TPC_CREAT bit of the oflag argument creates a new entry for the
specified key, if it does not already exist. If an existing entry is found, that entry
is returned.

* Setting both the IPC_CREAT and IPC_EXCL bits of the oflag argument creates a
new entry for the specified key, only if the entry does not already exist. If an
existing entry is found, an error of EEXIST is returned, since the IPC object
already exists.

gnfor-

Ened
g this

The combination of TPC_CREAT and IPC_EXCL with regard to IPC objects is
similar to the combination of O_CREAT and O_EXCL with regard to the open
function.

Setting the IPC_EXCL bit, without setting the IPC_CREAT bit, has no meaning,.

The actual logic flow for opening an IPC object is shown in Figure 3.4. Figure 3.5 shows
another way of looking at Figure 3.4.

Note that in the middle line of Figure 3.5, the IPC_CREAT flag without IPC_EXCL,
we do not get an indication whether a new entry has been created or whether we are
referencing an existing entry. In most applications, the server creates the IPC object and
specifies either IPC_CREAT (if it does not care whether the object already exists) or
IPC_CREAT | IPC_EXCL (if it needs to check whether the object already exists). The
clients specify neither flag (assuming that the server has already created the object).

ke an
ger is
mEION
Fanc-

pect The System V IPC functions define their own IPC_xxx constants, instead of using the
O_CEEAT and 0_EXCL constants that are used by the standard cpen function along with the

Posix 1PC functions (Figure 2.3},

Also note that the System V IPC functions combine their 12C_xxx constants with the permis-
sion bits (which we describe in the next section) into a single oflag argument. The open func-
tion along with the Posix IPC functions have one argument named offag that specifies the
various 0_xxx flags, and another argument named mode that specifies the permission bits.

32 System V IPC Chapter 3

8] 4
create new entry
start here return identifier
[
Nk
M. L I —
5 - yes yes EFTOT Tetum,
| == E7? |- sy ; F A O
|h'g.r IPC_FRIVATE 7 —'—s system tables full = rno = ENOSPC
new entry A X
. y no ves
is created
A J I
|
| o no error reburn,
| it ? 7 —
i does key already exist ? - IPC_CREAT set > rno = ENOENT
s
Ves
" Y
- are both TPC_CREAT Ves error refurn,
| and TPC_EXCL set ? errnc = EEXIST
existing ' -
entry is ¢ na
referenced Y L
| are the access THY OFFOF return,
| permissions OK ? *™ errno = EACCES
. yes
\J
OK
return identifier
Figure 3.4 Logic for creating or opening an [PC object.
':sﬁng argur.n;e.ﬁ] ey does not exist ke already exists
O s i - et S S—— S — —]
no special flags | error, errnp = ENOENT | OK, references existing object |
IPC_CREAT | OK, creates new entry O, references existing object |
IPC_CREAT | IPC_EXCL | OK, creates new entry error, errne = EEXIST

Figure 3.5 Logic for creating or opening an IPC channel.

3.5 IPC Permissions

Whenever a new IPC object is created using one of the get XXX functions with the
IPC_CREAT flag, the following information is saved in the ipc_perm structure {Sec-
tion 3.3}

1. Some of the bits in the oflag argument initialize the mode member of the
ipc_perm structure. Figure 3.6 shows the permission bits for the three different
IPC mechanisms. (The notation == 3 means the value is right shifted 3 bits.)

LE]

the
et

Sechion 3.5

IPC Permissions 33

- Symbolic values

[‘{mm:nc Message | Semaphore Shared Description
octall queue i mEmaory

[oaoo | msam | SEM_R SHM_R read by user

| 0200 | MsG_w | seMa | sHMW | write by user |

[nosn | MsG_R »> 3 | SEM_R >> 3 | SHM R > 3 | read by group i

| 0020 | MSG W == 3 ! SEM_A »» 3 | SHM_W »> 3 i write by group
oo0d | MsG R - 6 | SEM_R == & | SHM_R == & | read b}:’.cit.her:-:.
D002 | MSG_W »> 6 | SEM_A > & | SHM W >> 6 | wrileby athers |

Figure 3.6 mode values for [PC read—write permissions.

2. The two members cuid and cgid are set to the effective user ID and effective

group ID of the calling process, respectively. These two members are called the
creator [Ds,

The two members uid and gid in the ipc_perm structure are also set to the
effective user ID and effective group ID of the calling process. These two mem-
bers are called the owner IDs,

The creator IDs never change, although a process can change the owner IDs by calling
the ot 1 XXX function for the IPC mechanism with a command of IPC_SET. The three
ct1XXX functions also allow a process to change the permission bits of the mode mem-
ber for the IPC object.

Most implementations define the six constants MSG_E, M5G_W, SEM_R, SEM_A, SHM_R, and
SHM_W shown in Figure 36 in the <sy=s/mag . h», <sys/sem. h>, and <sys/shm.h> headers.
But these are not required by Unix 98. The suffix & in sEM_A stands for “alter.”

The three get XXX functions do not use the normal Unix file mode creation mask, The permis-
sions of the message queue, semaphore, or shared memory segment are set to exactly what the
function specifies.

Posix IPC does not let the creator of an IPC cbject change the owner. Mothing is like the
IPC_ SET command with Posix IPC. But if the Posix IPC name is stored in the filesystem, then
the superuser can change the owner using the chown command.

Two levels of checking are done whenever an [PC object is accessed by any process,
once when the IPC object is opened (the get XXX function) and then each time the IPC
object is used:

1.

Whenever a process establishes access to an existing IPC object with one of the
get XXX functions, an initial check is made that the caller’s oflag argument does
not specify any access bits that are not in the mode member of the ipc_perm
structure. This is the bottom box in Figure 3.4. For example, a server process
can set the mode member for its input message queue so that the group-read
and other-read permission bits are off. Any process that tries to specify an oflag
argument that includes these bits gets an error return from the msgget function.
But this test that is done by the get XXX functions is of little use. It implies that

34 System V IPC Chapter 3

the caller knows which permission category it falls into—user, group, or other.
If the creator specifically turns off certain permission bits, and if the caller speci-
fies these bits, the error is detected by the get XXX function. Any process, how-
ever, can totally bypass this check by just specifying an oflag argument of 0 if it
knows that the IPC object already exists.

2. Every IPC operation does a permission test for the process using the operation.
For example, every time a process tries to put a message onto a message queue
with the msgsnd function, the following tests are performed in the order listed.
As s00n as a test grants access, no further tests are performed.

a. The superuser is always granted access.

b. If the effective user ID equals either the uid value or the cuid value for the
IPC object, and if the appropriate access bit is on in the mode member for the
IPC object, permission is granted. By “appropriate access bit,” we mean the
read-bit must be set if the caller wants to do a read operation on the IPC
object (receiving a message from a message queue, for example), or the
write-bit must be set for a write operation.

c. If the effective group 1D equals either the gid value or the cgid value for
the IPC obiject, and if the appropriate access bit is on in the mode member for
the IPC object, permission is granted.

d. If none of the above tests are true, the appropriate “other” access bit must be
on in the mode member for the IPC object, for permission to be allowed.

3.6 Identifier Reuse

The ipc_perm structure (Section 3.3) also contains a variable named seq, which 15 a
slot usage sequence number. This is a counter that is maintained by the kernel for every
potential IPC object in the system. Every time an IPC object is removed, the kernel
increments the slot number, cycling it back to zero when it overflows.

What we are describing in this section is the common SVR4 implementation. This implemen-
tation technique is not mandated by Unix 98,

This counter is needed for two reasons. First, consider the file descriptors main-
tained by the kernel for open files. They are small integers, but have meaning only
within a single process—they are process-specific values. If we try to read from file
descriptor 4, say, in a process, this approach works only if that process has a file open on
this descriptor. It has no meaning whatsoever for a file that might be open on file
descriptor 4 in some other unrelated process. System V IPC identifiers, however, are
systemwide and not process-specific.

We obtain an IPC identifier (similar to a file descriptor) from one of the get func-
tions: msgget, semget, and shmget. These identifiers are also integers, but their
meaning applies to all processes. If two unrelated processes, a client and server, for
example, use a single message queue, the message queue identifier returned by the

e Section 3.6 Identifier Reuse 35
fimer msgget function must be the same integer value in both processes in order to access the
preci- same message queue. This feature means that a rogue process could try to read a mes-
o - sage from some other application’s message queue by trying different small integer
Pef it identifiers, hoping to find one that is currently in use that allows world read access. If
the potential values for these identifiers were small integers (like file descriptors), then
T the probability of finding a valid identifier would be about 1 in 50 (assuming a maxi-
Seue mum of about 50 descriptors per process).
ed To avoid this problem, the designers of these IPC facilities decided to increase the
possible range of identifier values to include all integers, not just small integers. This
increase is implemented by incrementing the identifier value that is returned to the call-
ing process, by the number of IPC table entries, each time a table entry is reused. For
F the example, if the system is configured for a maximum of 50 message queues, then the first
r the time the first message queue table entry in the kernel is used, the identifier returned to
s the the process is zero. After this message queue is removed and the first table entry is
IrC reused, the identifier returned is 50. The next time, the identifier is 100, and so on.
* the Since segq is often implemented as an unsigned long integer (see the ipc_perm struc-
ture shown in Section 3.3), it cycles after the table entry has been used 85,899,346 times
s for (2 /50, assuming 32-bit long integers).
e for A second reason for incrementing the slot usage sequence number is to avoid short
term reuse of the System V IPC identifiers. This helps ensure that a server that prema-
| turely terminates and is then restarted, does not reuse an identifier.
B be | As an example of this feature, the program in Figure 3.7 prints the first 10 identifier
i values returned by msgget.
:7*', 1 #include "u:"1;:.i.pc h* somsg fslot.c
% .
- £ int
g 3 main{int argc, char **argwv)
& 4 i
i 2 % 5 int i, msgid;
FETV =
enol & g for (i = 0; 1 < 10; i++) {
T o 7 megid = Msgget {IPC_PRIVATE, SVMSG MODE | IPC_CREAT);
%] printf("msgid = %d\n", megid];
gpg - §] Msgctl (megid, IFC_EMID, NULL);
= 10 }
i 11 exit{0};
12)
.:%;_ — somsg/slob.c
::%Z Figure 3.7 Print kernel assigned message queue identifier 10 times in a row.
]
Each time around the loop msgget creates a message queue, and then msgetl with a
are 3 command of TPC_RMID deletes the queue. The constant SVMSG_MODE is defined in our
unpipe.h header (Figure C.1) and specifies our default permission bits for a System V
anc- 5 message queue. The program’s output is
b-f-.'” anlaris % alet
for msgid = 0
the mesgid = 50

36

3.7

3.8

System V [PC Chapter 3

megid = 100
megid = 150
magid = 200
magid = 250
magid = 300
msgid = 350
magid = 400
magid = 450

If we run the program again, we see that this slot usage sequence number is a kernel
variable that persists between processes.

solaris % slot

magid = 500
msgid = 550
magid = 600
msgid = 650
magid = 700
msgid = T80
megid 209

msgid = 880
magid = 900
magid = 950

ipcs and ipcrm Programs

Since the three types of System V IPC are not identified by pathnames in the filesystem,
we cannot look at them or remove them using the standard 1s and rm programs.
Instead, two special programs are provided by any system that implements these types
of IPC: ipcs, which prints various pieces of information about the System V IPC fea-
tures, and ipcrm, which removes a System V message queue, semaphore set, or shared
memory segment. The former supports about a dozen command-line options, which
affect which of the three types of IPC is reported and what information is output, and
the latter supports six command-line options. Consult your manual pages for the
details of all these options.

Since System V IPC is not part of Posix, these two commands are not standardized by Posix.2.
But these two commands are part of Unix 98,

Kernel Limits

Most implementations of System V IPC have inherent kernel limits, such as the maxi-
mum number of message queues and the maximum number of semaphores per
semaphore set. We show some typical values for these limits in Figures 6.25, 11.9, and
14.5. These limits are often derived from the original System V implementation.

Section 11.2 of [Bach 1986] and Chapter 8 of [Goodheart and Cox 1994] both describe the
System V implementation of messages, semaphores, and shared memory. Some of these limits
are described therein.

Section 3.8 Kernel Limits 37

Unfortunately, these kernel limits are often too small, because many are derived
from their original implementation on a small address system (the 16-bit PDP-11). For-
tunately, most systems allow the administrator to change some or all of these default
limits, but the required steps are different for each flavor of Unix. Most require reboot-
ing the running kernel after changing the values. Unfortunately, some implementations
still use 16-bit integers for some of the limits, providing a hard limit that cannot be
exceeded.

2 kernel Solaris 2.6, for example, has 20 of these limits. Their current values are printed by
-' the sysdef command, although the values are printed as 0 if the corresponding kernel
module has not been loaded (i.e., the facility has not yet been used). These may be
changed by placing any of the following statements in the /etc/systen file, which is
read when the kernel bootstraps.
set msgsys:msginfo_msgseg = wmalue
set msgsys:msginfo_msgssz = walue
set msgsys:meginfo_megtgl = nalue
set mzgeys:meginfo_megmap = palue
set megsys:msginfo_msgmax = paltie
set magsys:maginfo_msgmnb = oalue
set msgsys:msginfo_msgmni = palue
set gemsys:seminfo_semopm = oalue
set semsys:seminfo_semume = palue
set semsys:seminfo_semaem = value
set semsys:seminfo_semmap = palue
; set semsys:seminfo_semvmx = afue
paystem, set semsys:seminfo_semmsl = palue
ﬁﬁdms set semsys:seminfo_semmni = oalue
g set semsys:seminfo_semmns = walue
%‘F‘- _PES set semaye:seminfo_semmnu = oalue
: EW::,: set shmsys:shminfo_shmmin = oalue
l:mr.E get ghmays:shminfo_shmseg = oafue
_F- which set shmsys:shminfo_shmmax = oalue
Fﬂ. and set shmays:shminfo_shmmni = value
{for the The last six characters of the name on the left-hand side of the equals sign are the vari-
ables listed in Figures 6.25, 11.9, and 14.5.
by Posix 2. With Digital Unix 4.0B, the sysconfig program can query or modify many kernel
: parameters and limits. Here is the output of this program with the -g option, which
queries the kernel for the current limits, for the ipec subsystem. We have omitted some
lines unrelated to the System V IPC facility.
: alpha % /sbin/sysconfig -q ipec
. ipe:
:h max1- meg-max = B15%2
== per msg-mob = 15384
£9 and mag-mni = 64
msg-tgl = 40
i shm-max = 4194304
T t_h"-' shm-min = 1
B Limits shm-mni = 128
shm-zeg = 312

38 System V [PC Chapter 3

3.9

sem-mni = 16
gam-mal = 25§
sem=-cpm = 10
sem-ume = 10
gem-vmx = 32767
sem-asm = 16384

num-of-~sems = &0

Different defaults for these parameters can be specified in the /etc/sysconfigtab
file, which should be maintained using the sysconfigdb program. This file is read
when the system bootstraps.

Summary

The first argument to the three functions, msgget, semget, and shmget, is a System V
IPC key. These keys are normally created from a pathname using the system’s ftok
function. The key can also be the special value of IPC_PRIVATE. These three functions
create a new IPC object or open an existing [PC object and return a System V IPC identi-
fier: an integer that is then used to identify the object to the remaining 1PC functions.
These integers are not per-process identifiers (like descriptors) but are systemwide iden-
tifiers. These identifiers are also reused by the kernel after some time.

Associated with every System V IPC object is an ipc_perm structure that contains
information such as the owner’s user ID, group 1D, read-write permissions, and so on.
One difference between Posix IPC and System V IPC is that this information is always
available for a System V IPC object (by calling one of the three XXXct1 functions with
an argument of IPC_STAT), but access to this information for a Posix II’"C object
depends on the implementation. If the Posix IPC object is stored in the filesystem, and
if we know its name in the filesystem, then we can access this same information using
the existing filesystem tools.

When a new System V IPC object is created or an existing object is opened, two
flags are specified to the get XXX function (IPC_CREAT and IPC_EXCL), combined
with nine permission bits.

Undoubtedly, the biggest problem in using System V IPC is that most implementa-
tions have artificial kernel limits on the sizes of these objects, and these limits date back
to their original implementation. These mean that most applications that make heavy
use of System V IPC require that the system administrator modify these kernel limits,
and accomplishing this change differs for each flavor of Unix.

Exercises

31 Read about the msgetl function in Section 6.5 and modify the program in Figure 3.7 to
print the seq member of the ipc_perm structure in addition to the assigned identifier.

h;stem WV
}E'i fzak
Enctions
[wdenti-
Enctions.
mde iden-

Lontains
bl <0 01
= always
mau with
L object
e, and
pﬁ using

h‘ﬂi o
fl}mbmed

fementa-
jate back
k= heavy
gl limits,

Chapter 3

Exercises 39

32

3.3

a5

3.6

Immediately after running the program in Figure 3.7, we run a program that creates two
message queues. Assuming no other message queues have been used by any other applica-
tions since the kernel was booted, what bwo values are returned by the kernel as the mes-
sage queue identifiers?

We noted in Section 3.5 that the System V IPC get XXX functions do not use the file mode
creation mask. Write a test program that creates a FIFO (using the mkfifc function
described in Section 4.6) and a System V message queue, specifying a permission of {octal)
666 for both. Compare the permissions of the resulting FIFO and message queue. Make
certain your shell umask value is nonzero before running this program,

A server wants o create a unique message queue for its clients. Which is preferable—using
some constant pathname (say the server’s executable file) as an argument to £tok, or using
IPFC_PRIVATE?

Modify Figure 3.2 to print just the IPC key and pathname. Run the £ind program to print
all the pathnames on your system and run the output through the program just modified.
How many pathnames map to the same key?

If your system supports the sar program (“system activity reporter”), run the command
sar -m 5 6

This prints the number of message queue operations per second and the number of
semaphore operations per second, sampled every 5 seconds, & times.

=
3

}

[3
i

1

i

pe

Part 2

Message Passing

o
i
;gl

&

e T

e

4.1

4.2

Pipes and FIFOs

Introduction

Pipes are the original form of Unix IPPC, dating back to the Third Edition of Unix in 1973
[Salus 1994]. Although useful for many operations, their fundamental limitation is that
they have no name, and can therefore be used only by related processes. This was cor-
rected in System Il Unix (1982) with the addition of FIFOs, sometimes called named
pipes. Both pipes and FIFOs are accessed using the normal read and write functions.

Technically, pipes can be used between unrelated processes, given the ability to pass descrip-
bors between processes (which we describe in Section 158 of this text as well as Section 14.7 of
UNPwv1). But for practical purposes, pipes are normally used between processes that have a
COPMIACT AnCestor

This chapter describes the creation and use of pipes and FIFOs. We use a simple file
server example and also look at some client-server design issues: how many IPC chan-
nels are needed, iterative versus concurrent servers, and byte streams versus message
interfaces.

A Simple Client-Server Example

The client-server example shown in Figure 4.1 is used throughout this chapter and
Chapter 6 to illustrate pipes, FIFOs, and System V message queues.

The client reads a pathname from the standard input and writes it to the IPC chan-
nel. The server reads this pathname from the [PC channel and tries to open the file for
reading, If the server can open the file, the server responds by reading the file and writ-
ing it to the IPC channel; otherwise, the server responds with an error message. The

43

44 Pipes and FIFOs Chapter 4

par_hnamg _"'”i.q e T _.4_—' —'“'—i /—F -h.,\
| client . | server e file }
i | file content | f ! Y,
file contents -———m =000 |@ - - - - - == == | e P
staout OF SITOT MEeSsage e e

OF eTPOT Message

Figure 4.1 Client—server example.

client then reads from the IPC channel, writing what it receives to the standard output.
If the file cannot be read by the server, the client reads an error message from the IPC
channel. Otherwise, the client reads the contents of the file. The two dashed lines
between the client and server in Figure 4.1 are the IPC channel.

4.3 Pipes

Pipes are provided with all flavors of Unix. A pipe is created by the pipe function and
provides a one-way (unidirectional) flow of data.

#include <uni=scd.h=

int pipelint fd[2]);:

Returns: O if OK, -1 on error

Two file descriptors are returned: fd[0], which is open for reading, and fd[1], which is
open for writing.

Some versions of Unix, notably SVR4, provide full-duplex pipes, in which case, both ends are
available for reading and writing. Another way to create a full-duplex IPC channel is with the
aocketpair function, described in Section 14.3 of UNPv], and this works on most current
Unix systems. The most common use of pipes, however, is with the various shells, in which
case, a half-duplex pipe is adequate.

Posix.1 and Unix 98 require only half-duplex pipes, and we assume so in this chapter.

The S_ISFIFO macro can be used to determine if a descriptor or file is either a pipe
or a FIFO. Its single argument is the st_mode member of the stat structure and the
macro evaluates to true (nonzero) or false (0). For a pipe, this structure is filled in by the
fstat function. For a FIFO, this structure is filled in by the fstat, lstat, or stat
functions.

Figure 4.2 shows how a pipe looks in a single process.

Although a pipe is created by one process, it is rarely used within a single process.
(We show an example of a pipe within a single process in Figure 5.14.) Pipes are typi-
cally used to communicate between two different processes (a parent and child) in the
following way. First, a process (which will be the parent) creates a pipe and then forks
to create a copy of itself, as shown in Figure 4.3

gastput.
e [PC
« lines

|

vhich is

emads are
g with the
g current
s which

r a pipe
#nd the
ilb}' the
ar stat

Process.
e typi-
f! in the
B Torks

Section 4.3

Pipes

45

Process
o) |
/—_}ﬁf 1]
I|
.P____ R | process
I kernel
4
N pipe
— flow of data —
Figure 4.2 A pipe in a single process.
parent child
fork
felli0] o fafor
fif1] ' 1) !

_ process
kernel

= flow of data —

Figure 4.3 Fipe in a single process, immediately after fork.

Next, the parent process closes the read end of one pipe, and the child process closes the
write end of that same pipe. This provides a one-way flow of data between the two pro-

cesses, as shown in Figure 4.4.

parent child

1] foat

——fdl

process

kernel

=+ tlow of data —

Figure 4.4 Fipe between two processes.

When we enter a command such as

who | sert | 1ip

to a Unix shell, the shell performs the steps described previously to create three

46 Pipes and FIFOs Chapter 4

processes with two pipes between them. The shell also duplicates the read end of each

pipe to standard input and the write end of each pipe to standard output. We show this
pipeline in Figure 4.5.

who Process 50r L Process lp process

stdowt —oro i 5 — . :
| / stdin [J —mstdin |
I_.; F(i | / g

S flow of data —» — flow of data —

Figure 4.5 Pipes between three processes in a shell pipeline.

All the pipes shown so far have been half-duplex or unidirectional, providing a one-
way flow of data only. When a two-way flow of data is desired, we must create two
pipes and use one for each direction. The actual steps are as follows:

create pipe 1 (fd1/0] and fd1[1]), create pipe 2 (fd2{0] and fd2[1]),
fork,

parent closes read end of pipe 1 (fd1[0]),

parent closes write end of pipe 2 (fd2[1]),

child closes write end of pipe 1 (fd1[1]), and

child closes read end of pipe 2 (fd2[0]).

G L L B

We show the code for these steps in Figure 4.8, This generates the pipe arrangement
shown in Figure 4.6.

rent child
fa1i1i 111) | I—
fd2f0] J ™ J.Fa‘ﬂr}.' j
IIIIII Ill.]'
R N A N / process
N 4 kernel
N /

_ — '\'
— flow of data — /
pipe 2 -

« flow of data

Figure 46 Two pipes to provide a bidirectional flow of data.

gapter 4 Section 4.3 Pipes 47
o each Example
g this
Let us now implement the client-server example described in Section 4.2 using pipes.
The main function creates two pipes and forks a child. The client then runs in the par-
ent process and the server runs in the child process. The first pipe is used to send the
pathname from the client to the server, and the second pipe is used to send the contents
of that file (or an error message) from the server to the client. This setup gives us the
arrangement shown in Figure 4.7,
s stdin . parent pathname child
] pathname ——s B e
client server |a—— file
file contents - FiFaee - pipe & *_‘_ _'_/,)
or error message sfaout ———————fjle contents or error message —
Figure 4.7 Implementation of Figure 4.1 using two pipes.
Realize that in this figure we show the two pipes connecting the two processes, but each
2 one- pipe goes through the kernel, as shown previously in Figure 4.6, Therefore, each byte of
Bie two data from the client to the server, and vice versa, crosses the user—kernel interface twice:
omce when written to the pipe, and again when read from the pipe.
Figure 4.8 shows our main function for this example.
ipe mainpipe.c
1 #include "unpipc.h" PIP JII pipe
2 woid client(int, inc}, server(int, int);
3 int
4 main(int arge, char **argv)
; 5 {
wement B int pipel[2}, pipe2(2];
7 pid_t childpid;
B Pipei{pipel); /* greate two pipes */
9 Pipeipipel) ;
10 if [(childpid = Fork({)) == 0) { /* child */
11 Close(pipel(1]):
1 Close (pipe2 [0]];
13 gerver (pipel[0], pipeZ[l]);
14 exit (0] ;
15 ¥
16 /* parant ¥/
17 Close(pipel [0]);
18 Close (pipe2 [1]1);
19 client (pipe2[d], pipel(l]);
20 Waitpidichildpid, NULL, 0); /* wait for child to terminate */
21 exit (D) ;
22 } . -
- pipe { mainpipe.c

Figure 4.8 main function for client-server using two pipes.

48 Pipes and FIFOs Chapter 4

g-i4

15=17

Create pipes, fork

Two pipes are created and the six steps that we listed with Figure 4.6 are performed.
The parent calls the client function (Figure 49) and the child calls the server func-
tion (Figure 4.10).
waitpid for child

The server (the child) terminates first, when it calls exi t after writing the final data
to the pipe. It then becomes a zombie: a process that has terminated, but whose parent is
still running but has not yet waited for the child. When the child terminates, the kernel
also generates a STGCHLD signal for the parent, but the parent does not catch this signal,
and the default action of this signal is to be ignored. Shortly thereafter, the parent’s
client function returns after reading the final data from the pipe. The parent then
calls waitpid to fetch the termination status of the terminated child (the zombie). If
the parent did not call waitpid, but just terminated, the child would be inherited by
the init process, and another SIGCHLD signal would be sent to the init process,
which would then fetch the termination status of the zombie.

The client function is shown in Figure 4.9.

L #include “unpipe.h’ pipe/client.c
2 waoid
3 glienti{int readfd, int writefd)
8 1
5 size_t len;
& ssize_t n;
7 char buff [MAXLINE] ;
& /* read pathname */
9 Fogets (buff, MAXLINE, stdin);
10 len = strlenibuff); /* fgets() guarantees null byte at end */
11 if {buffllen - 1] == "\m")
12 len--; /* ignore newline from fgetsi{) =/
13 /* write pathname to IPC channel */
14 Write(writefd, buff, lenji;
15 /* read from IPC, write to standard outpub */
16 while ({n = Read(readfd, buff, MAXLINE}) = 0O}
17 Write (STDOUT_FILENOD, buff, nl:
18 }
e pipe/client.c

Figure 49 client function for client-server using two pipes,

Fead pathname from standard input

The pathname is read from standard input and written to the pipe, after deleting
the newline that is stored by fgets.

Copy from pipe to standard output
The client then reads everything that the server writes to the pipe, writing it to

prmed.

= func-

] data
grent is
s kernel
sagnal,
sarent’s
mt then
ie). If
sted by
BIOCESS,

piciient.c

giclient.c

Section 4.3 Pipes 49

13-17

18-23

standard output. Normally this is the contents of the file, but if the specified pathname
cannot be opened, what the server returns is an error message.

Figure 4.10 shows the server function,

1 d4include "unpipc.h” Piw'lrszw'c

2 wold

3 serverint readfd, int writefd)

4

5 int £4;

& asize_t n:

7 char buff [MAXLINE + 1];

8 /* read pathname from IPC channel */

g if { (n = Read{readfd, buff, MAXLINE)} == 0)

10 err_guit (*end-of-£file while reading pathname®);

11 buff(n] = "0 ; /* null terminate pathname =/

12 if { (fd = open(buff, O_RDONLY}) = O) {

13 /* error: must tell clienc */

14 snprintf(buff + n, sizecf(buff) - n, ": can't open, %s\n",

15 atrerror(errnal) ;

16 n = strlen(buff};

17 Writelwritefd, buff, n):

18 } else {

18 /* open succeeded: copy file to IPC channel */

20 while ({n = Read(fd, buff, MAXLINE)] = 0}

21 Write(writefd, buff, n):

22 Close(£4) ;

23 }

24} .
pipeserver.c

Figure 410 server function for client=-server using two pipes.

Read pathname from pipe

The pathname written by the client is read from the pipe and null terminated. Note
that a read on a pipe returns as soon as some data is present; it need not wait for the
requested number of bytes (MAXLINE in this example).

Open file, handle error

The file is opened for reading, and if an error occurs, an error message string is
returned to the client across the pipe. We call the strerror function to return the error
message string corresponding to errnc. (Pages 690-691 of UNPv1 talk more about the
strerror function.)

Copy file to pipe
If the open succeeds, the contents of the file are copied to the pipe.

We can see the output from the program when the pathname is OK, and when an
EITOT OCCurs.

Pipes and FIFOs Chapter 4

44

solaris % mainpipe

fete/inet /ntp.conf a file comsisting of fuwa lines
multicastclient 234.0.1.1

drifcfile fetc/inet/nip.drifc

golarizs % mainpipe

/ete/shadow a file we canmot read
/etc/shadow: can't open, Permission denied

solaris % mainpipe

/nofsuch/file a nonexistent file
/no/such/file: can‘t open, Wo such file or directory

Full-Duplex Pipes

We mentioned in the previous section that some systems provide full-duplex pipes:
SVR4's pipe function and the socketpair function provided by many kernels. But
what exactly does a full-duplex pipe provide? First, we can think of a half-duplex pipe
as shown in Figure 4.11, a modification of Figure 4.2, which omits the process.

1] — 2 T haliduplex pipe - 0% e 0]

Figure 4.11 Half-duplex pipe.

A full-duplex pipe could be implemented as shown in Figure 4.12. This implies that
only one buffer exists for the pipe and everything written to the pipe (on either descrip-
tor) gets appended to the buffer and any read from the pipe (on either descriptor) just
takes data from the front of the buffer.

write read
[B Y P — full-duplex pipe R (1]
read write

Figure 4,12 One possible {(incorrect) implementation of a full-duplex pipe.

The problem with this implementation becomes apparent in a program such as Fig-
ure A.29. We want two-way communication but we need two independent data
streams, one in each direction. Otherwise, when a process writes data to the full-duplex
pipe and then turns around and issues a read on that pipe, it could read back what it
just wrote.

Figure 4.13 shows the actual implementation of a full-duplex pipe.

g =] haliduplepipe o e
1 __"
"“—‘1_—6;'5__ — half—l’ju]'.'llL'X pl[x‘-' - -._'J\.;-"?T_e

Figure 413 Actual implementation of a full-duplex pipe.

Here, the full-duplex pipe is constructed from two half-duplex pipes. Anything written

Section 4.4 Full-Duplex Pipes 51

to fd{1] will be available for reading by fd[0], and anything written to fd[0] will be avail-
able for reading by fd{1].

The program in Figure 4.14 demonstrates that we can use a single full-duplex pipe
for two-way communication,

' uplex.c
1 #include "unpipe. h* Wﬁd 4
2 int
3 mainiint arge, char **argv)
4 1
5 ink £4[2], mn:
3 char c;
7 pid_t childpid;
2 2 Pipe(fd) ; /* assumes a full-duplex pipe {e.g., SVR4] */
= pipes: g if { {childpid = Fork(}} == 0} /% child */
meis But 10 sleap|i);
:'pk-\rlipe 11 if (in = Read(£d[0}, &, 1)) 1= 1)
N 12 err_guit{"child: read returned %d", n);
: 13 printf(*child read %c\n", c);
14 Wrice(£4[0], "=, 11;
15 exic{d);
16 }
17 /% parent */
; 18 Write(£d(1], *p*, 1);
dies that 18 if [in = Read(fd[1], &c. 1)} != 1)
_Fhes _a 20 err_cquiti("parent: read returned %4", n}:
r descrip- 21 printf ["parent read %c\n", cl;
gpeor) just 22 exit{0};
: 23} .
pipe/fduplex.c
Figure 4.14 Test a full-duplex pipe for two-way communication.
We create a full-duplex pipe and fork. The parent writes the character p to the
pipe, and then reads a character from the pipe. The child sleeps for 3 seconds, reads a
| character from the pipe, and then writes the character ¢ to the pipe. The purpose of the
% as Fig- sleep in the child is to allow the parent to call read before the child can call read, to see
- d;%a whether the parent reads back what it wrote.
& duplex If we run this program under Solaris 2.6, which provides full-duplex pipes, we
; P observe the desired behavior.

tk what it
: sclaris % fduplex
child read p
parent read o

The character p goes across the half-duplex pipe shown in the top of Figure 4.13, and
the character ¢ goes across the half-duplex pipe shown in the bottom of Figure 4.13.
The parent does not read back what it wrote (the character p).

If we run this program under Digital Unix 4.0B, which by default provides half-
duplex pipes (it also provides full-duplex pipes like SVR4, if different options are speci-

8z wTitten fied at compile time), we see the expected behavior of a half-duplex pipe.

52

Pipes and FIFOs Chapter 4

4.5

alpha % fduplex

read error: Bad Eile number
alpha % child read p

write error: Bad file number

The parent writes the character p, which the child reads, but then the parent aborts
when it tries to read from fdl1], and the child aborts when it tries to write to fd[0]
(recall Figure 4.11). The error returned by read is EBADF, which means that the
descriptor is not open for reading. Similarly, write returns the same error if its
descriptor is not open for writing.

popen and pclose Functions

As another example of pipes, the standard 1/0 library provides the popen function that
creates a pipe and initiates another process that either reads from the pipe or writes to

the pipe.

#Hinclude <stdio.h=
FILE *popen(const char =command, conat char *fype) :
Returns: file pointer if OK, WULL on error

int polose(FILE =stream) ;

Returns: termination status of shell or =1 on error

command is a shell command line. It is processed by the sh program (normally a Bourne
shell), so the PATH environment variable is used to locate the command. A pipe is cre-
ated between the calling process and the specified command. The value returned by
popen is a standard 1/O FILE pointer that is used for either input or output, depend-
ing on the character string fype.

« [If type is r, the calling process reads the standard output of the command.

* If type is w, the calling process writes to the standard input of the command.

The pclose function closes a standard 1/0 stream that was created by popen, waits
for the command to terminate, and then returns the termination status of the shell.

Section 14.3 of APUE provides an implementation of popen and pelose.

Example

Figure 4.15 shows another solution to our client-server example using the popen func-
tion and the Unix cat program.

sborts
» &(0]
at the

i its

m that
et to

waits

 func-

Section 4.5 popen and pclose Functions 53

8-17

ipe/mainpopen.c
1 #include *unpipec.h” Pipe P
2 int
3 maini(int argc, char **argwv)
4 {
5 siza_t n;
[char buff [MAXLINE], command[MAXLINE]:
7 FILE *fp:
H /* read pathname */
9 Fgets (buff, MAXLINE, stdin);
10 n = strlen{buff); /* fgets(] guarantees null byte at end */
11 if {buff[m - 1] == *\n'}
12 buff[n - 1] = %0, /* delete newline from fgets(] */
i3 snprintf (command, sizeof (command), "cat %s", buff);
14 fp = Popen{command, “r*};
15 /* copy from pipe to standard ocutput */
16 while (Fgets{buff, MAXLINE, fp) != NULL!}
17 Fputs{buff, stdout);
18 Polose(fp) ;
19 exit(0);
20} . .
pipe/mainpopen.c

Figure 415 Client-server using popern,

The pathname is read from standard input, as in Figure 49. A command is built
and passed to popen. The output from either the shell or the cat program is copied to
standard output.

One difference between this implementation and the implementation in Figure 4.8
is that now we are dependent on the error message generated by the system's cat pro-
gram, which is often inadequate. For example, under Solaris 2.6, we get the following
error when trying to read a file that we do not have permission to read:

solaris % cat Jetc/shadow
cat: cannot open fetc/shadow

But under BSD/05 3.1, we get a more descriptive error when trying to read a similar
file:

bsdl % cat fetc/master.passwd
cat: fetc/master.passwd: cannot open [Permission denied]

Also realize that the call to popen succeeds in such a case, but fgets just returns an
end-of-file the first time it is called. The cat program writes its error message to stan-
dard error, and popen does nothing special with it—only standard output is redirected
to the pipe that it creates.

54

Pipes and FIFO= Chapter 4

4.6

FIFOs

Pipes have no names, and their biggest disadvantage is that they can be used only
between processes that have a parent process in common. Two unrelated processes can-
not create a pipe between them and use it for IPC (ignoring descriptor passing).

FIFO stands for first in, first out, and a Unix FIFO is similar to a pipe. It is a one-way
(half-duplex) flow of data. But unlike pipes, a FIFO has a pathname associated with it,
allowing unrelated processes to access a single FIFO. FIFOs are also called named pipes.

A FIFO is created by the mk£1 fo function.

|_ #include <sys/types. h>
#include <sys/stat.h>

int mkfifolconst char *pafhmame, mode_t mode) ;

Returns: 0 if OK, =1 on error

The pathname is a normal Unix pathname, and this is the name of the FIFO.

The mode argument specifies the file permission bits, similar to the second argument
to open. Figure 2.4 shows the six constants from the <sys/stat.h> header used to
specify these bits for a FIFO.

The mk£ifo function implies 0_CREAT | O_EXCL. That is, it creates a new FIFO or
returns an error of EEXIST if the named FIFO already exists. If the creation of a new
FIFO is not desired, call open instead of mkfifo. To open an existing FIFO or create a
new FIFO if it does not already exist, call mk£1ifo, check for an error of EEXIST, and if
this occurs, call open instead.

The mkfifo command also creates a FIFO. This can be used from shell scripts or
from the command line.

Once a FIFO is created, it must be opened for reading or writing, using either the
open function, or one of the standard 1/0 open functions such as fopen. A FIFO must
be opened either read-only or write-only. It must not be opened for read-write, because
a FIFO is half-duplex.

A write to a pipe or FIFO always appends the data, and a read always returns
what is at the beginning of the pipe or FIFO. If 1seek is called for a pipe or FIFO, the
error ESPIFPE is returned.

Example

We now redo our client-server from Figure 4.8 to use two FIFOs instead of two pipes.
Our client and server functions remain the same; all that changes is the main func-
tion, which we show in Figure 4.16.

ipe | mainfifo.c
1 #include *unpipe.h” PIp o
2 fdefine FIFD1 “SrmpsEifo.l"
3 #define FIFO2 *iempsfifo.20

4 void client{int, int}, server(int, int);:

L

pment
s to

IO or
& new
peate a
and if

oS Or
er the
¥ must

Pralse

ehurns
L, the

pipes.

B unc-

g

:"-'“5&’.:,_&':2'_'.‘5'_;‘.’5.-?,?9_{_'_'-' Doy T '. bl ek R

R R R

)

Section 4.6 FIFOs 55

17-27

5 int

& main{int arge, char *rargv)

7

8 int readfd, wricefd;

g pid_t childpid;
14 /* create two FIFCs; OK if they already exist =/
11 if {{mkfifo(FIFQl, FILE_MODE) < 0} && (errnoc |= EEXIET))
12 err_sys("can’'t create %s5", FIFOl);

13 if {imkfifo(FIFO2, FILE_MODE) < 0} &k (errno != EEXISTI) {
14 unlink (FIFQ1l};

15 err_sya("can‘t create %¥s", FIFDZ):

1 }

17 if { (childpid = Forki)) == 0} { f* ghild */

18 readfd = Open(FIFO1l, O_RDONLY, O}

1% writefd = Open(FIFQ2, O_WRONLY, 0];
20 server (readfd, wricefd);
21 exit (0);
22 }
23 /* parant */
24 writefd = Open(FIFOL, Q_WRONLY, 0);:
25 readfd = Open(FIF02, O_RDOMLY, O}
26 client {readfd, writefd};
27 wWaitpidichildpid, WULL, 0}; /* wait for child to terminate */
Z8 Close{readfd) ;
29 Closei{writefd);
o Unlink (FIFOL);
i1 Unlink (FIFQ2);
32 exitc (d);
33}

pipe fmainfifo.c

Figure 416 main function for our client-server that uses two FIFOs,

Create two FIFOs
Two FIFOs are created in the / tmp filesystem. If the FIFOs already exist, that is OK.
The FILE_MODE constant is defined in our unpipc. h header (Figure C.1) as
#define FILE_MODE (S_IRUSR | S_IWUSR | S_IRGRP | S_IRDTH)
/* default permissions for new files */

This allows user-read, user-write, group-read, and other-read. These permission bits are
modified by the file mode creation mask of the process.
fork

We call £ork, the child calls our server function (Figure 4.10), and the parent calls
our client function (Figure 4.9). Before executing these calls, the parent opens the first
FIFO for writing and the second FIFO for reading, and the child opens the first FIFO for

reading and the second FIFO for writing. This is similar to our pipe example, and Fig-
ure 4,17 shows this arrangement,

56 Pipes and FIFOs Chapter 4

parent child _
| writefd '—1 . wrikefd :—- —
e Jre)
IIII \ !
i
N N e / process
B \\ i TR /" kernel
\ /tmp/Eifo.1 /
\ = FFO1 — /
\ -+ flow of data — £

N\ femp/fifo.2 /
- - HFO2 je—
|

— flow of data +—

Figure 417 Client-server example using two FIFOs
The changes from our pipe example to this FIFO example are as follows:

+ To create and open a pipe requires one call to pipe. To create and open a FIFO
requires one call to mkfifo followed by a call to open.

* A pipe automatically disappears on its last close. A FIFO's name is deleted from
the filesystem only by calling unlink.

The benefit in the extra calls required for the FIFO is that a FIFO has a name in the file-
system allowing one process to create a FIFO and another unrelated process to open the
FIFO. This is not possible with a pipe.

Subtle problems can occur with programs that do not use FIFOs correctly. Consider
Figure 4.16: if we swap the order of the two calls to cpen in the parent, the program
does not work. The reason is that the open of a FIFO for reading blocks if no process
currently has the FIFO open for writing. If we swap the order of these two opens in the
parent, both the parent and the child are opening a FIFO for reading when no process
has the FIFO open for writing, so both block. This is called a deadlock. We discuss this
scenario in the next section.

Example: Unrelated Client and Server

In Figure 4.16, the client and server are still related processes. But we can redo this
example with the client and server unrelated. Figure 4.18 shows the server program.
This program is nearly identical to the server portion of Figure 4.16.

The header £ifo.h is shown in Figure 4.19 and provides the definitions of the two
FIFO names, which both the client and server must know.

Figure 4.20 shows the client program, which is nearly identical to the client portion
of Figure 4.16. Notice that the client, not the server, deletes the FIFOs when done,
because the client performs the last operation on the FIFOs.

sk

| L |

Section 4.6 FIF(s 57

pipe | server_main.c

1 #include “fifo.h"
2 woid server (int, int}:
3 int
4 main(int argc, char **argv]
5
E 11 int readfd, writefd;
3
‘ 7 /* create two FIFDs: OK if they already exist */
= 8 if {(mkfifo(PIF0l, FILE_MODE) =< 0} && (errno != EEXIST))
; 9 err_sys("can't create %¥z", FIFOl);
; - . G FIEOLVG
o 10 if {(mkfife(FIFD2, FILE_MODE) < 0) && (errno != EEXIST})
= 11 unlink (FIFOL} ;
i 12 err_sysl("can’'t create %s", FIFOZ);
f 13 K
14 readfd = Open|FIFOl, O_RDONLY, 0):
; 15 writefd = Open{FIFDZ, O_WRONLY, Q);
1. 16 sarver (readfd, writefd):
: 17 exit{0};
& 18 _ _
= ~ pipe [server_main.c
5 Figure 4.18 Stand-alone server main function.
h — —— pipe| fifo.h.c
o 1 #include “unpipc.h”
Fi 4 2 #define FIFQL “jempsfifo.l"
& 3 #define FIFO2 */tmp/fifo.2* o
& - Feesd e pipe/ fifoh.c
3 Figure 419 £ifo.h header that both the client and server include,
. pipe fclient_main.c
i 1 #include *fife.h"
2 void client(int, int};
: 3 int
4 main(int argc, char **argv)
51
& int readfd, writefd;
7 writafd = Open(FIFC1l, O_WRONWLY, Q):
] readfd = Open{FIF0Z, O_RDONLY, Q);:
9 client ({readfd, writefd);
10 Close(readfd) ;
2 11 Close (writefd):
; 12 Unlink (FIFOLl) ;
5 13 Unlink (FIFO2) :
14 exie(0);
s 15

= pipeclient_main.c

Figure 420 Stand-alone client main function.

58

Pipes and FIFOs Chapter 4

4.7

In the case of a pipe or FIFO, where the kernel keeps a reference count of the number of open
descriptors that refer to the pipe or FIFO, either the client or server could call unlink without
a problem. Even though this function removes the pathname from the filesystem, this does not
affect open descriptors that had previously opened the pathname. But for other forms of IPC,
such as System V message queues, no counter exists and if the server were to delete the queue
after writing its final message to the queue, the queue could be gone when the client tries to
read the final message.

To run this client and server, start the server in the background

% sarver_fifeo &

and then start the client. Alternately, we could start only the client and have it invoke
the server by calling fork and then exec. The client could also pass the names of the
two FIFOs to the server as command-line arguments through the exec function, instead
of coding them into a header. But this scenario would make the server a child of the
client, in which case, a pipe could just as easily be used.

Additional Properties of Pipes and FIFOs

We need to describe in more detail some properties of pipes and FIFOs with regard to
their opening, reading, and writing. First, a descriptor can be set nonblocking in two

ways.

1. The O_NONBLOCK flag can be specified when open is called. For example, the
first call to open in Figure 4.20 could be

writefd = Open(FIF01, O_WRONLY | O_NONBLOCK, 0]:

2. If a descriptor is already open, fcntl can be called to enable the O_NONBLOCK
flag. This technique must be used with a pipe, since open is not called for a
pipe, and no way exists to specify the O_NONBLOCK flag in the call to pipe.
When using fent1, we first fetch the current file status flags with the F_GETFL
command, bitwise-OR the 0_NONBLOCK flag, and then store the file status flags
with the F_SETFL command:

int flags;

if { (flags = fontl(fd, F_GETFL, 0)] = Q)
err_sys{"F_GETFL error"):

flags |= O_NONBLOCK;

if [(fcnkl(fd, F_SETFL, flags)i < 0)
err_sys|["F_SETFL error”):

Beware of code that you may encounter that simply sets the desired flag,
because this also clears all the other possible file status flags:
/* wrong way to set nonblocking */
if {(feontl(fd, F_SETFL, O_NOMWBLOCE) < O]
err_sys("F_SETFL error"):

et 4 Section 4.7 Additional Properties of Pipes and FIFOs 59
g open Figure 4.21 shows the effect of the nonblocking flag for the opening of a FIFO and
Pihout : for the reading of data fr ty pipe or f mpty FIFO
Be no? e e s om an empty pipe or from an empty .
i IPC, W . —
e & Current Existing opens | Return
ses to operation of pipe or FIFO Blocking (default) O_NONBLOCK set
. FIFO | returns OK returns OK)
= open FIFQ open for "'-'Ti_t_i‘_l"l[n‘.
; | read-only FIFO mot | blocks until FIFO is opened for returns OK
; 3] open for writing writing
& FIFO returns OK returns OK)
“er E OpEn FIFC open for reading
pf the write-only FIFO not blocks until FIFO is opened for | returns an error of ENXID
stead - open for reading reading .
of the ; 3 | pipe or FIFO blocks until data is in the pipe or | returns an error of EAGATN
o read | open for writing FIFQ, or until the pipe or
.-:a g empty pipe | FIF(is ne longer open for | £
% or writing f '
E empty FIFO | pipeor FIFOnot | read returns 0 (end-of-file) read returns 0 {end-of-file) §
§ open for writing B
i T pipeor FIFO | (see text) (see text)
2= to writeto | open for reading | - _
L kwo E pipe or FIFQ | pipeor FIFO not | SIGPIPE generated for thread SIGPIPE generated for thread
% | open for reading
] i
% Figure 421 Effect of 0_NOWBLOCK flag on pipes and FIFOs. i
e, the . :
% Note a few additional rules regarding the reading and writing of a pipe or FIFO. :
2 e If we ask to read more data than is currently available in the pipe or FIFO, only '
LOCK ;- the available data is returned. We must be prepared to handle a return value
0T 8 # from read that is less than the requested amount.
T De, b T
E‘E:;T Z * If the number of bytes to write is less than or equal to PTPE_BUF (a Posix limit
1 E:a:gs 4 that we say more about in Section 4.11), the write is guaranteed to be atomic.
This means that if two processes each write to the same pipe or FIFO at about
the same time, either all the data from the first process is written, followed by all
= the data from the second process, or vice versa. The system does not intermix
the data from the two processes. If, however, the number of bytes to write is
: greater than PIPE_BUF, there is no guarantee that the write operation is
atomic.
Posix.] requires that PIPE_BUF be at least 512 bytes. Commonly encountered values
{ flag range from 1024 for BSD/OS 3.1 to 5120 for Solaris 26, We show a program in Sec-

tiom 4.11 that prints this value.

* The setting of the 0_NONBLOCK flag has no effect on the atomicity of writestoa
pipe or FIFO—atomicity is determined solely by whether the requested number
of bytes is less than or equal to PTPE_EUF. But when a pipe or FIFO is set non-
blocking, the return value from write depends on the number of bytes to write

60 Pipes and FIFOs Chapter 4

and the amount of space currently available in the pipe or FIFO. If the number
of bytes to write is less than or equal to PIPE_BUF:

a. If there is room in the pipe or FIFO for the requested number of bytes, all the
bytes are transferred.

b. If there is not enough room in the pipe or FIFO for the requested number of
bytes, return is made immediately with an error of EAGAIN. Since the
O_NONBLOCK flag is set, the process does not want to be put to sleep. But the
kernel cannot accept part of the data and still guarantee an atomic write, so
the kernel must return an error and tell the process to try again later.

If the number of bytes to write is greater than PIPE_EUF:

a. If there is room for at least 1 byte in the pipe or FIFO, the kernel transfers
whatever the pipe or FIFO can hold, and that is the return value from
write.

b. If the pipe or FIFO is full, return is made immediately with an error of
EAGATN.

* If wewrite to a pipe or FIFO that is not open for reading, the SIGPIPE signal
is generated:

a. If the process does not catch or ignore SIGPIPE, the default action of termi-
nating the process is taken.

b. If the process ignores the SIGPIPE signal, or if it catches the signal and
returns from its signal handler, then write returns an error of EPIPE,

SIGPIPE is considered a synchronous signal, that is, a signal attributable to one
specific thread, the one that called write. But the easiest way to handle this
signal is to ignore it (set its disposition to SIG_IGH) and let write return an
error of EFIFE. An application should always detect an error refurn from
write, but detecting the termination of a process by SIGPIPE is harder. If the
signal is not caught, we must look at the termination status of the process from
the shell to determine that the process was killed by a signal, and which signal.
Section 5.13 of UNPv1 talks more about SIGPIPE.

4.8 One Server, Multiple Clients

The real advantage of a FIFO is when the server is a long-running process (e.g., a dae-
mon, as described in Chapter 12 of UNPv1) that is unrelated to the client. The daemon
creates a FIFO with a well-known pathname, opens the FIFO for reading, and the client
then starts at some later time, opens the FIFO for writing, and sends its commands or
whatever to the daemon through the FIFO. One-way communication of this form
(client to server) is easy with a FIFO, but it becomes harder if the daemon needs to send
something back to the client. Figure 4.22 shows the technique that we use with our
example.

The server creates a FIFO with a well-known pathname, /tmp/fifo.serv in this
example. The server will read client requests from this FIFO. Each client creates its own
FIFO when it starts, with a pathname containing its process [D. Each client writes its

e 4

gemiber
2l the

et Of
e the
Bt the

=, 50

| el

smsfers
g from

eror of
signal
EeTmi-
@i and

e &0 one
i this
BT AN
Fm from
e I the
g=s from
i mignal,

& dae-
EETNON
e client
s or
s form
i send
R our

‘m this
s owWn
e 1ts

e R

FeER

Section 4.8 One Server, Multiple Clients 61

I10-15

16

Jtop/ fifo. 9876

IE read-only

femp/Eifo.1234

| FIFO
-{}1
read-only <

1
client 1 client 2 |
T ——

1234 PID 9876

Figure 4.22 One server, multiple clients.

request to the server’s well-known FIFO, and the request contains the client process D
along with the pathname of the file that the client wants the server to open and send to
the client.

Figure 4.23 shows the server program.

Create well-known FIFO and open for read-only and write-only

The server’s well-known FIFO is created, and it is OK if it already exists. We then
open the FIFO twice, once read-only and once write-only. The readfifo descriptor is
used to read each client request that arrives at the FIFO, but the dummyfd descriptor is
never used. The reason for opening the FIFO for writing can be seen in Figure 4.21. If
we do not open the FIFO for writing, then each time a client terminates, the FIFO
becomes empty and the server’s read returns 0 to indicate an end-of-file. We would
then have to close the FIFO and call open again with the 0_RDONLY flag, and this will
block until the next client request arrives. But if we always have a descriptor for the
FIFO that was opened for writing, read will never return 0 to indicate an end-of-file
when no clients exist. Instead, our server will just block in the call to read, waiting for
the next client request. This trick therefore simplifies our server code and reduces the
number of calls to open for its well-known FIFO.

When the server starts, the first open (with the 0_RDONLY flag) blocks until the first
client opens the server’s FIFO write-only (recall Figure 4.21). The second open (with
the O_WRONLY flag) then returns immediately, because the FIFO is already open for
reading.

Read client request

Each client request is a single line consisting of the process ID, one space, and then
the pathname. We read this line with our readline function (which we show on p. 79
of UNPv1).

62 Pipes and FIFOs Chapter 4

- Sfifocliserv/maimserver.c

1 #include “fifo . h*

wold server |int, int);

B

int
main{int arge, char *rargv)
{
ing readfifo, writefifo, dummyfd, £4;
char *ptr, buff[MAXLINE + 1], fifoname|[MAXLIME];

=1 L g L

& pid_t pid;

9 gsize € n;

10 /* create server's well-known FIFO; OK 1f already exists */
11 if {(mkfifo(SERV_FIFO, FILE_MODE) = () && (errne != EEXIST))

12 err_sys("can't create %s", SERV_FIFO};

13 /* ppen server's well-known FIFQ for reading and writing */
14 readfifo = Open(SERV_FIFO, O_RDONLY, 0);

15 dumryfd = Open (SERV_FIFO, O_WRONLY, ©0); /* never used ¥/

16 while { (n = Readline(readfifo, buff, MAXLINE)) = 01 {

17 if (buffin - 1] == "wn‘)

18 n--; /* delete newline from readline() */
19 buff[n] = '%0°; f* null terminate pathname */

20 if { {ptr = strehr(buff, * ')} == NULL) |

21 err_msg{*bogus request: %s", buff):

22 continue;

23 1

24 *otr++ = 0 /* null cerminate PID, ptr = pathname */
25 pid = atel (buff);

26 gnprintf{fifoname, sizecf{fifoname), "/ tmp/fifo.%14", (long) pidl:
27 if ({writefifo = open{fifcname, O_WRONLY, 01) < 0} {

28 err_msg{"cannot open: %sv, fifoname};

29 continue;

0

3l if ({£d = openiptr, O_RDOWLY}) = O} {

a2 f* error: must tell client */

13 snprintfibuff + n, sizeaf{buff) - n, ": can't open, ¥s\n"
14 sbhrerror (errno) b;

i5 n = strlen(ptr};

16 Writeiwritefifo, ptr, n):

i Clogse(writefifo)

4 1 else

39 /* open succeeded: copy file to FIFG */

a0 while ((n = Read{fd, buff, MAXLINE]) = 0}

41 Writeiwricefifo, buff, nl;

42 Close | £d);

43 Cloge (writefifo];

44 }

45 }

46 exic (0] ;

47]

fifoclisery/mainserver.c

Figure 423 FIFO server that handles multiple clients.

o
i
®
4
-

Section 4.8 One Server, Multiple Clients 63

17-26

I7-dd

10-14

22-24

Parse client’s request

The newline that is normally returned by readline is deleted. This newline is
missing only if the buffer was filled before the newline was encountered, or if the final
line of input was not terminated by a newline. The strchr function returns a pointer
to the first blank in the line, and ptr is incremented to point to the first character of the
pathname that follows. The pathname of the client’s FIFO is constructed from the pro-
cess ID, and the FIFO is opened for write-only by the server.

Open file for client, send file to client’s FIFO

The remainder of the server is similar to our server function from Figure 4.10.
The file is opened and if this fails, an error message is returned to the client across the
FIFO. If the open succeeds, the file is copied to the client’s FIFO. When done, we must
close the server’'s end of the client's FIFO, which causes the client’s read to return 0
{end-of-file). The server does not delete the client’'s FIFO; the client must do so after it
reads the end-of-file from the server.

We show the client program in Figure 4 24.
Create FIFO
The client’s FIFO is created with the process ID as the final part of the pathname.

Build client request line

The client’s request consists of its process ID, one blank, the pathname for the server
to send to the client, and a newline. This line is built in the array buff, reading the
pathname from the standard input.

Open server's FIFO and write request
The server’s FIFO is opened and the request is written to the FIFO. If this client is

the first to open this FIFO since the server was started, then this open unblocks the
server from its call to open (with the 0_RDONLY flag).

Read file contenis or error message from server

The server’s reply is read from the FIFO and written to standard output. The
client’s FIFO is then closed and deleted.

We can start our server in one window and run the client in another window, and it
works as expected. We show only the client interaction.

solaris % mainclient

Jete/shadow a file we cannot read
/etc/shadow: can’t open, Permission denied

zolaris % mainelient

/etc/inet /ntp.conf a 2-line file
multicastclient 224.0.1.1

drifefile /etc/inet/ntp.drift

We can also interact with the server from the shell, because FIFOs have names in the
filesystem.

64 Pipes and FIFOs Chapter 4

fifocliserv | mainclient.c

1 #include "fifo.h"

2 int
3 main(int argc, char **argv)
41
5 int readfifo, writefifo;
& size_t len;
T ssize_t n;
a char sptr, fifoname[MAXLINE], buff[MAXLINE]:
9 pid_t pid;
10 /* create FIFO with our PID as part of name */
11 pid = getpidl);
12 gnprintf |fifoname, sizeof{fifoname), "/tmp/fife.%ld-, (long) pidl ;
13 if [(mkfifolfifoname, FILE_MODE) < 0] && (errnc != EEXISTI)
14 err_sys{"can't create %s", fifoname)
15 /* gtart buffer with pid and a blank */
18 snprintf{buff, sizecf(buff), *%l4 ", {long) pidi;
17 len = atrlen{buff);
18 ptr = buff + len;
19 /* read pathname */
20 Fgets (ptr, MAXLINE - len, stdinl;
21 larn = strlenibuff]; /% fgets()] guarantees null byte at end */
22 /* open FIFD to server and write PID and pathname to FIFO */
23 writefifo = Open(SERV_FIFD, O_WRONLY, 0O}:
24 Writelwritefifo, buff, len);
25 /* now open our FIFD; blocks until server opens for writing =/
26 readfifo = Open(fifoname, O_RDOHLY, 0;
27 /* read from IPC, write to standard ocutput */
28 while { (n = Read{readfifo, buff, MAXLINE}) > O}
29 wWrite (STDOUT_FILENO, buff, n);
30 Close(readfifo) ;
31 Unlink{fifoname) ;
32 exic{);
33} . T
fifocliserv | mainclient.c
Figure 4.24 FIFO client that works with the server in Figure 4.23.
solaris % Pideg$ process [D of this shell
solaris % mkfifo /tmp/fifo.§Pid make the client’s FIFO
sclaris % echo "$Pid /etc/inet/ntp.conf® > /tmp/fifo.serv
solaris % cat < femp/fifo.§Pid and read server’s reply

multicastclient 224.0.1.1
drifrfile fetc/inet/ntp.drift
solaris ¥ rm /ftmp/fifo.$Pid

We send our process ID and pathname to the server with one shell command (echo)
and read the server’s reply with another (cat). Any amount of time can occur between
these two commands. Therefore, the server appears to write the file to the FIFO, and
the client later executes cat to read the data from the FIFO, which might make us think

4 Section 4.8 One Server, Multiple Clients 65
g ‘ that the data remains in the FIFO somehow, even when no process has the FIFQ open.
¥ This is not what is happening. Indeed, the rule is that when the final close of a pipe or
FIFO occurs, any remaining data in the pipe or FIFO is discarded. What is happening in
our shell example is that after the server reads the request line from the client, the server
blocks in its call to open on the client’s FIFO, because the client (our shell) has not yet
opened the FIFO for reading (recall Figure 4.21). Only when we execute cat sometime
& later, which opens the client FIFO for reading, does the server’s call to open for this
= FIFO return. This timing also leads to a denial-of-service attack, which we discuss in the
3 next section.
Using the shell also allows simple testing of the server’s error handling. We can
¢ easily send a line to the server without a process ID, and we can also send a line to the
= server specifying a process ID that does not correspond to a FIFO in the / tmp directory.
5 For example, if we invoke the server and enter the following lines
i
& solaris & cat » femp/fifo.serv
ﬁ' /no/fprocesa/id
B 999999 /invalid/process/id
then the server’s output (in another window) is
é' aolaris % server
E bogus redquest: /no/process/id
;si,: cannot open: /tmp/fifo.99%999
Atomicity of FIFO writes
’ QOur simple client-server also lets us see why the atomicity property of writes to pipes
& and FIFQs is important. Assume that two clients send requests at about the same time
: to the server. The first client’s request is the line
1234 Jjete/inet/nkp.conf
and the second client’s request is the line
9876 Jetc/passwd
; If we assume that each client issues one write function call for its request line, and that
each line is less than or equal to PIPE_BUF (which is reasonable, since this limit is usu-
ally between 1024 and 5120 and since pathnames are often limited to 1024 bytes), then
we are guaranteed that the data in the FIFO will be either
1234 Jetc/inet/ntp.cont
9876 Jetc/passwd
ar
9876 /etc/passwd
) 1234 Jetc/finet/ntp.conf
= The data in the FIFO will nof be something like
h? 1234 jete/inet9876 Jeto/passwd
gk

/ntp.conf

L1 Pipes and FIFOs Chapter 4

FIFOs and NFS

FIFOs are a form of IPC that can be used on a single host. Although FIFOs have names
in the filesystem, they can be used only on local filesystems, and not on NF5-mounted
filesystems.

golaris % mkfifo /nfs/badifusr/rstevens/fifo.temp
mkfife: IO error

In this example, the filesystem /nfs/bsdi/usr is the /usr filesystem on the host
bsdi.

Some systems (e.g., BSD/OS) do allow FIFOs to be created on an NFS-mounted file-
system, but data cannot be passed between the two systems through one of these FIFOs.
In this scenario, the FIFO would be used only as a rendezvous point in the filesystem
between clients and servers on the same host. A process on one host cannot send data to
a process on another host through a FIFO, even though both processes may be able to
open a FIFO that is accessible to both hosts through NF5.

4.9 [lterative versus Concurrent Servers

The server in our simple example from the preceding section is an iterative server. It iter-
ates through the client requests, completely handling each client's request before pro-
ceeding to the next client. For example, if two clients each send a request to the server
at about the same time—the first for a 10-megabyte file that takes 10 seconds (say) to
send to the client, and the second for a 10-byte file— the second client must wait at least
10 seconds for the first client to be serviced.

The alternative is a concurrent server. The most common type of concurrent server
under Unix is called a one-child-per-client server, and it has the server call fork to create
a new child each time a client request arrives. The new child handles the client request
to completion, and the multiprogramming features of Unix provide the concurrency of
all the different processes. But there are other techniques that are discussed in detail in
Chapter 27 of UNPv1:

* create a pool of children and service a new client with an idle child,
* create one thread per client, and
« create a pool of threads and service a new client with an idle thread.

Although the discussion in UNPv1 is for network servers, the same techniques apply to
[PC servers whose clients are on the same host.

Denial-of-Service Attacks

We have already mentioned one problem with an iterative server—some clients must
wait longer than expected because they are in line following other clients with longer
requests—but another problem exists. Recall our shell example following Figure 4.24
and our discussion of how the server blocks in its call to open for the client FIFQ if the
client has not yet opened this FIFO (which did not happen until we executed our cat

e 4 Section 4.10 Streams and Messages 67

command). This means that a malicious client could tie up the server by sending it a
request line, but never opening its FIFO for reading. This is called a denial-of-service
nes = (DoS) attack. To avoid this, we must be careful when coding the iterative portion of any
e B server, to note where the server might block, and for how long it might block. One way

to handle the problem is to place a timeout on certain operations, but it is usually sim-
pler to code the server as a concurrent server, instead of as an iterative server, in which
case, this type of denial-of-service attack affects only one child, and not the main server.

H

3’“ Even with a concurrent server, denial-of-service attacks can still occur: a malicious client
st p could send lots of independent requests, causing the server to reach its limit of child
. g processes, causing subsequent £orks to fail.

Lie- 3
=i =
o] 4.10 Streams and Messages
 to 5
k| The examples shown so far, for pipes and FIFOs, have used the stream [/0O model,
3 which is natural for Unix. No record boundaries exist—reads and writes do not exam-
i ine the data at all. A process that reads 100 bytes from a FIFO, for example, cannot tell
whether the process that wrote the data into the FIFO did a single write of 100 bytes,
five writes of 20 bytes, two writes of 50 bytes, or some other combination of writes that
r- g totals 100 bytes., One process could also write 55 bytes into the FIFO, followed by
o - another process writing 45 bytes. The data is a byte stream with no interpretation done
bror % by the system. If any interpretation is desired, the writing process and the reading pro-
 to % cess must agree to it a priori and do it themselves.
tast Sometimes an application wants to impose some structure on the data being trans-
ferred. This can happen when the data consists of variable-length messages and the
wer . reader must know where the message boundaries are so that it knows when a single
ate b message has been read. The following three techniques are commonly used for this:
st 2
 of & 1. Special termination sequence in-band: many Unix applications use the newline
in ¥ character to delineate each message. The writing process appends a newline to

% each message, and the reading process reads one line at a time. This is what our

% client and server did in Figures 4.23 and 4.24 to separate the client requests. In

g general, this requires that any occurrence of the delimiter in the data must be

3} escaped (that is, somehow flagged as data and not as a delimiter).

& Many Internet applications (FTP, SMTF, HTTF, NNTP) use the 2-character
i to : sequence of a carriage return followed by a linefeed (CR/LF) to delineate text

| records.

& 2. Explicit length: each record is preceded by its length. We will use this technique

2 shortly. This technique is also used by Sun RPC when used with TCP. One

" : advantage to this technique is that escaping a delimiter that appears in the data
wf_" is unnecessary, because the receiver does not need to scan all the data, looking
i%f_: for the end of each record.
the i 3. One record per connection: the application closes the connection to its peer (its

et % TCP connection, in the case of a network application, or its [PC connection) to

68 Pipes and FIFOs Chapter 4

indicate the end of a record. This requires a new connection for every record,
but is used with HTTP 1.0.

The standard 1/0 library can also be used to read or write a pipe or FIFO. Since the
only way to open a pipe is with the pipe function, which returns an open descriptor,
the standard /0 function fdopen must be used to create a new standard 1/0 stream
that is then associated with this open descriptor. Since a FIFO has a name, it can be
opened using the standard [/0 fopen function.

More structured messages can also be built, and this capability is provided by both
Posix message queues and System V message queues. We will see that each message
has a length and a priority (System V calls the latter a “type”). The length and priority
are specified by the sender, and after the message is read, both are returned to the
reader. Each message is a record, similar to UDP datagrams (UNPv1).

We can also add more structure to either a pipe or FIFO ourselves. We define a mes-
sage in our mesg . h header, as shown in Figure 4.25,

pipemesg mesg.h

1 #include "unpipc.h"
2 /% Our own "messages® to use with pipes, FIFOs, and message gueues. */

3 /* want sizecf(struck mymesg) <= PIPE_BUF */
4 #define MAXMESGDATA (PIPE_BUF - Z*sizeofllongl)

5 f* length of mesg_len and mesg_type */

& #define MESGHDRSIZE (sizeof{struct mymesg] - MAXMESGDATA)

T atruct mymesg {

g long mesg_len; /* dbytes in mesg_data, can be 0 v/
9 long mesg_type; /* messzAage Cype, muat be = 0 */f

10 char mesg_data [MAXMESGDATA] ;

11 }:

12 ssize_t mesg_send(int, struct mymesg *);
13 woid Mesg_send(int, struct mymesg *);
14 ssize_t mesg_recviint, struct mymesg *);
15 ssize_t Mesg_recviint, atruct mymesg *);

pipemesg (mesgh
Figure 425 Our mymesg structure and related definitions.

Each message has a mesg_type, which we define as an integer whose value must be
greater than 0. We ignore the type field for now, but return to it in Chapter 6, when we
describe System V message queues. Each message also has a length, and we allow the
length to be zero. What we are doing with the mymesg structure is to precede each mes-
sage with its length, instead of using newlines to separate the messages. Earlier, we
mentioned two benefits of this design: the receiver need not scan each received byte
looking for the end of the message, and there is no need to escape the delimiter (a new-
line} if it appears in the message.

Figure 4.26 shows a picture of the mymesg structure, and how we use it with pipes,
FIFOs, and System V message queues.

-

TR

o Section 4.10

Streams and Messages A9

second argument for write and read
{ second argument for magand and megrov
|

|
| 1
| b el @R

| AU R |

| 1
| mesq_len | mesg_type

|
i .
| mesg_data

B —
Svstem V message: megbuf (),
used with System Y message queues,
msgsnd and megrov functions

T, P P S R
I'd
.

Chr message: mymesg{},
used with pipes and FIFOs,

write and read functions

Figure 4.26 Our mymesg structure.

We define two functions to send and receive messages. Figure 427 shows our
mesg_send function, and Figure 4.28 shows our mesg_recv function.

----- — - pipemesg fmesg send.c
1 #include "meag.h"

ssize_t

mesg_send(int fd, struct mymesg *mptrk

return {write{fd, mptr, MESGHDRSIZE + mptr->mesg_len))

o R de Led B3

[

e pipemesg fmesg_send.c
Figure 4.27 mesg_send function.

- pivemesg [mesg_recv.c
1 #include "mesg.h"

ssize_t
mesg_recviint fd, struct mymesg *mptr}

e e R e
t

SR

size_t len:
asize_t n;

o s B

.

/* read message header first, to get len of data that follows
= if | [n = Read(fd, mptr, MESGHDRSIZE!) == 0]
return (0] /* end of file
10 elge if (mn !'= MEZIGHDORSIZE)

e
L)

e 11 gerr_guit{"message header: expected %d, got %4", MESGHDRSIZE, n};
*
7

v

12 if { [len = mptr->mesg_len) > 0)

13 if { {n = Read(fd, mptr->mesg data, len)) != len)

14 err_guit|"message darta: expected %d., got %d", len, n);
15 return (lenj;,

1 }

3

pipemesg (mesg_reco.c

Figure 4.28 mesg_recv function.

B

70 Pipes and FIFOs Chapter 4

It now takes two reads for each message, one to read the length, and another to read
the actual message {if the length is greater than 0).

Careful readers may note that mesg_recwv checks for all possible errors and terminates if one
occurs. Mevertheless, we still define a wrapper function named Mesg_recv and call it from
our prigzrams, for consistency.

We now change our client and server functions to use the mesg_send and
mesg_recv functions. Figure 4.29 shows our client.

pipemesg [client.c

1 #include "meag.h”

2 wolid

3 elient (int readfd, int writefd)

4 1

5 size_t len;

L] s5ize_t n;

7 SLruct mymesg mesg;

8 f* read pathname */

9 Fgets |(mesg.mesg_data, MAXMESGDATA, stdin);

10 len = strlenimesg.mesg_data);
11 if imesg.mesg_datallen - 1] == *\n’}
1z len==; /* delete newline from fgets() =/
13 mesg.mesg_len = len;

14 mesg.mesg_type = 1;
15 /* write pathname to IPC channel =/

16 Mesg_send(writefd, &amesgl;

17 /* read from IPC, write to standard ocutput */
18 while { (n = Mesg_recv(readfd, &mesg}) = 0}

19 Write{STDOUT_FILENO, mesg.mesg_data, nj;
20}

pipemesg [clienf.c

Figure 4.29 Our client function that uses messages.

Read pathname, send to server

§-1§ The pathname is read from standard input and then sent to the server using
mesg_send.
Read file’s contents or error message from server

17-1% The client calls mesg_recv in a loop, reading everything that the server sends back.
By convention, when mesg_recv returns a length of 0, this indicates the end of data
from the server. We will see that the server includes the newline in each message that it
sends to the client, so a blank line will have a message length of 1.

Figure 4.30 shows our server.

line per message. A message with a length of () indicates the end of the file.

ey 4 Section 4.10 Streams and Messages 71
read : S —— pipemesg (serverc
1 #include "mesg.h" !
- 2 void
- i zerver(int resdfd, int writefd)
E from
d {
5 FILE *fp;
B ssize_t n;
and 7 struct mymesg mesd;
B /* read pathname from IPC channel */f
dert) 9 .'_nesg.nl\egg_':y'pe = 1;
10 if [in = Mesg_recvireadfd, &mesg)) == 0]
11 err_guit | "pathnams miasing*):
12 mesg.mesg_dataln] = ‘07 ; /* null terminate pathname */
13 if [(fp = fopenimesg.mesg_data, "z} == NULL) {
14 /* error: must tell client */f
15 snprintf (mesg.mesg_data + n, sizeof(mesg.mesg_data} - n,
16 *: can't open, %s\n", strerror(errno)};
17 mesg.meag_len = strlen(mesg.mesg_datal;
18 Mesg_send(writefd, Eemesg);
1 1 elae |
2 /* fopen succeeded: copy file to IPC channel */
21 while (Fgets(mesg. mesg_data. MAXMESGDATA, fp) I= NULL) {
22 mesy.mesg_len = strleni{mesg.mesg_data);
23 Mesg_send{writefd, &Lmesag);
24 }
25 Fologe (fp};
246 ¥
27 f* send a O-length message to signify the end */f
28 meag.meag_len = 0;
29 Mesg_send|writefd, Lmesg):
30])
1 — BiETHESE | 2erTer.s
fent.c - pipemesg se
Figure 430 Our server function that uses messages.
i Read pathname from IPC channel, open file
sing | g-18 The pathname is read from the client. Although the assignment of 1 to mesg_type
appears useless (it is overwritten by mesg_recv in Figure 4.28), we call this same func-
% tion when using System V message queues (Figure 6.10), in which case, this assignment
o is needed (e.g., Figure 6.13). The standard 1/0O function fopen opens the file, which
back. g differs from Figure 4.101, where we called the Unix | SO function ocpen to obtain a
data @ descriptor for the file. The reason we call the standard 1/0 library here is to call £gets
Bat it é to read the file one line at a time, and then send each line to the client as a message.
% Copy file to client
3 19-26 If the call to fopen succeeds, the file is read using fgets and sent to the client, one
3
%
+
‘:)__.
4
:“.
:
E

72

4.1

Pipes and FIFOs Chapter 4

When using either pipes or FIFOs, we could also close the IPC channel to notify the
peer that the end of the input file was encountered. We send back a message with a
length of 0, however, because we will encounter other types of IPC that do not have the
concept of an end-of-file.

The main functions that call our client and server functions do not change at
all. We can use either the pipe version (Figure 4.8) or the FIFO version (Figure 4.16).

Pipe and FIFO Limits
The only system-imposed limits on pipes and FIFOs are

OPEN_MAX the maximum number of descriptors open at any time by a process
(Posix requires that this be at least 16}, and

PIPE_BUF the maximum amount of data that can be written to a pipe or FIFO
atomically (we described this in Section 4.7; Posix requires that this be
at least 512}

The value of OPEN_MAX can be queried by calling the sysconf function, as we show
shortly. It can normally be changed from the shell by executing the ulimit command
(Bourne shell and KornShell, as we show shortly) or the 1imit command (C shell). It
can also be changed from a process by calling the setrlimitc function (described in
detail in Section 7.11 of APUE).

The value of PIPE_EBUF is often defined in the <1imits.h> header, but it is consid-
ered a pathname variable by Posix. This means that its value can differ, depending on the
pathname that is specified (for a FIFO, since pipes do not have names), because differ-
ent pathnames can end up on different filesystems, and these filesystems might have
different characteristics. The value can therefore be obtained at run time by calling
either pathconf or fpathconf. Figure 4.31 shows an example that prints these two
limits.

pipe | pipeconf.c

1 #include "unpipe. h”

2 int

3 mainiint arge, char *=argv)

4

5 if [argc !'= 2}

& err_guit(*usage: pipeconf <pathnames="];

7 printf (“PIPE_BUF = %1d, OPFEN _MAX = %ld\n*,

1 Pathconf (argv[l], _PC_PIPE BUF}, Sysconf{_SC_OPEN_MAX)];

- exit (0} ;

10 L.
pipe pipeconf.c

Figure 4.31 Determine values of PTPE_BUF and OPEN_MAY at run time.

pteT 4 vo Section 4.12 Summary 73
.
¥ the 3 Here are some examples, specifying different filesystems:
e -
E"_‘-" a “ solaris % pipeconf / Solariz 2.6 default vales
e e ; PIPE_EUF = 5120, OFEN_MAX = &4
solaris % pipeconf /home
g= at PIPE_EUF = 5120, OPEN_MAX = &4
i zolaris % pipeconf /tmp
i o PIPE_BUF = 5120, OPEN_MAX = 64
&
ﬁ alpha % pipeconf / Dhgital Lnix 4,08 default values
3* PIPE_BEUF = 4096, OPEN_MAX = 4098
3 alpha % pipeconf fusr
'j: PIPE_BUF = 40%&, OPEN_MAX = 4038
m We now show how to change the value of OPEN_MAX under Solaris, using the Korn-
scess | Shell.
%" solaris % ulimit -ns display max # descriptors, soft limil
FIFO - o .
L . 2 golaris % ulimit -nH display max # descriptors, hard limit
s De i 1024
3 solaris % ulimit -ng§ 512 set soft limit fo 512
- solaris % pipeconf / verify fhat change has occwrred
ghow FIPE_BUF = 5120, OPEN_MAX = 512
pand &
i, It - Although the value of PIPE_EUF can change for a FIFO, depending on the underlying file-
= in ; system in which the pathname is stored, this should be extremely rare.

- Chapter 2 of APUE describes the fpatheonf, pathconf, and sysconf functions, which pro-
g i vide run-time information on certain kernel limits. Posix 1 defines 12 constants that begin with
@ the & _PC_and 52 that begin with _sc_. Digital Unix 4.0B and Solaris 2.6 both extend the latter,
affer- i defining about 100 run-Hme constants that can be queried with syscont.
have . : . .
fin The getconf command is defined by Posix.2, and it prints the value of most of

B & these implementation limits. For example
¥ ftwo

alpha % getconf OPEN_MAX
. : 4096
] .C « alpha % getconf PIPE_BUF /

2 4096
&
>
412 Summary
: Pipes and FIFOs are fundamental building blocks for many applications. Pipes are
commonly used with the shells, but also used from within programs, often to pass infor-
: mation from a child back to a parent. Some of the code involved in using a pipe (pipe,

ot i fork, close, exec, and waitpid) can be avoided by using popen and pclose,
: ; which handle all the details and invoke a shell.

74 Pipes and FIFOs Chapter 4

FIFOs are similar to pipes, but are created by mkfifo and then opened by open.
We must be careful when opening a FIFO, because numerous rules (Figure 4.21) govern
whether an cpen blocks or not.

Using pipes and FIFOs, we looked at some client-server designs: one server with
multiple clients, and iterative versus concurrent servers. An iterative server handles
one client request at a time, in a serial fashion, and these types of servers are normally
open to denial-of-service attacks. A concurrent server has another process or thread
handle each client request.

One characteristic of pipes and FIFOs is that their data is a byte stream, similar to a
TCP connection. Any delineation of this byte stream into records is left to the applica-
tion. We will see in the next two chapters that message queues provide record bound-
aries, similar to UDP datagrams.

Exercises

41 In the transition from Figure 4.3 to Figure 4.4, what could happen if the child did not
closeifd[1]}7?

42 In describing mkfi fo in Section 4.6, we said that to open an existing FIFO or create a new
FIFOY if it does not already exist, call mkfifo, check for an error of EEXIST, and if this
occurs, call open. What can happen if the logic is changed, calling open first and then
mkfifo if the FIFO does not exist?

4.3 What happens in the call to pepen in Figure 4,15 if the shell encounters an error?

44 Remove the open of the server’s FIFO in Figure 4.23 and verify that this causes the server to
terminate when no more clients exist.

4.5 In Figure 4.23, we noted that when the server starts, it blocks in its first call to open until
the first client opens this FIFO for writing. How can we get around this, causing both
opens to return immediately, and block instead in the first call to readline?

4.6 What happens to the client in Figure 4.24 if it swaps the order of its two calls to cpen?

4.7 Why is a signal generated for the writer of a pipe or FIFO after the reader disappears, but
not for the reader of a pipe or FIFO after its writer disappears?

4.8 Write a small test program to determine whether fstat returns the number of bytes of data
currently in a FIFO as the st_size member of the stat structure.

4.9 Write a small test program to determine what select returns when you select for writabil-
ity on a pipe descriptor whose read end has been closed.

=Tl

with

s
ally
read
D a
fica-
and-

E ot
new
this
then
T to
it
both
. but
data

abil-

R

S A e P

i

A e S A R T e e R e R R

AR

A]

5.1

Posix Message Queues

Introduction

A message queue can be thought of as a linked list of messages. Threads with adequate
permission can put messages onto the queue, and threads with adequate permission
can remove messages from the queue. Each message is a record (recall our discussion of
streams versus messages in Section 4.10), and each message is assigned a priority by the
sender. No requirement exists that someone be waiting for a message to arrive on a
queue before some process writes a message to that queue. This is in contrast to both
pipes and FIFOs, for which having a writer makes no sense unless a reader also exists.

A process can write some messages to a queue, terminate, and have the messages
read by another process at a later time. We say that message queues have kernel persis-
tence (Section 1.3). This differs from pipes and FIFOs. We said in Chapter 4 that any
data remaining in a pipe or FIFO when the last close of the pipe or FIFO takes place, is
discarded.

This chapter looks at Posix message queues and Chapter 6 looks at System V mes-
sage queues. Many similarities exist between the two sets of functions, with the main
differences being;

* A read on a Posix message queue always returns the oldest message of the high-
est priority, whereas a read on a Systern V message queue can return a message
of any desired priority.

» Posix message queues allow the generation of a signal or the initiation of a
thread when a message is placed onto an empty queue, whereas nothing similar
is provided by System V message queues.

75

76 Posix Message Chieues Chapter 5

Every message on a queue has the following attributes:

s an unsigned integer priority (Posix) or a long integer type {System V),
o the length of the data portion of the message (which can be 0), and
» the data itself (if the length is greater than 0).

Notice that these characteristics differ from pipes and FIFOs. The latter two are byte

streams with no message boundaries, and no type associated with each message. We

discussed this in Section 4.10 and added our own message interface to pipes and FIFOs.
Figure 5.1 shows one possible arrangement of a message queue.

 head N next A next 1. w NULL
| ma_maxmsg priority = 30 priority = 20 priority = 10
rmq_msqsizc_} length = | length=2 | length =3
data
_ data
data

Figure 5.1 Possible arrangement of a Posix message queus containing three messages.

We are assuming a linked list, and the head of the list contains the two attributes of the
queue: the maximum number of messages allowed on the queue, and the maximum
size of a message. We say more about these attributes in Section 5.3.

In this chapter, we use a technique that we use in later chapters when looking at
message queues, semaphores, and shared memory. Since all of these IPC objects have at
least kernel persistence (recall Section 1.3), we can write small programs that use these
techniques, to let us experiment with them and learn more about their operation. For
example, we can write a program that creates a Posix message queue, write another pro-
gram that adds a message to a Posix message queue, and write another that reads from
one of these queues. By writing messages with different priorities, we can see how
these messages are returned by the mg receive function.

5.2 mg open, mq close, and mg unlink Functions

The mg_open function creates a new message (ueue Or Opens an existing message
queue.

] #include <mgueus.h>

mgd_t mg_open(const char *mame, int oflag,
/* mode_t mede, struct mg_attr *aHr */)

Returns: message queve descriptor if Ok, -1 on error

apter 5 i Section 5.2 mg open, mg close, and mg_unlink Functions 77
% We describe the rules about the name argument in Section 2.2.
The oflag argument is one of O_RDONLY, O_WRONLY, or O_RDWR, and may be bit-
wise-ORed with O_CREAT, 0_EXCL, and 0_NONBLOCK. We describe all these flags in
%« Section 2.3.
§ When a new queue is created (O_CREAT is specified and the message queue does
e byte g not already exist), the mode and attr arguments are required. We describe the mode val-
pe. We = ues in Figure 2.4. The aftr argument lets us specify some attributes for the queue. If this
FIFOs 1 argument is a null pointer, the default attributes apply. We discuss these attributes in
B Section 5.3.
. & The return value from mg_open is called a message queue descriptor, but it need not
i £ be (and probably is not) a small integer like a file descriptor or a socket descriptor. This
1 value is used as the first argument to the remaining seven message queue functions.
- Solaris 2.6 defines mgd_t as a vold* whereas Digital Unix 4.0B defines it as an int. In our
sample implementation in Section 5.5, these descriptors are pointers to a structure. Calling
.:-! these datatypes a descriptor is an unfortunate mistake.
.. An open message queue is closed by mg_close.
i . #include <mgueus.h=
‘g int mg_closeimgd_t mgdes) ;
4 _af the g Returns: 0 if OK, -1 on error
PO ;
sing at % The functionality is similar to the close of an open file: the calling process can no
6) t & longer use the descriptor, but the message queue is not removed from the system. If the
:i;:e g process terminates, all open message queues are closed, as if mg_close were called.
on. For % To remove a name that was used as an argument to mg_open from the system,
bEr_prfr- ”' mg_unlink must be called.
ds from %
ee how g{ #include <mgueus.h> |
'i int mg unlink{const char *name): |
: |
: Returns: 0if OK, -1 on error |
s
_ ;| Message queues have a reference count of how many times they are currently open (just
message i like files), and this function is similar to the unlink function for a file: the name can be
% removed from the system while its reference count is greater than 0, but the destruction
e : E of the queue (versus removing its name from the system) does not take place until the
% last mg_close occurs.
& Posix message queues have at least kernel persistence (recall Section 1.3). That is,
% they exist along with any messages written to the queue, even if no process currently
‘ & has the queue open, until the queue is removed by calling mg_unlink and having the
wwor__ %‘ queue reference count reach 0.

78 Posix Message Queues

Chapter 5

We will see that if these message queues are implemented using memory-mapped files (Sec-
tion 12.2), then they can have filesystem persistence, but this is not required and cannot be
counted on.

Example: mgcreatel Program

B-16

17

Since Posix message queues have at least kernel persistence, we can write a set of small
programs to manipulate these queues, providing an easy way to experiment with them.
The program in Figure 5.2 creates a message queue whose name is specified as the
command-line argument.

pxmsg (mycreatel

1 #include *unpipc.h"

2 int

1 maini{int argc, char **argv)

4 (

5 inc z, flags:

& mgd_t meged

7 flags = O_RDWE | O_CREAT;

] while [(& = Getoptlargc, argv, "e"}) != -1]
] switch {c) {

10 case ‘'e':

11 flagas |= O_EXCL;

12 break:

13 1

14 1

15 if {optind != argc - 1}

16 err_qguit{"usage: mgcreate [-2] <name=");
17 magd = Mg copeni{argvioptind], flags, FILE_MCDE, HNULL}:
18 Mg close (mgd)

19 exit(0);

20}

S — pxtitsg | macrentel .o

Figure 5.2 Create a message queue with the exclusive-create flags specified.

We allow a -e option that specifies an exclusive create. (We say more about the
getopt function and our Getopt wrapper with Figure 5.5.) Upon return, getopt
stores in opt ind the index of the next argument to be processed.

We call mg_open with the IPC name from the command-line, without calling our
px%_ipe_name function (Section 2.2). This lets us see exactly how the implementation
handles these Posix IPC names. (We do this with all our simple test programs through-
out this book.)

Here is the output under Solaris 2.6:

solaris % mgoreatel /temp.1234 [firs create works
aolaris % 18 -1 /tmp/.*1234

- =T CW— 1 ratevens otherl 132632 Oct 23 17:08 /tmp/ . MQDtemp.l234
- FW-EW-EW- 1 rstevens otherl 0 Oct 23 17:08 /tmp/ . MQLtemp. 1234
—rW-F—-F== 1 rstewvens otherl 0 oOct 23 17:08 /tmp/ . MOPtemp. 1234
solaris & mgoreatel -e /temp.1234 second create with -¢ farls

mg_open error for /Jtemp.l1234: File exists

e 5 Section 5.3 mg_getatcr and mg_setattr Functions 79

(We call this version of our program mgcreatel, because we enhance it in Figure 5.5
after describing attributes.) The third file has the permissions that we specify with our
FILE_MODE constant (read-write for the user, read-only for the group and other), but
the other two files have different permissions. We guess that the filename containing D
contains the data, the filename containing L is some type of lock, and the filename con-
taining P specifies the permissions.

Under Digital Unix 4.0B, we can see the actual pathname that is created.

mall
ReTT.
s the alpha % mgcereatel /tmp/myq.l1234

alpha % 18 -1 Jtmp/myg.l234

-rw-r--r-- 1 rstevens system 11976 Dot 23 17:04 /bmplemyg.1234

e] . alpha % mgoreatel -e /tmp/myg.1234
mg open error for Jomps/myg.l1234: File exists

Example: mgunlink Program

Figure 5.3 is our mgunlink program, which removes a message queue from the system.

— prmse fmgunlink.c

1 #include "unpipc.h®

int
maini{int argc, char *~argv)
if largc 1= Z}
err_guit(*usage: mgunlink <name>"]:

oA e L B

Mg _unlink (argv(1]};
2 exit ()

_________ - prmsg imigunlink.c

Figure 5.3 mg_unlink a message queue

el .c We can remove the message queue that was created by our mgcreate program.
soplaris ¥ mgunlink /temp.l1234

E the All three files in the / tmp directory that were shown earlier are removed.

5.3 mg getattr and mg setattr Functions

Each message queue has four attributes, all of which are returned by mg_getattr and
one of which is set by mg_setattr.

finclude <mgueue, h>
int mg_getattr{mgd_t mgdes, struct mg attr *afirl;

int mg setattr(mgd_t mgdes, const struct mg attr *affr, struct mg attr *oalir};

Both return: 0 if OK, -1 on error

80 Posix Message Queues Chapter 5

The mg_attr structure contains these attributes.

struck mg AtCy {
long mg flags; /* message queue flag: 0, O_NONBLOCE */
long mg maxmsg; /* max npumber of messages allowed on queue */
long mg msgsize; /* max size of a message (in bytes) */
long mg curmsgs; /* number of measages currently on queue */
¥:

A pointer to one of these structures can be passed as the fourth argument to mg_open,
allowing us to set both mg_maxmsg and mg_msgsize when the queue is created. The
other two members of this structure are ignored by mg_open.

mg_getattr fills in the structure pointed to by atfr with the current attributes for
the queue.

mg_setattr sets the attributes for the queue, but only the mg_£lags member of
the mg_attr structure pointed to by attr is used, to set or clear the nonblocking flag.
The other three members of the structure are ignored: the maximum number of mes-
sages per queue and the maximum number of bytes per message can be set only when
the queue is created, and the number of messages currently on the queue can be fetched
but not set.

Additionally, if the oattr pointer is nonnull, the previous attributes of the queue are
returned (mg_flags, mg_maxmsg, and mg_msgsize), along with the current status of
the queue (mg_curmsgs).

Example: mggetattr Program

The program in Figure 5.4 opens a specified message queue and prints its attributes.

wmsg fmggetattr.e
1 #include *unpipec.h" pxmsg/maqge
2 int
3 main(int arge, char **argv)
4 {
5 mgd_t mgd;
f gbruct mg attr attr;
7 if farge '= 21
A err_guit|{“usage: mggetattr <pname>"];
g9 mgd = Mg _openiargv{l], O_RDONLY];:
1o Mg _getattr(mgd, &atktr);
11 printf{"max #msgs = %1ld, max #bytes/msg = %14, "
12 "#currently on gueue = ¥1ld\n",
13 attr.mg mawxmsg, attr.mg msgsize, ACCY.MO_Curmsgs) ;
14 Mg close(mgd);
15 exit (0] ;
16 }

pamsg/magetatire
Figure 5.4 Fetch and print the attributes of a message queue.

We can create a message queue and print its default attributes.

SRR

ppter 5 ; Section 5.3 mg_getattr and mg setattr Functions 81
TI——— I-;:' e =
solaris % mgoreatel /hello.world
solaris % mggetattr /hello.world
5' max #mesgs = 128, max #bytes/msg = 1024, #currently on gqueue = 0
We can now see that the file size listed by 1s when we created a queue with the default
attributes following Figure 5.2 was 128 x 1024 + 1560 = 132, 632. The 1560 extra bytes are
probably overhead information: 8 bytes per message plus an additional 536 bytes.
poen, g Example: mgereate Program
. The vﬁ
g We can modify our program from Figure 5.2, allowing us to specify the maximum num-
=< for | ber of messages for the queue and the maximum size of each message. We cannot spec-
ify one and not the other; both must be specified (but see Exercise 5.1). Figure 5.5 is the
ber of New Program.
2 flag. pxmsg/mgcreate.c
F mes- 1 #include "unpipe.h®
when 2 struct mg_attr attr; /% mg_maxmsg and mg_msgsize both init to 0 %/
hed
B i int
4 main{int argc, char **argv)
e are 5
stus of [int c, flags;
7 mgd_t mgd;
] flags = O_RDWR | O_CREAT;
] while [(o = Getoptlarge, argv, "em:z:")) I= -1} |
10 switch (¢} {
- 11 case ‘&';:
12 flags |= QO_EXCL;
petalir.c 13 break:;
?_‘ 14 case ‘m’:
f 15 attr.mg maxmsg = atel (optarg):
& 16 break;
r> 17 case ‘z’':
L 18 attr.mg msgsize = atol|optarg);
§« 1% break;
& 21 }
»*; 22 if {optind != argc - 1}
% 23 err_quit{"usage: mgcreate [-e] [-m maxmsg -z megsize] <namex");
‘ 24 if ([(attr.mg masxmsg != 0 && attr.mg msgsize == 0) ||
v; 25 (ater.mg maxmsg == 0 && atCr.mg msgsize != 0))
& 28 err_guit{"must specify both -m mawxmsg and -z msgsize”};
i
& 27 mgd = Mg open{argvioptind)], flags, FILE_MODE,
i 28 [attr.mg maxmsg != 0) 7 Eattr : NULL)
. ': 29 Mg close{mgd) ;
.
a & 30 exir{0);
§ EREN
% pamsg mgcreate.c
E Figure 5.5 Modification of Figure 5.2 allowing attributes to be specified.
i

82 Posix Message Queues Chapter 5

To specify that a command-line option requires an argument, we specify a colon fol-
lowing the option character for the m and = options in the call to getopt. When pro-
cessing the option character, optarg points to the argument.

Owur Getopt wrapper function calls the standand library’s getopt function and terminates the
process if getopt detects an error: encountering an option letter not included in the third
argument, or an option letter without a required argument (indicated by a colon Following the
option letter in the third argument). In either case, getopt writes an error message to stan-
dard error and returns an error, which causes our Getopt wrapper to terminate. For example,
the following two errors are detected by getopt:

solaris | myersate =@
micreate: option requires an argument -- =
salaris % Egoreate -q
mgcreate: illegal option == g
The following error (not specifying the required name argument} is detected by our progran:

solarisa % myoreate
ugage: micreate [-e | [-m maxmsg -z msgsize | <names

If neither of the two new options are specified, we must pass a null pointer as the
final argument to mg_open, else we pass a pointer to our attr structure.

We now run this new version of our program, specifying a maximum of 1024 mes-
sages, each message containing up to 8192 bytes.

zslaris % mgoreate -e -m 1024 -z 8192 /foobar

zolariz % 1ls -al /tmp/.*foobar

—IW-IW=IW= 1 rstevens otherl 8397336 Oct 25 11:29 /tmp/.MQDIocobar
~rW=IW-TW- 1 rstevens otherl 0 Oct 25 11:29 /emp/ .MQLIocbhar
“TW=T==T-— 1 rstevens otherl 0 oct 25 11:29 /omp/.MoPfoobar

The size of the file containing the data for this queue accounts for the maximum number
of maximum-sized messages (1024 x 8192 = 8, 388, 608), and the remaining 8728 bytes of
overhead allows room for 8 bytes per message (8 x 1024) plus an additional 536 bytes.

If we execute the same program under Digital Unix 4.0B, we have

alpha % mgcreate -m 256 -z 2048 /tmp/bigg

alpha % 1s -1 /tmp/bigg

—IW=E==E== 1 ratevens system HITZEE Ogt 25 15:38 Stmp/bigg
This implementation appears to allow room for the maximum number of maximum-
sized messages (256 x 2048 = 524,288) and the remaining 13000 bytes of overhead
allows room for 48 bytes per message (48 x 256) plus an additional 712 bytes.

54 mg send and mg receive Functions

These two functions place a message onto a queue and take a message off a queue.
Every message has a priority, which is an unsigned integer less than MQ_PRIO_MAX.
Posix requires that this upper limit be at least 32,

Solaris 2.6 has an upper limit of 32, but this limit is 256 with Digital Unix 4.0B, We show how
to obtain these values with Figure 5.8.

er 3 Section 5.4 mg send and mg receive Functions B3
on fol- mg receive always returns the oldest message of the highest priority from the
n pro- specified queue, and the priority can be returned in addition to the actual contents of
the message and its length.
s the This operation of mg_receive differs from that of the System V magrov (Section 6.4)
o third System V messages have a type field, which is similar to the priority, but with msgrev, we can
wing the specify three different scenarios as to which message is returned: the oldest message on the
B stan- quens, the oldest message with a specific tvpe, or the oldest message whose type is less than or
sample, equal to some value.
#include =mgueus, h>
int mg _send(mgd_t mgdes, const char *pir, size_t len, unsigned int prio);
AT Keturns: 0 if OK, -1 on error
ssize_t mg receive(mgd_t mgdes, char *ptr, size_t len, unsigned int *priop) ;
‘&= the Returns: number of bytes in message if OK, <1 on error
4 mes- The first three arguments to both functions are similar to the first three arguments for
write and read, respectively.
Declaring the pointer argument to the buffer as a char* looks like a mistake, woid® would be
more consistent with other Posix.1 functions.
The value of the len argument for mg receive must be at least as big as the maxi-
mum size of any message that can be added to this queue, the mg_msgsize member of
be the mg_attr structure for this queue. If len is smaller than this value, EMSGSIZE is
smber returned immediately.
wies of
Fies. This means that most applications that use Posix message queues must call mg_getator after
opening the queune, to determine the maximum message size, and then allocate one or more
read buffers of that size, By requiring that the buffer always be large enough for any message
om the queue, mg_receive does not need to return a notification if the message is larger than
the buffer. Compare, for example, the MSG_NOERRCR flag and the E2BIG error possible with
Swystem V message queues (Section 6.4) and the M3G_TRUNC flag with the recvmag function
4 that is used with UDP datagrams (Section 13.5 of UNTPv1L
EETUIn-
erhead prio is the priority of the message for mg_send, and its value must be less than

MQ_PRIC_MAX, If priop is a nonnull pointer for mg receiwve, the priority of the
returned message is stored through this pointer. If the application does not need mes-
sages of differing priorities, then the priority can always be specified as 0 for mg_send,
and the final argument for mg_receive can be a null pointer.

A B AT

o b

gueue A O-byte message = allowed. This instance is one in which what is important is not what is
e ’_XI said in the standard (Le., Posix 1), but what is nof said: nowhere is a O-byte message forbidden.
o b The return value from mg_receive is the number of bytes in the message (if OK) or -1 {if an
errar), 50 a return value of 0 indicates a O-length message.

o how o Ome feature is missing from both Posix message queues and System V message queues: accu-
rately identifying the sender of each message to the receiver. This information could be usetul

84 Posix Message Queues Chapter 5

in many applications. Unfortunately, most [PC messaging mechanisms do not identify the
sender In Section 15.5, we describe how doors provide this identity. Section 14.8 of UnNFvl
deseribes how BSD/OS provides this identity when a Unix domain socket s used. Sec-
tion 15.3.1 of APUE describes how SVR4 passes the sender’s identity across a pipe when a
descriptor is passed across the pipe. The BSD/OS technique is not widely implemented, and
although the SVR4 technique is part of Unix 96, it requires passing a descriptor across the pipe,
which is normally more expensive than just passing data across a pipe. We cannot have the
sender include its identity (e.g., its effective user D) with the message, as we cannot trust the
sender to tell the truth. Although the access permissions on a message queue determine
whether the sender is allowed to place a message onto the queue, this still does not identify the
sender. The possibility exists to create one queue per sender (which we talk about with regard
to System V message queues in Section 6.8, but this does not scale well for large applications.
Lastly, realize that if the message queue functions are implemented entirely as user functions
{as we show in Section 5.8), and not within the kernel, then we could not trust any sender
identity that accompanied the message, as it would be easy to forge,

Example: mgsend Program

Figure 5.6 shows our program that adds a message to a queue.

xmse [mgsend.c
1 #include *unpipec.h” F gma
2 int
31 mainiint argc, char **argv)
4
5 mgd_t mgd;
] void *ptr;
7 gize_t len;
B uint_t prio;
9 if large != 4]
10 err_guit (*usage: mgsend <name> <ibytess <prierity="i;
11 len = atoilargv[2]}):
12 pric = ateidargv([3]):
13 mgd = Mg _openiargv(l]. O_WRONLY) ;
14 ptr = Callec(len, sizeofichar)};
15 Mg sendi{mgd, ptr, len, priol;
16 exici);
17]

prmsg | mgsend.c

Figure 5.6 mgsend program.

Both the size of the message and its priority must be specified as command-line
arguments. The buffer is allocated by calloc, which initializes it to 0.

Example: mgreceive Program

The program in Figure 5.7 reads the next message from a queue.

Section 5.4 mg_send and mg_receive Functions 85

—_ xmsg [mgreceive.c
i‘h:cl 1 #include "unpipc.h” P &1ma
when 4 2 int
. and 3 main{int argc, char **argv)
e mipe 49
e the 5 int c, flags;
et the 1 mgd_t magd ;
germing 7 asize_t n:
iy the & ulnt_t prio;
g rezand 9 void Ybeuff;
anons. 10 struct mg_attr attr;
EECTIONS
s sender i1 flags = 0O_RDONLY;
; 12 while { (¢ = Getoptiargc, argv., *n"}) !=s -1] {
' 13 awitch {c) {
14 case ‘n':
15 flags |= O_NOMBLOCH;
16 kreak:
17 }
i 18 }
.“5"""1"" 19 if joptind != argc - 1)
; 20 err_gquit(usage: mgreceive [-n] <name>"}j;
21 mgd = Mg openlargv[optind], flags);
22 Mg getattri(mgd, &attr):
23 buff = Malloc{attr.m3 msgaize):;
24 n = Mg receive(mgd, buff, attr.mg magsize, &prio);
25 printf{"read %ld bvtes, priority = %usn", {(long) n, prio);
25 exit (0] ;
2T} ,
prmsgmareceive.c
Figure 5.7 mgreceive program.
Allow -n option to specify nonblocking
14-17 A command-line option of -n specifies nonblocking, which causes our program to
return an error if no messages are in the queue.
. . Open queue and get attributes
; 21-25 We open the queue and then get its attributes by calling mg_getattr. We need to
determine the maximum message size, because we must allocate a buffer of this size for
the call to mg_receive. We print the size of the message that is read and its priority.

:_-d-lme

Since n is a size_t datatype and we do not know whether this is an int or a long, we cast
the value to be a long integer and use the %18 format string. On a 64-bit implementation, int
will be a 32-bit integer, but long and size_t will both be 64-bit integers.

We can use these two programs to see how the priority field is used.

86 Posix Message Cueues Chapter

solaris % mgoreate /testl crete and get abtribites
solaris % mggetattr /testl
max #megs = 128, max #hytes/msg = 1024, #currently on queue = 0

solaris % mgeend /ftestl 100 99933 semd with inpalid priovity
mg_send error: Invalid argument

solariz % mgeend ftestl 100 & T bytes, priority of 6
solaris % mgesend /testl 50 18 50 bytes, priority of 18
splaris % mgeend ftestl 33 18 33 bytes, priovity of 18

anlaris % mgreceiwve /testl

read 50 bytes, priority = 18 oldest, highest priavity message (s relurned
solaris % mgreceive /testl

read 313 bytes, pricrity = 18

solaris @ mgreceive /testl

read 100 bytes, priority = &

solaris % mgreceive -n /testl specify nonblocking; quewe is empty
mg_recelve error: Resource remporarily unavailable

We can see that mg_receive returns the oldest message of the highest priority.

55 Message Queue Limits

We have already encountered two limits for any given queue, both of which are estab-
lished when the queue is created:

mg maxmsg the maximum number of messages on the queue, and

mg_msgsize the maximum size of a given message.
No inherent limits exist on either value, although for the two implementations that we
have looked at, room in the filesystem must exist for a file whose size is the product of
these two numbers, plus some small amount of overhead, Virtual memory require-
ments may also exist based on the size of the queue (see Exercise 5.5).

Two other limits are defined by the implementation:

MO OPEN_MAY the maximum number of message queues that a process can have
open at once (Posix requires that this be at least 8), and

MO _PRIO_MAX the maximum value plus one for the priority of any message (Posix
requires that this be at least 32).

These two constants are often defined in the <unistd.h> header and can also be
obtained at run time by calling the sysconf function, as we show next.

Example: mgsysconf Program

The program in Figure 5.8 calls sysconf and prints the two implementation-defined
limits for message queues.

s

g<tab-

=t we
et of
riTe-

g have

fPosix

= be

fefined

43

Section 5.6 mg_notify Function a7
wmEg | gayscont.c
1 #include ‘unpipec.h® prmsgimasy f
2 int
3 main{int argc, char **argv)
4 {
5 printf ("MQ_OPEN_MAX = %1d, MO _PRIC_MAX = %ld\n",
& Sy=cont (_SC_MQ_OPEN_MAX), =Sysconf(_SC_MQO_FRIO_MAX)) ;
7 exit{0);
a8}

5.6

pxmsg (mgsysconf.c

Figure 5.8 Call ayvaconf to obtain message queue limits,

If we execute this on our two systems, we obtain

solaris % mgeysconf

MO_OPEN MAX = 32, MO_PRIO_MAX = 32

alpha % mgesysconf
MO_OPEN_MAX = &4, MQ_PRIO_MAX = 256

mq_notify Function

One problem that we will see with System V message queues in Chapter 6 is their
inability to notify a process when a message is.placed onto a queue. We can block in a
call to msgrev, but that prevents us from doing anything else while we are waiting. If
we specify the nonblocking flag for msgrov (IPC_NOWAIT), we do not block, but we
must continually call this function to determine when a message arrives. We said this is
called polling and is a waste of CPU time. We want a way for the system to tell us when
a message is placed onto a queue that was previously empty.

This section and the remaining sections of this chapter contain advanced topics that you may
want to skip on a first reading

Posix message queues allow for an asynchronous event nofification when a message is
placed onto an empty message queue. This notification can be either

» the generation of a signal, or
* the creation of a thread to execute a specified function.

We establish this notification by calling mg_notify

| i 1 |

[#include <mgueue. h>
|

int mg notify (megd_t mgdes, const struct sigewvent #nofification) ;

Returns: 0 if 0K, =1 on error

This function establishes or removes the asynchronous event notification for the speci-
fied queue. The sigevent structure is new with the Posix.1 realtime signals, which we
say more about in the next section. This structure and all of the new signal-related con-
stants introduced in this chapter are defined by <signal . h>.

i
x
.
i
i
i
§
; 3
!

88

Posix Message (ueues

Chapter 5

union sigval |

int gival_int; St integer wvalue */
vold *sival_pbr; /* pointer walue */

struct sigewvent {

}i

int sigev_notify; /* SIGEV_{NONE, SIGNAL, THREAD} =/

int gigev_signo: /* signal number if SIGEV_SIGNAL */

unicn sigval sigev_walue; /* passed to signal handler or thread */
/* following two if SIGEV_THREAD */

void {*sigev_notify_function) {union sigwal);

pthread_attr_t *sigev_notify_attributes;

We will show some examples shortly of the different ways to use this notification, but a
few rules apply in general for this function.

If the notification argument is nonnull, then the process wants to be notified
when a message arrives for the specified queue and the queue is empty. We say
that “the process is registered for notification for the queue.”

If the notification argument is a null pointer and if the process is currently regis-
tered for notification for the queue, the existing registration is removed.

Only one process at any given time can be registered for notification for a given
queue.

When a message arrives for a queue that was previously empty and a process is
registered for notification for the queue, the notification is sent only if no thread
is blocked in a call to mg_receive for that queue. That is, blocking in a call to
mq_receive takes precedence over any registration for notification.

When the notification is sent to the registered process, the registration is
removed. The process must reregister (if desired) by calling mg_notify again.

One of the original problems with Unix signals was that a signal’s action was reset to
its default each time the signal was generated (Section 104 of APUEL Usually the
first function called by a signal handler was signal, to reestablish the handler. This
provided a small window of time, between the signal's generation and the process
reestablishing its signal handler, during which another occurrence of that sigmal
could terminate the process. At first glance, we seem to have a similar problem with
me_notify, since the process must reregister each time the notification occurs, But
message queues are different from signals, because the notification cannot occur
again until the queue is empty. Therefore, we must be careful to reregister before
reading the message from the queue.

Example: Simple Signal Notification

Before getting into the details of Posix realtime signals or threads, we can write a simple
program that causes SIGUSR1 to be generated when a message is placed onto an empty
queue. We show this program in Figure 5.9 and note that this program contains an
error that we talk about in detail shortly.

but a

pified
e say

egis-
;:i'ren

PEE 1S
sread
all to

gt b0
iy the
g This

signal
i with
. But
AT
o

gnple
Dty
B= an

e

T

N R e e R

Section 5.6 mg_natify Function §9

i§-20

pxmsg [mgnotifysiel.c

1 #include “unpipe . h®

2 mgd_t mged

3 woid *buff;

4 struct mg _akttr atbtr;

5 struct sigevent sigev;

& static void sig_usrliint);

7 int

B main{int argc, char **argv]

8 {

10 if (arge |= 2}

11 err_quit|"usage: mgnotifysigl <name=");

12 /* open gueue, get attributes, allocate read buffer =/
13 mgd = Mg _epeniargvil], C_RDONLY);

14 Mg getatbr (mgd, &attr);

15 buff = Malloc(attr.mg msgsize);

16 /* agtablish signal handler, enahle notification */
17 Signal (SIGUSREL1, sig_usrl);

18 sigev.sigev_notify = SIGEV_SIGMAL;

18 sigev.sigev_signo = SIGUSREL;

20 Mg notify{mgd, &ksigev);

21 for (: ;)
22 pause|)l; /* aignal handler does everything */
23 exit(0];
24}

25 static wvoid
26 aig_usrliint signeo)

27 0
28 asize_t n;
29 Mg_notify(mgd, &sigev); /* reregister first */
30 n = Mg _receive(mgd, buff, actr.mg msgsize, NUOLL);
31 printf ("SIGUSRL received, read %ld bytes\n®, {long) mn);
3z return;
33} .
- pmisg fmagnotifysigl.c
Figure 5.9 Generate STGUSR1 when message placed onto an empty queue lincorrect version).
Declare globals

We declare some globals that are used by both the main function and our signal
handler (sig_usrl)
Open queue, get attributes, allocate read buffer

We open the message queue, obtain its attributes, and allocate a read buffer.
Establish signal handier, enable notification

We first establish our signal handler for S1GUSR1. We fill in the sigev_notify
member of the sigevent structure with the SIGEV_SIGNAL constant, which says that

90 Posix Message Queues Chapter 5

we want a signal generated when the queue goes from empty to not-empty. We set the
sigev_signo member to the signal that we want generated and call mg_notify.

Infinite loop

21-22 Our main function is then an infinite loop that goes to sleep in the pause function,
which returns —1 each time a signal is caught.

Catch signal, read message

25-33 Our signal handler calls mg_notify, to reregister for the next event, reads the mes-
sage, and prints its length. In this program, we ignore the received message's priority.

The return statement at the end of =ig_usrl is not needed, since there is no return value
and falling off the end of the function is an implicit return to the caller. Mevertheless, the
author always codes an explicit return at the end of a signal handler to reiterate that the
return from this function is special. It might cause the premature returm {with an error of
ETINTE) of a function call in the thread that handles the signal.

We now run this program from one window

splaris % mgereate /testl creafe quene
splaris % mgnotifysigl /testl start program from Figure 5.9

and then execute the following commands from another window:
solaris % mgesend ftestl 50 16 send Si-byte message with priority of 16

As expected, our mgnotifysigl program outputs SIGUSR1 rece ived, read 50
bvtes.

We can verify that only one process at a time can be registered for the notification,
by starting another copy of our program from another window:

solariz % mgnotifysigl /testl
mg_notify error: Device busy

This error message corresponds to EBUSY.
Posix Signals: Async-Signal-Safe Functions

The problem with Figure 5.9 is that it calls mg_notify, mg_receive, and printf
from the signal handler. None of these functions may be called from a signal handler.

Posix uses the term async-signal-safe to describe the functions that may be called
from a signal handler. Figure 5.10 lists these Posix functions, along with a few that are
added by Unix 98,

Functions not listed may not be called from a signal handler. Note that none of the
standard 1/0 functions are listed and none of the pthread XXX functions are listed.
Of all the IPC functions covered in this text, only sem_post, read, and write are
listed (we are assuming the latter two would be used with pipes and FIFOs).

ANSI C lists four functions that may be called from a signal handler: abert, exit, longimp,
and signal. The first three are not listed as async-signal-safe by Unix 95.

[hapter 5 Section 5.6 my notify Function 91
i ==t the access | fpatheonf rename sysconf
=8 aio_return | fstak | rmdir tedrain
i aio_suspend fayne | sem_post teflow |
: | alarm getegid | setgid teflush i
Fnction, | cfgutispeed geteuid setpgid | togetattr
j_ | cfgecospead gektgid setsid ': togetpgrp
| cfsetispeed gekgroups setuid | toesendbreak
cisetospeed getpgrp sigaction | tesetattr
- chdir getpid sigaddset tosetpgrp
e _me':‘" chmod getppid sigdelset time
ﬁﬂ'ﬂt}r chown getuid sigemptyset timer getoverrun
: clock_gettime kill gigfillset timer_gettime
IH_T- value close link gigismember timer_settime
.‘Hﬂ'- the creat lsesk signal times
:lr that the dup mkdir sigpause umask
e 2TTOr of dup2 mkEifo sigpending UMIAmE
exacle Open slgprocmask unlink
axecve pathcont siggueus utime
_exit pause sigset wait
fcntl plipe sigsuspend walbpid
fdatasync raise sleap write
fark B read stat
Figure 5.10 Functions that are async-signal-safe.
r==d 50
: . Example: Signal Notification
shcation,
One way to avoid calling any function from a signal handler is to have the handler just
set a global flag that some thread examines to determine when a message has been
received. Figure 5.11 shows this technique, although it contains a different error, which
we describe shortly.
Global variable
2 Since the only operation performed by our signal handler is to set mgflag nonzero,
o the global variables from Figure 5.9 need not be global. Reducing the number of global
printf I variables is always a good technique, especially when threads are being used.
cdler. ;
be called Open message queua
f that are & 15-18 We open the message queue, obtain its attributes, and allocate a receive buffer.
-2
] x Initialize signal sets
:E;ﬂ:f £ 19-22 We initialize three signal sets and turn on the bit for SIGUSR1 in the set newmask.
e, -5
sire are Establish signal handler, enable notification

23-27 We establish a signal handler for s1GUSR1, fill in our sigevent structure, and call

: mg notify.
 Long imp,

92 Posix Message (Queues Chapter 3

tifysig?
1 #include *unpipc.h” pxnmgfnqﬂaa@mg .

2 wolatile sig_satomic T megflag: /* set nonzero by signal handler */
3 static void sig usrliint}:

4 int
5 main(int argec, char **argy)
& {
7 mgd_t mgd;
-] void *huaff;
9 ssize_t n;
10 sigset_t zercmask, newmask, oldmask;
11 atruct mg Aattr atktr;
12 struct sigevent sigev;
13 if (arge != Z)
14 err_guit{"usage: mgnotifysig2 <nama="] ;
15 /* ppen gqueue, get attributes, allocate read buffer */
16 mgd = Mo _openlaravill, 0_RDONLY) ;
17 Mg _getattr{mgd, Eattr):
18 buff = Malloc (attr.mg msgsize)
19 sigemptysetﬁazeramask}; /* no signals blocked */
20 Sig!mptyﬂet[&newmaakj;
21 2igemptyset (koldmask) ;
22 sigaddsett&nawmask, SIGUSRHL) ;
23 /+ establish signal handler, enable notification */
24 signal (SIGUSR1, sig_usrll;
25 sigev.sigev_notify = SIGEV_SIGNAL;
26 sigev,sigev_signo = SIGUSEL;
27 Mg _notify (mgd, LElgev):
28 for { : ¢+) 1
29 gigprocmask (SIG_BLOCK, snewmask, koldmask); /* block SIGUSRL */
ao while (mgflag == 0}
il sigsuspend|kzeromask} ;
a2 mgflag = 0; ;* reset flag */
33 Mg notifyimgd, &sigevl: /* reregister first */
14 n = Mg receive(mgd, puff, attr.mg msgsize, WULL} ;
35 printf{"read %ld bytes\n", (longl nl;
36 sigprocmask | SIG_UNELOCK, snewmask, WULL]); ;* unblock SIGUSRL */
a7 }
38 exit{0);
19 1

40 sgtatic woid
41 sig_usrliint signo)

42 1

43 mgflag = Ll:
44 relturn;

45 }

pamsg manotifysig2.c
Figure 5.11 Signal handler just sets a flag for main thread {incorrect version).

gsfysig2.c

e

Section 3.6 mg_notify Function a3

28-32

33-3§

Wait for signal handler to set flag

We call sigprocmask to block SIGUSR1, saving the current signal mask in
oldmask. We then test the global mgflag in a loop, waiting for the signal handler to
set it nonzero. As long as it is 0, we call sigsuspend, which atomically puts the calling
thread to sleep and resets its signal mask to zeromask (no signals are blocked). Sec-
tion 10.16 of APUE talks more about sigsuspend and why we must test the mgflag
variable only when SIGUSRL is blocked. Each time sigsuspend returns, SIGUSRL is
blocked.

Reregister and read message
When mgflag is nonzero, we reregister and then read the message from the queue.
We then unblock SIGUSEL and go back to the top of the for loop.

We mentioned that a problem still exists with this solution. Consider what happens
if two messages arrive for the queue before the first message is read. We can simulate
this by adding a s1eep before the call tomg_notify. The fundamental problem is that
the notification is sent only when a message is placed onto an empty queue. If two mes-
sages arrive for a queue before we can read the first, only one notification is sent: we
read the first message and then call sigsuspend waiting for another message, which
may never be sent. In the meantime, another message is already sitting on the queue
waiting to be read that we are ignoring.

Example: Signal Notification with Nonblocking mg_receive

15-18

14-38

The correction to the problem just noted is to always read a message queue in a non-
blocking mode when mg_noti £y is being used to generate a signal. Figure 5.12 shows
a modification to Figure 5.11 that reads the message queue in a nonblocking mode.
Open message queue nonblocking

The first change is to specify O_NONBLOCK when the message queue is opened.

Read all messages from queue

The other change is to call mg_receive in a loop, processing each message on the
queue. An error return of EAGAIN is OK and just means that no more messages exist.

Example: Signal Notification Using sigwait instead of a Signal Handler

Although the previous example is correct, it could be more efficient. Our program
blocks, waiting for a message to arrive, by calling sigsuspend. When a message is
placed onto an empty queue, the signal is generated, the main thread is stopped, the
signal handler executes and sets the mgf lag variable, the main thread executes again,
finds mg_flag nonzero, and reads the message. An easier approach (and probably
more efficient) would be to block in a function just waiting for the signal to be deliv-
ered, without having the kernel execute a signal handler just to set a flag. This capabil-
ity is provided by sigwait.

- e e ——

94 Posix Message Queues Chapter 3

1 #include "unpipc.h" pmsg.-'mqnnﬂfys:g}.c
2 volatile sig_atomic_t mgflag; /* set nonzero by signal handler */
1 static veoid sig_usrliint);
4 int
5 main{int arge, char **argv)
£
7 megd_t meged;
B veid *buff;
] szize_t n;
10 sigset_t zeromask, newmask, oldmask;
11 struckt mg_atkbr actr;
12 struct sigevent sigewv;
13 if (argc !'= 2)
14 err_guit{"usage: mgnotifysigl <name>"] ;
15 /% open gueue, get attributes, allocate read buffer */
16 mad = Mg_openiargv[1l], O_RDONLY | O_NONBLOCK):
17 Mg getattr (mgd, &attrl;
18 buff = Mallec(attr.mg msgsize):
19 Sigemptyset (&zercmask] ; /* no signals blocked */
20 Sigemptyset (&newmask) ;
21 Sigemptyset (&oldmask)
22 gigaddset (enewmask, SIGUSR1);
23 /* establish signal handler, enable notificatien */
24 Signal (SIGUSRL, =ig_usrl);
25 sigev.sigev_notify = SIGEV_SIGNAL;
26 sigev.sigev_signo = SIGUSR];
27 Mg notify(mgd, &sigev);
2B for (¢ ;b {
29 Sigprocmask {SIG_BLOCK, &newmask, Loldmask) ; /* block SIGUSRL */
30 while (mgflag == 0}
i1 sigsuspend (kzeromask] ;
32 mgflag = 0O; /* reset flag */
33 Mo _nocifyimgd, &sigev); /¥ reregister firstc */
34 while [(n = mg_receive(mgd, buff, attr.mq msgsize, NULL)} == oy
35 printf ("read %ld bytesin", (longl o
16 1]
a7 if (errno != EAGAIN)
iB err_sys("mg_receive error”):
39 Sigprocmask|SIG_UNELOCK, knewmask, MNULL): /* unblock SIGUSEL */
40 1]
41 exit (0);
42 1
43 static wvoid
44 gig usridiint signoj
45 {
46 mgflag = 1;
47 return;
42 } e
—— pxmsg/ magnotifysigd.c

Figure 5.12 Using a signal notification to read a Posix message queue.

Section 5.6 me_notify Function 95

lg-20

26-34

i

g d.c

| #include <signal.h> §‘
] int sigwait(const sigset bt *seh, int *sigl:

Returns: [if OK, positive Exry value on error ‘

Before calling sigwait, we block some set of signals. We specify this set of signals as
the set argument. sigwait then blocks until one or more of these signals is pending, at
which time it returns one of the signals. That signal value is stored through the pointer
sig, and the return value of the function is 0. This is called “synchronously waiting for
an asynchronous event”: we are using a signal but without an asynchronous signal han-
dler.

Figure 5.13 shows the use of mg_notify with sigwait,

Initialize signal set and block 81GUSR1

One signal set is initialized to contain just SIGUSRL, and this signal is then blocked
by sigprocmask.

Wait for signal

We now block, waiting for the signal, in a call to sigwait. When SIGUSR1 is
delivered, we reregister the notification and read all available messages.

sigwait is often used with a multithreaded process. Indeed, looking at its function proto-
type, we see that its return value is 0 or one of the Exxy errors, which is the same as most of the
Pthread functions. But sigprecmask cannot be used with a multithreaded process; nstead,
pthread_sigmask must be called, and it changes the signal mask of just the calling thread.
The arguments for pthread_sigmask are identical to those for sigprocmask.

Two variants of sigwalt exist sigwaitinfe alse returns a siginfo_t structure {which we
define in the next section) and is intended for use with reliable signals. sigtimedwalt also
returns @ siginfo_t structure and allows the caller to specify a time limit.

Mast threads books, such as [Butenhof 1997], recommend using sigwait to handle all signals
in a multithreaded process and never using asynchronous signal handlers.

Example: Posix Message Queues with select

A message queue descriptor (an mad_t variable) is not a “normal” descriptor and can-
not be used with either select or poll (Chapter 6 of UNPvl). Nevertheless, we can
use them along with a pipe and the mg_notify function. {We show a similar technique
in Section 6.9 with System V message queues, which involves a child process and a
pipe.) First, notice from Figure 5.10 that the write function is async-signal-safe, so we
can call it from a signal handler. Figure 5.14 shows our program.

9% Posix Message Cueues Chapter 5

, , pamsg mgnotifysigd.c
1 #include *unpipec.h”
2 int
3 main(int argc, char **argv)
4
5 inkt signo;
[mgd_t mged
7 void *uff;
] ssize_t n;
] gigset_t newmask;
10 struct mg attr attr;
11 struct sigevent sigev;
12 if {arge !'= 2}
13 err_guit("usage: mgnotifysigd <name=");
14 /% cpen gqueue, get attributes, allocate read buffer */
15 mgd = Mg openiargv[l], C_RDGNLY | C_NONBLOCK] :
16 Mg _getattr (mgd, Eattr);
17 buff = Malloclattr.mg magsize];
18 Sigemptyset (&newmask) ;
19 Sigaddset (snewmask, SIGUSRL);
20 Slgprocmask ({SIG_BLOCEK, Enewmask, MNULL);: /% block SIGUER1 */
21 /* gstablish signal handler, enable notification */
22 sigev.sigev_notify = SIGEV_SIGHAL;
21 sigev.sigev_signoe = SIGUER1;
24 Mg notify(mgd, ksigev);
25 for (; ; } 1
26 Sigwait (&newmask, &signol;
a7 if {signo == SIGUSR1l) {
28 Mg notifyimgd, &ksigevl: /v reragister first */
249 while [(n = mg_receive(mgd., buff, attr.mg_magsize, NULL)} == 0] {
3o printfi“read %1d bytes\n", (lengl nj;
il }
32 if ilerrno != EAGAIN}
i3 err_gys("mg_receive error”};
34 }
35 }
36 exic (0);
37} .
pxmsgmanotifysigd.c
Figure 513 Using mg_notify with sigwait.
fii! r
1 #include "unpipc.h” prnmg! qnuﬂ@mgﬁc
2 int pipefd(2];

3 static woid sig_usrl{intl:

£

:h:ga!.r

st

Section 5.6 mg_notify Function 97

4 int

5 main(int argc, char **argvl

& {

7 int nfids;

a char c;

9 fd_set rset;
10 mgd_t mgd;
11 woid *huff;
12 ssize_t n;
13 struct mg_attr attr;

14 struct sigevent sigev;

15 if (argc != 2}

16 err_quit("usage: mgnotifysigh <name=");

17 /* apen queus, get attributes, allocate read buffer =/
18 mgd = Mg openargv(l], O_RDONLY | O_NONBLOCK):

19 Mg getattrimgd, &attr);

20 buff = Malloc(attr.mg msgsize):

21 Pipe(pipefd)
22 /* establish signal handler, enable notification */
23 Signal (SIGUSRKL, sig_usrl);
24 sigev.sigev_notify = SIGEV_SIGHAL;
25 gigev.sigev_signo = SIGUSREL;
26 Mg notify(mgd, &sigev);
27 FD_ZERQ (&krset) ;
28 for { ¢ + V1

29 FO_SET (pipefd(0], &rset):

30 nfds = Select (pipefd{0] + 1, &rset, NULL, NULL, NULL};
31 if (FD_ISSET(pipefd[0], &rset]) {

32 Read(pipefd[0], &c, 11;

33 Mg notifyimgd, &sigev); /* reregister first */
34 while [(n = mg receiveimgd, buff, attr.mg msgsize, NULL)) == 0} {
35 printf(*read %ld bytes\n®, (long)] n};

36 b

a7 if (errno != EAGAIN)

i8 err_sys|{"mg_receive error®):

39 1
40 }
41 exit (0]
42)

43 atatic woid
44 sig_usrliint signo)

45
46
47
48 }

Write(pipefd[1], **. 1): /* one byte of 0 */
return;

Figure 5.14 Using a signal notification with a pipe.

pxmsg [manotifysigh.c

98 Posix Message Queues Chapter 5

Create a pipe
! We create a pipe that the signal handler will write to when a notification is received
for the message queue. This is an example of a pipe being used within a single process.

ka

Call selact

27-40 We initialize the descriptor set rset and each time around the loop turn on the bit
corresponding to pipefd [0] (the read end of the pipe). We then call select waiting
for only this descriptor, although in a typical application, this is where input or output
on multiple descriptors would be multiplexed. When the read end of the pipe is read-
able, we reregister the message queue notification and read all available messages.

Signal handler

43-d8 Qur signal handler just writes 1 byte to the pipe. As we mentioned, this is an
async-signal-safe operation.

Example: Initiate Thread

Another alternative is to set sigev _notify to SIGEV_THREAD, which causes a new
thread to be created. The function specified by the sigev_notify_functionis called
with the parameter of sigev_wvalue. The thread attributes for the new thread are
specified by sigev_notify_attributes, which can be a null pointer if the default
attributes are OK. Figure 5.15 shows an example of this technique.

We specify a null pointer for the new thread's argument (sigev_value), so noth-
ing is passed to the thread start function. We could pass a pointer to the message queue
descriptor as the argument, instead of declaring it as a global, but the new thread still

il needs the message queue attributes and the sigev structure (to reregister). We specify
e a null pointer for the new thread's attributes, so system defaults are used. These new
threads are created as detached threads.

Unfortunately, neither of the systems being used for these examples, Solaris 2.6 and Digital
Unix 4.08, support SIGEV_THREAD. Both require that sigev_not ify be either STGEV_HONE
OF SIGEV_SIGHAL.

5.7 Posix Realtime Signals

Unix signals have gone through numerous evolutionary changes over the past years.

1. The signal model provided by Version 7 Unix (1978) was unreliable. Signals
could get lost, and it was hard for a process to turn off selected signals while
executing critical sections of code.

4 3BSD (1986) added reliable signals.

System V Release 3.0 (1986) also added reliable signals, albeit differently from
the BSD model.

4. Posix.1 (1990) standardized the BSD reliable signal model, and Chapter 10 of
APUE describes this model in detail.

a2 new
scalled
md are
fefault

s noth-

gueue
ad still

speciy

e e

§ Degital

B NONE

s
mgnals
: while
:g from

r 10 of

;

AR e

Section 5.7 Posix Realtime Signals 99

prmsg | manotifythread] .c

1 #include *unpipc.h”

2 mgd_t megd ;

3 struckt mg_attr attr;

4 struckt sigevent sigev;

5 static void notify_thread{union sigvall; /* our thread function */

6 int

7 main{int argc, char **argv)

8 {

9 if jarge != 2}

10 err_guit(usage: mgnotifythreadl <name=");

11 mgd = Mg openlargvw([l], O_EDOMLY | O_NOMELOCK):

12 Mg _getattr{mgd, &atbtr);

13 sigev.sigev_notify = SIGEV_THREAD;

14 sigev.sigev_value.sival _ptr = NULL;

is sigev.sigev_notify function = notify_thread;

16 sigev.sigev_pnotify_attributes = NULL;

17 Mg notify(mgd, &sigev):

18 for [: ;)

19 pausei] ; /* each new thread does everything */

20 exit (0);

21 }

22 srtatic wvoid

23 notify_thread{union sigval arg)

24 1

25 ssize_t n;

28 void *huff;

27 printf{*notify_ thread started\n”);

2B buff = Malloc{attr.mg msgaize);

29 Mg _notify(mgd, Esigev): /* rersgister */

30 while { (n = mg_receiveimgd, buff, attr.mg msgsize, NULL)) >= 0] {

31 printfi{"read %1ld byres'n", {long) n);

32 }

33 if {errno != EAGAIN)

4 err_sys|"mg _receive error");

35 free(buff);

35 pthread_esxit (NULL) ;

Tl .
prmsg /manotifythread] .c

Figure 515 mg_notify that initiates a new thread.

5. Posix.1 (1996) added realtime signals to the Posix model. This work originated
from the Posix.1b realtime extensions (which was called Posix.4).

Almost every Unix system today provides Posix reliable signals, and newer systems are
providing the Posix realtime signals. (Be careful to differentiate between reliable and

100 Posix Message Clueues

Chapter 5

realtime when describing signals.) We need to say more about the realtime signals, as
we have already encountered some of the structures defined by this extension in the
previous section (the sigval and sigevent structures).

Signals can be divided into two groups:

1. The realtime signals whose values are between SIGRTMIN and SIGRTMAX,
inclusive. Posix requires that at least RTSIG_MAX of these realtime signals be
provided, and the minimum value for this constant is 8.

2. All other signals: STGALRM, SIGINT, SIGKILL, and so on.

On Solaris 2.6, the normal Unix signals are numbered 1 through 37, and 8 realtime signals are
defined with values from 35 through 45. On Digital Unix 4.0B, the normal Unix signals are
numbered 1 through 32, and 16 realtime signals are defined with values from 33 through 48,
Both implementations define SIGRTHIN and SIGRTMAX as macros that call sysconf, to allow
their values to change in the future,

Next we note whether or not the new SA_SIGINFO flag is specified in the call to
sigaction by the process that receives the signal. These differences lead to the four
possible scenarios shown in Figure 5.16.

| Call to gigaction]
| Signal " sA_sIGINFO &A_SIGINFO
o . specified not specified |
| SIGRTMIN through | realtime behavior | realtime behavior
| SIGRTMAX | guaranteed unspecified

Tall other signals || realtime behavior realtime behavior |
| | unspecified unspecified i

Figure 5.16 Realtime behavior of Posix signals, depending on 5a_SIGINED.

What we mean in the three boxes labeled “realtime behavior unspecified” is that some
implementations may provide realtime behavior and some may not. If we want real-
time behavior, we must use the new realtime signals between SIGRTMIN and
SIGRTMAX, and we must specify the SA_SIGINFO flag to sigaction when the signal
handler is installed.

The term realtime behavior implies the following characteristics:

* Signals are queued. That is, if the signal is generated three times, it is delivered
three times. Furthermore, multiple occurrences of a given signal are queued in a
first-in, first-out (FIFO) order. We show an example of signal queueing shortly.
For signals that are not queued, a signal that is generated three times can be
delivered only once.

e When multiple, unblocked signals in the range STGRTMIN through SIGRTMAX
are queued, lower-numbered signals are delivered before higher-numbered sig-
nals. That is, SIGRTMIN is a “higher priority” than the signal numbered
STGRTMIN+1, which is a “higher priority” than the signal numbered
SIGRTMIN+2, and so on.

mpmﬁ Section 5.7 Posix Realtime Signals m i
H
gmals, as * When a nonrealtime signal is delivered, the only argument to the signal handler]
w in the is the signal number. Realtime signals carry more information than other sig- i
nals. The signal handler for a realtime signal that is installed with the]
SA_SIGINFO flag set is declared as I
void funci{int signe, siginfo_t *infe, void *conbext); 1
BIRTHAX, igno is the signal number, and the siginfo_t structure is defined
gnals be signo is the signal number, an siginfo_t structure is de as
: typedef struct {
int 2i_signo; /* same value as signo argument */
int si_code; /* SI_{USER,QUEUE, TIMER,ASYNCIO, MESGQ) */]
union sigval si_wvalue; /* integer or pointer wvalue from sender */ i
ﬁiﬁbaﬁ‘ } siginfo_t; 3
sgnals are 3
peough 48, What the context argument points to is implementation dependent.
i0a v
o o Technically a nonrealtime Posix signal handler s called with just one argument.
: Many Unix systems have an older, three-argument convention for signal handlers
e call to that predates the Posix realtime standard. _
the four]
i siginfo_t is the only Posix structure defined as a typedef of a name ending in 1
_t. In Figure 5.17 we declare pointers to these structures as siginfo_t * without
the word struet.
* Some new functions are defined to work with the realtime signals. For example, %
the sigqueue function is used instead of the ki1l function, to send a signal to 3
some process, and the new function allows the sender to pass a sigval union e
with the signal. 4
The realtime signals are generated by the following Posix.1 features, identified by
the si_code value contained in the siginfo_t structure that is passed to the signal
- handler.
mat some
ant real- SI_ASYNCIO The signal was generated by the completion of an asynchronous
£ and [/O request: the Posix aioc_XXX functions, which we do not
me signal describe.
SI_MESGQD The signal was generated when a message was placed onto an
: empty message queue, as we described in Section 5.6.
bedivered S5T_QUEUE The signal was sent by the siggueue function. We show an exam-
et in & ple of this shortly.
g shortly. SI_TIMER The signal was generated by the expiration of a timer that was set
= can be by the t imer_settime function, which we do not describe.
SI_USER The signal was sent by the kill function.
EERTMAX
ered sig- If the signal was generated by some other event, si_code will be set to some value
embered other than the ones just shown. The contents of the si_value member of the
genbered siginfo_t structure are valid only when si_code is SI_ASYNCIO, SI_MESGOQ, :
SI_QUEUE, or SI_TIMER. :

P A I TR T

102 Posix Message Queues Chapter 5

Example

1g-21

27-36

ig-43

Figure 5.17 is a simple program that demonstrates realtime signals. The program calls
fork, the child blocks three realtime signals, the parent then sends nine signals (three
occurrences each of three realtime signals), and the child then unblocks the signals and
we see how many occurrences of each signal are delivered and the order in which the
signals are delivered.

Print realtime signal numbers

We print the minimum and maximum realtime signal numbers, to see how many
realtime signals the implementation supports. We cast the two constants to an integer,
because some implementations define these two constants to be macros that call
syscont, as in

kdefine SIGETMAX (sysconf{_SC_RTSIG_MAX)]
and sysconf returns a long integer (see Exercise 5.4).
fork: child blocks three realtime signals

A child is spawned, and the child calls sigprocmask to block the three realtime
signals that we are using: SIGRTMAY, SIGRTMAX-1, and SIGRTMAR -2,

Establish signal handler

We call our signal_rt function (which we show in Figure 5.18) to establish our
function sig_rt as the handler for the three realtime signals. This function sets the
BA_SICGINFO flag, and since these three signals are realtime signals, we expect realtime
behavior. This function also sets the mask of signals to block while the signal handler is
executing.
Wait for parent to generate the signals, then unblock the signals

We wait 6 seconds to allow the parent to generate the nine signals. We then call
sigprocmask to unblock the three realtime signals. This should allow all the queued

signals to be delivered. We pause for another 3 seconds, to let the signal handler call
printf nine times, and then the child terminates.

Parent sends the nine signals

The parent pauses for 3 seconds to let the child block all signals. The parent then
generates three occurrences of each of the three realtime signals: i assumes three values,
and j takes on the values 0, 1, and 2 for each value of 1. We purposely generate the sig-
nals starting with the highest signal number, because we expect them to be delivered
starting with the lowest signal number. We also send a different integer value
(sival_int) with each signal, to verify that the three occurrences of a given signal are
generated in FIFO order.

Signal handler
Owur signal handler just prints the information about the signal that is delivered.

W noted with Figure 5.10 that printf is not asyne-signal-safe and should not be called from
a signal handler. We call it here as a simple diagnostic tool in this little test program.

gpter 5 Section 5.7 Posix Realtime Signals 103
risignals/testl.c
1 #include ‘unpipec.h"
2 calls 2 static woid sig_rtiint, siginfe_t =, wveid *};
three
.hnﬂnd i int
: 4 mainiint argec, char **argv}
ch the 5 {
g int i, J:
7 pid_t pid;
H sigset_t newset;
many | union sigwval wval;
T, , . :
:Egeli 10 printf ("SIGRTMIM = %d, SIGRTMAX = %din", (int) SIGRTMIN, (int} SIGRTMAX):
Cal
11 if (ipid = Forki)) == Q) |{
12 /* child: black three realtime signals =/
13 Eigemptyset [knewset) ;
14 Eigaddeet (knewset, SIGRTMAX) ;
15 Sigaddser (knewset, SIGRTMAX - 1);
16 Bigaddset (&newset, SIGHRTMAX - 2);
itime 17 Sigprocmask (S1G_BLOCKE, snewsek, MNILL)
: 18 /* egtablish signal handler with SA_SIGINFO setb */
14 Signal_rt (SIGRTMAX, sig_rt, knewset);
210 Eignal_rt(SIGRTMAY - 1, sig _rk, &knewset);
dh our 1 Signal_xt (SIGRTMAX - 2, sig_rr, &newset);
?‘5 the 22 sleep(6); /* let parent send all the signals */
zltime
dier is 23 Sigprocmask{SIG_UNELOCKE, &newset, NULL); /* unblock */
' 24 sleep(3}; /* let all gueued signals be delivered */
25 exit{0);
26)
27 /* parent sends nine signals to child */f
- call 28 sleep(d); /% let child block all szignals */
seued 29 for (i = SIGRTMAX: i »= SIGRTMAX - 2; i--1 {
e call 30 for (§ = 0; 7 == 2; F++) [
: 3l val.sival_int = §;
3z Siggueueipid, 1, wal):
i3 printf ("sent signal %d, wval = %d\n*, i, ji:
34 H
E then i]
alues, 6 exit{0);
e S12- 37)
wered , ,
j i 38 static woid
walue 39 gig rtiint signo, siginfo_t *info, wvoid *context)
gl are 40 1
41 printf ("received signal #%d, code = %4, iwval = %d\n",
iz signo, info-»si_code, info-»=3i_wvalue.sival int};
43]

risignals/test].c

Figure 517 Simple test program to demonstrate realtime signals.
il From

104 Posix Message Queues Chapter 5

We first run the program under Solaris 2.6, but the output is not what is expected.

solaris % testl

SIGRTMIN = 38, SIGRTMAX = 45 3rmﬂﬁmey%nahpnwﬁkd
F-secomd pause m here

parent ot sends the mine signals

gent signal 45, wal
sent signal 45, wval
sent signal 45, wval
sent signal 44, wal
sent signal 44, wval
sent signal 44, wal
sent signal 43, wval =
sent signal 43, wval =
sent signal 43, wal
solaris % parent termtinates, shell prompt printed
F-second pause before child unblocks the signals

Bl 3 B k0 B D

received signal #45, code = -2, ival = 2 ofuld cafches the signals
received signal #45, code = -2, ival = 1
received signal #45, code = -2, ival = 0
received signal #44, code = -2, ival = 2
received signal #44, code = =2, iwval = 1
received signal #44, code = -2, ival = 0
received signal #43, code = -2, ival = 2
received signal #43, code = -2, ival = 1
received signal #43, code = =2, ival = 0

The nine signals are queued, but the three signals are generated starting with the high-
est signal number (we expect the lowest signal number to be generated first). Then for a
given signal, the queued signals appear to be delivered in LIFO, not FIFO, order. The
si_code of -2 corresponds to SI_QUEUE.
We now run the program under Digital Unix 4.0B and see the expected results.
alpha % testl

SIGRTMIN = 313, SIGRTMAX = 48 16 realtime signals provided
3-second pause in here

sent signal 48, wval = 0 parent notw sends the nine signals
sent signal 48, val = 1
sent aignal 48, wval = 2
gent signal 47, wval = O
sent aignal 47, wval = 1
sent signal 47, wval = 2
sent signal 46, wal = 0
sent signal 46, wval = 1
sant signal 46, val = 2

alpha % parent terminates, shell prompt printed
F-second pavse before child wunblocks the signals

received signal #46, code = -1, iwval = 0 child catches the signals
received signal #4646, code = -1, ival = 1
received signal #46, code = -1, iwval = 2
received signal #47, code = -1, iwval = 0
received signal #47, code = -1, ival = 1
received signal #47, code = -1, ival = 2
received signal #48, code = -1, ival = O
received signal #48, code = -1, iwval = 1
received signal #48, code = -1, ival = 2

Section 5.7 Posix Realtime Signals 105
- The nine signals are queued and then delivered in the order that we expect: the lowest-
: numbered-signal first, and for a given signal, the three occurrences are delivered in
FIFO order.
The Solaris 2.6 implementation appears to have a bug,
signal rt Function
On p. 120 of UNPv1, we show our signal function, which calls the Posix sigaction
function to establish a signal handler that provides reliable Posix semantics. We now
modify that function to provide realtime behavior. We call this new function
s signal_rt and show it in Figure 5.18.
- libfsignal_rt.c
1 #include "unpipc.h"
2 Sigfunc_rt *
i gignal_rtiint signo, Sigfunc_rt *func, sigset_t *mask)
4 1
5 struct sigaction act, cact;
i act.sa_sigaction = func; /* must store function addr here */J
; 7 act.sa_mask = *mask; /* signals te block */
high- # act.sa_flags = SA_SIGINFO; /* must specify this for realtime */
g] if (gigno == SIGALEM) {
n for a 10 #ifdef SA_INTERRUET
t The 11 act.sa_flags |= SA_INTERRUFT; /% Sunos d.x */
) 12 #endif
5 13 } elae |
14 #ifdef SA_RESTART
15 act.sa_flags |= SA_RESTART: /% SVE4, 4.4BSD */
16 #endif
17 3
18 if (sigaction(signo, &kact, &oact) = 0]
19 return {(Sigfunc_rt *} SIG_ERR);
20 return {cact.sa_sigaction};
21 o
lib/signal_rt.c
Figure 5.18 signal_rt function to provide realtime behavior.
Simplify function prototype using typedef
, 1-3 In our unpipc. h header (Figure C.1), we define Sigfunc_rt as

typedef wvoid Sigfunc_rtiint, siginfo_t *, wvoid *);

We said earlier in this section that this is the function prototype for a signal handler
installed with the saA_SIGINFO flag set.
Specify handler function

5-7 The sigaction structure changed when realtime signal support was added, with
the addition of the new sa_sigaction member.

106 Posix Message Queues Chapter 3

struct sigaction {

void {*ga_handler)(); /* SIG_DFL, 5IG_IGHN, or addr of signal handler *
sigset_t sa_mask: /* additional signals to block =/

int sa_flags; /* signal options: SA_xox */

woid (*sa_sigaction) (int, siginfo_t, woid *);

f* addr of signal handler if SA_SIGINFCO set */
}i

The rules are:

e If the SA_SIGINFO flag is set in the sa_flags member, then the
sa_sigaction member specifies the address of the signal-handling function.

* If the SA_SIGINFO flag is not set in the sa_flags member, then the
sa_handler member specifies the address of the signal-handling function.

* To specify the default action for a signal or to ignore a signal, set sa_handler
to either SIG_DFL or SIG_I6N, and do not set SA_SIGINFO,

Set 9A_SIGINFO

g-17 We always set the SA_SIGINFO flag, and also specify the SA_RESTART flag if the
signal is not STGALRM.

5.8 Implementation Using Memory-Mapped /O

We now provide an implementation of Posix message queues using memory-mapped
1/0, along with Posix mutexes and condition variables.

We cover mubexes and condition variables in Chapter 7 and memory-mapped 170 in Chapters
12 and 13. You may wish to skip this section until you have read these chapters.

Figure 5.19 shows a layout of the data structures that we use to implement Posix
message queues. In this figure, we assume that the message queue was created to hold
up to four messages of 7 bytes each.

Figure 5.2() shows our mgueue . h header, which defines the fundamental structures
for this implementation.

mqa_t datatype

Our message queue descriptor is just a pointer to an mg_info structure. Each call
to mg_open allocates one of these structures, and the pointer to this structure is what
gets returned to the caller. This reiterates that a message queue descriptor need not be a
small integer, like a file descriptor—the only Posix requirement is that this datatype
cannot be an array type.

[

mapped

mt Posix
50 hold

sctures

Section 5.8

Implementation Using Memory-Mapped 1/0

mg atcr{}

sigevent(}

mg_hdx{} <

pthread mutex t

pthread cond_t

meg_hdr{}

meg_hdr{}

meg_hdr{}

meg_hdr{}

i,

I

Ty

it P Y e N e

- start of memory-mapped region

mg_flags
meg_maxmsg
mg mEgsize
Mg CUrmsgs
mgh_head
mgh_free
mgh_nwait
megh_pid

mgh_eveant

megh_lock

megh_wait

mag_next
“mag_len |
msg_prioc
7 bytes data,
1 byte pad

msg_next

meg_len

mag_prio

7 bytes data,

1 byte pad |
meg_next
| meg-next |

mag_len

meg_pric

7 bvtes data,
1 byte pad

msg_next

meg_len

msg_prio

7 bytes data,

1 byte pad

]

AN

AN

A

mg_info{}
- mgi_hdr

mgi_magic

mgi_flags

i\

107

one structure for each

mg_open of message queus

¢ ONe message

+ e message

+One Mmessage

> O eSS ge

vl

- end of memory-mapped region

A

one n'l.emmy-mappedﬁl.e per message queue

Figure 519 Layout of data structures to implement Posix message queues using a memory-mapped file.

108 Posix Message Queues Chapter 5

g-18

my_pxmsg_trtrap (mguene.h

1 typedef struct mg info *mgd_t; /* cpague datatype */

2 struct mg attr {

3 long mg _flags; /* message gueue flag: O_NONBLOCE */

4 long mg_mMAaXmag ; /* max number of messages allowed on gueue */
5 leng mg_msgsize; /* max size of a message (in bytes] */

6 long m_CUrmsgs; /% pnumber of messages currently on gueue */
Th:

8 /* one mg_hdr{} per gueue, at beginning of mapped file */

9 struct mg hdr |

10 struct mg attr mgh_attr; /* the gueue's attributes */

11 long mah_head; /* index of first message */

12 long mgh_free; /% index of first free message */

13 long mgh_nwait; /* #threads blocked in mg receive() */

14 pid_t mgh_pid; /* nonzero PID if mgh_ewvent set */

15 struct sigevent mgh_event: /* for mg notify() */

16 pthread_mutex_t mgh _lock; /* mutex lock */

17 pthread_cond_t mgh_wait; /* and condition variable */

18 }:

19 /% one msg_hdr{} at the front of each message in the mapped file */
20 struct meg_hdr {

21 long mag_next; /* index of next on linked list */

22 /* msg_next must be first member in struct */

23 ssize_t msg_len; /* actual length */

24 unsigned int mag_prio; /* priority */

25 };

26 /* one mg_info(l malloc’ed per process per mg openi) */f

27 struct mg info {

28 struct mg _hdr *mqgi_hdr; /* gstart of mmap’ed region =/

29 long mgi_magic; /* magic number if open */

an int megl_flagsa; /* flags for this process */

31 }:

32 #define MOI_MAGIC Dx98765432

33 /* size of message in file is rounded up for alignment */

14 #define MSGESIZE(L) ({i(i) + sizeofi{long)-1) / sizecfilong)) * sizecf(long])

my_pxmsg_mrmap/mguene.h
Figure 520 mgueue.h header.

mg_ hdr structure

This structure appears at the beginning of the mapped file and contains all the per-
queue information. The mg_flags member of the mgh_attr structure is not used,
because the flags (the nonblocking flag is the only one defined) must be maintained on a
per-open basis, not on a per-queue basis. The flags are maintained in the mg_info
structure. We describe the remaining members of this structure as we use them in the
various functions.

Note now that everything that we refer to as an index (the mgh_head and
mah_free members of this structure, and the meg_next member of the next structure)
contains byte indexes from the beginning of the mapped file. For example, the size of

-

Bongl)

Fda-uby:

——

the per-
% used,
e=d on a
g info
= in the

33 and
ncture)
= size of

Section 5.8 Implementation Using Memory-Mapped /O 109

19-25

33-34

the mg_hdr structure under Solaris 2.6 is 96 bytes, so the index of the first message fol-
lowing this header is 96. Each message in Figure 5.19 occupies 20 bytes (12 bytes for the
msg_hdr structure and 8 bytes for the message data), so the indexes of the remaining
three messages are 116, 136, and 156, and the size of this mapped file is 176 bytes. These
indexes are used to maintain two linked lists in the mapped file: one list (mgh_head)
contains all the messages currently on the queue, and the other (mgh_£free) contains all
the free messages on the queue. We cannot use actual memory pointers (addresses) for
these list pointers, because the mapped file can start at different memory addresses in
each process that maps the file (as we show in Figure 13.6).

meg_hdr structure

This structure appears at the beginning of each message in the mapped file. All
messages are either on the message list or on the free list, and the msg_next member
contains the index of the next message on the list (or 0 if this message is the end of the
list). msg_len is the actual length of the message data, which for our example in Fig-
ure 5.19 can be between 0 and 7 bytes, inclusive. msg_prio is the priority assigned to
the message by the caller of mg send.

mg_info structure

One of these structures is dynamically allocated by mg_open when a queue is
opened, and freed by mg _close. mgi_hdr points to the mapped file (the starting
address returned by mmap). A pointer to this structure is the fundamental mgd_t
datatype of our implementation, and this pointer is the return value from mg_cpen.

The mgi_ magic member contains MOI_MAGIC, once this structure has been initial-
ized, and is checked by each function that is passed an mgd_t pointer, to make certain
that the pointer really points to an mg_info structure. mgi_flags contains the non-
blocking flag for this open instance of the queue.

MSGSIZE macro

For alignment purposes, we want each message in the mapped file to start on a long
integer boundary. Therefore, if the maximum size of each message is not so aligned, we
add between 1 and 3 bytes of padding to the data portion of each message, as shown in
Figure 5.19. This assumes that the size of a long integer is 4 bytes (which is true for
Solaris 2.6), but if the size of a long integer is 8 bytes (as on Digital Unix 4.0), then the
amount of padding will be between 1 and 7 bytes.

mg open Function

Figure 5.21 shows the first part of our mg_open function, which creates a new message
queue or opens an existing message queue.

Y _pRmsg_mmap fmg_open.c

1 #include *unpipc.h*

2 #include "mgqueusa . h”

3 #include <stdarg.h>

4 #define MAX_TRIES 10 /* for waiting for initialization */
5 struct mg_attr defattr =

6 {0, 128, 1024, 0};

110 Posix Message Cueues Chapter 5

T med_t
& mg_open{conat char *pathname, int oflag,...)

9
10
11
12
13
14
15
16
17
15
1%
20
21

22
23
24
25
26
27
z8
x5
10
31
12

33
L
35
g
37
38
g
40
41
42
43
44
45
a6
a7
48
49
50

int
loang
va_l

i, fd, nonblock, created, save_errnc;
megsize, filesize, index;
ist ap:

mode_t mode;
intB_t *mptr;

stru
stru
Stru
atru
stru
pthr
pthr

crea
nonk
ofla

ct atat statbuff;

ct mg _hdr *mghdr:

ct msg_hdr *msghdr;

ot Mg _attr Yattr;

ct mg_info *mginfo;
ead_mutexattr_t mattr;

ead_condattr_t cattr:
ted = 0;
lock = oflag & O_NONELOCK;

g &= "TO_NONBLOCEK:

mptr = (int&_t *) MAF_FAILED;
mginfo = NULL;

again:
if |

oflag & O_CREAT) |

va_start(ap, oflag):; /* init ap to final named argument */
mode = va_argiap, va_mode U] k& ~S5_IXUSE;

attr = va_argiap, struct mg attr *};

va_end{ap) ;

/* ppen and specify O_EXCL and user-execute */
fd = cpenipathname, cflag | O_EXCL | O_RDWR, mode | &_IXISR):
if (fd = 01 o
if (errno == EEXIST && (oflag & O_EXCL] == (]
goto exists; /* already exists, OK */
else
return {{mgd_t) -1},
1
created = 1:
/* first one to create the file initializes it */
if fattyr == NULL)
attr = Ldefattr;
elae {
if (attr->mg masmsg <= 0 || attr-»mg _megaize <= 0) |
grrnge = EINVAL;
qoto err;

My_prmsg_mmapmg_open.c

Figure 521 mg_open function: first part.

Handle variable argument list

29-32 This function can be called with either two or four arguments, depending on
whether or not the O_CREAT flag is specified. When this flag is specified, the third

Eapter 5

j_open.c

s on
e third

Section 5.8

g

J3-34

35-40

Implementation Using Memory-Mapped 1/O 111

argument is of type mode_t, but this is a primitive system datatype that can be any
type of integer. The problem we encounter is on BSD/ 05, which defines this datatype
as an unsigned short integer (occupying 16 bits). Since an integer on this implemen-
tation occupies 32 bits, the C compiler expands an argument of this type from 16 to
32 bits, since all short integers are expanded to integers in the argument list. But if we
specify mode_t in the call to va_arg, it will step past 16 bits of argument on the stack,
when the argument has been expanded to occupy 32 bits. Therefore, we must define
our own datatype, va_mode_t, that is an integer under BSD/OS, or of type mode_t
under other systems. The following lines in our unpipc. h header (Figure C.1) handle
this portability problem:

#ifdef _b=di__

#define wva_mode_Lt int
#elze

#define wva_mode_L mode_t
#endif

We turn off the user-execute bit in the mode variable (5_IXUSE) for reasons that we
describe shortly.

Create a new message queue

A regular file is created with the name specified by the caller, and the user-execute
bit is turned on.

Handle potential race condition

If we were to just open the file, memory map its contents, and initialize the mapped
file (as described shortly) when the 0_CREAT flag is specified by the caller, we would
have a race condition. A message queue is initialized by mg_ocpen only if O_CREAT is
specified by the caller and the message queue does not already exist. That means we
need some method of detecting whether the message queue already exists. To do so, we
always specify O_EXCL when we open the file that will be memory-mapped. But an
error return of EEXIST from open becomes an error from mg_open, only if the caller
specified 0_EXCL. Otherwise, if open returns an error of EEXIST, the file already exists
and we just skip ahead to Figure 5.23 as if the 0_CREAT flag was not specified.

The possible race condition is because our use of a memory-mapped file to repre-
sent a message queue requires two steps to initialize a new message queue: first, the file
must be created by open, and second, the contents of the file (described shortly) must
be initialized. The problem occurs if two threads (in the same or different processes)
call mg_open at about the same time, One thread can create the file, and then the sys-
tem switches to the second thread before the first thread completes the initialization.
This second thread detects that the file already exists (using the 0_£XCL flag to open)
and immediately tries to use the message queue. But the message queue cannot be used
until the first thread initializes the message queue. We use the user-execute bit of the
file to indicate that the message queue has been initialized. This bit is enabled only by
the thread that actually creates the file (using the O_EXCL flag to detect which thread
creates the file), and that thread initializes the message queue and then turns off the
user-execute bit. We encounter similar race conditions in Figures 10,43 and 10.52.

12 Posix Message Queues Chapter 5
Check attributes
42-50 If the caller specifies a null pointer for the final argument, we use the default

attributes shown at the beginning of this figure: 128 messages and 1024 bytes per mes-
sage. If the caller specifies the attributes, we verify that mg_maxmsg and mg_msgsize

are positive.

The second part of our mg_open function is shown in Figure 5.22; it completes the
initialization of a new queue.

51
52
53
54
33
£l
57
EL

59
&0
51
62
63

f4
65
66

67
68
65

70
71
72
73
Td
T5
TE
77
78
79
80
Al
B2
B3
B4
85
86
287

g8
g9
90

/* caloulate and set the file size */
magsize = MSGSIZE(attr->mg msgsize);
filegize = sizeof (struct mg hdr) + (attr->mg maxmsg *

my_pamsg_mmap/mg_open.c

[gizenf (struct mag_hdr) + msgsize));

if (lsmek(fd, filesize - 1, SEEK_SET! == =1}
goto err;

if i(write(fd, "=, 1} == -1}
goto err;

/* memory map the file =/
mptr = mmap (NULL, filesize, FROT_READ | PROT_WRITE,
MAT_SHARED, fd, 0);
if (mptr == MAP FAILED)
goto err:

/* allocate one mg info{) for the gueus */
if { imginfo = malloc{sizeof(struct mg_info))) == NULL)
goto err:

mginfo->mgi_hdr = mghdr = (struct mg hdr *) mptr;
mginfo->mgi_magic = MQI_MAGIC;
mginfo->mgi_£flags = nonblock;

/* initialize header at beginning of file */
/* create free list with all messages on it */

mghdr->mgh_attr.mg _flags = O;

mghdr->mgh_attr.mg_maxmsg = abbr->mg_maxmsg;:

mghdr-=mgh_attr.mg_msgsize = attr->mgq msgsize;

mghdr->mgh_attr.mg _curmsgs = 0;

mghdr->mgh_nwait = 0;

mghdr->mgh_pid = 0;

mghdr->mgh_head = 0;

index = gizeofi{struct mg hdr);

mghdr->mgh_£free = index;

for (i = 0; i < attr->mg _maxmsg - 1; i++] {
msghdr = [(struct msg_hdr *) &mptr[index]:
index += gizeof (struct msg_hdr) + msgsize;
maghdr->msg_next = index;

}

maghdr = (struct msg_hdr *} &mptr[index];

maghdr-=msg_next = 0; /* end of free list */

/* initialize mutex & condition variable */
if | {i = pthread_mutexattr_init (&mattr)) != 0)
goto pthreaderr;

_ﬁnpte-r 5

 default
PET mes=-
Egcize

Ehesthﬂ

s Open.c

Section 5.8 Implementation Using Memory-Mapped 1/0 113
91 pthread_mutexattr_ setpshared(&mattr, PTHREAD FPROCESS SHARED) ;
92 i = pthread_mutex_init {&mghdr->mgh_lock, &mattr};

93 pthread_mutexattr destrov(&mattr); /* be sure to destray */
94 if (i 'l=)
95 goto pthreaderr;
96 if [{i = pthread_condattr_init(&cattr)) != Q)
97 goto pthreaderr;
98 pthread_condattr_setpshared&cattr, PTHREAD PROCESS_SHARED) ;
99 i = pthread_cond_init [&mghdr->mgh_wait, &cattr);
100 pthread_condattr_destroy(&cattr); /* be sure to destroy */
101 if (1 1= 0)
102 goto pthreaderr;
103 /* initialization complete, turn off user-execute bit */
104 if (fchmod(fd, mode) == -1]
105 goto err;
106 close(£d) ;
107 return {(mgd_t) mginfo);
108 }

51-58

59-53

Gd-66

£7=87

28-102

my_pxmsg_nmapmq_open.c
Figure 5.22 Second part of mg_open functon: complete initialization of new queue.

Set the file size

We calculate the size of each message, rounding up to the next multiple of the size
of a long integer. To calculate the file size, we also allocate room for the mg_hdr struc-
ture at the beginning of the file and the msg_hdr structure at the beginning of each
message (Figure 5.19). We set the size of the newly created file using lseek and then
writing one byte of 0. Just calling ftruncate (Section 13.3) would be easier, but we are
not guaranteed that this works to increase the size of a file.

Memory map the file

The file is memory mapped by mmap.
Allocate mg info structure

We allocate one mg_info structure for each call to mg_open. This structure is ini-
tialized.
Initialize mg hdr structure

We initialize the mg hdr structure. The head of the linked list of messages
(mgh_head) is set to 0, and all the messages in the queue are added to the free list
(mgh_free).
Initialize mutex and condition variable

Since Posix message queues can be shared by any process that knows the message
queue’s name and has adequate permission, we must initialize the mutex and condition
variable with the PTHREAD PROCESS_SHARED attribute. To do so for the message
queue, we first initialize the attributes by calling pthread _mutexattr_init, then call
pthread mutexattr_setpshared to set the process-shared attribute in this struc-
ture, and then initialize the mutex by calling pthread_mutex_init. Nearly identical
steps are done for the condition variable. We are careful to destroy the mutex or

114

Posix Message Queues Chapter 5

condition variable attributes that are initialized, even if an error occurs, because the calls
to pthread_mutexattr_init or pthread_condattr_init might allocate memory
{Exercise 7.3).

Turn off user-execute bit

103-107 Once the message queue is initialized, we turn off the user-execute bit. This indi-

cates that the message queue has been initialized. We also close the file, since it has
been memory mapped and there is no need to keep it open (taking up a descriptor).

Figure 5.23 shows the final part of our mg_cpen function, which opens an existing
queue.

My _pXmsg_mmap | mg_opei.c

109 exists:

110 /* open the file then memory map */

111 if ({fd = open{pathname, CO_RDWRI} < O} {

112 if (errnoc == ENOENT && (oflag & O_CREART})

113 goto again;

114 goto err:

115]

116 /* make certain initialization is complete */
117 for (L = 0; 1 « MAN_TRIES; i++)} {

118 if (stat{pathnmame, &statbuff) == -1) {

119 if (errnoc == ENOENT && (oflag & O_CREAT}) |
120 close(£d);

121 goto againg

122 1

123 goto err;

124 }

125 if ((statbuff.st_mode & S_IXUSE]) == 0]

126 break;

127 sleep(l);

128 }

129 if {1 == MAX TRIES) ({

130 errno = ETIMEDOUT;

131 gots err;

132 3

133 filesize = statbuff.st_size;

134 mptr = mmap{NULL, filesize, FROT_READ | PROT_WRITE, MAP_SHARED, £d, 0);
135 if (mptr == MAP_FATLED)]

136 goto err;

137 cloge(fd);

13B /* allocate one mg_info{)} for esach open */
139 if [imginfo = malloc(sizeof (struct mg_infol)) == NULL)
140 goto err;

141 mginfo-=mgi_hdr = (struct mg hdr *) mptr;

142 mginfo->mgi_magic = MQI_MAGIC:

143 mainfo-»mgi_flags = nonblock:

144 return ({mgd_t) mginfo};

ithe calls
EETOTY

Ric indi-
g 1t has
Ee

E;mting

g _open.c

;

Section 5.8 Implementation Using Memory-Mapped /0 115

108-115

116-132

145 pthreaderr:

148 errno = ij

147 |EY:

148 /* don't let following function calls change errnoc */
149 EAVE_SFInog = 8YIrno;

150 it (created)

151 unlink (pathname) ;

152 if i(mptr != MAP_FAILED}

153 munmap (mptr, filesize);
154 if (mginfo != NULL}

155 freei{mginfo) ;

156 closelfd);

157 Errnc = Save_errno;

158 return {imgd t} -1};

159]

HIY_pxmsg_mimap | mq_open.c
Figure 523 Third part of mg_open function: open an existing queue.

Open existing message queue

We end up here if either the O_CREAT flag is not specified or if O_CREAT is specified
but the message queue already exists. In either case, we are opening an existing mes-
sage queue. We open the file containing the message queue for reading and writing
and memory map the file into the address space of the process (mmap).

Our implementation is simplistic with regard to the open mode, Even if the caller specifies
O_RDONLY, we must specify read-write access o both open and mmap, because we cannot
read a message from a queue without changing the file. Similarly, we cannot write a message
to a queue without reading the file. One way around this problem is to save the open mode
(0_RDONLY, O_WRONLY, or 0_RDWE) in the mg_info structure and then check this mode in the
individual functions. For example, mg_receive should fail if the open mode was ©_WRONLY.

Make certain that message queue is initialized

We must wait for the message queue to be initialized (in case multiple threads try to
create the same message queue at about the same time). To do so, we call stat and
look at the file’s permissions (the st_mode member of the stat structure). If the user-
execute bit is off, the message queue has been initialized.

This piece of code handles another possible race condition. Assume that two
threads in different processes open the same message queue at about the same time.
The first thread creates the file and then blocks in its call to 1seek in Figure 5.22. The
second thread finds that the file already exists and branches to exists where it opens
the file again, and then blocks. The first thread runs again, but its call to mmap in Fig-
ure 5.22 fails (perhaps it has exceeded its virtual memory limit), so it branches to err
and unlinks the file that it created. The second thread continues, but if we called
f=tat instead of stat, the second thread could time out in the for loop waiting for
the file to be initialized. Instead, we call statc, and if it returns an error that the file
does not exist and if the 0_CREAT flag was specified, we branch to again (Figure 5.21)
to create the file again. This possible race condition is why we also check for an error of
ENOENT in the call to open.

116 Posix Message Quenes

Chapter 5

Memory map file; allocate and initialize mq_info structure

133-144 The file is memory mapped, and the descriptor can then be closed. We allocate an
ma_info structure and initialize it. The return value is a pointer to the mg_info struc-

ture that was allocated.
Handle errors

145-158 When an error is detected earlier in the function, the label err is branched to, with
errnc set to the value to be returned by mg_open. We are careful that the functions
called to clean up after the error is detected do not affect the errno returned by this

function.
mg close Function

Figure 5.24 shows our mg_close function.

my_pmsg_mmap |/ meg_close.c

1 #include *unpipc.h”

2 #include "meueue . h"

i inkt

4 mg_close (mgd_t mgd)

5 1

[long mageize, file=size;

7 struct mg hdr *mghdr;

i struckt mg_atkr *attr;

] struct mg info *mginfo;

10 mginfo = mgd;

11 if (mginfo-=mgi_magic != MQI_MAGIC) {

12 errnde = EBADF;

13 recurn (-1);

14 ¥

15 mghdr = mginfo->mgi_hdr;

1& attr = kmghdr->mgh_attr;

17 if (mg notifyi(mgd, NULL) = 0} f* unregister calling process */
18 return {-1);

19 megsize = MSGSIZE(attr->mg magsize);

20 filegize = gizeof(struct mg hdr) + [(attr->mg maxmsg *
21 (sizeof (struct mag_hdr) + msgsize)];
22 if (munmap (mginfo->mgi_hdr, filesize}l == =1}

3 return [-1);

24 mginfo->mgi_magic = 0; /* just in case */

25 free(mginfo) ;

26 return (0] ;

27 1

Figure 524 my_close function.

my_pxmsg_mmap | mg_close.c

Section 5.8 Implementation Using Memory-Mapped 1O 117

Get pointers to structures

10-16 The argument is validated, and pointers are then obtained to the memory-mapped
region (mghdr) and the attributes (in the mg_hdr structure).

Unregister calling process

17-18 We call mg_notify to unregister the calling process for this queue. If the process is
registered, it will be unregistered, but if it is not registered, no error is returned.

Unmap region and free memory

18-25 We calculate the size of the file for munmap and then free the memory used by the
mg_info structure, Just in case the caller continues to use the message queue descrip-
tor before that region of memory is reused by malloc, we set the magic number to 0, so
that our message queue functions will detect the error.

Mote that if the process terminates without calling mg_close, the same operations
take place on process termination: the memory-mapped file is unmapped and the mem-
ory is freed.

o to, with
Fanctions
ad by this

ama closes

mg unlink Function

Our mg_unlink function shown in Figure 5.25 removes the name associated with our
message queue. [t just calls the Unix unlink function.

Ty PPHSE unlink.c
finclude "unpipe.h" y_p 1. meq“

1
2 #include "moueds R

ink
mg_unlink (const char *pathname)
{
if {unlinki{pathname) == -1}
return (-1);:
return (0}

D - A e L

my_pxmsg_mmap | my_unlink.c
Figure 5.25 mg_unlink function.

mg getattr Function

Figure 5.26 shows our mg_getattr function, which returns the current attributes of the
specified queue.

Acquire queue’'s mutex lock

17-20 We must acquire the message queue’s mutex lock before fetching the attributes, in

pe_close.c case some other thread is in the middle of changing them.

118 Posix Message Queucs Chapter 5

my pymsg_mmap | mg_gelattr.c
1 #include “unpipc.h” L 8- pimi-g

2 #include "mgueue . h”
3 int
4 mg_getattrimgd t mgd, struct mg atfr *mgstat)
51
& int n;
7 struct mg_hdr *mghdr;
-] struct mg _attr *attr;
] struct mg_info *mginfo;
10 mginfa = mgd;
11 if (mginfo-»mgi_magic != MQI_MAGIC) {
12 errno = EBADF;
13 return (-11;
14 i
15 mghdr = mginfo->mgi_hdr;
16 attr = Emghdr->mgh_attr;
17 if [{n = pthread_mutex_lock (&mghdr->mgh_lock)) = 0] {
18 Brrno = nj;
1% return (-11;
20 }
21 mgstat->mg_flags = mginfo-»mgi_flags; /* per-cpen */
22 MOgSCAt->K_maxmsg = abbr->mg _maxmsg; /* remaining three per-gueus */
23 mgstat-=my_msgsize = attr->mg megsize;
24 mgatat->mg_curmsgs = abtr->mg curmsgs;
25 pthread_mutex_unleck{&mghdr->mgh_lock}:
26 return (0} ;
27 3
y_prmsg_mmap g _gelattrc
Figure 5.26 mg_getattr function.
mq_setattr Function

Figure 527 shows our mg_setattr function, which sets the current attributes of the
specified queue.
Return current attributes

22-27 If the third argument is a nonnull pointer, we return the previous attributes and cur-
rent status before changing anything.
Changemq flags

28-31 The only attribute that can be changed with this function is mg_£lags, which we
store in the mg__info structure.

Section 5.8 Implementation Using Memory-Mapped 1O 119

;
. #3
i
=
i
m_getattrc 1 #include "unpipe.h" my_pixmsg_imap|mq_setaitr.c i
: 2 #include "mgueue.h” £
3 int
4 mg setattrimgd t mgd, const struct mg attr *mgstat, :
5 atruct mg_attr *omgstat) }
6 { a§
7 int n; ,\g
B struct mg hdr *mghdr; i
g struct mg atktr *attr; 1
10 struct mg info *mginfo;
11 mginfoe = mgd;
12 if (mginfeo->mgi_magic != MQI_MAGIC) { ;
13 errno = EBADF;
14 return (-1);
15 }
16 mahdr = mginfo->mgi_hdr;
17 attr = Emghdr-=mgh_attr;
18 if { (n = pthread_mutex_lock(&mghdr->mgh_lock)} != 01 {
149 errno = nj
20 return {=1):
21 i
- 3] if (omgstat !'= NWULL) |
et/ 23 omgstat->mg_flags = mginfo-»mgi_flags; /* previous attributes */
24 omgstat->mg maxmsg = attr->mg maxmsg;
25 omgstat->mg_msgsize = attr->mg msgsize;
25 omgstat->mg_curmsgs = atbr-s>mg Curmsdgs; /* and current status */
2% }
_ 28 if Imgstat-»mg flags & O _NONBLOCK]
i‘._‘.?,t,mmlc 28 mginfo-»>mgi_flags |= O_NOMBLOCE;
- 30 else
3l myginfo->mgi_flags &= "O_NONBLOCK:
32 pthread_mutex_unlock (&mghdr->mgh_lock) ;
33 raturn {0);
iq4 }
my_pmsg_nmapmq_selatirc
= 0of the Figure 527 mg_setattr function,
j mg_ notify Function
;g-_md cur-

The mg_notify function shown in Figure 5.28 registers or unregisters the calling pro-
cess for the queue. We keep track of the process currently registered for a queue by
storing its process ID in the mgh_pid member of the mg_hdr structure. Only one pro-
cess at a time can be registered for a given queue. When a process registers itself, we
also save its specified sigevent structure in the mgh_event structure.

which we

120 Posix Message Queues Chapter 5

my_pxmsg_mmap|mg_notify.c
1 #include "unpipc.h® Y_PXHISE, Py fy

2 #include *mgueus.h”

3 int

4 mg_notify(mgd_t mgd, const struct sigevent *notification]

5 1

& int n;

£ pid_t pid;

] struct mg hdr *mghdr;

9 struct mg_info *mginfo;

10 mginfo = mgd;

11 if [(mginfo->mgi_magic != MQI_MAGIC) |

12 aerrnc = EBADF;

13 raturn (-1};

14 1

15 mghdr = mginfo-»>mgi_hdr;

lg if [(n = pthread_mutex_lock (&mghdr-=mgh_lock)} != 0) {

17 arrno = n;

18 return (-1};

1 }

20 pid = getpidi);

21 if (notification == NULL) {

22 if [mghdr->mgh_pid == pid) {

23 mghdr-»mgh_pid = 0; /* unregister calling process */

24 1 /* no error if caller not registered */

25 1 else {

26 if (mghdr-=mgh_pid !'= 0) {

27 if (kill{mghdr-=mgh_pid, 0) != -1 || errno != ESRCH] {

28 errnc = EBUSY:

29 goto err;

kR 1

31 }

32 mghdr->mgh_pid = pid;

k] mghdr->mgh_event = *notification;

34 }

s pthread_mutex_unlock|&mghdr->mgh _lock}) ;

356 return (0);

37 err:

kY] pthread_mutex_unlock {&mghdr->=mgh_lock) ;

39 return (-1):

40 } .

my_pxmsg_mmap | mg_notify.c

Figure 528 mqg_notify function.

Unregister calling process

20-24 If the second argument is a null pointer, the calling process is unregistered for this
queue. Strangely, no error is specified if the calling process is not registered for this
queue.

Chapter 5

Section 5.8 Implementation Using Memory-Mapped 1/0 121

Register calling process

25-34 If some process is already registered, we check whether it still exists by sending it
signal 0 (called the null signal). This performs the normal error checking, but does not
send a signal and returns an error of ESRCH if the process does not exist. An error of
EBUSY is returned if the previously registered process still exists. Otherwise, the pro-
cess ID is saved, along with the caller’s sigevent structure.

h_mti_fl;.c

Our test for whether the previously registered process exists is not perfect. This process can
terminate and then have its process 1D reused at some later time.

mg send Function

Figure 5.29 shows the first half of our mg_send function.
Initialize

14-39 Pointers are obtained to the structures that we will use, and the mutex lock for the
queue is obtained. A check is made that the size of the message does not exceed the

maximum message size for this queue.
Check for empty queue and send notification if applicable

30-38 If we are placing a message onto an empty queue, we check whether any process is
registered for this queue and whether any thread is blocked in a call to mg_receive.
For the latter check, we will see that our mg receive function keeps a count
(mgh_nwait) of the number of threads blocked on the empty queue. If this counter is
nonzero, we do not send any notification to the registered process. We handle a notifi-
cation of SIGEV_SIGNAL and call siggueue to send the signal. The registered process
is then unregistered.

Calling s1gqueue to send the signal results in an si_code of SI_QUEUE being passed to the
signal handler in the siginfo_t structure (Section 5.7), which is incorrect. Generating the
correct si_code of ST_MESGO from a user process is implementation dependent. Page 433 of
[IEEE 1996] mentions that a hidden interface into the signal generation mechanism is required
b generate this signal from a user library.

Check for full queue

79-48 If the queue is full but the 0_NONBLOCK flag has been set, we return an error of
EAGAIN. Otherwise, we wait on the condition variable mgh_wait, which we will see is
; signaled by our mg_receive function when a message is read from a full queue.
;Fm_m:rtrfl;.c Dur implementation is simplistic with regard to returning an error of EINTR if this call to
mg_send is interrupted by a signal that is caught by the calling process. The problem is that
pthread_cond_wait does not return an error when the signal handler returns: it can either
return a value of 0 {(which appears as a spurious wakeup) or it need not return at all. Ways
_Q around this exist, all nontrivial.
e for this
ed for this Figure 5.30 shows the second half of our mg_send function. At this point, we know
| the queue has room for the new message.

122 Posix Message Cueues Chapter 5

my_pxmsg_mmap my_send.c

1 #include *unpipec.h”
2 #ineclude "meoueue . ht
3 int
4 mr_send (mgd_t mgd, const char *ptr, size_t len, unsigned int prio)
5 {
fi int 0;
7 long index, freeindex;
: int8_t *mptr;
9 struct sigevent *sigev;
10 struct mg ndr *mghdr;
11 struct mg_attr *attr;
12 struct msg_hdr *msghdr, *nmsghdr, *pmsghdr;
13 gtruct mg_info *mginfo;
14 mginfe = mgd;
1% if (mginfo->mgi_magic != MQT_MAGIC) {
16 errno = EBADF;
17 return (=1];
19 mghdr = mginfo->mgi_hdr; /* struct pointer */
20 mptr = (intl_t *) mghdr; /* byte pointer */f
21 attr = Emghdr-smgh_attr;
22 if { {n = pthread_mutex_lock(&mghdr->mgh_lock]) != 01 {
23 errno = n;
24 raturn (-11;
25 1
26 if (len » attr-»mg msgsize) |
27 errno = EMSGSIZE;
28 goto err:
29 1
E14] if {attr-»>mg_curmsgs == 0) |
3l if (mghdr-smgh_pid != 0 && mghdr->mgh_nwait == 0} {
32 gigev = kmghdr-s>mgh_svent;
33 if {gigev-»sigev_notify == SIGEV_SIGNAL] {
34 giggqueue (mghdr->mgh_pid, sigev-=sigev_signo,
35 sigev->sigev_value] ;
36 1
a7 mghdr-»>mgh_pid = 0; /¥ unregister */
318 1
39 } elae if (atbr->mg _curmsgs »>= attr->mg _maxmsgl
40 /* gueue is full */
41 if [mginfo-»mgi_flags & CO_NONBLOCK) |
42 errno = ERGATIN:
43 goto err;
44 }
45 j* wait for room for one message on the gueus */
46 while (attr-=mg_curmsgs »= AtLr->mg _maxmsd)
47 pthread_cnnd_wait1&mqhdr—>mqh_wait. Emghdr->mgh_lock}:
48 }

my_pxmsg_mmap,mq_send.c
Figure 5.29 mq_send function: first half.

Chapter 5

?hr_smd,c

Section 5.8 Implementation Using Memory-Mapped 1O 123

50-52

53=5&

miy_pamsg_mmap(mq_send.c

49 /* mmeghdr will point to new message */

50 if | {freeindex = mghdr->mgh_freel == 0}

51 err_dump{"mg_send: curmsgs = %1d; free = 0", attr-»mg curmsgs);
52 mmsghdr = (struct msg_hdr *) &mptr[freeindex];

53 nmaghdr->msg_pric = prio;

54 nmaghdr->msg_len = len;

=11 memcpy (mmsghdr + 1, ptr, len); /* copy message from caller */
56 mghdr ->mgh_free = nmeghdr->mag_next: /* new freelist head */
57 /% find right place for message in linked list */

58 index = mghdr->mgh_head;

59 pmsghdr = (struct msg_hdr *) &{mghdr->mgh_head);

el while {(index != 0) {

61 maghdr = (struct meg_hdr *} &mptrindex];

62 if (prio > msghdr-=msg_prio) |

a3 mmsghdr-=msg_next = index;

1 pmsghdr->mag_next = freeindex;

65 break:

1 }

67 index = msghdr-=msg_next;

68 pmaghdr = maghdr;

69 }

70 if {index == 0] {

71 /* queus was empty or new goes at end of list */f

72 pmeghdr->msg_next = freeindex;

73 nmeghdr->msg_next = 0;

T4 i

75 /* wake up anyone blocked in mg receive waiting for a message */
76 if {attr->mg_curmsgs == 0]

77 pthread_cond_signal (&mghdr->mgh_wait) ;

78 Aatbr->mg CUrmsSgs++;

79 pthread_mutex_unlock (&mghdr ->mgh_lock) ;

BO raturn {0}

81 Brr:

B2 pthread_mutex_unlock (&mghdr->mgh_lock) ;

B3 return {~-1};

Bd]

my_premsg_mmapmi_send .o
Figure 5.30 mg_send function: second half.

Get index of free block to use

Since the number of free messages created when the queue was initialized equals
mg maxmsg, we should never have a situation where mg _curmsgs is less than
mo_maxmsg with an empty free list.

Copy message

nmsghdr contains the address in the mapped memory of where the message is
stored. The priority and length are stored in its msg_hdr structure, and then the con-
tents of the message are copied from the caller.

e
)
L
o

124 Posix Message Cueues Chapter 5

Place new message onto linked list in correct location

57-74 The order of messages on our linked list is from highest priority at the front
(megh_head) to lowest priority at the end. When a new message is added to the queue
and one or more messages of the same priority are already on the queue, the new mes-
sage is added after the last message with its priority. Using this ordering, mq_receive
always returns the first message on the linked list (which is the oldest message of the
highest priority on the queue). As we step through the linked list, pmsghdr contains
the address of the previous message in the list, because its msg_next value will contain
the index of the new message.

Our design can be slow when lots of messages are on the queue, forcing a traversal of a large
number of list entries each time a message is written to the queue. A separate index could be
maintained that remembers the location of the last message for each possible priority,
Wake up anyone blocked inmg_receive
75-77 If the queue was empty before we placed the message onto the queue, we call
pthread_cond_signal to wake up any thread that might be blocked in
mg_receive.
78 The number of messages currently on the queue, mg_curmsgs, is incremented.

mg _receive Function

Figure 5.31 shows the first half of our mg_receive function, which sets up the pointers
that it needs, obtains the mutex lock, and verifies that the caller’s buffer is large enough
for the largest possible message.

Check for empty queue

13-40 If the queue is empty and the C_NONBLOCK flag is set, an error of EAGAIN is
returned. Otherwise, we increment the queue’s mgh_nwait counter, which was exam-
ined by our mg_send function in Figure 5.29, if the queue was empty and someone was
registered for notification. We then wait on the condition variable, which is signaled by
mg_send in Figure 5.29,

As with our implementation of mq_send, our implementation of mq_receive is simplistic
with regard ko returning an error of ELNTR if this call is interrupted by a signal that is caught
by the calling process.

Figure 5.32 shows the second half of our mq_receive function. At this point, we
know that a message is on the queue to return to the caller.

L e

pter 3 Section 5.8 Implementation Using Memory-Mapped 1/0 125
F front 1 #include "unpipe.h" my_pxmsg_mmap/mq._ “
2 #include "mgueune. h”
gueue
N oS- 3 ssize L
meive 4 mg_receive(mgd_t mgd, char *ptr, size_t maxlen, unsigned int *priop}
of the AR
= R & int n;
__.!l:tamﬁ 7 long index:
ontain B intB_t *mptr;
] ssize_t len;
; 140 struct mg _hdr *mghdr;
fa large 11 struct mg attr *atbr;
emaid be 12 struct msg_hdr *msghdr;
: 13 struct mg_info *mginfo;
14 mainfo = mgd:
ve call 15 if (mginfo-=mgi_magic != MQI_MAGIC) {
.) 18 errno = EBADF;
ed in 17 return (-1);
; 18 1
g 19 maghdr = mginfo-s>mgi_hdr; /% struct pointer */
: 20 mpkr = (int8_t *) mghdr; /* byte pointer */
21 attr = &mghdr->mgh_attr;
22 if { (n = pthread_mutex_lock{&mghdr-=mgh_lock)l != 0} {
: 23 errno = n;
Enters 24 return (=1};
mough 25)
/ 26 if (maxlen < attr->mg megsize] {
27 errne = EMSGSIZE;
28 goto err;
LIN is 29 1 ,
- 30 if [:_v.ttr—bmq__cumaga s 0} | /% gueue is empty */
31 if [(mginfo-»>mgi_f£flags & O_NONBLOCK) (
e was 3z errnc = EAGAIN:
fed by 33 goto err;
; a4 i
35 /* wait for a message to be placed onto gueue */
mplistic 36 mghdr->mgh_nwaikt++;
i.ﬂ-ught 37 while lattr->mg _curmsgs == 0]
kY] pthread_cond_wait (&mghdr->mgh_wait, emghdr->mgh_lock];
ie mghdr-=mgh_nwait--;
! 40 } .
o, we miy_pxmsg_mmap/mq_recefve.c

Figure 531 mg_receive function: first half,

126 Posix Message Queues Chapter 5
my_pxmsg_mmapmg_receive.c
41 if { (index = mghdr->mgh_head] == 0}
42 err_dump ("mg receive: curmsgs = %1ld; head = 07, attr->mg_curmsgs);
43 meghdr = {(struct meg_hdr *) &mptr(index];
44 mghdr->mgh_head = msghdr-=msg_next; /* new head of list =*/
45 len = meghdr-»msg_len:
46 memcpy ({ptr, meghdr + 1, len): /* copy the message itaelf +*/
47 if {priop '= NULL])
48 *priop = meghdr->msg_prio;
49 A* juat-read message goes to front of free lise */
50 msghdr->mag_next = mghdr-=mgh_free;
51 mghdr-=mgh_free = index:
52 #* wake up anyone blocked in mg_send wailting for room */
53 if jattr-»mg curmsgs == atfr->mg_masxmsg)
54 pthread_cond_signal {&mghdr-=mgh_wait]
55 attr-=ma curmsgs--;
56 pthread_mutex_unlock [&mghdr-=mgh_lock) :
57 raturn (len);
58 err:
59 pthread _mutex_unlock|amghdr- smgh_lock] ;
&0 return {-1);
61 1} .
miy_pamsg_mmap mg_receive.c
Figure 532 mg_receive function: second half.
Return message to caller
43-51 msghdr points to the msg_hdr of the first message on the queue, which is what we
return. The space occupied by this message becomes the new head of the free list.
Wake up anyone blocked in mg_send
52-54 If the queue was full before we took the message off the queue, we call
pthread_cond_signal, in case anyone is blocked in mg_send waiting for room for a
message.
59 Summary

Posix message queues are simple: a new queue is created or an existing queue is opened
by mg_open; queues are closed by mg_close, and the queue names are removed by
mg_unlink. Messages are placed onto a queue with mg_send and read with
mg receive. Attributes of the queue can be queried and set with mg_getattr and
mg_setattr, and the function mg_notify lets us register a signal to be sent, or a
thread to be invoked, when a message is placed onto an empty queue. Small integer
priorities are assigned to each message on the queue, and mg_receive always returns
the oldest message of the highest priority each time it is called.

Chapter 5 Chapter 5 Exercises 127
8§ _receive.c Using mg_notify introduced us to the Posix realtime signals, named SIGRTMIN
: through SIGRTMAX. When the signal handler for these signals is installed with the

Sh_SIGINFO flag set, (1) these signals are queued, (2) the queued signals are delivered

BEEs |
' in a FIFO order, and (3) two additional arguments are passed to the signal handler.

Finally, we implemented most of the Posix message queue features in about 500
lines of C code, using memory-mapped /0, along with a Posix mutex and a Posix con-
dition variable. This implementation showed a race condition dealing with the creation
of a new queue; we will encounter this same race condition in Chapter 10 when imple-
menting Posix semaphores.

Exercises

51 With Figure 5.5, we said that if the attr argument to mq_open is nonnull when a new queue
is created, both of the members mg_maxmag and mg msgsize must be specified. How
could we allow either of these to be specified, instead of requiring both, with the one not
specified assuming the system's default value?

52 Modify Figure 5.9 so that it does not call mg_notify when the signal is delivered. Then
send two messages to the queue and verify that the signal is not generated for the second

- message. Why?

§_reCeiTe.C 53 Modify Figure 5.9 so that it does not read the message from the queue when the signal is
delivered. Instead, just call mg_notify and print that the signal was received. Then send
two messages to the queue and verify that the signal is not generated for the second mes-
sage. Why?

54 What happens if we remove the cast to an integer for the two constants in the first printf

R N e rh'ﬁ i -&S-W"I.Wﬁ-?ﬁ ik

mhat we
o in Figure 5.177
; 55 Maodify Figure 5.5 as follows: before calling mg_open, print a message and sleep for 30

_ seconds. After mg_open returns, print another message, sleep for 30 seconds, and then

we call call mg_close. Compile and run the program, specifying a large number of messages (a

e for a few hundred thousand) and a maximum message size of (say) 10 bytes. The goal is to cre-

' ate a large message queue (megabytes) and then see whether the implementation uses
memory-mapped files. During the first 30-second pause, run a program such as ps and
look at the memory size of the program. Do this again, after mg_open has returned. Can
vou explain what happens?

, 5.6 What happens in the call to memcpy in Figure 5.30 when the caller of mg_send specifies a

wpened length of 7

"fﬂi b‘*" 57 Compare a message queue to the full-duplex pipes that we described in Section 4.4. How

= with many message queues are needed for bwo-way communication between a parent and child?

i: and 58 In Figure 5.24, why don't we destroy the mutex and condition variable?

. Or a
ante ger 59 Posix says that a message queue descriptor cannot be an array type. Why?
returns 510 Where does the main function in Figure 5.14 spend most of its time? What happens every

time a signal is delivered? How do we handle this scenario?

128 Posix Message Queues Chapter 5

511 Not all implementations support the PTHREAD_PROCESS_SHARED attributes for mutexes
and condition variables. Redo the implementation of Posix message queues in Section 5.8
to use Posix semaphores (Chapter 10) instead of mutexes and condition variables.

5.12 Extend the implementation of Posix message queues in Section 5.8 to support
SIGEV_THREAD.

Bapter 5

_mlexes
wson 5.8

support

6.1

System V Message Queues

Introduction

System V message queues are identified by a message quewe identifier. Any process with
adequate privileges (Section 3.5) can place a message onto a given queue, and any pro-
cess with adequate privileges can read a message from a given queue. As with Posix
message queues, there is no requirement that some process be waiting for a message to
arrive on a queue before some process writes a message to that queue.

For every message queue in the system, the kernel maintains the following struc-
ture of information, defined by including <sys/msg . h>:

struct megid_ds {

struct ipc_perm msd_perm; /* read-write perms: Section 3.3 %/
struct msg *mesg_first; /* ptr to first message on queus ¥/
struct msg ‘mag_laskt; /* ptr to last message on gueus *f
msglen L msg_chytes; /* current # bytes on gueue */
mEsggnum_t meg_grum; /% current # of measages on gueue */f
msglen_t msg_gbytes; /* max # of bytes allowed on queus */
pid_t msg_lspid; /* pld of lasc msgsnd{] */

pid_t meg_lrpid; /* pid of last msgrov(] =/

cime_t meg_stime; /* time of last msgsnd{) */

time_t meg_rtime; /* time of last msgrovi) */

time_t meg_ctime; /* cime of last msgotl{)

{that changed the above) =/

Unix 98 does not require the meg_first, msg_last, or mag_chytes members. Neverthe-
less, these three members are found in the common System V derived implementations., Matu-
rally, no requirement exists that the messages on a queue be maintained as a linked list, as
implied by the msg_first and msg_last members. If these two pointers are present, they
point to kernel memory and are largely useless to an application.

129

130 System V Message Cueues Chapter 6

We can picture a particular message queue in the kernel as a linked list of messages,
as shown in Figure 6.1. Assume that three messages are on a queue, with lengths of 1
byte, 2 bytes, and 3 bytes, and that the messages were written in that order. Also
assume that these three messages were written with fypes of 100, 200, and 300, respec-

tively.
g g .
| msgid ds(} |
| msqid —m- : P next next e NULL f
i |
! | 1pc_perm() | type = 100 Cope=200 | [wpe=300 | |
: i length =1 kTFhfZ ; f length = 3 :
i i 1
: meg_~first 4+— data | |'I !
| Sy - data | i
: msg_last ——\ | i ,"I data :
[\-. ! |
. e \. / .
I I
: msg_ctime :
| 1
| 1
L o o e - kemel .. 4

Figure 6.1 System V message queue structures in kernel.

In this chapter, we look at the functions for manipulating System V message queues
and implement our file server example from Section 4.2 using message queues.

6.2 msgget Function

A new message queue is created, or an existing message queue is accessed with the
msgget function.

dinclude <sys/msg.h>

int maggetikey t key, int oflag);

The return value is an integer identifier that is used in the other three msg functions to
refer to this queue, based on the specified key, which can be a value returned by ftok or
the constant TPC_PRIVATE, as shown in Figure 3.3.

oflag is a combination of the read-write permission values shown in Figure 3.6. This
can be bitwise-ORed with either I1PC_CREAT or IPC_CREAT | IPC_EXCL, as discussed
with Figure 3.4.

When a new message queue is created, the following members of the msgid_ds
structure are initialized:

B queues

with the

g
[F
g

LR
Al
I
Ea
,q

$& This
scussed

pid_ds

A
+ :_ .
]
3
¢
E
=
b
A

Section 6.3 magsnd Function 131

6.3

* The uid and cuid members of the msg_perm structure are set to the effective
user ID of the process, and the gid and cgid members are set to the effective
group ID of the process.

* The read-write permission bits in oflag are stored in msg_perm.mode.

* msg_gnum msg_lspid, msg_lrpid, msg_stime, and msg_rtime are set to 0.
* msg_ctime is set to the current time.

* msg_gbytes is set to the system limit.

msgsnd Function

Once a message queue is opened by msgget, we put a message onto the queue using
megsnd.

finclude «<gys/msg.h>

int megsnd{int msgid, const wvoid *pir, size_r lemgth, int flagh:

| Returns: 0 if OK, -1 01 €7TOT

msqid is an identifier returned by msaget. pir is a pointer to a structure with the follow-
ing template, which is defined in <sys/msg.h>.
struct magbuf
long mtype: /* message type, must be > 0 */

char mtext[1]; /* message data */
}i

The message type must be greater than 0, since nonpositive message types are used
as a special indicator to the msgrev function, which we describe in the next section.

The name mtext in the msgbuf structure definition is a misnomer; the data portion
of the message is not restricted to text. Any form of data is allowed, binary data or text.
The kernel does not interpret the contents of the message data at all.

We use the term “template” to describe this structure, because what ptr points to is
just a long integer containing the message type, immediately followed by the message
itself (if the length of the message is greater than () bytes). But most applications do not
use this definition of the msgbuf structure, since the amount of data (1 byte) is normally
inadequate. No compile-time limit exists to the amount of data in a message (this limit
can often be changed by the system administrator), so rather than declare a structure
with a huge amount of data (more data than a given implementation may support), this
template is defined instead. Most applications then define their own message structure,
with the data portion defined by the needs of the application.

For example, if some application wanted to exchange messages consisting of a
16-bit integer followed by an 8-byte character array, it could define its own structure as:

mli et S e e

B e g I L T e i Ty e T o S e T I B L U TE o

132 System V Message Cueues Chapter &

#define MY_DATA B8

eypedef atruct my_msgbuf |

long mEype; /* message type */
intlé_t mshort; /* start of message data */
char mchar [MY_DATA] ;

} Message;

The length argument to msgsnd specifies the length of the message in bytes. This is
the length of the user-defined data that follows the long integer message type. The
length can be 0. In the example just shown, the length could be passed as
sizeof (Message) - sizeof {long).

The flag argument can be either 0 or TeC_NOWAIT. This flag makes the call to
msgsnd nonblocking: the function returns immediately if no room is available for the
new message. This condition can occur if

* too many bytes are already on the specified queue (the msg_gbytes value in
the msgid_ds structure), or

» too many messages exist systemwide.

If one of these two conditions exists and if TPC_NOWAIT is specified, msgsnd
returns an error of EAGATN. If one of these two conditions exists and if TPC_NOWAIT is
not specified, then the thread is put to sleep until

* room exists for the message,
» the message queue identified by msqid is removed from the system {in which
case, an error of EIDRM is returned), or

* the calling thread is interrupted by a caught signal (in which case, an error of
EINTR is returned).

6.4 msgrcv Function

A message is read from a message queue using the msgrcv function.

#include <sys/msg.h=

ssize t msgroviint msgid, void *ptr, size_t length, long type, int flag);

Returns: number of bytes of data read into buffer if OK, -1 on error

The pir argument specifies where the received message is to be stored. As with
msgsnd, this pointer points to the long integer type field (Figure 4.26) that is returned
immediately before the actual message data.

length specifies the size of the data portion of the buffer pointed to by ptr. This is
the maximum amount of data that is returned by the function. This length excludes the
long integer type field.

This is
& |he
ged as
«<all to
for the

alue in

Emgsnd
iAIT s

“which

sror of

Section 6.4 msgrov Function 133

type specifies which message on the queue is desired:

» If type is 0, the first message on the queue is returned. Since each message queue
is maintained as a FIFO list (first-in, first-out), a type of 0 specifies that the oldest
message on the queue is to be returned.

» [f type is greater than 0, the first message whose type equals type is returned.

» If type is less than 0, the first message with the lowest type that is less than or
equal to the absolute value of the type argument is returned.

Consider the message queue example shown in Figure 6.1, which contains three mes-
sages:
* the first message has a type of 100 and a length of 1,

* the second has a type of 200 and a length of 2, and
* the last message has a type of 300 and a length of 3.

Figure 6.2 shows the message returned for different values of fype.

type Type of message returned
0 100

100 | 100

200 | 200

300 | 3

-100 | 100

-200 | 100

-300 j 100

Figure 6.2 Messages returned by msgrov for different values of type.

The flag argument specifies what to do if a message of the requested type is not on
the queue. If the IPC_NOWAIT bit is set and no message is available, the msgrov func-
tion returns immediately with an error of ENOMSG. Otherwise, the caller is blocked until
one of the following occurs:

1. amessage of the requested type is available,

2. the message queue identified by msgid is removed from the system (in which
case, an error of EIDEM is returned), or

3. the calling thread is interrupted by a caught signal (in which case, an error of
EINTR is returned).

An additional bit in the flag argument can be specified: ¥5G_NOERROR. When set,
this specifies that if the actual data portion of the received message is greater than the
length argument, just truncate the data portion and return without an error. Not speci-
fying the MSG_NOERROR flag causes an error return of E2BIG if length is not large
enough to receive the entire message.

134 System V Message Queues Chapter &

On successful return, msgrcv returns the number of bytes of data in the received
message. This does not include the bytes needed for the long integer message type that
is also returned through the ptr argument.

6.5 msgetl Function

The msgct] function provides a variety of control operations on a message queuc.

$include <sys/msg.h=
int msgctliint msqid, int cmd, struct msqgid_ds *huff);

Returns: 0 if OK, =1 on error

Three commands are provided:

IPC_RMID Remove the message queue specified by msqid from the system. Any
messages currently on the queue are discarded. We have already seen
an example of this operation in Figure 3.7. The third argument to the
function is ignored for this command.

IPC_SET Set the following four members of the msgid_ds structure for the
message queue from the corresponding members in the structure
pointed to by the buff argument: msg_perm.uid, msg_perm.gid,
msg_perm.mode, and msg_gbytes.

1PC_STAT Return to the caller (through the buff argument) the current msgid_ds
structure for the specified message queue.

Example

The program in Figure 6.3 creates a message queue, puts a message containing 1 byte of
data onto the queue, issues the ITPC_STAT command to msgctl, executes the ipecs
command using the system function, and then removes the queue using the
IPC_RMID command tomsgetl.

We write a 1-byte message to the queue, so we just use the standard msgbuf struc-
ture defined in <sys/msg. h=,

Executing this program gives us

;E- anlaris % ctl

= read-write: 664, chytes = 1, gnum = 1, gbytes = 4036

i 1BC status from <running system» as of Mon Oct 20 15:36:40 1397
e T 1D KEY MODE DWNER GROUP

il Message Queues:

o 1150 00000000 --rw-rw-r-- rstevens — otherl

The values are as expected. The key value of 0 is the common value for IPC_PRIVATE,
as we mentioned in Section 3.2. On this system there is a limit of 4096 bytes per mes-
sage queue. Since we wrote a message with 1 byte of data, and since msg_cbytes is 1,

Chapter 6 .
: i Section 6.6 Simple Programs 135 ,_
received
hpé somsgctlc i
i that 1 #include "unpipc.h” zf :
- 2 int xl
£ 3 main{int argc, char **argv} ' "
; 5 int megid; ‘
. & struct magid_ds info;]
W‘ 7 struct magbuf buf: "
]
" | g msgid = Msgget (IPC_PRIVATE, SVMSG_MODE | IPC_CREATI;
i a9 buf.mtype = 1;
| 140 buf.mtext[0] = 1
:I_er | 11 Msgsnd (msgid, &buf, 1, 0);
12 Msgctl (mesgid, IPC_STAT, &infol; q
13 printf|"read-write: %030, chytes = %lu, gnum = %#lu, gbytes = %luin", i
: 14 info.msg_perm.mode & 0777, (ulong_t) info.msg_chytes, 3
o Any 15 {ulong_t} info.msg_gnum, (ulong_t} info.msg_gbytes); :
o 5
ﬁ‘-s&ﬂl_ 16 syatem("ipcs -g*): ;
e to the 17 Msgerl (msgid, IPC_RMID, NULL); 3
: 18 exit(0); :
: 1% }
e mrhtlhe somsy ctl.e g
e i
;!LIE 4, Figure 6.3 Example of msgotl function with TRC_STAT command. §
. g .
:]
pgid_ds o . . .
- this limit is apparently just for the data portion of the messages, and does not include :i
the long integer message type associated with each message. i
f' ;
% byte of 6.6 Simple Programs |
e ioCS) . . %
ging the Since System V message queues are kernel-persistent, we can write a small set of pro- i3
; grams to manipulate these queues, and see what happens. q
et struc- il
: megcreate Program :
i H
: 3
g Figure 6.4 shows our msgcreate program, which creates a message queue. B
: 3-12 We allow a command-line option of -e to specify the TPC_EXCL flag. i
: 16 The pathname that is required as a command-line argument is passed as an argu- i
ment to £tok. The resulting key is converted into an identifier by msgget. (See Exer- E
3 cise 6.1.) i
ﬁ_ e msgsnd Program
i v By
fper mes- . —)]
Our msgsnd program is shown in Figure 6.5, and it places one message of a specified

?EE s 1, length and type onto a queue.

136 System V Message Queues Chapter &

somsg/msgcreate.c
1 #include ‘unpipc.h*
2 int
3 maini{int argc, char **argv)
4
a5 int c, oflag, mgid;
& oflag = SVMSG_MODE | IPC_CREAT;
7 while [(¢ = Getoptlargc, argwv, "e"}) I=s -1} {
g switch (c} {
] case ‘&’:
10 eflag = IPC_ENCL;
il break;
12 }
13 i
14 if (optind != arge - 1)
1 err_guit ("usage: msgcreate [-e] <pathname="};
16 mgid = Magget (Ftok{argv|optind], 1), oflag);
17 exit {0}
18 }
B somsg/msgoreate.c
Figure 6.4 Create a System V message queue.
sumsy/msgsnd.c
1 #include “unpipc.h”
2 int
3 main{int argec, char **argv)
4
5 int moid;
& size_t len;
7 long type;
B struct magbuf *ptr;
] if {argc != 4)
10 err_cquit ("usage: msgsnd <pathname> <#bytes> <type>");
} i1 len = atoilargv[2]);
i 12 tyvpe = atoilargv[3));
%E 13 mgid = Magget (Ftokl{argw[l]., 1}, M3G_W):
}i 14 ptr = Callocisizecf(long) + len, sizeof(char));
o 15 ptr->mEype = type:
i 16 Magsnd (mgid, ptr, len, 0);
17 exit {0}
18 1}
sumsg/msgsnd.c

Figure 6.5 Add a message to a Systern V message queue.

We allocate a pointer to a generic msgbuf structure but then allocate the actual
structure (e.g., the output buffer) by calling calloc, based on the size of the message.
This function initializes the buffer to 0.

bapter 6 Section 6.6 Simple Programs 137
'[" r.c msgrcv Program A
Figure 6.6 shows our msgrev function, which reads a message from a queue. An
optional -n argument specifies nonblocking, and an optional -t argument specifies the
type argument for msgrev.]
sUmsg (IMSErCn.C 5
1 #include *unpipc.h” i
2 #define MAXMSG (8192 + sizeofi{long))
3 int
4 main(int argc, char **argv!)
S =
[int c, flag, mgid; ‘
7 long Eype; -:,
g ssiza_t n; E
9 struct meghuf *huff;
10 type = flag = 0;
2 11 while { [c = Getoptlarge, argy, "nb:")) != -1} {
poreate.c 1z switch (o) { fE
: 13 case 'n’: &
14 flag |= IPC_NOWAIT: 14
15 break;
16 case 't':
rsnd.c 17 type = atol{optargl;
; 18 break; 5
19 } .
21 if {optind 1= arge - 1} -
22 err_cuit{"usage: msgrov [-n] [-t type] =pathname="}; ".1
23 mgid = Msgget (Ftok (argv[optind]l, 1), MSG_R);
24 buff = Malloc (MAXMSG) ; i
25 n = Magrovimgid, buff, MAXMSG, type, flag); :
28 princfi{"read %4 bytes, type = %ld\n", n, buff-smtype):
27 exit (0] ; "
28 } i
STMSE MSTrCT.C o
Figure 6.6 Read a message from a System V message queue, ~.
z No simple way exists to determine the maximum size of a message (we talk about
_ this and other limits in Section 6.10), so we define our own constant for this limit.
sl .C -'
msegrmid Program -
- actual) ke
essage To remove a message queue, we call msgetl with a command of TFC_RMID, as shown =

in Figure 6.7.

138 System V Message Cueues Chapter 6

smse Smegrmid.c

1 #include "unpipe.h" 8/msgr

2 intc

3 main(int argc, char **argv)

4 [

5 int magid;

& if (arge != 2]

T err_guit{“usage: megrmid <pathnames>"};

B myid = Msgget (Ftoklargv[1l], 1}, O}F;

9 Mageorl (mgid, IPC_RMID, NULL);:

10 exit (0] ;

11 } ,
somsg /msgrmid.c

Figure 6.7 Hemove a System V message queue.
Examples

We now use the four programs that we have just shown. We first create a message
queue and write three messages to the queue.

sclaris % megoreate /tmp/no/such/file
ftok error for pathname */tmp/no/such/file® and id 0: Mo such file or directory
solaris % touch /tmp/testl
zolaris % magoreate /tmp/testl
solaris % megend /tmp/testl 1 100
%
%

sclaris magend /tmp/testl 2 200

solaris ¥ msgsnd Jtmp/testl 3 300

solaris % ipos -qo

IPC status from <running system> as of Sat Jan 10 11:25:45 19%8

T in KEY MODE OWNEER GROUF CBYTES ONUM
Message Queuss:
=1 100 0x0000113e --rw-r--r-- rstevens otherl & 3

We first try to create a message queue using a pathname that does not exist. This
demonstrates that the pathname argument for £tok must exist. We then create the file
{tmp/testl and create a message queue using this pathname. Three messages are
placed onto the queue: the three lengths are 1, 2, and 3 bytes, and the three types are
respectively 100, 200, and 300 (recall Figure 6.1). The ipcs program shows 3 messages
comprising a total of 6 bytes on the queue.

We next demonstrate the use of the fype argument to msgrcv in reading the mes-
sages in an order other than FIFO.

solaris % megrov -t 200 /tmp/testl

read 2 bytes, type = 200

solaris % magrev -t =300 /tmp/testl
read 1 bytes, type = 100

solaris % megrov Jtmp/testl

read 3 bytes, type = 300

solaris % magrov -n Jemp/testl

magrcv error: No message of desired type

T e

R e

pimssrmid.c

} message

Esrectory

wi=t This
% the file
sages are
¥pes are
messages

e mes-

"
&
i
o
=
i
2

Section 6.6 Simple Programs 139

The first example requests the message with a type field of 200, the second example
requests the message with the lowest type field less than or equal to 300, and the third
example requests the first message on the queue. The last execution of our msgrcv pro-
gram shows the IPC_NOWAIT flag.

What happens if we specify a positive type argument to msgrcv but no message
with that type exists on the queue?

solaris % ipos -go
IPC status from <running aystem= as of Sat Jan 10 11:37:01 19%8

T ID KEY MODE OWMER GROUP CBYTES (HNUM
Massage Jueuas:
q 1409 Ox0000113e --¥rw-r--r-- rstevens otherl ¥} a

golaris % megend /tmp/testl 1 100

aplaria % magrev -t 599% /tmp/testl

T bype our interrupt key to terminate
zolaris % megrev -n -t 999 /tmp/testl

msgroy error: No message of desired type

aolarizs % grep desired /usr/include/sys/errnoc.h

#define BMOMSE 35 /* Ho message of desired type */f
golarizs % megrmid /tmp/testl

We first execute ipcs to verify that the queue is empty, and then place a message of
length 1 with a type of 100 onto the queue. When we ask for a message of type 999, the
program blocks (in the call to msgrov), waiting for a message of that type to be placed
onto the queue. We interrupt this by terminating the program with our interrupt key.
We then specify the -n flag to prevent blocking, and see that the error ENOMSG is
returned in this scenario. We then remove the queue from the system with our
msgrmid program. We could have removed the queue using the system-provided com-
mand

aolariz % iperm -g 100
which specifies the message queue identifier, or using
golaris % iporm -Q Oxllle

which specifies the message queue key.

megrcvid Program

We now demonstrate that to access a System V message queue, we need not call
msgget: all we need to know is the message queue identifier (easily obtained with
ipcs) and read permission for the queue. Figure 6.8 shows a simplification of our
msgrcv program from Figure 6.6.

We do not call megget. Instead, the caller specifies the message queue identifier on
the command line.

140

System V Message Cueues Chapter &

6.7

svmsg/msgrevid.c
1 #include "unpipc.h*

%)

#define MAMMSGE (B192 + sizeofilongl]
int
mainiint argc, char **argwv)
{
int megied;
ssize_t n;
struct magbuf *buff;

-3 o e e

oo

9 if farge != 2]
10 err_guit{"usage: msgrovid =mgid=");
11 mgid = ateoi(argv[1l]):

12 buff = Malloc(MAXMSG];

13 n = Magrovimgid, buff, MaxMsc, 0, 0);
14 printf{"read %d bytes, type = %1d\n", n, buff-=mtype);

15 exit (D) ;
16 }

somsg | msgrevid.c
Figure 6.8 Read from a System V message queue knowing only the identifier.

Here is an example of this technique:

solaris % touch /tmp/testid

solaris % mesgoreate /Jtmp/testid

solaris % megsnd /tmp/testid 4 400

solaris % ipcs -go

10C status from <running system= as of Wed Mar 25 09:48:28 1338

T ID EEY MODE CWNER GROUP CBYTES QNUM
Message Juewes:

q 150 0x0000118a --rw-r--r-- retevens otherl 4 1

aolaris % megrovid 150

read 4 bytes, type = 400
We obtain the identifier of 150 from ipcs, and this is the command-line argument to
our msgrovid program.

This same feature applies to System V semaphores (Exercise 11.1) and System V
shared memory (Exercise 14.1).

Client-Server Example

We now code our client-server example from Section 4.2 to use two message queues.
One queue is for messages from the client to the server, and the other queue is for mes-
sages in the other direction.

Our header svmsg.h is shown in Figure 6.9. We include our standard header and
define the keys for each message queue.

Section 6.7 Client-Server Example 141

svmsgclisery/svmsg h
1l #include "unpipe.h"
2 #define MO_KEY1 1234L
3 #define MQ _KEYZ 2345L)
sumsgeliserv/somsg h

Figure 6.9 svmsg. h header for client-server using message queues,

The main function for the server is shown in Figure 6.10. Both message queues are
created and if either already exists, it is OK, because we do not specify the IPC_EXCL
flag. The server function is the one shown in Figure 4.30 that calls our mesg_send
and mesg_recv functions, versions of which we show shortly.

somsgcliserv | server_main.c

somsgcliserv/client_main.c

1 #include "gyvmsg.h" "
2 wvoid server{int, int);
1 int
4 main(int arge, char **argv)
5 1
& int readid, writeid; g
7 readid = Msgget (MQ_KEY1, SVMSG_MCODE | IPC_CREAT);
A writeid = Msgget (MQ_KEY2, SVMSG_MODE | IPC_CREART); i
9 server (readid, wriceid);
10 exit(0);
11} , . iy
svmsgclisers/server_main.c i

Figure 6.10 Server main function using message queues,
somsgcliseroclient_main.c

1 #include "gvmag.h" i
2 vaid elient(int, int);
3 ine
4 maini{int argc, char **argv) i
5[
& int readid, writeid:
T /* assumes server has created the gueues */ ':.;
] writeid = Magget (MQ_KEY1, 0); i
] readid = Msgget (MQ_KEYZ, 0); iy
10 client {readid, writeid); i
11 /* now we can delete the queues */
12 Msgetl{readid, IPC_RMID, NULL): s
13 Mzgerl (writeid, IPC_RMID, NULL); -
14 exit(0);]
15)

Figure 6.11 Client main function using message queues,

142 System V Message Queues Chapter &

Figure 6.11 shows the main function for the client. The two message queues are
opened and our client function from Figure 4.29 is called. This function calls our
maesg_send and mesg_recv functions, which we show next.

Both the client and server functions use the message format shown in Fig-
ure 4.25. These two functions also call our mesg_send and mesg_recv functions. The
versions of these functions that we showed in Figures 4.27 and 4.28 called write and
read, which worked with pipes and FIFOs, but we need to recode these two functions
to work with message queues. Figures 6.12 and 6.13 show these new versions. Notice
that the arguments to these two functions do not change from the versions that called
write and read, because the first integer argument can contain either an integer
descriptor (for a pipe or FIFO) or an integer message queue identifier.

somsgcliser fmesg_send.c

1 #include "mesg.h”

2 ssize_t

1 mesg_send(int id, struct mymesg *mptr)

4 i

5 return (megand{id, &(mptr-=mesg_type)., mptr-=mesg_len, 0});
& }

o sumsgcliserymesg_send.c

Figure 6,12 mesg_send function that works with message queues,

- - somsgclisern {mesg_recoc
1 #include "mesg.h"

2 Esize_t
3 mesg_recviint id, struct mymesg *mptr)

4

5 ssize_t n;

[n = msgreviid, &imptr->mesg_typel, MAXMESGDATA, mphr-=mesg_type, 0);
7 mptr-=mess len = n; f* return #bvtes of daka */

B return {n); f* -1 on error, 0 at EOF, else =0 */
g}

---------- v srlmsgrh’srr:r,-'me’sg FECTLE

Figure 6.13 mesg_recv function that works with message queuss,

6.8 Multiplexing Messages

Two features are provided by the type field that is associated with each message on a
queue:

1. The type field can be used to identify the messages, allowing multiple processes
to multiplex messages onto a single queue. One value of the type field is used
for messages from the clients to the server, and a different value that is unique
for each client is used for messages from the server to the clients. Naturally, the
process 1D of the client can be used as the type field that is unique for each
client.

EBapter 6

BEs are
=ils our

tin Fig-
s, [he
ita and
Enctions
. Motice
g called
éntcger

& send.c

B send.c

FECTLE

-

B rECTLC

Fi.'l]'la.

WEESEG
= used
gnique
v, the
r =ach

i
‘
%,
1

Section 6.8 Multiplexing Messages 143

2. The type field can be used as a priority field. This lets the receiver read the mes-
sages in an order other than first-in, first-out (FIFO). With pipes and FIFOs, the
data must be read in the order in which it was written. With System V message
queues, we can read the messages in any order that is consistent with the values
we associate with the message types. Furthermore, we can call msgrov with the
IPC_NOWAIT flag to read any messages of a given type from the queue, but
return immediately if no messages of the specified type exist.

Example: One Queue per Application

Recall our simple example of a server process and a single client process. With either
pipes or FIFOs, two IPC channels are required to exchange data in both directions, since
these types of IPC are unidirectional. With a message queue, a single queue can be
used, having the type of each message signify whether the message is from the client to
the server, or vice versa.

Consider the next complication, a server with multiple clients. Here we can use a
type of 1, say, to indicate a message from any client to the server. If the client passes its
process ID as part of the message, the server can send its messages to the client pro-
cesses, using the client's process ID as the message type. Each client then specifies its
process ID as the type argument to msgrcv. Figure 6.14 shows how a single message
queue can be used to multiplex these messages between multiple clients and one server.

SErVer

fype = 1234 or 9876: server replies ! ! vpe = 1 client requests

client 1 client 2

PID 1234 PID 9876
Figure 6,14 Multiplexing messages between multiple clients and one server.

A potential for deadlock always exists when one [PC channel is used by both the clients and
the server. Clients can fill up the message queue (in this example), preventing the server from
sending a reply. The clients are then blocked in msgsnd, as is the server. One convention that
can detect this deadlock is for the server to always use a nonblocking write to the message
queLe.

144 System V Message Queues Chapter 6

We now redo our client-server example using a single message queue with different
message types for messages in each direction. These programs use the convention that
messages with a type of 1 are from the client to the server, and all other messages have a
type equal to the process ID of the client. This client-server requires that the client
request contain the client's process ID along with the pathname, similar to what we did
in Section 4.8.

Figure 6.15 shows the server main function. The svmsg.h header was shown in
Figure 6.9. Only one message queue is created, and if it already exists, it is OK. The
same message queue identifier is used for both arguments to the server function.

STIMS 11/ server_main.c
1 #include "svmEg.ht gmpr -

2 wold server{int, int):
int

main(int argc, char **argv]
{

f= T IS

int magid;
7 magid = Msgget (MO_KEYl, SVMSG MCODE | IPC_CREAT);
] server (msgid, megid); /* same gqueue for both directions */

9 exit {0}

sumsgmpxlq server_main.c
Figure 6.15 Server main function.

The server function does all the server processing, and is shown in Figure 6.16.
This function is a combination of Figure 4.23, our FIFO server that read commands con-
sisting of a process ID and a pathname, and Figure 4.30, which used our mesg_send
and mesg_recv functions. Notice that the process ID sent by the client is used as the
message type for all messages sent by the server to the client. Also, this server is an
infinite loop that is called once and never returns, reading each client request and send-
ing back the replies. Our server is an iterative server, as we discussed in Section 4.9.

Figure 6.17 shows the client main function. The client opens the message queue,
which the server must have already created.

=

The client function shown in Figure 6.18 does all of the processing for our client.
This function is a combination of Figure 4.24, which sent a process ID followed by a
pathname, and Figure 4.29, which used our mesg_send and mesg_recv functions.
Note that the type of messages requested from mesg_recv equals the process ID of the
client.

- Our elient and server functions both use the mesg_send and mesg_recw
i functions from Figures 6.12 and 6.13.

.

B 6.16.
& con-
_=end
as the
f 5 an
 =end-

Section 6.8 Multiplexing Messages 145
1 #inelude *mesg.h" smwxl 7/ «
2 void
3 serveriint readfd, int writefd)

4 {
5 FILE =fp:
] char per;
7 pid_t pid;
B saize_t n;
9 struct mymesg mesg;
10 for ¢ : }
11 J* read pathname from IFC channel */
12 mesy . mesg_type = 1;
13 Lf | {n = Mesg_recv(readfd, &mesg)) == 0) {
14 err_msg | "pathname missing”);
15 continue;
16 }
17 mesg.masg_data(n] = 40 ; /* null terminate pathname */
18 if ({ptr = atrchr{mesg.mesg_data, * *)) == WULL} {
1% err_meg {"bogus reguast: %s", mesd.mesg data);
20 continue;
21 }
22 tptr++ = 0; /* null terminate PID, ptr = pathname */
23 pid = atol (mesg.mesg_data):
24 mesg.mesg_type = pid: /* for messages back to client */
25 if { (fp = fopen(ptr, "r")} == NULL) {
26 /* error: must tell client */
27 snprintf (mesg.mesg_data + n, sizeof (mesg.mesg_datal - n.
28 *: can't open, %s\n", strerror{errno}];
28 mesg.mesg_len = atrlen(ptr};
30 memmove (mesg .mesg_data, ptr, mesg.mesg_len);
il Hesg_send(writefd, &smesg);
3z } else {
33 /* fopen succeeded: copy file to IBC channel */
34 while (Pgets|mesg.mesg_data, MAXMESGDATA, fp)} != NULL) |
35 mesg.mesg_len = strlen(mesg.mesg_datal;
E1- Mesg_send (wricefd, &mesg);
37 1
k] Foclose (fp)
39 }
40 /* send a O-length message to signify the end */
41 mesg.masg_len = 0;
42 Mesg_send (wricefd, &mesg);
43 }
44 1
sumsgmpxlq/server.c

Figure 6.16 server function.

146

System V Message Queues Chapter &

somsgmpxlq/client_main.c

1 #include *avmsg.h"
2 void client (int, int}:
3 ine
4 main{int argec, char **argv}
I
& int megid;
7 f* server must create the gueus */
8 magid = Msgget (MQ_KEY1, 0);:
8 client (msgid, msgid); /* same gueue for both directiona */
10 exic(0);
11} - .
- sumsgmpxlq/client_main.c
Figure 6,17 Client main function.
stmsgmpxlq fclient.c
1 #include "mesg.ht
2 void
1 client(int readfd, int wricefd)
4
5 size_t len;
5 ssize_t n;
7 charx *pLr;
] struct mymesg mesg:
9 /* start buffer with pid and a blank */
10 snprintf (mesg.mesg_data, MAXMESGDATA, "%ld °, (long) getpld());
11 len = strlenimesg.mesg_datal;
12 ptr = mesg.mesg_data + len:
13 /* read pathname =/
14 Fgets|ptr, MAXMESGDATA - len, stdin);
15 len = strlenimesg.mesg_data);
16 if (mesg.mesg_datallen - 1] == "‘\n'l
17 len--; /* delete newline from fgets() */
18 mesgy.mesg_len = len;
19 mesg.mesg_type = 1;
20 /* write PID and pathname to IPC channel */
21 Mesg_send{writefd, &mesg);
22 /* read from IFC, write to standard cutput */
23 mesg.mesg_type = getpidl);
24 while [in = Mesg_recv(readfd, &mesg)} = 0}
25 Write (STOOUT_FILENG, mesg.mesg_data, n);
26 }

somsgmipxlq/client.c

Figure 6.18 client function,

Section 6.8 Multiplexing Messages 147

et main.c Example: One Queue per Client
We now modify the previous example to use one queue for all the client requests to the
server and one queue per client for that client's responses. Figure 6.19 shows the
design.
child parent child
fork fork)
SETVET - SETVET R —— SHETVET
i |
: B
E well-known key g
b C g E“
g 3
Y
IPC_PRIVATE
g/ client.c

Figure 6.19 OUme quese per server and one queue per client.

The server’s queue has a key that is well-known to the clients, but each client creates its
own queue with a key of IPC_PRIVATE. Instead of passing its process ID with the
request, each client passes the identifier of its private queue to the server, and the server

sends its reply to the client’s queue. We also write this server as a concurrent server,
with one fork per client.

One potential problem with this design ocours if a client dies, in which case, messages may be
left in its private queue forever (or at least until the kernel reboots or someone explicitly
deletes the queue).

The following headers and functions do not change from previous versions:

* mesg.h header (Figure 4.25),

* svmsg.h header (Figure 6.9,

* server main function (Figure 6.15), and
* mesg_send function (Figure 4.27).

Our client main function is shown in Figure 6.20; it has changed slightly from Fig-
] ure 6.17. We open the server’s well-known queue (MQ_KEY1) and then create our own
Bictiont.c S queue with a key of IPC_PRIVATE. The two queue identifiers become the arguments

to the client function (Figure 6.21). When the client is done, its private queue is
removed.

148 System V Message Queues Chapter 6

stmsgmpang [client_main.c

1 #include "svmsg.h"
2 wvoid elient (int, int);
3 int
4 main{int argc, char **argv)
50
& int readid, writeid;
7 /* server must create its well-known gqueue */
] writeid = Msgget (MQ_KEY1, O);
9 /* we create our own private gueue */
10 readid = Msgget |IPC_PRIVATE, SVMSG_MODE | IPC_CREAT):
11 client (readid, writeid):
12 /* and delete our private gqueue */
13 Megetl (readid, IPC_RMID, NULL);
14 exici{d);
15 1} . .
sumsgmpxng | client_main.c
Figure 620 Client main function.
somsgmpxng client.c
1 #include 'mesg.h” Zmpng
2 woid
3 client(int readid, int writeid}
4 {
5 size_t len;
f ssize_t n;
7 char ptr;
B sbruct mymesdg mesdg;
9 /* start buffer with msgid and a blank */
10 snprintf (mesg mesg_data, MAXMESGDATA, "%d *, readid);
11 len = strlen(mesg.mesg_data) ;
12 ptr = mesg.mesg_data + len;
13 /* read pathname */
14 Fgats(ptr, MANMESGDATA - len, stdin);
15 len = strlenimesg.mesg_data);
16 if [(mesg.mesg_datallen - 1] == "\n’]
k 17 len--; /* delete newline from fgetsi{] */
i 18 meag.mesg_len = len;
i 19 mesg.mesg_type = 1;
; Z0 /* write msgid and pathname to server’'s well-known gqueus */
g 21 Mesg_send{writeid, &mesg);
% 22 /* read from our gqueue, write to standard output */
i 23 while [(n = Mesg_recvireadid, &smesg)} = 0]
g 24 Write (STDOUT_FILEMO, mesg.mesg_data, nj:
i 25 } .
somsgmpang | client.c

Figure 6.21 client function.

Section 6.8 Multiplexing Messages 149

Ia

12-18

25-45

Figure 6.21 is the client function. This function is nearly identical to Figure 6.18,
but instead of passing the client’s process ID as part of the request, the identifier of the
client’s private queue is passed instead. The message tvpe in the mesg structure is also
left as 1, because that is the type used for messages in both directions.

Figure 6.23 is the server function. The main change from Figure 6.16 is writing
this function as an infinite loop that calls fork for each client request.

Establish signal handler for s16CHLD

Since we are spawning a child for each client, we must worry about zombie pro-
cesses. Sections 5.9 and 5.10 of UNPv1 talk about this in detail. Here we establish a sig-
nal handler for the SIGCHLD signal, and our function sig_chld (Figure 6.22) is called
when a child terminates.

The server parent blocks in the call to mesg_recv waiting for the next client mes-
sage to arrive.

A child is created with fork, and the child tries to open the requested file, sending
back either an error message or the contents of the file. We purposely put the call to
fopen in the child, instead of the parent, just in case the file is on a remote filesystem, in
which case, the opening of the file could take some time if any network problems occur.

Our handler for the SIGCHLD function is shown in Figure 6.22. This is copied from
Figure 5.11 of UNPv1.

somsgmprnyg [siechldwaitpid o

1l #include "unpipc.h*

2 woid

3 sig_chld({int signoc)

4 {

5 pid_t pid;

3 int sEtat;

7 while { (pid = waitpid(-1, &stat, WNOHANG}) = 0} ;
i return;

21

semsgmpxng (sigchldwaitpid.c
Figure 622 SIGCHLD signal handler that calls waitpid

Each time our signal handler is called, it calls waitpid in a loop, fetching the termi-
nation status of any children that have terminated. Our signal handler then returns.
This can create a problem, because the parent process spends most of its time blocked in
a call to msgrov in the function mesg_recv (Figure 6.13). When our signal handler
returns, this call to msgrev is inferrupted. That is, the function returns an error of
ETNTR, as described in Section 5.9 of UNPv1.

We must handle this interrupted system call, and Figure 6.24 shows the new version
of our Mesg_recv wrapper function. We allow an error of EINTR from mesg_recv
(which just calls msgreov), and when this happens, we just call mesg_recv again.

150

System V Message Queues Chapter 6

1 #include *masg.h" STMSEIMpPYNG {server.c
2 woid

1 gerver(int readid, int writeid)

4 1

5 FILE “fpi

& char *phr;

7 s@ize_t n;

B struct mymesg mesd;

9 wvold aig_chldi{int);

10 Signal (SIGCHLD, sig_chldl:

11 for (¢ ¢) 1

i /* read pathname from our well-known queus o)

13 mesgy . mesg_type = 1;

14 if | {o = Mesg reevireadid, &mesg)) == 01 {

15 err_mag|*pathname missing”};

16 continue;

17 ¥

18 mesg.mesg_datafn] = "0 /* null terminate pathname */

19 if { Iptr = strchrimesg.mesg_data, ' "1 == LL} {
20 err_msg | "bogus reguest: %s°, mesg .mesg_datal;
21 continue;

22 i

23 *ptre+ = 0; /*+ pull terminate magid, pLy = pathname */
24 writeid = atol (mesg.mesg_data);
25 if (Fork() == 0} [f* child */f

26 if | (fp = fopen(ptr, "r")) == NULL} {

27 /* esrror: must tell client */

2B snprintfimesy.mesg_data + o, sizeof (mesg.mesg_datal - o,
29 ", san't open, %s\n", Strerrcr (errnell;

30 mesg.mesg_len = strleniptr);

3l memmove (mesg.mesg_data, BLr. mesg . mesg_len) ;

32 Mesg_send (writeld, Emesg):

a3 } else {

34 /= fopen succeeded: copy file to client’'s gueue */
35 while (Fgets|mesg.mesg_data, MAXMESGDATA, fp) != WULL) {
36 mesg.mesg_len = strlen (mesg.mesg_data);

37 Mesg_send (writeid, &mesgl;

ig i

39 Feloselfpl:

40 }

41 /* send a O-length message to signify the end */

42 mesg.masg_len = O;

43 Meag_send {writeid, &mesg);

44 exit (0} /* ¢hild terminates */
45]

46 /* parent just loops around */

47 }

48 }

STMSEMPTI (SerUers

Figure 6.23 server function.

Bapier f

i arrTer.c

EF

i SETTEr.C

g
.
.
=
:
P
:-

Section .9 Message Queues with select and poll 151

SUMSTHIPXHG | Mesg_recu.c
10 ssize_t EmpxNG 8-

11 Mesg_recvi{int id, struct mymesg *mptr)

12 |

13 ssize_t n;

14 do {

15 n = mesg_recviid, mptr);

16 } while {n == =1 &k errno == EINTR):
17 if (n == -1}

18 EBrr_ays|"mesg_recv error®);

1 raturn {nj;

20}

STSgMpIng mesg_rectne
Figure 624 Mesg_recv wrapper function that handles an interrupted system call.

Message Queues with select and poll

One problem with System V message queues is that they are known by their own iden-
tifiers, and not by descriptors. This means that we cannot use either select or poll
(Chapter 6 of UNPv1) with these message queues.

Actually, one version of Unix, IBM's AIX, extends select to handle Svstem V message queues
im acdition to descriptors. But this is nonportable and works only with ALX.

This missing feature is often uncovered when someone wants to write a server that
handles both network connections and IPC connections. Network communications
using either the sockets API or the XTI API (UNPv1) use descriptors, allowing either
select or poll to be used. Pipes and FIFOs also work with these two functions,
because they too are identified by descriptors.

One solution to this problem is for the server to create a pipe and then spawn a
child, with the child blocking in a call to msgrcv. When a message is ready to be pro-
cessed, msgrov returns, and the child reads the message from the queue and writes the
message to the pipe. The server parent can then select on the pipe, in addition to
some network connections. The downside is that these messages are then processed
three times: once when read by the child using msgrecv, again when written to the pipe
by the child, and again when read from the pipe by the parent. To avoid this extra pro-
cessing, the parent could create a shared memory segment that is shared between itself
and the child, and then use the pipe as a flag between the parent and child (Exer-
cise 12.5).

In Figure 5.14 we showed a solution using Posix message queues that did not require a fork.
We can use a single process with Posix message queues, because they provide a notification
capability that generates a signal when a message arrives for an empty queue. System V mes-
sage queuss do not provide this capability, so we must fork a child and have the child block
in a call to msgrowv.

152

6.10

System V Message Queues Chapter &

Another missing feature from System V message queues, when compared to net-
work programming, is the inability to peek at a message, something provided with the
MSG_PEEK flag to the recv, recvirom, and recvmsg functions (p. 356 of UNPv1). If
such a facility were provided, then the parent—child scenario just described (to get
around the select problem) could be made more efficient by having the child specify
the peek flag to msgrev and just write 1 byte to the pipe when a message was ready,
and let the parent read the message.

Message Queue Limits

As we noted in Section 3.8, certain system limits often exist on message queues. Fig-
ure 6.25 shows the values for some different implementations. The first column is the
traditional System V name for the kernel variable that contains this limit.

I

Mame | - Description DUnix 4.0B | Solaris L.

=g

| S—

megmax_|_max Dytes per message 8192 | 2048
msgmnb | max #bytes on any one message queue 16384

meamni | max #fmessage queves, systemwide

Pk

]
_!'rl_slgtql max #messages, systemwide i 40

Figure .25 Typical system limits for System WV message queles.

Many SVR4-derived implementations have additional limits, inherited from their
original implementation: msgssz is often 8, and this is the “segment” size (in bytes) in
which the message data is stored. A message with 21 bytes of data would be stored in 3
of these segments, with the final 3 bytes of the last segment unused. msgseg is the
number of these segments that are allocated, often 1024. Historically, this has been
stored in a short integer and must therefore be less than 32768, The total number of
bytes available for all message data is the product of these two variables, often 8x 1024
bytes.

The intent of this section is to show some typical values, to aid in planning for
portability. When a system runs applications that make heavy use of message queues,
kernel tuning of these (or similar) parameters is normally required (which we described
in Section 3.8).

Example

Figure 6.26 is a program that determines the four limits shown in Figure 6.25.

sumsg [limits.c

1 #include “unpipe.h"

2 #define MAX_DATA Ba*1024
3 #define MAX _NMESG 4096

4 #define MAX NIDS 4096

5 int Max_mesg

£ struct mymesg {

5. Fig-
s the

g their
fes) in
ad in 3
i the
§ been
et of
* 1024

ng for

[

eribed

Wit

Section .10 Message Cueue Limits 153
T long type;
8 char data [MAX_DATA] ;
9 | mesg;
10 int
11 main{int arge, char **argv)
12 {
13 int i, i, magid, gid[MAX_NIDS];
14 /* firat try and determine maximum amount of data we can send */
15 msgid = Msgget {IPC_PRIVATE, SVMSG_MODE | IRC_CREAT) ;
16 mesg.type = 1;
17 for (i = MAX_DATA; i = 0; i -= 128} {
18 if (msgsndimsqgid, &mesg, i, 0) == 0) [
149 printf{"maximum amount of data per message = %d\n", il;
20 max_mesg = i;
21 break;
22 b
23 if {errmo = EINVAL)
24 err_sys | "msgsnd error for length %d°, i);
25 }
26 if (i == 0}
27 err_qguit("i == 0"};
28 Mzsgcotl (megid, IPC_RMID, NULL);
29 /% gee how many messages of varying size can be put onto a gueue %/
30 mesg.type = 1;
31 for (i = 8; 1 <= max_mesg; i *= 2) {
3z magid = Msgget {IPC_PRIVATE, SVMSG_MODE | IPC_CREAT);
33 for {§ = 0; j < MAX_NMESG; j++) |{
34 if (msgsndi{msgid, &mesg, i, IPC_NOWAIT) != 0} {
as if lerrno == ERGAIN}
el break;
37 err_sys|("msgsnd error, i = %d, § = %4*, i, j):
38 break;
38]
40 1
a1 printf ("%d %d-byte messages were placed onto gueue,®, j, i}
42 printf(* %d bytes totaln*, i * j);:
43 Magctl imegid, IBPC_RMID, NULL]:
44 }
45 /* gee how many identifiers we can "open" */
46 mesg.type = 1;
47 for (i = 0; 1 <= MAX NIDS; i++) {
a8 if ({gid[i] = msgger (IPC_PRIVATE, SVMSG_MODE | IFC_CREAT)} == -1} |
49 printf(*%d identifiers open at cnce\n®, 1};
50 break;
=1]
52 1
53 for (3 = 0; 1 = i; J++)
54 Magotl (gid[j], IPC_RMID, NULL);
55 exit (0);
56 1

sumsg | limits.c

Figure 6.26 Determine the system limits on System V message queues.

154 System V Message Queues Chapter &

14-28

45=-54

Determine maximum message size

To determine the maximum message size, we try to send a message containing
65536 bytes of data, and if this fails, we try a message containing 65408 bytes of data
and so on, until the call to msgsnd succeeds.

How many messages of varying size can be put onto a queue?

Next we start with 8-byte messages and see how many can be placed onto a given
queue. Once we determine this limit, we delete the queue (discarding all these mes-
sages) and try again with 16-byte messages. We keep doing so until we pass the maxdi-
mum message size that was determined in the first step. We expect smaller messages to
encounter a limit on the total number of messages per queue and larger messages to
encounter a limit on the total number of bytes per queue.

How many identifiers can be open at once?

Normally a system limit exists on the maximum number of message queue identi-
fiers that can be open at any time. We determine this by just creating queues until
msgaoet fails.

We first run this program under Solaris 2.6 and then Digital Unix 4.0B, and the
results confirm the values shown in Figure 6.25.

solaris ¥ limits

maximum amount of data per message = 2048

40 B-byte messages were placed onto gueue, 320 bytes total

40 lé-byte messages were placed onto gueue, 640 bytes total
40 312-byte messages were placed onto gueue, 1280 bytes total
40 f4-byte messages were placed onto gqueue, 2560 bytes total
32 128-byte messages were placed onto queue, 4096 bytes total
16 256-byte messages were placed onto queus, 4096 bytes total
B 512-byte messages were placed onto gueue, 40596 bytes total
4 1024-byte messages were placed onto gueue, 4096 bytes total
2 2048-byte messages were placed onto gueue, 40%6 bytes total
50 identifiers open at once

alpha % limitse

maximum amount of data per message = 8132

40 &-byte messages were placed onto queue, 320 bytes total

40 16-byte messages were placed onto gueue, 640 bytes total

40 32-byte messages were placed onto gueue, 1280 bytes total
40 64-byte messages were placed onto queue, 2560 bytes total
40 128-byte messages were placed onto gueue, 5120 bytes tetal
40 256-byte messages were placed onto gueue, 10240 bytes total
312 512-byte messages were placed onto gueue, 16384 bytes total
16 1024-byte messages were placed ocnto gueue, 16384 bytes total
B 2048-byte messages were placed onto gqueue, 16384 bytes tetal
4 4096-byte messages were placed onto queus, 18384 bytes total
2 B192-byte messages were placed onto gueue, 16384 bytes total
1 identifiers open at once

The reason for the limit of 63 identifiers under Digital Unix, and not the 64 shown in
Figure 6.25, is that one identifier is already being used by a system daemon.

Chapter & Exercises 155

6.11

Summary

System V message queues are similar to Posix message queues. New applications
should consider using Posix message queues, but lots of existing code uses System V
message queues. Nevertheless, recoding an application to use Posix message queues,
instead of System V message queues, should not be hard. The main feature missing
from Posix message queues is the ability to read messages of a specified priority from
the queue. Neither form of message queue uses real descriptors, making it hard to use
either select or poll with a message queue,

Exercises

6.1 Modify Figure 6.4 to accept a pathname argument of TFC_PRIVATE and create a message
queue with a private key if this is specified. What changes must then be made to the
remaining programs in Section 6.67

6.2 Why did we use a type of 1 in Figure 6.14 for messages to the server?

6.3 What happens in Figure 6.14 if a malicious client sends many messages to the server but
never reads any of the server's replies? What changes with Figure 6.19 for this type of
client?

6.4 Redo the implementation of Posix message queues from Section 5.8 to use System V mes-
sage queues instead of memory-mapped 1/0.

Part 3

Synchronization

ekt

7.1

7.2

Mutexes and
Condition Variables

Introduction

This chapter begins our discussion of synchronization: how to synchronize the actions
of multiple threads or multiple processes. Synchronization is normally needed to allow
the sharing of data between threads or processes. Mutexes and condition variables are
the building blocks of synchronization.

Mutexes and condition variables are from the Posix.1 threads standard, and can
always be used to synchronize the various threads within a process. Posix also allows a
mutex or condition variable to be used for synchronization between multiple processes,
if the mutex or condition variable is stored in memory that is shared between the pro-

CESSES.

This is an option for Posix but required by Unix 98 (e.g., the “process shared mutex/CV" line
in Figure 1.5}

In this chapter, we introduce the classic producer—consumer problem and use
mutexes and condition variables in our solution of this problem. We use multiple
threads for this example, instead of multiple processes, because having multiple threads
share the common data buffer that is assumed in this problem is trivial, whereas sharing
a common data buffer between multiple processes requires some form of shared mem-
ory (which we do not describe until Part 4). We provide additional solutions to this
problem in Chapter 10 using semaphores.

Mutexes: Locking and Unlocking

A mutex, which stands for mutual exclusion, is the most basic form of synchronization.
A mutex is used to protect a critical region, to make certain that only one thread at a time

159

I'.n_-,_-,a:ﬂ_.‘“}- e

TR et O

160 Mutexes and Condition Variables Chapter 7

executes the code within the region (assuming a mutex that is being shared by the
threads) or that only one process at a time executes the code within the region (assum-
ing a mutex is being shared by the processes). The normal outline of code to protect a
critical region looks like

lock_the_mutex(...);

critical region

unlock_the_mutex{...];
Since only one thread at a time can lock a given mutex, this guarantees that only one
thread at a time can be executing the instructions within the critical region.

Posix mutexes are declared as variables with a datatype of pthread_mutex_t. If
the mutex variable is statically allocated, we can initialize it to the constant
PTHREAD MUTEX_INITIALIZER, asin

static pthread_mutex_t lock = PTHREAD MUTEX INITIALIZER;
If we dynamically allocate a mutex (e.g., by calling malloc) or if we allocate a mutex in

shared memory, we must initialize it at run time by calling the pthread mutex_init
function, as we show in Section 7.7.

You may encounter code that omits the initializer because that implementation defines the ini-
tializer to be O (and statically allocated variables are automatically initialized to 0). But this is
incorrect code,

The following three functions lock and unlock a mutex:

#include <pthread.h=
int pthread mutex_lock (pthread mutex_t *mplr) ;
int pthread_mutex_trylock(pthread_mutex_t *mpir) ;

int pthread _mutex_unlock (pthread_mutex_t *mptr) ; |

| All three return: 0 if OK, positive Exxr value on error |

If we try to lock a mutex that is already locked by some other thread,
pthread_mutex_lock blocks until the mutex is unlocked.
pthread_mutex_trylock is a nonblocking function that returns EBUSY if the mutex
is already locked.

If multiple threads are blocked waiting for a mutex, which thread runs when the mutex is
unlocked? One of the features added by the 1003.1b-1993 standard is an option for priority
scheduling. We do not cover this area, but suffice it to say that different threads can be
assigned different priorities, and the synchronization functions (mutexes, read—write locks,
and semaphores! will wake up the highest priority thread that is blocked. Section 5.5 of
[Butenhof 1997] provides more details on the Posix. 1 realtime scheduling feature,

Although we talk of a critical region being protected by a mutex, what is really pro-
tected is the data being manipulated within the critical region. That is, a mutex is nor-
mally used to protect shared data that is being shared between multiple threads or
between multiple processes.

H

e R

B -

Ry

W

Section 7.3 Producer—Consumer Problem 161

7.3

Mutex locks are cooperative locks. That is, if the shared data is a linked list (for
example), then all the threads that manipulate the linked list must obtain the mutex lock
before manipulating the list. Nothing can prevent one thread from manipulating the
linked list without first obtaining the mutex.

Producer-Consumer Problem

One of the classic problems in synchronization is called the producer—consumer problem,
also known as the bounded buffer problem. One or more producers (threads or pro-
cesses) are creating data items that are then processed by one or more consumers
(threads or processes). The data items are passed between the producers and con-

sumers using some type of IPC.
We deal with this problem all the time with Unix pipes. That is, the shell pipeline

grep pattern chapters.* | wo -1

is such a problem. grep is the single producer and we is the single consumer. A Unix
pipe is used as the form of IPC. The required synchronization between the producer
and consumer is handled by the kernel in the way in which it handles the writes by
the producer and the reads by the consumer. If the producer gets ahead of the con-
sumer (i.e., the pipe fills up), the kernel puts the producer to sleep when it calls write,
until more room is in the pipe. If the consumer gets ahead of the producer (i.e., the pipe
is empty), the kernel puts the consumer to sleep when it calls read, until some data is
in the pipe.

This type of synchronization is implicit; that is, the producer and consumer are not
even aware that it is being performed by the kernel. If we were to use a Posix or
System V message queue as the form of IPC between the producer and consumer, the
kernel would again handle the synchronization.

When shared memory is being used as the form of IPC between the producer and
the consumer, however, some type of explicit synchronization must be performed by the
producers and consumers. We will demonstrate this using a mutex. The example that
we use is shown in Figure 7.1.

e -
I 1
|| producer | buf£ (0] o]) |
| thread I E— |
i e buff[1]: 1 |
| Pl';#dmfr buff[2l:| 2 :
| threa store P | [letch consumer |
I tems™ DUl : |> “jtems™ | thread | !
I B i
| 1
P T | |
I producer !
: thread | buff[nitems-1]:|nitems-1 J :
o process,

Figure 7.1 Producer-consumer example: multiple producer threads, one consumer thread.

e

162 Mutexes and Condition Variables Chapter 7

We have multiple producer threads and a single consumer thread, in a single pro-
cess. The integer array buff contains the items being produced and consumed (i.e., the
shared data). For simplicity, the producers just set buf £ [0] to 0, buf £[1] to 1, and so
on. The consumer just goes through this array and verifies that each entry is correct.

In this first example, we concern ourselves only with synchronization between the
multiple producer threads. We do not start the consumer thread until all the producers
are done. Figure 7.2 is the main function for our example.

_ - mutex |prodeons2.c
1 #include "unpipe.h”
2 #define MAXNITEMS 1000000
1 #define MANNTHREADS 100
4 int nitems; /* read-only by producer and consumer */
5 struct {
& pthread_mutex_t mutex;
7 int buff [MAXNITEMS] ;
H int npuk;
9 int nval;
10 } shared = {
11 PTHREAD _MUTEX_INITIALIZER
12 ¥;
13 woid *produce(veid *}, *consumeivoid *1;
14 int
15 main{int arge, char **axgv)
le |
17 ink i, nthreads, count[MAXNTHREADSZ];
18 pthread_t tid_produce [MAXNTHREADE], tid_consume;
19 if {arge I= 3}
20 err_guit i usage: prodconsi <#items> <#threads=");
21 nitems = min(atoi{argv[l]), MAXNITEMS}
22 nthreads = minlatol (argv([2]), MAXNTHREADS];
23 Set_concurrency (nthreads) ;
24 /* start all the producer threads */
25 for {1 = 0; i < nthreads; i++) {
26 count[i] = 0;
27 Fthread_create{&tid_produce[i], NULL, produce, &count[i]);
28 1
29 /% wait for all the producer threads */
ap for (4 = 0; i = nthreads; i++} {
a1 Pthread_joinitid produceli], NULL):
iz printf(“count [%#d] = %d@\n*", i, countli]};
33 }
a4 /* srart, then wait for the consumer thread */
a5 Fthread_create (&tid_consume, NULL, consume, NULL);
16 Pthread_jeoinitid_consume, NULL):
37 exit (0}
E1-

miitex (prodeons2.c

Figure 7.2 main function,

Section 7.3 Producer—Consumer Problem 163

4-12

23

2d-28

29-38

Globals shared between the threads

These variables are shared between the threads. We collect them into a structure
named shared, along with the mutex, to reinforce that these variables should be
accessed only when the mutex is held. nput is the next index to store in the buf £ array,
and nval is the next value to store (0, 1, 2, and so on). We allocate this structure and
initialize the mutex that is used for synchronization between the producer threads.

We will always try to collect shared data with their synchronization variables (mutex, condi-
tion variable, or semaphore) into a structure as we have done here, as a good programming
technique. In many cases, however, the shared data is dynamically allocated, say as a linked
list. We might be able to store the head of the linked list in a structure with the synchroniza-
tion variables (as we did with our mg_hdr structure in Figure 5.20), but other shared data (the
rest of the list) is not in the stracture. Therefore, this solution is often not perfect.

Command-line arguments

The first command-line argument specifies the number of items for the producers to
store, and the next argument is the number of producer threads to create.

Set concurrency level

set_concurrency is a function of ours that tells the threads system how many
threads we would like to run concurrently. Under Solaris 2.6, this is just a call to
thr_setconcurrency and is required if we want the multiple producer threads to
each have a chance to execute. If we omit this call under Solaris, only the first producer
thread runs. Under Digital Unix 4.0B, our set_concurrency function does nothing
{because all the threads within a process compete for the processor by default).

Unix 98 requires a function named pthread_setconcurrency that performs the same func-
tion. This function is needed with threads implementations that multiplex user threads {what
we create with pthread_create) onto a smaller set of kernel execution entities (e.g., kernel
threads). These are commonly referred to as many-to-few, two-level, or M-to-N implementa-
tions. Section 5.6 of [Butenhof 1997] discusses the relationship between user threads and ker-
nel entities in more detail.

Create producer threads

The producer threads are created, and each executes the function produce. We
save the thread ID of each in the £id_produce array. The argument to each producer
thread is a pointer to an element of the count array. We first initialize the counter to 0,
and each thread then increments this counter each time it stores an item in the buffer.
We print this array of counters when we are done, to see how many items were stored
by each producer thread.

Wait for producer threads, then start consumer thread

We wait for all the producer threads to terminate, also printing each thread’s
counter, and only then start a single consumer thread. This is how (for the time being)
we avoid any synchronization issues between the producers and consumer. We wait for
the consumer to finish and then terminate the process.

Figure 7.3 shows the produce and consume functions for our example.

et o e Al S S

164 Mutexes and Condition Variables Chapter 7

mutex/prodconsl.c

39 weoid *

40 produce (void *arg)

41 |

a2 far [¢+ = 1 {

43 Pthread_mutex_lock(&shared.mutex);

44 if (shared.nput == nitems) {

45 pthread_mutex_unlock{kshared.matex);
46 reburn (NULL}) ; /% array is full, we're done */
47 }

48 ghared.buff[shared.nput] = shared.nval;
49 shared.nput++;

] shared.nval++;

51 Pthread_mutex _unlock (kshared.mutex);

52 *{int *] arg) += 1;

53 1

4)

5% woid *
56 consume(void *arg)
57 4

58 int i;
] for {i = 0: i = nitems; i++) {
&0 if (shared.buff[i] != i)
i 6l printf (*buff[%d] = %dwn®, i, shared. buff[il);
: &2 } _
63 return (NULL}) ;
ad

mutex/prodeons2.c

Figure 7.3 produce and consume functions.

Generate the data items
42-53 The critical region for the producer consists of the test for whether we are done

if (shared.nput >= nitems]
followed by the three lines

ghared.buff [shared.nput] = shared.nval;
shared.nput++;
shared.nval++;

We protect this region with a mutex lock, being certain to unlock the mutex when we
are done. Notice that the increment of the count element (through the pointer arg) is
not part of the critical region because each thread has its own counter (the count array
in the main function). Therefore, we do not include this line of code within the region
locked by the mutex, because as a general programming principle, we should always
strive to minimize the amount of code that is locked by a mutex.

Consumer verifies contents of array

59-62 The consumer just verifies that each item in the array is correct and prints a mes-
sage if an error is found. As we said earlier, only one instance of this function is run and

Section 7.4 Locking versus Waiting 165

7.4

only after all the producer threads have finished, so no need exists for any synchroniza-
tion.

If we run the program just described, specifying one million items and five pro-
ducer threads, we have

solaris % prodcons? 1000000 5
count [0] = 167165

countc[1l] = 24%89%1
count[2] = 194221
count([3] = 191815
count[4] = 196508

As we mentioned, if we remove the call to set concurrency under Solaris 2.6,
count [0] then becomes 1000000 and the remaining counts are all (.

If we remove the mutex locking from this example, it fails, as expected. That is, the
consumer detects many instances of buff [i] not equal to 1. We can also verify that
the removal of the mutex locking has no effect if only one producer thread is run.

Locking versus Waiting

We now demonstrate that mutexes are for locking and cannot be used for waiting. We
modify our producer-consumer example from the previous section to start the con-
sumer thread right after all the producer threads have been started. This lets the con-
sumer thread process the data as it is being generated by the producer threads, unlike
Figure 7.2, in which we did not start the consumer until all the producer threads were
finished. But we must now synchronize the consumer with the producers to make cer-
tain that the consumer processes only data items that have already been stored by the
producers.

Figure 7.4 shows the main function. All the lines prior to the declaration of main
have not changed from Figure 7.2.

mutex | prodeons3.c
14 int
15 main(int argc, char **argv)
16 {
17 int i, nthreads, count[MAXNTHEEADE]:
18 pthread_t tid_produce [MAXNTHREADS), tid_consume;
15 if (argc = 3)
20 err_guit{"usage: prodcons3 <#items> <#threads="};
21 nitems = min{atoilargv(l]), MAXNITEMS);
22 nthreads = miniatoillargv(2]), MAKNTHREEADS] ;
23 /* create all producers and one consumer */f
24 Set_concurrency (athreads + 1);
25 for (1 = 0; i < nthreads; i++} {
26 count[i] = O;
27 Pthread_create (&tid_produce[i], WULL, produce, &count[i]);
28 1
29 Pthread_create (&tid_consume, NULL, consume, NULL);

e R e et

166 Mutexes and Condition Variables Chapter 7

24

25=29

71

ao /* wait for all producers and the consumer */
11 for (1 = 0: 1 = nthreads; i++) {

32 Pehread_jeoinitid_produce(l], MULL);

33 printf{"count[%d] = %d\n*, i, count(i]};

34 1

35 Pthread joinitid_consume, NULL);:

36 exikb{0);

37 1

mutex | prodeons3 o

Figure 7.4 main function: start consumer immediately after atarting producers.
We increase the concurrency level by one, to account for the additional consumer
thread.
We create the consumer thread immediately after creating the producer threads.
The produce function does not change from Figure 7.3.

We show in Figure 7.5 the consume function, which calls our new consume_wait
function.

mutex | prodeonsd.c

54 woid

5% consume_wait(int i)

56

57 for { ¢ 1+) |

58 Pehread_mutex_lock{&shared.mutex) ;

3] if {i = shared.npuk) {

] Pthread_mutex_unlock (&shared.mutex) ;
&1 return; /* an item is ready */
62 1

63 Pthread_mutex_unlock{&shared.mutex);

4 1

65 }

&6 wold *
67 consumei{vold *arg)

a8 |

63 int i;

70 for (i = 0; i = nitems; i++} |

71 consume_wait (i)

72 if (shared.buff[i] !'= 1}

7 printf{ "buff(%d] = &d\n", i, shared.buff[i]);
74 3

75 return {NULL) ;

X

—— wutex [prodeons3.c

Figure 7.5 consume_wait and consume functions.

Consumer must wait

The only change to the consume function is to call consume_wait before fetching
the next item from the array.

Section 7.5 Condition Variables: Waiting and Signaling 167

7.5

id

=21

Wait for producers

Our consume_wait function must wait until the producers have generated the ith
item. To check this condition, the producer’s mutex is locked and i is compared to the
producer’s nput index. We must acquire the mutex lock before looking at nput, since
this variable may be in the process of being updated by one of the producer threads.

The fundamental problem is: what can we do when the desired item is not ready?
All we do in Figure 7.5 is loop around again, unlocking and locking the mutex each
time. This is calling spinning or polling and is a waste of CP'U time.

We could also sleep for a short amount of time, but we do not know how long to
sleep. What is needed is another type of synchronization that lets a thread (or process)
sleep until some event occurs.

Condition Variables: Waiting and Signaling

A mutex is for locking and a condition variable is for waiting. These are two different
types of synchronization and both are needed.

A condition variable is a variable of type pthread_cond_t, and the following two
functions are used with these variables,

#finclude <pthread.h=

int pthread_cond_wait (pthread_cond_t *cptr, pthread_mutex_t *mpir);

|

int pthread_cond_signal (pthread cond_t 'rptrl H i
|

Both return: 0 if OK, positive Exxx value on error |

The term “signal” in the second function’s name does not refer to a Unix SIGxxx signal.
We choose what defines the “condition” to wait for and be notified of: we test this
in our code.
A mutex is always associated with a condition variable. When we call
pthread_cond_wait to wait for some condition to be true, we specify the address of
the condition variable and the address of the associated mutex.

We explain the use of condition variables by recoding the example from the previ-
ous section. Figure 7.6 shows the global declarations.

Collect producer variables and mutex into a structure

The two variables nput and nval are associated with the mutex, and we put all
three variables into a structure named put. This structure is used by the producers.

Collect counter, condition variable, and mutex into a structure

The next structure, nready, contains a counter, a condition variable, and a mutex,
We initialize the condition variable to PTHREAD_COND_INITIALIZER.

The main function does not change from Figure 7 4.

168 Mutexes and Condition Variables Chapter 7

— - miutex | prodoonst <
1 #include "unpipc.h®
2 #define MAMNNITEMS 10000040
3 #define MAXNTHREEADS 100
4§ /* globals shared by threads */
5% int nitems; /* read-only by producer and consumer "/
& int buff [MAXNITEMS] ;
T atruct {
] pthread_mutex_t mutex;
9 int nput; /* next index to store */
10 int nwval; /* next wvalue to store ¥/
11 } put = |
12 PTHREAD MUTEX_IMITIALIZER
13 }:
14 struetc {
15 pthread_mutex_t mutex;
1& pthread_cond_t cond:
17 ik nready: /* number ready for consumer */
18 } nready = {
i9 PTHREARD MUTEX_INITIALIZER, PTHREAD_COND_INITIALIZER
20 1:

mutex | prodoonst.

Figure 7.6 Globals for our producer—consumer, using a condition variable.

The produce and consume functions do change, and we show them in Figure 7.7.

Place next item into array

50-58 We now use the mutex put .mutex to lock the critical section when the producer
places a new item into the array.

Notify consumer

55-64 We increment the counter nready.nready, which counts the number of items
ready for the consumer to process. Before doing this increment, if the value of the
counter was 0, we call pthread_cond_signal to wake up any threads (e.g., the con-
sumer) that may be waiting for this value to become nonzero. We can now see the inter-
action of the mutex and condition variable associated with this counter. The counter is
shared between the producers and the consumer, so access to it must be when the asso-
ciated mutex (nready.mutex) is locked. The condition variable is used for waiting
and signaling.

Consumer waits for nready .nready to be nonzero

72-76 The consumer just waits for the counter nready . nready to be nonzero. Since this
counter is shared among all the producers and the consumer, we can test its value only
while we have its associated mutex locked. If, while we have the mutex locked, the
value is 0, we call pthread_cond_wait to go to sleep. This does two actions atomi-
callv:

iﬁxumﬁr

Section 7.5 Condition Variables: Waiting and Signaling 169
mutex/prodeonss.c
46 wvoid * !
47 produce (void *arg)
48 {
49 for { ; ;) |
50 Pthread mutex_ lock{&put.matex):
51 if {put.nput >= nitems) {
52 Prhread_mutex_unleck{&put.mutex];
53 return (NULL): /* array is full, we’'re done */
54 }
55 buff[put.nput] = put.nval;
56 put.nput++;
57 put . nval+s;
58 Fthread mutex_unlock (&put.mutex) ;
59 Pthread_mutex_lock (&nready.mutex) ;
&0 if (nready.nready == ()
61 Pthread_cond_signal {&nready.cond) ;
62 nreaady .nready++;
63 Pthread mutex_unlock {&nready.matex);
64 *{{int *} arg) += 1;
65 }
66 }
67 woid =
68 consume (void *arg)
69 {
70 int i;
71 for {1 = 0; 1 = nitems; i++) |
72 Pthread_mutex_lock{&nready.mutex) ;
73 while (nready.nready == 0]
T4 Pthread cond_wait {&nready.cond, Enready.mutex);
75 nready . nready--;
76 Pthread mutex unlock (&nready.mutex}) ;
77 if {buffl[i] 1= i}
T8 printf{"buff(%d] = %d\n*, i, buff(i]):
79 }
B0 return (NULL);
81 }
mutex {prodeonst.c
Figure 7.7 produce and consume functions.
the mutex nready .mutex is unlocked, and
2. the thread is put to sleep until some other thread calls pthread_cond_signal

for this condition variable.

Before returning, pthread_cond_wait locks the mutex nready.mutex. Therefore,
when it returns, and we find the counter nonzero, we decrement the counter (knowing

s LA g e

b S ELLN - LAt e

P

T

170 Mutexes and Condition Variables Chapter 7

that we have the mutex locked) and then unlock the mutex. Notice that when
pthread_cond_wait returns, we always test the condition again, because spurious
wakeups can occur: a wakeup when the desired condition is still not true. Implementa-
tions try to minimize the number of these spurious wakeups, but they can still occur.

In general, the code that signals a condition variable looks like the following:

gtruct {
pthread_mutex t mutex;:
pthread_cond_t cond;
wrhatever variables matntain the condifion
1 war = { PTHREAD _MUTEX_INITIALIZER, PTHREAD COND_INITIALIEZER, ... i

Pthread_mutex_lock{&var .mutex):
set condition true

Prthread_cond_signal {&var.cond};
Pthread_mutex_unlock (kvar.matex) ;

In our example, the variable that maintains the condition was an integer counter, and
setting the condition was just incrementing the counter. We added the optimization that
the signal occurred only when the counter went from (0 to 1.

The code that tests the condition and goes to sleep waiting for the condition to be
true normally looks like the following:

Prhread_mutex_lock {&var.mutex]:
while (condition is false)
Pthread_cond_wait (&var.cond, &var.mutex):
madify condition
Prhread_mutex_unlock{&var.mutex] ;

Avoiding Lock Conflicts

In the code fragment just shown, as well as in Figure 7.7, pthread cond_signal is
called by the thread that currently holds the mutex lock that is associated with the con-
dition variable being signaled. In a worst-case scenario, we could imagine the system
immediately scheduling the thread that is signaled; that thread runs and then immedi-
ately stops, because it cannot acquire the mutex. An alternative to our code in Fig-
ure 7.7 would be

int dosignal;

Pthread_mutex_lock(&nready . mutex) ;
dosignal = (nready.nready == 0);
nraady . nready+«+;

Pthread mutex_unlock (&nready.mutex);

if (dosignall
Pthread_cond_signal {(&nready.cond) ;

Here we do not signal the condition variable until we release the mutex. This is explic-
itly allowed by Posix: the thread calling pthread_cond signal need not be the cur-
rent owner of the mutex associated with the condition variable. But Posix goes on to

| Chapter 7

—— e

st when
i SPUrTOUS
s=lementa-
§ occur.,

i'_nm’er, and
sation that

hsm to be

Eicnal is
B the con-
e svstem
§ smmedi-
.__ﬁ‘ in Fig-

& explic-
e the cur-

e On o

Section 7.6 Condition Variables: Timed Waits and Broadcasts 171

7.6

say that if predictable scheduling behavior is required, then the mutex must be locked
by the thread calling pthread_cond_signal.

Condition Variables: Timed Waits and Broadcasts

Normally, pthread cond_signal awakens one thread that is waiting on the condi-
tion variable. In some instances, a thread knows that multiple threads should be awak-
ened, in which case, pthread_cond_broadcast will wake up all threads that are
blocked on the condition variable,

An example of a scenario in which multiple threads should be awakened occurs with the read-
ers and writers problem that we deseribe in Chapter 8. When a writer is finished with a lock, it
wants to awaken all queued readers, because multiple readers are allowed at the same time.

An alternate (and safer) way of thinking about a signal versus a broadcast is that you can
always use a broadcast. A signal is an optimization for the cases in which you know that all
the waiters are properly coded, only one waiter needs to be awakened, and which waiter is
awakened does not matter, In all other situations, you must use a broadcast.

#include «<pthread.h=
int pthread_cond_broadcast (pthread_cond_t *opir) ;

int pthread_cond timedwaitipthread _cond_t *¢pir, pthread mutesx_t *mplr,
conet struct timespec *abstime) ;

Both return: 0 if OF, positive Exxr value on error

pthread_cond_timedwait lets a thread place a limit on how long it will block.
abstime is a timespec structure:
struct timespec |
cime_t tv_seg; f* seconds */

long tw_nsec; f* nanoseconds */f
bi

This structure specifies the system time when the function must return, even if the con-
dition variable has not been signaled wet. If this timeout occurs, ETIMEDOUT is
returned.

This time value is an absolute time; it is not a time delta. That is, abstime is the system
time—the number of seconds and nanoseconds past January 1, 1970, UTC—when the
function should return. This differs from select, pselect, and poll (Chapter 6 of
UNPv1), which all specify some number of fractional seconds in the future when the
function should return. (select specifies microseconds in the future, pselect speci-
fies nanoseconds in the future, and poll specifies milliseconds in the future.) The
advantage in using an absolute time, instead of a delta time, is if the function prema-
turely returns (perhaps because of a caught signal): the function can be called again,
without having to change the contents of the timespec structure.

172

Mutexes and Condition Variables Chapter 7

7.7

Mutexes and Condition Variable Attributes

Our examples in this chapter of mutexes and condition variables have stored them as
globals in a process in which they are used for synchronization between the threads
within that process. We have initialized them with the two constants
PTHREAD MUTEX_INITIALIZER and PTHREAD_COND_INITIALIZER. Mutexes and
condition variables initialized in this fashion assume the default attributes, but we can
initialize these with other than the default attributes.

First, a mutex or condition variable is initialized or destroyed with the following
functions:

#include <pthread.h>

int pthread_mutex_initi(pthread mutex_t *mpir, const pthread_mutexatbr_t *air];
int pthread matex_destroy(pthread mutex_t =mptr} ;

int pthread_cend_init(pthread_cond_t *cpir, const pthread_condattr_t *atfr] ;

int pthread_cond_destroy|pthread cond_t *cpir):

All four return: 0 if OK, positive Exxx value on error

Considering a mutex, mptr must point to a pthread_mutex_t variable that has been
allocated, and pthread_mutex_init initializes that mutex. The
pthread_mutexattr_t value, pointed to by the second argument to
pthread_mutex_init (attr), specifies the attributes. If this argument is a null pointer,
the default attributes are used.

Mutex attributes, a pthread_mutexattr_ t datatype, and condition variable
attributes, a pthread_condattr_t datatype, are initialized or destroyed with the fol-
lowing functions:

tinclude <pthread.h=
int pthread_mutexattr_init(pthread mutexattr t “attr) ;
int pthread_mutexatbr_destroy(pthread mutexattr t© *atfr) ;

int pthread_condattr_init (pthread_condatbr t *aftr} ;

int pthread_cundactr_destmymchread_e:ondattr_t *atfr) ;

All four return: U if OK, positive £xxx value on error |

Once a mutex attribute or a condition variable attribute has been initialized, sepa-
rate functions are called to enable or disable certain attributes. For example, one
attribute that we will use in later chapters specifies that the mutex or condition variable
is to be shared between different processes, not just between different threads within a
single process. This attribute is fetched or stored with the following functions.

apter 7 Section 7.7 Mutexes and Condition Variable Attributes 173

#include <pthread.h>

L,n as int pthread mutexattr_getpshared{const pthread_mutexattr_t *altr, int *walpl);

hﬂdﬁ int pthread_mutexattr setpsharedipthread mutexattr_t *atfr, int oalug) ;
pstants &
= and int pthread_condattr_getpshared{const pthread condattr_t *afr, int *walptr) ; =
e can _ (i
: int pthread_condattr_setpehared|pthread_condattr_t *atr, int oalwe) ; &
a £
_i"-'ﬂ'-g All four return: 0 if OK, positive Exyr value on error &
: @
o The two get functions return the current value of this attribute in the integer pointed to f
: by valptr and the two set functions set the current value of this attribute, depending on i
w _ walue. The value is either PTHREAD_PROCESS_PRIVATE or &
: PTHREAD_PROCESS_SHARED. The latter is also referred to as the process-shared ’i’
‘ attribute. &
: =
r | This feature 1s supported only if the constant _FOSTY_THREAD_PROCESS_SHARED is defined §

: | by including <unistd.h»>. Itis an optional feature with Posix.1 but required by Unix 98 (Fig-

_ ! ure 1.5).

:;,ﬂ_,r The following code fragment shows how to initialize a mutex so that it can be

5 shared between processes:

.!tEEn pthread_mutex_t *mptr; /% pointer to the mutex in shared memory */

“ The pthread mutexattr_t mattr; /* mutex attribute datatype */

¥ to

BEriter,

mptr = /% gome wvalue that points te shared memory */ ;
Pthread mutexattr_init (&mattr);
#ifdef _POSIX_THREAD_ PROCESS_SHARED
Pthread mutexattr_setpshared (&mattr, PTHREARD_PROCESS SHARED) ;
#else
error this implementation does not support _POSIX_THREAD_PROCESS_SHARED
$endif
Pthread mutex_init{mptr, &mattr);

We declare a pthread mutexattr_t datatype named mattr, initialize it to the
default attributes for a mutex, and then set the PTHREAD PROCESS_SHARED attribute,
which says that the mutex is to be shared between processes. pthread mutex_init
then initializes the mutex accordingly. The amount of shared memory that must be allo-
cated for the mutex is sizeof (pthread _mutex_t).

A nearly identical set of statements (replacing the five characters mutex with cond)
is used to set the PTHREAD PROCESS_SHARED attribute for a condition variable that is

- stored in shared memory for use by multiple processes.
sepa- We showed examples of these process-shared mutexes and condition variables in
L one Figure 5.22.

Mutexes and Condition Variables Chapter 7

Process Termination While Holding a Lock

7.8

When a mutex is shared between processes, there is always a chance that the process
can terminate (perhaps involuntarily) while holding the mutex lock. There is no way to
have the system automatically release held locks upon process termination. We will see
that read—write locks and Posix semaphores share this property. The only type of syn-
chronization locks that the kernel always cleans up automatically upon process termina-
tion is Fentl record locks (Chapter 9). When using System V semaphores, the
application chooses whether a semaphore lock is automatically cleaned up or not by the
kernel upon process termination (the SEM_UNDO feature that we talk about in Sec-
tion 11.3).

A thread can also terminate while holding a mutex lock, by being canceled by
another thread, or by calling pthread_exit. The latter should be of no concern,
because the thread should know that it holds a mutex lock if it voluntarily terminates by
calling pthread_exit. In the case of cancellation, the thread can install cleanup han-
dlers that are called upon cancellation, which we demonstrate in Section 8.5. Fatal con-
ditions for a thread normally result in termination of the entire process. For example, if
a thread makes an invalid pointer reference, generating SIGSEGV, this terminates the
entire process if the signal is not caught, and we are back to the previous condition deal-
ing with the termination of the process.

Even if the system were to release a lock automatically when a process terminates,
this may not solve the problem. The lock was protecting a critical region probably
while some data was being updated. If the process terminates while it is in the middle
of this critical region, what is the state of the data? A good chance exists that the data
has some inconsistencies: for example, a new item may have been only partially entered
into a linked list. If the kernel were to just unlock the mutex when the process termi-
nates, the next process to use the linked list could find it corrupted.

In some examples, however, having the kernel clean up a lock (or a counter in the
case of a semaphore) when the process terminates is OK. For example, a server might
use a System V semaphore (with the SEM_UNDO feature) to count the number of clients
currently being serviced. Each time a child is forked, it increments this semaphore,
and when the child terminates, it decrements this semaphore. If the child terminates
abnormally, the kernel will still decrement the semaphore. An example of when it is OK
for the kernel to release a lock (not a counter as we just described) is shown in Sec-
tion 9.7. The daemon obtains a write lock on one of its data files and holds this lock as
long as it is running. Should someone try to start another copy of the daemon, the new
copy will terminate when it cannot get the write lock, guaranteeing that only one copy
of the daemon is ever running. But should the daemon terminate abnormally, the ker-
nel releases the write lock, allowing another copy to be started.

Summary

Mutexes are used to protect critical regions of code, so that only one thread at a time is
executing within the critical region. Sometimes a thread obtains a mutex lock and then

Chapter 7

 process
B wav to
Ewill see
g of syn-
bermina-
s, the
gt by the
- in Sec-

eied by
goncern,
mates by
gzp han-
sl con-
Enple, if
istes the
o deal-

Eminates,
probably
s middle
#he data
sentered
' termi-

gr in the
e might
¥ clients
aphore,
Emdnates
i is OK
} in Sec-
8 iock as
e new
e COPY
ﬁ&l ker-

§ SEme is
gt then

wmhwﬂ“m. o

R B T

N e

e e

i

LA

ol

Chapter 7 Exercises 175

discovers that it needs to wait for some condition to be true. When this happens, the
thread waits on a condition variable. A condition variable is always associated with a
mutex. The pthread cond wait function that puts the thread to sleep unlocks the
mutex before putting the thread to sleep and relocks the mutex before waking up the
thread at some later time. The condition variable is signaled by some other thread, and
that signaling thread has the option of waking up one thread
(pthread_cond_signal) or all threads that are waiting for the condition to be true
ipthread_cond_broadcast).

Mutexes and condition variables can be statically allocated and statically initialized.
They can also be dynamically allocated, which requires that they be dynamically initial-
ized. Dynamic initialization allows us to specify the process-shared attribute, allowing
the mutex or condition variable to be shared between different processes, assuming that
the mutex or condition variable is stored in memory that is shared between the different
processes,

Exercises

71 Remove the mutex locking from Figure 7.3 and verify that the example fails if more than
one producer thread is run,

7.2 What happens in Figure 7.2 if the call to Pthread_join for the consumer thread is
removed?

73 Write a program that jusk calls pthread_mutexattr_init and
pthread_condattr_init in an infinite loop. Watch the memory usage of the process,
using a program such as ps. What happens? Now add the appropriate calls to
pthread_mutexattr destroy and pthread_condattr_destroy and verify that no
memory leak occurs.

74 In Figure 7.7, the producer calls pthread_cond_signal only when the counter
nready.nready goes from (} to 1. To see what this optimization does, add a counter each
time pthread_cond_signal is called, and print this counter in the main thread when the
consumer is done,

B s Sl e Ly B et e e E s e LT s

et S e Tl St s pr® e S S

8.1

Read-Write Locks

Introduction

A mutex lock blocks all other threads from entering what we call a critical region. This
critical region usually involves accessing or updating one or more pieces of data that are
shared between the threads. But sometimes, we can distinguish between reading a piece
of data and modifying a piece of data.

We now describe a read—write lock and distinguish between obtaining the read-write
lock for reading and obtaining the read-write lock for writing. The rules for allocating
these read-write locks are:

1. Any number of threads can hold a given read-write lock for reading as long as
no thread holds the read-write lock for writing.

2. A read-write lock can be allocated for writing only if no thread holds the
read-write lock for reading or writing.

Stated another way, any number of threads can have read access to a given piece of data
as long as no thread is modifying that piece of data. A piece of data can be modified
only if no other thread is reading or modifying the data.

In some applications, the data is read more often than the data is modified, and
these applications can benefit from using read-write locks instead of mutex locks.
Allowing multiple readers at any given time can provide more concurrency, while still
protecting the data while it is modified from any other readers or writers.

This sharing of access to a given resource is also known as shared-exclusive locking,
because obtaining a read-write lock for reading is called a shared lock, and obtaining a
read—write lock for writing is called an exclusive lock. Other terms for this type of prob-
lem (multiple readers and one writer) are the readers and writers problem and

177

178 Read-Write Locks

Chapter 8

8.2

readers—writer locks. (In the last term, “readers” is intentionally plural, and “writer” is
intentionally singular, emphasizing the multiple-readers but single-writer nature of the
problem.)

A common analegy for a read-write lock is accessing bank accounts. Multiple threads can be
reading the balance of an account at the same time, but as soon as one thread wants to update
a given balance, that thread must wait for all readers to finish reading that balance, and then
only the updating thread should be allowed to modify the balance. Mo readers should be
allowed to read the balance until the update is complete.

The functions that we describe in this chapter are defined by Unix % because read-write locks
were not part of the 199 Posix.1 standard. These functions were developed by a collection of
Unix vendors in 1995 known as the Aspen Group, along with other extensions that were not
defined by Posix.1. A Posix working group (1003.17) is currently developing a set of Pthreads
extensions that includes read—write locks, which will hopefully be the same as described in
this chapter.

Obtaining and Releasing Read-Write Locks

A read-write lock has a datatype of pthread rwlock_t. If a variable of this type is
statically allocated, it can be initialized by assigning to it the constant
PTHREAD_RWLOCK_INITIALIZER.

pthread rwlock rdlock obtains a read-lock, blocking the calling thread if the
read-write lock is currently held by a writer. pthread rwlock wrlock obtains a
write-lock, blocking the calling thread if the read-write lock is currently held by either
another writer or by one or more readers. pthread_rwlock_unlock releases either a
read lock or a write lock.

#include <pthread. b=
int pthread_rwlock_rdlock (pthread_rwlock_t “rugtr)
int pttu-aac'._rwln:}c_w:mckqpthread_:wlock_t *rwpir} ;

int pthread_rwlock_unlockipthread_rwlock t “rwpfr);

All return: 0 if OK, positive Exxx value on error

The following two functions try to obtain either a read lock or a write lock, but if the
lock cannot be granted, an error of EBUSY is returned instead of putting the calling
thread to sleep.

! $include <pthread.h> —‘
1

int pthread_rwlock_tryrdlock (pthread rwlock_t *ruwphr);

int pthread_rwleck_trywrlock(pthread_rwlock_t *ruwptr);

Both return: 0 if O, positive Exxy value on error J

msds can be
e wodate
Eamd then
amenld be

2wy not
¥ Pehreads
it in

kivpe is
Erstant

2 if the
ains a
Ff&fher

gher a

e

it &f the
gmiting

N B R i s S R |

T AR e R

b e e

s e e IR

AR

e 2

I T e R

Section 8.4 Implementation Using Mutexes and Condition Variables 179

8.3

8.4

Read-Write Lock Attributes

We mentioned that a statically allocated read-write lock can be initialized by assigning
it the value PTHREAD_RWLOCK_INITIALIZER. These variables can also be dynami-
cally initialized by calling pthread_rwleck_init. When a thread no longer needs a
read-write lock, it can call the function pthread_rwlock_destroy.

#include <pthread.h=

int pthread_rwlock_init(pthread rwlock t *rwplr,
const pthread_rwlockattr_t *alir];

int pthread_rwlock_destroy(pthread rwlock t *roplr);

Bath return: 0 if OK, positive Exxx value on error

When initializing a read-write lock, if attr is a null pointer, the default attributes are
used. To assign other than these defaults, the following two functions are provided:

#include <pthread. h>

int pthread_rwlockattr_init (pthread rwlockattr_t *aiir); |

i
!
i
i
‘ int pthread_rwlockattr_destroy(pthread_rwlockattr_t =aflr);

Both return: {1 if OK, positive Exxx value on error

Once an attribute object of datatype pthread_rwlockattr_t has been initialized,
separate functions are called to enable or disable certain attributes. The only attribute
currently defined is PTHREAD_PROCESS_SHARED, which specifies that the read-write
lock is to be shared between different processes, not just between different threads
within a single process. The following two functions fetch and set this attribute:

#include <pthread.h>
int pthread rwlockattr_getpshared({const pthread rwlockattr_t =attr, int *walpir);

int pthread_rwlockattr_setpshared(pthread_rwlockatcr_t *abtr, int walue);

Both return: 0 if OK, positive Exex value on error

The first function returns the current value of this attribute in the integer pointed to by
valptr. The second function sets the current value of this attribute to value, which is
either PTHREAD_FROCESS_PRIVATE or PTHREAD_PROCESS_SHARED.

Implementation Using Mutexes and Condition Variables

Read-write locks can be implemented using just mutexes and condition variables. In
this section, we examine one possible implementation. Our implementation gives

e e F N P | LA | R L e o o L)

Sl gt el e | et e e S] Rt m—

180 Read-Write Locks Chapter 8

preference to waiting writers. This is not required and there are other alternatives.

This section and the remaining sections of this chapter contain advanced topics that you may
want to skip on a first reading.

Other implementations of read-write locks merit study. Section 7.1.2 of [Butenhof 1997] pro-
vides an implementation that gives priority to waiting readers and includes cancellation han-
dling (which we say more about shortly). Section B.18.2.3.1 of [IEEE 1996] provides another
implementation that gives priority to waiting writers and also includes cancellation handling.
Chapter 14 of [Kleiman, Shah, and Smaalders 199] provides an implementation that gives pri-
ority to waiting writers. The implementation shown in this section is from Doug Schmidt's
ACE package, http: //www, cs wustl.edu/-schmide/ACE. heml (Adaptive Communica-
tions Environment), All four implementations use mutexes and condition variables,

pthread rwlock t Datatype

Figure 8.1 shows our pthread_rwlock.h header, which defines the basic
pthread_rwlock_t datatype and the function prototypes for the functions that oper-
ate on read—write locks. Normally, these are found in the <pthread.h> header.

my_rwlock| pthread_rwlock.h

1 #ifndef pthread_rwlock_h
2 #define _ pthread_rwlock_h

3 typedef struct |

4 prthread_mutex_t rw_mutex; /* basic lock on this struct */

5 pthread_cond_t rw_condreaders: /* for reader threads waiting */

& pthread_cond_t rw_condwriters; /* for writer threads waiting */

7 int rw_magic; /* for error checking */

B int rw_nwaitreaders; /* the number waiting */

a int rw_nwaitwriters; /* the number waiting */

10 int rw_refcount;

11 /* -1 if writer has the lock, else # readers holding the lock */

12 } pthread_rwlock_t;

13 #define RW_MAGIC 019283746

14 /* following must have same order as elements in struct above =/
15 #define PTHREAD_RWLOCKE_INITIALIZER | BFTHREAD_MUTEX_INITIALIZER, *

18 PTHREAD _COND_INITIALIZER, PTHREAD_COND_INITIALIZER,

17 RW_MAGIC, O, 0, 0}

18 typedef int pthread_rwlockattr_t; /= dummy; not supported */

19 /* function prototypes */

20 int pthread_rwlock_destroy (pthread_rwlock_t =);

21 int prhread_rwlock_init {pthread rwlock_t v, pthread_rwlockattr L 1
22 int pthread_rwlock_rdlocki{pthread_rwlock_t *};

21 int pthread_rwlock_tryrdlockpthread rwlock t *);

24 imt pthread_rwlock_trywrleck{pthread_rwlock t *);

25 int pthread_rwlock_unlock{pthread rwlock & *);

26 int pthread_rwleck_wrlock (pthread _rwlock_t *);

Section 8.4 Implementation Using Mutexes and Condition Variables 181
27 /* and our wrapper functiona */
28 wvoilid Pthread_rwlock_destroy(pthread rwlock_t =);
29 woid Pthread_rwlock_init{pthread_rwlock_t *, pthread rwlockattr_ t *];
30 woid Pthread_rwlock_rdlock (pthread_rwlock_t *}:
31 int Pthread_rwlock_tryrdlock(pthread rwlock t *);
32 int Pthread_rwlock_trywrlock(pthread_rwlock t *};
33 woid FPthread rwlock_unlock(pthread_rwiocck_t *}:
34 woid Pthread_rwlock_wrlock (pthread_rwlock_ t *1;

1d-17

35 #endif s+ _ _pthread_rwlock_h */
my_rivlock | pthread_rwlock.h

Figure 8.1 Definition of prhread_rwlock_t datatype.

Our pthread rwlock_t datatype contains one mutex, two condition variables,
one flag, and three counters. We will see the use of all these in the functions that follow.
Whenever we examine or manipulate this structure, we must hold the rw_mutesx.
When the structure is successfully initialized, the rw _magic member is set to
RW_MAGIC. This member is then tested by all the functions to check that the caller is
passing a pointer to an initialized lock, and then set to 0 when the lock is destroyed.

Note that rw_refcount always indicates the current status of the read-write lock:
-1 indicates a write lock (and only one of these can exist at a time), 0 indicates the lock
is available, and a value greater than () means that many read locks are currently held,

We also define the static initializer for this datatype.

pthread rwlock init Function

7-8

4-18

20-25

Our first function, pthread_rwlock_init, dynamically initializes a read-write lock
and is shown in Figure 8.2.

We do not support assigning attributes with this function, so we check that the
attr argument is a null pointer.

We initialize the mutex and two condition variables that are in our structure. All
three counters are set to () and rw_magic is set to the value that indicates that the struc-
ture is initialized.

If the initialization of the mutex or condition variables fails, we are careful to
destroy the initialized objects and return an error.

pthread rwlock destroy Function

B-13

Figure 8.3 shows our pthread rwlock_destroy function, which destroys a
read—write lock when the caller is finished with it.

We first check that the lock is not in use and then call the appropriate destroy func-
tions for the mutex and two condition variables.

182 Read-Write Locks Chapter 8

my_ruwlock | pthread_rwlock_init.c

1 #include "unpipe.h*

2 #include "pthread_rwlock.h”

3 int

4 pthread_rwlock_init{pthread_rwlock_t “rw, pthread_rwlogkattr_t *attr)
51

& int result;

7 if {attr != NULL]

B return (EINVAL) ; /* not supported */

9 if | iresult = pthread_mutex_init (&rw-=>rw_mutex, NULL}I) I= 0}

10 goto errl;

11 if | (result = prhread_cond_init|&rw->rw_condreaders, WULL)) = 0]
i2 goto errd;

13 if ((result = pthread_cond_init{&rw->rw_condwriters, WULL}) = 0}
14 goto erri;

15 rw->rw_nwaitreaders = 0;

16 rw->rw_nwaitwricers = 0

17 rw->rw_refcount = 0;

18 rw->rw_magic = BEW_MAGIC;

19 return (0} ;

20 arrd:

21 pthread_cond_destroy (krw->rw_condreaders) ;

22 BrrI:

23 pthread_mutex_destroy (&rw->rw_mutex);

24 errl:

25 return [result); /* an errno value */

26 1

my_riwlock | pthread _rwlock_init.c
Figure 82 pthread_rwlock_init functon: initialize a read-write lock.

my_riwlock| pthread_rwlock_destroy.c

1 #include funpipe . h”

2 #include "pthread_rwlock.h®

1 int

4 pthread_rwlock_destroy(pthread_rwlock_t “rw)
59

£ if (rw-»rw_magic |= RW_MAGIC)

7 return [(EINVAL};

8 if (rw-rrw_refcount != 0 ||

g rw-»rw_nwaitreaders !'= 0 || rw->rw.nwaitwriters != 0]
1o return (EBUSY);

11 pthread_mutex_destroy (Erw-=rw_mutex];

12 pthread_cond_destrov(&rw->rw_condreaders) ;
13 pthread_cond_destroy [krw->rw_condwriters];
14 rw->rw_magic = 0;

15 return {0);

16]

my_riolock pthread_rwlock_destroy.c
Figure 8.3 pthread_rwlock_destroy funchion; destroy a read—write lock.

Section 8.4 Implementation Using Mutexes and Condition Variables 183

pthread rwlock rdlock Function

B-10

11-18

ig-20

Our pthread_rwlock_rdlock function is shown in Figure 8.4.
my_rwlock | pthread _rwlock_rdlock.c

1 #include "unpipc.h®
2 dinclude "pthread_rwlock.h*®

3 int
4 pthread_rwlock _rdlockipthread_rwlock_t *rw)
5 {
L] int rasult;
7 if [rw-rrw_magic != RW_MAGIC)
] return (EINVAL)
a9 if | (result = pthread_mutex_locklirw->rw_mutex]) != 0]
10 return (result});
11 /* give preference to walting writers */
12 while [(rw-zrw_refcount = 0 || rw->rw_nwaitwriters » 0} {
13 rw=>rw_nwaitreaders++;
14 result = pthread_cond_wait (&rw->rw_condreaders, &krw-=rw_mitex);
15 rw->rw_nwaltreaders--;
16 if {result != 0)
17 break:
18)
19 if {result == 0]
20 rw->rw_refcount++; /* another reader hase a read lock */
21 pthread_mutex_unlock (krw->rw_mutex) ;
22 return (result];
23)

my_rwlock | pthread_rwlock _rdlock.c
Figure 84 prhread_rwlock_rdlock function: obtain a read lock.

Whenever we manipulate the pthread_rwlock_t structure, we must lock the
rw_mutex member.

We cannot obtain a read lock if (a) the rw_refcount is less than 0 (meaning a
writer currently holds the lock), or (b) if threads are waiting to obtain a write lock
(rw_nwaitwriters is greater than (). If either of these conditions is true, we incre-
ment rw_nwaitreaders and call pthread_cond_wait on the rw_condreaders
condition variable. We will see shortly that when a read-write lock is unlocked, a check
is first made for any waiting writers, and if none exist, then a check is made for any
waiting readers. If readers are waiting, the rw_condreaders condition variable is
broadcast.

When we get the read lock, we increment rw_refcount. The mutex is released.

A problem exists in this function: if the calling thread blocks in the call to
pthread_cond_wait and the thread is then canceled, the thread terminates while it holds
the mutex lock, and the counter rw_nwaitreaders is wrong. The same problem exists in our
implementation of pthread_rwleck_wrleck in Figure 8.6. We correct these problems in
Section 8.5.

e R Py

184 Read-Write Locks Chapter &

pthread rwlock_tryrdlock Function

Figure 8.5 shows our implementation of pthread_rwlock_tryrdlock, the non-
blocking attempt to obtain a read lock.

my_riwlockpthread _rwlock_tryrdlock.c

1 #include "unpipc.h”
2 #include *pthread_rwlock.h®
3 int
4 prthread_rwlock_tryrdlock {pthread rwlock t "rw]
5
& int reault;
7 if (rw-rrw_magic != RW_MAGIC]
8 return (EINVAL}
if { {result = pthread_mutex lock{&rw->rw_mutex}] != 0}
10 return [result);
11 if (rw-»rw_refcount < 0 || rw->rw_nwaitwriters » 1)
12 reault = EBUSY; /* held by a writer or waiting writers */
13 else
14 rw->rw_refcount++; /% inerement count of reader locks =/
15 pthread_mutex_unlock [Lrw-»>rw_futex) ;
16 return {resulc);

17 }

my_reelock/pthread _ravlock_tryrdlock.c

Figure 8.5 pthread_rwlock_tryrdlock function: try to obtain a read lock.

11-14 If a writer currently holds the lock, or if threads are waiting for a write lock, EBUSY
is returned. Otherwise, we obtain the lock by incrementing rw_refcount.

pthread_rwlock_wrlock Function

Our pthread_rwleck_wrlock function is shown in Figure 8.6.

11-17 As long as readers are holding read locks or a writer is holding a write lock
(rw_refcount is not equal to 0), we must block. To do so, we increment
rw_nwaitwriters and call pthread_cond_wait on the rw_ceondwriters condi-
tion variable. We will see that this condition variable is signaled when the read-write
lock is unlocked and writers are waiting,

18-19 When we obtain the write lock, we set rw_refcoount to =1,

pthread_rwlock_trywrlock Function

The nonblocking function pthread_rwlock_trywrlock is shown in Figure 8.7.

11-14 If rw_refcount is nonzero, the lock is currently held by either a writer or one or
more readers (which one does not matter) and EBUSY is returned. Otherwise, we obtain
the write lock and rw_refcount is set to -1.

Section 8.4 Implementation Using Mutexes and Condition Variables 185

, my_rolock (ptiread_rwlock_twrlock.c
1 #include unpipc.h”

2 #include *pthread_rwlock.h"
3 int
4 pthread_rwlock_wrlock(pthread rwlock_t *rw)
51
: & int result;
i 7 if (rw->rw_magic != RW_MAGIC)
L & return (EINVAL): :
:'_ 9 if { (result = pthread_mutex_lock(krw->rw_mutex)] != 0}
10 return (result);
i 11 while (rw->rw_refcount != 0O} {
12 rw->rw_nwaltwriterss+s;
13 result = pthread_cond_wait (krw->rw_condwriters, &rw->rw_mutex}; §
14 IwW=>rw_nwaitwriters--;
15 if {result = Q) . '
15 break; |
- 17 } 5
; 18 if (result == 0) ,
: 19 rw-»rw_rafcount = -1; ;
: 20 pthread_mutex_unlock [&rw->rw_TUCex) :]
; 21 return [(result});
s 22
beradiock.c ! my_riolock pthread_rwlock_wrlock.c]
Figure 8.6 pthread_rwlock_wrlock function: obtain a write lock.
pEEUSY - my_rwlockpthread_rwiock_trinerlock.c
Z' 1 #include "unpipc.h”
2 #include “pthread_rwlock.h”
: 3 int
. 4 pthread_rwlock_trywrlock(pthread_rwlock_t *rw)
5 1
¥ B int result;
g lock
Eﬁ:‘l‘sent = 7 if (rw-srw_magic != RW_MASIC)
E'mndiu B return [ETNVAL) ;
2 i
ﬂ-—'ﬂ'l’lte i] if | {result = pthread_mutex lock{arw->rw_mutex])) != 0] E
= 10 return (result);
: 11 if (rw-rrw_refcount != 0)
12 result = EBUSY; /* held by either writer or reader(s} */
13 else
1a rw->yrw_refcount = -1; /* available, indicate a writer has it */
? \3 15 pthread_mutex_unlock (&rw->rw_mutex];
£ y- 1le return (result);
Higne OF s 17 3
my_rwlock | pthread_rwlock_trywrlock.c

s obtain
':- Figure 8.7 pthread_rwlock_trywrlock function: try to obtain a write lock,

166 Read-Write Locks Chapter 8

pthread_rwlock unlock Function

Our final function, pthread_rwlock_unlock, is shown in Figure 8.8.
my_rwlock/pthread_rwlock_unlock.c

1 #include "unpipc.h”

2 #include spehread_rwlock.h"

3 int

4 pth:Baé_rwlnfk_pnluckipthread_rwlnck_t trw)

51

[int result;

7 if (rw-=rw_magic != EW_MAGIC)

] return [(EINVAL) ;

] if { (result = pthread_mutexﬂluckl&rw—hrwdmu:exb| 1= 0)
1a return (result);

11 if (rw->rw_refcount > 0]

12 rw-»rw_refcount--; /* releasing a reader */

13 elee if [(rw->rw_refcount == -1}

14 rw->rw_refcount = 0; /% releasing a writer */

15 elae

16 err_dump|"rw_refcount = gd*, rw-rrw_refcount);:

17 /* give preference Lo walting wrikers over waiting readers */
iR if [rw-s>rw_nwaltwriters = 0} {

19 if [rw=»rw_refcount == 0}

2 result = pthread“cond_aignal[&rw—}rW_condwritezsb:
21 } else if (rw->rw_nwaitreaders = 0l

a2 result = pthr&ad;cnnd_br&adcastﬁ&rw—}rw_cbhdreadersl:
23 pthread_mutex_unlocki&rw-:zw_mutex];

24 return (result);
25 1

my_rwlock /pthread_rwlock_u nlock.c

Figure 8.8 pthread _rwleck unlock function: release a read lock ot a write lock.

If rw_refcount is currently greater than 0, then a reader is releasing a read lock. If
rw_refcount is currently -1, then a writer is releasing a write lock.

If a writer is waiting, the rw_ condwriters condition variable is signaled if the
lock is available (i.e., if the reference count is 0). We know that only one writer can
obtain the lock, so pthread_cond_signal is called to wake up one thread. If no writ-
ers are waiting but one or more readers are waiting, we call
pthread_cond_broadcast on the rw_condreaders condition variable, because all
the waiting readers can obtain a read lock. Notice that we do not grant any additional
read locks as soon as a writer is waiting; otherwise, a stream of continual read requests
could block a waiting writer forever. For this reason, we need two separate if tests,
and cannot write

/* give preference to waiting writers over waiting readers *f

1f (rw->rw_nwaitwriters = 0 E& rw->rw_refcount == 0)

rasult = pthread_csnd_5igna1i&:w—:rw_cnndwriters1;

else if (rw-rrw_nwaitresaders = 0}
result = pthreaﬂ_ccnd_brcadcas:Iarw—}rw“cundreaders?:

Section 8.5 Thread Cancellation 187

 memlock o

8.5

;_ma ock.c

fock. If

g if the
er can
B writ-
g call
se all
Ftional
:_nqueﬂ's
£ tests,

We could also omit the test of rw->rw_refcount, but that can result in calls to
pthread_rond_signal when read locks are still allocated, which is less efficient.

Thread Cancellation

We alluded to a problem with Figure 8.4 if the calling thread gets blocked in the call to
pthread_cond_wait and the thread is then canceled. A thread may be canceled by
any other thread in the same process when the other thread calls pthread cancel, a
function whose only argument is the thread ID to cancel.

#include =<pthread.h>
int pthread_cancel (pthread_t fid);

Returns: 0 if OK, positive Exzx value on error

Cancellation can be used, for example, if multiple threads are started to work on a given
task (say finding a record in a database) and the first thread that completes the task then
cancels the other tasks. Another example is when multiple threads start on a task and
one thread finds an error, necessitating that it and the other threads stop.

To handle the possibility of being canceled, any thread can install (push) and

remove (pop) cleanup handlers.

r
| #include <pthread.h=
{
I void pthread_cleanup_push(veid (*funcim) (void *}, veld *arg}: i

vold pthread_cleanup_pop(int execube] ;

These handlers are just functions that are called

 when the thread is canceled (by some thread calling pthread_cancel), or

* when the thread voluntarily terminates (either by calling pthread exit or
returning from its thread start function).

The cleanup handlers can restore any state that needs to be restored, such as unlocking
any mutexes or semaphores that the thread currently holds.

The function argument to pthread_cleanup_push is the address of the function
that is called, and arg is its single argument. pthread cleanup_pop always removes
the function at the top of the cancellation cleanup stack of the calling threads and calls

the function if execute is nonzero.

We encounter thread cancellation again with Figure 15,31 when we see that a doors server is
canceled if the client terminates while a procedure call is in progress.

i b o L

Ty o T e T e Lt

L el S b o ot T o R B

e e S Oy g e

i

188 Read-Write Locks Chapter 8

Example

An example is the easiest way to demonstrate the problem with our implementation in
the previous section. Figure 8.9 shows a time line of our test program, and Figure 8.10

shows the program.
main thread thread] thread2
0— pthread_create - — —— - » get read lock
sleapil] sleep i3}
| .
L
1 - pthread_create - —————— - == = - — —— — —— = - Ty to get
pthread_join write lock
g e
o 22
-
2— 2EE 3Es
JIEE HER
] Elz &
| = LT T T T T T T - —— = -
v o, Y -
3 ed— returns pthread_cancel - - - == - canceled
prhread_jein sleapil]
!a
41
1 % "
,ﬂ B o
252 E
5 —t— =5
\J release lock
b —— refurns -4 - - - = = = - = return
i exit
Y
titne
Figure 8.9 Time line of program in Figure 810,
Create two threads

10-13 Two threads are created, the first thread executing the function threadl and the
second executing the function thread2. We sleep for a second after creating the first
thread, to allow it to obtain a read lock.

Wait for threads to terminate

14-23 ‘We wait for the second thread first, and verify that its status is PTHREAD _CANCEL.
We then wait for the first thread to terminate and verify that its status is a null pointer.
We then print the three counters in the pthread_rwlock_t structure and destroy the
lock.

iklpter B

m-:m in
l'e 810

Section 8.5 Thread Cancellation 189
: . my_rudock_cancel [testcancel ¢
1 #include "unpipc.h*
2 #include "pthread_rwlock.h”
1 pthread_rwlock_t rwlock = PTHREAD _RWLOCK_INITIALIZER;
4 pthread t tidl, tid2;
5 wvoid *threadl{woid *}, *threadl(veid *);
6 int
7 main(int arge, char **argv)
g 1
g void *staktus;
10 Set_concurrency (2);
11 Pthread_create (&tidil, NULL, threadl, NULL};
12 sleep(l); /* let threadl{) get the lock */
13 Prhread_create(&tid2, NULL, thread2, NULL});
14 Pthread_joinitid2, &status);
15 if i{status != PTHREAD CANCELED)
18 printf ("threadZ status = %p\n", status);
17 Pthread_join(cidl, &status);
18 if (status != NULL]
13 printf(*threadl status = %¥p\n", status);
24 printf (*rw_refcount = %d, rw_nwaitreadera = %d. rw_nwalitwriters = %4\n",
21 rwlock. rw_refcount, rwlock.rw_nwaitreaders,
22 rwlock. rw_nwaltwriters);
23 Pthread_rwlock_destroy (&krwlock) :
24 exit (0);
25 }
26 woid
27 threadl (void *arg)
28 |
29 Pthread_rwlock_rdlock|&rwlock):
a0 printf{"threadl () got a read lockin");
31 aleep(3); /* lat thread? block in pthread_rwlock _wrlock(l */
32 pthread_cancel (tid2);
33 sleep(3);
34 Pthread_rwlock_unlock{&rwlock];
is return (NULL) ;
36 }
37 woid *
38 thread? (void *arg)
39
40 printfi*threadi{) trying to obtain a write lockin"}:
41 Pthread_rwlock_wrlock(krwlock):
42 printf(*thread?{] get a write lock'n®}; /* ghould not get here */
i3 sleepi(l);
44 Pthread_rwlock_unlock(&rwlock);
45 return [(NULL});
46 }

my_rwlock_cancel { testeancel.c

Figure 5,10 Test program to show thread cancellation.

b e ke st e e T i S S e e i e i e

ooy - e

B Rl

i niaini s bh it o s et -

ol F T T T e 8. TR L

o R Ll s P T s i

190

Read-Write Locks Chapter 8

Za=

k1]

threadl function

This thread obtains a read lock and then sleeps for 3 seconds. This pause allows the
other thread to call pthread rwlock wrlock and block in its call to
pthread_rond_wait, because a write lock cannot be granted while a read lock is
active. The first thread then calls pthread_cancel to cancel the second thread, sleeps
another 3 seconds, releases its read lock, and terminates.

thread2 function

The second thread tries to obtain a write lock (which it cannot get, since the first
thread has already obtained a read lock). The remainder of this function should never
be executed.

If we run this program using the functions from the previous section, we get

solaris % testcancel
threadl({) got a read lock
thread2{) trying to obtain a write lock

and we never get back a shell prompt. The program is hung. The following steps have

occurred:

1. The second thread calls pthread_rwlock_wrlock (Figure 8.6), which blocks
in its call to pthread_cond_wait.

2. Thesleep(3) in the first thread returns, and pthread_cancel is called.

3. The second thread is canceled (it is terminated). When a thread is canceled
while it is blocked in a condition variable wait, the mutex is reacquired before
calling the first cancellation cleanup handler. (We have not installed any cancel-
lation cleanup handlers vet, but the mutex is still reacquired before the thread is
canceled.) Therefore, when the second thread is canceled, it holds the mutex
lock for the read-write lock, and the value of rw_nwaitwriters in Figure 8.6
has been incremented.

4. The first thread calls pthread_rwleck_unlock, but it blocks forever in its call
to pthread_mutex_lock (Figure 8.8), because the mutex is still locked by the
thread that was canceled.

If we remove the call to pthread_rwlock_unlock in our threadl function, the main
thread will print

rw_refeount = 1, rw_nwaitreaders = 0, rw_nwaitwriters = 1
pthread_rwlock_destroy error: DRevice busy

The first counter is 1 because we removed the call to pthread_rwlock_unlock, but

the final counter is 1 because that is the counter that was incremented by the second
thread before it was canceled.

The correction for this problem is simple. First we add two lines of code (preceded
by a plus sign) to our pthread_rwlock_rdleck function in Figure 84 that bracket
the call to prthread_cond_wait:

a
e

Chapter 8

s the
“call to
& lock is
bd. sleeps

s the first
i never

#-‘s have
& blocks
‘

gnceled
g before
F cancel-
read is

E mutey

gure 5.6

B &= call
f bv the

= main
k. but
second

sceded
pracket

i e

Section 8.5

Thread Cancellation 191

rw-rrw_nwaltreaders++;

pthread_cleanup_push(rwlock cancelrdwait, {void *} rw

result = pthread_cond_wait (krw-r»rw_condreaders, Erw-rrw_matex)
pthread_cleanup_pop (0}

rw-FrwW_nwaltreaders--;

The first new line of code establishes a cleanup handler (our rwlock_rancel rdwait
function), and its single argument will be the pointer rw. If pthread_cond_wait
returns, our second new line of code removes the cleanup handler. The single argument
of 0 to pthread_cleanup_pop specifies that the handler is not called. If this argu-
ment is nonzero, the cleanup handler is first called and then removed.

If the thread is canceled while it is blocked in its call to pthread_cond_wait, no
return is made from this function. Instead, the cleanup handlers are called (after reac-
quiring the associated mutex, which we mentioned in step 3 earlier).

Figure 8.11 shows our rwlock_cancelrdwait function, which is our cleanup
handler for pthread_rwlock_rdlock.

my_rwlock_carncel | pthread_rulock_rdlock.c

3 static weoid
4 rwlock_cancelrdwait{void *argl

5 1

pthread_rwlock_t *rw;

r'w = arg:
rw->rw_nwaltreaderg==-;
pthread_mutex_unlock (&rw->rw_mutex};

-5

my_rwlock_cancel [pth read _rwlock_rdlock.c
Figure 8.11 rwlock_cancelrdwait function: cleanup handler for read lock.

The counter rw_nwaitreaders is decremented and the mutex is unlocked. This is

the “state” that was established before the call to pthread_cond_wait that must be
restored after the thread is canceled.

Our fix to our pthread_rwlock_wrlock function in Figure 8.6 is similar. First we

add two new lines around the call to pthread_cond_wait

rWw->Irw_nwaitwricerss+;
pthread_cleanup_push{rwlock_cancelwrwait. {wold *) rwl;

result = pthread_cond_wait [erw->rw_condwriters, &rw->rw_mutex):
prhread_cleanup_pop (0]

rw-rrw_nowaltwriters--;

Figure 8.12 shows our rwlock_cancelwrwait function, the cleanup handler for a

write lock request.

g-9

The counter rw_nwaitwriters is decremented and the mutex is unlocked.

N L R R O L T o L

S K e e e § e R

A L o S B S b s et ek e e i L e b et sttt b St b it e n b e

192 Read-Write Locks Chapter 8

- - my_rwlock_cancel {pthread_rwlock_wrlock.c
i static woid

4 rwlock_cancelwrwait{void *arg!l

5 {

] pthread_rwlock _t *rw;

7 rw = Arg;

B rw->rwW_nwaitwriters--;

g pthread _mutex_unlock (krw-=rw_mutex] :
10}

my_rwlock_cancel [pthread_ruwlock_wrlock.c
Figure 812 rwlock_cancelwrwalt function: cleanup handler for write lock.

If we run our test program from Figure 8.10 with these new functions, the results
are now correct.

solaris % testcancael

threadl () got a read lock

thread?) trying to obtain a write lock
rw_refcount = 0, rw_nwalitreaders = 0, rw_nwaitwriters = 0

The three counts are correct, threadl returns from its call to
pthread_rwlock_unlock, and pthread_rwlock_destroy does not return EBUSY.

This section has been an overview of thread cancellation. There are more details; see, for
example, Section 5.3 of [Butenhof 19971,

8.6 Summary

Read-write locks can provide more concurrency than a plain mutex lock when the data
being protected is read more often than it is written. The read-write lock functions
defined by Unix 98, which is what we have described in this chapter, or something simi-
lar, should appear in a future Posix standard. These functions are similar to the mutex
functions from Chapter 7.

Read-write locks can be implemented easily using just mutexes and condition vari-
ables, and we have shown a sample implementation. Our implementation gives prior-
ity to waiting writers, but some implementations give priority to waiting readers.

Threads may be canceled while they are blocked in a call to pthread_cond_wait,
and our implementation allowed us to see this occur. We provided a fix for this prob-
lem, using cancellation cleanup handlers.

Exercises

8.1 Modify our implementation in Section 8.4 to give preference to readers instead of writers.

§.2 Measure the performance of our implementation in Section 8.4 versus a vendor-provided
implementation.

: Chapter 8

H_ urlock.c

ek _wrlock.c

_ﬁ: results

B Bhe data
Sanctions
=g simi-
e mutex

h.'m vari-
s Prior-
s

:anu walt,

s prob-

NTEETS

ewovicded

9.1

Record Locking

Introduction

The read—write locks described in the previous chapter are allocated in memory as vari-
ables of datatype pthread_rwlock_t. These variables can be within a single process
when the read—-write locks are shared among the threads within that process (the
default), or within shared memory when the read-write locks are shared among the
processes that share that memory (and assuming that the PTHREAD _PROCESS_SHARED
attribute is specified when the read-write lock is initialized).

This chapter describes an extended type of read-write lock that can be used by
related or unrelated processes to share the reading and writing of a file. The file that is
being locked is referenced through its descriptor, and the function that performs the
locking is fent1. These types of locks are normally maintained within the kernel, and
the owner of a lock is identified by its process ID. This means that these locks are for
locking between different processes and not for locking between the different threads
within one process.

In this chapter, we introduce our sequence-number-increment example. Consider
the following scenario, which comes from the Unix print spoolers (the BSD lpr com-
mand and the System V 1p command). The process that adds a job to the print queue
(to be printed at a later time by another process) must assign a unique sequence number
to each print job. The process ID, which is unique while the process is running, cannot
be used as the sequence number, because a print job can exist long enough for a given
process ID to be reused. A given process can also add multiple print jobs to a queue,
and each job needs a unique number. The technique used by the print spoolers is to
have a file for each printer that contains the next sequence number to be used. The file
is just a single line containing the sequence number in ASCIL. Each process that needs
to assign a sequence number goes through three steps:

193

194 Record Locking Chapter 9

1. it reads the sequence number file,
2. it uses the number, and
3. it increments the number and writes it back.

The problem is that in the time a single process takes to execute these three steps,
another process can perform the same three steps. Chaos can result, as we will see in
some examples that follow.

What we have just described is a mutual exclusion problem. It could be solved using mutexes
from Chapter 7 or with the read-write locks from Chapter 8. What differs with this problem,
however, is that we assume the processes are unrelated, which makes using these techniques
harder. We could have the unrelated processes share memory (as we describe in Part 4) and
then use some type of synchronization variable in that shared memory, but for unrelated pro-
cesses, fontl record locking is often casier to use. Another factor is that the problem we
described with the line printer spoolers predates the availability of mutexes, condition vari-
ables, and read-write locks by many vears. Record locking was added to Unix in the early
19805, before shared memory and threads.

What is needed is for a process to be able to set a lock to say that no other process
can access the file until the first process is done. Figure 9.2 shows a simple program that
does these three steps. The functions my_lock and my _unlock are called to lock the
file at the beginning and unlock the file when the process is done with the sequence
number. We will show numerous implementations of these two functions.

20 We print the name by which the program is being run (axgv (0]) each time around
the loop when we print the sequence number, because we use this main function with
various versions of our locking functions, and we want to see which version is printing
the sequence number.

Printing a process 10 requires that we cast the variable of type pid_t toa long and then print
it with the #14 format string. The problem is that the pid_t type is an integer type, but we do
not know its size (int or long), so we must assume the largest, If we assumed an int and
used a format string of %4, but the type was actually a 1ong, the code would be wrong,.

To show the results when locking is not used, the functions shown in Figure 9.1 pro-
vide no locking at all.

lock {locknorne.c

1 woid
2 my_lockiint f£d)
ERR |

return;

void
my_unlock(int f£ad)

return;

lock [locknone.c
Figure 9.1 Functions that do no locking.

Chapter 9

he steps,
i see in

Im mutexes
& problem,
'_hf:miqur_e
Part 4) and
sat=d pro-
ke we
B vari-
b e early

E PTOCESS
g=m that
Jock the
Fquence

f‘k'mu nd
o with
?l"mt‘in I

Qn_-:- print
Bt we do
imt and

‘9& pro-

ke

i

E;;
=

im0 :

Section 9.1 Introduction 195

lock | lockmain.c

1 #include "unpipec.h”

2 #define SEQFILE "segno® /* filename */

3 woid my_locki{int], my_unlock(int);

4 int

5 main{int arge, char **argv)

8 {

7 int £d4;

g long i, segno;

9 pid_t pid;

i gsize_t n;

11 char line[MAXLINE + 1]:

12 pid = getpidl(];

13 fd = Open|{SEQFILE, O_RDWR, FILE _MODE}:

14 for (i = 0; & < 20; 1i++} {

15 my_lock(£d); /* lock the file */

16 Leeek (fd, 0L, SEEK_SET); /* rewind before read */

17 n = Read(fd, line, MAXLINE);

18 line[n] = "\0°; /* null terminate for sscanf */

19 n = sscanf{line, "%ld\n", &ksegno);

20 printf{"%s: pid = %1d, seg¥# = %ld\n", argv(0]., (leng) pid, segnoj;

21 sagno++ ; /% increment sequence number */

22 gnprintf(line, sizeof(line), “%ld\n", seqgno);

23 Leseek (fd, 0L, SEEFK_SET): /* rewind before write */

24 Write(fd, line, strleniline)];

25 my_unlock (£d) ; /* unlock the file */

26 }

27 exit{0);

28 } .
lock /lockmain.c

Figure 9.2 main function for file locking example,

If the sequence number in the file is initialized to one, and a single copy of the pro-
gram is run, we get the following output:

solaris % locknone

locknone: pid = 15491, segh = 1
locknone: pid = 15491, seqgh = 2
locknone: pid = 15491, segh = 3
locknone: pid = 15491, segh = 4
locknone: pid = 15491, seg# = 5
locknone: pid = 15491, segk = 6
locknone: pid = 15491, segk = 7
locknone: pid = 15491, seg# = B
locknene: pid = 15491, seg#® = 3
locknone: pid = 15491, seg# = 10
locknone: pid = 15491, segé = 11

196 Record Locking

Chapter 9

locknone:
locknone :
locknone:
locknone:
locknone :
locknone:
locknone:
locknone:
locknone:

id
pid

pid =

pid

pid =
pid =

pid
pid
pid

o

15431,
15491,
15491,
12481,
15491,
15491,
15491,
15491,
15491,

segh =

segh
seqgh
segH
seg#

Howon

seqgh =

segh
seg#
seg#

12
13
14
15
18
17
18
19
20

Notice that the main function (Figure 9.2) is in a file named lockmain. c, but when we com-
pile and link edit this with the functions that perform no locking (Figure 9.1), we call the exe-
cutable locknone. This is because we will provide other implementations of the two
functions my_lock and my_unlock that use other locking techniques, so we name the exe-
cutable based on the bype of locking that we use.

When the sequence number is again initialized to one, and the program is run twice
in the background, we have the following output:

solaris %
aplaris %
locknone:
locknone:
lecknone:
locknone:
locknone :
locknone :
locknone:
locknone:
locknone:
locknone:
locknone:
locknone:
locknone:
locknone:
locknone:
locknone:
locknone:
locknone:
locknone:
locknone :
locknone :
locknone:
locknone:
locknone:
locknone:
locknone:
locknone:
locknone:
locknone:
locknone:
locknone:
locknone:
locknone:

locknone & locknone &
locknone: pid = 15498,

pid

pid =
pid =

pid =

pid
pid

pid =

pid
pid
pid
pid
pid

pid =

pid =

pid
pid
pid

pid =
pid =

pid =

pid
pid
pid
pid
pid
pid
pid
pid
pid
pid
pid
pid

pid =

15498,
15498,
154598,
15498,
15498,
15498,
15498,
15498,
154098,
15498,
15494,
15498,
154548,
154948,
15458,
15498,
15498,
15498,
15498,
15495,
15499,
15499,
15499,
15499,
154399,
15499,
15499,
154549,
15498,
15499,
15499,
1549%,
15499,

seqh
seqk
seq#
segH
seq#

seqh =

segh
Feqgk
sag#

seqh =
seqk =

segk
seq#
segh

nowm

seqit =
segh =

segh
seqh

segi =

seqgh
sagh
seqg#
seg#
segh
segk
seqg#
seg#
geqH
seqH
seqi
segh
seqh
sagh

gegf = 1

everything through this line is OK
theis is wrong when kernel switches processes

Chapter 9

e we com-
==l the ene-
i the hwo
e the exe-

run twice

e o i e i

Section 9.2 Record Locking versus File Locking 197

9.2

locknone: pid = 1549%, seg# = 15
locknone: pid = 1549%, seg# = 16
locknone: pid = 1549%%, seg# = 17
locknone: pid = 15499, segk = 18
locknone: pid = 15499, segé = 19
locknene: pid = 1549%, seqg#é = 20

The first thing we notice is that the shell's prompt is output before the first line of out-
put from the program. This is OK and is common when running programs in the back-
ground.

The first 20 lines of output are OK and are generated by the first instance of the pro-
gram (process ID 15498). But a problem occurs with the first line of output from the
other instance of the program (process ID 15499): it prints a sequence number of 1, indi-
cating that it probably was started first by the kernel, it read the sequence number file
{with a value of 1), and the kernel then switched to the other process. This process only
ran again when the other process terminated, and it continued executing with the value
of 1 that it had read before the kernel switched processes. This is not what we want.
Each process reads, increments, and writes the sequence number file 20 times (there are
exactly 40 lines of output), so the ending value of the sequence number should be 40.

What we need is some way to allow a process to prevent other processes from
accessing the sequence number file while the three steps are being performed. That is,
we need these three steps to be performed as an atomic operation with regard to other
processes. Another way to look at this problem is that the lines of code between the
calls to my_lock and my_unlock in Figure 9.2 form a critical region, as we described in
Chapter 7.

When we run two instances of the program in the background as just shown, the
output is nondeterministic. There is no guarantee that each time we run the two pro-
grams we get the same output. This is OK if the three steps listed earlier are handled
atomically with regard to other processes, generating an ending value of 40. But this is
not OK if the three steps are not handled atomically, often generating an ending value
less than 40, which is an error. For example, we do not care whether the first process
increments the sequence number from 1 to 20, followed by the second process incre-
menting it from 21 to 40, or whether each process runs just long enough to increment
the sequence number by two (the first process would print 1 and 2, then the next pro-
cess would print 3 and 4, and so on).

Being nondeterministic does not make it incorrect. Whether the three steps are per-
formed atomically is what makes the program correct or incorrect. Being nondetermin-
istic, however, usually makes debugging these types of programs harder.

Record Locking versus File Locking

The Unix kernel has no notion whatsoever of records within a file. Any interpretation
of records is up to the applications that read and write the file. Nevertheless, the term
record locking is used to describe the locking features that are provided. But the applica-
tion specifies a byte range within the file to lock or unlock. Whether this byte range has
any relationship to one or more logical records within the file is left to the application.

198 Kecord Locking Chapter 9

Posix record locking defines one special byte range—a starting offset of 0 (the
beginning of the file) and a length of 0—to specify the entire file. Our remaining dis-
cussion concerns record locking, with file locking just one special case.

The term granularity is used to denote the size of the object that can be locked. With
Posix record locking, this granularity is a single byte. Normally the smaller the granu-
larity, the greater the number of simultaneous users allowed. For example, assume five
processes access a given file at about the same time, three readers and two writers. Also
assume that all five are accessing different records in the file and that each of the five
requests takes about the same amount of time, say 1 second. If the locking is done at the
file level (the coarsest granularity possible), then all three readers can access their
records at the same time, but both writers must wait until the readers are done. Then
one writer can modify its record, followed by the other writer. The total time will be
about 3 seconds. (We are ignoring lots of details in these timing assumptions, of
course.) But if the locking granularity is the record (the finest granularity possible),
then all five accesses can proceed simultaneously, since all five are working on different
records. The total time would then be only 1 second.

Berkeley-derived implementations of Unix support file lacking to lock or unlock an entire file,
with no capabilities to lock or unlock a range of bytes within the file. This is provided by the
flock funchion.

History

Various techniques have been employed for file and record locking under Unix over the
years, Early programs such as UUCP and line printer daemons used various tricks that
exploited characteristics of the filesystem implementation. (We describe three of these
filesystem techniques in Section 9.8.) These are slow, however, and better techniques
were needed for the database systems that were being implemented in the early 1980s.

The first true file and record locking was added to Version 7 by John Bass in 1980,
adding a new system call named locking. T his provided mandatory record locking
and was picked up by many versions of System 11l and Xenix. (We describe the differ-
ences between mandatory and advisory locking, and between record locking and file
locking later in this chapter.)

4.2BSD provided file locking (not record locking) with its flock function in 1983.
The 1984 /usr/group Standard (one of the predecessors to X/Open) defined the
lockf function, which provided only exclusive locks (write locks), not shared locks
(read locks).

In 1984, System V Release 2 (SVR2) provided advisory record locking through the
fentl function. The lockf function was also provided, but it was just a library func-
tion that called fentl. (Many current systems still provide this implementation of
lockf using fentl) In 1986, System V Release 3 (SVR3) added mandatory record
locking to £cnt1 using the set-group-ID bit, as we describe in Section 9.5. :

The 1988 Posix.] standard standardized advisory file and record locking with the
fent1 function, and that is what we describe in this chapter. The X/ Open Portability
Guide Issue 3 (XPG3, dated 1988) also specifies that record locking is to be provided
through the £entl funchion.

LChapter 9

% 0 (the
mng dis-

e With
e granu-
g five
s Also
f the five
e at the
== their
= Then
& will be
Bons, of
possible),
:_x!iﬁ‘erunt

E-'tmzm file,
i by the

wwer the
ficks that
of these
niques
S0,

am 1980,
Hkocking
e differ-
and file

& 1983,
med the
ﬁ tocks

wgh the
¥ func-
mson of
b record

pth the
prability
!’m':d ed

Section 9.3

Posix fontl Record Locking 199

9.3 Posix fcntl Record Locking

The Posix interface for record locking is the fcntl function.

#include <fcnotl.h=

int fentliint fd, int cmd, ... /* struct flock *arg */);

Returns: depends on omd if OK, -1 on error

Three values of the cmd argument are used with record locking. These three commands
require that the third argument, arg, be a pointer to an £1ock structure:

atruct flock |

short

short

off

off_t

pid_t
1

1_tvpe: /* F_RDLCEK, F_WRLCK, F_UNLCE */
1_whence; /* SEEK_SET, SEEK_CUR, SEEE_END */
l_start; /* relative starting offset in bytes */
1 len; /= #bytes; U means until end-of-file */
1_pid; /* PID returned by F_GETLE */

The three commands are:

F_SETLE

F_SETLEW

F_GETLK

Obtain (an 1_tvpe of either F_RDLCE or F_WRLCE) or release (an 1_type
of F_UNLCE) the lock described by the £ lock structure pointed to by arg.

If the lock cannot be granted to the process, the function returns immedi-
ately (it does not block) with an error of EACCES or EAGATIN.

This command is similar to the previous command; however, if the lock
cannot be granted to the process, the thread blocks until the lock can be
granted. (The W at the end of this command name means “wait.”)

Examine the lock pointed to by arg to see whether an existing lock would
prevent this new lock from being granted. If no lock currently exists that
would prevent the new lock from being granted, the 1_type member of
the £1lock structure pointed to by arg is set to F_UNLCK. Otherwise, infor-
mation about the existing lock, including the process ID of the process
holding the lock, is returned in the flock structure pointed to by arg (i.e.,
the contents of the structure are overwritten by this function).

Realize that issuing an F_GETLK followed by an F_SETLK is not an atomic
operation. That is, if we call F_GETLE and it sets the 1_type member to
F_UNLCK on return, this does not guarantee that an immediate issue of the
F_SETLK will return success. Another process could run between these
two calls and obtain the lock that we want.

The reason that the #_GETLK command is provided is to return informa-
tion about a lock when F_SETLE returns an error, allowing us to determine
who has the region locked, and how (a read lock or a write lock). But even
in this scenario, we must be prepared for the F_GETLE command to return

et e AT e

1 P

E:

R s ey L N

b Sl e

e s et L e

AT

200 Record Locking Chapter 9

that the region is unlocked, because the region can be unlocked between
the F_SETLK and F_GETLK commands.

The £1ock structure describes the type of lock (a read lock or a write lock) and the
byte range of the file to lock. As with 1seek, the starting byte offset is specified as a rel-
ative offset (the 1_start member) and how to interpret that relative offset (the
1_whence member) as

* SEEK_SET: 1_start relative to the beginning of the file,
e SEEK_CUR: 1_start relative to the current byte offset of the file, and
* SEEK_END: 1_start relative to the end of the file.

The 1_len member specifies the number of consecutive bytes starting at that offset. A
length of 0 means “from the starting offset to the largest possible value of the file off-
set.” Therefore, two ways to lock the entire file are

1. specify an 1_whence of SEEK_SET,an 1_start of0,andan1_len of (; or

2. position the file to the beginning using 1seek and then specify an 1_whence of
SEEK_CUR, an 1_start of,and an 1_1len of (.

The first of these two ways is most common, since it requires a single function call
(fontl) instead of two function calls. (See Exercise 9.10 also.)

A lock can be for reading or writing, and at most, one type of lock (read or write)
can exist for any byte of a file. Furthermore, a given byte can have multiple read locks
but only a single write lock. This corresponds to the read-write locks that we described
in the previous chapter. Naturally, an error occurs if we request a read lock when the
descriptor was not opened for reading, or request a write lock when the descriptor was
not opened for writing.

All locks associated with a file for a given process are removed when a descriptor
for that file is closed by that process, or when the process holding the descriptor termi-
nates. Locks are not inherited by a child across a fork.

This cleanup of existing locks by the kernel when the process terminates is provided only by
fentl record locking and as an option with System V semaphores. The other synchronization
techniques thal we describe (mutexes, condition variables, read-write locks, and Posix
semaphores) do not perform this cleanup on process termination. We talked about this at the
end of Section 7.7,

Record locking should not be used with the standard 1/0 library, because of the
internal buffering performed by the library. When a file is being locked, read and
write should be used with the file to avoid problems.

Example

We now return to our example from Figure 9.2 and recode the two functions my_lock
and my_unlock from Figure 9.1 to use Posix record locking. We show these functions
in Figure 9.3,

Chapter 9 Section 9.3 Posix fcntl Record Locking 201
Between lock {lockfentl.c
4 1 #include "unpipc.h” / '
2 woid
¢ and the 3 my_lock{int £d}
fas a rel- il
E’E'f (the 5 struct flock lock;
3 5 lock.l_type = F_WRLOE;
: 7 lock.l_whence = SEEF_SET;
g lock.l_start = 0;
] lock.l_len = 0; f* write lock entire f£ile */
10 Fontl(fd, F_SETLEW, &lock);
i 11 }
o A 12 void
L ey ol
| Bl off- 13 my_unlock|int £d)
h 14 {
1s struct flock lock:
& or 16 lock.l_type = F_UNLCK;
pme e of 17 lock.l_whence = SEER_SET;
2 18 lock.l_start = 0;
19 lock.l_len = O; /* unlock entire £ile =/ :
Son call 20 Fontl(fd, F_SETLE, &lock); :
21 } 3
: lock flockfontl.c :
3) Figure 8.3 Posix fontl locking.
ar write)
Bt locks Notice that we must specify a write lock, to guarantee only one process at a time
escribed updates the sequence number. (See Exercise 9.4.) We also specify a command of
pben the F_SETLEW when obtaining the lock, because if the lock is not available, we want to
e was block until it is available.
T:Hu'iptor Given the definition of the £ lock structure shown earlier, we might think we could initialize
o fermi- our structure in my_lock as
i static struct flock leck = { F_WRLCE, SEEK_SET, 0, 0, 0 J;
L but this is wrong. Posix defines only the required members that must be in a structure, such as
E‘“T;"'f'" by flock. Implementations can arrange these members in any order, and can also add imple-
: Hon mentation-specific members.
i Posix : ;
Fa= at the We do not show the output, but it appears correct. Realize that running our simple
: i program from Figure 9.2 does not let us state that our program works. If the output is :
& of the 3 wrong, as we have seen, we can say that our program is not correct, but running two
b3 and copies of the program, each looping 20 times is not an adequate test. The kernel could
run one program that updates the sequence number 20 times, and then run the other ,
g program that updates the sequence number another 20 times. If no switch occurs i
between the two processes, we might never see the error. A better test is to run the .
functions from Figure 9.3 with a main function that increments the sequence number :
_lock say, ten thousand times, without printing the value each time through the loop. If we :
Enctions | initialize the sequence number to 1 and run 20 copies of this program at the same time, 3
'; then we expect the ending value of the sequence number file to be 200,001. 3
= :
7 -

V=T

202 Record Locking Chapter 9

Example: Simpler Macros

In Figure 9.3, to request or release a lock takes six lines of code. We must allocate a
structure, fill in the structure, and then call £cnt1. We can simplify our programs by
defining the following seven macros, which are from Section 12.3 of APUE:

#define read_locki{fd, offset, whence, len]

lock_reg(fd, F_SETLE, F_RDLCE, offset, whence, len}
#define readw_lock(fd, offset, whence, len]

lock_reg(fd, F_SETLEW, F_ROLCE, offset, whence. len}
#define write_lock(fd, offset, whence, len] %

lock_reg(fd, F_SETLE, F_WRLCK, offset, whence, len)
#define writew_lock(fd, offset, whence, len) %

lock_reg(fd, F_SETLEW, F_WRLCE, offset, whence, len]
#define un_lock(fd, offset, whence, len)
lock_reg(fd, F_SETLE, F_UNLCEK, offset, whence, len)

#define is_read_lockable{fd, offset, whence, len) %

lock_test (fd, F_RDLCK, offset, whence, lenj
#define is_write_lockable(fd, offset, whence, len]

lock_test (fd, F_WRLCE, offset, whence, len)

These macros use our lock_reg and lock_test functions, which are shown in Fig-
ures 9.4 and 9.5. When using these macros, we need not worry about the structure or
the function that is actually called. The first three arguments to these macros are pur-
posely the same as the first three arguments to the 1seek function.

We also define two wrapper functions, Lock_reg and Lock_test, which termi-
nate with an error upon an fentl error, along with seven macros whose names also
begin with a capital letter that call these two wrapper functions.

Using these macros, our my_lock and my_unlock functions from Figure 9.3
become

#define my_lock{f£d) (Writew_lock(fd, 0, SEEK_SET, 0}
#define my_unlock(£d) (Un_locki{fd, U, SEEK_SET, 0)}

- - libjlock_reg.c
1 #include "unpipc.h®
2 int
3 lock_regiint fd, int cmd, int type, off_t offset, int whence, off t len)
4 (
E atruct flock lock;
& lock.l_type = type; /* F_RDLCE, F_WRLCE, F_UNLCE */
7 lock.l_start = offset; /* byte offset, relative to 1_whence */
-] lock.l_whence = whence; /* SEEK_SET, SEEK_CUR, SEEK_END */
] lock.l_len = len; /* #bytes (0 means to EOF) */
10 raturn (fcntli{fd, cmd, &lock)); f* -1 upon error */
11 1}

liblock_reg.c
Figure 9.4 Call fontl to obtain or release a lock.

o= in Fig-
pmcture or
E are pur-
gk termi-

:F'gure 9.3

Section 9.4 Advisory Locking 203
: - lits [Tock_test.c
1 #include "unpipe.h"
2 pid_t
3 lock_testi{int £4, int type, off_t offset, int whence, off t len}
4 1
5 gseruct flock leck:
] lock.l_type = typa: /* F_RDLCE or F_WRLCE */
7 lock.l_start = ocffset; /* byte offzet, relatiwve to 1_whence */
g8 lock.l_whence = whence; /% SEEK_SET, SEEK_CUR, SEEK_END */
9 lock.l_len = len; /* #bytes (0 means to EQF) =/
10 if (fentl (fd, F_GETLE, kleck] == -1)
11 return {-1}; [unexpected error */
12 if [lock.l_type == F_UNLCK)
13 recurn (0); /* false, region not locked by ancther proc */
14 return {lock,l_pid); /* true, return positiwve PID of lock owner */
15]

9.4 Advisory Locking

fibflock_test.c

Figure 9.5 Call fencl to test a lock.

Posix record locking is called advisory locking. This means the kernel maintains correct
knowledge of all files that have been locked by each process, but it does not prevent a
process from wrikting to a file that is read-locked by another process. Similarly, the ker-
nel does not prevent a process from reading from a file that is write-locked by another
process. A process can ignore an advisory lock and write to a file that is read-locked, or
read from a file that is write-locked, assuming the process has adequate permissions to
read or write the file.

Advisory locks are fine for cooperating processes. The programming of daemons used
by network programming is an example of cooperative processes—the programs that
access a shared resource, such as the sequence number file, are all under control of the
system administrator. As long as the actual file containing the sequence number is not
writable by any process, some random process cannot write to the file while it is locked.

Example: Noncooperating Processes

We can demonstrate that Posix record locking is advisory by running two instances of
our sequence number program: one instance (lockfontl) uses the functions from Fig-
ure 93 and locks the file before incrementing the sequence number, and the other
(Locknone) uses the functions from Figure 9.1 that perform no locking.

soclarie % lockfcmtl & locknone &

lockfentl:
lockfentl:
lockfcntl:

pid
pid
pid

1B816,
18814,
18816,

seg
sed
segk

1
2
3

204 Record Locking Chapter 9

lockfentl: pid = 18816, seqg# = 4

lockfontl: pid = 18816, zeqg# = 5

lockfentl: pid = 18816, segh = &

lockfentl: pid = 18816, segh = 7

lockfentl: pid = 18816, segh = &

lockfcntl: pid = 18816, seqk = 3

leckfontl: pid = 18816, seg# = 10

lockfentl: pid = 18816, seg# = 1l

locknone: pid = 18817, segh = 11 soitch processes; error

locknone: pid = 1ER17, segh = 12

locknone: pid = 18817, =seg# = 13

locknone: pid = 18817, seg# = 14

locknone: pid = 18817, segh = 15

locknone: pid = 18817, segk = 16

locknone: pid = 18817, segh = 17

locknone: pid = L8817, segd = 18

lockfentl: pid = 18816, segh = 12 sunfch processes; error

lockfentl: pid = 18816, segé = 13

lockfentl: pid = 18816, seg¥# = 14

lockfenel: pid = 18816, seg# = 1

lockfentl: pid = 18816, segh = 16

lockfeontl: pid = 18816, segk = 17

lockfentl: pid = 18816, segh = 18

lockfentl: pid = 18816, segé = 19

lockfentl: pid = 18816, =seg¥ = 20

locknone: pid = 18817, segk = 19 sipitch processes; error

locknone: pid = 18817, segh = 20

lacknone: pid = 18817, seqg# = Z1

locknone: pid = 18817, seg# = 22

locknone: pid = 18817, seg# = 23

locknone: pid = 18817, segh = 24

locknone: pid = 18817, seg# = 25

locknone: pid = 18817, seg# = 26

locknone: pid = 18817, =seghk = 27

locknone: pid = 18817, seqgh = Z8

locknone: pid = 18817, seg¥# = 25

lecknone: pid = 18817, seqg# = 30
Our lockfentl program runs first, but while it is performing the three steps to incre-
ment the sequence number from 11 to 12 (and while it holds the lock on the entire file),
the kernel switches processes and our locknone program runs. This new program
reads the sequence number value of 11 before our lockfcntl program writes it back to
the file. The advisory record lock held by the lockfcntl program has no effect on our
locknone program.

9.5 Mandatory Locking

Some systems provide another type of record locking, called mandatory locking. With a
mandatory lock, the kernel checks every read and write request to verify that the
operation does not interfere with a lock held by a process. For a normal blocking
descriptor, the read or write that conflicts with a mandatory lock puts the process to

FChapter 9

& 50 incre-
meare file),
F program
& back to
m on oour

g Witha
g that the
. Blocking
process to

|
:
i
%.;

Section 9.5 Mandatory Locking 205

sleep until the lock is released. With a nonblocking descriptor, issuing a read orwrite
that conflicts with a mandatory lock causes an error return of EAGATN.

Posix.1 and Unix 98 define only advisory locking. Many implementations derived from
Systemn V, however, provide both advisory and mandatory locking, Mandatory record locking
was introduced with System V Release 3.

To enable mandatory locking for a particular file,

¢ the group-execute bit must be off, and
* the set-group-ID bit must be on.

Note that having the set-user-ID bit on for a file without having the user-execute bit on
also makes no sense, and similarly for the set-group-ID bit and the group-execute bit.
Therefore, mandatory locking was added in this way, without affecting any existing
user software. New system calls were not required.

On systems that support mandatory record locking, the 1s command looks for this
special combination of bits and prints an 1 or L to indicate that mandatory locking is
enabled for that file. Similarly, the chmod command accepts a specification of 1 to
enable mandatory locking for a file.

Exampie

On a first glance, using mandatory locking should solve the problem of an uncooperat-
ing process, since any reads or writes by the uncooperating process on the locked file
will block that process until the lock is released. Unfortunately, the timing problems are
more complex, as we can easily demonstrate.

To change our example using fontl to use mandatory locking, all we do is change
the permission bits of the segno file. We also run a different version of the main func-
tion that takes the for loop limit from the first command-line argument (instead of
using the constant 20) and does not call print f each time around the loop.

solaris % cat > seqgno [first imitialize value to 1

1

‘D Control-D is our terminal end-of-file character
solaris % ls -1 seqno

=IW=T==F== 1 ratevens otherl 2 Dco 7 11:24 seqgno

gclaris % chmod +1 segno enalle mandatery locking

sclaris % ls -1 segno

~rw-r-lr-- 1l ratevens otherl 2 0ot 7 11:24 segno

We now start two programs in the background: loopfentl uses fentl locking, and
loopnone does no locking. We specify a command-line argument of 10,000, which is
the number of times that each program reads, increments, and writes the sequence
number.

solaris % loopfeomtl 10000 & locpnome 10000 & start both programs in the background

solariz % wait wait for both background jobs fo finish
solaris % cat segmo and look at the sequence sumber
14378 error: shosdd be 20,001

206 Record Locking Chapter 9

Each time we run these two programs, the ending sequence number is normally
between 14,000 and 16,000. If the locking worked as desired, the ending value would
always be 20,001. To see where the error occurs, we need to draw a time line of the indi-
vidual steps, which we show in Figure 9.6.

lockfentl locknone
1. openi)
— 2. lock file
= 3 read{] =1
§'- 4. increment
ﬁ. .
5. write() =2
—— 6 unlock file
— 7. lock file
8 read() —2
kermel switch —
-§- 10, openi)
= 11. readi) blocks
- + kernel switch
13, increment
14, write() =3
15, unlock file
kernel switch —
17. readi) =3
18, increment
19, writel) —4
2. read(] =4
21. increment
22, write[] =5
23, read() =5
— kernel switch
e 25, lock file

— 26, read() =5

E 27 increment
8. writel) —6

— 29, unlock file

—— 30, lock file

2- 31, readi{) =6
32, increment
33 write() =7

— 34 unlock file

kernel switch—
36, increment
37, write() =6

Figure 9.6 Time line of loopfentl and loopnone Programs.
We assume that the 1oopfent1 program starts first and executes the first eight steps

shown in the figure. The kernel then switches processes while loopfentl has a record
lock on the sequence number file. loopnone is then started, but its first read blocks,

Elapier 9

e e

Section 9.6 Priorities of Readers and Writers 07

poemally
e woould
e -

because the file from which it is reading has an outstanding mandatory lock owned by
another process. We assume that the kernel switches back to the first program and it
executes steps 13, 14, and 15. This behavior is the type that we expect: the kernel blocks
the read from the uncooperating process, because the file it is trying to read is locked
by another process.

The kernel then switches to the locknone program and it executes steps 17
through 23, The reads and writes are allowed, because the first program unlocked
the file in step 15. The problem, however, appears when the program reads the value
of 5 in step 23 and the kernel then switches to the other process. It obtains the lock and
also reads the value of 5. This process increments the value twice, storing a value of 7,
before the next process runs in step 36. But the second process writes a value of 6 to the
file, which is wrong.

What we see in this example is that mandatory locking prevents a process from
reading a file that is locked (step 11), but this does not solve the problem. The problem
is that the process on the left is allowed to update the file (steps 25 through 34) while the
process on the right is in the middle of its three steps to update the sequence number
(steps 23, 36, and 37). If multiple processes are updating a file, all the processes must
cooperate using some form of locking. One rogue process can create havoc.

Y e

9.6 Priorities of Readers and Writers

In our implementation of read-write locks in Section 8.4, we gave priority to waiting
writers over waiting readers. We now look at some details of the solution to the readers
and writer problem provided by £ent1 record locking. What we want to look at is how
pending lock requests are handled when a region is already locked, something that is
not specified by Posix.

Example: Additional Read Locks While a Write Lock Is Pending

The first question we ask is: if a resource is read-locked with a write lock queued, is
another read lock allowed? Some solutions to the readers and writers problem do not
allow another reader if a writer is already waiting, because if new read requests are con-
tinually allowed, a possibility exists that the already pending write request will never be
allowed.

To test how fentl record locking handles this scenario, we write a test program
that obtains a read lock on an entire file and then forks two children. The first child
tries to obtain a write lock (and will block, since the parent holds a read lock on the
entire file), followed in time by the second child, which tries to obtain a read lock. Fig-
ure 9.7 shows a time line of these requests, and Figure 9.8 is our test program.

Parent opens file and obtains read lock

£-2 The parent opens the file and obtains a read lock on the entire file. Motice that we

call read_lock (which does not block but returns an error if the lock cannot be

ght steps granted) and not readw_lock {(which can wait), because we expect this lock to be

s & record granted immediately. We also print a message with the current time (our gf_time
o blocks, function from p. 404 of UNPv1) when the lock is granted.

S P s S e

i

L

g e LY ke T el e L e

208 Record Locking Chapter 9

parent child #1 child #2
0— et read lock
1 try write lock
I
o I
2.1 z |
= I
31 %: P gets read lock
= I§ |
al 32
-
L= £
1 E §
51— release lock I u-.
[-
| i B
’ F=
6 1 |
Y '
7 gebs write lock release lock
i
. e
eis

9 ~l~ release lock

tHme

Figure 9.7 Determine whether another read lock is allowed while a write lock is pending.

fork first child

9-18 The first child is created and it sleeps for 1 second and then blocks while waiting for
a write lock of the entire file. When the write lock is granted, this first child holds the
lock for 2 seconds, releases the lock, and terminates.

fork second child

20-30 The second child is created, and it sleeps for 3 seconds to allow the first child’s write
lock to be pending, and then tries to obtain a read lock of the entire file. We can tell by
the time on the message printed when readw_lock returns whether this read lock is
queued or granted immediately. The lock is held for 4 seconds and released.

Parent holds read lock for 5 seconds
31-35 The parent holds the read lock for 5 seconds, releases the lock, and terminates.

Chapter 9
R —

Section 9.6 Priorities of Readers and Writers 209

; lock | test2.c
ks 1 #¥include "unpipc.h”
] 2 int
? 3 main{int arge, char **argv)
3 4 {
5 int £4;
& fd = Open(*testl.data”, O_RDWR | O_CREAT, FILE_MODE);
7 Read_lock(fd, 0, SEEE_SET, 0); /* parent read locks entire file */
& printf (*%s: parent has read lock\n®, GE_time()};
9 if {Fork() == 01 {
3 10 f* first child */
11 sleepil];
2 12 printf("%s: first child tries to obtain write lockin®, GE_time(}];
: 13 writew_lock(fd, 0D, SEEK_SET, 0); /* this should block */
& 14 printf("%s: first child cbtains write lock\n®, Gf_time()};
15 sleep(2);
i 186 Un_lock{fd, 0, SEEK_SET, 0);
: 17 printf{"%s: first child releases write lock\n*, Gf_time(});
18 exit (0} ;
19 }
20 if {Forki) == 01 {
21 /* second child */
22 gleep(3);
23 printf{"%s: second child tries to obtain read lock\n®, Gi_time(}):
24 Readw_lock{fd, 0, SEEK_SET, 0);
25 printf({"%s: second child cbtains read lockin®, GEf_time(}];
26 sleep(d);
27 Un_locki{fd, 0, SEEK_SET, 0);
2B printf{"%s: second child releases read lock\n*, GI_time{});
29 exit (0},
k1 }
31 /* parent */
k¥ alesp(5):
i3 Un_lockifd, 0, SEEF_SET, 0);
14 printf{"%s: parent releases read lock'n", GE_time(]);
mﬁng for i5 exit(0);
__ﬁiwld-s the 36 } lock test2 o

3
2

Figure 9.8 Determine whether another read lock is allowed while a write lock is pending.

&

#ild s write

f&l‘i’kbﬁ; The time line shown in Figure 9.7 is what we see under Solaris 2.6, Digital Unix
; 4.0B, and BSD/OS 3.1. That is, the read lock requested by the second child is granted
! even though a write lock is already pending from the first child. This allows for poten-
; tial starvation of write locks as long as read locks are continually issued. Here is the
ates. output with some blank lines added between the major time events for readability:

210

Record Locking Chapter 9

alpha % test2
16:32:29 _&£74453: parent has read lock

16:32:30.709197;: first child tries to obtain write lock

16:32:32.725810: second child tries to obtain read lock
16:32:32,728739: second child cbtains read lock

16:32:34.722282: parent releases read lock

16:32:36,729738: second child releases read lock
16:32:36.735597: first child obtains write lock

16:32:38,736938: first child releases write lock

Example: Do Pending Writers Have a Priority Over Pending Readers?

20-30

The next question we ask is: do pending writers have a priority over pending readers?
Some solutions to the readers and writers problem build in this priority.
Figure 9.9 is our test program and Figure 9.10 is a time line of our test program.

Parent creates file and obtains write lock
The parent creates the file and obtains a write lock on the entire file.

fork and create first child

The first child is created, and it sleeps for 1 second and then requests a write lock on
the entire file. We know this will block, since the parent has a write lock on the entire
file and holds this lock for 5 seconds, but we want this request queued when the par-
ent’s lock is released.

fork and create second child

The second child is created, and it sleeps for 3 seconds and then requests a read lock
on the entire file. This too will be queued when the parent releases its write lock.

Under both Solaris 2.6 and Digital Unix 4.0B, we see that the first child’s write lock
is granted before the second child's read lock, as we show in Figure 9.10. But this
doesn’t tell us that write locks have a priority over read locks, because the reason could
be that the kernel grants the lock requests in FIFO order, regardless whether they are
read locks or write locks. To verify this, we create another test program nearly identical
to Figure 9.9, but with the read lock request occurring at time 1 and the write lock
request occurring at time 3. These two programs show that Solaris and Digital Unix
handle lock requests in a FIFO order, regardless of the type of lock request. These two
programs also show that BSD/OS 3.1 gives priority to read requests.

{mapter 9

E fock on
e entire
g the par-

sead lock
&

write lock
- But this
o could
F they are
E"-_iiemical
write lock
pa_i Unix
fhese two

Section 9.6 Priorities of Readers and Writers m

lock test3.c
1 #include "unpipe.h"”
2 int
3 mainiint argc, char **argv)
4 {
5 int £d;
B fd = Open{"testl.data", O_RDWR | O_CREAT, FILE_MODE}:
7 Write_lock({fd, 0, SEEK_SET, 0); /* parent write locks entire file */
B printf("%s: parent has write lockhn", GE_timel)):
q if (Ferk{] == 0} {
10 J* first child */
11 sleepil);
1z printf(*%s: first child tries to cbtain write lockin", GE_time());
13 Writew lock(fd, 0, SEEE_SET, 0);: /* this should block */
14 printf(*%s: first child obtains write lock\n", GE_time{]):
15 sleepi2);
16 Un_leck({fd, 0, SEEK_SET. 0}
17 printf(*%=s: first child releases write lock'n", GE_time!{)):
18 exit(0);
15 1
20 if [(Perk{) == 0} {
21 /* aecond child */
22 sleep(ld);
23 printf(*%s: second child tries to obtain read lock'n®., GE_time{)};
24 Readw_lock (fd, 0, SEEK_SET, 0}:
a5 printf(*%s: second child obtains read lock'\n®, GE£_time{));
26 sleepid];
27 Un_lock(fd, 0, SEEK_SET, 0)}:
Z8 printf(*%s: second child releages read lock\n®, GE_time()};
29 exic(0);
30 }
31 /* parent */
32 sleep(5};
33 Un_lock({fd, 0, SEEE_SET. 0):
34 printf(*%s: parent releases write lock\n®, Gf_time{]};
35 exitc {0);
26) lock test3.c

Figure 9.9 Test whether writers have a priority over readers.

212 Record Locking Chapter 9

parent child #1 child #2
0— et write lock
1—— try write lock
x I
I
o "E 1%
E =
2
34— %‘ % ot try read lock
=5 :
g
-1 :; :x
E
* :Els
5—— release lock gets write lock E et
{ =E
] im
— = B
’ - -
' v
Tt release lock gets read lock
B
=4
ol =
=
2
10 ——
Y
11 —— release lock
Y
time

Figure 910 Test whether writers have a priority over readers.

Here is the output from Figure 9.9, from which we constructed the time line in Fig-
ure 9.10:

alpha % test3
16:34:02,R810285: parent has write lock

16:34:03,. 848166 first child tries to obtain write lock
16:34:05. 861082 second child tries to cbtain read lock

16:34:07. 858393 parent releases write lock
16:34:07,865%222¢ first child cbtains write lock

16:34:00, 865987 : first child releases write lock
16:34:09,.872823: second child obtains read lock

16:34:13.873822: second child releases read lock

“hapter 9

Section 9.7 Starting Only One Copy of a Daemon 213

9.7

I18-21

Starting Only One Copy of a Daemon

A common use for record locking is to make certain that only one copy of a program
(such as a daemon) is running at a time. The code fragment shown in Figure 9.11 would
be executed when a daemon starts.

ok f onedaemon.c

1 #include ‘unpipe.h”

2 #define PATH PIDFILE ‘pidfile”

3 int

4 main(int argc, char **argv)

5

3 int pidfd;

7 char line [MAXLINE] ;

g /* open the PID file, create if nonexistent */

9 pidid = Open(FATH_PIDFILE, O_RDWER | O_CREAT, FILE_MODE);
b /* try to write lock the entire file =/
11 if {write_lock(pidfd, 0, SEEK_SET. d) =< 0} {
12 if {errno == EACCES || errno == EAGAIN)

13 err_quit{"unable to lock %=, is %= already running?®,
14 PATH_PIDFILE, argw[0]}:

15 elae

16 err_sys("unable to lock %s®, PATH_PIDFILE];

17 1

18 /* write my PID, leave file open to hold the write leck */
19 gnprintf(line, sizeocf(line), "%ldwn", {long) getpidil):
20 Frtruncate{pidfd, 0);

21 write(pidfd, line, strlen(line});

22 * then do whatever the daemon does ... */

23 pauze();

24 1

lock fonedaermon.c
Figure 9.11 Make certain only one copy of a program is running,

Open and lock a file

The daemon maintains a 1-line file that contains its process ID. This file is opened,
being created if necessary, and then a write lock is requested on the entire file. If the
lock is not granted, then we know that another copy of the program is running, and we
print an error and terminate,

Many Uinix systems have their daemons write their process [to a file. Solaris 2.6 stores some
of these files in the sece directory. Digital Unix and BSD/OS both store these files in the
fwar/run directory.

Write our PID to file

We truncate the file to 0 bytes and then write a line containing our PID. The reason
for truncating the file is that the previous copy of the program (say before the system
was rebooted) might have had a process ID of 23456, whereas this instance of the

214

9.8

Record Locking Chapter 9

program has a process 1D of 123. If we just wrote the line, without truncating the file,

the contents would be 123\n6'n. While the first line would still contain the process

ID, it is cleaner and less confusing to avoid the possibility of a second line in the file.
Here is a test of the program in Figure 9.11:

solaris % onedaesmon & start first copy

[1] 22388

solaris % cat pidfile check PID wriften fo file
22388

solaris % onedasmon and try ko stard a second copy

unable to lock pidfile, is onedaemon already running?

Other ways exist for a daemon to prevent another copy of itself from being started.
A semaphore could also be used. The advantages in the method shown in this section
are that many daemons already write their process ID to a file, and should the daemon
prematurely crash, the record lock is automatically released by the kernel.

Lock Files

Posix.1 guarantees that if the open function is called with the O_CREAT (create the file if
it does not already exist) and O_EXCL flags (exclusive open), the function returns an
error if the file already exists. Furthermore, the check for the existence of the file and
the creation of the file (if it does not already exist) must be atomic with regard to other
processes. We can therefore use the file created with this technique as a lock. We are
guaranteed that only one process at a tlime can create the file (i.e., obtain the lock), and
to release the lock, we just unlink the file.

Figure 9.12 shows a version of our locking functions using this technique. If the
open succeeds, we have the lock, and the my_Lock function returns. We close the file
because we do not need its descriptor: the lock is the existence of the file, regardless of
whether the file is open or not. If open returns an error of EEXIST, then the file exists
and we try the open again.

There are three problems with this technique.

1. If the process that currently holds the lock terminates without releasing the lock,
the filename is not removed. There are ad hoc techniques to deal with
this— check the last-access time of the file and assume it has been orphaned if it
is older than some amount of time—but none are perfect. Another technique is
to write the process 1D of the process holding the lock into the lock file, so that
other processes can read this process ID and check whether that process is still
running. This is imperfect because process IDs are reused after some time.

This scenario is not a problem with fent1 record locking, because when a pro-
cess terminates, any record locks held by that process are automatically
released.

2. If some other process currently has the file open, we just call open again, in an
infinite loop. This is called polling and is a waste of CPU time. An alternate

; started.
bﬁ- section
g daemon

p the file if
IS AN
e fSle and
ﬂ to other
% We are
Sock), and

.;-e If the
== the file
F:.ileﬁs of
¢ She exists

e the lock,
geal with
Med if it
EEnique is
E =0 that
pess 15 still
-

#en A pro-
penatically

i

F_'?., in an

s ziternate

Section 9.8 Lock Files 215

. , lock [lockopen.c
1 #include funpipc.h®
2 #define LOCKFILE *Stmp/segno. lock®
3 woid
4 my_lock(ing £4)
5
3 int tempfd;
T while ((tempfd = open(LOCKEFILE, QO_RDWR | O_CREAT | QO_EXCL, FILE_MODE)} = [}
-] if {errno != EEXIST)
9 err_sysi"open error for lock file"};
10 /* someone elae haz the lock, loop around and try again */
11 1
12 Close (tempfd) ; /* opened the file, we have the lock */
13 }
14 woid
15 my_unleck{int £d4)
16 |
17 Unlink {LOCKFILE) ; f* release lock by removing file */
18 1}

lock (lockopen.c

Figure 9.12 Lock functions using open with ©_CREAT and O_EXCL flags.

technique would be to sleep for 1 second, and then try the open again. (We
saw this same problem in Figure 7.5.)

This is not a problem with fentl record locking, assuming that the process that
wants the lock specifies the FSETLEW comimand. The kernel puts the process to
sleep until the lock is available and then awakens the process.

3. Creating and deleting a second file by calling cpen and unlink involves the
filesystem and normally takes much longer than calling fontl twice (once to
obtain the lock and once to release the lock). When the time was measured to
execute 1000 loops within our program that increments the sequence number,
fentl record locking was faster than calling open and unlink by a factor of
75.

Two other quirks of the Unix filesystem have also been used to provide ad hoc lock-
ing. The first is that the 1ink function fails if the name of the new link already exists.
To obtain a lock, a unique temporary file is first created whose pathname contains the
process ID (or some combination of the process ID and thread 1D, if locking is needed
between threads in different processes and between threads within the same process).
The 1ink function is then called to create a link to this file under the well-known path-
name of the lock file. If this succeeds, then the temporary pathname can be unlinked.
When the thread is finished with the lock, it just unlinks the well-known pathname. If
the link fails with an error of EEXIST, the thread must try again (similar to what we
did in Figure 9.12). One requirement of this technique is that the temporary file and the

{

216

Record Locking Chapter 9

9.10

well-known pathname must both reside on the same filesystem, because most versions
of Unix do not allow hard links (the result of the 1ink function) across different file-
systems.

The second quirk is based on open returning an error if the file exists, if O_TRUNC is
specified, and if write permission is denied. To obtain a lock, we call open, specifying
O_CREAT | O_WRONLY | O_TRUNC and a mode of 0 (i.e., the new file has no permission
bits enabled). If this succeeds, we have the lock and we just unlink the pathname
when we are done. If open fails with an error of EACCES, the thread must try again
{similar to what we did in Figure 9.12). One caveat is that this trick does not work if the
calling thread has superuser privileges.

The lesson from these examples is to use fent1 record locking. Nevertheless, you
may encounter code that uses these older types of locking, often in programs written
before the widespread implementation of fent1 locking.

NFS Locking

NFS is the Network File System and is discussed in Chapter 29 of TCPv1. fentl record
locking is an extension to NFS that is supported by most implementations of NF5. Unix
systems normally support NFS record locking with two additional daemons: lockd
and statd. When a process calls fentl to obtain a lock, and the kernel detects that the
descriptor refers to a file that is on an NFS-mounted filesystem, the local 1ockd sends
the request to the server’s lockd. The statd daemon keeps track of the clients hold-
ing locks and interacts with lockd to provide crash and recovery functions for NFS
locking,

We should expect record locking for an NFS file to take longer than record locking
for a local file, since network communication is required to obtain and release each lock.
To test NFS record locking, all we need to change is the filename specified by SEQFILE
in Figure 9.2. If we measure the time required for our program to execute 10,000 loops
using fontl record locking, it is about 80 times faster for a local file than for an NFS
file. Also realize that when the sequence number file is on an NFS-mounted filesystem,
network communication is involved for both the record locking and for the reading and
writing of the sequence number.

Caveat emptor: NFS record locking has been a problem for many years, and most of the prob-
lems have been caused by poor implementations. Despite the fact that the major Unix vendors
have finally cleaned up their implementations, using £ent1 record locking over NFS is still a
religious issue for many, We will not take sides on this issue but will just note that fontl
record locking is supposed to work over NFS, but your success depends on the quality of the
implementations, both client and server.

Summary

fent1 record locking provides advisory or mandatory locking of a file that is refer-
enced through its open descriptor. These locks are for locking between different pro-
cesses and not for locking between the different threads within one process. The term

Chapter 9

£ versions
fEment file-
LTRUNC is
specifving
sermission
gathname
= again
work if the
pelez, you
ms written

&*: 2 record
SFS Unix
ps Lockd
s that the
i sends
jemts hold-
s for NFS
s each lock.
¢ SEOFILE
20 loops
or an NFS
Shesvstem,
gading and

ot the priovh-
Limin vendors
NES s still a
i et fontl
ity of the

@i = refer-
Serent pro-

. The term

Chapter 9

Exercises 217

“record” is a misnomer because the Unix kernel has no concept of records within a file.
A better term is “range locking,” because we specify a range of bytes within the file to
lock or unlock. Almost all uses of this type of record locking are advisory between
cooperating processes, because even mandatory locking can lead to inconsistent data, as
we showed.

With £cnt1 record locking, there is no guarantee as to the priority of pending read-

ers versus pending writers, which is what we saw in Chapter 8 with read-write locks.
If this is important to an application, tests similar to the ones we developed in Sec-
tion 9.6 should be coded and run, or the application should provide its own read-write
locks (as we did in Section 8.4), providing whatever priority is desired.

Exercises

9.1

9.2

9.3

9.4

9.5

9.6

9.7

9.9

9.10

Build the 1ocknone program from Figures 9.2 and 9.1 and run it multiple times on your
system, Verify that the program does not work without any locking, and that the results are
nondeterministic,

Modify Figure 9.2 so that the standard output is unbuffered. What effect does this have?

Continue the previous exercise by also calling putchar for every character that is output to
standard output, instead of calling printf. What effect does this have?

Change the lock in the my_lock function in Figure 9.3 to be a read lock instead of a write
lock. What happens?

Change the call to open in the loopmain. c program to specify the 0_NONBLOCK flag also.
Build the loopfentinonb program and run two instances of it at the same time. Does
anything change? Why?

Continue the previous exercise by using the nonblocking version of loopmain. c to build
the loopnonencnb program (using the locknone.c file, which performs no locking).
Enable the seqno file for mandatory locking, Run one instance of this program and
another instance of the loopfent lnonb program from the previous exercise at the same
time. What happens?

Build the loopfentl program and run it 10 times in the background from a shell script.
Each of the 10 instances should specify a command-line argument of 10,000. First, time the
shell script when advisory locking is used, and then change the permissions of the seano
file to enable mandatory locking. What effect does mandatory locking have on perfor-
mance?

In Figures 9.8 and 9.9, why did we call fork to create child processes instead of calling
pthread_create to create threads?

In Figure 9,11, we call frruncate to set the size of the file to 0 bytes. Why don't we just
specify the 0_TRUNC flag for open instead?

If we are writing a threaded application that uses fcntl record locking, should we use
SEEK_SET, SEEK_CUR, or SEEK_END when specifying the starting byte offset to lock, and
why?

10

Posix Semaphores

10.1 Introduction

A semaphore is a primitive used to provide synchronization between various processes
or between the various threads in a given process. We look at three types of
semaphores in this text.

 Posix named semaphores are identified by Posix IPC names (Section 2.2) and can
be used to synchronize processes or threads.

* Posix memory-based semaphores are stored in shared memory and can be used
to synchronize processes or threads.

* System V semaphores (Chapter 11) are maintained in the kernel and can be used
to synchronize processes or threads.

For now, we concern ourselves with synchronization between different processes. We
first consider a binary semaphore: a semaphore that can assume only the values 0 or 1.
We show this in Figure 10.1.

—

functions to
create, wait for, and
pozt to semaphore

Figure 10,1 A binary semaphore being used by two processes.
219

220

Posix Semaphores Chapter 10

We show that the semaphore is maintained by the kernel (which is true for System V
semaphores) and that its value can be 0 or 1.

Posix semaphores need not be maintained in the kernel. Also, Posix semaphores
are identified by names that might correspond to pathnames in the filesystem. There-
fore, Figure 10.2 is a more realistic picture of what is termed a Posix named semaphore.

B .
functions to
crente, wait for, and
| post to semaphore
J

filesystem

binary semaphore is a file
whose contents are D or 1
-~

Figure 10.2 A Posix named binary semaphore being used by two processes,

We must make one qualification with regard to Figure 10.2; although Posix named semaphores
are identified by names that might correspond to pathnames in the filesystem, nothing
requires that they actually be stored in a file in the filesystem. An embedded realtime system,
for example, could use the name to identify the semaphore, but keep the actual semaphore
value somewhere in the kernel. But if mapped files are used for the implementation (and we
show such an implementation in Section 10.15), then the actual value does appear in a file and
that file is mapped into the address space of all the processes that have the semaphore open.

In Figures 10.1 and 10.2, we note three operations that a process can perform on a
semaphore:

1. Create a semaphore. This also requires the caller to specify the initial value,
which for a binary semaphore is often 1, but can be 0.

2. Wit for a semaphore. This tests the value of the semaphore, waits (blocks) if
the value is less than or equal to 0, and then decrements the semaphore value
once it is greater than 0. This can be summarized by the pseudocode

while (semaphore_value == 0[]
H /* wait; i.e., block the thread or process =/

semaphore_wvalue-=-;
/* we have the semaphore */

The fundamental requirement here is that the test of the value in the while
statement, and its subsequent decrement (if its value was greater than 0), must
be done as an atomic operation with respect to other threads or processes access-
ing this semaphore. (That is one reason System V semaphores were imple-
mented in the mid-1980s within the kernel. Since the semaphore operations
were system calls within the kernel, guaranteeing this atomicity with regard to
other processes was easy.)

There are other common names for this operation: originally it was called P by
Edsger Dijkstra, for the Dutch word proberen (meaning to try). It is also known

‘semaphores
g nothing
e svstem,
E sermaphore
g (and we
i = file and

i:!m on a
el value,

fiocks) if
hore value

B wnile
e 03, must
s 3C0E55-
= imple-
pperations

pregard to

afied P by

=0 known

Section 10.1 Introduction il

as down (since the value of the semaphore is being decremented) and lock, but
we will use the Posix term of wait.

3. Post to a semaphore. This increments the value of the semaphore and can be
summarized by the pseudocode

semaphore_value++;

If any processes are blocked, waiting for this semaphore’s value to be greater
than 0, one of those processes can now be awoken. As with the wait code just
shown, this post operation must also be atomic with regard to other processes
accessing the semaphore.

There are other common names for this operation: originally it was called V for
the Dutch word verhogen (meaning to increment). It is also known as up (since
the value of the semaphore is being incremented), unlock, and signal. We will
use the Posix term of post.

Obviously, the actual semaphore code has more details than we show in the pseu-
docode for the wait and post operations: namely how to queue all the processes that are
waiting for a given semaphore and then how to wake up one (of the possibly many pro-
cesses) that is waiting for a given semaphore to be posted to. Fortunately, these details
are handled by the implementation.

Notice that the pseudocode shown does not assume a binary semaphore with the
values 0 and 1. The code works with semaphores that are initialized to any nonnegative
value. These are called counting semaphores. These are normally initialized to some
value N, which indicates the number of resources (say buffers) available. We show
examples of both binary semaphores and counting semaphores throughout the chapter.

We often differentiate between a binary semaphore and a counting semaphore, and we do so
for our own edification. No difference exists between the two in the system code that imple-
ments a semaphore.

A binary semaphore can be used for mutual exclusion, just like a mutex. Fig-
ure 10.3 shows an example.

initialize mutex; initialize semaphore to 1;
pthread_mutex_lock (kmutex) ; sem_wait (&sem) ;
eritical region critical region
pthread_mutex_unlock (&mutex); sem_post (&gem) ;

Figure 103 Comparison of mutex and semaphore to solve mutual exclusion problem.

We initialize the semaphore to 1. The call to sem_wait waits for the value to be greater
than 0 and then decrements the value. The call to sem_post increments the value
(from 0 to 1) and wakes up any threads blocked in a call to sem_wait for this
semaphore,

Although semaphores can be used like a mutex, semaphores have a feature not pro-
vided by mutexes: a mutex must always be unlocked by the thread that locked the

222 Posix Semaphores Chapter 10

mutex, while a semaphore post need not be performed by the same thread that did the
semaphore wait. We can show an example of this feature using two binary semaphores
and a simplified version of the producer—consumer problem from Chapter 7. Fig-
ure 10.4 shows a producer that places an item into a shared buffer and a consumer that
removes the item. For simplicity, assume that the buffer holds one item.

- ’
producer —— —m= shared buffer ————m= consumer

Figure 10,4 Simple producer-consumer problem with a shared buffer.

Figure 10.5 shows the pseudocode for the producer and consumer.

Froducer Consumer

initialize semaphore get to 0;
initialize semaphore put o 1;

for « 5 5) i for © & & } A
sem_walt {&put}; sem_wait (&get);
puet data info buffer process data in buffer
sem_post {&get] ; sem_post (Eput)

Figure 10.5 Pseudocode for simple producer—consumer.

The semaphore put controls whether the producer can place an item into the shared
buffer, and the semaphore get controls whether the consumer can remove an item from
the shared buffer. The steps that occur over time are as follows:

1. The producer initializes the buffer and the two semaphores.

2. Assume that the consumer then runs. It blocks in its call to sem_wait because
the value of get is (.

3. Sometime later, the producer starts. When it calls sem_wait, the value of put
is decremented from 1 to 0, and the producer places an item into the buffer. It
then calls sem_post to increment the value of get from 0 to 1. Since a thread is
blocked on this semaphore (the consumer), waiting for its value to become posi-
tive, that thread is marked as ready-to-run. But assume that the producer con-
tinues to run. The producer then blocks in its call to sem_wait at the top of the
for loop, because the value of put is 0. The producer must wait until the con-
sumer empties the buffer,

4, The consumer returns from its call to sem_wait, which decrements the value of
the get semaphore from 1 to 0. It processes the data in the buffer, and calls
sem_post, which increments the value of put from 0 to 1. Since a thread is
blocked on this semaphore (the producer), waiting for its value to become posi-
tive, that thread is marked as ready-to-run. But assume that the consumer con-
tinues to run. The consumer then blocks in its call to sem_wait, at the top of
the for loop, because the value of get is (L.

Chapter 10

.

gt did the
gmaphores
= 7. Fig-
et that

b <hared
gem from

s because

e of DUt
Beffor It
piread is
hﬁ-: posi-
EiceT con-
H’F of the
i the con-
.It'i'ai'df.‘ of
m.:‘ calls
fEread is
h:‘ DS
EmeT CON-

e top of

Section 10.1

Introduction 223

5. The producer returns from its call to sem_wait, places data into the buffer, and

this scenario just continues.

We assumed that each time sem_post was called, even though a process was waiting
and was then marked as ready-to-run, the caller continued. Whether the caller contin-
ues or whether the thread that just became ready runs does not matter (you should
assume the other scenario and convince yourself of this fact).

We can list three differences among semaphores and mutexes and condition vari-
ables.

A mutex must always be unlocked by the thread that locked the mutex, whereas
a semaphore post need not be performed by the same thread that did the
semaphore wait. This is what we just showed in our example.

A mutex is either locked or unlocked (a binary state, similar to a binary
semaphore).

Since a semaphore has state associated with it (its count), a semaphore post is
always remembered. When a condition variable is signaled, if no thread is wait-
ing for this condition variable, the signal is lost. As an example of this feature,
consider Figure 10.5 but assume that the first time through the producer loop,
the consumer has not yet called sem_wait. The producer can still put the data
item into the buffer, call sem_post on the get semaphore (incrementing its
value from 0 to 1), and then block in its call to sem_wait on the put
semaphore. Some time later, the consumer can enter ifs for loop and call
cem_wait on the get variable, which will decrement the semaphore’s value
from 1 to 0, and the consumer then processes the buffer.

The Posix.1 Rationale states the following reason for providing semaphores along with
mutexes and condition variables: “Semaphores are provided in this standard primarily to pro-
vide a means of synchronization for processes; these processes may or may not share memory.
Mutexes and condition variables are specified as synchronization mechanisms between
threads; these threads always share (some) memory. Both are synchronization paradigms that
have been in widespread use for a number of years. Each set of primitives is particularly well
matched to certain problems.” We will see in Section 10.15 that it takes about 300 lines of C to
implement counting semaphores with kernel persistence, using mutexes and condition
variables—applications should not have to reinvent these 300 lines of € themselves, Even
though semaphores are intended for interprocess synchronization and mutexes and condition
variables are intended for interthread synchronization, semaphores can be used between
threads and mutexes and condition variables can be used between processes. We should use
whichever set of primitives fits the application.

We mentioned that Posix provides two types of semaphores: named semaphores and

memory-hased (also called unmamed) semaphores. Figure 10.6 compares the functions
used for both types of semaphores.

Figure 10.2 illustrated a Posix named semaphore. Figure 10.7 shows a Posix mem-

ory-based semaphore within a process that is shared by two threads.

224

Posix Semaphores Chapter 10

named memory-based
semaphore semaphore

Sem_open|) gem_inic ()

~.

sem_wait (]
zem_trywait ()
sem_post ()

sam_getwvaluel]

O\

sem_closel) sem_destroy!)

sem_unlink{)

Figure 10.6 Functon calls for Posix semaphores.

Figure 10.7 Memory-based semaphore shared between two threads within a process.

Figure 10.8 shows a Posix memory-based semaphore in shared memory (Part 4) that
is shared by two processes. We show that the shared memory belongs to the address
space of both processes.

o ______.—— —
__________________ | H
semaphore: _
| process A ‘- processB ||
I — I
I
ONE Process
R ‘| "" Bl oneprooess]
| S
shared memory

Figure 10.8 Memory-based semaphore in shared memory, shared by two processes.

In this chapter, we first describe Posix named semaphores and then Posix memory-
based semaphores. We return to the producer—consumer problem from Section 7.3 and
expand it to allow multiple producers with one consumer and finally multiple

e 4) that
address

pemory-
g_?:w and
pzitiple

-

Section 10.2 sem_open, sem_closs, and sem_unlink Functions 225

10.2

producers and multiple consumers. We then show that the common 1/0 technique of
multiple buffers is just a special case of the producer-consumer problem.

We show three implementations of Posix named semaphores: the first using FIFOs,
the next using memory-mapped 1/0 with mutexes and condition variables, and the last
using System V semaphores.

sem open, sem close, and sem unlink Functions

The function sem_open creates a new named semaphore or opens an existing named
semaphore. A named semaphore can always be used to synchronize either threads or

processes.

#include <semaphore.h>

sem_t *sem_open|const char *mame, int oflag. .
i* mode_t mode, unsigned int walue */)

| Returns: pointer to semaphore if OK, SEM_FAILED on error

We described the rules about the name argument in Section 2.2.

The oflag argument is either 0, O_CREAT, or O_CREAT | O_EXCL, as described in
Section 2.3. If O_CREAT is specified, then the third and fourth arguments are required:
mode specifies the permission bits (Figure 2.4), and value specifies the initial value of the
semaphore. This initial value cannot exceed SEM_VALUE_MAX, which must be at least
32767. Binary semaphores usually have an initial value of 1, whereas counting
semaphores often have an initial value greater than 1.

If O_CREAT is specified (without specifying 0_EXCL), the semaphore is initialized
only if it does not already exist. Specifying O_CREAT if the semaphore already exists is
not an error. This flag just means “create and initialize the semaphore if it does not
already exist.” But specifying O_CREAT | O_EXCL is an error if the semaphore already
exists.

The return value is a pointer to a sem_t datatype. This pointer is then used as the
argument to sem_close, sem_wait, sem_trywait, sem_post, and sem_getvalue.

The return value of SEM_FATLED to indicate an error is strange. A null pointer would make
more sense. Earlier drafts that led to the Posix standard specified a return value of -1 to indi-
cate an error, and many implementations define

gdefine SEM_FAILED [(mem_k *) [=1}1

Posix.1 says little about the permission bits associated with a semaphore when it is created or
opened by sem_scpen. Indeed, notice from Figure 2.3 and our discussion above that we do not
even specify O_RDONLY, O_WRONLY, or O_RDWER in the oflag argument when opening a named
semaphore. The two systems used for the examples in this book, Digital Unix 4.0B and Solaris
2.6, both require read access and write access to an existing semaphare for sem_open to suc-
ceed. The reason is probably that the two semaphore operations— post and wait—both read
and change the value of the semaphore. Not having either read access or write access for an
existing semaphore on these two implementations causes the sem_cpen function to return an
error of EACCES (“Permission denied”).

226

Posix Semaphores Chapter 10

10.3

A named semaphore that was opened by sem_open is closed by sem_close.

#include <aemaphore.h>

int sem_close (sem_t *sem) :

| Returns: 0 if OK, -1 on error

This semaphore close operation also occurs automatically on process termination for any
named semaphore that is still open. This happens whether the process terminates vol-
untarily (by calling exit or _exit), or involuntarily (by being killed by a signal).

Closing a semaphore does not remove the semaphore from the system. That is,
Posix named semaphores are at least kernel-persistent: they retain their value even if no
process currently has the semaphore open.

A named semaphore is removed from the system by sem_unlink.

(#include «<semaphore.hs]
] int sem_unlink{const char *mame) :

Returns: 0if OK, -1 on error

Semaphores have a reference count of how many times they are currently open (just like
files), and this function is similar to the unlink function for a file: the name can be
removed from the filesystem while its reference count is greater than 0, but the destruc-
tion of the semaphore (versus removing its name from the filesystem) does not take
place until the last sem_c1ose occurs.

sem_wait and sem trywait Functions

The sem_wait function tests the value of the specified semaphore, and if the value is
greater than 0, the value is decremented and the function returns immediately. If the
value is 0 when the function is called, the calling thread is put to sleep until the
semaphore value is greater than 0, at which time it will be decremented, and the func-
tion then returns. We mentioned earlier that the “test and decrement” operation must
be atomic with regard to other threads accessing this semaphore.

I _—
| #include <semaphore. h>

int sem _wait (sem_t *sm) ;
int sem_trywait (sem_t *sem) ;

| Both return: 0 if OK, -1 onerror |

g S any
@i vol-
i
e .
a8at 15,

e 1f no

RS 1%
g ¥ the
gl the
@ func-
E must

Section 10.4 zem_post and sem_getvalue Functions 227

10.4

The difference between sem_wait and sem_trywait is that the latter does not put the
calling thread to sleep if the current value of the semaphore is already 0. Instead, an
error of EAGATN is returned.

sem_wait can return prematurely if it is interrupted by a signal, returning an error
of EINTE,

sem post and sem_getvalue Functions
When a thread is finished with a semaphore, it calls sem_post. As discussed in Sec-

tion 10.1, this increments the value of the semaphore by 1 and wakes up any threads
that are waiting for the semaphore value to become positive.

#include <semaphore.h>
int sem_post (sem_t *sem) ;

int sem _getvaluelsem_t *sem, int *walp);

Both return: 0 if OK, -1 on error

sem_getvalue returns the current value of the semaphore in the integer pointed to by
valp. If the semaphore is currently locked, then the value returned is either 0 or a nega-
tive number whose absolute value is the number of threads waiting for the semaphore
to be unlocked.

We now see more differences among mutexes, condition variables, and semaphores.
First, a mutex must always be unlocked by the thread that locked the mutex.
Semaphores do not have this restriction: one thread can wait for a given semaphore
(say, decrementing the semaphore’s value from 1 to 0, which is the same as locking the
semaphore), and another thread can post to the semaphore (say, incrementing the
semaphore’s value from 0 to 1, which is the same as unlocking the semaphore).

Second, since a semaphore has an associated value that is incremented by a post
and decremented by a wait, a thread can post to a semaphore (say, incrementing its
value from 0 to 1), even though no threads are waiting for the semaphore value to
become positive. But if a thread calls pthread_cond_signal and no thread is cur-
rently blocked in a call to pthread_cond_wait, the signal is lost.

Lastly, of the various synchronization techniques—mutexes, condition variables,
read-write locks, and semaphores—the only function that can be called from a signal
handler is sem_post.

These three points should not be interpreted as a bias by the author towards semaphores. All
the synchronization primitives that we have looked at—mutexes, condition variables,
read—write locks, semaphores, and record locking—have their place. We have many choices
for a given application and need to be aware of the differences between the various primitives.
Also realize in the comparison just listed that mutexes are optimized for locking, condition
wvariables are optimized for waiting, and a semaphore can do both, which may bring with it
more overhead and complication.

228

Posix Semaphores Chapter 10 2 t

|

10.5 Simple Programs

semcreate Program

23

23

We now provide some simple programs that operate on Posix named semaphores, to
learn more about their functionality and implementation. Since Posix named
semaphores have at least kernel persistence, we can manipulate them across multiple
programs.

Figure 10.9 creates a named semaphore, allowing a -e option to specify an exclusive-
create, and a -1 option to specify an initial value (other than the default of 1).

: : pxsemi(semcreate.c
1 #include ‘unpipc.h"
2 int
3 main{int argc, char **argv)
4 -
5 int o, flags; '
fr Sem_t *sam;
7 unsigned int wvalue:
] flags = O_RDWR | O_CREAT:
9 value = 1;
10 while { (¢ = Cetopt(arge, argwv, "ei:")} != -1} {
11 switch (o]
12 case 'e°';
13 flags |= O_EXCL;
14 break;
15 cage ‘i
16 value = atoi{optarg);
17 break:
18 1
19 }
20 if (optind != argc - 1)
21 err_guit(“usage: semcreate [-e | [-i initalvalue] <name>"]:
22 sem = Sem_open(argvioptind], flags, FILE_MODE, valuel;
23 Sem_close (sem);
24 exic {0);
25 1}
pxsem [semcreate.c
Figure 10.9 Create a named semaphore.
Create semaphore

Since we always specify the O_CREAT flag, we must call sem_open with four argu-
ments. The final two arguments, however, are used by sem_open only if the
semaphore does not already exist.

Close semaphore

We call sem_close, although if this call were omitted, the semaphore is still closed
(and the system resources released) when the process terminates.

Section 10.5 Simple Programs 229

semunlink Program

The program in Figure 10.10 unlinks a named semaphore.

— : pxsem /semunlink.c
1 #include runpipc.h”

int
main(int arge, char **argwv)
{
if large = 2]
err_guit(“usage: semunlink <name="];

oo E L B

7 Sem_unlinkiargv([1]);

e

exit (0}

pxsem (semunlink.c
Figure 10.10 Unlink a named semaphore.

semgetvalue Program

Figure 10.11 is a simple program that opens a named semaphore, fetches its current
value, and prints that value.

. , psem [semgetvalie.c
1 #include *unpipc.h”

2 int

3 main(int argc, char **argv}
4 1

5 sem_t *sam;

] int val;

if (argc l= 2]
a8 err_guik {"usage: semgetvalue <name="};

9 zem = Sem_open(argv[l], 0);
sem_getvalue{sem, &val);
11 princf{*value = %d\n", wal}:

12 exit (0]

13 } .
pxsem | semgetvalue o

Figure 10.11 Get and print a semaphore’s value,

Open semaphore

5 When we are opening a semaphore that must already exist, the second argument to
sem_open is (: we do not specify O_CREAT and there are no other ©_xxx constants to

specify.

F the

230 Posix Semaphores Chapter 10

semwait Program

The program in Figure 10.12 opens a named semaphore, calls sem_wait (which will
block if the semaphore’s value is currently less than or equal to 0, and then decrements
the semaphore value), fetches and prints the semaphore’s value, and then blocks forever
in a call to pause.

prsem [semuait.c

1 #include "unpipc.h*

2 int

3 main{int argc, char **argwv)

a i

5 sem_t *sem;

& int val;

7 if f(arge 1= 2}

B err_guit{“usage: semwalt <name>"};

9 gem = Sem_open{argv[(1], 0});

10 Sem_wait (sem) ;

11 Sem_getvaluei{sem, &vall);

12 printf ("pid %ld has semaphore, value = %dwn", |(long) getpidi}, wval);
13 pause(}; /* blocks until killed */
14 exit(0};

15 }

pasewm | semait.c

Figure 10,12 Wait for a semaphore and print its value,

sempost Program

Figure 10.13 is a program that posts to a named semaphore (i.e., increments its value by
one) and then fetches and prints the semaphore’s value.

XM | Sempost.C
1 #include ‘unpipc.h* P po
2 int
3 mainiint arge, char **argv)
d |
5 Sem_t *5em;
B int val;
7 if f{argc '= 2)
B err_guit{"usage: Sempost <name>");
9 sem = Sem_open{argv([l], 0};
10 Sem_post (sem) ;
11 Sem_getvalue (sem, &val);
12 printf{"value = %d\n*, wval):
13 exitc(0);
14 }

prserm (sempost.c

Figure 10,13 Post to a semaphore.

_____ Section 10.5 Simple Programs 231
3 Examples
a
il il We first create a named semaphore under Digital Unix 4.0B and print its (default) value.
etk
h"' - alpha % semcreate /tmp/testl
: B alpha % 1g -1 /tmp/testl
o -rW-r--T-- 1 ratevens system 264 wov 13 08:51 /tmp/testl
g alpha % semgetvalue /tmp/testl
i value = 1

As with Posix message queues, the system creates a file in the filesystem corresponding
to the name that we specify for the named semaphore.

We now wait for the semaphore and then abort the program that holds the
semaphore lock.

alpha % semwalt /tmp/testl

pid 9702 has semaphore, wvalue = 0 the value affer sem_wait returns
" type our interrupd key to abort program
alpha % semgetvalue /tmp/testl
. value = 0 and value rewains ()
& This example shows two features that we mentioned earlier. First, the value of a
: semaphore is kernel-persistent. That is, the semaphore’s value of 1 is maintained by the
kernel from when the semaphore was created in our previous example, even though no
g program had the semaphore open during this time. Second, when we abort our
semwait program that holds the semaphore lock, the value of the semaphore does not
change. That is, the semaphore is not unlocked by the kernel when a process holding
the lock terminates without releasing the lock. This differs from record locks, which we
; said in Chapter 9 are automatically released when the process holding the lock termi-
i nates without releasing the lock.
e b We now show that this implementation uses a negative semaphore value to indicate
L the number of processes waiting for the semaphore to be unlocked.
: . alpha % semgetvalue ftmp/testl
;'= o value = 0 value is still) from previcus example
alpha % semwait /tmp/testl & starf in the background
[1] 9718 it blocks, waiting for semaphare
alpha % semgetvalue /tmp/tastl
value = =1 ome process waiting for semaphore
f:’_ alpha % semwait femp/testl & starf another in the background
: [2] 9727 it alsp blocks, waiting for sewmaphore
alpha % semgetvalue /tmp/testl
value = -2 oo processes waiting for semaphore
alpha % sempost /tmp/testl now post fo semaphore
value = -1 value after sem_post refurns
pid 9718 has semaphore, walue = -1 oufput from semwait program
m-rs. alpha % pampost /tmp/testl post again to semaphore
value = 0

n
Lol

pid 9727 has semaphore, wvalue output from other semwait program

232 Posix Semaphores Chapter 10

When the value is =2 and we execute our sempost program, the value is incremented
to -1 and one of the processes blocked in the call to sem_wait returns.

We now execute the same example under Solaris 2.6 to see the differences in the
implementation.

solaris % semcreate /Sftestl
solariz % 18 -1 /emp/.*testl¥

~IW-F==F== 1l ratevens otherl 48 Mow 13 09:11 /tmp/.SEMDtestZ
~TW=TW=TW= 1 ratevens otherl 0 MNov 13 09:11 /tmp/.SEMLtests
golaris % semgetvalue /testl

value = 1

As with Posix message queues, files are created in the /tmp directory containing the
specified name as the filename suffixes. We see that the permissions on the first file cor-
respond to the permissions specified in our call to sem_open, and we guess that the
second file is used for locking,

We now verify that the kernel does not automatically post to a semaphore when the
process holding the semaphore lock terminates without releasing the lock.

solariz % semwait /test2
pid 4133 has semaphore, value = 0

~ type our inferrupt key
solaris % semgetvalue /testl
value = alue rewains 0

Next we see how this implementation handles the semaphore value when processes are
waiting for the semaphore.

solariz % semgetvalus /testl

value = 0 value 15 still O from previous example
solaris % semwait /testl & start in the background

[1] 4257 if blocks, waiting for semaphore

solaris % semgetvalue /tastl

value = 0 this implementation does mot use negative values
solaris % semwait /testl & start another in the background

(23 4263

solaris & semgetvalue /test2

value = 0 palue remains O with fuo processes waifing
solaris % sempost /testl neoir post fo semaphore

pid 4257 has semaphore, value = 0 output from semwait program

value = 0

golaris % sempost /test2
pid 4263 has semaphore, wvalue
value = 0

i
=1

output from other semeadt program

One difference in this output, compared to the previous output under Digital Unix, is
when the semaphore is posted to: it appears that the waiting process runs before the
process that posted to the semaphore.

s the
&= cor-
b Eat the

hen the

maﬁe

! Limix, 15
gaore the

Section 10.6 Producer—-Consumer Problem 233

10.6

Producer-Consumer Problem

In Section 7.3, we described the producer—conswmer problem and showed some solutions
in which multiple producer threads filled an array that was processed by one consumer
thread.

1. In our first solution (Section 7.2), the consumer started only after the producers
were finished, and we were able to solve this synchronization problem using a
single mutex (to synchronize the producers).

2. In our next solution (Section 7.5), the consumer started before the producers
were finished, and this required a mutex (to synchronize the producers) along
with a condition variable and its mutex (to synchronize the consumer with the
producers).

We now extend the producer—consumer problem by using the shared buffer as a circular
buffer: after the producer fills the final entry (buff [NBUFF-1]), it goes back and fills
the first entry (buf£[0]), and the consumer does the same. This adds another synchro-
nization problem in that the producer must not get ahead of the consumer. We still
assume that the producer and consumer are threads, but they could also be processes,
assuming that some way existed to share the buffer between the processes (e.g., shared

memory, which we describe in Part 4).
Three conditions must be maintained by the code when the shared buffer is consid-
ered as a circular buffer:

1. The consumer cannot fry to remove an item from the buffer when the buffer is
empty.

2. The producer cannot try to place an item into the buffer when the buffer is full.

3. Shared variables may describe the current state of the buffer (indexes, counts,

linked list pointers, etc.), so all buffer manipulations by the producer and con-
sumer must be protected to avoid any race conditions.

Our solution using semaphores demonstrates three different types of semaphores:

1. A binary semaphore named mutex protects the critical regions: inserting a data
item into the buffer (for the producer) and removing a data item from the buffer
(for the consumer). A binary semaphore that is used as a mutex is initialized to
1. (Obviously, we could use a real mutex for this, instead of a binary

semaphore. See Exercise 10.10.)
2. A counting semaphore named nempty counts the number of empty slots in the

buffer. This semaphore is initialized to the number of slots in the buffer
{(NBUFF).

A counting semaphore named nstored counts the number of filled slots in the
buffer. This semaphore is initialized to 0, since the buffer is initially empty.

W

234 Posix Semaphores Chapter 10

Figure 10.14 shows the status of our buffer and the two counting semaphores when the
program has finished its initialization. We have shaded the array elements that are
unused.

buf£[0]:
buff[1]:
buff[2]:
buff[3]:

buff [NBUFF-1]:

1
nempry: HEUFF

nstored: i

Figure 10.14 Buffer and the two counting semaphores after initialization.

In our example, the producer just stores the integers 0 through NLOOP-1 into the buffer
(buff[0] = 0,buff[l] = 1,and so on), using the buffer as a circular buffer. The
consumer takes these integers from the buffer and verifies that they are correct, printing
any errors to standard output.

Figure 10.15 shows the buffer and the counting semaphores after the producer has
placed three items into the buffer, but before the consumer has taken any of these items
from the buffer.

= bufE[0]: o

producer places .
Jitems intobufier —— TWEFLL):
— buff[Z]:

buffii]:

buff [NBUFF=1] :

nempty:| NBUFF-3
nstored: Ii 3
Figure 10.15 Buffer and semaphores after three items placed into buffer by producer.

We next assume that the consumer removes one item from the buffer, and we show
this in Figure 10.16.

ﬁt buffer
ﬁa The
= printing

ﬁ.xer has
Pese items

.

Iwe show

¥

Section 10.6 Producer—Consumer Problem 235

18=25

26-29

30-36

CONSUIMET TEMOVES

Buff101: @8 1 item from buffer

bufflz]
buffiil: §i

buff [NBUFF-1]:

nstored: | z
Figure 10.16 Buffer and semaphores after consumer removes first item from buffer.

Figure 10.17 is the main function that creates the three semaphores, creates two
threads, waits for both threads to complete, and then removes the semaphores.

Globals

The buffer containing NEUFF items is shared between the two threads, as are the
three semaphore pointers. As described in Chapter 7, we collect these into a structure to
reiterate that the semaphores are used to synchronize access to the buffer.

Create semaphores

Three semaphores are created and their names are passed to our px_ipc_name
function. We specify the 0_EXCL flag because we need to initialize each semaphore to
the correct value. If any of the three semaphores are still lying around from a previous
run of this program that aborted, we could handle that by calling sem_unlink for each
semaphore, ignoring any errors, before creating the semaphores. Alternately, we could
check for an error of EEXIST from sem_open with the O_EXCL flag, and call
sem_unlink followed by another call to sem_open, but this is more complicated. If
we need to verify that only one copy of this program is running (which we could do
before trying to create any of the semaphores), we would do so as described in Sec-
tion 9.7,

Create two threads
The two threads are created, one as the producer and one as the consumer. No

arguments are passed to the two threads.
The main thread then waits for both threads to terminate, and removes the three

semaphores.

We could also call sem_close for each semaphore, but this happens automatically when the
process terminates. Removing the name of a named semaphore, however, must be done
explicithy.

Figure 10.18 shows the produce and consume functions.

236 Posix Semaphores Chapter 10 Sectae: 1)
xsem [prodeons].c A
1 #include “unpipe.h” P H
=
2 #define NEUFF 10 i
3 #define SEM_MUTEX "mutex” /* these are args Lo px_ipc_namei] */ &
4 #define SEM_NEMPTY "nempby” ;
% #define SEM_MSTORED "nstored” g
e
& int nitems; i+ read-only by producer and consumer */ E"
T struct { /* data shared by producer and consumer */ P
8 int buff [MEUFF]; "
o gem_t *mutex, *nempty, *nstored; E"
10 } shared; E
11 woid *produce (void *), *consume (vold *); g
12 int =
13 main(int argc, char *rargv) ‘ﬁ
14 { i
15 pthread_t tid _produce, tid consume; :
18 if (arge != 2) i
17 err_guit ("usage: prodconsl <#items="); 2 P
13 nitems = atoilargv[l]): %
149 /% greate three semaphores */ ﬂ
20 shared.mutex = Sem_ocpen!|Fx_ipc_name (SEM_MUTEX] . 0_CREAT | O_EXCL, 3
21 FILE_MODE, 1): #
22 shared.nempty = Sem_open{Px_ipc_name (SEM_NEMPTY), O_CREAT | G_EXCL, %
23 FILE_MODE, NBUFF); &
24 shared.nstored = Sem_open|Px_ipc_name|SEM_NSTORED), O_CREAT | O_EXCL. @
25 FILE_MODE, 0); b
26 i* create cne producer thread and one consumexr thread */ ._.5;
27 Set_concurrency {2); &
28 Pthread_create (&tid_produce, HULL, produce, NULL]; o
25 Prhread_create (ktid_consume, NULL, consume, HULL] ; ‘.
30 /* wait for the two threads */ *“3""_“
il pthread_joinitid_produce, NULL);: £
32 Pthread_joinitid_consume, WULL): -
a3 /* remowve the semaphores */ ._‘-'.
34 Sem_unlink (Px_ipc_name (SEM_MUTEX)) ; E
35 Sm_unlink[?x_ipcﬁnmismmm] 1 k.
i6 Sem_unlink (Px_ipc_name [SEM_NSTORED)) ; i
a7 exit (0l :
g] o
prsem prodeonsl.c

44

Figure 10,17 main function for semaphore solution to producer—consumer problem.

Producer waits until room for one item in buffer

The producer calls sem_wait on the nempty semaphore, to wait until room is
available for another item in the buffer. The first time this statement is executed, the
value of the semaphore will go from NBUFF to NEUFF-1.

5

_ﬁ room is
mruted, the

5762

Section 10.6 Producer-Consumer Problem 237
35 wola prsem (prodeons] .c
40 produce|{void *arg)

41 |
42 int i:
43 for (i = 0; i < nitems; fi++) {
44 Sem_wait (shared.nempkby) ; /* wait for at least 1 empty slob */
45 Sem_wait (shared. mutex) ;
48 shared buff[i % NBUFF] = i: /* store i into circular buffer */
47 Sem_post (shared.mutex) ;
48 Sem_post (ghared. nstored) ; /* 1 more stored item */
49 }
50 return (MNULL);
51 }
52 void *
53 consume{void *argl
54
55 int i;
56 for (i = 0; i < nitems; i++} {
&7 Sem_wait (shared.nstored}; /* wait for at least 1 stored item */f
58 Sem_walt (shared.mutex);
59 if i(shared.buffl[i % MBUFF] (= i)
L1 printf{"buff[%d] = %d\n*, i, shared.buff]i % NBUFF]}:
6l Sem_post (shared.mutex) ;
52 Sem_post (shared. nempty) ; f* 1 more empty slokt */
&3 1
54 return (NULL);
685 }
pasemn | prodeonsl ¢
Figure 10,18 produce and consume functons,
Producer stores item in buffer
45-48 Before storing the new item into the buffer, the producer must obtain the mutex

semaphore. In our example, where the producer just stores a value into the array ele-
ment indexed by i % NBUFF, no shared variables describe the status of the buffer (ie.,
we do not use a linked list that we need to update each time we place an item into the
buffer). Therefore, obtaining and releasing the mutex semaphore is not actually
required. Nevertheless, we show it, because in general it is required for this type of
problem (updating a buffer that is shared by multiple threads).

After the item is stored in the buffer, the mutex semaphore is released (its value
goes from 0 to 1), and the nstored semaphore is posted to. The first time this state-
ment is executed, the value of nstored will go from its initial value of 0 to 1.

Consumer waits for n=tored semaphore

When the nstored semaphore’s value is greater than 0, that many items are in the
buffer to process. The consumer takes one item from the buffer and verifies that its
value is correct, protecting this buffer access with the mutex semaphore. The consumer
then posts to the nempty semaphore, telling the producer that another slot is empty.

238 Posix Semaphores

Chapter 10

Deadlock

10.7

10.8

What happens if we mistakenly swap the order of the two calls to Sem_wait in the con-
sumer function (Figure 10.18)? If we assume the producer starts first (as in the solution
shown for Exercise 10.1), it stores NBUFF items into the buifer, decrementing the value
of the nempty semaphore from NBUFF to 0 and incrementing the value of the nstored
semaphore from (to NBUFF. At that point, the producer blocks in the call
Sem_wait (shared.nempty), since the buffer is full and no empty slots are available
for another item.

The consumer starts and verifies the first NBUFF items from the buffer. This decre-
ments the value of the nstored semaphore from NBUFF to 0 and increments the value
of the nempty semaphore from 0 to ueUFF, The consumer then blocks in the call
Sem_wailt {shared.nstored) after calling Sem_wait (shared mutex). The pro-
ducer can resume, because the value of nempty is now greater than 0, but the producer
then calls Sem_wait (shared.mutex) and blocks.

This is called a deadlock. The producer is waiting for the mutex semaphore, but the
consumer is holding this semaphore and waiting for the nstored semaphore. But the
producer cannot post to the nstored semaphore until it obtains the mutex semaphore.
This is one of the problems with semaphores: if we make an error in our coding, our

program does not work correctly.
Posix allows sem_wait to detect a deadlock and return an error of EDEADLE, but neither

of the systems being used (Solaris 2.6 and Digital Unix 4.0B) detected this error with this
example.

File Locking

We now return to our sequence number problem from Chapter 9 and provide versions
of our my_lock and my_unlock functions that use Posix named semaphores. Fig-

ure 10.19 shows the two functions.
One semaphore is used for an advisory file lock, and the first time this function is

called, the semaphore value is initialized to 1. To obtain the file lock, we call sem_walit,
and to release the lock, we call sem_post,

sem_init and sem_destroy Functions

Everything so far in this chapter has dealt with the Posix named semaphores. These
semaphores are identified by a name argument that normally references a file in the file-
system. But Posix also provides memory-based semaphores in which the application allo-
cates the memory for the semaphore (that is, for a sem_t datatype, whatever that
happens to be) and then has the system initialize this semaphore.

i } %)

g

(R

Pk ddR R

G el

i
T

T U MO R W M ECRR ok i

AThapter 10
A

i the con-
k solution
E e value
gpo=-ored
g the call
% available

Teix decre-
g the value

ms the call
. The pro-
= producer

gee, but the
w= But the
semaphore.
poding, our

g bt neither

e with this

.
ke versions

icm:-s Fig-

j function is
&s=m_wailt,

;-

m-ﬂ These
g in the file-
scation allo-
;'ﬁ\'er that

.
%

i

Section 10.8 sem_init and sem_destroy Functions 239
fock {lockpasem.c
1 #include "unpipc.h*
2 #define LOCK_PATH "prsemlock”
31 gem_t *“locksem;
4 int initflag;
5 vold
& my_lock({int £4)
T
8 1f (initflag == 0} {
9 locksem = Sem_open(Px_ipc_name (LOCK_PATH), O_CREAT, FILE MODE, 1);
10 initflag = 1;
11 H
12 Sem_wait(locksem) ;
13 }
14 void
15 my_unlockiint f£d4)
16
17 Sem_post (locksem) ;
18 }

Figure 10.19 File locking using Posix named semaphores,

Tock | lockpxsem.c

#include =semaphore.h>

int sem_init{sem_t =sem, int shared, unsigned int malue);

int sem destroy(sem_t *sem);

Eeturns: =1 on error

Returns: 0 if OK, -1 on error

A memory-based semaphore is initialized by sem_init. The sem argument points to
the sem_t variable that the application must allocate. If shared is 0, then the semaphore
is shared between the threads of a process, else the semaphore is shared between pro-
cesses. When shared is nonzero, then the semaphore must be stored in some type of
shared memory that is accessible to all the processes that will be using the semaphore.
As with sem_open, the value argument is the initial value of the semaphore.

When we are done with a memory-based semaphore, sem_destroy destroys it.

serm_open does not need a parameter similar to shared or an attribute similar to
PTHREAD_PROCESS_SHARED (which we saw with mutexes and condition variables in Chap-
ter 7, because a named semaphore is alnays sharable between different processes.

Motice that there is nothing similar b0 O_CREAT for a memory-based semaphore: sem_init
always initializes the semaphore value, Therefore, we must be careful to call sem_init only
once for a given semaphore, (Exercise 10.2 shows the difference for a named semaphore.) The
results are undefined if ser_init is called for a semaphaore that has already been initialized.

240 Posix Semaphores Chapter 10 ety

Make certain you understand a fundamental difference between sem_open and sem_init.
The formet returns a pointer to a sem_t variable that the function has allocated and initialized.
The first argument to sem_inic, on the other hand, is a pointer to a sem_t variable that the
caller must allocate and that the function then initializes,

B S

Posix.1 warns that for a memory-based semaphore, only the location pointed to by the sem
argument to sem_init can be used to refer to the semaphore, and using copies of this sem_t

datatype is undefined.

I

e

sem_init returns —1 on an error, but does not return 0 on success. This is indeed strange, and
a note in the Posix 1 Rationale says that a future update may specify a return of 0 on success.

A memory-based semaphore can be used when the name associated with a named
semaphore is not needed. Named semaphores are normally used when different, unre-
lated processes are using the semaphore. The name is how each process identifies the
semaphore,

In Figure 1.3, we say that memory-based semaphores have process persistence, but
their persistence really depends on the type of memory in which the semaphore is
stored. A memory-based semaphore remains in existence as long as the memory in
which the semaphore is contained is valid.

Lo T el L TGRS o B

T T R

L

e o

+ If a memory-based semaphore is being shared between the threads of a single
process (the shared argument to sem_init is 0), then the semaphore has process
persistence and disappears when the process terminates.

+ If a memory-based semaphore is being shared between different processes (the
shared argument to sem_init is 1), then the semaphore must be stored in
shared memory and the semaphore remains in existence as long as the shared
memory remains in existence. Recall from Figure 1.3 that Posix shared memory
and System V shared memory both have kernel persistence. This means that a
server can create a region of shared memory, initialize a Posix memory-based
semaphore in that shared memory, and then terminate. Sometime later, one or
more clients can open the region of shared memory and access the memory-

based semaphore stored therein.

Be warned that the following code does not work as planned:

zem_L myreem;
Sem_init (&mysem, 1, 0); /* 2Znd arg of 1 -= shared between processes “/
if {Fork(}) == 0) { f* child =/
ée;n_g.mst (Y sem) ;
I
Sem_wait [kmysem) ; /* parent; wait for child =/

The problem here is that the semaphore mysem is not in shared memory—see Sec-
tion 10.12. Memory is normally not shared between a parent and child across a fork.
The child starts with a copy of the parent's memory, but this is not the same as shared
memory. We talk more about shared memory in Part 4 of this book.

e

s
e
=
.4
%
=
b
=
G-
-
2
b
k-
E
3
e
is_s_
5
8
E
-
-

:l:!pe:._;:i‘:.
g secirialized

i that the

By the sem
ﬁm: sem_t

af = single
s DroCess

o

i:esae-:- (the
« stored in
#e shared
e memory
=< that a
mory-based
fies. One or
¢ memory-

s 2 fork.
¢ s shared

i
5
b

Section 10.8

sem_init and sem_destroy Functions 241

Example

As an example, we convert our

ucer-consumer example from Figures 10.17

and 10.18 to use memory-based semaphores. Figure 10.20 shows the program.

pxsem | prodeons2 .«
1 #include "unpipec.h*
Z #define NBUFF 10
3 int nitems; /* read-only by producer and consumer */
d struct | /* data shared by producer and consumer */
5 int buf f [NBUFF] ;
[gam_t mubex, nempty, nstored: /* semaphores, not pointers */
T ¥ shared;
8 void *produce(veoid *), *“consume(woid *);
9 int
10 main{int arge, char **argv)
11 {
12 pthread_t tid produce, tid_consume;
13 if {arge != Z}
14 err_gquiti*usage: prodconsE <fitems>");
15 nitemsz = atod(argvw[1]);
18 /* initialize three semaphores */
17 Sem_init(kshared.mutex, 0, 1);
18 Zem_init (kshared.nempty, 0, WBUFF);
19 Sem_init (&shared.nstored, 0, 0);
20 Set_concurrency(2);
21 Prhread_create|ktid produce, NULL, produce, NULL);
22 Pthread_create(&tid_consume, NULL, consume, HULL);
23 Pthread jeoinitid_produce, NULL);:
24 Prhread_joinitid_consume, NULL):
25 Sem_destroy (kshared.mutex) ;
26 Sem_destroy (kshared. nempty) ;
27 Sem_deatroy (kshared.nstored) ;
28 exit (0} ;
29 }
30 void *
31 produceivoid *arg)
12 {
i3 int i
14 for (L = 0; 1 < nitems; i++) |
35 Sem_walt (&shared.nempty) ; /* wait for at least 1 empty slot =/
36 Sem_walt (&shared.mutex) ;
7 shared . buff[i % WBUFF] = 1i; /* store i into circular buffer */
3a Sem_post (kshared.mutex) ;
ig Sem_post (&shared.nstored); /* 1 more stored item */
40 1
41 return (WULL) ;

42 }

242 Posix Semaphores Chapter 10

16-27

10.9

5-18

43 woid *
44 consume (void *arg)
45 {
46 int i
47 for (i = 0; 1 < nitems; i++) [
48 Sem_wait {&shared.nstored); /* wait for at least 1 stored item */
49 Sem_wait (kshared mutex);
50 if i(shared.buff[i & NBUFF] != i}
51 printf(*buff(%d] = %dwn", i, shared.buff[i % NBUFF]):
52 Sem_post (kshared. mutex) ;
53 Sem_post (&shared.nempty} ; f* 1 more empty slot */
1 H
55 return (NULL):
56 }
prsem | prodeons? .o
Figure 10.20 Producer—consumer using memaory-based semaphores.
Allocate semaphores

Our declarations for the three semaphores are now for three sem_t datatypes them-
selves, not for pointers to three of these datatypes.

Call sem_init

We call sem_init instead of sem_open, and then sem_destroy instead of
sem_unlink. These calls to sem_destroy are really not needed, since the program is
about to terminate.

The remaining changes are to pass pointers to the three semaphores in all the calls
to sem_wait and sem_post.

Multiple Producers, One Consumer

The producer—consumer solution in Section 10.6 solves the classic one-producer, one-
consumer problem. An interesting modification is to allow multiple producers with one
consumer. We will start with the solution from Figure 10.20, which used memory-based
semaphores. Figure 10.21 shows the global variables and main function.

Globals

The global nitems is the total number of items for all the producers to produce,
and nproducers is the number of producer threads. Both are set from command-line
arguments.
Shared structure

Two new variables are declared in the shared structure: nput, the index of the
next buffer entry to store into (modulo NBUFF), and nputwval, the next value to store in
the buffer. These two variables are taken from our solution in Figures 7.2 and 7.3.
These two variables are needed to synchronize the multiple producer threads.

. Chapter 10

b

e cons2.c

“gmstead of
\program is

ﬁ the calls

ﬁ.‘“ﬁ"r one-
#es: with one
mory-based

& produce,
Ftand**line

mdex of the
g o store in
72 and 7.3.
<

Figure 10.21 main function that creates multiple producer threads.

Section 10.9 Multiple Producers, One Consumer 243
xsem | consd.c
1 #include *unpipec.h* & prod
2 #define NBUFF 10
3 #define MAXNTHREADS 100
4 int nitems, nproducers; /* read-only by producer and consumer */
5 atruct { /* data shared by producers and consumer */
& int buff [NBUFF] ;
7 int nput;
B int nputval ;
g sem_t mutex, nempty, nstored; /* gmemaphores, not pointers */
10 } shared;
11 wvoid *produce (void ¥), *consume (void *);
12 int
13 main(int arge, char **argv)
14 1
15 int i, count[MAXNTHREADS] ;
16 pthread_t tid_produce [MAXNTHREADS], tid_consume;
17 if (argc != 3)
18 err_quit ("usage: prodconsd <#items> <fproducers="];
13 nitems = ateilargv[l]);
20 nproducers = min{atel (argv[2]). MAXNTHREADS):;
21 /* initialize three semaphores */
22 Sem_init{&shared.mutex, 0, 1);
23 Sem_init{&shared.nempty. 0, NBUFF};
24 Sem_init{&shared.nstored, 0, O}
25 /* create all producers and one consumer */
26 Set_concurrency (nproducers + 1}
27 for (1 = 0; 1 < nproducers; i++) {
28 count[i] = 0;
29 Pthread_create (&tid_produce[i], NULL, produce, &count[i]);
30 J
31 Pthread_create (&tid_consume, WULL, consume, NULL);
iz /* wait for all producers and the consumer */
33 for (1 = 0; i < nproducers; i++) [
34 Pthread joinitid_produceli], WULL);
35 printf (*count[%d] = %d'n", i, count[i]);
36 i
37 Pthread joini{tid_consume, NULL);
3B Sem_destroy{&shared.mutex) ;
38 Sem_destroy {kshared. nempty) ;
40 Sem_destroy (kshared. nstored) ;
41 exic{0);
42}

pasem | prodeonsd.c

244

Posix Semaphores Chapter 10

New command-line arguments

17-20 Two new command-line arguments specify the total number of items to be stored

21-41

§9-53

50=51

into the buffer and the number of producer threads to create.

Create all the threads

The semaphores are initialized, and all the producer threads and one consumer
thread are created. We then wait for all the threads to terminate. This code is nearly
identical to Figure 7.2,

Figure 10.22 shows the produce function that is executed by each producer thread.

PR pxsem prodeons3.c
44 produce(void *arg)
45
46 for { ; 7 1 {
47 Semr,_wait {&shared . nempty) ; /* wait for at least 1 empty slot */
48 Sem _wait {&shared . mutex);
45 if (shared.nput =>= nitems) {
50 Sem_post [&shared.nemptyl
51 Sem_post (&shared.mutex) ;
52 return (NULL); f* all done */
53 H
54 ghared.buff [shared.nput % NBUFF] = shared.nputval;
55 shared.nput++;
56 shared.nputval++;
57 Sem_post (&shared.mutex) ;
58 Sem_post (kshared.natored); /% 1 more stored item */f
5 *([int *) argl += 1;
60 I}
61}
pasem | prodeonsd.c

Figure 10.22 Function executed by all the producer threads.

Mutual exclusion among producer threads

The change from Figure 10.18 is that the loop terminates when nitems of the val-
ues have been placed into the buffer by all the threads. Notice that multiple producer
threads can acquire the nempty semaphore at the same time, but only one producer
thread at a time can acquire the mutex semaphore. This protects the variables nput
and nputval from being modified by more than one producer thread at a time.

Termination of producers

We must carefully handle the termination of the producer threads. After the last
item is produced, each producer thread executes

gem_walt (kshared.nempby) ; /* wait for at least 1 empty slot */
at the top of the loop, which decrements the nempty semaphore. But before the thread

terminates, it must increment this semaphore, because the thread does not store an item
in the buffer during its last time around the loop. The terminating thread must also

T Bapter 10

3
i B stored

F oonsumer
fe 3= nearly

goer thread.

Kigroadcons 3o

I rrrdconsdc

i the val-
h producer
 producer
Einles nput
e

h the last
: the thread

e an item
£ must also

Section 10,10

Multiple Producers, Multiple Consumers 245

10.10

release the mutex semaphore, to allow the other producer threads to continue. If we
did not increment nempty on thread termination and if we had more producer threads
than buffer slots (say 14 threads and 10 buffer slots), the excess threads (4) would be
blocked forever, waiting for the nempty semaphore, and would never terminate.

The consume function in Figure 10.23 just verifies that each entry in the buffer is
correct, printing a message if an error is detected.

xaem [prodoons3.c
62 wvolid * P I

63 consume (void *arg)

64 |

65 int i;

17 for (1 = 0; 1 « nitems; 1++) |

67 Sem_walit (&shared.nstored); /* wait for at least 1 stored ictem */
GE Sem_wait (kshared.mutex) ;

62 if i{shared.buff[i % NBUFF] != i}

T0 printf{“error: buff{%d] = %d\n*, i, shared.buff[i % NBUFF]):
71 Sem_post (kshared.mutex) ;

72 Sem_post (kshared. nempty) ; /* 1 more empty slot */

73 }

T4 return (NULL) ;

75 1

prsem | prodeons3 .o

Figure 10.23 Function executed by the one consumer thread.

Termination of the single consumer thread is simple—it just counts the number of
items consumed.

Multiple Producers, Multiple Consumers

The next modification to our producer-consumer problem is to allow multiple produc-
ers and multiple consumers. Whether it makes sense to have multiple consumers
depends on the application. The author has seen two applications that use this tech-
nique.

1. A program that converts IP addresses to their corresponding hostnames. Each
consumer takes an IP address, calls gethostbyaddr (Section 9.6 of UNPv1),
and appends the hostname to a file. Since each call to gethostbyaddr can
take a variable amount of time, the order of the IP addresses in the buffer will
normally not be the same as the order of the hostnames in the file appended by
the consumer threads. The advantage in this scenario is that multiple calls to
gethostbyaddr (each of which can take seconds) occur in parallel: one per
consumer thread.

This assumes a reentrant version of gethoatbyaddr, and not all implementations have
this property. If a reentrant version is not available, an alternative is to store the buffer in
shared memory and use multiple processes instead of multiple threads.

246 DPosix Semaphores

Chapter 10

2. A program that reads UDF datagrams, operates on the datagrams, and then
writes the result to a database. One consumer thread processes each datagram,
and multiple consumer threads are needed to overlap the potentially long pro-
cessing of each datagram. Even though the datagrams are normally written to
the database by the consumer threads in an order that differs from the original
datagram order, the ordering of the records in the database handles this.

Figure 10.24 shows the global variables.

4-12

19=23

24=-50

- - pasem | prodeomsd.c
1 #include *unpipe.n®
2 #define NBUFF 10
1 #define MAXNTHREADS 100
4 int nitems, nproducers, OCOOSUMETS; /* read-only */
5 struct [/* data shared by producers and consumers </
[int puf f [MBUFF] ;
7 int npue; /* icem mumber: 0, 1, 2, ... %/
A int nputval; /* walue teo store in buff[] */
9 int nget; /% item pumber: 0, 1, 2, ... 7S
10 int ngetval; /% walue fetched from buff(] */
11 sem_t mutex, nempty, nstored; /* semaphores, not pointers */

12 } shared;

13 void *produceivoid *). *ponsume (void *);

prsem | prodeonsd.c

Figure 10.24 Global variables.

Globals and shared structure

The number of consumer threads is now a obal variable and is set from a
command-line argument. We have added two more variables to our shared structure:
nget, the next item number for any one of the consumer threads to fetch, and

ngetval, the corresponding value.

The main function, shown in Figure 10.25, is changed to create multiple consumer

threads.

A new command-line argument specifies the number of consumer threads to create.

We must also allocate an array (tid_consume) to
and an array (conscount) to hold our diagnostic coun
sumer thread processes.

hold all the consumer thread IDs,

t of how many items each con-

Multiple producer threads and multiple consumer threads are created and then

waited for.

s g e e g T e e il R e T R i R R e T R R T

Eﬁaptw 10

;and then
ﬁagram,
Eiﬂﬂg ppﬂ.
wernitten to
he original
=

g perionsd.c

igi from a
B structure:
#eech, and

.\:.
3

i-mmsumer
:

_h-h:- create,
gread [Ds,

ﬁ:eaﬂt con-

im then

Section 10.10 Multiple Producers, Multiple Consumers 247
YR prsem [prodeonsd.c
15 main{int argc, char **argv]

16 ¢

17 int i, prodeount [MAXNTHREADS], conscount [MAXNTHREEADS]

1B pthread_t tid_produce [MAXNTHREADS] , tid_consume [MAXNTHREADS] ;
19 if fargc != 4)

20 err_cguit ("usage: prodconsd <#items> <#producers: <f#consumerss");
21 nitems = atollargvil]);

22 nproducers = minijatcol (argv([2]}), MAXNTHREADS});

23 neconsumers = miniatel (argv[3]}, MAXNTHREADS) ;

24 /% initialize three semaphores */

25 Sem_init{&shared.mutex, 0, 1);

26 Sem_init {&shared.nempty, 0, NEUFF];

27 Sem_init {&shared.nstored, 0, 0);

28 /* create all producers and all consumers */

29 Set_concurrency (nproducers + NCONSUMBES);

g for (i = 0; i < nproducers; i++) {

31 prodeount[i] = 0

£ Pthread_create (&tid_produce([il, NULL, produce, &prodoount(i]):
33 }

34 for (i = 0; i < noconsumers; i++) {

as conscount[i] = 0;

El Pthread create (&tid _consume(i], NULL, consume, Lconscount(i]):
a7 1

38 /* wait for all producers and all consumers */

39 for (i = 0; 1 = nproducers; i++] {

a0 Pehread_jein|tid_produce[i], NUILL};

41 printf("producer count([%d] = %d\n*, i, prodeountc[i]};

42 }

413 for (i = 0; i < noconsumers; i++) |

44 Prhread_joinitid_consume[i], NULL}:;

45 princf{"consumer count(%d] = %d\n", i, conseount(i]});

46 H

47 Sem_destroy (kshared.mutex) ;

48 Sem_destroy (kshared, nempty) ;

49 Sem_destroy (kshared.nstored) ;

50 exit(};

51 %

pxsem | prodeonsd.c
Figure 10.25 main function that creates multiple producers and multiple consumers.

248 Posix Semaphores Chapter 10
Our producer function contains one new line from Figure 10.22. When the pro-
ducer threads terminate, the line preceded with the plus sign is new:
if (shared.nput >= nitemsz) |
+ Sem_post ({kshared . nstored): /* let consumers terminate */
Sem_post {&shared . nempty) ;
Sem_post (&shared. mutex) ;
return (NULL) ; f* all done =/
i
We again must be careful when handling the termination of the producer threads and
the consumer threads. After all the items in the buffer have been consumed, each con-
sumer thread blocks in the call
Sem_walt (kshared.nstored); /* walt for at least 1 stored item */
We have the producer threads increment the nstored semaphore to unblock the con-
sumer threads, letting them see that they are done.
Our consumer function is shown in Figure 10.26.
xsem [prodeonsd.c
T2 woid = F /
73 consume (vold *arg)
Ta {
75 int i
T8 for { ;1) 1
77 Sem_wait (kshared.nstored); /* wait for at least 1 stored item */
TR Zem_wait (&shared. mutex) ;
79 if {shared.nget >= nitems) {
B0 Sem_post [kshared.nstored) ;
Bl Sem_post [&ghared . mutex) ;
az return (MULL} ; /% all done */
a3 }
24 i = ghared.nget % NBUFF;
85 if (shared.buff(i] != shared.ngetval}
86 printf(*error:; buff[%d] = %d'n", i, shared.buff[i]}:
a7 shared.nget++;
BA shared.ngetval++;
g9 Sem_post (&shared.mutex) ;
990 Sem_post (kshared. nempty) ; /* 1 more empty slot */
91 *ifint *) arg) += 1;
az 3
23
prsem |prodconsd.c
Figure 10.26 Function executed by all consumer threads.
Termination of consumer threads
TH-81 Our consumer function must now compare nget to nitems, to determine when it

is done (similar to the producer function). After the last item has been consumed from
the buffer, the consumer threads block, waiting for the nstored semaphore to be

_iﬁ. the con-

e erodonsd.c

Fp

:h_;}r-:dcuns-'.l.c

ilIE when it
amemed from
bore to be

Section 10.11

Multiple Buffers 249

10.11

greater than 0. Therefore, as each consumer thread terminates, it increments nstored
to let another consumer thread terminate.

Multiple Buffers

In a typical program that processes some data, we find a loop of the form
while { (n = read(fdin, buff, BUFFSIZE}] = Q) {
/* process the data */

write(fdout, buff, n);
3

Many programs that process a text file, for example, read a line of input, process that
line, and write a line of output. For text files, the calls to read and write are often
replaced with calls to the standard /O functions fgets and fputs.

Figure 10.27 shows one way to depict this operation, in which we identify a func-
tion named reader that reads the data from the input file and a function named
writer that writes the data to the output file. One buffer is used.

process)

/‘4 buffer |~ wrii;er{]‘

— i e Y L L

reader| |

input | | output
file | | file

Figure 10.27 One process that reads data into a buffer and then writes the buffer out.

Figure 10.28 shows a time line of this operation. We have labeled the time line with
numbers on the left, designating some arbitrary units of time. Time increases down-
ward. We assume that a read operation takes 5 units of time, a write takes 7 units of
time, and the processing time between the read and write consumes 2 units of time.

We can modify this application by dividing the processing into two threads, as
shown in Figure 10.29. Here we use two threads, since a global buffer is automatically
shared by the threads. We could also divide the copying into two processes, but that
would require shared memory, which we have not yet covered.

Dividing the operation into two threads (or two processes) also requires some form
of notification between the threads (or processes). The reader thread must notify the
writer thread when the buffer is ready to be written, and the writer thread must notify
the reader thread when the buffer is ready to be filled again. Figure 10.30 shows a time
line for this operation,

250 Posix Semaphores Chapter 10

[p—

T

e, ;:: \ read()
4—
51— ~
6—— buffer
T
B
g

-ﬂl"&l-t— 10— wwrite)

11—
12 ——
13 4—
14 =
15 —f
16 —— -
17—

input 18—

L -
2] =
2t e
a3 |
24 -
25 4

..“_“m*%‘i g:: write()
ey
29 1

30 —
"
time
Figure 10.28 Dnepmsthﬂmadsdahmmahﬁuandmmwﬂmmebuﬁmwt.

Figure 10.29 File copying divided into two threads.

 Chapter 10

Section 10.11 Multiple Buffers 251

reader thread writer thread
0— ——0
1—— 1
T_lmp:t ; :: read(] :: :
41 — 4
5o ——3
6 —{— notify writer | buffer —6
V— el 7
B—— { —1—8
9t ; —1—9
;2:: urrir.ei+< :::? —-ﬂthl;EL
12— ——12
13 et
14 ——
15— notify reqder —
16
17
—Mm[x_!::—tr- }3 raad(]
20
21
2 notify writer buffer
23
2% |f
25
o writel} ;- PEPEL
27 file
28
29-
a0
3 —r notify reader
time

Figure 10.30 File copying divided into two threads.

We assume that the time to process the data in the buffer, along with the notification of
the other thread, takes 2 units of time. The important thing to note is that dividing the
reading and writing into two threads does not affect the total amount of time required
to do the operation. We have not gained any speed advantage; we have only distrib-
uted the operation into two threads {or processes).

We are ignoring many fine points in these time lines. For example, most Unix ker-
nels detect sequential reading of a file and do asynchronous read ahead of the next disk
block for the reading process. This can improve the actual amount of time, called “clock
time,” that it takes to perform this type of operation. We are also ignoring the effect of
other processes on our reading and writing threads, and the effects of the kernel's
scheduling algorithms.

The next step in our example is to use two threads (or processes) and two buffers.
This is the classic double buffering solution, and we show it in Figure 10.31.

252

Posix Semaphores Chapter 10

ig

2=5

buffer #1 |

Figure 10.31 File copying divided into two threads using two buffers.

We show the reader thread reading into the first buffer while the writer thread is writ-
ing from the second buffer. The two buffers are then switched between the two threads.

Figure 10.32 shows a time line of double buffering. The reader first reads into buffer
#1, and then notifies the writer that buffer #1 is ready for processing. The reader then
starts reading into buffer #2, while the writer is writing buffer #1.

Note that we cannot go any faster than the slowest operation, which in our example
is the write. Once the server has completed the first two reads, it has to wait the addi-
tional 2 units of time: the time difference between the write (7) and the read (5). The
total clock time, however, will be almost halved for the double buffered case, compared
to the single buffered case, for our hypothetical example.

Also note that the writes are now occurring as fast as they can: each write separated
by only 2 units of time, compared to a separation of 9 units of time in Figures 10.28
and 10.30. This can help with some devices, such as tape drives, that operate faster if
the data is written to the device as quickly as possible (this is called a streaming mode).

The interesting thing to note about the double buffering problem is that it is just a
special case of the producer—consumer problem.

We now modify our producer-consumer to handle multiple buffers. We start with
our solution from Figure 10.20 that used memory-based semaphores. Instead of just a
double buffering solution, this solution handles any number of buffers (the NBUFF defi-
nition). Figure 10.33 shows the global variables and the main function.

Declare NBUFF buffers

Our shared structure now contains an array of another structure named buf £, and
this new structure contains a buffer and its count.

Open input file
The command-line argument is the pathname of a file that we will copy to standard
output.

Figure 10.34 shows the produce and consume functions.

e

. Crapter 10 Section 10.11 Multiple Buffers 253

1 reader thread writer thread
: 0 - —0

1 — ——1
- i 1 -2
i ﬂb— 2 rreadi) 3

6 —— notify writer

File g Y -
4 \ g
54— ~ l —t b

buffer #1 | -5
7 - P
. 48— —8
input 94— ——4
| fle ™ 10— (=Y . 10 output
- weikelle s L THle
124 12
13 —— notify wrifer e 13
: 14— [buffer #2 - 14
pesd is writ- 15 o notify reader —— 15
oo threads. 16 o
& mto buffer oot E 1 —+ i;
o in 1
_f__nnﬂer then G ™ 19 preadl) . ——19 output
20 ? weitell s | ap " file
s example 21 J —21
? ﬂ't:& addi- 22 notify writer ——22
= (5). The 23— buffer i1 | e
e compared 4 - notify reader —— 24
!_' 25 i 25
e <cparated . 26 T g
w&& 10.28 —EEEL il raadl] 4I
gate faster if - wricend T[T -uPUL
;ﬁ_.moc.iel 20 | W0
i 5 qust a 31 —— notify writer) ! a1
§ 32 buffer #2 = 32
I! art with 33 notify reader —— 33
= of just a time Hme
I.ET_?Z-' defi- Figure 10.32 Time line for double buffering.
#5uff and Empty critical region
40-42 The critical region that is locked by the mutex is empty for this example. If the data
buffers were kept on a linked list, this would be where we could remove the buffer from
standard the list, avoiding any conflict with the consumer’s manipulation of this list. But in our

example in which we just use the next buffer, with just one producer thread, nothing
needs protection from the consumer. We still show the locking and unlocking of the
mutex, to emphasize that this may be needed in other modifications to this code.

254 Posix Semaphores Chapter 10

- — xaem (mucatd.c

1 #include ‘unpipc.h* P my
2 #define NBUFF 24

3 struct { /* data shared by producer and consumer */
1 struct {

5 char data[BUFFSIZE]; /* a buffer */

& ssize_t n; /* count of #bytes in the buffer */

7 } buff[MBUFF]: /* WBUFF of these buffers/counta */

-] aem_t mutex, nempty, nstored; /* semaphores, not pointers */

3 } shared;
10 int fd; {* input file to copy to stdout */

11 woid *produce (void *), *consume {void *};

12 int

13 main{int argec, char **argv)

14 {

15 pthread_t tid _produce, tid_consume;

16 if largc != 2}

17 err_gult ("usage: mycat2 <pathname=");

18 fd = Openiargv([l], O_RDONLY) ;

19 /* initialize three semaphores */

20 Sem_init (&shared.mutex, 0, 1):

21 Sem_init (kshared.nempty, 0, WEUFF);

22 Sem_init (&shared.nstored, O, 0);

23 /% one producer thread, one consumer thread */
24 Set_concurrency (2}

25 Pthread_create|&tid_produce, NULL, produce, NULL); /* reader thread */
26 Pthread_create|&tid_consume, NULL, consume, NULL); /* writer thread */
27 Pthread_joinitid_produce, NULL);

28 Prhread_jein(tid_consume, MNULL)

29 Sem_destrovikshared.mutex) ;

30 Sem_destroy(kshared. nemptyh ;

31 Sem_destroy (kshared . nstored) ;

iz exit(0);

33}

pxsem mycat2.c
Figure 10.33 Global variable and ma in function.

Read data and increment nstored semaphore

43-49 Each time the producer obtains an empty buffer, it calls read. When read returns,
the nstored semaphore is incremented, telling the consumer that the buffer is ready.
When read returns (0 (end-of-file), the semaphore is incremented and the producer
returns.

- Chapter 10

-_-!z muycald o

e e R

Bread -/
Beosd <)

e mrycatl o

g is ready.
! producer

.

Section 10,11 Multiple Buffers 255
ysem mycatd.c
34 wold * P /
35 produce (void *arg)
ig {
37 i:
g for (L = 0;:) (
kf: Sem_wait (kshared.nempty); /* wait for at least 1 empty slot */
40 Sem_wait (&shared.mutex] ;
41 /* critical regiom */
42 Sem_post (kshared.mutex] ;
43 shared.buffli].n = Read(fd, shared.buff(i].data, BUFFSIZE};
44 if (shared bufffi]l.n == 0} {
45 Sem_post (kshared.nstored); /* 1 more stored item */
48 return (NULL}
47 }
48 if {++i == NBUFF)
49 i=0; /% pircular buffer */
50 Sem_post (kshared.nstored); /* 1 more stored item */
51
52 1
53 woid *
%24 consume(vold *arg)
35 {
56 i;
57 for (1 = 0;:) {
58 Sem_wait (kshared.nstored): /* wait for at least 1 stored item ~/f
59 Sem_wait (&shared.mutex];
&0 /* gcritical region */
&1 Sem_post {kshared.mutex) ;
&2 if (shared.buffii]l.n == Q)
63 return [(NULL);
64 Write[STDOUT FILENC, shared.buff[i].data. shared. buff[i]l.nl;
65 if {++i == NBUFF)
13 i = 0; /* gircular buffer */
67 Sem_post (kshared. nempty) ; /* 1 more empty slot =/
]
&3 }
pxsem mycat2.c
Figure 10.34 produce and consume functions.
Consumer thread

H7-88

The consumer thread takes the buffers and writes them to standard output. A buff-
er containing a length of 0 indicates the end-of-file. As with the producer, the critical
region protected by the mutex is empty.

256 Posix Semaphores Chapter 10

In Section 22.3 of UNPv1, we developed an example using multiple buffers. In that example,
the producer was the 5TGI0 signal handler, and the consumer was the main processing loop
ithe dg_echo function). The variable shared between the producer and consumer was the
ngueue counter. The consumer blocked the SI1GI0 signal from being generated whenever it
examined or modified this counter.

10.12 Sharing Semaphores between Processes

The rules for sharing memory-based semaphores between processes are simple: the
semaphore itself (the sem_t datatype whose address is the first argument to
sem_init) must reside in memory that is shared among all the processes that want to
share the semaphore, and the second argument to sem_init must be 1.

These rules are similar to those for sharing a mutex, condition variable, or read-write lock
between processes: the synchronization object itself (the pthread_mutex_t variable, or the
sthread cond_ t variable, or the prhread_rwlock_t variable) must reside in memory that
is shared among all the processes that want to share the object, and the object must be initial-
ized with the PTHREAD_PROCESS_SHARED attribute.

With regard to named semaphores, different processes irelated or unrelated) can
always reference the same named semaphore by having each process call sem_cpen
specifying the same name. Even though the pointers returned by sem_open might be
different in each process that calls sem_cpen for a given name, the semaphore func-
tions that use this pointer (e.g., sem_post and sem_wait) will all reference the same
named semaphore.

But what if we call sem_open, which returns a pointer to a sem_t datatype, and
then call £ork? The description of the fork function in Posix.1 says “any semaphores
that are open in the parent process shall also be open in the child process.” This means
that code of the following form is OK:

sem_t rmutex; /* global pointer that is copied across the fork{) =/

/* parent creates named semaphore */
mutex = Sem_open|Px_ipc_name (NAME), CO_CREAT | O_EXCL, FILE _MODE, 0);:

if | (childpid = Fork(l) == 0} {
f* child */

Sem_wait (mutex) ;

/T parant */

Sem_post (mutex) ;

The reason that we must be careful about knowing when we can and cannot share a
semaphore between different processes is that the state of a semaphore might be contained in
the sem_t datatype itself but it might also use other information (e.g., file descriptors). We
will see in the next chapter that the only handle that a process has to describe a System V

i Rapter 10

e example,
sing loop
e was the
g wEencver it

:_'E-‘.-;:r'.t*: the
emment {0
_h:' want to

it lock
et~ or the
Emmeory that
s b initial-

hﬁ&d! can
mem Opern
. might be
ore func-
g e same

Bevpe, and
gz phores
fhes means

e

gt share a
smmtaned in
Epeors). We
k@ Syvstemn W

=
X

Section 10.14

Implementation Using FIFOs 257

semaphore is its integer identifier that is returned by semget. Any process that knows that
identifier can then access the semaphore. All the state information for a System V semaphore
is contained in the kernel, and the integer identifier just tells the kernel which semaphore is
being referenced.

10.13 Semaphore Limits

Two semaphore limits are defined by Posix:

SEM_NSEMS_MAX the maximum number of semaphores that a process can have
open at once (Posix requires that this be at least 256), and

SEM_VALUE_MAX the maximum value of a semaphore (Posix requires that this be
at least 32767).

These two constants are often defined in the <unistd.h> header and can also be
obtained at run time by calling the sysconf function, as we show next.

Example: semsysconf Program

The program in Figure 10.35 calls sysconf and prints the two implementation-defined

-

limits for semaphores.
psent | semsysconf.c

#include "unpipc.h” '
int
main{int argc, char **argv)
{

printf("SEM_NSEMS_MAX = %1d, SEM_VALUE MAX = %ld\n-,

Sysconf [_SC_SEM_NSEMS_MAY), Sysconf | _SC_SEM_VALUE_MRX)};

exit{0);

}

o o=l o A s 0 B

pxsem semsysconf.c

Figure 10.35 Call syaconf to obtain semaphore limits,

If we execute this on our two systems, we obtain

solariz % semsysconf
SEM_MNSEMS_MAX = 2147483647, SEM_VALUE MARX = 2147483647

alpha % semsysconf
SEM_NSEMS_MAX = 256, SEM VALUE_MAX = 327687

10.14 Implementation Using FIFOs

We now provide an implementation of Posix named semaphores using FIFOs. Each

named semaphore is implemented as a FIFO using the same name. The nonnegative
number of bytes in the FIFO is the current value of the semaphore. The sem_post

258 Posix Semaphores Chapter 10

function writes 1 byte to the FIFO, and the sem_wait function reads 1 byte from the
FIFO (blocking if the FIFO is empty, which is what we want). The sem_open function
creates the FIFO if the 0_CREAT flag is specified, opens it twice (once read-only, once
write-only), and if a new FIFO has been created, writes the number of bytes specified by
the initial value to the FIFO.

This section and the remaining sections of this chapter contain advanced topics that vou may
want to skip on a first reading,

We first show our semaphore. h header in Figure 10.36, which defines the funda-
mental sem_t datatype.

xsem_fifo/semaphore h
1 /* the fundamental datatype */ Y "ﬁf'lr
2 typedef struct {
3 int sem_£4[2]; A* two fds: [0] for reading, [1] for writing */
4 int sem_magic; /* magic number 1f open */
5 1} sem_t;
& #define SEM_MAGIC 089674523
T #ifdef SEM_FAILED
2 #undef SEM_FAILED
3 #define SEM FAILED [{sem_t *)(-1)} /* avoid compiler warnings */
10 #endif ,
my_peesens_fifo/semaphore b
Figure 10.36 semaphore.h header.
sam_t datatype
1-5 Our semaphore data structure contains two descriptors, one for reading the FIFO

and one for writing the FIFO. For similarity with pipes, we store both descriptors in a
two-element array, with the first descriptor for reading and the second descriptor for
writing.

The sem_magic member contains SEM_MAGIC once this structure has been initial-
ized. This value is checked by each function that is passed a sem_t pointer, to make
certain that the pointer really points to an initialized semaphore structure. This member
is set to 0 when the semaphore is closed. This technique, although not perfect, can help
detect some programming errors.

sam_open Function

Figure 10.37 shows our sem_open function, which creates a new semaphore or opens
an existing semaphore.

my_pxsem_fifo/sem_open.c

1 #include "unpipe.h*

2 #include "gemaphore.h”

3 #include <stdarg.h> /* for variable arg lists */
4 sem_t *

5 sem_open (const char *pathname, int oflag,...)

Chapter 10 Section 10.14 ' Implementation Using FIFOs 259
i from the 6 |
iﬁf‘.mctiﬂn 7 int i, flags, save errno;
bamlv, once 8 char c;
; -] mode_t mode;
F:}_hed b}r 10 va_lisc ap;
11 sem_L “sem;
2 12 unsigned int wvalue;
=t vou may
; 13 if (oflag & O_CREAT) {
14 va_starti{ap, oflag); J* init ap to final named argument */
3 15 mode = va_argi(ap, va_mode_t);
| funda- i
e a 16 value = va_arg(ap, unsigned int);
b 17 va_end(ap);
memsyhore) 18 if (mkfifo|pathname, mode) < 0} {
: 19 if (errno == EEXIST k& {oflag & O_EXCL) == 0]
- = . ¥ o*
& wrizing */ 20 oflag &= "O_CREAT; /* already exists, OK */
y 21 else
22 return (SEM_FAILED);
23 }
i 24 }
';1' 25 if | (mem = malloc{sizeof{sem t))) == NULL}
: 26 return{SEM_FAILED] ;
27 sem-»gem_£fd[(0] = sem-»gem_£d4(1] = -1;
28 if | (sem->sem_fd[0] = openipathname, O_RDONLY | O_NONBLOCK)) < 0]
ihﬂhm‘mn’.h 29 goto error;
i 30 if | (sem-»sem_fd[l1] = cpenipathname, O_WRONLY | O_NONBLOCK)) < 0]
i1 goto error;
iz /* turn off nomblocking for sem_fd[0] */
13 if { (flags = fontl({sem-»sem f&[0], F_GETFL, 0)} < 0]
t&w FIFO 34 goto error;
w-g ina 35 flags &= "O_NONBLOCE;
i 15 if (fentl{sem-»sem_fd[0], F_SETFL, flags) = 0}
e or for 37 goto error;
b initial- iz if (oflag & O_CREAT) { /* initialize semaphore */
S ig for (i = 0; 4 < wvalue; i++)
E %0 make 40 if (write(sem->sem f£d[l], &e, 1) != 1)
?‘mmbﬂ 41 goto error;
£ can help 42 }
y 43 sem->sem_magic = SEM_MAGIC:
44 return (sem};
45 BYror:
: 46 sAVE_Brrno = errno;
47 if (oflag & O_CREAT)
o opens 48 unlink (pathname) ; /* if we created FIFO */
:.: 49 close{pem->sem _f£d[0]); /* ignore error */
s open.c 50 close (sem->sem_fd[1]); /* ignore error */
& 51 free(saf) ;
: 52 errno = SAVEe_errno;
53 return (SEM_FAILED) ;
54)

my_pxsem_fifo/sem_open.c

Figure 10.37 sem_open function.

260 Posix Semaphores Chapter 10

Create a new semaphore

13-17 If the caller specifies the 0_CREAT flag, then we know that four arguments are
required, not two. We call va_start to initialize the variable ap to point to the last
named argument (oflag). We then use ap and the implementation’s va_arg function
to obtain the values for the third and fourth arguments. We described the handling of
the variable argument list and our va_mode_t datatype with Figure 5.21.

Create new FIFO

18-23 A new FIFQ is created with the name specified by the caller. As we discussed in
Section 4.6, this function returns an error of EEXIST if the FIFO already exists. If the
caller of sem_open does not specify the 0_EXCL flag, then this error is OK, but we do
not want to initialize the FIFO later in the function, so we turn off the O_CREAT flag,

Aliocate sem t datatype and open FIFO for reading and writing

25-37 We allocate space for a sem_t datatype, which will contain two descriptors. We
open the FIFO twice, once read-only and once write-only. We do not want to block in
either call to open, so we specify the O_NONELOCK flag when we open the FIFO read-
only (recall Figure 4.21). We also specify the 0_NONBLOCK flag when we open the FIFO
write-only, but this is to detect overflow (e.g., if we try to write more than PIPE_BUF
bytes to the FIFO). After the FIFO has been opened twice, we turn off the nonblocking
flag on the read-only descriptor.

Initialize value of newly create semaphore

38-42 If a new semaphore has been created, we initialize its value by writing value num-
ber of bytes to the FIFO. If the initial value exceeds the implementation’s PIPE_BUF
limit, the call to write after the FIFO is full will return an error of ERGATHN.

el el e e e eed b

sem_close Function

Figure 10.38 shows our sem_close function.
11-15 We close both descriptors and £ree the memory that was allocated for the sem_t
datatype.

sem_unlink Function

Our sem_unlink function, shown in Figure 10.39, removes the name associated with
our semaphore. It just calls the Unix unl ink function.

sem_post Function

Figure 1040 shows our sem_post function, which increments the value of a
semaphore.

11-12 We write an arbitrary byte to the FIFQ. If the FIFO was empty, this will wake up
any processes that are blocked in a call to read on this FIFO, waiting for a byte of data.

it iy Ty s g T A e

Thapter 10

mts are
£ 2o the last
s=s function
Mandling of

fiscussed in
sosts. If the
L But we do
k" flag.

peors. We
%o block in
¢ FIFO read-
em the FIFO
. BIPE_BUF
mesmblocking

iiils;_e num-
(PIDE_BUPR

r&:e sem_t

:

msae-.i with

fﬁ@eofa

ﬁ wake up
___h'ix' data.

Section 10.14

Implementation Using FIFOs 261

B b

#include "unpipc.h"
#include *gemaphore.h”

int
sem_close(sem_t *3em]
{
if (sem=-»sem_magic != SEM_MAGIC) {
errnd = EINVAL;
return (=1);
}
sem->gem_magic = 0;

my_pxsem_fifo/sem_close.c

/% in case caller tries to use it later */

if {close(sem-»sem_f£4[0]) == -1 || close(sem-rsem £d4[1]} == -1} {

free(sem);
return (=1];
}
freeisem) ;
return (0);

miy_pxsem_fifo/sem_close.c

Figure 10.38 sem_close function.

[

=1 U Lo

#include
#include

"unpipc.h"
"semaphore. h”

int
gsem_unlink (const char *pathname)
{
return (unlink{pathname)};
¥

Figure 10.39 sem_unlink function.

my_pxsem_fifo/sem_unlink.c

mty_pasem_fifo/sem_unlink.c

#include "unpipc.h”
#include "gemaphore . h"

int
sem_post (sem_t *sam)
{

char i

LEf (sem-=sem_magic |= SEM_MAGIC) |
errnc = EINVAL:
raturn {-1);

1

if [write(sem-=gem_fd[l], &c, 1) == 1)
return {0);

return {-1);

my_pxsem_fifo/sem_post.c

my_pxsem_fifo/sem_post.c

Figure 1040 sem_post function.

262

Posix Semaphores Chapter 10

sem_wait Function

1I1-12

10.15

-

The final function is shown in Figure 10,41, sem_wait.

- my_psem_fifo/sem_tail.c
#include "unpipc.h" L 'ﬁ

#include *semaphore.h®
int

1
2
3
4 sem _wait[sem_t *sem)
5
&
7
B

i

char o
if (gem-»sem_magic != SEM_MAGIC) {
errnc = EINVAL;
] return {-1};
10 H
11 if (read(sem-»=sem_fd[0], &c, 1) == 1)
12 return (0}
13 return (-1}

14 }

my_prxsem_fifo/sem_wait.c
Figure 10.41 sem_wait function.

We read 1 byte from the FIFO, blocking if the FIFO is empity.

We have not implemented the sem_trywait function, but that could be done by
enabling the nonblocking flag for the FIFO and calling read. We have also not imple-
mented the sem_getvalue function. Some implementations return the number of
bytes currently in a pipe or FIFO when the stat or £stat function is called, as the
st_size member of the stat structure. But this is not guaranteed by Posix and is
therefore nonportable. Implementations of these two Posix semaphore functions are
shown in the next section.

Implementation Using Memory-Mapped /O

We now provide an implementation of Fosix named semaphores using memory-
mapped I/O along with Posix mutexes and condition variables. An implementation
similar to this is provided in Section B.11.3 (the Rationale) of [IEEE 1996].

We cover memory-mapped 1/0 in Chapters 12 and 13, You may wish to skip this section until
wou have read those chapters,

We first show our semaphore.h header in Figure 10.42, which defines the funda-
mental sem_t datatype.

sem_t datatype

Our semaphore data structure contains a mutex, a condition variable, and an
unsigned integer containing the current value of the semaphore. As discussed with Fig-
ure 10.36, the sem_magic member contains SEM_MAGIC once this structure has been
initialized.

CiChapter 10

r— - SOV,

5o _toait.c

i

h done by
mot imple-
geenber of
e, a5 the
e and is
BCSoTS are

E EReTnOry-
BT a0

;

m.'..n o uinkil
%

m funda-

.5|.
3

Section 10,15 Implementation Using Memory-Mapped 1/0 263
my_pxsemi_mmap/semaphore.h
1 /* the fundamental datatype */ ¥ - ph
2 typedef struct {
3 pthread_mutex_t sem mutex; /* lock to test and set semaphore value */
4 pthread_cond_t sem_cond: /* for transition from 0 to nonzero */
5 unsigned int sem_count; f* the actual semaphores wvalue */
2 int Sem_magic; /* magic number if open */
T} sem_t;
8 #define SEM MAGIC DxET7458923
9 #ifdef SEM_FAILED
10 #undef SEM_FAILED
11 #define SEM_FAILED ({sem_t *)[-1)} /* avoid compiler warnings */
12 #endif)
my_pxsem_mmap | semaphore.h
Figure 1042 semaphore.h header
sem_ocpen Function

I18-23

ad=33

33-37

38-42

Figure 10.43 shows the first half of our sem_open function, which creates a new
semaphore or opens an existing semaphore.

Handle variable argument list

If the caller specifies the O_CREAT flag, then we know that four arguments are
required, not two. We described the handling of the variable argument list and our
va_mode_t datatype with Figure 5.21. We turn off the user-execute bit in the mode
variable (5_IXUSR) for reasons that we describe shortly. A file is created with the name
specified by the caller, and the user-execute bit is turned on.

Create a new semaphore and handle potential race condition

If, when the O_CREAT flag is specified by the caller, we were to just open the file,
memory map its contents, and initialize the three members of the sem_t structure, we
would have a race condition. We described this race condition with Figure 5.21, and the
technique that we use is the same as shown there. We encounter a similar race condi-
tion in Figure 10.52.

Set the file size

We set the size of the newly created file by writing a zero-filled structure to the file.
Since we know that the file has just been created with a size of 0, we call write to set
the file size, and not ftruncate, because, as we note in Section 13.3, Posix does not
guarantee that ftruncate works when the size of a regular file is being increased.

Memory map the file

The file is memory mapped by mmap. This file will contain the current value of the
sem_t data structure, although since we have memory mapped the file, we just refer-
ence it through the pointer returned by mmap: we never call read orwrite.

264 Posix Semaphores Chapter 10

MY _pAsem_nimap | sem_open.c

1 #include *unpipc.h® "
2 #include "semaphore.h® 4
3 #include <stdarg. h> /* for wvariable arg lists */ :
4 #define MAX_TRIES 140 /* for waiting for initialization */ 3
5 sem_t * i
& gem_open(const char *pathname, int ocflag, ...} ﬂ
. ki
] int fd, i, created, save_errno; 3
g mode_t mode; :
10 va_list ap; 4
11 sem_t *sem, seminit; 5
12 struct stat statbuff; 5
13 unsigned int wvalue: .
14 pthread_mutexattr_C matbr; E.
15 pthread_condattr_t cattr; }
B

16 created = 0; ".'
17 sem = MAP_FATLED; /* [sic] *f
18 again: i
1% if leflag & C_CREAT) { i

20 wva_start(ap, oflag); J* init ap to final named argument */ ']
21 mode = va_argl(ap, va_mode_t) & "S5_IXUSE;
22 value = wva_argiap, unsigned int):

23 va_endlap) ;

24 /* open and specify O_EXCL and user-execute */

25 £d = open(pathname, oflag | O_EXCL | O_RDWR, mode | S_IXUSR);

26 if (fd = 0) |

27 if {errno == EEXIST && {oflag & O_EXCL) == 0}

Fi-] goto exists; /* already exists, OE */

29 elae

g return [(SEM_FAILED);

i1 }

32 created = 1;

a3 J* first one to create the file initializes it */

14 /* set the file size */

s bzerolkseminit, sizeof(seminit));

36 if (write(fd, &seminit, sizeocfi{seminit)) != sizeof (seminit}]

37 goto err;

38 /* memory map the file */

39 sem = mmap (NULL, sizeof |sem_t}, PROT_READ | FROT_WRITE,

40 MAP_SHARED, f£d4, 0);

41 if [sem == MAP_FAILED)

42 goto err;

43 /* initialize mutex, condition wvariable, and wvalue */

44 if { (i = pthread_mutexattr_init{&mattr}l)] != 0}

45 goto pthreaderr;

45 pthread_mutexattr setpshared|imattr, PTHREAD_PROCESS_SHARED) ;

47 i = pthread_mutex_init(&sem->sem_mutex, &mattr];

48 pthread_mutexattr_destroy(&mattr); /* be sure to destroy */

49 if {1 t= 0]

50 goto pthreaderr;

Chapter 10

p——r———

W_:_m.c

Section 10.15

Implementation Using Memory-Mapped /0 265

43-57

58-61

§2=67

§8-78

51 if | (i = pthread_condattr_init(&cactr)}l !'= 0}

52 goto pthreaderr:

53 pthread_condattr_setpshared (kcattr, PTHREAD PROCESS_SHARED] ;
54 i = pthread_cond_init (&sem-»sem_cond, kCattir);

55 pthread condattr_destroy (kcattr); /* be sure to destroy */
56 if (1 = Q)

57 gqoto pthreaderr;

58 if [(sem=»sem_count = value) > sysconf(_SC_SEM_VALUE_MAX)] {
59 errnce = EINVAL;

&0 goto err;

&1 1

62 /% ipitialization complete, turn off user-execute bit */f
63 if (fchmed(fd, mode) == -1}

64 goto err;

B5 close(£d) ;

131 gem->aem_magic = SEM_MAGIC:

67 return [(sem};

[=1:] 1

my_pxsem_mmap/sem_open.c
Figure 10.43 sem_spen function: first half.

Initialize sem_t data structure

We initialize the three members of the sem_t data structure: the mutex, the condi-
tion variable, and the value of the semaphore. Since Posix named semaphores can be
shared by any process that knows the semaphore’s name and has adequate permission,
we must specify the PTHREAD_PROCESS_SHARED attribute when initializing the mutex
and condition variable. To do so for the semaphore, we first initialize the attributes by
calling pthread_mutexattr_init, then set the process-shared attribute in this struc-
ture by calling pthread_mutexattr_setpshared, and then initialize the mutex by
calling pthread_mutex_init. Three nearly identical steps are done for the condition
variable. We are careful to destroy the attributes in the case of an error.

Initialize semaphore value

Finally, the initial value of the semaphore is stored. We compare this value to the
maximum value allowed, which we obtain by calling sysconf (Section 10.13).

Turn off user-execute bit

Once the semaphore is initialized, we turn off the user-execute bit. This indicates
that the semaphore has been initialized. We close the file, since it has been memory
mapped and we do not need to keep it open.

Figure 10.44 shows the second half of our sem_ocpen function. In Figure 5.23, we
described a race condition that we handle here using the same technique.

Open existing semaphore

We end up here if either the 0_CREAT flag is not specified or if 0_CREAT is specified
but the semaphore already exists. In either case, we are opening an existing semaphore.
We open the file containing the sem_t datatype for reading and writing, and memory
map the file into the address space of the process (mmap).

266 Posix Semaphores Chapter 10

3
n
L
;.
3
:

My _pxsem_mmap|sem_open.c

3] exists:

70 if { (fd = openipathname, O_RDWR)} =< 0} {

71 if (errno == ENOENT L& {(oflag & QO_CREAT))

72 goto again;

73 goto err;

Ta 1

75 sem = mmap|(NULL, sizecf(sem_t), FROT_READ | PROT_WRITE,
T6 MAFP_SHARED, fd, 0);

77 if {sem == MAP_FAILED)

78 goto err;

T /* make certain initialization is complete */
a0 for (i = 0; i < MAX_TRIES; i++) {

Bl if (stat{pathname, &statbuff) == -1} {

82 if (errno == EMOENT && {(oflag & O_CREAT)) {
83 close(£d);

LT goto again;

85 1

BE goto err;

a7 1

BaE if {(statbuff.st_mode & 5_IXUSR) == 0} {

89 close {£d4);

S0 sem->sem_maglic = SEM_MAGIC;

91 return (sem);

a2 }

93 sleep(l);

94 }

95 errno = BETIMEDOUT;

98 gobo arr;

a7 pthreaderr:

ag errno = ij;
99 err:
z 100 /* don't let munmap(} or cleosell change errno */
: 101 SAVE_@rrno = errno;
g 102 if {created)
103 unlink|pathname) ;
104 if {(sem != MAP_FATLED)
: 195 munmap | sem, sizeof(sem_t]):
i 106 close(fd);
107 Errno = SAVE_@rrno;
108 return (SEM_FAILED) ;
109 }

my_pxsem_mmapsem_open.c
Figure 10.44 =em_open function: second half,

We can now see why Posix.1 states that “references to copies of the semaphore produce unde-
fined results.” When named semaphores are implemented using memory-mapped 1/0, the
semaphore (the sem_t datatype) is memory mapped into the address space of all processes
that have the semaphore open. This is performed by sem_cpen in each process that opens the
named semaphore, Changes made by one process {e.g., to the semaphore’s count) are seen by
all the other processes through the memory mapping. If we were to make our own copy of a
sem_t data structure, this copy would no longer be shared by all the processes. Even though

- Chapter 10 Section 10.15 Implementation Using Memory-Mapped /0 267

we might think it was working (the semaphore functions might not give any errors, at least
until we call sem_close, which will unmap the memory, which would fail on the copy), no
synchronization would occur with the other processes. MNote from Figure 1.6, however, that
memory-mapped regions in a parent are retained in the child across a fork, so a copy of a
semaphore that is made by the kernel from a parent to a child across a fork is OK.

Make certain that semaphore is initialized

79-96 We must wait for the semaphore to be initialized (in case multiple threads try to cre-
ate the same semaphore at about the same time). To do so, we call stat and look at the
file's permissions (the st_mode member of the stat structure). If the user-execute bit
is off, the semaphore has been initialized.

Error returns
§7-108 When an error occurs, we are careful not to change errno.

i sem_open.C

sem_close Function

Figure 10.45 shows our sem_close function, which just calls munmap for the region
that was memory mapped. Should the caller continue to use the pointer that was
returned by sem_open, it should receive a SIGSEGV signal.

my_pxsem_mmapsem_close.c

=

#include "unpipe . kY
Rinclude "semaphore. h”

5]

ink
gem_close (sem_t *sam}
{
if (sem-rsem_magic != SEM_MAGIC) {
errno = EINVAL;
return (-1);
}
if (munmap (sem, sizecfisem_t)} == =<1}
return{-1);

[E Y. N . A -}

[

[
[%]

return (0}

[
Lk
—

my_prsem_mmap | sem_close.c
Figure 10.45 =em_close function.

o open.c sem_unlink Function

Our sem_unlink function shown in Figure 10.46 removes the name associated with
our semaphore. It just calls the Unix unl ink function.

fmniuce unde.
e 1/0, the
g o processes
gt are seen by
fummer. copy of &
!:E\'Ernthnugh

sem_post Function

Figure 1047 shows our sem_post function, which increments the value of a
semaphore, awaking any threads waiting for the semaphore if the semaphore value has
just become greater than 0.

268 Posix Semaphores Chapter 10

my _pxsem_pmmap |sem_unlink.c

=

#include "unpipc.h"”
#include rosemaphore. h”

%]

inkt
gem_unlink{const char *pathname;)
{
if (unlink(pathname) == =1)
return {-1};:
return (0);

oo o] AN s R

miy_pxsem_mmap | sem_unlink.c

Figure 10.46 sem_unlink function,

my_pxsem_mmap,sem_post.c

1 #include "unpipe.h"

2 #include "gemaphore. h®

3 int

4 sem_post (sem_t *sem)

5 1

G int n;

7 if (sem->sem_magic != SEM_MAGIC)

8 arrno = EINVAL;

£l return (=1);

10 H

11 if { in = pthread_mutex_lock{&sem->sem mutex)]} != 0}
12 errno = n;

13 recurn {(=1};

14 1

15 if (sem->sem_count == J)

16 pthread_cond_signal {ksem->sem_cond) ;
17 Sa8m—s8em_count+s

18 pthread_mutex_unlock (kgem->sem_mutex) ;
19 return (0}

20}

my_pxsem_mmapsem_post.c

Figure 1047 sem_post function.
1i-15 We must acquire the semaphore’s mutex lock before manipulating its value. If the
semaphor:’'s value will be going from 0 to 1, we call pthread_cond_signal to wake
up anyone waiting for this semaphore.

sem_wait Function

The sem_wait function shown in Figure 10.48 waits for the value of the semaphore to
exceed 0.

b ey

A R T e

e

e _unlink.c

iy sem_post.c

m.‘.e If the
h_ to wake

Section 10.15

Implementation Using Memory-Mapped 1/0 269

1 #include

“unpipc.h*®

my_pxsem_mmap [sem_wait.c

2 #include "semaphore.h”
3 int
4 sem_wait{sem_t *sem)
5 {
& int n;
7T if (sem->sem_magic != SEM_MACGIC} {
g errno = EINVAL;
9 return (=1);
1o }
11 if | (n = pthread_mutex lock|&sem->sem_mutex)] '= 0} {
12 Brrns = nf
13 return (-1);
14 }
15 while (sem-=sem_count == 0}
16 pthread_cond_wait (Lksem-»sem_cond, ssem-=s5em_muabex)
17 sem->sem_count--;
18 pthread mutex unlock(&sem->zem_mutex}
19 return [0);
20} ,
my_pxsemn_mimap | sem_wait.c
Figure 1048 zem_wait function.
11-18 We must acquire the semaphore’s mutex lock before manipulating its value. If the

value is 0, we go to sleep in a call to pthread_cond_wait, waiting for someone to call
pthread_cond_signal for this semaphore, when its value goes from 0 to 1. Once the
value is greater than 0, we decrement the value and release the mutex.

sem_trywait Function

Figure 10.49 shows the sem_trywait function, the nonblocking version of sem_wait.
11-22 We acquire the semaphore’s mutex lock and then check its value. If the value is
greater than 0, it is decremented and the return value is (0. Otherwise, the return value

is =1 with errno set to EAGATH.

sem getvalue Function

Figure 10.50 shows our final function, sem_getwvalue, which refurns the current value
of the semaphore.
11-16 We acquire the semaphore’s mutex lock and return its value.

We can see from this implementation that semaphores are simpler to use than

mutexes and condition variables.

270 Posix Semaphores Chapter 10

my_pxsem_mmap {sem_tryoait.c

1 #include *unpipec.h"

2 #include “semaphore.h”

3 int

4 sem_trywalt(sem_t *sem]

5 9

6 int n, re;

7 if (sem-=sem_magic != SEM_MAGIC) {
8 errno = EINVAL;

g return (-1}

10

11 if [{n = pthread mutex_lock[&sem-=sem_mutex)) != 01 {
12 errnge = n;

13 return [(-1);

14 1

15 if {sem-»sem_count = 0) {

16 Sam->Sem_count--;

17 re = 0;

18 } &lse {

19 rc = -1;

20 errno = EAGATN:

21 I

22 pthread_mutex_unlock|&sem->sem_mutex):
23 raturn (rc);
24]

my_pxsem_mmap)/sem_trywait.c
Figure 1049 sem_trywait function.

my_pxsem_mmap |sem_getvalue.c

1 #include *unpipe.h”
2 #include "semaphore . h*
3 int
4 sem_getvalue!sem_t *sem, int *pvalue)
5
] int n;
7 if (sem-rsem_magic != SEM_MAGIC] {
;. a errno = EINVAL;
5 9 return (=1):
10 1
11 if { (n = pthread_mutex_lock|&sem-=sem_mutex)) != oy i
12 errng = ni
13 recturn [(-1);
14 ¥
15 *pralue = Sem->Sem count;
16 prhread_mutex_unlock|&semn->sem mutex]
17 return (0} ;
18 }

my_pxsem_mmap sem_getvalue.c
Figure 10.50 sem_getvalue function.

Chapter 10

N

bu _imweait.c

e _trytoait.c

_I'_haz__d:erm{ue.c

éﬂx _etoalue.c

Section 10.16 Implementation Using System V Semaphores 271

10.16

Implementation Using System V Semaphores

We now provide one more implementation of Posix named semaphores using System V
semaphores. Since implementations of the older System V semaphores are more com-
mon than the newer Posix semaphores, this implementation can allow applications to
start using Posix semaphores, even if not supported by the operating system.

We cover Systerm V semaphores in Chapter 11, You may wish to skip this section until you
have read that chapter.

We first show our semaphore.h header in Figure 10.51, which defines the funda-
mental sem_t datatype.

mry_pxsem_svsent [semaphore.h

1 /* the fundamental datatype */

2 typedef struct {

3 int sem_semid; /* the System V semaphore ID */
] int sem_magic: /* magic number if open */

5 1 sem_t;

& #define SEM_MAGIC Ox4567THIZ3

7 #ifdef SEM_FAILED
8 #undef SEM FAILED

9 #define SEM _FARILED ((sem_t *}{-1}) /* avold compiler warnings */

10 #endif

11 #ifndef SEMVMX

12 #define SEMVMX 32767 /* historical System V max value for sem */
13 #endif

my_pxsem_svsem | semaphore i

Figure 10.51 semaphore.h header.

sem_t datatype

We implement a Posix named semaphore using a System V semaphore set consist-
ing of one member. Our semaphore data structure contains the System V semaphore ID
and a magic number (which we discussed with Figure 10.36).

sem_open Function

Figure 10.52 shows the first half of our sem_open function, which creates a new
semaphore or opens an existing semaphore,

T _Pasemm_suser [sem_ope.c

1 #include "unpipe.h”

2 #include "semaphore.h”

3 #include <stdardg. h> /* for wariable arg lists */

4 #define MAX_TRIES 10 /* for waiting for initialization */
5 sem_t *

6§ sem_open{const char *pathname, int oflag,...!}

272 Posix Semaphores Chapter 10

74
8 int i, fd, semflag, semid, save_ errno;
9 key_& key;
10 mode_t mode;
11 va_list ap;
12 sem_t *sem;
13 union semun ardg;
14 unsigned int value;
15 struct semid_ds seminfo;
16 struct sembuf initop;
17 /* no made for sem_openi) w/out O_CREAT; guess */
18 gemflag = SVSEM_MODE;
149 semid = -1;
20 if (oflag & CO_CREAT)
21 va_startiap, oflagl; /= init ap teo final named argument */
22 mode = va_argiap, va_mode_t);
Z3 value = va_arg(ap, unsigned int);
24 va_end(ap);
25 /* convert to key that will idencify System V semaphore */
26 if { (fd = open(pathname, oflag, model) == -1)
27 return [(SEM_FAILED) ;
28 close(fd);
29 if { (key = ftok(pathname, 1)) == (key_t) - 1]
30 return (SEM_FAILED);
31 semflag = IPC_CREAT | (mode & 0777);
32 if (eflag & C_EXCL)
i3 semflag |= IPC_EXCL;
34 /* ¢reate the System V semaphore with IPC_EXCL */
a5 if | {zemid = semget (key, 1, semflag | IPC_EXCL}) == 0} {
i /* suceess, we're the first so initialize te O */
17 arg.val = 0;
ig if (semctlisemid, 0, SETVAL, arg) == -1}
% goto err;
40 /* then increment by value to set sem_otime nonzers */
41 if (walue = SEMVMIH) |
42 errno = EINVAL;
43 goto err;
44 }
45 initop.sem_num = 0;
46 initop.sem_op = value;
47 initop.sem_£lg = 0;:
48 if (semop(semid, &initep, 1) == -1}
48 goto err;
50 goto finish;
51 } else if (errno != EEXIST || {semflag & IPC_EXCL) != 0]
Sd goto arr;
53 /* else fall through */
LT }

miy_pasem_svsent sem_open.c
Figure 10.52 sem_open function: first half.

Chapter 10

b=

e "

ST _OPERLC

K R R S R S 3 - -. : e e

Section 1016 Implementation Using System V Semaphores 273

20-24

di-dd

51-53

Create a new semaphore and handle variable argument list

If the caller specifies the 0_CREAT flag, then we know that four arguments are
required, not two. We described the handling of the variable argument list and our
va_mode_t datatype with Figure 5.21.

Create ancillary file and map pathname into System V IPC key

A regular file is created with the pathname specified by the caller. We do so just to
have a pathname for £tok to identify the semaphore. The caller’s oflag argument for
the semaphore, which can be either O_CREAT or O_CREAT | O_EXCL, is used in the call
to epen. This creates the file if it does not already exist and will cause an error return if
the file already exists and 0_EXCL is specified. The descriptor is closed, because the
only use of this file is with £tok, which converts the pathname into a System V IPC key
(Section 3.2).

Create System V semaphore set with one member

We convert the O_CREAT and O_EXCL constants into their corresponding System V
IPC_xxx constants and call semget to create a System V semaphore set consisting of
one member. We always specify TPC_EXCL to determine whether the semaphore exists
or not.

Initialize semaphore

Section 11.2 describes a fundamental problem with initializing System V
semaphores, and Section 11.6 shows the code that avoids the potential race condition.
We use a similar technique here. The first thread to create the semaphore (recall that we
always specify TPC_EXCL) initializes it to 0 with a command of SETVAL to semctl, and
then sets its value to the caller’s specified initial value with semop. We are guaranteed
that the semaphore’s sem_otime value is initialized to 0 by semget and will be set
nonzero by the creator’s call to semop. Therefore, any other thread that finds that the
semaphore already exists knows that the semaphore has been initialized once the

sem_otime value is nonzero.
Check initial value

We check the initial value specified by the caller because System V semaphores are
normally stored as unsigned shorts (the sem structure in Section 11.1) with a maxi-
mum value of 32767 (Section 11.7), whereas Posix semaphores are normally stored as
integers with possibly larger allowed values (Section 10.13). The constant SEMVMX is
defined by some implementations to be the System V maximum value, or we define it to
be 32767 in Figure 10.51.

If the semaphore already exists and the caller does not specify 0_EXCL, this is not
an error. In this situation, the code falls through to open (not create) the existing
semaphore,

Figure 10.53 shows the second half of our sem_open function.

274 Posix Semaphores Chapter 10 [——
o . MY _pXsem_suset/sem_open.c F
56 * (Q_CREAT not secified) or T
57 * (O_CREAT without O_EXCL and semaphore already exists). E
58 * Must open semaphore and make certain it has been initialized.

549 xf m|E Tl
&0 if | (key = frok{pathname, 1)} == (key_t} - 1]
a1 goto err;
£2 if | (semid = semget{key, 0, semflag)} == -1} E
B3 goto err; 4
64 arg.puf = Lseminfo; a
EB5 faor {1 = 0; 1 < MAX_TRIES; i++) [
(4] if (gemctl(semid, 0O, IPC_STAT, arg) == -1}
%] goto err;
1] if (arg.buf-rsem_otime != J)
&89 goto finish;
70 sleepll):
71 1
Té errnag = ETIMEDOUT;
73 err: ;
T4 Save_errno = errnc; /* don't let semctl(} change errno */ i
75 if (semid !'= -1} :
16 semctl [semid, 0, [PC_RMID) ; 3
77 Errno = SAVE_Errno; A
Td return [(SEM_FAILED] ; : f
T4 finish: :
a0 if | {zem = malloc(sizeof(sem_t)}} == NULL)
81 goto err;: :
B2 sam->gem_gemid = semid; A i
k! sem->sem_magic = SEM_MAGIC;
B4 return (sem); -
85) 3
MY _PXsem_sUsent/sem_open.o ;
Figure 10.53 sem_open function: second half. ‘
e
Open existing semaphore s
55-63 For an existing semaphore (the 0_CREAT flag is not specified or O_CREAT is speci- a

fied by itself and the semaphore already exists), we open the System V semaphore with
semget. Notice that sem_open does not have a mode argument when O_CREAT is not
specified, but semget requires the equivalent of a mode argument even if an existing
semaphore is just being opened. Earlier in the function, we assigned a default value
(the SVSEM_MODE constant from our unpipc.h header) that we pass to semget when
O_CREAT is not specified.

Wait for semaphore to be initialized

s4-72 We then verify that the semaphore has been initialized by calling semctl with a
command of TPC_STAT, waiting for sem_octime to be nonzero.

Error returns
73-78 When an error occurs, we are careful not to change errno.

- Chapter 10

; Section 10.16 Implementation Using System V Semaphores 275
h..;w_f:wn.f Allocate sem_t datatype
79-84 We allocate space for a sem_t datatype and store the System V semaphore 1D in the
: structure. A pointer to the sem_t datatype is the return value from the function.
i
: sem_cloae Function
Figure 10.54 shows our sem_close function, which just calls free to return the
dynamically allocated memory that was used for the sem_t datatype.
XSEM_ST lose.c
1 #include "unpipc.h” "yF svsemsem _clooe
2 #include "semaphore.h”
3 int
4 sem_close (sem_t *sem)
5
& if (sem-=sem _magic != SEM_MAGIC) {
7 errnc = EINVAL;
B raturn (-1}
g }
A 10 sem->gem _magic = 0; /* just in case */
11 free(sem) ;
12 raturn (0} ;
13)
my_prsem_svsem (sem_close.o
Figure 10.54 sem_close function.
sem unlink Function
Our sem_unlink function, shown in Figure 10.55, removes the ancillary file and the
- " System V semaphore associated with our Posix semaphore.
s_OPPH,
: Obtain System V key associated with pathname
8-16 ftok converts the pathname into a System V IPC key. The ancillary file is then
removed by unlink. (We do so now, in case one of the remaining functions returns an
E_ Y error.) We open the System V semaphore with semget and then remove it with a com-
s IS Spec mand of IPC_RMID to semctl.
ghore with
BEAT IS not sem_post Function
e existing
it value Figure 10.56 shows our sem_post function, which increments the value of a
o= when semaphore.
: 11-18§ We call semop with a single operation that increments the semaphore value by one.
e with a sem_wait Function

The next function is shown in Figure 10.57; it is sem_wait, which waits for the value of
the semaphore to exceed 0.
11-18 We call semop with a single operation that decrements the semaphore value by one.

276

Posix Semaphores Chapter 10

my_pxsem_svsem /sem_unlink.c

1 #include "unpipec.h”

2 #include "gemaphore.h”

3 int

4 sem_unlinkiconst char *pathname)
5 {

& int semid;

T key_tT key:

g if { [key = froklpathname, 11) == {key t} - 1]

9 raturn (=1];

10 if [unlink[pathname) == =1]

11 return {-1};

1z if (| {semid = semgetikey, 1, SVSEM_MODE}] == -1]
13 return [(-1);

14 if (semctl{semid, 0, IPC_RMID} == -1}

15 return (-1):

16 return (0}

17 }

HIYy_pXset_sUsem Jeem_unlink.c

Figure 10.55 ser_unlink function.

my_pxsem_svsem /sem_post.c

finclude *unpipc.h”
#include "gemaphora, h”
int

sem_post (sem_t *sem)

{
struct sembuf op:

if (sem-rsem_magic != SEM _MAGIC) {
errno = EINVAL;
return (-1);

}

op.sem_num = 0;

op.sem_op = 1;

op.sem_flg = 0;

if [(semop(sem->sem_semid, &op, 1} < Q)
return (-1};

return (0]

x,.H
N T - N . ST I S

(R’

[y
oo

[
-3
—

My _pasem_susei/sem_post.c
Figure 10.56 sem_post function. '

sem_trywait Function

13

Our sem_trywait function, the nonblocking version of sem_wait, is shown in Fig-
ure 10.58.

The only change from our sem_wait function in Figure 10.57 is specifying
sem_flg as IPC_NOWAIT. If the operation cannot be completed without blocking the
calling thread, the return value from semop is EAGAIN, which is what sem_trywait
must return if the operation cannot be completed without blocking.

PR

}!'} HEEH iiﬁ H.l.l [AR T VI .u..

. Lﬁﬂ&k&.ﬁﬂﬁaﬂa TP RE T R T R e

. Chapter 10

e unlink.c

ﬁ-'w uniink.c

5271 _posk.c

?ﬁz—.".ir.'r.-'_pﬁst.c

pwT in Fig-
: specifying
pocking the
l__': rywalt

Section 10.16

Implementation Using System V Semaphores 277

[B Y

my_pxsem_svsem sem_wait.c
#include "unpipc.h®

#include "gemaphore.h”
int
gem _walt (sem_t *sem)

{
struct sembuf op;

if (sem-=sem_magic != SEM_MAGIC) {
errno = BINVAL;

9 return (-1);
10 }
11 op.sem_num = 0;
12 op.gem_op = =1;
13 op.sem_£flg = 0;
14 if (semop|sem->sem_semid, &op, 1) < 0]
15 return (-1j);
16 return (0} ;
17} ,
my_pxsem_svsem | sem_wait.c
Figure 10.57 sem_wait function.
1 #include "unpipc.h” my_pxsem_s:.rsm,.’sem_trywmt.c
2 #include "semaphore.h"
3 int
4 sem_trywait(sem_t *sem)
51
6 struct sembuf op;
7 if [(sem-»sem _magic != SEM_MARGIC) |
g errno = EINVAL;
9 return {(-1};
14 }
11 op.gem_num = 0;
12 op.sem_op = =1;
13 op.sem_flg = IPC_MOWAIT:
14 if [semop(sem->sem_semid, &op, 1) < 0}
15 return (-1);
16 return (0}
17 3 3
my_pixsem_svsem | sem_tryoaif.c
Figure 10.58 sem_trywait function.
sem_getvalue Function

The final function is shown in Figure 10.59; it is sem_getvalue, which returns the cur-
rent value of the semaphore.

11-14

The current value of the semaphore is obtained with a command of GETVAL to

semctl.

278 Posix Semaphores Chapter 10
my_pxsem_sosem [sem_getvalue.c
1 #include "unpipe. h" yr . fsem_g
2 #include "gemaphore. h*
3 int
4 sem_getvalue(sem_t *sem, int *pvalus)
5 {
& int val;
7 if [(sem-»zem_magic != SEM_MAGIC) {
| errnge = EINVAL;
9 return {-11;
10 i
11 if [{val = semctl{sem->sem_semid, 0, GETVAL)) < ()
12 return (-1} ;
13 *prvalua = val;
14 return (0);
15 }
my_pxsem_svsem [sem_getoalue.c
Figure 1059 sem_getwvalue function.
10.17 Summary

Posix semaphores are counting semaphores, and three basic operations are provided:

1. create a semaphore,

2. wait for a semaphore’s value to be greater than 0 and then decrement the value,
and

3. post to a semaphore by incrementing its value and waking up any threads wait-
ing for the semaphore.

Posix semaphores can be named or memory-based. Named semaphores can always be
shared between different processes, whereas memory-based semaphores must be desig-
nated as process-shared when created. The persistence of these two types of
semaphores also differs: named semaphores have at least kernel persistence, whereas
memory-based semaphores have process persistence.

The producer—consumer problem is the classic example for demonstrating
semaphores. In this chapter, our first solution had one producer thread and one con-
sumer thread, our next solution allowed multiple producer threads and one consumer
thread, and our final solution allowed multiple consumer threads., We then showed that
the classic problem of double buffering is just a special case of the producer-consumer
problem, with one producer and one consumer.

Three sample implementations of Posix semaphores were provided. The first, using
FIFOs, is the simplest because much of the synchronization is handled by the kernel’s
read and write functions. The next implementation used memory-mapped 1,/0, simi-
lar to our implementation of Posix message queues in Section 5.8, and used a mutex and
condition variable for synchronization. Our final implementation used System V
semaphores, providing a simpler interface to these semaphores.

Chapter 10

e _getvalue.c

fsem cotvalue.c

i'gs:r*.-id ed:

et the value,

Sreads wait-

g0 abways be
st be desig-
wo types of
sce. whereas

peonstrating
B OTEe Con-
g Consumer
sshowed that

g consumer

e sk, using
e kernel's
et | /O, simi-
& mutex and
g Svstem V

Chapter 10

Exercises 279

Exercises

10.1

10.2

10.3

10.4
10.5

10.6

10.7

10.8

10.9
10.10

10.11

Modify the produce and consume functions in Section 10.6 as follows. First, swap the
order of the two calls to Sem_wait in the consumer, to generate a deadlock (as we dis-
cussed in Section 10.6). Next, add a call to printf before each call to Sem_wait, indicat-
ing which thread (the producer or the consumer) is waiting for which semaphore. Add
another call to printf after the call to Sem_wait, indicating that the thread got the
semaphore. Reduce the number of buffers to 2, and then build and run this program to
verify that it leads to a deadlock.

Assume that we start four copies of our program that calls our my_lock function from
Figure 10.1%:

4% lockpxsem & lockpxsem & lockpxsem & lockpxsem &
Each of the four processes starts with an initflag of 0, so each one calls sem_open spec-
ifying 0_CREAT. Is this OK?
What happens in the previous exercise if one of the four programs terminates after calling
my_lack but before calling my_unlock?

What could happen in Figure 10.37 if we did not initialize both descriptors to -17

In Figure 10.37, why do we save the value of errno and then restore it, instead of coding
the two calls to close as
if [(sem->£4[0] == 0)
close (gem-=£4[0]);
if [(sem->£d4d[1l] =>= 0}
close(sem->£4[1]);

What happens if two processes call our FIFO implementation of sem_spen (Figure 10.37)
at about the same time, both specifying 0_CREAT with an initial value of 57 Can the FIFO
ever be initialized (incorrectly) to 10?7

With Figures 10.43 and 10.44, we described a possible race condition if two processes both
try to create a semaphore at about the same time. Yet in the solution to the previous prob-
lem, we said that Figure 10.37 does not have a race condition. Explain.

Posix.] makes it optional for sem_wait to detect that it has been interrupted by a caught
signal and return EINTR. Write a test program to determine whether your implementation
detects this or not.

Also run your test program using our implementations that use FIFOs (Section 10.14),
memory-mapped 1/0 (Section 10.15), and System V semaphores (Section 10.16).
Which of our three implementations of sem_post are async-signal-safe (Figure 51017

Modify the producer—consumer solution in Section 1006 to use a pthread_mutex_t
datatype for the mutex variable, instead of a semaphore. Does any measurable change in
performance occur?

Compare the timing of named semaphores (Figures 10.17 and 10.18) with memory-based
semaphores (Figure 10.20).

