11.1

Il

System V Semaphores

Introduction
When we described the concept of a semaphore in Chapter 10, we first described

* a binary semaphore: a semaphore whose value is 0 or 1. This was similar to a
mutex lock (Chapter 7), in which the semaphore value is 0 if the resource is
locked, or 1 if the resource is available.

The next level of detail expanded this into

* a counting semaphore: a semaphore whose value is between 0 and some limit
(which must be at least 32767 for Posix semaphores). We used these to count
resources in our producer—consumer problem, with the value of the semaphore
being the number of resources available.

In both types of semaphores, the wait operation waits for the semaphore value to be
greater than 0, and then decrements the value. The post operation just increments the
semaphore value, waking up any threads awaiting the semaphore value to be greater
than 0.

System V semaphores add another level of detail to semaphores by defining

* a set of counting semaphores: one or more semaphores (a set), each of which is a
counting semaphore, There is a limit to the number of semaphores per set, typi-
cally on the order of 25 semaphores (Section 11.7). When we refer to a
“System V semaphore,” we are referring to a set of counting semaphores. when
we refer to a “Posix semaphore,” we are referring to a single counting
semaphore.

251

282 System V Semaphores Chapter 11

For every set of semaphores in the system, the kernel maintains the following struc-
ture of information, defined by including <sys/sem. h>

struct semid_ds {

struct ipc_perm sem_perm; /* cperation permission struct */
struct sem *sem_base; /* ptr to array of semaphores in set */
ushort sam_nsems; /* # of semaphores in set */

time_t gam_ptima; /* time of last semop(] */

Cime_t sem_ctime; /* time of creation or last IPC_SET */

bi
The ipc_perm structure was described in Section 3.3 and contains the access permis-
sions for this particular semaphore.

The sem structure is the internal data structure used by the kernel to maintain the
set of values for a given semaphore. Every member of a semaphore set is described by
the following structure:

atruct sem {

ushort_t semval; /* semaphore wvalue, nonnegative */

short sempid; /* PID of last successful semop(), SETVAL, SETALL */
ushort_t semnent; /* # awaiting semval > current wvalue =~/

ushort_t semzent; /* # awaiting semwal = 0 */

bi
Mote that sem_base contains a pointer to an array of these sem structures: one array
element for each semaphore in the set.

In addition to maintaining the actual values for each semaphore in the set, the ker-
nel also maintains three other pieces of information for each semaphore in the set: the
process ID of the process that performed the last operation on this value, a count of the
number of processes waiting for the value to increase, and a count of the number of pro-
cesses waiting for the value to become zero.

Unix 98 says that the above structure is anonymous. The name that we show, sem, is from the
historical System V implementation.

We can picture a particular semaphore in the kernel as being a semid_ds structure
that points to an array of sem structures. If the semaphore has two members in its set,
we would have the picture shown in Figure 11.1. In this figure, the variable
sem_nsems has a value of two, and we have denoted each member of the set with the
subscripts [0] and [1].

11.2 semget Function

The semget function creates a semaphore set or accesses an existing semaphore set.

#include <gys/sem.h>
int semgetikey_t key, int wmsems, int oflag):

Returns: nonnegative identifier if OK, -1 on error

=== permis-

::iu:z-:a:ain the
gscribed by

i one array

4= the ker-
e set: the
pent of the
sher of pro-

= is from the

= structure
= i its set,
g variable
'l_t with the

Section 11.2 semget Function 283

e -
i semid_ds{} !
aaRc e —
D emid ——p semval [0] :
| I
sempid [0] |
| ipe_perm{} sem{} |
1 semnent [0] 1
1 1
I gemzcnt [0] |
I sem_base - % I
| semval [1] i
[sem_nsems | 2 _ |
| e sempid [1] | 1
! sem_otime seem{} |
I semnent[1] | !
! zem_ctime |
J e semzont [1] I
- [}
kermel !

L o e e e e e s e R P e e e S R

Figure 11,1 Kernel data structures for a semaphore set with two values in the set.

The return value is an integer called the semaphore identifier that is used with the semop

and semct 1 functions.

The nsems argument specifies the number of semaphores in the set. If we are not
creating a new semaphore set but just accessing an existing set, we can specify this argu-
ment as 0. We cannot change the number of semaphores in a set once it is created.

The oflag value is a combination of the SEM_R and SEM_A constants shown in Fig-
ure 3.6. R stands for “read” and A stands for “alter” This can be bitwise-ORed with
either IPC_CREAT or IPC_CREAT | IPC_EXCL, as discussed with Figure 3.4.

When a new semaphore set is created, the following members of the semid ds
structure are initialized:

* The uid and cuid members of the sem_perm structure are set to the effective
user 1D of the process, and the gid and cgid members are set to the effective

group ID of the process.
* The read-write permission bits in of 1ag are stored in sem_perm.mode.
¢ sem otimeissetto(, and sem_ctime is set to the current time.
* sem nsems is set to nsems.

* The sem structure associated with each semaphore in the set is nof initialized.
These structures are initialized when semct 1 is called with either the SETVAL or
SETALL commands.

Initialization of Semaphore Value

Comments in the source code in the 1990 edition of this book incorrectly stated that the
semaphore values in the set were initialized to (0 by semget when a new set was cre-
ated. Although some systems do initialize the semaphore values to 0, this is not guar-
anteed. Indeed, older implementations of System V do not initialize the semaphore

System V Semaphores Chapter 11

values at all, leaving their values as whatever they were the last time that piece of mem-
ory was used.

Most manual pages for semget say nothing at all about the initial values of the
semaphores when a new set is created. The X/Open XPG3 portability guide (1989) and
Unix 98 correct this omission and explicitly state that the semaphore values are not ini-
tialized by semget and are initialized only by calling semct1 (which we describe
shortly) with a command of either SETVAL (set one value in the set) or SETALL (set all
the values in the set).

This requirement of two function calls to create a semaphore set (semget) and then
initialize it (semct1) is a fatal flaw in the design of System V semaphores. A partial
solution is to specify IPC_CREAT | IPC_EXCL when calling semget, so that only one
process (the first one to call semget) creates the semaphore. This process then initial-
izes the semaphore. The other processes receive an error of EEXIST from semget and
they then call semget again, without specifying either TPC_CREAT or IPC_EXCL.

But a race condition still exists. Assume that two processes both try to create and
initialize a one-member semaphore set at about the same time, both executing the fol-
lowing numbered lines of code:

1 oflag = IPC_CREAT | IPC_EXCL | SVSEM_MODE;

2 if { (semid = semget(key, 1, oflag)) == 0} {
f* success, we are the first, so initialize */
3 arg.val = 1;
d Semct]l (semid, 0, SETVAL, arg);
g } else if {errno == EEXIST) ({
/* already exists, just open */
[semid = Semget (key, 1, SVIEM_MODE) ;
7 } elze
8 err_sys|{"semget error”);
E Semop (semid, ...); /* decrement the semaphore by 1 */

The following scenario could occur:

1. The first process executes lines 1-3 and is then stopped by the kernel.
2. The kernel starts the second process, which executes lines 1, 2, 5, 6, and 9.

Even though the first process to create the semaphore will be the only process to initial-
ize the semaphore, since it takes two steps to do the creation and initialization, the ker-
nel can switch to another process between these two steps. That other process can then
use the semaphore (line 9 in the code fragment), but the semaphore value has not been
initialized by the first process. The semaphore value, when the second process executes
line 9, is indeterminate.

Fortunately, there is a way around this race condition. We are guaranteed that the
sem_otime member of the semid_ds structure is set to 0 when a new semaphore set is
created. (The System V manuals have stated this fact for a long time, as do the XPG3
and Unix 98 standards.) This member is set to the current time only by a successful call
to semop. Therefore, the second process in the preceding example must call semctl

-

e _ i o R

e —

113

B N B ou

P i

PR R TR - B g

. Chapter 11

T AR —

s of mem-

i< of the
i{?ﬁﬁqband
@e not ini-
pe describe
L_ izet all

£} and then
. A partial
& onlv one
fhen initial-
:'mga: and
+ e

vereate and
g the fol-

i

& o mnitial-
pe, the ker-
s can then
g= mot been
s evecutes
g that the
ﬁm-re set 18
 the XPG3
wessful call
'ﬁ semctl

Section 11.3 semop Function 285

with a command of TPC_STAT after its second call to semget succeeds (line 6 in the
code fragment). It then waits for sem_ot ime to be nonzero, at which time it knows that
the semaphore has been initialized and that the process that did the initialization has
successfully called semop. This means the process that creates the semaphore must ini-
tialize its value and must call semop before any other process can use the semaphore.
We show examples of this technique in Figures 10.52 and 11.7.

Posix named semaphores avoid this problem by having one function (sem_open) create and
initialize the semaphore, Furthermore, even if 0_CREAT is specified, the semaphore is initial-
ized only if it does not already exist.

Whether this potential race condition is a problem also depends on the application. With some
applications (e.g., our producer—consumer as in Figure 10.21), one process always creates and
initializes the semaphore. Mo race condition would exist in this scenario. But in other applica-
tions (e.g., our file locking example in Figure 10.19), no single process creates and initializes the
semaphore: the first process to open the semaphore must create it and initialize it, and the race
condition must be avoided.

semop Function

Once a semaphore set is opened with semget, operations are performed on one or
more of the semaphores in the set using the semop function.

#include <sys/sem.h>

int semop(int sewid, struct sembuf *epsplr, size t mops);

Returns: 0 if OK, -1 on error

opsptr points to an array of the following structures:

atruct gembuf |
short sem_pum; /* semaphore number: 0, 1, ..., nsems-1 */
short sem_op; /% semaphore operation: <0, 0, =0 */
short sem_flg; /* operation flags: O, IPC_NOWAIT, SEM _UNDO */

¥

The number of elements in the array of sembuf structures pointed to by opsptr is speci-
fied by the nops argument. Each element in this array specifies an operation for one par-
ticular semaphore value in the set. The particular semaphore value is specified by the
sem_num value, which is 0 for the first element, one for the second, and so on, up to
nsems—1, where nsems is the number of semaphore values in the set (the second argu-
ment in the call to semget when the semaphore set was created).

Wi are guaranteed only that the structure contains the three members shown. It might contain
other members, and we have no guarantee that the members are in the order that we show.
This means that we must not statically initialize this structure, as in
struct sembuf ops[2] = |
a, o, G, /* walt for [0] to be O %/
o, 1, SEM_UNDO /* chen increment [01 by 1 *f
}i

286

System V Semaphores Chapter 11

but must use run-time initialization, as in
struct sembuf opsl2]:

aps[(] . 5em_num i wait for [0] to be O =+
aps [0] . sem_op
ops[0] .eem_flg =
apa[1] . sem_num
ops[l].sem_op

opa(l)].sem_flg

H /% then increment [D] by I

= o O OO

SEM_UNDO

The array of operations passed to the semop function are guaranteed to be per-
formed atomically by the kernel. The kernel either does all the operations that are speci-
fied, or it does none of them. We show an example of this in Section 11.5.

Each particular operation is specified by a sem_op value, which can be negative, 0,
or positive. In the discussion that follows shortly, we refer to the following items:

L

semval: the current value of the semaphore (Figure 11.1).

semncnt: the number of threads waiting for semval to be greater than its cur-
rent value (Figure 11.1).

semzent: the number of threads waiting for semval to be 0 (Figure 11.1).

semadi: the adjustment value for the calling process for the specified
semaphore. This value is updated only if the SEM_UNDO flag is specified in the
sem_£1lg member of the sembuf structure for this operation. This is a concep-
tual variable that is maintained by the kernel for each process that specifies the
SEM_UNDO flag in a semaphore operation; a structure member with the name of
semadq need not exist.

A given semaphore operation is made nonblocking by specifying the
IPC_NOWAIT flag in the sem_f1g member of the sembuf structure. When this
flag is specified and the given operation cannot be completed without putting
the calling thread to sleep, semop returns an error of EAGATIN.

When a thread is put to sleep waiting for a semaphore operation to complete
(we will see that the thread can be waiting either for the semaphore value to be 0
or for the value to be greater than 0), and the thread catches a signal, and the sig-
nal handler returns, the semop function is interrupted and returns an error of
EINTE. In the terminology of p. 124 of UNPv1, semop is a slow system call that is
interrupted by a caught signal.

When a thread is put to sleep waiting for a semaphore operation to complete
and that semaphore is removed from the system by some other thread or pro-
cess, semop returns an error of EIDRM (“identifier removed”).

We now describe the operation of semop, based on the three possible values of each
specified sem_op operation: positive, (), or negative.

1.

If sem_op is positive, the value of sem_op is added to semval. This corre-
sponds to the release of resources that a semaphore controls.

114

Section 11.4 semctl Function 287
If the sEM_UNDO flag is specified, the value of sem_op is subtracted from the
semaphore’s semad] value.
2. 1f sem_op is 0, the caller wants to wait until semval is 0. If semval is already
0, return is made immediately.
If semval is nonzero, the semaphore’s semzent value is incremented and the
calling thread is blocked until semval becomes 0 (at which time, the
: semaphore’s semzent value is decremented). As mentioned earlier, the thread
Be et is not put to sleep if ITPC_NOWAIT is specified. The sleep returns prematurely
e S with an error if a caught signal interrupts the function or if the semaphore is
! removed.
e 3. If sem_op is negative, the caller wants to wait until the semaphore’s value
5 becomes greater than or equal to the absolute value of sem_op. This corre-
sponds to the allocation of resources.
.&5 L If semval is greater than or equal to the absolute value of sem_op, the absolute
o value of sem_op is subtracted from semval. If the SEM_UNDO flag is specified,
E the absolute value of sem_op is added to the semaphore’s semad] value.
- If semval is less than the absolute value of sem_op, the semaphore’s semncnt
o value is incremented and the calling thread is blocked until semval becomes
. —'F'_ ¢ greater than or equal to the absolute value of sem_op. When this change
e occurs, the thread is unblocked, the absolute value of sem_op is subtracted from
EE"‘ semval, and the semaphore’s semncnt value is decremented. If the SEM_UNDO
pne @ flag is specified, the absolute value of sem_op is added to the semaphore’s
i cemadi value. As mentioned earlier, the thread is not put to sleep if
me che IPC_NOWAIT is specified. Also, the sleep returns prematurely with an error if a
len this caught signal interrupts the function or if the semaphore is removed.
pottng
; , If we compare these operations to the operations allowed on a Posix semaphore, the latter
p:-':-.;;eie allows operations of only -1 (sem_wait) and +1 {sem_pest). System V semaphores allow the
g B be () value to go up or down by increments other than one, and also allow waiting for the
e sig- semaphore value to be (. These more general operations, along with the fact that System V
ereor ;w' semaphores can have a set of values, is what complicates Systemn V semaphores, compared to
g hat is the simpler Posix semaphores.
E“;“Hﬂf 11.4 semctl Function
| The semct 1 function performs various control operations on a semaphore.
'5‘3"; each #include <sys/sem. h> ‘
; int semetl(int semid, int semmum, int emd, ... /* unicn semun arg */ 1;
5 COITe- i
: |

Returns: nonnegative value if OK {see text), -1 on error

System V Semaphores Chapter 11

The first argument semid identifies the semaphore, and semmnum identifies the member of
the semaphore set (0, 1, and so on, up to nsems—1). The semnum value is used only for
the GETVAL, SETVAL, GETNCNT, GETZCNT, and GETPID commands.

The fourth argument is optional, depending on the cmd (see the comments in the
union below). When required, it is the following union:

union semun §

int val; /* used for SETVAL only */
atruct semid_ds <*buf; /* uged for IPC_SET and IBC_STAT */
ushore *array; /* used for GETALL and SETALL */

bi

This union does not appear in any system header and must be declared by the applica-
tion. (We define it in our unpipc.h header, Figure C.1.) It is passed by value, not by
reference. That is, the actual value of the union is the argument, not a pointer to the
unieon.

Unfortunately, some systems (FreeBSD and Linux) define this union as a result of including
the <sys/sem. h> header, making it hard to write portable code, Even though having the sys.
tem header declare this union makes sense, Unix 98 states that it must be explicitly declared
by the application.
The following values for the cmd are supported. Unless stated otherwise, a return
value of 0 indicates success, and a return value of -1 indicates an error.

GETVAL Return the current value of semval as the return value of the function.
Since a semaphore value is never negative (semval is declared as an
unsigned short), a successful return value is always nonnegative.

SETVAL Set the value of semval to arg.val. If this is successful, the semaphore
adjustment value for this semaphore is set to 0 in all processes.

GETEID Return the current value of sempid as the return value of the function.

GETHNCNT Return the current value of semnent as the return value of the func-
tion.

GETZCNT Return the current value of semzent as the return value of the func-
tion.

GETALL Return the values of semval for each member of the semaphore set.
The values are returned through the argarray pointer, and the return
value of the function is 0. Notice that the caller must allocate an array
of unsigned short integers large enough to hold all the values for
the set, and then set arg.array to point to this array.

SETALL Set the values of semval for each member of the semaphore set. The
values are specified through the arg.array pointer.

IPC_EMID Remove the semaphore set specified by semid from the system.

IPC_SET Set the following three members of the semid_ds structure for the
semaphore set from the corresponding members in the structure
pointed to by the arg.buf argument: sem_perm.uid, sem_perm.gid,

115

R B

[~ L

;;.{'_'{up!erII

——

ﬁber of
gd only for

gots in the

h applica-
fime. not by
ter to the

E_»et mciuding
B the sys-
hl‘.‘.“w declared

. 2 return

E fanction.
jred as an
Bgative.
semaphore
=,

e Function.
£ the func-

¥ the func-

We set.
e return
e an array

ge for the
E structure
per= . gid,

Section 11.5

Simple Programs 289

IPC_STAT

and sem_perm.mode. The sem_ctime member of the semid_ds
structure is also set to the current time.

Return to the caller (through the arg.buf argument) the current

semid_ds structure for the specified semaphore set. Notice that the
caller must first allocate a semid_ds structure and set arg.buf to point
to this structure.

11.5 Simple Programs

Since System V semaphores have kernel persistence, we can demonstrate their usage by
writing a small set of programs to manipulate them and seeing what happens. The val-
ues of the semaphores will be maintained by the kernel from one of our programs to the

next.

semcreate Program

Our first program shown in Figure 11.2 just creates a System V semaphore set. The -e
command-line option specifies the TPC_EXCL flag, and the number of semaphores in

the set must be specified by the final command-line argument.

1 #include "unpipe.h*

2 int

3 main(int argc, char **argv)

4 i

5 int o, oflag, semid, nsems;

[pflag = SVSEM_MODE | IPC_CREAT:

7 while { (c = Getopt(arge, argv, "e")) != -1} {

2] awiteh (¢} {

9 case ‘e';

10 oflag |= IPC_EXCL;

11 break;

12 K

13 1 -

14 if (optind != arge - 2}

15 err_guit{"usage: semcreate [-e] <pathname= cnsems=>") ;

16 nsems = atoilargvioptind + 171

17 semid = Semget (Ftok{argv[optind], 1), nsems, oflagl;

18 exit(0);

19 1}

Figure 11.2 semcreate program.

semrmid Program

spsem Ssemcrente .o

susem fsemereate.c

The next program, shown in Figure 11.3, removes a semaphore set from the system. A
command of TPC_REMID is executed through the semctl function to remove the set.

290

System V Semaphores Chapter 11

semsetvalues Program

I11-15

19-24

Our semsetvalues program (Figure 11.4) sets all the values in a semaphore set.

Get number of semaphores in set

After obtaining the semaphore ID with semget, we issue an IPC_STAT command
to semctl to fetch the semid_ds structure for the semaphore. The sem_nsems mem-
ber is the number of semaphores in the set.

Set all the values

We allocate memory for an array of unsigned shorts, one per set member, and
copy the values from the command-line into the array. A command of SETALL to
semct] sets all the values in the semaphore set.

semgetvalues Program

11-15

16-22

Figure 11.5 shows our semgetvalues program, which fetches and prints all the values
in a semaphore set.

Get number of semaphores in set

After obtaining the semaphore ID with semget, we issue an IFC_STAT command
to semct1 to fetch the semid_ds structure for the semaphore. The sem_nsems mem-
ber is the number of semaphores in the set.

Get all the values

We allocate memory for an array of unsigned shorts, one per set member, and
issue a command of GETALL to semctl to fetch all the values in the semaphore set.
Each value is printed.

semops Program

20=-29

Our semops program, shown in Figure 11.6, executes an array of operations on a
semaphore set,

Command-line options

An option of -n specifies the IPC_NOWAIT flag for each operation, and an option of
-u specifies the SEM_UNDO flag for each operation. Note that the semop function allows
us to specify a different set of flags for each member of the sembuf structure (that is, for
the operation on each member of the set), but for simplicity we have these
command-line options specify that flag for all specified operations.

Allocate memory for the operations

After opening the semaphore set with semget, an array of sembuf structures is
allocated, one element for each operation specified on the command line. Unlike the
previous two programs, this program allows the user to specify fewer operations than
members of the semaphore set.

Execute the operations

semop executes the array of operations on the semaphore set.

Sectem TS

(LR L

i

Rt a el wiprag

k4
s 1B

gt

- el

i

i
h

AR T E N TR

- Crapter 11 Section 11.5 Simple Programs 291

i

; susem /semrmid.c
1 #include *unpipc.h*
e 2 int
i 3 main(int arge, char **argv)
¥ a1
?:W-;xﬁﬁﬁnd c int semid;
=T Mem-
& if {arge != 2}
7 err_gquit(*usage: semyrmid <pathname>")
3 gsemld = Semget {Frok(argv(l], 1}, 0, OF;
9 semctl (semid, 0, IPC_RMID]; _
10 exic(0); ’
11 } .
susem fsemrmid.c
Figure 11.3 semrmid program.
susem [semsetvalies.c
1 #include *unpipc.h"
Z int
3 main(int arge, char **argv)
4 1
5 ink semid, nsems, i;
& struct semid_ds seminfo;
7 ungigned short *ptr;
] union semun arg;
] if large < 2)
10 err_guit("usage: semsetvalues <pathname> [wvalues ... 1"1;
11 /* first get the number of semaphores in the set */
12 semid = Semget (Ftokiargw([l]l, 1), 0. 0):
i 13 arg.buf = &seminfo;
h"f*" on a 14 Semctl (semid, 0, IPC_STAT, arg):
i 15 ngems = arg.buf->sem_nsems;
. 16 /* now get the values from the command line */
3 _ 17 if (argec !'= nsems + 2)
B option of 18 err_guit{"%d semaphores in set, %d values specified". nsems, argc - 2);
gmon allows .
i =t i for 1% /* allocate memory to hold all the values in the set, and store */
et s, _ 20 ptr = Callccinsems, sizeof (unsigned short));
PTE these 21 arg.array = ptr;
: 22 for (i = 0; i = nsems; i++)
23 ptr(i] = atoilargv[i + 2]);
i 24 Semctl (semid, 0, SETALL, argl;:
Bractures is 25 10
3 !.: 2x1l H
Eabike the 26)
sosemfsemsetvalues.c

Figure 114 semsetvalues program.

292 System V Semaphores Chapter 11
svsem etoalies.c
1 #include “unpipe.h* semg
2 int
3 maini{int argc, char *Targv)
4
5 int semid, nsems, 1i;
[atruct semid_ds seminfo:
7 unsigned short *per;
-] union semun arg;
] if f{arge !'= 2}
10 err_gquiti*usage: semgetvalues <pathname:>");
11 /* first get the number of semaphores in the set */
iz semid = Semget {Ftoklargw([l], 1), O, 0};
13 arg.buf = Lseminfo;
14 Semct] (semid, 0, IPC_STAT, arg):
15 nzems = arg.buf->sem_nsems;
16 /* allocate memory to hold all the walues in the set */
17 ptr = Callocinsems, sizeof (unsigned short));
i8 arg.array = pbr;
19 /* fetch the values and print */
20 Semctl (semid, 0, GETALL, argl:
21 for (i = 0; 1 < nsems; i++)
22 printf("semval [¥d] = %d'\n", i, ptriil}:
23 exic{d);
24 1}

svsem semgetvalues.c
Figure 11.5 semgetvalues program.

SUSEHT /SEMOps.c
1 #incliude "unpipc.h”

2 int

3 main{int argc, char **argv)

4 {

5 int c, i, flag, semid, nops;

& struct sembuf ~ptr;

7 flag = 0;

] while [(¢ = Getoptiarge, argv, "nu")) != =1} {

] switch {c) |
10 cagse ‘n':
11 flag |= IPC_NOWAIT: /* for each operation */
12 break;
13 case ‘u';:
14 flag |= SEM_UNDO; /* for each operation */
ig break;
16 }
17 1
18 if (argc - optind < 2) /* argc - optind = #args remaining */

19 err_guiti*usage: semops [-n] [-u] <pathname> operation ...");:

Sectaom IL3

W R B RRLM M MH

R EE

: Chapter 11

et T eSO

et values

Bt SETHOPS.C

e T AL, R

Section 11.5 Simple Programs 293

20 semid = Semget {Ftoklargvicptindl, 1)}, 0, 0O};

21 optind++;

22 nops = arge - optind;

23 /* allocate memory to hold operations, store, and perform */
24 ptr = Callocinops, sizeof(struct sembuf)):

25 for (1 = 0; 1 < nops; 1++) |

26 per[i] .sem _num = i;

27 ptr[i] .sem_op = atol{argv|optind + 1i]}; f* <0, 0, or =0 */
2B ptrl[i]l .sem_flg = flag;

29 }

o Semop {gemid, ptr, nops):

i1 axit (0);

e STEEHH [SEOPS.C

Figure 11.6 semops program.

Examples

We now demonstrate the five programs that we have just shown, looking at some of the
features of System V semaphores.

splaris % touch /emp/rich

solaris % pemcreate -e /tmp/rich 3
solaris % semsetvalues /tmp/rich 1 2 3
solariz % semgetvalues /tmp/rich
semval [0]
semval[l]
gemval [2]

We first create a file named /tmp/rich that will be used (by ftok) to identify the
semaphore set. semcreate creates a set with three members. semsetvalues sets the
values to 1, 2, and 3, and these values are then printed by semgetvalues,

We now demonstrate the atomicity of the set of operations when performed on a
semaphore set.

[}
Lad B3 Pt

sclaris % semops -n /tmp/rich -1 -2 -4

semct]l error: Resource temporarily unavailable
solaris % semgetvalues /Jtmp/rich

semval (0] = 1

semval[l] 2

samvall] 3

We specify the nonblocking flag (-n) and three operations, each of which decrements a
value in the set. The first operation is OK (we can subtract 1 from the first member of
the set whose value is 1), the second operation is OK {we can subtract 2 from the second
member of the set whose value is 2), but the third operation cannot be performed (we
cannot subtract 4 from the third member of the set whose value is 3). Since the last
operation cannot be performed, and since we specified nonblocking, an error of EAGATN
is returned. (Had we not specified the nonblocking flag, our program would have just
blocked.) We then verify that none of the values in the set were changed. Even though

294 System V' Semaphores Chapter 11

the first two operations could be performed, since the final operation could not be per-
formed, none of the three operations are performed. The atomicity of semop means
that either all of the operations are performed or none of the operations are performed.

We now demonstrate the SEM_UNDO property of System V semaphores.

solaris % semsetvalues /tmp/rich 1 2 3 sef to knoten values

anlariz % semops -u /tmp/rich -1 -2 -3 specify SEM_UTNDO for each operation

solaris % semgetvalues /tmp/rich

semval (0] = 1 all the changes were undone when semops terminated
semval [1] = 2

semval[Z] = 3

solaris % semops /tmp/rich -1 -2 -3 do not specify SEM_UNDO

splaris % semgetvalues /tmp/rich

sermval [0] = 0 the changes were not wndone

gemval [1] = 0

semval[2] = 0

We first reset the three values to 1, 2, and 3 with semsetvalues and then specify oper-
ations of —1, =2, and -3 with our semops program. This causes all three values to
become 0, but since we specify the -u flag to our semops program, the SEM_UNDO flag
is specified for each of the three operations. This causes the semadj value for the three
members to be set to 1, 2, and 3, respectively. Then when our semcps program termi-
nates, these three semadi values are added back to the current values of each of the
three members (which are all 0), causing their final values to be 1, 2, and 3, as we verify
with our semgetvalues program. We then execute our semops program again, but
without the -u flag, and this leaves the three values at 0 when our semops program ter-
minates,

11.6 File Locking

We can provide a version of our my_lock and my_unlock functions from Figure 10.19,
implemented using System V semaphores. We show this in Figure 11.7.

First try an exclusive create

13-17 We must guarantee that only one process initializes the semaphore, so we specify
IPC_CREAT | IPC_EXCL. If this succeeds, that process calls semctl to initialize the
semaphore value to 1. If we start multiple processes at about the same time, each of
which calls our my_lock function, only one will create the semaphore (assuming it
does not already exist), and then that process initializes the semaphore too.

Semaphore already exists; just open

18-20 The first call to semget will return an error of EEXIST to the other processes, which
then call semget again, but without the IPC_CREAT | IPC_EXCL flags.
Wait for semaphore to be initialized

21-25 We encounter the same race condition that we talked about with the initialization of
System V semaphores in Section 11.2. To avoid this, any process that finds that the
semaphore already exists must call semct1 with a command of TPC_STAT to look at

~Eha pter 11

mot be per-
h@ means

:

'b:;-e' terminated

h:m oper-
- walues to
o flag
S fhe three
e termi-
Hi‘: of the
e verify
@e=in, but
h’_mm ter-

Section 11.6 File Locking 295
. lock flocksvsent.c
1 #includes "unpipc. h®
2 #define LOCK_PATH "/ tmp/aveemlock”
3 ¥define MAX_TRIES 10
4 int semid, initflag:
5 skbruct sembuf postop, waltop;
6 wolid
7 my_lock{inc £4)
8 {
] int oflag, 1i:
10 union semun ATy
11 struct semid_ds seminfo;
12 if {initflag == 0} {
13 ocflag = IPC_CREAT | IFC_EXCL | SVSEM_MODE;
14 if | izemid = semget (Frok{LOCKE_PATE, 1), 1, oflagl) == 01 {
15 /* success, we're the first so initialize */
1a arg.val = 1;
17 Semctl{semid, 0, SETVAL, arg):
18 Y else if ([errno == EEXIST) |
19 /* someones else has created; make sure it's initialized */
20 semid = Semget (Frok (LOCK_PATH, 1), 1, SVSEM_MODE} r
21 arg.buf = sseminfo;
22 for (i = 0; i < MAX_TRIES; i++) {
23 semctl {semid, O, IPC_STAT, arg):
24 if tlarg.buf-=sem_otime != 0)
25 goto inic;
26 sleepll);
27 }
28 err_guit(*semget O, but zemaphore not initialized");
29 } else
30 err_sys | "gemget error");
3l init:
32 initflag = 1;
33 postop.sem_num = 0; /* and init the two semop(] structures */
34 postop.sem_op = 1;
35 postop.sem_£1lg = SEM_UNDO;
36 waitop.sem_num = 0;
37 waitop.sem_op = -1:
3B waitop.sem_flg = SEM_UNDO;
39 }
40 Semop (semid, swaitop, 1): S down by 1 %/
41 1}
42 woid
43 my_unlock(int £d)
44
45 Semop (semid, &postop, 1); foup by 1%
46

Figure 11.7 File locking using System V semaphores.

lock flocksvsem.c

296

System V Semaphores Chapter 11

the sem_ot ime value for the semaphore. Once this value is nonzero, we know that the
process that created the semaphore has initialized it, and has called semop (the call to
semop is at the end of this function). If the value is still 0 (which should happen very
infrequently), we sleep for 1 second and try again. We limit the number of times that
we try this, to avoid sleeping forever.

Initialize sembuf structures

33-38 As we mentioned earlier, there is no guaranteed order of the members in the

sembuf structure, so we cannot statically initialize them. Instead, we allocate two of
these structures and fill them in at run time, when the process calls my_lock for the
first time. We specify the SEM_UNDO flag, so that if a process terminates while holding
the lock, the kernel will release the lock (see Exercise 10.3).

Creating a semaphore on its first use is easy (each process tries to create it but
ignores an error if the semaphore already exists), but removing it after all the processes
are done is much harder. In the case of a printer daemon that uses the sequence number
file to assign job numbers, the semaphore would remain in existence all the time. But
other applications might want to delete the semaphore when the file is deleted. In this
case, a record lock might be better than a semaphore.

11.7 Semaphore Limits
As with System V message queues, there are certain system limits with System V
semaphores, most of which arise from their original System V implementation (Sec-
tion 3.8). These are shown in Figure 11.8. The first column is the traditional System V
name for the kernel variable that contains this limit.
L[\."ame ' Description " DUnix 4.0B | Solaris 2.6 |
{semmni | max# unique semaphore sets, systemwide 5 16 |
semmzl | max # semaphores per semaphore set 5 25
_ semmns | max # semaphores, systemwide 400 _ 1]
semopm | max # operations per semop call ' wo w
S max # of undo structures, systemwide 30
| semume | max# of undo entries per undo structure 10 10
semvmx | max value of any semaphore _ 32767 32767
semaem | max adjust-on-exit value 16384 16384
Figure 11.8 Typical limits for System V semaphores,
Apparently no semmnu limit exists for Digital Unix.
Example

The program in Figure 11.9 determines the limits shown in Figure 11.8.

. Chapter 11

Eﬂﬂthﬂtthe
2 ithe call to
mppen very
jﬁ‘t:ame-s that

fers in the
ate two of
=% for the

He holding

meste it but
e processes
mee number
¢ ome. But
ged In this

i Swstem WV
mson (Sec-
?ﬁ“stem v

Section 11.7 Semaphore Limits = 297
apaem flimifs.c
1 #include funpipc.h
2 /= following are upper limits of values to try */
3 #define MAX NIDS 4096 J* max # semaphore IDs */f
4 #define MAX_VALUE 1024*1024 /* max semaphore value */
5 #define MAX MEMBERS 4096 /* max # semaphores per semaphore set */
& #define MAX _NOES 4096 /* max # operaticns per semopl] */
7 #define MAX_NPROC Syaconf {_SC_CHILD MAX)
E int
9 main(int argc, char **argv)
10 [
11 ink i, j, semid, sid[MAX_NIDS], pipefd[2]):
1z int Semmni, Semvid, Semmsl, Semmns, Semoprl, Semasm, Semume, Semmnu;
13 pid_t *child;
14 union semun Aarg;
15 struct sembuf ops[MAX_NOPS];
16 /* zee how many sets with one member we can create */f
17 for (i = 0; i == MAX NIDS; i++} |
15 sid[i] = semget (IPC_PRIVATE, 1, SVSEM_MODE | IPC_CREAT);
19 if (gid[i] == =1} {
20 semmni = i;
21 printf("%d idencifiers open at once'n", semmnij;:
22 break:
23 H
24 }
25 /* before deleting, find maximum value using sid[0] */
28 for {(j = 7; j = MAX_VALUE; j += &) {
27 arg.val = j;
28 if (semctl{sid[0], 0, SETVAL, arg) == =1} {
249 gemmx = § - H;
30 printf("max semaphore value = %d\n", semvmx};
31 break:
32 }
33 H
34 for (3 = 0; Jj = i; j++)
35 Semctl{sid(j], 0, IPC_RMID);
36 /* determine max # semaphores per semaphore set */
37 for {1 = 1; i == MAX_MEMBERS; i++) {
ig semid = semget {IPC_PRIVATE, i, SVSEM_MODE | IPC_CREAT);
19 if (gemid == -1) {
40 semmsl = 1 - L;
41 printf{"max of %d members per set\n", semmsl};
42 break:
42 }
44 Semct] (semid, 0, IPC_RMID);
a5 }
46 /* find max of total # of semaphores we can create */
47 gemmns = 0;
4R for {i = 0; 1 = semmni; i++) |
49 sid[i] = semget (IPC_PRIVATE, semmsl, SVSEM _MODE | IPC_CREAT);
50 if {sidfi] == -1} |

298 Systemn V Semaphores Chapter 11

51 /*

52 * Up to this point each set has been created with semmsl
53 * members. But this just failed, sc try recreating this
54 * final set with cne fewer member per set, until it works.
55 o

L1 for {j = semmsl - 1; § = O0; 5--) {

57 gid[i] = semget {IPC_PRIVATE, j, SVSEM_MODE | IPC_CREAT);
58 if (sidfi] t= -1) |

59 semmns += j;

&0 printf(*max of %4 semaphores\n", semmns}:

61 Semctl (sid[i], 0, IPC_RMID);

62 goto done;

63]

64 }

65 err_cquit(®j reached 0, semmns = %d", semmns);

66 }

67 semmns += semmsl;

6H }

69 printf("max of %d semaphores‘n", semmns);

70 done:

T for {j = 0; § < i; j++)

72 Bemctl (sid{j], O, IPC_RMID);

T3 /* zee how many operations per semopl) */

T4 semid = Semget (IPC_PRIVATE, semmsl, SVSEM _MODE | IPC_CREAT);
75 for (i = 1; 1 == MAX NOPS; i++) {

T6 opsfi - 1].sem_num = i - 1;

77 ops{i - 1].sem_op = 1;

78 ops(i - 1].sem_flg = 0O;

79 if (gemopisemid, ops, i) == -1) {

) if (errno |= EIBIG)

81 err_ays{"expected EZBIG from semop”);

B2 semopn = 1 = 1;

B3 printf(*max of %d operations per semop(]'n®, semopn);
B4 break;

85 }

BE }

B7 Semctl {seamid, O, IPC_RMID):

B8 /* decermine the max value of semadj */

B9 /* create one set with one semaphore */

490 semid = Semget{IPC_PRIVATE, 1, SVSEM_MODE | IPC_CREAT):

a1 arg.val = Semvi;

92 Semct]l (gemid, 0, SETVAL, arg)l; /* set value ko max */

93 for (i = semvmx - 1; & > 0; i--} {

94 opsl0] .sem_num = 0;

55 ops[0] .sem_op = -i;

96 cps(0] ..sem_f£flg = SEM_UNDO;

a7 if (semopisemid, ops, 1) != =1} {

98 semaem = 1i;

949 printf("max value of adjust-cn-exit = %#d\n", semaem);
100 break;
101 1
102 }

103 Semctl (semid, 0, IPC_RMID};

Section 11.7 Semaphore Limits 299
104 /% determine max # undo structures */
105 /* create one set with one semaphore; init to 0 =/
106 semid = Semget {IPC_PRIVATE, 1, SVSEM MODE | IPC_CREAT) ;
a7 arg.val = 0;
108 Semctl (semid, 0, SETVAL, argl:; /* set semaphore wvalue to 0 */
10% Pipe|pipefd) ;
110 child = Malloc{MAX_NPROC * zizeofipid t}):
111 for (1 = 0; 1 =< MAX_NPROC; i++) {
112 if { i(child[i] = fork{)) == -1} {
113 semmnu = i - L1;
114 printf{"fork failed, semmnu at least %d\n", semmnu):
115 break;
116 } else if ichild{i] == 0} {
117 ops[0] .sem_num = 0; /* child does the semcpll */
118 ops[0] .sem_op = 1;
119 ops[0] .sem_£1lg = SEM_UNDO;
120 i = zemopi{semid, ops, 1}; f* 0 if oK, -1 if error */
121 Writei(pipefdil], &3j, sizeofij)}:
122 sleep(30); /* wait to be killed by parent */
123 axit (0} ; /% just in case */
124 H
125 /* parent readsa result of semopl) */
126 Readipipefd[0], &3, sizecfiil);:
127 it { == -1) {
128 semmne = i
1249 printf{"max # undc structures = %4d\n", semmnu);
130 break;
131 }
132 3
133 Semctl (semid, 0, IPC_RMID);
134 for {1 = 0; j == i && child[j] => 0: J++)
135 ¥Killichild[{], SIGINT):
136 /* determine max # adjust entries per process */
137 /* create one set with max # of semaphores */
138 gemid = Semget (IPC_PRIVATE, semmsl, SVSEM_MODE | IPC_CREAT):
139 for (i = 0; i < semmsl; i++) {
140 arg.val = 0;
141 Semctl{semid, i, SETVAL, arg); /* set semaphore wvalue to 0 */
142 opa(i].sem_num = i;
143 ops(i] .sem_op = 1; /* add 1 te the value */
144 ope[i] .sem_£lg = SEM_UNDD;
145 if {semop(semid, ops, i + 1) == =1} {
146 semume = i;
147 printf{"max # undo entries per process = %d\n", semume];
148 break;
149 }
150 H
151 Semctl (semid, 0, IPC_RMID);
152 exiti{d);
153)

sosem | limits.c

Figure 11.9 Determine the system limits on System V¥ semaphores.

et i Lt i o e b e bt e s M e L

.
:

;
3

L.
:
;-
:
3

System V Semaphores Chapter 11

11.8 Summary

The following changes occur when moving from Posix semaphores to System V
semaphores:

1.

3.

4,

System V semaphores consist of a set of values. When specifying a group of
semaphore operations to apply to a set, either all of the operations are per-
formed or none of the operations are performed.

Three operations may be applied to each member of a semaphore set: test for the
value being 0, add an integer to the value, and subtract an integer from the
value (assuming that the value remains nonnegative). The only operations
allowed for a Posix semaphore are to increment by one and to decrement by one
(assuming that the value remains nonnegative).

Creating a System V semaphore set is tricky because it requires two operations
to create the set and then initialize the values, which can lead to race conditions.

System V semaphores provide an “undo” feature that reverses a semaphore
operation upon process termination.

Exercises

111

11.2

Figure 6.8 was a modification to Figure 6.6 that accepted an identifier instead of a path-
name to specify the queue. We showed that the identifier is all we need to know to access
a System V message queue (assuming we have adequate permission). Make similar modi-
fications to Figure 11.6 and show that the same feature applies to System V semaphores.

What happens in Figure 11.7 if the LOCK_PATH file does not exist?

Chapter 11

o System V

= & group of
omsS are per-

¢ test for the
er from the
¢ operations
ment by one

> operations
= conditions,

. semaphore

wd of a path-
0w tO ACCess
samilar modi-
maphores,

]
&

G

Part 4

Shared Memory

12

Shared Memory Introduction

12.1 Introduction

Shared memory is the fastest form of [PC available. Once the memory is mapped into
the address space of the processes that are sharing the memory region, no kernel
involvement occurs in passing data between the processes. What is normally required,
however, is some form of synchronization between the processes that are storing and
fetching information to and from the shared memory region. In Part 3, we discussed
various forms of synchronization: mutexes, condition variables, read-write locks, record
locks, and semaphores,

What we mean by “no kernel involvement” is that the processes do not execute any sys-
temn calls into the kernel to pass the data. Obviously, the kernel must establish the mem-
ory mappings that allow the processes to share the memory, and then manage this
memaory over time (handle page faults, and the like).

&
%
i
;
i
5
o
i
%.
2

Consider the normal steps involved in the client-server file copying program that
we used as an example for the various types of message passing (Figure 4.1).

» The server reads from the input file. The file data is read by the kernel into its
memaory and then copied from the kernel to the process.

* The server writes this data in a message, using a pipe, FIFO, or message queue.
These forms of IPC normally require the data to be copied from the process to
the kernel.

We use the qualifier normally because Posix message queues can be implemented using

memory-mapped 1/0 (the mmap function that we describe in this chapter), as we showed
in Section 5.8 and as we show in the solution to Exercise 12.2. In Figure 12.1, we assume

303

Shared Memory Introduction Chapter 12

that Posix message queues are implemented within the kernel, which is another possibil-
ity. But pipes, FIFOs, and System \ message queues all involve copying the data from the
process to the kernel for a write or msgsnd, or copying the data from the kernel to the
process for a read or megrov.
e The client reads the data from the IPC channel, normally requiring the data to be
copied from the kernel to the process.

+ Finally, the data is copied from the client’s buffer, the second argument to the
write function, to the output file.

A total of four copies of the data are normally required. Additionally, these four copies
are done between the kernel and a process, often an expensive copy (more expensive
than copying data within the kernel, or copying data within a single process). Fig-
ure 12.1 depicts this movement of the data between the client and server, through the
kernel.

writel) read|), mg receivell, writel(l,mg_send() read(}
or megrevi) or magand () /
. __\\ _______ S~ process
T TRl Tt T T T 7 T "7 kernel

Figure 111 Flow of file data from server to client.

The problem with these forms of IPC—pipes, FIFOs, and message queues—is that
for two processes to exchange information, the information has to go through the ker-

nel.
Shared memory provides a way around this by letting two or more processes share
a region of memory. The processes must, of course, coordinate or synchronize the use of
the shared memory among themselves. (Sharing a common piece of memory is similar
to sharing a disk file, such as the sequence number file used in all the file locking exam-
ples.) Any of the techniques described in Part 3 can be used for this synchronization.
The steps for the client-server example are now as follows:

« The server gets access to a shared memory object using (say) a semaphore.

e« The server reads from the input file into the shared memory object. The second
argument to the read, the address of the data buffer, points into the shared
memaory object.

« When the read is complete, the server notifies the client, using a semaphore.

e The client writes the data from the shared memory object to the output file.

]

TR RO TR . e

K-

L R ol . e 1R

Chapter 12

mer possibil-
23 from the
permiel to the

data to be

ent to the

ur copies
B pensive
e=s). Fig-
rough the

g process

5
karnel

— iz that
t the ker-

ses share
Se use of
= similar
3g exam-
SEOn.

e second
e shared

Section 12,1 Introduction 305

12-14

15

16=-289

This scenario is depicted in Figure 12.2.

e Lo T T T T
|

| |
| T 1 i“

: client : | server

| 1 |

I _gs I

client address

e B sl <L server address space

L
Figure 122 Copying file data from server to client using shared memaory.

In this figure the data is copied only twice—from the input file into shared memory and
from shared memory to the output file. We draw one dashed box enclosing the client
and the shared memory object, and another dashed box enclosing the server and the
shared memory object, to reinforce that the shared memory object appears in the
address space of both the client and the server.

The concepts involved in using shared memory are similar for both the Posix inter-
face and the System V interface. We describe the former in Chapter 13 and the latter in

Chapter 14.

In this chapter, we return to our sequence-number-increment example that we
started in Chapter 9. But we now store the sequence number in memory instead of in a
file.

We first reiterate that memory is nof shared by default between a parent and child
across a fork. The program in Figure 12.3 has a parent and child increment a global
integer named count,

Create and initialize semaphore

We create and initialize a semaphore that protects what we think is a shared vari-
able (the global count). Since this assumption is false, this semaphore is not really
needed. Notice that we remove the semaphore name from the system by calling
sem_unlink, but although this removes the pathname, it has no effect on the
semaphore that is already open. We do this so that the pathname is removed from the
filesystem even if the program aborts.

Set standard output unbuffered and fork

We set standard output unbuffered because both the parent and child will be writ-
ing to it. This prevents interleaving of the output from the two processes.

The parent and child each execute a loop that increments the counter the specified
number of times, being careful to increment the variable only when the semaphore is
held.

A Y I O

S L e e =

:
b
:
I.*'
!
3

T T e

o L o

A I TRy

i

FASNALT paptd

306 Shared Memory Introduction Chapter 12

shmfincrl .o

1 #include "unpipec.h”

2 #define SEM_MNAME "my'sem”

3 int count = 0;

4 int

5 main(int argc, char **argvl

&

7 int i, nloop;

B Sem_t *mutex;

] if (argc != 2)
10 err_guiti{"usage: incrl <d#loops="};
11 nloop = atoi{argv([1]);
12 /* create, initialize, and unlink semaphore */
13 mutex = Sem_open|Px_ipe_name (SEM_NAME), O_CREAT | O_EXCL, FILE_MODE, 11;
14 Sem_unlink (Px_ipc_name {SEM_NAME) } ;
15 setbuf (stdout, NULL): /= stdout is unbuffered */
16 if (Ferk{] == 0} { f* child */f
17 for {i = 0; 1 = nloop; i++) |
18 Sam_walt (mutex} ;
19 printf (*child: %4\n", count++);
20 Sem_post (mutex);
21 }
22 exic(Q);
23 1]

24 /T parent */

25 for (1 = 0; i < nloop; i++)

26 Sem_wait (mutex) ;

27 printf(*parent: %4\n", count++);:

28 Sem_post {mutex) ;

29 1

3o exit (0] ;

i1} .

shm fincri

Figure 12.3 Parent and child both increment the same global.

If we run this program and look only at the output when the system switches
between the parent and child, we have the following:

child: 0 child runs first, counter starts at 0

child: 1

child: &7E

child: 679

parent: 0 child s stopped, parent riuns, counter starts at O
parent: 1

parent: 1220
parent: 1221
child: 680 parent is stopped, child runs

Section 12.2 mmap, munmap, and msync Functions 307

Chapter 12

sk incrl.c child: 681

child: 207H

child: 2079

parent: 1222 child is stopped, parent runs
parent: 1223

and so on

As we can see, both processes have their own copy of the global count. Each starts
with the value of this variable as 0, and each increments its own copy of this variable.
Figure 12.4 shows the parent before calling fork.

parent

int count;

g t executing here —m-
{WODE, 1) ; paren ting if (Fork() == 0) {

/* child =/
¥

/% parent */

Figure 124 Parent before calling fork.

When fork is called, the child starts with its own copy of the parent’s data space. Fig-
ure 12.5 shows the two processes after fork returns.

parent _ ~ child
int count; int count;
if {(Forki{) == 0} { if (Forki} == 0) [
/* child */f f*% child */

- sk incrl.c L. child executing here —
] }

/* parent =/ /* parent */

= switches ,
: parent executing here —m

Figure 12.5 Parent and child after fork returns.

We see that the parent and child each have their own copy of the variable count.

12.2 mmap, munmap, and msync Functions

The mmap function maps either a file or a Posix shared memory object into the address
space of a process. We use this function for three purposes:

308 Shared Memory Infroduction Chapter 12

1. with a regular file to provide memory-mapped I/O (Section 12.3),

2. with special files to provide anonymous memory mappings (Sections 12.4
and 12.5), and

3. with shm_open to provide Posix shared memory between unrelated processes
(Chapter 13).

tinclude =sys/mman.h>
void *mmapiveid *addr, size_t lem, int prof, int flags, int fd, off_t offset);

i Returns: starting address of mapped region if OK, MAP_FAILED on ermor |

addr can specify the starting address within the process of where the descriptor fd
should be mapped. Normally, this is specified as a null pointer, telling the kernel to
choose the starting address. In any case, the return value of the function is the starting
address of where the descriptor has been mapped.

len is the number of bytes to map into the address space of the process, starting at
offset bytes from the beginning of the file. Normally, offset is 0. Figure 12.6 shows this

mapping.
address space
of process
high memory
- - .
LY
MEmory \. .
mapped .
portion 1
of file
return value of mmap - S . |
.. :
low memory "II \
[

file referenced by descriptor fd: purﬁgrnufr;ilprj

I
tl e

Figure 12.6 Example of memary-mapped file.
The protection of the memory-mapped region is specified by the prot argument

using the constants in Figure 12.7. The common value for this argument is PROT_READ
| PROT_WRITE for read—write access.

@pter 12

s 12,4

Dlesses

iument
[_READ

1

Section 12.2 mmap, munmag, and msyne Functions 309

prof Drescription ,

PROT_READ data can be read '
PROT_WRITE | data can be written i
PROT_EXEC | data can beexecuted |
PROT_NONE | data cannot be accessed |

Figure 12.7 prof argument for mmap. h=.

Jlags Deescription
MAP SHARED | changes are shared
MAP_PRIVATE | changes are private

MAP_FIXED interpret the addr argument exactly

Figure 12.8 flags argument for mmap.

The flags are specified by the constants in Figure 12.8. Either the MAP_SHARED or
the MAP_PRIVATE flag must be specified, optionally ORed with Map FIXED. If
MAF_PRIVATE is specified, then modifications to the mapped data by the calling pro-
cess are visible only to that process and do not change the underlying object (either a
file object or a shared memory object). If MAP_SHARED is specified, modifications to the
mapped data by the calling process are visible to all processes that are sharing the
object, and these changes do modify the underlying object.

For portability, MAP_FIXED should not be specified. If it is not specified, but addr 1s
not a null pointer, then it is implementation dependent as to what the implementation
does with addr. The nonnull value of addr is normally taken as a hint about where the
memory should be located. Portable code should specify addr as a null pointer and
should not specify MAP_FIXED.

One way to share memory between a parent and child is to call mmap with
MAP_SHARED before calling fork. Posix.1 then guarantees that memory mappings in
the parent are retained in the child. Furthermore, changes made by the parent are visi-
ble to the child and vice versa. We show an example of this shortly.

After mmap returns success, the fd argument can be closed. This has no effect on the
mapping that was established by mmap.

To remove a mapping from the address space of the process, we call munmap.

#include <gys/mman.h>

int munmap (void *addr, size_t lem);

Returns: 0if OK, -1 on error

The addr argument is the address that was returned by mmap, and the len is the size of
that mapped region. Further references to these addresses result in the generation of a
SIGSEGV signal to the process (assuming, of course, that a later call to mmap does not
reuse this portion of the address space).

310 Shared Memory Introduction Chapter 12

If the mapped region was mapped using MAP_PRIVATE, the changes made are dis-
carded.

In Figure 12.6, the kernel’s virtual memory algorithm keeps the memory-mapped
file (typically on disk) synchronized with the memory-mapped region in memory,
assuming a MAP_SHARED segment. That is, if we modify a location in memory that is
memory-mapped to a file, then at some time later the kernel will update the file accord-
ingly. But sometimes, we want to make certain that the file on disk corresponds to what
is in the memory-mapped region, and we call msync to perform this synchronization.

#include <sys/mman.h> ‘
int msyne [veoid taddr, size t len, int flags):

I Returns: 0 if OK, =1 on error |

The addr and len arguments normally refer to the entire memory-mapped region of
memory, although subsets of this region can also be specified. The flags argument is
formed from the combination of constants shown in Figure 12.9.

! Constant Description
MS_ASYHC perform asynchronous writes
MS5_S¥YHC perform synchronous writes |

MS_INVALIDATE | invalidate cached data 1

Figure 1.9 flaygs for msyne fumction.

One of the two constants MS_ASYNC and MS_SYNC must be specified, but not both. The
difference in these two is that MS_ASYNC returns once the write operations are queued
by the kernel, whereas MS_SYNC returns only after the write operations are complete. If
WS TNVALIDATE is also specified, all in-memory copies of the file data that are incon-
sistent with the file data are invalidated. Subsequent references will obtain data from
the file.

Why Use mmap?

Our description of mmap so far has implied a memory-mapped file: some file that we
open and then map into our address space by calling mmap. The nice feature in using a
memory-mapped file is that all the I/O is done under the covers by the kernel, and we
just write code that fetches and stores values in the memory-mapped region. We never
call read, write, or 1seek. Often, this can simplify our code.

Recall our implementation of Posix message queues using mmap and the storing of values into
a mag_hdr structure in Figure 5.30 and the fetching of values from a mso_hdr structure in Fig-
ure 5.32.

are dis-

mapped
BETNOTY,
¥ that is
accord-
&2 what
o

B

rinig

srion of
zment is

th. The
gueued
pete. 1f
2 incorn-
ta from

that we
wsing a
and we
F never

s into
pe-in Fig-

Section 12.3 Increment Counter in a Memory-Mapped File 311

123

11=-14

I15-1§€

S0-34

Beware of some caveats, however, in that not all files can be memory mapped. Try-
ing to map a descriptor that refers to a terminal or a socket, for example, generates an
error return from mmap. These types of descriptors must be accessed using read and
write (or variants thereof).

Another use of mmap is to provide shared memory between unrelated processes. In
this case, the actual contents of the file become the initial contents of the memory that is
shared, and any changes made by the processes to this shared memory are then copied
back to the file (providing filesystem persistence). This assumes that MAP SHARED is
specified, which is required to share the memory between processes.

Details on the implementation of mmap and its relationship to the kernel's virtual memory
algorithms are provided in [McKusick et al, 1995] for 4.4BSD and in [Vahalia 19%] and [Good-
heart and Cox 1994] for SVE4.

Increment Counter in a Memory-Mapped File

We now modify Figure 12.3 (which did not work) so that the parent and child share a
piece of memory in which the counter is stored. To do so, we use a memory-mapped
file: a file that we cpen and then mmap into our address space. Figure 12.10 shows the

nNew program.
New command-line argument
We have a new command-line argument that is the name of a file that will be mem-

ory mapped. We open the file for reading and writing, creating the file if it does not
exist, and then write an integer with a value of 0 to the file.

mmap then close descriptor

We call mmap to map the file that was just opened into the memory of this process.
The first argument is a null pointer, telling the system to pick the starting address. The
length is the size of an integer, and we specify read-write access. By specifying a fourth
argument of MAP_SHARED, any changes made by the parent will be seen by the child,
and vice versa. The return value is the starting address of the memory region that will
be shared, and we store it in ptr.

fork

We set standard output unbuffered and call fork. The parent and child both incre-
ment the integer counter pointed to by ptr.

Memory-mapped files are handled specially by fork, in that memory mappings
created by the parent before calling fork are shared by the child. Therefore, what we
have done by opening the file and calling mmap with the MAP_SHARED flag is provide a
piece of memory that is shared between the parent and child. Furthermore, since the
shared memory is a memory-mapped file, any changes to the shared memory (the piece
of memory pointed to by ptr of size sizeof (int)) are also reflected in the actual file
(whose name was specified by the command-line argument).

312 Shared Memory Introduction Chapter 12

— ghim [incr2 0

1 #include “unpipc.h*”

2 Wdefine SEM _NAME "mysem”

3 int

4 main(int argc, char **argv)

5 [

& int £f4, i, nloop, zero = 0;

7 int *pEr;

o} sem_t "mutex;

a9 if (arge !'= 1)

10 err_cuit{"usage: iner? <pathname> <#loops="];:

11 nleop = atoilargv[a]);
1z /* ppen file, initialize to 0, map into memory */
13 fd = Openi{argv[1l], O_RDWR | C_CREAT. FILE_MODE) ;
14 wWrite(fd, &zero, sizeof(ink]];

15 ptr = Mmap{NULL, sizeof{int}, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0):
16 Close(£d);

17 i* create, initialize, and unlink semaphore =/

18 mutex = Sem_open(Px_ipc_name(SEM NAME), O_CREAT | O_EXCL, FILE MODE. 1}:
19 Sem_unlink (Px_ipc_name | SEM_NAME)) ;

20 setbuf (stdout, NULL]; /= stdout is unbuffered */
21 if (Pork() == 0} { /* child =/
22 for (1 = 0; i < nloop: i++} {
23 Sem_wait (mutex);
24 princfi"child: %d\n®, (*ptrl++];
25 Sem_post (mutex) ;
26 }

27 exit (0);
28 1

29 /* parent */

30 for (i = 0; 1 = nloop; i++) {

i1 Sem_wait (mutex);
32 printf ("parent: %din", (*ptri++);

i3 Sem_post (mutex) ;

34 }
35 exic (0}
e shmincr2.c

Figure 1210 Parent and child incrementing a counter in shared memory.

If we execute this program, we see that the memory pointed to by ptr is indeed
shared between the parent and child. We show only the values when the kernel
switches between the two processes.

splaris % imer2 ftmp/temp.l 10000

child: 0 child starts first
child: 1

child: 128

child: 12%

parent: 130 child is stopped, parent starfs

merl.c

el

Section 12.3

Increment Counter in a Memory-Mapped File 313

]
£
=
2
=

parent: 131

parent: 636
parent: 637
child: 638
child: 63%

child: 1517
child: 1518
parent: 1519
parent: 1520

parent: 19393

solaris % od

parent is stopped, child starts

child is stopped, parent slarls

-0 ftmp/temp.1l

0000000 0000020000

ooooood

final line of output

Since the file was memory mapped, we can look at the file after the program terminates
with the od program and see that the final value of the counter (20,000} is indeed stored

in the file.

Figure 12.11 is a modification of Figure 12.5 showing the shared memory, and show-
ing that the semaphore is also shared. We show the semaphore as being in the kernel,
but as we mentioned with Posix semaphores, this is not a requirement. Whatever
implementation is used, the semaphore must have at least kernel persistence. The
semaphore could be stored as another memory-mapped file, as we demonstrated in Sec-

tion 10.15.

parent executing here —a

shared memory

count

parent
int *ptr;
if {Forky) == 0} {
/* child */

}

/* parent */

A

child executing here —a

child

=int *pLr;

if (Forki(]l == 0} {
/* child */

¥

/* parent */

S

“kermel

Figure 1211 Farent and child sharing memory and a semaphore.

We show that the parent and child each have their own copy of the pointer ptr, but
each copy points to the same integer in shared memory: the counter that both processes

increment.

Shared Memory Introduction Chapter 12

We now modify our program from Figure 12.10 to use a Posix memory-based
semaphore instead of a Posix named semaphore, and store this semaphore in the shared
memory. Figure 12,12 is the new program.

shm/incri.c
1 #include "unpipe.h”
2 struct shared {
3 sem_t mutex; /* the mutex: a Posix memory-based semaphore */
4 int count ; /* and the counter =/
5 } shared;
B int
7 main(int argc, char **argv}
g8 {
9 int fd, i, nloop:
10 struct shared *ptr;
11 if [argc !'= 3)
12 err_quit{*usage: incrd <pathname= <#loops=>");
13 nleop = atoi{argv[2]);
14 /* open file, initialize te 0, map into memory */
15 fd = Openlargw([l], O_RDWR | O_CHEAT, FILE_MODE):
16 Write(fd, kshared, sizeof{struct shared]):
17 ptr = Mmap(NULL, sizeof (struct shared), PROT_READ | PROT_WRITE,
18 MAP_SHARED, fd, 0}
14 Close(fd);
20 /* initialize semaphore that is shared between processes */
21 Sem_init (kptr-»mutex, 1, li:
22 setbuf (stdout, NULL); /% stdout is unbuffered */
23 if (Forki) == 01 { /* child */
24 for [1 = 0; 1 < nloop; i++] |
25 Sem _wait {kptr->mitex);
26 princfi"child: %d\n", ptr->count++):
27 Sem_post [&ptr->mutex];
28 H
29 exic(l);
g }
31 /* parent */
iz for (i = 0; 1 < nloop; i++} |
33 Sem_walt [&ptr->mutex);
3d printf{"parent: %d\n", ptr->count++):
i5 Sem_post (Eptr->mutex) ;
3B }
37 exit (0]
e shm incrd.c

Figure 1112 Counter and semaphore are both in shared memory.

Define structure that will be in shared memory

2-5 We define a structure containing the integer counter and a semaphore to protect it.
This structure will be stored in the shared memory object.

Chapter 12

wrv-based
me shared

ﬁt ‘merdc

smachore */f

o incr3oc

i
&
&
g
1
e
3

Section 12.4

44B5D Anonymous Memory Mapping 315

i14-19

20-21

parent executing here —a= | |

124

Map the memory

We create the file that will be mapped, and write a structure of 0 to the file. All we
are doing is initializing the counter, because the value of the semaphore will be initial-
ized by the call to sem_init. Nevertheless, writing an entire structure of 0 is simpler
than to try to write only an integer of 0.
Initialize semaphore

We are now using a memory-based semaphore, instead of a named semaphore, so
we call sem_init to initialize its value to 1. The second argument must be nonzero, to
indicate that the semaphore is being shared between processes.

Figure 12.13 is a modification of Figure 12.11, noting the change that the semaphore
has moved from the kernel into shared memory.

shared memory

count & semaphore

parent

4\ child

/ \‘___
ct shared *ptr.--l—/ ———Lstruct shared *ptr;

Etru
if (Fork() == 0} { | {if (Fork(} == 0) {
f* child */f | | /* child */
child executing here —m= |
})
f* parent */ ! S* parent =/

Figure 1213 Counter and semaphore are now in shared memory.

4.4BSD Anonymous Memory Mapping

Our examples in Figures 12.10 and 12.12 work fine, but we have to create a file in the
filesystem (the command-line argument), call open, and then write zeros to the file to
initialize it. When the purpose of calling mmap is to provide a piece of mapped memory
that will be shared across a fork, we can simplify this scenario, depending on the
implementation.

1. 4.4BSD provides anonymous memory mapping, which completely avoids having
to create or open a file. Instead, we specify the flags as MAP_SHARED |
MAP_ANON and the fd as —1. The offset is ignored. The memory is initialized to (.
We show an example of this in Figure 12.14.

2. SVR4 provides /dev/zero, which we open, and we use the resulting descrip-

tor in the call to mmap. This device returns bytes of 0 when read, and anything
written to the device is discarded. We show an example of this in Figure 12.15.

316 Shared Memory Introduction Chapter 12

6-11

12-14

125

(Many Berkeley-derived implementations, such as Sun(OS 4.1.x and BSD/053.1,
also support /dev/zero.)

Figure 12.14 shows the only portion of Figure 12.10 that changes when we use 44BSD
aNONymous memory mapping.
—— ghm | incy_map_anon.c

3 int

4 mainlint argec, char **argv)

5

] int i, nloop;

7 int *ptr;

a gem_t *mutex;

4 if (arge != 2)

10 err_guiti"usage: incr_map_anchn <#loops="];
11 nloop = atoilargv(l]):

12 /* map into memory */

13 ptr = Mmap (NULL, sizeof (int), PROT_READ | FROT_WRITE,
14 ' MAP SHARED | MaP_RNON, -1, O):

shm incr_map_anon.c
Figure 12.14 44BSD anonymous memory mapping.

The automatic variables £d and zero are gone, as is the command-line argument
that specified the pathname that was created.

We no longer open a file. The MAP_ANCN flag is specified in the call to mmap, and
the fifth argument (the descriptor) is 1.

SVR4 /dev/zero Memory Mapping

Figure 12.15 shows the only portion of Figure 12.10 that changes when we map
fdev/zero.

shmincr_dev_zero.c

3 int

4 mainiint argc, char **argv)

51

6 int fd, i, nloop:

7 int Tptr:

] gam_t *mubex;

9 if (arge = 2)

10 err_quit{"usage: incr_dev_zeroc <#loops>")
11 nloop = atollargv[1]):

12 i* gpen fdev/zers, map into memory >

13 fd = Open|"/dev/zerc", C_RDWR];

14 ptr = Mmap|NULL, sizeof{intl. PROT_READ | PROT_WRITE. MAP_ SHARED, fd, 0};
15 Cloge (£4);

shn incr_dev_zern.c

Figure 1215 SVR4 memory mapping of /dev/zeroe.

 Chapter 12

ED/0S 3.1,

:

wse 44BSD

¥ Iy _anon.c

R mmay_anon.c

g argument
pmap, and

o

= we map

gy _dev_zero.c

ar. fd, 0);

ey _dev_zevo.c

Section 12.6 Referencing Memory-Mapped Objects 317

6-11

12-1%5

126

The automatic variable zero is gone, as is the command-line argument that speci-
fied the pathname that was created.

We open /dev/zero, and the descriptor is then used in the call to mmap. We are
guaranteed that the memory-mapped region is initialized to 0.

Referencing Memory-Mapped Objects

When a regular file is memory mapped, the size of the mapping in memory (the second
argument to mmap) normally equals the size of the file. For example, in Figure 12.12 the
file size is set to the size of our shared structure by write, and this value is also the
size of the memory mapping. But these two sizes—the file size and the memory-
mapped size—can differ.

We will use the program shown in Figure 12.16 to explore the mmap function in
more detail.

shm [testT.c
1 #include *unpipe.h"
2 int
3 main(int argc, char **argv)
4 i
5 ine fd, i:
[char YpLr;
r aige_r filesize, mmapsize, pagesize;
] if {arge != 4)
a err_guit(|*usage: testl <pathname> <filesize» <mmapsize»"];
14 filesize = atoiijargw(2]):
11 mmapsize = atol{argw[3]):
12 i* gpen file: create or truncate; set file size */
13 fd = Openifargv[l], O_RDWR | O_CREAT | O_TRUNC, FILE_MODE);
14 Lesegk{fd, filesize - 1, SEEEK_SET):
15 Writelfd, "", 1}:
16 pbr = Mmap (NULL, mmapsize, PROT_READ | PROT_WRITE, MAF_SHARED, £d, 0};
17 Cloge(fd);
18 pagesize = Sysconf(_SC_PAGESIZE);
19 printf ("PAGESIZE = &ld\n*, (long) pagesize];
20 for (i = 0; i = maxi(filesize, mmapsize); i += pagesize) {
2l printf ("ptr(®d] = %d\n", i, ptrli]}:
22 ptrii] = 1;
23 printf(*ptrl%4d] = %din", i + pagesize - 1, ptr[i + pagesize - 1]1;
24 ptrii + pagesize - 1] = 1;
25 }
26 printf("ptri%d] = %d\n*, 1, ptrlil):
27 axit(0);
28 1}
shm [test].c

Figure 1216 Memory mapping when mmap equals file size,

318 Shared Memory Introduction Chapter 12

§-11

=]
L)
]
-
N

16-17

18-19

20-28

Command-line arguments

The command-line arguments specify the pathname of the file that will be created
and memory mapped, the size to which that file is set, and the size of the memory map-
ping.
Create, open, truncate file; set file size

The file being opened is created if it does not exist, or truncated to a size of 0 if it
already exists. The size of the file is then set to the specified size by seeking to that size
minus 1 byte and writing 1 byte.

Memory map file
The file is memory mapped, using the size specified as the final command-line
argument. The descriptor is then closed.

Print page size
The page size of the implementation is obtained using sysconf and printed.

Read and store the memory-mapped region

The memory-mapped region is read (the first byte of each page and the last byte of
each page), and the values printed. We expect the values to all be 0. We also set the first
and last bytes of the page to 1. We expect one of the references to generate a signal
eventually, which will terminate the program. When the for loop terminates, we print
the first byte of the next page, expecting this to fail (assuming that the program has not
already failed).

The first scenario that we show is when the file size equals the memory-mapped
size, but this size is not a multiple of the page size.

aclariz % la -1 foo

foo: Mo such f£file or directory
solaris % testl foo 5000 5000
DAGESIZE = 4096

ptr[C}] = 0

ptr[40585] = 0
per[4098] = 0
phr[8l2l] = 0

segmentation Fault (coredump)

zolaris % 1ls -1 foo

-rw-r--f-- 1 rstevens otherl 5000 Mar 20 17:18 foo

solaris % od -b -A 4 foo

ooo0000 001 GO0 000 000 Q00 OO0 000 000 000 000 000 QOO0 Q00 000 GO0 0aa
0000016 000 000 000 D00 DOO0 000 000 OO0 ODO OOO 000 000 QOO0 OCO OO0 000
-

0004080 000 OO 000 000 000 000 OO0 OO0 00O 00O 000 000 OO0 OO0 000 001
0004096 001 000 000 000 000 000 OO0 OO0 000 000 000 000 000 QOO QCO Q00
gondllz 000 o000 000 000 000 Q00 Q00 OG0 000 000 000 000 Q00 000 OO0 000

-

0005000

The page size is 4096 bytes, and we are able to read the entire second page (indexes 4096
through 8191), but a reference to the third page (index 8192) generates SIGSEGV, which

of 0 if it
hat size

and-line

.!‘.b_rtr-_' of
ihe first
& signal
we print
1 Bas not

Elsa.'eq.:r[::e-:i

e

-
s

s 4096
7, which

Section 12.6 Referencing Memory-Mapped Objects 319

the shell prints as “Segmentation Fault.” Even though we set ptr] 8191] to 1, this
value is not written to the file, and the file's size remains 5000. The kernel lets us read
and write that portion of the final page beyond our mapping (since the kernel's memory
protection works with pages), but anything that we write to this extension is not written
to the file. The other 3 bytes that we set to 1, indexes 0, 4095, and 4096, are copied back
to the file, which we verify with the od command. (The -b option says to print the
bytes in octal, and the -2 d option says to print the addresses in decimal.) Figure 12.17

depicts this example.
file size
file
offset: D - 1999

index: 0 4999 5000 8191

memory-mapped region L B
R references
}-h————————w—teﬁnaumsDK M————————ﬂ-+q..gmmyam
* SIGSEGV

mnag || size
Figure 1217 Memory mapping when mmap size equals file size.

If we run our example under Digital Unix, we see similar results, but the page size
is now 8192,

alpha % 18 -1 foo

foo not found

alpha % testl foo 5000 5000
PAGESIZE = 8192

per[0] = 0

ptr[8191] = 0

Memory fault (coredump)

alpha % 18 -1 foo
~rWeE--r--— 1 rstevens operator 5000 Mar 21 08:40 foo

We are still able to reference beyond the end of our memory-mapped region but within
that page of memory (indexes 5000 through 8191). Referencing ptr [8192] generates

SIGSEGV, as we expect.

In our next example with Figure 12.16, we specify a memory mapping (15000 bytes)

that is larger than the file size (5000 bytes).

snlaris % rm foo

aolaris % testl foo 5000 15000
PRGESIZE = 4006

ptrfd] = 0
per{4085] =

b
pLri4036} = 0

Rt o Sy e et LR T 1) R s Sl b o ks s

Er s sy s b

e b

e e n nd R et s

LI

et -

ot] =i e e P B e Rt e b s R St

320 Shared Memory Introduction Chapter 12

ptri8191] = 0

Buz Error (coredump)

aolaris % 1la -1 foo

~IW-EF--T=- 1 rstevens otherl 5000 Mar 20 17:37 foo

The results are similar to our earlier example when the file size and the memory map
size were the same (both 5000). This example generates STGBUS (which the shell prints
as “Bus Error”), whereas the previous example generated SIGSEGV. The difference is
that SIGBUS means we have referenced within our memory-mapped region but beyond
the size of the underlying object. The SIGSEGV in the previous example meant we had
referenced beyond the end of our memory-mapped region. What we have shown here
is that the kernel knows the size of the underlying object that is mapped (the file foo in
this case), even though we have closed the descriptor for that object. The kernel allows
us to specify a size to mmap that is larger than the size of this object, but we cannot refer-
ence beyond its end (except for the bytes within the final page that are beyond the end
of the object, indexes 5000 through 8191). Figure 12.18 depicts this example.

file size

'

file
offset: 4
mmap |) size
index: [Uy 500 8191 8192 149'99+
T | references
I-ni references OK —---~-~—-—-—-|-7 SIGBUS = g generate
S1GSEGV

Figure 1218 Memory mapping when mmap size exceeds file size.

Our next program is shown in Figure 12.19. It shows a common technique for han-
dling a file that is growing: specify a memory-map size that is larger than the file, keep
track of the file's current size (making certain not to reference beyond the current end-
of-file), and then just let the file's size increase as more data is written to the file.

Open file

§-11 We open a file, creating, it if it does not exist or truncating it if it already exists. The
file is memory mapped with a size of 32768, even though the file's current size is (.
Increase file size

12-16 We increase the size of the file, 4096 bytes at a time, by calling ftruncate (Sec-
tion 13.3), and fetch the byte that is now the final byte of the file.

@pz:u

ey map
§ prints
pEnce is
Bevond
we had
¥n here
k$o0 in
fallows
o refer-
the end

?uﬁemmcﬂ
fgpmeraw

BIGSEGV

for han-

e, keep
ﬂ end-

s The

= (Sec-

e

3

BRI

ottt s

Section 12.6

Referencing Memory-Mapped Objects 321

shm test2.c

ptr = Mmap (MULL, SIZE, PROT_READ | FROT_WRITE, MAF_SHARED, fd, 0);

1 #include “unpipc.h”

2 #define FILE “test.data”

3 #define SIZE 312768

4 int

5 main(int argc, char **argv)

& {

7 int £fd, i;

E char *ptr;

9 /* open: create or truncate; then mmap file ¥/
10 fd = Cpen(FILE, O_RDWR | O_CREAT | CO_TRUNC, FILE_MODE);
11

12 for {i = 4096; i == SIZE; i += 4098} {

13 princf(*setting file size to %d\n", i);

14 Frruncate(fd, i)

15 printf(*ptri%d] = %dwn", i - 1, ptrli - 11};
16 1

17 exit(0);

18 }

shm |/ test2.c

Figure 1119 Memory map example that lets the file size grow.

When we run this program, we see that as we increase the size of the file, we are
able to reference the new data through our established memory map.

alpha % 18 -1 test.data
test.data: Mo such £ile or directory
alpha % testl

setting file size to 4096
ptr[40%5] = 0

setting file size to B19%2
pbr[Bl31] = 0

setting file size to 12288
per[l2287] = 0

getting file size to 16384
prr[l6383] = 0

getting file size to 20480
ptr[20479) = 0

sekting file size to 24576
pEr[24575] = O

getting £ile size to 28672
ptri28871] = 0

setting file size to 32768
pEr[32767] = 0

alpha % ls =1 test.data

~EW-I==I-~ 1 ratevens otherl 32768 Mar 20 17:53 test.data

e i s e e b L D e e i e s e

LIS TR e

e ot S LD T RS B oo T LAy T

e e b e e el e

a2

Shared Memory Introduction Chapter 12

12.7

This example shows that the kernel keeps track of the size of the underlying object that
is memory mapped (the file test.data in this example), and we are always able to ref-
erence bytes that are within the current file size that are also within our memory map.
We obtain identical results under Solaris 2.6.

This section has dealt with memory-mapped files and mmap. In Exercise 13.1, we
modify our two programs to work with Posix shared memory and see the same results.

Summary

Shared memory is the fastest form of IPC available, because one copy of the data in the
shared memory is available to all the threads or processes that share the memory. Some
form of synchronization is normally required, however, to coordinate the various
threads or processes that are sharing the memory.

This chapter has focused on the mmap function and the mapping of regular files into
memory, because this is one way to share memory between related or unrelated pro-
cesses. Once we have memory mapped a file, we no longer use read, write, or lseek
to access the file; instead, we just fetch or store the memory locations that have been
mapped to the file by mmap. Changing explicit file I/O into fetches and stores of mem-
ory can often simplify our programs and sometimes increase performance.

When the memory is to be shared across a subsequent fork, this can be simplified
by not creating a regular file to map, but using anonymous memory mapping instead.
This involves either a new flag of MAP_ANON (for Berkeley-derived kernels) or mapping
/dev/zero (for SVR4-derived kernels).

Our reason for covering mmap in such detail is both because memory mapping of
files is a useful technique and because mmap is used for Posix shared memory, which is
the topic of the next chapter.

Also available are four additional functions (that we do not cover) defined by Posix
dealing with memory management:

e mlockall causes all of the memory of the process to be memory resident.
munlockall undoes this locking.
¢ mlock causes a specified range of addresses of the process to be memory resi-

dent, where the function arguments are a starting address and a number of bytes
from that address. munlock unlocks a specified region of memory.

Exercises

121 What would happen in Figure 12.19 if we executed the code within the for loop one more
time?

122 Assume that we have two processes, a sender and a receiver, with the former just sending
messages to the latter. Assume that System V message queues are used and draw a dia-
gram of how the messages go from the sender to the receiver. Mow assume that our

bapter 12

pect that

b ko ref-
Y map.

31, we

specyis.

g2 in the
a3 Some
WATIOUS

Bes into
ped pro-
r ls=ek
we been
o mem-

mplified
mstead.
mepping

E:ing of
phich is

i Posix

esident.

ary resi-
of bvtes

pme more

F sending
3 dia-
#hat our

:
G
!

gn A, ST

Chapter 12

Exercises 323

123

124

125

implementation of Posix message queues from Section 5.8 is used, and draw a diagram of
the transfer of messages.

With mmap and MAP_SHARED, we said that the kernel virtual memory algorithm updates
the actual file with any modifications that are made to the memory image. Read the man-
ual page for /dev/zera to determine what happens when the kernel writes the changes
back to the file.

Modify Figure 12.10 to specify MAP_PRIVATE instead of MAP_SHARED, and verify that the
results are similar to the results from Figure 12.3. What are the contents of the file that is
memory mapped?

In Section 6.9, we mentioned that one way to select on a System V message queue is to
create a piece of anonymous shared memory, create a child, and let the child block in its
call to msgrev, reading the message into shared memory. The parent also creates two
pipes; one is used by the child to notify the parent that a message is ready in shared mem-
ory, and the other pipe is used by the parent to notify the child that the shared memory is
now available. This allows the parent to select on the read end of the pipe, along with
any other descriptors on which it wants to select. Code this solution. Call our my_shm
function (Figure A.46) to allocate the anonymous shared memory object. Use our
msgereate and msgsnd programs from Section 6.6 to create the message queue, and then
place records onto the queue. The parent should just print the size and type of each mes-
sage that the child reads.

k-
-
X
x
1
4
2
8.
i
o
3]
.
o
&
&
i
i
=
E
&
o

131

13

Posix Shared Memory

Introduction

The previous chapter described shared memory in general terms, along with the mmap
function. Examples were shown that used mmap to provide shared memory between a
parent and child:

* using a memory-mapped file (Figure 12.10),
* using 44BSD anonymous memory mapping (Figure 12.14), and
* using /dev/zeroc anonymous memory mapping (Figure 12.15).

We now extend the concept of shared memory to include memory that is shared
between unrelated processes. Posix.1 provides two ways to share memory between
unrelated processes.

1. Memory-mapped files: a file is opened by open, and the resulting descriptor is
mapped into the address space of the process by mmap. We described this tech-
nique in Chapter 12 and showed its use when sharing memory between a par-
ent and child. Memory-mapped files can also be shared between unrelated

processes.

2. Shared memory objects: the function shm_open opens a Posix.1 IPC name (per-
haps a pathname in the filesystem), returning a descriptor that is then mapped
into the address space of the process by mmap. We describe this technique in
this chapter.

325

326 Posix Shared Memory Chapter 13

Both techniques require the call to mmap. What differs is how the descriptor that is an
argument to mmap is obtained: by open or by shm_open. We show this in Figure 13.1.

Both are called memory objects by Posix.

Posix memory-mapped file Posix shared memory object
£fd = openi{pathname, ...); fd = shm_openiname, ...):
.____\H- '--..____H-
T
Tl
ptr = mmap| ... , fd, ... }: ptr = mmapl(... , fd, ... }:

Posix memory objects
Figure 13.1 Posix memory objects: memory-mapped files and shared memory objects.

13.2 shm open and shm unlink Functions

The two-step process involved with Posix shared memory requires

1. calling shm_open, specifying a name argument, to either create a new shared

memory object or to open an existing shared memory object, followed by

2. calling mmap to map the shared memory into the address space of the calling

process.

The name argument used with shm_cpen is then used by any other processes that want

to share this memory.

The reason for this two-step process, instead of a single step that would take a name and

return an address within the memory of the calling process, is that rmap already existed when
Posix invented its form of shared memory. Clearly, a single function could do both steps. The

reason that shm_open returns a descriptor (recall that ma_open returns an mgd_t value and

sem_cpen returns a pointer to a sem_t value) is that an open descriptor is what mmap uses to

map the memory object into the address space of the process.

#include =sys/mman.h>

int shm_ocpen(const char *mame, int oflag, mode_t mode) ;

int shm_unlink{const char *rame);

Returns: nonnegative descriptor if OK, —1 on error

Returns: 0 if OK, ~1 on error

We described the rules about the name argument in Section 2.2,

LBk & RBE& HOUOE

Bapier 13

h* 1= an
mre 13.1.

w shared
v
e calling

bat want

same and
sted when
weps. The
walue and
= uses bo

fETTOT

L pinis

TEASE <-.'.I.,_;;;,}im,,w%;_ﬁ\.}jf}ﬁh:;?'?éq-;;n;m,;%wﬁ._ '_':.,.‘.: R RO R e ':':-'-a-'_':-:.:.'.-'."'.::'i*:"-5.5-:

LR

Section 13.3 ftruncate and fstat Functions 327

13.3

The oflag argument must contain either O_RDONLY (read-only) or O_RDWR
(read-write), and the following flags can also be specified: O_CREAT, O_EXCL, or
O_TRUNC. The O_CREAT and C_EXCL flags were described in Section 2.3. If O_TRUNC
is specified along with 0_RDWR, then if the shared memory object already exists, it is
truncated to 0-length.

mode specifies the permission bits (Figure 2.4) and is used when the 0_CREAT flag is
specified. Note that unlike the mg_open and sem_open functions, the mode argument
to shm_open must always be specified. If the O_CREAT flag is not specified, then this
argument can be specified as 0.

The return value from shm_open is an integer descriptor that is then used as the
fifth argument to mmap.

The shm_unlink function removes the name of a shared memory object. As with
all the other unlink functions (the unlink of a pathname in the filesystem, the
mg_unlink of a Posix message queue, and the sem_unlink of a Posix named
semaphore), unlinking a name has no effect on existing references to the underlying
object, until all references to that object are closed. Unlinking a name just prevents any
subsequent call to open, mg_open, or sem_open from succeeding.

ftruncate and f£stat Functions

When dealing with mmap, the size of either a regular file or a shared memory object can
be changed by calling ftruncate,

f#include <unistd.h=
int ftruncateiint [, off_t length);

Returns: (1 if OK, -1 on error

Posix defines the function slightly differently for regular files versus shared memory
objects.

* For a regular file: If the size of the file was larger than length, the extra data is
discarded. If the size of the file was smaller than length, whether the file is
changed or its size is increased is unspecified. Indeed, for a regular file, the
portable way to extend the size of the file to length bytes is to lseek to offset
length-1 and write 1 byte of data. Fortunately, almost all Unix implementa-
tions support extending a file with ftruncate,

* For a shared memory object: ftruncate sets the size of the object to length.

We call ftruncate to specify the size of a newly created shared memory object or
to change the size of an existing object. When we open an existing shared memory
object, we can call fstat to obtain information about the object.

WM Ty LR, ey = e e |

s L

L

i
=
i
¥

P g L T O

P L R

gt Lo) e

3

ot o Sl i e L

328 Posix Shared Memory Chapter 13

#include <sys/types.h> ‘
#include <svs/stat. h>

int fstat{int fif, struct atat *buf); |

Returns: (1 if OK, =1 on error ‘

A dozen or more members are in the stat structure (Chapter 4 of APUE talks about all
the members in detail), but only four contain information when fd refers to a shared

memory object.
struct stat {
mode_t st_mode; /* mode: S_I(RW}{USR,GRP,OTH} */
uid_t at_uid; /* user ID of owner */
gld_t st_gid; /* group ID of owner */
off_t at_size; /* size in bytes */

ki

We show examples of these two function in the next section.

Unfortunately, Posix.1 does not specify the initial contents of a newly created shared memory
object. The description of the shm_cpen function states that “The shared memory object shall
have a size of 0" The description of £truncate specifies that for a regular file (not shared
memory), “If the file is extended, the extended area shall appear as if it were zero-filled.” But
nothing is said in the description of ftruncate about the new contents of a shared memory
object that is extended. The Posix.] Rationale states that “If the memory object is extended, the
contents of the extended areas are zeros” but this is the Rationale, not the official standard.
When the author asked on the comp . std. unix newsgroup about this detail, the opinion was
expressed that some vendors objected to an initialize-to-0 requirement, because of the over-
head. If a newly extended piece of shared memory is not initialized to some value {ie., if the
contents are left as is), this could be a security hole.

13.4 Simple Programs
We now develop some simple programs that operate on Posix shared memory.
shmereate Program

Our shmereate program, shown in Figure 13.2, creates a shared memory object with a
specified name and length.

19-237 shm_open creates the shared memory object. If the -e option is specified, it is an
error if the object already exists. £truncate sets the length, and mmap maps the object
into the address space of the process. The program then terminates. Since Posix shared
memory has at least kernel persistence, this does not remove the shared memory object.

; Chapter 13

s erTor
.

haboutall
_h 2 shared

fared memory
v object shall
e inot shared
ge-Slled.” But
hared memory
fenctended, the
ficial standard.
?zgmkwlwas
e of the over-
s (1.0, if the

¥

In;ect with a

e, it is an
%= the object
asix shared
mory object.

Section 13.4 Simple Programs 39

pxshm |shmcreate.c

1 #include ‘unpipe.h"

2 int

3 main(int arggc, char **argv}

4 1

5 int c, ftd, flags;

& char *pr;

7 off_t length;

2 flags = O_RDWE | O_CREAT;

£} while { {c = Getoptiarge, argwv, "e"}) != -1}

10 switch (o) {

11 case ‘&°;

1z flags |= QO_EXCL;

13 break;

14 }

15 1

16 if [optind I= arge - 2)

17 err_gquit("usage: shmcreate [-e | <name> <length=");

18 length = atol(argv[optind + 1]1);

19 fd = shm_open(argv[optind], flags, FILE MODE):

20 Frruncate(fd, length);

21 ptr = Mmap(NULL, length, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);:

22 exic{0);

23}
pashm shmereate.c

Figure 13.2 Create a Posix shared memory object of a specified size.

shmunlink Program

Figure 13.3 shows our trivial program that calls shm_unlink to remove the name of a

shared memory object from the system.

1 #include "unpipc.h*

2 int

3 main{int arge, char **argwv)

4

5 if {argec != 2}

& err_guit (*usage: shmunlink <name=");
7 Shm_unlink{argv[1]):

g exit (0] ;

9}

Figure 13.3 Unlink the name of a Posix shared memory object.

pashm shmunlink.c

pxshmshmunlink.c

330 Posix Shared Memory Chapter 13

shmwrite Program

Figure 13.4 is our shmwri te program, which writes a pattern of 0, 1, 2, ..., 254, 255,0,1,
and so on, to a shared memory object.

pxshm (shorwrite.c

1 #include “unpipe.h"

2 int

i main{int argc, char **argwv)

4 1

5 int i, fd;

& struct stat atat;

7 unsigned char *ptr;

8 if jarge != 2)

9 err_guit{"usage: shmwrite <name>"];

10 /* open, get size, map */

11 f4 = Shm_openiargv[l], O_RDWR, FILE MODE};

1z Fetat(fd, &stat);

131 ptr = Mmap{NULL, stat.st_size, PROT_READ | PROT_WRITE.

14 MAP_SHARED, £d, 0)1;

15 Close(£d);

16 /* get: per[0] = 0, ptril] = 1, etc. */f

17 for (L = 0; 1 = stat.st_size; i++)

18 *pEr++ = 1 % 256;

19 exit (0] :

20} .
pxshm [shmwrite.c

Figure 13.4 Open a shared memory object and fill it with a pattern.
10-15 The shared memory object is opened by shm_open, and we fetch its size with

fstat. We then map it using mmap and close the descriptor.
16-18 The pattern is written to the shared memory.

shmread Program

Our shmread program, shown in Figure 13.5, verifies the pattern that was written by

shmwrite.
; pashm /shmread.c
1 #include "ynpipc.h”
2 int
3 maini{int arge, char **argv)
4 {
5 int i, £4;
3 struct stat stat;
7 unzigned char <, *ptr;

if [arge != Z)
] err_guiti"usage: shmread <names="];

Chapter 13

% 255,0,1,

Ii?shmmrite.:

l!,» shmirrite.c

fﬁﬁz&with

- witten by

h ‘shmrend.c

g
g
W
%
i
&

Section 13.4 Simple Programs 331
10 /* open, get size, map */
11 fd = Shm_openargv(l], O_RDONLY, FILE_MODE];
12 Festat(£d, Estat);
13 ptr = Mmap(NULL, stat.st_size, PROT_READ,
14 MRE_SHARED, £d4, 0):
15 Closeifd);
la /* check that ptr[0] = 0, ptril] = 1, etc., */
17 for (1 = 0; 1 = stab.st_size; i++)
18 if { o = *pEr++} != (i % 2568))
13 err_ret(*ptr[%d] = %d4d", i, ci;
20 axit (0]
21}
prshm fshmread.c

1p-15

16-19

Figure 13.5 Open a shared memory object and verify its data pattern.

The shared memory object is opened read-only, its size is obtained by fstat, it is
mapped by mmap (for reading only), and the descriptor is closed.
The pattern written by shmwrite is verified.

Examples

We create a shared memory object whose length is 123,456 bytes under Digital Unix 4.0B
named /tmp/myshm.

alpha % shmcreate /tmp/myshm 123456

alpha % ls -1 /tmp/myshm

~EW-r--r-- 1 rstevens system 123456 Dec 10 14:33 /btmp/myshm

alpha % od =c /tmp/myshm

ooooooo R B v T N 1 B B B 4 L T A

-

0361104

We see that a file with the same name is created in the filesystem. Using the od pro-
gram, we can verify that the object’s initial contents are all 0. (Octal 0361100, the byte
offset just beyond the final byte of the file, equals 123,456.)

Next, we run our shmwrite program and use od to verify that the initial contents
are as expected.

alpha % shmwrite /tmp/myshm

alpha % od -x /tmp/myshm | head -4

Qo000000 0100 0302 0504 0706 0208 Obfa 0dOc Qf0e
oOoo020 1110 1312 1514 1716 1918 1bla 1dlc 1fle
oooo0n40 2120 2322 2524 726 2928 2Zh2a 2d2c Zfie
oOOOO6ED 3130 3332 3534 3736 3938 3b3a 3dic Ifle
alpha % ghmread /tmp/myshm

alpha % shmunlink /tmp/myshm

We verify the shared memory object’s contents with shmread and then unlink the
name.

If we run our shmereate program under Solaris 2.6, we see that a file is created in
the / tmp directory with the specified size.

332 Posix Shared Memory Chapter 13

golariz % shmoreate -e /testshm 123
golaris % 1 -1 femp/.*testahm*
-rw-r--r-- 1 rstevens otherl 123 Dec 10 14:40 /tmp/.SHMtestshm

Example

10-14

15=30

We now provide a simple example in Figure 13.6 to demonstrate that a shared memory
object can be memory mapped starting at different addresses in different processes.

. pshmftestdc

1 #include ‘unpipe.h”

2 int

3 mainiint argc, char **argv)

4

5 int fdl, £42, *ptrl, *ptri;

& pid_t childpid;

7 struct stat stat;

8 if {arge != 2}

] err_quit(*usage: testl <name="};

10 shm_unlink (Px_ipc_name{argvil])};

11 £41 = Shm_cpen|(Px_ipc_name (argv[l]), O_RDWR | O_CREAT | O_EXCL, FILE_MODE];
12 Ftruncate (fdl, sizecf(int}];

13 £f42 = COpen|(*/etc/motd”, O_RDONLY};

14 Fstac{fd2, &kstat];

15 if { (childpid = Forki}] == 0} {
1a /* child */
17 ptrz = Mmap (NULL, stat.st_size, PROT_READ, MAF_SHARED, f£d2, 0);

18 ptrl = Mmap(NULL, sizeof(int), PROT_READ | PROT_WRITE,

13 MAP_SHARED, f£dl, 0}:
20 printf{“child: shm ptr = %p, motd ptr = %¥pin®, ptrl, ptril;

21 sleep(S):

22 printf("shared memory integer = %d\n", *ptrli;

23 exic{d);

24 1

25 /* parent: mmap in reverse order from child */

26 perl = Mmap (NULL, sizecf(int), PROT_READ | PROT_WRITE, MAP _SHARED, f£dl, 0);
27 ptrZ = Mmap (NULL, stat.st_size, PROT_READ, MAF_SHARED, £42, 0);

28 printf{"parent: shm ptr = %p, motd ptr = %p\n", ptrl. ptra);

25 *perl = T77;

a0 Waitpidichildpid, MNULL, 0);
31 axit (0}
32 1}

poeshm [festd.c

Figure 13.6 Shared memory can appear at different addresses in different processes.

We create a shared memory segment whose name is the command-line argument,
set its size to the size of an integer, and then open the file /etc/motd.

We fork, and both the parent and child call mmap twice, but in a different order.
Each prints the starting address of each memory-mapped region. The child then sleeps

Chapter 13

d memory

=i test3.c

FILE _MODE} ;

]

s | test 3

.l'gguml;-nt,

ent order.
%en sleeps

uﬂwﬁwﬁﬁmﬁﬂumﬁﬂ,¢¢;u¢$¢g@3_p

bl

Section 13.5 Incr:—:-menhng a ﬁ-h.ared Counter 333

13.5

20-22

for 5 seconds, the parent stores the value 777 in the shared memory region, and then the
child prints this value.

When we run this program, we see that the shared memory object is memory
mapped at different starting addresses in the parent and child.

aolaris % testd testd.data
parent: shm ptr = eeeldl00, motd ptr = eee2(000
child: shm ptr = eeel2(000, motd ptr = eeel0000
shared memory integer = 777

Nevertheless, the parent stores 777 into Oxeee30000, and the child reads this value
from Oxeee20000. The pointers ptrl in the parent and child both point to the same
shared memory segment, even though the value of each pointer is different in each pro-
cess,

Incrementing a Shared Counter

We now develop an example similar to the one shown in Section 12.3, in which multiple
processes increment a counter that is stored in shared memory. We store the counter in
shared memory and use a named semaphore for synchronization, but we no longer
need a parent—child relationship. Since Posix shared memory objects and Posix named
semaphores are referenced by names, the various processes that are incrementing the
counter can be unrelated, as long as each knows the IPC names and each has adequate
permission for the IPC objects (shared memory and semaphore).

Figure 13.7 shows the server that creates the shared memory object, creates and ini-
tializes the semaphore, and then terminates.

Create shared memory object

We call shm_unlink in case the shared memory object still exists, followed by
shm_cpen to create the object. The size of the object is set to the size of our shmstruct
structure by ftruncate, and then mmap maps the object into our address space. The
descriptor is closed.

Create and initialize semaphore

We call sem_unlink, in case the semaphore still exists, followed by sem_open to
create the named semaphore and initialize it to 1. It will be used as a mutex by any pro-
cess that increments the counter in the shared memory object. The semaphore is then
closed.

Terminate

The process terminates. Since Posix shared memory has at least kernel persistence,
the object remains in existence until all open references are closed (when this process
terminates there are no open references) and explicitly unlinked.

Our program must use different names for the shared memory object and the
semaphore. There is no guarantee that the implementation adds anvthing to the Posix
IPC names to differentiate among message queues, semaphores, and shared memory.
We have seen that Solaris prefixes these three types of names with .MQ, .SEM, and
. SHM, but Digital Unix does not.

334 Posix Shared Memory Chapter 13

pashm {server].c

1 #include "unpipec.h”

2 struct shmstruct { /* struct stored in shared memory */
3 int counk ;

4 0

5 sem_t *mabex; /% pointer to named semaphore */

& int

7 main(int argec, char **argvl

8 {

] int fd;

10 struct shmstruct *ptr;

11 if largc 1= 3]

12 err_guit(*usage: serverl <shmnames> <semname="];

13 shm_unlink {(Px_ipc_name (argv(Ll]i}; f* 0K if this fails */

14 /* create shm, set its size, map it, clese descriptor */

15 fd = shm_open (Px_ipc_name{argv[1l]), C_EDWR | O_CREAT | ©_EXCL, FILE MODE) ;
16 Ftruncate(fd, sizeof(struct shmstruct)):

i7 ptr = Mmap (NULL, sizeof|struct shmstruct), PFROT_READ | PROT_WRITE,
18 MAP_SHARED, fd. 0);

19 Close|{fd);

20 sem_unlink(Px_ipc_name (argv[2]]11]; /= oK if this fails */

z1 mutex = Sem_spen|Px_ipc_namelargv[2]), O_CREAT | O_EXCL, FILE_MODE, 11
22 Sem_close (mutex) ;

23 exit (0}

24)

pashm serverl ¢
Figure 137 Program that creates and initializes shared memory and semaphore.

Figure 13.8 shows our client program that increments the counter in shared memory
some number of times, obtaining the semaphore each time it increments the counter.

Open shared memory

15-18 shm_open opens the shared memory object, which must already exist (since
O_CREAT is not specified). The memory is mapped into the address space of the pro-
cess by mmap, and the descriptor is then closed.

Open semaphore
19 The named semaphore is opened.
Obtain semaphore and increment counter

20-26 The counter is incremented the number of times specified by the command-line
argument. We print the old value of the counter each time, along with the process ID,
since we will run multiple copies of this program at the same time.

gpter 13

——

meroer].c

g MODE) ;

WJ'I.C‘
pemory

: {since
he pro-

_ﬁi—iine
gess 1D,

Section 13.5 Incrementing a Shared Counter 335
pxshm [client].c
1 #include “unpipc.h”
2 struct shmetruct { /* struct stored in shared memory */
3 int count;
4 3;
5 sem_t *mutex; /* pointer to named semaphore */
6 int
7 main{int argc, char **argv)
B
9 int £d, i, nloop;
10 pid_t pid;
il struct shmstruct *ptr;
12 if {argc != 4)
13 err_guit("usage: clientl <shmname> <semnames> <f#loops=");
14 nlocp = atoliargvi3]);
15 fd = Shm_open (Px_ipc_name{argv([1l]}, O_RDWR, FILE MODE}:
16 ptr = Mmap|NULL, sizeof(struct shmstruct), PROT_READ | PROT_WRITE,
17 MAP_SHARED, £d4, 0}
18 Close(fd):
19 mutex = Sem_open (Px_ipc_name{argv[2]), 0);
20 pid = getpidi};
21 for (i = 0; i < nloop; i++) {
22 Sem_wait (matex);
23 printf{"pid %ld: %d\n", {long) pid, ptr-=counbt++);
24 Sem_post (mutex) ;
25 1
26 exic (0}
27 }

Figure 13,8 Program that increments a counter in shared memory.

We first start the server and then run three copies of the client in the background.
solaris % serverl shml seml creates and initializes shared mewory and semaphore

golariz % clientl shml seml 10000 & clientl shml seml 10000 &
clisntl shml seml 10000 &

[2] 17976 process 1Ds output by shell
[3] 17577
(4] 17578
pid 17977: 0 and this process runs first

pid 17977: 1
S process 17977 continues
pid 17977: 32
pid 17976: 33 kerneel switches processes
. process 17976 continties
pid 17976: 707
pid 1L7978: 708 kermel sitches processes
process 17978 contines

pashm (client].c

b

336

Posix Shared Memory Chapter 13

13.6

5-8

pid 17978: 852

pid 17977: BsS3 kermel switches processes

. and 20 on

pid 179%77: 29998

pid 17977: 29994 final value output, which is correct

Sending Messages to a Server

We now modify our producer—consumer example as follows. A server is started that
creates a shared memory object in which messages are placed by client processes. Our
server just prints these messages, although this could be generalized to do things simi-
larly to the syslog daemon, which is described in Chapter 13 of UNPv1. We call these
other processes clients, because that is how they appear to our server, but they may well
be servers of some form to other clients. For example, a Telnet server is a client of the
syslog daemon when it sends log messages to the daemon.

Instead of using one of the message passing techniques that we described in Part 2,
shared memory is used to contain the messages. This, of course, necessitates some form
of synchronization between the clients that are storing messages and the server that is
retrieving and printing the messages. Figure 13.9 shows the overall design.

. I

]
client client | client ;
I

create and initialize fetch next message and print

g
.

Figure 13.9 Multiple clients sending messages to a server through shared memory.

What we have here are multiple producers (the clients) and a single consumer (the
server). The shared memory appears in the address space of the server and in the
address space of each client.

Figure 13.10 is our cliserv2.h header, which defines a structure with the layout
of the shared memory object.

Basic semaphores and variables

The three Posix memory-based semaphores, mutex, nempty, and nstored, serve
the same purpose as the semaphores in our producer-consumer example in Sec-
tion 10.6. The variable nput is the index (0, 1, ... NMESG-1) of the next location to store
a message. Since we have multiple producers, this variable must be in the shared mem-
ory and can be referenced only while the mutex is held.

Chapter 13

¥

arted that
seec Our
mgs simi-
call these
mav well
gnt of the

i Part 2,
gene form
rer that is

EReT (the
md in the

e layout

§K5.5ETVE
¢ in Sec-
m o store
ped mem-

Section 13.6 Sending Messages to a Server 337

11-12

10-18

17-19

pashm (cliserv2 h

i

1 #include "unpipe.h”

2 #define MESGSIZE 256 /* max #bytes per message, incl. null at end ¥/

3 ddefine NMESG 16 /* max #messages */

4 struct shmetruct { /* struct stored in shared memory */

5 sem_t mutex; /* three Pogix memory-based semaphores */

6 sem_t nempty

7 gem_t natored;

] int nput ; /* index into megoff(] for next put */

] long noverflow: /* goverflows by senders */

10 Sem_T nover £ lowmatex; /* mutex for noverflow counter */

11 long magoff [NMESG] ; /* offset in shared memory of each message */

12 char magdata [NMESG * MESGSIZE]; /* the actual messages */

13 }:)

prshrn {cliserv? b

Figure 13.10 Header that defines lavout of shared memory.

Overflow counter

The possibility exists that a client wants to send a message but all the message slots
are taken. But if the client is actually a server of some type (perhaps an FTF server or an
HTTP server), the client does not want to wait for the server to free up a slot. Therefore,
we will write our clients so that they do not block but increment the noverflow
counter when this happens. Since this overflow counter is also shared among all the
clients and the server, it too requires a mutex so that its value is not corrupted.

Message offsets and data

The array msgoff contains offsets into the megdata array of where each message
begins. That is, msgoff[0] is 0, msgoff[1] is 256 (the value of MESGSIZE),
megoff[2] is 512, and so on,

Be sure to understand that we must use offsets such as these when dealing with
shared memory, because the shared memory object can get mapped into a different
physical address in each process that maps the object. That is, the return value from
mmap can be different for each process that calls mmap for the same shared memory
object. For this reason, we cannot use poinfers within the shared memory object that
contain actual addresses of variables within the object.

Figure 13.11 is our server that waits for a message to be placed into shared memory
by one of the clients, and then prints the message.
Create shared memory object

shm_unlink is called first to remove the shared memory object, if it still exists.
The object is created by shm_cpen and then mapped into the address space by mmap.
The descriptor is then closed.
Initialize array of offsets

The array of offsets is initialized to contain the offset of each message.

338 Posix Shared Memory Chapter 13

pxshm [serverd o

1 #include *cliservi.h"

2 int

3 main(int argc, char **argv}

41

5 int fd, index, lastnoverflow, temp:;

fi long offset;

7 struct shmstruct *ptr;

a if (argec != 2)

9 err_guic{"usage: serverl <name>"};
10 /* greate shm, set its size, map it, close descriptor */
11 shm unlink (Px_ipc_name{argwv[1l])}; f* oK if this fails */
12 fd = Shm_open(Px_ipc_name{argv([l]), O_RDWE | O_CREAT | O_EXCL, FILE_MODE):
13 ptr = Mmap (NULL, sizeof(struct shmstruct), PROT_READ | PROT_WRITE,
14 MAP_SHARED, f£d4, 0);
15 Ftruncate{fd, sizeof(struct shmstruct));
16 Close{fd);
17 /* initialize the array of offsets */
18 for (index = 0; index < NMESG; index++)
19 ptr->magoff [index] = index * MESGSIZE;
20 /* initialize the semaphores in shared memory */
21 Sem_init (&ptr->matex, 1, 1};
22 Sem_init (&ptr-=>nempty. 1, NMESG);
23 Sem_init [&ptr-»*natored, 1, Q);
24 Sem_init(&ptr=-»noverflowmutex, 1, 1)
25 /* this program is the consumer */
26 index = 0;
27 lastnoverflow = 0;
28 for [;¢) {
29 Sem _wait (&ptr-=nstored);
el Sem_wait {&ptr->mutex) ;
31 offset = ptr-s>magoff[index];
iz printf("index = %d: %s'\n", index, &ptr-»msgdataloffset]);
i3 if (++index == NMESG)
34 index = 0, /* gircular buffer */
as Sem_post {kptr->mutex) ;
16 Sem_post (kptr-=nempty) ;
37 Sem_wait {&ptr->noverflowmutex) ;
ig terp = ptr-=noverflow; /* don't printf while mutex held */
19 Sem_post (&ptr-rnoverflowmutex) ;
40 if (temp != lastnoverflow} {
41 printf(*noverflow = %3\n", temp);
42 lagtnoverflow = temp;
43 }
44 }
45 exit(0);
46 1

pashmserver.c
Figure 13.11 Owur server that fetches and prints the messages from shared memory.

& MODE) ;

seTrerd.c

Section 13.6 Sending Messages to a Server 339

20-24

25-38

37-43

I10-13

I4-18

Ia-31

32=-37

Initialize semaphores

The four memory-based semaphores in the shared memory object are initialized.
The second argument to sem_init is nonzero for each call, since the semaphore is in
shared memory and will be shared between processes.

Wait for message, and then print

The first half of the £or loop is the standard consumer algorithm: wait for nstored
to be greater than 0, wait for the mutex, process the data, release the mutex, and incre-
ment nempty.

Handle overflows

Each time around the loop, we also check for overflows. We test whether the
counter noverflows has changed from its previous value, and if so, print and save the
new value. Notice that we fetch the current value of the counter while the
noverf lowmutex is held, but then release it before comparing and possibly printing it.
This demonstrates the general rule that we should always write our code to perform the
minimum number of operations while a mutex is held.

Our client program is shown in Figure 13.12.

Command-line arguments

The first command-line argument is the name of the shared memory object, the next
is the number of messages to store for the server, and the last one is the number of
microseconds to pause between each message. By starting multiple copies of our client
and specifying a small value for this pause, we can force an overflow to occur, and ver-
ify that the server handles it correctly.

Open and map shared memory
We open the shared memory object, assuming that it has already been created and

initialized by the server, and then map it into our address space. The descriptor can
then be closed.
Store messages

Our client follows the basic algorithm for the consumer but instead of calling
sem_wait (nempty), which is where the consumer blocks if there is no room in the
buffer for its message, we call sem_trywait, which will not block. If the value of the
semaphore is 0, an error of EAGATN is returned. We detect this error and increment the
overflow counter.

sleep_us is a function from Figures C.9 and C.10 of APUE. It sleeps for the specified number
of microseconds, and is implemented by calling either select or poll.

While the mutex semaphore is held we obtain the value of cf fset and increment
nput, but we then release the mutex before copying the message into the shared mem-
ory. We should do only those operations that must be protected while holding the
semaphore.

340 Posix Shared Memory Chapter 13

pshmm {client.c
1 #include "gligervi.h"
2 int
3 main(int argc, char **argvl
4 1
5 ink fd, i, nloop, nusec;
& pid_t pid;
T char mesg [MESGSIZE] ;
B long offaet;
] struct shmstruct *ptr;
10 if [arge '= 4}
11 err_guit{*usage: client2? <name> <#loops> <#usec>");
12 nloop = atoilargv[2]);
13 nuzec = atoijargv[3]):
14 /* open and map shared memory that server must create */f
15 fd = Shm_cpen{Fx_ipc name(argv[l]}, O_ROWR, FILE_MODE):
16 ptr = Mmap|{NULL, =sizeofl{struct shmstruct], PROT_READ | PROT_WRITE,
17 MAP_SHARED, fd4, 0);
18 Cloge (£d);
19 pid = getpid();
20 for (1 = 0; i = nloop; i++) {
21 Sleep_us (nusac) ;
2z gnprintf (mesg, MESGSIZE, °"pid %1d: message %d°, (long) pid, i):
23 if i(sem_trywait|sptr-=nempty) == -1} {
24 if (errnoc == EAGAIM) |
25 Sem_wait {aptr->noverflowmutex] ;
28 ptr-=noverflow++;
27 Sem_post {e&ptr->noverflowmutex) ;
28 continue;
29 } elze
30 ary_sys("sem_trywait error®];
31 }
32 Sem_wait (&ptr->mutex);
33 offset = por-»>magoff[ptr-=nput];
14 if (++(ptr->nput) >= NMESG)
ag ptr==nput = 0; 4* circular uffer */
16 Sem_post [&ptr->matex) ;
i7 stropy |Gptr-=megdataoffset], mesg):
3B Sem_post (Eptr->nstored) ;
i3 }
40 axic(0);
41 1 pashm (clienf2.c

Figure 13.12 Client that stores messages in shared memory for server.

Section 13.6 Sending Messages to a Server 341

plaer ! ¢ We first start our server in the background and then run our client, specifying 50
; messages with no pause between each message.

solaris % serverl servi &

[2] 27223

sclaris % client2 serv2 50 0

index = 0: pid 27224: message 0

index = 1: pid 27224: message 1

index = 2: pid 27224: message 2

.. comfinues like this

index = 15: pid Z7224: message 47

index = 0: pid 27224: message 48

index = 1: pid 27224: message 49 o messages lost
But if we run our client again, we see some overflows.

zolariz % client2 servi 50 O

index = 2; pid 27228: message 0

index = 3: pid 27228: message 1

P comfinues OK

index = 10: pid 27228: message 8

index = 11: pid 272Z8: message 9

noverflow = 25 sevver detects 25 messages lost

index = 12: pid 27228: message 10

index = 13: pid 27228: message 1l

... continues OF for messages 12-22

index = 9: pid 27228: message 23

index = 10: pid 27228: message 24
This time, the client appears to have stored messages 0 through 9, which were then
fetched and printed by the server. The client then ran again, storing messages 10
through 49, but there was room for only the first 15 of these, and the remaining 25 (mes-
sages 25 through 49) were not stored because of overflow.

Obviously, in this example, we caused the overflow by having the client generate
the messages as fast as it can, with no pause between each message, which is not a typi-
cal real-world scenario. The purpose of this example, however, is to demonstrate how
to handle situations in which no room is available for the client’s message but the client
does not want to block. This is not unique to shared memory—the same scenario can
happen with message queues, pipes, and FIFOs.

Owverrunning a receiver with data i3 not unigue to this example. Section 8.13 of UNPv] talks
about this with regard to UDP datagrams, and the UDP socket receive buffer. Section 18.2 of
TCPv3 describes how Unix domain datagram sockets return an error of ENOBUFS to the sender
when the receiver's buffer overflows, which differs from UDE In Figure 1312, our client (the
Seri 2 sender) knows when the server’s buffer has overflowed, so if this code were placed into a gen-

eral-purpose function for other programs to call, the function could retum an error to the caller
when the server’s buffer overflows.

=
=
i
o

bR

342 Posix Shared Memory Chapter 13

13.7 Summary

Posix shared memory is built upon the mmap function from the previous chapter. We
first call shm_open, specifying a Posix IPC name for the shared memory object, obtain a
descriptor, and then memory map the descriptor with mmap. The result is similar to a
memory-mapped file, but the shared memory object need not be implemented as a file.

Since shared memory objects are represented by descriptors, their size is set with
frruncate, and information about an existing object (protection bits, user ID, group
ID, and size) is returned by fstat.

When we covered Posix message queues and Posix semaphores, we provided sam-
ple implementations based on memory-mapped 1/O in Sections 5.8 and 10.15. We do
not do this for Posix shared memory, because the implementation would be trivial. If
we are willing to memory map a file (as is done by the Solaris and Digital Unix imple-
mentations), then shm_open is implemented by calling open, and shm_unlink is
implemented by calling unlink.

Exercises

131 Modify Figures 12.16 and 12.19 to work with Posix shared memary instead of a memory-
mapped file, and verify that the resuls are the same as shown for a memory-mapped file.

132 In the for loops in Figures 13.4 and 13.5, the C idiom *ptr++is used to step through the
array. Would it be preferable to use prr (1] instead?

Chapter 13

zpter. We
& obtain a
gilar to a
&= a file.

s set with
D, group

aded sam-
= We do
grivial, If
mEx imple-
il ink is

memory-
p@mdfﬂc.
mrough the

=
i
Ji.1}
%
&
=
=
%
§
i
E :.:i
e
B
2
g
=
3
B

141

14.2

14

System V Shared Memory

Introduction

System V shared memory is similar in concept to Posix shared memory. Instead of call-
ing shm_open followed by mmap, we call shmget followed by shmat.

For every shared memory segment, the kernel maintains the following structure of
information, defined by including <sys/shm.h>:

struct shmid_das (

shruct ipc_perm shm_perm; /* pperation permission struct *f

aize_t shm_segsz; /* segment size */

pid_t shm_lpid; /* pid of last operation */

pid_t ahm_cpid; /* creator pid */

shmatt_t ghm_nattch; /* current # attached */

shmat_t ahm_cnatteh; /* in-core # attached =/

Lime_k shm_atime; /* last attach timea */

time_t shm_dtime; /* last detach time =/

time_t ghm_ctime; /* last change time of this structure */

1:

We described the ipc_perm structure in Section 3.3, and it contains the access permis-
sions for the shared memory segment.

shmget Function

A shared memory segment is created, or an existing one is accessed, by the shmget
function.

343

344 System V Shared Memory Chapter 14

#include <sys/shm.h>
int shmget (key_t key, size_t size, int oflag);

Returns: shared memory identifier if OK, -1 on error

The return value is an integer called the shared memory identifier that is used with the
three other shmXXX functions to refer to this segment.

key can be either a value returned by ftok or the constant IPC_PRIVATE, as dis-
cussed in Section 3.2.

size specifies the size of the segment, in bytes. When a new shared memory seg-
ment is created, a nonzero value for size must be specified. If an existing shared mem-
ory segment is being referenced, size should be (.

oflag is a combination of the read-write permission values shown in Figure 3.6. This
can be bitwise-ORed with either IPC_CREAT or IPC_CREAT | IPC_EXCL, as discussed
with Figure 3.4.

When a new shared memory segment is created, it is initialized to size bytes of 0.

Note that shmget creates or opens a shared memory segment, but does not provide
access to the segment for the calling process. That is the purpose of the shmat function,
which we describe next.

144

14.3 shmat Function

After a shared memory segment has been created or opened by shmget, we attach it to 145

our address space by calling shmat.

finclude «<ays/shm.h>

| void *shmat{int shmid, const void *shmaddr, int flag);

Returns: starting address of mapped region if OK, -1 on error

shmid is an identifier returned by shmget. The return value from shmat is the starting
address of the shared memory segment within the calling process. The rules for deter-
mining this address are as follows:

* [If shmaddr is a null pointer, the system selects the address for the caller. This is
the recommended (and most portable) method.

* If shmaddr is a nonnull pointer, the returned address depends on whether the
caller specifies the SHM_RND value for the flag argument:

* If SHM_RND is not specified, the shared memory segment is attached at the
address specified by the shmaddr argument,

+ [If SHM RND is specified, the shared memory segment is attached at the
address specified by the shmaddr argument, rounded down by the constant
SHMLBA. LBA stands for “lower boundary address.”

Smapter 14

JETOr

with the
7, as dis-

ad mem-

iﬁ This
fiscussed
ok 0,

provide
fanction,

starting
r deter-

This is
_&E: the
g at the

:E at the
smstant

Section 14.5 shmetl Funchion 345

144

14.5

By default, the shared memory segment is attached for both reading and writing by the
calling process, if the process has read-write permissions for the segment. The
SHM_RDONLY value can also be specified in the flag argument, specifying read-only
access.

shmdt Function

When a process is finished with a shared memory segment, it detaches the segment by
calling shmdt.

#include <sys/shm.h>

1
|
|
|
i
Returns: 1 if OK, -1 on error |

' int shmdt (const woid *shmaddr) ;
i

When a process terminates, all shared memory segments currently attached by the pro-
cess are detached.

Mote that this call does not delete the shared memory segment. Deletion is accom-
plished by calling shmet1 with a command of IPC_RMID, which we describe in the

next section.

shmetl Function

shmct1 provides a variety of operations on a shared memory segment.

#include <sys/shm.h>

int shmetliint shmid, int omd, struct shmid ds *huff) ;

i Returns: 0 if OK, -1 on error

Three commands are provided:

IPC_RMID Remove the shared memory segment identified by shmid from the sys-
tem and destroy the shared memory segment.

IPC_SET Set the following three members of the shmid_ds structure for the
shared memory segment from the corresponding members in the
structure pointed to by the buff argument: shm_perm.uid,
shm_perm.gid, and shm_perm.mode. The shm_ctime value is also
replaced with the current time.

1pC_STAT Return to the caller (through the buff argument) the current shmid_ds
structure for the specified shared memory segment.

36 System V Shared Memory Chapter 14

14.6 Simple Programs
We now develop some simple programs that operate on System V shared memory.
shmget Program

Our shmget program, shown in Figure 14.1, creates a shared memory segment using a
specified pathname and length.

..... - svshim fshmget ¢
1 #include "unpipc.h*
2 int
3 main{inc arge, char **argwv)
4 1
5 int o, id, oflag:
] char Tptr;
7 size_t length;
B oflag = SVSHM_MODE | IFC_CREAT:
9 while [(¢ = Getoptiarge, argv, "ev"}) != -1} {
10 switch (e} {
1 caze ‘e’;
12 oflag |= IFC_EXCL:
13 break:;
14 H
15 ¥
16 if {optind != arge - 2)
17 err_gquit(*usage: shmget [-2] <pathname> <length="};
ig length = atoif{argvioptind + 1]);
19 id = Shmget (Ftekl{argv[optind], 1), length, oflag);
20 ptr = Shmat(id, WULL, 0};
21 exit (0}
22)
sushm Sshmget.c
Figure 14.1 Create a System V shared memory segment of a specified size.
19 shmget creates the shared memory segment of the specified size. The pathname

passed as a command-line argument is mapped into a System V IPC key by ftok. If
the -e option is specified, it is an error if the segment already exists. 1f we know that
the segment already exists, the length on the command line should be specified as 0.

20 shmat attaches the segment into the address space of the process. The program
then terminates. Since System V shared memory has at least kernel persistence, this
does not remove the shared memory segment.

shmrmid Program

Figure 14.2 shows our trivial program that calls shmct1 with a command of IPC_RMID
to remove a shared memory segment from the system.

er 14 Section 14.6 Simple Programs 347
svshon fshmrmid.c
1 #ineclude *unpipe.h
2 int
3 main{int argc, char **argv)
d [
; 5 int id;
ing a 5 if (arge != 2}
' 7 err_gquit(*usage: shmrmid <pathname="};
weoet.c] id = shmget (Ftek(argv([1], 1), 0, SVEHM MODE);
:] Shmetl (id, IPC_RMID, NULL];
10 exit{0);
11 1} :
sushim/shmemid.c
Figure 142 Remove a System V shared memory segment,
shmwrite Program
Figure 14.3 is our shmwr i te program, which writes a pattern of 0, 1, 2, ..., 254, 255, 0, 1,
and so on, to a shared memory segment.
spshm fshmiorite.c
1 #include "unpipc.h®
2 int
% main(int argc, char **argv)
41
5 int i, id;
[struct shmid_ds buff;
7 unsigned char *ptr;
:] if jargec = 2)
.] err_cuit(“usage: shmwrite <pathname="];
10 id = Shmget (Ftoklargv([1], 1), 0, SVSHM_MODE} ;
11 ptr = Shmat(id, NULL, 0};
1{id, IF ' £
o 4 12 Shmetl (4 C_STAT. &buff)
i If = 13 /* get: ptr[0] = 0, ptrl[l] = 1, etc. =/
 that & 14 for {i = 0; i < buff.shm_segsz; i++)
. 2 15 phr++ = 1 % 256;
&
gram] 16 exiti{0);
is] 17} .
 this % svshm/shnwrite.c
% Figure 14.3 Upen a shared memory segment and fill it with a pattern.
it

10-12 The shared memory segment is opened by shmget and attached by shmat. We
1D fetch its size by calling shmct 1 with a command of IPC_STAT.
= 13-15 The pattern is written to the shared memory.

e

348 System V Shared Memory Chapter 14
shmread Program
Our shmread program, shown in Figure 14.4, verifies the pattern that was written by
shmwrite.
spshm/shmread.c
1 #include "unpipec.h”
2 int
3 main{int argc, char *~argv)
4 i
5 int i, id;
& struct shmid_ds buff;
T unsigned char o, *ptr;
g if fargec != 2]
9 arr_guit (*usage: shmread <pathnames"};
10 id = Shmget (Ftok{argw[1], 1), 0, SVSHM_MODE);
11 ptr = Shmatiid, NULL, 0©};
12 Shmetl {14, IPC_STAT, &buff);
13 /* check that ptr[0] = 0, ptril] = 1, ete, */
14 for (L = 0; L = buff.shm _segsz; i++)
15 if [le = *pLr++) 1= (1 % 256})
16 err_ret("ptr[%d] = %d*, 1, o}
17 exit (0] ;
18 1}
svshm,/stmread
Figure 144 Open a shared memory segment and verify its data pattern,
10-12 The shared memory segment is opened and attached. Its size is obtained by calling
shmet 1 with a command of IPC_STAT.
1318 The pattern written by shmwrite is verified.
Examples

We create a shared memory segment whose length is 1234 bytes under Solaris 2.6. The
pathname used to identify the segment (e.g., the pathname passed to ftok) is the path-
name of our shmget executable. Using the pathname of a server’s executable file often
provides a unique identifier for a given application.

solaris % shmget shmget 1234

aolaris % ipes -bmo
IPC gtatus from <running system> as of Thu Jan & 13:17:06 1998

T I KEY MODE OWNER GROUP NATTCH EEGEZ
Shared Memory:
m 1 0x0000£12a --rw-r--r-- rstevens otherl 0 1234

We run the ipcs program to verify that the segment has been created. We notice that
the number of attaches (which is stored in the shm_nattch member of the shmid_ds
structure} is {, as we expect.

Section 14.7 Shared Memory Limits = 349

Next, we run our shmwrite program to set the contents of the shared memory seg-
ment to the pattern. We verify the shared memory segment’s contents with shmread

emitten by and then remove the identifier.

i ey A gl o Py

zolariz % shmwrite shmget

solaris % shmread shmget

solaris % shmrmid shmget

solaris % ipecs -bmo

IPC status from =running systems as of Thu Jan 8 13:18:01 1988

T ID KEY MODE OWMER GROUF MATTCH SEGST

Shared Memory:
We run ipcs to verify that the shared memory segment has been removed.

o Yy

slmread.c

3%
;
i

When the name of the server executable is used as an argument (o £tk to identify some form
of System V IPC, the absolute pathname would normally be specified, such as
just/bin/myserverd, and not a relative pathname as we have used (shmget). We have %
been able to use a relative pathname for the examples in this section because all of the pro-
grams have been run from the directory containing the server executable. Realize that frok
uses the i-node of the file to form the IPC identifier (e.g., Figure 3.2), and whether a given file is
referenced by an absolute pathname or by a relative pathname has no effect on the i-node. 7

14.7 Shared Memory Limits

As with System V message queues and System V semaphores, certain system limits
exist on System V shared memory (Section 3.8). Figure 14.5 shows the values for some
different implementations. The first column is the traditional System V name for the
kernel variable that contains this limit.

dsdomrrend.c

% calling -
MName Description _ DUnix 4.0B | Solaris 2.6 |

shmmax | max Hbytes for a shared memory segment) 4194304 | 1,048,576
shmmnb | min #bytes for a shared memory segment 1 1 :
shmmni | max #shared memory identifiers, systermwide i 128 100 |
shmseg | max #shared I!'I.El!l'lm}-' segments attached per process | 32 &

5

ey Ry e L

26. The
fhe path-
Ske often

Figure 14.5 Typical svstem limits for System V shared memory,

it

Example

The program in Figure 14.6 determines the four limits shown in Figure 14.5. _
soshm limits.c 7

.FAE?EE
- 1 #include *unpipc.h"

214

gace that
mid_ds

2 #define MAX_NIDS 4096

1
=

3 int
4 main(int argc, char **argv)

1§ R

350 System V Shared Memory Chapter 14

5% }

int
woid
urisi

for

for

for

for

for

for

}

exit

i, i, shmid[MAX_NIDE];:
*addr [MAX_NIDS];
gned long size:

/* see how many identifiers we can "open” */
{1 = 0; 1 == MAX _WNIDS; is++)
ghmid[il = shmget (IPC_PRIVATE, 1024, SVSHM_MODE | IPC_CREAT);
if (shmid[i] == -1} {
printf(*%d identifiers open at oncehn”, i
break;
}

(3 = 0; 3 = 1; J++)
shmctl (shmid{§], IPC_RMID, NULL};

/* now See how many we can “attach® */

(1 = 0; 1 <= MAX_NIDS; i++] {

shmid[i] = Shmget (IPC_PRIVATE, 1024, SVSHM_MODE | IPC_CREAT);

addr[i] = shmat{shmid[i], WULL, 0O};

if jaddr(i] == (woid *} -1} {
printf("%d shared memory segments attached at oncehn®, i);
Shmerl (shmid(i], IPC_RMID, NULL); /* the one that failed */
break;

¥

(3 = 0: 3 « i; j++) {
shmdt (addr (1] ;
Shmeel (shmid[j]1, IPC_RMID, NULL);

;* see how small a shared memory segment we Can create */

{zize = 1;; size++) [

shmid{0] = shmget{IPC_PRIVATE, size, SVSHM_MODE | IPC_CREAT);

if (ghmid[0] != =11 { /* gtop on first success */
printf{"minimum size of shared memory segment = sluin®, sizel;
Shmetl (shmid[0], IPC_RMID, NULL);
break;

/* mee how large a shared memory segment we can create *
{size = £5536;; size += 40%6) {
shmid[0] = shmget (IPC_PRIVATE, size, SVSHM_MODE | IPC_CREAT);

if {shmid{0] == -1] { /* stop on firstc failure */
printf("maximum size of shared memory segment = %luin®, size - 4098}
break;

1
Shmctl (shmid[0], IPC_RMID, NULL);

(o}

svshm /limits.c

Figure 14.6 Determine the system limits on shared memaory.

Chapter 14 Exercises 351

Chapter 14
14.8

F
ileﬁ .
R -

BLZ2]
&
; gize - 4096);

e | [inmrits.c

We run this program under Digital Unix 4.0B.

alpha % limite

127 identifiers open at once

317 shared memory segments attached at once
minimum size of shared memory segment = 1
maximum size of shared memory segment = 4194304

The reason that Figure 14.5 shows 128 identifiers but our program can create only 127
identifiers is that one shared memory segment has already been created by a system
daemon.

Summary

System V shared memory is similar in concept to Posix shared memory. The most com-
mon function calls are

¢ chmget to obtain an identifier,

e shmat to attach the shared memory segment to the address space of the process,

e shmct1l with a command of IPC_STAT to fetch the size of an existing shared
memory segment, and

¢ shmect1 with a command of IPC_RMID to remove a shared memory object.

One difference is that the size of a Posix shared memory object can be changed at any
time by calling ftruncate (as we demonstrated in Exercise 13.1), whereas the size of a
System V shared memory object is fixed by shmget.

Exercises

141 Figure 6.8 was a modification to Figure 6.6 that accepted an identifier instead of a path-
name to specify the queue. We showed that the identifier is all we need to know to access
a System V message queue (assuming we have adequate permission). Make similar modi-
fications to Figure 14.4 and show that the same feature applies to System V shared mem-

ory.

Part 5

Remote Procedure Calls

15

Doors

15.1 Introduction

When discussing client-server scenarios and procedure calls, there are three different
types of procedure calls, which we show in Figure 15.1,

1. A local procedure call is what we are familiar with from our everyday C program-
ming: the procedure (function) being called and the calling procedure are both
in the same process. Typically, some machine instruction is executed that trans-
fers control to the new procedure, and the called procedure saves machine regis-
ters and allocates space on the stack for its local variables.

2. A remote procedure call (RPC) is when the procedure being called and the calling
procedure are in different processes. We normally refer to the caller as the client
and the procedure being called as the server. In the middle scenario in Fig-
ure 15.1, we show the client and server executing on the same host. This is a fre-
quently occurring special case of the bottom scenario in this figure, and this is
what doors provide us: the ability for a process to call a procedure (function) in
another process on the same host. One process (a server) makes a procedure
available within that process for other processes (clients) to call by creating a
door for that procedure. We can also think of doors as a special type of IPC,
since information, in the form function arguments and return values, is
exchanged between the client and server.

3. RPC in general allows a client on one host to call a server procedure on another
host, as long as the two hosts are connected by some form of network (the bot-
tom scenario in Figure 15.1). This is what we describe in Chapter 16.

355

is6 Doors

Chapter 15

-
1
1
|
1
I
[
i
1
1
1
1
I—

local

:
l
I]
| returm procedure
| call
|

procedure call |
Lommmm e — J
hiost

F-——===- T - - - —Esmmmm s |

1 client SETVET i -\l remote

i Bas rocess | ?

i procedure call | | procedure

i I call (RPC)

I I

¥ - : on a single

, return _— host (doors)

host hiost
T client T server
: . ;)] remaote
! ! procedure call ! ﬂ [| procedure
: | ‘:_.': ! call (RPC)
i o - I between hosts
! ! return e (Chapter 16)
(I . 4 b= —fm = = = I
interconnected network

Figure 151 Three different types of procedure calls.

Historically, doors were developed for the Spring distributed operating system, details of
which are available at http: //www.sun.com/tech/projects/spring. A description of
the doors IPC mechanism in this operating system is in [Hamilton and Kougiouris 1993].

Dioors then appeared in Solaris 2.5, although the only manual page contained just a warning
that doors were an experimental interface used only by some Sun applications. With Solaris
2.6, the interface was documented in eight manual pages, but these manual pages list the sta-
bility of the interface as “evolving.” Expect that changes might oceur to the AFT that we
describe in this chapter with future releases of Solaris. A preliminary version of doors for
Linux is being developed: hotp: / fwww . o8 . brown . adu/ ~tor /docr s,

The implementation of doors in Solaris 2.6 involves a library (containing the decr XXX func-
tions that we describe in this chapter), which is linked with the user’s application (-1door),
and a kernel filesystem (/ kernel/sys/door £s).

Even though doors are a Solaris-only feature, we describe them in detail because they provide
a nice introduction to remote procedure calls, without having to deal with any networking
details. We will also see in Appendix A that they are as fast, if not faster, than all other forms
of message passing,

Local procedure calls are synchronous: the caller does not regain control until the
called procedure returns. Threads can be thought of as providing a form of
asynchronous procedure call: a function is called (the third argument to
pthread_create), and both that function and the caller appear to execute at the same

:
fi

108 BRRRAANE REE

#
Ea

gEed LREMR

i

]

B PG s

@ B L

=

Section 15.1 Introduction 357

time. The caller can wait for the new thread to finish by calling pthread_join.
Remote procedure calls can be either synchronous or asynchronous, but we will see that
door calls are synchronous.

Within a process (client or server), doors are identified by descriptors. Externally,
doors may be identified by pathnames in the filesystem. A server creates a door by call-
ing door_create, whose argument is a pointer to the procedure that will be associated
with this door, and whose return value is a descriptor for the newly created door. The
server then associates a pathname with the door descriptor by calling fattach. A
client opens a door by calling open, whose argument is the pathname that the server
associated with the door, and whose return value is the client’s descriptor for this door.
The client then calls the server procedure by calling door_call. Naturally, a server for
one door could be a client for another door.

We said that door calls are synchronous: when the client calls door_call, this func-
tion does not return until the server procedure returns (or some error occurs). The
Solaris implementation of doors is also tied to threads. Each time a client calls a server
procedure, a thread in the server process handles this client’s call. Thread management
is normally done automatically by the doors library, creating new threads as they are
needed, but we will see how a server process can manage these threads itself, if desired.
This also means that a given server can be servicing multiple client calls of the same
server procedure at the same time, with one thread per client. This is a comcurrent
server. Since multiple instances of a given server procedure can be executing at the
same time (each instance as one thread), the server procedures must be thread safe.

When a server procedure is called, both data and descripfors can be passed from the
client to the server. Both data and descriptors can also be passed back from the server
to the client. Descriptor passing is inherent to doors. Furthermore, since doors are
identified by descriptors, this allows a process to pass a door to some other process. We
say more about descriptor passing in Section 15.8.

Example

We begin our description of doors with a simple example: the client passes a long inte-
ger to the server, and the server returns the square of that value as the long integer
result. Figure 15.2 shows the client. (We gloss over many details in this example, all of
which we cover later in the chapter.)

Open the door

The door is specified by the pathname on the command line, and it is opened by
calling open. The returned descriptor is called the door descriptor, but sometimes we
just call it the deor.
Set up arguments and pointer to result

The arg structure contains a pointer to the arguments and a pointer to the results.
data_ptr points to the first byte of the arguments, and data_size specifies the num-
ber of argument bytes. The two members desc_ptr and desc_num deal with the
passing of descriptors, which we describe in Section 15.8. rbuf points to the first byte
of the result buffer, and r=ize is its size.

358 Doors Chapter 15

19-21

17-21

doors (client].c

1 #include "unpipc.h”

2 int

3 main(int argc. char **argv}

4 1

5 int fd;

[lang ival, owal;

7 door_arg_t arg;

g if {argc != 3}

g err_guit(*usage: clientl <server-pathname> <integer-value=");
10 fd = Open(argv[l], O_RDWR); /* open the door */f

11 /* get up the arguments and pointer to result =/
12 ival = atol{argv[2]1):

13 arg.data_ptr = {char *| &ival; /v data arguments */
14 arg.data_size = sizeof|(long):; /* zize of data arguments */
15 arg,.desc_ptr = NULL;

16 arg.desc_num = 0;

17 arg.rbuf = (char *) &oval; /* data results */

18 arg.rsize = gizeof(long}: /* gize of data results */
19 /* call server procedure and print result */

20 Door_call (Ed. Larg):
21 printf ("result: %ld\n*, owval};
22 exic{d);
23}

doors [clientl.c

Figure 152 Client that sends a long integer to the server to be squared,

Call server procedure and print result

We call the server procedure by calling door_call, specifying as arguments the
door descriptor and a pointer to the argument structure. Upon return, we print the
result,

The server program is shown in Figure 15.3. It consists of a server procedure
named servproc and a main function.
Server procedure

The server procedure is called with five arguments, but the only one we use is
dataptr, which points to the first byte of the arguments. The long integer argument is
fetched through this pointer and squared. Control is passed back to the client, along
with the result, by door_return. The first argument points to the result, the second is
the size of the result, and the remaining two deal with the returning of descriptors.

Create a door descriptor and attach to pathname

A door descriptor is created by door_create. The first argument is a pointer to
the function that will be called for this door (servproc). After this descriptor is
obtained, it must be associated with a pathname in the filesystem, because this path-
name is how the client identifies the door. This association is done by creating a regular

- cE ler

i Ed i BF B2 BN

[B N ST

T

{‘_[h.apter 15

it

%
e
b
)
a5
3
&
i

1 “._ i%

SRS

ZHEHEY

Ak s

Section 15.1 Introduction 359

doors (serverl .c

1 #include "unpipc.ht

2 void

i1 servproci{void ‘coockie, char *dataptr, size_t datasize,

4 door_desc_t *descptr, size_t ndeac)

5

& long arg, result;

7 arg = *({long *) dataptr);

] result = arg * arg;

a Door_return|ichar *} &result, sizeof(result), NULL, 0);
10)

11l int

12 mainl(int argc, char **argv)
13 1
14 int fd;
15 if fargc = 2)
16 err_guit {"usage: serverl <server-pathname="};
17 /* create a door descriptor and attach to pathname */
18 fd = Dopor_create{servproc, NULL, 0);
19 unlink{argv[Ll]);
20 Close{Openiargv(l], C_CREAT | O_RDWR, FILE_MODE)};

1 Fattachifd, argw([l]};
22 /* servproc(] handles all client reqguests */
23 EFor [5 ;)
24 pausel) ;
25 1}

doors [serverl.c

Figure 15.3 Server that returns the square of a long integer.

file in the filesystem (we call unlink first, in case the file already exists, ignoring any
error return) and calling fattach, an SVR4 function that associates a descriptor with a
pathname.

Main server thread does nothing

The main server thread then blocks in a call to pause. All the work is done by the
servproc function, which will be executed as another thread in the server process each
time a client request arrives.

To run this client and server, we first start the server in one window

solaris % serverl /tmp/serverl

and then start the client in another window, specifying the same pathname argument
that we passed to the server:

solaris % clientl /tmp/serverl 2

result: AL
solarizs % 1l -1 /tmp/serverl
Drw=I==r== 1 rstevens otherl 0 Apr 9 10:09 /tmp/serverl

360 Doors Chapter 15 Section 152

The result is what we expect, and when we execute 1s, we see that it prints the charac- i
ter D as the first character to indicate that this pathname is a door.
Figure 15.4 shows a diagram of what appears to be happening with this example. It
appears that door_call calls the server procedure, which then returns.
Figure 15.5 shows what is actually going on when we call a procedure in a different
process on the same host,
server
. gervproc{ |
{
client /* do whatever */
1Een
door_returni };
main{ | 'ﬂf
{ it main{ }
. / {
£d = open(path, |/,f
door_callifd,): fd = door_create{ };:
d fattachifd, path}:
] 1 N
Figure 154 Apparent procedure call from one process to another, b
server =
[servproc| | - { :
|1 I
. /* do whatever */ 15.2 ‘
client door_returni 1; r"—w :
main{ | }
{ maing | i ¥
. q o
1 fd = openi{path, 1: . 0 —
f*:: door_calli{fd,): £d = door_create{ }; —|
I v fattach(fd, path};
|
5 }) 7
i h"l I" door_creaté || -a-— e __*
i i | ¢ :
|
. i ¥
I door_calll) door_return(} -'-l—---/l E
i {
L : p 2 , 5 3 E

Figure 155 Actual flow of control for a procedure call from one process to another,

Almapter 13

e

e charac-
pampie. It

@ Jifferent

R S R R e i

R L

e e e e

e

L e L e LR

e A R e R R

Section 15.2 deor_call Function 361

15.2

The following numbered steps in Figure 15.5 take place.

0. The server process starts first, calls door_create to create a door descriptor
referring to the function servproc, and then attaches this descriptor to a path-
name in the filesystem.

1. The client process starts and calls door_call. This is actually a function in the
doors library.

2. The door_call library function performs a system call into the kernel. The tar-
get procedure is identified and control is passed to some doors library function
in the target process.

The actual server procedure (named servproc in our example) is called.

The server procedure does whatever it needs to do to handle the client request
and calls door_return when it is done.

5. door_return is actually a function in the doors library, and it performs a sys-
tem call into the kernel.

6. The client is identified and control is passed back to the client.

The remaining sections describe the doors APl in more detail looking at many exam-
ples. In Appendix A, we will see that doors provide the fastest form of IPC, in terms of
latency.

door_call Function

The door_call function is called by a client, and it calls a server procedure that is exe-
cuting in the address space of the server process.

#include <door.h=
int door_calliint fd, deor_arg_t “argpl:

Returns: 0 if OK, -1 on error

The descriptor fd is normally returned by open (e.g., Figure 152). The pathname
opened by the client identifies the server procedure that is called by door_call when
this descriptor is the first argument.

The second argument argp points to a structure describing the arguments and the
buffer to be used to hold the return values:

62 Doors

Chapter 15

typedef struct door_arg {

char *data_ptr; /* call: ptr to data arguments;
return: ptr to data results */
size_t data_size; /% call: #hytes of data arguments;

return: actual #bytes of data results */
door_desc_t *desc_ptr; /* call: ptr to descriptor arguments;
return: ptr to descriptor results */

size_t desc_num: /* gall: number of descriptor arguments;
return: number of descriptor results */

char *rbuf; /* ptr to result buffer */

size_t raize; /* #bytes of result buffer */

} door_arg_t;

Upon return, this structure describes the return values. All six members of this struc-
ture can change on return, as we now describe.

The use of char * for the two pointers is strange and necessitates explicit casts in our code {o
avoid compiler warnings. We would expect void * pointers. We will see the same use of
char * with the first argument to door_return. Solads 27 will probably change the
datatype of desc_num to be an unsigned int, and the final argument to door_return
would change accordingly.

Two types of arguments and two types of results exist: data and descriptors.

o The data arguments are a sequence of data_size bytes pointed to by data_ptr.

The client and server must somehow “know” the format of these arguments
(and the results). For example, no special coding tells the server the datatypes of
the arguments. In Figures 152 and 15.3, the client and server were written to
know that the argument was one long integer and that the result was also one
long integer. One way to encapsulate this information (for someone reading the
code years later) is to put all the arguments into one structure, all the results into
another structure, and define both structures in a header that the client and
server include. We show an example of this with Figures 15.11 and 15.12. If
there are no data arguments, we specify data_ptr as a null pointer and
data_sizeasl.

Since the client and server deal with binary arguments and results that are packed into an
argument buffer and a result buffer, the implication is that the client and server must be
compiled with the same compiler. Sometimes different compilers, on the same system,
pack structures differently.

The descriptor arguments are an array of door_desc_t structures, each one con-
taining one descriptor that is passed from the client to the server procedure. The
number of door_desc_t structures passed is desc_num. (We describe this
structure and what it means to “pass a descriptor” in Section 15.8.) If there are
no descriptor arguments, we specify desc_ptr as a null pointer and desc_num
as 0.

Upon return, data_ptr points to the data results, and data_size specifies the
size of these results. If there are no data results, data_size will be 0, and we
should ignore data ptr.

153

R e e Th:

e

ol gt e e gl e gl e e B ey T

CBapter 15

e struc-

e codle to
e nse Of
iiare the
gr_cecurn

:F_E.._':T r.
p=ments
By pes of
grEten to
faien one
pine the
Seits into
st and
=12 If

ﬂ‘r this
#&“z are
.
B:E‘:t- the
i woe

e

Ay e 2

R

B

R

5.'-;;-_'&\.,-:5&@}5:.-"-?.-;.-::

Section 15.3 door_create Function 363

15.3

* Upon return, there can also be descriptor results: desc_ptr points to an array of
door_desc_t structures, each one containing one descriptor that was passed
by the server procedure to the client. The number of door_desc_t structures
returned is contained in desc_num. If there are no descriptor results,
desc_num will be 0, and we should ignore desc_ptr.

Using the same buffer for the arguments and results is OK. That is, data_ptr and
desc_ptr can point into the buffer specified by rbuf when door_call is called.

Before calling door_call, the client sets rouf to point to a buffer where the results
will be stored, and rsize is the buffer size. Normally upon return, data_ptr and
desc_ptr both point into this result buffer. If this buffer is too small to hold the
server’s results, the doors library automatically allocates a new buffer in the caller’s
address space using mmap (Section 12.2) and updates rbuf and rsize accordingly.
data_ptr and desc_ptr will then point into this newly allocated buffer. It is the
caller’s responsibility to notice that rbuf has changed and at some later time to return
this buffer to the system by calling munmap with rbuf and rsize as the arguments to
munmap. We show an example of this with Figure 15.7.

door create Function

A server process establishes a server procedure by calling door_create.

#include <door.h>

typedef void Door_server_procivoid *cookie, char ~dataptr, size_t datasize,
door_desc_t *descptr, size_t mdesc) ;

int door_create{Door_server_proc *moc, vold *cookie, u_int abir);

Returns: nonnegative descriptor if OK, -1 on error

In this declaration, we have added our own typedef, which simplifies the function
prototype. This typedef says that door server procedures (e.g., servproc in Fig-
ure 15.3) are called with five arguments and return nothing.

When door_create is called by a server, the first argument proc is the address of
the server procedure that will be associated with the door descriptor that is the return
value of this function. When this server procedure is called, its first argument cookie is
the value that was passed as the second argument to door_create. This provides a
way for the server to cause some pointer to be passed to this procedure every time that
procedure is called by a client. The next four arguments to the server procedure,
dataptr, datasize, descptr, and ndesc, describe the data arguments and the descriptor argu-
ments from the client: the information described by the first four members of the
door_arg_t structure that we described in the previous section,

The final argument to door_create, attr, describes special attributes of this server
procedure, and is either 0 or the bitwise-OR of the following two constants:

Section 15

3nd Doors Chapter 15

DOOR_PRIVATE The doors library automatically creates new threads in the server
process as needed to call the server procedures as client requests
arrive. By default, these threads are placed into a process-wide
thread pool and can be used to service a client request for any
door in the server process.

Specifying the DOOR_PRIVATE attribute tells the library that this ;
door is to have its own pool of server threads, separate from the
process-wide pool.

DOOR_UNREF When the number of descriptors referring to this door goes from 155 ¢
two to one, the server procedure is called with a second argument
(dataptr) of DOOR_UNREF_DATA. The descpir argument is a null {
pointer, and both datasize and ndesc are 0. We show some exam- -
ples of this attribute starting with Figure 15.16. 3

The return value from a server procedure is declared as void because a server pro-
cedure never returns by calling return or by falling off the end of the function.

Instead, the server procedure calls door_return, which we describe in the next sec- ¥
tion.

We saw in Figure 15.3 that after obtaining a door descriptor from door_create, ;
the server normally calls fattach to associate that descriptor with a pathname in the <
filesystem. The client opens that pathname to obtain its door descriptor for its call to
door_call.

fattach is not a Posix.] function but it is required by Unix 98. Also, a function named
fdatach undoes this association, and a command named £detach just invokes this function.

Door descriptors created by door_create have the FD_CLOEXEC bit set in the
descriptor’s file descriptor flags. This means the descriptor will be closed by the kernel F
if this process calls any of the exec functions. With regard to fork, even though all .
descriptors open in the parent are then shared by the child, only the parent will receive :
door invocations from clients; none are delivered to the child, even though the descrip-
tor returned by door_create is open in the child. :

If we consider that a door is identified by a process ID and the address of a server procedure to

call (which we will see in the door_info_t structure in Section 15.6), then these two rules

regarding fork and exec make sense. A child will never get any door imvocations, because 15.6 ¢

the process I associated with the door is the process ID of the parent that called

door_create, A door descriptor must be closed upon an exec, because even though the -

process ID does not change, the address of the server procedure associated with the door has

no meaning in the newly invoked program that runs after exec. 3
:

15.4 door_ return Function

When a server procedure is done it returns by calling door_return. This causes the
associated door_call in the client to return.

Chapter 15

the server
& requests
wess-wide
s for any

 that this
F’i’mm the

: !
Foes fTom
arzument

E_"_ﬂ a null

e oXAlm-

e pro-
Enction.

Em* SeC-

oot all
E FCeIVe
g descrip-

B RS R

S R

A s e A R T R A

Section 15.6 door_info Function 365

15.5

15.6

¢include =door.h=

int door_return{char *dataptr, size_t datesize, door_desc_t *descplr, size_t mdesc) ;

[e s e g

Returns: no return ko caller if OK, -1 on error

The data results are specified by dataptr and datasize, and the descriptor results are speci-
fied by descptr and ndesc.

door_cred Function

One nice feature of doors is that the server procedure can obtain the client’s credentials
on every call. This is done with the door_cred function.

#include <door.h>

int door_cred{door_cred_t *cred);

Returns: 0 if OK, -1 on error

The door_cred_t structure that is pointed to by cred contains the client’s credentials
on return.

typedef struct door_cred {
uwid & dec_euid; /% effective user ID of client */
gid_t dc_egid; * effective group ID of client */
uid_t& de_ruid; /* real user ID of client */
gid t de_rgid; /* real group ID of client */
pid_t de_pid; /* process ID of client */

} door_cred_t;

Section 4.4 of APUE talks about the difference between the effective and real IDs, and
we show an example with Figure 15.8.
Motice that there is no descriptor argument to this function. It returns information

about the client of the current door invocation, and must therefore be called by the
server procedure or some function called by the server procedure.

door_info Function

The door_cred function that we just described provides information for the server
about the client. The client can find information about the server by calling the
door_info function.

#include «=door.h>

int door_info{int fd, door_info_t +*info);

Returns: 0 if OK, -1 on error

366 Droors Chapter 15 Section 150
fd specifies an open door. The door_info_t structure that is pointed to by info con- 3
tains information about the server on return. g

typedef struct door_info { ,J

pid_t di_target; /* server process ID */ g
door_ptr_t di_proc; {* server procedure */ i
door_prtr_t di_data; /* cookie for server procedure */ bt
door_attr_t di_attributes; /* attributes associated with door */ -
door_id_t di_unigquifier; /* unigue number */ _'

} door_info_t; g
di_target is the process ID of the server, and di_proc is the address of the server &
procedure within the server process (which is probably of little use to the client). The e
cookie pointer that is passed as the first argument to the server procedure is returned as -
di_data.

The current attributes of the door are contained in di_attributes, and we 2
described two of these in Section 15.3: DOOR_PRIVATE and DOOR_UNREF. Two new =
attributes are DOOR_LOCAL (the procedure is local to this process) and DOOR_REVOKE
(the server has revoked the procedure associated with this door by calling the
door_revoke function).

Each door is assigned a systemwide unique number when created, and this is -
returned as di_uniguifier. =

This function is normally called by the client, to obtain information about the server.

But it can also be issued by a server procedure with a first argument of DOOR_QUERY:
this returns information about the calling thread. In this scenario, the address of the a
server procedure (di_proc) and the cookie (di_data) might be of interest.

15.7 Examples
We now show some examples of the five functions that we have described.

door_info Function
Figure 15.6 shows a program that opens a door, then calls door_info, and prints infor-
mation about the door, :

- doors {doorinfo.c ;

1 #include funpipe.h” %
2 int

3 uE-.ainn:int argec, char *rargwv) =
5 ine £d;

& struct stat stat; [
7 atruct door_infeo info; 8
2] if (arge [= 2) &
£ err_guit{"usage: docrinfo <pathname=®}:
10 £d = Openiargv(l], O_RDONLY}; 5
11 Fstat (£d, &stat); 3

Chapter 15

5
R

e fo con-

5
43

B_ and we
. Two new
}&_=TVOKE

@ this is

!m SErVer.
s, JUERY:
kas of the

5,

Fm-:.»- infor-
h* doorinfo.c

i

Examples 367

Section 15.7
12 if (5_ISDOOR(stat.st_mode] == 0}
13 ery_guit(*"pathname is not a door®);
14 Door_infol(fd, Linfo):
15 printf("server PID = %ld, uniguifier = %1d"
1 (long) info.di_target. {long) infeo.di_unigquifier);
17 if finfo.di_attributes & DOCR_LOCAL)
18 printf(*, DOOR_LOCAL") ;
19 if (info.di_attributes & DOOR_PRIVATE]
20 princf (", DOOR_PRIVATE®);
21 if (info.di_attributes & DOOR_REVOEED)
22 printf{", DOOR_REVOEKED");
23 if {info.di_attributes & DOOR_UNREF)
24 printf(", DOOR_UNREF"):
25 printf{"wn");
26 exikt (0} ;
27 1

doors [dovrinfo.c

Figure 15.6 Print information about a door.

We open the specified pathname and first verify that it is a door. The st_mode
member of the stat structure for a door will contain a value so that the 5_ISDOOR
macro is true. We then call door_info.

We first run the program specifying a pathname that is not a door, and then run it
on the two doors that are used by Solaris 2.6.

solaris % deerinfo /etc/passwd
pathname is not a door

aolaris % deorinfo fetc/.name_service_door
sarver FID = 308, unigquifier = 18, DOOR_UNREF
aolaris % doorinfo fetc/.syslog door

gserver PID = 282, uniguifier = 1635

solaris % pe -f -p 308

root 1048 1 0 hApr 01 7 0:34
solaris % ps -f -p 282
raok 282 i 0 Bpr 01 7 Gel

fusr/shin/nzcd

Jusr/sbinfssyslogd -n -z 14

We use the ps command to see what program is running with the process ID returned
by door_info.

Result Buffer Too Small

When describing the door_call function, we mentioned that if the result buffer is too
small for the server's results, a new buffer is automatically allocated. We now show an
example of this. Figure 15.7 shows the new client, a simple modification of Figure 15.2.

In this version of our program, we print the address of our oval variable, the con-
tents of data_ptr, which points to the result on return from door_call, and the

18-23

address and size of the result buffer (rbuf and rsize).

368 Doors Chapter 15

doors (client2.c

1 #include "unpipc.h*

2 int

3 main(int arge, char **argv)

4 1

5 int f£d;

& long ival, oval;

7 door_arg_t arg;

] if {argec '= 3}

9 err_quit (*usage: clientl <server-pathname> zinteger-value="};
10 fd = Openiargv(l], CO_RDWR}; /* open the door */

11 /* et up the arguments and pointer bo result */

12 ival = atollacgv[2]):
13 arg.data_ptr = (char *) &iwval; /* data arguments */
14 arg.data_size = sizeof (longl; /* size of data arguments */
15 arg.desc_ptr = NULL;
16 arg.desc_num = 0;

17 arg.rbuf = {(char *) koval; /* data rasults */

18 arg.rgize = sizeofilong); /* size of data results */

18 /* call server procedure and print result */

20 Door_call{fd, karg);

21 princf{"&oval = %p, data ptr = %p, rbuf = %p. rsize = ®dwn",
22 &oval, arg.data_ptr, arg.rbuf, arg.rsize);

23 printf{"result: %ld\n*, *{(leng *) arg.data_ptrli;
24 exit {0}
25 1}

doors [client? ¢

Figure 15.7 Print address of result.

When we run this program, we have not changed the size of the result buffer from
Figure 15.2, so we expect to find that data_ptr and rbuf both point to our oval vari-
able, and that r=ize is 4 bytes. Indeed, this is what we see:

solariz % cliemt2 /tmp/serverl 12

poval = effff740, data_ptr = effff740, rbuf = efE£f£740, rsize =4
result: 484

We now change only one line in Figure 15.7, decreasing the size of the client’s result
buffer by 1 byte. The new version of line 18 from Figure 15.7 is

arg.rsize = gizecf(long) - 1; /¥ pize of data results */

When we execute this new client program, we see that a new result buffer has been allo-
cated and data_ptr points to this new buffer.
solaris % elientd /tmp/server3 33

poval = efff£740, data_ptr = ef620000, rbuf = ef620000, rsize = 4036
result: 10B3

The allocated size of 4096 is the page size on this system, which we saw in Section 12.6,
We can see from this example that we should always reference the server’s result

> A

= citent? .o

hrs cliemitd.e

:

hre— from

ow=l var-
hc~ result

been allo-

1w 12.6.
= result

R e T R R R B S e LD

Section 15.7 Examples 369

through the data_ptr pointer, and not through our variables whose addresses were
passed in rbuf. That is, in our example, we should reference the long integer result as
*{long *) arg.data_ptr) and not as oval (which we did in Figure 15.2),

This new buffer is allocated by mmap and can be returned to the system using
munmap. The client can also just keep using this buffer for subsequent calls to
door_call.

door_cred Function and Client Credentials

This time, we make one change to our servproc function from Figure 15.3: we call the
door_cred function to obtain the client credentials. Figure 15.8 shows the new server
procedure; the client and the server main function do not change from Figures 15.2
and 15.3.

: . doors serverd.c
1 #include funpipe.h*

2 veid
31 gervproc|(volid *cookie, char *dataptr, size_t datasize,

4 door_desc_t *descptr, size_t ndesc)

50

& long arg, result;

7 door_cred_t info;

B /* obtain and print client credentials */

9 Door_cred(&infe) ;

10 printf("euid = %1d, ruid = %ld, pid = %ld\n",

11 {long) info.de_suid, {(leng) info.dc_ruid, (long) infe.dc_pidl:
12 arg = *{i(long *) dataptr);

13 rasult = arg * arg;

14 Door_return{ (char *) &Lresult, sizeofi(result)., NULL, Q);:
15]

doors (serverd.c
Figure 158 Server procedure that obtains and prints client credentials.

We first run the client and will see that the effective user 1D equals the real user ID,
as we expect. We then become the superuser, change the owner of the executable file to
root, enable the set-user-ID bit, and run the client again.

solaris & clientd /tmp/serverd 77 first run of client
result: 5929

solarias % Bu Pecome superuscr
Password:
Sun Microsystems Inc, sunos 5.6 Generic August 1937

solaris € ed directory comtaining executable

solaris # 1l -1 clientd

—rWHEWKE =X 1 ratevens otherl 139328 Apr 13 0&:02 clientd
solaris # chown root clientd chamnge vuer fo roo

solaris # chmod u+s clientd artd furn on the set-user-1D bit
solaris & ls -1 clientd check file permissions and ewner
~YWErwxr-x 1 root otherl 139328 Apr 13 08:02 clientd
solaris # exit

370 Doors Chapter 15

aolaris % 1s =1 clientd

—CWETWRE-X 1 root otherl 139328 Apr 13 06:02 clientd
snlaris % clientd /tmp/serverd 77 and run the client again

regult: 5929

If we look at the server output, we can see the change in the effective user ID the second
tirme we ran the client.
zolaris & sarverd /tmp/serverd

guid = 224, ruid = 224, pid = 3168
euid = 0, ruid = 224, pid = 317%

The effective user ID of 0 means the superuser.

Automatic Thread Management by Server

To see the thread management performed by the server, we have the server procedure
print its thread 1D when the procedure starts executing, and then we have it sleep for 5
seconds, to simulate a long running server procedure. The sleep lets us start multiple
clients while an existing client is being serviced. Figure 15.9 shows the new server pro-

cedure.
- . doors (serverd.c
1 #include *unpipc.h”
2 woid
i servprociveid *cockie, char *dataptr, size t datasize,
4 door_desc_t *descptr, size_t ndesc)
5
3 long arg, result;

-1

arg = *{ilong *) dataptr};
printf(*thread id %ld, arg = %ld\n", pr_thread_id(NULL]. argl ;

[=]

9 sleap(S);
10 result = arg * arg;
11 Door_return({char *} &result, sizeof{result}, NULL, O}:
12 }

doorsservers.c

Figure 159 Server procedure that prints thread [D and sleeps.

We introduce a new function from our library, pr_thread_id. It has one argu-
ment (a pointer to a thread ID or a null pointer to use the calling thread’s ID) and
returns a long integer identifier for this thread (often a small integer). A process can
always be identified by an integer value, its process ID. Even though we do not know
whether the process ID is an int or a Long, we just cast the return value from getpid
to a long and print the value (Figure 9.2). But the identifier for a thread is a
pthread_t datatype (called a thread ID), and this need not be an integer. Indeed,
Solaris 2.6 uses small integers as the thread ID, whereas Digital Unix uses pointers.
Often, however, we want to print a small integer identifier for a thread (as in this exam-
ple) for debugging purposes. Our library function, shown in Figure 15.10, handles this
problem.

hapter 15 Section 15.7 Examples 371

lib {wrappthread.c
245 long
.; 246 pr_thread_idipthread_t * ptrl
247 |
. ; 248 #if defined(sun)
a_.ﬂt"""md 243 return |(ptr == NULL} ? pthread_self(} : *ptr}; {* Bolaris */
: 250 #elif defined|_ osf_ | && defined(__alpha)
i 251 pthread_t tid;
a52 tid = (ptr == NULL) ? pthread_self({] : *ptr; /* Digital Unix */
253 return (pthread_getsequence_npitidl);
5 254 #else
% 255 /* everything else */
¥ 256 return ((ptr == NULL) 7 pthread_self(} : *ptr};
I 257 #endif
g 258) lib wrappthread.c
ipeocedure ; . . o . e e
Seer for 5 i Figure 1510 pr_thread_id function: return small integer identifier for calling £ .
i multiple

If the implementation does not provide a small integer identifier for a thread, the func-
tion could be more sophisticated, mapping the pthread_t values to small integers and
; remembering this mapping (in an array or linked list) for future calls. This is done in
B SETOET.C i the thread_name function in [Lewis and Berg 1998].

A Returning to Figure 15.9, we run the client three times in a row. Since we wail for
the shell prompt before starting the next client, we know that the 5-second wait is com-

i
o o
=
T
SR <

el

plete at the server each time.
% solaris % client5 /tmp/serverS 55
i result: 3025
B solaris % clientS /tmp/serverS 66
¥ result: 4356
i solaris % client5 /Jtmp/servers 77
'_>: resylt: 5529
Looking at the server output, we see that the same server thread services each client:
‘_L _— ':;:: solariz & sexver5 /tmp/servers
i ’ i thread id 4, arg = 55
' 1; thread id 4, arg = &6
' thread id 4, arg = 77
=

We now start three clients at the same time:

solaris % elient5 /emp/servar5 11 & client5 /tmp/server5 232 &
client5 /tmp/serverS 313 &

[2] IB1Z
[3] 1813
[4] 3g14
solaris % result: 484
result: 121

resulc: 1089

The server output shows that two new threads are created to handle the second and
third invocations of the server procedure:

3n Doors Chapter 15 Section I3

thread 14 4, arg = 22 -
thread id 5, arg = 11
thread id &, arg = 33

We then start bwo more clients at the same time:

golariz % clientS /tmp/server5 11 & client5 Stmp/eerver5 22 &
[2] 3830

[3] 3831

solaris % resulc: 484

result: 121

and see that the server uses the previously created threads:

22
11

thread id &, arg
thread id 5, arg

What we can see with this example is that the server process (i.e., the doors library that
is linked with our server code) automatically creates server threads as they are needed.
If an application wants to handle the thread management itself, it can, using the func-
tions that we describe in Section 15.9.

We have also verified that the server procedure is a concurrent server: multiple
instances of the same server procedure can be running at the same time, as separate
threads, servicing different clients. Another way we know that the server is concurrent
is that when we run three clients at the same time, all three results are printed 5 seconds
later. If the server were iterative, one result would be printed 5 seconds after all three
clients were started, the next result 5 seconds later, and the last result 5 seconds later.

Automatic Thread Management by Server: Multiple Server Procedures

The previous example had only one server procedure in the server process. Our next
question is whether multiple server procedures in the same process can use the same
thread pool. To test this, we add another server procedure to the server process and
also recode this example to show a better style for handling the arguments and results
between different processes.

Owr first file is a header named squareproc.h that defines one datatype for the
input arguments to our square function and one datatype for the output arguments. It
also defines the pathname for this procedure. We show this in Figure 15.11.

Our new procedure takes a long integer input value and returns a double contain-
ing the square root of the input. We define the pathname, input structure, and output
structure in our sgrtproc . h header, which we show in Figure 15.12.

We show our client program in Figure 15.13. It just calls the two procedures, one
after the other, and prints the result. This program is similar to the other client pro-
grams that we have shown in this chapter.

Our two server pmcedures are shown in Figure 15.14. Each prints its thread ID and
argument, sleeps for 5 seconds, computes the result, and returns.

B R e T S

The main function, shown in Figure 15.15, opens two door descriptors and associ-
ates each one with one of the two server procedures.

R e T

b
fw=r that
= needed.
‘tm? func-
o

i: multiple
? separate
gimecurrent
£ = seconds
- three

g Pur next
B Hhe same
gocess and
gt results
&

g for the

F@enté. It
E:.:r_rmain-
g oatput

ger=_one
ert pro-

ik,

AR

Section 15.7 Examples 373
doors (squareproc.h
1 #define PATH_SQUARE DOOR = e/ squareproc_door”
2 typedef struct { /* input to sguareproc|)
3 long argl;
4 } squareproc_in_t;
5 typedef struct { /* output from squareproc()
& long resl;
T sgquareproc_out_t;
! TR doors [squareproc.h
Figure 1511 squareproc.h header.
doors | sqriproc.h
1 #define PATH_SQRT_DOOR */tmp/sgrtproc_door® =
2 typedef struct { /* input to sgreproc() */
3 long argl;
4 } sgrtproc_in_t;
g typedef atruct | /* putput from sgrtproci)
& double resl;
7 t t_t;
1} sgriproc_out_ doors/ h

Figure 1512 sgrtproc. b header

= = R [I

Bt s et
S = Y-

13
14

15
16

17
18
18
20
21
a2
23
24
25

#include *unpipc.h*
#include “sguareproc.h”
#include "sgrtproc.h”
int

main{int argc, char **argv)

{

int fdsquare, fdsgrt;
door_arg_t arg;
sguareproc_in_t square_in;
squareproc_out_t sguare_oul;
sgreproc_in_t sgrt_in:
sgrtproc_oukt_t sgrt_ouk;

if (arge != 2)
err_guit{"usage: client7 <integar-value=");

fdsquare = Open{PFATH_SQUARE DOOR, O_RDWR];
fdsgrt = Open(PATH_SORT_DOOR, O_RDWR);

/% set up the arguments and call sguareproc(]
square_in.argl = atol (argv[l]});
arg.data_ptr = (char *} &sguare_in;
arg.data_size = sizeof{sguare_in);
arg.desc_ptr = NULL;
arg.desc_num = 0;
arg.rbuf = (char *) &sguare_oukt;
arg.rsize = sizeof (sgquare_cout);
Deor_call (fdsquare, &arg);

*f

doors client7.c

374 Doors Chapter 15

26 /* met up the arguments and call sgrtprocl) */
27 sgrt_in.argl = atol {argv([l]};

ZB arg.data_ptr = (char *) kagrt_in;

29 arg.data_size = sizeof(sqgrt_in);

a0 arg.desc_pkr = NULL;

3l arg.desc_num = 0;

32 arg.rbuf = {char *} &sgrt_out;

33 arg.r3ize = sizeof(sqrt_out);

34 Door_call (fdsgrt, &argl:

35 princf{"result: %14 %g'\n", sguare_cut.resl, sgrt_out.resl);
i6 exitc(l);

37 }

doors | client? ¢

Figure 1513 Client program that calls our square and square root procedures.

doors | serveri.c
1 #include *unpipec.h®
2 #include <math.h>
3 #include *agquareproc.h”
4 #include ragrtproc.h®
5 woid
& squareproc{void *coockie, char *dataptr, size © datasize,
T door_desc_t *descptr, size_t ndesc)
8 {
] gguareproc_in t in;
10 squareproc_out_t out:
11 memepy (&in, dataptr, min(sizecf(in), datasizel];
12 printf("squareproc: thread id %1d, arg = ¥ld.n",
13 pr_thread_id({NULL). in.argl);
14 sleeapis);
15 put.resl = in.argl * in.argl;
16 Door_return((char *) &kout, sizeof(out), NULL, 0):
17 3
18 weid
19 sgrtproc{void *cockie, char *dataptr, size_t datasize,
240 door_desc_t *descptr, size t ndesc)
a2l
22 sgrtproc_in_t in;
23 sgrtproc_oub_t out;
24 memepy (&in, dataptr, min(sizeocf{in), datasize});
25 printf{"sgrtproc: thread id %14, arg = %1ld\n",
13 pr_thread_id(NULL), in.argl});
27 zleap(5);
28 cut.resl = sgrt((double) in.argl):
29 pDoor_returni (char *) &out, sizeofiout), NULL. 0);
0 doors | serverd.c

Figure 15.14 Two server procedures.

h'x chemil.c

R el

:
]
5:

Section 15.7 Examples 375

doors | seyver? .o

3l int

32 main{int arge, char **argv]

33

34 int £4;

35 if (argc = 1)

36 err_cuit{"usage: serverT");

37 fd = Door_create|sguareproc, MNULL, 0);:

3R unlink(PATH_SQUARE_DOODR) ;

EL Close {0pen (PATH_SQUARE_DOOR, O_CREAT | C_RDWR, FILE_MODE]):
alb Fattach(fd, PATH_SQUARE_DOOR);

41 fd = Door_createlsgrtproc, MNUOLL, O}

42 unlink {PATH_SQORT_DOOR) ;

43 Cloze(Cpen (PATH_SQORT_DOOR, O_CREAT | O_RDWR, FILE_MODE)):
44 Fattach(fd, PATH_SQRT_DOCR) ;

45 for [; :)

46 pausall];

47 }

doors (server?.c

Figure 1515 main function.

If we run the client, it takes 10 seconds to print the results (as we expect).

golarizs % elisnt? 77

result: 5929 B.77496
If we look at the server output, we see that the same thread in the server process han-
dles both client requests.

aolaris % server7

sguareproc: thread id 4, arg = 77

sgrtproc: thread id 4, arg = 77
This tells us that any thread in the pool of server threads for a given process can handle
a client request for any server procedure.

DOOR_UNREF Attribute for Servers

We mentioned in Section 15.3 that the DOOR_UNREF attribute can be specified to
door_create as an attribute of a newly created door. The manual page says that
when the number of descriptors referring to the door drops to one (that is, the reference
count goes from two to one), a special invocation is made of the door’s server proce-
dure. What is special is that the second argument to the server procedure (the pointer
to the data arguments) is the constant DOOR_UNREF_DATA. We will demonstrate three
ways in which the door is referenced.

1. The descriptor returned by door_create in the server counts as one reference.
In fact, the reason that the trigger for an unreferenced procedure is the transition
of the reference count from two to one, and not from one to 0, is that the server
process normally keeps this descriptor open for the duration of the process.

376

Doors

Chapter 15

2. The pathname attached to the door in the filesystem also counts as one refer-
ence. We can remove this reference by calling the fdetach function, running
the fdetach program, or unlinking the pathname from the filesystem (either

the unlink function or the rm command).

The descriptor returned by open in the client counts as an open reference until

the descriptor is closed, either explicitly by calling close or

implicitly by the

termination of the client process. In all the client processes that we have shown

in this chapter, this close is implicit.

Our first example shows that if the server closes its door descriptor after calling
fattach, an unreferenced invocation of the server procedure occurs immediately. Fig-
ure 15.16 shows our server procedure and the server main function.

@ o d Wk

el el
W oBY W

el
R s

finclude ‘unpipe.h"

void
servproc{void *cookie, char *dataptr, size_t datasize,

{

}

int

door_desc_t *descptr, size_t ndesc)

loang arg, result;

if i(dataptr == DOOR_UNREF_DATA) |
printf | "deor unreferenced\n");
Door_return(NULL, 0, NULL, Q);

H

arg = *i{(leng *) dataptrc];

doors{serverunrefl.c

printf{"thread id %14, arg = %ld\n", pr_thread id{NULL), arg):

slesplB]:

result = arg * arg:
Door_returni (char *) &result, sizeof{result), WULL, 0};

main{int arge, char **argv}

i

int fd;

if large L= 2}
err_gquit{"usage: serverl <server-pathname=");

/% create a deor descriptor and attach to pathname */
fd = Door_create|servproc, NULL, DOOR_UNREF):

unlink{argv[1]);

Clogse (Openi{argwv([1l], O_CEEAT | O_RDWR, FILE_MODE]);
Fattach{fd, argv([l]):

Close (£d);

/* servproci{) handles all client reguests */
for (; ;)
pausel);

doors (serverunrefl.c

Figure 15.16 Server procedure that handles an unreferenced invocation.

<o R R R -

e

e

Ahapter 15

m refer-
I., running
= either

e until

iy bv the
he shown

e calling
ety Fig-

:ﬁr'.':'s"'i' £

M".\ erefla

!
‘Z%.
i
;
s
i
‘

Section 15.7 Examples 377

7-10

28

Qur server procedure recognizes the special invocation and prints a message. The
thread returns from this special call by calling door_return with two null pointers
and two sizes of (.

We now close the door descriptor after fattach returns. The only use that the
server has for this descriptor after fattach is if it needs to call door_bind,
door_info, or door_revoke.

When we start the server, we notice that the unreferenced invocation occurs imme-
diately:

solaris % serverunrefl /tmp/doorl

door unreferenced

If we follow the reference count for this door, it becomes one after door_create
returns and then two after fattach returns. The server's call to close reduces the
count from two to one, triggering the unreferenced invocation. The only reference left
for this door is its pathname in the filesystem, and that is what the client needs to refer
to this door. That is, the client continues to work fine:

solaris % eglientunrefl /tmp/doorl 11
result: 121
solaris % clientunrefl /tmp/doorl 22
result: 484

Furthermore, no further unreferenced invocations of the server procedure occur
Indeed, only one unreferenced invocation is delivered for a given door.

We now change our server back to the common scenario in which it does not close
its door descriptor. We show the server procedure and the server main function in Fig-
ure 15.17. We leave in the 6-second sleep and also print when the server procedure
returns. We start the server in one window, and then from another window we verify
that the door’s pathname exists in the filesystem and then remove the pathname with
rm;

solariz % 1l =1 /ftmp/doorl
DIW=F==T=~= 1 ratevens otherl 0 Apr 16 08:5% /tmp/door:

solariz % rm Stmp/door2

As soon at the pathname is removed, the unreferenced invocation is made of the server
procedure:

golaris % serverunrefi /tmp/doori
door unreferenced as soon as pathname is removed from filesysten

If we follow the reference count for this door, it becomes one after door_create
returns and then two after fattach returns. When we rm the pathname, this com-
mand reduces the count from two to one, triggering the unreferenced invocation.

In our final example of this attribute, we again remove the pathname from the file-
system, but only after starting three client invocations of the door. What we show is
that each client invocation increases the reference count, and only when all three clients

378 Chapter 15
doors{serverunrefl.c
1 #include “unpipc.h" I} ref2
2 woid

3 servprociveld *cockie, char *dataptr, size_t datasize,

4 door_dese_t *descpty, size_t ndesc)
5
& long arg, result;
7 if {dataptr == DOOR_UMREF_DATA) |
& princf("deor unreferencedin®):
] Door_return (WULL, 0, NULL, 0);
10 1
11 arg = *({long *] dataptr);
12 printfi"thread id %1d, arg = %ldwn". pr_thread_id(NULL}, argl;
13 sleep(B);
14 rasult = arg * ard;
15 printf(*thread id %1d returning'n®, pr_thread_ id(NULL));
16 Door_returni{ (char *) &result, gizeof (result), WULL., 0):
17 1
18 int
1% mainiint argc, char **argv)
20
21 int £4;
22 if jarge l= 2]
23 err_guit{"usage: serverl <gerver-pathnames") ;
24 i* ereate a door descriptor and attach to pathname =/
25 fd = Door_create(servproc, NULL, DOOR_UNEEF) :
26 unlink(argvil]};
27 Close (Open (argw[l], O_CREAT | O_RDWR, FILE_MODE]});
i Fattach(fd, argv(l]l}:
29 ;* sarvproc() handles all client regquests */
30 for { & &}
3l pausel);
32}
doors | serverunref2.c

Figure 15.17 Server that does not close its door descriptor.

terminate does the unreferenced invocation take place. We use our previous server
from Figure 15.17, and our client is unchanged from Figure 15.2.

colaris % elientunref? /tmp/door2 44 & clientunref? /tmp/doord 55 & %
clisntunref? /tmp/doord 55 &

[21 13552
[3] 13553
[4] 13554
solaris % rm ftmp/doord while the three clients are running

solaris % result: 1936
result: 3025
result: 4356

158

BEE BOGHERR

o

AL T Rt R W e

Section 15.8 Descriptor Passing 379

15.8

Here is the server output:

golaris % serverunraf2 /tmp/doorl
thread id 4, arg = {44

thread id 5, arg = 55

thread id &, arg = &6

thread id 4 returning

thread id 5 returning

thread id ¢ returning

door unreferenced

If we follow the reference count for this door, it becomes one after door_create
returns and then two after fattach returns. As each client calls open, the reference
count is incremented, going from two to three, from three to four, and then from four to
five. When we rm the pathname, the count reduces from five to four. Then as each
client terminates, the count goes from four to three, then three to two, then two to one,
and this final decrement triggers the unreferenced invocation.

What we have shown with these examples is that even though the description of
the DOOR_UNREF attribute is simple (“the unreferenced invocation occurs when the ref-
erence count goes from two to one”), we must understand this reference count to use
this feature.

Descriptor Passing

When we think of passing an open descriptor from one process to another, we normally
think of either

« a child sharing all the open descriptors with the parent after a call to fork, or

« all descriptors normally remaining open when exec is called.

In the first example, the process opens a descriptor, calls fork, and then the parent
closes the descriptor, letting the child handle the descriptor. This passes an open
descriptor from the parent to the child.

Current Unix systems extend this notion of descriptor passing and provide the abil-
ity to pass any open descriptor from one process to any other process, related or unre-
lated. Doors provide one API for the passing of descriptors from the client to the server,
and from the server to the client. '

We described descriptor passing using Unix domain sockets in Section 14.7 of UNFv1. Berke-
ley-derived kernels pass descriptors using these sockets, and all the details are provided in
Chapter 18 of TCPv3. SVR4 kernels use a different technique to pass a descriptor, the
t_SENDFD and I_RECVED ioctl commands, described in Section 15.5.1 of APUE. But an
SVR4 process can still access this kernel feature using a Unix domain socket.

Be sure to understand what we mean by passing a descriptor. In Figure 4.7, the
server opens the file and then copies the entire file across the bottom pipe. If the file's
size is 1 megabyte, then 1 megabyte of data goes across the bottom pipe from the server
to the client. But if the server passes a descriptor back to the client, instead of the file

380 Doors Chapter 15

itself, then only the descriptor is passed across the bottom pipe in Figure 4.7 (which we
assume is some small amount of kernel-specific information). The client then takes this
descriptor and reads the file, writing its contents to standard output. All the file reading
takes place in the client, and the server only opens the file.

Realize that the server cannot just write the descriptor number across the bottom
pipe in Figure 4.7, as in

int fd;

fd = Cpeni ...);
Write(pipefd, &fd, sizeof(int]);:

This approach does not work. Descriptor numbers are a per-process attribute. Suppose
the value of £d is 4 in the server. Even if this descriptor is open in the client, it almost
certainly does not refer to the same file as descriptor 4 in the server process. (The only
time descriptor numbers mean something from one process to another is across a fork
or across an exec.) If the lowest unused descriptor in the server is 4, then a successful
open in the server will return 4. If the server “passes” its descriptor 4 to the client and
the lowest unused descriptor in the client is 7, then we want descriptor 7 in the client to
refer to the same file as descriptor 4 in the server. Figures 154 of APUE and 18.4 of
TCPv3 show what must happen from the kernel’s perspective: the two descriptors (4 in
the server and 7 in the client, in our example) must both point to the same file table
entry within the kernel. Some kernel black magic is involved in descriptor passing, but
APIs like doors and Unix domain sockets hide all these internal details, allowing pro-
cesses to pass descriptors easily from one process to another.

Descriptors are passed across a door from the client to server by setting the
desc_ptr member of the door_arg_t structure to point to an array of door_desc_t
structures, and setting door_num to the number of these structures. Descriptors are
passed from the server to the client by setting the third argument of door_return to
point to an array of door_desc_t structures, and setting the fourth argument to the
number of descriptors being passed.

typedef struct door_desc |

door_attr_t d_attributes; /* tag for unicn */
unicn {
struct /* ywalid if tag = DOOR_DESCRIPTOR */
ink d_descriptor; /% descriptor number */
door_id_t d_id: J* unigue id */
1 d_desc;
1 d_data;

} door_desc_t;

This structure contains a union, and the first member of the structure is a tag that iden-
tifies what is contained in the union. But currently only one member of the union is
defined (a d_desc structure that describes a descriptor), and the tag (d_attributes)
must be set to DOOR_DESCRIPTOR.

W hanter 15

fariich we
bakes this
e reading

e bottom

£ Suppose
£ ® aimost
{The only
e 3 Iork
?ﬁa:-:-.—:*-s:sful
sgment and
_h' chent to
s 154 of
k&’f‘: i4in
g & table
FS:.?, but
Weing pro-

%

i!::.?.“c the

g Se=c_t

T T b
h.'r to the

5

'
%
&

P s S

T

Section 15.8 Descriptor Passing 381

Example

We modify our file server example (recall Figure 1.9) so that the server opens the file,
passes the open descriptor to the client, and the client then copies the file to standard
output. Figure 15.18 shows the arrangement.

Server
¢ servproci |
i
door_desc_t desc;
JF/
dient -7 fd = open{ 1
: = desc... = fd]
main{ } . | . door_return (NULL, 0, &desc, 1)
| e
door_call (servfd, |; _._F,,a—F""'f Talﬂl :
‘/ - . '
filefd = arg.desc_ptr-»... | | #4 = aoor_crestei i:
while { (n = Read(filefd,)} > 0) fattach(fd, path);
Write{STDOUT_FILENG,
: } e

Figure 1518 File server example with server passing back open descriptor.

Figure 15.19 shows the client program.
Open door, read pathname from standard input
5-15 The pathname associated with the door is a command-line argument and the door

is opened. The filename that the client wants opened is read from standard input and
the trailing newline is deleted.
Set up arguments and pointer to result

16-22 The door_arg_t structure is set up. We add one to the size of the pathname to
allow the server to null terminate the pathname.
Call server procedure and check result

23-31 We call the server procedure and then check that the result is what we expect: no
data and one descriptor. We will see shortly that the server returns data (containing an
error message) only if it cannot open the file, in which case, our call to err_guit prints
that error.

Fetch descriptor and copy file to standard output

32-134 The descriptor is fetched from the door_desc_t structure, and the file is copied to
standard output.

382 Doors Chapter 15
doors [clientfdl c
1 #include "unpipc.h”
2
3 maini{int argc, char **argv)
4 (
5 inc door, £4;
[char argbuf [BUFFSIZE], resbuf [BUFFSIZE], buff[BUFFSIZE];
T size_t len, n;
8 door_arg_t arg;
] if farge '= 2}
10 err_guiti{"usage: clientfdl =server-pathname=");
11 door = COpeni{argv[l], O_ROWH); /* open the door */
12 Fgetsiargbuf, BUFFSIZE, stdin):; /* read pathname of file to open */
13 len = strleni{argbuf):
14 if (argbuf(len - 1] == "n")
15 len--; /* delete newline from fgets() */
16 /* =et up the arguments and pointer to result */
17 arg.data_ptr = argbuf; /* data argument */
18 arg.data_size = len + 1; /* gize of data argument */
19 arg.desc_ptr = NULL;
20 arg.desc_num = 0;
21 arg.rbuf = resbuf: /* data resaults */
22 arg.resize = BUFFSIZE; /* size of data results */
23 Door_call {door, Larg); f* call server procedure */
24 if jarg.data_size != 0)
28 err_quit(*"%.%s", arg.data_sizea, arg.data_ptr);
26 elge if (arg.desc_ptr == NULL)
27 err_guit(*desc_ptr is NULL"):
ZE else if (arg.desc_num != 1)
29 err_guit(*desc_num = %4*, arg.desc_num];
0 elze if (arg.desc_ptr->d_attributes != DOOR_DESCRIFTOR)
i1 err_guit(*d_attributes = %4°, arg.desc_ptr->d_attributes];
iz fd = arg.desc_ptr->d_data.d_desc.d_descriptor;
i3 while [(n = Read{fd, buff, BUFFSIZE)) » 0O}
i4 Write (STROUT_FILENG, buff, n);
15 exit {0}
1

doors|clientfdl.c

Figure 15.19 Client program for descriptor passing file server example.

Figure 15.20 shows the server procedure. The server main function has not

changed from Figure 15.3.
Open file for client

We null terminate the client's pathname and try to open the file. If an error occurs,

the data result is a string containing the error message.

(U TR T Sl et TR N N PR g 1 §

Pt e O ek

DAL

fEE CCCLIES,
3

R

S

B

A AR B i

g

_

Section 15.8 Descriptor Passing 383

15-20

1l #include "unpipc . h* daors Le
2 wold

3 servproc|woid *cockie, char *dataptr, size t datasize,
& door_desc_t *descptr, size_t ndesc)

5 1

& int fd;

T char resbuf [BUFFEIZE] ;

] door_desc_t desc;

a dataptridatasize - 1] = 0; /* null terminate */
10 if [(fd = openi{dataptr, O_RDONLY)) == -1} {

i1 /% error: must tell eclient */

12 snprintf{resbuf, BUFFSIZE, "%s: can’'t open., %57,
13 datapty, strerrori{errnoll;

14 Door_return(resbuf, strlen({resbuf}, NULL, 0};
15 } elae {

16 /* open succeeded: return descriptor */

17 dese.d_data.d_desc.d _descriptor = fd;

i8 desc.d_attributes = DOOR_DESCRIPTOR;

149 Door_return{NULL, 0, &desc, 1);

20 1

21}

doorsserverfdl ¢
Figure 15.20 Server procedure that opens a file and passes back its descriptor.

Success
If the open succeeds, only the descriptor is returned; there are no data results.

We start the server and specify its door pathname as /tmp/£d1 and then run the
client:

solaris % clientfdl /tmp/fdl

/etc/shadow

Jebo/shadow: can't open, Permission denied

anlariz % clientfdl /tmp/£4l

/nofauch/file

ino/such/file: can't open, Mo such file or directory
solaris % clientfdl /tmp/fdl

fete/nep.conf i 2-line file
multicastclient 224.0.1.1 ’

driftfile /etc/ntp.drift

The first two times, we specify a pathname that causes an error return, and the third
time, the server returns the descriptor for a 2-line file.

There is a problem with descriptor passing across a door. To see the problem in our example,
just add a printf to the server procedure after a successful open. You will see that each
descriptor value is one greater than the previous descriptor value. The problem is that the
server is not closing the descriptors after it passes them to the client. But there is no easy way
to do this, The logical place to perform the close would be after door_return refums, once
the descriptor has been sent to the client, but door_return does not return! If we had been

384 Doors Chapter 15

using either sendmag to pass the descriptor across a Unix domain socket, or ioct1 to pass the
descriptor across an SVR4 pipe, we could close the descriptor when sendmsg or ioctl
returns. But the doors paradigm for passing descriptors is different from these two techniques,
since no return occurs from the function that passes the deseriptor. The only way around this
problem is for the server procedure to somehow remember that it has a descriptor open and
close it at some later time, which becomes very messy.

This problem should be fixed in Solaris 2.7 with the addition of a new DOOR_RELEASE
attribute. The sender sets d_attributes to DOOR_DESCRIPTOR | DOOK_RELEASE, which
tells the system to close the descriptor after passing it to the receiver,

15.9 door_ server create Function

We showed with Figure 15.9 that the doors library automatically creates new threads as
needed to handle the client requests as they arrive. These are created by the library as
detached threads, with the default thread stack size, with thread cancellation disabled,
and with a signal mask and scheduling class that are initially inherited from the thread
that called door_create. If we want to change any of these features or if we want to
manage the pool of server threads ourselves, we call door_server create and spec-
ify our own server creation procedure.

#include <docr.h>
typedef wvoid Door_create_proc{door_info_t *1;

Door_create_proc *door_server_ create(Doocr_create_proc TR

Returns: pointer to previous server creation procedure

As with our declaration of door_create in Section 15.3, we use C's typedef to sim-
plify the function prototype for the library function. Qur new datatype defines a server
creation procedure as taking a single argument (a pointer to a door_info_t structure),
and returning nothing (void). When we call door_server_create, the argument is
a pointer to our server creation procedure, and the return value is a pointer to the previ-
ous server creation procedure.

Our server creation procedure is called whenever a new thread is needed to service
a client request. Information on which server procedure needs the thread is in the
door_infe_t structure whose address is passed to the creation procedure. The
di_proc member contains the address of the server procedure, and di_data contains
the cookie pointer that is passed to the server procedure each time it is called.

An example is the easiest way to see what is happening. Our client does not change
from Figure 15.2. In our server, we add two new functions in addition to our server
procedure function and our server main function. Figure 1521 shows an overview of
the four functions in our server process, when some are registered, and when they are
all called.

Figure 15.22 shows the server main function.

;?ﬁa;%er 15

%;tn;us.s the
g o Loctl

B%._ST_ZASE
Epss, which
}

i 5 sim-
& 2 server

K .
gEucture),
' ent 18

previ-
e |

3

8o service
f 4 in the
= The
?’pﬂr.mins

L_;
door_server_create (my_create} ;

' register servproc as server v
procedure for this door; fd = door_create([servproc,);
also execute my_create Tt
to create first thread ¥

Figure 15.21 Overview of the four functions in our server process.

42 int

43 maini{int argc, char **argv]

a4 {

45 if fargc l= 2)

46 err_guikt{"usage: serverf <server-pathname="];
47 Doot_server create (my_create];

48 /* preate a door descriptor and attach to pathname */
49 Prhread _mutex_locki(kfdleck);

50 £4 = Door_create{servproc, NULL, DODR_FRIVATE]:

51 Pthread_mutex unlock{&fdlock]);

52 unlink{argv[1]];

51 Close (Openi{argv[l], O_CREAT | O_RDWR, FILE_MODE)):
54 Fattach{fd, argv[1]];

55 /* gervproc|) handles all client reguests =/
56 for { : ;1

57 pausel) ;

8}

Section 15.9 door_server_create Funchion 385
- = servproc()
{ SETVED
h thread logica procedure
door_return(); jeac . o
) aw to comtinue
execute my_thread executing at .
when each new " E@rVproc as =
is sta my_t (1} each client call function
{ i iced
e >exemted
door_bind{ 1: by each
door_returni }r server thread
}
| 3
- - - my creata()
{ server
Ces » creation
h pthread_create(, my_thread, | procedure
register ' J
my_create sain{)

doors | serverb.c

doars | servert.c

Figure 15.22 main function for example of thread pool management.

386 Doors Chapter 15

ENEE §)

We have made four changes from Figure 15.3: (1) the declaration of the door
descriptor £d is gone (it is now a global variable that we show and describe in Fig-
ure 15.23), (2) we protect the call to door_create with a mutex (which we also
describe in Figure 15.23), (3) we call door_server_create before creating the door,
specifying our server creation procedure (my_thread, which we show next), and (4) in
the call to door_create, the final argument (the attributes) is now DOOR_PRIVATE
instead of 0. This tells the library that this door will have its own pool of threads, called
a private server pool.

Specifying a private server pool with DOOR_PRIVATE and specifying a server cre-
ation procedure with door_server_create are independent. Four scenarios are pos-
sible.

1. Default: no private server pools and ne server creation procedure. The system
creates threads as needed, and they all go into the process-wide thread pool.

2. DOCR_PRIVATE and no server creation procedure. The system creates threads
as needed, and they go into the process-wide pool for doors created without
DOOR_FRIVATE or into a door's private server pool for doors created with
DOOR_PRIVATE.

3. No private server pools, but a server creation procedure is specified. The server
creation procedure is called whenever a new thread is needed, and these threads
all go into the process-wide thread pool.

4. DOCR_PRIVATE and a server creation procedure are both specified. The server
creation procedure is called whenever a new thread is needed. When a thread is
created, it should call door_bind to assign itself to the appropriate private
server pool, or the thread will be assigned to the process-wide pool.

Figure 15.23 shows our two new functions: my_create is our server creation proce-
dure, and it calls my_thread as the function that is executed by each thread that it cre-
ates.

Server creation procedure

Each time my_create is called, we create a new thread. But before calling
pthread_create, we initialize its attributes, set the contention scope to
PTHREAD_SCOFPE_SYSTEM, and specify the thread as a detached thread. The thread is
created and starts executing the my_thread function. The argument to this function is
a pointer to the door_info_t structure. If we have a server with multiple doors and
we specify a server creation procedure, this one server creation procedure is called
when a new thread is needed for any of the doors. The only way for this server creation
procedure and the thread start function that it specifies to pthread_create to differ-
entiate between the different server procedures is to look at the di_proc pointer in the
door_info_t structure.

Setting the contention scope to PTHREAD_SCOPE_SYSTEM means this thread will com-
pete for processor resources against threads in other processes. The alternative,

o iChapter 15

Eilr the door
pbe in Fig-
e we also
ig the door,
£ and (4) in

TUATE
i<, called

gr SETVET Cre-
s are pos-

r:E"F.':l:: svstem
E '..;._t_'vk'li.

ﬁa threads
e without
gmsced with

o -
T

e sETVer

Bese threads

w@“ -
0 FCTYET
= thread is

et Drivate

ﬁr_r proce-
g st it cre-

to
F thread is
j Bumction is
k;ﬁ..o‘.‘ r= and
= = called
me= cTeation
E‘EE w2 differ-

ﬁ’e: in the

s il com-

b a=romnative,
;
-

P R A ey

R R

Section 15.9

door_server_create Function

387

13 pthread_mutex_t fdlock = PFTHREAD MUTEX INITIALIZER:

14 static int f4 = =1;

/* door descriptor */

15 void *

16 my_thread(veid *arg)

17

18 int ocldstate;

149 door_infe_t *iptr = arg:

20 if ((Door_server_proc *) iptr->di_proc == servproc) |
21 Pthread_mutex_lock({&fdlock):

22 Pthread_mutex_unlock (&fdlock) ;

23 Pthread_setcancelstate {PTHREAD _CANCEL_DISABLE, koldstate);
24 Door_bind{£4) ;

25 Door_return (WULL, O, NULL, 0);

2B } else

27 err_guit(*my_thread: unknown function: %p", argl;
28 return (NULL); /* never executed */

2%]

30 woid

31 my_create(door_info_t *iptr)

iz {

33 pthread_t tid;

34 pthread_attr_t attr;

5 Pthread_attr_init(&attr);

36 Prthread_attr_setscope(kattr, PTHREAD SCOFE _SYSTEM)

a7 Pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED) ;
ig Prthread_create (&bid, &attr, my_thread, (void *} iptr):
i3 Pthread_attr_destroy{kattr);

40 printf{"my_thread: created server thread %ld\n", pr_thread_idi&tid)};
g doors server6.c
Figure 15.23 Our own thread management functions.

PTHREAD_SCOPE_PROCESS, means this thread will compete for processor resources
only against other threads in this process. The latter will not work with doors, because
the doors library requires that the kernel lightweight process performing the
door_return be the same lightweight procese that originated the invocation. An
unbound thread (PTHREAD_SCOPE_PROCESS) could change lightweight processes dur-
ing execution of the server procedure.

The reason for requiring that the thread be created as a detached thread is bo prevent
the system from saving any information about the thread when it terminates, because
no one will be calling pthread_join

Thread start function

15-20

doors [servert.c

my_thread is the thread start function specified by the call to pthread create.

The argument is the pointer to the door_info_t structure that was passed to
my_create. The only server procedure that we have in this process is servproc, and
we just verify that the argument references this procedure.

388 Doors Chapter 15

21-22

23

24

Wait for descriptor to be valid

The server creation procedure is called for the first time when door_create is
called, to create an initial server thread. This call is issued from within the doors library
before door_create returns. But the variable £d will not contain the door descriptor
until door_create returns. (This is a chicken-and-egg problem.) Since we know that
my_thread is running as a separate thread from the main thread that calls
door_create, our solution to this timing problem is to use the mutex fdlock as fol-
lows: the main thread locks the mutex before calling door_create and unlocks the
mutex when door_create returns and a value has been stored into £d (Figure 15.22).
Our my_thread function just locks the mutex (probably blocking until the main thread
has unlocked the mutex) and then unlocks it. We could have added a condition variable
that the main thread signals, but we don’t need it here, since we know the sequence of
calls that will occur.

Disable thread cancellation

When a new Posix thread is created by pthread _create, thread cancellation is
enabled by default. When cancellation is enabled, and a client aborts a door_call that
is in progress (which we will demonstrate in Figure 15.31), the thread cancellation han-
dlers (if any) are called, and the thread is then terminated. When cancellation is dis-
abled (as we are doing here), and a client aborts a door_call that is in progress, the
server procedure completes (the thread is not terminated), and the results from
deor_return are just discarded. Since the server thread is terminated when cancella-
tion is enabled, and since the server procedure may be in the middle of an operation for
the client (it may hold some locks or semaphores), the doors library disables thread can-
cellation for all the threads that it creates. If a server procedure wants to be canceled
when a client terminates prematurely, that thread must enable cancellation and must be
prepared to deal with it.

MNotice that the contention scope of PTHREAD_SCOPE_SYSTEM and the detached state are spec-
ified as attributes when the thread is created. But the cancellation mode can be set only by the
thread itself once it is running, Indeed, even though we just disable cancellation, a thread can
enable and disable cancellation whenever it wants.

Bind this thread to a door

We call door_bind to bind the calling thread to the private server pool associated
with the door whose descriptor is the argument to door_bind. Since we need the door
descriptor for this call, we made £d a global variable for this version of our server.

Make thread available for a client call

The thread makes itself available for incoming door invocations by calling
deor_return with two null pointers and two 0 lengths as the arguments.

We show the server procedure in Figure 15.24. This version is identical to the one in
Figure 15.9.
To demonstrate what happens, we just start the server:

zolaris % serveré /tmp/dooré
my_thread: created server thread 4

L !.'.‘.'El-"l' 15

e+ e

_rreate i3
s library
g descriptor
I.I;‘_;.“A_"-W that
E that calls
e as fol-
mmiocks the

e 15.22).
ﬁ“ thread
goe variable
secnence of

peeilanion is
= o=_" that
EI\."-:‘. han-
\ﬁm“ = dis-
pngress, the
pads from
g cancella-
pesstion for
#eead can-
be —=nceled
e must be

:E..b*s.'{'-.ﬂ ted
s e door

i*i*: one in

=

S

e

il e A

R

3
:

Section 15.9 door_server_create Function 389
doors [serverb.c
1 #include "unpipec.h”
2 void
1 gervprocivoid *cockie, char *dataptr, size_t datasize,
4 door_desc_t *descptr, size t ndesc)
5 0
] long arg, result;
7 arg = *{{leng *) dataptr);
8 printf ("thread id %14, arg = %ld\n", pr_thread_id(WULL}, arg):
9 sleep(5]);
10 result = arg * arg;
i1 Door_returni{char *) kresult, sizeof({resulc), NULL, 0);
iz}

doors |servert.c
Figure 15.24 Server procedure.

As soon as the server starts and door_create is called, our server creation procedure
is called the first time, even though we have not even started the client. This creates the
first thread, which will wait for the first client call. We then run the client three times in
a row:

solaris % clienté /tmp/dooré 11
result: 121
solaris % clientf ftmp/doors 12
result: 484
solaris % elienté /tmp/dooré 33
result: 1089

If we look at the corresponding server output, another thread is created when the first
client call occurs (thread ID 5), and then thread number 4 services each of the client
requests. The doors library appears to always keep one extra thread ready.

my_thread: created server thread 5

thread id 4, arg = 11
cthread id 4, arg = 22
thread id 4, arg = 33

We then execute the client three times, all at about the same time in the background.

solaris % cliemté /tmp/door6 44 & clienté /tmp/door€ 55 &
elianté /tmp/dooré 66 &

(2] 4919
[3] 4320
[4] 4921

solaris % result: 1936
result: 4356
result: 3025

Looking at the corresponding server output, we see that two new threads are created
{thread 1Ds 6 and 7), and threads 4, 5, and 6 service the three client requests:

390 Doors Chapter 15

thread id 4, arg = 44
my_thread: created server thread g
chread id 5, arg = 66
my_thread: created server thread 7
chread id &, arg = 5%

15.10 door_bind, door_unbind, and door_revcke Functions

15.11

Three additional functions complete the doors APL

#include <door.h=>
int door_bindi{int jd};

int deoor_unbind(void):

int deor_revoke(int fd);

All three return: (0 if OK, -1 on error

L .

We introduced the door_bind function in Figure 15.23. It binds the calling thread to
the private server pool associated with the door whose descriptor is fid. If the calling
thread is already bound to some other door, an implicit unbind is performed.

door_unbind explicitly unbinds the calling thread from the door to which it has
been bound.

door_revoke revokes access to the door identified by fd. A door descriptor can be
revoked only by the process that created the descriptor. Any door invocation that is in
progress when this function is called is allowed to complete normally.

Premature Termination of Client or Server

All our examples so far have assumed that nothing abnormal happens to either the
client or server. We now consider what happens when errors occur at either the client
or server. Realize that when the client and server are part of the same process (the local
procedure call in Figure 15.1), the client does not need to worry about the server crash-
ing and vice versa, because if either crashes the entire process crashes. But when the
client and server are distributed to two processes, we must consider what happens if
one of the two crashes and how the peer is notified of this failure. This is something we
must worry about regardless of whether the client and server are on the same host or on
different hosts.

Premature Termination of Server

While the client is blocked in a call to door_call, waiting for results, it needs to know
if the server thread terminates for some reason. To see what happens, we have the

Section 15.11 Premature Termination of Client or Server 391
¢ server procedure thread terminate by calling thread_exit. This terminates just this
: thread, not the entire server process. Figure 15.25 shows the server procedure.

; doors [serverintel .o
1 #include *unpipc.h®
2 woid
3 mervproc (void *coockie, char *dataptr, size_t datasize,
4 door_desc_t *descptr, size_t ndesc)
5 {
B long arg, result;
7 prthread_exit (WMULL) ; /* and see what happens at client */
i _ 8 arg = *((long *) dataptr]:
i 9 reault = arg ¥ arg;
10 Door_return((char *) &result, sizeof(result), NWULL, 0);
11})
doors [serverintrl.c
Figure 15.25 Server procedure that terminates itself after being invoked.
The remainder of the server does not change from Figure 15.3, and the client does not
; change from Figure 15.2.
,E When we run our client, we see that an error of ETNTR is returned by door_call if
FE‘—‘ 1to the server procedure terminates before returning.
Em_lmg solaris & gliemtintrl /tmp/doorl 11
: door_call error: Interrupted system call
$ it has
> Uninterruptability of door_call System Call
f can be
Bt is in The door_call manual page warns that this function is not a restartable system call.
(The door_call function in the doors library invokes a system call of the same name.)
,. We can see this by changing our server so that the server procedure just sleeps for 6 sec-
i onds before returning, which we show in Figure 15.26.
: doors (serverintr2.c
B 1 #include "unpipc.h®
ey the 2 void
e chient 1 servprocivoeid *coockie, char *dataptr, size_t datasize,
e bocal : { door_desc_t *descptr, size_t ndesc)
F""-Ta‘i;}]:' [long arg, result;
b_; the
- if 7 sleepib); /% let client catch SIGCHLD =*/
”f.j“ _L_ g arg = *{ileng *) dataptr}:;
bE?_Z a2] result = arg * arg:
Fz"?’ on 10 Door_return((char *) &result, sizeof(resulc), WULL, O};
£ 11 1}
doars [serverintrd.c
: Figure 15.26 Server procedure sleeps for 6 seconds.
:';h':: . We then modify our client from Figure 15.2 to establish a signal handler for

e the SIGCHLD, fork a child process, and have the child sleep for 2 seconds and then

Doors Chapter 15

terminate. Therefore, about 2 seconds after the client parent calls door_call, the par-
ent catches SIGCHLD and the signal handler returns, interrupting the door_call sys-
tem call. We show this client in Figure 15.27.

doorsclientintr2 ¢

1 #include "unpipc.h”

2 wvoid

3 mig_chldiint signo)

4 1

5 return; /* just interrupt door_call(} */

6}

7 int

8 mainiint argec, char **argv)

EI

10 int £4;

11 long ival, oval;

12 door_arg_t arg;

13 if {argc != 3}

14 err_gquit("usage: clientintr? <server-pathname> <integer-valuex="};

15 fd = Openlargv([l}, O_RDWR): /* cpen the door */

16 /* set up the arguments and pointer to result */

17 ival = atoliargv(2]);:

18 arg.data_ptr = [(char *) &iwval; /* data arguments */

18 arg.data_size = sizeof(long); /* aize of data arguments */

20 arg.desc_ptr = NULL;

1 arg.desc_num = 0;

22 arg.rbuf = (char *) &owval; /* data resulta */

23 arg.rsize = sizecf(longl; f* gize of data results */

24 Signal (SIGCHLD, sig_chld);

25 if (Fork(} == 0} {

26 sleapil); f* child */

27 exit(0); /* generates SIGCHLD */

28 }

28 /* parent: call server procedure and print result */

30 Door_call (£d4, karg):

31 printf("result: %ld\n", oval);

k) exit (0);

i3} P
doors |/ clientintr2.c

Figure 15.27 Client that catches SIGCHLD after 2 seconds,

The client sees the same error as if the server procedure terminated prematurely:
EINTR.

solaris % clientintrl /tmp/doorl 22
door_call error: Interrupted system call

This means we must block any signals that might be generated during a call to
door_call from being delivered to the process, because those signals will interrupt
door_call.

.‘.

bk e il

b

S TR B ¢ AR

 Chapter 15

LZ. the par-

;'Lca Ll sys-

ﬁrﬂ:ﬁn trd.e

i

k:
i
}:

Section 15.11 Premature Termination of Client or Server 393

Idempotent versus Nonidempotent Procedures

31-42

What if we know that we just caught a signal, detect the error of EINTR from
door_call, and call the server procedure again, since we know that the error is from
our caught signal and not from the server procedure terminating prematurely? This can
lead to problems, as we will show.

First, we modify our server to (1} print its thread ID when it is called, (2) sleep for 6
seconds, and (3) print its thread ID when it returns. Figure 15.28 shows this version of
our server procedure.

doors [serverintri..c

1 #include "unpipc.h"

2 woid

31 servproc(void *cookie, char *dataptyr, size t datasize,

4 door_desc_t *descptr, size_t ndesc)

51

& lang arg, result;

7 printf{“thread id %1d called\n", pr_thread id{NULL});:

g sleep(6); /* let client catch SIGCHLD */
] arg = *{(long *) dataptr);
10 result = arg * arg;

11 printf{"thread id %ld returning\n®, pr_thread_id (NULL});
12 Door_return((char *) &kresult, sizeof{result), NULL, 0};
13 1}

doors [serverintri.c
Figure 1528 Server procedure that prints its thread 1D when called and when returning,

Figure 15.29 shows our client program.

We declare the global caught_sigchld and set this to one when the SIGCHLD sig-
nal is caught.

We now call door_call in a loop as long as the error is EINTR and this was caused
by our signal handler.

If we look at just the client output, it appears OK:

solaris % clientintr3 /tmp/doord 33
calling door_call

calling door_call

result: 1089

door_call is called the first time, our signal handler is invoked about 2 seconds later
and caught_sigchld is set to one, door_call returns EINTR, and we call
door_call again. This second time, the server procedure proceeds to completion and
the expected result is returned.

But looking at the server output, we see that the server procedure is called twice.

sclaris % serverintrl /tmp/door3
chread id 4 called

thread id 4 returning

thread id § called

thread id 5 returning

Doors Chapter 15

. doors|clientintrd.c

1 #include “unpipc.ht

2 wvolacile sig_atemic_t caught_sigchld;

3 woid

4 sig_chld{inkt signoa)

51

& caught_sigchld = 1;

7 return; /* just interrupt door_call() */
8}

9 int

10 main{int argc, char **argv)

11 {

12 int £d, re;

13 long ival, owval;

14 door_arg_t arg;

15 if (argec '= 3}

16 err_quit(*usage: clientintri <server-pathname> <integer-value>");
17 fd = Openlargv[l], O_RDWR); /* open the door */

18 /* set up the arguments and pointer to result */

15 ival = atoliargvi2]):
20 arg.data_ptr = (char *) &iwval; /* data arguments */
21 arg.data_gize = sizeocf(long): /* gize of data arguments =/
22 arg.deasc_ptr = HULL:
23 arg.desc_num = 0;
24 arg.rbuf = (char *) &oval; /* data results */
25 arg.rsize = sizeof({long]: f* size of data results */
28 Signal {3IGCHLD, sig_chld);
27 if {Fork(} == 0} {
28 slesp(2); /* child =/
29 exit(0); /* generates SIGCHLD */
0 }

1l /* parent: call server procedure and print result */
2 for (¢ ¢) {

a3 printf("calling door_calln"});

34 if { {re = deor_callifd, &arg)) == 0}

35 break; /* success */

16 if (errne == EINTE && caught_sigchld] {

a7 caught_sigchld = 0;

38 continue; /* call door_call(}l again */
39 }

a0 err_sgys("door_call error®};

4l }

42 printf(*result: %1ldwn*, oval);
43 exic (0} ;

dd }

doarsclientintr3.c

Figure 15.29 Client that calls door_call again after receiving EINTE.

Fhatm LS e A0

Section 15.11 Premature Termination of Client or Server 395

When the client calls door_call the second time, after the first call is interrupted by
the caught signal, this starts another thread that calls the server procedure a second
time. If the server procedure is idempotent, this is OK. But if the server procedure is not
idempotent, this is a problem.

The term idempotent, when describing a procedure, means the procedure can be
called any number of times without harm. Cur server procedure, which calculates the
square of a number, is idempotent: we get the correct result whether we call it once or
twice. Another example is a procedure that returns the current time and date. Even
though this procedure may return different information each time (say it is called twice,
1 second apart, causing the returned times to differ by 1 second), it is still OK. The clas-
sic example of a nonidempotent procedure is one that subtracts some amount from a
bank account: the end result is wrong unless this procedure is called only once.

Premature Termination of Client

We now see how a server procedure is notified if the client terminates after calling
door_call but before the server returns. We show our client in Figure 15.30.

doors (clientintrd ¢

1 #include "unpipe.h”

2 int

3 main(int arge, char **argv)

4 1

5 int fd;

3 long ival, owval;

7 door _arg_t arg;

g if farge = 3]

5 err_guit{"usage: clientintrd <server-pathnamer =integer-value=");
1o fd = Openiargv([l], O_ROWE);: /* open the door */
11 /* set up the arguments and peointer to result =/
12 ival = atollargv[2]}:
13 arg.data_ptr = {char *} &iwval; /* data arguments */
14 arg.data_size = sizeof(long): /* size of data arguments */
15 arg.deac_ptr = NULL;
16 arg.desc_num = 0;
17 arg.rbuf = [char *) &koval; /* data results */
18 arg.raize = sizeof (long); /= size of data resulca */
18 f* emall server procedure and print result */
20 alarmii);
21 Door_call{fd, &arg):
22 printf(*result: %1dvn", oval);
23 exit(0);
24}

doors clientintrd.c
Figure 15.30 Client that terminates prematurely after calling door_call.

396

Doors Chapter 15

20

The only change from Figure 15.2 is the call to alarm(3) right before the call to
Goor_call. This function schedules a SIGALRM signal for 3 seconds in the future, but
since we do not catch this signal, its default action terminates the process. This will
cause the client to terminate before door_call returns, because we will put a f-second
sleep in the server procedure.

Figure 15.31 shows our server procedure and its thread cancellation handler.
doors (serverintrd.c

1 #include "unpipec.h”

2 woid

1 servproc_cleanup(void *arg)

4 {

5 printf("servproc cancelled, thread id %ldwn", pr_thread_id (NULL]}];
6

7 wvoid

8 servproc(veid *coockie, char *dataptr, size_t datasize,

g door_desc_t *descptr, size_t ndesc)
10 {
11 int oldscate, junk;
1z long arg, result;

13 Pthread_setcancelstate (PTHREAD _CANCEL_EMNABLE, &oldstatel;
14 pthread_cleanup_push (servproc_cleanup, NULL];

15 sleep(6l;

16 arg = *({long *) dataptr):

17 result = arg * arg;

18 pthread_cleanup_popi0l:

19 Pthread_setcancelstate [oldstate, &junk):

20 Door_return({char *} &result, sizeof(result), NULL, 0};
21 }

doors [serperintrd.c
Figure 1531 Server procedure that detects premature termination of client.

Recall our discussion of thread cancellation in Section 8.5 and our discussion of this
with Figure 1523, When the system detects that the client is terminating with a
door_call in progress, the server thread handling that call is sent a cancellation

request.

o If the server thread has cancellation disabled, nothing happens, the thread exe-
cutes to completion (when it calls door_return), and the results are then dis-
carded.

e If cancellation is enabled for the server thread, any cleanup handlers are called,
and the thread is then terminated.

In our server procedure, we first call pthread_setcancelstate to enable cancella-
tion, because when the doors library creates new threads, it disables thread cancellation.
This function also saves the current cancellation state in the variable oldstate, and we
restore this state at the end of the function. We then call pthread_cleanup push to

R R e e

o N e O Y

g A I el T e T

s Suture, but
g This will
i 2 ssecond

i'_;f"v call to
E

i wemerinird

Section 15.12 Summary 397

15.12

register our function servproc_cleanup as the cancellation handler. All our function
does is print that the thread has been canceled, but this is where a server procedure can
do whatever must be done to clean up after the terminated client: release mutexes, write
a log file record, or whatever. When our cleanup handler returns, the thread is termi-
nated.

We also put a 6-second sleep in our server procedure, to allow the client to abort
while its door_call is in progress.

When we run our client twice, we see that the shell prints “Alarm clock” when our
process is killed by a SIGALRM signal.

solaris % cliemtintrd /tmp/doord 44
Alarm Cleck
solaris % elisntintrd /tmp/doord 44
Alarm Clock

If we look at the corresponding server output, we see that each time the client termi-
nates prematurely, the server thread is indeed canceled and our cleanup handler is
called.

solaris % serverintrd /tmp/doord
servproc canceled, thread id 4
servproc canceled, thread id &

The reason we ran our client twice is to show that after the thread with an [D of 4
is canceled, a new thread is created by the doors library to handle the second client
invocation.

Summary

Doors provide the ability to call a procedure in another process on the same host. In the
next chapter we extend this concept of remote procedure calls by describing the calling
of a procedure in another process on another host.

The basic functions are simple. A server calls door_create to create a door and
associate it with a server procedure, and then calls fattach to attach the door to a
pathname in the filesystem. The client calls open on this pathname and then
door_call to call the server procedure in the server process. The server procedure
returns by calling door_return.

Normally, the only permission testing performed for a door is that done by open
when it creates the door, based on the client’s user IDs and group IDs, along with the
permission bits and owner IDs of the pathname. One nice feature of doors that we have
not seen with the other forms of IPC in this text is the ability of the server to determine
the client’s credentials: the client's effective and real user IDs, and effective and real
group IDs. These can be used by the server to determine whether it wants to service
this client’s request.

Doors allow the passing of descriptors from the client to the server and vice versa.
This is a powerful technique, because so much in Unix is represented by a descriptor:

Doors Chapter 15

access to files for file or device 1/0, access to sockets or XTI for network communication
(UNPv1), and access to doors for RPC.

When calling procedures in another process, we must worry about premature ter-
mination of the peer, something we do not need to worry about with local procedure
calls. A doors client is notified if the server thread terminates prematurely by an error
return of EINTR from door_call. A doors server thread is notified if its client termi-
nates while the client is blocked in a call to door_call by the receipt of a cancellation
request for the server thread. The server thread must decide whether to handle this
cancellation or not.

Exercises

151 How many bytes of information are passed as arguments by door_call from the client to
the server?

152 In Figure 156, do we need to call fstat to first verify that the descriptor is a door?
Remove this call and see what happens.

153 The Solaris 2.6 manual page for sleep (3C) states that “The current process is suspended
from execution.” In Figure 159, why is the doors library able to create the second and
third threads (thread IDs 5 and 6) once the first thread (ID 4) starts running, since this
statement would imply that the entire server process blocks as soon as one thread calls
sleep?

15.4 In Section 15.3, we said that the FD_CLOEXEC bit is autematically set for descriptors cre-
ated by door_create. But we can call fentl after door_create returns and turn this
bit off. What will happen if we do this, call exec, and then invoke the server procedure
from a client?

155 In Figures 15.28 and 15.29, print the current time in the two calls to print£ in the server
and in the two calls to print £ in the client. Run the client and server. Why does the first
invocation of the server procedure return after 2 seconds?

156 Remove the mutex lock that protects £d in Figures 15.22 and 15.23 and verify that the pro-
gram no longer works. What error do you see?

157 If the only characteristic of a server thread that we want to change is to enable cancellation,
do we need to establish a server creation procedure?

158 Verify that door_revoke allows a client call that is in progress to complete, and deter-
mine what happens to door_call once the server procedure has been revoked.

159 In our solution to the previous exercise and in Figure 15.22, we said that the door descrip-
tor needs to be a global when either the server procedure or the server creation procedure
needs to use the descriptor. That statement is not true. Recode the solution to the previous
exercise, keeping £d as an automatic variable in the main function.

15.10 In Figure 15.23, we call pthread_at tr init and pthread_attr_destroy every time
a thread is created. Is this nptima‘t?

16.1

¥

PR e T

S R e s

b Chapter 15

-

pnication

e hure ter-
§ procedure
l%ﬁ an error
chent termi-
}hncei%atiun
cBndle this

t"t',"-.-j chent to

'_pr = a door?
;"B szspended
g =econd and
g, since this
e Sread calls

gscriptors cre-
s turn this
mer orocedure

Eg':r. the server
pdioe: the first
;

Eg’:w.af. the pro-
_:_ha:'r:elta.tiun,

Q and deter-

s descrip-
o procedure
g 2he previous

gy cveTy time

-
':..

i
.§_{
.
§
g

16.1

16

Sun RPC

Introduction
When we build an application, our first choice is whether to

1. build one huge monolithic program that does everything, or

2. distribute the application among multiple processes that communicate with
each other.

If we choose the second option, the next choice is whether to

2a. assume that all the processes run on the same host (allowing IPC to be used for
communication between the pmcesses}. or

2b. assume that some of the processes will run on other hosts (necessitating some
form of network communication between the processes).

If we look at Figure 15.1, the top scenario is case 1, the middle scenario is case 2a, and
the bottom scenario is case 2b. Maost of this text has focused on case (2a): IPC between
processes on the same host, using message passing, shared memory, and possibly some
form of synchronization. IPC between threads within the same process, or within
threads in different processes, is just a special case of this scenario.

When we require network communications among the various pieces of the appli-
cation, most applications are written using explicif network programming, that is, direct
calls to either the sockets API or the XTI AP, as described in UNPv1. Using the sockets
AP clients call socket, connect, read, and write, whereas servers call socket,
bind, listen, accept, read, and write. Most applications that we are familiar with
{Web browsers, Web servers, Telnet clients, Telnet servers, etc.) are written this way.

399

400 Sun RPC Chapter 16

An alternative way to write a distributed application is to use implicit network pro-
gramming. Remote procedure calls, or RPC, provide such a tool. We code our applica-
tion using the familiar procedure call, but the calling process (the client) and the process
containing the procedure being called (the server) can be executing on different hosts.
The fact that the client and server are running on different hosts, and that network 1/0
is involved in the procedure call, is for the most part transparent. Indeed, one metric by
which to measure any RPC package is how transparent it makes the underlying net-
working.

Example

As an example of RPC, we recode Figures 152 and 153 to use Sun RPC instead of
doors. The client calls the server’s procedure with a long integer argument, and the
return value is the square of that value. Figure 16.1 is our first file, square. x.

—— sunrpc/squarel [square.x

1 struct sguare_in { /7 inpuc {argument) */f
2 long argl;
3}
4 styuct sguare_oubt { /* ocuktput {(resultc} */
5 long resl;
& ¥
T program SQUARE_PROG {
-] version SQUARE_VERE {
9 square out SQUAREDROC (square_in) = 1; /% procedure number = 1 */
10 1 = 1; /* wersion number */
111 = 0x31230000; /* program number */
sunrpe/squarel [square.x

Figure 16,1 RPC specification file.

These files whose name end in . x are called RPC specification files, and they define the
server procedures along with their arguments and results.

Define argument and return value

We define two structures, one for the arguments (a single long), and one for the
results (a single long).
Define program, version, and procedure

We define an RPC program named SQUARE_PROG that consists of one version
(sQUARE_VERS), and in that version is a single procedure named sSOUAREFROC. The
argument to this procedure is a square_in structure, and its return value is a
square_out structure. We also assign this procedure a number of 1, we assign the ver-
sion a value of 1, and we assign the program number a 32-bit hexadecimal value. (We
say more about these program numbers in Figure 16.9.)

We compile this specification file using a program supplied with the Sun RPC pack-
age, rpcgen.

The next program we write is the client main function that calls our remote proce-
dure. We show this in Figure 16.2.

Section 16.3

S ol i:wl

L |

KA

[
B

B
wF W sy

- R e

N o LR

. Chapter 16

meszoork pro-
mer applica-
[process
ferert hosts.
jeewcork 1/0
me metric by
eriving net-

E mstead of

p: and the

'_'h‘-: [aduare.x

FN square.x

'3

;
s define the

| e for the

e version
E waiue is a

i the ver-
&_B‘.i-_"_:é' (We

?_ B pack-

.
g
:
&
i
i

Section 16.1 Introduction am

sumrpe (squarel [client.c
1 #include *unpipc.h” /* our header =/
2 #include "gguare . k" /* generated by rpcgen */
3 inc
4 main{int arge, char *“argv)
5
& CLIENT *cl;
T sgquare_in in;
B square_out Toutp;
k] if [argc 1= 1)
10 err_guit{"usage: client <hostname> <integer-value=");
i1l ¢l = Clnt_createiargv[l], SQUARE_FROG, SQUARE _VERS, "tcp")i
12 in.argl = atellargv[2]);
13 if [{outp = sguareproc_l(&in, cl}) == NULL}
14 err_qguit({"%s*, clnt_sperroricl, argvil])};
15 printf{"result: #ld\n", oukp-=resll:
16 exit(0);
17 }

swirpesquared [client.c
Figure 16.2 Client main function that calls remote procedure.

Include header generated by rpcgen
We #include the square. h header that is generated by rpegen.
Declare client handle

We declare a client handle named c1. Client handles are intended to look like stan-
dard I/0 FILE pointers (hence the uppercase name of CLTENT).

Obtain client handle
We call clnt_ereate, which returns a client handle upon success.

#include <rpc/rpo.h>

CLIENT *clnt_create(const char *hest, unzigned long progmum,
mnsigned long versnum, const char *profocol)
i
E

Returns: nonnull client handle if OK, NULL on error |

As with standard I/0 FILE pointers, we don’t care what the client handle points to. It
is probably some structure of information that is maintained by the RPC runtime sys-
tem. clnt_create allocates one of these structures and returns its pointer to us, and
we then pass this pointer to the RPC runtime each time we call a remote procedure.

The first argument to c1nt_create is either the hostname or IP address of the host
running our server. The second argument is the program name, and the third argument
is the version number, both from our square. x file (Figure 16.1). The final argument is
our choice of protocol, and we normally specify either TCP or UDP.

402 Sun RPC Chapter 16

12=15

1=

Call remote procedure and print result

We call our procedure, and the first argument is a pointer to the input structure
(in), and the second argument is the client handle. (In most standard 1/0 calls, the
FTLE handle is the final argument. Similarly, the CLTENT handle is normally the final
argument to the RPC functions.) The return value is a pointer to the result structure.
Notice that we allocate room for the input structure, but the RPC runtime allocates the

result structure,
In our square.x specification file, we named our procedure SQUAREPROC, but

from the client we call sgquareproc_1. The convention is that the name in the . x file is
converted to lowercase and an underscore is appended, followed by the version num-
ber.

On the server side, all we write is our server procedure, which we show in Fig-
ure 16.3. The rpcgen program automatically generates the server main function.
sunrpc/squarel [aserver.c

#include "unpipe.h”
#include *sgquare.h”

[

b3

aquare_ouk *
squareproc_l_sve (sguare_in *inp, struct svc_reg *rgstp)

3
4
5
& static sgquare_out oub;

7 put.resl = inp-=argl * inp-=argl;
B return (&out);

sunrpe/squatel [server.c

Figure 163 Server procedure that is called using Sun RFC,

Procedure arguments

We first notice that the name of our server procedure has _svc appended following
the version number. This allows two ANSI C function prototypes in the square.h
header, one for the function called by the client in Figure 16.2 (which had the client han-
dle as an argument) and one for the actual server function (which has different argu-
ments).

When our server procedure is called, the first argument is a pointer 1o the input
structure, and the second argument is a pointer to a structure passed by the RPC run-
time that contains information about this invocation (which we ignore in this simple
procedure).

Execute and return

£-8 We fetch the input argument and calculate its square. The result is stored in a struc-

ture whose address is the return value from this function. Since we are returning the
address of a variable from the function, that variable cannot be an automatic variable.
We declare it as static.

Astute readers will note that this prevents our server function from being thread safe. We dis-
cuss this in Section 16.2 and show a thread-safe version there.

el Rt e e Tl e Rl T 0

J P v S L e 0 D

il L e A e . ey)

 Chapter 16

—— - —

2

e structure

i calls, the
ity the final
g structure.
g ates the
g==oC, but
e« file is
grenc . nUM-
B in Fig-
pcasr HTDENC
F{.’ SCFTEN.C

slowing

..'- :. 9‘ " h

g et han-
fiesent argu-
;t:r the Input
e 51C run-

g simple

b o 2 struc-
peorring the
Jﬁt variable.

s e dis-

;
s
i
"

Section 16.1 Introduction 403

We now compile our client under Solaris and our server under BSD/OS, start the
server, and run the client.

golaris % glient bedi 11

result: 121

solaris % cliemt 209.75.135.35 22
result: 484

The first time we specify the server’s hostname, and the second time its [P address.
This demonstrates that the clnt_create function and the RPC runtime functions that
it calls allow either a hostname or an II” address.

We now demonstrate some error returns from clnt_create when either the host
does not exist, or the host exists but is not running our server.

golariz % elient nosuchhost 11
nosuchhost: EPC: Unknown host
clnt_create error

solaris % gliemt localhost 11
localhost: RPC: Program not registered
clnt_create arror

from the KPC rumtime
from owr wrapper function

We have written a client and server and shown their use without any explicit net-
work programming at all. Our client just calls two functions (clnt create and
squareproc_1), and on the server side, we have just written the function
squareproc_1_svc. All the details involving XTI under Solaris, sockets under
BSD/0S, and network 1/0 are handled by the RPC runtime. This is the purpose of
RPC: to allow the programming of distributed applications without requiring explicit
knowledge of network programming.

Another important point in this example is that the two systems, a Sparc running
Solaris and an Intel x86 running BSD/OS, have different byfe orders. That is, the Sparc is
big endian and the Intel is little endian {which we show in Section 3.4 of UNPv1), These
byte ordering differences are also handled automatically by the runtime library, using a
standard called XDR (external data representation), which we discuss in Section 16.8.

More steps are involved in building this client and server than in the other pro-
grams in this text. Here are the steps involved in building the client executable:

solaris % rpogen -C sguare.x

solariz % ce =-¢ client.c -o client.o

solaris % ¢¢ -¢ square_clnt.c -o sguare_clnt.o

solaris % oo -0 sguare xdr.c =-o sguare xdr.o

anlaris % e -o client client.o square_clnt.o sqguare _xdr.o libunpipc.a -lnsl

The -C option to rpcgen tells it to generate ANSI C prototypes in the square.h
header. rpcgen also generates a client stub (square_clnt. o) and a file named
square_xdr .c that handles the XDR data conversions. Our library (with functions
used in this book) is 1ibunpipc.a, and -1nsl specifies the system library with the
networking functions under Solaris (which includes the RPC and XDR runtime).

We see similar commands when we build the server, although rpcgen does not
need to be run again. The file square_svec.c contains the server main function, and

404 Sun RPC Chapter 16

square_xdr.o, the same file from earlier that contains the XDR functions, is also
required by the server.
solaris % o =C server.c -o BeIVer.o

solaris % cc -¢ sguarea_svo.c -0 Sguare 8ve.o
solaris ® oo -o server server.o sguare_svo.o square xdr.o libunpipc.a =lnsl

This generates a client and server that both run under Solaris.

When the client and server are being built for different systems (e.g., in our earlier
example, we ran the client under Solaris and the server under BSD/08), additional
steps may be required. For example, some of the files must be either shared (e.g., NF5)
or copied between the two systems, and files that are used by both the client and server
(square_xdr.o) must be compiled on each system.

Figure 16.4 summarizes the files and steps required to build our client-server exam-
ple. The three shaded boxes are the files that we must write. The dashed lines show the
files that #include square.h.

RPC specification file

#include #includ
[m————s=mme = — == - ——}_square.h —qm—— g — - - gam = — === -—
I —_— 1 I

v v v
el square_clnr_.c| quuare_xdr.c | | square_sve.c |
client client |stub) server| stub
main . |

runtime
“| library |
cc fﬁf oo
I
client | Berve r.
executable executable

Figure 16.4 Summary of steps required to build an RPC client—server.

Figure 16.5 summarizes the steps that normally take place in a remote procedure
call. The numbered steps are executed in order.

0. The sever is started and it registers itself with the port mapper on the server host.
The client is then started, and it calls cint_create, which contacts the port map-
per on the server host to find the server's ephemeral port. The clnt_create
function also establishes a TCP connection with the server (since we specified TCP

- Chapter 16

o

o=, 15 also

h_t -lnsl

caomar earlier
. sdditonal
{42 2., NFS)
L and server
Pﬁﬁ exam-
g show the

i't';v_'-;fd ure
:

i

Sereer host.
ot map-
g _create

gcitied TCP

Section 16.1 Introduction 405
client process SETVET PrOcess
r-—=—=-==-== Bl rT- o= === |
I I I 1
(| lient | | server ')
client.c¢ | Lhen ' ' . | pserver.c
.k_ | routines : L routines |
Y ! ! !
local procedure gall = (1) gy | | S l =
I ! I -
square_clnt.o <r- ! client : SETVET E : sguare_sve. o
square_xdr.c L : shub i stub | aquare_xdr, o
i i O ,
| RPC | RPC] :
! runtime ! | runtime |
I 1] L
I i I] [
(IR N P T N
systern call = (2) | {5 7 (4
_________ _ 4 _ _process e — | |- _ Process
1 kernel kernel
| Y
network il et metwork
rony | {3} = network communications =:. routines

Figure 16.5 Steps involved in a remote procedure call.

as the protocol in Figure 16.2). We do not show these steps in the figure and save
our detailed description for Section 16.3.

The client calls a local procedure, called the client stub. In Figure 16.2, this proce-
dure was named squareproc_1, and the file containing the client stub was gener-
ated by rpegen and called square_clnt.c. To the client, the client stub appears
to be the actual server procedure that it wants to call. The purpose of the stub is to
package up the arguments to the remote procedure, possibly put them into some
standard format, and then build one or more network messages. The packaging of
the client's arguments into a network message is termed marshaling. The client rou-
tines and the stub normally call functions in the RPC runtime library (e.g.,
clnt_create in our earlier example). When link editing under Solaris, these run-
time functions are loaded from the -1nsl library, whereas under BSD/OS, they
are in the standard C library.

These network messages are sent to the remote system by the client stub. This nor-
mally requires a system call into the local kernel (e.g., write or sendt o).

The network messages are transferred to the remote system. The typical network-
ing protocols used for this step are either TCP or UDP.

A server stub procedure is waiting on the remote system for the client’s request. It
unmarshals the arguments from the network messages.

The server stub executes a local procedure call to invoke the actual server function
(our squareproc_1_sve procedure in Figure 16.3), passing it the arguments that
it received in the network messages from the client.

When the server procedure is finished, it returns to the server stub, returning what-
ever its return values are.

406 Sun RPC Chapter 16

History

= The server stub converts the return values, if necessary, and marshals them into
one or more network messages to send back to the client,

The messages are transferred back across the network to the client.

The client stub reads the network messages from the local kernel (e.g., read or
recvirom).

10. After possibly converting the return values, the client stub finally returns to the
client function. This step appears to be a normal procedure return to the client.

Probably one of the earliest papers on RPC is [White 1975]. According to [Corbin 1991],
White then moved to Xerox, and several RPC systems were developed there. COne of
these, Courier, was released as a product in 1981. The classic paper on RPC is [Birrell
and Nelson 1984], which describes the RPC facility for the Cedar project running on sin-
gle-user Dorado workstations at Xerox in the early 1980s. Xerox was implementing
RPC on workstations before most people knew what workstations were! A Unix imple-
mentation of Courier was distributed for many years with the 4.x BSD releases, but
today Courier is of historical interest only.

Sun released the first version of its RPC package in 1985, It was developed by Bob
Lyon, who had left Xerox in 1983 to join Sun. Its official name is ONC/RPC: Open Net-
work Computing Remote Procedure Call, but it is often called just “Sun RPC.” Techni-
cally, it is similar to Courier, The original releases of Sun RPC were written using the
sockets API and worked with either TCP or UDP. The publicly available source code
release was called RPCSRC. In the early 1990s, this was rewritten to use TLI, the prede-
cessor to XTI (described in Part 4 of UNPv1), and works with any networking protocol
supported by the kernel. Publicly available source code implementations of both are
available from ftp://playground.sun.com/pub/rpo with the sockets wversion
named rpcsre and the TLI version named tirpcsrc (called TI-RPC, where “T1”
stands for “transport independent”).

REC 1831 [Srinivasan 1995a] provides an overview of Sun RPC and describes the
format of the RPC messages that are sent across the network. RFC 1832 [Srinivasan
1995b] describes XDR, both the supported datatypes and their format “on the wire.”
RFC 1833 [Srinivasan 1995¢] describes the binding protocols: RPCBIND and its prede-
cessor, the port mapper.

Probably the most widespread application that uses Sun RPC is NFS, Sun’s network
filesystem. Normally, NFS is not built using the standard RPC tools, rpegen and the
RPC runtime library that we describe in this chapter. Instead, most of the library rou-
tines are hand-optimized and reside within the kernel for performance reasons. Never-
theless, most systems that support NFS also support Sun RPC.

In the mid-1980s, Apollo competed against Sun in the workstation market, and they
designed their own RPC package to compete against Sun's, called NCA (Network Com-
puting Architecture), and their implementation was called NC5 (Network Computing
System). NCA/RPC was the RPC protocol, NDR (Network Data Representation) was
similar to Sun’s XDR, and NIDL (Network Interface Definition Language) defined the

L

A ped - dese o RN B R

CEapter 16

e -

f e into
T

ﬁa:-e- but
F bv Bob
e Net-
E_'_-" Techni-
i: msing the
pparce code
[e prede-
g protocol
@ both are
m VETSIOn
piere TI”

pecrites the

aIvasan
rm wire,"”
E #s prede-

ll and they
_k‘:‘--'&. Come-
t..r: ruting
ganon | was
::ﬂzt'-ec] the
5

i
]

Section 16.2 Multithreading 407

16.2

interfaces between the clients and servers (e.g., similar to our . x file in Figure 16.1). The
runtime library was called NCK (Network Computing Kernel).

Apollo was acquired by Hewlett Packard in 1989, and NCA was developed into the
Open Software Foundation’s Distributed Computing Environment (DCE), of which
RPC is a fundamental element from which most pieces are built. More information on
DCE is available from http://www.camb.opengroup.crg/tech/dece. An imple-
mentation of the DCE RPC package has been made publicly available at
ftp://gatekeeper.dec.com/pub/DEC/DCE. This directory also contains a
171-page document describing the internals of the DCE RPC package. DCE is available
for many platforms.

Sun RPC is more widespread than DCE RPC, probably because of its freely available imple-
mentation and its packaging as part of the basic system with most versions of Unix. DCE RPC
is normally available as an add-on (i.e., separate cost) feature. Widespread porting of the pub-
licly available implementation has not occurred, although a Linux port is underway. In this
text, we cover only Sun RPC. All three RPC packages—Courier, Sun RPC, and DCE RPC—are
amazingly similar, because the basic RPC concepts are the same.

Most Unix vendors provide additional, detailed documentation on Sun RPC. For example, the
Sun documentation is available at htep: / /docs, sun. com, and in the Developer Collection,
Volume 1, is a 280-page “ONC+ Developer's Guide.” The Digital Unix documentation at
http: //www. unix.digital.com/fags/publications/pub_page/v400_DOCS.HTHM
includes a 116-page manual titled “Programming with ONC RPC.”

KPC itseli is a controversial topic. Eight postings on this topic are contained in
nttp://www.kohala.com/-retevens/papera.others/rpo. comments ., Lxi.

In this chapter, we assume TI-RPC (the transport independent version of RPPC men-
tioned earlier) for most examples, and we talk about TCP and UDP as the supported
protocols, even though TI-RPC supports any protocols that are supported by the host.

Multithreading

Recall Figure 15.9, in which we showed the automatic thread management performed

by a doors server, providing a concurrent server by default. We now show that Sun

RPC provides an iferative server by default. We start with the example from the previous

section and modify only the server procedure. Figure 16.6 shows the new function,

which prints its thread ID, sleeps for 5 seconds, prints its thread 1D again, and returns.
We start the server and then run the client three times:

solaris % client localhost 22 E client localhost 33 & A\
client localhost 44 &

[3] 25179
[4] 25180
[5] 25181

about 5 seconds after the prompt is privted
anpther 5 seconds later
e artother 5 seconds later

solaris % result: 484
result: 1936
result: 1089

408 Sun RPC Chapter 16
. , sutirpe (squarel [server.c
1 #include "unpipe.h”
2 #include "aoguare. h”
3 sgquare_out ¥
4 sgquareproc_l_sve(square_in *inp, Struct sve_reg *rgstpl
5 {
B static sguare_out oUuL;
7 printf(*thread %14 started, arg = %1ld\n",
] pr_thread id{NULL), inp-=argl);
9 sleepid);
10 out.resl = inp-=argl * inp-=argl;
11 princf{"thread %ld done‘\n", pr_thread id(NWULLI];
12 return (&kout);
13}

sunrpe [squarel [server.c

Figure 16.6 Server procedure that sleeps for 5 seconds.

Although we cannot tell from this output, a 5-second wait occurs between the printing
of each result by the client. If we look at the server output, we see that the clients are
handled iteratively: the first client's request is handled to completion, and then the sec-
ond client's request is handled to completion, and finally the third client’s request is
handled to completion.

solaris % Server

thread 1 started, arg = 22
thread 1 done
thread 1 started, arg = 44
thread 1 done
thread 1 started, arg = 33
thread 1 done

One thread handles all client requests: the server is not multithreaded by default.

Dur doors servers in Chapter 15 all ran in the foreground when started from the shell, as in
solaris % sarver

That allowed us to place debugging calls to printf in our server procedures. But Sun RPC

servers, by default, run as daemons, performing the steps as outlined in Section 12.4 of

UNPv1. This requires calling svslog from the server procedure to print any diagnostic infor-

mation. What we have done, however, is specify the C compiler flag -DDEBUG when we com-

pile our server, which is the equivalent of placing the line

#define DEBUG

in the server stub (the sguare_sve . o file that is generated by rpegen). This stops the server
main function from making itself a daemon, and leaves it connected to the rerminal on which
it was started. That is why we can call printf from our server procedure.

The provision for a multithreaded server appeared with Solaris 2.4 and is enabled

by a -M command-line option to rpcgen. This makes the server code generated by
rpogen thread safe. Another option, -2, has the server automatically create threads as

e

L=

g

K

b R < e

1 Bk s

P ey T

:
i
¥
i

be printing
gSeents are
g the sec-
{mmquest is

Bl =5 in
B <o RPC
124 of
ol
wE COI-

%

g
* B seTVer

i or which

_ﬁ enabled
Fz:e-u:‘. by
Eeeads as

.
}

Section 16.2 Multithreading 409

12-14

they are needed to process new client requests. We enable both options when we run
rpegen.

Both the client and server also require source code changes, which we should
expect, given our use of static in Figure 163. The only change we make to our
square . x file is to change the version from 1 to 2. Nothing changes in the declarations
of the procedure’s argument and result structures.

Figure 16.7 shows our new client program.

sumrpesquare3 [client.c

1 #include *unpipe.h" TPersq /

2 #include *sguare. n”

3 int

4 main(int argc, char **argv)

54

& CLIENT *cl:

7 aquare_in in;

1 squara_oulb oul;

9 if {argc != 3

10 err_quit{"usage: client <hostname> <integer-wvalue=");

11 cl = Clnt_createlargv[l], SQUARE_PROG, SQUAKE_VERS, "tep"l;

12 in.argl = ateliargvi2]);

13 if (squareproc_2{&kin, &cut, €l} != RPC_SUCCESS)

14 err_cuit{"%s", clnt_sperroricl, argvillil;:

15 printfi{"result: %ld\n", out.resl);

16 exit(0);

17 1 .
sunrpe | squaredclicnt.c

Figure 16.7 Client main function for multithreaded server.
Declare variable to hold result

We declare a variable of type square_out, not a pointer to this type.

New argument for procedure call

A pointer to our out variable becomes the second argument to squareproc_Z2,
and the client handle is the last argument. Instead of this function returning a pointer to
the result (as in Figure 16.2), it now returns either RPC_SUCCESS or some other value if
an error occurs. The clnt_stat enum in the <rpc/clnt_stat.h> header lists all the
possible error returns.

Figure 16.8 shows our new server procedure. As with Figure 16.6, it prints its
thread ID, sleeps for 5 seconds, prints another message, and returns.

New arguments and return value

The changes required for multithreading involve the function arguments and return
value. Instead of returning a pointer to the result structure (as in Figure 163}, a pointer
to this structure is now the second argument to the function. The pointer to the
svo_req structure moves to the third position. The return value is now TRUE upon
success, or FALSE if an error is encountered.

410 Sun RPC Chapter 16
- - sunrpesquared [server.c
1 #include "unpipc.h”
2 #include “aguare.h"
3 bool_t
4 squareproc_2_sve(sguare_in *inp, sguare_out *outp, sktruct sve_reg *rgstp)
5 [
] princf{"thread %l1d started, arg = %ld\n".
7 pr_thread id({NULL), inp-=argl):
8 gsleapi3);
9 outp->resl = inp-=argl * inp-rargl;
10 printf(“thread %14 done‘n*, pr_thread_id{MULL));
11 return (TRUE) ;
12 }
13 int
14 sguare prog_2_freeresult (SVCEPRT *transp, xdrproc_t wxdr_resultc,
15 caddr_t result)
18 {
17 xdr_free(xdr_result, result);
18 return {1);
1% 1}
sunrpesquared (server.c
Figure 16.8 Multithreaded server procedure.
New function to free XDR memory
13-19 Another source code change we must make is to provide a function that frees any

storage automatically allocated. This function is called from the server stub after the
server procedure returns and after the result has been sent to the client. In our example,
we just call the generic xdr_free routine. (We talk more about this function with Fig-
ure 16.19 and Exercise 16.10.) If our server procedure had allocated any storage neces-
sary to hold the result (say a linked list), it would free that memory from this new
function.

We build our client and server and again run three copies of the client at the same
time:

aolaris % client localhost 55 & client localhost 66 & %
client localhost 77 &

[31 25427
[4] 25428
[5] 25429

solaris % result: 4356
result: 3025
result: 5929

This time we can tell that the three results are printed one right after the other. Looking
at the server output, we see that three threads are used, and all run simultaneously.
solaris % server

thread 1 started, arg
thread 4 started, arg

55
T

{Zu per 16

s server.c

25

f frees any

i.ﬁ?ter the

Fesample,

gh—;m Fig-
D es=

_ﬁ's.;- new

.

T

e Lookin g

;

Section 16.3 Server Binding 41

16.3

thread & started, arg = &6
thread & done
thread 1 done
thread 4 done

One unfortunate side effect of the source code changes required for multithreading is that not
all systems support this feature, For example, Digital Unix 4.08 and BSD/05 3.1 both provide
the older RPC system that does not support multithreading. That means if we want to compile
and run a program on both types of systems, we need #1ifdefs to handle the differences in the
calling sequences at the client and server ends. Of course, a nonthreaded client on BSD/OS,
say, can still call a multithreaded server procedure running on Solaris, but if we have an RPC
client {or server) that we want to compile on both types of systems, we need to modify the
souree code to handle the differences.

Server Binding

In the description of Figure 16.5, we glossed over step 0: how the server registers itself
with its local port mapper and how the client discovers the value of this port. We first
note that any host running an RPC server must be running the port mapper. The port
mapper is assigned TCP port 111 and UDP port 111, and these are the only fixed Internet
port assignments for Sun RPC. RPC servers always bind an ephemeral port and then
register their ephemeral port with the local port mapper. When a client starts, it must
first contact the port mapper on the server’s host, ask for the server’s ephemeral port
number, and then contact the server on that ephemeral port. The port mapper is pro-
viding a name service whose scope is confined to that system.

Some readers will claim that NFS also has a fixed port number assignment of 2049, Although
many implementations use this port by default, and some older implementations still have this
port number hardcoded into the client and server, most current implementations allow other
ports to be used. Most NFS clients also contact the port mapper on the server host to obtain
the port number.

With Solaris 2.x, Sun renamed the port mapper RPCBIND. The reason for this change is that
the term “port” implied Internet ports, whereas the TI-RPC package can work with any net-
working protocol, not just TCP and UDP. We will use the traditional name of port mapper.
Also, in our discussion that follows, we assume that TCP and UDF are the only protocols sup-
ported on the server host.

The steps performed by the server and client are as follows:

1. When the system goes into multiuser mode, the port mapper is started. The exe-
cutable name is typically portmap or rpcbind.

2. When our server starts, its main function (which is part of the server stub that is
generated by rpcgen) calls the library function sve_create. This function deter-
mines the networking protocols supported by the host and creates a transport end-
point {e.g., socket) for each protocol, binding an ephemeral port to the TCP and
UDP endpoints. It then contacts the local port mapper to register the TCP and UDP
ephemeral port numbers with the RPC program number and version number,

412 Sun RPC Chapter 16

The port mapper is itself an RPC program and the server registers itself with the
port mapper using RPC calls (albeit to a known port, 111). A description of the pro-
cedures supported by the port mapper is given in RFC 1833 [Srinivasan 1995c].
Three versions of this RPC program exist: version 2 is the historical port mapper
that handles just TCP and UDP ports, and versions 3 and 4 are the newer RFCBIND
protocols.

We can see all the RPC programs that are registered with the port mapper by execut-
ing the rpcinfo program. We can execute this program to verify that port number
111 is used by the port mapper itself:

sclaris % rpeinfo -p

program wvers proto port service
100000 4 tep 111 rpebind

100000 3 tcp 111 rpchind
1000400 2 Lep ill rpcbind
100000 4 udp 111 rpecbind
Loooao 3 udp 111 rpcbhbind
100000 2 udp 111 rpcbhind

(We have omitted many additional lines of output.) We see that Solaris 2.6 supports
all three versions of the protocol, all at port 111, using either TCP or UDF. The map-
ping from the RPC program number to the service name is normally found in the
file /ete/rpe. Executing the same command under BSD/OS 3.1 shows that it sup-
ports only version 2 of this program.
badi % rpeinfo -p
program wvers proto port

100000 2 Loep 111 portmapper
100000 2 udp 111 portmapper

Digital Unix 4.0B also supports just version 2:

alpha %* rpeinfo -p
program wers proto port
100000 2z tcp 111 portmapper
100000 2 udp 111 portmapper

Our server process then goes to sleep, waiting for a client request to arrive. This
could be a new TCP connection on its TCP port, or the arrival of a UDP datagram on
its UDF port. If we execute rpeinfo after starting our server from Figure 16.3, we
see
solaris % rpeinfo -p
program vers proto port service

B24377344 1 udp 47972
8243177344 1 tcp 40849

where 824377344 equals 0x31230000, the program number that we assigned in
Figure 16.1. We also assigned a version number of 1 in that figure. Notice that a
server is ready to accept clients using either TCP or UDP, and the client chooses
which of these two protocols to use when it creates the client handle (the final argu-
ment to clnt_create in Figure 16.2).

Charter 16 Section 16.3 Server Binding 413
_-l"n'.'i'l the 3. The client starts and calls clnt_create, The arguments (Figure 16.2) are the
pE the pro- server’s hostname or IP address, the program number, version number, and a string
@ 1995c]. specifying the protocol. An RPC request is sent to the server host's port mapper
= mapper (normally using UDP as the protocol for this RPC message), asking for the informa-
RPCBIND tion on the specified program, version, and protocol. Assuming success, the port
] number is saved in the client handle for all future RPC calls using this handle.
E:T‘Ef;m In Figure 16.1, we assigned a program number of 0x31230000 to our program.
E mber The 32-bit program numbers are divided into groups, as shown in Figure 16.9.
PIOEHI;'I number Descrlpﬁnn]
: "0x00000000 - OxAFEEFfEf | defined by Sun
Ox20000000 - OxIEFEEE£E | defined by user
Oxd0000000 - OxSEEFELEF | transient (for customer-written applications)
| 0x60000000 - OxFEEFEELE | reserved
Figure 16.9 Program number ranges for Sun RPC.

?m;mrts The rpeinfo program shows the programs currently registered on your system.
TBe map- Another source of information on the RPC programs supported on a given system is
@nc n the normally the . x files in the directory /usr/include/rpcsve.
Bt 1t sup-
: inetd and RPC Servers
By default, servers created by rpcgen can be invoked by the inetd superserver. (Sec-
tion 12.5 of UNPv1 covers inetd in detail) Examining the server stub generated by
; rpcgen shows that when the server main starts, it checks whether standard input is a
XTI endpoint and, if so, assumes it was started by inetd.
- Backing up, after creating an RPC server that will be invoked by inetd, the
Jete/inetd. conf configuration file needs to be updated with the server information:
the RPC program name, the program numbers that are supported, which protocols to
¥ support, and the pathname of the server executable. As an example, here is one line
e This (wrapped to fit on this page) from the Solaris configuration file:
h:"?.:“. on raratd/2-4 tli rpo/datagram v wait root
E‘-" 3 we Jusr/lib/netsve/ratat/rpo.rsktatd rpo. retatd
The first field is the program name (which will be mapped to its corresponding program
i number using the /etc/rpe file), and the supported versions are 2, 3, and 4. The next
: field specifies a XTI endpoint (as opposed to a socket endpoint), and the third field spec-

ifies that all visible datagram protocols are supported. Looking at the file
; /ete/netconfig, there are two of these protocols: UDP and /dev/clts. (Chapter 29
gened in of UNPv1 describes this file and XTI addresses.) The fourth field, wait, tells inetd to

wait for this server to terminate before monitoring the XTI endpoint for another client
request. All RPC servers in /etc/inetd.conf specify the wait attribute.

The next field, root, specifies the user ID under which the program will run, and
the last two fields are the pathname of the executable and the program name with any

ﬁm that a

:ﬁ chnoses

fimal argu-

414 Sun RPC Chapter 16

16.4

arguments to be passed to the program (there are no command-line arguments for this
program).

inetd will create the XTI endpoints and register them with the port mapper for the
specified program and versions. We can verify this with rpcinfe:

solaris & rpeinfo | grep statd

100001 2 udp 0.0.0.0.128,11 ratatd SUperuser
100001 3 udp 0.0.0.0,128.11 rstatd SUpErusSer
100001 4 udp 0.0.0.0.128.11 ratatd superuser
100001 2 ticles LWOooNoo0ND20, ratatd SUperuser
100001 3 ticlts WOOONO00N020, rstatd SUperuser
100001 i ticles LOOON000N 020, ratatcd SUpEIUSer

The fourth field is the printable format for XTI addresses (which prints the individual
bytes) and 128x256+ 11 equals 32779, which is the UDP ephemeral port number
assigned to this XTI end point.

When a UDFP datagram arrives for port 32779, inetd will detect that a datagram is
ready to be read and it will fork and then exec the program
jusr/lib/netsve/rstat/rpe.rstatd. Between the fork and exec, the XTI end-
point for this server will be duplicated onto descriptors 0, 1, and 2, and all other inetd
descriptors are closed (Figure 12.7 of UNPv1). inetd will also stop monitoring this XTI
endpoint for additional client requests until this server (which will be a child of inetd)
terminates—the wait attribute in the configuration file for this server.

Assuming this program was generated by rpcgen, it will detect that standard
input is a XTI endpoint and initialize it accordingly as an RPC server endpoint. This is
done by calling the RPC functions svc_t1i_create and svc_reg, two functions that
we do not cover. The second function does not register this server with the port
mapper—that is done only once by inetd when it starts. The RPC server loop, a func-
tion named sve_run, will read the pending datagram and call the appropriate server
procedure to handle the client’s request.

Normally, servers invoked by inetd handle one client’s request and terminate,
allowing inetd to wait for the next client request. As an optimization, RPC servers
generated by rpegen wait around for a small amount of time (2 minutes is the default)
in case another client request arrives. If so, this existing server that is already running
will read the datagram and process the request. This avoids the overhead of a fork
and an exec for multiple client requests that arrive in quick succession. After the small
wait period, the server will terminate. This will generate SIGCHLD for inetd, causing
it to start looking for arriving datagrams on the XTI endpoint again.

Authentication

By default, there is no information in an RPC request to identify the client. The server
replies to the client’s request without worrying about who the client is. This is called
nudl authentication or AUTH_NONE.

The next level is called Unix authentication or AUTE_5vS. The client must tell the
RPC runtime to include its identification (hostname, effective user ID, effective group
ID, and supplementary group IDs) with each request. We modify our client-server

&

L apter 16

sEmdividual
t number

By Tonning
o 2 “or

h the small

g;: causing

P LA, g e

:
iTme server

h = called

g

ﬁ-s:r well the
e sroup

;hﬂ:'- ==ETVEer

Section 16.4

Authentication 415

1z-13

from Section 16.2 to include Unix authentication. Figure 16.10 shows the client.

sunrpe/squared [client.c

1 #include "unpipc.h* P In’sq /

2 #include ‘“Bguare.h”

3 int

4 mainiint arge, char **argv)

5 1

[CLIENT *glr

T square_in ing

] sguare_oukt oukt;

] if {arge != 3}

10 err_muit |{"usage: client <hostname> <integer-value=");

11 cl = Clnt_create(argvil], SQUARE_PROG, SQUARE _VERS, "tcp®li

12 auth_destroy{cl->cl_auth);

13 el-»cl_auth = autheys_create_default();

14 in.argl = atoliargvi2]);

15 if (sguareproc_2(kin, &out, ¢l} != RPC_SUCCESE)]

1& err_sguit("%s", clnt_sperror{cl, argv[1])};

17 printf ("resulc: %ld\n", out.resl);

1B exic {0}

1% 1} .
sunrpe | squared [client.c

Figure 16.10 Client that provides Unix authentication.
These two lines are new. We first call auth_destroy to destroy the previous

authentication associated with this client handle, the null authentication that is created
by default. The function authsys_create_default creates the appropriate Unix
authentication structure, and we store that in the c1_auth member of the CLIENT
structure. The remainder of the client has not changed from Figure 16.7.

Figure 16.11 shows our new server procedure, modified from Figure 16.8. We do
not show the square_prog_2_freeresult function, which does not change.

We now use the pointer to the sve_req structure that is always passed as an argu-
ment to the server procedure.

scruct sve_req |

u_long Tg_prodg; /* program number */

u_long I _Vers: /* wersion number */

u_long rog proc: /* procedure number */

gtruct opagque_auth rg cred; /* raw credentials */

caddr_t rq_clntered; /* cooked credentials (read-onlyl */
SVCKPRT *rg_xprt; /* transport handle */

i

struct opagque_auth {
enum_E oa_flaver;
caddr_t oa_base;
u_int oa_length;

T

/7 flavor: AUTH_ xxx constant */
/* address of more auth stuff */
/* nmot to exceed MAX _RUTH_BYTES */

416 Sun RPC Chapter 16

1 #include "unpipc.h® sunqxjsquan4f5ﬂ1wtr
2 #include "sguare.h*

3 bool_t

4 squareproc_2_svo(sguare_in *inp, square_oubt *outp, sStruck sve_reg *rgstp)
51

3 princf{"thread %ld started, arg = %1d, auth = %d\n",

7 pr_thread id{NULL), inp-»argl, rgstp->rg_cred.oa_£flavor);

8 if irgstp->rg cred.oca_flavor == AUTH_S¥S) |

9 struct authsys_parms *au;

10 au = (struct authsys_parms *) rgstp->rg_clntcred;

11 printf (*AUTH_S¥S: host %5, uid %ld, gid %ld.n",

12 au-=aup_machname, {(long) au-raup_uid, (long) au-raup_gid):
13 H

14 sleep(5];

15 cutp->resl = inp-=argl * inp-=argl;

16 printf{“thread %1d done\n", pr_thread_id(NULL});

17 raturn (TRUE) ;

18 }

sunrpe|squared [server.c
Figure 16.11 Server procedure that looks for Unix authentication.

The rg_cred member contains the raw authentication information, and its ca_flavor
member is an integer that identifies the type of authentication. The term “raw" means
that the RPC runtime has not processed the information puointed to by ca_base. Butif
the authentication type is one supported by the runtime, then the cooked credentials
pointed to by rg _clntcred have been processed by the runtime into some structure
appropriate for that type of authentication. We print the type of authentication and
then check whether it equals AUTH_sYs.

513 For Unix authentication, the pointer to the cooked credentials (rg_clntcred)
points to an authsys_parms structure containing the client’s identity:

struct authsys_parms |

u_long aup_time; /* credentials creation time */

char ‘aup_machname: /* hostname where client iz locakted =/
uid_t aup_uid; f* effective user ID =/

gid_t aup_gid; /v effective group ID *J

u_int aup_len; /* #elements in aup_gids(] =/

gid_t raup _gids; /* supplementary group IDs */

}i

We obtain the pointer to this structure and print the client's hostname, effective user 1D,
and effective group I,

If we start our server and run the client once, we get the following output from the
server:

solaris ¥ sarver

thread 1 started, arg = 44, auth = 1

AUTH_SYS: host solaris.kohala.com, uid 765, gid 870
thread 1 done

EL'I}"IL’T 16

B sTEn G

e

Flavor
" means
& But if

Section 16.5 Timeout and Retransmission 417

16.5

Unix authentication is rarely used, because it is simple to defeat. We can easily
build our own RPC packets containing Unix authentication information, setting the user
ID and group IDs to any values we want, and send it to the server. The server has no
way to verify that we are who we claim to be.

Actually, NFS uses Unix authentication by default, but the requests are normally sent by the
NFS client's kernel and usually with a reserved port {Section 2.7 of UNPv1). Some NFS
servers are configured to respond to a client's request only if it arrives from a reserved port. If
you are trusting the client host to mount your filesystems, you are trusting that client’s kernel
to identify its users correctly. If a reserved port is not required by the server, then hackers can
write their own programs that send NFS requests to an NFS server, setting the Unix authenti-
cation 1Ds to any values desired. Even if a reserved port is required by the server, if you have
your own system on which you have superuser privileges, and you can plug vour system into
the network, you can still send your own NFS requests to the server.

An RPC packet, either a request or a reply, actually contains two fields related to
authentication: the credentials and the verifier (Figures 16.30 and 16.32). A common anal-
ogy is a picture 1D (passport, driver's license, or whatever). The credentials are the
printed information (name, address, date of birth, etc.), and the verifier is the picture.
There are also different forms of credentials: a picture is better than just listing the
height, weight, and sex, for example. If we had an ID card without any form of identi-
fying information (library cards are often examples of this), then we would have creden-
tials without any verifier, and anyone could use the card and claim to be the owner.

In the case of null authentication, both the credentials and the verifier are empty.
With Unix authentication, the credentials contain the hostname and the user and group
IDs, but the verifier is empty. Other forms of authentication are supported, and the cre-
dentials and verifiers contain other information:

AUTH_SHORT An alternate form of Unix authentication that is sent in the verifier
field from the server back to the client in the RPC reply. It is a
smaller amount of information than full Unix authentication, and
the client can send this back to the server as the credentials in subse-
quent requests. The intent of this type of credential is to save net-
work bandwidth and server CPU cycles.

AUTH_DES DES is an acronym for the Data Encryption Standard, and this form of
authentication is based on secret key and public key cryptography.
This scheme is also called secure RPC, and when used as the basis for
MNFS, this is called secure NF5.

AUTH_KERB This scheme is based on MIT's Kerberos system for authentication.

Chapter 19 of [Garfinkel and Spafford 1996] says more about the latter two forms of
authentication, including their setup and use.

Timeout and Retransmission

We now look at the timeout and retransmission strategy used by Sun RPC. Two time-
out values are used:

418

Sun RIPC Chapter 16

13-14d

15=-18

1. The total timeout is the total amount of time that a client waits for the server's
reply. This value is used by both TCP and UDF.

2. The retry timeout is used only by UDP and is the amount of time between
retransmissions of the client’s request, waiting for the server’s reply.

First, no need exists for a retry timeout with TCP because TCF is a reliable protocol. 1f
the server host never receives the client’s request, the client’s TCP will time out and
retransmit the request. When the server host receives the client's request, the server’s
TCF will acknowledge its receipt to the client’s TCP. If the server’s acknowledgment is
lost, causing the client’s TCP to retransmit the request, when the server TCP receives
this duplicate data, it will be discarded and another acknowledgment sent by the server
TCP. With a reliable protocol, the reliability (timeout, retransmission, handling of dupli-
cate data or duplicate ACKs) is provided by the transport layer, and is not a concern of
the RPC runtime. One request sent by the client RPC layer will be received as one
request by the server RPC layer (or the client RPC layer will get an error indication if
the request never gets acknowledged), regardless of what happens at the network and
transport layers.

After we have created a client handle, we can call clnt_control to both query
and set options that affect the handle. This is similar to calling fontl for a descriptor,
or calling getscckopt and setsockopt for a socket.

#include <rpc/rpc.he

bool_t clnt_control (CLIENT *cl, unsigned int requeést, char *pir);

Returns: TRUE if OK, FALSE on error

cl is the client handle, and what is pointed to by pir depends on the request.

We modify our client from Figure 16.2 to call this function and print the two time-
outs. Figure 16.12 shows our new client.
Protocol is a command-line argument

We now specify the protocol as another command-line argument and use this as the
final argument to clnt_create.
Get total timeout

The first argument to clnt_control is the client handle, the second is the request,
and the third is normallv a pointer to a buffer. Our first request is CLGET_TIMEQUT,
which returns the total timeout in the timeval structure whose address is the third
argument. This request is valid for all protocols.

Try to get retry timeout
Our next request is CLGET_RETRY_TIMEOUT for the retry timeout, but this is valid
only for UDP, Therefore, if the return value is FALSE, we print nothing.

We also modify our server from Figure 16.6 to sleep for 1000 seconds instead of 5
seconds, to guarantee that the client’s request times out. We start the server on our host

i

[

Er i bd B B BB R

L it

sl i

Chapter 16

h ETVEr'S
-

-
h& bebween

T?'D!Cr(u]_ 1f
e out and
#ibe seTver’s
Becdoment is
t}" reCelves

f ihe server
pe of dupli-

g concern of
eec 25 one

ﬁae tion if

otk and

{;.
Both query

p de<criptor,

Section 16.5 Timeout and Retransmission 419
sHn wares [client.c
1 #inelude "unpipc.h" qx#sq
2 #include "sguare.h"”
3 int
4 main(int arge, char **argv)
5 {
& CLIENT *cl;
7 sguare_in in;
g sguare_out *outp;
] struct timewval tv;
10 if [arge = 4)
11 err_guit|"usage: client <hostname> <integer-values <protocol=");
12 cl = Clnt_createlargv[l], SQUARE_PROG, SQUARE_VERS, argv(3l);
13 Clnt_controli{cl, CLGET_TIMECQUT, (char *) &tw):
14 princfi“timecut = %1d sec, %ld usec’n®, LV.TV_S5&C, Ev.tv_usec) ;
15 if (elnt_control(cl, CLGET_RETRY_TIMEQUT, (char *] &tw) == TRUE}
16 princf{*retry timeout = %1d sec, %1d usechn", tv.tv_sec, tv.tv_usec) ;
17 in.argl = atol{argv([2]]):
18 if { {outp = sguareproc_l{&in, cl}) == HNUILL}
19 err_quit{"ks", clnt_sperror(cl, argvll]l}i);
20 printf (*result: %ld\n", outp->resl);
21 exit(0);
23 }

sunrpe /squared | client.c
Figure 16,12 Client that queries and prints the two RPC timeout values.

bsdi and run the client twice, once specifying TCP and once specifying UDF, but the
results are not what we expect:

solaris % date ; client badi 44 top ; date
Wed Apr 22 14:46:57 MST 1958
cimecut = 30 sec, 0 usec
hadi: RPC: Timed out

Wed Apr 22 14:47:22 MST 1988

this says 30 seconds

bt this is 25 seconds later

golaris % date j; client bsdi 55 udp ; date
Wed Apr 22 14:48:05 MST 1994 .
timeout = -1 sec, -1 usec bizarre

retry timecut = 15 sec, 0 usec fhis turns out o be corvect
bedi: RPC: Timed out
Wed Apr 22 14:48:31 MST 1998 ahout 25 seconds later

In the TCP case, the total timeout is returned by clnt_control as 30 seconds, but our
measurement shows a timeout of 25 seconds. With UDP, the total timeout is returned

as—1.
To see what is happening here, look at the client stub, the function squareproc_1

in the file square_clnt.c that is generated by rpcgen. This function calls a library
function named clnt_call, and the final argument is a timeval structure named

420 Sun RPC Chapter 16

TIMECUT that is declared in this file and is initialized to 25 seconds. This argument to
clnt_call overrides the default of 30 seconds for TCP and the -1 values for UDP
This argument is used until the client explicitly sets the total timeout by calling
clnt_control with a request of CLSET_TIMEOUT. If we want to change the total
timeout, we should call clnt_control and should not modify the structure in the
client stub.

The cnly way to verify the UDF retry timeout is to watch the packets using tepdump. This
shows that the first datagram is sent as soon as the client starts, and the next datagram is about
15 seconds later,

TCP Connection Management

If we watch the TCP client-server that we just described using topdump, we see TCP's
three-way handshake, followed by the client sending its request, and the server
acknowledging this request. About 25 seconds later, the client sends a FIN, which is
caused by the client process terminating, and the remaining three segments of the TCP
connection termination sequence follow. Section 2.5 of UNPv1 describes these segments
in more detail.

We want to show the following characteristics of Sun RPC's usage of TCP connec-
tions: a new TCP connection is established by the client’s call to c1nt_create, and this
connection is used by all procedure calls associated with the specified program and ver-
sion. A clients TCP connection is terminated either explicitly by calling
clnt_destroy or implicitly by the termination of the client process.

#include <rpc/rpc.h=

void elnt_destroy |CLIENT *cdl);

We start with our client from Figure 16.2 and modify it to call the server procedure
twice, then call c1nt_destroy, and then pause. Figure 16.13 shows the new client.

Running this program vields the expected output:

golaris % elient kalae 5

result: 25

result: 100
program just waits wntil we kil it

But the verification of our earlier statements is shown only by the tcpdump output.
This shows that one TCI® connection is created (by the call to clnt_create) and is
used for both client requests. The connection is then terminated by the call to
clnt_destroy, even though our client process does not terminate.

Transaction ID

Another part of the timeout and retransmission strategy is the use of a transaction ID or
XID to identify the client requests and server replies. When a client issues an RPC call,
the RPC runtime assigns a 32-bit integer XID to the call, and this value is sent in the

dal A . L

G L - R

B

Rk

P Ny

- Chapter 16
}..__ S —

pmament to
s for UDP.
& calling
g= the total
Bere in the

epcns. This
‘ia:ﬂqahout

4

g s TCP's
fhe server
§ which is
@i the TCP
B segments
:EE‘ Jomnec-
% and this
g =nd ver-
3 calling

g cutput.

b and is
call to

e D or
B R call,
m i the

i

Section 16.5 Timeout and Retransmission an
sunrpe {squared [client.c
1 #include "unpipc.h” /* our header */ rpcj" 9
2 #ineclude rgquare.h” /* generated by rpcgen */
3 int
4 main{int argc, char **argv)
5
& CLIENT *cl;
7 square_in im;
| square_out *oubp;
9 if (arge != 1)
10 err_quit {"usage: client <hostname> <integer-value=~);
11 cl = Clnt_create{argv[1l], SQUARE PROG, SQUARE_VERS. "tept);
12 in.argl = atol(argv[2]);
13 if { {outp = sguareproc_li(&in, cl)} == NULL)
14 err_quit{*%s*, clnt_sperrori{cl, argwil])}:
158 princf{"reault: %1ld\n", cutp->resl};
18 in.argl *= 2;
17 1f | (emtp = squareproc_1{&kin, £l)) == NHULL]
1z err_quit(*%s", clnt_sperror(cl, argw[1]1);
18 printf(*result: %ld\n*, outp->=resl);
24 clnt_destroyicl):
21 pauss();
22 exic{0);
23}

sunrpc)square | client.c

Figure 16.13 Client program to examine TCP connection usage.

RPC message. The server must return this XID with its reply. The XID does not change
when the RPC runtime retransmits a request. The XID serves two purposes:

1. The client verifies that the XID of the reply equals the XID that was sent with the
request; otherwise the client ignores this reply. If TCP is being used, the client
should rarely receive a reply with the incorrect XID, but with UDF, and the pos-
sibility of retransmitted requests and a lossy network, the receipt of a reply with
the incorrect XID is a definite possibility.

The server is allowed to maintain a cache of the replies that it sends, and one of

the items that it uses to determine whether a request is a duplicate is the XID.
We describe this shortly.

The TI-RPC package uses the following algorithm for choosing an XID for a new
request, where the ~ operator is C's bitwise exclusive OR:

struct cimeval

F10%r ¢

gettimecfday{&now, HNULL]

xid = getpidi)

now. tv_ses "

now.tv_usec;

422 Sun RPC Chapter 16

Server Duplicate Request Cache

To enable the RPC runtime to maintain a duplicate request cache, the server must call
sve_dg_enablecache. Once this cache is enabled, there is no way to turn it off (other
than termination of the server process).

#include <rpc/rpo.h>

int sve_dg_enablecache (SVCXPRT *xprf, unsigned long size) ;

Returns: 1if OK, { on error

xprt is the transport handle, and this pointer is member of the svo_req structure (Sec- s
tion 16.4). The address of this structure is an argument to the server procedure. size is o
the number of cache entries for which memory should be allocated. -
When this cache is enabled, the server maintains a FIFO (first-in, first-out) cache of e
all the replies that it sends. Each reply is uniquely identified by the following;
* program number,
* version number,
* procedure number,
« XID. and
* client address (I’ address and UDP port).
Each time the RPC runtime in the server receives a client request, it first searches the
cache to see whether it already has a reply for this request. If so, the cached reply is
returned to the client instead of calling the server procedure again.
The purpose of the duplicate request cache is to avoid calling a server procedure
multiple times when duplicate requests are received, probably because the server proce-
dure is not idempotent. A duplicate request can be received because the reply was lost or
because the client retransmission passes the reply in the network. Notice that this
duplicate request cache applies only to datagram protocols such as UDP, because if TCP
is being used, a duplicate request never makes it to the application; it is handled com- o
pletely by TCP (see Exercise 16.6). gy
16.6 Call Semantics

In Figure 15.29, we showed a doors client that retransmitted its request to the server
when the client’s call to door_call was interrupted by a caught signal. But we then
showed that this caused the server procedure to be called twice, not once. We then cate-
gorized server procedures into those that are idempotent (can be called any number of
times without harm), and those that are not idempotent (such as subtracting money
from a bank account).

Procedure calls can be placed into one of three categories:

1. Exactly once means the procedure was executed once, period. This type of oper-
ation is hard to achieve, owing to the possibility of server crashes.

i{ha;*:er 16

r mmust call
picst (other

geches the
ﬁi reply is

:tht;edure
BeT DTOCe-
s Lost or
g ghat this
e if TCP
kied Ccom-

e server
g we then
ME"" Cate-
gunber of

g money

e of Oper-

Section 16.6

Call Semantics 423

At most once means the procedure was not executed at all or it was executed
once. If a normal return is made to the caller, we know the procedure was exe-
cuted once. But if an error return is made, we're not certain whether the proce-
dure was executed once or not at all.

At least once means the procedure was executed at least once, but perhaps more.
This is OK for idempotent procedures—the client keeps transmitting its request
until it receives a valid response. But if the client has to send its request more
than once to receive a valid response, a possibility exists that the procedure was
executed more than once.

With a local procedure call, if the procedure returns, we know that it was executed
exactly once, but if the process crashes after the procedure has been called, we don't
know whether it was executed once or not at all. We must consider various scenarios
with remote procedure calls:

 [f TCP is being used and a reply is received, we know that the remote procedure

was called exactly once. But if a reply is not received (say the server crashes),
we don’t know whether the server procedure executed to completion before the
host crashed, or whether the server procedure had not yet been called (at-most-
once semantics). Providing exactly-once semantics in the face of server crashes
and extended network outages requires a transaction processing system, some-
thing that is beyond the capability of an RPC package.

If UDP is being used without a server cache and a reply is received, we know
that the server procedure was called at least once, but possibly more than once
(at-least-once semantics).

If UDP is being used with a server cache and a reply is received, we know that

the server procedure was called exactly once. But if a reply is not received, we
have at-most-once semantics, similar to the TCP scenario.

Given these three choices:

1. TCP,
2. UDF with a server cache, or
3. UDP without a server cache,

our recommendations are;

Always use TCP unless the overhead of the TCP connections is excessive for the
application.

Use a transaction processing system for nonidempotent procedures that are
important to do correctly (i.e., bank accounts, airline reservations, and the like).

For a nonidempotent procedure, using TCP is preferable to UDP with a server
cache. TCP was designed to be reliable from the beginning, and adding this to a
UDP application is rarely the same as just using TCP (eg., Section 20.5 of
UNPv1).

424 Sun RPFC Chapter 16
* Using UDP without a server cache for an idempotent procedure is OK.
* Using UDFP without a server cache for a nonidempotent procedure is dangerous.
We cover additional advantages of TCP in the next section,
16.7 Premature Termination of Client or Server

We now consider what happens when either the client or the server terminates prema-
turely and TCP is being used as the transport protocol. Since UDP is connectionless,
when a process with an open UDP endpoint terminates, nothing is sent to the peer. All
that will happen in the UDFP scenario when one end crashes is that the peer will time
out, possibly retransmit, and eventually give up, as discussed in the previous section.
But when a process with an open TCP connection terminates, that connection is termi-
nated, sending a FIN to the peer (pp. 36-37 of UNPv1), and we want to see what the
RPC runtime does when it receives this unexpected FIN from its peer.

Premature Termination of Server

We first terminate the server prematurely while it is processing a client’s request. The
only change we make to our client is to remove the "tcp" argument from the call to
clnt_call in Figure 16.2 and require the transport protocol to be a command-line
argument, as in Figure 16.12. In our server procedure, we add a call to the abort func-
tion. This terminates the server process, causing the server’s TCP to send a FIN to the
client, which we can verify with ccpdump.

We first run our Solaris client to our BSD/0S server:

solaris % cliant bedi 22 tep
bsdi: RFC: Unable to receive; An event regquires attention

When the server's FIN is received by the client, the RPC runtime is waiting for the
server’s reply. It detects the unexpected reply and returns an error from our call to
squareproc_1. The error (REC_CANTRECV) is saved by the runtime in the client han-
dle, and the call to clnt_sperror (from our Clnt_create wrapper function) prints
this as “Unable to receive.” The remainder of the error message, “An event requires
attention,” corresponds to the XTI error saved by the runtime, and is also printed by
clnt_sperror. About 30 different RPC_xxx errors can be returned by a client’s call of
a remote procedure, and they are listed in the <rpc/clnt_stat.h> header

If we swap the hosts for the client and server, we see the same scenario, with the
same error returned by the RPC runtime (RPC_CANTRECV), but a different message at
the end.

bedi % client solaris 11 tep
solaris: EPC: Unable to receive; errno = Connection reset by peer

The Solaris server that we aborted above was not compiled as a multithreaded
server, and when we called abort, the entire process was terminated. Things change if
we are running a multithreaded server and only the thread servicing the client’s call

A0 Y el 8. B

e o |

=B s

B T T RN -

- Chrapter 16

A —

1

pliangerous.

SN prema-
mectionless,
B peor. All
e will time
g section.
e = termi-
_'u.- what the

souest. The
E e call to
gerand-line
& func-
§ FIN to the

ime for the
e call to
befent han-
e prints
I requires
g < call of
?

k. with the
message at

'r_pz;‘:e_a ded

change if

ghewr = call

Section 16.7 Premature Termination of Client or Server 425

terminates. To force this scenario, we replace the call to abort with a call to
pthread_exit, as we did with our doors example in Figure 15.25. We run our client
under BSD /05 and our multithreaded server under Solaris.

bedi % client solaris 33 top
salariz: RPC: Timed out

When the server thread terminates, the TCP connection to the client is not closed; it
remains open in the server process. Therefore, no FIN is sent to the client, so the client
just times out. We would see the same error if the server host crashed after the client’s
request was sent to the server and acknowledged by the server’s TCE.

Premature Termination of Client

When an RPC client terminates while it has an RPC procedure call in progress using
TCP, the client's TCP will send a FIN to the server when the client process terminates.
Our question is whether the server’s RPC runtime detects this condition and possibly
notifies the server procedure. (Recall from Section 15.11 that a doors server thread is
canceled when the client prematurely terminates.)

To generate this condition, our client calls alarm(2) right before calling the server
procedure, and our server procedure calls sleep(6). (This is what we did with our
doors example in Figures 15.30 and 15.31. Since the client does not catch STGALEM, the
process is terminated by the kernel about 3 seconds before the server’s reply is sent.)
We run our client under BSD/0OS and our server under Solaris.

bsdi % eclient solaris 44 teop
Alarm call

This is what we expect at the client, but nothing different happens at the server. The
server procedure completes its 6-second sleep and returns. If we watch what happens
with tocpdump we see the following:

* When the client terminates (about 3 seconds after starting), the client TCP sends
a FIN to the server, which the server TCP acknowledges. The TCP term for this
is a half-close (Section 18.5 of TCPv1).

« About 6 seconds after the client and server started, the server sends its reply,
which its TCP sends to the client. (Sending data across a TCP connection after
receiving a FIN is OK, as we describe on pp. 130-132 of UNPv1, because TCP
connections are full-duplex.) The client TCP responds with an RST (reset),
because the client process has terminated. This will be recognized by the server
on its next read or write on the connection, but nothing happens at this time.

We summarize the points made in this section.

¢ RPC clients and servers using UDP never know whether the other end termi-
nates prematurely. They may time out when no response is received, but they
cannot tell the type of error: premature process termination, crashing of the peer
host, network unreachability, and so on.

Sun RPC Chapter 16

* An RPC client or server using TCF has a better chance of detecting problems at
the peer, because premature termination of the peer process automatically
causes the peer TCP to close its end of the connection. But this does not help if
the peer is a threaded RPC server, because termination of the peer thread does
not close the connection. Also this does not help detect a crashing of the peer
host, because when that happens, the peer TCP does not close its open connec-
tions. A timeout is still required to handle all these scenarios.

16.8 XDR: External Data Representation

When we used doors in the previous chapter to call a procedure in one process from
another process, both processes were on the same host, so we had no data conversion
problems. But with RPC between different hosts, the various hosts can use different
data formats. First, the sizes of the fundamental C datatypes can be different (e.g., a
long on some systems occupies 32 bits, whereas on others it occupies 64 bits), and sec-
ond, the actual bit ordering can differ (e.g., big-endian versus little-endian byte order-
ing, which we talked about on pp. 66-69 and pp. 137-140 of UNPv1). We have already
encountered this with Figure 16.3 when we ran our server on a little-endian x86 and our
client on a big-endian Sparc, vet we were able to exchange a long integer correctly
between the two hosts.

Sun RPC uses XDR, the External Data Representation standard, to describe and
encode the data (RFC 1832 [Srinivasan 1995bl). XDR is both a language for describing
the data and a set of rules for encoding the data. XDR uses implicit typing, which means
the sender and receiver must both know the types and ordering of the data: for exam-
ple, two 32-bit integer values followed by one single precision floating point value, fol-
lowed by a character string,

As a comparison, in the OS] world, ASN.1 (Abstract Syntax Notation one is the normal way to
describe the data, and BER (Basic Encoding Rules) is a common way to encode the data. This
scheme also uses explicit hyping, which means each data value is preceded by some value (a
“specifier”) describing the datatype that follows. In our example, the stream of bytes would
contain the following fields, in order: a specifier that the next value i¢ an integer, the integer
value, a specifier that the next value is an integer, the integer value, a specifier that the next
value is a floating point value, the floating point value, a specifier that the next value is a char-
acter string, the character string.

The XDR representation of all datatypes requires a multiple of 4 bytes, and these
bytes are always transmitted in the big-endian byte order. Signed integer values are
stored using two's complement notation, and floating point values are stored using the
IEEE format. Variable-length fields always contain up to 3 bytes of padding at the end,
so that the next item is on a 4-byte boundary. For example, a 5-character ASCII string
would be transmitted as 12 bytes:

* ad-byte integer count containing the value 5,
* the 5-byte string, and
* 3 bytes of 0 for padding.

proiblems at
h!‘d!il:_all}f
bmot help if
read does
aﬁ the peer
'Fm CoMnec-

mcess from
Fonversion
ge Cifferent

Ee.g,, a
. and sec-
”bl"'ﬂ? order-
gwe already
¢ and our
h‘ correctly

e and
describing
Bt means
F for exam-
 walue, fol-

h:& way b
B 22t This
; value (a
B et would
i: e Mteger
}-ﬁﬂ the next
"ﬁz

F

i

= a char-

these
{u_‘_ are
g ==ing the
Eﬂ:*ﬂe end,

ST string
=

Section 16.8

XD External Data Representation — 427

When describing XDR and the datatypes that it supports, we have three items to
consider:

3.

How do we declare a variable of each type in our RPC specification file (our .x
file) for rpcgen? Our only example so far (Figure 16.1) uses only a long integer.

Which C datatype does rpcgen convert this to in the . h header that it gener-
ates?

What is the actual format of the data that is transmitted?

Figure 16.14 answers the first two questions. To generate this table, an RPC specifica-
tion file was created using all the supported XDR datatypes. The file was run through
rpogen and the resulting C header examined.

We now describe the table entries in more detail, referencing each by the number in
the first column (1-15).

A const declaration is turned into a C #define.
A typedef declaration is turned into a C typedef.

These are the five signed integer datatypes. The first four are transmitted as
32-bit values by XDR, and the last one is transmitted as a 64-bit value by XDR.

B4-bit integers are known to many C compilers as type long long int or just long
long. Mot all compilers and operating systems support these. Since the generated . b file
declares the O variable of type 1onglong_t, some header needs to define

eypedef long long longlong_t:

An XDR long occupies 32 bits, but a C long om a 64-bit Unix system holds 64 bits (e.g.,
the LI%64 model described on p. 27 of UNTv1). Indeed, these decade-old XDR names are
unfortunate in today's world., Better names would have been something like intd_t,
intlé_g, int32_t, intbd_t, and s0 oh.

These are the five unsigned integer datatypes. The first four are transmitted as
32-bit values by XDR, and the last one is transmitted as a 64-bit value by XDR.

These are the three floating point datatypes. The first is transmitted as a 32-bit
value, the second as a 64-bit value, and the third as a 128-bit value.

Cuadruple-precision floating point numbers are known in C as type long double. Not
all compilers and operating systems support these, (Your compiler may allow long
double, but treat it as a double.) Since the generated | h file declares the C variable of
type quadruple, some header needs to define

cypedef long doeuble guadruple:
Under Solaris 26, for example, we must include the line
¥finclude <floatingpoint.hs>

at the beginning of the . x file, because this header includes the required definition. The
percent sign at the beginning of the line tells rpegen to place the remainder of the line in
the . h file.

428

Sun RPC

Chapter 16

RPC specification file (. x}

C header file (.)

1 | const name = palue; #define name value
2 | typedef decleration; typedef declaration ; |
3 | char oar; char wr;
short mar; | shart wir; :
int wr; int war; :
long mr; long tr; |
hyper war; longlong_t oar;
4 | unsigned char ar; u_char war; .
unsigned short war; u_short wir;
unsigned int war; u_int Ixr;
unsigned lLong mar; u_long war;
unsigned hyper wir; u_longlong_t vear;
5 | float war; float oar;
doubkle wr; double mir;
gquadruple wir; gquadruple Mar;
& bool_t wir;

bool war;

7 | enum wr [mame = const, }: anum mar { name = const, 1;:
rypedef enum tar thr;
8 | opague war(n]; char mrinl;
9 | opague wr<i>; struet |
u_int wr_lem;
| char *wmar_wval;
| 1 mar:
10 j skring par<ms: char *par;
11 | datatype var[n] ; datatype var[n] ;
12 datatype war<m=; sbruct |
{ u_int war_len:
! datatype *mar_val;
! 1 ovar;
13 | struct var { members ... }: struct tar [members ... };
| cypedef struct ar wr;
14 | union wr switch (int disc) struct wr {)
case discoalueA: armdeclA; int disc;
5 case dizcvalueB: armdeclB ; union {
... armdeclA ;
I default: defaultdec]; armdectB ;
Ti aua
defaultdect ;
bomar_u;
bi
rypedef struct tar thr;
15 datafype * mine ;

datatype *name;

Figure 16.14 Summary of datatypes supported by XDR and rpcgen.

Chapter 16

—— e e

oF

Section 16.8

XDR: External Data Representation 429

10,

11.

12,

13.

14.

The boolean datatype is equivalent to a signed integer. The RPC headers also
#define the constant TRUE to be 1 and the constant FALSE to be 0.

An enumeration is equivalent to a signed integer and is the same as C's enum
datatype. rpcgen also generates a typedef for the specified variable name.

Fixed-length opague data is a specified number of bytes (i) that are transmitted as
8-bit values, uninterpreted by the runtime library.

Variable-length opague data is also a sequence of uninterpreted bytes that are
transmitted as B-bit values, but the actual number of bytes is transmitted as an
unsigned integer and precedes the data. When sending this type of data (e.g.,
when filling in the arguments prior to an RPC call), set the length before mak-
ing the call. When this type of data is received, the length must be examined to
determine how much data follows.

The maximum length m can be omitted in the declaration. But if the length is
specified at compile time, the runtime library will check that the actual length
(what we show as the var_len member of the structure) does not exceed the
value of m.

A string is a sequence of ASCII characters. In memory, a string is stored as a
normal null-terminated C character string, but when a string is transmitted, it
is preceded by an unsigned integer that specifies the actual number of charac-
ters that follows (not including the terminating null). When sending this tyvpe
of data, the runtime determines the number of characters by calling strien
When this type of data is received, it is stored as a null-terminated C character
string,

The maximum length m can be omitted in the declaration. But if the length is
specified at compile time, the runtime library will check that the actual length
does not exceed the value of m.

A fixed-length array of any datatype is transmitted as a sequence of n elements
of that datatype.

A variable-length array of any datatype is transmitted as an unsigned integer
that specifies the actual number of elements in the array, followed by the array
elements.

The maximum number of elements m can be omitted in the declaration. But if
this maximum is specified at compile time, the runtime library will check that
the actual length does not exceed the value of m.

A structure is transmitted by transmitting each member in turn. rpegen also
generates a typedef for the specified variable name.

A discriminated union is composed of an integer discriminant followed by a set
of datatypes (called arms) based on the value of the discriminant. In Fig-
ure 16,14, we show that the discriminant must be an int, but it can also be an
unsigned int, an enum, or a bool (all of which are transmitted as a 32-bit
integer value). When a discriminated union is transmitted, the 32-bit value of

430 Sun RPC Chapter 16

the discriminant is transmitted first, followed only by the arm value corre-
sponding to the value of the discriminant. The default declaration is often
void, which means that nothing is transmitted following the 32-bit value of
the discriminant. We show an example of this shortly.

15. Optional data is a special type of union that we describe with an example in
Figure 16.24. The XDR declaration looks like a C pointer declaration, and that
is what the generated . h file contains.

Figure 16.16 summarizes the encoding used by XDR for its various datatypes.
Example: Using XDR without RPC

We now show an example of XDR but without RPC. That is, we will use XDR to encode
a structure of binary data into a machine-independent representation that can be pro-
cessed on other systems. This technique can be used to write files in a machine-
independent format or to send data to another computer across a network in a machine-
independent format. Figure 16.15 shows our RPC specification file, data .x, which is
really just an XDR specification file, since we do not declare any RPC procedures.

The filename suffix of .x comes from the term “XDR specification file.” The RPC specification
{RFC 1831) says that the RPC language, sometimes called RPCL, is identical to the XDR lan-
guage (which is defined in RFC 1832), except for the addition of a program definition {which
describes the program, versions, and procedures).

suinrpefxdrl [data.x
1 enum resultb_t {
2 RESULT_INT = 1, RESULT_DOQUELE = 2
31
4 union unien_arg switch {(resulc_t result) |
5 case RESULT_INT:
[int intwval:
7 case RESULT_DOUBLE:
8 double doublewval;
9 default:
10 vold:
11 }s
12 struct data {
13 short short_arg:
14 long long_arg:
15 string wstring arg < 128 =; /* variable-length string */
16 opague fopague_arg[3]:; /% fixed-length opague */
17 opaque VODague_arg <=; /* wariasble-length opague */
18 short fshort_argli4]; /* fixed-length array */
149 long viong_arg <>; /* variable-length array */
20 union_arg uarg;
21 }:
— sunrpexdrl [data.x

Figure 16.15 XDR specification file

mh:.: corrne-
gor is often
H value of

b
eample in
g, and that

e
:

.i 8o encode
gan be pro-
@ machine-
& machine-
ig_ which is
km-iﬁratim
pifee XDR lan-

h:w: {which

dbyles " Size of arm a multiple of § bytes

Figure 16.16 Encoding used by XDR for its various datatypes.

Section 16.8 XDR: External Data Representation 431
MSH LB
hars same encoding format for unsigned char, short, unsigned short,
Fhars inkt, unsigned int, long, unsigned long, bool, enum
byte 0 1 2 3
MSE LSB
hyper: same encoding format for uns igned hyper
byte 0 1 2 3 4 5 6 7
P 1-bit sign
float: P | B-bit exponent
I Il . -
byte 0.1 2 3 23-bit fraction
EXP fraction
; . - 1-bit sign
double: i] i E 11-bit exponent
Il | . a
byte@ 1 2 3 & 5 6 7 o2bitfraction
exp fraction
: i — 1-bit sign
quadruple: | { i 15-bit exponent
| | | ' M
byte 1 1.2 3 4 5 6 7 8 0 10 11 12 13 14 15 "2 bitfraction
exp fraction
P Py
opague [n): e 0] ... | 0| fixed-length opague data
byte @ 1 ol
7 bytes so that (n + r) mod 4 = 0
S o P
opague <m=>:| lengthm . 0| ... | 0| variable-length opague data
EE— Pt s
a1 =1, -
4 bytes ¥ bytes so that (m + vl mod 4 =0
e Pt g 1
string =m=: length [0] ... | D] string
S 01 ™~ m-la M~ .‘
EE}rtes r bytes so that (m + ¢l mod 4 =10
P 1
type [n]: element 0 | element 1 e | element n=1 | fixed-length array
P L
size of each efement a mulfiple of 4 bytes
Lype <m=: #elements m | element 0 element 1 v elerment mi-1 :;:;ble—lengm
L .y
4 bytes size of each elément a mu.'lﬁplr—.- of 4 byvtes
union: f discriminant implied arm |

432 Sun RPC Chapter 16

12-21

i2-32

34

Declare enumeration and discriminated union

We declare an enumeration with two values, followed by a discriminated union that
uses this enumeration as the discriminant. If the discriminant value is RESULT_INT,
then an integer value is transmitted after the discriminant value. If the discriminant
value is RESULT_DOUBLE, then a double precision floating point value is transmitted
after the discriminant value; otherwise, nothing is transmitted after the discriminant
value.

Declare structure
We declare a structure containing numerous XDR datatypes.

Since we do not declare any RPC procedures, if we look at all the files generated by
rpegen in Figure 16.4, we see that the client stub and server stub are not generated by
rpogen. But it still generates the data.h header and the data_xdr. c file containing
the XDR functions to encode or decode the data items that we declared in our data.x
file.

Figure 16.17 shows the data.h header that is generated. The contents of this
header are what we expect, given the conversions shown in Figure 16.14.

In the file data_ =dr.c, a function is defined named xdr_data that we can call to
encode or decode the contents of the data structure that we define. (The function name
suffix of _data comes from the name of our structure in Figure 16.15.) The first pro-
gram that we write is called write.c, and it sets the values of all the variables in the
data structure, calls the xdr_data function to encode all the fields into XDE format,
and then writes the result to standard output.

Figure 16.18 shows this program.

Seat structure members to some nonzero value

We first set all the members of the data structure to some nonzero value. In the
case of variable-length fields, we must set the count and that number of values. For the
discriminated union, we set the discriminant to RESULT_INT and the integer value to
123,

Allocate suitably aligned buffer

We call malloe to allocate room for the buffer that the XDR routines will store into,
since it must be aligned on a 4-byte boundary, and just allocating a char array does not
guarantee this alignment.

Create XDR memory stream

The runtime function xdrmem_create initializes the buffer pointed to by buff for
XDR to use as a memory stream. We allocate a variable of type XDR named xhandle
and pass the address of this variable as the first argument. The XDR runtime maintains
the information in this variable (buffer pointer, current position in the buffer, and so on).
The final argument is XDR_ENCODE, which tells XDR that we will be going from host
format (our cut structure) into XDR format.

%ﬁapter 16

Section 16.8 XDR: External Data Representation 433
S
: — sunrpe | xdrl (datah
kF _n_that 2 * Please do not edit this file. It was generated using rpocgen.
i e = _J-NT. 3 wy
iminant
mm]ttﬂﬁ 4 #ifndef _DATA_H_RPCGEN

L

#define _DATA_H_RPCGEN

b:tin‘zinant

6 enum result_t {
7 RESULT_INT = 1,
B RESULT_DOUBLE = 2
3 3;
10 typedef enum result_t result_t;
Hated b}' 11 struct union_arg {
merated by 1z result_t result;
w” 2ini 13 union { :
k:ia::ni 14 int intval;
i 15 double doubleval;
] 16 } union_arg_u;
si= of this 17 3

18 cypedef struct union _arg union_arg;

i 1% struct data {
o call to
i

20 short short_arg;
M name 21 long long_arg;
 first pro- 22 char *vstring_arg;
& in the 23 char fopagque_arg[3];
h . ¢ 24 atruct |
: format, 25 u_int vopaque_arg_len;
e 26 char *vopague_arg_val;
27 } vopague_arg; :
28 short fshort_argld]: ;
3 29 struct { ,5
h In the a0 u_int vieng_arg_len; 1
g For the 31 long *vlong_arg_val; -
% walue to iz } 1:rln::rnsr_-eurgr'
- i3 union_arg uarg;
34 };

15 typedef struct data data; '

16 /* the xdr functions */

317 extern bool_t xdr_result_t (XDR =, result_L *);
38 extern bool_t xdr_union_arg({XDE *, union_arg *):
39 extern bool_t xdr data(XDR *, data *);

We into,

40 #endif /* |_DATA_H_RPCGEN */

o host

:=e' s £ for sunrpe/xdrl (data.h
jxnandle % Figure 16.17 Header generated by rpegen from Figure 16.15.
iEmaintaing & i
gt <0 on). E{

il

L R

434 Sun RPC Chapter 16

- sunrpe fxdrl (write.c
1 #include “unpipe.h”
2 #include "data.h*
3 int
4 main(int argc, char **argv)
5 {
3 DR xhandle;
T data put ; /* the structure whose walues we store 7/
8 char *huff; /* the result of the XDR encoding */
] char vopl[2];
; 10 leng vlong[3];
j 11 u_int gize;
: 12 out.short_arg = 1;
; 13 out,long_arg = 2;
E 14 out,vstring_arg = "helle, world®; /* pointer assignment */
15 out . fopagque_arg([0] = 929; /* fixed-length opagque */f
1& out . fopaque_arg[l] = 88;
17 out . fopague_arg[2] = 77;
; 18 vopl0] = 33;: /% wariable-length opague */
19 vop{l] = 44;
: 20 out.vopague_arg.vopagque_arg_len = 2;
21 out.vopagque_arg.vopagque_arg_val = wvop;
22 out, fghort_arg([0] = 99%9; /* fimed-length array */
23 out, fshort_arg(l] = BEE8;
: 24 gut, fshort_arg[2] = 7777;
: 25 out.fshort_argl[3] = G66G;
26 vilong[0] = 123456&; /* variable-length array */
27 vlieng[l] = 234587;
28 wlong[2] = 345678;
29 out.vlong_arg.vliong_arg _len = 3;
30 out.vlong_arg.vliong_arg_wval = vlong:
3L put.uarg.result = RESULT_INT; /* discriminated union */
32 out,uarg.union_arg_u.intval = 123;
33 buff = Malloc|BUFFSIZE) ; /* must be aligned on 4-byte boundary */
§ 14 wdrmem_create (&xhandle, buff, BUFFSIZE, XDR_ENCODE];
: 35 if (xdr_data|sxhandle, &out) != TRUE)
4 is err_cuit(*xdr_data error”);:
1 £ size = wdr_getpos [&xhandle) ;
ig Write(STDOUT_FILENO, buff, size);
; 39 exit(0);
: 40})
© sunrpexdrel frorite.c

Figure 16,18 Initialize the data structure and write it in XDR format.

Section 16.8 XDR: External Data Representation 435

EBapter 16

Encode the structure

15-36 We call the xdr_data function, which was generated by rpcgen in the file
data_xdr.c, and it encodes the cut structure into XDR format. A return value of
TRUE indicates success,

Obtain size of encoded data and write

37-38 The function xdr_getpos returns the current position of the XDR runtime in the
output buffer (ie., the byte offset of the next byte to store into), and we use this as the
size of our write.

i T orite .

:H'__E‘

Figure 16.19 shows our read program, which reads the file that was written by the
previous program, printing the values of all the members of the data structure.

Allocate suitably aligned buffer

11-13 We call malloc to allocate a buffer that is suitably aligned and read the file that was
generated by the previous program into the buffer.
Create XDR memory stream, initialize buffer, and decode

14-17 We initialize an XDR memory stream, this time specifying XDR_DECODE to indicate
that we want to convert from XDR format into host format. We initialize our in struc-
ture to 0 and call xdr_data to decode the buffer buf £ into our structure in. We must
initialize the XDR destination to 0 (the in structure), because some of the XDR routines
(notably xdr_string) require this. xdr_data is the same function that we called
from Figure 16.18; what has changed is the final argument to xdrmem_create: in the
previous program, we specified XDR_ENCODE, but in this program, we specify
¥DR_DECODE. This value is saved in the XDR handle (xhandle) by xdrmem_create
and then used by the XDR runtime to determine whether to encode or decode the data.

Print structure values
18-42 We print all the members of our data structure,
Free any XDR-allocated memory

43 We call xdr_free to free the dynamic memory that the XDR runtime might have
allocated (see also Exercise 16.10).

We now run our write program on a Spare, redirecting standard output to a file
named data:
solaris % write > data

solariz % 18 -1 data
-IW-rwW-r--— 1 rstevens otherl 76 Apr 23 12:32 data

We see that the file size is 76 bytes, and that corresponds to Figure 16.20, which details

i1 nitec
: the storage of the data (nineteen 4-byte values).

436 Sun RPC Chapter 16

: sunrpe xdr] read.c

1 #include "unpipc.h®

2 #include "data.h"

i int

4 main(int argc, char **argv]

5 {

[XDR xhandle;

T int i

] char *buff;

a data in;

10 ssize_t n;

11 buff = Malloc (BUFFSIZE]; /* must be aligned on 4-byte boundary */
12 1 = Read{STDIN_FILEMC, buff, BUFFSIZE}:

13 printf{"read %1d bytes\n", {long) nj;
14 wdrmem_create{&xhandle, buff, n, XDR_DECODE);
15 menset (&in, 0, sizeof(in});

16 if (wdr_data&xhandle, &in] != TRUE}

17 err_guit{"xdr_data errocr"};

18 princf{"short_arg = %d, long_arg = %1d, wstring_arg = "%s°'\n".
19 in.short_arg, in.long_arg, in.vstring argl:
20 printf("fopague(] = %d, %4, %d\n".
21 in. fopaque_arg(0], in.fopague arg(l], in. fopague_arg(2]);
22 printf (*vopagque<> =");
23 for (i = 0: i = in.vopaque_arg.vopague_arg_len; i++]

24 printf (" %4", in.vopague arg.vopague_arg_valli]l:

25 printf{"wn");

26 printf{"fshort_arg[] = ®d, %d. %d, %d\n", in. fshort_argll].
27 in. fshort_arg(l], in.fshort_argl2]. in.fshort_argl3]);
28 printf ("vlong<= ="};
29 for (i = 0: 1 = in.vlong_arg.vlong_arg_len; i++]

a0 printf(* %1d", in.vlong_arg.vleng_arg val[i]l;

11 printf{"\n");

iz switch (in.uarg.result) {
33 case RESULT_INT:

14 printf ("uarg (int) = Fd\n", in.uarg.unicn_arg_u.intval);

35 break:

i6 case RESULT_DOUBLE:

37 printf("uarg (double) = %gin®, in.uarg.union_arg_u.doublevall;
38 break:;

kL default:

40 printf{"uarg (wvoid)\n");
41 break;
42 b
43 =xdr_free|xdr_data, (char *] &in);

44 exic(0):

45 }

sunrpe/xdrl {read.c

Figure 16.19 Read the data structure in XDR format and print the values.

: Chapter 16 Section 16.8 XDR: External Data Representation 437
A
pe e] (read.e o
& short
long
E string <128>
; opague [3]
j:;_ opague ﬂ'{
hrr .
3 short [4]
long «==»
234567
L 345678
. enum 1
UALERY C int 123

Figure 16.20 Format of the XDR stream written by Figure 16.15.

If we read this binary data file under BSD/OS or under Digital Unix, the results are
what we expect:

bedi % read < data

read T6 bytes

short_arg = 1, long_arg = 2, vstring_arg = 'hello, world’
fopagque(] = %%, 88, 77

vopague<> = 313 44

fzhort_arg(] = 299%, BERE, 7777, E666

vlong<> = 123456 234567 345878

uarg (int) = 123

alpha % read < data

read 76 bytes

short_arg = 1, long_arg = 2, westring_arg = 'hello, weorldr
fopacgque([] = 99, B8, 77

vopagues> = 33 44

fehort_arg[] = %9%%, BBBB, 7777, G666

vieng<» = 123456 234587 345678

uarg {(ing) = 123

Example: Calculating the Buffer Size

In our previous example, we allocated a buffer of length BUFFSIZE (which is defined to
be 8192 in our unpipc.h header, Figure C.1), and that was adequate. Unfortunately, no
simple way exists to calculate the total size required by the XDR encoding of a given

vl read.c

438 Sun RPC Chapter 16

structure. Just calculating the sizeof the structure is wrong, because each member is
encoded separately by XDR. What we must do is go through the structure, member by
member, adding the size that will be used by the XDR encoding of each member. For
example, Figure 16.21 shows a simple structure with three members.

sunrpe xdrl jexample.x

const MANC = 4;

B

struct example {
short a;
double b;
short c[MAXC] ;

o A B Rk D

sunrpe/xdrl fexample.x

Figure 16,21 XDR specification of a simple structure,

The program shown in Figure 16.22 calculates the number of bytes that XDR requires to
encode this structure to be 28 bytes.

sunrpexdrl fexample.c

[

#include "unpipc.h”
#include rexample. h”

[=]

int
main{int argc, char *Targv)
{

int size;

example foo;

=1 h LM ek

! size = RNOUE|sizecf(foo.a)) + RNDUP(sizeocf{foo.bl] +
5 RNDUP (sizecf(foo.c[0])) * MAKC:

10 printf("size = %d\n", slze);

11 exiti0);

12}

sunrpe | xdrl fexample.c
Figure 16.22 Program to calculate the number of bytes that XDR encoding requires.

The macro RNDUP is defined in the <rpc/xdr . h> header and rounds its argument
up to the next multiple of BYTES_PER_XDR_UNIT (4). For a fixed-length array, we cal-
culate the size of each element and multiply this by the number of elements,

The problem with this technique is variable-length datatypes. If we declare string
d<10>, then the maximum number of bytes required is RNDUP (sizeof (int) (for the
length) plus RNDUP (sizeof {char) *10) (for the characters). But we cannot calculate
a size for a variable-length declaration without a maximum, such as £loat e<>. The
easiest solution is to allocate a buffer that should be larger than needed, and check for
failure of the XDR routines (Exercise 16.5).

Example: Optional Data

There are three ways to specify optional data in an XDR specification file, all of which
we show in Figure 16.23.

e e

;-('E':a'p.ter 16

m"\t"!‘ is
pember by
emiber. For

E emample X

3

2 amplex

geuires 1o

g - mmple.c

e e e ey sl) e o R e Sl

7 cxample.c
g srcument
s we cal-

ﬁ of which

4

i
'S
2
i
)

Section 16.8 XDR: External Data Representation — 439

sunrpexdrl [optl.x

1 union optlong switch (bool flag)

2 case TRUE:

3 long val;

4 case FALSE:

5 void;

L

7 struct args {

B optlong argl; /* union with boolean discriminant */
9 laong arg2 < 1 =; /* wariable-length array with ohe element */
10 long *argi; /* pointer */

11 %:

sunrpefxdrl fopt].x
Figure 16.23 XDR specification file showing three ways to specify optional data,

Declare union with boolean discriminant

1-8 We define a union with TRUE and FALSE arms and a structure member of this
type. When the discriminant flag is TRUE, a long value follows; otherwise, nothing
follows. When encoded by the XDR runtime, this will be encoded as either

* a4-byte flag of 1 (TRUE) followed by a 4-byte value, or
* a4-byte flag of 0 (FALSE).

Decilare variable-length array

2 When we specify a variable-length array with a maximum of one element, it will be

coded as either

* a4-byte length of 1 followed by a 4-byte value, or
* a4-byte length of 0,

Declare XDR pointer

A new way to specify optional data is shown for arg3 (which corresponds to the
last line in Figure 16.14). This argument will be coded as either

* a4-byte value of 1 followed by a 4-byte value, or
* ad-byte value of)

depending on the value of the corresponding C pointer when the data is encoded. If the
pointer is nonnull, the first encoding is used (8 bytes), else the second encoding is used
(4 bytes of 0). This is a handy way of encoding optional data when the data is refer-
enced in our code by a pointer.

One implementation detail that makes the first two declarations generate identical
encodings is that the value of TRUE is 1, which is also the length of the variable-length
array when one element is present.

Figure 16.24 shows the _h file that is generated by rpcgen for this specification file.

14-21 Even though all three arguments will be encoded the same by the XDR runtime, the

way we set and fetch their values in C is different for each one.

Sun RPC Chapﬁﬂlﬁ
sumrpe | xdrl foptlh
T struct cptleng |
] int flag;
9 union {
10 long val;
11] optlong_u;
12 1;
13 cypedef struct optlong optlong;
14 struct args |
15 optlong argl;
16 struckt {
17 u_int argl2_len;
18 long *argd_wal;
1% } arg2:
20 long *argid;
21 }:
22 typedef struct args args;
L J ° sunrpe/xdrl joptl.h
Figure 16.24 C header generated by rpogen for Figure 16.23.
sunrpe)xdrl foptlz.c
1 #include "unpipe.h®
2 #include "optl.h"
3 int
4 maini{int argec, char **argv)
5 {
[int i;
7 HDOR xhandle;
B char *huff;
9 long *1ptr;
10 args out;
11 zize_t size;
12 out.argl.flag = FALSE;
13 out.argl.arg2_len = 0;
14 out.argd = NULL;
15 buff = Malloc |{BUFFSIZE): /* must be aligned on 4-byte boundary */
16 xdrmem_create (&xhandle, buff, BUFFSIZE, XDR_ENCODE] ;
17 if (xdr_args{&xhandle, kout) != TRUE)
18 err_guit ("xdr_args error”);
19 gize = xdr_getpos|&xhandle);
20 lptr = (long *) buff;
21 for (1 = 0; 1 = size; i += 4]
22 printf{"%ld'n*, (long) ntohl{*lptr++));:
23 exit (0}
24}
sunrpexdrl foptlz.c

Figure 16.25 None of the three arguments will be encoded.

N T e e W

'C}.a pter 16

_g:z«-:

aptlh

Section 16.8 XDE: External Data Representation M

15=-182

20-22

1z-18

Figure 16.25 is a simple program that sets the values of the three arguments so that
none of the 1ong values are encoded.

Set values

We set the discriminant of the union for the first argument to FALSE, the length of
the variable-length array to 0, and the pointer corresponding to the third argument to
NULL.

Allocate suitably aligned buffer and encode
We allocate a buffer and encode our cut structure into an XDR memory stream.
Print XDR buffer

We print the buffer, one 4-byte value at a time, using the ntohl function (host-to-
network long integer) to convert from the XDR big-endian byte order to the host's byte
order. This shows exactly what has been encoded into the buffer by the XDR runtime:

aolarise % optlsz

0

0
0

As we expect, each argument is encoded as 4 bytes of 0 indicating that no value follows.

Figure 16.26 is a modification of the previous program that assigns values to all
three arguments, encodes them into an XDR memory stream, and prints the stream.

Set values

To assign a value to the union, we set the discriminant to TRUE and set the value.
To assign a value to the variable-length array, we set the array length to 1, and its associ-
ated pointer points to the value. To assign a value to the third argument, we set the
pointer to the address of the value.

When we run this program, it prints the expected six 4-byte values:

solaris % optl

1 discriminant nalue of TRUE

5

1 variable-length array length
9876

1 flag for nonnull pointer pariable
123

Example: Linked List Processing

1-5

Given the capability to encode optional data from the previous example, we can extend
XDR's pointer notation and use it to encode and decode linked lists containing a vari-
able number of elements. Our example is a linked list of name-value pairs, and Fig-
ure 16.27 shows the XDR specification file.

Our my1ist structure contains one name-value pair and a pointer to the next struc-
ture. The last structure in the list will have a null next pointer.

442 Sun RPC Chapter 16

sunrpe/xdrl foptl.c

1 #inelude "unpipe.h”
2 #include "optl.h"
3 int
4 mainiint argc, char **argv)
50
[int i;
T XDR xhandle;
] char *buff;
9 long lvald, lvall, *lptr;
10 args ouk ;
11 gsize_t agize;
: 12 out.argl.flag = TRUE;
i 13 out.argl.optlong_u.val = 5;
x 14 lval? = 9876;
! 15 out.arg?.arg?_len = 1;
; 16 cut.arg?.arg?_val = &lval2;
3 17 lvald = 123;
? 18 out.argd = Elvall;
3 19 buff = Malloc (BUFFSIZE); /* must be aligned on d-byte boundary */
E_ 20 x»drmem_create (&xhandle, buff, BUFFSIZE, XDR_ENCODE) ;
: 21 if (xdr args{&xhandle, &out] != TRUE)
! 22 err_quit{"xdr_args error"):
g 23 size = xdr_getpos (kxhandle};
24 lptr = (long *) buff;
: 25 for (i = 0; 4 = size; 1 += 4)
: 26 printf(*%1d\n", (long) ntohl(*lptr++));
27 exit(0);
8 sunrpc/xdrl foptl c
Figure 16.26 Assign values to all three arguments from Figure 16.23.
sunrpe/xdrl fopi x
1 struct mylist {
2 String name <>
3 long value;
4 mylist *next;
5 };
& struct args {
; 7 mylist *list:
; g b

sunrpe/xdr] fopt2 x
Figure 16.27 XDR specification for linked list of name-value pairs,

Figure 16.28 shows the . 1 file generated by rpcgen from Figure 16.27.

Figure 16.29 is our program that initializes a linked list containing three name-value
pairs and then calls the XDR runtime to encode it.

e T L s i e e ey L

T

——

|'.-
A

P‘I foptd x

T g

Section 16.8 XDR: External Data Representation — 443

sunrpe/xdrl fopf2

7 struct mylist {

B char *name;

9 long value;

10 struct mylist *next;

11 };

12 typedef struct mylist mylist;

13 struckt args {

14 mylist *list;

15 };

16 typedef struct args args; suﬂrpcfxdrifupfz.h

Figure 16.28 C declarations corresponding to Figure 16.27.

T Hinciuas —— sunrpe/xdrl fopf2.c

2 #include *optd.h"

3 int

4 main(int arge, char **argv)

51

B int i

7 XDR xhandle;

8 long *iptr;

9 Brgs out; /* the structure that we £ill */

10 char *huff; /* the XDR encoded result */

11 mylist namevall[d]; f* oup te 4 list entries */

12 size_t siza;

13 out.list = Enameval2]; f* (2] == [1] == [O] */

14 nameval [2] .name = "namel";

15 nameval [2].value = 0x1111;

16 nameval [2] .next = snamevall]:

17 nameval [1] .name = "namee2";

18 nameval [1] .value = 0x2222;

19 nameval [1] .next = &nameval0];

20 nameval [0] .name = "nameeel”;

21 nameval [0] .value = [0x3333;

22 nameval [0] .nmext = NULL;

23 buff = Malloc{(BUFFSIZE) ; /* must be aligned on d-byte boundary */

24 x»drmem_create (kxhandle, buff, BUFFSIZE, XDRE_ENCODE):

25 if (wdr_args{&xhandle, &out)] != TRUE)

26 err_cuit{"xdr_args error");

27 gize = xdr_getpos(&xhandle};

28 lptr = (loeng *) buff;

249 for {i = 0; 1 = size; i += 4)

a0 printf(*%81lx'n*, (long) ntoehl{*lpbtr++}]);

3l exit{d);

3z)
sunrpe/xdrl fopl.c

Figure 16.29 [nitialize linked list, encode it, and print result.

i
!
i
|

o ey b e T T

e e

1nr

LT e) S Sk P P 1

444 Sun RPC Chapter 16
Initialize linked list
11-22 We allocate room for four list entries but initialize only three. The first entry is

16.9

nameval[2], then nameval (1], and then nameval([0]. The head of the linked list
(out.list) is set to &nameval [2]. Our reason for initializing the list in this order is
just to show that the XDR runtime follows the pointers, and the order of the linked list
entries that are encoded has nothing to do with which array entries are being used. We
have also initialized the values to hexadecimal values, because we will print the long
integer values in hex, because this makes it easier to see the ASCII values in each byte.

The output shows that each list entry is preceded by a 4-byte value of 1 (which we
can consider as either a length of 1 for a variable-length array, or as the boolean value
TRUE), and the fourth entry consists of just a 4-byte value of 0, indicating the end of the
list.

golaris % optd

1 one element follows
B string length
GeBledes namae
31000000 1, 3 bytes of pad
1111 corresponding value
1 one element follows
6 string length
Eefl6dAS noame
65320000 e 2,2 hytes of pad
2322 corresponding value
1 omet element follows
7 string length
Gefl6d465 name
65653300 e e 3,1 byte of pad
3333 corresponding value
0 no element followes: end-of-list

If XDR decodes a linked list of this form, it will dynamically allocate memory for
the list entries and pointers, and link the pointers together, allowing us to traverse the
list easily in C.

RPC Packet Formats

Figure 16.30 shows the format of an RPC request when encapsulated in a TCP segment.

Since TCP is a byte stream and provides no message boundaries, some method of
delineating the messages must be provided by the application. Sun RPC defines a record
as either a request or reply, and each record is composed of one or more fragments. Each
fragment starts with a 4-byte value: the high-order bit is the final-fragment flag, and the
low-order 31 bits is the count. If the final-fragment bit is 0, then additional fragments
make up the record.

This 4-byte value is transmitted in the big-endian byte order, the same as all 4-byte XDE inte-
gers, but this field is not in standard XDR format because XDR does not transmit bit fields.

_ We
he long

hd: we
e value
g of the

i

RPC Packet Formats 445

Section 16.9
I header 20 bytes
|
TCP header i 20
flag + length 4
-
unsignad int xid transaction [0 (XTI 4
enum msg_type| message type (0= call) 4
i unsigned int rpovers| RPC version (2) 4
unsigned int prog| program number 4
unsigned int wvers version number 4
unsigned int proc procedure number 4
-
enum auth_flavor authentication flavor i
(credential length 4
rpe_meg{} <
crady !
call _body(} < opague body<d 00> up to
:! credential data | 400 bytes
i i
L i\ i
enum auth_flavor authentication flaver | 4
verifier length 4
| warf{ b
opague dy <400) up to
| verifier data 400 bytes
|
o,
procedure

arguments

Figure 16.30 RPC request encapsulated in a TCP segment.

If UDP is being used instead of TCP, the first field following the UDP header is the
XID, as we show in Figure 16.32.

With TCP, virtually no limit exists to the size of the RPC request and reply, because any num-
ber of fragments can be used and each fragment has a 31-bit length field. But with UDF, the

Sun RPC Chapter 16

request and reply must each fit in a single UDF datagram, and the maximum amount of data
in this datagram is 65507 bytes (assuming IPv4). Many implementations prior to the TI-RPC
package further limit the size of either the request or reply to around B192 bytes, so if more
than about 8000 bytes is needed for either the request or reply, TCP should be used.

We now show the actual XDR specification of an RPC request, taken from RFC 1831.
The names that we show in Figure 16.30 were taken from this specification.

enum auth_flavor |
AUTH_MONE = O,
AUTH_SYS = 1,
AUTH_SHORT = 2
/* and more to be defined */
T

struct opague_auth {
auch_flaver flavor;
opague body<400=;
3 -

enum meg_type {
CALL = O,
REPLY = 1

I

gtruct call_beody {

unsigned int rpovers; f* RPC wersion: must be 2 0*/
unsigned int prog; /* program number */
unsigned ink wvers; /* version number */
unsigned int proc; /* procedure number */
opague_auth cred; /* caller's credentials */
opague_auth werf; /* callerrs verifier */

/* procedure-specific parameters start here */
1:

struct rpoc_msg {
unsigned int xid;
union switch (msg_type mbype) |
case CALL:
call_body chody:
case REPLY:
reply_body rhody;
} body:
bi

The contents of the variable-length opaque data containing the credentials and veri-
fier depend on the flavor of authentication. For null authentication (the default), the
length of the opaque data should be 0. For Unix authentication, the opaque data con-
tains the following information:

struck authsys_parms |
unsigned int stamp;
string machinename<235>;
unsigned int uid;
unaigned int gid;
unsigned int gids<le>;

Bapter 16 Section 16.9 RPC Packet Formats 447
: _‘:: g;‘cﬂ When the credential flavor is AUTH_SYS, the verifier flavor should be AUTH_NONE.
ﬂz # more

The format of an RPC reply is more complicated than that of a request, because
errors can occur in the request. Figure 16.31 shows the possibilities.

FC 1831

Figure 16.32 shows the format of a successful RPC reply, this time showing the UDP
encapsulation.

We now show the actual XDR specification of an RPC reply, taken from RFC 1831.

enum reply_stat {

MSG_ACCEPTED = 0,

: MSG_DENIED = 1

t ¥i

: enum accept_stat |

d SUCCESS = 0, /* RPC executed successfully */

2 FROG_UMAVAIL = 1, /* program # unavailable */

2 PROG_MISMATCH = 2, /* version # unavailable */

,‘_~ FROC_UMAVAIL = 3, /* procedure # unavailable */

i GARBAGE_ARGS = 4, /¥ cannot decode arguments */

: SYSTEM_ERR = 5 /* memory allocation failure, etec. */

[N

struct accepted_reply {
opague_auth wverf;
union switch (accept_stat stat) |
case SUCCEESS:

opague results[0]; /* procedure-specific results start here */
case PROG_MISMATCH:
struct {

unsigned int low; /* lowest version # supported *J
unsigned int high; /* highest version # supported */
} mismatch_info;
default: /* PROC_UMAVATIL, PROC_UMAVATL, GARBAGE_ARGS, SYSTEM_ERR */
vold;
} reply_data;
Fi

union reply body switch (reply_stat stat) {
case MSG_ACCEPTED:
acceptad_reply areply;
casa M5G_DEMIED:
rejected_reply rreply;
} reply:

448 Sun RPC Chapter 16 SeCTENE,
reply
MSG_ACCEPTED MSG_DENIED
SUCCESE PROG_UNAVALIL BEPC_MISMATCH AUTH_ERROR
PROG_MISHMATCH
FROC_UNAVAIL
GARBAGE_ARGS
SYSTEM_ERR
Figure 16.31 Possible RPC replies.
I
IP header | 20 bytes
UDF header 8
-
ungigned int xid transaction D (X100 4
enum msg_type| message type (1 = reply) 4
-
enum reply_stat| reply status {0 = accepbed) 4 161
I‘-
. enum auth_flaver authentication flavor 4
rpc_megl) ¢ el r verifier length 4
| o
reply_body{} ¢ 5 verf{
{ | ocpague body<400=> up to
] verifier data P
o 400 bytes
o
o
5] b
= L enum accept_stat, accept status (0 = success) 4
. e
procedure
results

Figure 16.32 Successful RPC reply encapsulated as a UDP datagram.

Chapter 16

20 bytes

up to
40 bytes

Section 16.10 Summary 449

The call can be rejected by the server if the RPC version number is wrong or if an
authentication error occurs.
enum reject_stat {
RPC_MISMATCH = 0, /* RPC version number not 2 */
AUTH_ERROR =1 /* authenticaticn error */
)i

enum auth_stat {

AUTH_OK = 0, J* success */f
/* following are failures at server end */
AUTH_BADCRED =1, /% bad credential {seal broken) =/
AUTH_REJECTEDCRED = 2, /* client must begin new session */
AUTH_BADVERF = 3, /* bad verifier (seal broken) */
AUTH_REJECTEDVERF = 4, /* verifier expired or replayed =/
AUTH_TOOWEAK = &, /* rejected for security reasons */
/¥ following are failures at client end */
AUTH_INVALIDRESF = 6, /* bogus response verifier */
AUTH_FAILED =7 /* reason unknown */

bi

union rejected_reply switch (reject_stat stat) {
case RPC_MISMATCH:
struckt {
unsigned int leow; /* lowest RPC version # supported */
unsigned int high; /* highest RPC version # supported =/
} mismatch_info;
case AUTH_ERRDH:
auth_gstat stak;

16.10 Summary

Sun RPC allows us to code distributed applications with the client running on one host
and the server on another host. We first define the server procedures that the client can
call and then write an RPC specification file that describes the arguments and return
values for each of these procedures. We then write the client main function that calls
the server procedures, and the server procedures themselves. The client code appears
to just call the server procedures, but underneath the covers, network communication is
taking place, hidden by the various RPC runtime routines.

The rpcgen program is a fundamental part of building applications using RPC. It
reads our specification file, and generates the client stub and the server stub, as well as
generating functions that call the required XDR runtime routines that will handle all the
data conversions. The XDR runtime is also a fundamental part of this process. XDR
defines a standard way of exchanging various data formats between different systems
that may have different-sized integers, different byte orders, different floating point for-
mats, and the like, As we showed, we can use XDR by itself, independent of the RPC
package, just for exchanging data in a standard format using any form of communica-
tions to actually transfer the data (programs written using sockets or XTI, floppy disks,
CD-ROMs, or whatever),

450 Sun RPC Chapter 16

Sun RPC provides its own form of naming, using 32-bit program numbers, 32-bit
version numbers, and 32-bit procedure numbers. Each host that runs an RPC server
must run a program named the port mapper (now called RPCBIND). RPC servers bind
ephemeral TCP and UDP ports and then register with the port mapper to associate
these ephemeral ports with the programs and versions provided by the server. When
an RPC client starts, it contacts the port mapper on the server’s host to obtain the
desired port number, and then contacts the server itself, normally using either TCP or
UDP.

By default, no authentication is provided by RPC clients, and RPC servers handle
any client request that they receive. This is the same as if we were to write our own
client-server using either sockets or XTI. Sun RPC provides three additional forms of
authentication: Unix authentication (providing the client’s hostname, user ID, and
group IDs), DES authentication (based on secret key and public key cryptography), and
Kerberos authentication.

Understanding the timeout and retransmission strategy of the underlying RPC
package is essential to using RPC (or any form of network programming). When a reli-
able transport layer such as TCP is used, only a total timeout is needed by the RPC
client, as any lost or duplicated packets are handled completely by the transport layer.
When an unreliable transport such as UDP is used, however, the RPC package has a
retry timeout in addition to a total timeout. A transaction ID is used by the RPC client
to verify that a received reply is the one desired.

Any procedure call can be classified as having exactly-once semantics, at-most-once
semantics, or at-least-once semantics. With local procedure calls, we normally ignore
this issue, but with RPC, we must be aware of the differences, as well as understanding
the difference between an idempotent procedure (one that can be called any number of
times without harm) and one that is not idempotent (and must be called only once).

Sun RPC is a large package, and we have just scratched the surface. Nevertheless,
given the basics that have been covered in this chapter, complete applications can be
written. Using rpcgen hides many of the details and simplifies the coding. The Sun
manuals refer to various levels of RPC coding—the simplified interface, top level, inter-
mediate level, expert level, and bottom level—but these categorizations are meaning-
less. The number of functions provided by the RPC runtime is 164, with the division as
follows:

11 auth_ functions (authentication),
26 clnt_ tunctions (client side),
5 pmap_ functions (port mapper access),
24 rpec_ functions (general),
44 sve_ functions (server side), and
54 xdr functions (XDR conversions),

This compares to around 25 functions each for the sockets and XTI APls, and less than
10 functions each for the doors API and the Posix and System V message queue APls,
semaphore APIs, and shared memory APIs. Fifteen functions deal with Posix threads,
10 functions with Posix condition variables, 11 functions with Posix read-write locks,
and one function with £ontl record locking.

Chapter 16

sher=, 32-bit
JEFC server
se=vers bind
B zssociate
=wer. When
¢ obtain the
e TCP or

wers handle
i OUr Oown
et forms of

g D, and
gErhy), and
riwing RPC
K‘:'fﬂ a reli-
By the RPC
eort laver.
fiage has a
- BPC client

o t-0nee
@ity ignore
iﬁ's:anding
tmumber of
e |,

speriheless,
kzs can be

= The Sun
Ln: inter-
B meaning-
ﬁ.”o’L‘r]L‘lﬂ as

g Becc than
peue AP,
Bu threads,
e locks,

Chapter 16

Exercises 451

Exercises

16.1

16.2

16.3

164

16.5

16.6

16.7

16.8

16.9

16.10

1611

When we start one of our servers, it registers itselfl with the port mapper. But if we termi-
nate it, say with our terminal interrupt key, what happens to this registration? What hap-
pens if a client request arrives at some time later for this server?

We have a client—server using RPC with UDP, and it has no server reply cache. The client
sends a request to the server but the server takes 20 seconds before sending its reply. The
client times out after 15 seconds, causing the server procedure to be called a second time.
What happens to the server’s second reply?

The XDR string datatype is always encoded as a length followed by the characters.
What changes if we want a fixed-length string and write, say, char c[10] instead of
string s<10=7

Change the maximum size of the string in Figure 16.15 from 128 and 10, and run the
write program. What happens? Now remove the maximum length specifier from the
string declaration, that is, write string vstring_arg<> and compare the
data_xdr . c file to one that is generated with a maximum length. What changes?

Change the third argument to xdrmem_create in Figure 16.18 (the buffer size) to 50 and
see what happens.

In Section 16.5, we described the duplicate request cache that can be enabled when UDI is
being used, We could say that TCP maintains its own duplicate request cache. What are
we referring to, and how big is this TCP duplicate request cache? (Hint: How does TCP
detect the receipt of duplicate data?)

Given the five elements that uniquely identify each entry in the server’s duplicate request
cache, in what order should these five values be compared, to require the fewest number of
comparisons, when comparing a new request to a cache entry?

When watching the actual packets for our client-server from Section 16.5 using TCF, the
size of the request segment is 48 bytes and the size of the reply segment is 32 bytes (ignor-
ing the IPv4 and TCP headers). Account for these sizes (e.g., Figures 16.30 and 16.32).
What will the sizes be if we use UDP instead of TCF?

Can an RPC client on a system that does not support threads call a server procedure that
has been compiled to support threads? What about the differences in the arguments that
we described in Section 16.27

In our read program in Figure 16.19, we allocate room for the buffer into which the file is
read, and that buffer contains the pointer vetring_arg. But where is the string stored
that is pointed to by vstring_arg? Modify the program to verify your assumption.

Sun RPC defines the null procedure as the one with a procedure number of 0 (which is why
we always started our procedure numbering with 1, as in Figure 16.1). Furthermore, every
server stub generated by rpcgen automatically defines this procedure (which you can eas-
ily verify by looking at any of the server stubs generated by the examples in this chapter).
The null procedure takes no arguments and returns nothing, and is often used for verify-
ing that a given server is running, or to measure the round-trip time to the server. But if
we look at the client stub, no stub is generated for this procedure. Look up the manual
page for the clnt_call functon and use it to call the null procedure for any of the
servers shown in this chapter.

452 Sun RPC Chapter 16

16,12

16.13

Why does no entry exist for a message size of 65536 for Sun RPC using UDF in Figure A.27
Why do no entries exist for message sizes of 16384 and 32768 for Sun RPC using UDP in
Figure A.47

Verify that omitting the call to xdr_free in Figure 16.19 introduces a memory leak. Add
the statement

for ¢ & b 1

immediately before calling xdrmem_create, and put the ending brace immediately
before the call to xdr_free. Run the program and watch its memory size using ps. Then
move the ending brace to follow the call to xdr_free and run the program again, watch-
ing its memory size.

her I6
e 427
i LDF in
B Add
:ﬁuﬁatel}r

= Then
.h" ""%Ti:h—

Epilogue

This text has described in detail four different techniques for interprocess communica-
tion (IPC):

message passing (pipes, FIFOs, Posix and System V message queues),

2. synchronization (mutexes, condition variables, read-write locks, file and record
locks, Posix and System V semaphores),

3. shared memory (anonymous, named Posix, named System V), and
4. procedure calls (Solaris doors, Sun RIPC).

Message passing and procedure calls are often used by themselves, that is, they nor-
mally provide their own synchronization. Shared memory, on the other hand, usually
requires some form of application-provided synchronization to work correctly. The syn-
chronization techniques are sometimes used by themselves; that is, without the other
forms of [PC.

After covering 16 chapters of details, the obvious question is: which form of IPC
should be used to solve some particular problem? Unfortunately, there is no silver bul-
let regarding IPC. The vast number of different types of IPC provided by Unix indicates
that no one solution solves all (or even most) problems. All that you can do is become
familiar with the facilities provided by each form of IPC and then compare the features
with the needs of your specific application.

We first list four items that must be considered, in case they are important for your
application.

1. Networked versus nonnetworked. We assume that this decision has already been
made and that IPC is being used between processes or threads on a single host.

453

S S L

454 UNIX Network Programming Epilogue

Ll

If the application might be distributed across multiple hosts, consider using
sockets instead of IPC, to simplify the later move to a networked application.

Portability (recall Figure 1.5). Almost all Unix systems support Posix pipes,
Posix FIFOs, and Posix record locking. As of 1998, most Unix systems support
System V [PC (messages, semaphores, and shared memory), whereas only a few
support Posix IPC (messages, semaphores, and shared memory). More imple-
mentations of Posix IPC should appear, but it is (unfortunately) an option with
Unix 98. Many Unix systems support Posix threads (which include mutexes
and condition variables) or should support them in the near future. Some sys-
tems that support Posix threads do not support the process-shared attributes of
mutexes and condition variables. The read—write locks required by Unix 98
should be adopted by Posix, and many versions of Unix already support some
type of read-write lock. Memory-mapped /0 is widespread, and most Unix
systems also provide anonymous memory mapping (either /dew/zero or
MAP_2aNON). Sun RPC should be available on almost all Unix systems, whereas
doors are a Solaris-only feature (for now).

Performance. If this is a critical item in your design, run the programs developed
in Appendix A on your own systems. Better yet, modify these programs to sim-
ulate the environment of your particular application and measure their perfor-
mance in this environment.

Realtime scheduling. If you need this feature and your system supports the Posix
realtime scheduling option, consider the Posix functions for message passing
and synchronization (message queues, semaphores, mutexes, and condition
variables). For example, when someone posts to a Posix semaphore on which
multiple threads are blocked, the thread that is unblocked is chosen in a manner
appropriate to the scheduling policies and parameters of the blocked threads.
System V semaphores, on the other hand, make no such guarantee.

To help understand some of the features and limitations of the various types of IP'C,
we summarize some of the major differences:

Pipes and FIFOs are byte streams with no message boundaries. Posix messages
and System V messages have record boundaries that are maintained from the
sender to the receiver. (With regard to the Internet protocols described in
UNPv1, TCP is a byte stream, but UDP provides messages with record bound-
aries.)

Posix message queues can send a signal to a process or initiate a new thread
when a message is placed onto an empty queue. No similar form of notification
is provided for System V message queues. Neither type of message queue can
be used directly with either select or poll (Chapter 6 of UNPv1), although
we provided workarounds in Figure 5.14 and Section 6.9.

The bytes of data in a pipe or FIFO are first-in, first-out. Posix messages and
System V messages have a priority that is assigned by the sender. When reading
a Posix message queue, the highest priority message is always returned first.

- Epilogue

e

ler using
ﬁon.

. pipes,
l support
piv a few
pe imple-
gon with
Emtexes
e 5Y5-
giwates Of
“§iniv 98
jort some
st Unix
TErc Or
, mhereas

gveloped
B t0 sim-
& perfor-

e Posix
e passing
mndition
o which
§ TANNer
| ghreads.

e of [PC,

m-.a ges
#om the
ribed in

g bound-

o thread
fification
:pe-ae can
githough

goes and
Ereading
] first.

LNIX Metwork Programming Epilogue 455

When reading a System V message queue, the reader can ask for any priority
message that it wants,

When a message is placed onto a Posix or System V message queue, or written
to a pipe or FIFO, one copy is delivered to exactly one thread. No peeking capa-
bility exists (similar to the sockets M5G_PEEK flag; Section 13.7 of UNPv1), and
these messages cannot be broadcast or multicast to multiple recipients (as is pos-
sible with sockets and XTI using the UDP protocol; Chapters 18 and 19 of
UNPwv1).

Mutexes, condition variables, and read-write locks are all unnamed: they are
memory-based. They can be shared easily between the different threads within
a single process. They can be shared between different processes only if they are
stored in memory that is shared between the different processes. Posix
semaphores, on the other hand, come in two flavors: named and memory-based.
Named semaphores can always be shared between different processes (since
they are identified by Posix IPC names), and memory-based semaphores can be
shared between different processes if the semaphore is stored in memory that is
shared between the different processes. System V semaphores are also named,
using the key_t datatype, which is often obtained from the pathname of a file.
These semaphores can be shared easily between different processes.

fontl record locks are automatically released by the kernel if the process hold-
ing the lock terminates without releasing the lock. System V semaphores have
this feature as an option. Mutexes, condition variables, read-write locks, and
Posix semaphores do not have this feature,

Each fentl lock is associated with some range of bytes (what we called a
“record”) in the file referenced by the descriptor. Read-write locks are not asso-
ciated with any type of record.

Posix shared memory and System V shared memory both have kernel persis-
tence. They remain in existence until explicitly deleted, even if they are not cur-
rently being used by some process.

The size of a Posix shared memory object can be extended while the object is
being used. The size of a System V shared memory segment is fixed when it is
created.

The kernel limits for the three types of System V [PC often require tuning by the
system administrator, because their default values are usually inadequate for
real-world applications (Section 3.8). The kernel limits for the three types of
Fosix IPC usually require no tuning at all.

Information about System V IPC objects (current size, owner ID, last-
modification time, etc.) is available with a command of TPC_STAT with the three
XXXectl functions, and with the ipcs command. No standard way exists to
obtain this information about Posix IPC objects. If the implementation uses files
in the filesystem for these objects, then the information is available with the
stat function or with the 1s command, if we know the mapping from the Posix

e S A R g S e AT 2 i s i

A T A NS b o = e o

R g b A o

456 UNIX Network Programming Epilogue

IPC name to the pathname. But if the implementation does not use files, this
information may not be available.

* Of the various synchronization techniques—mutexes, condition variables,
read-write locks, record locks, and Posix and System V semaphores—the only
functions that can be called from a signal handler (Figure 5.10) are sem_post
and fentl.

* Of the various message passing techniques—pipes, FIFOs, and Posix and
System V message queues—the only functions that can be called from a signal
handler are read and write (for pipes and FIFOs).

* Of all the message passing techniques, only doors accurately provide the client’s
identity to the server (Section 15.5). In Section 54, we mentioned two other
types of message passing that also identify the client: BSD/OS provides this
identity when a Unix domain socket is used (Section 14.8 of UNPv1), and SVR4
passes the sender’s identity across a pipe when a descriptor is passed across the
pipe (Section 15.3.1 of APUE).

Eptlogue

¢ Sles, this

- wzriables,
-—the only
me=m DOSE
Fosix and
=m 2 signal

e client's
“swo other
gades this
L and SVE4
¢ mooss the

A1

Appendix A

Performance Measurements

Introduction

In the text, we have covered six types of message passing:

pipes,

FIFOs,

Posix message queues,
System V message queues,
doors, and

Sun RPC,
and five types of synchronization:

*® & & ® & @

mutexes and condition variables,
read—write locks,

fentl record locking,

Posix semaphores, and

System V semaphores.

We now develop some simple programs to measure the performance of these types of
IPC, so we can make intelligent decisions about when to use a particular form of [PC.

When comparing the different forms of message passing, we are interested in two
measurements.

1. The bandwidth is the speed at which we can move data through the IPC channel.
To measure this, we send lots of data (millions of bytes) from one process to
another. We also measure this for different sizes of the [/O operation (writes
and reads for pipes and FIFOs, for example), expecting to find that the band-
width increases as the amount of data per 1/0 operation increases.

457

458

Performance Measurements Appendix A

A2

2. The latency is how long a small IPC message takes to go from one process to
another and back. We measure this as the time for a 1-byte message to go from
one process to another, and back (the round-trip time).

In the real world, the bandwidth tells us how long bulk data takes to be sent across an
IPC channel, but IPC is also used for small control messages, and the time required by
the system to handle these small messages is provided by latency. Both numbers are
important.

To measure the various forms of synchronization, we modify our program that
increments a counter in shared memory, with either multiple threads or multiple pro-
cesses incrementing the counter. Since the increment is a simple operation, the time
required is dominated by the time of the synchronization primitives.

The simple programs used in this Appendix to measure the various forms of [PC are loosely
based on the Lmbench suite of benchmarks that is deseribed in [McVoy and Staelin 1996]. This
is a sophisticated set of benchmarks that measure many characteristics of a Unix system (con-
text switch time, 1/0 throughput, etc.) and not just IPC. The source code is publicly available:
http://www.bitmover . com/ lmbench.

The numbers shown in this Appendix are provided to let us compare the techniques described
in this book, An ulterior motive is to show how simple measuring these values is. Before
making choices among the various techniques, vou should measure these performance num-
bers on your own systems. Unfortunately, as easy as the numbers are to measure, when
anomalies are detected, explaining these is often very hard, without access to the source code
for the kernel or libraries in question.

Results

We now summarize all the results from this Appendix, for easy reference when going
through the various programs that we show.

The two systems used for all the measurements are a SparcStation 4/110 running
Solaris 2.6 and a Digital Alpha (DEC 3000 model 300, Pelican) running Digital Unix
4.0B. The following lines were added to the Solaris /etc/systemn file:

sat megsys:meginfo_megmax = 16384
set megays:meginfo_msgmnb = 32768
set msgsys:meginfo_msgseg = 4096

This allows 16384-byte messages on a System V message queue (Figure A.2). The same
changes were accomplished with Digital Unix by specifying the following lines as input
to the Digital Unix sysconfig program:

ipe:
16384
32768

but=le B F- T
msg—mnb

Section A

Message

]

L

B G M oEh o oW

IR B g

L. o T

process to
% 2o from

l BCTOSS an
eguired by
EEmbers are

m'am that
oic pro-

B the time

EC e loosely

29 This
krstemn (con-
e available:

= Before

e num-
e, when
e source code

Vﬁm going

ﬁ} running

Beseal Unix

p The same
h as input

Section A2 Results 459

Message Passing Bandwidth Results

Figure A.2 lists the bandwidth results measured on a Sparc running Solaris 2.6, and Fig-
ure A3 graphs these values. Figure A.4 lists the bandwidth results measured on an
Alpha running Digital Unix 4.0B, and Figure A5 graphs these values.

As we might expect, the bandwidth normally increases as the size of the message
increases. Since many implementations of System V message queues have small kernel
limits (Section 3.8), the largest message is 16384 bytes, and even for messages of this
size, kernel defaults had to be increased. The decrease in bandwidth above 409 bytes
for Solaris is probably caused by the configuration of the internal message queue limits.
For comparison with UNPv1, we also show the values for a TCI® socket and a Unix
domain socket. These two values were measured using programs in the lmbench pack-
age using only 65536-byte messages. For the TCP socket, the two processes were both
on the same host.

Message Passing Latency Results

Figure A.1 lists the latency results measured under Solaris 2.6 and Digital Unix 4.0B.

i I:a{-;uu'l.::‘y {microseconds)
l Fipe | Posix |System V| Doors | Sun RPC | Sun RPC| TCP UDP | Unix
MESSAZE | Message e uDr socket socket | domain
queue | queue | socket
Solaris 2.6 324 | 584 | 260 121 1891 1677) 755 | 465
DUnix40B| 574 | 995 /25 1648 1373 B48 B3| 280

Figure A1 Latency to exchange a 1-byte message using various forms of IPC.

In Section A4, we show the programs that measured the first six values, and the
remaining three are from the lmbench suite. For the TCP and UDP measurements, the
two processes were on the same host.

460 Performance Measurements Appendix A

oy e gy et o e Bl e N

e e I et

gl e

Fage gt TE L, e o Mo

Bandwidth (MBytes /sec) o
Fipe Posix | System V Dioors Sun RPC | Sun RPC TCFP Unix
Message message | message TCP uor socket domain |
size quene queus B socket |
1024 63 37 4.9 6.3 0.5 05 1
I 2048 8.7 33 6.3 10.0 0na 10
| 4096 98 84 b.6 12.6 1.6 28
#192 12.7 10.2 3.5 14.4 24 28
16384 13.1 11.6 6.1 | 16.8 3.2 34
32768 13.2 134 P14 3.5 4.3
63536 13.7 14.4 {122 a7 132 113
Figure A.2 Bandwidth for various types of message passing {Solaris 2.6).
— 17
- 16
— 15
- 14
—13
—12
—11
— 10
bandwidth —
(MBytes/sec) 8
—7
-6
—5
L4
L3
2
=1
.]
=TT | | .
1024 4096 8192 16384 32768 #5534
message size (bytes)

Figure A.3 Bandwidth for various types of message passing (Solaris 2.6).

16

— 15

e T T TR A R
o

— 10
g

Section A.2 Results 461
Bandwidth (MBytes/sec)
Pipe | Posix | SystemV | SunRPC | Sun RPC TCP Unix
Message | message | message TP upr socket domain
size queue queue socket
1024 9.9 1.8 12.7 0.6 0.6
2048 15.2 35 15.0 0.8 1.0
4096 171 349 211 1.3 1.8
8192 16.5 8.6 17.1 18 25
16384 17.3 1.7 ! 17.3 23
32768 15.9 14.0 16 |
65536 14.2 9.4 28 4.6 il 18.0
Figure A4 Bandwidth for various types of message passing (Digital Unix 4.08).
2
21
20
19
Unix domain sockets f 18
b7
- - : 16
---Flbe 15
=14
—13
. —12
bandwidth 1
(MBytes /sec) — 10
g
—8
—7
=6
TCP sockete [~
3— Sun RPC UDP . . 3
gl SR 2
=T I | "
1024 4096 8192 16384 32768 65536
message size (bytes)

Figure A.5 Bandwidth for various types of message passing (Digital Unix 4.08).

(] b ol SRRy PR e

e Lo T B e S

i3

3
e

;
o
-
ki’
i
i

N V-

i

e e e i i B T met g r - R e et Bt M e i S b S P s

Sectiom &

462 Performance Measurements Appendix A

Thread Synchronization Results

Figure A.6 lists the time required by one or more threads to increment a counter that is
in shared memory using various forms of synchronization under Solaris 2.6, and Fig-
ure A7 graphs these values. Each thread increments the counter 1,000,000 times, and
the number of threads incrementing the counter varied from one to five. Figure A.8 lists
these values under Digital Unix 4.0B, and Figure A.9 graphs these values.

The reason for increasing the number of threads is to verify that the code using the
synchronization technique is correct and to see whether the time starts increasing non-
linearly as the number of threads increases. We can measure fcnt1 record locking only
for a single thread, because this form of synchronization works between processes and
not between multiple threads within a single process.

Under Digital Unix, the times become very large for the two types of Posix
semaphores with more than one thread, indicating some type of anomaly. We do not
graph these values.

One possible reason for these larger-than-expected numbers is that this progratm is a pathologi-
cal synchronization test. That is, the threads do nothing but synchronization, and the lock is
held essentially all the time. Since the threads are created with process contention scope, by
default, each time a thread loses its timeslice, it probably holds the lock, so the new thread that
is switched to probably blocks immediately.

Process Synchronization Results

Figures A.6 and A.7 and Figures A.8 and A.9 showed the measurements of the various
synchronization techniques when used to synchronize the threads within a single pro-
cess. Figures A.10 and A.11 show the performance of these techniques under Solaris 26
when the counter is shared between different processes. Figures A.12 and A.13 show the
process synchronization results under Digital Unix 4.0B. The results are similar to the
threaded numbers, although the two forms of Posix semaphores are now similar for
Solaris. We plot only the first value for fcnt1 record locking, since the remaining val-
ues are so large. As we noted in Section 7.2, Digital Unix 4.0B does not support the
PTHREAD_PROCESS_SHARED feature, so we cannot measure the mutex values between
different processes. We again see some type of anomaly for Posix semaphores under
Digital Unix when multiple processes are involved.

Appendix A

Section A2 Results 463

X
i

Time required to increment a counter in shared memory (seconds)
Posix Fead-write Posix Posix System V| Swstem V fentl
e lock memory named semaphore | semaphore record
threads semaphore | semaphore with unpo | locking

1 0.7 2.0 4.5 154 16.3 711 89,4
15 54 90 311 315 75
22 75 14.4 465 483 57.7
29 137 182 h25 658 75.8
37 197 28 76,5 818 90,0

peer that is
8 and Fig-
&mmes, and
e A8 lists

LFL I]

g using the
Esing non-
kang only
wesses and

Figure A6 Time required to increment a counter in shared memaory (Solanis 2.6).

% of Posix
'UHE do not

2 pathologi-
gt the lock is
B =cope, by
e Shread that

8 — fentl record locking r— 50

time to

counger
e various in shared
sngle pro-
rSolaris 2.6
5 show the
midar o the
similar for
@ining val-
weport the
eres under

MEemory
(seconds)

number of threads

Figure A.7 Time required to increment a counter in shared memory (Solaris 2.6),

R R AT B

i

L

WA

Performance Measurements

Appendix A

Time required to increment a counter in shared memary (seconds)
Posix Read-write Posix Posix System ¥V | SystemV | fentl
mutex lock memory named semaphore | semaphore record
threads semaphore | semaphore with o | locking
1 19 129 132 142 6.6 46.6 %64
2 114 408 7425 K 54.9 934
3 284 732 1080.5 1074.7 B4.3 141.9
4 49.3 | 95.0 1534.1 1502.2 1099 1568.4
5 673 | 1263 19233 1764.1 137.3 2336

Figure A8 Time required to increment a counter in shared memory (Digital Unix 4.08).

time to
increment

counter
in shared
TEMOTY
{seconds)

I | |
1 2 3 4 5

number of threads

Figure A.9 Time required to increment a counter in shared memory {Digital Unix 4.0B).

Section A.2 Results 465

Time required to increment a counter in shared memory (seconds) |

Posix | Read-write | Posix Posix System V| System V fenel |
mutex lock memaory named | semaphore | semaphore record ; _
processes sernaphore | semaphore with DO locking | E
1 0.8 1.9 13.6 14.3 17.3 221 9.7
2 16 39 292 292 M9 416 2445 |
3 23 6.4 416 129 54.0 60.1 764 |
4 31 122 57.3 58.8 724 1.9 L XU
5 4.0 20.4 70.4 735 7.8 1026 Ted.0 f i
Figure A.10 Time required to increment a counter in shared memory (Solaris 2.6).

fentl record locking

time o
increment :
counter
in shared '.:
{seconds)

number of processes

Figure A.11 Time required to increment a counter in shared memory {Solaris 2.6},

o Ve o Ghre 5 ot g Sy ¥ PR R AAT e

466

Performance Measurements

Appendix A

time to
increment

counker
in shared
Moy

{seconds)

| Time required to increment a counter in shared memory (seconds)

Posix Posix | System V | System V fenel

| memory named | semaphore | semaphore | record
#processes | semaphore | semaphore withtwno | locking
1 1.5 12.5 0.1 49.0 98.1

2 6648 659.2 586 95.7 4771

| 3 1236.1 1269.8 96.4 146.2 17852
4 17729 1604.1 1203 197.0 25828

B 21799 21968 | 1477 250.9 192

100 __| foentl .
record locking

4
20— Posix memory semaphore
0 Posix named semaphore
-. !] '
1 2 3 4
number of processes

Figure A.13 Time required to increment a counter in shared memory {Digital Unix 4.0B).

A3 |
:
]
Pipe Ba

v

2FIT

dppendix A

e S —

P

2

o

h

L8

3 26d1

r 244
|
2

; - 180

; T

5 — 140

4 -

v — 120
FL1]

== B
—]

L 40

— i

|

T3

$¢ﬁﬂg§ﬁﬁmt4§@5n;j?d:

.;.:
A
&

SR

Section A.3 Message Passing Bandwidth Programs 467

A.3

Message Passing Bandwidth Programs

This section shows the three programs that measure the bandwidth of pipes, Posix mes-

sage queues, and System V message queues. We showed the results of these programs
in Figures A.2 and A.3.

Pipe Bandwidth Program

11-15

16-17

Figure A.14 shows an overview of the program that we are about to describe.

parent child
main() maini)
{ | {
i
Pipe(contpipe) ; |
E.'J.petdatapxp-e]; . Forle() .
if {Fork{) == 0} { - ==-pF~-==-=-~-~—-—-——- He= if (Fork{) == 0} {
| writer();
i exit(0);
}]
reader| }:
exit (0] ;
|] J |
Ereaﬂer[1 writer(|
) i P {
ﬂm.e Writelcontpipe[l], }: control pipe: = Read (contpipe[0}, 1:
this A N #byvtes to send L '
. while (more to receiwvel) while (more teo send)
function . data pipe: e .)
Eead (datapipe[0],] ;- data Write(datapipel[l].);
¥]

Figure A.14 Overview of program to measure the bandwidth of a pipe.

Figure A.15 shows the first half of our bw_pipe program, which measures the band-
width of a pipe.

Command-line arguments

The command-line arguments specify the number of loops to perform (typically
five in the measurements that follow), the number of megabytes to transfer (an argu-
ment of 10 causes 10 x 1024 x 1024 bytes to be transferred), and the number of bytes for
each write and read (which varies between 1024 and 65536 in the measurements that
we showed).

Allocate buffer and touch it

valloc is a version of malloc that allocates the requested amount of memory
starting on a page boundary. Our function touch (Figure A.17) stores 1 byte of data in
each page of the buffer, forcing the kernel to page-in each page comprising the buffer.
We do so before any timing is done.

468 Performance Measurements Appendix A

bench | bno_pive.c
1 #include "unpipec.h” -Pipe
2 woid reader{int, int, int);

3 woid writer{int, int);:

4 woid *buf;

5 int totalnbytes, xfersize;

& int

7T main{int arge, char **argv)

& {

- int i, nloop, contpipel(i]. datapipel2]:

10 pid_t childpid;

11 if farge != 4]

1z err_quit("usage: bw_pipe <#loops> <émbytes» <#bytes/write=");
13 nloop = atoilargw[l]]);

14 totalnbytes = atoilargw[2]} * 1024 * 1024;

15 xfersize = atoilargv[3]);

16 buf = Valloc(xfersize);

17 Touch{buf, xfersize):

18 Pipe (contpipe) ;

19 Pipe (datapipe) ;

20 if { {childpid = Fork(}) == 0} {

21 writer (contpipe([0], datapipel[l]l}: f* child =/
22 exit (0);

23 }

24 /* parent */

25 Start_time(};

26 for (1 = 0; 1 < nloop; i++)

27 reader (contpipe[1], datapipe(0]. totalnbytes):
28 printf i "bandwidth: %.3f MB/sec‘n",

29 totalnbytes /7 Stop_time(} * nloop):

30 kill{childpid, SIGTERM);

31 exie{d);

32

benchtw_pipe.c

Figure A.15 main function to measure the bandwidth of a pipe.

valloc is not part of Posix1 and is listed as a “legacy” interface by Unix 98: it was required
by an earlier version of the X/Open specification but is now optional. Our Valloc wrapper
function calls malloc if val loc is not supported.
Create two pipes
18-19 Two pipes are created: contpipe[0] and contpipe([1] are used to synchronize
the two processes at the beginning of each transfer, and datapipe[0] and
datapipe[1] are used for the actual data transfer.

fork to create child

20-31 A child process is created, and the child (a return value of 0} calls the writer func-
tion while the parent calls the reader function. The reader function in the parent is

Section A3 Message Passing Bandwidth Programs — 469

33-d4

45-54

called nloop times, Qur start_time function is called immediately before the loop
begins, and our stop_time function is called as soon as the loop terminates. These
two functions are shown in Figure A.17. The bandwidth that is printed is the total num-
ber of bytes transferred each time around the loop, divided by the time needed to trans-
fer the data (stop_time returns this as the number of microseconds since
start_time was called), times the number of loops. The child is then killed with the
SIGTERM signal, and the program terminates.

The second half of the program is shown in Figure A.16, and contains the two func-
tions wr iter and reader.

bench|bw_pipe.c

33 wvoid -Pipe

34 writer(int contfd, int datafd)

15 {

k1 int ntowrite;

7 for (; ;) {

ig Read(concfd, &ntowrite, sizeof{ntowrite)}:

39 while (ntowrite = 0} {

40 Write{datafd, buf, xfersize);

41 ntowrite -= xfersize;

42 ¥

43 }

44

45 wvoid

46 reader(int contfd, int datafd, int nbytes}

47

48 ssize_t n;

49 Write (contfd, &nbytes, sizect (nbytes)};

50 while {(nbytes >) &k

51 {(n = Read{datafd, buf, xfersize)) = 01) {

52 nbytes -= n;

53 }

LT)
! bench | bwe_pipe.c

Figure A.16 writer and reader functions to measure bandwidth of a pipe,
writer function

This function is an infinite loop that is called by the child. It waits for the parent to
say that it is ready to receive the data, by reading an integer on the control pipe that
specifies the number of bytes to write to the data pipe. When this notification is
received, the child writes the data across the pipe to the parent, xfersize bytes per
write.

reader function

This function is called by the parent in a loop. Each time the function is called, it
writes an integer to the control pipe telling the child how many bytes to write to the
pipe. The function then calls read in a loop, until all the data has been received.

470 Performance Measurements Appendix A

Our start_time, stop_time, and touch functions are shown in Figure A.17.

lib | timing.c
1 4include “unpipc.h®
2 static struct timeval twv_satart, twv_stop:
3 int
4 start_timeiveid)
5 1
f return (gettimeofday (&ktv_start, NULL));
71
8 double
9 atop_time(void)
10 {
11 double clockus:
1z if (gettimeofday(ktv_stop, WULL} == -1}
13 return (0.0);
14 tv_sub (&tv_stop, &tv_start);
15 clockus = tv_stop.tv_sec * 1000000.0 + Ev_stop.tv_usec;
i5 return {clockus);
17 1
18 int
19 couch{void *vptr, int nbytes)
20 1
21 char *opto;
22 static int pagesize = 0O;
23 if (pagesize == 0) {
24 errno = 0;
25 #ifdef _SC_PAGESIZE
26 if { {pagesize = sysconf(_SC_PAGESIZEl] == =1]
27 return (-1);
28 #else
29 pagesize = getpagesizel}; /* BSD */
30 #endif
31 }
32 cptr = vptx;
33 while (nbytes > 0} {
34 *cptr = 1;
35 Ccptr += pagesize;
36 nbytes -= pagesize;
a7 1
iR return (0);
S lib| timing.c

Figure A.17 Timing functions: start_time, stop_tims, and touch.

Section A.3 Message Passing Bandwidth Programs 471

The tv_sub function is shown in Figure A.18; it subtracts two timeval structures,
storing the result in the first structure.

libjto_sub.c
1 #inelude "yapipe ., k"

void
tv_sub{struct timewval *out, struct timewal *in)
{
if {(out-=tv_usec == in-=twv_usec) = 0} { J* oout -= in */
——Dut—'?t‘-"mEE'E_:
out-=Ev_usec += 1000000;

[= T I S X

4

]
put-»ty_sec -= in-=tv_sec;

o wom

libftv_sub.c
Figure A.18 tv_sub function: subtract two timeval struchares.

On a 5parc running Solaris 2.6, if we run our program five times in a row, we get

solaris % bw_pipe 5 10 65536
bandwidth: 13.722 MB/sec
saoclaris % bw pipe 5 10 65536
bandwidth: 13.781 MB/=sec
solariz % bw_pipe 5 10 65536
bandwidth: 13.685 MB/sec
solaris & bw pipe 5 10 65536
bandwidth: 13.665 ME/sec
solarizs % bw pipe 5 10 65536
bandwidth: 13.584 MB/sec

Each time we specify five loops, 10,485,760 bytes per loop, and 65536 bytes per write
and read. The average of these five runs is the 13.7 MBytes/sec value shown in Fig-
i ure A2,

Posix Message Queue Bandwidth Program

Figure A.19 is our main program that measures the bandwidth of a Posix message
queue. Figure A.20 shows the writer and reader functions. This program is similar
to our previous program that measures the bandwidth of a pipe.

Mote that our program must specify the maximum number of messages that can exist on the
queue, when we create the queue, and we specify this as four. The capacity of the IPC channel
can affect the performance, because the writing process can send this many messages before its
call to me_send blocks, forcing a context switch to the reading process. Therefore, the perfor-
: 3 mance of this program depends on this magic number. Changing this number from four to
5 eight under Solatris 2.6 had no effect on the numbers in Figure A.2, but this same change under
: Digital Unix 4.0B decreased the performance by 12%. We would have guessed the perfor-
mance would increase with a larger number of messages, because this could halve the number
of context switches, But if a memory-mapped file is used, this doubles the size of that file and
the amount of memory that is mmaped.

472 Performance Measurements Appendix A

[T

bench bw_pxmsg.c
¥include *unpipec.h®
#define MAME " w_pmsg

voild reader (int, mgd_t, inktl;
volid writer(int, mgd _th;

void *huaf:

6 int tatalnbytes, xfersize;

7 int

8 main(int argc, char **argv]

a
10 int i, nloop, contpipel[Z]:
11 mgd £ mg;
12 pid_t childpidg;
13 struct mg atbtr attr;
14 if farge != 4]
15 err_guit{"usage: bw_pxmsg <#loops> <#mbytes> <#bytes /write»"};
186 nloop = atollargv(l]l):
17 totalnbytes = atollargv[Z]) * 1024 * 10247
18 xfersize = atollargv[3]):
19 buf = Valloc(xfersize);
20 Touch (buf, xfersize);
21 Pipei{contpipe} ;
22 mg_unlink (Px_ipc_name (NAME)) ; /* error OE */
23 attr.my maxmsg = 4;
24 attr.mg msgsize = xfersize;
25 mg = Mg open|(Px_ipc_name (NMAME), O_RDWR | O_CREAT, FILE_MODE, Eattr);
26 if { (childpid = Forki)) == 0) {
27 writer (contpipe[0), mg): /* child */
28 axiti0h;
29 }

30 f* parent */

31 Start_timel():
32 for {i = 0; 1 = nloop; i++)

33 reader (contpipell]., mg, totalnbytes):
34 princf ("bandwidth: %.3f MB/sec\n”,

35 totalnbytes / Stop_time() * nloop):
36 killi{childpid, SIGTERM);

37 Mg _close{mgl:

18 Mg unlink|(Px_ipc_name (MAME]) ;

39 exic(0];
40 1

bench{bw_pxmsg.c
Figure A.19 main function to measure bandwidth of a Posix message queue.

£

i
2
|
o
&
b=
3
%
i
3
&
&
g
£
o
i

Section A3 Message Passing Bandwidth Programs 473

bench (buw_pxmsg.c
41 woid
42 writer({int contfd, mgd_t mgsend)
43 |
44 int ntowrite;
45 for { : & | o
46 Readi{contfd, sntowrite, sizeof(ntowrite)}:
47 while {(ntowrite > 0) {
4R Mg _sendi{mgsend, buf, xfersize, 0);
49 ntowrite -= xfersize;
50 b]
51 1
52}
53 woid
54 reader{int contfd, mgd_t mgrecv, int nbytes)
55 |
56 gsize_t m;
57 Write{contfd, &nbytes, sizeof (nbytes));
E1:3 while {(nbytes > 0) &&
59 {(n = Mg receiwve (mgrecv, buf, xfersize, WULL]) = C}) |
&0 nbytes -= n;
61 H
62 } hen
e ptch B _prxmisg.c

Figure A.20 writer and readsr functions to measure bandwidth of a Posix message queue.

System V Message Queue Bandwidth Program

Figure A.21 is our main program that measures the bandwidth of a System V message
queue, and Figure A.22 shows the writer and reader functions.

bench | bw_somsg.c

1 #include "unpipc.h”

wvoid reader (int, int, int);
vald writer(int, ink}:

struct msghuf *buf;

int totalnbytes, xfersize;
int

main{int arge, char **argvi

{

[T = = I =) LA, [ELI O]

int i, nloop, contpipe(2], msgid;
10 pid_t childpid;

11 if (argc = 4)

1z err_quit(*usage: bw_svmsg <#locps> <¥#mbytes> <dbytes/writes");
13 nlocp = atel (acgv(l]};

14 totalnbytes = atoi (argv(2]) * 1024 * 1024;

15 xfergize = atollargv(3]);

Performance Measurements Appendix A

i6 buf = Valloc(xfersize);

17 Touch(buf, xfersize);:

18 buf->mtype = 1:

19 Fipe(contpipel;

20 msgid = Msgget (IPC_PRIVATE, IPC_CREAT | SVMSG_MODE) ;
21 if [{ehildpid = Fork{)) == 01 {

22 writer (contpipe[0], magid); f* child */
23 exit(0);

24 1

25 Start_time() ;

28 for (i = 0; i < nloop; is++)

27 reader (contpipe[l], msgid, totalnbytes);

28 printf("bandwidth: %.3f MB/sec\n®,

29 totalnbytes / Stop_timel) * nleop):

30 kill{childpid, SIGTERM):

ENS Magetl (megid, IFC_RMID, WULL] ;

32 exic(0);

33 1

bench fbw_stmsg.c
Figure A.21 main function to measure bandwidth of a System V message queve.

bench [bw_svmsg.c
34 wvoid
15 writer(int contfd, int msgid)
36 [
37 int ntowrite;
38 for ;¢) o
ag Read({contfd, &ntowrite, sizeof (ntowritel);
40 while (ntowrite = 0O} {
41 Megsndi(msgid, buf, =xfersize - sizecf(long), 0):
42 ntowrite -= xfersize;
43 1
44 t
45
46 wvoid
47 reader (int contfd, int msgid, int nbytes)
48 {
4% szize_t n;
50 Write(contfd, snbytes, sizecf(nbytes)}:
51 while [(nbytes > 0] k&
52 [{n = Megrevimsgid, buf, xfersize - sigecfilong), O, 00y = 01) (
53 nbytes -= n + sizeof(loengl:
54 }
55 1

bench | bw_svmsg.c

Figure A.22 writer and reader functions to measure bandwidth of a System V message queue.

.:Fh.‘;u A

Section A3 Message Passing Bandwidth Programs 475

Doors Bandwidth Program

Our program to measure the bandwidth of the doors API is more complicated than the
previous ones in this section, because we must £ork before creating the door. Qur par-
ent creates the door and then notifies the child that the door can be opened by writing
to a pipe.

Another change is that unlike Figure A.14, the reader function is not receiving the
data. Instead, the data is being received by a function named server that is the server
procedure for the door. Figure A.23 shows an overview of the program.

parent child

[main() main()
i {

prTf-ETETTiT’Eh PSR N LS. LR - if (Fork() == 0)
r/ Read(contpipelC], 1;
doorfd = Openi{):
o= e
- exi H
) ao®
acet

doorfd = Door_createl);
Fattachi{ }: 1
Writel{contpipe([l],];*’,!:
reader(};

exitl 0);
] ¥

—

writer(|

. [
doors | | Read{contpipe(0].);

) | dagy
dat .
SETVET | if {end of al _'_h"“"—--_h__‘_ ,.""/’ while (more to send];

,) 01, 1 — ; :
procedure Write(contpipell].) T Write{datapipell]l, };

N =
} Door_returni |}; T Door_calll J:
4]

reader{ } |~

time i
this Write{contpipell},]:/

function | Read{contpipe[l], };--—-——r"

L }

Ty

Figure A.23 Overview of program to measure the bandwidth of the doors APL

es : Since doors are supported only under Solaris, we simplify the program by assuming a

: full-duplex pipe (Section 4.4).

: Another change from the previous programs is the fundamental difference between

m—c : message passing, and procedure calling. In our Posix message queue program, for

= : example, the writer just writes messages to a queue in a loop, and this is asynchronous.
At some point, the queue will fill, or the writing process will lose its time slice of the
processor, and the reader runs and reads the messages. If, for example, the queue held

476 Performance Measurements Appendix A

eight messages and the writer wrote eight messages each time it ran, and the reader
read all eight messages each time it ran, to send N messages would involve N /4 context
switches (N/8 from the writer to the reader, and another N/8 from the reader to the
writer). But the doors API is synchronous: the caller blocks each time it calls
door_call and cannot resume until the server procedure returns. To exchange N mes-
sages now involves Nx2 context switches. We will encounter the same problem when
we measure the bandwidth of RPC calls. Despite the increased number of context
switches, note from Figure A3 that doors provide the fastest IPC bandwidth up
through a message size of around 25000 bytes.

Figure A.24 shows the main function of our program. The writer, server, and
reader functions are shown in Figure A.25.

Sun RPC Bandwidth Program

Since procedure calls in Sun RPC are synchronous, we have the same limitation that we
mentioned with our doors program. It is also easier with RPC to generate two pro-
grams, a client and a server, because that is what rpcgen generates. Figure A.26 shows
the RPC specification file. We declare a single procedure that takes a variable-length of
opaque data as input and returns nothing.

Figure A.27 shows our client program, and Figure A.28 shows our server proce-
dure. We specify the protocol (TCP or UDP) as a command-line argument for the client,
allowing us to measure both protocols.

1w

24
H =

y

:

L e R T

Fakey

AUy

Section A.3 Message Passing Bandwidth Programs 477
bench b _door.c

1 #include "unpipec.h"

2z void reader {int, int);

1 woid writer{int};

4 wvaoid gerver (vaid *, char *, size_t, door_desc_t *, size t};
5 woid *buf;

B int totalnbytes, xfersize, contpipel2]:

7 int

8 main(int argc, char **argv)

9 {
10 int i, nloop, doorfd;
11 char c;

12 pid_t childpid;

1 ssize_k n;

14 if [arge != 5)

15 err_quit{"usage: bw_door <pathname> <#loops= <fmbytes> <#byres /write="};
16 nlcop = atoilargv([2]);

17 totalnbytes = atol (argv(3]} * 1024 * 1024;

18 xfersize = atol(argvw(4]):

19 buf = Valloc(xfersize);

20 Touch (buf, xfersize);

21 unlink (argw(l]}:

22 Close (Open (argv[1], O_CREAT | O_EXCL | O_RDWR, FILE MODE}};
a3 Pipe{contpipe) ; /% assumes full-duplex SVAL pipe */
24 if ({childpid = Fork(}) == 0} {

25 /* ghild = client = writer */

2B if { {n = Read(contpipe(0], &c, 1)) != 1}

27 err_guit("child: pipe read returned %d". nl;

28 doorfd = Openfargv([l], O_RDWR];

29 writer {doorfd};

30 exic(0);

3l]

32 /* parent = server = reader */

33 doorfd = Door_create(server, NULL, 0O

34 Fatrach(doorfd, argv[l]):

35 Write{contpipe[1l], &e, 1); J/* tell child door is ready */
i6 Start_time();

7 for (i = 0; i < nloop; i++)

g reader {doocrfd, totalnbytes);

i3 printf{"bandwidth: %.3f MB/sec\n",

40 totalnbytes / Step_time(} * nloop);

41 kill {childpid, SIGTERM];

4z unlink(argwvw([1]}:

43 exic(0);

44 1

bench /bw_doorc

Figure A.24 main function to measure the bandwidth of the doors APL

478 Performance Measurements Appendix A
5 oo bench [buw_door.c
46 writer(int doorfd)

47 {

48 int ntowrice;

49 door_arg._t arg;

50 arg.desc_ptr = NULL; /* no descriptors to pass */
51 arg.desc_num = 0;

52 arg.rbuf = NULL; /* no return values expected */
53 arg.reize = 0;

54 for (; ;) 1

55 Read (contpipe[0], &ntowrite, sizecf (ntowrite));

56 while (ntowrite = 0) {

57 arg.data_ptr = buf;

58 arg.data_size = xfersize;

59 Door_call (doorfd, Larg):

60 ntowrite -= xfersize;

61 H

62 1

63 }

64 static int ntoread, nread;

65 wvoid

66 server(void *cookie, char *argp, size_t arg_size,

&7 door_desc_t *dp, size_t n_descriptors)

68 |

(] char [+

70 nread += arg_size;

i1 if [(nread == ntoread)

72 Write(contpipe[0], &c, 1}; /* tell reader{) we are all dons */
73 Door_return(NULL, 0, NULL, 0);:

743

7% woid

Te reader{int doorfd, int nbytes)

771

T8 char [-H

74 ssize_t n;

B0 ntoread = nbytes; /* globals for server() procedure */
g1 nread = {;

A2 Write(contpipe(l], &nbytes, sizecf (nbvtes));:

83 if { (n = Read|{contpipe(l], &z, 1)) = 1)

B84 err_guit(*reader: pipe read returned %d°, ni;
BS }

bench/bw_doorc

Figure A.25 writer, server, and reader functions for doors AP@ bandwidth measurement.

5
i"i:
%
g
.
¢
:

G e R A e B R

E@Hﬂdn&ﬁ

il door.c
II.

Section A3 Message Passing Bandwidth Programs 479
bench [bw_sunrpc.x
1 %#define DEBUG /* smo server runs in foreground */
2 struect data_in {
3 opague data<»; /* wariable-length opague data */
4 1
5 program BW_SUNRPC_FROG {
& version BW_SUNRPC_VERS {
7 woid BW_SUNRPC (data_in} = 1;
a8 1= 1;
9 } = Ox31230001;

bench | bw_sunrpe.x

Figure A.26 RPC specification file for our bandwidth measurements of Sun RPC.

bench b _sunrpe_client.c

[
=TT - N (. T LR PU L

[o
oL s e B3O

ol
| -

=]
w

b b Lt B ORI R B B OB B B RO BRI
Bl O M3 B -d O N sl B

33
34

#include “unpipec.h”

#include *bw_gunrpc.h”
void *buf;

int totalnbytes, xfersize;
int

main{int arge, char **argvl

{
int i, nloop, ntowrite;
CLIENT *cl;
data_in in;

if {(argc != &)
err_guit{"usage: bw_sunrpc_client <hostname> <floops>"
" chmbytes> <#bytes/write= <protecol="]:
nloop = atoilargv([2]):
totalnbytes = acoi (apgv[3]) * 1024 * 1024;
xfersize = atocl(argv(4]};

puf = valloc(xfersize):;
Touch (buf, xfersize);

gl = Clnt_createiargv([l], BW_SUNRFC_FROG, BW_SUMRPC_VERS, argv([S51):

Start_time();
far (4 = 0; i = nlogp; i++) |
ntowrite = totalnbytes;
while {ntowrite = 0) {
in.data.data_len = xfersize;
in.data.data_val = buf;
if [(bw_sunrpc_likin, cl) == NULL]
err_guit|"®s", clnt_sperror(cl, argv[1l});
ntowrite -= xfersize;
}
¥
printf ("bandwidth: %.3f ME/=sec\n”®,
rotalnbytes / Scop_time() * nloopl:
exit (Q);

: benchbw_sunrpc_client.c

Figure A.27 KPC client program for bandwidth measurement.

480 Performance Measurements Appendix A

bench [bw_sunrpe_server.c
1 #include "unpipe.ht

2 #include "bw_gunrpe.h*

3 #ifndef RPOGEN_ANSIC
#define bw_sunrpc_1_swve bw_sunrpe 1

[

5 #endif

& woid *

T bw_sunrpc_1_sve (data_in * inp, struct sve_y *rastp)

g {

2 static int nbvtes;

10 nbytes = inp-»data.data_len;

11 return {&nbytes); /% must be nonnull, but xdr_woid{) will ignore */
12}

s bench fbw_sunrpe_serverc

Figure A.28 RPC server procedure for bandwidth measurement.

A.4 Message Passing Latency Programs

We now show the three programs that measure the latency of pipes, Posix message
queues, and System V message queues. The performance numbers were shown in Fig-
ure A.l,

Pipe Latency Program

The program to measure the latency of a pipe is shown in Figure A 29,
doit function

-5 This function runs in the parent and its clock time is measured. It writes 1 byte to a
pipe (that is read by the child) and reads 1 byte from another pipe (that is written to by
the child). This is what we described as the latency: how long it takes to send a small
message and receive a small message in reply.

Create pipes

19-20 Two pipes are created and fork creates a child, leading to the arrangement shown
in Figure 4.6 (but without the unused ends of each pipe closed, which is OK). Two
pipes are needed for this test, since pipes are half-duplex, and we want two-way com-
munication between the parent and child.
Child echoes 1-byte message

22-27 The child is an infinite loop that reads a 1-byte message and sends it back.

Measure parent

29-34 The parent first calls the doit function to send a 1-byte message to the child and
read its 1-byte reply. This makes certain that both processes are running. The doit
function is then called in a loop and the clock time is measured.

= A Section A4 Message Passing Latency Programs 481
g
prove bench/lat_pipe.c
" 1 #include unpipc.h”

2 volid

3 deit{int readfd, int writefd)

41

5 char ci

6 Write(writefd, &c, 1);

7 if (Read({readfd, &c¢, 1) = 1}
c: B err_quit{"read error"};
; 9}
10 int
gmaTE v 11 main{int argec, char *rargv)
e 1z
e 13 int i, nleop, pipel(2]. pipe2(2];
: 14 char o
: 15 pid_t childpid;:
1 16 if (arge != 2)
4 17 err_guit("usage: lat_pipe <#loops="];
? 18 nloop = atoifargv(i]l);
E 19 Fipe(pipel);
i 20 Bipe(pipe2);
;ix = 21 if [(childpid = Forki{)} == 0} {
g 22 for (; ;) € f* child =/
5 23 if (Head(pipel(0], &z, 1) [= 1)
b 24 err_guit("read error");

25 Write(pipe2[1], &, 1):

26 }

27 exic{d);

2a 1

29 /T parent */

a0 doit(pipe2 (0], pipel[1]):

31 Start_time();

32 for (i = 0; i = nlogp; i++)

33 doit (pipe2[0], pipel([l]}:

34 printf("latency: %.3f usec\n", Stop_time(] / nloop);

a5 Kill{childpid, SIGTERM);

36 exit{d);

37T}

bench/lat_pipe.c
Figure A.29 Program to measure the latency of a pipe.

A

IR

T

Performance Measurements Appendix A

On a Sparc running Solaris 2.6, if we run the program five times in a row, we get

solaris % lat _pipe 10000
latency: 278.633 usec
solarizs % lat_pipe 10000
latency: 397.810 usec
solaris % latc_pipe 10000
latency: 39Z.567 usec
golaris % lat_pipe 10000
latency: 266.572 usec
solariz % lat_pipe 10000
latency: 254.559 usec

The average of these five runs is 324 microseconds, which we show in Figure Al These
times include two context switches (parent-to-child, then child-to-parent), four system
calls (write by parent, read by child, write by child, and read by parent), and the
pipe overhead for 1 byte of data in each direction.

Posix Message Queue Latency Program

25-28

Our program to measure the latency of a Posix message queue is shown in Figure A.30.

Two message queues are created: one is used from the parent to the child, and the
other from the child to the parent. Although Posix messages have a priority, allowing
us to assign different priorities for the messages in the two different directions,
mg_receive always returns the next message on the queue. Therefore, we cannot use
just one queue for this test.

System V Message Queue Latency Program

Figure A.31 shows our program that measures the latency of a System V message
queue.

Only one message queue is created, and it contains messages in both directions:
parent-to-child and child-to-parent. The former have a type field of 1, and the latter
have a type field of 2. The fourth argument to msgrcv in doit is 2, to read only mes-
sages of this type, and the fourth argument to msgrcv in the child is 1, to read only
messages of this bype.

In Sections 9.3 and 11.3, we mentioned that many kernel-defined structures cannot e statucally
initialized because Posix.1 and Unix 98 guarantee only that certain members are present in the
structure. These standards do not guarantee the order of these members, and the structures
might contain other, nonstandard, members too. But in this program, we statically initialize
the megbuf structures, because System V message queues guarantee that this structure con-
tains a Long message type field followed by the acrual data,

hevich [lat_prmsg.c
finclude "unpipec.h” / - &

#define MNAMEL "lat_pxmsgl”
#define MAMEZ “lat_pxmegi"”
#define MANMSG 4
#define MSGSIZE 1024

/* room for 4096 bytes on gueue */

W L R

%

'_jhr'zion-a:
IE' latter
g only

Fr.

;E-‘H:#‘!'k'..if':}'
F:.r = the
Ercrures
e minialize
ST COn-

F3
2
=
5
.
4
&

Section A4 Message Passing Latency Programs 483
& woid
7 doitimgd_t mgsend, mgd_t mgrecv)
8 {
9 char buff [MSGSIZE] ;
10 Mg_send (mgsend, buff, 1, 0];
11 if (Mg _receive(mgrecy, buff, MSGSIZE, NULL) != 1)
12 err_guit{"mg _receive error");
13 }
14 int
1% main(int argec, char **argv)
16 |
17 int i, nloop:
18 myd_t omgl, meg2;
19 char buff [MSGSIZE] ;
20 pid_t childpid;
21 struct mg attr attr;
22 if (arge != 2)
23 err_quit{"usage: lat_pymsg <#loops>~];
24 nloop = atoilargv(ll]);
25 attr.mg _maxmag = MANXMEG:
26 atbr.mg magsize = MSGSIZE;
27 mgl = Mg _open|Px_ipc_name (MAMEl), CO_RDWR | O_CREAT, FILE MODE, &attr);
28 mg? = Mg open{Px_ipc_name (NAMEZ), O_RDWR | O_CREAT. FILE_MODE, &attrj;
29 if { ichildpid = Fork{)}) == 0) {
0 for (: ;1 (J/* child */
31 if (Mg receive(mgl, buff, MSGSIZE, NULL) != 1]
3z err_quit (*mg_receive error®);
33 Mg sendimg2, buff, 1, 0);
34 ¥
i5 exiti{l);
36 }
37 /* parent */
kY| doit(mgl, mg2);
a9 Start_time();
40 for (i = 0; & = nloop; i++}
41 doit(mgl, mgl);
42 printfi{"latency: %.3f usec'n", Stop_time(} / nloop) ;
43 ¥illichildpid, SIGTERM);
44 Mg closeimgl):
45 Mg _close(mg2) ;
46 Mg unlink (Px_ipc_name (NAMEL}) ;
47 M _unlink (Px_ipc_name (HAMEZ)) ;
48 exic(0);
49 1

Figure A.30 Program to measure the latency of a Posix message queue,

bench lat_pxmsg.c

484 Performance Measurements Appendix A

{

Lo - BT I T S

bench/lat_svmsg.c

#include *unpipec.h"
struct megbuf pachild
gtruct msgbuf childip
struct msgbuf inbuf;

1. {0
2, [0O

wvoid
doiti(int magid)

Msgsnd (msgid, &p2child, 0, 0}

9 if (Mesgrovimsgid, &inbuf, sizeof{inbuf.mtext), 2, 0] = 0]
1q err_guit("magrowv error");
11 }
12 int
13 main{int argec, char **argv)
14
15 int i, nloop, msgid;
18 pid_t childpid:
17 if {arge != 2}
18 err_guit{*usage: lat_svmsg <#loops>"};
1% nloop = atoilargv[l]):
20 megid = M=gget (IPC_PRIVATE, IPC_CREAT | SVMSG_MODE) ;
21 if | {childpid = Fork(})) == 0} {
22 For { & :) [/* child =/
23 if (Megrcvimsgid, &inbuf, sizeof{inbuf.mtext), 1, 0) [= 0]
24 err_cquit ("msgrev error");
25 Msgsnd (msgid, &child2p, 0, 0);
26 3
27 exic{0);
28 1
29 /* parent =/
30 doit (msgid);
il Start_time{}:
32 for (1 = 0; 1 < nloap; i++)
33 doit (msgid) ;
EL printf{"latency: %.3f usec\n", Stop_time(} / nloop):
as Killi{childpid, SIGTERM);
36 Megcotl {msgid, IPC_RMID, NULL);:
v exit (0] ;
g }
bench [lat_svmsg.c
Figure A.31 Program to measure the latency of a System V message queue,
Dtﬂﬂ!lLlﬁlnﬂﬁ'Fhﬁﬂﬁlﬂi

Our program to measure the latency of the doors API is shown in Figure A.32. The
child creates the door and associates the function server with the door. The parent
then opens the door and invokes door_call in a loop. One byte of data is passed as
an argument, and nothing is returned.

Section .

Section A.4 Message Passing Latency Programs 485

i
;
;
;
bench lat_door.c 1
1 #include *unpipc.h” 5
2 woid 3
3 server(void *coockie, char *argp, size_t arg_size, :
4 door_desc_t *dp, size_t n_descriptors) 3
51 g
& char =H 5
7 Door_return(kc, sizeof (char), NULL, 0}; :
g}
9 int
10 main{int argc, char *~argv]
11 {
12 int i, nloop, doorfd, contpipel2];]
13 char c; 3
14 pid & childpid; i
15 deor_arg_t arg;
16 if (arge != 3)
17 err_qguit{"usage: lat_door <pathname: <#loops=>"): i3
18 nloop = atoi{argv(2]);]
19 unlink{argwv[l]);]
20 Cloae(openiargv[l], O_CREAT | O_EXCL | Q_RDWR, FILE MODE]);
21 Pipe (contpipel ;
22 if { (childpid = Fork{)}) == 0] {
23 doorfd = Door_create{server, NULL, 0);:
2 24 Fattach(doorfd, argv(l]};
i 25 Write(contpipe(l], &c. 1);
: 26 for (; &} /* child = server */ :
27 pause(}; B
28 exit {0} __'
23 }
30 arg.data_ptr = &o; /* parent = client */ 1
il arg.data_size s sizeof (char);
32 arg.degc_ptr = NULL:
33 arg.desc_num = 0;
& 34 arg.thuf = &op
__’ is arg.rsize = sizeof(char);
:_,; i6 if (Read(centpipe[0], &c, 1) != 1) /* wait for child to create */
f: 17 err_quit("pipe read error"};
; ig docrfd = Open{argwv[l], O_RDWR);:
3 a9 Door_call{doorfd, &karg); /* ornce to start everything */
g 40 Starc_timel);
| 41 for (i = 0; i = nloop; i++)
; 4z Door_call (doorfd, &arg):
2 41 printf("latency: %.3f usecn", Stop_time() / nloop);
i 44 Kill(childpid, SIGTERM);
i 45 unlink(argvw[1]};
1 46 exit(0);
3 47]
i hench/lat_door.c

Figure A.32 Program to measure the latency of the doors APL

486 Performance Measurements Appendix A
Sun RPC Latency Program
To measure the latency of the Sun RPC API, we write two programs, a client and a
server (similar to what we did when we measured the bandwidth). We use the same
RPC specification file (Figure A.26), but our client calls the null procedure this time.
Recall from Exercise 16.11 that this procedure takes no arguments and returns nothing,
which is what we want to measure the latency. Figure A.33 shows the client. As in the
solution to Exercise 16,11, we must call clnt_call directly to call the null procedure; a
stub function is not provided in the client stub.
: - bench laf_sunrpe_client.c
1 #include "unpipec.h”
2 #include *lat_sunrpec.h*
3 int
4 main(int argc, char **argv}
51
] int i, nloop:
7 CLIENT *cl;
a struct timeval bv;
9 if fargc != 4)
ic err_guit{“usage: lat_sunrpc_client <hostname> <#loops> <protocol=");
11 nloop = atoellargv[2]):
12 el = Clnt_create{argv([l], BW_SUNREC_FROG, BW_SUMRPC_VERS, argv(3]):
13 tv.tv_sec = 10;
14 tw.tv_usec = 0
15 Start_time():
16 for (L = 0; i <= nloop; i++) |
17 if (cint_callicl, NULLPROC, xdr wvoid, NULL,
18 wdr_wold, NULL, twv) !s RPC_SUCCESS)
19 err _cquit{"%s*, clnt_sperroricl, argv[i])}:
20 }
21 printf{"latency: %.3f usec'\n", Stop_time(} / nloop):
22 exit (0}
23 1} ,
bench (lat_sunrpe_client.c
Figure A.33 Sun RPC client for latency measurement.

We compile our server with the server function from Figure A.28, but that function
is never called. Since we used rpegen to build the client and server, we need to define
at least one server procedure, but we never call it. The reason we used rpogen is that it
automatically generates the server ma in with the null procedure, which we need.

A5 Thread Synchronization Programs

To measure the time required by the various synchronization techniques, we create
some number of threads (one to five for the measurements shown in Figures A.6 and
A.8) and each thread increments a counter in shared memory a large number of times,
using the different forms of synchronization to coordinate access to the shared counter.

Section A°

boa

el b

ik Bk

3 -Ea i e

Section A5 Thread Synchronization Programs 487

Posix Mutex Program

Figure A.34 shows the global variables and the main function for our program to mea-
sure Posix mutexes.

bench fincr_pxmutexl.c

1 #include "unpipe.h®

2 #define MAXNTHREADS 100

3 int nloop;

4 struct {

5 pthread mubtex_E mubéx;

& leng counter;

7 } shared = {

8 PTHREAD MUTEX_INITIALIZER

9 1;

10 weoid *incriwvoid *);

i1 int

12 main{int argc, char **argv)

13 {

14 int i, nthreads;

15 pthread_t tid|[MA¥NTHREADS] ;

16 if f(arge != 3)

17 err_guit{“usage: incr_psxmutexl <#loops> <#threads=");

1R nloop = atoilargv([Ll]):

19 nthreads = min{atol{argv[2]),. MAXNTHREADS) ;

20 /* lock the mutex */

21 Fthread mutex_lock|&shared.mutex) ;

22 /* preate all the threads */

23 Set_concurrency {nthreads) ;

24 for {1 = 0; 1 = nthreads; i++} {

25 Pthread_create{&tid[i], WULL, incr, NULL);

26 3

27 /* start the timer and unlock the mutex */

28 Start_time()};

29 Pthread_mutex_unlock (&shared.mutex) ;

30 /* wait for all the threads */

31 for {i = 0; i = nthreads; i++} {

32 Pthread joini(cid[i], NULL};

33 }

34 printf(*microseconds: %.0f usec\n", Stop_time(}}:

35 if [(shared.counter != nloocp * nthreads)

6 printf("error: counter = %ldvn*, shared.counter);

37 exit {0} ;

38} ,
bench | incr_pxmutexl.c

Figure A.34 Global variables and main function to measure Posix mutex synchronization.

488 Performance Measurements Appendix A

-5

Z0-2&

27-38

sd-d6

Shared data

The shared data between the threads consists of the mutex itself and the counter.
The mutex is statically initialized.
Lock mutex and create threads

The main thread locks the mutex before the threads are created, so that no thread
can obtain the mutex until all the threads have been created and the mutex is released
by the main thread. Our set_concurrency function is called and the threads are cre-
ated. Each thread executes the incr function, which we show next.

Start timer and release the mutex

Once all the threads are created, the timer is started and the mutex is released. The
main thread then waits for all the threads to finish, at which time the timer is stopped
and the total number of microseconds is printed.

Figure A.35 shows the incr function that is executed by each thread.

bench fincr_pxmutexd .o

39 wold *

40 incri{void *arg)

41 {

42 ine i;

43 for (i = 0; 1 < nloop; i++) {

44 Prhread_mutex_lock (kshared.mutex);
45 shared. counter++;

4 Pthread _mutex unlock{&shared.mutex);
47 ¥

48 raturn (NULL) ;

49 }

berich [imcr_pxmutex].c
Figure A.35 Increment a shared counter using a Posix mutex.

Increment counter in critical region
The counter is incremented after obtaining the mutex. The mutex is released.

Read-Write Lock Program

Our program that uses read-write locks is a slight modification to our program that
uses Posix mutexes. Each thread must obtain a write lock on the read-write lock before
incrementing the shared counter.

Few systems implement the Posix read—write locks that we described in Chapter 8 which are
part of Unix 98 and are being considered by the Posix.1j working group. The read—write lock
measurements described in this Appendix were made under Solaris 2.6 using the Solaris
read-write locks described in the rwlosk (3T) manual page. This implementation provides
the same functionality as the proposed read-write locks, and the wrapper functions required
to use these functions from the functions we described in Chapter 8§ are trivial,

Section A5 Thread Synchronization Programs 489

Under Digital Unix 4.0B, our measurements were made using the Digital thread-independent
services read-write locks, described on the tis_rwlock manual pages. We do not show the
simple modifications to Figures A.36 and A.37 for these read-write locks.

Figure A.36 shows the main function, and Figure A.37 shows the incr function.
bench imcr_rwlockl ¢

Figure A.3 main function to measure read-write lock synchronization.

1 #include "unpipc.h®
2 #include <gynch . h= /* Solaris header */
3 woid Bw_wrlock{rwlock_t *rwptrl;
4 void Bw_unlock{rwlock_t *rwptrl;
5 #define MAXNTHREADS 100
& int nloop;
T struct {
-] rwlock_t rwlock: /* the Solaris datatype */
.] long counter:
B 10 1} shared; /* init to 0 -» USYNC_THREAD */
f; Ie 11 woid *incriveid *);
1 12 int
13 main{int arge, char **argv)
14 {
15 int i, nthreads:
16 pthread_t tid[MAXNTHREADS];
17 if large !'= 3}
; 18 err_guit(*usage: incr_rwlockl <#loocps> <#threads>"};
E 1% nloop = ated largv(l]};
1: 20 nthreads = min{atodi (argv[Z]1], HMAXNTHREADS);
- - 21 /* obtain write lock */
:!. o 22 Fw_wrlock [&shared.rwlock) ;
> 23 /* create all the threads */
24 Set_concurrency (nthreads) ;
25 for (i = 0; i < nthreads; i++) {
26 Pthread_create(&tid{i], NULL, incr, HWULL};
27 }
28 /* ztart the timer and release the write lock */
o 29 Start_timed();
an Fw_unlock{&shared. rewlock] ;
:55-. 31 /* wait for all the threads */
i az for (i = 0; i < nthreads; i++) {
33 Pthread_jein{tid[i], NULL};
34 }
§ ?; is printf {"microseconds: %.0f usec'\n*, Stop_timei)};:
i& - i kS if {shared.counter !'= nloop * nthreads)
bﬂ"l % 17 princfi{"error: counter = &ld\n", shared.counter);
Seirs i 18 exit (0);
o £ a9 _
ek & ! bench{incr_ruwlockl.c
:

490 Performance Measurements Appendix A Section A

bench (incr_rulock] ¢

40 void @+

41 incriveid *arg)

42

43 int i;

44 for (i = 0; i < nloop; i++} |
45 Fw_wrlock{&shared. rwlock) ;
46 shared.counter+s;

47 Ew_unlock{kshared, rwlock) ;
48 }

45 return (NULL}) ;

S0}

bench fincr_rwlockl .c
Figure A.37 Increment a shared counter using a read-write lock.

Posix Memory-Based Semaphore Program

We measure both Posix memory-based semaphores and Posix named semaphores. Fig-
ure A.39 shows the main function for the memory-based semaphore program, and Fig-
ure A.38 shows its incr function.
18-19 A semaphore is created with a value of 0, and the second argument of 0 to
sem_init says that the semaphore is shared between the threads of the calling process.
20-27 After all the threads are created, the timer is started and sem_post is called once by

the main thread.

Tooia - benchincr_pxseml.c
38 incr(veid *arg)

38 {

40 int i

41 for (i = 0; 1 = nloop; i++) {
42 Sem_walt (&shared.mutex) ;
43 shared.counter++;

44 Sem_post (kshared.mucex) ;
45 }

46 return {(NULL) ;

47)

benchincr_pxseml.c
Figure A.38 Increment a shared counter using a Posix memory-based semaphore,

Section A.5 Thread Synchronization Programs 491 :

bench /incy_pxseml.c

1 #include "unpipec.h" i
2 #define MAXNTHREADS 100 f
3 int nloop; ?
d struct | :
=] semn_t mtex /* the memory-based semaphore */ i
=1 long counter;]
T)} shared:

g void *incr (vold *});

9 int

10 main({int arge, char **argvi

11

1z int i, nthreads;

13 pthread_t tid[MAXNTHREADS]:

14 if (argc = 3]

15 err_guit ("usage: incr_pxseml <#loops> <#threads="];
16 nleop = atoilargv[11);

17 nthreads = min{atoi{argv(2]), MAXNTHREADS);

18 /* initialize memory-based semaphore to O %7

12 Sem_init (&shared.mutex, 0, Q)

20 /* create all the threads */

21 Set_concurrency{nthreads) ;

22 for (1 = 0; I < nthreads; i++} {

23 Pthread_create (ktid[i], MNULL, incr, NULL);

24 l

25 /* start the timer and release the semaphore */
26 Start_time(}:

27 Sem_post (kshared .mutex] ;

2B /* wait for all the threads */

29 for (i = 0; i < nthreads: i++]} (

an Pthread_joinitid[i}, WULL];

31 }

32 printf(*microseconds: %.0f usec'\n", Stop_timel()):
a3 if (shared.counter != nloop * nthreads)

34 printf("error: counter = %14\n", shared,counter);
is exit (0] ;

ie }

benchincr_pxseml o

Figure A.39 main function to measure Posix memory-based semaphore synchronization.

492 Performance Measurements Appendix A

Posix Named Semaphore Program

Figure A.41 shows the main function that measures Posix named semaphores, and Fig-
ure A .40 shows its incr function.

bench fincr_pysem.c

40 woid *
41 inerdwvoid ®argl
42 {
43 int i;
44 for (L = 0; 1 = nloop; i++) {
45 Sem_wait (shared.mutex};
46 shared.counkter++;
47 Sem_post (shared.mutex) ;
48 I
49 return (NULL);
50 1 .
bevich [incr_pxseml.c
Figure A.40 Increment a shared counter using a Posix named semaphore.
System V Semaphore Program

The main function of our program that measures System V semaphores is shown in Fig-
ure A.42, and Figure A.43 shows its incr function.
20-23 A semaphore is created consisting of one member, and its value is initialized to 0.
24-29 Two semop structures are initialized: one to post-to the semaphore and one to wait-
for the semaphore. Notice that the sem_flg member of both structures is 0: the
SEM_UNDO flag is not specified.

System V Semaphore with SEM_UNDO Program

The only difference in our program that measures System V semaphores with the
SEM_UNDO feature from Figure A.42 is setting the sem_£1g member of the two semop
structures to SEM_UNDO instead of 0. We do not show this simple modification.

[

Section A5 Thread Synchronization Programs 493
bench fincr_pxzem2.c
1 #include ‘unpipe.h*
2 #define MAXNTHREADS 100
3 #define NAME "incr_pxsem2”
4 ink floap;
5 struck {
] sem_t *mutex; /* pointer to the named semaphore */
7 long counter ;
B } shared;
9 wvoid *incr(wvoid *};
10 int
1l main(int argc, char **argv)
12 {
13 int i, nthreads;
14 pthread_t tid[MAXNTHREADS]
15 if [argec != 1)
16 err_guiti"usage: incr_pxseml <#loops> <#threads="};
17 nloop = atellargv(l]);
1B nthreads = min{atol (argv(2]), MAXNTHREADS);
1% /* initialize named semaphore to O */
20 sem_unlink(Fx_ipc_name (NAME)]; /* error OK */
21 shared.mutex = Sem_open(Px_ipc_name (MAME), O_CREAT | 0O_EXCL, FILE_MCDE,
22 /* create all the threads */
23 Set_concurrency (nthreads) ;
24 for (i = 0; i = nthreads; is++) {
25 Prhread_create(&tid(i], NULL, incr, NULL);
26 1
27 /* start the timer and release the semaphore */
28 Scarc_timei();
29 Sem _post {shared.muatex) ;
o /* wait for all the threads */
3l for (i = 0; i =< nthreads; i++} {
32 Pthread_joini{tid[i], NULL};
33]
34 printf (*microseconds: %.0f usec'\n", Stop_time(}};
35 if (shared.counter != nloop * nthreadsa)
36 printf("error: counter = %ld.n", shared.counter);
37 Sem_unlink (Px_ipc_name (NAME)) ;
3sg exic(0);
39) .
bench /incr_pxsem2.c

Figure A.41 main function to measure Posix named semaphore synchronization,

Performance Measurements Appendix A Section A
bench/incr_suvseml.c -
1 #include "unpipec.h” 43
2 #define MAXNTHREADS 100 .
3 int nloop;
4 struct | T
5 int semid; -
3 lang counkter:; ;i
7 } shared; =
g struct sembuf postop, waltop; i
9 void *incrivoid *); .
10 int -
11 main(int argc, char **argv}
12 {
13 int i, nchreads;
14 pthread_t tid[MAXNTHREADS];
15 union semun arg: 1
16 if (arge = 3) | fontl R
17 err_guit|"usage: incr_svseml <#loops> <#threads>")
18 nloop = ateilargv[l]); C
19 nthreads = miniatoilargv([2]),. MAXNTHREADS] ; +
20 /* create semaphore and initialize to 0 */ *f b
21 shared.semid = Semget (IPC_PRIVATE, 1, IPC_CREAT | SVSEM_MODE) ; : £
22 arg.val = 0; T
a3 Semctl (shared.semid, 0, SETVAL, argl: B
24 postop. sem_num = 0; /* and init the two semop(l structurea */f
25 postop.sem_op = 1; B
26 postop.sem_£lg = 0; 18-13
27 waitop.sem_num = 0; P
28 waitop.sem_op = -1; 5
29 waitop.sem_£lg = 0; é
30 /* create all the threads */ =
3l Set_concurrency (nthreads) ;
32 for (L = 0: i = nthreads; i++} {
33 Prhread_create(&tid[i], NULL, incr, WNULL} ;
4 } z E
ig ;% start the timer and release the semaphore */ & F
36 Start_time(); 5- 4
37 Semop (ghared.semid, kpostop, 1); v oup By 1%/ 2 F
&)
38 /* wait for all the threads */ £ g
39 for {i = 0: i = nthreads; i++) | 4 3
40 Pthread_joinitid(i], NULL); : P
41 } 7 1
42 printf{*microseconds: %.0f usec\n", Stop timel)); : :
43 if |ghared.counter != nloop * nthreads)] F
44 printf{"error: counter = %ld\n", shared.counter) ; 3
45 Semctl (shared.semid, 0, IPC_RMID): 3
46 exic{0); -
47 1

bench/incr_svseml.c
Figure A.42 main function to measure System V semaphore synchronization.

%

% gt

Section A.5 Thread Synchronization Programs 495

bench fincr_svsem].c

48 wolid *
49 incr(veid *arg)
50
51 int ij
52 for (1 = 0; i < nloocp; i++} {
53 Semop {shared.semid, &waitop, 1);
54 shared . counter+s;
55 Semop{shared.semid, &postop, 1)
56 }
57 raturn (NULL) ;
58) .
hench ey _soseml .o
Figure A43 Increment a shared counter using a System V semaphore.
fcntl Record Locking Program

15-22

Qur final program uses fent1 record locking to provide synchronization. The main
function is shown in Figure A.45. This program will run successfully when only one
thread is specified, because fcntl locks are between different processes, not between
the different threads of a single process. When multiple threads are specified, each
thread can always obtain the requested lock (that is, the calls to writew_lock never
block, since the calling process already owns the lock), and the final value of the counter
is wrong.

The pathname of the file to create and then use for locking is a command-line argu-
ment. This allows us to measure this program when this file resides on different file-
systems. We expect this program to run slower when this file is on an NFS mounted
filesystem, which requires that both systems (the NFS client and NFS server) support
NFS record locking.

The incr function using record locking is shown in Figure A.44.

bench [incr_fontll e

4d wvoid »*

45 incrivoid "argl

48 |

47 int i;

48 far (1 = 0; i < nloap; 1++) |

49 Writew_lockishared.fd, 0, SEEK_SET, 0};
5Q shared.counter++;

51 Un_locki{shared.£d4, 0, SEEK_SET, 0):
52 1

53 return {NULL) ;

54 }

benchincr_fontll.c

Figure A.44 Increment a shared counter using fentl record locking.

PR

496 Performance Measurements Appendix A
benchincr_fentllc
4 #include "unpipc.h"
& #define MAXNTHREADS 100
& int nloop;
7 struct {
] int fd:
g lobhg counter;
10 } shared;

11 woid *incr (void *);

12 int

11 main{int arge, char **argv)

14 {
15
16
17

18
19
20
21
2z

23
24
25

26
27
28
29
a0
11
32
i3

i4
35
36
37
iB
39
40
41

4z
43 1}

int i, nthreads;
char *pathname;
pthread_t tid[MAXNTHREADS];

if large != &)

err_guit(*usage: incr_fentll <pathname= <#loops> <fichreads="] ;

pathname = argv(l]:
nloop = atoliargvi2]i:
nthreads = min(atoi{argw([3]). MAXNTHRERDE];

/* pcreate the file and obtain write lock */

shared.fd = Open{pathname, O_EDWR | O_CREAT | O_TRUNC, FILE_MODE);

Writew_lockishared. fd, 0, SEEK_SET, 0);

/* create all the threads */
Set_concurrency (nthreads) ;
for (i = 0; 1 < nthreads; i++} {
Pthread_create (&tid[i], MNULL, incr, MULL};
1
/* start the timer and release the write lock */
Start_timed();
tln_lock{shared.£d, 0, SEEK_SET, 0);

/* wait for all the threads */
for {1 = 0; i = nthreads; i++} {
Pthread jeinitid[i], NULL}:
]
printf{"microseconds: %.0f usec\n®, Stop_time{));
if {(shared.counter != nloop * nthreads]
printf{"error: counter = %1ld\n", shared. counter) ;
Unlink(pathname) ;

exit (0);

Figure A45 main function to measure £cnt 1 record locking.

bench/incr_fentll.c

Section A

A6 |

i:u\dix A

p*_;rmf]l £

i fenitl] ¢

Section A6 Process Synchronization Programs 497

Process Synchronization Programs

In the programs in the previous section, sharing a counter between multiple threads
was simple: we just stored the counter as a global variable. We now modify these pro-
grams to provide synchronization between different processes.

To share the counter between a parent and its children, we store the counter in
shared memory that is allocated by our my_shm function, shown in Figure A.46.

: libfmy_shm.c

1 #include funpipc.h"

2 woid *

3 my_shm(size_t nbytes)

4

L3 void *shared;

& #if de fined (MAP_ANON)

T shared = mmap{NULL, nbytes, PROT_READ | PROT_WRITE,

] MAP _AMON | MAP_SHARED, -1, Q)

9 #elif defined (HAVE_DEV_ZERD)

10 int £d;

11 /* memory map Sdev/zero */

12 if | (fd = open(®/dev/zero®, O_EDWR)} == -1}

13 return (MAP_FAILED) :
14 shared = mmap|{NULL, nbytes, PROT_READ | FROT_WRITE, MAP_SHARED, £d4, 0);
15 close(£d);

16 #else

17 #error cannot determine what type of anonymous shared memory to use
18 #endif

19 raturn (shared); /* MAP_FAILED on error */
20 }

libfmy_shm.c
Figure A.46 Create some shared memory for a parent and its children.

If the system supports the MAP_ANON flag (Section 12.4), we use it; otherwise, we
memory map /dev/zero (Section 12.5).

Further modifications depend on the type of synchronization and what happens to
the underlying datatype when fork is called. We described some of these details in
Section 10.12.

» Posix mutex: the mutex must be stored in shared memory (with the shared
counter), and the PTHREAD PROCESS_SHARED attribute must be set when the
mutex is initialized. We show the code for this program shortly.

* Posix read—write lock: the read—write lock must be stored in shared memory
{with the shared counter), and the PTHREAD_FROCESS_SHARED attribute must
be set when the read—write is initialized,

498 Performance Measurements Appendix A

s Posix memory-based semaphores: the semaphore must be stored in shared
memory (with the shared counter), and the second argument to sem_init must
be 1, to specify that the semaphore is shared between processes.

+ Posix named semaphores: either we can have the parent and each child call
sem_open or we can have the parent call sem_cpen, knowing that the
semaphore will be shared by the child across the fork.

 System V semaphores: nothing special need be coded, since these semaphores
can always be shared between processes. The children just need to know the
semaphore’s identifier.

« fcntl record locking: nothing special need be coded, since descriptors are
shared by the child across a fork.

We show only the code for the Posix mutex program.

Posix Mutex Program

18-20

21-26

a7-38
37-43

The main function for our first program uses a Posix mutex to provide synchronization
and is shown in Figure A 48. Its incr function is shown in Figure A47.
Since we are using multiple processes (the children of a parent), we must place our
shared structure into shared memory. We call our my_shm function (Figure A.46).
Since the mutex is in shared memory, we cannot statically initialize it, so we call
pthread_mutex_init after setting the PTHREAD_PROCESS_SHARED attribute. The
mutex is locked.

All the children are created, the timer is started, and the mutex is unlocked.
The parent waits for all the children and then stops the timer.

e bench [/ incr_pxmutexd.c

47 incr(wvoid *argl

48 |

49 int i

50 for (i = 0; i < nleop; i++) {

g1 prhread_mutex_lock(kshared-=mu tax)

52 shared-=counter++;

53 Pehread mutex_unlock fshared->mutex):

54 }

55 return {NULL) ;

S6)

bewich | incy_pxmutexi.c

Figure A47 incr funchion to measire Posix mutex locking between processes.

Section A

!

e Bt

Section A.6 Process Synchronization Programs 499
bench [iner_pxmutex5.c
1 #include *unpipc.h"
2 Hdefine MANNPROC 100
3 int nloop:
4 struct shared {
5 pthread _mutex_t mutex;
& long counter;
7 1 *shared; /* pointer; actual structure in shared memory */
8 void *incr(void *);
9 int
10 main{int arge, char **argv)
11 {
12 int i, nprocse;
13 pid_t childpid [MAXNFROC] ;
14 pthread_mutexattr_t mattr;
15 if f(arge != 3)
16 err_guit ("usage: iner_pumutex5 <#loops> <#processes=");
17 nloop = atollargv(l]);
14 nprocs = min{atel (argv[2]}, MAXNPROC):
19 /* get shared memory for parent and children */
20 shared = My_shm{sizeof (struct shared));
21 /* initialize the mutex and lock it =/
22 Pthread_mutexattr_init (&mattr);
23 Prhread_mutexattr_setpshared(kmattyr, PTHREAD _PROCESS_SHARED) ;
24 Prhread_mutex init(&kshared->mutex, &mattr);
25 Pthread_mutexattr_destroy(&mattr);
26 Prthread_mutex_lock&shared-»>mutex) ;
27 /* create all the children */
28 for (i = 0; 1 = nprocs; i++} {
29 if { (childpid[i] = Fork{)} == 0} {
30 iner (NULL) ;
31 axit (0);
32 i
33 3
34 /* parent: start the timer and unlock the mutex */
35 Start_time(];
36 Pthread_mutex_unlock (kshared->mutex] ;
37 /* wait for all the children */
3B for (i = 0; i < nproca; i++) (
39 Waitpidichildpid[i], WULL, 0};
40 }
41 printf(*microseconds: %.0f usecin", Stop_time(});
42 if (shared-»counter != nloop * nprocs)
43 printf ("error: counter = %¥ld'n", shared-rcounter);
a4 exit (Q);
45 }

bench fincr_paxmiutex3.c

Figure A48 main function to measure Posix mutex locking between processes,

B.1

Appendix B

A Threads Primer

Introduction

This appendix summarizes the basic Posix thread functions. In the traditional Unix
model, when a process needs something performed by another entity, it forks a child
process and lets the child perform the processing. Most network servers under Unix,
for example, are written this way.

Although this paradigm has served well for many years, there are problems with
fork:

* fork is expensive. Memory is copied from the parent to the child, all descrip-
tors are duplicated in the child, and so on. Current implementations use a tech-
nique called copy-on-write, which avoids a copy of the parent’s data space to the
child until the child needs its own copy; but regardless of this optimization,
fork is expensive.

* [nterprocess communication (IPC) is required to pass information between the
parent and child affer the fork. Information from the parent to the child before
the fork is easy, since the child starts with a copy of the parent’s data space and
with a copy of all the parent’s descriptors. But returning information from the
child to the parent takes more work.

Threads help with both problems. Threads are sometimes called lightweight processes,
since a thread is “lighter weight” than a process. That is, thread creation can be 10-100
times faster than process creation.

501

502

A Threads Primer Appendix B

B.2

All threads within a process share the same global memory. This makes the sharing
of information easy between the threads, but along with this simplicity comes the prob-
lem of synchronization. But more than just the global variables are shared. All threads
within a process share:

process instructions,

most data,

open files (e.g., descriptors),

signal handlers and signal dispositions,
current working directory, and

user and group [Ds.

But each thread has its own:

thread ID,

set of registers, including program counter and stack pointer,
stack (for local variables and return addresses),

errnao,

signal mask, and

priority.

- = 8 8 ® @

Basic Thread Functions: Creation and Termination

In this section, we cover five basic thread functions.

pthread_create Function

When a program is started by exec, a single thread is created, called the initial thread or
main thread. Additional threads are created by pthread_create.

#include =pthread. b=

int pthread_create|pthread_t *fd, const pthread_attr_t “attr,
vold *({*func) (void *}p, woid ~arg);

Returns: 0 if OK, positive Exxx value on error

Each thread within a process is identified by a thread 1D, whose datatype is pthread _t.
On successful creation of a new thread, its 1D is returned through the pointer tid.

Each thread has numerous atfribufes: its priority, its initial stack size, whether it
should be a daemon thread or not, and so on. When a thread is created, we can specify
these attributes by initializing a pthread attr_t variable that overrides the default.
We normally take the default, in which case, we specify the atfr argument as a null
pointer,

Finally, when we create a thread, we specify a function for it to execute, called its
Hiread start function. The thread starts by calling this function and then terminates either
explicitly (by calling pthread_exit) or implicitly (by letting this function return). The

Section B

B B B B

pthres

pthres

Section B.2 Basic Thread Functions: Creation and Termination 503

address of the function is specified as the func argument, and this function is called with
a single pointer argument, arg. If we need multiple arguments to the function, we must
package them into a structure and then pass the address of this structure as the single
argument to the start function.

Notice the declarations of func and arg. The function takes one argument, a generic
pointer (void *), and returns a generic pointer (void *). This lets us pass one pointer
(to anything we want) to the thread, and lets the thread return one pointer (again, to
anything we want),

The return value from the Pthread functions is normally 0 if OK or nonzero on an
error. But unlike most system functions, which return 1 on an error and set exrrnotoa
positive value, the Pthread functions return the positive error indication as the func-
tion's return value. For example, if pthread_create cannot create a new thread
because we have exceeded some system limit on the number of threads, the function
return value is EAGATN. The Pthread functions do not set errnc. The convention of 0
for OK or nonzero for an error is fine, since all the Exxx values in <sys/errno.h> are
positive. A value of 0 is never assigned to one of the Exxx names.

pthread_join Function

We can wait for a given thread to terminate by calling pthread_join. Comparing
threads to Unix processes, pthread_create is similar to fork, and pthread_joinis
similar to waitpid.

#include <pthread.h>

int pthread_iocinipthread_t #d, wvoid **shatus);

Returns: 1} if DK, positive Exxx value on error

We must specify the tid of the thread for which we wish to wait. Unfortunately, we
have no way to wait for any of our threads (similar to waitpid with a process ID argu-
ment of =1).

If the status pointer is nonnull, the return value from the thread (a pointer to some
object) is stored in the location pointed to by status.

pthread_self Function

Each thread has an ID that identifies it within a given process. The thread ID is
returned by pthread_create, and we saw that it was used by pthread join. A
thread fetches this value for itself using pthread_self.

#include <pthread.hs

pthread_t pthread_self (void});

Returns: thread ID of calling thread

Comparing threads to Unix processes, pthread_self is similar to getpid.

504 A Threads Primer Appendix B

pthread_detach Function

A thread is either joinable (the default) or detached. When a joinable thread terminates,
its thread ID and exit status are retained until another thread in the process calls
pthread_join. Buta detached thread is like a daemon process: when it terminates, all
its resources are released, and we cannot wait for it to terminate. If one thread needs to
know when another thread terminates, it is best to leave the thread as joinable.

The pthread_detach function changes the specified thread so that it is detached.

|. #include <pthread.h>
int pthread_detach{pthread_t tid);

Returns: 0 if OK, positive Brxx value onerror |

This function is commonly called by the thread that wants to detach itself, as in

pthread_detachi{pthread_selfl]);

pthread_exit Function

One way for a thread to terminate is to call pthread_exit.

#include <pthread. h>

void pthread exit {vold *shatus)

Joes not return to caller

If the thread is not detached, its thread ID and exit status are retained for a later
pthread_join by some other thread in the calling process.

The pointer status must not point to an object that is local to the calling thread (e.g.,
an automatic variable in the thread start function), since that object disappears when the
thread terminates.

A thread can terminate in two other ways:

¢ The function that started the thread (the third argument to pthread_create)
can return. Since this function must be declared as returning a void pointer,
that return value is the exit status of the thread.

s If the main function of the process returns or if any thread calls exit or _exit,
the process terminates immediately, including any threads that are still running.

CA

Appendix C

== calls
mates, all
mesds to
-
gched
| [}
|
- Miscellaneous Source Code
e
C.1 unpipc.h Header
Almost every program in the text includes our unpipc . h header, shown in Figure C.1.
This header includes all the standard system headers that most network programs need,
_ - along with some general system headers. It also defines constants such as MAXLINE
i ! and ANSI C function prototypes for the functions that we define in the text (eg.
— px_ipc_name) and all the wrapper functions that we use. We do not show these proto-
& later types.
: libfunpipc.h
ﬁ (o0 1 /* Dur own header. Tabs are set for 4 spaces, not 8 =/
B the 2 #ifndef _ unpipc_h
; 3 #define _ unpipc h
4 #include * . /config.h" /* ponfiguration options for current 05 =7
5 J* ¢, jeenfig.h is generated by configure */
tah* =1 § /* If anything changes in the following list of #includes, must change
!m:n?er. 7 ..jaclocal.md4 and ../ /configure.in also, for configure’'s tests. */
! 8 #include <ays/types . h= /* bagic system data types */
Caxit % #include <gys/time. h> % timeval{l for select() */
N 10 #include <time.h> /* timespec{} for pselect() *f
g 11 #include <errno.h=
: 12 #include <fentl.h= ;* for nonblocking */
13 #include <limics. h> /* PIFE_BUF */
14 #include <gignal . h>
15 #include <gtdio. h»>
16 #include <gtdlib.h>
17 #include <string.h>
18 #include <sys/stat.h= /* for S_xxx file mode constants ¥/

505

506 Miscellaneous Source Code

Appendix C

18
20

21
22
23

24
25

26
27
28

29

k11
31
32

33
i4
35

ig
37
EY:

39
a0
41

42
43
44
45
46
47

a8
49
50

4
A

52
53
54
55

17
57
58

59
]
61

62
63
&4

#include <unistd.h>

i#include <syes/walt. h>

#ifdef HAVE_MQUEUE_H

#include <meueues , h= i
#endif

#ifdef HAVE_SEMAFPHORE_H

#include <semaphore.h> i
#ifndef SEM_FAILED

#define SEM_FAILED ((sem_t *}(-1])
#endif

#endif

#ifdef HAVE_S5¥S_MMAN_H

#include <gys,/mman . h> i
#endif

#ifndef MAP_FAILED

#define MAP_FAILED ({void *}(-1)]
#endif

#ifdef HAVE SYS_IPC_H
#include <sys/ipec.h= ’*
#endif
#ifdef HAVE_SYS_MSG_H
#include <gys/msg. h> i
#endif
#ifdef HAVE_SYS SEM H
#ifdef _ badi__
#undef HAVE_SYS5_SEM_H i
#alse
#include <gys/sem.h> i
#endif
#ifndef HAVE_SEMUN_UNICOH
union semuan { I’
int val;
struct semid_ds *buf;
unsigned short *array;
b
#endif
#endif /* HAVE_SYS_SEM H */

#ifdef HAVE_SY¥S_SHM_H

#include <gys/shm.h> i
#endi £

#ifdef HAVE_SYS SELECT H

#ginclude <gya/select h> i
#endif

#ifdef HAVE _POLL_H

#include <poll.h= /e

#endif

Fosix message queues */

Posix semaphores */

Posix shared memory */

System V IPC */

System V message queues */

hack: BSDI's semctl() prototype is wrong */

System V semaphores */

define union for semctli) */

gystem V shared memory */

for convenience */

for convenience */

I ¥

Section C.1 unpipec.h Header 507

G5 #ifdef HAVE STROPTS_H

66 #include <atropts.h> /* for convenience */
67 #endif

68 #ifdef HAVE_STRINGS_H

69 #include =strings.h> /* for convenience */
Th #endif

71 /* Mext two headers are normally needed for socket/file ioctl’s:
72 * =sysficctl . h> and <sys/filio.h>.

Tz =+

T4 #ifdef HAVE_SYS_IOCTL_H
75 #include <gya/ioctl . h=>
76 #endif

77 #ifdef HAVE_SYS_FILIO_H
78 #include <gys/filic. h>
79 dendif

B0 #ifdef HAVE_PTHREAD H
Bl #include <pthread.h=

B2 #endif
Bl #ifdef HAVE_DOOR_H
4 #include <door.h> /* Selaris deors API */
85 #endif
86 #ifdef HAVE_RPC_RPC_H
. 87 #ifdef _PSX4 NSPACE_H_TS /* Digital Unix 4.0k hack, hack, hack */
i 88 #undef SUCCESS
: B9 #endif
;- 20 #include <rpc/rpc.h=> /* Sun RBC */
2 91 #endif

92 /* Define bzerol)] as a macro if it's not in standard C library. */
53 #ifndef HAVE_BEZERCG

94 #define bzerc(ptr,.n) memset (per, O, n)

95 #endif

36 /* Posix.lg requires that an #include of <poll.h> define INFTIM, but many
97 syatems still define it in =sys/stropts.h>. We don't want to include
98 all the streams stuff if it's not needed, so we just define INFTIM here.
g9 This is the standard walue, but there’'s no guarantee it is -1, */
100 #ifndef INFTIM
101 #define INFTIM {-1}) /* infinice poll timeout */
102 #ifdef HAVE POLL_H
103 #define INFTIM_UNFH f* tell unpxti.h we defined it */
104 wendif
105 #endif

10e /* Mizcellaneocus constants */

107 #ifndef PATH_MAX /* should be in <limits.h> */

108 #define PATH_MAX 1024 /* max # of characters in a pathname */
109 #endif

110 #define MAYX PATH 1024
111 #define MAMNLINE 4098 /* max text line length =/
112 #define EBUFFSIZE 8192 /* buffer size for reads and writeg */

e L A PR e

508 Miscellaneous Source Code Appendix C
113 #define FILE_MODE (S_IRUSR | 5_IWUSE | S_IRGRF i 5_IROTH)
114 /* default permissions for new files */
115 #define DIR_MODE (FILE_MODE | S_IXUSRE | S_IXGRP | S_IXOTH)
11l /* default permisgsions for new directories */
117 #define SVMSE_MODE (MSG R | MSG_W | MSG_R»>3 | MSG_R>>6)
118 /* default permissicons for new SV message gueuss */
11% #define SVSEM_MODE (SEM_R | SEM_A | SEM_R»>3 | SEM_R»=6)
120 /* default permissions for new 3V semaphores */
121 #define SVSHM_MODE (SHM_E | SHM_W | SHM_R>>3 | SHM_R==&)
122 /* default permissions for new 5V shared memory */
123 typedef woid Sigfunc (int); /* for signal handlers */
124 #ifdef HAVE_SIGINFO_T_STRUCT
125 typedef void Sigfunc_rt (int, siginfo_t *, woid *);
126 #endif
127 #define minia,b) {fay = (k) ¥ (a) : (b))
128 #define maxia, b) {lal = (b} 7 (&) ¢ (k1)
129 #ifndef HAVE TIMESFEC_STRUCT
130 struct timespec
131 time_t tv_sec; /* seconds */
132 long tv_nsec; /* and nanoseconds */
133 };
134 #endif
135 /*
136 * In our wrappers for openi), mg open!{), and sem_open{) we handle the
137 * opticnal arguments using the wa_XX¥|) macres. But one of the optional
138 * arguments is of type "mode_t" and this breaks under BSD/0S because it
139 ~ pases a 16-bit integer for this datatype., But when our wrapper function
140 * iz called, the compiler expands the 16-bit short integer te a 32-bit
141 * integer. This breaks cur call to va_arg(). All we can do is the
142 * following hack. Other systems in addition to BSD/0S might have this
143 * problem too ...
144 =y
145 #ifdef _ _badi__
146 #define va_mode_t int
147 #else
148 #define va_mode_t mode T
149 #endif
150 /* our record locking macros */
151 #define read_lock(fd, cffset, whence, len)
152 lock_reg(fd, F_SETLK, F_RDLCK, offset, whence, len)
153 #define readw_lock({fd, offset, whence, len}
154 lock_reg(fd, F_SETLEW, F_RDLCE, offset, whence, len)
155 #define write lock{fd, offset, whence, len}
156 lock_reg(fd, F_SETLE, F_WRLCEK, offset, whence, len}
157 #define writew_lock(fd, offset, whence, len) %
158 lock_reg(fd, F_SETLEW, F_WRLCE, offset, whence, len)
159 #define un_lock{fd, offset, whence, len) \
160 lock_regi(fd, F_SETLE, F_UNLCK, cffset, whence, len}
161 #define is_read_lockable(fd, offzet, whence, len) %

Section CZ

c.2

& oF el) W B RE e

[|

e

o e

ek ke B R

A ik s B

iz C Section C.2 config.h Header 509
162 lock_test(fd, F_RDLCK, offset, whence, len)
163 #define is_write_lockable(fd, offset, whence, len) *
164 lock_test{fd, F_WRLCK, offset, whence, len) . ;
lib unpipe.h
Figure C.1 Our header unpipc.h

C.2 config.h Header

;

The GNU autocenf tool was used to aid in the portability of all the source code in this
text. It is available from ftp://prep.ai.mit.edu/pub/gnu/. This tool generates a
shell script named configure that you must run after downloading the software onto
vour system. This script determines the features provided by your Unix system: are
System V message queues supported? is the uint8_t datatype defined? is the
gethostname function provided? and so on, generating a header named config.h.
This header is the first header included by our unpipc.h header in the previous sec-
tion. Figure C.2 shows the config.h header for Solaris 2.6 when used with the gec
compiler.

The lines beginning with #define in column 1 are for features that the system pro-
vides. The lines that are commented out and contain #undef are features that the sys-

tem does not provide.
- - - spare-sun-solaris2.6 fconfig

1 /* config.h. Cenerated automatically by configure. =/
2 /* Define the following if wou have the corresponding header */
3 #define CPU_VENDOR_OS "sparc-sun-solaris2.e6*
4 #define HRVE_DOOR_H 1 /* =<door.h= */

5 #define HAVE_MQUEUE H 1 f* amgueue.h> */

: 6 #define HAVE_POLL_H 1 /= =poll. h» *f

ia! 7 #define HAVE_PTHREARD _H 1 /* <pthread.h> */

A #define HAVE_RPC_RPC_H 1 f* arpo/rpe.he

9 #define HAVE_SEMAFHORE_H 1 /* <semaphore.hs= */

x 10 #define HAVE_STRINGE H 1 f* «sbrings.h> */
11 #define HAVE_SYS_FILIC H 1 f* <gya/filio.h> */
12 #define HAVE_SYS_IOCTL_H 1 /* =ays/iioctl.h> =/
13 #define HAVE_SYS_IPC_H 1 /% =gysfipe.h= Y/
14 #define HAVE_SYI_MMAN H 1 /* =gysimman. h> */
15 #define HAVE_SYS_MSG H 1 /* <gys/msg.h= */
16 #define HAVE_SYS_SEM_H 1 /% =zgye/sem.h= */
17 #define HAVE_SYS_SHM H 1 Jv owsysfshm. > 4
18 #define HAVE_SYS_SELECT H 1 /= «sys/gelect.h> */
19 /* #undef HAVE_SYES_SYSCTL_H */ /* =gys/sysctl.h= */
20 #define HAVE_SYS_TIME_H 1 /* =sys/time.h= */
21 /* Define if we can include <time.h> with <sys/time.h> =/
22 #define TIME_WITH_SYS _TIME L
23 ;% Define the following if the function is prowvided */
24 #define HAVE_BZERC 1
25 #define HAVE_FATTACH 1

B
[}

#define HAVE _POLL 1

510 Miscellaneous Source Code

Appendix C

C.3

27
28
29
30

3l
3z
i3
i4
s
16
k)

id
39
40
41

42
43

44
45
41
47
48
49
50
51
52

53
=L

A% fundef HAVE_FPSELECT */
#define HAVE_SIGWAIT 1
#define HAVE_VALLOC 1
#define HAVE_VSNFRIMTF 1

/= Define the following if the function prototype is in a header =/

#define HAVE_GETHOSTHNAME_PROTO 1 J* zunistd.hs */
#define HAVE_GETRUSAGE_FROTO 1 /* <sys/rescurce.h> */
/* #undef HAVE_PEELECT_PROTOD */ f* =sys/select.h> */
#define HAVE_SHM_OPEN_PROTO 1 /* <gys/mman.h= */
#define HAVE_SNPRINTF_PFROTO 1 f* <stdio.h» */
#define HAVE_ THR_SETCONCURRENCY _PROTC 1 /* =wthread.h> */
/* Define the following if the structure is defined. =/
#define HAVE_SIGINFO_T STRUCT 1 f* <gignal b= */
#define HAVE_TIMESPEC_STRUCT 1 f* <time.h» */

/* Hundef HAVE_SEMUN_UNION */ f* «<pysigem.h> */

/* Devices */

#define HAVE_DEV_ZERD 1

/* Define the following to the appropriate datatype, if necessary */

/* dundef int8_ & %/ f* <gysStypes.h> */
/% dundef inklé_t */ /¥ <aya/types.h= */
£* Fundef inti2_t =/ /* =gys/types.h= */
/* #fundef uintg_t =/ /* <sys/types.h> */f
f* #undef uintlé_g */ it cgys/types.hx */
/* hundef uinti2_ kb */ /* zays/types.h> */
S* #undef gize_t =/ f* =syaltypes . h> */
/* #undef sgize £ */ /* <sya/types.h> *}
#define POSIX_IPC_PREFIX */"

#dafine RPCGEN ANSIC 1

Figure C.2 Cur config.h header for Solaris 2.6.

Standard Error Functions

We define our own set of error functions that are used throughout the text to handle
error conditions. The reason for our own error functions is to let us write our error han-

dling with a single line of C code, as in

if (error condition)
err_sys (printf format with any wumber of arguments) ;

instead of

L€ (error condition) [
char buff[z00];
soprincfibuff, sizeof{buff). prinlfformat with amy mwmber of arguments) ;
perror (buff) ;
exit(l]);

/* defined if rpcogen groks -C option */
sparc-sun-solaris2 6 config.h

Section C.3

[~ -]

WmoE B

Section C.3 Standard Error Functions 511

Our error functions use the variable-length argument list facility from ANSI C. See Sec-
tion 7.3 of [Kernighan and Ritchie 1988] for additional details.

Figure C.3 lists the differences between the various error functions. If the global
integer daemon_proc is nonzero, the message is passed to syslog with the indicated
level (see Chapter 12 of UNPv1 for details on sys 1og): otherwise, the error is output to

standard error.
Function SLEeYFOr | qooiiate? syslog
{errno} ? level

err_dump F Ves ~ | abortl); j'q_.nti-n'_:l_En.R==|
arr_msg me Teturn; LOG_INFO
err_guit no exitil); LOG_ERR
err_ret yes return; LOG_INFO
err_sys ves exit(l); LOG_ERR

Figure C.3 Summary of our standard error functions.

Figure C.4 shows the five functions from Figure C3.

- . libferror.c

1 #include ‘unpipe.h”

2 #include <gtdarg.h= /* AMSI C header file */

3 #include <gyslog.h> /* for syslogl) */

4 int dasmon_proc; /% set nonzero by daemon_init(} */
g gtatie woid err_doit(int, int, const char *, wa_list);

§ /* Menfatal error related to a system call.

7 + Print a message and return., */

8 void

9 arr_ret(const char *Emt....)

10 {
11 va_list ap:
1z va_startiap, fmt);

i3 err_doit{l, LOG_INFO, fmt, apl;

14 va_end(ap) ;
15 return;
16 }

17 /* Fatal error related to a system call.
18 = Print a message apnd terminate. *J

19 woid

20 err_sysiconst char *fmt,...)

21

22 va_list ap;

23 va_start(ap, fmtl:

24 err_doitil, LOG_ERR, fmt, apl:
25 va_endlap) ;

26 exic{l):

27 1

512 Miscellaneous Source Code Appendix C

2B
29

30
i1
iz
i3

34
is
35
37
3B
i3

40
41

42
43
44
45

46
a7
48
4%
50

51
52

53
54
55
£

57
58
5%
(1]
51

G2
63
64
65
&6
67
68

63
70
71
72
73
74
75

/* Fatal error related to a system call.
* Print a message, dump core, and terminate, =/

void
err_dump (const char ~fmk,...)
{

va_list ap;

va_start (ap, fmt);
err_doit(l, LOG_ERR, fmt, ap):
va_end{ap) ;
aborci); /* dump core and terminate ¥/
exit (1) ; /* shouldn’'t get here */
}

/* Nenfatal error unrelated to a system call.
* Print a message and return. */

wold
err_msg{const char *fmt,...)
{

va_list ap;

va_starti{ap, fmt);
err_doit {0, LOG_INFO, fmt, apl;
va_end(ap) ;
return;
H

#* Fatal error unrelated te a syetem call.
* Print a message and terminate. */

void
err_qguit iconst char *fmec,...|
{

va_list ap:

va_start{ap, fmt);
err_doit(l, LOG_ERR, fm:t, ap):
va_endlap) ;
exit(1);
]

/% Print a mesgage and return to caller.
* Caller specifies "errnoflag" and "level®, */

static woid
err_doit({int errnoflag, int level, const char *fmt, wa_list ap)
{

int BrIrno_save, n;

char buf [MAXLINE + 17;

Errno_save = errno; f* wvalue caller might want printed */
tifdef HAVE_VSNERINTF

vanprintf (buf, MAXLINE, fmt. ap): /* this is safe *;
felze

veprintf (buf, fmt, ap); /* this is not safe */
#endif

n = strleni(buf);

Standard Error Functions 513

if {errncflag)
snprintf (buf + n, MAXLINE - n, ": %s5", strerror{errno_sawve]];
streat (buf, "\n");

if (daemon_proc) |
ayslog(level, buf):
} else (
fflush (stdout) ; /* in case stdout and stderr are the same */
fputs (buf, stderr);
Eflush(stderr);
1
return;

libferror.c

)
E Section C.3
L 76
i 77
] 78
L 74
i BO
" 81
: 82
% B3
i a4
; as
3 BE
- 87 }

Figure C.4 Our standard error functions.

Appendix D

Solutions to Selected Exercises

Chapter 1

1.1

1.2

Chapter 2

21

Both processes only need to specify the 0_APPEND flag to the open function, or
the append mode to the fopen function. The kernel then ensures that each
write is appended to the file. This is the easiest form of file synchronization to
specify. (Pages 60-61 of APUE talk about this in more detail.) The synchroniza-
tion issues become more complex when existing data in the file is updated, asin a
database system.

Something like the following is typical:

#ifdef _REENTRANT

#define errno (*_errnall}]
false

extern int errno;

fendif

If REENTRANT is defined, references to errno call a function named _errno
that returns the address of the calling thread’s errno variable. This variable is
possibly stored as thread-specific data (Section 23.5 of UNPv1). If REENTRANT is
not defined, then errno is a global int.

These two bits can change the effective user ID and/or the effective group 1D of
the program that is running. These two effective IDs are used in Section 2.4.

515

e i e LR e L e R B e S P e e T e e e e e e

R b e W S e e b e e o p g S A s e

Tl s gy I

e T [kel ot e LA S d Y S e

BT AE A= P Sl E

516 Solutions to Selected Exercises Appendix D

22

Chapter 3

31

32

3.3

First specify both ©_CREAT and 0_EXCL, and if this returns success, a new object
has been created. But if this fails with an error of EEXIST, then the object already
exists and the program must call the open function again, without specifying
either O_CREAT or 0_EXCL. This second call should succeed, but a chance exists
{albeit small) that it fails with an error of ENOENT, which indicates that some other
thread or process has removed the object between the two calls.

Cur program is shown in Figure D.1.

TRl o somsg fslotseq.c
Z int
1 main(int argc, char **argv)
4
5 int i, megid;
& gtruct megid_ds info;
for (i = O0; 1 < 10; i++) {
g megid = Msgget (IFC_PRIVATE, SVMSG_MODE | IPC_CREAT);
9 Magetl (magid, IPC_STAT, kinfo);
10 printf("msgid = %4, seg = %lu‘n*, msgid, info.msg_perm.seq);
11 Msgetl (megid, IPC_RMID, NULL} ;
12 }
13 exic(d);
14 }
srmsy [slotseq.c

Figure D1 Print identifier and slot usage sequence number,

The first call to msgget uses the first available message queue, whose slot usage
sequence number is 20 after running the program in Figure 3.7 two times, return-
ing an identifier of 1000. Assuming the next available message queue has never
been used, its slot usage sequence number will be (), returning an identifier of 1.

Owur simple program is shown in Figure D.2.

: - strisg testimask.c
1 #include "unpipe.h"

int

main(int arge, char **argv)

{
Msgget (IPC_PRIVATE, 0666 | IPC_CREAT | IPC_EXCL):
unlink(*/tmp/fifo.1");
Mkiifo("/tmp/Eifo.1", 068G];

=1 O ode L b

m

exit (D) ;

sumsyg | testumask.c

Figure 2.2 Test whether the file mode creation mask is used by msgget.

Solutions

Chapts

Eready
=Eving
E 1SS
e other

ﬁﬂ&m{

Bt seg.C

usage
pEturn-
mever
¥ 1.

innﬁkr

gk ¢

Solutions to Selected Exercises Appendix D 517

3.4

35

Chapter 4

4.1

When we run this program we see that our file mode creation mask is 2 (furn off
the other-write bit) and this bit is turned off in the FIFO, but this bit is not turned
off in the message queue.

solariz % umask

oz

solaris % testumask

solaris % 18 -1 /femp/fifo.l

DEW-CW-I-— 1 rstevens otherl 0 Mar 25 16:05 /tmp/fifo.l
zplaris % ipee =g

IR status from <running system> as of Wed Mar 25 16:06:03 1998

T ID EEY MODE OWHNER GROUP
Message QuUeusas:
L= 200 Q0000000 --rw-rw-rw- rstevens otherl

With ftok, the possibility always exists that some other pathname on the system
can lead to the same key as the one being used by our server. With
IPC_PRIVATE, the server knows that it is creating a new message queue, but the
server must then write the resulting identifier into some file for the clients to read.

Here is one way to detect the collisions:

solaris & find / -links 1 -not -type 1 -print |
xargs -nl ftokl > temp.l
solaris & we -1 temp.l

109351 temp.l

solaris % sort +0 -1 temp.l |
nawk ‘{ if (lastkey == §1)
print lastline, 50

lastline = 50
lastkey = §1

}r > temp.2

solariz % we =1 temp.2

BZ188 temp.2

In the find program, we ignore files with more than one link (since each link will
have the same i-node), and we ignore symbolic links (since the stat function fol-
lows the link). The extremely high percentage of collisions (75.2%) is due to
Solaris 2.x using only 12 bits of the i-node number. This means lots of collisions
can occur on any filesystem with more than 4096 files. For example, the four files
with i-node numbers 4096, 8192, 12288, and 16384 all have the same IPC key
(assuming they are on the same filesystem).

This example was run on the same filesystems but using the ftok function from
BSD/OS, which adds the entire i-node number into the key, and the number of
collisions was only 849 (less than 1%).

If £d[1] were left open in the child when the parent terminated, the child’s read
of £d[1] would not return an end-of-file, because this descriptor is still open in

518 Solutions to Selected Exercises Appendix D

43

4.6

4.7
4.8

the child. By closing £d(1] in the child, this guarantees that as soon as the parent
terminates, all its descriptors are closed, causing the child’s read of £d[1] to
return 0.

If the order of the calls is swapped, some other process can create the FIFO
between the calls to open and mkfifo, causing the latter to fail.

If we execute

solaris % mainpopen 2>temp.stderr
fete/nep.conf > /myfile

aplaris % cat temp.stderr

sh: /myfile: cannot create

we see that popen returns success, but we read just an end-of-file with fgets.
The shell error message is written to standard error.
Change the first call to open to specify the nonblocking flag:

readfifo = Open(SERV_FIFO, CO_RDONLY | O_NONBLOCK, 0);
This call then returns immediately, and the next call to open (for write-only) also
returns immediately, since the FIFO is already open for reading. But to avoid an

error from readline, the 0_NONBLOCK flag must be turned off for the descriptor
readfifo before calling readline.

If the client were to open its client-specific FIFO (read-only) before opening the
server’s well-known FIFO (write-only), a deadlock would occur. The only way to
avoid the deadlock is to open the two FIFOs in the order shown in Figure 4.24 or
to use the nonblocking flag.

The disappearance of the writer is signaled by an end-of-file for the reader.
Figure D.3 shows our program.

ipe/testl.c
1 #include "unpipec.h" Pipe

int
main(int arge, char **argv)
{

int fd(2]:

char buff[7];
struct stat info;

=1 @ L g L B

[=2]

if jarge != 29

9 err_qguici{"usage: testl <pathname>"];
10 Mkfifo{argw(l], FILE_MODE):
11 E4[0] = Openiargv[l], O_RDONLY | O_NONBLOCK);
12 £d[1] = Openlargv(l], O_WRONLY | O_NONBLOCK);
13 /* check sizes when FIFD is empty */
14 Fatac {£d[0], &kinfo);
15 printf(*£fd(0]: st_size = %1ld'n", {(long) info.st_size);
16 Fatat (£4[1], &info);

17 printf(*£4{1]: st_size = %ldwn", {long) info.sc _size);

Solutios

¥4 also
oid an
gnptor

ing the
way to
424 or

P ——

49

Solutions to Selected Exercises Appendix D 519
18 Writel£d[l], buff, sizeof (buff});:
19 /* check sizes when FIFO contains 7 bytes */
20 Fstat (£4[0], &info);
21 princE(“£d[0]) st_gize = %ldwn", [long) info.st_sizel:
22 Festar [(£d[1], &infol:
23 printf(*£4[1]: gt_size = %¥ldwn", {lang) info.st_size);
24 exic(0);
23 1} .
pipe (testl.c

Figure D3 Determine whether fstat returns the number of bytes in a FIFO,

celect returns that the descriptor is writable, but the call to write then elicits
21epTPE. This concept is described on pages 153-155 of UNPv1; when a read (or
write) error occurs, select returns that the descriptor is readable (or writable),
and the actual error is returned by read (or write). Figure D.4 shows our pro-
grarn.

1 #include "unpipe . h* p!pe.l’!estf!,c

2 int

3 main(int arge, char **argv)

4

s int f4[(2]. n;

& pid_t childpid;

7 fd_seb wset;

8 Pipeifdl;

9 if | {childpid = Fork(}] == oy { /* child */

i0 printfi"child clesing pipe read descriptorin®];

11 Close (EA[0]);

12 slespiBl:

13 exic{0);

14 }

15 /* parent */

16 Close (£A[01): /* in case of a full-duplex pipe =/

17 sleapil);

1B FD_ZERD (&wsek]

1% FDo_sET(f4[1], &wset):

20 n = select(fd[l} + 1, WULL, Ewset, WNULL, NULL);:

21 princf(“select returned %d\n", nj;

22 if 1F'D_ISSETI:f|:1[1], cwset)) |

21 printf("£d[1] writakble\n®};

24 Write(fd[1l], "hello". 51:

25]

26 exit (0}

27 1} .
pipetest2 ¢

Figure D.4 Determine what select returns for writability when the read end of a pipe is closed.

520 Solutions to Selected Exercises Appendix D

Chapter 5

51

5.2
53

5.4

5.5

5.6

5.7

5.8

59
5.10

First create the queue without specifying any attributes, followed by a call to
mg_getattr to obtain the default attributes. Then remove the queue and create
it again, using the default value of either attribute that is not specified.

The signal is not generated for the second message, because the registration is
removed every time the notification occurs,

The signal is not generated for the second message, because the queue was not
empty when the message was received.

The GNU C compiler under Solaris 2.6 (which defines both constants as calls to
sysconf) generates the errors

testl.c:13: warning: int format, long int arg {arg 2)
testl.c:13: warning: int format, long int arg f{arg 2)

Under Solaris 2.6, we specify 1,000,000 messages of 10 bytes each. This leads to a
file size of 20,000,536 bytes, which corresponds with our results from running Fig-
ure 5.5: 10 bytes of data per message, 8 bytes of overhead per message (perhaps
for pointers), another 2 bytes of overhead per message (perhaps for 4-byte align-
ment), and 536 bytes of overhead per file. Before mg_cpen is called, the size of
the program reported by ps is 1052 Kbytes, but after the message queue is cre-
ated, the size is 20 Mbytes. This makes us think that Posix message queues are
implemented using memory-mapped files, and that mg _open maps the file into
the address space of the calling process. We obtain similar results under Digital
Unix 4.0B.

A size argument of (0 is OK for the ANSI C memX XX functions. The original 1989
ANSI C standard X3.159-1989, also known as ISO/IEC 9899:1990, did not say this
(and none of the manual pages that the author could find mentioned this), but
Technical Corrigendum Number 1 explicitly states that a size of 0 is OK (but the
pointer arguments must still be valid). http://www. lysator.liu.se/c/isa
wonderful reference point for information on the C language.

For two-way communication between two processes, two message queues are
needed (see for example, Figure A.30). Indeed, if we were to modify Figure 4.14
to use Posix message queues instead of pipes, we would see the parent read back
what it wrote to the queue.

The mutex and condition variable are contained in the memory-mapped file,
which is shared by all processes that have the queue open. Other processes may
have the queue open, so a process that is closing its handle to the queue cannot
destroy the mutex and condition variable.

An array cannot be assigned across an equals sign in C, whereas a structure can.

The main function spends almost all of its time blocked in a call to select, wait-
ing for the pipe to be readable. Every time the signal is delivered, the return from
the signal handler interrupts this call to select, causing it to return an error of

Solutions to Selected Exercises Appendix D 521

Chapter 6

6.1

6.2

6.3

Chapter 7
7.2

7.3

EINTR. To handle this, our Select wrapper function checks for this error, and
calls select again, as shown in Figure D.5.

lit furapuniz.
313 int f ar

314 Select(int nfds, fd_set *readfds, fd_set *writefds, fd_set *exceptfds,
315 struct timeval *timeout)

3lae {

37 int n;

318 again:

319 if { Iin = selectinfds, readfds, writefds, exceptfds, timeout)) = 0]
320 if {errpno == EINTR]

3zl goto again;

322 else

323 err_sys("select error"):;

324 } else 1f {n == 0 && timeout == NULL)

325 err_guiti*select returned 0 with no timeout”):

326 return (n}; f* can return 0 on timeout */
327)

—— libyfuwrapunix.c

Figure D.5 Our Select wrapper function that handles EINTER.

Page 124 of UNPv1 talks more about interrupted system calls.

The remaining programs must then accept a numeric message queue identifier
instead of a pathname (recall the output of Figure 6.3). This change could be
made with a new command-line option in these other programs, or the assump-
tion could be made that a pathname argument that is entirely numeric is an iden-
tifier and not a pathname. Since most pathnames that are passed to ftok are
absolute pathnames, and not relative (i.e., they contain at least one slash charac-
ter), this assumption is probably OK.

Messages with a type of 0 are not allowed, and a client can never have a process
ID of 1, since this is normally the init process.

When only one queue is used in Figure 6.14, this malicious client affects all other
clients. When we have one return queue per client (Figure 6.19), this client affects
only its own queue.

The process will terminate, probably before the consumer thread has finished,
because calling exit terminates any threads still running.

Under Solaris 2.6, omitting the call to the destroy functions causes a memory
leak, implying that the init functions are performing dynamic memory alloca-
tion. We do not see this under Digital Unix 4.0B, which just implies an implemen-
tation difference. The calls to the matching destroy functions are still required.

522 Spolutions to Selected Exercises Appendix D

Chapter 9

9.2

9.3

94

9.5

9.6

From an implementation perspective, Digital Unix appears to use the attr_t
variable as the attributes object itself, whereas Solaris uses this variable as a
pointer to a dynamically allocated object. Either implementation is fine.

Depending on your system, you may need to increase the loop counter from 20, to
see the errors.

To make the standard [/0 stream unbuffered, we add the line

setvbuf {stdout, NULL, _IONBF, 0O);

to the main function, before the for loop. This should have no effect, because
there is only one call to print £ and the string is terminated with a newline. Nor-
mally, standard output is line buffered, so in either case (line buffered or
unbuffered), the single call to print f ends up in a single write call to the kernel.
We change the call to printf to be

snprincfiline, sizeof{line), "%s: pid = %1d, seg# = %d'\n".

argv{l], {long) pid, segno);
for (ptr = line; {(c = *ptr++} |= 0;]
putchari{c);

and declare ¢ as an integer and ptr as a char*. If we leave in the call to
setvbuf, making standard output unbuffered, this causes the standard 1/0
library to call write once per character that is output, instead of once per line.
This involves more CPU time, and provides more opportunities for the kernel to
switch between the two processes. We should see more errors with this program.

Since multiple processes are allowed to have read locks for the same region of a
file, this is the same as having no locks at all for our example.

Nothing changes, because the nonblocking flag for a descriptor has no effect on
fentl advisory locking. What determines whether a call to fent1 blocks or not
is whether the command is F_SETLEW (which always blocks) or F_SETLK (which
never blocks).

The loopfentlnonb program operates as expected, because, as we showed in
the previous exercise, the nonblocking flag has no effect on a program that per-
forms fcntl locking. But the nonblocking flag does affect the loopneonenonb
program, which performs no locking. As we said in Section 9.5, a nonblocking
call to read or write for a file for which mandatory locking is enabled, returns
an error of EAGATN if the read or write conflicts with an existing lock. We see
this error as either

read error: Rescurce temporarily unavailable

ar

write error: Resource temporarily unavailable

and we can verify that the error is EAGAIN by executing

Solutions %

9%

Chapter

u_?ﬂ to

Because
g Nor-
red o
Jkernel.

Solutions to Selected Exercises Appendix D 523

9.7

9.8

9.10

Chapter 10

10.1

solaris % grep Resource /usr/include/sys/errno.h
#define BAGAIN 11 /* Rescurce temporarily unavailable */

Under Solaris 2.6, mandatory locking increases the clock time by about 16% and it
increases the system CPU time by about 20%. The user CPU time remains the
same, as we expect, because the extra time is within the kernel checking every
read and write, not within our process.

Locks are granted on a per-process basis, not on a per-thread basis. To see con-
tention for lock requests, we must have different processes trying to obtain the
locks.

If another copy of the daemon were running and we open with the 0_TRUNC flag,
this would wipe out the process ID stored by the first copy of the daemon. We
cannot truncate the file until we know we are the only copy running.

SEEK_SET is always preferable. The problem with SEEK_CUR is that it depends
on the current offset in the file, which is specified by 1seek. Butif we call 1seek
and then fontl, we are using two function calls to perform what is a single oper-
ation, and a chance exists that another thread can change the current offset by call-
ing 1seek between our two function calls. (Recall that all threads share the same
descriptors. Also recall that £cnt1 record locks are for locking between different
processes and not for locking between the different threads within one process.)
Similarly, if we specify SEEK_END, a chance exists that another thread can append
data to the file before we obtain a lock based on what we think is the end of the
file.

Here is the output under Solaris 2.6:

zolaris % deadlock 100

prod: calling sem_wait (nempty) 1=i) loop for producer
prod: got sem_wait {nempty)

prod: calling sem_wait (mutex)

prod: got sem_waitimutex}, storing 0

prod: calling sem_wait (nempty) i=1 loop for producer
prod: got Sem_walt (nempby)

prod: calling sem_wait (mutex)

prod: got sem_walt (mutex), storing 1

prod: calling sem_wait {nempty) start mext loog, but ne empty slofs
conbext switch from producer to consumer
cons: calling sem_walt (mutex) i=0 loop for consumer

cons: got sem_wait (mubex)
cons: calling sem_waiti{nstored)
cons: got sem_wait (nstored)
cons: fetched 0

cons: calling sem_walt (mutex) i=0 loop for comswmmer
cons: got sem_wait (mutex)
cong: calling sem_wait (nstored)

524

Solutions to Selected Exercises Appendix D

10.2

10.3

10.4

10.5

10.6

10.7

10.8

cons: gob sem _waltinstored)
cons: fetched 1

cong: calling sem _wait (mutex)
cons: gob sem_wait {mutex)
cons: calling sem_wait(nstored) consumer blocks here forever
comtert switch from consumer to producer

prod: gob sem_wait (nempty)
prod: calling sem walt (mutex) producer Blocks here forever

This is OK given the rules for semaphore initialization that we specified when
we described sem_open: if the semaphore already exists, it is not initialized. So
only the first of the four programs that calls sem_open actually initializes the
semaphore value to 1. When the remaining three call sem_open with the
0_CREAT flag, the semaphore will already exist, so its value is not initialized
again.

This is a problem. The semaphore is automatically closed when the process ter-
minates, but the value of the semaphore is not changed. This will prevent any of
the other three programs from obtaining the lock, causing another type of dead-
lock.

If we did not initialize the descriptors to ~1, their initial value is unknown, since
malloc does not initialize the memory that it allocates. So if one of the calls to
open fails, the calls to close at the label error could close some descriptor that
the process is using. By initializing the descriptors to -1, we know that the calls
to close will have no effect (other than returning an error that we ignore) if that
descriptor has not been opened yet.

A chance exists, albeit slight, that close could be called for a valid descriptor
and could return some error, thereby changing errnc from the value that we
want to return. Since we want to save the value of errno to return to the caller,
to do so explicitly is better than counting on some side effect (that close will not
return an error when a valid descriptor is closed).

Mo race condition exists in this function, because the mk £ i fo function returns an
error if the FIFO already exists. If two processes call this function at about the
same time, the FIFO is created only once. The second process to call mk£1 £o will
receive an error of EEXIST, causing the 0_CREAT flag to be turned off, prevent-
ing another initialization of the FIFO.

Figure 10.37 does not have the race condition that we described with Figure 10.43
because the initialization of the semaphore is performed by writing data to the
FIFO. If the process that creates the FIFO is suspended by the kernel after it calls
mkfifo but before it writes the data bytes to the FIFO, the second process will
just open the FIFO and block the first time it calls sem_wait, because the newly
created FIFO will be empty until the first process (which created the FIFO) writes
the data bytes to the FIFO.

Figure D.6 shows the test program. Both the Solaris 2.6 and Digital Unix 4.0B
implementations detect being interrupted by a caught signal and return ETNTR.

mix D & Solutions to Selected Exercises Appendix D 525

s em | testernir.c
1 #include ‘unpipc.h*” pxsemtesteintr
2 #define WAME "testeintr"
3 static void sig_alrmi{int);
e 4 int
5 main(int arge, char **argv)
6 {
| 7 sem_t “seml, =semd;
& when
. S0 8 /* first test a named semaphore =/
i)] sern_unlink (Px_ipc_name {MAME)) ;
hﬁ- the 10 seml = Sem_open(Px_ipc_name (NAME|, O_RDWR | O_CREAT | O_EXCL,
:ih the 11 FILE _MODE, 0}:
ﬁuhzed 12 Signal (SIGALRM, sig_alrm);
13 alarmi2);
ress ter- 14 if (sem_waitiseml} == 0}
..!JIJH' of 15 printf("sem wait returned 0?\n");
iamd 16 else
ot dead- 17 err_ret('sem_wait errort);
: 18 Sem_close({seml) ;
.!;.»‘.‘SiI‘iCE 19 /* now a memory-based semaphore with process scope */
:'_ﬂHS- tor 20 Sem_initi{gsem?, 1, 0);
sor that a1 alarmi2);
hcaEEs 22 if {sem_wait(ksem2} == 0)
Al 23 printf{"sem wait returned 0?\n"}:
j#ll that 24 else
i 25 err_ret("sem_wait error”l;
! 'ptur 3 26 Sem_destroy (ksem2) ;
that we 1 27 exit (0);
e caller, . 8}
will not 29 static woid
; 10 sig_alrm{int signo}
: 31 {
SIS an 3z printf (*SIGALEM caughtin®};
st the o 33 return;
£o wi 3]
to will pxsem (testeintr.c
pwﬂ.'r:nt— AR
: & Figure D6 Test whether sem_wait detects EINTE.
I‘E 10.43 Our implementation using FIFOs returns EINTR, because sem_wait blocks in a
2 to the call to read on a FIFO, which must return the error. Cur implementation using
::l:'i-t cat.ls memory-mapped [/0O does not return any error, because sem_wait blocks in a i
s will call to pthread_cond_wait and this function does not return EINTR when e
e newly interrupted by a caught signal. (We saw another example of this with Fig-
B writes ure 529.) Our implementation using System V semaphores returns EINTE, -
: because sem_wait blocks in a call to semop, which returns the error,
max 4.0B 10.9 The implementation using FIFOs (Figure 10.40) is async-signal-safe because e B
N TE. write i8 asvnc-signal-safe. The implementation using a memory-mapped file IE%

526 Solutions to Selected Exercises Appendix D

Chapter 11

1.1

11.2

Chapter 12

121

12.2

12.3

12.4
12.5

(Figure 10.47) is not, because none of the pthread XXX functions are async-
signal-safe. The implementation using System V semaphores (Figure 10.56) is
not, because semop is not listed as async-signal-safe by Unix 98.

Only one line needs to change:
< semid = Semget (Ftok(argv[eptindl, 0), 0, 0);

= semid = atellargvoptind]];

The call to £tok will fail, causing our Ftok wrapper to terminate. The my_lock
function could call ftok before calling semget, check for an error of ENOENT,
and create the file if it does not exist,

The file size would be increased by another 4096 bytes (to 36864), but our refer-
ence to the new end-of-file (index 36863) might generate a SIGSEGV signal, since
the size of the memory-mapped region is 32768. The reason we say “might” and
not “will” is that it depends on the page size.

Figure D.7 shows the scenario assuming a System V message queue, and Fig-
ure D.8 shows the Posix message queue scenario. The calls to memcpy in the
sender occur when mg_send is called (Figure 5.30), and the calls to memcpy in
the receiver occur when me_receive is called (Figure 5.32).

Teceiver

magroevi) megsnd (}

System V
Message queue

Figure D.7 Sending messages using a System V message queue.

Any read from /dev/zero returns the requested number of bytes, all contain-
ing 0. Any data written to this device is simply discarded, just like writes to
Jdev/null.

The final contents of the file are 4 bytes of () (assuming a 32-bit int).
Figure D.9 shows our program.

Tt T R T

Solutions

peuciix D

asyme-
156) is

s lock

ROENT,

L since
£ and

o Fig-
in the
epy in

eSS

1

ﬁjn—
tes to

T e STl SR

Solutions to Selected Exercises

—
3 |
I Posix message I
J" : receiver ..M|_ quene in - : memep i) —— |
2 i shared memory |
5 | ,] |
ik receiver add ress space
: R T |‘ ““““ - sender address space
_— — — st
__ _ . _ _process
kernel

kernel’s virtual memory algorithm

keeps regular file in sync

with memory-mapped region

Figure D.8 Sending messages using a Posix message queue implemented using mmap,

st fsums s

1 #include "unpipe.h

2 #define MAXMSG
3 int

4 main(int arge, char **argv)

51

16

17
18

i

a0
21
22
23
24

25
26
27
28
29
ao

{8192 + sizeof(long))

int pipel[2], piped[2], mgid;

char [+

pid_t childpid;
fd_set raet;
ggize_t n, nread;
struct msgbuf *buff;

if {arge |= 2)
err_qguit{"usage: swvmsgread

Pipeipipel); i*
Pipe |pipel) ;

buff = My_shm(MAXMSSE) ; i*
if [(childpid = Fork(]) == 0)

Closeipipel[l]); i
Close(pipe2[0]]);

mgid = Msgget (Ftoklargv[l].
for | ; ; } {

<pathname:="} :

2-way communication with child */
anonymous shared memory with child */
{

child */

1), MSG_R):

/* block, waliting for message, then tell parent */
nread = Msgrovimgid, buff, MAXMEG, 0, 0);

Write(pipe2[1l], &nread,

/* wait for parent
if { ({n = Readipipel[d]

gizeocf (asize_Kt));:

to say ghm is available */
, ko, 1)) 1= 1)

ery_quit("child: read on pipe returned %4", nl:

}
exit (0}

5
ik
-
=

R

TR

fe it

528 Solutions to Selected Exercises Appendix D

Chapter 13

13.1

3l /% parent */

iz Close(pipel[0]);

33 Close (piped [11};

34 FO_ZERO (&rset)

35 FO_SET(pipe2[0]. krset);

kL for (;)1

37 if { [n = selectipipez[0] + 1, &rset, WULL, HNULL, MULL)} != 1)
38 err_svai"select returned ®d°, nl;

39 if (FO_ISSET(pipe2[0], &rset}] {

40 n = Read{pipe2(0], &nread, sizeofissize_t));

41 if (n '= sizeof(ssize_L})

42 err_guit{"parent: read on pipe returned ®d", ni;

43 printf{"read %d bytes, Lype = ¢ldyvn*, nread, buff-=mtypel:
44 Write(pipel[1l], &=, 1);

45 b alse

46 err_quit{"pipe2[0] not ready"l:

47 1

48 Kill{childpid, SIGTEEM):

4% exitc|0);

50 }

she fsvmsgread.c
Figure D.9 Example of parent and child setup to use select with System V messages.

Figure D.10 shows our modified version of Figure 12.16, and Figure .11 shows
our modified version of Figure 12.19. Notice in the first program that we must
set the size of the shared memory object using ftruncate; we cannot use
lseek and write.

pxshm/test].c

1 #include *unpipec.h”

2 int

1 maini{int argc, char **argv]

4 {

5 int £d, i:

B char *ptr;

7 size_L shmsize, mmapsize, pagesize;

& if {arge '= 4}

a err_guit("usage: testl <name> <shmsizes= <mmapsize>");
10 shmegize = atolilargv[2]};

11 mmapsize = atollargv(3i]];
12 /* open shm: create or truncate; st shm size */
13 £4 = Shm_open{Fx_ipc_name{argv[Ll]), O_RDWR | o_cREAT | O_TRUNC,
14 FILE_MODE) ;

15 Ftruncate (fd, shmsize};

| €

L —

mdix D

Solutions to Selected Exercises Appendix D 529
16 ptr = Mmap (NULL, mmapsize, PROT_READ | PROT_WRITE, MAP_SHARED, £d4, 0);
17 Close{fd);
18 pagesize = Sysconf (_3C_PFAGESIZE);
1% printf ({"PAGESIZE = %ld'n", {(long) pagesize);
20 for (L = 0; i < max({shmasize, mmapsizel; i += pagesize) |
= 13 21 printf({"ptr(%d] = %diwn*, i, ptrli]);
22 ptrii] = 1;
23 printf ("ptr(%d] = %d\n*, i + pagesize - 1, ptrii + pagesize - 1]};
24 ptr[i + pagesize - 1] = 1;
25 1
26 printf(*ptri{%d] = ®d\n*, i, ptrl[il);
= 27 exit{0);
; 2B}
pxshm /testl.c
Figure D10 Memory mapping when mmap equals shared memory size.
pxshm [testl.c
I #include "unpipc.h”
: 2 #define FILE "test.data”
sgread ¢ 3 #define SIZE 32768
o .
4 int
5 main{int argc, char **argv)
6 {
7 int fd, i;
8 char *ptr;
shows 9 /* open shm: create or truncate; then mmap shm */f
& st 10 fd = Shm_openi(Px_ipc_name(FILE), O_RDWR | O_CREAT | O_TRUNC, FILE MODE};
N use 11 ptr = Mmap(NULL, SIZE, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
_. 12 for (i = 4096; i == SIZE; 1 += 4098} {
13 printf("setting shm size to ®din*, i):
testl.c X
_E 14 Ftruncate(fd, i):
; 15 printf('per[%d] = %d'\n", 1 - 1, ptr(i - 11);
G 18 }
17 exit (0},
18 3
pxshm | testl .o

Figure .11 Memory-map example that lets the shared memory size grow.

2 13.2 One possible problem with *ptr++ is that the pointer returned by mmap is modi-
& fied, preventing a later call to munmap. If the pointer is needed at a later time, it
must be either saved, or not modified.

R

530 Solutions to Selected Exercises Appendix D

Chapter 14

14.1

Chapter 15

15.1

15.2

15.3

15.4

15.5

15.6

15.7

15.8

Only one line needs to change:
13¢l3
= id = sShmoet (Frokiargv[l]l, 0, O, SVSHM_ MODE) ;

= id = atolilargvil]l):

There are data_size + (desc_num X sizeof (door_desc_t)) bytes of argu-
ments

No, we do not need to call fstat. If the descriptor does not refer to a door,
dosr_info returns an error of EBADE:

golariz % doorinfo /etc/pasawd
door_info error: Bad file number

The manual page is wrong. Posix.1 states correctly that “The sleep() function
shall cause the current thread to be suspended from execution.”

The results are unpredictable (although a core dump is a pretty safe bet), because
the address of the server procedure associated with the door will cause some
random code in the newly execed program to be called as a function.

When the client's door_call is terminated by the caught signal, the server pro-
cess must be notified because the server thread handling this client (thread ID 4
in our output) is then sent a cancellation request. But we said with Figure 15.23
that for all the server threads automatically created by the doors library, cancella-
tion is disabled, and hence this thread is not terminated. Instead, the call to
sleep(6), in which the server procedure is blocked, appears to return prema-
turely when the client's door_call is terminated, about 2 seconds after the
server procedure was called. But the server thread still proceeds to completion.

The error that we see is

solaris % serverfé /omp/doors
my_thread: created server thread 2
door_bind error: Bad file number

When starting the server 20 times in a row, the error occurred five times, This
error is nondeterministic.

No. All that is required is to enable cancellation each time the server procedure
is called, as we do in Figure 15.31. Although this technique calls the function
pthread_setcancelstate every time the server procedure is invoked,
instead of just once when the thread starts, this overhead is probably trivial.

To test this, we modify one of our servers (say Figure 15.9) to call door_revoke
from the server procedure. Since the door descriptor is the argument to

Soluie

medix D Solutions to Selected Exercises Appendix D 531
door_revoke, we must also make £d a global. We then execute our client (say
Figure 15.2) twice:
selaris % client8 /tmp/doorg B8
result:; 7744
solariz % client8 /tmp/doorB 99
door_call error: Bad file number
The first invocation returns successfully, verifying our statement that
door_revoke does not affect a call that is in progress. The second invocation
tells us that the error from door_call is EBADF,
; 159 To avoid making £d a global, we use the cookie pointer that we can pass to
argu- door_create and that is then passed to the server procedure every time it is
called. Figure D.12 shows the server process.
- doors {serverd.c
door, 1 #include "unpipc.h® ! ¢
2 wvoid
3 servproc (void *cookie, char *dataptr, size_t datasize,
4 door_desc_t *descpkr, size_t ndesc)
3 5 {
Epction f long arg, result;
_ 7 Door_revoke|* ({int *) cookie}];
I 1ISe 8 arg = *{{long *) dataptr);
zome 9 printf{*thread id %1d, arg = %ld\n", pr_thread_id{NULL), arg):
10 result = arg * arg;
11 Door_return((char *) &result, sizecf(result), NULL, 0):
 pro- 12)
d D 4
15.23 13 int
la- 14 main(int arge, char **argv)
pcel 15 {
gall to 16 int £d;
eina-
er the 17 if large != 2)
fon 18 err_guit({"usage: serverf <server-pathname="];
1% /* create a door descriptor and attach to pathname */
: 20 fd = Door_create(servproc, &fd, 0);
21 unlink{argv(1]);
:_ 22 Close(Cpen{argv[l], CO_CREAT | O_RDWR, FILE_MODE)];
' 23 Fattach(fd, argwv[1l]};
. This
24 /* zervproc() handles all client regquests */
_ 25 for { : 1}
._E'ﬁlt?f 26 pause|);
. 27 1
5 i&n doors [serverd.c
: ! Figure D.12 Using the cookie pointer to avold making £4 a global.
4
o ice We could easily make the same change to Figures 1522 and 15.23, since the
cookie pointer is available to our my_thread function (in the door_info_t

532 Solutions to Selected Exercises Appendix D

15.10

Chapter 16

16.1

16.2

16.3

16.4

16.5

16.6

structure), which passes a pointer to this structure to the newly created thread
(which needs the descriptor for the call to door_bind).

In this example, the thread attributes never change, so we could initialize the
attributes once (in the main function).

The port mapper does not monitor the servers that register with it, to try and
detect if they crash. After we terminate our client, the port mapper mappings
remain in place, as we can verify with the rpcinfo program. Soa client who
contacts the port mapper after our server terminates will get an OK return from
the port mapper with the port numbers in use before the server terminated. But
when a client tries to contact the TCP server, the RPC runtime will receive an
RST (reset) in response to its SYN (assuming that no other process has since been
assigned that same port on the server host), causing an error return from
clnt_create. A UDP client's call to clnt_create will succeed (since there is
no connection to establish), but when the client sends a UDP datagram to the old
server port, nothing will be returned (assuming again that no other process has
since been assigned that same port on the server host) and the client’s procedure
call will eventually time out.

The RPC runtime returns the server’s first reply to the client when it is received,
about 20 seconds after the client’s call. The next reply for the server will just be
held in the client’s network buffer for this endpoint until either the endpoint is
closed, or until the next read of this buffer by the RPC runtime. Assume that the
client issues a second call to this server immediately after receiving the first reply.
Assuming no network loss, the next datagram that will arrive on this endpoint
will be the server’s reply to the client’s retransmission. But the RPC runtime will
ignore this reply, since the XID will correspond to the client’s first procedure call,
which cannot equal the XID used for this second procedure call.

The C structure member is char ¢ [10], but this will be encoded by XDR as ten
4-byte integers. If you really want a fixed-length string, use the fixed-length
opaque datatype.

The call to xdr data returns FALSE, because its call to xdr_str ing (look at
the data_xdr.c file) returns FALSE.

When a maximum length is specified, it is coded as the final argument to
xdr_string. When this maximum length is omitted, the final argument is the
one’s complement of 0, (which is 2% — 1, assuming 32-bit integers).

The XDR routines all check that adequate room is available in the buffer for the
data that is being encoded into the buffer, and they return an error of FALSE
when the buffer is full. Unfortunately, there is no way to distinguish among the
different possible errors from the XDR functions.

We could say that TCP's use of sequence numbers to detect duplicate data is, in
effect, a duplicate request cache, because these sequence nuimbers identify any

Solutioms

Solutions to Selected Exercises Appendix [533

16.7

16.8

16.9

16.10

old segment that arrives as containing duplicate data that TCP has already
acknowledged. For a given connection (e.g., for a given client’s IP address and
port), the size of this cache would be one-half of TCP’s 32-bit sequence number
space, or 2*!, about 2 gigabytes.

Since all five values for a given request must be equal to all five values in the
cache entry, the first value compared should be the one most likely to be
unequal, and the last value compared should be the one least likely to be
unequal. The actual order of the comparisons in the TI-RPC package is (1) XID,
(2) procedure number, (3) version number, {4) program number, and (5) client’s
address. Given that the XID changes for every request, to compare it first makes
sense.

In Figure 16.30, starting with the flag/length field and including 4 bytes for the
long integer argument, there are 12 4-byte fields, for a total of 48 bytes. With the
default of null authentication, the credential data and verifier data will both be
empty. That is, the credentials and verifier will both take 8 bytes: 4 bytes for the
authentication flavor (AUTH_NONE) and 4 bytes for the authentication length
{which has a value of 0).

In the reply (look at Figure 16.32 but realize that since TCP is being used, a 4-byte
flag /length field will precede the XID), there are eight 4-byte fields, starting with
the flag/length field and ending with 4 bytes of long integer result. They total 32
bytes.

When UDP is used, the only change in the request and reply is the absence of the
4-byte flag/length field. This gives a request size of 44 bytes and a reply size of
28 bytes, which we can verify with tepdump.

Yes. The difference in argument handling, both at the client end and at the server
end, is local to that host and independent of the packets that traverse the net-
work. The client main calls a function in the client stub to generate a network
record, and the server main calls a function in the server stub to process this net-
work record. The RPC record that is transmitted across the network is defined
by the RPC protocol, and this does not change, regardless of whether either end
supports threads or not.

The XDR runtime dynamically allocates space for these strings. We verify this
fact by adding the following line to our read program:

printf(“"sbrk(} = %p, buff = %p, in.vstring_arg = %p\n",
sbrk(NULL}, buff, in.vstring_arg):

The sbrk function returns the current address at the top of the program’s data
segment, and the memory just below this is normally the region from which
malloc takes its memory. Running this program yields

sbrk() = 293638, buff = 25e48, in.vstring_arg = 27e58
which shows that the pointer vstring arg points into the region used by

malloc. Qur 8192-byte buff goes from 0x25e48 to 0x27e47, and the string is
stored just beyond this buffer.

534 Solutions to Selected Exercises Appendix D

16.11

16.12

Figure D.13 shows the client program. Note that the final argument to
clnt_call is an actual timeval structure and not a pointer to one of these
structures. Also note that the third and fifth arguments to clnt_call must be
nonnull function pointers to XDR routines, so we specify xdr_wvoid, the XDR
function that does nothing. (You can verify that this is the way to call a function
with no arguments or no return values, by writing a trivial RPC specification file
that defines a function with no arguments and no return values, running
rpcgen, and examining the client stub that is generated.)

| - sunrpcsquarel0fclient.c
1 #include "unpipc.h® /* our header */
2 #include "gguare.h* f* generated by rpogen */
3 int
4 maini{int arge, char **argv)
E
& CLIENT *cl;
7 astruct timeval tv;
a if {arges = 3)
) err_guit("usage: client <hostname» =<protocol="};
10 ¢l = Clnt_create(argv[l], SQUARE_FROG, SQUARE_VERS, argv(Z]);
11 tv.tv_sec = 10;
12 tv. Ev_usec = 0;
1 if (elnt_call (cl, NULLPROC, xdr_woid, NULL,
1 =xdr_woid, NULL, tv) != RPC_SUCCEES)
15 err_guit{"%s", clnt_sperroricl, argv[l]ll):
16 exic {0} ;

17 1}

sunrpe (squareli)client.c
Figure 113 Client program that calls the server's null procedure.

The resulting UDP datagram size (65536 + 20 + RPC overhead) exceeds 65535, the
maximum size of an [Pv4 datagram. In Figure A4, there are no values for Sun
RPC using UDP for message sizes of 16384 and 32768, because this is an older
RPCSRC 4.0 implementation that limits the size of the UDP datagrams to around
9000 bytes.

mdiv [

it to
these
st be
= NDR
pction
pn file
mning

ket o

. the
E Sun
older
aand

Bibliography

Whenever an electronic copy was found of a paper or report referenced in this bibli-
ography, its URL is included. Be aware that these URLs can change over time, and
readers are encouraged to check the Errata for this text on the author’s home page for
any changes: http: //www.kohala.com/~rstevens.

Bach, M. J. 1986. The Design of the LINIX Operating System. Prentice Hall, Englewood Cliffs, N.J.

Birrell, A. D., and Nelson, B. |. 1984. “Implementing Remote Procedure Calls,” ACM Transactions
ot Computer Systems, vol. 2, no. 1, pp. 39-59 (Feb.).

Butenhof, D. R, 1997, Programming with POSIX Thrends. Addison-Wesley, Reading, Mass.

Corbin, |. R. 1991. The Arf of Distributed Applications: Programming Techniques for Remote Procedure
Calls. Springer-Verlag, New York.

Garfinkel, 5. L., and Spafford, E. H. 1996, Practical UNIX and Infernet Security, Second Edition,
OrReilly & Associates, Sebastopol, Calif.

Goodheart, B, and Cox, |. 1994, The Magic Garden Explained: The Internals of UNIX System V
Release 4, An Open Systems Design. Prentice Hall, Englewood Cliffs, N.J.

Hamilton, G., and Kougiouris, P. 1993, “The Spring Nucleus: A Microkernel for Objects,” Pro-
ceedings of the 1993 Summer USENTX Conference, pp. 147-159, Cincinnati, Oh.

http: ! fwww.kohala. com/ -ratevens/papers, others/springnucleus.1993 . ps

335

e S b st bl L b b L S i e et b

L R T T R T T = e A . Lt

paraa here Lol

UNIX Network Programming Bibliography

IEEE. 1996, “Information Technology—Fortable Operating System Interface (POSIX)—Fart 1:
System Application Program Interface (APD [C Language],” 1EEE Std 1003.1, 1996 Edition,
Institute of Electrical and Electronics Engineers, Piscataway, M.]. (July).

This version of Posix, I contains the 1990 base APL the 1003.1b realtime extensions {1993), the
10031 Prthreads (1995), and the 1003.11 technical corrections (1995). This is also International
Standard ISO/IEC 9945-1: 1996 (E). Ordering information on [EEE standards and draft stan-
dards is available at http: / fwww. ieee . crg. Unfortunately, the IEEE standards are not freely
available on the Intermet.

Josey, A, ed. 1997, Go Solo 2: The Authorized Guide to Version 2 of the Single UNIX Specification.
Prentice Hall, Upper Saddle River, N.J.

Also note that many of the Unix 98 specifications (e.g., all of the manual pages) are available
online at http: / fwww , UNIX-systems. org/online . html,

Kernighan, B. W., and Pike, R. 1984, The UNIX Programming Environment. Prentice Hall, Engle-
wiond Cliffs, M.

Kernighan, B. W, and Ritchie, D. M. 1988. The C Programming Language, Second Edition. Prentice
Hall, Englewood Cliffs, M.J.

Kleiman, S., Shah, I, and Smaalders, B. 199. Programming with Threads. Prentice Hall, Upper
Saddle River, M.J.

Lewis, B, and Berg, D. J. 1998, Multithreaded Programming with Pthreads. Prentice Hall, Upper
Saddle River, M.J.

McKusick, M. K., Bostic, K., Karels, M.], and Quarterman, J. 5. 1996, The Design and Implementa-
tion of the 4 4BSD Operating System. Addison-Wesley, Reading, Mass.

MeVoy, L., and Staelin, C. 199, “Imbench: Portable Tools for Performance Analysis,” Proceedings
of the 1996 Winter Technical Conference, pp. 279-294, San Diego, Calif.

This suite of benchmark tools, along with this paper, are available from
http: / fwaw . bitmover . com/ lmbench,

Rochkind, M. J. 1985, Advanced UNIX Programming. Prentice Hall, Englewood Cliffs, N.J.

Salus, P. H. 1994, A Quarter Century of Unix. Addison-Weslev, Reading, Mass.

Srinivasan, B. 1995a. “RPC: Remote Procedure Call Protocol Specification Version 2, RFC 1831,
18 pages (Aug.).

Srinivasan, R. 1995b. “XDR: External Data Representation Standard,” RFC 1832, 24 pages (Aug.).

Srinivasan, R. 1995c. “Binding Protocols for ONC RPC Version 2, RFC 1833, 14 pages (Aug).

Stevens, W. R. 1992. Advanced Programming in the UNIX Environment. Addison-Wesley, Reading,
Mass.
All the details of Unix programming. Referred to throughout this text as APUE.
Stevens, W. R. 1994, TCP/IP lustrated, Volume 1: The Protocols. Addison-Wesley, Reading, Mass,
A complete introduction to the Internet protocols. Referred to throughout this text as TCPv1.

UNIX 2

ﬁrn-g‘.l
3
wing,

o
)
Fa]
b

UNIX Network Programming Bibliography =~ 537

Stevens, W. R. 1996, TCP/IP Hlustrated, Volume 3: TCP for Transactions, HTTPE, NNTF, and the LINIX
Domain Protocols. Addison-Wesley, Reading, Mass.
Referred to throughout this text as TCPv3,
Stevens, W. R. 1998, UNIX Network Programming, Volume 1, Second Edition, Networking APls: Sock-
ets and XTI, Prentice Hall, Upper Saddle River, N.J.
Referred to throughout this text as UNPv1,
Vahalia, U. 1996, LINIX Internals: The New Frontiers. Prentice Hall, Upper Saddle River, MN.J.

White,]. E. 1975. “A High-Level Framework for Network-Based Resource Sharing,” RFC 707,
27 pages (Dec.).
http:/fwww. kohala. com/ -rstevens/papers.cthers SrfeT07 . Ext
Wright, G. R., and Stevens, W. R. 1995. TCP/IP Mustrated, Volume 2: The Implementation. Addison-

Wesley, Reading, Mass.
The implementation of the Internet protocols in the 4. 4BSD-Lite operating system. Referred to
throughout this text as TCPv2.

Index

Rather than provide a separate glossary (with most of the entries being acronyms), this
index also serves as a glossary for all the acronyms used in this book. The primary
entry for the acronym appears under the acronym name. For example, all references to
Remote Procedure Call appear under RPC. The entry under the compound term
“Remote Procedure Call” refers back to the main entry under RPC.

The notation “definition of” appearing with a C function refers to the boxed func-
tion prototype for that function, its primary description. The “definition of” notation
for a structure refers to its primary definition. Some functions also contain the notation
“source code” if a source code implementation for that function appears in the text.

4.2B5D, 198

43850, 95

4.4BSD, 311, 315-316

4 4BSD-Lite, 537

fd=bit architectures, 85, 427

abort function, @, 424-425

absolute time, 171

Abstract Syntax Notation One, see ASN.1

accept function, 39%

accept_stat member, 447

accepted_reply structure, definition of, 447

access function, Y91

ACE (Adaptive Communications Environment],
180

address, IF, 245, 401, 403, 413, 422, 533

advisory locking, 203-204, 217, 522

aio_return function, 91

aic_suspend function, %1

AIX, wvi, 151
zlarm function, 9%, 394, 425
American Mational Standards Institute, see ANSI
American Standard Code for Information
Interchange, see ASCII
anonymous memory mapping, 315-317
ANSI {American Mational Standards Institutel, 21,
4002403, 505, 511, 320
API (application program interface), 13-14, 356,
379380, 450, 336
sockets, xiv, 5, 14, 151, 398-394, 403, 406,
449-450, 454—455
TLL 406
XTI 14, 151, 398-309, 403, 406, 413-414, 424,
449-450, 455
Apollo, 406
APUE {Adwvanced Programming in the UNIX
Environment), xiv, 336
areply member, 447

UNIX Network Programming

Index

arm, 429
array datatvpe, XDE, 429
array member, 288
ASCI (Amencan Standard Code for Information
Interchange), 193, 426, 429, 444

ASN.1 (Abstract Syntax MNotation Onel, 426
Aspen Group, 178
asynchronous

event notification, 87

/0, 14, 101

procedure call, 356
async-signal-safe, 90-91, 95, 98, 102, 279, 525-526
at-least-once RPC call semantics, 423, 450
at-most-once RPC call semantics, 423, 450
atomic, 24, 5%, 197, 214, 220, 2586
atomicity of pipe and FIFO writes, 85-66
attributes

condition variable, 113, 172-174, 521

doors, 363, 366, 375, 384

message queue, 79-82, 520

mutex, 172-174

process-shared, 9-10, 113, 128, 173, 175, 265,

454

read-write lock, 179

thread, 98, 113, 502, 521, 532
aup_gid member, 416
aup_gids member, 416
aup_Llen member, 416
aup_machname member, 416
aup_time member, 416
aup_uid member, 416
AUITH_BADCRED constant, 449
AUTH_EADVERF constant, 449
AUTH_DES constant, 417
AUTH_ERROR constant, 445-449
AUTH_FAILED constant, 449
AUTH_INVALIDRESP constant, 449
AUTH_KERB constant, 417
AUTH_NONE constant, 414, 446—447, 533
AUTH_OKE constant, 449
AUTH_REJECTEDCRED constant, 449
AUTH_REJECTEDVERF constant, 449
AUTH_SHORT constant, 417, 446
RUTH_5Y3 constant, 414, 416, 446—447
AUTH_TOOWERE constant, 449
auth_destroy function, 415
auth_flavor member, 446
auth_stat member, 449
authentication

null, 414

RPC, 414-417

Unix, 414

authsys_create_default function, 415
authsys_parms structure, 416
definition of, 416, 446
autocont program, 309
awk program, xvii, 13

Bach, M. ., 36, 535
bandwidth, 457
performance, message passing, 467-480
basename program, 13
Basic Encoding Rules, see BER
Bass,]., 198
Bausum, [}, xvi
Bentley., |. L., xvii
BER {Basic Encoding Rules), 426
Berg, D.]., 371,536
bibliography, 535-537
big-endian byte order, 403, 426, 444
binary semaphore, 219, 281
bind functon, 399
Birrell, A, I, 406, 535
black magic, 380
body member, 446
hool datatype, XDR, 429
Bostic, K., 311, 536
Bound, ., xvi
bounded buffer problem, 161
Bourne shell, 13, 52, 72
Bowe, G., xvi
Briggs, A., wvi
BSD/0O5, 53,59, 66, 54, 111, 209-210, 213, 316,
405405, 411-412, 425, 437, 456, 517
buf member, 288
buffers, multiple, 249-256
BUFFSIZE constant, definition of, 507
bullet, silver, 453
Butenhot, D K., xvi, 9, 95, 160, 163, 180, 192, 535
byte
order, big-endian, 403, 426, 444
ordet, little-endian, 403, 426
range, 197
stream, 67, 74, 76, 444, 454
BYTES_PER_XDR_UNIT constant, 438

C function prototype, 21, 105, 363, 384, 402403,
505

C shell, 72
C standard, 21,90, 511, 520
oax, 21
Technical Corrigendum, 520
CALL constant, 446

e ————

ke

UNIX Network Programming

Index 541

L
o

call semantics
at-least-once RPC, 423, 450
at-most-once BPC, 423, 450
exactly-once RPC, 422-423, 450
RPC, 422-424
call_ body structure, definition of, 446
calloc function, 84, 136
cancellation, thread, 174, 180, 183, 187192, 384,
388, 396~-398, 530
carriage return, see CR
cat program, 32-53, 64-66
chody member, 446
CDE (Common Desktop Environment), 15
Cedar, 406
cfgetispesd function, 91
cfgetospeed function, 91
ctfsetispead function, 91
cfaetospeed function, 91
cgid member, 33-34, 131, 283
Chang, W., =vi
char datatype, XDR, 427
chdir function, 91
chmed function, 91
chmed program, 205
chewn function, 91
chown program, 33
cl_auth member, 415
Clark,]. .. xvii
Cleeland, C., xvi
CLGET_RETRY_TIMEOUT constant, 418
CLGET_TIMECUT constant, 418
client
handle, definition of, 401
identity, 8384, 365, 369, 397, 415-417, 456
stub, 403, 405
client function, 48, 54-55,72, 142, 144, 147, 149
CLIENT structure, 401-402, 415
elnt_call functon, 419=-420, 424, 451, 486, 534
elnt_control function, 418420
definition of, 418
clnt_ereate function, 401, 403=405, 412-413,
418, 420,532
definition of, 401
clnt_destroy function, 420
definition of, 420
clnt_sperror function, 424
clnt_stat struckure, 404
clock_gettime function, 91
cloae function, 12, 61, 63, 63, 73, 77, 91, 114, 214,
260, 265, 279, 330, 376=37H, 343-384, 524
Clouter, M., xvi
CLSET_TIMEOUT constant, 420
coding style, 12,90

Columbus Unix, 28

Commeon Desktop Environment, see CDE

concurrency, thread, 163, 165—166, 488

concurrent server, 66—67, 147, 357, 372, 407

condition variables, 159=175
attributes, 113, 172-174, 321

config.h header, 509=5110

configure program, 509

connect function, 399

const datatype, XDR, 427

contention scope, 386, 388, 462

comventions, source code, 11

cooperating processes, 203

cooperative locks, 161

Coordinated Universal Time, see UTC

copy-on-write, 501

Corbin,]. B, 406, 535

counting semaphore, 221, 281

Courier, 406

Cox, |., 36, 311, 335

cpio program, 13

CR (carriage return), &7

creat function, 91

creator D, 33

cred member, 446

credentials, 417, 446, 449, 533

eritical region, 159, 177, 197

cuid member, 33-34, 131, 253

d_attributes member 380, 384
d_data member, 380
d_desc structure, 38
definition of, 38
d_descriptor member, 380
d_id member, 380
daemon, 60, 174, 203, 408, 502, 504, 511, 523
starting one copy, 213-214
daemon_proc variable, 511
Data Encryption Standard, see DES
data_ptr member, 357, 362363, 367 =369
data_size member, 357, 362, 530
datatypes, XDR, 427-430
de_egid member, 365
do_suid member, 365
Ac_pid member, 365
do_rgid member, 365
dc_ruid member, 365
DCE (Distributed Computing Environment), 407
deadlock, 56, 143, 238, 279, 518, 523-524
DEBUG constant, 408
delta time, 171
denial-of-service, o Do

542 UNIX Network Programming Index
DES (Data Encryption Standard), 417 door_info function, 365-367, 377, 530
desc_num member, 357, 362-363, 530 definition of, 36%
desc_ptr member, 357, 362-363, 380 door_info_t structure, 364, 366, 384, 386-387,
descriptor passing, B4, 379-384 LR

detached thread, 98, 384, 386-388, 504
fdeviclts device, 413
Jdevinull device, 526
Jdev/zers device, 315-317, 322-323, 325, 454,
497, 526
/dev/zerc memory mapping, 316-317
dg_eche function, 256
di_attributes member, 366
di_data member, 366, 354
di_proc member, 366, 384, 380
di_target member, 366
di_unicuifier member, 366
Digital Equipment Corp., xvi
Diigital Unix, wvi, 15, 20-21, 37, 51,73, 77, 79, 82,
98, 100, 104, 104, 154, 163, 209-210, 213, 225,
231-232, 238, 296, 319, 331, 333, 342, 351, 370,
407, 411-412, 437, 458-459, 461-462, 444,
466, 471, 489, 52(-522, 524
Dijkstra, E. W, 220
DIE_MODE constant, definition of, 508
discriminant, 429
discriminated union, 429
Distributed Computing Environment, see DCE
Door_create_proc datatype, 384
DOCR_DESCRIPTOR constant, 380, 384
DOOR_LOCAL constant, 366
DOOR_PRIVATE constant, 364, 366, 386
DOOR_QUERY constant, 366
DOOF_RELEASE constant, 384
DOOR_REVOKE constant, 366
Door_server_proc datatype, 363
DOOR_UNEEF constant, 364, 366, 375-370
DOOR_UNREF_DATA constant, 364, 375
door_arg_t structure, 363, 380-38]1
definition of, 362
door_bind function, 377, 385-386, 388, 390, 532
definition of, 390
door_call function, 357-354, 360-364, 367, 364,
388, 390-393, 395-398, 422, 476, 484, 530-531
definition of, 361
door_create functon, 357-358, 361, 363-364,
375, 377, 379, 384~ 386, 384380, 307 -308, 53]
definition of, 363
door_cred function, 365, 369
definition of, 385
door_cred_t structure, 385
definition of, 365
door_desc_t structure, 362-363, 380381, 530
definition of, 380

definition of, 366
door_return function, 358, 361=362, 364-365,
377, 380, 383, 385, 367388, 396-397
definition of, 365
door_revoke function, 366, 377, 390, 398,
530-531
definition of, 390
door_server_create function, 384-390
definition of, 384
door_unbind funcHon, 390
definition of, 390
doors, 355-398
attributes, 363, 366, 375, 384
premature termination of client, 390-347
premature termination of server, 390397
thread management, 370-375
Dorado, 406
oS (denial-of-service), 65—67
double buffering, 251
double datatype, XDR, 427
dup function, 91
dup? function, 91
duplicate data, 418, 421, 451, 532
duplicate request cache, RPC server, 421-424, 451,
532-513

E2BIE error, H3, 133

EACCES error, 24, 32, 199, 216, 225

EAGATN error, 12, 59-6(), 93, 121, 124, 132, 199,
205, 227, 260, 260, 27h, 286, 293, 3349, 503, 522

EBADF error, 52, 530-531

EBUSY error, W, 121, 160, 178, 184, 192

aecho program, 64

EDEADLE error, 23R

EEXIST error, 23-24, 31-32, 54, 74, 111, 214=215,
235, 260, 254, 294, 516, 524

effective

group Iy, 23, 25, 33-34, 131, 283, 365, 414, 416,
15
user [0, 23, 25, 33-34, B4, 131, 283, 365,

3a9=370, 414, 416, 515

EIDRM error, 132-133, 286

EINTR error, 90, 121, 124, 132-133, 149, 227, 279,
286, 391 -394, 398, 521, 524-525

EMSGSIZE error, 13, B3

ENOBUFS error, 341

ENOENT error, 24, 32, 115, 516, 526

ENCMSGC error, 133,139

e ——————

Jndex ; UNIX Network Programming Index 543

F_ROLCE comstant, 199

EMOSDC error, 24,32
F_SETFL constant, 58-39

enum datatype, XDR, 429

R 4 environment variable F_SETLK constant, 199-200,522
. BATH, 52 F_SETLEW constant, 199,201,522
g = PX_IPC_NAME, 21 F_UNLCE constant, 199
s i ENXIC error, 59 F_WRLCK constant, 199
: ephemeral port, 404, 411, 414, 450 PALSE constant, 409, 418, 429, 439, 441, 532
EPIPE error, &0 fatrach functon, 357,359, 364, 376-377, 379, 39T
err_dolt function, source code, 512 fontl function, 58,91, 174, 193-194, 198-200,
arr_dump function, 511 202, 205, 207, 214-217, 398, 418, 450,
spurce code, 512 455-456, 462, 495, 522-523
err_msg functon, 511 definition of, 199
source code, 512 FO_CLOEXEC constant, 10, and, 398
err_guit function, 381, 511 fdatasync functon, 91
source code, 312 £4erach funchon, 364, 376
err_ret function, 511 fdetach program, 364
source code, 511 fdopen function, &8
err_sys function, 11-12, 511 fgets function, 48, 53,71, 249, 518
?_ source code, 511 FIFO (first in, first out), 54=60
' errata availability, xvi limits, 72-73
3 _errno function, 515 NFS and, 66
L errnoe varable, 11-13, 18, 49, 116, 267, 269, 274, order, lock requests, 210
274, 502-503, 511, 515, 524 order, message queue, 133, 138, 143
corrno. b= header, 13,18 order, queuad signals, 100, 102, 104-105
error functions, 510-513 order, RPC server reply cache, 422
ESPIFE error, 54 permissions, 54
: ESRCH error, 121 used for implementation of Posix semaphores,
k851, /etc/inetd.conf file, 413 257-262
Jete/netconfig file, 413 writes, atomicity of pipe and, H5—Bh
¥ Jete/frpe file, 412-413 fifo, h header, 56
z jeco/faysconfigtab file, 38 file 1/0, explicit, 322
i Jetc/eyatem file, 37, 458 file locking
s £ ETTMEDOUT error, 171 using Posix semaphores, 238
¥ exactly-once RPC call semantics, 422-423, 450 using System V semaphores, 294-296
e }.I' examples road map, 15-16 wversus record locking, 197198
: exec function, 9-10, 13, 58, 73, 364, 379-380, 398, file mode creation mask, 23, 33, 55
§ 414, 502, 530 file permissions, 203, 205, 216, 397
& execle function, 91 FILE structure, 52, 401-402
i & execve function, 91 File Transfer Protocol, see FTP
15, exercises, solutions to, 515-534 FILE_MODE constant, 55, 79
.; exit Ffunction, 9, 48, 90, 226, 504, 511, 521 definition of, 508
: H _exit function, 9-10,91, 226, 504 filesystem persistence, 6-7,78, 311
e, ¥ explicit FIN {finish flag, TCF header), 420, 424-425
file 1/0, 322 £ind program, 39,517
_ network programming, 4, 394, 403 finish flag, TCF headers, see FIN
: i synchronization, 161 first in, first out, see FIFO
; = thread termination, 502 flaver member, 446
i 3 typing, 426 s1eat datatype, XDR, 427
' & external data representation, see XDR floating point format, IEEE, 426
i flock function, 198
f£lock structure, 199-201
F_GETFL constant, 38 definition of, 199
F_GETL¥ constant, 199-200 fopen function, 54, 68, 71, 149, 515

544 UNIX Network Programming

Index

fork function, 4,9-10, 13, 44-47, 51, 55, 58,
66=67, 73, 91, 102, 147, 149, 151, 174, 200, 207,
217, 240, 256, 267, 305, 307, M9, 311, 315, 322
332, 364, 379-380, 391, 414, 475, 480,
497498, 501, 503
fpathconf function, 72-73, 9
fputs function, 249
fragment, XDR, 444
Franz, M., xvii
free function, 21, 260, 275
FreeBSD, 29, 285
Friesenhahn, K., xvi
FSETLEW constant, 215
fstat function, 21, 44, 74,91, 115, 262, 327328,
330-331, 342, 398, 519, 530
definition of, 328
feyno function, 91
frok function, 28-31, 38-39, 130, 135, 138, 273,
275, 2493, 344, Mk, 348-349, 517, 521, 526
definition of, 28
FTT {File Transfer Protocol), &7, 337
ftruncate function, 113,217, 263, 320, 327-328,
333, 342, 351, 528
definition of, 327
full-duplex pipe, 44, 50-52, 127, 475

Gallmeister, B. O, xvi
GARBAGE_ARGS constant, 447-448
Garfinkel, 5. L., 417, 535
GETALL constant, 288, 290
getconf program, 73
getegid function, 91
geteuid function, 91

gatgid function, 91
getgroups function, 91
gethosthyaddr function, 245
gethostname function, 509
GETHCHT constant, 288
gatopt funchon, 78, 82
Getopt wrapper function, 78
getpyrp function, 91

GETPID constant, 268

getpid function, 91, 370, 503
getppid functon, 91
getsockopt functon, 418
getuid function, 91

GETVAL constant, 277, 288
GETZCNT constant, 288
af_time function, 207

gid member, 33<34, 131, 134, 283, 288, 345, 446
gids member, 446

Gierth, A., xvi

Glover, B, xvi

GNU (GMNU's Mot Unix), xvii, 509, 520
Goodheart, B, 35, 311, 535
gpic program, xvii
Grandi, 5., xvi
granularity, locking, 198
grep program, 161
groff program, xvii
group ID, 328, 397, 417, 502
effective, 23, 25, 33-34, 131, 283, 365, 414, 414,
515
real, 365
supplementary, 25, 414, 416
Goquared, xvi
gthl program, xvii
Guerriert, F, xvii

half-close, 425

Hamilton, C., 356, 535

Hanson, D R., svii

Haug,)., xvi

Hewlett Packard, 407

high member, §47, 449

hostname, 245, 400, 403, 413-414, 416-417, 450
HTTP (Hypertext Transfer Protocol), 67, 337
hyper datatype, XDR, 427

Hypertext Transfer Protocol, see HTTP

I_RECVFD constant, 379
I_SENDFD constant, 379
IBM, xvi
idempotent, 393395, 422-423
identifier reuse, System V IPC, H-35
identity, client, 83-84, 365, 360, 397, 415-417, 456
[EC (International Electrotechnical Commission),
13-14, 520, 536
IEEE (Institute of Electrical and Electronics
Engineers), 13-14, 121, 180, 2642, 536
floating point format, 426
IEEEIX, 13
implementation
of Posix message queues using memory-
mapped [/0, 106126
of Posix read-write lock using mutexes and
condition variables, 179-187
of Posix semaphores using FIFOs, 257-262
of Posix semaphores using memory-mapped
1700, 262-270
of Posin semaphores using System V
semaphores, 271-278
implicit
synchronization, 161
thread termination, 502

typing, 426

UNEX

Endex

;.I‘ &,

A —
i - -

SRl

S e

UNIX MNetwork Programming

Index 545

o e S A

indent program, xvii
inetd program, 413-414
RPC and, 413-414
init program, 4,48 521
initial thread, see main thread
i-node, 28=249, 349, 517
Institute of Electrical and Electronics Engineers, s
IEEE
int datatype, XDR, 427
intlé_t datatype, 427
intiz_t datatype, 427
int&4_t datatype, 427
int8_t datatype, 427
International Flectrotechnical Commission, see IEC
International Organization for Standardization, se
150
Internet Protocol, see 1P
Internet Protocol version 4, see IPv4
interprocess communication, see IPC
ioctl function, 379, 384
1P {Internet Protocol), address, 245, 401, 403, 413,
422, 533
IPC {interprocess communication)
identifier reuse, Systern V, 34-36
kernel limits, Svstem ¥, 36-38
key, 18
name space, 79
names, Posix, 19-22
networked, 453
nonnetworked, 453
ions, Posix, 23, 25-26, B4, 115, 225, 232,
267, 327
permissions, System Y, 31-35, 3%, 130-131,
282-283, 343-345
persistence, 6-7
Posix, 19-26
System V, 27-39
IPC_CREAT comstant, 31-32, 38, 130, 283254,
244, 344
1BC_EXCL comstant, 31-32, 38, 130, 135, 141, 273,
2JR3-2R4, 289, 254, 344
IPC_NOWAIT constant, 87, 132-133, 139, 143, 276,
286-287, 290
IpC_PRIVATE constant, 29-31, 38-39, 130, 134,
147, 155, 344, 517
1PC_RMID constant, 35, 134, 137, 275, 288280,
5340, 351
1BC_SET constant, 33, 134, 288, 345
1BC_STAT constant, 38, 134, 274, 285, 2RG—290),
204, 345, 347~-348, 351, 455
ipe_perm structure, 30-35, 38, 129-130, 282-283,
343
definition of, 30

ipcrm program, 36

ipos program, 36, 134, 138-140, M48-349, 455

IPvd (Internet Protocol version 41, 446, 451, 534

is_read_lockable funchion, definition of, 202

is_write_leckable function, definition of, 202

150 (International Organization for
Standardization), 13-14, 520, 536

iterative, server, h6-67, 144, 372, 407408

Johnson, M., xvi
Johnson, 5., wovi
joinable thread, 387, 504
Josey, A 15,536

justice, poetic, 517

Kacker, M., xvi

Karels, M. |., 311, 336

Ketberos, 417

kernel limits, System V IPC, 36-38
kernel persistence, 6, 75, 77, 226
Kernighan, B. W., xvi-xvii, 12, 511, 536
key, [PC, 28

key_t datatype, 8, 28-30, 455
kill function, 91,101

Kleiman, 5., 180, 536

KornShell, 72-73

Kougiouris, P, 356, 535

1_len member, 199-100
1_pid member, 199
1_start member, 199-200
1_type member, 199
1_whence member, 199-200
last in, first out, se¢ LIFO
latency, 361,458
performance, message passing, 480486
leak, memory, 114, 175, 452, 521
Leisner, M., xvi
Lewis, B., 371,536
LF (linefeed), &7
LIFO (last in, first out), 104
lightweight process, 501
limit program, 71
limits
FIFQ), 72=73
pipe, 72-73
Posix message queue, 8687
Posix semaphore, 257
System V [PC kernel, 36-38
System V message queue, 152154
System V semaphore, 296-300
System V shared memory, 349-351

546 UNIX Network Programming

Index

<limits.h=> header, 72
linefeed, see LF
link function, 91, 215-216
Linux, xvi, 288, 356, 407
lizten function, 399
little-endian byvte order, 403, 426
lmbench program, 458-459
local procedure call, 355
lock priority, 180, 207-213
lock_reg functon, 202
lock_test function, 202
lockd program, 216
lockf function, 198
lockfontl program, 203-204
locking
advisory, 203-204, 217, 522
conflicts, 170-171
file locking versus record, 197-198
granularity, 198
lock files, 214-216
mandatory, 204-207, 217
NFS, 216
priorities of readers and writers, 207-213
record, 193-217
shared-exclusive, 177
versus waiting, 165-167
locking function, 198
locknone program, 203-204, 207, 217
LG ERR constant, 311
LOG_INFO constant, 511
long datatype, XDR, 427
long double datatype, 427
long leong datatype, 427
longjmp function, 9
lenglong_t datatype, 427
loom program, xvil
loopfontl program, 205-206, 217
loopfontlnonbk program, 217, 522
loopnone program, 205-206
lsepnenencnk program, 217, 522
low member, 447, 449
lp program, 193
LPnd, 427
lpr program, 193
ls program, 36, 81, 205, 360, 455
lzaeek function, 3 54,91, 113, 115, 204, 202, 314,
322, 327,523, 518
lstat function, 21,44
Lyon, B, 406

machinename member, 446
magic number, 109, 117, 181, 258, 262, 271

main thread, 93, 190, 235, 388, 488, 490, 502
mallos function, 117, 160, 432, 435, 467468, 524,
333
mandatory locking, 204-207, 217
many-to-few thread implementation, 163
MAP_ANON constant, 315-316, 322, 454, 497
MaP_FIXED constant, 309
MAF_PRIVATE constant, 309-310, 323
MAP_SHARED constant, 309-311, 315, 323
Marguardt, D, xvi
marshaling, 405
MAX_PATH constant, definition of, 507
MAXLINE constant, 49, 305
definition of, 507
McKusick, M. K., 311, 336
MeVoy, L., xvi, 458, 536
memepy Function, 137, 526
memaory
leak, 114,175, 452, 521
mapping, anonymous, 315-317
mapping, /dev/zero, 316-317
object, 326
memory-mapped
file, 78, 107, 111, 127, 308, 310-311, 313, 322,
325-326, 471, 520, 525
170, 303,525
170, used for implementation of Posix message
queues, 106-126
1/0, used for implementation of Posix
semaphores, 262-270
mesg structure, 149
mesg_recwv function, 971, 141-142, 144, 149
mesg_send function, 69-70, 141-142, 144
mesg.h header, 68
Mesg_recw function, 14%
e
boundary, 67, 76, 444, 454
queue atlributes, 79-52, 520
queue descriptor, definition of, 77
queue 1D, 129-130, 139-140, 142, 147, 149, 151,
154
queue limits, Posix, 86-57
queuve limits, System V, 152=154
queue priority, 82-83, 85-86, 109, 123-124, 126,
143, 482
quenes, implementation using memaory-
mapped [/0, Posix, 106-126
queues, Posix, 75-128
queues, System ¥, 129-155
queues with poll function, System V, 151-152
queues with select function, Posix, 95-98
queues with select function, System V,
151-152

Sk e = Bl

145

UNIX Network Programming

E

Index 547

messages
multiplexing, 142-151
f streams versus, 67=72
£ Metz, O W, xvi
% mismatch_info structure, definition of, 447, 449
G mkdir function, 91
: mkiifo function, 39, 54-58, 74,91, 518, 524
definition of, 54
mkfifo program, 54
% mlock funchon, 322
i mlockall function, 322
ik mmap function, 14, 109, 113, 115, 263, 265, 303,
:'3 307-311, 315-320, 322-323, 325-318,
= 330-334, 337, 342-343, 363, 369, 471, 527, 529
3 definition of, 308
3 mode member, 31-34, 134, 283, 289, 345
mode_t datatype, 110-111
g MQ_OPEN_MAX constant, Bo
& MO _PRIO_MAX constant, B2-83, B6
5 mey_attr structure, 80, B3
definition of, 80
= mg_close function, 76749, 109, 116-117, 126-127
y definition of, 77
source code, 116
mo_curmsgs member, B0, 123-124
3 me_flags member, B0, 108, 118
& mg_getattr function, 79-83, 85, 117, 126, 520
: definition of, 79
source code, 118

mer_hdr structure, 109,113, 117, 119
mag_info structure, 106, 108-109, 113, 115-118
mo_maxmsg member, 76, B0, 86, 112, 123,127
mg_msgsize member, 76,80, 83, 86, 112, 127
mq_notify function, B7-99, 117,119, 126-127
definition of, 87
source code, 120
ma_open function, 19-20, 22, 25, 76-80, 82, 106,
109, 111-114, 116, 126-127, 326-327, 520
definition of, 76
spurce code, 109
meg_receive function, 24, 7o, 82-86, 88, 90, 93,
115, 121, 124, 126, 482, 526
definition of, &3
source code, 125
mg_send functon, 13,24, 82-86, 109, 121, 124,
126-127, 471, 516
definition of, 83
source code, 122
mg_setattr function, 79-82, 118, 126
definition of, 79
source code, 119
mg_unlink function, 76-79,117, 126, 327
definition of, 77
source code, 117

megd_t datatype, 8,77, 95, 109, 326
mgh_attr structure, 108
mgh_event structure, 119
mgh_free member, 108-109, 113
meth_head member, 108-109, 113,124
mgh_nwait member, 121,124
mah_pid member, 119
mgh_wait member 121
MOI_MAGIC constant, 109
meyi_Flags member, 109
mgi_hdr member, 109
mgl_magic member, 109
moueue. b header, 106
ME_ASYHMC constant, 310
M5_INVALIDATE constant, 30
MS_SYNC constant, 310
MaG_ ACCEPTED constant, 447-448
Ms3 DENIED constant, $47-448
MEG_MOERROR constant, 83,133
MSG_PEEH constant, 152, 455
MSG_E constant, 33
MaG_TRUNG constant, 23
Mac_W constant, 33
msg_chytes member, 129,134
msg_ctime member, 129,131
msg_firsc member, 129
meg_hdr structure, 109, 113,123, 126, 310
mzg_last member, 129
meg_len member, 109
mag_lrpid member, 129,131
msg_lspid member, 129, 131
msg_next member, 108-109,124
meg_perm structure, 131, 134
definition of, 129
meg_prio member, 109
msg_gbytes member, 129, 131-132, 134
mag_gnum member, 129, 131
mag_rtime member, 129, 131
meg_stime member, 129,131
meg_type member, 446
maghbuf structure, 131, 134, 136, 482
definition of, 131
maget] function, 35, 38, 134-135, 137
definition of, 134
megget function, 33-35, 38, 130-131, 135, 134,
154, 516-517
definiion of, 130
maghdr structure, 126
magmag variable, 37
magmax variable, 37-38, 152, 458
msgmnb variable, 37-38, 152, 458
msgmni variable, 37-38, 152

UNIX MNetwork Programming

Index

megrov function, B3, 87, 131-134, 137-139, 143,
149, 151152, 304, 323, 452
definition of, 132
magaeg variable, 37, 152, 458
megend function, 34, 131-132, 135, 143, 154, 304
definition of, 131
msgssz varable, 37, 152
msgtgl variable, 37-38, 152
magid_ds structure, 130, 132, 134
definition of, 129
meyne function, 307-311
definition of, 310
meext member, 131
M-to-M thread implementation, 163
meype member, 131
multiple buffers, 24%-250
multiplexing messages, 142-151
multithreading, RPC, 407-411
munlock funchion, 322
munlockall function, 322
munmap function, 117, 267, 307-311, 363, 364, 529
definition of, 309
mutex, 159-175
and condition variables, used for
implementation of Posix read-write lock,
17%-187
attributes, 172-174
mutual exclusion, 159, 194, 221
my_create function, 386=387
my_lock function, 194, 196=197, 200-202, 214,
217, 238, 279, 294, 295, 526
my_shm function, 323, 497-498
my_thread function, 386388, 531
my_unlock function, 194, 196=197, 200, 202, 238,
2749, 294
mymesg structure, 68

name space, [MC, 7-9

named pipe, 43, 54

names, Posix [PC, 19-22

Mational Optical Astronomy Observatories, ser
MNOAD

NCA (Network Computing Architecture), 406

NCK (Network Computing Kernel), 407

NICS (Network Computing System), 406

NDR (Metwork Data Representation), 406

Nelson, B. ., 406, 535

Melson, R., xvi

network programming, explicit, 4, 399, 403

Metwork Computing Architecture, ser NCA

Metwork Computing Kernel, see NCK

Metwork Computing System, see NCS

MNetwork Data Representation, see NIR

MNetwork File System, see NFS
Metwork Interface Definition Language, see NIDL
Merwork Mews Transfer Protocol, see NNTP
networked [IPC, 453
MFS (Network File System), 404, 406, 411, 417, 495
and FIFO, 66
locking, 216
secure, 417
MIDL (Network Interface Definition Language),
406
MMNTP (Metwork Mews Transfer Protocol), 67
MWOAQ (Mational Optical Astronomy
Observatories), xvi

nonblocking, 24, 58-59, B0, 85, 87, 93, 109, 132, 143,

160, 184, 206, 217, 260, 262, 269, 276, 286, 293,
518, 522
noncooperating processes, 203-204
nondeterministic, 197, 217, 530
nonnetworked IPC, 453
ntohl function, 441
null
authentication, 414
procedure, 451, 4586, 534
slgnal, 121

O_APPEND constant, 515

0_CREAT constant, 22-25, 31, 54, 77, 110-111, 115,
214-216, 225, 228-229, 239, 258, 260, 263,
265, 2T3-274, 279, 285, 327, 334, 516, 524

O_EXCL constant, 22-25, 31, 54, 77, 111, 214-215,
225, 235, 260, 273, 327,516

C_MOMBLOCK constant, 22, 24, 58-60, 77, 93, 121,
124, 217, 260, 518

O_RDOMLY constant, 22, 25-26, 61, 83, 77, 115, 225,
327

0_ROWE constant, 22, 25-26, 77, 115, 225, 327

O_TRUNC constant, 22, 24, 216-217, 327, 523

O_WROMLY constant, 22, 25-26, 61, 77, 115, 216,
x5

oa_hase member, 416

na_flavor member, 416

oa_length member, 416

od program, 313, 319, 331

ONC (Open Network Computing), 406

opaque data, 429

opague datatype, XDR, 429

opague_auth structure, definition of, 416, 446

pen systems interconnection, see OS5l

open function, 22-23, 26, 31, 49, 54, 56, 58, 61, 63,
f5=6h, 71, 74,91, 111, 115, 214-217, 260, 265,
273, 310-311, 315-317, 325327, 342, 357,
361, 364, 367, 376, 379-380, 382-383, 397,
515,518, 523-524

B .56 -8 58606060

7 O T T R]

ek

(L] gy

Loy

imdex

s Zo D

R AR R

£

UNIX Network Programming

Index 549

Cpen Group, The, 14-15

Open Network Computing, see ONC
Open Software Foundation, see OSF
DPEN_MAY constant, 72-73

Oiperation Support Systems, 28

optarg varable, B2

eptind variable, 78

O5F (Open Software Foundation), 14
051 (open systems interconnection), 426
owner 1D, 25, 33, 38, 397

R

packet formats, RPC, 444-449
Fapanikolaou, 5., xvii
PATH environment variable, 52
PATH_MAX copstant, 19,22
patheonf funchon, 72-73,91
pause function, 90-91, 230, 359, 420
pelese function, 52-53,73
definition of, 52
_PBC_PIPE_RUF constant, 72
FDP-11, 37
performance, 457-499
message passing bandwidth, 467480
message passing latency, 480-486
process synchronization, 497-499
thread synchronization, 486-496
permissions
FIFO, 54
file, 203, 205, 216, 397
Posix [PC, 23, 25-26, B4, 115, 225, 232, 267, 327
System V IPC, 31-35,39, 130-131, 282-243,
H3I-345
persistence, &
filesystem, 6-=7, 78, 311
IPC, 6=7
kernel, &, 75, 77, 226
process, &
pid_t datatype, 194
Pike, K., 12, 536
pipe. 44-53
; and FIFO wribes, atomicity of, 65-66
7 full-duplex, 44, 50-52, 127, 475
P lirnits, 72-73
named, 43, 34
pipe function, 44, 50, 56, 58, 68, 73, 91
definition of, 44
PIPE_BUF constant, 59-60, 65, 72-73, 260
poll function, 95,151,155, 171, 339, 454
System V message queues with, 151-152
polling, 87, 167, 214
popen function, 52-53, 73-74, 518
definition of, 52

port
ephemeral, 404, 411, 414, 450
mapper, 404, 406, 411-414, 450-451, 532
reserved, 417
Portable Operating System Interface, see Posix
portmap program, 411
Posix (Portable Operating System Interface], 13-14
IPC, 19-26
IPC names, 19-22
IPC permissions, 23, 25-26, 84, 115, 225, 232,
267, 327
message queue limits, Bo-87
message queues, 73128
message queues, implementation using
memoty-mapped 1/0, 106-126
message queues with select function, 95-98
read-write lock, implementation using mukexes
and condition variables, 179-187
realtime signals, 98-106
semaphore limits, 257
semaphores, 219-279
semaphores between processes, 256—257
semaphores, file locking using, 238
semaphores, implementation using FIFOs,
257-262
semaphores, implementation using memory-
mapped 1/0, 262-270
semaphores, implementation using System V
semaphores, 271-278
shared memory, 325-342
Posix.1, & 14-16, 19, 44,59, 73, 83, 87, 98, 101, 159,
173, 178, 198, 205, 214, 225, 240, 256, 266, 279,
309, 325, 328, 364, 468, 482, 530, 536
definition of, 14
Rationale, 14, 223, 240, 262, 326
Posix. 1b, 14,99, 5536
Posix. 1, 14, 536
Posix.1g, 8
Posix.1i, 14,536
Posix.1j, 178, 485
Posix2, 14-16
definition of, 13
Posix.4, %9
FOSIX_IPC_PREFIX constant, 22
_POSIH_C_SOURCE comstant, 13
_POSIX_MAPPED_FILES constant, G
_POSTX_MESSAGE_PRSSING constant, 9
_pOSI¥_REALTIME_SIGNALS constant, 9
_POSIN_SEMAFHORES constant, 9
_pOSTY_SHARED_MEMORY OBJECTS constant, 9
_POSIX_THREAD PROCESS_SHARED constant, 9,
173
_POATY_THREADS constant, -9

550 UNIX Metwork Programming

Index

PostScript, xvii
pr_thread_id fusecHon, 370-371
source code, 371
printf function, 90, 102, 127, 205, 217, 279, 383,
398, 408, 522

lock, 180, 207-213
message queue, B2-83, 85-86, 109, 123-124,
126, 143, 482
thread, 160, 502
private server pool, 386, 388, 340
proc member, 446
BROC_UNAVAIL constant, 447-448
procedure call
asynchronous, 3536
local, 355
synchronous, 356-357, 476
procedure, null, 451, 486, 534
process
lightweight, 501
persistence, &
processes, cooperating, 203
process-shared attribute, 9-10, 113, 128, 173, 175,
265, 454
uwoer-consumer problem, 161-165, 233-238,
242-249
prog member, 446
PROG_MISMATCH constant, 447—448
PROG_UNAVAIL constant, 447-448
PROT_EXEC constant, 309
FROT_NONE constant, 309
PROT_READ constant, 308-309
PROT_WRITE constant, 308=30%
ps program, 127, 175, 367, 432, 520
paelect function, 171
PTHREAD_CANCEL constant, 1588
PTHREAD_COND_INITIALIZER constant, 167,
172
PTHREAD MUTEX_INITIALIZER constant, 160,
172
Pthread_mutex_lock wrapper function, source
code, 12
PTHREAD PROCESS_PRIVATE constant, 173, 179
PTHREAD PROCESS_SHRRED constant, 113, 128,
173, 179, 193, 239, 256, 265, 462, 457498
PTHREAD_RWLOCK_INITIALIZER constant,
178-179
PTHREAD _SCOPE_PROCESS constant, 387
PTHREAD SCOPE_SYSTEM constant, 386, 388
pthread_attr_destroy function, 398
prhread_attr_init function, 398
pthread_attr_t datatype, 502

pthread_cancel function, 187, 190
definition of, 187
pthread_cleanup_pop function, 187,191
definition of, 187
pthread_cleanup_push function, 187, 396
definition of, 157
pthread_rcondater_destroy function, 175
definition of, 172
pthread_condattr_getpshared function,
definition of, 173
pthread_condatbtr_init functon, 114,175
definition of, 172
pthread_condattr_setpshared function,
definition of, 173
pthread_condattr_t datatype, 172
pthread_cend_broadcast funchon, 171,173,
186
definition of, 171
pthread_cond_destroy function, definition of,
172
pthread_cond_init function, definition of, 172
pthread_cond_signal function, 124, 126,
167-171, 175, 186—187, 227, 268-269
definition of, 167
pthread_cond_t datatype, 8 167, 256
pthread_cond_timedwait function, 171
definition of, 171
pthread_cond_wait functon, 121, 167-171,
175, 183-184, 187, 190-192, 227, 269, 525
definition of, 167
pthread_screace function, 163, 217, 356,
385-388, 502 -504
definition of, 502
pthread_detach function, 502-504
definition of, 504
pthread_exit function, 174, 187, 425, 502-504
definition of, 504
pthread_join function, 357, 387, 502-504
definition of, 503
pthread_mutexattr_destroy function, 175
definition of, 172
pthread_mutexattr_getpshared function,
definition of, 173
pthread_mutexattr_init function, 113-114,
175, 265
definition of, 172
pthread_mutexattr_setpshared function,
113, 265
definition of, 173
pthread_mutexattr_t datatype, 172-173
pthread_mutex_destroy function, definition
of, 172

UNIX %

Emdex

e Of,

£ 17

e T =

g

kL L e

A AR

N

UNIX Network Programming

Index 551

prhread_mutex_init function, 113, 160,
172-173, 205, 498
definition of, 172
pthread_mutex_lock function, 12, 160, 190, 221
definition of, 160
pthread_mutex_t datatype, 8, 160, 172, 256, 279
pthread_mutex_trylock function, 160
definition of, 160
pthread_metex_unleck function, 221
definition of, 160
pthread_rwlockattr_destroy function,
definition of, 179
pthread_rwleckattr_getpshared function,
definition of, 17%
pthread_rwlockattr_inic function, definition
of, 174
pthread_rwlocckattr_setpshared function,
definition of, 179
pthread_rwlockactr_t datatype, 179
pthread_rwlock_destroy function, 179, 181,
192
definition of, 179
apurce code, 182
prthread_rwlock.h header, 180
pehread_rwleock_initc function, 179, 181
definition of, 179
source code, 182
pthread_rwlock_rdlock function, 178-179,
183, 190-191
definition of, 178
source code, 183
pthread_rwlock_t datatype, 8, 178, 180-181,
183, 188, 193, 256
pthread_rwlock_tryrdlock function, 184
definition of, 178
source code, 154
pthread_rwlock_trywrlock function, 184
definition of, 178
source code, 185
pthread_rwlock_unlock function, 178=179,
186, 190, 192
definition of, 178
source code, 186
pthread_rwlock_wrlock function, 178-1749,
183=184, 190-191
definition of, 178
source code, 185
pthread_sel f funchion, 502-504
definition of, 503
pthread_setcancelstate function, 396, 530
pthread_setsencurrency function, 163
pthread_sigmask function, 95
pthread_t datatype, 370-371, 502

cpthread.h> header, 180
Pthreads, 15
putchar function, 217
FY_TPC_NAME environment variable, 21
px_ipc_name function, 21-22, 26, 78, 235, 505
definition of, 21
source code, 22

gquadruple datatype, XDR, 427
Quarterman, |. 5., 311, 536
queved signals, 100,102

FIFO order, 100, 102, 104-105

Rafsky, L. C., wvi
Rago, S AL xvi
raise function, 91
ribody member, 446
rbuf member, 357, 362363, 367369
read ahead, 251
read function, 56, 43, 49-52, 54, 59, 61, 63, 70,
H3, 90-91, 142, 1671, 200, 204-207, 24%, 254,
2al), 262=263, 278, 304, 310-311, 322, 399, 406,
435, 451, 456457, 467, 469, 471, 482,
517-519, 522-523, 525-526, 533
read_lock function, 207
definition of, 202
readers-and-writers
locks, 178
problem, 177
readline function, 61,63, 74, 518
readw_lock function, 207-208
definition of, 202
read-write lock, 177=192
attributes, 179
implementation using mubexes and condition
variables, Posix, 179-187

real
group 1D, 365
user [0, 365, 369
realtime

scheduling, 14, 160, 171, 454
signals, Posix, 98-106
record, 75
locking, 193-217
locking, file locking versus, 197-198
recy function, 152
recvirom function, 152, 406
recvmsg function, 53,152
Red Hat Software, xvi
_REENTRANT constant, 13,515

Regina, N., xvii
Reid, J., »vi

552 UNIX Network Programming

Index

reject_stat member, 449
rejected_reply structure, definition of, 449
remote procedure call, see RPC
remote procedure call language, 20 RFCL
remote procedure call source code, see RPCSRC
remote terminal protocol, see Telnet
rename function, 91
REPLY constant, 446
reply_body structure, definition of, 447
reply_stat member, 447
Request for Commaents, se RFC
reserved port, 417
reset flag, TCP header, see RST
results member, 447
retransmission, 424, 532
RPC timeout and, 417-422
RFC (Request for Comments)
1831, 406, 430, 446-447
1832, 406, 426, 430
1833, 406,412
Ritchie, I, M., 511, 536
rm program, 36, 376-377, 379
rmdir function, 91
RNDUP function, 438
road map, examples, 15-16
Rochkind, M. J., 27,536
round-trip time, 451, 458
RPC {remote procedure call), 355, 399-452
and inecd program, 413-414
authentication, 414=417
call semantics, 422-424
call semantics, at-least-once, 423, 450
call semantics, at-most-once, 423, 450
call semantics, exactly-once, 422-423, 450
multithreading, 407-411
packet formats, 444-449
premature termination of client, 424-426
premature termination of server, 424-426
secure, 417
server binding, 411-414
server duplicate request cache, 421-424, 451,
532533
TCP connection management, 420
Himeout and retransmission, 417-422
transaction [0, 420-422
RPC_CANTREECY constant, 424
RPC_MTSMATCH constant, 448-449
REBC_SUCCESS constant, 409
rpc_msg structure, definition of, 446
rpcbind program, 406, 411-412, 450
rpogen program, 400-406, 405409, 411,
413414, 419, 427429, 432433, 435,
439-440, 442, 449451, 476, 486, 534

rpcinfo program, 412-414, 532

RPCL (remote procedure call language), 430

RPCSRC (remote procedure call source code), 406,
534

rpovers member, 446

rg_clntered member, 415

rg_cred member, 415-416

ro proc member, 415

rg_prog member, 415

rg_vers member, 415

rg_xprt member, 415

rreply member, 447

rzize member, 357, 362-363, 367-368

RST (resct flag, TCP header), 425,532

RTSIG_MAX constant, 100

RW_MAGIC constant, 181

rw_condreaders member, 183, 186

rw_condwriters member, 184, 186

rw_magic member, 181

rw_putbex member, 181, 183

rw_nwaitreaders member, 183, 191

rw_nwaitwriters member, 183-184, 190-191

rw_refeount member, 181, 1B3-184, 186

rwlock_cancelrdwait function, 191

rwlock_cancelwrwait function, 191

5_IRGRE constant, 23

5_IROTH constant, 23

S_IRUSE constant, 23

5_ISDOOR constant, 367
5_ISFIFO macre, 44

S_IWGRFP constant, 23

5_IWOTH constant, 23

Z_IWUSE constant, 23

&_IXUSE constant, 111, 263
5_TYPETSMQ macro, 21
5_TYPEISSEM macro, 21
S_TYPEISSHM macro, 21
SA_RESTART constant, 106
Sh_SIGINFO constant, 100-102, 105- 104, 127
sa_flags member, 106
ga_handler member, 106
za_mask member, 106
za_sigaction member, 105-106
Salus, P H., 43, 5336

sar program, 39

sbrk function, 533
_BC_CHILD_MAX constant, 297
scheduling, realtime, 14, 160, 171, 454
Schmidt, 0. C., 180
_SC_MQ_DPEN_MAX constant, 87
_SC_MQ_PRIO_MAN constant, 87
scope, contention, 386, 388, 462

R G

=191

R T

UNIX Network Programming

Index 553

_BC_0OPEN_MAX constant, 72
3C_PAGESIZE constant, 317, 470, 52%
_5C_RTsIc_MAEX constant, 102
_E0C_SEM_MSEMS_MAX constant, 257
_5C_SEM_VALUE_MaX constant, 257, 265
HeCure
NFS5, 417
RPC, 417
security, hole, 328
SEEE_CUR constant, 200, 217, 323
SEEK_END constant, 200, 217, 523
SEEE_SET constant, 200, 217, 523
select function, 74,95, 98 151-152, 155,171,
323, 3349, 454, 519-521, 528
Posix message quenes with, 95-98
System V message queues with, 151-152
Select wrapper function, source code, 521
sem structure, 273, 282283
definition of, 282
SEM_A constant, 33, 283
SEM_FAILED constant, 225
SEM_MAGTC constant, 258, 262
SEM_MNSEMS_MAX constant, 257
Sem_post wrapper function, source code, 11
SEM_R constant, 33, 283
SEM_UNDO constant, 174, 286—287, 290, 294, 296,
442
SEM_VALUE_MAX constant, 225, 257
gem_hase member, 282-253
sam_close function, 224-226, 228, 235, 261, 267,
275
definition of, 226
source code, 261, 267, 275
sem_ctime member, 282-283, 289
zem_destroy function, 224, 238-242
definition of, 239
zem_f1lg member, 276, 285-286, 492
zem_getwvalue function, 224-225 237, 262, 260,
X7
definition of, 227
apurce code, 270, 278
sem_init function, 224, 238-242, 256, 315, 339,
49, 498
definition of, 239
sem_magic member, 258, 262
ser_nsems member, 282-283, 2U)
gem_num member, 285-286
sem_op member, 285-287
sem_open functon, 19, 22, 25-26, 224-226,
228=2749, 232, 235, 239-240, 142, 256, 258,
260, 263, 265267, 271, 273274, 279, 285,
I26-327, 333, 498, 524
definition of, 225
source code, 258, 264, 271

sem_otime member, 273-274, 262-285, 296
sem_perm structure, 283, 288289
definition of, 282
sem_post function, 11, 90-91, 221-225, 227, 238,
242, 256257, 260, 267, 275, 279, 287, 456, 490
definition of, 227
source code, 261, 268, 276
sem_t datatype, B, 225, 238-240), 242, 256, 258,
2al), 262-263, 265-266, 271, 275, 326
sem_trywaitc function, 224-227, 262, 269, 276,
339
definition of, 226
source code, 270, 277
sem_unlink function, 224-226, 235, 242, 260,
267, 275, 305, 327, 333
definition of, 226
source code, 261, 268, 276
sem_wait function, 221-227, 230, 232, 236, 238,
242, 256, 258, 262, 268-269, 275-278, 279,
287,339, 524-525
definition of, 226
source code, 262, 269, 277
semad] member, 10, 286-287, 294
semaem variable, 37-38, 296
zemaphore.h header, 258, 262, 271
semaphores
between processes, Posix, 256-257
binary, 219, 281
counting, 221, 281
file locking using Posix, 238
file locking using System V, 294296
1D, 271, 2R3, 2490, 300
implementation using FIFOs, Posix, 257-262
implementation using memory-mapped 1/0,
Posix, 262=270
implementation using System V semaphores,
Posix, 271-278
limits, Posix, 257
limits, System V, 296-30
Posix, 219-279
System V, 281-300
sembuf structure, 285-286, 290, 296
definition of, 285
aemctl function, 273-275, 277, 283-284, 287-290,
]
definition of, 287
semget function, 34, 38, 257, 273-275, 282-285,
290, 2%, 526
definition of, 282
semid_ds structure, 2R2-284, 288-290
definition of, 282
semmag: variable, 37
semmni variable, 37-38, 2%

554 UNIX Network Programming

Index

semmna varlable, 37, 206
semmnu variable, 37, 296
semmz1 variable, 37-38, 296
semnent member, 282-283, 286288
aemop function, 273, 275-276, 2R3-287, 290, 294,
296, 492, 525-526
definition of, 285
semopm variable, 37-38, 296
sempid member, 282-283, 288
gemume variable, 37-38, 206
semun structure, 506
definition of, 288
gemval member, 282-283, 286-288
SEMVME constant, 273
semvmx variable, 37-38, 29
semzent member, 282-2H3, 2H6—288
sendmag function, 384
gendto function, 405
seq member, 34-35, 38
sequence number, slot usage, 34
SETYVET
binding, RP'C, 411-414
concurrent, 66—67, 147, 357, 372, 407
creation procedure, 384
duplicate request cache, RPC, 421-424, 451,
532-533
iterative, H6=67, 144, 372, 407-408
stub, 405
server function, 48-4% 54-55,63, 72, 141-142,
144, 144
session, 4
set_concurrency function, 163, 165, 4858
ESETALL constant, 283-284, 288, 290
setgid function, 91
set-group-ID, 26, 198, 205
secpgid function, 91
secrlimit function, 72
setsid function, 91
setaockopt function, 418
getuid function, 91
set-user-10, 26, 205, 369
SETVAL constant, 273, 283-284, 288
setvibuf function, 522
sh program, 52
Shar, ., 180, 536
shared memory, 303-351
1D, 344, 351
limits, System V, 349-351
object, 325
Posix, 325-342
System V, 343-351
shared-exclusive locking, 177
SHM_F constant, 33

SHM_RDOMLY constant, 345
SHM_RND constant, 344
SHM_W constant, 33
shm_atime member, 343
shr_cnatteh member, 343
shrm_cpid member, 343
shm_ctime member, 343, 345
shr_dtime member, 343
shr_lpid member, 343
shm_nattch member, 343, 348
shm_open function, 149, 22, 25, 308, 325-328, 330,
333334, 337, M2-M3
definition of, 326
shm_perm structure, M5
definition of, 343
shm_segsz member, 343
shm_unlink function, 326—327, 329, 333, 337, 342
definition of, 326
shmat function, 343-347, 351
definition of, 344
shmetl function, 345-348, 351
definition of, 345
shmdt function, 345
definition of, 345
shmget function, 34, 38, 343-344, 346349, 351
definition of, 344
shmid_ds structure, 345, 348
definition of, 343
SHMLEA constant, 344
shrmax variable, 3735, 349
shrmin variable, 37-38
shmmnb variable, 349
shmmni variable, 37-38, 349
shmeeyg variable, 37-38, 349
short datatype, XDR, 427
SI_ASYNCIO comstant, 101
53I_MEsGQO constant, 100, 121
SI_QUEUE constant, 101, 104, 121
SI_TIMER constant, 107
SI_USER constant, 101
g2i_rcode member, 101, 104, 121
3i_signo member, 101
si_wvalue member, 101
51G_DFL constant, 106
AIG_IGN constant, 60, 106
sigacticn function, 91,100,105
sigaction structure, definition of, 106
zigaddset function, 91
SIGALEM signal, 100, 106, 396-397, 425
s10GBUS signal, 320
SIGCHLD signal, 48, 149, 391-393, 414
sigdelset function, 9
sigempryset function, %1

UNIX MNetwork Programming

Index 5355

sigev structure, 98
SIGEV_NONE constant, 98
STIGEV_SIGHAL constant, 89, 98, 121
STGEV_THREAD constant, 95, 128
sigev_notify member, B8-89, 98
sigev_nobify_attributas member, 58, 98
sigev_notify_function member, 88,98
sigev_signo member, 88,90
sigev_wvalue member, 88, 98
sigevent structure, B7, 89,491,100, 119, 121
definition of, 88
sigfillset function, 91
sigfune_rt datatype, 103
siginfo_t structure, 95,101,121
definition of, 101
SIGINT signal, 100
STGEIO signal, 256
sigismember function, 91
SIGEILL signal, 100
signal
disposition, 60, 502
handler, 60, 88-91, 93, 95, 98, 100-102, 105=106,
121, 149, 227, 256, 286, 391, 393, 456, 502, 520
mask, 93,95, 384, 502
mull, 121
Posix realtime, 98-106
synchronous, &0
signal functon, 88, 90-91, 105
gignal_rt function, 102, 105-106
source code, 105
sigpause function, 91
zigpending function, %1
SIGPLPE signal, 59-60, 519
zigprocmask function, 91, 93,95, 102
giggueue function, %1, 101, 121
SIGRTMAX signal, 100, 102, 127
STGRTMIN signal, 100, 127
STESEGY signal, 174, 267, 309, 318-320, 526
aigset function, 91
sigsuspend function, 91,93
STGTERM signal, 469
gigtimedwait function, 45
SICUSHL signal, 88-91, 95,95
sigval stmucture, 100=101
definition of, 38
sigwait function, 93-95
definition of, 95
sigwaitinfo function, 95
silver bullet, 453
Simple Mail Transfer Protocol, see SMTD
Single Unix Specification, 15
Sitarama, 5. K., xvi
sival_int member, B8, 102

zival_ptr member, 58
Skowran, K., xvi
sleep function, 91,93, 127, 190, 215, 296, 398, 425,
53
slesp_us function, 339
slot usage sequence number, 34
Smaalders, B., xvi, 180, 536
SMTP (Simple Mail Transfer Protocol), 67
Snader, | C., xvi
snprintf function, 21
socket, Unix domain, 84, 341, 379-380, 384, 456,
459
socket function, 399
socketpair function, 44, 50
sockets APL xiv, % 14, 151, 395—35949, 403, 406,
449-450, 454-455
Solaris, xvii, 15, 20-21, 29, 37, 51, 53, 59, 73, 77-78,
A2, 98, 100, 104, 109, 154, 163, 165, 209-210,
213, 225, 232, 238, 322, 331, 333, 342, 348,
356-357, 362, 367, 370, 384, 398, 403405,
408, 411-413, 424425, 427, 454, 458450,
462=4AR3, 465, 471, 475, 482, 488, 509-510,
517, 520-524
solutions to exercises, 313-334
spuree code
availability, wvi
conventons, 11
Spafford, E. H., 417,535
Spec 1170, 15
spinning, 167
aprintf function, 21
spurious wakeup, 121,170
squareproc_1 function, 402-405, 405, 419, 424
Srinivasan, R., 406, 412, 426, 536
sl_dev member, 28-30
at_gid member, 328
gt_ino member, 28-30
=t _mede member, 21, 44, 115, 267, 328, 367
st_z=ize member, 74, 262, 328
st_uid member, 328
Staelin, C., 458, 536
Stallman, B. M., 13
stamp member, 446
standards, Unix, 13-15
start_time function, 469-470
source code, 470
stat funcHon, 21, 28-29 44, 01, 115, 262, 267, 455,
517
stat member, 449
stat structure, 21, 28-29, 44, 74, 115, 262, 267,
328, 367
definition of, 328
statd program, 216

T

UMNIX MNetwork Programming

Index

Stevens, DL A, xvi
Stevens, E. M., xvi
Stevens, 5. H., xvi
Stevens, W, R., xiv, 536-537
Stevens, W, B, xvi
atop_time function, d6%-470
source code, 470
strehr function, 63
siTeams versus messages, 67-72
strerror function, 4%, 511
string datatype, XDR, 429, 438, 451
strlen function, 429
struct datatype, XDR, 429
stub
client, 403, 405
server, 405
SUCCESS comstant, 447-448
Sun Microsystems, 406
SunlS 4, 316
superuser, 25, 33-34, 216, 369-370, 414, 417
supplementary group ID, 25, 414, 416
gve_create function, 411
gvo_dg_enablecache function, 422
definition of, 422
sve_reg function, 414
sve_redg structure, 409, 415, 422
definition of, 415
sve_run function, 414
sve_tli_create function, 414
SVCXPRT structure, 415
SVMEG_MODE constant, 35
definition of, 508
svmsg.h header, 14, 144
SVR2 (System V Release 2), 198
SVR3 (System V Release 3), 98, 198, 205
SVR4 (System V Release 4), 34, 44, 50-51, 84, 152,
311, 315-317, 322, 359, 379, 384, 456
SVSEM_MODE constant, 274
definition of, 508
SVSHM_MODE constant, definition of, 508
SYN (synchronize sequence numbers flag, TCP
header), 532
synchronization
explicit, 161
implicit, 161
synchronize sequence numbers flag, TCP header,
see SYM
synchromous
procedure call, 356-357, 476
signal, 6
sysconf function, 72-73, B6, 91, 100, 102, 257,
265, 318, 520
sysconfig program, 37, 458

sysconfigdb program, 38
sysdel program, 37
<gys/errno. h> header, 13, 503
<gyg/ipe.he header, 30
ayalog function, 336, 408, 511
<sys/msg.h> header, 33,129,131, 134
<sys/sem, h> header, 33, 282, 288
<sys/shm. h> header, 33, 343
<gya/stat.h> header, 23, 54
systern call, 5, 198, 205, 220, 303, 361, 391, 405, 482
interrupted, 121, 124, 132-133, 149, 151, 227,
279, 286, 391-392, 395, 521, 524-525
slow, 286
system function, 134
System V
IPC, 27-39
[PC identifier reuse, H-36
IPC kernel limits, 36—38
IPC permissions, 31-35, 39, 130-131, 282-283,
343-345
message quene limits, 152-154
message queues, 129-155
message queues with pell funchom, 151-152
message queues with select function,
151-152
Release 2, ser SVR2
Release 3, see SVR3
Release 4, see SVR4
semaphore limits, 296-300
semnaphores, 281-300
semaphores, file locking using, 294-29%
semaphores, used for implementation of Posix
semaphores, 271-27H
shared memory, 343-351
shared memory limits, 349351
SYSTEM_ERE constant, 447-448
<zys/types, h> header, 28

car program, 13
Tavlor, L L., wvi
tedrain function, 91
roflow function, 91
tcflush function, 91
togetattr function, 91
tegetpgrp function, 91
TCP (Transmission Control Protocol), 67, 74, 401,
404=407, 411-412, 418=426, 444—446,
430-451, 454, 4559, 476, 532-533
connection management, RPC, 420
for TransacHons, see T/TCE
three-way handshake, 420
topdump program, 420, 424-425, 533

2
5.

R

L83,

f}_-!‘SE

UNIX Network Programming

Index 557

TCPw1 (TCR/IP Mustrated, Volume 1), xv, 536
TCPwZ (TCP/IP Mustrated, Volume 2, wiv, 537
TCP3 (TCP/IP Mlustrated, Volume 33, xiv, 537
tesendbreak function, 91
tosetattr function, 91
tosetpgrp function, 91
Teer, K., xvi
Telnet (remaote terminal protocol), 336, 399
termination of client
doors, premature, 390-3497
RPC, premature, 424-426
termination of server
doors, premature, 390-397
RPC, premature, 424-426
Thomas, M., xvi
thr_seteconcurrency function, 163
thread_exit function, 391
threads, 5=6, 501-504
attributes, 98, 113, 502, 521, 532
cancellation, 174, 180, 183, 187192, 384, 388,
3953498, 530
concurrency, 163, 165166, 458
detached, U8, 384, 386-38H, 504
I, 502
113, printing, 371
implementation, many-to-few, 163
implementation, M-to-M, 163
implementation, two-level, 163
joinable, 387, 504
main, 93, 190, 235, 388, 488, 490, 502
management, doors, 370-375
priority, 160, 502
start function, 98, 187, 386-387, 502
termination, explicit, 502
termination, implicit, 502
three-way handshake, TCT, 420
Hime
absolute, 171
delta, 171
round-trip, 451, 458
time function, 91
Hmeout, 67,171, 424, 426
and retransmission, RPC, 417-422
TIMECUT constant, 420
timer getoverrun function, 91
cimer_gettime function, 91
cimer_settime function, 91, 101
cimes function, 91
cimespec structure, 171, 508
definition of, 171
cimewval structure, 418—-419, 471, 534
TI-RPC (transport independent RPC), 406-407,
411,421, 446, 533

TLI iTransport Laver Interfacel, AP, 406
touch function, 467, 470

source code, 4710
transaction 1D, see XID
Transmission Control Protocol, see TCP
transport independent RPC, see TI-RPC
Troff, xvil
TREUE constant, 409, 418, 420, 435, 439, 441, 444
T/TCP{TCP for Transactions), 537
Tucker, A, =vi
tv_nzes member, 171, 508
tv_ses member, 171, 508
tw_zub function, 471

spurce code, 471
two-level thread implementation, 163
typedef datatvpe, XDR, 427
typing

explicit, 426

immplicit, 416

UDFP {User Datagram Protocol), 68, 74, 83, 246,
347, 407, 405-407, 411-414, 415-425,
445447, 450452, 454-455, 459, 476,
532-534

uid member, 33-34, 131, 134, 283, 288, 345, 446

uintB_t datatype, 509

ulimit program, 72-73

umask function, 23, 91

umask program, 23, 39

un_lock function, definition of, 202

uname function, 91

uniform resource locator, see URL

unicn datatype, XDR, 429

<unistd. h= header, 8, 86, 173, 257

Umnix

05, 15

OH, 8, 16, 33-34, 36, 44, B4, 00, 129, 159, 163, 173,
178, 192, 205, 282, 284, 288, 364, 454, 468, 452,
488, 526, 536

98, definition of, 15

authentication, 414

Columbus, 28

domain socket, 84, 341, 379-380, 384, 456, 459

Specification, Single, 15

standards, 13-15

System II1, 43, 198

Version 7, 08, 198

versions and portability, 15

unlink functon, 56, 58, 77,91, 115, 117, 214-2186,
226, 260, 267, 275, 327, 342, 359, 376

unpipc.h header, 21, 55, 105, 111, 274, 288,
505-508

source code, 505

UNIX Network Programming

Index

UNPv1 (UNIX Network Programming, Volume 11,
xiv, 537
unsigned char datatype, XDR, 427
unsigned hyper datatype XDR, 427
unaigned int datatype, XDR, 427
unsigned long datatype, XDR, 427
unsigned short datatype, XDR, 427
URL {uniform resource locator), 535
Usenet, iii
User Datagram Protocol, see LIDP
user [0, 328, 397, 413, 417, 502
effective, 23, 25, 33-34, 84, 131, 283, 365,
369-370, 414, 416, 515
real, 365, 360
UTC (Coordinated Universal Time), 171
utime function, 91
UUCE, 198

va_arg function, 111, 260
va_mode_t datatype, 111, 260, 263, 273
definition of, 508
va_start function, 260
Vahalia, U., 311, 537
wal member, 288
wallse function, 467-468
varf member, 4d6-447
verifier, 417, 446, 449, 533
vera member, 446
vi program, xvii, 13
vold dattype, 503-504

wait function, 91, 413-414
Wait, . W., xvi
waiting, locking versus, 165-167
waitpid funchon, 48, 73,91, 149,503
wakeup, spurious, 121, 170
we program, 161
well-known
key, 147
pathname, 60, 215
White, J. E., 406, 337
Wolff, B, swvi
Wolff, 5., xvi
wrapper function, 11-13
source code, Prhread_mutex_lock, 12
source code, Select, 521
source code, Sem_post, 11
Wright, G. R, xiv, xvii, 537

write Function, 5,43, 52, 54, 59-60, 65, 83, 90-91,
G5, 98, 142, 161, 200, 204205, 207, 249, 260,
263, 278, 304, 310-311, 315, 317, 322, 327, 399,
405, 435, 451, 456—457, 467, 469, 471, 482, 515,
519, 522-526, 528

write_lock function, definition of, 202

writew_lock function, 495

definition of, 202

XDE (external data representation), 403, 406,
426h=444, 450, 332-534
datatypes, 427-430
fragment, 444
XDE datatype, 432
¥DOR_DECODE constant, 435
¥DF_ENCODE constant, 432, 435
wdr_data function, 432, 435, 532
xdr_free function, 410, 435, 452
wdr_getpeos function, 435
wdr_string function, 435 532
xdr_woid function, 534
wdrmem_create funchion, 432, 435, 451-452
Xenix, 198
Kerox, 406
XID (transaction [0, 420-422, 532-533
xid member, 446
X/Open, 14,198
Portablity Guide, ser XPPG
Transport Interface, see XTI
_XOPEN_REALTIME constant, 9
XPG (X/Open Portablity Guide), 15, 198, 284, 4id
XTI (X/Open Transport Interface}l, API, 14, 151,
308309, 403, 406, 413-414, 424, 449-450, 455

yace program, 13

zombie, 48, 149

e i A LA AT

P i e R o o S P A T

Function prototype page
bool t elnt_comtrel [CLIENT *¢l, unsigned int reguest, char "pirls 414
CLIENT *elnt_createiconst char *host, unsigned long progem,

unsigned long versmum, const char *profocol}; 41
void elnt destroy (CLIENT *cl); 420
int door bindiint fil}; FH]
int deor_calliint f, door_arg t “argpl; a1
int door create(Door_server_proc *proc, woid *ooeke, u int abtr); 383
int deeor cred(door_cred t tored] 365
int door_infoiint fd, door_info_r *mfol; 363
int door return{char *dgtaplr, size_t datasize, door_desc_t *descplr, size t ndescl ;365
int door rewvoks|int fd); ol
Door_oreate_proc *door server create|loor_create proc proch ; E-)
int door_unbind(wvoid); ¥}
void err dumpiconst char <fm, .05 512
void err_meglconst char *fmf, ...): 512
void err guit{const char *fmf, ...} =1 4
void err_reelconst char “fmb, ...1: 511
weid err_sys|const char *fmf, ...} 511
int featliint fd, int comd, ... /* struct Elock “arg %/): 19%
ire fptatiint fil, struct stat *huf); 123
kev t ftoki{censt char *pathmame, int idi; 8
int ftruncateiint fd, cff_t lemgihl; vy
int mkfifolconst char *pathname, mode_t mode) ; B
void ‘mmaplvoid *addr, size_t len, int prof, int flags, int fd. off_t offset); 1]
int mayne|void *addr, size_t len, int flagsi; 30
int munmapivoid *addr, size_t lem); e

int mg close(mgd_t mgdest;

int mg getattrimgd_t mgdes, struct mgattr “alr); 4
int mg netify(mgd_t mgdes, const struct sigevent Tmolification) 87
mod_t mg openiconst char ‘meme, int aflag, ...

/* mode t mode, struct mg_attr *attr */); 76
saize t myg recelwe(mgd_t mgdes, char *pir, size_t len, unsigned int *priop) 53
int mg sendimgd_t mgdes, const char *ptr, size_t lem, unsigned int prid ; B3
int mg setattrimgd_t mgdes, const struct mgattr talfr, struct mgoatts “oatfr} ; 9
int mg unlinkiconst char *name) T
int megetllint msqid, int emd, struct megid ds vbuff); 13
int megget (key_t key, int oflag 130
csize r megroviint msgid, void *pir, size_t lemgth, long fype, int fag) ; 132
int magend{int msgid, const void Tptr, size_t length, inv flag) 131
int pelose|FILE *stream) ; =2
int pipelinc fd(2)); 4

FILE +popen const char *command, const char *fype) ; 5

e
T S
T
i £
T

Function pr-:_:nh:l-type page
int pthread cancelipthread_t fid); 187
void pthread cleanup popint cxecute] ; 187
vold pthresd cleasup_push(void (*function) (vold *}, woid farg); 187
int pthread create(pthread t *hid, const pthread attr_t “atlr,
woid *{*func) (void *), woid *argl: 502
int pthread detachipthread_t fid); 504
void pthread esit (void *stalus) ; 504
int pthread_jeinipthread_t tid, void **stalfus): 503
prhread_t pthread selfivoid): 503
int pthread condattr destroyipthread condattr t *altr) ; 172
int pthread condattr getpshared const pthread condattr t© waitr, int *waipir}; 173
int pthread condattr init|pthread_condattr_t *alfr); 172
int pthread_condattr_setpshared|pthread_condattr b =attr, int alue) : 173
int pthread cond broadcast (pthread cond_t *opir); 171
int pthread cond destroy|pthread cond_t *opfr); 172
int pthread eond_init (pthread cond_t =opfr, const prhread_condatty_t *athr) ; 172
int pthread cond_signal (pthread cond_t *cpir} 167
int pthread cond timedwalr (pthread_cond_t *cpir, pthread mutex_t “mpir,
const struct timespec *abstime) ; 171
int pthread cond_wait {pthread_vond_t “gpir, pthread mutex t *mpir}; 167
int pthread mutexattr destroy|pthread mutexattr L “abirl: 172
int pthread mutexattr getpshared|const pthread mutexattr_t *altr, int *oalplry ; 173
int pthread mutexattr init (pthread mutexattr_t *atlr) ; 172
int pthread mutexattr setpshared|pthread mutexattr_t “atfr, int malug) ; 173
int pthread mutex destroy (prhread mubtex_t *wmiprl 172
int pthread mutex init(pthread mucex_t *mplr, const pthread mutexattr © *aftr] : 172
int pthread mutex lock{pthread mutex b Tmpir): 1640
int pthread_mutes trylock|pthread mutex_t Tmpir) ; 160
int pthread sutex unleck (pthread mutex t *mplrl; 160
int pthread rwlockattr destroy|pthread rwlockattr_ t "allr]: 1 17e
int pthread rwlockattr getpshared|const pthread rwlockattr_t “attr, int <oalptr): 179
int pthread rwlockattr initipthread rwlockattr_t <atlr}; 179
int pthread_rwlockattr setpshared (pthread rwlockattr_t *alfr, int walue) ; 179
int pthread rwleck destroy pthread_rwlock_ t *rupir); 179
int pthread rwlock init (pthread_rwlock_ T *ruplr,
const pthread_rwlockattr_t *allr); 179
int pthread rwlock rdlockipthread rwlock t “ruwpir); 178
int pthread rwlock tryrdleck(pthread rwlock t *rapfr); 178
int pthread_rwlock_ trywrleck (pthread rwlock t =rupfr); 178
int pthread rwlock unlock (pthread rwleck t *ruptr); 178

int pthread rwlock wrleck (pthread_rwlock_ t *rupir]; 178

Function prototype — page
long pr_thread id|pthread t wptr) an
char *pa_ipc_name|const char *mame) ; 21
int sem close|sem £ “Scmii ‘ 226
int sem_destroy|sem_L *aem] 239
inr sem_getvalue[sem _t “SeM, int *valpli 227
int wem_indtisem_tr Y, int shored, unsigned int value) ; 239

sem_t Teem open|const char mame, int oflag, .- -
/* mode_t mode, unsigned int palue *F) 225

int sem post (sem L *seml; 227
int msem trywait|sem L =seml 26
int wsem unlink[const char Fnane) ; 226
int gem walt(sem_r TSeW); 226
int sametliint seid, Ant semnu, int emd, ... {* union semun arg ! 13 IETF
int memget(key_t key, int maems. int oflagl : 282
int semoplint semid, struct sembuf *opsplr, size_t nopsl; 285
int shm_openiconst char pame, int oflag, mode T mHode) 320
int shm unlink{const char “mAme); 326
void *shmat(int shmid, const void *shmaddr, int flag): 344
int shmetllint shmid, int omd, struct chmid_ds *buff) 35
int shmdt(const void «shmaddr 345
int shmget (key t key, size t gize, int oflag); 344
;:qfum:'_rt *gignal_rtint signo. sigfunc_rt =funcl; 105
int smigwaiticonst sigset_t “sel, int "sigl; 95
int start_time(void): 470
double thp_tmwoid}: 470
int 1w,ﬂn_mh1-cn=hu[svcx1=m *xprt, unsigned long size) ; 422
int touchivoid Tuplr, int ningtes) ; 470

woid tv_sub(stract cimewal T=ouf, struct timeval Tl 47

|

EYERENE Y

Structure Definitions

accepted_reply
authsys_parms

call_beody

d_desc
door_arg_=t
door_cred_t
door_desc_t
door_info_t

flock
ipc_perm

mismatch_info
mg_attr
maghbuf
meg_perm
msgid_ds

447
416

3

FELTE

g

447

2

13
129
129

opagque_auth

rejected_reply
reply_body
rpo_msg

Sem
sembu f
semid_ds
Sem_pDerm
Semun
shmid_d=
shm_perm

sigaction

sigevent

siginfo_t
sigval
stat
sve_redqg

timespec

416
449
447

282
285
282
M3
106

101

328
415

171

