
Challenges on Distributed Web Retrieval

Ricardo Baeza-Yates1,2, Carlos Castillo1, Flavio Junqueira1, Vassilis Plachouras1, Fabrizio Silvestri3

1Yahoo! Research Barcelona 2Yahoo! Research LA 3 ISTI - CNR

Barcelona, Spain Santiago, Chile Pisa, Italy

{chato,fpj,vassilis}@yahoo-inc.com ricardo@baeza.cl f.silvestri@isti.cnr.it

Abstract

In the ocean of Web data, Web search engines are the pri-

mary way to access content. As the data is on the order of

petabytes, current search engines are very large centralized

systems based on replicated clusters. Web data, however,

is always evolving. The number of Web sites continues to

grow rapidly and there are currently more than 20 billion

indexed pages. In the near future, centralized systems are

likely to become ineffective against such a load, thus sug-

gesting the need of fully distributed search engines. Such

engines need to achieve the following goals: high quality

answers, fast response time, high query throughput, and

scalability. In this paper we survey and organize recent re-

search results, outlining the main challenges of designing a

distributed Web retrieval system.

1 Introduction

A standard Web search engine has two main parts [1].

The first part, conducted off-line, fetches Web pages

(crawler) and builds an index with the text content (indexer).

The second part, conducted online, processes a stream of

queries (query processor). From the user’s perspective,

there are two main requirements: a short response time and

a large Web collection available in the index. Given the

large number of users having access to the Web, these re-

quirements imply the necessity of a hardware and software

infrastructure that can index a high volume of data and that

can handle a high query throughput. Currently, such a sys-

tem comprises a cluster of computers with sufficient capac-

ity to hold the index and the associated data. To achieve the

desired throughput, several clusters are necessary.

To get an idea of such a system, suppose that we have 20

billion (20 × 109) Web pages, which suggests at least 100

terabytes of text or an index of around 25 terabytes. For

efficiency purposes, a large portion of this index must fit

into RAM. Using computers with several gigabytes of main

memory, we need approximately 3,000 of them in each clus-

ter to hold the index. As for response time, large search

engines answer queries in a fraction of a second. Suppose

a cluster that can answer 1,000 queries per second, using

caching and without considering other system overheads.

Suppose now that we have to answer 173 million queries per

day, which implies around 10,000 per second on peak times.

We then need to replicate the system at least 10 times, ignor-

ing fault tolerance aspects or peaks in the query workload.

That means we need at least 30,000 computers overall. De-

ploying such a system may cost over 100 million US dol-

lars, not considering the cost of ownership (people, power,

bandwidth, etc.). If we go through the same exercise for the

Web in 2010, being conservative, we would need clusters of

50,000 computers and at least 1.5 million computers, which

is unreasonable.

The main challenge is hence to design large-scale dis-

tributed systems that satisfy the user expectations, in which

queries use resources efficiently, thereby reducing the cost

per query. This is feasible as we can exploit the topology

of the network, layers of caching, and high concurrency.

However, designing a distributed system is difficult because

it depends on several factors that are seldom independent.

Designing such a system depends on so many considera-

tions that one poor design choice can affect performance ad-

versely or increase costs. For example, changes to the data

structures that hold the index may impact response time.

In this paper we discuss the main issues with the design

of a distributed Web retrieval system, including discussions

on the state of the art. The paper is organized as follows.

First, we present the main goals and high-level issues of a

Web search engine (Section 2). The remaining sections are

divided up by the main system modules: crawling (Section

3), indexing (Section 4) and querying (Section 5). Finally,

we present some concluding remarks.

2 Main Concepts and Goals

The ultimate goal of a search engine is to answer queries

well and fast using a large Web page collection, in an en-



Table 1. Main modules of a distributed Web retrieval system, and key issues for each module.
Partitioning Communication Dependability External

(synchronization) factors

Crawling (Sec. 3) URL assignment Re-crawling URL exchanges

Web growth,

Content change,

Network topology,

Bandwidth, DNS,

QoS of Web servers

Indexing (Sec. 4)
Document partitioning,

Term partitioning
Re-indexing

Partial indexing,

Updating,

Merging

Web growth,

Content change,

Global statistics

Querying (Sec. 5)

Query routing,

Collection selection,

Load balancing

Replication,

Caching

Rank aggregation,

Personalization

Changing user needs,

User base growth,

DNS

vironment that is constantly changing. Such a goal implies

that a search engine needs to cope with Web growth and

change, as well as growth in the number of users and vari-

able searching patterns (user model). For this reason, the

system must be scalable. Scalability is the ability of the

system to process an increasing workload as we add more

resources to the system. The ability to expand is not the

only important aspect. The system must also provide high

capacity, where capacity is the maximum number of users

that a system can sustain at any given time, given both re-

sponse time and throughput goals. Finally, the system must

not compromise quality of answers, as it is easy to output

bad answers quickly. These main goals of scalability, ca-

pacity, and quality are shared by the modules of the system

as detailed below.

• The crawling module downloads and collects relevant

objects from the Web. A crawler must be scalable,

must be tolerant to protocol and markup errors, and

above all must not overload Web servers. A crawler

should be distributed, efficient with respect to the use

of the network, and prioritize high-quality objects.

• The indexing module has two tasks: partitioning the

crawled data, and (actual) indexing. Partitioning con-

sists in finding a good allocation schema for either doc-

uments or terms into the partition of each server. In-

dexing, as in traditional IR systems, consists in build-

ing the index structure. Parallel hardware platforms

can be exploited to design and implement efficient al-

gorithms for indexing documents.

• The query processing module processes queries in a

scalable fashion, preserving properties such as low re-

sponse time, high throughput, availability, and quality

of results.

As shown in Table 1, there are four high-level issues that

are common to all modules, all of them crucial for the scal-

ability of the system: partitioning, dependability, commu-

nication, and external factors.

Partitioning deals with data scalability, and communi-

cation deals with processing scalability. A system is de-

pendable if its operation is free of failures. Dependability is

hence the property of a system that encompasses reliability,

availability, safety, and security. The external factors are the

external constraints on the system. We use these issues to

subdivide each of the remaining sections.

3 Distributed Crawling

Implementing a Web crawler does not seem to be a very

difficult issue as the basic procedure is simple to under-

stand: the crawler receives a set of starting URLs as in-

put, downloads the pages pointed to by those URLs, extracts

new URLs from those pages, and continues this process re-

cursively. In fact, many software packages (e.g., wget) im-

plement this functionality with a few hundred lines of code.

The operation of a large-scale Web crawler, however,

may not be quite so straightforward because it consumes

bandwidth and processing cycles of other systems. In fact,

“running a crawler which connects to more than half a mil-

lion servers (...) generates a fair amount of email and phone

calls” [2]. Web crawlers can have a detrimental effect on the

network if they are deployed without taking into account a

set of operational guidelines to minimize their impact on

Web servers [3].

The most important restriction for a Web crawler is to

avoid overloading Web servers. De facto standards of op-

eration state that a crawler should not open more than one

connection at a time to each Web server, and should wait

several seconds between repeated accesses [4]. To enable

scaling to millions of servers, large-scale crawling requires

distributing the load across a number of agents while still

respecting these constraints.



A distributed crawler1 is a Web crawler that operates si-

multaneous crawling agents [5]. Each crawling agent runs

on a different computer, and in principle some agents can

be on different geographical or network locations. On every

crawling agent, several processes or execution threads run-

ning in parallel keep (typically) several hundred TCP con-

nections open at the same time.

Partitioning A parallel crawling system requires a policy

for assigning the URLs that are discovered by each agent,

as the agent that discovers a new URL may not be the one in

charge of downloading it. All crawling agents have to agree

upon such a policy at the beginning of the computation.

To avoid downloading more than one page from each

server simultaneously, the same agent is responsible for all

the content of a set of Web servers in most distributed crawl-

ing systems. This also enables exploiting the locality of

links, that is, the fact that most of the links on the Web point

to other pages in the same server makes it unnecessary to

transfer those URLs to a different agent.

An effective assignment function balances the load

across the agents such that each crawling agent gets ap-

proximately the same work load [6]. In addition, it should

be dynamic with respect to agents joining and leaving the

system. Another important feature of such an assignment

function is the reduction on the load of servers as we add

more agents to the pool. Such a feature enables a scalable

crawling system.

A trivial, but reasonable assignment policy is to use

hashing to transform server names into a number that cor-

responds to the index of the corresponding crawling agent.

Such a policy, however, does not consider the number of

documents on servers. Hence, the resulting partition may

not balance the load properly across crawling agents.

Dependability One of the issues with a policy for dis-

tributing the work of a crawler is how to re-distribute the

work load when a crawling agent leaves the pool of agents

(voluntarily or due to a failure). A solution could be re-

hashing all the servers to re-distribute them to agents, al-

though this increases message complexity for the communi-

cation among agents. The authors of [6] propose to use con-

sistent hashing, which replicates the hashing buckets. With

consistent hashing, new agents enter the crawling system

without re-hashing all the server names. Under such assign-

ment function, we guarantee that no agent downloads the

same page more than once, unless a crawling agent termi-

nates unexpectedly without informing others. In this case, it

is then necessary to re-allocate the URLs of the faulty agent

to others.

1Also named parallel crawler in the literature.

Web crawlers require large storage capacity to operate,

and failure rates that may be negligible for individual hard

disks have to be taken into account when using large storage

systems. In a Web-scale data collection, disk failures will

occur frequently enough and the crawling system must be

tolerant to such failures.

Communication (synchronization) Crawling agents

must exchange URLs, and to reduce the overhead of

communication, these agents exchange them in batches,

i.e., several URLs at a time. Additionally, crawling agents

can have as part of their input the most cited URLs in the

collection. They can, for example, extract this information

from a previous crawl [5]. This information enables a

significant reduction on the communication complexity due

to the power-law distribution of the in-degree of pages. In

this way, agents do not need to exchange URLs found very

frequently.

Given that an agent crawls several Web servers, it is pos-

sible to reduce communication costs even further by hav-

ing all the servers assigned to the same agent topologically

“close” in the Web graph and sharing many links among

them.

A different issue is the communication between the

crawler and the Web servers. The Web crawler is con-

tinuously polling for changes in the Web pages, and this

is inefficient. A way around this problem is to use the

HTTP If-modified-since header to reduce, but not

to eliminate, the overhead due to this polling. This could

be improved if the Web server informs the crawler of the

modification dates and modification frequencies for its lo-

cal pages. There have been several proposals in this direc-

tion [7, 8, 9], and recently three of the largest search engines

agreed on a standard for this type of server-crawler cooper-

ation (http://www.sitemaps.org/).

External factors DNS is frequently a bottleneck for the

operation of a Web crawler (e.g., because it has to submit

a large number of DNS queries [10, 11]). This is partic-

ularly important because the crawler does not control the

DNS servers it probes. A common solution is to cache DNS

lookup results.

Another important consideration is that servers on the

Web are often slow, and some go off-line intermittently or

present other transient failures. A distributed Web crawler

must be tolerant to transient failures and slow links to be

able to cover the Web to a large extent [12], where coverage

is the percentage of pages obtained by crawling among all

pages available on the Web.

The network topology can also be a bottleneck. To

solve this problem, we can carefully distribute Web crawlers

across distinct geographic locations [13]. This optimization



problem has many variables, including network costs at dif-

ferent locations and the cost of sending data back to the

search engine. In this scenario, part of the indexing (or at

least, part of the parsing) should also be distributed before

creating a central collection.

In practice, the Web is an open environment, in which the

crawler design cannot assume that every server will comply

strictly with the standards and protocols of the Web. There

are many different implementations of the HTTP protocol,

and some of them do not adhere to the protocol correctly

(e.g., they do not honor Accept or Range HTTP head-

ers). At the same time, there are many pages on the Web for

which the HTML code was either written by hand or gen-

erated by software that does not adhere to the HTML spec-

ification correctly, so it is very important that the HTML

parser is tolerant to all sort of errors in the crawled pages.

4 Distributed Indexing

Indexing in IR is the process of building an index over a

collection of documents. Typically, an inverted index is the

reference structure for storing indexes in IR systems [1]. A

vanilla implementation consists of a couple of data struc-

tures, namely the Lexicon and the Posting Lists. The for-

mer stores all the distinct terms contained in the documents.

The latter is an array of lists storing term occurrences within

the document collection. Each element of a list, a posting,

contains in its minimal form the identifier of the document

containing the terms. Current inverted index implementa-

tions often keep more information, such as the number of

occurrences of the term in each document, the position, the

context in which it appears (e.g., the title, the URL, in bold).

Depending on how the index is organized, it may also con-

tain information on how to efficiently access the index (e.g.,

skip-lists).

In principle, we could represent a collection of docu-

ments with a binary matrix (D × T ), where rows repre-

sent documents and columns represent terms. Each element

(i, j) is “1” if the document i contains term j, and it is “0”

otherwise. Under this model, building an index is thus sim-

ply equivalent to computing the transpose of the D × T
matrix. The corresponding T × D matrix is then processed

to build the corresponding inverted index. Due to the large

number of elements in this matrix for real Web collections

(millions of terms, billions of documents), this method is

often not practical.

Indexing can also be considered as a “sort” operation

on a set of records representing term occurrences. Records

represent distinct occurrences of each term in each distinct

document. Sorting efficiently these records using a good

balance of memory and disk usage, is a very challenging

operation. Recently it has been shown that sort-based ap-

proaches [14], or single-pass algorithms [15], are efficient

in several scenarios, where indexing of a large amount of

data is performed with limited resources.

In the case of Web Search Engines, data repositories are

extremely large. Efficiently indexing on large scale dis-

tributed systems adds another level of complexity to the

problem of sorting, which is challenging enough by itself. A

distributed index is a distributed data structure that servers

use to match queries to documents. Such a data structure

potentially increases the concurrency and the scalability of

the system as multiple servers are able to handle more op-

erations in parallel. Considering the T × D matrix, a dis-

tributed index is a “sliced”, partitioned version of this ma-

trix. Distributed indexing is the process of building the in-

dex in parallel using the servers available in a large-scale

distributed system, such as a cluster of PCs.
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Figure 1. The two different types of partition­

ing of the term­document matrix.

According to the way servers partition the T ×D matrix,

we can have two different types of distributed indexes (Fig-

ure 1). We can perform a horizontal partitioning of the ma-

trix. This approach, widely known as document partition-

ing, means partitioning the document collection into several

smaller sub-collections, and building an inverted index on

each of them.

Its counterpart approach is referred to as term partition-

ing and consists of performing a vertical partitioning of the

T × D matrix. In practice, we first index the complete col-

lection, and then partition the lexicon and the corresponding

array of posting lists. The disadvantage of term partitioning

is having to build initially the entire global index. This does

not scale well, and it is not useful in actual large scale Web

search engines. There are, however, some advantages of

this approach in the query processing phase. Webber et al.

show that term partitioning results in lower utilization of re-



sources [16]. More specifically, it significantly reduces the

number of disk accesses and the volume of data exchanged.

Although document partitioning is still better in terms of

throughput, they show that it is possible to achieve even

higher values.

The major issue for throughput, in fact, is an uneven

distribution of the load across the servers. Figure 2 (orig-

inally from [16]) illustrates the average busy load for each

of the 8 servers of a document partitioned system (left) and

a pipelined term partitioned system (right). The dashed line

in each of the two plots corresponds to the average busy

load on all the servers. In the case of the term partitioned

system (using a pipeline architecture), there is an evident

lack of balance in the distribution on the load of the servers,

which has a negative impact on the system throughput. To

overcome this issue, one could try to use “smart” partition-

ing techniques that would take into account estimates of the

index access patterns to distribute the query load evenly.

Note that load balance is an issue when servers run on

homogeneous hardware. When this is the case, the capacity

of the busiest server limits the total capacity of the system.

If load is not evenly balanced, but the servers run on het-

erogeneous hardware, then load balance is not a problem if

the load on each server is proportional to the speed of its

hardware.

Partitioning How to partition the index is the first deci-

sion one should make when designing a distributed index.

In addition to the scheme used, the partition of the index

should enable efficient query routing and resolution. More-

over, being able to reduce the number of machines involved,

together with the ability of balancing the load, enables an

increase in the system’s ability to handle a higher query

workload.

A simple way of creating partitions is to select ele-

ments (terms or documents) at random. For document par-

titioning, a different, more structured approach is to use k-

means clustering to partition a collection according to top-

ics [17, 18].

Although document and term partitioning have been

widely studied, it is still unclear on the circumstances under

which each one is suitable. Moreover, it is unclear which

are good methods to evaluate the quality of the partition-

ing. To date, the TREC evaluation framework has served

this purpose. In large-scale search engines, however, the

evaluation of retrieved results is difficult.

Partitioning potentially enhances the performance of a

distributed search engine in terms of capacity as follows.

In the case of document partitioning, instead of using all

the resources available in a system to evaluate a query, we

select only a subset of the machines in the search cluster

that ideally contains relevant results. The selected subset

would contain a portion of the relevant document set. How-

ever, the ability of retrieving the largest possible portion of

relevant documents is a very challenging problem usually

known as collection selection or query routing. In the case

of term partitioning, effective collection selection is not a

hard problem as the solution is straightforward and consists

in selecting the server that holds the information on the par-

ticular terms of the query. Upon receiving a query, we will

forward it only to the servers responsible for maintaining

the subset of terms in the query.

The scale and complexity of Web search engines, as well

as the volume of queries submitted every day by users, make

query logs a critical source of information to optimize pre-

cision of results and efficiency of different parts of search

engines. Features such as the query distribution, the arrival

time of each query, the results that users click on, are a few

possible examples of information extracted from query logs.

The important question to consider now is: can we use,

exploit, or transform this information to enable partition-

ing the document collection and routing queries more effi-

ciently and effectively in distributed Web search engines?

In the past few years, using query logs to partition the doc-

ument collection and query routing has been the focus of

some research projects [19, 20].

For a term partitioned IR system, the major goal is to

partition the index such that:

• The number of contacted servers is minimal;

• Load is equally spread across all available servers.

For a term partitioned system, Moffat et al. [21] show

that it is possible to balance the load by exploiting infor-

mation on the frequencies of terms occurring in the queries

and postings list replication. Briefly, they abstract the prob-

lem of partitioning the vocabulary in a term partitioned sys-

tem as a bin-packing problem, where each bin represents

a partition, and each term represents an object to put in

the bin. Each term has a weight which is proportional to

its frequency of occurrence in a query log, and the corre-

sponding length of its posting list. This work shows that the

performance of a term partitioned system benefits from this

strategy since it is able to distribute the load on each server

more evenly. Experimental results show that the document

partitioned system achieves higher throughput than the term

partitioned system, even when considering the performance

benefits due to the even distribution of load. Similarly, Luc-

chese et al. [22] build upon the previous bin-packing ap-

proach by designing a weighted function for terms and par-

titions able to model the query load on each server. In the

original bin-packing problem we simply aim at balancing

the weights assigned to the bins. In this case, however, the

objective function depends both on the single weights as-

signed to terms (our objects), and on the co-occurrence of

terms in queries. The main goal of this function is to as-



Figure 2. Distribution of the average load per processor in a document partitioned, and a pipelined

term partitioned IR systems [16].

sign co-occurring terms in queries to the same index parti-

tion. This is important to reduce both the number of servers

queried, and the communication overhead on each server.

As this approach for partitioning IR systems requires build-

ing a central index, it is not clear how one can build a scal-

able system out of it.

For document partitioned systems, there has not been

much work on the problem of assigning documents to par-

titions. The majority of the proposed approaches in the

literature adopt a simple approach, where documents are

randomly partitioned, and each query uses all the servers.

Distributing documents randomly across servers, however,

does not guarantee an even load balance [23].

The major drawback of document partitioned systems is

that servers execute several operations unnecessarily when

querying sub-collections, which may contain only few or

no relevant documents. Thus far, there are few papers dis-

cussing how to partition a collection of documents to make

each collection “well separated” from the others. Well sepa-

rated, in this context, means that under such partition, each

query maps to a distinct collection containing the largest

number of relevant documents possible. To construct such

a mapping, one can use, for example, query logs. Puppin

et al. [19] use query logs and represent each document with

all the queries that return that document as an answer. This

representation enables the use of a co-clustering algorithm

to build clusters of queries and clusters of documents. The

result of this co-clustering step is then used to both partition

the collection using document clusters, and to build a col-

lection selection function using both query and document

clusters. Their results show that using this technique, they

are able to outperform the state-of-the-art model, namely

CORI [24], that is currently the best known collection se-

lection function for textual documents. CORI is only based

on information contained within the collection, whereas the

technique by Puppin et al. has the advantage of partitioning

based on a model built upon usage information that is prob-

ably valid for future queries. Another interesting result of

this paper is that not only query logs enable an effective par-

titioning of a collection, but also that it is possible to iden-

tify a subset of documents that future queries are unlikely

to recall. In the paper they show that this subset comprises

53% of the documents.

This partitioning scheme, however, considers neither

content nor linkage information. Thus, this research di-

rection sounds promising, although there are still important

open questions. For instance, collection selection might in-

troduce in the document partitioning scheme the problem

of load unbalance. Designing the collection partitioning al-

gorithm not only to reduce the number of servers involved

in the evaluation of a query, but also to balance the overall

load is still an open issue.

To this point, we discussed issues and challenges related

to the partitioning of the index. Building an index in a dis-

tributed fashion is also an interesting and challenging prob-

lem. So far, very few papers suggest approaches to build

an index in a distributed fashion. For example, a possible

approach to create an index in a distributed fashion is to or-

ganize the servers in a pipeline [25]. Alternatively, Dean et

al. [26] propose a traditional parallel computing paradigm

(map-reduce) and show how to build an index using a large

cluster of computers. This is the area in which research has

not been particularly active recently, perhaps because ex-

isting techniques already achieve good results in practice.

To the best of our knowledge, testing these techniques ex-

tensively on large document collections has not been per-



formed, and it is an important problem to verify that the

results match the expectations.

Dependability Distributed indexing by itself is not a crit-

ical process. The proper functioning of a search engine,

however, depends upon the existence of the index structures

that enable query resolution. For example, if enough index

servers fail and it is not possible to access index data to re-

solve a query, then the service as a whole has also failed,

although other parts of the system may be working prop-

erly. Another issue with dependability is the update of the

index. In systems in which it is crucial to have the latest

results for queries and content changes very often, it is im-

portant to guarantee that the index data available at a given

moment reflects all the changes in a timely fashion.

There are some dependability issues with partitioning

schemes. In term partitioned systems if a server of the sys-

tem fails, then it is impossible to recover the content of that

server unless it is replicated. If this is not the case, then

a possible inefficient way to recover is to rebuild the en-

tire index. Another possibility would be to make the parti-

tions partially overlapping such that if a server fails, at least

the others will be able to answer queries. Document parti-

tioned systems are more robust with respect to servers fail-

ures. Suppose that a server fails. The system might still be

able to answer queries without using all the sub-collections,

possibly without losing too much effectiveness. The de-

pendability issues are not really well studied in the field of

distributed systems for IR. An accurate analysis using real

system traces may clarify these points.

Communication (synchronization) In a large search en-

gine, there are hundreds of thousands to millions of queries

a day. Logging these actions and using these query logs

effectively is challenging because the volume of data is ex-

tremely high. Thus, moving this data from server to server

is rarely a possibility due to bandwidth limitations.

Dealing with such a problem is important because the

user model with which the engine is currently operating

may not correspond to the reality. If we discover, for ex-

ample, that the distribution of queries has changed, then the

system should adapt to the new one and partition the index

again to reflect the up-to-date distribution of queries. With

respect to the index, a simple and straightforward approach

is to halt a part of the index, substitute it and re-initiate. This

constraint, however, is not a problem for the correct behav-

ior of the underlying search engine, although it reduces ca-

pacity temporarily.

User model becoming inaccurate is an issue on its own.

Since user behavior changes over time, one should be able

to update the model accordingly. A simple approach is to

schedule updates of the model at fixed time intervals. The

question now is how frequently we need to update it. Re-

call that a higher update frequency implies a higher network

traffic and a lower query processing capacity. Ideally, the

system adapts to variations of the underlying model when-

ever they occur.

The indexing process is subject to distributed merge op-

erations. A practical approach for achieving this goal is a

primitive map-reduce [26]. Such a primitive, however, re-

quires a significant amount of bandwidth if different sites

execute operations independently. In this case, a good

mechanism for such merge operations must consider both

the communication and computational aspects.

In practical distributed Web search engines, indexes are

usually rebuilt from scratch after each update of the un-

derlying document collection. It might not be the case for

certain special document collections, such as news articles,

and blogs, where updates are so frequent that there is usu-

ally some kind of online index maintenance strategy. This

dynamic index structure constrains the capacity and the re-

sponse time of the system since the update operation usually

requires locking the index using a mutex thus possibly jeop-

ardizing the whole system performance. A very interesting

problem is the one of understanding whether it is possible to

safely lock the index without experiencing too much loss of

performance. This is even more problematic in the case of

term partitioned distributed IR systems. Terms that require

frequent updates might be spread across different servers,

thus amplifying the lockout effect.

External factors In distributed IR systems there are sev-

eral bottlenecks to deal with. Depending on how one de-

cides to partition the index there may be some serious degra-

dation due to different factors. In a document partitioned IR

system, for instance, it might be necessary to compute val-

ues for some global parameters such as the collection fre-

quency or the inverse document frequency of a term. There

are two possible approaches. One can compute the final

global parameter values by aggregating all the local statis-

tics available after the indexing phase. Often, it is possible

to avoid the final aggregation. At this point, the problem

of computing global statistics moves to the system broker,

which is responsible for both dispatching queries to query

processing servers and merging the results.

To compute such statistics, the broker usually resolves

queries using a two-round protocol. In the first round the

broker requests local statistics from each server, in the sec-

ond round it requests results from each server, piggybacking

the global statistics onto the second message containing the

query. The question at this point is: given a “smart” parti-

tioning strategy using local instead of global statistics, what

is the impact on the final engine effectiveness? Answering

this question is very difficult. In a real world search en-

gine, in fact, it is difficult to define what is a correct answer

for a query, thus it is difficult to understand whether using



only local statistics makes a difference. A possible way to

measure this effect is comparing the result set computed on

the global statistics with the result set computed using only

local statistics. Furthermore, note that if we make use of

a collection selection strategy, using the global statistics is

not feasible.

5 Distributed Query Processing

Processing queries in a distributed fashion consists in

determining which resources to allocate from a distributed

system when processing a particular query. In a distributed

search system, the pool of available resources comprises

components having one of the following roles: coordinator,

cache, or query processor. A coordinator receives queries

from client computers, and makes decisions on how to route

these queries to different parts of the system, where other

components can evaluate it appropriately.2 The query pro-

cessors hold index or document information, which are used

to retrieve and prepare the presentation of results, respec-

tively.

Network communication is an essential part of such dis-

tributed systems as several parties need to communicate to

make progress. As the variation in latency can be substan-

tial depending on the type of network and physical proxim-

ity, involving several servers in the processing of a single

query therefore might be expensive. To mitigate this prob-

lem, cache servers hold results for the most frequent or pop-

ular queries, and coordinators use cached results to reply to

a client. In the case that communication is expensive, cache

servers reduce query latency and load on servers by making

query resolution as simple as contacting one single cache

server.

An important assumption is that one or more servers im-

plement each of these components. This assumption is par-

ticularly important for large-scale systems: systems with a

high request volume and a large amount of data. Designing

components in such a way that we can add more physical

servers to increase the overall system capacity is fundamen-

tal for such large-scale systems as it makes the system scal-

able. In fact, separating parts of the system into component

roles is already an attempt to promote scalability as a sin-

gle monolithic system cannot scale to the necessary size of

a Web search engine. As these servers can be in different

physical locations and in different geographical regions, we

call a site to each group of collocated servers.

Figure 3 depicts an instance of our multi-site distributed

system model comprising the components described above.

Figure 4 describes the role of each of the components in

Figure 3. There are three sites located in different regions.

2The coordinators can be the brokers of a distributed document or term

partitioned system, or site-level brokers that route queries to different sites.

Thus, we use a more general term instead of calling them brokers.
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Figure 3. Instance of a distributed query pro­
cessing system. The role of each server is

described in Figure 4.

Each site comprises a number of coordinators, caches, and

query processors. A query from a client is directed to the

closest site, which is site A (1). The coordinator of site

A routes the query to site B (2) for reasons such as load

balancing, or collection selection. Site B resolves the query

on its query processors and returns the results to the client

(3).

Query processor : matches 

documents to the received queries

Coordinator : receives queries and

routes them to appropriate sites

Cache : stores results from

previous queries

Figure 4. The role of each server in the dis­
tributed query processing framework.

We classify distributed query processing systems accord-

ing to four attributes:

• Number of components: For each role, a system can

have multiple components. Having multiple coordina-

tors has the potential of improving the user experience

by improving response time and availability. There

is a similar argument for multiple cache components:

they have the potential of boosting both response time

and availability, reducing the server load on the query

processors. Availability for caches refers not only to



the failure of cache components, but also to failures

of query processors. If a query processor is temporar-

ily unavailable, then the cache participants can serve

cached results during the period of the outage. Finally,

multiple query processors enable a more dependable

system, due to geographical and resource diversity, as

well as a more scalable solution;

• Connectivity: All components are either connected to

the same local-area network or geographically spread

and connected through a wide-area network;

• Distinction of roles: Components of a query process-

ing system can have one or multiple roles. Typically,

the components (coordinators, caches, query proces-

sors) implement the server side, which processes

queries, whereas clients only submit queries. This im-

plements the traditional client/server model, as there

is a clear distinction between clients that only submit

queries and servers that only process queries. Alterna-

tively, participants can be both clients and servers such

as in peer-to-peer (P2P) systems [29, 28, 27]. In such

systems, all peers have all the roles we mention above;

• Interaction: In a federated system, independent enti-

ties form a single system. As an example, an organiza-

tion spanning different countries can have independent

systems that together form the whole of the organiza-

tion’s system. Federated systems might also comprise

sites of different organizations, and some formal agree-

ment constrains the operations of each site to a particu-

lar behavior. The interaction in the case of federations

is simpler as it is reasonable to assume that there is

some entity that oversees the system. Components can

then trust each other, have access to all the information

necessary from any other component, and assume that

all other components behave in the best interest of the

system. In open systems3, however, this may not be

the case [30]. Sites from different organizations coop-

erate as opposed to forming a unity and therefore may

act from self-interest by, for example, changing priori-

ties on query resolution that affect the performance of

the evaluation of any particular query.

The number of components is important because it de-

termines the amount of resources available for processing

queries. Depending on how these components are con-

nected (local-area network vs. wide-area network), the

choices on the allocation of components change as differ-

ent choices lead to different performance values. In fact,

minimizing the amount of resources per query is in gen-

eral an important goal because, in using fewer resources for

each query, the total capacity of the system increases. In

3Open systems are also called non-cooperative in the literature.

client/server systems, the amount of resources available on

the server side determines the total capacity of the system.

Thus, the total amount of resources available for process-

ing queries does not increase with the number of clients. In

peer-to-peer systems, however, any new participant is both a

new client and a new server. Consequently, the total amount

of resources available for processing queries increases with

the number of clients, assuming that free-riding is not preva-

lent. On federated systems, independent systems combine

to form a single system, and consequently it is not necessary

to consider issues such as trust among parties and correct

behavior. On open systems, partnerships have the potential

to improve the overall quality of the service the system pro-

vides to clients. In such systems, however, parties may al-

locate resources in a self-interested fashion, thereby having

a negative impact on the results a particular party obtains.

Typically, the following two architectures appear in the

literature when discussing distributed information retrieval:

peer-to-peer and federated systems. Peer-to-peer systems

often assume a large number of components geographically

spread, and each peer builds its own version of the index

and is capable of resolving queries. Federated systems of-

ten work in a client/server fashion, although there is no ma-

jor constraint that prevents such a system from being peer-

to-peer. In such a system, however, unknown participants

cannot subscribe and participate as another peer. If any par-

ticipant can register to join such a system, then it becomes

an open system.

We now discuss more specifically the challenges in im-

plementing systems for distributed query processing con-

sidering the four attributes above. In this section, we focus

on the behavior of system components instead of discussing

specific mechanisms that implement them.

Partitioning As the Web grows, the capacity of query

processors of a Web search engine has to grow as well in

order to match the demand for high query throughput, and

low latency. It is unlikely, however, that the growth in the

size of a single query processor can match the growth of

the Web, even if a large number of servers implement such

a processor due to, for example, physical and administra-

tive constraints (e.g., size of a single data center, power,

cooling) [31]. Thus, the distributed resolution of queries

using different query processors is a viable approach as it

enables a more scalable solution, but it also imposes new

challenges. One such challenge is the routing of queries to

appropriate query processors, in order to utilize more effi-

ciently the available resources and provide more precise re-

sults. Factors affecting the query routing can be, for exam-

ple, the geographical proximity, the topic, or the language

of a query. Geographical proximity aims to reduce the net-

work latencies and to utilize the resources closest to the user

submitting the query. A possible implementation of such a



feature is DNS redirection: according to the IP address of

the client, the DNS service routes the query to the appropri-

ate coordinator, usually the closest in network distance [32].

As another example, the DNS service can use geographical

location to determine where to route queries to. As there

is fluctuation in submitted queries from a particular geo-

graphic region during a day [33], it is also possible to of-

fload a server from a busy area by re-routing some queries

to query processors in less busy areas.

Generally, query routing depends upon the distribution

of documents across query processors, and consequently

the partition of the index. One way to partition the index

across the query processors is to consider the topics of doc-

uments [34]. For example, a query processor that holds

an index with documents on a particular topic, may pro-

cess queries related to that topic more effectively. Routing

the queries according to their topic involves identifying the

topics of both Web pages and queries. Matching queries

to topics is a problem of collection selection [24, 30]. The

partitions are ranked according to how likely they are to an-

swer the query. Then, a number of top-ranked partitions

can actually process the query. A challenge in such a par-

titioning of the index is that changes in the topic distribu-

tion of documents or queries might have a negative effect

on the performance of the distributed retrieval system. As

shown in [35], simulations of distributed query processing

architectures indicate that changes in the topic distribution

of queries can adversely impact performance, resulting in

either the resources not being exploited to their full extent

or allocation of fewer resources to popular topics. A pos-

sible solution to this challenge is the automatic reconfigu-

ration of the index partition, considering information from

the query logs of a search engine.

Partitioning the index according to the language of

queries is also a suitable approach. Identifying the lan-

guages in a document can be performed automatically by

comparing n-gram language models for each of the tar-

get languages and the document [36], or by comparing the

probabilities that the most frequent words of a particular

language occur in the document [37]. Similar techniques

enable the identification of the languages in queries, even

though the amount of text per query and additional contex-

tual metadata is very limited, and such process may intro-

duce errors. Another challenge in routing queries using lan-

guage is the presence of multilingual Web pages. For ex-

ample, Web pages describing technical content can have a

number of English terms, even though the primary language

is a different one. In addition, queries can be multilingual,

involving terms in different languages.

As mentioned in the discussion of the previous section

about the partitioning of documents or terms within a query

processor, a particular partitioning scheme may introduce a

workload unbalance during query processing. A partition-

ing scheme of documents based on the topics or the lan-

guages of documents potentially introduces a similar unbal-

ance in workload across query processors, although provi-

sioning the sites accordingly is a viable solution when it is

possible to forecast the workload.

Dependability Faults can render a system or parts of a

system unavailable. This is particularly undesirable for

mission-critical systems, such as the query processing com-

ponent of commercial search engines. In particular, avail-

ability is often the property that mostly affects such sys-

tems because it impacts the main source of income of such

companies. In a distributed system with many components,

however, we can leverage the plurality of resources to cope

with faults in different ways.

To provide some evidence that achieving high availabil-

ity is not necessarily straightforward, we repeat in Figure 5

a graph that originally appeared in the work by Junqueira

and Marzullo [38]. This graph summarizes availability fig-

ures obtained for the sites of the BIRN Grid system [39].

BIRN had 16 sites connected to the Internet during the mea-

surement period (January through August 2004). Each site

comprises a number of servers, and we say that a site is un-

available if it is not possible to reach any of the servers of

this site, either because of a network partition or because

all servers have failed. Each bar on the graph corresponds

to the average number of sites that had monthly availabil-

ity under the corresponding value on the x-axis for the pe-

riod of measurement. For example, the first bar to the left

shows that out of the 16 sites participating in this system, on

average 10 experience at least one outage (less than 100%

of availability) in a given month, which is significant com-

pared to the total number of sites. This illustrates that sites

can be often unavailable in multi-site systems.

Although BIRN is a system with different goals, its

design builds upon the idea of multiple independent sites

forming a single system, which share similarities with dis-

tributed IR systems. In particular, this observation on site

unavailability applies to federated IR systems comprising

a number of query processors (equivalent to sites) spread

across a wide-area network.

A classical way of coping with faults is replication. In a

distributed information retrieval system, there are different

aspects to replicate: network communication, functionality,

and data. To replicate network communication, we repli-

cate the number of links, making sites multi-homed. This

redundancy on network communication reduces the proba-

bility of a partition preventing clients and servers from com-

municating in a client/server system. This is less critical in

a peer-to-peer system with a large number of clients geo-

graphically spread because by design such systems already

present significant diversity with respect to network connec-

tivity.
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Figure 5. Site unavailability in the BIRN Grid

system [38].

There are two possible levels of replication for function-

ality and data: in a single site and across sites. In a single

site, if either functionality or data is not replicated, then a

single fault can render a service unavailable. For example,

if a cluster has a single load balancer, and this load balancer

crashes, then this cluster stops operating upon such a fail-

ure. Using multiple sites increases the likelihood that there

is always some query processor available when resolving a

query. This is particularly necessary when site failures are

frequent. An open question in this context is how to select

locations to host sites and the degree of replication neces-

sary to meet a particular availability goal.

The observation regarding the utilization of multiple

sites is valid for all the roles of participants we describe

above. In particular, query processors have a crucial role

as the system cannot fulfill client requests without the pro-

cessing capacity and the data they store. Also, due to the

large amount of data (e.g., indexes, documents) they handle,

it is challenging to determine good replication schemes for

query processors. By replicating data across different query

processors, we increase the probability that some query pro-

cessor is available containing the data necessary to process

a particular query. Having all query processors storing the

same data, i.e., being full replicas of each other, achieves

the best availability level possible. This is likely to impose

a significant and unnecessary overhead, also reducing the

total storage capacity. Thus, an open question is how to

replicate data in such a way that the system achieves ade-

quate levels of availability with minimal storage overhead.

Although high availability is a very important goal for

such online systems, it is not the only one. Consistency

is also often critical. In particular, when we consider fea-

tures such as personalization, every user has its own state

space containing variables that indicate its preferences, and

potentially upon every query there is an update to such a

user state. In such cases, it is necessary to guarantee that

the state is consistent in every update, and that the user

state is never lost. There are techniques from distributed

algorithms, such as state-machine replication [40, 41] and

primary-backup [42, 43], to implement such fault-tolerant

services. The main challenge is to apply such techniques

on large-scale systems. Traditional fault-tolerant systems

assume a small number of processes. An exception is the

Chubby lock service, which serves thousands of clients

concurrently and tolerates failures of Chubby servers [44].

Depending on the requirements of the application, it is

also possible to relax the strong consistency constraint, and

use techniques that enable stale results thus implementing

weaker consistency constraints [45].

It is also possible to improve fault tolerance even further

by using caches. Upon query processor failures, the system

returns cached results. Thus, a system design can consider

a caching system as either an alternative or complementary

to replication. An important question is how to design such

a cache system to be effective in coping with failures. Of

course, a good design has also to consider the primary goals

of a cache system, which are reducing the average response

time, load on the servers operating on the query processors,

and bandwidth utilization. These three goals translate into

a higher hit ratio. Interestingly, a higher hit ratio potentially

also improves fault tolerance. Different from the goal of re-

ducing average latency, the availability of results to respond

to a particular query is important when coping with faults.

For example, a possible architecture for caching is one with

several cache components communicating using messages

through a wide-area network. Such an architecture does

not necessarily improve query processing latency because

message latency among cache components is high. In [46],

Wolman et al. argue that cooperative Web caching does

not necessarily improve the overall request latency, mainly

because the wide-area communication eclipses the benefit

of a larger user population. For availability, such an ar-

chitecture increases the number of results that the system

can use to respond to user queries, thus making the system

more available. In fact, an important argument in favor of

distributed cooperative caching to improve the availability

of large-scale, distributed information retrieval systems is

that on wide-area systems the network connectivity often

depends upon providers, and routing failures happen fre-

quently enough [47].

Communication (synchronization) Distributing the

tasks of an information retrieval system enables a number

of desirable features, as we have seen previously. A

major drawback that arises from the distribution of tasks

across a number of servers is that these servers have to

communicate. Network communication can be a bottleneck

as bandwidth is often a scarce resource, particularly in

wide-area systems. Furthermore, the physical distance

between servers also increases significantly the latency for
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Figure 6. Maximum capacity of a front­end

server using a G/G/150 model.

the delivery of any particular message. While in local-area

networks message latency is on the order of hundreds of

microseconds, in wide-area networks, it can be as large as

hundreds of milliseconds.

Mechanisms that implement a distributed information

retrieval system have to consider such constraints. As a

simple example, suppose we model a front-end server as a

queueing system G/G/c 4, where the c servers in the model

correspond to the threads that serve requests on, for exam-

ple, a Web server. If the response of each thread to a request

depends upon the communication of this thread with other

parts of the system, then bandwidth and message latency

contribute to the time that the thread takes to answer such

a request. Assuming that the c = 150 (a typical value for

the maximum number of clients on Apache servers), Fig-

ure 6 shows an upper bound on the capacity of the system

for different average service rate (for a given point (x, y), if

x is the average service time, then the capacity has to be less

than y, otherwise the service queue grows to infinity). From

the graph, the maximum capacity drops sharply as the aver-

age service time of each thread increases: it drops from 15

to 2 as the average service time goes from 10ms to 100ms.

This simple exercise illustrates the importance of consider-

ing the impact of network communication when designing

mechanisms.

Distributed query-processing architectures then need to

consider the overheads imposed by the communication and

merging of information from different components of the

system. A term partitioned system using pipelining routes

partially resolved queries among servers [16, 21]. When

position information is used for proximity or phrase search,

however, the communication overhead between servers in-

creases greatly because it includes both the position of terms

4A G/G/c queue models a system in which the distributions of request

interarrival and service times are arbitrary, and there are c servers to serve

requests [48].

and the partially resolved query. In such a case, the position

information needs to be compressed efficiently, possibly en-

coding differently the positions of words that are likely to

appear in queries.

In the case of a document partitioned system, query pro-

cessors send the query results to the coordinator, which

merges and detects the top ranked results to present to the

user. The coordinator may become a bottleneck while merg-

ing the results from a great number of query processors. In

such a case, it is possible to use a hierarchy of coordinators

to mitigate this problem [35]. Furthermore, the response

time in a document partitioned system depends on the re-

sponse time of its slowest component. This constraint is not

necessarily due to the distribution of documents, but it de-

pends on the disk caching mechanism, the amount of mem-

ory, and the number of servers [23]. Thus, it is necessary to

develop additional models that consider such characteristics

of distributed query processing systems.

When multiple query processors participate in the reso-

lution of a query, the communication latency can be signifi-

cant. One way to mitigate this problem is to adopt an incre-

mental query processing approach, where the faster query

processors provide an initial set of results. Other remote

query processors provide additional results with a higher

latency and users continuously obtain new results. Incre-

mental query processing has implications on the merging

process of results because more relevant results may ap-

pear later due to latencies. A paradigm shift in the way that

clients use search is also possible with incremental query

processing [49]. As an example, we envision applications

that from context infer a query and return results instead of

having users directly searching using a search engine inter-

face.

When query processing involves personalization of re-

sults, additional information from a user profile is necessary

at search time, in order to adapt the search results accord-

ing to the interests of the user. Query processing architec-

tures do not consider such information as an integral part

of their model [31]. An additional challenge related to per-

sonalization of Web search engines is that each user profile

represents a state, which must be the latest state and be con-

sistent across replicas. Alternatively, a system can imple-

ment personalization as a thin layer on the client-side. This

last approach is attractive because it deals with privacy is-

sues related to centrally storing information about users and

their behavior. It also restricts the user to always using the

same terminal.

External factors The design of search engines includes

users (or clients) in different ways. For example, to evalu-

ate the precision of a search engine, it is possible to engi-

neer a relevance model. Similarly, the design and analysis

of caching policies require information on users, or a user



model [51, 50]. User behavior, however, is an external fac-

tor, which cannot be controlled by the search engine. Any

substantial change in the search behavior of users can have

an impact on the precision or efficiency of a search engine.

For example, the topics the users search for have slowly

changed in the past [52], and a reconfiguration of the search

engine resources might be necessary to maintain a good per-

formance. A change in user behavior can also affect the

performance of caching policies. Hence, if user behavior

changes frequently enough, then it is necessary to provide

mechanisms that enable either automatic reconfiguration of

the system or simple replacement of modules. The chal-

lenge would then be to determine online when users change

their behavior significantly.

6 Concluding Remarks

We summarize below all the main challenges outlined in

the previous sections:

• Crawling: One of the main open problems is how to

efficiently and dynamically assign the URLs to down-

load among crawling agents, considering multiple con-

straints: minimize rate of requests to Web servers, lo-

cate crawling agents appropriately on the network, and

exchange URLs effectively. Other open problems are

how to efficiently prioritize the crawling frontier under

a dynamic scenario (that is, on an evolving Web), and

how to crawl the Web more efficiently with the help of

Web servers.

• Indexing: The main open problems are: (1) For doc-

ument partitioning, it is important to find an effective

way of partitioning the collection that will let the query

answering phase work by querying not all partitions,

but only the smallest possible subset of the partitions.

The chosen subset should be able to provide a high

number of relevant documents; and (2) For both ap-

proaches to partitioning, determine an effective way of

balancing the load among the different index servers.

Both in term partitioning and in document partitioning

(using query routing), it is possible to have an unbal-

anced load. It is very important to find a good strategy

to distribute the data in order to balance the load as

much as possible.

• Querying: Network bandwidth is a scarce resource in

distributed systems, and network latency significantly

increases response time for queries. Thus, when re-

solving queries in a distributed fashion, it is crucial

to both minimize the number of necessary servers and

efficiently determine which servers to contact. This

problem is the one of query routing. Of course, query

routing depends upon the distribution of the document

collection across servers, and cannot be treated sepa-

rately. Due to the intrinsic unreliability of computer

systems, it is also crucial to be able to cope with faults

in the system using, for example, replication. Be-

cause traditional replication techniques potentially re-

duce the total capacity of the system or increase the

latency of any particular operation, it is not clear what

schemes enable high availability and preserve the other

properties. As response time and high throughput are

among our goals, devising an efficient cache system is

important. Although there has been extensive work on

caching techniques, the difficulty for distributed Web

retrieval is to design a scheme that is effective (high

hit ratio) and at the same time overcomes the network

constraints we point out above.

Although we have discussed crawling, indexing and

query processing separately, another important considera-

tion is the interaction among these parts. Considering this

interaction makes the design of the system even more com-

plex. A valuable tool would be an analytical model of such

a system that, given parameters such as data volume and

query throughput, can characterize a particular system in

terms of response time, index size, hardware, network band-

width, and maintenance cost. Such a model would enable

system designers to reason about the different aspects of the

system and to architect highly-efficient distributed Web re-

trieval systems.
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