
FIFTEEN YEARS OF PSYCHOLOGY IN SOFTWARE ENGINEERING:
INDIVIDUAL DIFFERENCES AND COGNITIVE SCIENCE

BILL CURTIS

Microelectronics and Computer Technology Corporation (MCC)
Austin, Texas

ABSTRACT

Since the 1950's, psychologists have studied
the behavioral aspects of software engineering.
However, the results of their research have never
been organized into a subfield of either software
engineering or psychology. This failure results
from the difficulty of integrating theory and data
from the mixture of paradigms borrowed from psychol-
ogy. This paper will review some of the psycho-
logical research on software engineering performed
since the Garmisch Conference in 1968. This review
will be organized under two of the psychological
paradigms used in exploring programming problems:
individual differences and cognitive science. The
major theoretical and practical contributions of
each area to the theory and practice of software
engineering will be discussed. The review will
end with a call for more research guided by the
paradigm of cognitive science, since such results
are the easiest to integrate with new developments
in artificial intelligence and computer science
theory.

PARADIGMS IN SEARCH OF A FIELD

Since the 1950's psychologists have studied
the behavioral aspects of software engineering.
However, the results of their research have never
been organized into a subfield of either software
engineering or psychology. This failure results
from the difficulty of integrating theory and data
from the mixture of paradigms borrowed from psychol-
ogy. The behavioral studies performed by computer
scientists have been criticized by Brooks (1980)
and Sheil (1981) for a lack of experimental rigor.
Although they occasionally scoured the fine print
to uncover something about each study to condemn,
the gist of their remarks is well taken.

Every psychological study portrays a paradigm,
a model of what the investigator believes is really
important in human behavior. When the choice of
paradigms is unconscious, investigators are often
faced with defending their hypotheses with data
which do not address the argument. The motley body
of psychological studies on programming has been
guided by numerous psychological paradigms, among
them individual differences, human factors, cogni-
tive science, group behavior, and organizational
behavior. These paradigms represent different ways

of looking at human beings, and differ in the
aspects of human behavior they explain. Due to the
limited space in the conference proceedings, only
contributions from the individual differences and
cognitive science areas will be reviewed. See
Curtis (1981a,b) for reviews of research from other
psychological paradigms.

Individual Differences

In the beginning was the need to hire the best
person for the job. Programmers had always differ-
ed from each other in large ways, especially in
their ability to write programs which optimized the
precious resources of the machine. Since program-
ming was a mental activity, it stood to reason that
tests of cognitive ability should predict who would
make the best programmers. However, measurement
was difficult when the phenomena underlying the
performance of a skill were unobservable, such as
with mental abilities.

To measure mental abilities, a task must be
devised which exercises the theoretical mental
construct. The critical factors for this approach
are:

i) a clear definition of the mental construct,
2) a carefully developed performance scale, and
3) a scientifically sound validation of both

the construct and the scale.

The best known of the early tests used to pre-
dict programmer performance was the IBM Programmer
Aptitude Test (PAT). This test contained three
tasks which required job candidates to figure out
the next number in a series, figure out analogies
represented in figures, and solve arithmetic prob-
lems. These tasks were fine measures of mental
abilities and could be used to select people for
almost any white collar job in the company. Unfor-
tunately, the relationships between this test bat-
tery and the job performance of programmers were
often quite low (Reinstedt, 1966). Often these
low correlations reflected little more than the
well-known failure of managerial performance rat-
ings to accurately represent individual perform-
ance. Even worse, experience in having taken the
test improved subsequent scores (not a desired
characteristic for a measure of native intellec-
tual capacity). There were two reasons managers
continued using tests of questionable validity:

0270-5257/84/0000/0097501.00© 1984 IEEE
97

i) they could shift responsibility for hiring
decisions from themselves to the test, and

2) even with their weaknesses the tests were
probably better judges of programming poten-
tial than were many managers.

Programmer selection testing had already
fallen into disfavor by the Garmisch conference.
This initial attempt of psychologists to aid soft-
ware engineering had faired poorly not because the
principles and technologies of psychology were not
up to the task, but because the psychologists
involved took the easy road out. Psychologists
failed to adequately model the mental and behav-
ioral aspects of programming before selecting tests
to measure it.

Nevertheless, individual differences in per-
formance among programmers remained a critical prob-
lem on programming projects. Sackman, Erickson,
and Grant (1968) produced data displaying a 28:1
range in debugging performance. However, their
data were confounded by the use of different pro-
gramming languages. I subsequently reported debug-
ging data collected with my colleagues at GE
(Curtis,1981c) which displayed 23:1 differences
without confounding factors. Boehm (1981) reported
that differences in personnel and team capability
was the most significant factor affecting program-
ming productivity in his multi-year cost estimating
study at TRW.

Recent efforts to develop more appropriate
tests measuring individual differences among pro-
grammers have met with greater success. Wolfe
(1971) developed a series of tests for assessing
programming aptitude which require candidates to
manipulate numbers according to an intricate set of
procedures that are not unlike some assembler tasks.
A validation study of one of these tests appears in
DeNelsky and McKee (1974). The Wolfe tests for
programming aptitude primarily assess an indivi-
dual's ability to follow detailed procedural
instructions. However, this skill is only one of
those required of entry level programmers.

Ray Berger began with a thorough job analysis
of programming jobs and subsequently produced a
series of tests for assessing different levels of
skill and knowledge in programming. His initial
aptitude test requires candidates to learn a short
procedural language and then use it in solving
problems of increasing complexity. This is the
only widely marketed test that directly assesses
the ability of applicants to learn and use a lan-
guage. This skill is especially important when
hiring entry level programmers who will be placed
in a training program. Studies of the Berger
Aptitude for Programming Test (B-APT) have obtained
some of the highest validities to date, although
these studies have not been reported in the
archival literature.

The bottom line after two decades of work on
programmer selection is that the individual differ-
ences model has never been applied to programming
as effectively as it should have been. Programmer
selection research has rarely considered more than
a few mental abilities. The full set of individual

characteristics which affect programming perform-
ance has never been modelled and studied in the
same set of data. Figure 1 presents some of the
characteristics that would need to be considered
in a model of individual programming performance.
Most programmer selection tests only assess factors
listed on the left side of Figure I.

lntellectual

~= ledge Prograrm~ing
performance

MotJvational

Behavioral .

Figure I. Factors affecting individual programming performance

Couger and Zawacki (1980) took the individual
differences model further than most psychologists
had in studying programmers. They identified how
differences in the motivational structure of pro-
grammers interacted with the kinds of jobs they
were assigned. They found that programmers had
higher needs for personal growth and personal
development than those in any other job category
measured. However, programmers had lower needs
for social interaction than people in most other
types of jobs. This result should not be inter-
preted to imply that programmers are antisocial,
rather that they get their greatest source of
satisfaction from their job and their own profes-
sional development.

Couger and Zawacki used the Hackman and Oldham
(1975) model of job characteristics to analyze
programming jobs on the dimensions which have the
greatest impact of the motivational structure of
programmers. A summary of this analytic model is
presented in Figure 2. The Hackman-Oldman model
postulates that various characteristics of the job
have substantial impact on the psychological state
of the individuals performing the job. These job
characteristics define its motivating potential.
It is the job's motivating potential interacting
with the primary motivations of the individual
which will result in a level of performance, satis-
faction, turnover, etc.

Psycboloslcal Personal and
Job Dimensions States Work Outcomes

Variety of s k i l l s required

Work on i d e n t i f i a b l e product W Meaningfulness
of work Motivation \ •

Importance of task ~ J ~ S a t i s f a c t l o m

Autonomy in performing t a s k s . ~ R e s p o n s l b l l i t y ~ . ~ P e r f o n m n c e

for outcomes~Absenteeism

Feedback on work results | Knowledge of
work results TurNover

Figure 2. ~ckman-Oldham model of a Job's motivating potent ia l

98

Since programmers have shown such high levels
of need for personal growth, it is important that
their jobs be structured to provide high levels of
the five job dimensions. Programmers who do not
have the characteristic strong growth need may be
more suited for programming jobs with less motiva-
ting potential. This model makes a sophisticated
use of the individual differences approach by con-
sidering the match between personal characteris-
tics and the surrounding environment.

Until the many sources of variation among
individuals have been compared in the same set of
data, it will not be possible to determine pre-
cisely which of the potential sources is the most
important predictor of success in training pro-
grams or on the job. Further, as Weinberg (1971)
suggested over a decade ago, it is unclear that we
have assessed all of the important mental abilities
related to programming. He specifically pointed
toward a failure to assess the ability to consider
alternate causal explanations of erroneous opera-
tion during debugging. More recently, Green

(1977) has shown that the type of task
involved in debugging is separate from the type
involved in writing code.

It would appear from work in cognitive science
(to be discussed later) that the most important
determinant of individual differences in program-
ming is the knowledge base possessed by a program-
mer. As will be described in the section on cogni-
tive science, the performance of someone tackling
a complicated programming task is related to the
richness of their knowledge about the problem area.
Thus, while the individual differences paradigm
provides a method for predicting performance dif-
ferences among programmers, it fails to offer an
explanation of why these differences occur or how
to reduce them. Although the individual differ-
ences paradigm attempts to assess the mental struc-
ture of a human being, it rarely captures the
dynamic growth or interaction among these struc-
tures. Its limitation is that it presents a static
model of human beings. A better model will be
needed to explain how individual differences occur.

The following points summarize the almost
three decades of research which have investigated
the individual differences among programmers.

• It took two decades to realize that pro-
grammers had more than one dimension.

• Managers rely on aptitude tests like a
drowning sailor grasping for floating
debris.

• A test is no better than the job analysis
and validation study which supports it.

• Good tests are currently available, but
they should only constitute part of the
selection process.

• Advances in individual difference models
will come from a better understanding of
the programmer knowledge base.

Cognitive Science

The paradigm of cognitive science seeks to
understand how knowledge is developed, represented

in memory, and used. The interaction of cognitive
science and computer science has led to the emer-
gence of artificial intelligence, the attempt to
make computers process information in ways similar
to those used by humans.

There are several different levels at which
researchers have modelled cognitive processes in
programming. The differences in the models pre-
sented here are primarily in the levels of expla-
nation. Cognitive theories of programming have
not been elaborated to the extent that they present
alternative explanations of programmer performance.
In fact, on the surface many of the theories are
interesting applications of psychological princi-
ples to programming, but they have not been suffi-
ciently elaborated for consistent practical appli-
cation at a technical level. Nevertheless, the
models presented here are promising approaches to
understanding how programmers develop programs.

Most cognitive models of programming begin
with the distinction between short and long term
memory. Short term memory is a limited capacity
workspace which holds and processes those items of
information currently under our attention. The
capacity of short term memory was originally char-
acterized by Miller (1956) as holding 7 + 2 items.
An item is a single piece of information? although
there is no requirement that it be an elementary
piece resulting from the decomposition of a larger
body of information.

Currently, many cognitive theorists portray
short term memory as allocating the scarce resources
of the cognitive processor, rather than as posses-
sing a limited number of mental slots for infor-
mation. Nevertheless, this limited capacity infor-
mation buffer provides one of the greatest limita-
tions to our ability to develop large scale computer
systems. That is, we simply cannot think of enough
things simultaneously to keep track of the inter-
woven pieces of a large system.

A process called 'chunking' expands the capa-
city of our short term mental workspace. In
chunking, several items with similar or related
attributes are bound together conceptually to form
a unique item. For instance, through experience
and training programmers are able to build increas-
ingly larger chunks based on solution patterns
which emerge frequently in solving problems. The
lines of code in the program listing:

SUM=O
DO i0 1 = I, N
SUM = SUM + X(I)

i0 CONTINUE

would be fused by an experienced programmer into
the chunk "calculate the sum of array X". The
programmer can now think about working with an
array sum, a single entity, rather than the six
unique operators and seven unique operands in the

99

four program statements above. When it is neces-
sary to deal with the procedural implementation,
the programmer can call these four statements from

long term memory as underlying the chunk "array
sum".

Much of a programmer's maturation involves
observing more patterns and building larger chunks.
The scope of the concepts that programmers have
been able to build into chunks provides one indi-
cation of their programming ability. The particu-
lar elements chunked together have important impli-
cations for educating programmers. Educational
materials and exercises should be presented in a
way which maximize the likelihood of building
useful chunks.

Long term memory is usually treated as having
limitless capacity for storing information. An
important concern with long term memory is how the
information stored there is interrelated and
indexed such that:

i) items in short term memory can quickly cue
the recall of appropriate chunks of infor-
mation from long term memory,

2) items in short term memory can be linked
into and transferred quickly to long term
memory for retention, and

3) information retrieved from long term memory
can cue the retrieval of additional chunks
of information when appropriate.

The effects of both experience and education are on
the knowledge base they construct in long term
memory. The construction of this base is not
merely one of accumulating facts, but of organizing
them into a rich network of semantic material.

Shneiderman and Mayer (1979) have character-
ized the structure of knowledge in long term memory
into a syntactic/semantic model. In their model,
syntactic and semantic knowledge are organized
separately in memory. Semantic knowledge concerns
general programming concepts or relationships in
the applications domain which are independent of
the programming language in which they will be
executed. Syntactic knowledge involves the proce-
dural idiosyncracies of a given programming lan-
guage.

An important implication of the Shneiderman
and Mayer model is that the development of pro-
gramming skill requires the integration of know-
ledge from several different knowledge domains
(Brooks, 1983). For instance, the programming of
an on-board aircraft guidance system may require
knowledge of:

i) aeronautical engineering
2) radar and sensors technology
3) mathematical algorithms
4) the design of the on-board processor
5) the development machine and tools
6) a high level programming language
7) an assembly language

Each of these is a separate field of knowledge,
some of which require years of training and

experience to master. Thus, programming skill is
specific to the application being considered. One
can be a talented avionics programmer, and still
be a novice at programming simultaneous multi-
user business databases.

Several efforts have been made to model the
structure of programming knowledge at a level
deeper than that of Shneiderman and Mayer. Brooks
(1977) used Newell and Simon's (1972) production
system approach to model the rules a programmer
would use in writing the code for a program.
These rules are of the type, "If the following
conditions are satisfied, then produce the
following action". Based on analysis of a verbal
protocol, Brooks identified 73 rules which were
needed to model the coding process of a single,
and relatively simple, problem solution. Brooks
estimated that the number of production rules
needed to model the performance of an expert
programmer was in the tens to hundreds of
thousands.

Atwood, Turner, Ramsey, and Hooper (1979)
modelled a programmer's understanding of a pro-
gram using Kintsch's (1974) model of text compre-
hension. Their approach treats a program as a
text base composed of propositions. Comprehension
occurs as elementary or micro-propositions are
fused into macro-propositions which summarize
their meaning or content. This process is similar
to chunking. The result of this process is a
hierarchy of macro-propositions built from the
micro-propositions at the bottom of the tree. A
micro-proposition is a simple statement composed
of a relational operator and one or more argu-
ments (operands).

Atwood et al. (1979) demonstrated that a
program design could be broken into a hierarchical
structure of propositions. They observed that
after studying the design, more experienced pro-
grammers were able to recall propositions at a
greater depth in the hierarchy than novices. The
more experienced programmers had more elaborate
structures in long term memory for use in encoding
such designs. Thus, they were able to retain
propositions at greater depth because:

i) the higher level macro-propositions in
the design did not represent new infor-
mation, and thus could be referenced by
existing knowledge structures, and

2) the propositions representing new infor-
mation could be linked into the existing
knowledge structures of experienced pro-
grammers and shifted into long term
memory.

This propositional hierarchy is one representation
of how knowledge is structured in long term
memory. To understand how these knowledge struc-
tures develop, cognitive scientists have studied
differences between expert and novice programmers.

Expert-novice differences. The study of
expert-novice differences in programming has
generated information on how the programming
knowledge base is developed. Both Adelson (1981)

IO0

and Weiser and Shertz (1983) demonstrated that
novices comprehend a program based on its surface
structure, that is, the particular applications
area of the program such as banking, or avionics.
Experts, however, analyze a program based on its
deep structure, the solution or algorithmic struc-
ture of the program. Similarly, McKeithan,
Reitman, Rueter, and Hirtle (1981) observed that
experts are able to remember language commands
based on their position in the structure of the
language. Novices, not having an adequate mental
representation of the language structure, often
use mnemonic tricks to remember command names.

Results of the expert-novice differences
research in programming agree with the results of
similar research on other subject areas (e.g.,
thermodynamics, physics, and chess) conducted by
Herbert Simon and his associates at Carnegie-
Mellon. They have determined that experts are not
necessarily better at operational thinking than
novices. Rather, experts are better at encoding
new information than novices. The broader know-

ledge base of experts guides them to quickly cue
in on the most important aspects of new informa-
tion, analyze them, and relate them to appropriate
schema in long term memory.

Developing technical skill is not merely a
matter of learning a long list of facts. Rather,
developing technical skill is an effort to learn
the underlying structure of the knowledge required

For the task. McKeithan et al. found that the
knowledge structures developed by experts were
more similar to each other than were those of
intermediates or novices. Thus, programmers tend
to gravitate toward a similar understanding of the
language structure with experience. The develop-
ment of this structure enhances the ability of
experienced programmers to assimilate new infor-
mation.

Soloway and his colleagues at Yale (Soloway,
Bonar, and Ehrlich, 1983; Soloway, Ehrlich, and
Bonar, 1981) have modelled the programming know-
ledge base as a collection of plans or templates.
These plans represent the algorithmic or computa-
tional structures programmers use in conceiving
the solution to a problem. These plans become more
efficient and elaborate as programmers gain in
experience. Soloway et al. (1983) demonstrated
that programmers can work more effectively when
the language they use supports the structure of
the templates in their knowledge base.

In a psychological study of the program design
process, Jefferies, Turner, Polson, and Atwood
(1981) noted that programmers with greater exper-
ience decomposed a problem more richly into mini-
mally interacting parts. The design knowledge of
novices did not appear sufficient to provide for
a full decomposition. In particular, more exper-
ienced programmers spent greater time evaluating
the problem structure prior to beginning the design
process. Observations similar to these were also
made by Nichols (1981).

Jeffries et al. hypothesized that there is the
equivalent of a mental design executive. This

executive attempts to recursively decompose the
problem statement and relate the components emer-
ging from the decomposition to patterns in the
programming knowledge base in long term memory.
The shallowness of the novices' decomposition
reflects the shallowness of the knowledge base
against which they attempt to compare pieces of
the problem statement. The richer knowledge base
of experts allows them a fuller decomposition of
the problem statement. The criterion used by
experts for terminating the decomposition process
for a particular aspect of the problem is when
it has been decomposed to a level for which the
programmer can retrieve a solution template.

Design problem solving. Most problem solving
research has been performed on well defined prob-
lems with finite solution states. In problems
such as the Towers of Hanoi, there is an optimal
path to the solution. The path to a successful
solution in chess is not so clearly defined.
Nevertheless, in chess there are a finite number
of moves which can be chosen at any time and a
well defined solution state. In a semantically
rich domain such as programming, neither are the
options from which one can choose limited nor is
there a clearly defined solution state. There-
fore, studying problem solving in programming is
a qualitatively different task than most of those
used in problem solving research.

Carroll, Thomas, and Malhotra (1980) argued
that solving unstructured problems could not be
explained with existing theory. They began their
investigations of the design process by studying
how analysts and clients interacted in establish-
ing the requirements for a system. Carroll,
Thomas, and Malhotra (1979) observed that client/
analyst requirements sessions were broken into
cycles which represented the decomposition of the
problem. However, these cycles did not decompose
the problem in a top-down fashion as recommended
by structured programming practices. Rather,
these cycles represented a linear or sequential
decomposition of the problem in which the sub-
problem to be attacked in the next cycle was cued
by the results of the last cycle. The only
a priori structure placed on the content of these
client/analyst cycles was determined by the initial
goal structure of the client.

The problem in moving from the idea for a
system to its f£nal implementation is in trans-
forming a linearly derived sequence of desired
components into a hierarchical arrangement of
functions or data transformations. Once the
requirements have been delineated, they must be
organized so that the inherent structure of the
problem becomes visible. The next step is to
construct a solution structure which matches the
problem structure. To the extent that these
structures are logically organized and matched,
the system will possess a structural integrity
which can expedite its implementation.

A series of studies by Carroll and his asso-
ciates at IBM's Watson Research Center identified
several factors which impact the effectiveness of
designing a solution. First, they demonstrated

I01

differences in problem analysis based on differ-
ences in the application attempted. It has been
consistently found in problem solving research
that people do not transfer solution structures
across problem isomorphs. Isomorphs are problems
with the same structural characteristics, but
whose cover stories (or subject areas) differ.
Previous problem solving research has established
that there is poor transfer of previously learned
problem solutions across isomorphs. The structure
of the cover story affects the difficulty people
experience in reaching a solution.

Carroll et al. (1980) observed that people
had more difficulty solving a problem that invol-
ved temporal relations (designing a manufacturing
process) than an isomorph which involved spatial
relations (arranging an office layout). The
difference arose in part because the spatial prob-
lem lends itself to graphical representation.
However, the temporal isomorph does not present
spatial cues and participants had difficulty
representing it to themselves. Many retreated to
a verbal description of the problem, and several
were totally unable to solve it. When a graphical
aid was provided for solving the temporal problem,
it appeared to make the problem easier to under-
stand. The spatial aid did not make the problem
easier to solve, however, since the same number
of participants were unable to solve it.

The structuring of the requirements also
seems to have an impact on the characteristics of
the problem solution. Presenting the requirements
in clusters based on their inherent structure
assisted participants in designing solutions which
better reflected the problem structure and were
more stable when new requirements were added
(Carroll, Thomas, Miller, & Friedman, 1980).
Greater structure in the original problem state-
ment seems to reduce the amount of iteration
through design cycles. Thus, a critically impor-
tant focus of the structured programming movement
should be on methods of structuring the statement
of requirements. Far less attention has been paid
this problem than to areas, suchcoding, that have
less impact on system integrity and costs.

Hoc (1981) studied the results of designing
a program from the data structure versus the
results structure. He suggested that a choice
of design method is often made prematurely, prior
to understanding the relation between the data
and results structures and the processing which
transformed the former into the latter. He felt
that the choice of design method was better made
after this problem analysis stage.

The conceptual integrity of the program
design is critical to the success of a programming
project. No level of management talent can sus-
tain high productivity and quality on a project
which fails to achieve it. A most critical area
for programming research, then, is requirements
and design techniques. The current level of
behavioral research on these topics is only a
start in what needs to be a major thrust.

The detection of procedural faults. At
least part of the process of developing an organ-
ized knowledge structure about programming is the
abstraction of rules from the myriad patterns and
facts that programmers know or can recognize.
Whereas an expert programmer may be able to recog-
nize 50,000 patterns, the number of rules which
govern the structure of these patterns is substan-
tially less, perhaps i000 to 3000. Brooks (1977)
estimated many more rules, but he may have been
referring to the recognizable patterns from which
these rules are drawn. Rule-based knowledge in
programming has been studied most frequently in
the detection of procedural faults.

One of the most critical and time consuming
tasks in programming is the detection and correc-
tion of faults (bugs). While debugging has been
used as an experimental task for studies on speci-
fications or language features, relatively little
behavioral research has been directed toward
understanding the debugging process.

John Seely Brown and his associates (Brown &
Burton, 1978; Brown & Van Lehn, 1980) have laid
some theoretical groundwork for modelling the
generation of bugs in procedural tasks. They
treat bugs not as random occurances, but as sys-
tematic and predictable outcomes of the incomplete
or incorrect application of the rules underlying
a procedural skill. Their explanation entails
four components:

i) the first component is that an individual
acquire a formal representation of a
procedural skill. Such a representation
would be a set of rules which guide the
development of procedures for solving a
problem.

2) the second component of their model is a
set of principles for determining which
rules can be deleted from the formal
representation to simulate the incomplete
or incorrect learning of rules or the
forgetting of rules.

3) the third component is a set of repair
heuristics used by the individual to
patch over gaps in the formal represen-
tation. These heuristics generate bugs
by creating inappropriate procedures for
completing procedural solutions.

4) the final component is a set of mechanisms
for screening out some of the heuristics
which generate blatently incorrect proce-
dures.

This type of model is guiding some of the current
work on intelligent debugging aids (Johnson &
Soloway, 1984).

Youngs (1974) reported some descriptive data
on the types of errors typically made by pro-
grammers. His data were similar to several data-
bases collected on large system development pro-
jects by the Information Sciences Program at Rome
Air Development Center. The most frequent cate-
gory of faults was logic errors, especially for
experienced programmers. Syntactic errors occurred

102

relatively infrequently. This observation rein-
forces the importance of providing useful control
constructs in the programming languages. The
results also indicate that novices and profess-
ionals make different kinds of errors.

During the early 1970s John Gould and his
associates at IBM's Watson Research Center made
several studies of program debugging. In the
first study, Gould and Drongowski (1974) found
that providing debugging aids to programmers did
not necessarily make fault detection faster.
Programmers adopted debugging strategies based on
the types of information they were presented about
the program and the problem. This strategy inclu-
ded attempts to localize the section of code
likely to contain the error, and employed a hier-
archical search in which the most complex sections
were left for last. In a further study, Gould
(1975) identified that this hierarchical search
was for:

i) syntactic faults,
2) grammatical faults not caught by the

compiler, and
3) substantive faults.

Sheppard, Curtis, Milliman, and Love (1979)
observed several different search strategies among
programmers. Some programmers felt they had to
understand the entire program before they could
begin searching for the fault. The more effective
strategy, however, was to identify that portion of
the output which was in error and quickly trace
back from the print statement for that variable
to locate the area in which the fault was likely
to have occurred. This technique is similar to
the program slicing strategy studied by Weiser
(1982).

One of the most extensive programs of
research on fault diagnosis has been conducted by
William and Sandra Rouse now at Georgia Tech.
They have made an important distinction between
perceptual complexity and problem solving com-
plexity (Rouse & Rouse, 1979). They suggest that
the latter is more affected by individual differ-
ences, especially those related to understanding
a problem. Brooke and Duncan (1981) demonstrated
that factors which primarily impact perceptual
complexity, such as the display format, can affect
problem solving effectiveness. Subsequently,
Rouse, Rouse, and Pelligrino (1980) have developed
a rule-based model of fault diagnosis that agrees
at a global level with the actual performance of
people on a similar task.

Learning to program. There are two primary
ways in which the rules which govern programming
can be learned. They can be abstracted from the
developing knowledge base as the programmer gains
increasing experience. This, of course, is a
lengthy process. On the other hand, rules can be
taught in organized training programs. Training
not only develops the knowledge base more quickly
than experiential learning, but it is also likely
to be more thorough and accurate. However, exper-
iential learning is often the primary method for

acquiring the contextual information used in
interpreting the appropriateness of various rules
for programming.

Mayer (1976, 1981) described several training
techniques grounded in psychological theory and
research which can be used successfully in train-
ing novice programmers. Mayer (1976) stressed the
importance of 'advanced organizers' to help struc-
ture new material as it is learned. These advanced
organizers help build a preliminary model or out-
line of the new information so that later input
can be more easily assimilated into an appropriate
knowledge structure. Mayer emphasized that one of
the most effective advanced organizers is a con-
crete model of the machine which is manipulated
by instructions coded in a computer language.
Mayer argued that students benefit from being
forced to elaborate these models in their own
words.

DuBoulay, O'Shea, and Monk (1981) extended
Mayer's concept of a concrete model of the machine.
They discussed a 'notional machine' which is a
simplified machine whose facilities are only those
which are implemented by the available commands
in the programming language. They also stressed
the importance of a student's gaining visibility
into the processes occurring inside the abstract
notional machine. They have built several train-
ing systems based on this concept.

Coombs, Gibson, and Alty (1982) have identi-
fied two learning styles which characterize the
different ways novices learn to program: compre-
hension learning and operational learning. Com-
prehension learners acquire an overall layout of
the information under study, but may not under-
stand the rules which allow them to operate with
and on the information. Operational learners
grasp the rules for operating on information, but
they do not acquire a complete picture of the
knowledge domain. Comprehension learners are
primarily interested in understanding, while
operational learners are primarily interested in
doing something. These characterizations repre-
sent idealized students, whereas most people will
fall on a continuum in between, displaying varying
degrees of both styles.

Coombs et al. concluded from their data that
operational learners were better able to learn a
programming language. Their learning strategy
was characterized by attention to the details of
the language structures, the abstraction of cri-
tical language features, and an orientation
towards representing important structural rela-
tions in rules. The major learning activity for
operational learners was in practice sessions,
whereas for comprehension learners this occurred
in lectures.

Lemos (1979) investigated the benefits of
structured walkthroughs as a classroom learning
exercise. This approach seemed to have advan-
tages in allowing novices to compare alternative
approaches to the problem and gain immediate feed-
back on their strategy. Shneiderman (1980) has

103

used a similar feedback mechanism with experienced
programmers and found benefits in terms of learn-
ing new approaches to a problem.

Conclusions

I have argued that individual differences
among project personnel (and this should be even
more true in the unstudied area of programming
managers) accounts for the largest source of var-
iation in project performance. In fact, Sheppard,
Kruesi, and Curtis (1981) found that half of the
variation in the efficiency of extracting infor-
mation from different documentation formats was
attributable to individual differences among the
professional programmers involved in the experi-
ment. However, the individual differences para-
digm only allows us to characterize and predict
these differences, but not explain how they
develop and change over time. Cognitive science
has provided a representation of knowledge organ-
ization and development which presents an expla-
nation of the basis for these differences. There-
fore, cognitive science is a paradigm which offers
the best opportunity to study and gain control
over the largest source of influence of project
performance.

Cognitive science presents an opportunity for
psychologists to get on the leading edge of pro-
gramming technology, rather than sweeping up
behind the directions already set by computer
scientists. As a driving force in artificial
intelligence, cognitive science provides a vehicle
for analyzing the most appropriate ways to auto-
mate more of the programming process in ways that
are helpful to those who must develop large sys-
tems.

The following points describe some of the
important themes emerging from cognitive science
research on software engineering:

• Expertise is specific to different know-
ledge domains. A programmer can be expert
in one domain and a novice in another.

• The development of expertise involves
building a massive knowledge base of
recognizable patterns (perhaps 50,000)
and abstracting a set of rules (perhaps
i000 to 3000) which govern their behavior.

• Rule-based models of programming need to
be expanded far beyond their current use,
primarily in fault diagnosis. Rule-based
models hold substantial promise for auto-
mating programming tasks.

• So little research is being performed on
the problem solving process during require-
ments definition, functional specification,
and program design, that this must be a
crucial area for improving software engin-
eering practice.

• Rather than teaching isolated commands,
educators should liberally model abstract
machines for teaching the structure of a
programming language.

• Learning styles will play an important
role in how quickly, accurately, and
thoroughly an individual learns to
program.

• Cognitive science is the easiest way for
a psychologist to communicate with a
computer scientist, but someone with
artificial intelligence may have to
interpret one to the other.

There will remain behavioral questions with
significant impact on the usefulness of new
developments in programming technology. Some of
these questions involve:

I) techniques for insuring the completeness
of a requirements statement,

2) techniques for clustering the require-
ments to better reveal the inherent
structure of the problem,

3) techniques for deciding on the alloca-
tion of requirements between hardware
and software,

4) techniques for bridging the gap between
a statement of requirements and the
preliminary program design,

5) techniques for indexing and retrieving
reused program modules,

6) techniques for proving the correctness
of reused program modules,

7) techniques for coordinating the work
of project team members, and

8) techniques for designing and verifying
the data flow among modules.

Thus, there will need to be a shift in emphasis in
behavioral research away from coding issues toward
the concerns enumerated above. If behavioral
scientists, and especially psychologists, begin
attacking these problems immediately, they can
influence the development of new technology in
software engineering. Further, the models of
programmer performance being developed by cogni-
tive scientists can be useful in developing
knowledge-based tools and environments for soft-
ware engineering.

REFERENCES

Adelson, B. Problem solving and the development of
abstract categories in programming languages.
Memory and Cognition, 1981, 9(4), 422-433.

Atwood, M.E., Turner, A.A., Ramsey, H.R., &
Hooper, J.N. An exploratory study of the cogni-
tive structures underlying the comprehension of
software design problems (Tech. Rep. 392).
Alexandria,VA: Army Research Institute, 1979.

Boehm, B.W. Software Engineering Economics.
Englewood Cliffs, NJ: Prentice-Hall, 1981.

Brooke, J.B. & Duncan, K.D. Effects of system
display format on performance in a fault location
task. Ergonomics, 1981, 24(3), 175-189.

104

Brooks, R. Towards a theory of cognitive processes
in computer programming. International Journal
of Man-Machine Studies, 1977, 9, 737-751.

Brooks, R. Studying programmer behavior experi-
mentally: The problems of proper methodology.
Communications of the ACM, 1980, 23(4), 207-213.

Brooks, R. Towards a theoretical model of the
comprehension of computer programs. Interna-
tional Journal of Man-Machine Studies, 1983, 17.

Brown, J.S. & Burton, R.R. Diagnostic models for
procedural bugs in basic mathematics skills.
Cognitive Science, 1978, 2, 155-192.

Brown, J.S. & VanLehn, K. Repair theory: A
generative theory of bugs in procedural skills.
Cognitive Science, 1980, 4, 379-426.

Carroll, J.M., Thomas, J.C., & Malhotra, A.
Clinical-experimental analysis of design problem
solving. Design Studies, 1979, 1(2), 84-92.

Carroll, J.M., Thomas, J.C., & Malhotra, A.
Presentation and representation in design prob-
lem solving. British Journal of Psychology,
1980, 71, 143-153.

Carroll, J.M., Thomas, J.C., Miller, L.A., &
Friedman, H.P. Aspects of solution structure
in design problem solving. American Journal of
Psychology, 1980, 93(2), 269-284.

Coombs, M.J., Gibson, R., & Alty, J.L. Learning
a first computer language: strategies for making
sense. International Journal of Man-Machine
Studies, 1982, 16, 449-486.

Couger, J.D. & Zawacki, R.A. Motivating and Man-
aging Computer Personnel. New York: Wiley, 1980.

Curtis, B. Human Factors in Software Development.
Silver Spring, MD: IEEE, 1981. a

Curtis, B. A review of human factors research on
programming languages and specifications. Pro-
ceedings of Human Factors in Computer Systems.
New York: ACM, 1981. b

Curtis, B. Substantiating programmer variability.
Proceedings of the IEEE, 1981, 69(7), 846. c

DeNelsky, G.Y. & McKee, M.G. Prediction of compu-
ter programmer training and job performance using
the AABP test. Personnel Psychology, 1974, 27,
129-137.

DuBoulay, B., O'Shea, T., & Monk, J. The black
box inside the glass box: presenting computer
concepts to novices. International Journal of
Man-Machine Studies, 1981, 14, 237-249.

Gould, J.D. Some psychological evidence on how
people debug computer programs. International
Journal of Man-Machines Studies, 1975, 7, 151-182.

Gould, J.D. & Drongowski, P. An exploratory study
of computer program debugging. Human Factors,
1974, 16(3), 258-277.

Hackman, J.R. & Oldham, G.R. Development of the
job diagnostic survey. Journal of Applied
Psychology, 1975, 60(2), 159-170.

Hoc, J.M. Planning and direction of problem
solving in structured programming: An empirical
comparison between two methods. International
Journal of Man-Machine Studies, 1981, 15,
363-383.

Jefferies, R., Turner, A.A., Polson, P.G., &
Atwood, M.E. The processes involved in design-
ing software. In J.R. Anderson (Ed.), Cognitive
Skills and Their Acquisition. Hillsdale, NJ:
Erlbaum, 1981, 255-283.

Johnson, W.L. & Soloway, E. PROUST: Knowledge
based program understanding. Proceedings of
the Seventh International Conference on Soft-
ware Engineering. Silver Spring, biD: IEEE, 1984.

Kintsch, W. The Representation of Meaning in
Memory. Hillsdale, NJ: Erlbaum, 1974.

Lemos, R.S. An implementation of structured
walkthroughs in teaching Cobol programming.
Communications of the ACM, 1979, 22(6), 335-340.

Mayer, R.E. Some conditions for meaningful
learning in computer programming: Advance
organizers and subject control of frame order.
Journal of Educational Psychology, 1976, 68,
143-150.

Mayer, R.E. The psychology of how novices learn
computer programming. ACM Computing Surveys,
1981, 13(1), 121-141.

McKeithen, K.B., Reitman, J.S., Rueter, H.H., &
Hirtle, S.C. Knowledge organization and skill
differences in computer programmers. Cognitive
Psychology, 1981, 13, 307-325.

Miller, G.A. The magical number seven plus or
minus two: Some limits on our capacity to
process information. Psychological Review,
1956, 63, 81-97.

Newell, A. & Simon, H.A. Human Problem Solving.
Englewood Cliffs, NJ: Prentice-Hall, 1972.

Nichols, J.A. Problem solving strategies and
organization of information in computer pro-
gramming. Dissertation Abstracts International,
1981.

Reinstedt, R.N. et al. Computer personnel research
group programmer performance prediction study.
Proceedings of the Fifth Annual Computer Per-
sonnel Research Conference. New York: ACM, 1966.

Rouse, W.B. & Rouse, S.H. Measures of complexity
of fault diagnosis tasks. IEEE Transactions on
Systems, Man, & Cybernetics, 1979, 9(11), 720-727.

105

Rouse, W.B., Rouse, S.H., & Pelligrino, S.J. A
rule-based model of human problem solving per-
formance in fault diagnosis tasks. IEEE Trans-
actions on Systems, Man, and Cybernetics, 1980,
10(7), 366-376.

Sackman, H., Erickson, W.J., & Grant, E.E.
Exploratory and experimental studies comparing
on-line and off-line programming performance.
Communications of the ACM, 1968, ii, 3-11.

Sheil, B.A. The psychological study of program-
ming. ACM Computing Surveys, 1981, 13(I), I01-
120.

Sheppard, S.B., Curtis, B., Milliman, P., &
Love, T. Modern coding practices and programmer
performance. Computer, 1979, 12(12), 41-49.

Sheppard, S.B., Kruesi, E., & Curtis, B. The
effects of symbology and spatial arrangement on
the comprehension of software specifications.
Proceedings of the Fifth International Confer-
ence on Software Engineering. Silver Spring,
MI): IEEE Computer Society, 1981, 207-214.

Shneiderman, B. Software Psychology: Human
Factors in Computer and Information Systems.
Cambridge, MA: Winthrop, 1980.

Shneiderman, B. & Mayer, R.E. Syntactic/semantic
interactions in programmer behavior: A model
and experimental results. International Journal
of Computer and Information Sciences, 1979, 8,
219-238.

Sime, M.E., Green, T.R.G., & Guest, D.J. Psycho-
logical evaluation of two conditional construc-
tions used in computer languages. International
Journal of Man-Machine Studies, 1973, 5, 105-113.

Soloway~ E°, Bonar, J., & Ehrlich, K. Cognitive
strategies and looping constructs: An empirical

study. Communications of the ACM, 1983, 26(11),
853-860.

Soloway, E., Ehrlich, K., & Bonar, J. Tapping into
tacit programming knowledge. Proceedings of
Human Factors in Computer Systems. New York:
ACM, 1982, 52-57.

Weinberg, G.M. The Psychology of Computer Pro-
gramming. New York: Van Nostrand Reinhold,
1971.

Weiser, M. & Shertz, J. A study of programming
problem representation in novice programmers.
International Journal of Man-Machine Studies,
1983, 17.

Weiser, M. Programmers use slices when debugging.
Communications of the ACM, 1982, 25(7), 446-452.

Wolfe, J. Perspectives on testing for programmer
aptitude. Proceedings of the 1971 Annual Con-
ference of the ACM. New York: ACM, 1971, 268-277.

Youngs, E.A. Human errors in programming. Inter-
national Journal of Man-Machine Studies, 1974, 6,
361-376.

Green, T.R.G. Conditional program statements and
their comprehensibility to professional program-
mers. Journal of Occupational Psychology, 1977,
50, 93-109.

106

