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ABSTRACT 

Since the 1950's, psychologists have studied 
the behavioral aspects of software engineering. 
However, the results of their research have never 
been organized into a subfield of either software 
engineering or psychology. This failure results 
from the difficulty of integrating theory and data 
from the mixture of paradigms borrowed from psychol- 
ogy. This paper will review some of the psycho- 
logical research on software engineering performed 
since the Garmisch Conference in 1968. This review 
will be organized under two of the psychological 
paradigms used in exploring programming problems: 
individual differences and cognitive science. The 
major theoretical and practical contributions of 
each area to the theory and practice of software 
engineering will be discussed. The review will 
end with a call for more research guided by the 
paradigm of cognitive science, since such results 
are the easiest to integrate with new developments 
in artificial intelligence and computer science 
theory. 

PARADIGMS IN SEARCH OF A FIELD 

Since the 1950's psychologists have studied 
the behavioral aspects of software engineering. 
However, the results of their research have never 
been organized into a subfield of either software 
engineering or psychology. This failure results 
from the difficulty of integrating theory and data 
from the mixture of paradigms borrowed from psychol- 
ogy. The behavioral studies performed by computer 
scientists have been criticized by Brooks (1980) 
and Sheil (1981) for a lack of experimental rigor. 
Although they occasionally scoured the fine print 
to uncover something about each study to condemn, 
the gist of their remarks is well taken. 

Every psychological study portrays a paradigm, 
a model of what the investigator believes is really 
important in human behavior. When the choice of 
paradigms is unconscious, investigators are often 
faced with defending their hypotheses with data 
which do not address the argument. The motley body 
of psychological studies on programming has been 
guided by numerous psychological paradigms, among 
them individual differences, human factors, cogni- 
tive science, group behavior, and organizational 
behavior. These paradigms represent different ways 

of looking at human beings, and differ in the 
aspects of human behavior they explain. Due to the 
limited space in the conference proceedings, only 
contributions from the individual differences and 
cognitive science areas will be reviewed. See 
Curtis (1981a,b) for reviews of research from other 
psychological paradigms. 

Individual Differences 

In the beginning was the need to hire the best 
person for the job. Programmers had always differ- 
ed from each other in large ways, especially in 
their ability to write programs which optimized the 
precious resources of the machine. Since program- 
ming was a mental activity, it stood to reason that 
tests of cognitive ability should predict who would 
make the best programmers. However, measurement 
was difficult when the phenomena underlying the 
performance of a skill were unobservable, such as 
with mental abilities. 

To measure mental abilities, a task must be 
devised which exercises the theoretical mental 
construct. The critical factors for this approach 
are: 

i) a clear definition of the mental construct, 
2) a carefully developed performance scale, and 
3) a scientifically sound validation of both 

the construct and the scale. 

The best known of the early tests used to pre- 
dict programmer performance was the IBM Programmer 
Aptitude Test (PAT). This test contained three 
tasks which required job candidates to figure out 
the next number in a series, figure out analogies 
represented in figures, and solve arithmetic prob- 
lems. These tasks were fine measures of mental 
abilities and could be used to select people for 
almost any white collar job in the company. Unfor- 
tunately, the relationships between this test bat- 
tery and the job performance of programmers were 
often quite low (Reinstedt, 1966). Often these 
low correlations reflected little more than the 
well-known failure of managerial performance rat- 
ings to accurately represent individual perform- 
ance. Even worse, experience in having taken the 
test improved subsequent scores (not a desired 
characteristic for a measure of native intellec- 
tual capacity). There were two reasons managers 
continued using tests of questionable validity: 
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i) they could shift responsibility for hiring 
decisions from themselves to the test, and 

2) even with their weaknesses the tests were 
probably better judges of programming poten- 
tial than were many managers. 

Programmer selection testing had already 
fallen into disfavor by the Garmisch conference. 
This initial attempt of psychologists to aid soft- 
ware engineering had faired poorly not because the 
principles and technologies of psychology were not 
up to the task, but because the psychologists 
involved took the easy road out. Psychologists 
failed to adequately model the mental and behav- 
ioral aspects of programming before selecting tests 
to measure it. 

Nevertheless, individual differences in per- 
formance among programmers remained a critical prob- 
lem on programming projects. Sackman, Erickson, 
and Grant (1968) produced data displaying a 28:1 
range in debugging performance. However, their 
data were confounded by the use of different pro- 
gramming languages. I subsequently reported debug- 
ging data collected with my colleagues at GE 
(Curtis,1981c) which displayed 23:1 differences 
without confounding factors. Boehm (1981) reported 
that differences in personnel and team capability 
was the most significant factor affecting program- 
ming productivity in his multi-year cost estimating 
study at TRW. 

Recent efforts to develop more appropriate 
tests measuring individual differences among pro- 
grammers have met with greater success. Wolfe 
(1971) developed a series of tests for assessing 
programming aptitude which require candidates to 
manipulate numbers according to an intricate set of 
procedures that are not unlike some assembler tasks. 
A validation study of one of these tests appears in 
DeNelsky and McKee (1974). The Wolfe tests for 
programming aptitude primarily assess an indivi- 
dual's ability to follow detailed procedural 
instructions. However, this skill is only one of 
those required of entry level programmers. 

Ray Berger began with a thorough job analysis 
of programming jobs and subsequently produced a 
series of tests for assessing different levels of 
skill and knowledge in programming. His initial 
aptitude test requires candidates to learn a short 
procedural language and then use it in solving 
problems of increasing complexity. This is the 
only widely marketed test that directly assesses 
the ability of applicants to learn and use a lan- 
guage. This skill is especially important when 
hiring entry level programmers who will be placed 
in a training program. Studies of the Berger 
Aptitude for Programming Test (B-APT) have obtained 
some of the highest validities to date, although 
these studies have not been reported in the 
archival literature. 

The bottom line after two decades of work on 
programmer selection is that the individual differ- 
ences model has never been applied to programming 
as effectively as it should have been. Programmer 
selection research has rarely considered more than 
a few mental abilities. The full set of individual 

characteristics which affect programming perform- 
ance has never been modelled and studied in the 
same set of data. Figure 1 presents some of the 
characteristics that would need to be considered 
in a model of individual programming performance. 
Most programmer selection tests only assess factors 
listed on the left side of Figure I. 

lntellectual 

~= ledge Prograrm~ing 
performance 

MotJvational 

Behavioral . 

Figure I. Factors affecting individual programming performance 

Couger and Zawacki (1980) took the individual 
differences model further than most psychologists 
had in studying programmers. They identified how 
differences in the motivational structure of pro- 
grammers interacted with the kinds of jobs they 
were assigned. They found that programmers had 
higher needs for personal growth and personal 
development than those in any other job category 
measured. However, programmers had lower needs 
for social interaction than people in most other 
types of jobs. This result should not be inter- 
preted to imply that programmers are antisocial, 
rather that they get their greatest source of 
satisfaction from their job and their own profes- 
sional development. 

Couger and Zawacki used the Hackman and Oldham 
(1975) model of job characteristics to analyze 
programming jobs on the dimensions which have the 
greatest impact of the motivational structure of 
programmers. A summary of this analytic model is 
presented in Figure 2. The Hackman-Oldman model 
postulates that various characteristics of the job 
have substantial impact on the psychological state 
of the individuals performing the job. These job 
characteristics define its motivating potential. 
It is the job's motivating potential interacting 
with the primary motivations of the individual 
which will result in a level of performance, satis- 
faction, turnover, etc. 

Psycboloslcal  Personal and 
Job Dimensions States  Work Outcomes 

Variety of s k i l l s  required 

Work on i d e n t i f i a b l e  product W Meaningfulness 
of work Motivation \ • 

Importance of task ~ J ~ S a t i s f a c t l o m  

Autonomy in performing t a s k s .  ~ R e s p o n s l b l l i t y ~ . ~ P e r f o n m n c e  

for outcomes~Absenteeism 

Feedback on work results | Knowledge of 
work results TurNover 

Figure 2. ~ckman-Oldham model of a Job's motivating potent ia l  
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Since programmers have shown such high levels 
of need for personal growth, it is important that 
their jobs be structured to provide high levels of 
the five job dimensions. Programmers who do not 
have the characteristic strong growth need may be 
more suited for programming jobs with less motiva- 
ting potential. This model makes a sophisticated 
use of the individual differences approach by con- 
sidering the match between personal characteris- 
tics and the surrounding environment. 

Until the many sources of variation among 
individuals have been compared in the same set of 
data, it will not be possible to determine pre- 
cisely which of the potential sources is the most 
important predictor of success in training pro- 
grams or on the job. Further, as Weinberg (1971) 
suggested over a decade ago, it is unclear that we 
have assessed all of the important mental abilities 
related to programming. He specifically pointed 
toward a failure to assess the ability to consider 
alternate causal explanations of erroneous opera- 
tion during debugging. More recently, Green 

(1977) has shown that the type of task 
involved in debugging is separate from the type 
involved in writing code. 

It would appear from work in cognitive science 
(to be discussed later) that the most important 
determinant of individual differences in program- 
ming is the knowledge base possessed by a program- 
mer. As will be described in the section on cogni- 
tive science, the performance of someone tackling 
a complicated programming task is related to the 
richness of their knowledge about the problem area. 
Thus, while the individual differences paradigm 
provides a method for predicting performance dif- 
ferences among programmers, it fails to offer an 
explanation of why these differences occur or how 
to reduce them. Although the individual differ- 
ences paradigm attempts to assess the mental struc- 
ture of a human being, it rarely captures the 
dynamic growth or interaction among these struc- 
tures. Its limitation is that it presents a static 
model of human beings. A better model will be 
needed to explain how individual differences occur. 

The following points summarize the almost 
three decades of research which have investigated 
the individual differences among programmers. 

• It took two decades to realize that pro- 
grammers had more than one dimension. 

• Managers rely on aptitude tests like a 
drowning sailor grasping for floating 
debris. 

• A test is no better than the job analysis 
and validation study which supports it. 

• Good tests are currently available, but 
they should only constitute part of the 
selection process. 

• Advances in individual difference models 
will come from a better understanding of 
the programmer knowledge base. 

Cognitive Science 

The paradigm of cognitive science seeks to 
understand how knowledge is developed, represented 

in memory, and used. The interaction of cognitive 
science and computer science has led to the emer- 
gence of artificial intelligence, the attempt to 
make computers process information in ways similar 
to those used by humans. 

There are several different levels at which 
researchers have modelled cognitive processes in 
programming. The differences in the models pre- 
sented here are primarily in the levels of expla- 
nation. Cognitive theories of programming have 
not been elaborated to the extent that they present 
alternative explanations of programmer performance. 
In fact, on the surface many of the theories are 
interesting applications of psychological princi- 
ples to programming, but they have not been suffi- 
ciently elaborated for consistent practical appli- 
cation at a technical level. Nevertheless, the 
models presented here are promising approaches to 
understanding how programmers develop programs. 

Most cognitive models of programming begin 
with the distinction between short and long term 
memory. Short term memory is a limited capacity 
workspace which holds and processes those items of 
information currently under our attention. The 
capacity of short term memory was originally char- 
acterized by Miller (1956) as holding 7 + 2 items. 
An item is a single piece of information? although 
there is no requirement that it be an elementary 
piece resulting from the decomposition of a larger 
body of information. 

Currently, many cognitive theorists portray 
short term memory as allocating the scarce resources 
of the cognitive processor, rather than as posses- 
sing a limited number of mental slots for infor- 
mation. Nevertheless, this limited capacity infor- 
mation buffer provides one of the greatest limita- 
tions to our ability to develop large scale computer 
systems. That is, we simply cannot think of enough 
things simultaneously to keep track of the inter- 
woven pieces of a large system. 

A process called 'chunking' expands the capa- 
city of our short term mental workspace. In 
chunking, several items with similar or related 
attributes are bound together conceptually to form 
a unique item. For instance, through experience 
and training programmers are able to build increas- 
ingly larger chunks based on solution patterns 
which emerge frequently in solving problems. The 
lines of code in the program listing: 

SUM=O 
DO i0 1 = I, N 
SUM = SUM + X(I) 

i0 CONTINUE 

would be fused by an experienced programmer into 
the chunk "calculate the sum of array X". The 
programmer can now think about working with an 
array sum, a single entity, rather than the six 
unique operators and seven unique operands in the 
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four program statements above. When it is neces- 
sary to deal with the procedural implementation, 
the programmer can call these four statements from 

long term memory as underlying the chunk "array 
sum". 

Much of a programmer's maturation involves 
observing more patterns and building larger chunks. 
The scope of the concepts that programmers have 
been able to build into chunks provides one indi- 
cation of their programming ability. The particu- 
lar elements chunked together have important impli- 
cations for educating programmers. Educational 
materials and exercises should be presented in a 
way which maximize the likelihood of building 
useful chunks. 

Long term memory is usually treated as having 
limitless capacity for storing information. An 
important concern with long term memory is how the 
information stored there is interrelated and 
indexed such that: 

i) items in short term memory can quickly cue 
the recall of appropriate chunks of infor- 
mation from long term memory, 

2) items in short term memory can be linked 
into and transferred quickly to long term 
memory for retention, and 

3) information retrieved from long term memory 
can cue the retrieval of additional chunks 
of information when appropriate. 

The effects of both experience and education are on 
the knowledge base they construct in long term 
memory. The construction of this base is not 
merely one of accumulating facts, but of organizing 
them into a rich network of semantic material. 

Shneiderman and Mayer (1979) have character- 
ized the structure of knowledge in long term memory 
into a syntactic/semantic model. In their model, 
syntactic and semantic knowledge are organized 
separately in memory. Semantic knowledge concerns 
general programming concepts or relationships in 
the applications domain which are independent of 
the programming language in which they will be 
executed. Syntactic knowledge involves the proce- 
dural idiosyncracies of a given programming lan- 
guage. 

An important implication of the Shneiderman 
and Mayer model is that the development of pro- 
gramming skill requires the integration of know- 
ledge from several different knowledge domains 
(Brooks, 1983). For instance, the programming of 
an on-board aircraft guidance system may require 
knowledge of: 

i) aeronautical engineering 
2) radar and sensors technology 
3) mathematical algorithms 
4) the design of the on-board processor 
5) the development machine and tools 
6) a high level programming language 
7) an assembly language 

Each of these is a separate field of knowledge, 
some of which require years of training and 

experience to master. Thus, programming skill is 
specific to the application being considered. One 
can be a talented avionics programmer, and still 
be a novice at programming simultaneous multi- 
user business databases. 

Several efforts have been made to model the 
structure of programming knowledge at a level 
deeper than that of Shneiderman and Mayer. Brooks 
(1977) used Newell and Simon's (1972) production 
system approach to model the rules a programmer 
would use in writing the code for a program. 
These rules are of the type, "If the following 
conditions are satisfied, then produce the 
following action". Based on analysis of a verbal 
protocol, Brooks identified 73 rules which were 
needed to model the coding process of a single, 
and relatively simple, problem solution. Brooks 
estimated that the number of production rules 
needed to model the performance of an expert 
programmer was in the tens to hundreds of 
thousands. 

Atwood, Turner, Ramsey, and Hooper (1979) 
modelled a programmer's understanding of a pro- 
gram using Kintsch's (1974) model of text compre- 
hension. Their approach treats a program as a 
text base composed of propositions. Comprehension 
occurs as elementary or micro-propositions are 
fused into macro-propositions which summarize 
their meaning or content. This process is similar 
to chunking. The result of this process is a 
hierarchy of macro-propositions built from the 
micro-propositions at the bottom of the tree. A 
micro-proposition is a simple statement composed 
of a relational operator and one or more argu- 
ments (operands). 

Atwood et al. (1979) demonstrated that a 
program design could be broken into a hierarchical 
structure of propositions. They observed that 
after studying the design, more experienced pro- 
grammers were able to recall propositions at a 
greater depth in the hierarchy than novices. The 
more experienced programmers had more elaborate 
structures in long term memory for use in encoding 
such designs. Thus, they were able to retain 
propositions at greater depth because: 

i) the higher level macro-propositions in 
the design did not represent new infor- 
mation, and thus could be referenced by 
existing knowledge structures, and 

2) the propositions representing new infor- 
mation could be linked into the existing 
knowledge structures of experienced pro- 
grammers and shifted into long term 
memory. 

This propositional hierarchy is one representation 
of how knowledge is structured in long term 
memory. To understand how these knowledge struc- 
tures develop, cognitive scientists have studied 
differences between expert and novice programmers. 

Expert-novice differences. The study of 
expert-novice differences in programming has 
generated information on how the programming 
knowledge base is developed. Both Adelson (1981) 
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and Weiser and Shertz (1983) demonstrated that 
novices comprehend a program based on its surface 
structure, that is, the particular applications 
area of the program such as banking, or avionics. 
Experts, however, analyze a program based on its 
deep structure, the solution or algorithmic struc- 
ture of the program. Similarly, McKeithan, 
Reitman, Rueter, and Hirtle (1981) observed that 
experts are able to remember language commands 
based on their position in the structure of the 
language. Novices, not having an adequate mental 
representation of the language structure, often 
use mnemonic tricks to remember command names. 

Results of the expert-novice differences 
research in programming agree with the results of 
similar research on other subject areas (e.g., 
thermodynamics, physics, and chess) conducted by 
Herbert Simon and his associates at Carnegie- 
Mellon. They have determined that experts are not 
necessarily better at operational thinking than 
novices. Rather, experts are better at encoding 
new information than novices. The broader know- 

ledge base of experts guides them to quickly cue 
in on the most important aspects of new informa- 
tion, analyze them, and relate them to appropriate 
schema in long term memory. 

Developing technical skill is not merely a 
matter of learning a long list of facts. Rather, 
developing technical skill is an effort to learn 
the underlying structure of the knowledge required 

For the task. McKeithan et al. found that the 
knowledge structures developed by experts were 
more similar to each other than were those of 
intermediates or novices. Thus, programmers tend 
to gravitate toward a similar understanding of the 
language structure with experience. The develop- 
ment of this structure enhances the ability of 
experienced programmers to assimilate new infor- 
mation. 

Soloway and his colleagues at Yale (Soloway, 
Bonar, and Ehrlich, 1983; Soloway, Ehrlich, and 
Bonar, 1981) have modelled the programming know- 
ledge base as a collection of plans or templates. 
These plans represent the algorithmic or computa- 
tional structures programmers use in conceiving 
the solution to a problem. These plans become more 
efficient and elaborate as programmers gain in 
experience. Soloway et al. (1983) demonstrated 
that programmers can work more effectively when 
the language they use supports the structure of 
the templates in their knowledge base. 

In a psychological study of the program design 
process, Jefferies, Turner, Polson, and Atwood 
(1981) noted that programmers with greater exper- 
ience decomposed a problem more richly into mini- 
mally interacting parts. The design knowledge of 
novices did not appear sufficient to provide for 
a full decomposition. In particular, more exper- 
ienced programmers spent greater time evaluating 
the problem structure prior to beginning the design 
process. Observations similar to these were also 
made by Nichols (1981). 

Jeffries et al. hypothesized that there is the 
equivalent of a mental design executive. This 

executive attempts to recursively decompose the 
problem statement and relate the components emer- 
ging from the decomposition to patterns in the 
programming knowledge base in long term memory. 
The shallowness of the novices' decomposition 
reflects the shallowness of the knowledge base 
against which they attempt to compare pieces of 
the problem statement. The richer knowledge base 
of experts allows them a fuller decomposition of 
the problem statement. The criterion used by 
experts for terminating the decomposition process 
for a particular aspect of the problem is when 
it has been decomposed to a level for which the 
programmer can retrieve a solution template. 

Design problem solving. Most problem solving 
research has been performed on well defined prob- 
lems with finite solution states. In problems 
such as the Towers of Hanoi, there is an optimal 
path to the solution. The path to a successful 
solution in chess is not so clearly defined. 
Nevertheless, in chess there are a finite number 
of moves which can be chosen at any time and a 
well defined solution state. In a semantically 
rich domain such as programming, neither are the 
options from which one can choose limited nor is 
there a clearly defined solution state. There- 
fore, studying problem solving in programming is 
a qualitatively different task than most of those 
used in problem solving research. 

Carroll, Thomas, and Malhotra (1980) argued 
that solving unstructured problems could not be 
explained with existing theory. They began their 
investigations of the design process by studying 
how analysts and clients interacted in establish- 
ing the requirements for a system. Carroll, 
Thomas, and Malhotra (1979) observed that client/ 
analyst requirements sessions were broken into 
cycles which represented the decomposition of the 
problem. However, these cycles did not decompose 
the problem in a top-down fashion as recommended 
by structured programming practices. Rather, 
these cycles represented a linear or sequential 
decomposition of the problem in which the sub- 
problem to be attacked in the next cycle was cued 
by the results of the last cycle. The only 
a priori structure placed on the content of these 
client/analyst cycles was determined by the initial 
goal structure of the client. 

The problem in moving from the idea for a 
system to its f£nal implementation is in trans- 
forming a linearly derived sequence of desired 
components into a hierarchical arrangement of 
functions or data transformations. Once the 
requirements have been delineated, they must be 
organized so that the inherent structure of the 
problem becomes visible. The next step is to 
construct a solution structure which matches the 
problem structure. To the extent that these 
structures are logically organized and matched, 
the system will possess a structural integrity 
which can expedite its implementation. 

A series of studies by Carroll and his asso- 
ciates at IBM's Watson Research Center identified 
several factors which impact the effectiveness of 
designing a solution. First, they demonstrated 
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differences in problem analysis based on differ- 
ences in the application attempted. It has been 
consistently found in problem solving research 
that people do not transfer solution structures 
across problem isomorphs. Isomorphs are problems 
with the same structural characteristics, but 
whose cover stories (or subject areas) differ. 
Previous problem solving research has established 
that there is poor transfer of previously learned 
problem solutions across isomorphs. The structure 
of the cover story affects the difficulty people 
experience in reaching a solution. 

Carroll et al. (1980) observed that people 
had more difficulty solving a problem that invol- 
ved temporal relations (designing a manufacturing 
process) than an isomorph which involved spatial 
relations (arranging an office layout). The 
difference arose in part because the spatial prob- 
lem lends itself to graphical representation. 
However, the temporal isomorph does not present 
spatial cues and participants had difficulty 
representing it to themselves. Many retreated to 
a verbal description of the problem, and several 
were totally unable to solve it. When a graphical 
aid was provided for solving the temporal problem, 
it appeared to make the problem easier to under- 
stand. The spatial aid did not make the problem 
easier to solve, however, since the same number 
of participants were unable to solve it. 

The structuring of the requirements also 
seems to have an impact on the characteristics of 
the problem solution. Presenting the requirements 
in clusters based on their inherent structure 
assisted participants in designing solutions which 
better reflected the problem structure and were 
more stable when new requirements were added 
(Carroll, Thomas, Miller, & Friedman, 1980). 
Greater structure in the original problem state- 
ment seems to reduce the amount of iteration 
through design cycles. Thus, a critically impor- 
tant focus of the structured programming movement 
should be on methods of structuring the statement 
of requirements. Far less attention has been paid 
this problem than to areas, suchcoding, that have 
less impact on system integrity and costs. 

Hoc (1981) studied the results of designing 
a program from the data structure versus the 
results structure. He suggested that a choice 
of design method is often made prematurely, prior 
to understanding the relation between the data 
and results structures and the processing which 
transformed the former into the latter. He felt 
that the choice of design method was better made 
after this problem analysis stage. 

The conceptual integrity of the program 
design is critical to the success of a programming 
project. No level of management talent can sus- 
tain high productivity and quality on a project 
which fails to achieve it. A most critical area 
for programming research, then, is requirements 
and design techniques. The current level of 
behavioral research on these topics is only a 
start in what needs to be a major thrust. 

The detection of procedural faults. At 
least part of the process of developing an organ- 
ized knowledge structure about programming is the 
abstraction of rules from the myriad patterns and 
facts that programmers know or can recognize. 
Whereas an expert programmer may be able to recog- 
nize 50,000 patterns, the number of rules which 
govern the structure of these patterns is substan- 
tially less, perhaps i000 to 3000. Brooks (1977) 
estimated many more rules, but he may have been 
referring to the recognizable patterns from which 
these rules are drawn. Rule-based knowledge in 
programming has been studied most frequently in 
the detection of procedural faults. 

One of the most critical and time consuming 
tasks in programming is the detection and correc- 
tion of faults (bugs). While debugging has been 
used as an experimental task for studies on speci- 
fications or language features, relatively little 
behavioral research has been directed toward 
understanding the debugging process. 

John Seely Brown and his associates (Brown & 
Burton, 1978; Brown & Van Lehn, 1980) have laid 
some theoretical groundwork for modelling the 
generation of bugs in procedural tasks. They 
treat bugs not as random occurances, but as sys- 
tematic and predictable outcomes of the incomplete 
or incorrect application of the rules underlying 
a procedural skill. Their explanation entails 
four components: 

i) the first component is that an individual 
acquire a formal representation of a 
procedural skill. Such a representation 
would be a set of rules which guide the 
development of procedures for solving a 
problem. 

2) the second component of their model is a 
set of principles for determining which 
rules can be deleted from the formal 
representation to simulate the incomplete 
or incorrect learning of rules or the 
forgetting of rules. 

3) the third component is a set of repair 
heuristics used by the individual to 
patch over gaps in the formal represen- 
tation. These heuristics generate bugs 
by creating inappropriate procedures for 
completing procedural solutions. 

4) the final component is a set of mechanisms 
for screening out some of the heuristics 
which generate blatently incorrect proce- 
dures. 

This type of model is guiding some of the current 
work on intelligent debugging aids (Johnson & 
Soloway, 1984). 

Youngs (1974) reported some descriptive data 
on the types of errors typically made by pro- 
grammers. His data were similar to several data- 
bases collected on large system development pro- 
jects by the Information Sciences Program at Rome 
Air Development Center. The most frequent cate- 
gory of faults was logic errors, especially for 
experienced programmers. Syntactic errors occurred 
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relatively infrequently. This observation rein- 
forces the importance of providing useful control 
constructs in the programming languages. The 
results also indicate that novices and profess- 
ionals make different kinds of errors. 

During the early 1970s John Gould and his 
associates at IBM's Watson Research Center made 
several studies of program debugging. In the 
first study, Gould and Drongowski (1974) found 
that providing debugging aids to programmers did 
not necessarily make fault detection faster. 
Programmers adopted debugging strategies based on 
the types of information they were presented about 
the program and the problem. This strategy inclu- 
ded attempts to localize the section of code 
likely to contain the error, and employed a hier- 
archical search in which the most complex sections 
were left for last. In a further study, Gould 
(1975) identified that this hierarchical search 
was for: 

i) syntactic faults, 
2) grammatical faults not caught by the 

compiler, and 
3) substantive faults. 

Sheppard, Curtis, Milliman, and Love (1979) 
observed several different search strategies among 
programmers. Some programmers felt they had to 
understand the entire program before they could 
begin searching for the fault. The more effective 
strategy, however, was to identify that portion of 
the output which was in error and quickly trace 
back from the print statement for that variable 
to locate the area in which the fault was likely 
to have occurred. This technique is similar to 
the program slicing strategy studied by Weiser 
(1982). 

One of the most extensive programs of 
research on fault diagnosis has been conducted by 
William and Sandra Rouse now at Georgia Tech. 
They have made an important distinction between 
perceptual complexity and problem solving com- 
plexity (Rouse & Rouse, 1979). They suggest that 
the latter is more affected by individual differ- 
ences, especially those related to understanding 
a problem. Brooke and Duncan (1981) demonstrated 
that factors which primarily impact perceptual 
complexity, such as the display format, can affect 
problem solving effectiveness. Subsequently, 
Rouse, Rouse, and Pelligrino (1980) have developed 
a rule-based model of fault diagnosis that agrees 
at a global level with the actual performance of 
people on a similar task. 

Learning to program. There are two primary 
ways in which the rules which govern programming 
can be learned. They can be abstracted from the 
developing knowledge base as the programmer gains 
increasing experience. This, of course, is a 
lengthy process. On the other hand, rules can be 
taught in organized training programs. Training 
not only develops the knowledge base more quickly 
than experiential learning, but it is also likely 
to be more thorough and accurate. However, exper- 
iential learning is often the primary method for 

acquiring the contextual information used in 
interpreting the appropriateness of various rules 
for programming. 

Mayer (1976, 1981) described several training 
techniques grounded in psychological theory and 
research which can be used successfully in train- 
ing novice programmers. Mayer (1976) stressed the 
importance of 'advanced organizers' to help struc- 
ture new material as it is learned. These advanced 
organizers help build a preliminary model or out- 
line of the new information so that later input 
can be more easily assimilated into an appropriate 
knowledge structure. Mayer emphasized that one of 
the most effective advanced organizers is a con- 
crete model of the machine which is manipulated 
by instructions coded in a computer language. 
Mayer argued that students benefit from being 
forced to elaborate these models in their own 
words. 

DuBoulay, O'Shea, and Monk (1981) extended 
Mayer's concept of a concrete model of the machine. 
They discussed a 'notional machine' which is a 
simplified machine whose facilities are only those 
which are implemented by the available commands 
in the programming language. They also stressed 
the importance of a student's gaining visibility 
into the processes occurring inside the abstract 
notional machine. They have built several train- 
ing systems based on this concept. 

Coombs, Gibson, and Alty (1982) have identi- 
fied two learning styles which characterize the 
different ways novices learn to program: compre- 
hension learning and operational learning. Com- 
prehension learners acquire an overall layout of 
the information under study, but may not under- 
stand the rules which allow them to operate with 
and on the information. Operational learners 
grasp the rules for operating on information, but 
they do not acquire a complete picture of the 
knowledge domain. Comprehension learners are 
primarily interested in understanding, while 
operational learners are primarily interested in 
doing something. These characterizations repre- 
sent idealized students, whereas most people will 
fall on a continuum in between, displaying varying 
degrees of both styles. 

Coombs et al. concluded from their data that 
operational learners were better able to learn a 
programming language. Their learning strategy 
was characterized by attention to the details of 
the language structures, the abstraction of cri- 
tical language features, and an orientation 
towards representing important structural rela- 
tions in rules. The major learning activity for 
operational learners was in practice sessions, 
whereas for comprehension learners this occurred 
in lectures. 

Lemos (1979) investigated the benefits of 
structured walkthroughs as a classroom learning 
exercise. This approach seemed to have advan- 
tages in allowing novices to compare alternative 
approaches to the problem and gain immediate feed- 
back on their strategy. Shneiderman (1980) has 
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used a similar feedback mechanism with experienced 
programmers and found benefits in terms of learn- 
ing new approaches to a problem. 

Conclusions 

I have argued that individual differences 
among project personnel (and this should be even 
more true in the unstudied area of programming 
managers) accounts for the largest source of var- 
iation in project performance. In fact, Sheppard, 
Kruesi, and Curtis (1981) found that half of the 
variation in the efficiency of extracting infor- 
mation from different documentation formats was 
attributable to individual differences among the 
professional programmers involved in the experi- 
ment. However, the individual differences para- 
digm only allows us to characterize and predict 
these differences, but not explain how they 
develop and change over time. Cognitive science 
has provided a representation of knowledge organ- 
ization and development which presents an expla- 
nation of the basis for these differences. There- 
fore, cognitive science is a paradigm which offers 
the best opportunity to study and gain control 
over the largest source of influence of project 
performance. 

Cognitive science presents an opportunity for 
psychologists to get on the leading edge of pro- 
gramming technology, rather than sweeping up 
behind the directions already set by computer 
scientists. As a driving force in artificial 
intelligence, cognitive science provides a vehicle 
for analyzing the most appropriate ways to auto- 
mate more of the programming process in ways that 
are helpful to those who must develop large sys- 
tems. 

The following points describe some of the 
important themes emerging from cognitive science 
research on software engineering: 

• Expertise is specific to different know- 
ledge domains. A programmer can be expert 
in one domain and a novice in another. 

• The development of expertise involves 
building a massive knowledge base of 
recognizable patterns (perhaps 50,000) 
and abstracting a set of rules (perhaps 
i000 to 3000) which govern their behavior. 

• Rule-based models of programming need to 
be expanded far beyond their current use, 
primarily in fault diagnosis. Rule-based 
models hold substantial promise for auto- 
mating programming tasks. 

• So little research is being performed on 
the problem solving process during require- 
ments definition, functional specification, 
and program design, that this must be a 
crucial area for improving software engin- 
eering practice. 

• Rather than teaching isolated commands, 
educators should liberally model abstract 
machines for teaching the structure of a 
programming language. 

• Learning styles will play an important 
role in how quickly, accurately, and 
thoroughly an individual learns to 
program. 

• Cognitive science is the easiest way for 
a psychologist to communicate with a 
computer scientist, but someone with 
artificial intelligence may have to 
interpret one to the other. 

There will remain behavioral questions with 
significant impact on the usefulness of new 
developments in programming technology. Some of 
these questions involve: 

I) techniques for insuring the completeness 
of a requirements statement, 

2) techniques for clustering the require- 
ments to better reveal the inherent 
structure of the problem, 

3) techniques for deciding on the alloca- 
tion of requirements between hardware 
and software, 

4) techniques for bridging the gap between 
a statement of requirements and the 
preliminary program design, 

5) techniques for indexing and retrieving 
reused program modules, 

6) techniques for proving the correctness 
of reused program modules, 

7) techniques for coordinating the work 
of project team members, and 

8) techniques for designing and verifying 
the data flow among modules. 

Thus, there will need to be a shift in emphasis in 
behavioral research away from coding issues toward 
the concerns enumerated above. If behavioral 
scientists, and especially psychologists, begin 
attacking these problems immediately, they can 
influence the development of new technology in 
software engineering. Further, the models of 
programmer performance being developed by cogni- 
tive scientists can be useful in developing 
knowledge-based tools and environments for soft- 
ware engineering. 
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