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1 INTRODUCTION

JavaScript has become one of the most prevalent programming languages. Originally, it was de-
signed as a simple scripting language embedded in browsers and intended to implement small
scripts that enhance client-side web applications. Since the mid-1990s, the language has evolved
beyond all expectations into one of the most prevalent programming languages. Today, JavaScript
is heavily used not only by almost all client-side web applications but also for mobile applications,
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desktop applications, and server applications.1 Many JavaScript programs are complex software
projects, including, for example, highly interactive web sites and online games, integrated develop-
ment environments, email clients, and word processors.2 The JavaScript language has been stan-
dardized in several versions of the ECMAScript language specification. At the time of this writing,
ECMAScript 7 (ECMA 2016) is the latest stable version. We refer to the language as “JavaScript”
in the remainder of this article.

Two reasons for the popularity of JavaScript are its dynamic and permissive nature. First, the
language is highly dynamic, allowing developers to write code without any type annotations, to
extend any objects, including built-in APIs, at any point in time, and to generate and load code at
runtime. Second, the language is very permissive with respect to potentially erroneous behavior.
Instead of failing an execution when other languages would, JavaScript often follows a “no crash”
philosophy and continues to execute. Even when JavaScript code produces a runtime error, for
example, when calling an undefined function, it only aborts the current event handler, allowing the
application to proceed. Many developers perceive these two properties—dynamic and permissive—
as beneficial for quickly implementing and for easily extending applications.

Unfortunately, the dynamic and permissive nature of JavaScript also causes challenges for pro-
ducing high-quality code. For example, not crashing on likely misbehavior can easily hide an error,
allowing errors to remain unnoticed even in production. As another example, dynamic code load-
ing increases the risk that attackers inject and execute malicious code. As a result, JavaScript is
known not only for its ease of use but also for being prone to correctness, efficiency, and security
problems.

To avoid or at least mitigate such problems, developers need program analyses that detect
and help understand errors. However, many traditional program analyses are not effective for
JavaScript. First, techniques developed for other widely used languages, such as Java, C, and C++,
often cannot be easily adapted because of various JavaScript-specific language features, such as
prototype-based inheritance, dynamic typing, and events. Furthermore, the tight interaction of
JavaScript code with its environment, for example, with the Domain Object Model (DOM) in a
browser, makes it difficult to adapt existing analyses for other dynamically typed languages, such
as Python. Second, static analysis, which is effective for statically typed languages, faces serious
limitations in JavaScript, because it cannot precisely reason about the many dynamic language
features. Instead, there has been a need for novel program analyses that address the challenges
created by JavaScript.

These limitations have triggered research on program analysis for JavaScript. In particular, dy-
namic analysis has proven to be an effective way to find and understand problematic code. By
reasoning about a running program, dynamic analysis avoids the challenge of statically approx-
imating behavior, a challenge that is particularly difficult for JavaScript. Since dynamic analysis
requires inputs that exercise the program, approaches for test generation have been developed.
These approaches automatically create inputs, such as sequences of UI events or input data given
to a function.

The success of dynamic analysis and test generation for JavaScript has led to an abundance of re-
search results, especially since the mid-2000s. While this development is good news for JavaScript
developers, the sheer amount of existing work makes it difficult for interested non-experts to un-
derstand the state of the art and how to improve on it. This article addresses the challenge of
summarizing the large amount of work on dynamic analysis and test generation for JavaScript.

1See, for example, http://cordova.apache.org/, http://electron.atom.io/, http://nwjs.io/, and http://nodejs.org/.
2See, for example, http://www.y8.com/, http://c9.io/, http://gmail.com/, and https://www.onenote.com/.
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Fig. 1. Overview of topics covered in this article. Each white box corresponds to a section, except for topics

in dashed boxes, which are out of the scope of this article.

We present a comprehensive survey that enables interested outsiders to get an overview of this
thriving research field. In addition to presenting past work, we also outline challenges that are still
to be addressed, guiding future work into promising directions.

Figure 1 outlines this article. At first, we summarize challenges imposed by JavaScript
(Section 2). Then, we discuss dynamic analyses that help achieve four goals:

—Correctness and reliability analyses detect correctness problems and other issues that affect
the reliability of a program (Section 3).

—Security and privacy analyses detect malicious and vulnerable code (Section 4).
—Performance analyses help improve the efficiency of the program (Section 5).
—Developer productivity analyses help programmers during the development process, for ex-

ample, during program understanding and program repair (Section 6).

In addition to analyses used by developers, Section 7 discusses empirical studies performed using
dynamic analysis. Test generation approaches, in particular approaches to generate input data and
sequences of events, are the focus of Section 8. Section 9 compares different ways to implement
the approaches surveyed in this article. Finally, Section 10 discusses open research challenges and
outlines directions for future work.

Since this article focuses on dynamic analysis and test generation, other related techniques, such
as purely static analysis, formalizations and extensions of JavaScript, and manual testing, are out
of scope. In practice, the line between static and dynamic analysis is fuzzy, because an analysis
may interpret the program in a way similar but not equal to its execution on a target platform.
We define dynamic analysis as an approach that (i) executes a program on a regular execution
platform, that is, a platform that is also used for executions that do not analyze the program, and
that (ii) reasons about individual executions and not about all possible executions of the program.

There exist several surveys on techniques for JavaScript but, to the best of our knowledge, none
covers dynamic analysis and test generation in detail. An inspiring survey by Mesbah (2015) dis-
cusses testing of JavaScript-based web applications, with a focus on manual testing, test oracles,
and UI-level testing. Our article does not cover manual testing techniques but focuses on auto-
mated techniques. Li et al. (2014b) also focus on manual testing but cover neither program analysis
nor test generation. Other related work (Garousi et al. 2013; Dogan et al. 2014) performs systematic
mapping studies, which focus on a broad classification of approaches. As a contribution over all
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these existing surveys, we provide a detailed discussion of open research challenges and possible
directions for future work.

2 CHALLENGES FOR ANALYZING JAVASCRIPT

This section discusses properties that make JavaScript particularly intricate for program analysis
(Section 2.1), explains why these properties naturally lead to dynamic analysis (Section 2.2), and
outlines challenges dynamic analysis and test generation for JavaScript face (Section 2.3).

2.1 JavaScript: An Unusual Language

Today’s popularity of JavaScript surprises considering how JavaScript came to life: In 1995, a single
engineer, Brendan Eich, designed and implemented the first version in only 10 days (Severance
2012). Initially intended to implement small scripts that enhance web sites, JavaScript now powers
applications that reach way beyond what was anticipated. JavaScript is also unusual in its choice
of language features:

—Highly dynamic. JavaScript is dynamically typed and provides numerous dynamic language
features (Section 2.2).

—Event-driven. JavaScript uses an asynchronous execution model. Programs consist of event
handlers that are triggered by user events and system events.

—Prototype-based. JavaScript is object oriented but not class based. Instead, each object has a
chain of prototype objects to share and reuse code and data.

While some of these features are also present in other widely used languages—for example, Python
is also dynamically typed—those languages that have received most attention by the program
analysis community, Java and C, do not provide them.

Another distinguishing property of JavaScript is to be embedded into complex and heteroge-
neous environments. The most prevalent environment is a browser, where JavaScript interacts
with multiple other languages, in particular, HTML and CSS, and with the DOM. Beyond the
browser, server-side JavaScript code typically runs on the Node.js platform, whose API differs
from the browser API. Likewise, hybrid mobile applications are typically embedded into an envi-
ronment that allows for interactions with the mobile device, such as Apache Cordova. Analyzing
the interactions of a program with one or more of these environments is challenging. The challenge
is compounded by the fact that even environments of the same kind, such as different browsers,
often vary in subtle ways across implementations and versions.

Since its creation in 1995, JavaScript has grown considerably by adding new language features.
Due to backward compatibility concerns, many of the less-fortunate design choices made in the
early stages cannot be undone. This increasing complexity of the language also increases the effort
required to build analysis tools.

2.2 Why is Dynamic Analysis So Widely Used for JavaScript?

The highly dynamic nature of JavaScript makes it less amenable for static analysis but a well-
suited target for dynamic analysis. In the following, we discuss some of the dynamic features of
the language and their implications for program analysis.

Types. JavaScript is dynamically typed, that is, there are no type annotations in the source code.
The language uses “duck typing,” meaning that whether an object is suitable for an operation de-
pends only on the properties of the object but not on its nominal type. Furthermore, JavaScript
heavily uses implicit type conversions, where a runtime value is converted from one type to an-
other to enable otherwise impossible operations. All these features make it difficult for a purely
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static analysis to approximate types with reasonable precision, a challenge addressed by various
static analyses (Thiemann 2005; Jensen et al. 2009; Guha et al. 2011) not covered in this article.

Properties and Functions. JavaScript code may dynamically add and remove properties of an
object, making it difficult to statically determine which properties are available at a particular
program point and to what these properties refer. Since functions are values in JavaScript, the
difficulties of statically reasoning about properties also apply to functions. An additional challenge
is that a program may dynamically compute a property name before accessing the property. The
dynamic nature of properties and functions cause severe difficulties for static analysis (Sridharan
et al. 2012; Andreasen and Møller 2014).

Code Loading and Code Generation. Many JavaScript applications load parts of the code at run-
time, for example, via the <script> tag of an HTML page, which causes the browser to re-
trieve code from a server, or programmatically via an XMLHttpRequest, which loads code asyn-
chronously. Furthermore, JavaScript allows a program to interpret a string as code, and thereby to
generate and dynamically load code, for example, via the built-in eval function. These two prop-
erties challenge the common assumption of static analysis that the code of the program is readily
available.

While these language features challenge static analysis, they reduce to non-issues in dynamic
analysis. Because a dynamic analysis observes concrete values and concrete types, it does not suffer
from dynamic typing and dynamic usages of properties and functions. Likewise, dynamic analysis
is oblivious to dynamic code loading, because it analyzes the program’s execution once the source
code has been loaded. On the flip side, dynamic analysis is inherently limited by the executions it
observes and therefore cannot provide soundness guarantees for all possible executions. If sound-
ness is a requirement, for example, for verifying the absence of security vulnerabilities, then static
analysis is the more suitable choice. In this article, we focus on dynamic analyses.

2.3 Challenges for Dynamic Analysis and Test Generation

Even though the dynamic features of JavaScript make the language amenable for dynamic analysis,
some challenges remain.

“No crash” Philosophy. JavaScript follows a “no crash” philosophy, aiming for running a program
without showing any obvious signs of misbehavior, such as a crash, to the user. For example,
JavaScript remains silent while executing obviously incorrect operations, such as multiplying an
array with a string. The absence of obvious signs of misbehavior makes it difficult for a dynamic
analysis to distinguish intended from unintended behavior. Nevertheless, various ways to identify
misbehavior have been proposed, as discussed in Sections 3, 4, 5, and 8.

Nondeterminism. The heavy interactions of JavaScript applications with users and the network
lead to a high degree of hard-to-control inputs. Since dynamic analysis focuses on individual exe-
cutions triggered by specific inputs, it may miss behavior triggered by other possible inputs. This
input dependence is compounded by several non-traditional sources of nondeterminism, for ex-
ample, asynchronously scheduled events whose execution order is nondeterministic. As a result,
repeatedly analyzing a program execution driven by a single input may lead to multiple behaviors.
We discuss techniques to handle nondeterminism and input dependence, in particular dynamic
data race detectors for JavaScript (Section 3) and record-and-replay systems (Section 6).

Event-driven. Due to the event-driven nature of JavaScript programs, only specific sequences of
input events may be able to reach a particular region of code. Creating such sequences of events
is different from traditional input data generation. Test generation (Section 8) addresses this chal-
lenge.
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Despite its dynamic nature and sometimes unusual semantics, JavaScript has several properties
that make testing and analyzing programs easier than in many other languages. First, the language
is essentially single-threaded and therefore does not suffer from concurrency issues caused by
shared-memory multi-threading.3 Second, since source code is the only widely used format to
distribute JavaScript programs, there is no need to handle compiled code. Code obfuscation, which
is commonly used to distribute proprietary code, does not significantly affect program analyses,
because obfuscation is semantics preserving. Finally, testing and analyzing partial code is easier
than in statically compiled languages, since an incomplete program may still run.

3 CORRECTNESS AND RELIABILITY

Correctness and reliability are two of the most important challenges faced by JavaScript develop-
ers. Correctness here means that a program conforms to its specification. Reliability means the
extent to which a software system delivers usable services when those services are demanded.
Because of the “no crash” philosophy and the fact that typical JavaScript programs do not come
with a correctness specification, there is no clear definition of what constitutes correct execution.
Even runtime errors, for example, dereferencing null, reading from an undeclared variable, or call-
ing a non-function value, may be benign, since uncaught exceptions terminate only the current
event handler but not the application. Moreover, JavaScript is memory-safe (i.e., it has automatic
garbage collection, arrays cannot be accessed out-of-bound, and there is no pointer arithmetic), so
programming errors cannot lead to memory corruption. All this makes the problem of ensuring
the correctness and reliability of JavaScript programs different from programs in other popular
languages, such as Java and C.

A significant amount of work tries to alleviate correctness issues by detecting them before de-
ploying the software. This section presents such techniques based on dynamic analyses. Specifi-
cally, we present approaches that address code smells and bad coding practices (Section 3.1), that
target cross-browser issues (Section 3.2), and that detect data races (Section 3.3).

3.1 Code Smells, Bad Coding Practices, and Program Repair

Code smells indicate potential quality issues in the program. To deal with code smells, the soft-
ware development community has learned over time guidelines and informal rules to help avoid
common pitfalls of JavaScript. Those rules specify which language features, programming idioms,
APIs, and so on, to avoid or how to use them correctly. Following these rules often improves soft-
ware quality by reducing bugs, increasing performance, improving maintainability, and preventing
security vulnerabilities.

Lintlike tools are static checkers that enforce code practices and report potential code smells.
Unfortunately, due to the dynamic nature of JavaScript, approaches for detecting code smells stat-
ically are limited in their effectiveness. Although there are some successful static checkers used in
real-world application development (e.g., JSHint, JSLint, ESLint, and Closure Linter), they are lim-
ited by the need to approximate possible runtime behavior and often cannot precisely determine
the presence of a code smell. To address this issue, JSNose (Fard and Mesbah 2013) and DLint (Gong
et al. 2015b) dynamically detect code smells missed by existing static lintlike tools.

JSNose (Fard and Mesbah 2013) combines static analysis and dynamic analysis to detect code
smells in web applications. The approach mostly focuses on code smells at the level of closures, ob-
jects, and functions. For example, JSNose warns about suspiciously long closure chains, unusually
large functions, the excessive use of global variables, and not executed and therefore potentially
dead code. In contrast, DLint (Gong et al. 2015b) detects violations of coding practices at the level

3Data races exist nevertheless, as we discuss in Section 3.3.
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of basic JavaScript operations, such as local variable reads and writes, object property reads and
writes, and function calls. The approach monitors these operations and detects instances of bad
coding practices by checking a set of predicates at runtime. Gong et al. also report an empirical
study that compares the effectiveness of DLint’s checkers and their corresponding static checkers
in JSHint. The result of the study suggests that dynamic checking complements static checkers:
Some violations of coding practices can be detected only by a dynamic checkers, for example, be-
cause the violation depends on a runtime type, whereas other violations are bound only by a static
checker, for example, because it depends the syntactic structure of the code.

TypeDevil (Pradel et al. 2015) addresses a particular kind of bad practice: type inconsistencies.
They arise when a single variable or property holds values of multiple, incompatible types. To find
type inconsistencies, the analysis records runtime type information for each variable, property,
and function and then merges structurally equivalent types. By analyzing program-specific type
information, TypeDevil detects problems missed by checkers of generic coding rules, such as DLint
and JSNose.

Some analyses not only detect problems but also help fixing them. One such analysis, Eval-
orizer (Meawad et al. 2012), replaces unnecessary uses of the eval function with safer alternatives.
Using this function is discouraged, because its subtle semantics is easily misunderstood, because it
has a negative performance impact, and because eval may enable attackers to execute untrusted
code. Evalorizer dynamically intercepts arguments passed to eval and transforms the eval call to
a statement or expression without eval, based on a set of rules. The approach assumes that a call
site of eval always receives the same or very similar JavaScript code as its argument.

Vejovis (Ocariza Jr. et al. 2014) generates fixes for bugs caused by calling the DOM query API
methods, for example, getElementById, with wrong parameters. The approach identifies possible
bugs by dynamically checking whether a DOM query returns abnormal elements, for example,
undefined, or whether there is an out-of-range access on the returned list of elements. Based
on the observed symptoms and the current DOM structure, Vejovis suggests fixes, such as passing
another string to a DOM method or adding a null/undefined check before using a value retrieved
from the DOM.

3.2 Cross-Browser Testing

Because supported language features and their implementation may differ across browsers, cross-
browser compatibility issues challenge client-side web applications. Such issues are caused by
ambiguities in the language specification or by disagreements among browser vendors. Incompat-
ibilities often lead to unexpected behavior.

CrossT (Mesbah and Prasad 2011) detects cross-browser issues by first crawling the web applica-
tion in different browsers to summarize the behavior into a finite-state model and then finding in-
consistencies between the generated models. WebDiff (Choudhary et al. 2010a, 2010b) structurally
matches components in the DOM trees generated in different browsers and then computes the
visual difference of screenshots of the matching components. In addition to comparing captured
state models and comparing visual appearances, CrossCheck (Choudhary et al. 2012) incorpo-
rates machine-learning techniques to find visual discrepancies between DOM elements rendered
in different browsers. Based on their previous work, Choudhary et al. further proposed X-PERT
(Choudhary et al. 2013, 2014b), which detects cross-browser incompatibilities related to the struc-
ture and content of the DOM and to the web site’s behavior. The tool compares the text con-
tent of matching components and the relative layouts of elements by extracting a relative align-
ment graph of DOM elements. As X-PERT addresses limitations of previous work by the same au-
thors, it seems to be the most comprehensive approach for detecting cross-browser issues. FMAP
(Choudhary et al. 2014a; Choudhary 2014) aims at detecting missing features between the desktop
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version and the mobile version of a web application by collecting and comparing their network
traces. The approach assumes that the web application uses the same back-end functionality while
having specific customizations in the front-end.

3.3 Dynamic Race Detection

Even though JavaScript programs execute in a single thread and each event handler runs without
preemption, there may be races, as known from concurrent programs. The reason is that the or-
dering of responses to asynchronous requests, timer events, script and frame loading, and HTML
parsing is not fully controlled by the developer, which may introduce nondeterminism. For ex-
ample, a common mistake is to assume that all HTML parsing has completed before any user
event handlers are executed or that network communication is synchronous. As a consequence,
users with a slow network connection or a different browser than the developer may experience
UI glitches and data corruption. Because JavaScript provides no built-in mechanisms for concur-
rency control programmers resort to ad hoc synchronization, such as timer events that repeatedly
postpone processing until some flag is set by another event handler. The problem with races in
JavaScript was first described by Steen (2009) and Ide et al. (2009). An early static approach to
detect races (Zheng et al. 2011) faces not only the challenges with static analysis for JavaScript,
but also its practicability is limited by not taking the possible event orderings into account.

WebRacer, by Petrov et al. (2012), pioneered dynamic race detection for JavaScript. In particular,
they characterize the happens-before relation that models the causal relationship of events. The
results from WebRacer show that races are prevalent, even in widely used web sites. However, not
all races correspond to errors. First, ad hoc synchronization inevitably causes races although its
purpose is to prevent errors. Second, for event handlers that commute, different event orderings
may lead to the same state. Third, even when different event orderings lead to different states,
those differences may be benign, for example, if they do not affect the UI or network data. For
this reason, much of the later work has focused on improving precision. The follow-up tool Even-
tRacer (Raychev et al. 2013) introduced the notion of race coverage to filter many harmless races
caused, for example, by ad hoc synchronization.

Instead of looking for races per se, Wave (Hong et al. 2014) heuristically explores different event
schedules and checks whether the final DOM states differ. While exploring schedules, Wave re-
spects the happens-before relation and does not change the sequence of user events. The potential
advantage is that it directly targets the consequences of the races. However, as noted by Jensen
et al. (2015a), event handlers influence each other, so aggressively reordering events to provoke
races often leads to infeasible event sequences, in which case Wave falsely reports errors.

The R4 algorithm by Jensen et al. (2015a) aims to systematically explore different event sched-
ules to discover the consequences of races. It takes a sequence of events from an initial execution
as input. Unlike Wave, R4 uses conflict-reversal bounding and approximate replay for reducing
divergence from the initial execution. Moreover, by adapting dynamic partial order reduction, R4

avoids exploring many equivalent schedules. The approach significantly reduces the number of
false positives compared to Wave but overall still suffers from a non-negligible amount of false
positives.

Mutlu et al. (2015) argue that most races are harmless and focus on those that affect persistent
storage, either on the client or on the server. Instead of actually executing alternative event sched-
ules like Wave and R4, their approach is to perform a lightweight static analysis on the possible
schedules for the given execution to see whether persistent storage may be affected.

Although the problem with races is by now well described and multiple detection techniques
have been developed, the accuracy of the available tools are not yet sufficient for production use.
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It remains an open question how to automatically and effectively detect races that are harmful and
explain their consequences to developers.

4 SECURITY AND PRIVACY

JavaScript powers many applications with strong security and privacy requirements, such as on-
line banking, shared editing of private documents, and e-commerce. As a result, various program
analyses address security and privacy issues. These efforts are a response to the limitations of the
current security mechanisms: They either relax these mechanisms or enhance them by defending
against newly identified threats. As surveyed in previous work (Ryck et al. 2010), the goals of the
research community with respect to the security of JavaScript applications are manifold: separate
scripts either from each other or from the underlying system, mediate interactions between scripts
and communication of scripts with other entities, and fine-grained control of behavior. Consider-
ing the large amount of JavaScript-related work on security and privacy, this section focuses only
on the last category. Specifically, we discuss dynamic information flow analyses, an area that has
received considerable attention from the program analysis community, in particular for JavaScript.

Information flow analysis is a heavyweight technique that reasons about each executed instruc-
tion. The analysis assigns security labels to values and propagates these labels through the pro-
gram. A label expresses the security level of the value, for example, how secret a value is. The
analysis checks whether the flows of values complies with a security policy that specifies to where
values with a particular label are allowed to flow. Depending on the security policy, information
flow analysis can detect different kinds of vulnerabilities and malicious behavior. Unless explicitly
specified, the analyses discussed here can be used with various policies. For a general survey of in-
formation flow techniques for other languages, the reader is directed to Sabelfeld and Myers (2003).

4.1 Taint Analysis

At first, we discuss work on taint analysis, a lightweight form of information flow analysis that con-
siders only data flows. All analyses discussed in this subsection address cross-site scripting (XSS)
vulnerabilities. These are vulnerabilities where user-controlled inputs may modify the DOM, for
example, by adding a script tag with additional JavaScript code. Lekies et al. (2013) conduct a
study that detects thousands of DOM-based XSS vulnerabilities across the Alexa top 5,000 web
sites. To validate each detected vulnerability, an exploit is generated. The prevalence of sophisti-
cated DOM-based vulnerabilities observed in popular web sites demands more powerful mecha-
nisms for protecting the users. The traditional way to detect these problems is to use string-based
XSS filters. Stock et al. (2014) describe and address the inability of the existing XSS filters to de-
fend against DOM-based XSS attacks. They propose a dynamic taint engine that tracks the origin
of strings and prevents the interpretation of user-provided input into tokens other than literals.
This restrictive policy leads to a low false-positive rate, and it detects 5 times more true positives
than traditional, string-based XSS filters.

Hybrid taint analysis approaches combine static and dynamic analysis. Partial evaluation using
the recorded dynamic data is proposed by Tripp et al. (2014) as a way to increase the precision of a
static analysis. Their analysis rewrites DOM accesses into abstractions that the static taint analysis
can reason about. The approach significantly reduces false positives compared to a purely static
analysis. Another hybrid approach (Wei and Ryder 2013) guides static analysis with dynamically
recorded traces. In particular, this technique makes dynamically generated code visible to the static
analysis. The approach detects vulnerabilities that purely static taint analysis misses, while being
more efficient. However, it is unknown how the hybrid approach compares to purely dynamic
approaches. The two presented hybrid solutions differ in the information they collect at runtime
but share the idea of providing dynamically gathered information to a static analysis.
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Once a taint analysis detects that a flow violates the given security policy, a major challenge is to
decide whether the violation is a security problem or a false positive. Saxena et al. (2010b) address
this challenge by combining a taint analysis with fuzzing to generate attack strings against poten-
tial validation vulnerabilities. The analysis is performed on a trace that summarizes the JavaScript
execution in a language with simpler semantics. The candidate exploits are further validated using
a browser-based oracle.

4.2 Information Flow Analysis

Dynamic information flow analysis for JavaScript has received significant attention, because sev-
eral language features make this problem particularly hard: how to reason about the large number
of non-JavaScript APIs (DOM and other web APIs), the prevalence of eval, prototype inheritance,
and the special scoping rules of with blocks. Existing work aims at tackling subsets of these prob-
lem, while keeping the overhead and the implementation effort at an acceptable level. One addi-
tional, language-independent challenge for dynamic information flow analyses is how to handle
flows caused by not executing a branch. In this work, we refer to this type of flows as hidden flows.
They represent an additional information flow channel created by the runtime labels specific to
purely dynamic analyses (Sabelfeld and Myers 2003).

Austin and Flanagan (2010) introduced the first purely dynamic information flow analysis, called
a monitor, for a core of JavaScript. It provides two monitoring strategies, No Sensitive Upgrade
(NSU) and Permissive Upgrade (PU), both ensuring non-interference. These strategies prevent im-
plicit leaks of information by stopping the execution of the program whenever the monitor reaches
an unsafe state. To enhance the permissiveness of these techniques, developers may insert upgrade
operations that aid the monitor from stopping the execution unnecessarily. Hedin and Sabelfeld
(2012) have generalized these ideas to a larger subset of JavaScript that includes objects, higher-
order functions, exceptions, and dynamic code evaluation. Hedin et al. (2014) implemented this
approach in a custom interpreter that supports the full language, with models for built-in APIs
and the browser environment. Chudnov and Naumann (2015) proposed a rewriting-based, inlined
monitor that implements the NSU policy for full ECMAScript 5 with web support. The evaluation
shows that the monitor is able to run one order of magnitude faster than the one by Hedin et al.
(2014) and that it can enforce information flow control on synthetic mashups. However, since the
inliner is implemented in Haskell, it cannot protect against dynamically generated code. The above
approaches rely on upgrade operations that improve the permissiveness of the information flow
analysis. An approach for automatically inserting upgrade statements (Birgisson et al. 2012) com-
bines testing and program rewriting for transforming hidden flows into explicit flows. The main
drawback is that the permissiveness of the monitor depends on the completeness test suite.

A completely different approach (Austin and Flanagan 2012) takes inspiration from secure multi-
execution (Devriese and Piessens 2010), a technique for enforcing security policies through mul-
tiple, concurrent runs of the program. The key idea are faceted values, that is, runtime objects that
contain multiple alternative values, one for each security level. Each action in a program is associ-
ated with a principal that corresponds to a security level. Whenever an output operation is reached,
the facet corresponding to the principal’s security level is passed to the sink. The technique han-
dles hidden flows by construction, and, for simple policies and large numbers of principals, it scales
better than the original work on secure multi-execution.

Bichhawat et al. (2014) describe a hybrid information flow analysis that handles hidden flows. To
deal with unstructured control flow, the approach performs an on-demand static analysis. Chugh
et al. (2009) propose another hybrid method in which a static information flow analysis is first
performed on the server. This stage outputs a set of constraints to be checked on the client side for
the dynamically loaded code, reducing the client-side overhead. This reduction comes at a small
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Table 1. Comparison of Considered Information Flows

Publications Type Explicit flows Implicit flows Hidden flows
Saxena et al. (2010b) dynamic ✓
Lekies et al. (2013) dynamic ✓
Stock et al. (2014) dynamic ✓
Tripp et al. (2014) hybrid ✓
Wei and Ryder (2013) hybrid ✓
Austin and Flanagan (2010) dynamic ✓ ✓ disabled
Austin and Flanagan (2012) dynamic ✓ ✓ disabled
Hedin and Sabelfeld (2012) dynamic ✓ ✓ disabled
Hedin et al. (2014) dynamic ✓ ✓ disabled
Dhawan and Ganapathy (2009) dynamic ✓ ✓
Chudnov and Naumann (2015) dynamic ✓ ✓
Birgisson et al. (2012) dynamic ✓ ✓ ✓
Bichhawat et al. (2014) hybrid ✓ ✓ ✓
Chugh et al. (2009) hybrid ✓ ✓ ✓

loss of precision due to lack of context sensitivity. Even though these two presented techniques
are both hybrid, they differ in their objectives: One aims at handling hidden flows and the other
one at reducing the client-side overhead.

Dhawan and Ganapathy (2009) propose a fine-grained, purely dynamic information flow anal-
ysis for a specialized JavaScript environment: the Firefox browser extensions. The approach con-
centrates on confidentiality-violating policies, monitoring flows from the DOM and cross-domain
accesses to the network and the file system. The analysis correctly detects known malicious be-
havior in four extensions.

To summarize the information flow analyses surveyed in this section, Table 1 classifies all anal-
yses. The table summarizes whether an approach is purely dynamic or hybrid, that is, static and
dynamic. Furthermore, the table shows which kinds of information flow each analysis considers.
Explicit flows refer to information flows caused by data flows. Implicit flows consist of runtime
observed control flows, while hidden flows are information flows caused by not executing a write
instruction in an alternative branch. Some analysis disable hidden flows by stopping the program
before such a flow may appear. As can be observed, the analyses vary from basic dynamic taint
analysis to complex hybrid analysis that trigger static analysis on demand. Which analysis to pick
for a particular purpose depends, for example, on the attack model considered by an approach,
on the level of runtime overhead that is considered acceptable, and on the strength of the desired
security guarantees.

5 PERFORMANCE

Because JavaScript was initially implemented through interpretation, it was long been perceived as
a “slow” language. The increasing complexity of applications created a need to execute JavaScript
code more efficiently. Due to various efforts, the performance has since been tremendously im-
proved, which in turn has enabled entirely new kinds of applications. This section presents these
efforts, focusing on approaches that involve dynamic analysis. In particular, we discuss improve-
ments of runtime systems (Section 5.1), browser-independent analyses to identify known perfor-
mance issues and code smells (Section 5.2), and advances on benchmarks for performance mea-
surement (Section 5.3).
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5.1 Enhancements of Just-in-Time Compilers

Just-in-time (JIT) compilation has a long history of improving the execution time of a program
by compiling it to efficient machine code at runtime (Aycock 2003), and most modern JavaScript
engines use JIT compilation. For example, according to St-Amour and Guo (2015), the SpiderMon-
key JavaScript engine first interprets code without any compilation or optimization. On reaching
a specific number of executions of a function, the baseline JIT compiler translates the function
to native code. Once a function becomes hot, the optimizing compiler further optimizes it based
on gathered runtime observations. The current V8 engine (version 5.6) skips the interpretation
phase entirely and instead compiles JavaScript code directly to native code. Hot functions in the
compiled code are further optimized at runtime. Optimization techniques used in JavaScript JIT
compilers include inlining, dead code elimination, and type specialization.

Despite producing efficient machine code, the optimizations applied by JIT engines are lim-
ited due to optimistic assumptions that the compiler makes before optimizing the code. In cases
when these assumptions become invalid, the compiler throws away optimized code and resumes
execution with generic code. This process is known as deoptimization, which is an inherently ex-
pensive operation. For example, a JIT compiler may specialize code for particular types or values
observed in the past and will have to deoptimize the code if other types or values occur. To reduce
or even avoid deoptimizations, JIT compilers use sophisticated dynamic analyses to understand
which runtime behavior is likely to occur in the future. Key to the success of such analyses is to be
efficient, because the runtime cost of analyzing the program must outweigh the benefit obtained
by optimizing the program.

In the rest of this section, we briefly discusses approaches that have been developed specifically
for JavaScript and that involve a non-trivial dynamic analysis.

5.1.1 Type Specialization. Due to the dynamically typed nature of JavaScript, JIT compilers do
not have access to static type information. This lack of information makes the generation of effi-
cient, type-specialized machine code difficult. TraceMonkey by Gal et al. (2009) was one of the first
JIT compilers for JavaScript. Based on the observation that programs spend most of the time in
hot loops and that most loops are type stable, the compiler specializes the code for frequently exe-
cuted loops at runtime. At the core of TraceMonkey is a dynamic analysis that gathers sequences
of statements, called traces, along with their type information. These traces may cross function
boundaries. The analysis represents frequently executed traces in a tree structure that encodes
the type conditions under which the code can be specialized. The experimental results show that
loops have few combinations of variable types and loop specialization yields to a significant per-
formance improvement of JavaScript programs over the baseline interpreter. Their work suggests
further improvements by specializing recursive function calls, regular expressions, and expression
evaluation to avoid interpreting these language constructs.

Despite the initial success of trace-based JIT compilation, the approach has since mostly been
abandoned, for example, at the favor of hybrid (static and dynamic) type inference (Hackett and
Guo 2012). In this hybrid approach, a static analysis computes for each expression or heap value
a possibly incomplete set of types it may have at runtime. At runtime, the JIT engine checks for
unexpected types and other special cases, such as arrays containing undefined values and integer
overflows.

Type specialization in JIT compilers is speculative, and when unexpected types are encoun-
tered, the compiler deoptimizes type-specialized code. To reduce the number of deoptimizations,
Kedlaya et al. (2015) propose ahead-of-time profiling on the server side. Their profiler tracks when
a function becomes hot, which types and shapes a function uses, and when it gets deoptimized.
Based on information about type-unstable functions, the client-side engine prevents optimizing
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code that will likely be deoptimized later. A limitation of their approach is to focus on a specific
set of deoptimizations.

5.1.2 Function Specialization. In contrast to the above approaches, which exploits dynamically
observed types, de Assis Costa et al. (2013) propose to specialize functions based on dynamically
observed values. Their approach is based on the empirical observation that 60% of all JavaScript
functions are called only once or always with the same set of parameters. Based on this observation,
they propose a JIT optimization that replaces the arguments passed to a function by previously
observed runtime values. A limitation of their approach is to consider primitive values only. Future
work may extend their ideas to objects.

5.2 Refactoring Approaches to Address Performance Issues in JavaScript Code

The efficiency of a JavaScript program is affected not only by the runtime engine but naturally
also by the programming patterns, algorithms, and language constructs used in the program. In
the following, we discuss approaches that identify performance bottlenecks in JavaScript code
based on their symptoms, such as code fragments that prohibit JIT optimizations or cause memory
leaks. Furthermore, these approaches also provide suggestions for refactorings to improve the
performance of JavaScript code.

5.2.1 JIT-Unfriendly Code. JITProf by Gong et al. (2015a) is an engine-independent profiling ap-
proach that identifies code locations that prohibit profitable JIT optimizations. Such code locations
are called JIT-unfriendly. The general idea is to simulate the execution of a JIT compiler by associ-
ating meta-information with JavaScript objects and code locations that are updated whenever par-
ticular runtime event occurs. This meta-information is later used to identify JIT-unfriendly code
locations. JITProf is an extensible framework that allows developers to specify their own patterns
of JIT-unfriendly code. Being engine-independent, the approach relies on an accurate simulation
of the JIT engine’s behavior, which may change in a way that makes supposedly JIT-unfriendly
code harmless in future engines.

A similar work by Xiao et al. (2015) is JSweeter, an approach that also finds JIT-unfriendly code
locations but focuses on performance code smells related to type mutations. They instrument the
V8 engine to collect type update operations and deoptimizations. The collected information is
used to infer the reasons and number of deoptimizations, eventually reporting type-unstable code
locations. JITProf and JSweeter both provide refactoring hints on how to optimize the code, but
they consider different JIT-unfriendly patterns.

Another approach to help developers find JIT-unfriendly code it to focus on optimizations that
could almost be applied but that the compiler cannot apply due to lack of information or potential
unsoundness. Optimization coaching by St-Amour and Guo (2015) searches for such missed opti-
mizations. The approach considers two optimizations: accesses of property and elements, as well
as assignments. All missed optimizations that affect the same operation or originate from the same
type of failure are merged and ranked based on the expected performance impact. Similarly to JIT-
Prof and JSweeter, the optimization coach recommends program changes that trigger additional
optimizations.

A limitation of all existing approaches to find JIT-unfriendly code is to rely on built-in knowl-
edge of JIT-optimizations and JIT-unfriendly code patterns. Since JavaScript engines evolve
quickly, future engines are likely to suffer from different patterns. It remains an open question
how to automatically identify JIT-unfriendly code patterns. Another promising direction, which
is motivated by the non-homogeneity of JavaScript engines, is to detect engine-independent per-
formance problems.

ACM Computing Surveys, Vol. 50, No. 5, Article 66. Publication date: September 2017.



66:14 E. Andreasen et al.

5.2.2 Memory-Related Issues. MemInsight by Jensen et al. (2015b) is a browser-independent
memory debugging tool for web applications that computes object lifetimes. The approach gener-
ates a trace of memory operations during an execution, capturing the uses of each object, variable
declarations, and return calls. The trace is then used to recover object lifetime information by sim-
ulating the application’s heap. Several client analyses use this information to find memory leaks,
drags, churns, and opportunities for stack allocation and object inlining. The evaluation shows that
the tool can expose unknown memory issues in several real-world applications. To detect memory
problems, MemInsight uses several heuristics, which may give false warnings. Another limitation
of the approach is that it is effective only for long-running applications.

5.3 Performance Benchmarks

Vendors of JavaScript engines demonstrate the performance of engines by running benchmarks.
The most commonly used JavaScript benchmark suites are SunSpider,4 Octane,5 and Kraken.6 Un-
fortunately, many of these benchmarks turn out to be not representative of real-world code, as
shown by Ratanaworabhan et al. (2010) and discussed further in Section 7. As an implication, fo-
cusing on benchmark behavior may result in overfitting and missing optimization opportunities
that are present in real applications. Some of these benchmark suites have been updated with sev-
eral real-world programs and tests for measuring new aspects of JavaScript performance, such as
compiler latency and garbage collection.7

Motivated by the lack of representativeness of existing benchmarks, Richards et al. (2011a) de-
veloped JSBench to automate the creation of realistic and representative JavaScript benchmarks
from existing web applications. JSBench instruments the original web code to generate a trace of
JavaScript operations. The trace is used to generate a replayable JavaScript program while replac-
ing nondeterministic call sites and achieving high fidelity. Finally, the program is recombined with
HTML from the original web application. Richards et al. show that JSBench-generated benchmarks
match the behavior of real web applications by using several metrics, such as memory usage, GC
time, and event loop behavior, collected on several instrumented browsers.

All existing benchmarks focus on the language defined in the ECMAScript 5 specification. Sec-
tion 10.6 discusses challenges related to evolving benchmarks toward newer language versions.

6 DEVELOPER PRODUCTIVITY

Developers of JavaScript applications face several challenges during the development process that
are not strictly related to correctness, performance, and security. This section presents and com-
pares dynamic program analyses aimed at making developers more productive beyond the ap-
proaches discussed in Section 3 to 5.

At first, this section clusters analyses based on their primary purpose and discusses and com-
pares related approaches with each other. We identify three main groups of analyses aimed at
making developers more productive:

—Record and replay enable developers to capture and re-execute (parts of) an execution, for
example, for debugging (Section 6.1).

—Visualizations of recorded executions can help understand the interactions between differ-
ent parts of a program (Section 6.2).

4https://webkit.org/perf/sunspider/sunspider.html.
5https://developers.google.com/octane/.
6http://krakenbenchmark.mozilla.org/.
7http://browserbench.org/JetStream/
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—Slicing identifies a subset of the program’s statements responsible for creating a particular
value (Section 6.3).

At the core of many of these approaches are dynamic analysis techniques that keep track of depen-
dencies between program elements and runtime operations. Section 6.5 compares these techniques
with each other, showing that different purposes require different techniques for dynamic depen-
dency tracking.

6.1 Record and Replay

Record and replay techniques use dynamic analysis to capture a program execution for future
replay. Possible applications include debugging, that is, finding the root cause of a failure, and
automated testing, that is, automatically executing a sequence of user events for regression testing.
The following discussion covers approaches that target client-side web applications, which is the
main focus of existing work.

Mugshot (Mickens et al. 2010) and Dolos (Burg et al. 2013) address the challenge that the ex-
ecution of a JavaScript program may depend on nondeterministic behavior, such as the order of
asynchronously scheduled events, the order and content of incoming network responses, UI events
triggered by the user, and inherently nondeterministic behavior, such as random number genera-
tion. Both approaches aim at capturing all possible sources of nondeterminism into a trace, which
enables deterministic replay. For example, Mugshot and Dolos intercept calls to setTimeout to
keep track of when the callback function passed to setTimeout is invoked and to replay the call-
back at the same point in (logical) time. The two approaches differ in how they capture sources
of nondeterminism. Mugshot injects JavaScript code into the application so this code executes be-
fore any of the application code. The injected code overwrites built-in functions with wrappers
that log calls to them. In contrast, Dolos modifies the WebKit JavaScript engine to capture calls
related to nondeterministic behavior. Compared to Mugshot, the Dolos approach has the benefit of
providing more condensed traces, for example, because a single click event may trigger multiple
event handlers, each of which Mugshot will record. In contrast, a clear benefit of Mugshot is to be
applicable across browsers.

Jalangi (Sen et al. 2013) stands out by supporting “selective” record and replay, that is, the ability
to record and replay the execution of specific parts of the program only. This feature allows users
to exclude, for example, third-party libraries from being considered. Jalangi tracks all memory
reads and their values, except those that can be re-computed based on already-recorded values by
re-executing the corresponding code. The approach is implemented in an engine-independent way
via source-level instrumentation. Even though Jalangi’s initial focus has been record and replay,
it is now most widely used as a dynamic analysis framework (Section 9).

A more lightweight form of record and replay is to focus on sequences of UI events. Selenium8

is a widely used implementation of such an approach. It is a browser automation tool that allows
testers to capture an interaction with a web application into a UI-level test case and to replay
it afterwards. A major challenge is to capture all UI events, because missed events will lead to
incomplete test cases that may not be replayed accurately. WaRR (Andrica and Candea 2011) ad-
dresses this challenge by modifying the Chrome browser so it captures and replays a large set
of UI events. According to Andrica and Candea (2011), WaRR can replay interactions between
users and complex web applications that Selenium fails to support, such as drag-and-drop and
editing documents in a shared, web-based editor. Neither Selenium nor WaRR capture sources of

8http://www.seleniumhq.org/.

ACM Computing Surveys, Vol. 50, No. 5, Article 66. Publication date: September 2017.

http://www.seleniumhq.org/


66:16 E. Andreasen et al.

nondeterminism beyond events triggered by the user. As a result, these approaches may not be
able to accurately replay a recorded event sequence, because the application diverges from the
behavior it exhibited during recording.

An understudied challenge related to record and replay approaches is how to adapt recorded
information when the underlying program evolves. For example, it is desirable to use Selenium-
recorded interactions for regression testing. However, these interactions may become invalid
when the application changes in subtle ways, for example, by renaming a DOM element loca-
tor that the recorded interaction relies on to find an element. Existing work on evolving UI-level
tests (Grechanik et al. 2009; Zhang et al. 2013; Leotta et al. 2014) partially addresses this challenge
but does not consider the specific problems of JavaScript-based applications.

6.2 Visualization for Program Understanding

Understanding the interactions between different parts of a client-side JavaScript application is
nontrivial. One reason includes interactions between artifacts written in different languages and
stored in different files, namely JavaScript code, HTML code, and CSS stylesheets. Another reason
is the event-driven nature of JavaScript, which makes it difficult to understand what causes an
event. To help developers understand an execution, several techniques for visualizing executions
have been proposed. A commonality of all these approaches is to capture runtime events with a
dynamic analysis and to present the events to the user as a timeline. In addition to the temporal
order of events, several approaches also visualize the causal relationships of events and link events
to those parts of the JavaScript code that causes the particular behavior.

Some approaches allow a user to indicate a particular DOM element of interest, which is useful
when investigating how a particular behavior is implemented. FireCrystal (Oney and Myers 2009)
tracks all DOM changes related to the selected DOM element and presents them along with the
responsible JavaScript, HTML, and CSS code. Unravel (Hibschman and Zhang 2015) instead tracks
and visualizes the function call tree that causes a DOM change. Another approach (Burg et al.
2015) also checks which DOM mutation operations cause a change in the visual appearance of the
DOM element of interest and lets the user focus on those operations.

Clematis (Alimadadi et al. 2014) visualizes an execution at several levels of detail and lets users
zoom into particular parts of the behavior. In contrast to the approaches discussed above, Clema-
tis captures calls that register asynchronous callback functions to track the causal dependencies
between event handlers. Two existing approaches go beyond the client-side part of a web ap-
plication and instead capture and visualize the interactions between client-side and server-side.
FireDetective (Matthijssen et al. 2010) focuses on Java-based server-side implementations and
shows what JavaScript code triggers what Java code via asynchronous requests. Sahand (Alimadadi
et al. 2016) addresses applications where both the client-side and the server-side are implemented
in JavaScript. The approach summarizes an execution into a directed graph that represents func-
tion executions and their causal relationships.

Profilers shipped as part of the developer tools of popular browsers, for example, the Chrome or
Firefox developer tools, provide performance-related visualizations. For example, Chrome provides
a timeline tool that records which functions execute when and then plots this information over a
time axis.

Going beyond interactions between a single and a single server, future work on visualizing
JavaScript-based applications could consider interactions that involve multiple clients and multiple
server components. Another promising direction is to not only summarize what has happened
in an execution but to also highlight potential misbehavior, for example, based on known anti-
patterns.
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6.3 Program Slicing

Program slicing extracts a subset of a program’s statements relevant for computing a particular
value, which is useful, for example, for understanding the behavior of the program. Similarly to
information flow analysis (Section 4), slicing requires us to track dependencies, but it focuses on
dependencies between statements instead of dependencies between values. In principle, tradi-
tional dynamic slicing approaches (Agrawal and Horgan 1990) can be adapted to JavaScript. One
challenge is how to handle interactions of JavaScript code with the DOM. Maras et al. (2011, 2012)
address this problem to build a dynamic analysis that, given a particular DOM element of interest
and a user demonstrating how to use it, extracts all code related to implementing this DOM ele-
ment’s functionality. The analysis first records the execution path and then interprets the executed
statements while creating a dependency graph that encodes structural relationships, data flow
dependencies, and control flow dependencies among HTML elements, JavaScript code locations,
and parts of CSS specifications. Based on this graph, slicing the code that influences the DOM node
of interest is equivalent to computing which nodes are reachable from a statement of interest.

AutoFLox (Ocariza Jr. et al. 2012) gathers an execution trace and uses it to compute a subset of
the program’s statements responsible for passing an undefined or null value into a DOM method
that triggers an exception. The approach is based on dynamic backward slicing that tracks the
incorrect value back to its origin. Compared to Maras et al.’s work, AutoFLox does not explicitly
represent dependencies involving HTML and CSS elements but instead considers dependencies
between JavaScript statements only.

6.4 Other Work on Improving Programmer Productivity

To help developers who write code that interacts with the DOM, Dompletion (Bajaj et al. 2014)
provides code completion for strings passed into the DOM API. To find suitable suggestions, the
tool dynamically analyzes the DOM and JavaScript code that interacts with it. The challenge of
executing different paths through the program is addressed by analyzing individual functions in
isolation while forcing particular paths to be executed.

When a program evolves, developers would like to understand which statements are impacted
by a particular change. Tochal (Alimadadi et al. 2015) addresses this challenge through a static
and dynamic change impact analysis. The main idea is to extract the impact relationships among
functions, DOM elements, and XHR objects. To this end, Tochal statically computes a call graph
and dynamically extracts how functions influence or are influenced by DOM elements and XHR
objects. Tochal may miss impacted code and may report code as impacted even though it is inde-
pendent of a change. Future work may strive for providing stronger guarantees, such as certainly
finding all impacted code or reporting only code that is definitely impacted. Another promising
direction for future work is to visualize the impact of a change, for example, by highlighting the
possibly affected parts of the DOM.

Crowdie by Madsen et al. (2016) extracts a control flow path, called a crash path, that is likely to
explain the root cause of a crash. The main contribution is to distribute the runtime overhead re-
quired for constructing crash paths across multiple users and executions, while iteratively refining
the set of dynamically analyzed functions based on feedback from previous executions. Prelimi-
nary experiments show that crash paths are helpful in debugging, but the approach has not yet
been tested in production.

6.5 Comparison of Approaches to Track Dependencies

Most approaches presented in this section (Section 6) share the idea of tracking dependencies
between particular program elements and events during the program execution. In the following,
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Table 2. Comparison of Dependencies Tracked during Dynamic Analysis

Publications Tool names Control flow Data flow Async DOM
Oney and Myers (2009) FireCrystal full path ✓ ✓
Mickens et al. (2010);
Andrica and Candea
(2011); Burg et al.
(2013)

Mugshot, WaRR,
Timelapse

✓ ✓

Matthijssen et al.
(2010); Alimadadi et al.
(2014, 2016)

FireDetective,
Clematis, Sahand

calls ✓ ✓

Maras et al. (2011) FireCrow full path value provenance ✓
Maras et al. (2012) full path yes ✓
Ocariza Jr. et al. (2012) AutoFLox full path assignments ✓ ✓
Sen et al. (2013) Jalangi full path memory reads
Bajaj et al. (2014) Dompletion forced ✓
Burg et al. (2015) Scry stack traces ✓
Hibschman and Zhang
(2015)

Unravel ✓

Alimadadi et al. (2015) Tochal DOM accesses ✓ ✓
Madsen et al. (2016) Crowdie on demand ✓

we compare which kinds of dependencies are tracked by the different approaches. This comparison
is useful for developers of future analyses, who need to understand what dependencies exist and
decide which ones to track.

Table 2 summarizes the results of our comparison. We consider the four most common kinds of
dependencies that analyses track:

—Control flow. There are different ways to gather information about the flow of control dur-
ing the execution. Some approaches keep track of all executed statements, allowing them to
exactly reconstruct the execution path (“full path”). Other approaches obtain stack traces at
particular points during the execution (“stack traces”), keep track of caller-callee relation-
ships (“calls”), force the execution along a particular path (“forced”), or continuously refine
what control flow information to gather (“on demand”). Several approaches do not track
control flow at all (“no”).

—Data flow. None of the approaches perform a full data flow analysis, but several do track
some form of data flow: “value provenance” means to keep track of the code location where
a value is defined; “assignments” keeps track of data propagated through direct assignments
but ignores data flows via complex expressions; “DOM accesses” means that the approach
tracks reads and writes of DOM properties; “strings” means that the analysis focuses on
data flows of string values; and “memory reads” means that the approach tracks sufficient
information to reproduce all memory reads. The fact that no approach performs a full data
flow analysis is likely to be motivated by the high overhead that tracking all data flows
would impose.

—Asynchronous functions. About half of the approaches track the causal relationships be-
tween code that registers an asynchronous callback function and the asynchronously ex-
ecuted callback. To track these dependencies, the approaches typically monitor methods
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that register callbacks, such as setTimeout and XMLHttpRequest.onreadystatechange
and executions of the callback functions.

—DOM usage. Almost all approaches presented in this section track accesses to some subset
of the DOM API, for example, to monitor which UI events are triggered. The exception is
Jalangi, which, however, can analyze arbitrary program behavior, including DOM usage,
while replaying an execution.

In summary, the comparison shows a wide range of options for tracking dependencies. Since
dynamic dependency tracking involves both implementation effort and runtime overhead, each
approach picks the dependencies that are most appropriate for the respective usage scenario. For
example, all record and replay techniques track control flow dependencies, because knowing con-
trol flow decisions is a prerequisite for replaying an execution.

7 EMPIRICAL STUDIES

Researchers seek to address real-world problems while making realistic assumptions. To help the
program analysis community achieve these goals, several empirical studies of real-world JavaScript
programs and related artifacts have been performed. This section summarizes the findings of these
studies (Section 7.1), discusses their implications and how they have influenced the community
(Section 7.2), compares their methodologies (Section 7.3), and outlines areas of interest that are
currently understudied and may be addressed in future work (Section 7.2.2). Table 3 gives an
overview of the discussed studies, their methodologies, and the questions they address. We focus
our discussion on empirical studies that use dynamic analysis and ignore studies based on purely
static analysis (Karim et al. 2012; Gallaba et al. 2015) or purely manual analysis (Ocariza Jr. et al.
2013).

7.1 Results of Studies

7.1.1 Dynamic Language Features. Several studies analyze how particular language features of
JavaScript, in particular those that are more dynamic than in other languages, are used in practice.
This question is relevant to validate assumptions made by static analyses and for performance
optimizations (Section 5). The following summarizes the most important findings:

—Objects and properties. Richards et al. (2010) show that, even though most object properties
are initialized while constructing the object, it is also common to add properties to or delete
properties from objects afterwards. Wei et al. (2016) also investigate the dynamism of objects
and show that the average number of own properties per object increases from 28 just after
object construction to up to 200 at the end of an object’s lifetime. They also report that
developers sometimes attempt to delete properties that are not present in the object. One
possible explanation of this high degree of dynamism is that objects are often used as map
data structures and that objects include arrays, where adding and removing properties is
common.

—Functions and calls. Functions in JavaScript are variadic, that is, they can be called with a
variable number of arguments. Richards et al. (2010) show that almost 10% of functions use
this language feature. Furthermore, their study shows that 19% of all call sites are poly-
morphic, that is, different calls done at the same code location invoke different functions.
Ratanaworabhan et al. (2010) show that 50–70% of all functions that are statically declared
are never executed, a property commonly exploited by JIT compilers (Section 5).

— Inheritance and prototypes. The studies show that the use of JavaScript’s prototype-based
inheritance differs significantly from inheritance in statically typed, class-based languages,
such as Java. For example, Richards et al. report that prototype chains often change during
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Table 3. Overview of Empirical Studies of JavaScript Programs
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Experimental setup:
Subjects:
Client-side ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Server-side ✓
Benchmarks ✓ ✓ ✓

Method:
Dynamic analysis ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Static analysis ✓ ✓
Threats to validity ✓ ✓ ✓ ✓ ✓ ✓ ✓

Topic of study:
Dynamic behavior:
Objects & properties ✓ ✓
Functions & calls ✓ ✓
Inheritance & prototypes ✓ ✓
Types ✓ ✓
Code inclusion & generation ✓ ✓ ✓ ✓
DOM ✓ ✓
Other ✓ ✓ ✓ ✓

Code quality issues ✓ ✓
Security ✓ ✓ ✓ ✓
Evolution ✓ ✓

an object’s lifetime, especially because libraries extend or modify built-in types. They also
observe that the length of most prototype chains is very short, with a median of one and a
maximum of 10. Wei et al. further observe that most prototype objects (64%) are used as the
immediate prototype of only one user object. They conclude that JavaScript programs often
do not use prototypes for code reuse, which differs from the use of classes in class-based
object-oriented languages, such as Java and C++.

—Types. Pradel and Sen (2015) study the use of type coercions, that is, the implicit conversion
of a value of one type into a value of another type. They find that coercions are highly
prevalent—over 80% of all function executions perform at least one coercion—but at the
same time, mostly harmless and likely intentional. Wei et al. investigate how often the types
of properties change at runtime; they report that 99% of all properties of user objects never
change their type, yet some properties undergo up to ten type changes during their lifetime.

—Representativeness of benchmarks. Several studies question whether commonly used bench-
marks, such as SunSpider and Octane, are representative for real-world web sites.
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Ratanaworabhan et al. (2010) show that many benchmarks differ significantly from web
sites, for example, with respect to the overall code size, the mix of executed instructions,
the prevalence of cold code, the typical duration of function executions, and the prevalence
of event handlers. Richards et al. confirm several of these findings, and in addition show
that the degree of function polymorphism and the distribution of kinds of allocated objects
differ. Pradel and Sen report that most benchmarks have significantly fewer type coercions
than real web sites.

7.1.2 Code Inclusion and Dynamic Code Generation. Some studies investigate to what extent
JavaScript programs include code from third parties and dynamically generate code at runtime.
These questions are particularly relevant for estimating the security impact of third-party code on
JavaScript applications.

Code Inclusion. Yue and Wang report that 66% of all analyzed web sites include code from exter-
nal domains into the top-level document. The study by Nikiforakis et al. (2012) reports that 88%
of all sites include at least one remote library. One explanation for the difference between these
numbers may be that the study by Nikiforakis et al. has been performed later and that, as shown by
them, around 50% of all sites include at least one additional library per year. Nikiforakis et al. also
study the prevalence of potentially unsafe ways of code inclusion and find that a small percentage
of all web sites load third-party code from a specific IP address instead of using a domain name.

Dynamic Code Generation. Dynamic code loading, for example, using the eval function, is fre-
quently referred to as a feature that distinguishes JavaScript and its analysis from other popular
languages. Yue and Wang (2009) show that close to half of all analyzed web sites use eval, a re-
sult later confirmed by Richards et al. (2010). Both studies find that many usages of dynamic code
loading could be refactored into safer code, such as simply omitting the eval call around an ex-
pression that JavaScript would evaluate anyway. Richards et al. propose a taxonomy of scenarios
where eval is used and study these scenarios in detail.

7.1.3 Runtime Failures and Performance Issues. To steer work on program analyses toward
problems that developers face in practice, two studies investigate runtime failures and performance
issues in real-world software. Ocariza Jr. et al. (2011) find that many popular web sites trigger run-
time failures, in particular “permission denied” errors, which occur when the same-origin policy is
violated, and “undefined symbol” errors, which occur when referring to a non-existing function,
property, or variable. They also show that many failures occur nondeterministically, depending
on how fast user events, such as clicking on a button, are triggered. Selakovic and Pradel (2016)
study performance issues reported in open-source projects and how the developers address them.
Their study shows that many issues are due to a relatively small number of recurring root causes,
such as inefficient API usages, that most issues can be fixed with relatively simple changes, and
that the performance gain obtained with an optimization may vary significantly depending on
the JavaScript engine. Some of the challenges reported by these studies are already addressed by
existing analyses, for example, by data race detectors (Section 3.3) and performance analysis tools
(Section 5.2), but many still wait to be addressed by a suitable analysis.

7.1.4 Security. The (in)security of web sites is subject of several empirical studies. Jang et al.
(2010) study the prevalence of supposedly unwanted information flows that leak private user data,
for example, through cookie stealing, location hijacking, and history sniffing. The study shows
such leaks to exist in the wild: For example, 485 of the 50,000 studied web sites gather parts of
the user’s browsing history by exploiting the fact that browsers render links to already visited
pages differently than links to not yet visited pages. Section 4 discusses dynamic analyses targeted
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at detecting unwanted information flows. Another study (Son and Shmatikov 2013) focuses on
security problems related to the postMessage API, which enables web sites to elude the same-
origin policy. The study shows that 22% of all analyzed sites use this API and that 71% of them
do not perform any origin check of messages received via postMessage. A relatively small but
non-negligible percentage of all sites could be exploited because of such missing origin checks.

7.1.5 Domain Object Model. The importance of the DOM for client-side JavaScript applica-
tions has motivated two studies on how the DOM is used in practice. Behfarshad and Mesbah
(2013) study DOM states, called “hidden states,” that are not reachable through a link but only
by triggering a JavaScript event. They report that 62% of all DOM states are hidden states and
that the most common path into such a state are clicks on div elements. This finding may help
web crawlers to heuristically uncover more of those states. Nederlof et al. (2014) find that signifi-
cant parts of the DOM are modified by the browser or by the site’s JavaScript code after the page
has finished loading, even when the user does not trigger any event. This finding suggests that
analyses of the DOM done should not assume that DOM remains stable after some point in time.

7.2 Implications of Studies

Most empirical studies target the program analysis community and aim at conclusions relevant
for analysis developers. The implications suggested by these empirical studies fall into two broad
categories: challenging assumptions that are commonly made and pinpointing problems that are
currently understudied but deserve more attention.

7.2.1 Challenging Commonly Made Assumptions. Studies of how JavaScript is used in practice
have contradicted several assumptions made in earlier research efforts. For example, earlier work
has often assumed that, even though JavaScript provides various dynamic language features, most
code does not use these features extensively. However, studies show that dynamic behavior is
highly prevalent:

—Dynamic code loading, for example, through eval, is prevalent (Yue and Wang 2009;
Richards et al. 2010).

—Dynamically adding and removing object properties after an object has been constructed is
common (Richards et al. 2010; Wei et al. 2016).

—Prototype hierarchies often change at runtime (Richards et al. 2010; Wei et al. 2016).
—Type coercions are highly prevalent (Pradel and Sen 2015).

These findings are relevant for developers of static and dynamic analyses, as well as developers
of JIT compilers, because they help align newly developed techniques with the properties of real-
world code.

Several studies challenge the assumption that commonly used benchmarks are representative
for real-world code, as we discuss above. This finding has motivated the development of novel
techniques to obtain more realistic benchmarks (Richards et al. 2011a) (Section 5).

Another assumption challenged by studies is that a particular language feature or API is dan-
gerous. For example, several studies show that many uses of the supposedly harmful eval are
benign and could be easily removed to avoid the confusions and performance penalties that eval
can cause (Yue and Wang 2009; Richards et al. 2011b). This result has triggered work on semi-
automatically removing eval calls (Meawad et al. 2012). Another study shows that most type
coercions are harmless and should not be treated as errors when type checking JavaScript (Pradel
and Sen 2015).
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Finally, Behfarshad and Mesbah (2013) challenge the assumption that following links is suffi-
cient to crawl most parts of the web. Several approaches on UI-level testing address this finding
(Section 8).

7.2.2 Pinpointing Currently Understudied Problems. Empirical studies often serve as a source
of inspiration for problems to address in future program analyses. Several studies pinpoint such
opportunities, only some of which have already been addressed. Challenges that developers com-
monly face include how to reuse third-party code in a secure way (Yue and Wang 2009; Nikiforakis
et al. 2012), how to check whether using the postMessage API opens the door for content injec-
tions (Son and Shmatikov 2013), how to deal with dynamic types and type coercions (Richards et al.
2010; Pradel and Sen 2015), how to test for nondeterministically occurring runtime failures (Ocariza
Jr. et al. 2011), and how to avoid common performance bottlenecks, such as inefficient API us-
ages (Selakovic and Pradel 2016). The latter three challenges are, at least partially, addressed by
analyses discussed in Sections 3.1, 3.3, and 5.2. A study by Jang et al. (2010) poses the question how
end users can control or at least observe which private data leaks to web site providers, a problem
addressed by approaches discussed in Section 4.

7.3 Comparison of Methodologies

Understanding the methodologies used by existing empirical studies is important for two rea-
sons. First, it helps understand the validity of the findings reported by a study. Second, it helps
researchers who conduct future studies to understand the space of possible methodologies and
not-yet -covered methodologies. The upper part of Table 3 summarizes the methodologies uses
by existing empirical studies. Most studies focus on client-side web applications, which are typ-
ically selected based on their popularity. The number of analyzed web sites ranges from 11
(Ratanaworabhan et al. 2010) to 50,000 (Jang et al. 2010), with a median of 300. We selected em-
pirical studies that use dynamic analysis; in addition, two studies use a lightweight form of static
analysis of dynamically extracted code (Yue and Wang 2009; Richards et al. 2011b).

Seven of the 13 studies explicitly discuss threats to the validity of the conclusions drawn in
the study. The most commonly discussed threats are (i) that the subject programs may not be
representative for all JavaScript code (discussed 6 times) and (ii) that the studies are performed
with a limited set of browsers or JavaScript engines (discussed 4 times). These threats naturally
occur in any study. To mitigate their effects, most studies use either popular or randomly sampled
subjects, and they focus on widely used execution platforms.

8 AUTOMATED TEST GENERATION

This section surveys techniques to automatically create inputs that drive an execution and to gen-
erate test assertions that capture the expected behavior of the program. We do not cover gen-
eral web crawling techniques that have a black-box view on the application code, like Crawljax
(Mesbah et al. 2012), even though they exercise JavaScript indirectly but focus on techniques that
directly involve the JavaScript code. The broader topic is surveyed by Mesbah (2015). We also omit
test generation for races from this section since it is treated in Section 3.3.

We classify approaches by separating the input space of an application into two separate, but
interacting, spaces: the event space and the value space (Saxena et al. 2010a). The event space con-
cerns the order in which event handlers are executed, for example, the order of clicking on buttons.
The value space concerns the more classic notion of input: the choice of values, such as strings,
numbers, objects, as well as values written, for example, into text fields and cookies. Another
challenging aspect of test generation is how to produce meaningful assertions. Table 4 provides
an overview of the test generation techniques discussed in this section.
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Table 4. Overview of Automated Test Generation Tools for JavaScript

Publication Name Based on Value space Event space Assertions

Saxena et al. (2010a) Kudzu ✓ ✓
Artzi et al. (2011) Artemis ✓ ✓
Heidegger and Thiemann (2012) JSConTest ✓ ✓
Mirshokraie and Mesbah (2012) JSart Crawljax ✓
Mirshokraie et al. (2013) Pythia Crawljax ✓
Sen et al. (2013) Jalangi ✓
Fard et al. (2014) Testilizer Crawljax ✓
Pradel et al. (2014) EventBreak ✓
Li et al. (2014a) SymJS Artemis ✓
Fard et al. (2015) ConFix ✓
Mirshokraie et al. (2015) JSeft Crawljax ✓
Sen et al. (2015) MultiSE Jalangi
Tanida et al. (2015) Artemis ✓
Dhok et al. (2016) Jalangi ✓

The three columns Value Space, Event Space, and Assertions indicate if the tool address that problem area.

8.1 Exploration of the Event Space

Kudzu (Saxena et al. 2010a) explores the event space by randomly executing event handler, the con-
clusion is that this often complements the value space exploration significantly. Artemis (Artzi et al.
2011) use a heuristic search to explore the event space. The heuristic is based on the observed read
and write operations by each event handler in an attempt to exclude sequences of non-interacting
event handler executions. EventBreak (Pradel et al. 2014) measures the performance cost of an
event handler in terms of the number of conditionals it evaluates. This measure is used to search
for pairs of event handlers that exhibit unbounded, increasing performance costs. The existence
of such a slow-down pair indicates potential unresponsiveness of the tested application.

8.2 Exploration of the Value Space

8.2.1 Concolic Execution. Several techniques use concolic execution (Godefroid et al. 2005)
for systematically exploring the value space. To find client-side code injection vulnerabilities,
Kudzu (Saxena et al. 2010a) employs a string constraint solver to systematically explore the value
space using concolic execution. One of the client analyses of Jalangi (Sen et al. 2013) is a con-
colic execution engine, which explores the value space using a linear integer constraint solver for
conditions on numbers and strings. The types of input values are heuristically chosen based on
their immediate use. Dhok et al. (2016) observe that the dynamically typed nature of JavaScript
programs may cause this approach to generate redundant inputs for type tests at branches. They
propose type-awareness, and improve the performance of Jalangi’s by distinguishing regular path
constraints and constraints on types. MultiSE (Sen et al. 2015) also improves the performance of
the concolic execution engine of Jalangi, but the technique is not focused on JavaScript.

SymJS (Li et al. 2014a) improves the value space exploration of Artemis with a concolic execution
engine. Tanida et al. (2015) improves the automation of SymJS by creating symbolic inputs based on
manual type annotations, hereby side-stepping some of the problems of missing type-awareness.

ConFix (Fard et al. 2015) generates HTML fixtures during concolic execution. Their observa-
tion is that some program paths depend on the structure of DOM structures, leading to complex
constraints that classic constraint solvers are unable to solve. To address this limitation, ConFix
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collects constraints as XPath expressions and uses a structural solver that emits appropriate HTML
fixtures that drive the execution.

8.2.2 Other Approaches. JSConTest (Heidegger and Thiemann 2012) provides a contract lan-
guage for annotating JavaScript functions. Type contracts for function parameters guide the ran-
dom exploration of the value space: The annotated type indicates the kind of random values to
generate, as also done by Tanida et al. (2015). Similarly to Artemis, the choice of random values
is informed by literal values in the function body. We note that test generation is not the primary
purpose of the contract language but an application of annotations written for other purposes.

8.3 Assertion Generation

The problem of generating test assertions, also called the “oracle problem” (Miller and Howden
1981), is orthogonal to exploring the value and event space. An example of this orthogonality is
seen in JSConTest (Heidegger and Thiemann 2012), which not only uses contracts for test gen-
eration but also for generating runtime assertions, where a failing assertion indicates a violated
contract.

JSart (Mirshokraie and Mesbah 2012) generates likely assertions for catching regression errors,
using Crawljax for event space exploration and Daikon (Ernst et al. 2007) for assertion generation.
Pythia (Mirshokraie et al. 2013) also generates assertions based on a Crawljax-based exploration,
but the generated assertions assert that the behaviors of fault-mutated functions do not occur. The
event space exploration is feedback-directed and greedily explores paths likely to lead to higher
function coverage. JSeft (Mirshokraie et al. 2015) supersedes this work with several improvements
and two ways of generating assertions. The first kind of generated assertion is for the DOM struc-
tures that are relevant for a sequence of events, where the relevance criteria makes the tests less
brittle. The second kind of generated assertion is post-conditions at the individual function level.
A post-condition asserts that calls to a function with equivalent entry-point states produce equiv-
alent exit-point states. In both cases, the relevant DOM structures and the entry- and exit-point
states are chosen based on runtime observations. Testilizer (Fard et al. 2014) is another technique
for generating assertions based on Crawljax. The exploration of both event and value space is
driven by small variations of the execution paths taken by existing test cases. The small variations
enables the generation of assertions that are either copies or minor variations of assertion in the
existing tests.

9 IMPLEMENTATIONS OF DYNAMIC ANALYSES AND TEST GENERATORS

9.1 Dynamic Analyses

A dynamic analysis observes an execution of a program and analyzes the observations made dur-
ing the execution. To observe an execution, dynamic analyses usually implement instrumentation
techniques that can be classified into three broad categories.

9.1.1 Runtime Instrumentation. Runtime instrumentation modifies a JavaScript engine to col-
lect runtime information. Most JavaScript engines compile JavaScript code to an intermediate rep-
resentation and then interpret the instructions in the intermediate representation one-by-one or
translate them to machine code. To collect runtime information, a runtime instrumentor modifies
the interpreter of the intermediate representation or the code that translates the intermediate rep-
resentation to machine code. An instrumentor needs to understand the internal representation of
the JavaScript program state to collect state information.

9.1.2 Source Code Instrumentation. Source code instrumentation modifies the source code of a
program to insert additional code that performs the dynamic analysis. One approach is to insert
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callbacks that get invoked when the modified program executes. A dynamic analysis implements
these callbacks to collect runtime information, such as the name and value of a variable being read,
the operation being performed on two operands, and the value of those operands. The callbacks
are inserted in such a way that they do not change the behavior of the program. The most notable
dynamic analysis infrastructure that uses source code instrumentation and callbacks is Jalangi (Sen
et al. 2013), which has been the basis for several analyses discussed in this article.

One of the key challenges in source code instrumentation is that the injected code could use a
library that is itself is instrumented by the instrumentor. This could lead to unbounded recursive
function calls when the instrumented program is executed. To avoid such unbounded recursive
calls, Jalangi requires that programmers of analyses port a library used by the analyses to a private
namespace. For example, if an analysis needs to use jquery, the programmer could load jquery in
a way such that the variables jquery and $ are created not in the global but in a private namespace.

Yu et al. (2007) propose a lightweight source code instrumentation framework to regulate the
behavior of untrusted code. Their approach specifies instrumentation using rewrite rules. Since
they focus on enforcing security policies, instrumented code only monitors a subset of JavaScript
runtime behaviors. Kikuchi et al. (2008) further extend and implement the approach based on a
web proxy that intercepts and instruments JavaScript code before it reaches the browser.

Source-code instrumentation frameworks are often built on top of existing AST creation and
transformation tools, such as Esprima, Acorn, Estraverse, Escodegen, and Babel.9 For example,
Jalangi (Sen et al. 2013) uses Acorn to parse source code into ASTs and uses Escodegen to generate
instrumented code from transformed ASTs. The newest version of Babel also has a plugin archi-
tecture that allows for performing AST transformations, including source code instrumentation.

A key advantage of source code instrumentation over runtime instrumentation is that it requires
no modification of a JavaScript engine. Modifying a JavaScript engine is problematic (1) because
engines have complex implementations, that is, any modification requires a lot of engineering ef-
fort, and (2) because engines evolve rapidly, making it difficult to maintain an analysis. In contrast,
source code instrumentation has the limitation that it cannot analyze code that is not instrumented,
such as native function calls. Moreover, it is difficult to entirely avoid changing the behavior of the
program being instrumented. For example, a stack trace associated with an exception could get
polluted with instrumentation information, or a program could convert the body of a function to a
string, which would differ from the uninstrumented function. Runtime instrumentors, on the other
hand, have two key advantages over source code instrumentors: (1) They can collect full runtime
information from an execution irrespective of whether the program calls native functions or not,
and (2) runtime instrumentation generally runs faster than code instrumented at source-code level.

9.1.3 Meta-Circular Interpreter. A meta-circular interpreter functions in a completely different
way from the above two instrumentation techniques—it implements an interpreter of JavaScript in
JavaScript. The meta-circular interpreter utilizes the object representation of the underlying inter-
preter to represent the state of the JavaScript program. It also delegates the native calls made in the
JavaScript program to the underlying interpreter. A dynamic analysis is implemented by modifying
the behavior of the meta-circular interpreter. The approach is portable as it requires no modifica-
tion of a JavaScript engine. Moreover, it gives total control and visibility over the execution of a
JavaScript program; therefore, it does not suffer from the limitations of source-level instrumenta-
tion. Meta-circular interpreters have two disadvantages: (1) They require a faithful implementation
of the JavaScript semantics, which is difficult in practice, and (2) they cannot perform just-in-time

9http://esprima.org/, https://github.com/ternjs/acorn, https://github.com/estools/estraverse, and https://github.com/

estools/escodegen, https://babeljs.io/.
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compilation, which tends to slow down execution of the JavaScript programs. A notable meta-
circular interpreter that has been used for dynamic analysis is Photon (Lavoie et al. 2014).

A dynamic analysis framework usually provides two mechanisms to maintain meta-information
about runtime values: shadow values (Sen et al. 2013; Christophe et al. 2016) and shadow mem-
ory (Patil et al. 2010). The shadow value mechanism enables an analysis to associate an analysis-
specific meta-value with any value used in a program execution, for example, taint information or
a symbolic representation of the actual value. In contrast, shadow memory associates a meta-value
with every memory location used by an execution. Since both runtime instrumentation and meta-
circular interpretation controls memory allocation and object layout, they can be modified easily
to implement both shadow memory and shadow value mechanisms. Implementation of shadow
memory requires the runtime to allocate a shadow object for every actual JavaScript object and a
shadow activation frame for every actual activation frame. A shadow value mechanism can be im-
plemented by associating a meta-pointer to each value; the pointer points to the shadow value of
the value. For source-code instrumentation, shadow memory can be implemented by allocating a
shadow object with every object and by creating a shadow activation frame on every function invo-
cation. A shadow value can be associated with every JavaScript value of type object or function,
either by adding a hidden property referencing the shadow object or by mapping the actual object
to the shadow object using a weak hash map (Jensen et al. 2015b). However, this simple approach
cannot be used to associate shadow values with primitive types, such as numbers, Booleans, and
strings. Jalangi (Sen et al. 2013) supports shadow values for primitive values using a record-replay
mechanism.

Beyond the three main implementation approaches described above, some dynamic analyses use
more lightweight techniques. One such approach exploits the dynamic nature of the language and
its APIs by overwriting particular built-in APIs before any other code is executed. The overwriting
function then records when the overwritten function is called and forwards the call to the original
implementation. Another approach is to register for runtime events via the debugging interface of
a JavaScript engine. These lightweight implementation techniques provide only limited access to
runtime events, but they are relatively simple to implement.

9.2 Test Generators

Three frameworks are re-used to implement test generators: Artemis (Artzi et al. 2011), Crawl-
jax (Mesbah et al. 2012), and Jalangi (Sen et al. 2013) (Table 4). Artemis and Crawljax both generate
sequences of events, such as clicks. To this end, both frameworks check which events are available
and let a configurable strategy decide which event to trigger next. Artemis also is an instance of
the “runtime instrumentation” category of Section 9.1. The first version of Artemis was based on
the Rhino JavaScript engine,10 with a JavaScript-based model of the DOM. Because of limitations
of that DOM model, Artemis has since been ported to a modified version of the WebKit JavaScript
engine,11 with a native DOM implementation.

The three frameworks use different implementation techniques. An Artemis analysis can control
and monitor all behaviors of the browser, but this comes at the cost of portability. Conversely,
Jalangi provides a portable solution that enables an analysis to control and monitor most behaviors
of the JavaScript runtime. Finally, Crawljax enables an analysis to specify how the crawler should
interact with DOM elements and on what high level browser events the analysis should be notified.
All three frameworks are open source, with public issue trackers. Crawljax and Jalangi have a
plugin-based architecture, providing an easy way for others to build on these frameworks.

10https://developer.mozilla.org/en-US/docs/Mozilla/Projects/Rhino.
11https://webkit.org/.
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Fig. 2. Prevalence of different implementation techniques over time.

9.3 Prevalence and Discussion

There is a wide range of options for implementing dynamic analyses and test generators. Figure 2
summarizes how prevalent the options discussed in this section are among the approaches dis-
cussed in this article. Since the beginning, runtime instrumentation has been the most frequently
used technique. The majority of implementations build either on the WebKit JavaScript engine
or the Firefox SpiderMonkey engine, with 30 and 18 of all 76 runtime instrumentation-based ap-
proaches, respectively. The second-most popular option is source code instrumentation, where 16
of 42 approaches are implemented on top of Jalangi. In contrast, meta-circular interpreters and
other implementation techniques play a relatively small role. Among the techniques to implement
test generators, Crawljax is the by far most prevalent, accounting for a total of 30 approaches.
Figure 2 also shows that the total number of analyses and test generators for JavaScript has been
steadily increasing since the early 2010s. Even though the numbers for 2016 cannot yet be finalized
at the time of this writing, we do not expect this trend to stop in the near future.

The choice of an implementation strategy is based on the kinds of information and control
required by an approach. For a dynamic analysis, the kind of runtime events to be observed deter-
mines the available options. For example, for a lightweight analysis interested in observing calls
to a fixed set of APIs, simply overwriting these APIs is an easy to implement strategy. For anal-
yses that need to observe all operations of the analyzed program, source code instrumentation
and runtime instrumentation are more suitable. The latter is particular useful for analyzing not
only JavaScript code but also how the JavaScript code interacts with code implemented by the ex-
ecution platform, for example, with built-in APIs implemented through native code. For example,
all existing data race detectors (Section 3.3) use runtime instrumentation, because they need to
analyze or even control events emitted by the browser, such as network events.

10 OPEN PROBLEMS AND RESEARCH DIRECTIONS

In addition to open questions outlined in the previous sections, this section presents several under-
explored research directions that could have a significant impact on the dynamic analysis and test
generation communities.

10.1 Combinations of Dynamic Analysis and Test Generation

The two strands of research covered in this article, dynamic analysis and test generation, are ob-
viously related to each other. In particular, automatically generated tests can serve as a driver
to execute applications during a dynamic analysis. Despite this potentially fruitful combination,
most dynamic analyses are applied either with manually written tests or by manually exploring the
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analyzed program. An interesting challenge is how to effectively exploit the power of test genera-
tion as a driver for a particular dynamic analysis. For example, it would be desirable to create tests
that trigger behavior of interest to the dynamic analysis, such as potentially incorrect, inefficient,
or insecure code locations. In contrast to this open challenge, the inverse direction of combin-
ing dynamic analysis and test generation has already been explored: For example, Artemis (Artzi
et al. 2011) and EventBreak (Pradel et al. 2014) (Section 8) feed information obtained via a dynamic
analysis back to a test generator, for example, to trigger not yet covered code.

10.2 Barriers to Adopting Analysis Tools

Despite the increasing interest of the research community in dynamic analysis, its prevalence in
industry is not yet on par with static analysis tools (Bessey et al. 2010; Ayewah and Pugh 2010;
Sadowski et al. 2015). A notable exception is the JITCoach tool12 developed at Mozilla, which has
been inspired by JITProf (Gong et al. 2015a). One challenge is how to reduce the overhead of a
dynamic analysis while making it easy to deploy. Currently, low-overhead analyses typically re-
quire to modify the runtime environment, for example, the browser, in an analysis-specific way
(Section 9), which makes it hard to deploy the analysis to a wide range of users. Another challenge
is to improve the usability of dynamic analysis tools by reducing the amount of false positives or,
ideally, remove them altogether. As discussed in Section 3, the notion of correctness is not always
clear in real-world JavaScript programs, making it difficult for an analysis to identify undesired
behavior. Future research should focus on coming up with stronger oracles that decide when mis-
behavior occurs. Analyzing the user-perceived effect of potential misbehavior, such as done, for
example, by R4 (Jensen et al. 2015a) (Section 3.3) is a promising first step in this direction. Finally,
visualization could also help improve the usability of results from a dynamic analysis. For exam-
ple, to help developers understand whether some potentially harmful program behavior, such as
a data race, is indeed harmful, visualization of the situation that leads to the behavior may help
understand the impact.

10.3 Diverse and Evolving Execution Environments

JavaScript code is deployed in a multitude of execution environments that differ in their support
for language features, as well as their implementation and availability of APIs. Furthermore, these
execution environments constantly evolve. Novel language features and APIs, and even entirely
new execution environments, appear frequently. Based on these observations, we identify three
research directions that deserve additional attention.

Execution Platforms Beyond the Browser. Given the strong focus of existing work on client-side
web applications executed in a browser, there is a need for analyses that address the specific chal-
lenges of other platforms:

—Mobile platforms. Some mobile platforms, for example, Tizen and Firefox OS, support na-
tive applications written in JavaScript; others, for example, Apache Cordova,13 provide a
virtualization layer on top of system calls. Important challenges here are the protection
of user data from the variety of sensors that the mobile devices expose and the demand
for energy efficiency. To our knowledge there is little work addressing the particularities
of mobile platforms, with work by Jin et al. (2014) and Lee et al. (2016) being noteworthy
exceptions. Considering the increasing trend towards use of the HTML standards in the
mobile platforms there is likely to be demand for additional work.

12https://github.com/stamourv/jit-coach.
13See https://www.tizen.org/, https://www.mozilla.org/firefox/os/, and http://cordova.apache.org/.
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—Server-side web applications. Implementing not only the client side but also the server-side
of a web application in JavaScript is becoming increasingly popular since the early 2010s.14

Challenges in this environment include how to scale JavaScript code to respond to billions
of clients a day and how to defend it against the security issues that characterize the web.

—Stand-alone applications. Standalone JavaScript applications are becoming more and more
popular. In this environment, the user downloads a self-contained application, often con-
taining a GUI developed in HTML, and executes it locally. The main advantages are the
portability of the code across operating systems and the reuse of web-related skills among
developers. However, there are many challenges. First, JavaScript is single-threaded and
therefore cannot easily take advantage of multiple CPU cores. Second, since JavaScript is
traditionally deployed as source code, an important question is how to protect the intellec-
tual property when deploying to clients. Third, the lack of encapsulation in the language
may cause security issues when running the code outside of the browser. Even though all
these issues make the topic attractive for a program analysis researcher, we are not aware
of any work that considers this environment, with the exception of a static analysis applied
to desktop widgets (Guarnieri and Livshits 2009).

In addition to challenges arising on particular platforms, future work should consider code run-
ning on multiple platforms. For example, developers tend to reuse code across different JavaScript
platforms,15 ignoring the security particularities of each of them.

Interaction with Non-JavaScript Code. Many dynamic (and also static) program analyses ignore,
or only partially consider, the behavior of code not implemented in JavaScript, such as native im-
plementations of built-in APIs. The challenge here is to obtain a model of these parts of a JavaScript
program. Since creating such a model is costly and likely to become invalid when the execution
environment evolves, future work could automatically infer a model that describes the behavior
of non-JavaScript code in terms of JavaScript code or some other behavior specification.

Evolution of the JavaScript Language. The evolution of the JavaScript language and its built-in
APIs impose the challenge of adapting existing programs to novel language features and APIs.
Since the dynamic nature of the language often requires (support by) dynamic analysis, we see
potential for analyses that identify opportunities for adapting a given program to novel language
features. As a very first step in this direction, JITProf (Gong et al. 2015a) (Section 5.2) suggests to
use typed arrays, which where introduced in ECMAScript 2015, for improved performance. An-
other promising direction is related to optional type annotations understood by static checkers
for JavaScript, such as Flow16 and Closure,17 or introduced in variants of the JavaScript language,
such as TypeScript (Typ 2016). Future work should investigate how to integrate type information
into dynamic analyses and test generators. For example, type annotations could guide test gen-
erators toward when picking input values, similar to type-guided test generation approaches for
Java (Csallner and Smaragdakis 2004; Pacheco et al. 2007).

10.4 Support for Additional Developer Tasks

Sections 3 to 6 cover existing work that supports software developers during diverse activities, such
as bug detection, optimization of bottlenecks, and increasing the security of a program. Beyond

14According to http://w3techs.com/technologies/overview/programming_language/all, JavaScript is one of the top ten lan-

guages used for server-side development.
15For example, browserify is a popular tool enabling this kind of reuse.
16https://flowtype.org/.
17https://developers.google.com/closure/compiler/.
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these tasks, there are several common developer activities that are currently not or only partially
supported by dynamic analysis and test generation techniques. One of them is automated program
repair, that is, the process of finding a code change that avoids some misbehavior. While program
repair is an active field of research, there is little work for JavaScript (Section 3.1). We envision
future work in this area, for example, on dynamic analyses that identify potential repairs and
on test generation techniques that validate whether a potential repair indeed fixes the problem
without affecting the remaining program behavior. Another developer activity that is currently
insufficiently addressed by dynamic analysis is refactoring. Even though refactoring is traditionally
a subject of static analysis, the dynamic nature of JavaScript suggests that (at least partly) dynamic
approaches could effectively support developers in adapting their code. A major challenge is to
ensure that refactorings are guaranteed, or at least very likely, to be semantics-preserving, which
is inherently impossible to show with a purely dynamic analysis.

10.5 Guidance from Empirical Evidence

Several of the empirical studies covered in Section 7 have uncovered problems and opportunities
addressed in subsequent research. We see several opportunities for future empirical studies, both
in terms of topics to cover and in terms of code bases to analyze. As almost all existing studies
focus on client-side web application code, one promising direction is to also study the properties
of code running on other platforms, such as server-side web applications, mobile applications,
and browser extensions. Another direction is to investigate the usage of yet unstudied language
features and APIs, such as features introduced in HTML 5 and ECMAScript 6. An understudied
aspect of JavaScript usage is how JavaScript code bases evolve over time, which one could study,
for example, using public code repositories or by repeatedly analyzing a set of web sites over a
period of time. Finally, given the fast pace at which JavaScript and the web evolves as a whole, it
will be interesting to reproduce some of the earlier studies to check to what extent their results
have changed over time.

In addition to studying programs and other artifacts of the development process, there is a need
for empirical studies of the usability of analysis tools for JavaScript. Understanding why developers
use, or do not use, existing analysis tools will help improve future tools and eventually increase
the impact of the research efforts surveyed in this article.

10.6 Reusable Research Infrastructure and Benchmarks

Given the large number of analyses that track dynamic dependencies (Section 6) and the fact that
most of them are implemented from scratch, there is an opportunity for future work on a com-
mon framework for tracking dependencies. Another promising research direction is to develop a
JavaScript virtual machine (VM) specifically designed with ease of extensions in mind. Due to the
complexity of JavaScript and its optimizations, production VMs have complex implementations,
making it non-trivial to modify them and to maintain modifications (Section 9). For comparison,
the Java community has seen various improvements of runtime compilation and optimization tech-
niques, many of which have been (initially) implemented in the Jikes research VM (Alpern et al.
2005). In addition to providing an environment for implementing novel optimizations, a JavaScript
research VM could also serve as a basis for implementing dynamic analyses. An alternative direc-
tion worth exploring is to build on existing tools used in industry, such as Selenium WebDriver,18

that make it possible to programmatically control and monitor executions. It would be useful for
the research community if the WebDriver API were extended to support more deep control and
monitoring of the execution, for example, of event scheduling.

18http://www.seleniumhq.org/.
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The large amount of competing approaches surveyed in this article provides an opportunity for
novel benchmarks and tools to create such benchmarks. Currently, many articles are evaluated
with an ad hoc selection of programs and problems, making it difficult to understand the strength
and weaknesses of related approaches. For example, it would be desirable to have a curated collec-
tion of JavaScript correctness bugs, for example, similarly to the Defects4J database for Java (Just
et al. 2014). Furthermore, it is necessary to consider the development of new or the adaptation of
current benchmarks to support new language features and constructs. Many of the ECMAScript 6
and 7 features are already available in browsers; however, to date, we are not aware of official
benchmarks that demonstrate the performance of these features in JavaScript engines.

Is it important to note that are already steps toward reusable research infrastructures and bench-
marks for JavaScript, such as Jalangi (Sen et al. 2013), which is the basis of various dynamic analy-
ses; Crawljax (Mesbah et al. 2012), on which several test generators build; the performance bench-
mark creator JSBench (Richards et al. 2011a); and work by Selakovic and Pradel (2016), which
provides reproducible versions of a large set of real-world performance issues.

11 CONCLUDING REMARKS

This article provides a survey of dynamic analysis and test generation techniques for JavaScript. As
JavaScript was developed in 1995 and has become popular for complex applications only since the
mid-2000s, the field of research is relatively young. Despite its young age, the field has already seen
large amounts of work. By summarizing and comparing existing approaches in a structured way,
we enable interested outsiders to quickly get an overview of the field. We conclude that the current
state of the art successfully addresses the most common software goals—correctness, reliability,
security, privacy, and performance, as well as the meta-goal of developer productivity.

Despite all the advances in analyzing JavaScript programs, various research challenges remain
to be addressed. These include improved support for code refactoring and program repair, analy-
ses targeted at emerging execution platforms and usage scenarios of JavaScript, and combinations
of test generation and dynamic analysis. A particularly important goal for future work should be
to consolidate existing research results into reusable research infrastructures that enable future
research to avoid re-inventing the wheel. Moreover, to bridge the current gap between ideas pre-
sented in research and ideas picked up by industry, future work should strive for analysis tools that
are easily usable by regular developers. Given the continuously increasing popularity of JavaScript,
we expect further progress in dynamic analysis and test generation for JavaScript and hope that
this article helps guiding it in fruitful directions.
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