Automated Planning for Ubiquitous Computing

ILCHE GEORGIEVSKI and MARCO AIELLO, University of Groningen

The goal of ubiquitous computing is to create ambience in which one’s experiences and quality of life are
improved by monitoring and assisting people using ubiquitous technologies and computation in coherence.
The continuous advancements of involved technologies, such as wireless communications, mobile devices,
and sensors, imply fast evolution of ubiquitous computing environments too. The complexity of these envi-
ronments is reaching a point where traditional solutions simply no longer work. The environments are in
need of computational techniques that can deal with the evolution and uncertainty of ubiquitous computing
environments dynamically and automatically. Artificial Intelligence (AI) can contribute towards satisfying
this future scenario in many ways, while numerous approaches inspired by work in the Al planning commu-
nity have already been designed for ubiquitous computing. We devote this study to investigate the current
progress of Al planning for ubiquitous computing by analysing those approaches. We rigorously search for
and select relevant literature out of which we extract qualitative information. Using the extracted qualities,
we derive a generic framework that consists of aspects important to planning for ubiquitous computing.
The framework’s main purpose is to facilitate the understanding of those aspects, and classify the literature
according to them. We then analyse the literature in a consolidated way, and identify future challenges of
planning for ubiquitous computing.

CCS Concepts: ® General and reference - Surveys and overviews; ® Human-centered
computing — Ubiquitous and mobile computing; ® Computing methodologies — Planning and
scheduling; Knowledge representation and reasoning; Intelligent agents;

Additional Key Words and Phrases: Planning domain modelling, planning techniques, pervasive computing,
smart environments, ambient intelligence

ACM Reference Format:

Ilche Georgievski and Marco Aiello. 2016. Automated planning for ubiquitous computing. ACM Comput.
Surv. 49, 4, Article 63 (December 2016), 46 pages.

DOI: http://dx.doi.org/10.1145/3004294

1. INTRODUCTION

Ubiquitous computing tends towards revolutionising the way we live in terms of com-
fort, assistance, and safety by cooperatively utilising diverse technologies and various
forms of computation to monitor and assist us. While wireless communications, mo-
bile devices, and sensors are prominent examples of the rapid technological progress,
the development of computational techniques is yet a challenge. Ubiquitous comput-
ing environments are often computationally enabled by predefining sequences of de-
vice actions that are usually executed under predetermined conditions and in well-
known situations. Such approaches are shown to be too limited to handle the dynamics
and uncertainty of these environments, to deal with a large number of environment

This work is supported by the Dutch National Research Council Beijing Groningen Smart Energy Cities
Project, contract no. 467-14-037.

Authors’ addresses: I. Georgievski and M. Aiello, Johann Bernoulli Institute for Mathematics and Computer
Science, University of Groningen, Nijenborgh 9, 9747AG Groningen, The Netherlands; emails: {i.georgievski,
m.aiello}@rug.nl.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.

© 2016 ACM 0360-0300/2016/12-ART63 $15.00

DOI: http://dx.doi.org/10.1145/3004294

ACM Computing Surveys, Vol. 49, No. 4, Article 63, Publication date: December 2016.

http://dx.doi.org/10.1145/3004294
http://dx.doi.org/10.1145/3004294

63:2 I. Georgievski and M. Aiello

conditions, to support the needs of those populating the environments, and even to
achieve some global environment objectives, such as energy saving. Let us illustrate
these issues concretely in the following adventurous scenarios.

Theodore, a writer, bought a new home that has several rooms. While each room is
equipped with various home appliances, such as a TV in the living room, the home has
recently been enriched with numerous unobtrusive devices, such as movement sensors,
door actuators, gas-leakage sensors, etc. Theodore also bought Tars, a domestic robot
that can sense human presence, clean rooms, move around the home, pick up and drop
items, and help and support Theodore. This home of Theodore is precisely an example
of a ubiquitous computing environment [Weiser 1999].

Theodore now purchases a system to handle his requests, anticipate his activities,
coordinate all devices and appliances, cooperate with Tars, and take care of the home.
The system he obtains is named Samantha.! Suppose Samantha has a large set of rules
for triggering device actions predefined for typical situations in homes. For example,
Samantha can instruct Tars to clean rooms from dust in such a way that he does
not disturb Theodore. In reality, the needs of Theodore are more personalised and
involve spatial and temporal properties for which Samantha may fail short of rules.
For example, Theodore wants the kitchen and bedroom clean with some items to be
delivered to him at the same time. Samantha has to be able to come up with the best
plan that satisfies this objective.

One day Theodore decides to prepare lunch, and while he chooses the dish from
the menu, Samantha takes the dish’s recipe and selects plans for Theodore to follow.
During the selection, Samantha finds out that an ingredient is missing that cannot be
replaced with any of the available ones in the kitchen. Samantha runs out of options,
though a solution exists. For example, Tars can go to the storage room and get the
missing ingredient. In this way, Theodore can still cook his dish. Suppose Theodore
gets the ingredient eventually, and at some point during cooking, Samantha detects
a dangerous situation, a gas leak. She triggers a predefined goal for such situations,
and selects a safety plan consisting of instructions for Theodore to leave the home,
and actions to close all doors leading to the kitchen so as to isolate spreading of the
gas as much as possible. At the same time, Samantha issues actions for pulling up
window blinds and opening the window in the kitchen. However, it happens that the
blinds are stuck, which prevent the window from opening. Samantha finds herself in
an unexpected situation for which there are no predefined plans. Uncertain situations
such as these are rules rather than exceptions in ubiquitous computing environments.

Ubiquitous computing is therefore in need of techniques that go beyond predefined
solutions, and act intelligently and autonomously. The field of Artificial Intelligence (AI)
focuses on developing highly flexible and effective systems for intelligent behaviour,
where Al planning or automated planning provides means for automated and dynamic
creation of plans [Ghallab et al. 2004]. Planning requires a goal, an initial state of an
environment, and some knowledge to select and combine courses of actions that, when
executed, achieve the goal.

Planning is recognised as a central technique to achieve intelligent behaviour of
ubiquitous computing environments by virtue of its general capabilities to search in
a large space of possible solutions to a given planning problem, reason about space,
time, and resources, address dynamism and uncertainty, support the heterogeneity
of constituents of environments, and support modelling of knowledge with reasonably
expressive constructs. The result is numerous studies that aim to use planning in differ-
ent types of ubiquitous computing environments. Yet when it comes to characterising

ITheodore, Samantha and Tars are inspired by the eponymous characters in the films “Her” [Phoenix and
Johansson 2013] and “Interstellar” [Irwin 2014].

ACM Computing Surveys, Vol. 49, No. 4, Article 63, Publication date: December 2016.

Automated Planning for Ubiquitous Computing 63:3

what exactly the current research of automated planning for ubiquitous computing
consists of, and whether and how it might proceed in the future, there is no analysis
in the literature. Existing efforts in using planning for ubiquitous computing differ
in too many extents and have unclear premises in relation to the questions of what
kind of planning problems are being solved, how problems are modelled, how plan-
ning systems are actually designed, and how those systems are used and evaluated in
ubiquitous computing. In light of these ambiguities, it seems prudent to methodologi-
cally analyse and improve this situation. On the one hand, a well-developed analysis
could produce means that can be used to support designs and developments of future
ubiquitous computing systems. On the other hand, analysing planning from the per-
spective of ubiquitous computing may raise challenges different than those found in
the discerning trends in the general progress of automated planning.

We aim to look into these ambiguities by analysing a full range of relevant literature.
Our contributions are listed next.

—We develop a rigorous methodology to acquire and select existing relevant literature
and extract qualitative information from the literature.

—We derive a generic framework for planning for ubiquitous computing from quali-
tative information. The framework consists of a set of dimensions each defining a
particular aspect. The framework can help ubiquitous computing developers make
decisions regarding designing and implementing systems based on planning, and
future efforts to orient their research in an appropriate direction.

—We classify the selected studies according to their spectrum of supported dimensions,
and analyse each of these dimensions as invoked in the studies.

—We derive the limitations of the current progress in planning for ubiquitous comput-
ing, aiming at improved perspectives for both ubiquitous computing and planning.

The remainder of the article is organised as follows. Section 2 briefly introduces
automated planning and our methodology. Section 3 presents the selected relevant
studies and the basic structure of our framework. The next three sections gradually
develop the framework into more details by defining its dimensions, and classifying and
analysing the relevant studies according to those dimensions. Section 7 provides the
possible directions for future research. Section 8 finalises the article with concluding
remarks. Appendix B presents examples of planning encodings from Theodore’s home,
and Appendix C lists planning systems used in the selected relevant literature. The
online Appendix A presents our methodology in detail and provides some insights into
the year, type, and venue of publication of selected literature.

2. PRELIMINARIES

The task of a planner is to compute a plan as one possible solution to a given planning
problem. The plan computed consists of actions that are provided to the planner for
each domain of interest. Each of the plan actions is then executed into the world. The
following section briefly introduces the meaning of these terms and how they relate to
each other. After this introduction, we turn to the methodology developed to rigorously
search, classify, and analyse relevant literature. For simplicity, we introduce only briefly
the basic steps of the methodology, while we fully account for it in Appendix A.

2.1. Automated Planning

A planning problem consists of an initial state, a goal state, and a set of actions. The
initial state describes how the world is when the planner is invoked. The goal state or
goal describes how one wants the world to be after some plan is executed. The world
in which planning takes place is called a planning domain. In our case, the planning

ACM Computing Surveys, Vol. 49, No. 4, Article 63, Publication date: December 2016.

63:4 I. Georgievski and M. Aiello

domain can be any ubiquitous computing environment. We henceforth refer to world
states as (ubiquitous computing) environment states.

To define actions, we use the terminology of the Planning Domain Definition Lan-
guage (PDDL) [McDermott et al. 1998]. Actions are templates consisting of parameters,
preconditions, and effects. Each action characterises a set of possible action instances
by using the parameters to which values can be assigned to derive specific actions.
Preconditions contain predicates that must hold before an action can be applied, and
effects include predicates that simulate action occurrence. Predicates are statements
that can be true or false, and consist of names and parameters.? A predicate’s name
describes relations between parameters. The combinations of parameters’ values deter-
mine the truthfulness of predicates. Assuming an action’s preconditions hold in some
state, applying the action means using its effects to produce a new state.

A plan is a structure of actions. A plan is a solution to a given planning problem if the
plan is applicable in the problem’s initial state, and if after the execution of the plan,
the goal is satisfied. A plan is applicable if the preconditions for the execution of the
plan’s first action hold in the initial state. The plan execution continues by applying
other plan’s actions in the order specified by the plan. If the goal is satisfied at the end
of plan execution, the plan is a solution to the given problem.

The input to a planner is a planning problem specified in some syntax, commonly
PDDL. A PDDL planning problem consists of two parts: a domain definition and a
problem definition. Each definition is usually written in a separate file. The domain
definition is used to define the actions and predicates, but it also allows one to specify
other constructs, such as types of parameters, constants that have the same meaning
for all planning problems in the given domain, functions to access and update numeric
values, and axioms to assert relationships between predicates that are true in some
state. On the other hand, the problem definition describes the initial state and goal.
For a detailed introduction to PDDL, we refer to McDermott et al. [1998], while for
examples of PDDL domain and problem definition, we refer to Appendix B. The output
of the planner is a plan that guarantees the achievement of the goal. Planning is the
process that connects the input and output. The planner defines a search space and
goes through this potentially large space looking for a point that is defined as a solution.
The search space can be of different forms and structures, where the difficulty of the
search increases with the complexity of space.

The classical approach of solving planning problems relies on several simplifying
assumptions: environments have a finite set of states, the initial state is complete
and fully observable, actions are deterministic, environment states change only by
executing actions, goals are either satisfied or not by plans, plans are ordered sequences
of actions, and there is no explicit use of time [Ghallab et al. 2004]. Clearly, this
approach is too restrictive for environments in which information completeness and
consistency cannot be guaranteed, and plan execution cannot be guaranteed to proceed
as expected. Therefore, much work has focused on developing planning approaches
that relax one or more of these assumptions by allowing incomplete knowledge about
the initial state, partially observable states, nondeterministic actions, actions with
conditional effects, preferences and extended goals, partially ordered plans, durative
actions, etc. We define and describe these concepts as needed throughout the article.

2.2. Methodology

We perform a comprehensive search for studies relevant to our treatment based on
a systematic method [Kitchenham and Charters 2007]. We derive the framework of

2A PDDL predicate has the form (NAME ?A1 ... ?An), where the arguments beginning with a question mark
are parameters.

ACM Computing Surveys, Vol. 49, No. 4, Article 63, Publication date: December 2016.

Automated Planning for Ubiquitous Computing 63:5

Table I. Primary Studies

ID Study ID | Study

S1 Qasem et al. [2004] S28 | Di Rocco et al. [2014]

S2 Ranganathan and Campbell [2004] S29 | Cirillo et al. [2012]

S3 Kotsovinos and Vukovic [2005] S30 | Madkour et al. [2013]

S4 Amigoni et al. [2005] S31 | Ortiz et al. [2013]

S5 Ding et al. [2006] S32 | Milani and Poggioni [2007]
S6 Vukovic et al. [2007] S33 | Georgievski et al. [2013]
S7 Carolis and Cozzolongo [2007] S34 | Garro et al. [2008]

S8 Courtemanche et al. [2008] S35 | Marquardt and Uhrmacher [2009a]
S9 Bajo et al. [2009] S36 | Jih et al. [2007b]

S10 | Liang et al. [2010] S37 | Harrington and Cahill [2011]
S11 | De Giacomo et al. [2012] S38 | Song and Kim [2011]

S12 | Mastrogiovanni et al. [2010] S39 | Plociennik et al. [2009]
S13 | Santofimia et al. [2010] S40 | Honold et al. [2014]

S14 | Bidot et al. [2011] S41 | Caruso et al. [2013]

S15 | Yordanova [2011] S42 | Corchado et al. [2009]

S16 | Sando and Hishiyama [2011] S43 | Bacon et al. [2013]

S17 | Hidalgo et al. [2011] S44 | Chen et al. [2014]

S18 | Kaldeli et al. [2012] S45 | Kockemann et al. [2014]
S19 | Song and Lee [2013] S46 | Yau and Buduru [2014]
S20 | Sanchez-Garzon et al. [2012] S47 | Wang et al. [2015]

S21 | Pajares Ferrando and Onaindia [2013] || S48 | Eppe and Bhatt [2015]
S22 | Fraile et al. [2013] S49 | Jean-Baptiste et al. [2015]
S23 | Ha et al. [2005] S50 | Amato et al. [2015]

S24 | Kriger et al. [2011] S51 | Sukkerd et al. [2015]

S25 | Grzes et al. [2014] S52 | Vaquero et al. [2015]

S26 | Marquardt et al. [2008] S53 | Chen et al. [2016]

S27 | Heider [2003]

dimensions for automated planning for ubiquitous computing from the relevant studies
using qualitative analysis [Corbin and Strauss 2008]. We systematically arrange the
relevant studies according to the framework’s dimensions using a classification process
[Smidts et al. 2014]. We then analyse the studies and aggregate meaningful information
per dimension. Since studies belonging to the same dimension share properties, we can
consolidate explanations effectively.

3. PRIMARY STUDIES AND FRAMEWORK

We select a total number of 53 relevant studies which we refer to as primary studies.
Table I shows the studies, where their references are associated with unique identifiers
used for convenience later for classification. Insights into the distribution of primary
studies with respect to publication year, type, and venue are given in Appendix A.2.
Using the contents of primary studies, we develop our generic framework for auto-
mated planning for ubiquitous computing. Its basic structure consists of the following
three main dimensions, each of which may in turn be split into subdimensions. We
provide details on such structuring when appropriate in the remainder of the article.

—Environments: This dimension deals with questions related to ubiquitous com-
puting environments. It determines what types of requests users can make, what
types of sources that enable environment change can be supported, what aspects of
environment physics are needed, and what sources of uncertainty can be identified.

—Planning: This dimension focuses on questions related to automated planning.
It determines the types of purpose of using planning, types of planning tech-
niques, definition, modelling and representation of planning problems, design and

ACM Computing Surveys, Vol. 49, No. 4, Article 63, Publication date: December 2016.

63:6 I. Georgievski and M. Aiello

Environments

‘ Behavioural inputs ‘ ‘ Behavioural outputs
‘ Requests Preferences ‘ Information services Device operations
Declarative goals Application services Human actions
Procedural goals Robot actions

‘ Physical properties I Uncertainty
’ Spatial properites H Temporal properites Unexpected events
Object locations Metric constraints Action contingencies
Human locations Qualitative relations Partial observability

Fig. 1. Hierarchy of dimensions for environments.

implementation of planning systems, and integration and use of planners in
ubiquitous computing.

—Interpretation: This dimension provides insights into the practical aspects of plan-
ning theories and solutions. The practical aspects refer to the approaches taken
to understand better and demonstrate the complexity and applicability of theories.
Practical aspects may also include technical and qualitative evaluations of solutions,
and examinations of user satisfaction and acceptance of solutions.

4. ENVIRONMENTS

For the environments dimension, we catalogue four subdimensions, namely, be-
havioural inputs, behavioural outputs, physical properties, and uncertainty. Some of
these may be further split into subdimensions. Figure 1 gives a quick overview of the
hierarchy of the environments dimensions. In the following, we define each dimension
and provide insights into the correspondence between these dimensions and planning.

4.1. Behavioural Inputs

We define behavioural inputs as the information representing one’s desires according to
which a ubiquitous computing environment should behave. We identify two subdimen-
sions of behavioural inputs, depending on whether the satisfaction of one’s desires is
required or it is preferred but not required. Requests provide models of desired results
issued for the purpose of achieving a mandatory behaviour, adaptation, or organisation
of environments. One model of requests is declarative goals, which specify explicitly
states of environments that need to be established. It relates to the question of what
has to be achieved in some setting. For example, Theodore requires his bedroom to be
clean. Another requests model is procedural goals, which specify a set of procedures
to be performed so as to satisfy requests. These goals relate to the question of Aow to
accomplish something in some setting. For example, Theodore wants Tars to first clean
his bedroom and then the living room.

The preferences subdimension encompasses individual attitudes towards the envi-
ronment behaviour (or organisation). Contrary to requests, preferences do no enforce
mandatory satisfaction and are satisfied as much as possible. For example, Theodore
may prefer a tomato sauce over ketchup for the chosen dish in the cooking scenario.

The basic connection between the behavioural inputs and planning can be established
through requests, which can be directly mapped to goals in planning problems. As for

ACM Computing Surveys, Vol. 49, No. 4, Article 63, Publication date: December 2016.

Automated Planning for Ubiquitous Computing 63:7

preferences, these are regarded as soft constraints on plans whose quality increases
when more constraints are satisfied. The specification of preferences in planning has
been supported by the syntax of PDDL (version 3.0 [Gerevini and Long 2006]).

4.2. Behavioural Outputs

We define behavioural outputs as acts performed in ubiquitous computing environ-
ments whose outcomes modify the states of the environments. The acts may be per-
formed by various physical objects, such as devices and robots, software components,
and humans. We identify the following five subdimensions of behavioural outputs.

—Device operations are functionalities that specific devices can perform. Device opera-
tions are used to change the states of associated devices. By device we mean a piece
of equipment embedded in an environment that has limited capabilities to interact
autonomously with (other entities in) the environment. Examples of device opera-
tions include setting up a smoke alarm, pulling down window blinds, dimming lights,
etc.

—Human actions represent behaviours to be performed by persons. Human actions are
used to assist or guide people on the path to accomplish their goals or activities. For
example, Theodore can be assisted with recipe steps to prepare his dish.

—Robot actions represent behaviours of robots performed in order to achieve some
goals. Robots are autonomous and intelligent to a certain degree entities, hence their
actions represent a separate dimension. Robot actions can be categorised in two
groups: actions that transform the environment, such as Tars cleaning rooms, and
those communicated to people, such as Tars wishing Theodore a nice evening.

—Application services define purposeful behaviours of applications installed on comput-
ers deployed in ubiquitous computing environments. Applications might be commer-
cial, such as Adobe Acrobat and Apple Keynote, or developed for a specific purpose.
An example of application service could be setting up the recipe steps for Theodore
on slides using Microsoft PowerPoint.

—Information services represent knowledgeable behaviours built by collecting, man-
aging, and reasoning over possibly distributed data. For example, Samantha uses an
information service to find a restaurant for dinner for Theodore.

All types of behavioural outputs are in fact represented as actions in planning do-
mains. The actions representing device operations, robot actions, and application ser-
vices all have a similar purpose—to control some entity. Human actions differ in that
their execution cannot be enforced as it depends directly on the will of involved hu-
mans, but the actions can be used by planners to create human-aware plans [Sisbot
et al. 2007; Hoffman and Breazeal 2007; Talamadupula et al. 2010].

4.3. Physical Properties

Physical properties characterise situations of ubiquitous computing environments with
respect to space and time. People and objects have a physical extension that relates
them to one another and with space. Spatial properties qualify the relations among
entities and their environment. Spatial representations define the types and qualities
of the spatial properties and allow for proper reasoning over these [Aiello et al. 2007a].
There are two ways of spatial representations: one respecting the spatial characteristics
of the underlying models, and the other treating space simply as a set of symbols
without considering any geometrical or physical laws [Aiello et al. 2007b]. We call the
former purely spatial representation and the latter abstract spatial representation.
Consider Theodore moving from his bedroom to the kitchen. In an abstract represen-
tation, one can represent the move as instantaneous. In a “pure” representation, this
would not be possible and the fact that the locations have to be topologically connected

ACM Computing Surveys, Vol. 49, No. 4, Article 63, Publication date: December 2016.

63:8 I. Georgievski and M. Aiello

and that the likelihood of instantaneous actions is little would have to be taken into
account. There is thus an issue related to spatial arrangements, elsewhere known as
spatial realizability [Lemon and Pratt 1997; Kontchakov et al. 2014], and at times also
the need for the consideration of spatiotemporal properties [Andréka et al. 2007].

We identify two subdimensions of spatial properties, depending on whether the spa-
tial relation is with objects or humans. These two subdimensions fall within the abstract
way of representing spatial properties.

—Object locations comprise locations of environment objects. For example, Theodore’s
TV is in the living room. Such locations represent static information often predefined
manually in the calibration phase of the environments.

—Human locations define the position of people within environments. As dynamic in-
formation, the location of humans is usually tracked to the level of some predefined
areas, for example, rooms. More fine-grained information can include the posture and
orientation of persons, which is crucial for many scenarios such as those concerning
people’s safety (e.g., fall detection and appropriate reaction). Such fine-grained spa-
tial information may, however, become a subject to privacy concerns, which have to
be considered when gathering and reasoning over it [Bettini and Riboni 2015].

The interpretation of human behaviour involves reasoning about time. For example,
the activity of washing hands in care centres may be performed in a different time
span by different people. The duration of the activity can be thus personalised with
respect to people’s abilities and health conditions. Temporal properties characterise the
relationship of entities with time. In its generality, the time is defined using tempo-
ral individuals connected by temporal relations [Benthem 1983]. The most common
temporal individuals are intervals and time points.

—Intervals are used to describe activities, where numerous relations between the
intervals can be used to describe the interdependencies between activities, such
as X precedes Y, X meets Y, X same as Y, etc. ((Benthem 1983; Allen 1983]). For
example, consider the gas leakage scenario in Theodore’s kitchen, where the activity
of Theodore leaving the kitchen occurs before the activity of the kitchen door being
closed. If X is the interval in which Theodore leaves the kitchen, and Y is the interval
for closing the door, then the relation would be X precedes Y. We refer to temporal
representations based on intervals as qualitative relations.

—Time points are used to describe the start and end times of activities, where three
relations can be used to specify the constraints between the time points, namely, P
precedes @, P same as @, and P follows @, where P and @ are time points [Benthem
1983; Vilain and Kautz 1986]. For example, the time point when Theodore starts
leaving the kitchen precedes the time point at which the door starts closing. We refer
to temporal representations based on time points as metric constraints.

Thus, qualitative relations and metric constraints are two subdimensions of temporal
properties. Though each dimension captures a different temporal representation, in
general, it is possible to combine both types of temporal representations, which means
that the two subdimensions are not mutually exclusive.

Spatial properties can be represented in planning problems using combinations of
constants, objects, and predicates. As for the temporal properties, there are various ap-
proaches providing support for temporal planning. Many of these are based on durative
actions in PDDL (version 2.1 [Fox and Long 2003]) where metric temporal annotations
are incorporated into preconditions and effects of actions. The temporal annotation
of preconditions indicates explicitly when the associated predicate must hold: at the
start of the action, at the end of the action, or over the action’s duration. The temporal
annotation of effects signifies that the effect is immediate, when it happens at the start

ACM Computing Surveys, Vol. 49, No. 4, Article 63, Publication date: December 2016.

Automated Planning for Ubiquitous Computing 63:9

of the action, or delayed, when it happens at the end of the action. In addition to mod-
elling temporal properties in domains, some planners may induce a temporal order of
actions in plans without providing explicit temporal knowledge in the domains.

4.4. Uncertainty

Uncertainty refers to situations of ubiquitous computing environments in which the
information describing the current state is ambiguous and unreliable due to the inher-
ited dynamism of the environments. The dynamism can be characterised by diverse
and continuous events, the nondeterminism concerning the behavioural outputs, and
partial observability. Accordingly, we split uncertainty into three subdimensions.

—Events happening in exceptional and unpredicted situations are unexpected events.
Recall the cooking scenario in Theodore’s home. The missing ingredient might be
classified as an unexpected event in the given situation.

—Action contingencies indicate states of actions (or operations or services) in which
actions do not work correctly during execution. Action contingencies can be failures
or timeouts. The former happen when action invocations return erroneous responses.
These responses may be simple failures, when actions fail to respond within a lim-
ited number of invocation attempts; Byzantine behaviour, when actions complete
successfully without providing the expected result; and permanent failures, when
entities providing behavioural outputs break down [Kaldeli et al. 2016]. In the gas
leakage scenario in Theodore’s home, the window blinds get stuck, which might be
classified as a simple failure. Timeouts occur when invocations provide no response
after a certain amount of time.

—Partial observability refers to the imperfectness and incompleteness of information
about environment states. State constituents, say, variables, may have different
possible actual values and even unknown values, making the representatives of
behavioural outputs no longer depend directly on such uncertain states. For example,
Samantha might not know why the window blinds are stuck in the kitchen due to
observing only partially the window segment.

Unexpected events and action contingencies interfere with the aspect of predictabil-
ity in planning—planners do not know what may happen when plan actions are exe-
cuted. Common ways to model unpredictability in planning are by incorporating non-
deterministic outcomes and conditional effects into actions. Nondeterministic actions
have alternative outcomes that are completely determined at the time of plan ex-
ecution. Conditional effects enable actions to have effects conditioned on secondary
preconditions. A plan would then contain conditional steps that are chosen depending
on the environment state during execution.

Partial observability interferes with sensing, making environment states not nec-
essarily known. Sensing is the process of observing and providing up-to-date views
of environment states at planning (and/or execution) time. Generally, there are four
sources of information about environment states: the initial states themselves, sensing
actions, observations, and already executed plan actions. Sensing actions are planning
actions executed explicitly to determine the truth value of some predicates. Observa-
tions sense state information automatically. The memory of previous actions is used
to aid the inconsistency of states. Combinations of these and other concepts have been
also used to improve the capability of planning to deal with uncertainty.

4.5. Review of Primary Studies

Table II shows the mapping of primary studies onto the subdimensions of the environ-
ments dimension. The “X” indicates the support of a study for a respective dimension
independently of how that support is provided.

ACM Computing Surveys, Vol. 49, No. 4, Article 63, Publication date: December 2016.

63:10 I. Georgievski and M. Aiello

Table II. The Dimensions of Primary Studies within the Environments Dimension

Behavioural inputs Physical properties
Requests Behavioural outputs Spatial Temporal || Uncertainty

Unexp. changes

Human actions
Info. services
Qualitative rel.
Metric constr.

Decl. goals
Preferences
Robot actions
App. services
Object loc.
Human loc.
Action cont.

%| Proc. goals
%| Partial observ.

wn
N
x
x
x
x

x| x

n
=~
x

%x| x| x| x| x| Device op.

w0
©
XXX
x
x
x
x
x

n
=
[=2]
x| X| X
x
x

x| x
x| X

S22 X X
S23 X
S24 X
S25 X X X X
S26 X
S27 X
S28 X
S29 X
S30 X X X | X
S31 X X
S32 X
S33 X
S34 X
S35 X

R IRIRIRSS
x| X|X| X

X XX
x| X
x

X X| X%

XXX X|X|X

S37
S38 X
S39
S40 X X
S41 X
S42 X
S43
S44 X
S45
S46
S47
S48
S49
S50
S51
S52
S53 X X

R AR IR
x

XX XX

x
XXX
x
x
x

XX XX XX

ACM Computing Surveys, Vol. 49, No. 4, Article 63, Publication date: December 2016.

Automated Planning for Ubiquitous Computing 63:11

Declarative Goals. The majority of classified studies have a traditional approach to-
wards representing declarative goals, that is, descriptions of final states, and several
studies incorporate extended forms of declarative goals. De Giacomo et al. [2012] com-
bine maintenance and achievement goals using propositional formulae over domain
propositions. In Kaldeli et al. [2012], extended goals are declarative expressions on nu-
merical variables, temporal constructs, and maintainability properties. For an example
of extended goal, we refer to Appendix B.4.

Declarative goals are interpreted as constraint networks that may include temporal,
resource, symbolical, and information dependencies. In Di Rocco et al. [2014] and Amato
et al. [2015], studies are based on the same planning approach. In Cirillo et al. [2012],
the goal is a logical formula over the state and consists of subgoals each of which
is associated with a value denoting its importance of achievement. For example, let
(dirt ?r 7dv 7i) denote that the dirt in a room ?r should be ?dv with importance of
achievement 7i. Then, if Tars’ goal is to clean the kitchen and bedroom, while more
important is to clean the kitchen, it can be represented as the conjunction (and (dirt
kitchen 0 0.6) (dirt bedroom 0 0.4)). The goals can be violated in some cases at
the expense of a less efficient but valid solution. In addition to these reachability goals,
maintenance goals are supported too.

Procedural Goals. The classified studies adopt an exceptionally conventional ap-
proach towards using procedural goals. A goal is either a single task or a list of tasks,
where tasks are commonly interpreted analogously to the definition of tasks in Hier-
archical Task Network (HTN) planning (see Section 5.2). Incidentally, Amigoni et al.
[2005] enhance tasks with additional information on performance, cost, and proba-
bility of success for each method of a task. The performance parameter expresses the
expected effectiveness of a method, the cost parameter indicates the amount of resource
that would be consumed if the method is applied, and the probability of success gives
the expectation that no failures will occur when the method is applied. While these pa-
rameters might appear useful to ubiquitous computing environments, their semantics
are not defined, and their values should be provided manually by domain authors.

Preferences. A user may select and customise recipes [Kotsovinos and Vukovic 2005],
indicate personalised choices on various devices [Ding et al. 2006; Fraile et al. 2013],
and provide preferences on services [Liang et al. 2010; Song and Lee 2013; Chen et al.
2014], daily activities [Mastrogiovanni et al. 2010; Vaquero et al. 2015; Kéckemann
et al. 2014], domains [Bidot et al. 2011; Yau and Buduru 2014], treatments [Sanchez-
Garzon et al. 2012], timetables [Bajo et al. 2009], companion systems [Honold et al.
2014], and products [Corchado et al. 2009]. In Ranganathan and Campbell [2004], user
preferences are in the form of utility u for each predicate in different contexts, where
u € [—10, 10]. A predicate without a value has u = 0. So, each user has a utility for
each environment state, whereas the utility of the goal state is a linear combination
of the utilities of all entities relevant to the goal. The incorporation, maintenance,
and handling of such preferences becomes cumbersome when predicates and users
proliferate. Finally, willingness or user desires to perform tasks may be captured using
variables that influence such desires [Sukkerd et al. 2015]. For example, the willingness
of cooking task is influenced by whether Theodore is tired. Each value of such a variable
is mapped to a willingness probability. That is, the willingness probabilities for when
Theodore is tired or not are 0.3 and 0.9, respectively.

Device Operations. One group of studies represent device operations as planning ac-
tions directly [Ranganathan and Campbell 2004; Amigoni et al. 2005; Ding et al. 2006;
Fraile et al. 2013; Kriiger et al. 2011; Heider 2003; Di Rocco et al. 2014; Milani and
Poggioni 2007; Georgievski et al. 2013; Garro et al. 2008; Yau and Buduru 2014; Eppe

ACM Computing Surveys, Vol. 49, No. 4, Article 63, Publication date: December 2016.

63:12 I. Georgievski and M. Aiello

and Bhatt 2015; Amato et al. 2015; Sukkerd et al. 2015]. Preconditions typically repre-
sent the state in which a device must be to achieve the desired behaviour. Additionally,
preconditions may encode other properties, such as the device’s spatial attributes,
which include the device location and environment region over which the action has
effects, for example, Harrington and Cahill [2011]. For examples of device operations
encoded in PDDL, we refer to Appendix B.2.

The rest of the classified studies conceptualise device operations using the notion of
service, which is an abstraction of a device operation from its implementation details.
Commonly, a single device may offer one or more services. Santofimia et al. [2010] pro-
pose a semantic model for the relationships between devices, operations, and services.
From our point of interest, the model defines that devices provide services that execute
operations over one or more entities found in environments.? Kaldeli et al. [2012] re-
quire each device to expose its functionalities as one or more Universal Plug and Play
(UPnP)* services. UPnP services provide method calls that constitute UPnP actions
with input and output parameters. UPnP services are translated into planning actions
and augmented with additional semantics for the purpose of planning.

Human Actions. Human actions are primary entities in the domain of assisted living
for implementing applications for care giving [Courtemanche et al. 2008; Bajo et al.
2009; Hidalgo et al. 2011; Sanchez-Garzon et al. 2012], cooking [Kotsovinos and Vukovic
2005; Sando and Hishiyama 2011; Ortiz et al. 2013], shopping [Corchado et al. 2009],
training [Bacon et al. 2013], and system assembling [Honold et al. 2014]. It is practically
difficult to extract a generalisation of human actions because of the diversity of adopted
models and the lack of representation details (for examples of human actions encoded in
PDDL, we refer to Appendix B.2). In addition to being represented as classical planning
actions, human actions may consist of preconditions, a duration, and probability of state
transition Cirillo et al. [2012]. These actions are successful under the assumption that
their duration is fixed and they cannot be interrupted once started. Preconditions are
not required, but if considered, they are verified only at fixed time points, meaning that
the actions are always instantaneous. Sukkerd et al. [2015] use a performance function
in the effect of a human action to quantify the belief of the planner about the human’s
performance of that action in different states.

One different representation of human actions is by using affordances and capabili-
ties, which are regions in a proper space characterised by a set of attributes [Mastrogio-
vanni et al. 2010]. For example, an object affording a capability “to take” is a region in
the respective affordance space characterised by the weight and grasp size attributes.
People have initial capabilities and can acquire new ones by using object affordances.
Say that the object is a vacuum cleaner and Theodore has the initial capability to take
it. By taking the vacuum cleaner, he acquires the capability “to clean.”

Robot Actions. A robot may move to some location, sleep for a certain period, stay in
some position, clean a room, pick up some item, remind a person to take medication,
etc. Part of the classified studies represent robot actions as classical planning operators
(for examples, see Appendix B.2). Carolis and Cozzolongo [2007] describe robot actions
by sets of preconditions and possibly nondeterministic effects. Both sets are associated
with probability values, that is, the probability that preconditions will hold in the cur-
rent state, and the probability that the action will have the effect in the state. In Di
Rocco et al. [2014] and Amato et al. [2015], the same planning approach is adopted
[Di Rocco et al. 2013]. Namely, robot actions are represented using activities, which
are extended predicates that besides variables include a temporal interval, resources,

3 An extended and formalised version of the model can be found in Santofimia et al. [2011].
4www.upnp.org.

ACM Computing Surveys, Vol. 49, No. 4, Article 63, Publication date: December 2016.

file:www.upnp.org

Automated Planning for Ubiquitous Computing 63:13

and required and provided information, and temporal constraints describing interac-
tions and dependencies between those activities. Activities can be used to represent
the functionality, preconditions, and effects of actions. The instantiation of activities
either produces information or modifies the state. Kockemann et al. [2014] describe the
conditions and effects of robot actions by attaching state variables to temporal intervals
to model environment information, and by using temporal and logical constraints to
determine possible assignments of the variables involved. Ha et al. [2005] use the con-
cept of service to represent robot actions, namely, as atomic processes in the Semantic
Markup for Web Services (OWL-S) terminology [Martin et al. 2007].

Application Services and Information Services. While several studies aim at incor-
porating application services, only Ranganathan and Campbell [2004] describe their
representation at a planning level, namely, as PDDL actions (for an example, see Ap-
pendix B.2). On the other hand, information services are commonly used within the
scope of mobile applications and are implemented as Web services. Examples of in-
formation services found in the classified primary studies include currency converter,
weather information provider, restaurant finder (which provides a list of available
restaurants), provider of information about the schedule of a person from Google Cal-
endar, translator (which translates some content from one language to another), speech
synthesizer (which converts text to speech), scheduler synchroniser, shop finder, get a
location of facility for baby changing, etc. In most cases, it is unclear how information
services are represented at the planning level.

Spatial Properties. Typically, some form of structure is given to the spatial properties,
such as a hierarchy of locations that represents the being-part-of relation (mereology
[Whitehead 2010]) and at times also includes connectedness information (mereotopol-
ogy [Casati and Varzi 1999]). Though these models are weak from the realizability
point of view, they can offer sufficient knowledge for proper planning.

A general form of object locations is a predicate whose name denotes a spatial re-
lation and its arguments represent objects and locations. Among the spatial relations
considered in the primary studies are at, pos, in, distance, and near-by, all with the
intuitive meaning (for examples, see Appendix B.1). In many cases, it is not the only
requirement that an object (e.g., lamp) is at a specific location, but also the knowledge
about how it affects other objects at or nearby its location (e.g., Milani and Poggioni
[2007] and Harrington and Cahill [2011]). Mastrogiovanni et al. [2010] use the concept
of capabilities and affordances to represent object locations, where in a representation
scale, level one corresponds to furniture and containers inside rooms and level two
represents different rooms. Harrington and Cahill [2011] use a geometric model to
represent device locations.

Human locations are also commonly represented using a predicate abstracted as
(in 7human ?location). Scarcely any study uses more fine-grained information about
human locations (e.g., coordinates are used in Corchado et al. [2009]). Human locations
are extracted from wearable devices, such as radio frequency identification tags [Bajo
et al. 2009; Fraile et al. 2013; Ha et al. 2005; Ortiz et al. 2013; Corchado et al. 2009;
Amato et al. 2015] and mobile phones [Song and Lee 2013], and global positioning
systems [Sando and Hishiyama 2011; Fraile et al. 2013] or other location tracking
systems [Kriiger et al. 2011; Kaldeli et al. 2012; Di Rocco et al. 2014, Jih et al. 2007b].

Temporal Properties. Support for qualitative relations using temporal relations be-
tween intervals is provided by only a handful of studies. The approaches presented
in Di Rocco et al. [2014] and Amato et al. [2015] use robot actions in which temporal
relations restrict the bounds of intervals of activities (recall that these are extended
predicates over variables). Suppose that the moving action for Tars has the following

ACM Computing Surveys, Vol. 49, No. 4, Article 63, Publication date: December 2016.

63:14 I. Georgievski and M. Aiello

two activities: a1, representing the functionality of Tars to move from the bedroom to
the kitchen, and ag, being a precondition and representing that Tars is in the bedroom.
A temporal relation is used to describe that the moving of Tars is constrained by Tars
being in the bedroom, that is, a; is met by ays. Temporal relations between intervals
attached to preconditions and effects of actions are defined in a similar manner in
Kockemann et al. [2014]. The rest of the studies classified in Qualitative relations use
planning techniques that can produce partially ordered plans.

Explicit temporal annotations of preconditions and effects in actions are presented
in the usual way: at the start of an interval and at the end of an interval (e.g., Bajo
et al. [2009], Sanchez-Garzon et al. [2012], Fraile et al. [2013], Di Rocco et al. [2014],
Amato et al. [2015], Kéckemann et al. [2014], and Vaquero et al. [2015]).

Unexpected Events. The primary studies consider two types of unexpected events:
dynamic goals and context changes. Dynamic goals represent updates of current plan-
ning goals for which there is already a computed plan under execution [Bidot et al.
2011; Madkour et al. 2013; Corchado et al. 2009; Bacon et al. 2013]. Dynamic goals
may thus interrupt the plan execution. Other classified studies focus on unexpected
context changes. These may satisfy effects of already planned actions, or invalidate pre-
conditions that were true during planning or action instantiation. These unexpected
events are usually handled by plan repair or replanning (see Sections 5.7 and 5.10).

Action Contingencies. The majority of primary studies provide support for simple fail-
ures, and only few additionally for permanent failures and/or timeouts [Vukovic et al.
2007; Bidot et al. 2011; Kaldeli et al. 2012; Madkour et al. 2013]. The provided support
is based on domain representation, such as nondeterministic effects [De Giacomo et al.
2012; Vaquero et al. 2015], conditional effects [De Giacomo et al. 2012; Marquardt
et al. 2008; Eppe and Bhatt 2015], and other domain-specific knowledge [Ranganathan
and Campbell 2004]; and conditions incorporated during plan execution and recovery
[Vukovic et al. 2007; Bidot et al. 2011; Kaldeli et al. 2012; Madkour et al. 2013; Honold
et al. 2014]. For example, Ranganathan and Campbell [2004] encode additional domain
knowledge in specific actions to inform the planner that action execution can be retried,
if failed. Conditions for timeouts may also depend on the type of actions. For example,
an action invoked to close a door may take a shorter time to execute than an action to
pull down window blinds. A timeout can be set to as much as the time an average fast
action is expected to respond [Kaldeli et al. 2012].

Partial Observability. Constraint networks can cope with information incomplete-
ness by performing “online sensing,” meaning context changes are dynamically incor-
porated into the networks [Kaldeli et al. 2012; Di Rocco et al. 2014; Kéckemann et al.
2014]. Qasem et al. [2004] deal with information imperfectness by sensing based on
local completeness of information and relevance of information sources. When there
is insufficient information to validate conditions, information is sensed from relevant
sources. For unknown values, Eppe and Bhatt [2015] create multiple possible states
and pick the one that contains the missing information provided by sensing actions. The
rest of the classified studies deal with partial observability using observations based on
probabilistic models, such as dynamic Bayesian networks [Kriiger et al. 2011], Markov
decision processes [Grzes et al. 2014; Jean-Baptiste et al. 2015], and other probability
distributions [Cirillo et al. 2012; Harrington and Cahill 2011].

5. PLANNING

Figure 2 gives a glimpse of the hierarchy of the planning dimension for which we
catalogue nine subdimensions.

ACM Computing Surveys, Vol. 49, No. 4, Article 63, Publication date: December 2016.

Automated Planning for Ubiquitous Computing 63:15

Planning

| [

‘ Purposes ‘ ‘ Modelling
‘ Control H Assistance ‘ ‘ Domain definitions Expressivity constructs ‘
Organisation ‘ Problem definitions Languages ‘
‘ Planning techniques I } Life cycle ‘
‘ Planning problems I I Development ‘

': Integration arhitectures

Design and implementation

‘ Problem representations

’ State-variable }J-{ Classical ‘ Monitoring and recovery ‘

Fig. 2. Hierarchy of dimensions for planning.

5.1. Purposes

Purposes define what planning is used in ubiquitous computing. We identify the fol-
lowing three types of purpose.

—Control specifies that planning is used to create courses of actions related to the
operation of environments. The execution of such actions does not involve human
intervention. For example, planning used to control the devices in Theodore’s home.

—Assistance involves planning for courses of action that either are aware of people’s
activities, or provide help and guidance to people (e.g., elderly people in care centres).

—Organisation indicates that planning outputs courses of tasks used to manage or
arrange some environment entities. For example, organise schedules of patients and
staff in hospitals.

5.2. Planning Techniques

Planning techniques encompass the techniques used to realise planning. Next, we intro-
duce the basic ideas behind techniques attracting attention in ubiquitous computing.

—HTN planning requires an initial state, an initial task network (a list of tasks) to be
accomplished, and a domain model consisting of a set of actions and a set of tasks
each of which has one or more methods [Erol et al. 1994]. The methods associated
with a task encode different ways of accomplishing that task. Planning begins with
the initial task network and uses methods to decompose a network’s tasks until
actions are reached that constitute the plan [Georgievski and Aiello 2015].

—Probabilistic planning uses probabilities associated with nondeterministic actions
to search for plans. Probabilities are used to choose only one outcome for each ac-
tion. Probabilistic planning is naturally modelled using Markov Decision Processes
(MDPs) [Boutilier et al. 1999]. MDPs are fully observable models that use state-
transition probabilities and action costs. A next state and an expected cost depend
only on a previous state and action applied, and not on additional previous states.
Partially observable MDP (POMDP) planning makes use of sensing actions and
memory of previous actions to aid unobservable states.

—Heuristic-based planning uses heuristic information to guide the search for plans.
The heuristic information or heuristic functions tell planners about regions of the

ACM Computing Surveys, Vol. 49, No. 4, Article 63, Publication date: December 2016.

63:16 I. Georgievski and M. Aiello

search space in which plans may be found. Heuristic functions can be provided by
users or extracted automatically from domain models [Bonet and Geffner 2001].

—Temporal planning deals with durative actions and actions that may overlap in time.
States have to include information about the time, for example, timed literals in
PDDL; when actions have started; and the actions that have not yet finished.

—Graph-based planning uses planning graphs to reduce the search for plans [Blum
and Furst 1997]. A planning graph consists of nodes, represented by actions and
predicates, and edges, which are links either from a predicate to actions or an ac-
tion to predicates. Planning graphs enable planners to maintain information about
incompatible predicates and incompatible actions, and use it to prune the search
space.

—CSP-based planning assumes planning problems encoded as Constraint Satisfaction
Problems (CSPs) whose inconsistencies are to be solved by constraint solvers. A
CSP consists of variables, domains of variables, and constraints over variables. The
constraints represent restrictions over the values that can be assigned to variables.
A solution to a CSP is an assignment for each variable with a value from its domain
such that all constraints are satisfied [Kaldeli et al. 2016].

—Partial-order planning makes choices relevant only to solving the current part of
a planning problem. The choices may involve decisions about ordering among plan
actions, which are left unordered until necessary to be sequential; and decisions about
variable assignments, which are left unassigned until needed for the satisfaction of
some conditions. The search is performed in the space of partial plans, which are
structures containing actions, ordering among action, causal connections between
actions, and constraints on variable assignments.

—Case-based planning uses plans or portions of plans from previous cases stored in
memory to solve new planning problems [Hammond 1989]. A case is a past experience
consisting of an initial problem, a plan that solves the problem, and a final state
reached after the solution is applied. Case-based planners create and modify plans
by relying on their memory rather than rules. Examples of memories include tasks,
resources, and time. The memories of past successes are used when creating new
plans, the memories of past failures are used to identify potential problems, and the
memories of past repairs are used to instruct planners how to handle plan repairs.

5.3. Planning Problems

The dimension of planning problems examines whether and to what degree planning
problems intended to be solved in ubiquitous computing are defined. Defining problems
is an important step for the analysis of the complexity and validation of domains in
ubiquitous computing. A set of well-defined planning problems will provide the means
to also measure the progress in the field of planning for ubiquitous computing.

5.4. Plans

Plans represent the solutions to planning problems. The dimension of plans investi-
gates how such plans are usually defined and what types of plans can be found. A plan
definition is important for two main reasons. On the one hand, a plan definition clearly
shows that a plan is indeed a sound solution towards achieving a desired behaviour
of ubiquitous computing environments. On the other hand, a plan definition that in-
cludes the structure and conditions under which a plan is executable may be crucial
to further execute plan actions. Considering plan types, plan can include instantiated
actions or uninstantiated actions in which case plans are called abstract. The actions
in abstract plans are usually bound to concrete instances later in a system’s operation
lifecycle. Furthermore, plans can be totally ordered, in which case actions are ordered

ACM Computing Surveys, Vol. 49, No. 4, Article 63, Publication date: December 2016.

Automated Planning for Ubiquitous Computing 63:17

in a sequence, or partially ordered, where actions are unordered with respect to each
other.

5.5. Problem Representations

Problem representations are concerned with the models used to represent planning
problems. We identify two general models that are equivalent in expressive power,
meaning problems represented in one representation can also be encoded using the
other one [Ghallab et al. 2004]. Classical representations assume an environment state
as a set of ground predicates. The actions are expressions that specify which predicates
should be in the state so that the action is applicable, and which predicates should
change their values after the action application. State-variable representations assume
a state as a set of values of a finite set of state variables. Actions represent functions
that change the values of those variables.

5.6. Modelling

Planning needs domain knowledge that contains various pieces of information about
ubiquitous computing environments. Modelling domain knowledge is a difficult task
that often includes studying the requirements of these environments, specifying do-
main and problem definitions, and testing those definitions using planners. We focus
here on the approaches used to create domain and problem definitions, specific con-
structs used to express planning problems, and languages used to specify problems.

—Domain definitions focus on the ways of defining domain knowledge. One way is to
define domain knowledge manually. Given only a theory about ubiquitous comput-
ing environments, it is tedious, error-prone, and often impractical for designers to
manually model domain knowledge [McCluskey 2002]. Even if designers are experts
in ubiquitous computing, typing the domain specification takes a great deal of time
and usually causes unintentional errors. A more practical way would be to use tools
that support engineering of the domain knowledge. The main benefits of automated
acquisition of knowledge are making planners to be even more autonomous by learn-
ing new knowledge and correcting existing domain models of ubiquitous computing
environments. We are mainly interested in the second way of domain definitions.

—Problem definitions focus on the process of generating and composing planning prob-
lems, that is, domain specifications and problem specifications. The creation of the
former is discussed in the domain definitions dimension. Independently whether
the domain specification is encoded manually or acquired automatically, it is a com-
mon practice to automatically translate it into a planning-level representation once
retrieved from some storage point. The problem specification is generated automat-
ically from the information describing the current state of environments and the
request.

—Expressivity constructs encompass required or preferred expressive power of lan-
guages adopted to define ubiquitous computing environments. While the vision would
be to have planners supporting expressivity constructs that cover a wide spectrum of
properties of the environments, finding the right balance between the expressiveness
and computational complexity of planners is crucial [Heider 2003].

—Languages refer to the syntax used to specify domain definitions and problem defi-
nitions of ubiquitous computing environments.

5.7. Monitoring and Recovery

When executing plans, ubiquitous computing environments may evolve differently than
what was expected during planning. The discrepancy between actual and anticipated
outcomes calls for planning systems to decide how to proceed. Monitoring and recovery

ACM Computing Surveys, Vol. 49, No. 4, Article 63, Publication date: December 2016.

63:18 I. Georgievski and M. Aiello

cover the monitoring of environments and cases of what to do when plans no longer
will achieve the goal. We abstract away the following two general processes.

—DMonitoring process observes changes in environment states and during plan execu-
tion. Two main tasks that this process consists of are sensing and execution moni-
toring. Sensing observes and provides an up-to-date view of the current environment
state at planning/execution time. Execution monitoring executes plan actions, moni-
tors, and verifies that they are executed as expected during planning/recovery.

—Recovery process handles unexpected events and action contingencies occurring dur-
ing plan execution. In general, various tasks may be used in the recovery process,
such as regression (e.g., Fritz and Mcllraith [2007]), precondition delay, action retry-
ing (e.g., Ranganathan and Campbell [2004]), action omitting (e.g., Muise et al.
[2013]), action replacement, replanning, and so forth.

5.8. Lifecycle

Lifecycle defines the phase of operation cycle of ubiquitous computing systems in which
planners are invoked. The choice of the phase generally depends on the type of decisions
needed to be made. A strategic decision would answer the question of what basic actions
are to be executed and in which order, while an operational decision would refer to
what entities should execute the actions [Bidot et al. 2011]. Planning can provide only
a strategic decision at design time or compile time, while both types of decisions can be
supported if planning is invoked at a system’s runtime.

5.9. Development

Development refers to the framework that brings together various aspects of developing
planners for ubiquitous computing. The development dimension in fact focuses on the
aspects ranging from the design of planners through their manifestation as software
to the integration of the planners into larger ubiquitous computing systems. Design
and implementation focuses on a common component design upon which planners are
realised. It also includes the level of software development (or maturity) of the planners
realised for ubiquitous computing. On the other hand, Integration architecture is the
paradigm upon which ubiquitous computing systems integrating planners are designed
and implemented. We identify the following three paradigms.

—Multiagent systems consist of collections of agents. Each agent is a computer system
capable of exhibiting to some extent an autonomous behaviour—to decide what to
do so as to satisfy some objectives, and to interact with other agents—to exchange
messages through a network [Wooldridge 2009]. Successful interactions depend on
the abilities of agents to cooperate, coordinate, and negotiate with each other.

—Modular architectures are a design model in which systems consist of distinct mod-
ules interconnected together. Modules represent a separation of functionality of sys-
tems into independent and logically bound concerns.

—Service-Oriented Architectures (SOAs) are an architectural model that enhances effi-
ciency, evolution, and productivity by considering services as a primary way through
which logic is represented [Erl 2007]. Services are independent software programs
with distinct characteristics remotely accessible through standardised interfaces.

5.10. Review of Primary Studies

Table III shows the arrangement of primary studies into the subdimensions of the
planning dimension.

Purposes. The primary studies use planning almost equally to control devices and
services as to assist people. Several studies use planning for both types. Most of the

ACM Computing Surveys, Vol. 49, No. 4, Article 63, Publication date: December 2016.

Automated Planning for Ubiquitous Computing

Table Ill. The Dimensions of Primary Studies within the Planning Dimension

Purposes Prob. rep. Modelling Development
Integ. arch.
5 g =
I Ll E .
g 2| 2| & |l EEIR 88 |3 T |8 E
s 8| E | 4| 8 5| S |ls|8ls| 2|28 %|E| S
> gl g2 8| & | 2 7 ¢ = I T N P =G~ S - B B~ O
= |2 | | 5| 5| 5| 4 3 E|S| & | 2| S8 z&|=]|%Tlt
2 3 2] & 3 st = = 3 3 g = 5] 2 R) E] S | 3
7 OC|l<| O |~ | & |&E|D| @ QA |d | a|=2|ala | == |n
S1 X X X X X X X
S2 X b 4 X X X X X X X X
S3 X X X X X X X X X X X X X
S4 X X X X X X X
S5 X X X X X X X
S6 X X X X X X X X X X
S7 X X X X
S8 X X X X X
S9 X X X X X X X X
S10 X X X
S11 X X X X X X F'3
S12 X X X X X
S13 X X X X X
S14 X X X b 4 b 4 X X X b 4 X X
S15 X X X X X X
S16 X X
S17 X X X X X X X X
S18 X X X b 4 X X b 4 X X b 4 X X
S19 X X X X X X X
S20 X X X X X X
S21 X X X X X X X X X
S22 X b 4 X b 4 X X b 4 X X
S23 X X X X X X X X
S24 X X X X X X X
S25 X X X X X X
S26 X X X b 4 b 4 X
S27 X X X X X X X X
S28 X X X X X X X
S29 X X X X X X X X
S30 X X b 4 X X b 4 X
S31 X X X X X X X
S32 X X X X X X X X X
S33 X X X X X X X X X X X
S34 X X X X
S35 X X X X X X X X X X
S36 X X X X X X X X
S37 X X X X X X
S38 X X [X X
S39 X X X X X X
S40 X X X X X X X
S41 X X X X X X
S42 X X X X X X b 4 X
S43 X X X X
S44 X X X X X X
S45 X X X X X X X
546 X X X X
S47 X X X X X X
S48 X X X X X X X
S49 X X X X
S50 X X X b 4 X
S51 X X X X X X X
S52 X X X X X X X X X X X
S53 X X X X

ACM Computing Surveys, Vol. 49, No. 4, Article 63, Publication date: December 2016.

63:19

63:20 I. Georgievski and M. Aiello

Table IV. Planning Techniques Employed by the Primary Studies

Study | Technique | Study Technique Study Technique Study Technique
S1 HTN S15 HTN+POPH | S29 P S43

S2 G+SAT S16 S30 S44 HTN
S3 T S17 HTN S31 S45 CSP+H
S4 HTN S18 CSP S32 G+SAT+MIP | S46 MDP
S5 HTN S19 HTN S33 HTN S47 H

S6 T S20 HTN S34 S48 Approximation
S7 P S21 POP S35 G S49 POMDP
S8 MDP S22 CBP S36 G S50 CSP
S9 CBP S23 HTN S37 P S51 MC
S10 HTN S24 S38 S52 T

S11 H S25 POMDP S39 T S53 H
S12 Affordance || S26 HTN S40 HTN+POP

S13 HTN S27 H,POPMC S41 STRIPS

S14 HTN+POP | S28 CSP S42 CBP

Legend: Graph (G); Heuristic (H); Temporal (T); Probabilistic (P); Hierarchical Task Network (HTN);
Markov Decision Process (MDP); Partial-Order Planning (POP); Constraint Satisfaction Problem
(CSP); Case-Based Planning (CBP); Partially Observable MDP (POMDP); Mixed Integer Program-
ming (MIP); Satisfiability problem (SAT); Model-checking (MC).

studies producing control sequences include device actions only, followed by studies
involving robots only, and a few studies combining both robot and device actions. Cirillo
et al. [2012] create plans that include only robot actions; however, the plans are human-
aware, that is, they are generated based on forecasts of human actions and constraints
on human interaction. Other studies that use planning for assistance produce plans
involving human actions commonly represented by people’s daily activities. These plans
are used to either alert or guide people. For example, plan steps that should be followed
by elderly people, care plans that should be performed by patients and/or caregivers,
route plans that should guide people through a shopping mall, etc.

A handful of studies use planning for organisational purposes. Bajo et al. [2009]
improve the management in hospitals by creating plans that organise dynamically
nurses’ working time, manage standard working reports about nurses’ activities, and
guarantee that patients assigned to particular nurses receive proper care. Similarly,
Yordanova [2011] uses organisational plans to arrange nurse activities related to pa-
tient care. Besides plans with activities for patients, Hidalgo et al. [2011] provide or-
ganisational plans for care centres based on their current context, available resources
(e.g., rooms) and staff, and their organisation rules.

Planning Techniques. Table IV shows the planning techniques adopted by the pri-
mary studies. HTN planning is the most frequent one with the following reasons for
its suitability to ubiquitous computing.

—Causality. Yordanova [2011] argues that causal reasoning can be lost when modelling
(human) actions in some domains. HTNs help in addressing this issue by encoding
a small set of simple actions at the lowest level of hierarchies. These actions would
then constitute a next, more coarse-grained level represented by compound tasks.

—Flexibility. Compound tasks allow formulation of multiple strategies in their methods
before reasoning on low-level actions [Qasem et al. 2004]. The flexibility is reflected
in the minor effort needed to add or remove a strategy from some task.

—Effectiveness. HTN planners are a “good compromise” between wide reusability and
effectiveness in comparison to domain-independent planners [Marquardt et al. 2008].
The latter planners do not require domain-specific knowledge, which is included in

ACM Computing Surveys, Vol. 49, No. 4, Article 63, Publication date: December 2016.

Automated Planning for Ubiquitous Computing 63:21

the compound tasks of HTN planning, thus they are widely applicable, however
characterised by weak efficiency.

Probabilistic planning is another common approach for which the main reason of
using lies in the ability to capture uncertainty and quantify the cost or success of
computed plans. Carolis and Cozzolongo [2007] adopt a model based on Bayesian Net-
works (BNs) in which goals are associated with probabilities, and plans maximise the
expected utility given the probabilities of goal BNs. MDPs are used to produce plans
that maximise an expected reward [Courtemanche et al. 2008] and maximise user
requirements [Yau and Buduru 2014]. POMDPs are employed to model uncertainty
coming from the unpredictability of human behaviour and inconsistency of data [Grzes
et al. 2014], and to compute plans that provide optimal alerts to people [Jean-Baptiste
et al. 2015]. Cirillo et al. [2012] adopt a partially observable planning approach to rea-
son over belief situations and reach situations in which plans with satisfactory values
are found. Finally, Harrington and Cahill [2011] envision a probabilistic approach in
which objects modelled in actions are associated with probability values that indicate
the confidence of successful state transitions of actions.

A few studies make use of heuristic-based planning with the purpose of improving
the time spent searching for plans. De Giacomo et al. [2012] identify that with the
growth of planning problems, which affects the branching factor and depth of the
search space, their approach becomes intractable. The time spent to solve a relaxed
planning problem is reduced to polynomial by adopting the delete-relaxation heuristic
function, which requires removal of negative preconditions and negative effects from
the original planning problems [Hoffmann and Nebel 2001]. Chen et al. [2016] use
a heuristic function to estimate the reliability of an execution path from the current
service to the last service.

Di Rocco et al. [2014] adopt a meta-CSP approach: the problem of refining the goal,
which is a constraint network, is cast as a high-level CSP that builds on lower-level
CSPs, each for a specific type of constraint inconsistencies. The main reasons for the
suitability of CSP-based planning to ubiquitous computing are as follows.

—Numeric variables. Variables whose values range over large domains are common
in ubiquitous computing. For instance, variables representing temperature mea-
surements, locations, etc. CSP-based planners handle numeric variables efficiently
[Kaldeli et al. 2012].

—Rich interrelationships. Entities within ubiquitous computing environments often
have causal, temporal, or other type of interdependencies. For instance, actions may
be subject to deadlines, or they may include spatial information. CSP-based planning
supports modelling of causal, temporal, resource, and information dependencies [Di
Rocco et al. 2014; Amato et al. 2015].

—Online sensing. Recall that (online) sensing is the process incorporating context
changes into planning models dynamically and efficiently. CSP-based planning sup-
ports online sensing by having context changes, expressed as constraints, added to
or removed from constraint networks on the fly [Kaldeli et al. 2012; Di Rocco et al.
2014; Amato et al. 2015].

—Continual planning. Continual planning integrates the processes of planning, exe-
cution, and monitoring. It mainly focuses on questions of when and how to postpone
parts of planning to phases of execution and monitoring, and when to refine or revise
partially executed plans [Brenner and Nebel 2009]. Constraint networks seem suit-
able for continual planning due to the support for dynamic reconfigurations [Kaldeli
et al. 2012; Di Rocco et al. 2014].

ACM Computing Surveys, Vol. 49, No. 4, Article 63, Publication date: December 2016.

63:22 I. Georgievski and M. Aiello

Memories within case-based planning are used by several studies. For instance, Bajo
et al. [2009] use memories of tasks, resources, and time to create working schedules in
hospitals. Case-based planning appears suitable for ubiquitous computing due to the
following reasons [Bajo et al. 2009; Fraile et al. 2013; Corchado et al. 2009].

—Learning ability. Case-based planning can learn from initial knowledge and past
experiences, which is needed for environments with incomplete and inconsistent
information.

—Adaptive capacity. In ubiquitous computing, the needs of people or environment
objectives may change over time. The learning ability together with the capability of
case-based planners to interact autonomously with the environments provides the
planners with a large capacity to adapt to people’s needs and environment objectives.

—Improve planning. The learning ability and adaptive capacity enable case-based
planners to increase their ability to solve planning problems over time.

There are two main reasons for the suitability of partial-order planning to ubiquitous
computing: the predisposition to deal with durative actions, temporal and resource
constraints [Pajares Ferrando and Onaindia 2013; Smith et al. 2000]; and the inherent
support for partially ordered plans, thus a high degree of execution flexibility.

Sukkerd et al. [2015] describe cooperation between ubiquitous computing systems
and humans as a planning problem, which is then modelled as a stochastic multiplayer
game. Model checking is used to reason over the game to find a strategy that guarantees
that a coalition of players achieves the given goal. The approach appears suitable for
ubiquitous computing because it allows for explicit modelling of humans and their
appropriate involvement in the operation of ubiquitous computing systems.

Some primary studies adopt a hybrid planning approach, which is a combination
of planning techniques or planning with other techniques. There is a hybrid between
HTN planning and partial-order planning, which does not require additional (control)
knowledge (in comparison to pure HTN planning) [Bidot et al. 2011; Yordanova 2011;
Honold et al. 2014]. This hybrid allows one to encode and deal with procedural knowl-
edge supported by HTN planning, and to reason about causal dependencies provided
by partial-order planning. Milani and Poggioni [2007] use a hybrid between graph-
based planning, satisfiability, and mixed integer programming. Planning problems are
first encoded as planning graphs, then the planning-graph relationships are translated
into logical and numerical formulae, and finally, the formulae are converted to mixed
integer linear programming constraints. Partial-order planning in combination with ar-
gumentation is proposed In Pajares Ferrando and Onaindia [2013]. This hybrid uses a
reasoning mechanism that allows the agents in a multiagent system (see Section 5.9) to
defeasibly support their decisions, interact among each other, and jointly create plans.
A hybrid between CSP-based planning and heuristic-based planning is employed in
Kockemann et al. [2014]. Incorporating heuristic functions in CSP planning provides
performance gain in plan generation.

Two primary studies develop particular planning techniques. In Mastrogiovanni
et al. [2010], objects, locations, and actions of ubiquitous computing environments are
represented functionally based on the concept of affordances and capabilities, which
are regions in a proper space with some attributes. The functional representation is mo-
tivated by the need to support human cognition that is otherwise not directly related
to problem solving. The planning process first reduces the search space by identify-
ing the key objects and possible actions along with an incomplete list of their causal
relationships, and then searches for plans using the reduced space. Eppe and Bhatt
[2015] propose to use an approximation of the knowledge about the environment state
and a reasoning mechanism that takes into account the causal relationships between
temporally ordered states to explain state properties that are not directly perceivable.

ACM Computing Surveys, Vol. 49, No. 4, Article 63, Publication date: December 2016.

Automated Planning for Ubiquitous Computing 63:23

The planning problem is translated into an answer set programming problem. This
approach is suitable mainly because it is able to detect and deal with uncertainty.

The rest of the studies use already existing planners and provide no information
about adopted planning techniques.

Planning Problems. Only a limited number of primary studies provide clear and ar-
ticulated definitions of the planning problems they are trying to solve. In a few other
studies, one might extrapolate the planning problems by inspecting the input specified
to the algorithms implementing the adopted planning techniques. Many primary stud-
ies offer only informative descriptions of what planning problems consist of, often with
scarce details about which ubiquitous computing problem is actually targeted. Several
studies unfortunately only make a superficial reference to planning.

Plans. The primary studies commonly describe plans intuitively as sequences of
actions, while several provide more precise definitions. A partially ordered plan is
a tuple (A, <, L, V), where A is a set of actions, < is a set of ordering constraints
between the actions in A, L is a set of casual links between the actions in A, and V is a
set of constraints on variable assignments [Bajo et al. 2009; Bidot et al. 2011; Pajares
Ferrando and Onaindia 2013]. A causal link is a relation of the form (a, ¢, @’) indicating
that a logical formula ¢, which is an effect of action a, is a part of the precondition of
action a’. Di Rocco et al. [2014] define a plan as a constraint network in which intervals
have fixed bounds allocated such that all temporal constraints are satisfied; resources
consumed by extended predicates (activities) are not depleted over time; each variable
has a single value at a time; and for each required information input there is an
extended predicate that produces a consistent information output. Cirillo et al. [2012]
define the solution to their planning problems as a graph whose nodes represent actions
and edges represent observation sequences. The mapping from observation sequences
to actions is generally known as a policy. The conditions under which a graph-based
policy is considered as a solution to a planning problem are known and well defined.
Some studies also define conditions under which plans are executable in a given state
[Bajo et al. 2009; De Giacomo et al. 2012; Cirillo et al. 2012; Milani and Poggioni 2007].
The conditions involve the applicability of the first plan action into the initial state,
which gives a new, successor state, and the sequence of pairs of actions and states that
lead to the final state in which the given goal is satisfied. Furthermore, three studies
make use of abstract plans, which are sequences of high-level descriptions of service
operations that cannot be directly invoked [Vukovic et al. 2007; Bidot et al. 2011;
Madkour et al. 2013]. Abstract plans are then made executable by binding abstract
services to currently available service instances at runtime. Finally, considering the
ordering among plan actions, totally ordered plans are more common than partially
ordered plans.

Problem Representation. Most primary studies represent planning problems classi-
cally using predicates and actions with preconditions and effects. A combination of
predicates with state variables is adopted in Milani and Poggioni [2007] and Pajares
Ferrando and Onaindia [2013], where state variables are represented as functions in
the manner of PDDL (version 2.1 [Fox and Long 2003]). State-variable representation
comes naturally for approaches based on CSP-based planning. Kaldeli et al. [2012]
model domains based on the multivalued planning task encoding [Helmert 2009] be-
cause of the possibility to reduce the number of variables (useful for constraint solvers).
Pairs of variables and values are also incorporated in Cirillo et al. [2012] and Harring-
ton and Cahill [2011]. Grzes et al. [2014] adopt a state-variable representation, but
limit the type of variables to Boolean only. As for the actions, they may be represented
as Boolean variables with preconditions and effects encoded as constraints on state
variables (e.g., Kaldeli et al. [2012]).

ACM Computing Surveys, Vol. 49, No. 4, Article 63, Publication date: December 2016.

63:24 I. Georgievski and M. Aiello

Domain Definitions. Grzes et al. [2014] propose a knowledge engineering approach
to create domain specifications based on a probabilistic relational model. A designer
uses standard database tools, such as Web interfaces, to analyse a given domain and
populate a relational database with the analysis results. Based on the relational model,
a POMDP specification representing the corresponding planning problem is automat-
ically generated. On the other hand, Ortiz et al. [2013] do not require explicit inputs
from people to generate domain specifications. The approach segments sensor readings
in order to recognise actions performed by users, and states produced by such actions.
Action preconditions and effects are learned from those sensor readings, and a PDDL
domain specification is automatically generated. Vaquero et al. [2015] gather data from
graphical user interfaces and database, and transform that data into a PDDL domain
specification using a knowledge engineering framework [Vaquero et al. 2013].

There are simpler and more limited ways of generating domain models than the ones
just discussed. Hidalgo et al. [2011] realise a knowledge modelling tool that uses skills
and experiences gathered from experts when they solved known problems. Georgievski
et al. [2013] propose a domain modeller that provides intuitive guidance to users for
creation, viewing, and modification of domain specifications.

Problem Definitions. It is common among the primary studies for domain specifi-
cations to be stored in some database and queried by planners upon initialisation or
when necessary. In some cases, domains specifications may be enriched with additional
semantic annotations needed for planning [Vukovic et al. 2007; Kaldeli et al. 2012;
Madkour et al. 2013], or after planning and during plan instantiation [Bidot et al. 2011].

With respect to problem specifications, the context information is typically supplied to
planners by other context-aware components. The current context information is auto-
matically translated into an initial planning state using a standardised form (for an ex-
ample, see Appendix B.3). Once generated, the initial state, which can be further main-
tained by planners, may automatically and dynamically incorporate future context
changes (e.g., Kaldeli et al. [2012] and Courtemanche et al. [2008]). The goal is gener-
ated automatically from a request coming from a human or another system component.

Expressivity Constructs. We identify a collection of expressivity constructs that are
suggested by some primary studies as needed for ubiquitous computing.

—Numeric variables to model variables with large domains (e.g., a variable for mea-
suring temperature) [Kaldeli et al. 2012].

—Multityping to reduce the number of predicates and actions needed to be modelled.
Multityping would enable one type to directly inherit from multiple types [Yordanova
2011].

—Disjunction in preconditions to represent action semantics compactly [Heider 2003].

—Universal quantification in preconditions and effects to enable actions deal with an
arbitrary number of objects (e.g., an action with universal quantification can turn off
all lamps in Theodore’s home at once). Also, this construct may support the constant
evolution and dynamic extension of environments with new objects [Heider 2003].

—Conditional effects in actions to provide compact representations of action semantics
[Heider 2003], and to solve problems that involve moving objects [Marquardt and
Uhrmacher 2009a].

—Time and resources are needed for most ubiquitous computing domains. Discrete
and continuous resources may be necessary for some more specific domains [Heider
2003].

—Extended goals enable users to provide more powerful/personalised requests, making
the environments more adaptive to user needs and also user centric [Vukovic et al.
2007; Kaldeli et al. 2012].

ACM Computing Surveys, Vol. 49, No. 4, Article 63, Publication date: December 2016.

Automated Planning for Ubiquitous Computing 63:25

—Axioms to separate domain-specific knowledge from action semantics, and use that
knowledge to derive new information (e.g., TV brightness increases when the bright-
ness of the surrounding environment decreases) [Marquardt and Uhrmacher 2009a].

Languages. The majority of classified studies use PDDL as a modelling syntax for
their domains. Several studies make use of HTN-based languages, such as the SHOP2
language in Song and Lee [2013] and Ha et al. [2005], and Hierarchical Planning
Definition Language in Sanchez-Garzon et al. [2012] and Georgievski et al. [2013]; and
two studies employ the Action Description Language [Kotsovinos and Vukovic 2005;
Vukovic et al. 2007]. Others use nonplanning modelling languages, such as SMIL [Ding
et al. 2006], Scone [Santofimia et al. 2010], XML [Kaldeli et al. 2012; Harrington and
Cahill 2011], OWL-S [Bidot et al. 2011], and PRISM [Sukkerd et al. 2015]. The studies
usually use the same language for states and goals as for domain specifications.

Monitoring and Recovery. In Qasem et al. [2004], the process of sensing involves
searching for appropriate sources of information and using those to update the environ-
ment knowledge whenever there is missing information. The sensing implementation
is based on local closed-world statements and relevance of information sources rather
than using sensing actions. Avoiding sensing actions can reduce the search space by
lowering the number of possible actions, and can decrease the knowledge complexity by
not modelling each type of (query to) an information source as an action. Incorporation
of new information when using CSP-based planning can also be accomplished without
modelling and invoking sensing actions. Instead, some external data collecting process
may periodically, or when some conditions are detected, provide most recent values
of variables. These are then automatically incorporated into constraint networks by
adding or removing constraints. Eppe and Bhatt [2015] consider explicit sensing ac-
tions, where different states are created for each possible outcome of the action.

Execution monitoring involves executing low-level invocations in right order and
time, and monitoring and verifying the execution before and after the invocations.
Given a plan to be executed, Algorithm 1 shows the common execution-monitoring
steps taken in the primary studies.

The recovery process consists of the following stages. If preconditions cannot be ver-
ified (due to unexpected context changes), the precondition satisfaction can be delayed
by inserting temporal constraints and reevaluating the preconditions later (e.g., Di
Rocco et al. [2014]), or replanning is invoked (e.g., Vukovic et al. [2007]). If the outcome
of an action invocation is a permanent failure, the plan is terminated and replan-
ning for the same goal (e.g., Kaldeli et al. [2012]) or for a new goal is invoked (e.g.,
Ranganathan and Campbell [2004]). If the action outcome is another failure, the plan
is repaired (e.g., Honold et al. [2014]), the action is re-invoked (e.g., Ranganathan and
Campbell [2004]), or replaced with another instance of the same type (characteristic for
approaches that build abstract plans [Vukovic et al. 2007; Bidot et al. 2011; Madkour
et al. 2013]). If failure is observed again, replanning is invoked.

Several studies support the recovery process by using some predefined knowledge,
such as conditional statements [Sando and Hishiyama 2011; Bajo et al. 2009; Sanchez-
Garzon et al. 2012; Fraile et al. 2013]. Case-based planners support the recovery process
by initiating a new planning cycle and considering already executed actions.

Lifecycle. We identify three types of planning considering the lifecycle of ubiquitous
computing systems. Design-time planning is used to make strategic decisions and
create abstract plans (e.g., Bidot et al. [2011]). Once an abstract plan is found, it is
handled by another system component at runtime (abstract actions are instantiated
by available behavioural outputs). In some cases, ubiquitous computing environments
may require a time-bounded system, that is, a system that reacts in real time to every

ACM Computing Surveys, Vol. 49, No. 4, Article 63, Publication date: December 2016.

63:26 I. Georgievski and M. Aiello

ALGORITHM 1: Common Steps Taken by the Primary Studies During Execution Monitoring

Input: Plan
for each action in plan do
Query the action to check its availability in the list of currently available actions;
if action not available then
call recovery process;
end
Check the validity of preconditions of the action;
if precondition cannot be satisfied then
call recovery process;
end
// Once all preconditions are satisfied, observe action effects
if effects are unexpectedly satisfied // due to some exogenous event
then
avoid action execution;
else
execute the action and analyse its outcome;
end
if outcome is not expected then
call recovery process;
end
end

possible environment situation. It may be thus needed to shift the computationally
expensive operations, including planning, at compile time. Compile-time planning may
be useful if, for instance, a pregeneration of action sequences, or an early identification
of modelling problems, such as deadlocks, is needed [Kriiger et al. 2011]. Runtime
planning is the conventional way of performing planning during system’s runtime.

Design and Implementation. The designs of planning systems of primary studies
share many similarities. A typical design consists of five components. A Problem Gen-
erator component accepts requests and context information, and generates problem
specifications interpretable by a Planner component. The Planner, which implements
a specific planning technique, takes problem specifications and acquires appropriate
domain specifications from a Knowledge Base component. Given these specifications,
the Planner finds a plan, if one exists, and passes it to an Executor component, which
executes plan actions in the environment. The action execution is observed by a Monitor
component, and upon deviations from the expected flow, it triggers a recovery process.

With respect to the implementation of planning systems, we identify three rele-
vant pieces of information. First, the majority of studies claim to have implemented
a prototype software of their proposal, however, with limited details on actual imple-
mentations. Second, most studies employ or extend existing planners for the Planner
component, and third, only few studies implement new planners. For information on
the planners employed by the primary studies, we refer to Appendix C.

Multiagent Systems. The classified primary studies typically design and implement
multiagent systems by considering devices and other objects as agents, software com-
ponents as agents, and a single planning agent. Amigoni et al. [2005] regard devices
as simple agents that neither support context reasoning nor participate in planning.
The other classified studies make a similar assumption: besides device agents, other
agents can only extract and provide context information and domain knowledge to
the planning agent that is solely responsible for reasoning and achieving the desired
objectives. Pajares Ferrando and Onaindia [2013] employ multiagent planning: agents

ACM Computing Surveys, Vol. 49, No. 4, Article 63, Publication date: December 2016.

Automated Planning for Ubiquitous Computing 63:27

Interpretation

Demonstrations i Quantitative evaluation
Scenarios Qualitative evaluation
Examples Usability evaluation

Real-life settings

Fig. 3. Hierarchy of dimensions for interpretation.

exchange and support their decisions, interact with each other, and derive a joint plan
as a solution to some planning problem [Weerdt and Clement 2009].

Modular Architectures. There are several cases in which modular architectures in-
tegrate planning as a separate module. Planning modules may be supported by the
functionalities of other modules, such as a diagnosis module [Courtemanche et al.
2008] or actuator [Garro et al. 2008]. Modules communicate with each other through
interfaces, which describe objects that are required and provided by the modules. This
interoperability and modularity reduce the effort needed for modification and reuse of
existing modules in new ubiquitous computing systems [Sanchez-Garzon et al. 2012].

Service-Oriented Architectures. We identify two types of services in the primary stud-
ies, depending on their role in ubiquitous computing systems. Ubiquitous services are
domain specific and represent the functionalities of behavioural outputs (e.g., devices
to sense and act). The primary studies often implement ubiquitous services as OWL-S
services. Application services represent and encapsulate the capabilities of ubiquitous
computing systems, and are used to implement system workflows. Among these, plan-
ning services hide the implementation details of the capabilities of planning systems.
For example, Georgievski et al. [2013] implement a limited set of planning services as
Representational State Transfer (REST) resources [Fielding and Taylor 2002]. Plan-
ning services may be used to create domain and problem specifications, to solve plan-
ning problems, etc. [Kaldeli et al. 2012; Georgievski et al. 2013].

6. INTERPRETATION

For the interpretation dimension, we catalogue four subdimensions, namely, demon-
strations, quantitative evaluation, qualitative evaluation, and usability evaluation.
Only the demonstrations dimension is further split into subdimensions. Figure 3 gives
an overview of the hierarchy of these dimensions.

6.1. Demonstrations

Demonstrations encompass the ways used to illustrate planning problems under con-
sideration, and to evaluate the feasibility of adopted planning techniques. The common
ways of demonstration are scenarios, examples, and real-life settings.

—Scenarios are synoptic descriptions of people’s and system’s actions and events in
ubiquitous computing environments. Scenarios are powerful illustrations of the dif-
ficulty of problems and their solutions. Scenarios should help people have a suffi-
ciently wide view about proposed ideas so as to avoid missing important attributes
of corresponding planning problems [Alexander and Maiden 2004]. Nevertheless,
scenarios are the starting point of all modelling and design [Sutcliffe 2003].

ACM Computing Surveys, Vol. 49, No. 4, Article 63, Publication date: December 2016.

63:28 I. Georgievski and M. Aiello

—Examples are short descriptions used to support and clarify what is introduced and
meant. Examples can be descriptive (included in the text), or examples can be rep-
resented in a chosen syntax. The latter may include excerpts from state representa-
tions, goal examples, parts of domain knowledge, and examples of plans. Examples
are the most common way used to demonstrate planning problems in ubiquitous
computing.

—Real-life settings extend research beyond the limits of scenarios and examples into
the real world. Real-life settings provide details on the conditions relevant for the
application and use of planning in actual ubiquitous computing environments, and
used to evaluate the feasibility of approaches.

6.2. Quantitative Evaluation

Quantitative evaluation focuses on characterising the feasibility of approaches by eval-
uating the performance of adopted planners. Evaluations need to be carried out using
transparent strategies in order to understand how planners meet the requirements
of ubiquitous computing environments. One can think of a strategy for quantitative
evaluation in terms of the following elements derived from the primary studies.

—Testing configuration defines the setup of hardware and software on which planners
are tested. The setup consists of a physical setup, which involves one or more comput-
ers together with a description of their specifications, sensors, and other hardware
required for the testing; and a logical setup, which includes the operating system,
database servers, libraries, and other software components.

—Algorithmic configuration defines the setup of algorithms used to evaluate planners.
Algorithms are often configured with different runtime properties (some specific
feature or a certain mode). The cases in which such configurations are being used
must be explicitly noted as evaluation results depend on those configurations.

—Problem base requires basic details on planning problems used to test planners. One
can understand better the testing by having insights into the domain specification,
such as domain types, predicates, actions, and their respective numbers, and the
problem specification, including objects, initial predicates, and the goal.

—Computational factors focus on the properties of planning problems that influence
the computational efficiency of planners. In general, the computational complexity is
a function of the number of domain actions, predicates, and other planning-related
entities. Additional computational factors are related to the assumptions made about
planning problems. The restrictive assumptions of classical planning problems create
ideal conditions, while uncertainty interferes with these assumptions and produces
faulty conditions of ubiquitous computing environments, which make planning an
even more computationally expensive task.

—Scalability is related to the computational factors and is often defined with respect
to the size of a domain and the size of a plan. Worst-case analysis is often useful for
characterising the performance of planners.

6.3. Qualitative Evaluation

Qualitative evaluation assesses the quality of plans. We identify two general ways
of qualitative evaluation: one answering the question of how well a plan is created
in relation to some specific parameters, and the other one seeking an answer to the
question of how well a plan is created in comparison to plans of other approaches.
Qualitative evaluation might be subjective as it may be based primarily on opinions
drawn from subjective choices of evaluation parameters or from observations.

ACM Computing Surveys, Vol. 49, No. 4, Article 63, Publication date: December 2016.

Automated Planning for Ubiquitous Computing 63:29

6.4. Usability Evaluation

Ubiquitous computing systems, including adopted planners, can bring benefits to en-
vironments only if they are actually used. According to the ISO 9241-11 standard on
ergonomics of human-system interaction, usability is “the extent to which a product
can be used by specified users to achieve specified goals with effectiveness, efficiency
and satisfaction in a specified context of use.”® The accuracy and completeness with
which users achieve goals while not experiencing any negative consequences define
the effectiveness. Efficiency is defined by the relation between what has been achieved
and what resources have been consumed. The satisfaction of users refers to their pos-
itive attitudes resulting from the use of some product. According to the Technology
Acceptance Model, users will have positive attitudes if they perceive the product as
easy to use and helpful at the same time [Davis 1986]. Thus, positive attitudes lead to
ubiquitous computing systems being actually used.

Usability testing provides a fundamental method to evaluate the usability of any
system [Wichansky 2000], and it should be an essential phase in the development of
ubiquitous computing environments [Kim et al. 2003]. Usability evaluation thus deals
with how the usability of planners for ubiquitous computing is tested and evaluated.

6.5. Review of Primary Studies

Table V shows the arrangement of the primary studies according to the subdimensions
of the interpretation dimension.

Demonstrations. Almost half of the primary studies use scenarios to illustrate their
problem of interest, more than half use examples to describe the problem of interest and
planning problems, while only nine studies employ their systems in real-life settings.
Several studies combine all three ways.

—The scenarios are often from the domain of homes, others being from offices, hospitals,
and infotainment systems. Scenarios focus on either a specific use case and solve a
single planning problem, or various use cases and address multiple problems. All
scenarios are human centric, that is, characterise situations from the perspective of
persons involved explicitly or implicitly.

—Textual and syntactic examples are both prevalent among the primary studies. Tex-
tual examples are used to explain concepts from both ubiquitous computing and
automated planning. Syntactic examples are generally used to introduce planning
concepts. Actions are the most exemplified concepts in a chosen syntax. Numerous
are the syntactic examples of plans, both totally ordered and partially ordered. While
states and goals are also exemplified, the syntactic examples are often partial only.

—Table VI shows details on real-life settings used mainly for exploratory purposes. The
most frequent environments are homes, while a hospital has the largest number of
participants (30 patients and 6 nurses). We identify the duration of experimentation
in five studies, the longest being 13 months. Almost all studies provide clear descrip-
tions of involved entities, such as devices and locations. Interestingly, Fraile et al.
[2013] consult experts to create the domain knowledge for the real-life experiment.

Quantitative Evaluation. Some primary studies reveal their testing configuration,
which typically includes the processing power and RAM of the computer used for the
evaluation. Additionally, the testing configuration may specify the operating system
and runtime environment, such as the Java virtual machine. Few studies provide
details on the algorithmic configuration by including the version of a specific tool [De
Giacomo et al. 2012], type of a search mechanism [Kotsovinos and Vukovic 2005; Kaldeli

Shttps://www.iso.org/obp/ui/#iso:std:is0:9241:-11:dis:ed-2:v1:en.

ACM Computing Surveys, Vol. 49, No. 4, Article 63, Publication date: December 2016.

https://www.iso.org/obp/ui/#iso:std:iso:9241:-11:dis:ed-2:v1:en

63:30

I. Georgievski and M. Aiello

Table V. The Dimensions of Primary Studies within the Interpretation Dimension

Demonstrations Demonstrations
7)) < — 7)) © —
Ed 58| = & 5|8 || =
B o o < B o o <
® R o 5 ko 2 o || B
g2 8| 2 |82 = g 3 2 |8|2|e
E s | 5 F| 8| = g B | 5 8=
> |e g o =53 S g - s = |3
g 3 3 = S |8 || < g S = 8 | 8 ||
el] " Q j=} =} 0 i o] o} j=} =} 0
n »n <3| ~ [« e -} n R €3] ~ || P
S1 S28 || X X
S2 X X 4 S29 || % b 4 X
S3 b 4 X X S30 || % X
S4 b 4 X S31 X
S5 b 4 X S32 X b 4 b 4
S6 X X X X S33 X X X
S7 X X S34 X
S8 X X S35 || X X X
S9 X X X X S36 || X X
S10 b 4 S37
S11 b 4 X S38 || %
S12 X X S39 || % X
S13 X S40
S14 || X b 4 S41
S15 X S42 b 4 X | X
S16 b 4 X S43 b 4 X
S17 S44 | X
S18 || x X X X S45 X X
S19 || x X S46 || X
S20 X X S47 || X X
S21 || X 4 X b 4 S48 || x X X
S22 X X X S49 X
S23 X X S50 X
S24 X S51 b 4 X
S25 || X X S52 || X X
S26 X S53 || X X b 4
S27 X
Table VI. Real-Life Settings of Ubiquitous Computing Environments
in Some Primary Studies
Study || Environment Number of participants Experiment duration
S9 Hospital 36 people
S16 University laboratory 10 people 3 partial days
S22 Home 1 inhabitant 1 month
S23 Home 1 inhabitant, 1 robot
S25 Care centre 7 persons with dementia
S28 Home 2 robots
S29 Home 1 person, 1 robot 3 hours
S42 Shopping mall 30 people 13 months
S43 College 13 1 day
S50 Home 1 inhabitant, 1 person

et al. 2012; Chen et al. 2016], and other specific features (e.g., the SUM heuristic in Pa-
jares Ferrando and Onaindia [2013]). For the problem base, the primary studies provide
only partial information on domain specifications often including examples of types,
predicates, and actions. A domain size is commonly expressed by the number of actions

ACM Computing Surveys, Vol. 49, No. 4, Article 63, Publication date: December 2016.

Automated Planning for Ubiquitous Computing 63:31

(e.g., Pajares Ferrando and Onaindia [2013]), and the number of predicates or variables
(e.g., Kotsovinos and Vukovic [2005]). Regarding problem specifications, the classified
studies provide limited details about the constituents and structure of initial states and
goals. The computational complexity of planning problems depends on the (1) size of
initial states, including the number of devices, robots, people, and rooms; (2) goal size in
terms of the number of literals or tasks; (3) number of actions in plans; (4) number and
type of failures during plan execution; (5) structure of domain and problem specifica-
tions; and (6) number of concurrent goals. Scalability is commonly analysed by varying
the number of state constituents and/or goal constituents within some intuitive ranges.
For example, Vukovic et al. [2007] vary the number of service instances between 80 and
640, and Georgievski et al. [2013] vary the number of goal tasks between 5 and 50. The
problem difficulty is often illustrated by the number of actions in resulting plans. Con-
sidering the example of Vukovic et al. [2007], the size of resulting plans varies between
9 and 80. Naturally, the performance of planners degrades with the scaling factor. Some
primary studies focus further on the worst-case scenario and analyse the relationship
between the result and the complexity factor (e.g., Mastrogiovanni et al. [2010]).

Qualitative Evaluation. To evaluate their approaches qualitatively, the primary stud-
ies use various parameters, such as goal specification [Vukovic et al. 2007], duration
of plans [Courtemanche et al. 2008], success of plans [Bajo et al. 2009; Corchado et al.
2009; Chen et al. 2016], length of plans [Pajares Ferrando and Onaindia 2013], some
reasoning patterns [Milani and Poggioni 2007], cost of plans [Pajares Ferrando and
Onaindia 2013; Fraile et al. 2013; Georgievski et al. 2013], etc. For example, the goal
specification parameter takes one of three values, namely, manual, semiautomated,
and automated from a development perspective. On the other hand, some studies
make qualitative comparisons between their approaches and others. Other approaches
include legacy systems [Vukovic et al. 2007], state-of-the-art solutions [Pajares
Ferrando and Onaindia 2013; Chen et al. 2016], or systems already in place
[Georgievski et al. 2013]. While some studies elaborate their comparison methodology
and results, others leave undefined the way of assigning values to the evaluation
parameters.

Usability Evaluation. A small number of primary studies consider and evaluate their
approaches with respect to usability. The most common steps taken by these studies to
test and evaluate usability are as follows.

—Determine users. Planning systems may have several distinct user groups each of
which has its own goals and varying levels of effectiveness, efficiency, and satisfac-
tion. For example, Kaldeli et al. [2012] determine a group of elderly and disabled
people, and a group of young, technologically savvy people; Bajo et al. [2009] identify
nurses as a targeted user group; Corchado et al. [2009] select users that use Wi-Fi
and Bluetooth on their mobile devices; and Bacon et al. [2013] target three groups
based on training experiences of participating users.

—Determine user goals. The selection of user goals important for given situations is a
difficult problem in itself. Kaldeli et al. [2012] define their user goals using accept-
ability, learnability, system effectiveness, and efficiency. Acceptability comprises the
attitude of users towards the importance of domotic technology, automation of tasks,
and privacy. Sando and Hishiyama [2011] allow users to score importance levels for
involved items. Kaldeli et al. [2012] assess learnability by the amount of effort users
must expend to understand the functionalities of their system, and to be able to use
it. Effectiveness is an aggregate of virtual environment effectiveness, user interface
effectiveness, and the support for complex goals. In Bajo et al. [2009] and Corchado
et al. [2009] effectiveness is measured using the relation between the satisfaction
of users with plans and the quality of plans being improved over time. Sando and

ACM Computing Surveys, Vol. 49, No. 4, Article 63, Publication date: December 2016.

63:32 I. Georgievski and M. Aiello

Hishiyama [2011] evaluate effectiveness using a correlation between the level of
importance of items and the level of user satisfaction with those items. In Kaldeli
et al. [2012], the efficiency is measured according to the user’s assessment of the
time required to complete simple operations and complex goals.

—Determine the context of use. The context of use is determined by the “diverse re-
quirements, abilities and technological knowledge” of users within homes [Kaldeli
et al. 2012]; diverse profiles of nurses, patient needs, and their technological knowl-
edge [Bajo et al. 2009]; ingredients [Sando and Hishiyama 2011]; products of in-
terest, time, and technological knowledge [Corchado et al. 2009]; crisis situations,
behavioural profiles of trainees, and technological knowledge [Bacon et al. 2013].

—Determine the levels of importance, effectiveness, efficiency, and satisfaction. This is
also challenging as it requires one to determine “right” levels, but also a crucial step
as it defines the actual usability. The studies use scales with different levels: 0—4
[Kaldeli et al. 2012], 0-5 [Sando and Hishiyama 2011], and 0-6 [Bacon et al. 2013].

7. DIRECTIONS FOR FUTURE RESEARCH

The framework of dimensions foregrounds the possibility to evaluate the progress of
automated planning for ubiquitous computing. The analysis of primary studies per
dimension leads us to the following possible directions for future research.

—Extended forms of procedural goals: Enhancing the conventional representation of
procedural goals as tasks of HTN planning to allow people to specify additional or
personal information, such as maintainability properties and preferences over tasks.

—Preferences: While preferences can be a powerful tool to empower people to customise
their environments, they are one of the least treated topics.

—Human-computer interaction: Though central to ubiquitous computing, the topic of
human-computer interaction is not mentioned at all in two-thirds of the primary
studies. Less than one-third of the studies mention that the support for human-
computer interaction is provided in the form of user interfaces implemented on PDAs,
smartphones, and Web browsers. These studies, however, do not report on details
whether and how such support is related to planning. Only a few studies specify
their approach to human-computer interaction. (From their qualitative analysis, we
could not identify shared attributes or patterns that would allow us to organise these
studies into a separate dimension. Therefore, a few aspects of human interactions
can be seen from a perspective of other dimensions.)

—Pure spatial representations: Abstract spatial representations, as a typical way of
representing spatial properties, are associated with the issue of realisability (see
Section 4.3). Realisability can be achieved by pure spatial representations.

—Fine-grained spatial properties for humans: Besides the information on locations of
humans, many situations in ubiquitous computing environments (e.g., emergencies)
require other more fine-grained properties, such as human posture and orientation.

—Categories of unexpected events: Our recognition of dynamic goals and context
changes as two categories of unexpected events can serve as a basis for further iden-
tification and definition of categories, which can be used to improve the capabilities of
planning systems when dealing with dynamic ubiquitous computing environments.

—Reasons for action contingencies: Finding out why action contingencies occur can lead
to improved characterisation and definition of processes for planning and plan execu-
tion. For example, the main reason for action timeouts often lies in the disconnection
or failure of networks that action providers belong to. Knowing this, the model of
these timeouts and semantics of action (re-)execution can be defined appropriately.

—Conditions for partial observability: Define and extend the conditions under which
the information sensed from ubiquitous computing environments is valid.

ACM Computing Surveys, Vol. 49, No. 4, Article 63, Publication date: December 2016.

Automated Planning for Ubiquitous Computing 63:33

—Limitations of planning techniques: Several planning techniques used for ubiquitous
computing are characterised by some well-known or less-known limitations. Kaldeli
et al. [2012] criticise HTN planning due to the requirement for predefined methods
that cannot be easily reconfigured when changes in the context or domain occur.
Marquardt et al. [2008] recognise a critical point in the use of HTN planning due to
its need for domain-specific knowledge. This may come to light in reality when the
responsibility for providing knowledge is transferred to manufacturers of devices or
ubiquitous computing systems. The main difficulty with POMDP planning is scaling
up: probabilities create belief states that are continuous and infinite. It is also known
that complete CSP algorithms may take a very long time to solve the inconsistencies
in constraint networks [Bartak et al. 2010]. Similarly, partial-order planners require
substantial computational power to search for plans due to the inherent complexity
of their algorithms. Finally, case-based reasoning can be “highly affected” by context
changes [Bajo et al. 2009]. The success of planning depends, among other things, on
the environment changes that happen during plan execution. Unexpected changes
may lead to replanning.

—Human-aware plans: Ubiquitous computing envisions that devices, robots, and hu-
mans will coexist side by side and interact among each other in one way or another.
Planning systems should therefore be able to produce plans that satisfy the given
goals while taking into account the activities and constraints under which people per-
form those activities. These constraints can involve, for example, safety conditions,
comfort conditions, or activity-related conditions [Cirillo et al. 2012].

—Knowledge engineering: The formulation of domain knowledge for planning in ubiqg-
uitous computing (and in general) is a strenuous, tedious, and error-prone task that
also requires expertise from the designer of the respective domain. Ideally, this task
should be performed automatically by acquiring information from ubiquitous com-
puting environments themselves and translate it into domain knowledge. While this
is an existing research topic in automated planning (see Shah et al. [2013]), the
support for engineering ubiquitous computing knowledge for planning is scarce.

—Semantics and algorithms for plan execution: What is interesting, but currently
missing is a formalisation of execution semantics such that defines valid repairs of
plans at execution time, and sound and complete algorithms for monitoring and plan
repairs.

—Standardisation of planning systems: If planning systems are going to be integrated
in large (ubiquitous computing) systems, they need to satisfy some standard require-
ments of such systems, including interoperability, reusability, evolution, scalability,
distribution, and fault tolerance [Degeler et al. 2013]. For example, interoperability
of a planning system is only possible under the assumption that the system offers
a standard interface or a set of planning services to other components of potential
ubiquitous computing systems. The current situation witnesses planning systems
with no standardisation of interfaces and services, while the obvious consequence is
the strong need for familiarity with details of planning systems.

—Planning in real-life settings: The limited use of planning systems in actual envi-
ronments narrows the understanding about usefulness, benefits, and possible open
issues in ubiquitous computing. In addition, with the exception of Corchado et al.
[2009], the duration of deployments of planning systems in actual environments
is usually very short and without indications of whether planning can be put into
long-term use.

—FEvaluating planning systems: Understanding the behaviour of planning systems in
terms of their performance, comparative analysis, and usability is crucial for deter-
mining their effectiveness, usefulness, and acceptance by people and in ubiquitous
computing; and for identifying possible directions for improvement.

ACM Computing Surveys, Vol. 49, No. 4, Article 63, Publication date: December 2016.

63:34 I. Georgievski and M. Aiello

More generally, our framework of dimensions can be used to further characterise
planning for ubiquitous computing on a conceptual level. Besides a set of concepts,
which our framework provides through its dimensions, conceptualisation gathers and
models the relationships among those concepts [Thalheim 2010]. A conceptual model
may provide more and new insights into planning for ubiquitous computing, and can
be used as an artefact to be further analysed and communicated among different
audiences. Additionally, little is known about how difficult it is to solve planning prob-
lems in ubiquitous computing, or the amount of resources the computation for solu-
tions requires. Complexity analysis may provide insights into the answers to these
questions.

We also identify two points of attention for when defining, designing, and developing
future approaches based on planning for ubiquitous computing.

—Definition of problems being solved: Planning problems are intended to model prob-
lems originating from ubiquitous computing. On the one hand, the current situation
witnesses unclear and ambiguous descriptions of ubiquitous computing problems
being addressed. On the other hand, their corresponding planning problems are also
often undefined (more that 50% of primary studies only mention and just a few de-
fine the planning problems). Being formalised, both ubiquitous computing problems
and planning problems provide means for developing well-defined ubiquitous com-
puting systems, allowing for improved maintainability, ability to evolve, reusability,
consistency, and sound reasoning [Bettini et al. 2010].

—Formal correspondence between problems: A formal correspondence between ubiqui-
tous computing problems and planning problems would allow for a sound use of plans
computed for planning problems as solutions to the ubiquitous computing problems.

8. CONCLUSION

Automated planning will have an increasing role as ubiquitous computing is becoming
a reality for a great deal of human-based environments. In the present treatment, we
focus on systematising and evaluating the current state of the art. We adopted a rig-
orous methodology to find a full range of relevant literature and to extract qualitative
information from the literature selected. We used that information to develop a frame-
work of dimensions around which we articulated our analysis. This analysis facilitated
the evaluation of the current progress in terms of recognising directions and points of
attention for future research.

With respect to our introductory questions, our work indicates that there is a gen-
eral challenge inherent in the current literature that should be considered by fu-
ture research, most notably, the field needs precise definitions of planning problems
being solved and transparent modelling of those problems. Another finding is that
the majority of literature uses planning systems off the shelf, and that when using
and integrating planning systems into ubiquitous computing systems no particular
design considerations are enforced. The theoretical progress of automated planning
for ubiquitous computing tends to predominate the practical progress, though sev-
eral studies already demonstrate the use of planning in actual ubiquitous computing
environments.

APPENDIXES
B. THEODORE’S HOME THROUGH PDDL ENCODINGS

We provide samples of encodings of some aspects of the scenarios in Theodore’s home
introduced at the beginning of the article. Most of the encodings are adopted from the
primary studies and modified to fit our purposes and be compliant with PDDL.

ACM Computing Surveys, Vol. 49, No. 4, Article 63, Publication date: December 2016.

Automated Planning for Ubiquitous Computing 63:35

B.1. Domain Types and Predicates

The home of Theodore has various entities that can be classified by some shared char-
acteristics. For example, the TV, lamps, ventilator, and computer are all devices. PDDL
enables representing this kind of information in the domain definition under the :types
tag. Figure 4 shows PDDL types encoding some of the entities in Theodore’s home.

(:types ingredient device room slide surface restaurant ... - object
persons time ... - number
TV lamp computer door window blinds ventilator ... - device
0il water salt egg vegetable ... - ingredient
onion cucumber tomato ... - vegetable

)

Fig. 4. PDDL types representing classes of some of the entities in Theodore’s home.

The relations between different entities and the properties of the home itself are
described by predicates. A basic PDDL predicate has the form (NAME ?7A1 ... ?An),
where the arguments beginning with a question mark are parameters. The predicate
name defines the relation or property of arguments. For example, (adjacent ?rl 7r2)
indicates that rooms 7r1 and 7r2 are adjacent and connected by a door. Additionally, in
its definition, a PDDL predicate may contain the type of each argument. For example,
(adjacent 7r1 7r2 - room). Figure 5 shows definitions of PDDL predicates for some
of the relations and properties of the home of Theodore.

(:predicates (adjacent 7rl ?r2 - room)
(in ?d - device ?r - room)
(at ?b - blinds ?w - window)
(in ?p - person ?r - room)
(on 70 - object ?s - surface)
(turned 7d - device)
(pulled-up ?b - blinds)
(opened 7d - door)
(holding 7o - object)
(quantity ?v - ingredient 7n - number)
(channel ?tv - TV ?ch - channel)
(dirt ?r - room)
(ppt 7id - string ?mac - computer)
(started 7id - string ?f - pptfile - 7s- slide)
(found ?r - restaurant)
(booking-online ?r - restaurant)
(has-space ?r - restaurant ?p - persons)
(booking-made 7r - restaurant 7t - time)
(booked ?r - restaurant)

Fig. 5. PDDL predicates representing some of the properties of Theodore’s home.

B.2. Domain Actions

A single home like Theodore’s one may contain a large number of behavioural outputs:
device operations, human actions, robot actions, application services, and information

ACM Computing Surveys, Vol. 49, No. 4, Article 63, Publication date: December 2016.

63:36 I. Georgievski and M. Aiello

services. All these are modelled as actions in PDDL. In the following sections, we
provide examples of each type of behavioural output.

B.2.1. Device Operations. Figure 6 shows a template action for turning on any device
in Theodore’s home that supports this operation. Examples include TV, lamps, radio,
boiler, computer, etc. Figure 7 shows a simple encoding of an action for closing any of the
doors in Theodore’s home. The preconditions can include additional checks on whether
there are any observable obstacles that may prevent a door from closing. Figure 8
illustrates a PDDL action for opening a window given that its blinds are pulled up
so that the window can be opened inward. Finally, Figure 9 shows a PDDL action for
setting up a specific channel to the TV in Theodore’s living room, if that is the only one.

(:action turn-on-device

:parameters (7d - device)

:precondition (and (not (turned 7d)) (other_cond))
reffect (turned 7d))

Fig. 6. PDDL action for a device operation that turns on a device.

(:action close-door

:parameters (7d - door)

:precondition (and (opened 7d) (other_cond))
:effect (not (opened 7d)))

Fig. 7. PDDL action for closing a door adopted and adapted from De Giacomo et al. [2012].

(:action open-window

:parameters (7w - window)

:precondition (and (not (opened ?w)) (blinds ?b) (at 7b 7w)
(pulled-up 7b) (other_cond))

:effect (opened 7w))

Fig. 8. PDDL action for opening a window.

(:action set-tv-channel
:parameters (7tv - tv ?ch - channel)
:precondition (and (turned 7tv) (channel 7tv 7c) (not (= 7c 7ch)))
:effect (not (channel ?7tv ?c)) (channel 7tv 7ch))

Fig. 9. PDDL action for setting a TV channel and adapted from Kaldeli et al. [2012].

B.2.2. Human Actions. We show examples of two human actions that can be used to
guide Theodore towards accomplishing some objective. Figure 10 illustrates a PDDL
action that encodes picking up some object by a human. The action’s preconditions
require the object to be on some surface before it can be picked up and held by the
human. Figure 11 shows a template action that can be used to instruct Theodore to
move some object from one place to another, assuming that the places are different
and he has already executed the pick-up action.

(:action pick-up

:parameters (7o - object 7s - surface)
:precondition (and (on 7o ?7s))

:effect (and (not (on 7o 7s)) (holding 70)))

Fig. 10. PDDL action representing a human action of picking up an object adopted and adapted from Ortiz
et al. [2013].

ACM Computing Surveys, Vol. 49, No. 4, Article 63, Publication date: December 2016.

Automated Planning for Ubiquitous Computing 63:37

(:action move
:parameters (7o - object ?rl ?r2 - room)
:precondition (and (in 7o 7ril)
(not (in 7o 7r2)) (not (= ?7rl 7r2)) (holding 7o0))
reffect (and (in 7o 7r2) (not (in 7o ?rl1))) (moved 70)))

Fig. 11. PDDL action encoding a human action for moving an object adopted and adapted from Yordanova
[2011].

B.2.3. Robot Action. Figure 12 shows a PDDL action encoding a robot action for
cleaning some room (the original representation involves durations too) [Cirillo et al.
2012]. The action requires a room to be dirty given by the fact that dirt is quantified
and greater than 0. The action’s effect involves decreasing the value of dirt by 1 and
increasing the cost of performing this action by 2. The dirt and cost are both domain
functions, which are state variables whose values can be updated as needed (for
details, see Fox and Long [2003]).

(:action clean

:parameters (7r - room)

:precondition (and (> (dirt 7r) 0))

:effect (and (decrease (dirt ?r) 1) (increase (cost) 2))

Fig. 12. PDDL action representing a robot action for cleaning a room adopted and adapted from Cirillo et al.
[2012].

B.2.4. Application Service. Figure 13 shows a PDDL action encoding a service that sets
a presentation file on a computer using the Microsoft PowerPoint application. Precon-
ditions specify the computer and that the presentation file displayed on that computer
should be different from the one in the input parameter. The effect ensures that the
current file is started on the first slide. This action can be used, for example, to show
the recipe that Samantha has computed for the dish chosen by Theodore.

(:action set-pptfile
:parameters (7id - string ?f - pptfile)
:precondition (and (computer 7mac) (slide 7s) (pptfile ?7f1)
(ppt ?id 7mac) (started ?7id ?f1 ?s) (mot (= ?f 7f1)))
reffect (and (ppt 7id 7mac) (started 7id 7f 1))

Fig. 13. Example of an application service for setting up a presentation adopted and adapted from
Ranganathan and Campbell [2004].

B.2.5. Information Service. Figure 14 shows a PDDL action encoding an information
service that can be used by Samantha to book a restaurant for Theodore’s dinner at a
particular time slot of the day.

(:action book-restaurant

:parameters (7r - restaurant ?p - persons 7t - time)

:precondition (and (found ?7r) (booking-online 7r) (has-space 7r 7p)
(not (booking-made ?p 7t)) (not (booked 7r)))

teffect (and (booking-made ?p 7t) (booked 7r))

Fig. 14. PDDL action representing an information service for booking a restaurant adopted and adapted
from Vukovic et al. [2007].

ACM Computing Surveys, Vol. 49, No. 4, Article 63, Publication date: December 2016.

63:38

B.3. Initial State

The current state of Theodore’s home gives information on the actual layout of the home,
available devices, their arrangement within the home, the statuses of all devices, and
other relations and properties. This snapshot of Theodore’s home can be described in
the initial state of a PDDL problem definition, particularly under the :init tag. The
initial state consists of ground predicates, that is, predicates whose parameters have
assigined specific values. Figure 15 shows a PDDL description of an initial state of

I. Georgievski and M. Aiello

Theodore’s home at some point in time.

(:init (room livingRoom)

)

Fig. 15. PDDL ground predicates representing an initial state of Theodore’s home.

(room kitchen)
(room bedroom)
(room bathroom)
(room toilet)
(door di1)
(door d2)
(door d3)
(door d4)
(door d5)
(window wil)
(window w2)
(window w3)

(blinds bil)
(blinds b2)

(TV tvl)

(TV tv2)
(ventilator vi)

(vegetable onion)
(vegetable tomato)

(adjacent livingRoom kitchen)
(adjacent bedroom bathroom)

(in w1l kitchen)
(at b2 wl)
(in v1 kitchen)

(opened d1)
(opened d3)
(opened wl)
(pulled-up bil)
(turned tvl)

(channel tvil CH5)
(quantity onion 3)

ACM Computing Surveys, Vol. 49, No. 4, Article 63, Publication date: December 2016.

Automated Planning for Ubiquitous Computing 63:39

B.4. Extended Goal

Recall the gas leakage scenario in Theodore’s home. An extended goal for such a situ-
ation is shown in Figure 16. The achieve-maint indicates that the kitchen ventilator
must be turned on, the TV must show a warning, and the window in the kitchen
needs to be opened in some intermediate state and stay satisfied until the final state.
achieve-final defines that the respective expression may hold or not in intermediate
states, but it has to be satisfied in the final state. Finally, under_cond_or_not indicates
that the goal under achieve-final will be satisfied if Theodore is not in the kitchen;
however, if he is in the kitchen, then only the rest of the conjunction will be dealt with.

achieve-maint (and (turned ventilator) (in ventilator kitchen)

(alarm TV) (opened window) (in window kitchen)) and
achieve-final(and (not (opened door))(adjacent livingRoom kitchen)))
under_cond_or_not achieve-maint(not (in THEODORE kitchen))

Fig. 16. Extended goal for dealing with gas leakage adopted and adapted to PDDL (goal constructs are not
part of PDDL) from Kaldeli et al. [2012].

C. PLANNERS EMPLOYED BY PRIMARY STUDIES

Many of the primary studies use already existing planners to implement their ap-
proaches, while only a few studies develop their own planners. Table VII shows the

planners employed by the primary studies together with planners’ references.

Table VII. Planners Employed by Primary Studies Together
with Planners’ References

Study | Planner Planner’s reference
S2 Blackbox Kautz and Selman [1999]
S3 TLPlan Bacchus and Kabanza [1996]
S4 NOAH Sacerdoti [1975]
S5 JSHOP2 Nau et al. [2003]
S6 TLPlan Bacchus and Kabanza [1996]
S9 CBPMP S9
S10 JSHOP2 Nau et al. [2003]
S15 FF Hoffmann and Nebel [2001]
S17 SIADEX Castillo et al. [2006]
S18 RuGPlanner S18
S19 SHOP2 Nau et al. [2003]
S20 SIADEX Castillo et al. [2006]
S21 CAMAP S21
S23 SHOP2 Nau et al. [2003]
S26 SHOP2 Nau et al. [2003]
FF Hoffmann and Nebel [2001]
S27 LPG Gerevini and Serina [2002]
MIPS Edelkamp and Helmert [2001]
S28 Configuration | Di Rocco et al. [2013]
S33 SH S33
S35 LPG [Gerevini and Serina 2002]
S36 GraphPlan Blum and Furst [1997]
S44 JSHOP2 Nau et al. [2003]
S47 FD Helmert [2006]
S50 Configuration | Di Rocco et al. [2013]
S52 OPTIC Benton et al. [2012]

ACM Computing Surveys, Vol. 49, No. 4, Article 63, Publication date: December 2016.

63:40 I. Georgievski and M. Aiello

ACKNOWLEDGMENTS

We thank Ian-Pratt Hartmann for the feedback on spatial representation and reasoning.

REFERENCES

Marco Aiello, Ian Pratt-Hartmann, and Johan van Benthem. 2007a. Handbook of Spatial Logics. Springer.

Marco Aiello, Ian Pratt-Hartmann, and Johan Van Benthem. 2007b. What is spatial logic? In Handbook of
Spatial Logics. Springer, 1-11.

Ian Alexander and Neil Maiden. 2004. Scenarios, Stories, use Cases: Through the Systems Development
Life-cycle. John Wiley & Sons.

James F. Allen. 1983. Maintaining knowledge about temporal intervals. Communications of the ACM 26, 11
(1983), 832—-843.

Giuseppe Amato, Davide Bacciu, Mathias Broxvall, Stefano Chessa, Sonya A. Coleman, Maurizio Di Rocco,
Mauro Dragone, Claudio Gallicchio, Claudio Gennaro, Héctor Lozano Peiteado, T. Martin McGinnity,
Alessio Micheli, A. K. Ray, Arantxa Renteria, Alessandro Saffiotti, David Swords, Claudio Vairo, and
Philip J. Vance. 2015. Robotic ubiquitous cognitive ecology for smart homes. Journal of Intelligent and
Robotic Systems 80, Supplement-1 (2015), 57-81.

Francesco Amigoni, Nicola Gatti, Carlo Pinciroli, and Manuel Roveri. 2005. What planner for ambient
intelligence applications? IEEE Transactions on Systems, Man and Cybernetics, Part A 35, 1 (2005),
7-21.

Hajnal Andréka, Judit X. Madardsz, and Istvan Németi. 2007. Logic of space-time and relativity theory. In
Handbook of Spatial Logics. Springer, 607-711.

Fahiem Bacchus and Froduald Kabanza. 1996. Using temporal logic to control search in a forward chaining
planner. In New Directions in AI Planning, Malik Ghallab and Alfredo Milani (Eds.). IOS Press, 141-153.

Liz Bacon, Lachlan M. MacKinnon, Amedeo Cesta, and Gabriella Cortellessa. 2013. Developing a smart en-
vironment for crisis management training. Journal of Ambient Intelligence and Humanized Computing
4,5(2013), 581-590.

Javier Bajo, Juan F. de Paz, Yanira de Paz, and Juan M. Corchado. 2009. Integrating case-based planning
and RPTW neural networks to construct an intelligent environment for health care. Expert Systems
with Applications 36, 3 (2009), 5844-5858.

Roman Bartak, Miguel A. Salido, and Francesca Rossi. 2010. Constraint satisfaction techniques in planning
and scheduling. Journal of Intelligent Manufacturing 21, 1 (2010), 5-15.

Sandrine Beauche and Pascal Poizat. 2008. Automated service composition with adaptive planning. In
International Conference on Service-Oriented Computing (ICSOC’08). Springer-Verlag, 530-537.

Mounir Beggas, Lionel Médini, Frederique Laforest, and Mohamed Tayeb Laskri. 2013. Fuzzy logic based
utility function for context-aware adaptation planning. In Modeling Approaches and Algorithms for
Advanced Computer Applications, Abdelmalek Amine, Ait Mohamed Otmane, and Ladjel Bellatreche
(Eds.). Studies in Computational Intelligence, Vol. 488. Springer, 227-236.

Johan van Benthem. 1983. The Logic of Time: A Model-theoretic Investigation into the Varieties of Temporal
Ontology and Temporal Discourse. Springer.

J. Benton, Amanda J. Coles, and Andrew Coles. 2012. Temporal planning with preferences and time-
dependent continuous costs. In International Conference on Automated Planning and Scheduling. 2-10.

Piergiorgio Bertoli, Raman Kazhamiakin, Massimo Paolucci, Marco Pistore, Heorhi Raik, and Matthias
Wagner. 2009. Continuous orchestration of Web services via planning. In International Conference on
Automated Planning and Scheduling (ICAPS’09). 18-25.

Claudio Bettini, Oliver Brdiczka, Karen Henricksen, Jadwiga Indulska, Daniela Nicklas, Anand
Ranganathan, and Daniele Riboni. 2010. A survey of context modelling and reasoning techniques.
Pervasive and Mobile Computing 6, 2 (2010), 161-180.

Claudio Bettini and Daniele Riboni. 2015. Privacy protection in pervasive systems: State of the art and
technical challenges. Pervasive and Mobile Computing 17, Part B, 0 (2015), 159-174.

Julien Bidot and Susanne Biundo. 2011. Artificial intelligence planning for ambient environments. In Next
Generation Intelligent Environments, Wolfgang Minker and Tobias Heinroth (Eds.). Springer, 195-225.

Julien Bidot, Christos Goumopoulos, and Ioannis Calemis. 2011. Using Al planning and late binding for
managing service workflows in intelligent environments. In International Conference on Pervasive Com-
puting and Communications. IEEE, 156-163.

Zeungnam Zenn Bien, Hyong-Euk Lee, Jun-Hyeong Do, Yong-Hwi Kim, Kwang-Hyun Park, and Seung-
Eun Yang. 2008. Intelligent interaction for human-friendly service robot in smart house environment.
International Journal of Computational Intelligence Systems 1,1 (2008), 77-94.

ACM Computing Surveys, Vol. 49, No. 4, Article 63, Publication date: December 2016.

Automated Planning for Ubiquitous Computing 63:41

Avrim L. Blum and Merrick L. Furst. 1997. Fast planning through planning graph analysis. Artificial
Intelligence 90, 12 (1997), 281-300.

Blai Bonet and Héctor Geffner. 2001. Planning as heuristic search. Artificial Intelligence 129, 12 (2001),
5-33.

Craig Boutilier, Thomas Dean, and Steve Hanks. 1999. Decision-theoretic planning: Structural assumptions
and computational leverage. Journal of Artificial Intelligence Research 11 (1999), 1-94.

Michael Brenner and Bernhard Nebel. 2009. Continual planning and acting in dynamic multiagent environ-
ments. Autonomous Agents and Multi-Agent Systems 19, 3 (2009), 297-331.

Kevin Carey, Dave Lewis, Steffen Higel, and Vincent Wade. 2004. Adaptive composite service plans for ubig-
uitous computing. In International Workshop on Managing Ubiquitous Communications and Services.

Berardina Carolis and Giovanni Cozzolongo. 2007. Planning the behaviour of a social robot acting as a
majordomo in public environments. In Congress of the Italian Association for Artificial Intelligence on
AI*IA 2007: Artificial Intelligence and Human-Oriented Computing. 805-812.

Mario Caruso, Cagri Ilban, Francesco Leotta, Massimo Mecella, and Stavros Vassos. 2013. Synthesizing daily
life logs through gaming and simulation. In ACM Conference on Pervasive and Ubiquitous Computing
Adjunct Publication. 451-460.

Roberto Casati and Achille C. Varzi. 1999. Parts and Places: The Structures of Spatial Representation. MIT
Press.

Luis A. Castillo, Juan Fernéandez-Olivares, Oscar Garcia-Pérez, and Francisco Palao. 2006. Efficiently han-
dling temporal knowledge in an HTN planner. In International Conference on Automated Planning and
Scheduling. 63-72.

Ahmed-Chawki Chaouche, Amal El Fallah-Seghrouchni, Jean-Michel Ilié, and Djamel-Eddine Saidouni.
2015. Improving the contextual selection of BDI plans by incorporating situated experiments. In Inter-
national Conference on Artificial Intelligence Applications and Innovations. 266—281.

Chia-Hung Chen, Alan Liu, and Pei-Chuan Zhou. 2014. Controlling a service robot in a smart home with
behavior planning and learning. In International Conference on Systems, Man and Cybernetics. 2821—
2826.

Nanxi Chen, Nicoldas Cardozo, and Siobhan Clarke. 2016. Goal-driven service composition in mobile and
pervasive computing. I[EEE Transactions on Services Computing PP, 99 (2016), 1-1.

Sehyeong Cho and Chulan Ren. 2008. Using goal-oriented paradigm for community computing. In IEEE
International Conference on Industrial Informatics. 1031-1035.

Marcello Cirillo, Lars Karlsson, and Alessandro Saffiotti. 2008. A framework for human-aware robot plan-
ning. In Scandinavian Conference on Artificial Intelligence (SCAI 2008). 52-59.

Marcello Cirillo, Lars Karlsson, and Alessandro Saffiotti. 2012. Human-aware planning for robots embedded
in ambient ecologies. Pervasive and Mobile Computing 8, 4 (2012), 542-561.

Juliet Corbin and Anselm Strauss. 2008. Basics of Qualitative Research: Techniques and Procedures for
Developing Grounded Theory. Sage.

John M. Corchado, Javier Bajo, and Ajith Abraham. 2008a. GerAmi: Improving healthcare delivery in
geriatric residences. IEEE Intelligent Systems 23, 2 (2008), 19-25.

Juan M. Corchado, Javier Bajo, Juan F. De Paz, and Sara Rodrguez. 2009. An execution time neural-CBR
guidance assistant. Neurocomputing 72, 1315 (2009), 2743-2753.

Juan M. Corchado, Javier Bajo, Yanira de Paz, and Dante 1. Tapia. 2008b. Intelligent environment for
monitoring alzheimer patients, agent technology for health care. Decision. Support Systems 44, 2 (2008),
382-396.

Francois Courtemanche, Mehdi Najjar, Blandine Paccoud, and André Mayers. 2008. Assisting elders via
dynamic multi-tasks planning: A Markov decision processes based approach. In International Conference
on Ambient Media and Systems. 1-8.

Oleg Davidyuk, Nikolaos Georgantas, Valérie Issarny, and Jukka Riekki. 2011. MEDUSA: Middleware for
end-user composition of ubiquitous applications. In Handbook of Research on Ambient Intelligence and
Smart Environments: Trends and Perspectives, F. Mastrogiovanni and N. Y. Chong (Eds.). Vol. 11. IGI
Global, 197-219.

Fred D. Davis. 1986. A Technology Acceptance Model for Empirically Testing New End-user Information
Systems : Theory and Results. Ph.D. dissertation. Massachusetts Institute of Technology.

Giuseppe De Giacomo, Claudio Ciccio, Paolo Felli, Yuxiao Hu, and Massimo Mecella. 2012. On the Move to
Meaningful Internet Systems: OTM 2012: Confederated International Conferences: CooplS, DOA-SVI,
and ODBASE. Springer, 194-211.

ACM Computing Surveys, Vol. 49, No. 4, Article 63, Publication date: December 2016.

63:42 I. Georgievski and M. Aiello

Viktoriya Degeler, Luis I. Lopera Gonzalez, Mariano Leva, Paul Shrubsole, Silvia Bonomi, Oliver Amft, and
Alexander Lazovik. 2013. Service-oriented architecture for smart environments. In IEEE International
Conference on Service Oriented Computing and Applications (SOCA’13). 99-104.

Maurizio Di Rocco, Federico Pecora, and Alessandro Saffiotti. 2013. When robots are late: Configuration
planning for multiple robots with dynamic goals. In IEEE/RSJ International Conference on Intelligent
Robots and Systems. 5915-5922.

Maurizio Di Rocco, Subhash Sathyakeerthy, Jasmin Grosinger, Federico Pecora, Alessandro Saffiotti, Filippo
Cavallo, Bonaccorsi Manuele, Raffaele Limosani, Alessandro Manzi, Giancarlo Teti, and Paolo Dario.
2014. A planner for ambient assisted living: From high-level reasoning to low-level robot execution and
back. In AAAI Spring Symposium. 10-17.

Yun Ding, Christian Elting, and Ulrich Scholz. 2006. Seamless integration of output devices in intelligent
environments: Infrastructure, strategies and implementation. In IET International Conference on Intel-
ligent Environments. 21-30.

Stefan Edelkamp and Malte Helmert. 2001. MIPS: The model-checking integrated planning system. AJ
Magazine 22, 3 (2001), 67-72.

Christian Elting. 2005. Orchestrating output devices: Planning multimedia presentations for home enter-
tainment with ambient intelligence. In Joint Conference on Smart Objects and Ambient Intelligence:
Innovative Context-aware Services: Usages and Technologies. ACM, 153—-158.

Manfred Eppe and Mehul Bhatt. 2015. Approximate postdictive reasoning with answer set programming.
Journal of Applied Logic 13, 4, Part 3 (2015), 676-719.

Thomas Erl. 2007. SOA Principles of Service Design. Prentice Hall PTR.

Kutluhan Erol, James Hendler, and Dana S. Nau. 1994. HTN planning: Complexity and expressivity. In
National Conference on Artificial Intelligence - Volume 2. AAAT, 1123-1128.

Fang Fang, Zhou Bo, Qian Kun, Ma Xudong, and Dai Xianzhong. 2015. Mobile robot task planning system
design in intelligent environments. In Chinese Control Conference. 5815-5818.

Roy T. Fielding and Richard N. Taylor. 2002. Principled design of the modern Web architecture. ACM Trans-
actions on Internet Technology 2, 2 (2002), 115-150.

Tarik Fissaa, Hatim Guermah, Hatim Hafiddi, Mahmoud Nassar, and Abdelaziz Kriouile. 2014. Towards
an ontology based architecture for context-aware services composition. In International Conference on
Multimedia Computing and Systems. 990-995.

Maria Fox and Derek Long. 2003. PDDL2.1: An extension to PDDL for expressing temporal planning do-
mains. Journal of Artificial Intelligence Research 20, 1 (2003), 61-124.

Juan A. Fraile, Yanira Paz, Javier Bajo, Juan Francisco Paz, and Belén Pérez-Lancho. 2013. Context-aware
multiagent system: Planning home care tasks. Knowledge and Information Systems (2013), 1-33.

David Franklin and Kristian Hammond. 2001. The intelligent classroom: Providing competent assistance.
In International Conference on Autonomous Agents (AGENTS’01). ACM, 161-168.

Christian Fritz and Sheila A. Mcllraith. 2007. Monitoring plan optimality during execution. In International
Conference on Automated Planning and Scheduling. 144-151.

Alfredo Garro, Sergio Greco, and Fabio Palopoli. 2008. Smart agents and smart environments: A predic-
tive approach to replanning. In Intelligent Agents and Services for Smart Environments as Part of the
Artificial Intelligence and Simulation of Behaviour Convention. 7-12.

Ilche Georgievski and Marco Aiello. 2015. HTN planning: Overview, comparison, and beyond. Artificial
Intelligence 222 (2015), 124-156.

Ilche Georgievski, Tuan Anh Nguyen, and Marco Aiello. 2013. Combining activity recognition and Al plan-
ning for energy-saving offices. In International Conference on Ubiquitous Intelligence and Computing.
IEEE, 238-245.

A. Gerevini and D. Long. 2006. Preferences and soft constraints in PDDL3. In ICAPS Workshop on Planning
with Preferences and Soft Constraints.

Alfonso Gerevini and Ivan Serina. 2002. LPG: A planner based on local search for planning graphs with
action costs. In International Conference on Artificial Intelligence Planning Systems. 13—-22.

Malik Ghallab, Dana S. Nau, and Paolo Traverso. 2004. Automated Planning: Theory & Practice. Morgan
Kaufmann Publishers Inc.

Barney G. Glaser and Anselm L. Strauss. 2009. The Discovery of Grounded Theory: Strategies for Qualitative
Research. Aldine de Gruyter.

Nahid Golafshani. 2003. Understanding reliability and validity in qualitative research. The Qualitative
Report 8, 4 (2003), 597-607.

Marek Grzes, Jesse Hoey, Shehroz S. Khan, Alex Mihailidis, Stephen Czarnuch, Dan Jackson, and Andrew
Monk. 2014. Relational approach to knowledge engineering for POMDP-based assistance systems as

ACM Computing Surveys, Vol. 49, No. 4, Article 63, Publication date: December 2016.

Automated Planning for Ubiquitous Computing 63:43

a translation of a psychological model. International Journal of Approximate Reasoning 55, 1, Part 1
(2014), 36-58.

Young-Guk Ha, Joo-Chan Sohn, Young-Jo Cho, and Hyunsoo Yoon. 2005. Towards a ubiquitous robotic com-
panion: Design and implementation of ubiquitous robotic service framework. Electronics and Telecom-
munications Research Institute Journal 27, 6 (2005), 666—-676.

Kristian J. Hammond. 1989. Case-based Planning: Viewing Planning as a Memory Task. Academic Press
Prof.

Anthony Harrington and Vinny Cahill. 2011. Model-driven engineering of planning and optimisation algo-
rithms for pervasive computing environments. Pervasive and Mobile Computing 7, 6 (2011), 705-726.

Thomas Heider. 2003. Goal-oriented assistance for extended multimedia systems and dynamic techni-
cal infrastructures. In JASTED International Conference on Internet and Multimedia Systems and
Applications.

Thomas Heider and Thomas Kirste. 2002. Supporting goal-based interaction with dynamic intelligent envi-
ronments. In European Conference on Artificial Intelligence (ECAI’02). 596-600.

Malte Helmert. 2006. The fast downward planning system. Journal of Artificial Intelligence Research 26, 1
(2006), 191-246.

Malte Helmert. 2009. Concise finite-domain representations for PDDL planning tasks. Artificial Intelligence
173, 5-6 (2009), 503-535.

Eva Hidalgo, Luis Castillo, R. Ignacio Madrid, Oscar Garcia-Pérez, Manuel R. Cabello, and Juan Fernandez-
Olivares. 2011. ATHENA: Smart process management for daily activity planning for cognitive impair-
ment. In Ambient Assisted Living, José Bravo, Ramén Hervas, and Vladimir Villarreal (Eds.). Lecture
Notes in Computer Science, Vol. 6693. Springer, 65-72.

Guy Hoffman and Cynthia Breazeal. 2007. Cost-based anticipatory action selection for human-robot fluency.
IEEE Transactions on Robotics 23, 5 (2007), 952-961.

Jorg Hoffmann and Bernhard Nebel. 2001. The FF planning system: Fast plan generation through heuristic
search. Journal of Artificial Intelligence Research 14,1 (2001), 253-302.

Frank Honold, Pascal Bercher, Felix Richter, Florian Nothdurft, Thomas Geier, Roland Barth, Thilo Hoérnle,
Felix Schiissel, Stephan Reuter, Matthias Rau, Gregor Bertrand, Bastian Seegebarth, Peter Kurzok,
Bernd Schattenberg, Wolfgang Minker, Michael Weber, and Susanne Biundo. 2014. Companion-
technology: Towards user- and situation-adaptive functionality of technical systems. In International
Conference on Intelligent Environments. 378-381.

Frank Honold, Felix Schiissel, Michael Weber, Florian Nothdurft, Gregor Bertrand, and Wolfgang Minker.
2013. Context models for adaptive dialogs and multimodal interaction. In Proceedings of the 2013 9th
International Conference on Intelligent Environments (IE). 57-64.

Bill Irwin. 2014. Interstellar. Directed by Christopher Nolan. Legendary Pictures, Syncopy, Lynda Obst
Productions, UK and USA. Film.

Emilie M. D. Jean-Baptiste, Pia Rotshtein, and Martin J. Russell. 2015. POMDP based action planning and
human error detection. In International Conference on Artificial Intelligence Applications and Innova-
tions. 250-265.

Wan-rong Jih, Li-lu Chen, and Jane Yung-jen Hsu. 2007a. A context-aware service platform in a smart space.
In ACM International Workshop on Agent-Based Ubiquitous Computing.

Wan-rong Jih, Jane Yung-jen Hsu, Tsu-Chang Lee, and Li-lu Chen. 2007b. A multi-agent context-aware
service platform in a smart space. Journal of Computers 18, 1 (2007), 45-60.

Eirini Kaldeli, Alexander Lazovik, and Marco Aiello. 2016. Domain-independent planning for services in
uncertain and dynamic environments. Artificial Intelligence 236, 7 (2016), 30—64.

Eirini Kaldeli, Ehsan U. Warriach, Jaap Bresser, Alexander Lazovik, and Marco Aiello. 2010. Interopera-
tion, composition and simulation of services at home. In International Conference on Service-Oriented
Computing (ICSOC’10). 167-181.

Eirini Kaldeli, Ehsan U. Warriach, Alexander Lazovik, and Marco Aiello. 2012. Coordinating the Web of
services for a smart home. ACM Transactions on the Web 7, 2, Article 10 (2012).

Dimitris N. Kalofonos and Paul Wisner. 2007. A framework for end-user programming of smart homes using
mobile devices. In IEEE Consumer Communications and Networking Conference. 716-721.

Henry Kautz and Bart Selman. 1999. Unifying SAT-based and graph-based planning. In International Joint
Conference on Artifical Intelligence - Volume 1. 318-325.

Sang Hwan Kim, Sung Woo Kim, and HyunMi Park. 2003. Usability challenges in ubicomp environment. In
International Ergonomics Association.

ACM Computing Surveys, Vol. 49, No. 4, Article 63, Publication date: December 2016.

63:44 I. Georgievski and M. Aiello

Barbara Kitchenham and Stuart Charters. 2007. Guidelines for Performing Systematic Literature Reviews
in Software Engineering. Technical Report EBSE 2007-001. Keele University and Durham University
Joint Report.

Terry P. Klassen, Alejandro R. Jadad, and David Moher. 1998. Guides for reading and interpreting systematic
reviews: 1. Getting started. Archives of Pediatrics & Adolescent Medicine 152, 7 (1998), 700-704.

Uwe Kockemann, Federico Pecora, and Lars Karlsson. 2014. Grandpa hates robots—Interaction constraints
for planning in inhabited environments. In AAATI Conference on Artificial Intelligence. 2293—-2299.

Roman Kontchakov, Ian Pratt-Hartmann, and Michael Zakharyaschev. 2014. Spatial reasoning with RCC8
and connectedness constraints in Euclidean spaces. Artificial Intelligence 217 (2014), 43-75.

Evangelos Kotsovinos and Maja Vukovic. 2005. Su-chef: Adaptive coordination of intelligent home environ-
ments. In Joint International Conference on Autonomic and Autonomous Systems and International
Conference on Networking and Services. IEEE, 74-74.

Frank Kriiger, Gernot Ruscher, Sebastian Bader, and Thomas Kirste. 2011. A context-aware proactive con-
troller for smart environments. I-COM 10 (2011), 41-48.

Oliver Lemon and Ian Pratt. 1997. Spatial logic and the complexity of diagrammatic reasoning. Machine
Graphics and Vision 6, 1 (1997), 89—-108.

Huan-Ming Liang, Alan Liu, Yi-Chih Chen, and Chiung-Hon Leon Lee. 2010. Device collaboration in
smarthomes as service delivery. In SICE Annual Conference. 30-34.

Yvonna S. Lincoln and Egon G. Guba. 1985. Naturalistic Inquiry. Sage Publications Inc.

Mohcine Madkour, Driss El Ghanami, and Abdelilah Maach. 2013. Context-aware service adaptation: An
approach based on fuzzy sets and service composition. Journal of Information Science and Engineering
29, 1(2013), 1-16.

Florian Marquardt, Christiane Reisse, Adelinde Uhrmacher, and Thomas Kirste. 2008. A two-way approach
to service composition in smart device ensembles. In Advanced Topics in Telecommunication. 49—60.

Florian Marquardt and Adelinde Uhrmacher. 2009a. Creating Al planning domains for smart environ-
ments using PDDL. In Intelligent Interactive Assistance and Mobile Multimedia Computing, Djamshid
Tavangarian, Thomas Kirste, Dirk Timmermann, Ulrike Lucke, and Daniel Versick (Eds.). Communi-
cations in Computer and Information Science, Vol. 53. Springer, 263-274.

Florian Marquardt and Adelinde M. Uhrmacher. 2009b. An Al-planning based service composition architec-
ture for ambient intelligence. In Intelligent Environments (Workshops) (Ambient Intelligence and Smart
Environments), Vol. 4. 145-152.

David Martin, Mark Burstein, Drew Mcdermott, Sheila Mcilraith, Massimo Paolucci, Katia Sycara, Deborah
L. Mcguinness, Evren Sirin, and Naveen Srinivasan. 2007. Bringing semantics to web services with
OWL-S. World Wide Web 10, 3 (2007), 243-2717.

Ricardo De Masellis, Claudio Di Ciccio, Massimo Mecella, and Fabio Patrizi. 2010. Smart home planning
programs. In International Conference on Service Systems and Service Management (ICSSSM). 1-6.

Fulvio Mastrogiovanni, Antonello Scalmato, Antonio Sgorbissa, and Renato Zaccaria. 2010. Affordance-based
planning for assisting humans in daily activities. In International Conference on Intelligent Environ-
ments. 19-24.

Thomas Leo McCluskey. 2002. Knowledge engineering: Issues for the Al planning community. In The AIPS-
2002 Workshop on Knowledge Engineering Tools and Techniques for AI Planning.

Drew McDermott, Malik Ghallab, Adele Howe, Craig Knoblock, Ashwin Ram, Manuela Veloso, Daniel Weld,
and David Wilkins. 1998. PDDL—The Planning Domain Definition Language. Technical Report. CVC
TR-98-003/DCS TR-1165. Yale Center for Computational Vision and Control.

Alfredo Milani and Valentina Poggioni. 2007. Planning in reactive environments. Computational Intelligence
23, 4 (2007), 439-463.

Christian Muise, J. Christopher Beck, and Sheila A. Mcllraith. 2013. Flexible execution of partial order
plans with temporal constraints. In International Joint Conference on Artificial Intelligence. 2328-2335.

Dana S. Nau, Okhtay Ilghami, Ugur Kuter, J. William Murdock, Dan Wu, and Fusun Yaman. 2003. SHOP2:
An HTN planning system. Journal of Artificial Intelligence Research 20, 1 (2003), 379—-404.

Qun Ni. 2005. Service composition in ontology enabled service oriented architecture for pervasive computing.
In Workshop on Ubiquitous Computing and e-Research.

Qun Ni and Morris Sloman. 2005. An ontology-enabled service oriented architecture for pervasive computing.
In International Conference on Information Technology: Coding and Computing, Vol. 2. IEEE, 797-798.

Javier Ortiz, Angel Garcia-Olaya, and Daniel Borrajo. 2013. Using activity recognition for building planning
action models. International Journal of Distributed Sensor Networks 9, 6 (2013).

ACM Computing Surveys, Vol. 49, No. 4, Article 63, Publication date: December 2016.

Automated Planning for Ubiquitous Computing 63:45

Madhukar Pai, Michael McCulloch, Jennifer D. Gorman, Nitika Pai, Wayne Enanoria, Gail Kennedy, Prathap
Tharyan, and John M. Colford. 2004. Systematic reviews and meta-analyses: An illustrated, step-by-step
guide. National Medical Journal of India 17, 2 (2004), 89-95.

Sergio Pajares Ferrando and Eva Onaindia. 2013. Context-aware multi-agent planning in intelligent envi-
ronments. Information Sciences 227 (2013), 22—-42.

Justin Mazzola Paluska, Hubert Pham, Umar Saif, Grace Chau, Chris Terman, and Steve Ward. 2008.
Structured decomposition of adaptive applications. Pervasive and Mobile Computing 4, 6 (2008), 791—
806.

Federico Pecora, Marcello Cirillo, and Michael Brenner. 2010. A constraint-based approach for plan manage-
ment in intelligent environments. In Cognitive Robotics.

Federico Pecora, Marcello Cirillo, Francesca Dell’Osa, Jonas Ullberg, and Alessandro Saffiotti. 2012. A
constraint-based approach for proactive, context-aware human support. Journal of Ambient Intelligence
and Smart Environments 4, 4 (2012), 347-367.

Mark Petticrew and Helen Roberts. 2006. Systematic Reviews in the Social Sciences: A Practical Guide.
Blackwell Publishing.

Joaquin Phoenix and Scarlett Johansson. 2013. Her. Directed by Jonze Spike. Annapurna Pictures, LA. Film.

Christiane Plociennik, Christoph Burghardt, Florian Marquardt, Thomas Kirste, and Adelinde Uhrmacher.
2009. Modelling device actions in smart environments. In Intelligent Interactive Assistance and Mobile
Multimedia Computing, Djamshid Tavangarian, Thomas Kirste, Dirk Timmermann, Ulrike Lucke, and
Daniel Versick (Eds.). Communications in Computer and Information Science, Vol. 53. Springer. 213—
224.

Abir Qasem, Jeff Heflin, and Héctor Munoz-avila. 2004. Efficient source discovery and service composi-
tion for ubiquitous computing environments. In Workshop on Semantic Web Technology for Mobile and
Ubiquitous Applications.

Lirong Qiu, Zhongzhi Shi, and Fen Lin. 2006. Context optimization of Al planning for services composition.
In International Conference on e-Business Engineering (I(CEBE’06). 610—617.

Anand Ranganathan and Roy H. Campbell. 2004. Autonomic pervasive computing based on planning. In
International Conference on Autonomic Computing. 80-87.

Earl David Sacerdoti. 1975. A Structure for Plans and Behavior. Ph.D. dissertation. Standford University,
Al Center.

Johnny Saldana. 2009. The Coding Manual for Qualitative Researchers. Sage Publications Ltd.

Inmaculada Sanchez-Garzon, Gonzalo Milla-Millan, and Juan Fernandez-Olivares. 2012. Context-aware
generation and adaptive execution of daily living care pathways. In International Conference on Ambient
Assisted Living and Home Care. Springer, 362—-370.

Makoto Sando and Reiko Hishiyama. 2011. Human-Centered planning for adaptive user situation in ambient
intelligence environment. In International Conference on Agents in Principle, Agents in Practice. 520—
531.

Maria J. Santofimia, Scott E. Fahlman, Xavier del Toro, Francisco Moya, and Juan C. Lopez. 2011. A semantic
model for actions and events in ambient intelligence. Engineering Applications of Artificial Intelligence
24, 8 (2011), 1432-1445.

Maria J. Santofimia, Scott E. Fahlman, Francisco Moya, and Juan C. Lépez. 2010. A common-sense plan-
ning strategy for ambient intelligence. In International Conference on Knowledge-based and Intelligent
Information and Engineering Systems: Part 1I. 193-202.

Mohammad Munshi Shahin Shah, Lukas Chrpa, Falilat Jimoh, Diane E. Kitchin, Thomas Leo McCluskey,
Simon Parkinson, and Mauro Vallati. 2013. Knowledge engineering tools in planning: State-of-the-art
and future challenges. In Workshop on Knowledge Engineering for Planning and Scheduling at ICAPS.
53-60.

Mithun Sheshagiri, Norman M. Sadeh, and Fabien Gandon. 2004. Using semantic Web services for context-
aware mobile. In Workshop on Context Awareness Applications.

Emrah Akin Sisbot, Luis F. Marin-Urias, Rachid Alami, and Thierry Siméon. 2007. A human aware mobile
robot motion planner. IEEE Transactions on Robotics 23, 5 (2007), 874—883.

Carol Smidts, Chetan Mutha, Manuel Rodriguez, and Matthew J. Gerber. 2014. Software testing with an
operational profile: OP definition. ACM Computing Surveys 46, 3, Article 39 (2014), 39:1-39:39 pages.

David E. Smith, Jeremy Frank, and Ari K. Jéonsson. 2000. Bridging the gap between planning and scheduling.
Knowledge Engineering Review 15, 1 (2000), 47-83.

Seheon Song and Minkoo Kim. 2011. A plan-based service composition for work process agent in ubiquitous
computing. In Asia-Pacific Services Computing Conference (APSCC). IEEE, 483-487.

ACM Computing Surveys, Vol. 49, No. 4, Article 63, Publication date: December 2016.

63:46 I. Georgievski and M. Aiello

Seheon Song and Seok-Won Lee. 2013. A goal-driven approach for adaptive service composition using plan-
ning. Mathematical and Computer Modelling 58, 1-2 (2013), 261-273.

Thanos G. Stavropoulos, Ageliki Tsioliaridou, George Koutitas, Dimitris Vrakas, and Ioannis Vlahavas. 2010.
International Conference on Artificial Neural Networks. Springer, 477-482.

Thanos G. Stavropoulos, Dimitris Vrakas, and Ioannis Vlahavas. 2011. A survey of service composition in
ambient intelligence environments. Artificial Intelligence Review (2011), 1-24.

Roykrong Sukkerd, David Garlan, and Reid Simmons. 2015. Task planning of cyber-human systems. In
International Conference on Software Engineering and Formal Methods. 293-309.

Alistair Sutcliffe. 2003. Scenario-based requirements engineering. In International Requirements Engineer-
ing Conference. 320-329.

Kartik Talamadupula, J. Benton, Subbarao Kambhampati, Paul Schermerhorn, and Matthias Scheutz.
2010. Planning for human-robot teaming in open worlds. ACM Transactions on Intelligent Systems
and Technology 1, 2 (2010), 14:1-14:24.

Celia Taylor, Graham R. Gibbs, and Ann Lewins. 2014. Quality of qualitative analysis. (Online Oct. 2014).
http://onlineqda.hud.ac.uk/Intro_QDA/qualitative_analysis.php.

Bernhard Thalheim. 2010. Towards a theory of conceptual modelling. Journal of Universal Computer Science
16, 20 (2010), 3102-3137.

Aitor Urbieta, Guillermo Barrutieta, Jorge Parra, and Aitor Uribarren. 2008. A survey of dynamic service
composition approaches for ambient systems. In Ambi-Sys Workshop on Software Organisation and
MonlToring of Ambient Systems. 1:1-1:8.

Mathieu Vallée, Fano Ramparany, and Laurent Vercouter. 2005. Flexible composition of smart device services.
In International Conference on Pervasive Systems and Computing (PSC’05). 165-171.

Tiago Vaquero, Sharaf Mohamed, Goldie Nejat, and J. Christopher Beck. 2015. The implementation of a
planning and scheduling architecture for multiple robots assisting multiple users in a retirement home
setting. 47-52.

Tiago Stegun Vaquero, José Reinaldo Silva, Flavio Tonidandel, and J. Christopher Beck. 2013. itSIMPLE:
Towards an integrated design system for real planning applications. Knowledge Engineering Review 28,
2(2013), 215-230.

Marc Vilain and Henry Kautz. 1986. Constraint propagation algorithms for temporal reasoning. In AAAT
Conference on Artificial Intelligence. 377-382.

Maja Vukovic, Evangelos Kotsovinos, and Peter Robinson. 2007. An architecture for rapid, on-demand service
composition. Service Oriented Computing and Applications 1, 4 (2007), 197-212.

Maja Vukovic and Peter Robinson. 2004. Adaptive, planning based, web service composition for context
awareness. In International Conference on Pervasive Computing: Advances in Pervasive Computing, Vol.
176. 257-252.

Wenshan Wang, Qixin Cao, XiaoXiao Zhu, and Shuang Liang. 2015. A framework for intelligent service
environments based on middleware and general purpose task planner. In International Conference on
Intelligent Environments. 184-187.

Mathijs de Weerdt and Brad Clement. 2009. Introduction to planning in multiagent systems. Multiagent
and Grid Systems 5, 4 (2009), 345-355.

Mark Weiser. 1999. The computer for the 21st century. SIGMOBILE Mobile Computing and Communications
Review 3, 3 (1999), 3-11.

Alfred North Whitehead. 2010. Process and Reality. Simon and Schuster. (1st ed., 1929).
Anna M. Wichansky. 2000. Usability testing in 2000 and beyond. Ergonomics 43, 7 (2000), 998-1006.

Paul Wisner. 2006. Automatic composition in service browsing environments. In Workshop on Mobile Inter-
action with the Real World. 39-42.

Michael Wooldridge. 2009. An Introduction to Multi-agent Systems. Wiley Publishing.

Stephen S. Yau and Arun Balaji Buduru. 2014. Intelligent planning for developing mobile IoT applications
using cloud systems. In IEEE International Conference on Mobile Services. 55—62.

Kristina Yordanova. 2011. Modelling human behaviour using partial order planning based on atomic action
templates. In International Conference on Intelligent Environments. 338-341.

Received August 2015; revised September 2016; accepted October 2016

ACM Computing Surveys, Vol. 49, No. 4, Article 63, Publication date: December 2016.

http://onlineqda.hud.ac.uk/Intro_QDA/qualitative_analysis.php

