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Diversity, Serendipity, Novelty, and Coverage: A Survey and Empirical
Analysis of Beyond-Accuracy Objectives in Recommender Systems
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What makes a good recommendation or good list of recommendations?
Research into recommender systems has traditionally focused on accuracy, in particular how closely the

recommender’s predicted ratings are to the users’ true ratings. However, it has been recognized that other
recommendation qualities—such as whether the list of recommendations is diverse and whether it contains
novel items—may have a significant impact on the overall quality of a recommender system. Consequently,
in recent years, the focus of recommender systems research has shifted to include a wider range of “beyond
accuracy” objectives.

In this article, we present a survey of the most discussed beyond-accuracy objectives in recommender
systems research: diversity, serendipity, novelty, and coverage. We review the definitions of these objectives
and corresponding metrics found in the literature. We also review works that propose optimization strategies
for these beyond-accuracy objectives. Since the majority of works focus on one specific objective, we find that
it is not clear how the different objectives relate to each other.

Hence, we conduct a set of offline experiments aimed at comparing the performance of different optimiza-
tion approaches with a view to seeing how they affect objectives other than the ones they are optimizing. We
use a set of state-of-the-art recommendation algorithms optimized for recall along with a number of rerank-
ing strategies for optimizing the diversity, novelty, and serendipity of the generated recommendations. For
each reranking strategy, we measure the effects on the other beyond-accuracy objectives and demonstrate
important insights into the correlations between the discussed objectives. For instance, we find that rating-
based diversity is positively correlated with novelty, and we demonstrate the positive influence of novelty on
recommendation coverage.
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1. INTRODUCTION

Traditionally, the focus of recommender systems (RS) research has been the accu-
rate prediction of users’ ratings for unseen items. However, accuracy is not the only
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important objective of recommendation [McNee et al. 2006]. In recent years, the focus
of RS research has shifted to such objectives as correctly ranking a set of items (known
as the learning-to-rank problem [Shi et al. 2010]) as well as ensuring that the set of
recommended items is diverse [Vargas et al. 2014] and that it contains novel items [Oh
et al. 2011]. These qualities are of particular importance in real-life systems since users
are most likely to consider only a small set of top-N recommendations. It is therefore
crucial to make sure that this set is as interesting and engaging as possible. In this
article, we survey and analyze the most discussed objectives that relate to the quality of
recommender systems beyond accuracy—diversity, serendipity, novelty, and coverage.

Before receiving attention in RS research, diversity and its relationship to accuracy
were studied in information retrieval (IR) [Carbonell and Goldstein 1998] and, before
that, in economics research. Markowitz [1952] introduced the Modern Portfolio Theory
where investment is modeled as a tradeoff between risk and expected return. Max-
imizing the expected return results in higher investment risk, while diversification
of stock portfolios reduces the risk. This idea has been adopted in IR [Carbonell and
Goldstein 1998; Clarke et al. 2008; Wang and Zhu 2009; Agrawal et al. 2009], where
it is argued that ranking retrieved items by only their predicted relevance (i.e., max-
imizing retrieval accuracy) increases the risk of producing results that do not satisfy
users because the items tend to be too similar to each other. Conversely, diversifying
the retrieval results reduces this risk by increasing the chance of introducing items
the user will be interested in. In RS research, diversity is becoming an increasingly
important topic, with a growing consensus that users are more satisfied with diverse
recommendation lists, even if the diversity comes at a cost of some loss of accuracy
[Ziegler et al. 2005; Shi et al. 2012; Vargas et al. 2014].

Serendipity is another objective that has received substantial attention in RS re-
search. The term serendipity, referring to the process of “finding valuable or pleasant
things that are not looked for,”1 was coined in the 18th century [Van Andel 1994]. This
objective is frequently mentioned in the IR and RS research literature [Toms 2000;
André et al. 2009; Herlocker et al. 2004; Ge et al. 2010], where it is commonly agreed
that serendipity consists of two components—surprise and relevance [Herlocker et al.
2004]. Until recently, however, few works provided formal definitions of metrics for
measuring the serendipity of recommended items. This is not surprising, as the notion
of an item being surprising or unexpected is difficult to define and measure.

Novelty is a recommendation quality that seems to be closely related to serendipity
[McNee et al. 2006]. A novel recommended item is one that is previously unknown to
the user. While the definitions may overlap [Zhang 2013], several authors distinguish
novelty from serendipity. Herlocker et al. [2004] argued that an item that is novel to a
user is not necessarily serendipitous for that user (it needs only to be unknown to the
user), while a serendipitous item must be both novel and surprising; hence, the set of
items that are serendipitous to a user is a subset of the set of items that are novel to
that user. Adamopoulos and Tuzhilin [2014], on the other hand, defined a new objective
(closely related to serendipity)—unexpectedness—and did not require an unexpected
item to be novel. To better distinguish these two objectives, it is increasingly common
to define the novelty of an item in a user-independent way, rather than the novelty of
a recommended item to a target user. Typically, the novelty of an item is estimated by
the inverse of its popularity (e.g., measured by the number of ratings it has received):
items with low popularity are more likely to be new to target users [Celma 2009;
Zhou et al. 2010]. By this definition, an item with high novelty will not necessarily be
serendipitous for a user, and a serendipitous recommendation will not necessarily be
novel.

1http://www.merriam-webster.com/dictionary/serendipity.
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Coverage reflects the degree to which the generated recommendations cover the cat-
alog of available items [Herlocker et al. 2004; Ge et al. 2010; Adomavicius and Kwon
2012]. Higher coverage may benefit both system users and business owners—exposing
the users to a wider range of recommended items may increase their satisfaction
with the system [Adomavicius and Kwon 2012] and also increase overall product sales
[Anderson 2006]. In the literature, coverage is often linked to other beyond-accuracy
objectives, particularly to novelty [Anderson 2006; Fleder and Hosanagar 2009;
Adomavicius and Kwon 2012]. However, the relation between these objectives has
not been extensively studied.

It is important to note that beyond-accuracy objectives may be pursued to a different
extent in different recommendation scenarios, since the need for diversity, novelty, or
serendipity may vary depending on the system’s domain or user’s needs. For instance,
when recommending music, it is not always desirable to recommend unknown or sur-
prising artists, as it may be important to include artists the user is familiar with but
has not listened to in a while [Kapoor et al. 2015]. Indeed, in many domains, includ-
ing a few familiar items among the recommendations may build trust in the system
[Swearingen and Sinha 2001].

Moreover, the extent to which these objectives should be pursued may need to be
adapted to each user’s needs or preferences. For instance, when recommending movies,
the level of diversity may be adapted to the user’s range of tastes [Shi et al. 2012].
Likewise, the level of recommendation novelty may reflect the extent to which the user
is interested in novel items [Oh et al. 2011]. While the adaptive aspect of beyond-
accuracy objectives has not been extensively researched, in the following sections we
highlight works that address this important problem.

In this article, we survey the definitions and optimization strategies for each of the
objectives, and, using an empirical analysis, we investigate the relationships between
them. Our work complements other surveys that cover various topics in RS research,
such as recommendation algorithms [Ekstrand et al. 2011; Cacheda et al. 2011], side
information in rating-based recommender systems [Shi et al. 2014], and evaluation
metrics [Gunawardana and Shani 2009; Bellogı́n et al. 2011]. Recently, Castells et al.
[2015] presented a survey closely related to ours. They reviewed different formulations
of the diversity and novelty objectives found in the RS literature and analyzed the
corresponding metrics. Compared to the work of Castells et al., we extend the analy-
sis of beyond-accuracy objectives with experiments demonstrating how optimizing one
beyond-accuracy criterion affects the other objectives. Thus, the contribution of our
work is twofold: (1) we provide an extensive review of definitions and optimization
techniques for the beyond-accuracy objectives, and (2) we conduct a number of ex-
periments that demonstrate important insights into relationships between diversity,
serendipity, novelty, and coverage. We hope that this work will become a useful refer-
ence for both researchers and practitioners working on beyond-accuracy objectives in
recommender systems and will contribute to further growth of this research area.

Finally, we note that the terminology concerning beyond-accuracy objectives in the
RS literature is not consistent. For instance, the term diversity is often used in ref-
erence to the system’s ability to recommend different items to different users, or to
the portion of the item catalog recommended across all users (i.e., coverage). In the
ensuing sections, we cite existing works in the places where they best fit conceptually,
regardless of the terminology used by the authors.

2. DIVERSITY

In this section, we first discuss the definition of diversity and the metrics proposed for
measuring the diversity of recommendations. Subsequently, we review the techniques
for increasing diversity.
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2.1. Defining and Measuring Diversity

The notion of diversity in recommender systems originates from ideas in information
retrieval research. In the IR literature, it has been acknowledged that the value of a
retrieved document is influenced not just by the document’s similarity to a query (its
relevance), but also by its similarity to other documents retrieved with it [Carbonell and
Goldstein 1998]. In information retrieval, the role of diversity is typically associated
with possible ambiguity in a user’s query—a search term jaguar may refer to the
car, the animal, or the classic Fender guitar, for example [Clarke et al. 2008]. In the
absence of disambiguating information, it is impossible to know which topic the user is
interested in. Thus, ensuring that the list of retrieved documents covers a broad area
of the information space increases the chance of satisfying the user’s information need.
This can be achieved by optimizing the diversity of the document list, which can be
measured in terms of features (e.g., document types, information facts, topics) that the
documents in the list possess [Carbonell and Goldstein 1998; Clarke et al. 2008; Wang
and Zhu 2009; Agrawal et al. 2009].

In recommender systems research, Smyth and McClave [2001] suggested measuring
the diversity of a recommendation list R (|R| > 1) as the average pairwise distance
between items in the list:

Diversity(R) =
∑

i∈R
∑

j∈R\{i} dist(i, j)

|R|(|R| − 1)
. (1)

Similarly, Ziegler et al. [2005] defined the “intra-list similarity” metric as the ag-
gregate (rather than the average) pairwise similarity of items in the list, with higher
scores denoting lower diversity of the list.

Measuring diversity as the average or aggregate dissimilarity of items in the recom-
mendation list has been widely adopted in the RS literature. What often differs is the
item distance function that is used (dist(i, j) in Equation (1)). For instance, where items
are represented by content descriptors, the distance between items has been measured
using a taxonomy-based metric [Ziegler et al. 2005], the complement of Jaccard similar-
ity [Vargas and Castells 2011], or the complement of cosine similarity on term vectors
[Ekstrand et al. 2014]. Alternatively, where items are represented by rating vectors,
item distance has been measured using Hamming distance [Kelly and Bridge 2006],
the complement of Pearson correlation [Vargas and Castells 2011], or the complement
of cosine similarity [Ribeiro et al. 2012].

Yu et al. [2009] suggested measuring item distance using the neighborhoods that
are used for rating prediction in collaborative filtering (CF). In the case of item-based
CF, each recommended item is represented by a neighborhood of items, while in the
case of user-based CF, an item is represented by a neighborhood of users who rated the
item. Item distance can then be computed as, for example, the complement of Jaccard
or cosine similarity between the two items’ neighborhoods.

Finally, item distance can also be obtained from the latent feature vectors in matrix
factorization approaches [Vargas et al. 2011; Willemsen et al. 2011; Shi et al. 2012; Su
et al. 2013].

Diversity metrics based on item dissimilarity were criticized by Vargas et al. [2014],
who argued that the metrics fail to ensure that lists with high metric values will also
be perceived by users as diverse. In domains where items can be described by sets of
genres, Vargas et al. suggested using the genres for defining the diversity of an item
list, arguing that genre diversity better corresponds to users’ perception of diverse
recommendations. They proposed three criteria that a genre-based diversity metric
should capture—coverage, redundancy, and size awareness. In other words, a diversity
metric value should reflect how well a list of items covers the genres a user is interested

ACM Transactions on Interactive Intelligent Systems, Vol. 7, No. 1, Article 2, Publication date: December 2016.



A Survey and Empirical Analysis of Beyond-Accuracy Objectives in Recommender Systems 2:5

in and how well genre redundancies are avoided. Moreover, it should be sensitive to
the size of the recommendation list, since coverage and redundancy need to be treated
differently for lists of different length.

Vargas et al. claimed that the optimal distribution of genres (in terms of diversity) is
achieved when sampling items randomly. This idea is similar to the “diversity by pro-
portionality” information retrieval approach by Dang and Croft [2012], who considered
a list of retrieved documents most diverse when the number of documents covering
each topic is proportional to the topic’s popularity in the document corpus. Vargas et al.
suggested a probabilistic model to measure genre diversity in a recommendation list.
They proposed a “binomial diversity” metric that captures how closely the genre dis-
tribution in the item list matches the distribution that would be obtained by randomly
sampling items from the dataset.

Since the balance between the diversity and accuracy of results is a widely discussed
topic in information retrieval and recommender systems research, some works defined
metrics that combine diversity and relevance. For instance, in IR research, Clarke
et al. [2008] described α-nDCG—a diversity-aware ranking measure, where the score
of retrieved documents is penalized if they share features with documents ranked
higher in the list. In RS research, Vargas and Castells [2011] proposed a framework
in which the diversity of a recommendation list can be computed with a relevance and
ranking discount. The authors argued that irrelevant recommendations add little to
the perceived diversity of a recommender, making it necessary to weight the diversity
score with the items’ relevance.

Other diversity definitions, not referring to the quality of a single recommenda-
tion list, can also be found in the RS literature. For instance, Lathia et al. [2010]
analyzed how recommendations generated for the same user change over time. They
defined “temporal diversity” as the normalized set theoretic difference between top-N
recommendation lists received by the same user at two different time points. Aver-
aging the values across all users gives an estimate of the system’s ability to provide
users with diverse recommendations over time. Diversity has also been defined from
a system-centric perspective, for example, as the average pairwise distance between
recommendation lists generated for different users [Zhou et al. 2010; Liu et al. 2012].
These definitions do not fit the view of diversity that we adopt in this article. Therefore,
in the next section, we focus on works that optimize the diversity of an individual user’s
recommendation list.

2.2. Increasing Diversity

Most diversification techniques in the RS (and also IR) literature are based on rerank-
ing the result lists generated by existing recommendation (and retrieval) algorithms
to increase their diversity while maintaining relevance. Another group of approaches
includes works that define new models for diversity-oriented recommendation. We dis-
cuss both groups of techniques in detail.

2.2.1. Recommendation Reranking for Diversity. The reranking diversification approaches
produce a list of recommended items R of size N from a larger set of candidate recom-
mendations C (|C| > N). The candidates C are generated by an existing recommenda-
tion algorithm (e.g., user-based collaborative filtering), and hence have been chosen for
their relevance. Reranking typically follows a greedy strategy: at each iteration, the
item in C that maximizes an objective function is moved from C to result list R. The
objective function is defined as a combination of an item’s relevance and its relative
diversity with respect to items already in the result list R. The greedy reranking is
illustrated in Algorithm 1.
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ALGORITHM 1: The Greedy Reranking Algorithm. (We Use “ + +” to Denote List Concatena-
tion and “\” to Denote Set Difference.)
Data: N; a set of candidate items C, s.t. |C| > N
Result: result list R, s.t. |R| = N

R ←− [ ];
while |R| < N do

i ←− arg max
i∈C

fobj(i, R);

R ←− R++ [i];
C ←− C \ {i};

end
return R;

One of the early diversification techniques to use greedy reranking is the Maximal
Marginal Relevance (MMR) approach proposed by Carbonell and Goldstein [1998] in
the IR literature. The MMR approach defined the objective function fobj as a linear
combination of the item’s relevance and the negative of its maximum similarity to
items already in the result list.

The greedy reranking technique has been adopted by a number of recommendation
approaches [Smyth and McClave 2001; Ziegler et al. 2005; Kelly and Bridge 2006],
which defined the objective reranking function as a linear combination of the item’s
relevance and its average distance to items already in the result list:

fobj(i, R) = α · rel(i) + (1 − α) · 1
|R|

∑
j∈R

dist(i, j). (2)

In the equation, rel(i) denotes the item’s relevance and parameter α controls the trade-
off between the influence of relevance and diversity in the reranking procedure. Simi-
larly to the diversity metric (see Section 2.1, Equation (1)), the distance between two
items dist(i, j) can be computed using a variety of approaches.

Smyth and McClave [2001] applied the technique in a case-based recommender
where, given a user’s query, the database of cases is searched to retrieve the most
relevant cases. In this setting, rel(i) represents the similarity between the user’s query
and a case, while dist(i, j) is the complement of the similarity between two cases.

Ziegler et al. [2005] applied the reranking technique for book recommendation, where
the list of recommendations is generated based on the user’s rating profile (i.e., using
a CF algorithm). The authors defined rel(i) as the item’s relevance predicted by the
recommender, and dist(i, j) as the distance between two items, this being obtained from
a genre taxonomy-based metric. Ziegler et al. were also the first to conduct a user study
analyzing the impact of diversification on user satisfaction with the recommendation
list (see Section 6).

Kelly and Bridge [2006] applied the greedy reranking strategy in a conversational
CF recommender, where recommendations are presented to a user through a series of
interaction cycles—after receiving a set of recommendations, the user provides feed-
back, which influences the next set of recommendations. The dialog is repeated until
the user is satisfied with the provided recommendations. The authors proposed to di-
versify the set of recommendations at each interaction cycle, with rel(i) as the predicted
item’s relevance and dist(i, j) computed as the normalized Hamming distance of the
two items’ binary rating vectors.

The setting of conversational recommendations poses additional challenges for result
diversification. McGinty and Smyth [2003] pointed out that the level of diversity can
be varied in different recommendation cycles. The authors described a system where at
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each recommendation cycle, the user selects the best-quality recommendation, which
is used as a query for the next cycle. The selected recommendation is carried over to the
next cycle and displayed alongside the newly generated recommendations. If the user
selects the carry-over item again, the system concludes that no progress toward the
user’s goal has been made and injects more diversity in the next cycle. If, however, the
user selects a recommendation different from the carry-over item, the system assumes
positive progress has been made and generates more similar recommendations for the
next cycle.

Recent work on recommendation reranking for diversity has focused on designing
more advanced objective functions that combine item relevance and diversity. For ex-
ample, Vargas et al. [2011] suggested applying diversification techniques and metrics
from IR research to the recommender systems domain. They adopted the objective
function from the IA-Select approach proposed by Agrawal et al. [2009]. IA-Select is a
probabilistic model similar to the greedy reranking approach (see Algorithm 1), which
assumes a feature space of information topics, such that both documents and user
queries can be represented with a distribution over the feature space. The model de-
fines an objective reranking function that considers both document relevance and topic
distribution, thus avoiding topic redundancy in the result list. To adapt the IA-Select
model to a recommender setting, Vargas et al. suggested replacing the topic feature
space with either item labels (e.g., genres) or the latent item feature space (extracted
using a matrix factorization approach).

Other recent reranking work by Vargas et al. [2014] proposed a “binomial diversity”
metric to measure genre diversity in a recommendation list (see previous section). The
authors used greedy reranking with an objective function that combines item relevance
with its relative binomial diversity (i.e., the difference in the binomial diversity of the
result set before and after adding the item).

Barraza-Urbina et al. [2015] proposed another formulation of the objective function
for the greedy reranking strategy. They suggested explicitly controlling the level to
which diversification promotes items that are dissimilar to the user’s profile items.
This was achieved by multiplying the diversity component ( 1

|R|
∑

j∈R dist(i, j) in Equa-
tion (2)) by a weighted combination of exploration and exploitation scores for item i:
β · xploit(i) + (1 − β) · xplore(i). The exploitation score xploit(i) measures the proba-
bility that items in the user’s profile that are similar to i have been highly rated by
the user, and the exploration score xplore(i) captures the item’s average dissimilarity
from the items in the user’s profile. The β parameter thus controls the balance between
a more “safe” diversification, picking diverse items that are within the user’s known
taste range, and a more “explorative” diversification, promoting serendipitous items
(see Section 3).

There are also reranking techniques that do not use a greedy reranking strategy.
Typically, they rely on solving optimization problems to find the optimal ranking for
a list of candidate recommendations. For instance, Zhang and Hurley [2008] used an
item-based CF approach to compute an item-to-item similarity matrix and then solved a
number of optimization problems to find the set of recommended items that maximizes
the diversity while maintaining a certain level of accuracy. The authors used the term
“item novelty” to denote the amount of additional diversity that an item brings to the
recommendation set.

Jambor and Wang [2010] proposed a generic constrained optimization framework
that supports multiple beyond-accuracy objectives. The authors suggested predicting
item relevance scores using existing recommendation techniques and weighting them
with utility weights. Item relevance is specified as the main objective in the framework,
and additional constraints can be defined for the utility weights to optimize for diversity
or novelty (Section 4).
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Ribeiro et al. [2012] proposed an optimization approach similar to recommendation
reranking—rather than reordering recommendations generated by a single algorithm,
they used the relevance scores predicted by different algorithms in a weighted com-
bination to determine the final item utility score. They focused on three objectives—
accuracy, diversity, and novelty—and hypothesized that a hybrid combination of differ-
ent algorithms can provide a better balance of the objectives. The baseline algorithms
used within the weighted combination included three variants of the matrix factoriza-
tion approach, user-based and item-based nearest-neighbor approaches, a popularity-
based approach, and simple content-based and demographic-based nearest-neighbor
methods. The weights for each algorithm were learned using a genetic algorithm.
Since the three objectives are potentially conflicting, the approach selected the weight
combinations that are optimal on the Pareto frontier, that is, the solutions where none
of the three objectives can be improved without hurting the other two. Diversity and
novelty were defined using the rank-aware metrics proposed by Vargas and Castells
[2011].

2.2.2. Diversity Modeling. The reranking techniques described in the previous section
treat recommendation algorithms as a “black box.” They work by postprocessing lists
of items that are generated by the recommendation algorithms. An obvious advan-
tage of the reranking techniques is their ease of deployment in existing recommender
systems, where a diversification component may be incorporated alongside existing rec-
ommendation algorithms and the level of diversification can be explicitly controlled.
However, there is a growing body of research that addresses the diversification prob-
lem by defining new recommendation algorithms that directly optimize for diversity
when generating recommendations. These approaches mostly extend matrix factoriza-
tion techniques, which have become the state-of-the-art recommendation methods in
recent years.

For instance, Shi et al. [2012] combined matrix factorization with the portfolio theory
from IR proposed by Wang and Zhu [2009] (whose work in turn was inspired by the
Modern Portfolio Theory from economics [Markowitz 1952]). The IR portfolio theory
considers the predicted document relevance as an uncertain outcome whose expected
value may be over- or underestimated (due to query ambiguity, incomplete user pro-
file, imperfect retrieval algorithm, etc.). Given the uncertainty of document retrieval, a
probabilistic model is used to represent the expected overall relevance of the retrieved
document list and its variance. The variance of the list represents the likelihood that
the relevance of the documents was estimated incorrectly and is computed using the
covariance of document relevance scores for each document pair in the list. The covari-
ance of document relevance scores can be approximated by term co-occurrence in the
documents.

The basic idea of the portfolio theory is to minimize the risk of generating an item
list with low relevance for the user. This is achieved by maximizing the expected
relevance and minimizing the variance of the result list. Shi et al. adapted this idea to
a recommendation setting and defined an objective function that balances the predicted
relevance and variance of the recommendation list. Differently from the IR work, where
variance was approximated by term co-occurrence in documents, Shi et al. used latent
factor vectors (obtained from the matrix factorization approach) to model the variance
of recommendations.

An important aspect of the approach of Shi et al. is adapting the level of diversification
to the user’s scope of tastes. They showed that the latent factors of a user who rates
diverse items have higher variance compared to a user who rates similar items. This is
reflected in the proposed model. Therefore, a user who tends to rate similar items (e.g.,
only science fiction movies) will get less diversification compared to a user who rates
diverse items (e.g., movies from different genres).
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Hurley [2013] presented a modification of the pairwise learning-to-rank approach for
implicit feedback datasets. The original pairwise ranking model learns the user and
item factors by minimizing an objective function defined on the difference between the
predicted and original ranking for item pairs. In the modified diversity-aware version
of the model, Hurley proposed including item dissimilarity in the objective function.
Although the learning model is not sensitive to the size of recommendation list N (when
generating top-N recommendations), an initial evaluation of the approach using the
“intralist distance” metric [Smyth and McClave 2001; Ziegler et al. 2005] (Equation (1))
showed promising results.

Su et al. [2013] proposed a pairwise learning-to-rank model that works at the item
set level (rather than the individual item level). The training data is constructed by
creating pairs of item sets. The model is trained by comparing each pair of item sets
using both relevance and diversity criteria. Diversity of a set is included in the model
through a “diversity bias” component, defined as the aggregate similarity of all item
pairs in the set. The similarity of an item pair is computed as the product of the two
items’ latent factor vectors.

3. SERENDIPITY

3.1. Defining and Measuring Serendipity

Defining serendipity largely relies on the definition of its core component—surprise. In
the cognitive science literature, surprise has been linked to events that are different
from one’s expectations [Meyer et al. 1997] or are difficult to explain [Foster and Keane
2013]. Such definitions are not trivial to operationalize in the information retrieval or
recommender systems domain.

The first studies that recognized the importance of facilitating serendipity in infor-
mation systems were reported in the IR literature [Toms 2000]. Rather than providing
formal definitions of serendipity, early works analyzed the process of serendipitous
information discovery and the paradox of designing for unexpected results [Foster and
Ford 2003; McBirnie 2008]. In the RS literature, Herlocker et al. [2004] informally
defined a serendipitous recommendation as one that helps the user find a “surprisingly
interesting item he might not have otherwise discovered.”

In the RS literature, approaches designed to increase serendipity rely on various
heuristics to generate more surprising recommendations. For instance, an item can
be considered serendipitous if a classifier is uncertain about its relevance for the user
[Iaquinta et al. 2008], if the item is different from the user’s profile [Adamopoulos and
Tuzhilin 2014], if the item is connected to a distinct area in a user-item graph [Onuma
et al. 2009; Nakatsuji et al. 2010; Zhang et al. 2012], or if the item possesses a mixture
of two input items’ features [Oku and Hattori 2011] (see next section for details).

When using offline experiments to evaluate the quality of results produced by these
ad hoc approaches, a common practice among the authors is to compare the generated
recommendations with recommendations produced by a primitive baseline system (i.e.,
one that is not optimized for serendipity). This approach to measuring serendipity was
first proposed by Murakami et al. [2008], who argued that a primitive method produces
easily predictable items, while the goal of a serendipitous recommender is to suggest
items that are difficult to predict. This idea was later adopted by Ge et al. [2010], who
proposed a formulation of serendipity that combines this notion of unexpectedness with
item relevance:

Serendipity(R, u) = |Runexp ∩ Ruseful|
|R| , (3)

where R is the set of recommendations generated for user u, Runexp is the subset of
items in R that are unexpected for the user u, and Ruseful is the subset of items in R that
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are useful for the user. Following the idea of Murakami et al., the set of unexpected
recommendations is obtained by subtracting from R items that are recommended by
a primitive prediction model PM for user u: Runexp = R \ PMu. The usefulness of
recommendations may be judged by the user or, in an offline setting, approximated by
the user’s ratings for the items [Adamopoulos and Tuzhilin 2014]. A limitation of this
comparative approach to serendipity measurement is its sensitivity to the choice of the
primitive baseline system.

Recently, Adamopoulos and Tuzhilin [2014] suggested another way to measure the
unexpectedness of recommendations. The authors defined Runexp as R\ Eu, where Eu is
the set of expected recommendations for a user u, which contains items rated by the user
and items that are similar to the rated ones (in terms of content similarity). Note that
contrary to the original (informal) definition of serendipity by Herlocker et al. [2004],
metrics like these—based on item unexpectedness—do not require serendipitous items
to be novel to the user, but only relevant and different from the user’s expectations.

The idea of measuring an item’s unexpectedness as its distance from a set of expected
items has been exploited by a few previous works. Nakatsuji et al. [2010] proposed an
approach based on a taxonomy of genres and defined what they called “item novelty”
as the smallest distance (in the taxonomy) from the item’s genre to the genre of items
previously accessed by user. Vargas and Castells [2011], in their framework for mea-
suring diversity and novelty, defined what they called a “personalized novelty” metric
based on computing an item’s average distance from the user’s profile items.

In our experiments (see Section 7), we adopt the idea of measuring an item’s unex-
pectedness (or surprise) as its distance from the set of expected items. Furthermore,
we follow the idea of Nakatsuji et al. to measure an item’s surprise as the minimum
distance from the user’s profile items and we hypothesize that, by contrast, averaging
the distances between items results in a loss of information, particularly for users with
diverse profiles [Kaminskas and Bridge 2014].

3.2. Increasing Serendipity

The first attempts to increase the serendipity of retrieved results were reported in
the IR literature. For example, Campos and de Figueiredo [2001] designed a software
agent to support serendipitous information discovery through web crawling. André
et al. [2009] suggested viewing serendipity as a combination of chance discovery and
usefulness of the discovered information. They provided guidelines to design informa-
tion systems with better support for both components of serendipity: supporting chance
encounters and enhancing the user’s ability to recognize serendipitous content.

In the RS literature, Iaquinta et al. [2008] were among the first to introduce serendip-
ity in a recommender system. They described a content-based recommender with items
represented by text descriptions. A supervised learning method was used to predict the
probability that an unseen item was either relevant or nonrelevant to the user. Items
for which the classification outcome was uncertain (i.e., where the absolute difference
between the two probabilities was large) were considered as potentially serendipitous
and were included in the recommendations.

Onuma et al. [2009] designed a system that uses a graph-based algorithm for sup-
porting surprising recommendations. The authors introduced the idea of computing
a “bridging score” for item nodes in the user-item bipartite graph. Nodes connect-
ing separate interconnected areas in the graph receive high bridging scores as they
bridge different subspaces in the item information space. The bridging score may be
combined with an item relevance score when generating recommendations. Another
graph-based approach was proposed by Nakatsuji et al. [2010]. They applied a Random
Walk algorithm on a user similarity graph to identify users that are related (but not too
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similar) to the target user, arguing that such users provide a good source of surprising
recommendations.

Oku and Hattori [2011] presented a system that induced possibly serendipitous
recommendations by selecting items whose content is a mixture of the content features
of two items from the user’s profile. Zhang et al. [2012] presented a music recommender
for Last.fm artists that uses a generative Latent Dirichlet Allocation (LDA) model
to build latent clusters of Last.fm users and to represent artists by a distribution
over these clusters. Representing artists as LDA vectors gives a way of computing a
similarity score between any artist and the artists in a user’s listening profile. Moreover,
the vector representation allows artists to be clustered. The recommender generates
serendipitous recommendations by promoting artists that are outside of the user’s
“musical bubbles” (clusters of liked artists).

Finally, Adamopoulos and Tuzhilin [2014] presented an approach to recommend
serendipitous items based on how distant they are from the set of items expected
by the user. The authors defined an item utility function as a linear combination of
the item’s relevance score (predicted by a standard recommendation algorithm, e.g.,
a collaborative filtering approach) and its unexpectedness (computed as a distance
between the item and a set of expected items). The set of expected items includes items
rated by the target user and items similar to the rated ones in terms of content (e.g.,
in a movie domain, movies produced by the same director and belonging to the same
genre). For computing the distance between an item and a set of items, the authors
suggested averaging the individual distance values or computing the centroid of the set
and measuring the target item’s distance from the centroid. Both rating- and content-
based distance metrics were evaluated. Given the target user and a set of the user’s
expected items, the proposed recommendation approach computes the utility score for
each candidate item and recommends those with the highest utility values.

4. NOVELTY

Novelty is closely related to serendipity, discussed in the previous section. Here, we first
discuss the relation between these two objectives and motivate our choice of novelty
definition. Subsequently, we discuss research that addressed novelty optimization in
recommender systems.

4.1. Defining and Measuring Novelty

Similarly to other objectives discussed in this work, the definition of novelty in the
RS literature is inspired by IR research. Baeza-Yates and Ribeiro-Neto [1999] were
among the first to discuss novelty as an important quality in information retrieval.
They defined the novelty of a set of retrieved documents as the fraction of relevant
documents that are unknown to the user. Another view on novelty was offered by
Zhang et al. [2002], who considered the novelty of a single retrieved document as the
opposite of its redundancy. They proposed a number of redundancy metrics based on
the distance between the document and documents previously seen by the user.

The aforementioned views of novelty are both related to how novelty is commonly
perceived—“the quality or state of being new, different, and interesting.”2 Definitions
of novelty in the RS literature typically focus on two aspects of novelty—an item
being unknown to the user and an item being different from what the user has seen
before. Some works focused only on the latter aspect and proposed novelty metrics that
measure an item’s distance from the user’s profile (i.e., previously seen items) [Yang
and Li 2005; Nakatsuji et al. 2010]. Vargas and Castells [2011] proposed different
variants of a novelty metric that support both the unknown and the different aspects

2http://www.merriam-webster.com/dictionary/novelty.
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of novelty. Zhang [2013] identified three qualities of a novel recommendation: being
unknown to the user, being relevant to the user, and being dissimilar to items in the
user’s profile.

We note that the quality of an item being different from the user’s profile is closely
related to the surprise of recommendations, which we identify as a core component of
serendipity (see Section 3). As discussed in Section 1, novelty and serendipity are closely
related and their definitions in the literature often overlap. A distinction between the
two objectives was proposed by Herlocker et al. [2004], who argued that a novel item
does not have to be surprising, but only unknown to the user. Kapoor et al. [2015]
extended the definition of novel items to include those that are known but forgotten
by the user (i.e., items the user has not accessed in a while). A “temporal novelty”
formulation like this one is only applicable to domains with frequent repeated item
consumption, for example, music recommendation. To better structure the discussion
of serendipity and novelty, in this section we follow the definition of Herlocker et al.
[2004] and view novel recommendations only as those that are unknown to the user.

The quality of an item being unknown is not trivial to define formally. While a
typical recommender provides a user with suggestions for unrated items, an absent
rating does not necessarily imply an unknown item—a user rarely provides ratings for
all known items. Therefore, without acquiring the user’s feedback (e.g., through a user
study), it is impossible to know if an unrated item is truly novel. Hijikata et al. [2009]
proposed a CF system where two types of rating profiles were created for each user—
the traditional rating profile, containing the item preferences, and the “acquaintance
profile,” containing binary ratings of item familiarity (i.e., “known/unknown”). The
authors suggested a number of hybrid CF algorithms exploiting the two types of profiles
to generate both unknown and accurate recommendations. The approach, although
explicitly addressing the issue of item novelty, doubles the cognitive load of user profile
construction as the users need to provide both types of ratings. More commonly, an
item’s novelty is approximated using its popularity among users of the recommender
system—the less popular an item is, the more likely it is to be unknown to the user.

Although an item’s unpopularity is not always a good indication of it being
unknown—a user familiar with one rare item is likely to know similar rare items
[Celma 2009]—it provides a cheap approximation for measuring novelty offline, with-
out conducting costly user studies. Item popularity has been estimated using rating
variance [Jambor and Wang 2010] in the dataset or using external sources of informa-
tion, such as box office earnings for movies [Oh et al. 2011]. However, the most common
approach is based on the number of ratings an item has received from users.

Formally, then, novelty is typically defined as the complement of the item’s popularity
in the dataset: 1 − p(i), where p(i) = |{u∈U,rui �=∅}|

|U | is the fraction of users who rated item
i. A slight variation is to define novelty as the negative of the log of the ratio: − log p(i).
This formulation is called the self-information of an item i [Zhou et al. 2010; Vargas
and Castells 2011] and, compared to the simple complement of popularity, gives more
importance to very rare items.

In order to evaluate recommendation techniques with respect to novelty, the novelty
of individual recommendations is aggregated into a single score for a list of recommen-
dations R:

Novelty(R) =
∑

i∈R − log2 p(i)
|R| . (4)

Given the previous definition of novelty, novel items are identified with the “long
tail” items, that is, the part of the item catalog seen (rated or purchased) by a small
part of the user community [Anderson 2006]. A detailed analysis of the long-tail phe-
nomenon and its influence on recommendation novelty was given by Celma [2009].
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Celma analyzed the long-tail item distribution and its relation to item similarity in
a music recommender. The recommender system was modeled as a fully connected
graph with nodes representing items; edges were weighted by similarities between
items. Two versions of the recommender were analyzed—an item-based CF approach
and a content-based (CB) approach. The item similarities on the edges were rating
based for the CF system and content based for the CB system. Celma compared the
long-tail distribution of item popularity with the item similarity graph and showed
that, in the CF system, popular items tend to form highly interconnected clusters in
the graph, meaning that the long-tail (i.e., novel) items are difficult to reach and there-
fore difficult to recommend to users. Conversely, in the CB system, item connections in
the graph are independent of their popularity, therefore making CB recommendations
more novelty oriented.

4.2. Increasing Novelty

Based on the definition of novelty adopted in this work (i.e., based on item popularity),
in this section, we focus on works that increase recommendation novelty by promoting
rare items (also known as the “long tail” items).

One of the early efforts to analyze the long-tail phenomenon in recommender systems
was presented by Park and Tuzhilin [2008]. Although not directly related to novelty
optimization, this work dealt with improving rating prediction accuracy for the long-tail
items. They observed that when using rating-based prediction algorithms, prediction
accuracy for rare items is lower than for popular items (caused by the smaller number
of ratings on which the prediction is based). Their suggested solution for improving the
prediction accuracy was based on clustering the long-tail items and creating joint rating
profiles for the clusters. Then, for a given long-tail item, rating prediction could be
made using all ratings in its cluster. Experiments with the MovieLens dataset showed
reduced error rates using the proposed approach. However, the proposed technique did
not guarantee promotion of the long-tail items into users’ top-N recommendation lists.

Ishikawa et al. [2008] addressed the long-tail phenomenon in the context of recom-
mending knowledge resources (web pages) in an information portal. They proposed an
approach based on innovation diffusion theory, claiming that new information spreads
among users according to observable patterns, with the first users to access a resource
playing the role of “innovators.” The proposed algorithm therefore requires a “seed”
long-tail item and exploits the users who first “discovered” it as a source of novel
recommendations (by recommending other items that were accessed by these users).
Experiments with the portal’s log data showed 10 to be the optimal number of “inno-
vators.” Since the approach was designed within a very specific domain, it would be
interesting to evaluate it in more common recommendation domains, such as movies
or music.

Zhou et al. [2010] exploited item popularity information to increase both novelty
(measured as the self-information of recommended items, see Equation (4)) and in-
teruser diversity (average pairwise distance between recommendation lists generated
for different users). The authors proposed an algorithm based on weight spreading
in a bipartite user-item graph. The algorithm works by assigning weights to items
rated by the target user and then equally distributing the weight of each item to other
users who rated it. The weight of each user is then distributed among his or her rated
items. This weight spreading procedure favors item nodes with few graph links (i.e.,
rare items), resulting in novel recommendations. In similar research, Liu et al. [2012]
described a graph-based algorithm with weight spreading and showed that assigning
more weight to users with small profiles enhances both interuser diversity and the
novelty of recommendations.
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Oh et al. [2011] followed the idea that novelty is related to both popularity and
the interuser diversity of recommendations. They worked with the MovieLens dataset
and measured item popularity using movie box office earnings (applying a log scale
to smooth the effects of the power-law distribution). The work demonstrated that a
state-of-the-art method for item-based collaborative filtering and a novelty-optimized
recommender (the Tangent system [Onuma et al. 2009], which we discussed in the
context of serendipity, see Section 3) both perform poorly in terms of popularity and
interuser diversity; that is, their generated recommendations are clustered around
popular items. Oh et al. argued that the users’ preferences for popular items should
partly determine the recommendations. From the users’ rating histories, they identi-
fied different types of “personal popularity tendency,” that is, different levels of user
interest in rare/popular items. Their proposed novelty optimization approach reranks
recommendations by penalizing items that do not fit the user’s popularity tendency.

Another graph-based approach was proposed by Shi [2013], who defined a cost flow
model for a bipartite user-item graph. The model is based on assigning a transition
cost for each edge between a user node and an item node. Given a target user and
candidate items, the cost to reach the target user node from a candidate item node can
be computed by propagating the cost score through the edges. Items that obtain the
lowest-cost scores are then recommended to the user. Shi proposed different strategies
for defining the edge transition costs, including the “long tail” strategy that sets the
costs to be proportional to the popularity of item nodes they connect, thus promoting
rare items.

We observe that works addressing the long-tail recommendation problem often mea-
sure algorithm performance not only in terms of novelty but also in terms of interuser
diversity [Zhou et al. 2010; Liu et al. 2012] and coverage [Shi 2013]. This indicates
that novelty is closely related to these system-level objectives. Interuser diversity mea-
sures the difference between recommendations across different users, while coverage
measures how well the recommender covers the available item catalog. In this article,
we do not discuss the interuser diversity but focus on the more popular system-level
objective—coverage.

5. COVERAGE

Unlike the beyond-accuracy objectives that we have discussed so far, coverage is not
defined at the level of an individual user, but rather at the level of the system.

There are two general approaches to measuring recommendation coverage—“user
coverage,” which measures the degree to which the system covers its users (e.g., the
ratio of users for which a recommender is able to deliver recommendations [Bellogı́n
et al. 2013]), and “item coverage,” which measures the degree to which recommenda-
tions cover the set of available items (i.e., the item catalog). Since the latter formulation
is more commonly found in the RS literature [Herlocker et al. 2004; Ge et al. 2010;
Adomavicius and Kwon 2012] and to be consistent with the other discussed beyond-
accuracy objectives (which are item properties rather than user properties), in this work
we focus on “item coverage” and henceforth refer to it simply by the term coverage.

Since measures of coverage show how well the system’s recommendations cover the
catalog of available items, higher coverage means exposing the users to a wider range
of recommended items, which may both increase the users’ satisfaction with the system
(e.g., by recommending items the user would not otherwise discover) [Adomavicius and
Kwon 2012] and benefit business owners (increasing the sales of the long-tail items).
For instance, Anderson [2006] argued that aggregate sales of the long-tail products
may match (or even outnumber) the sales of the top-selling products.
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5.1. Defining and Measuring Coverage

As with other beyond-accuracy objectives, the terminology used to identify the coverage
objective varies across different works. Coverage has been referred to as “aggregate
diversity” [Adomavicius and Kwon 2011, 2012], “sales diversity” [Vargas and Castells
2014], or simply “diversity” [Shi 2013]. To avoid confusion with the diversity objective,
which is applicable to a single user’s list of recommendations (see Section 2), we use
the term coverage and adopt its most widespread definition—the fraction of items that
appear in the users’ recommendation lists:

Coverage = | ∪u∈U Ru|
|I| , (5)

where Ru is the set of all recommendations generated for user u, U is the set of all
users of the system, and I is the item catalog.

Herlocker et al. [2004] distinguished between two forms of item coverage—
“prediction coverage,” which captures the ratio of items for which predictions can be
made by the recommendation algorithm, and “catalog coverage,” which captures the
ratio of items that effectively appear in the recommendation lists presented to users
of the system. The metric adopted in our work (Equation (5)) corresponds to catalog
coverage and we do not discuss prediction coverage separately.

A few works have suggested taking recommendation relevance into account when
measuring coverage, that is, measuring the fraction of relevant items that are rec-
ommended to all users [Herlocker et al. 2004; Bellogı́n et al. 2013]. Such definitions
require that we know all the potentially relevant items for each user. Ge et al. [2010]
proposed a more general definition where each item contributing to the coverage score
is weighted by its usefulness. The authors suggested that the usefulness weights may
be computed using item relevance, novelty, or serendipity scores.

All the variants of the coverage metric discussed previously share a common
feature—since all recommended items are aggregated into a single score, an item
recommended once contributes to the coverage score the same amount as an item
recommended a thousand times. An alternative definition, which overcomes this limi-
tation, was proposed by Fleder and Hosanagar [2009]. They used the Gini coefficient,
ranging in [0, 1], to measure the distribution of recommendations across all users. High
values of the coefficient mean that recommendations are concentrated around a few
frequently recommended items (i.e., there is a high concentration bias [Jannach et al.
2015b]), while lower values signify a more uniform distribution of recommendations.
Vargas and Castells [2014] adopted the complement of the Gini coefficient so that
higher values of the metric correspond to better (more uniform) catalog coverage.

Shani and Gunawardana [2011] identified Shannon entropy as another option for
measuring the distribution of recommendations across users. For an item catalog of
size n, the Shannon entropy metric ranges between 0 (when the same single item is
always recommended) and log n (when all items are recommended equally often).

Despite being a system-level objective, coverage is related to other objectives dis-
cussed in this article, particularly to novelty. As discussed in Section 4, novelty is
typically measured as the complement of item popularity. Highly novel recommenda-
tions are therefore those belonging to the long tail of the item popularity distribution.
Intuitively, a high coverage of the item catalog requires recommending the long-tail
items to users, which corresponds to a high average novelty (see Equation (4)).

However, the relation between coverage and novelty is not always straightforward,
as has been shown by Jannach et al. [2013]. The authors compared a number of
state-of-the-art recommendation algorithms in terms of coverage and the tendency
to focus on popular items. In experiments performed on the MovieLens dataset, a
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learning-to-rank algorithm achieved a high level of coverage but also suffered from
popularity bias (i.e., having higher average popularity of recommended items com-
pared to other algorithms).

Coverage has also been discussed in relation to diversity. Adomavicius and Kwon
[2012] discussed the difference between diversity (which they call “individual diver-
sity,” i.e., the diversity of a recommendation list presented to a single user) and cover-
age (which they call “aggregate diversity,” i.e., the range of items recommended across
all system users). They argued that high diversity does not imply high coverage. For
instance, if different users are recommended the same diverse set of items, the aver-
age diversity of the system will be high, but the coverage will remain low. Similarly,
Fleder and Hosanagar [2009] discussed a scenario where (during the evolution of an
e-commerce recommender) the system helps users discover new items, but the Gini
coefficient increases (i.e., the coverage deteriorates). This happens if the users are
exposed to new items, but these are the same items other users have seen before.

Ge et al. [2010] briefly discussed the relation between coverage and serendipity. They
argued that high serendipity implies high coverage, but an increase in coverage will
not necessarily improve serendipity. The authors, however, offered no experiments to
support this hypothesis.

In summary, the close relation between coverage and other beyond-accuracy objec-
tives has been recognized in the literature. However, there is a lack of experiments that
study the relationships between the different metrics. We contribute to the analysis of
this research problem with experiments presented in Section 7.

5.2. Increasing Coverage

As discussed earlier, coverage can be linked to the novelty of recommendations. This
is reflected in work that addresses the coverage optimization problem, with most ap-
proaches relying on reducing the popularity bias of recommendations (i.e., increas-
ing the number of long-tail items recommended to users). Consequently, the ap-
proaches discussed in this section overlap with those described in Section 4.2. To avoid
repetition, here we discuss works that explicitly target increasing the coverage of
recommendations.

Adomavicius and Kwon [2011] modeled the item-to-user recommendations (precom-
puted using a standard recommendation algorithm) as a graph, where an edge connects
an item to a user only if the item is predicted as relevant to that user (a prediction
threshold may be used when constructing the graph). They then solve the maximum
flow problem on the constructed graph; that is, they find the maximum number of
edges that connect users and items, such that each user is connected to no more than
N items. The solution of this problem results in each user being assigned up to N
recommendations with the maximum coverage of the available items.

Another work by Adomavicius and Kwon [2012] described a coverage optimization
approach based on reranking the recommendation list to promote the long-tail items.
The approach reranks items whose predicted rating is above a certain threshold by
their popularity (ranking rare items higher). The threshold parameter guarantees a
certain level of accuracy in the list and can be varied for a tradeoff between accuracy
and coverage. Offline evaluation with the MovieLens dataset showed the approach to
improve coverage with a minimal loss in recommendation accuracy.

Vargas and Castells [2014] proposed an approach to increase coverage by reducing
the popularity bias in nearest-neighbor CF algorithms. They suggested inverting the
neighbor selection process in user-based or item-based CF: for instance, in the case of
item-based nearest-neighbor CF, instead of selecting the top-k most similar neighbors
for an item, they suggested constructing the neighborhood by selecting those items
in whose neighborhoods the target item appears. (A similar inversion can be used for
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user-based neighborhood techniques.) The authors demonstrated that such inversion
results in a reduced popularity bias, since all items appear in the same number of
the newly defined neighborhoods and therefore rating prediction is less influenced by
the popular items. Offline experiments with Netflix data and the Million Song Dataset
showed that the inverted item-based CF approach outperformed the standard item-
based technique in both accuracy and coverage (measured as the complement of Gini
coefficient). The inverted user-based approach showed better coverage results but did
not outperform the standard user-based technique in terms of accuracy.

6. MEASURING THE USER’S PERCEPTION OF BEYOND-ACCURACY OBJECTIVES

Any evaluation of recommendation diversity, serendipity, or novelty not involving user
feedback is limited in terms of the reliability of the findings. For instance, without
asking the end-user of the system, it is not evident that an item that was shown to
be serendipitous by some metric will be perceived as such by the user. Likewise, it
is not evident that a diversification algorithm that considers pairwise dissimilarity of
recommended items will produce recommendation lists that users perceive as diverse.
However, despite the obvious need for user feedback on the beyond-accuracy qualities
of recommendations, few research works in this area include user studies, the majority
of results being obtained from offline experiments. This can be explained by the many
challenges in designing and conducting such studies: recruiting a sufficiently large
number of participants, correctly formulating survey questions, avoiding judgment
biases, and so forth. Moreover, when recommending items that take a long time to
consume (e.g., movies), relevance, diversity, or serendipity judgments are difficult to
obtain for items that are unknown to users.

In this section, we provide an overview of the limited number of works that do rely on
user studies when analyzing beyond-accuracy objectives. We split such works into two
general categories: (1) research studies where beyond-accuracy objectives are evaluated
as a part of larger multicriteria experiments that measure relationships between the
different recommendation qualities perceived by users (e.g., the impact of perceived
novelty on diversity perception) [Pu et al. 2011; Knijnenburg et al. 2012; Ekstrand
et al. 2014], and (2) works that analyze the impact of the proposed algorithms (or user
interface modifications) on specific beyond-accuracy objectives [Ziegler et al. 2005; Ge
et al. 2012; Hu and Pu 2011].

Of the beyond-accuracy objectives discussed in our work, diversity and novelty are
the ones that are most frequently investigated in user studies. Serendipity has been
reported to be difficult to explain to users [Said et al. 2013] or has been left out of
the studies as being too similar to novelty [Pu et al. 2011]. Coverage is not measured
in user studies since it is not directly related to individual user experiences. Besides
the perceived accuracy, diversity, and novelty, user studies often also measure user
satisfaction with the system. Although satisfaction is a concept easily understood by
users, we consider it as a higher-level quality that can be influenced by many perceived
qualities (relevance, diversity, novelty, serendipity) and therefore do not analyze it in
this article.

6.1. Beyond-Accuracy Objectives in Multicriteria User Studies

Pu et al. [2011] conducted a user study to determine a set of recommendation qual-
ity criteria that accurately reflect the users’ perception of a recommender system’s
usefulness. Of the beyond-accuracy objectives, diversity and novelty were included.
Serendipity was discarded as it was considered too similar to novelty. The users were
asked to find an information item using a recommender system of their choice and
to answer a set of questions regarding the perceived qualities of the service. Having
analyzed the correlations between answers, the authors validated a model consisting
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of 32 criteria grouped into 15 categories. The results of the study showed the perceived
usefulness of a recommender to be influenced by the perceived accuracy and novelty,
and to a lesser extent by the perceived diversity.

Knijnenburg et al. [2012] proposed a framework for evaluating users’ experience of
recommender systems, including the perceived accuracy, satisfaction, choice difficulty,
and diversity. The framework consists of a set of structurally related concepts including
objective system aspects (e.g., the recommendation algorithm) and user characteristics
(e.g., the user’s age) that are connected to subjective user experiences (e.g., the perceived
diversity). The authors proposed a set of questions to record the subjective user expe-
riences and conducted a series of experiments to investigate the relationships between
framework components. The results showed that diversification (implemented using
the greedy reranking approach, see Algorithm 1) is perceived differently for different
algorithms. For example, the users perceived recommendations of the k-NN algorithm
with no diversification as more diverse than diversified recommendations of the same
algorithm, while this was not observed for the factorization algorithm. When the users
did perceive recommendations as diverse, this had a positive relationship with the
perceived accuracy, the ease of choice, and consequently the overall satisfaction with
the system.

Ekstrand et al. [2014] adapted the questions used by Knijnenburg et al. [2012] for
a comparative study where users of the MovieLens recommender system were asked
to compare pairs of movie recommendation lists and answer questions regarding the
perceived accuracy, diversity, and novelty of the recommendation lists and their overall
satisfaction. Three state-of-the-art algorithms were used for generating recommenda-
tions: an SVD factor model and both a user-user and an item-item collaborative filtering
approach. To address the possible item familiarity effects, the authors limited the set
of recommendable items to popular ones, thus avoiding recommendation lists with too
many obscure items. The study results revealed that the users were equally satisfied
with the SVD and item-item algorithms, while being less satisfied with the user-user al-
gorithm. The perceived satisfaction with the recommendations was found to positively
correlate with the perceived diversity and negatively with perceived novelty.

The observed negative influence of novelty on users’ satisfaction seems to contradict
the findings of Pu et al. [2011], who found novelty to positively influence the perceived
system usefulness (and consequently users’ satisfaction). The findings may differ due
to different recommendation domains (Pu et al. conducted the survey using a number
of online recommender services including Amazon, while Ekstrand et al. focused on
movie recommendations). Another possible explanation lies in the different formula-
tions of the novelty-related questions the users had to answer during the two studies.
Pu et al. analyzed the perceived novelty by measuring the users’ agreement with the
statement “The recommender system helped me discover new products,” while Ek-
strand et al. compared the perceived novelty of two movie lists with such questions as
“Which list has more movies you do not expect?” and “Which list has more movies you
would not have thought to consider?” Therefore, in the first case, novelty feedback was
gathered by means of a positive question, while in the second case, the negative tone
of the survey questions may have tied negative user experiences to the measured ob-
jective, that is, novelty. This example shows the impact that the formulation of survey
questions may have on the outcome of studies measuring users’ perception of multiple
recommendation qualities.

6.2. Beyond-Accuracy Objectives in Targeted User Studies

Targeted user studies are conducted to validate the usefulness of a certain tech-
nique, for example, a diversity-oriented algorithm, or a modification of the user in-
terface optimized for diversity perception. Ziegler et al. [2005] evaluated their greedy
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diversification technique on a BookCrossing dataset.3 Given a list of book recommen-
dations, each user was asked to evaluate the relevance of each recommendation, the
diversity of the list of recommendations, and their overall satisfaction with the recom-
mendations. The users were randomly assigned either a user-based or item-based CF
recommender, and the diversification algorithm was based on comparing the genres of
items (using a genre taxonomy-based metric). The results of the study showed that light
diversification (changing up to four items in a list of 10 recommendations) positively
influences user satisfaction with the item-based CF recommender. In the case of the
user-based CF recommender, the results showed no measurable effect on satisfaction.

Celma [2009] evaluated the users’ perception of item relevance and novelty in a
music recommender. The author conducted a study with 288 Last.fm users who were
asked to rate their familiarity and appreciation of the songs recommended by three
algorithms—an item-based collaborative approach, a content-based approach, and a
hybrid combination of the two. The results showed that the users perceived the rec-
ommendations of the content-based approach to be the most novel (i.e., they were
least familiar with them), but also the least accurate (i.e., they assigned the lowest
ratings to the tracks). Conversely, the collaborative approach was shown to produce
the least novel but highest-rated recommendations. Celma hypothesizes that the low
ratings of novel recommendations may be improved by providing explanations about
why particular unknown songs are recommended.

Hu and Pu [2011] analyzed how a standard list-based user interface compares to
a more organized interface that groups recommendations into categories in terms of
perceived diversity. The authors conducted a within-subject user study with 20 partici-
pants in which each user viewed two versions of product recommendations (“customers
who viewed this item also viewed”)—one version showed the standard list of products;
the other version showed groups of products in separate tabs (organized by brand or
price range). The users provided feedback regarding the perceived categorical diversity
(i.e., items being of different kinds) and item-to-item diversity (i.e., items being dissim-
ilar to each other) as well as the perceived ease of use and usefulness of the system.
While the results showed no significant difference in perceived item-to-item diversity,
the perceived categorical diversity was shown to be larger in the second version of
the interface, which also had a positive influence on the perceived ease of use and the
usefulness of the system.

Willemsen et al. [2011] described a user study where diversification was based on
latent item features in a matrix factorization model. A within-subjects study with 97
participants required each user to evaluate three lists of movie recommendations rep-
resenting different levels of diversification: low-level, midlevel, and high-level diversity.
For each of the three conditions, the perceived recommendation diversity and attrac-
tiveness were measured. The results showed that lists with high levels of diversity were
perceived as most diverse by the users. Interestingly, the perceived attractiveness of
recommendations increased from low- to midlevel diversification, but did not further
increase for the high level of diversification. This result suggests that after a certain
level of diversity is achieved, users may not appreciate further diversification.

Ge et al. analyzed the impact that the placement of items within a recommendation
list has on users’ perception of diversity. The authors conducted a pilot user study with
10 participants [Ge et al. 2011] and a later study with 52 participants [Ge et al. 2012].
The users were asked to evaluate the diversity of precomputed movie lists. The same
lists were displayed to all the users. Each list contained movies from one genre, with
a small number of different genre items inserted for diversity. The authors called the

3http://grouplens.org/datasets/book-crossing/.
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items whose genre was different from the list’s dominant genre “diverse items.” Three
experimental conditions were compared: inserting all “diverse items” at the end of the
list, inserting them in the middle of the list, and distributing them throughout the list.
The later study showed that distributing “diverse items” throughout the list or placing
them together at the bottom of the list led to higher perceived diversity and higher
surprise than placing them close to each other in the middle of the list. Moreover, having
recognized the presence of “diverse items,” users in the pilot study were interested in
additional information about such items (possibly trying to understand why they were
recommended). This result indicates the potential use of explanations in diversity-
aware systems.

The importance of explanations in recommendation diversification is also mentioned
by Castagnos et al. [2013], who conducted a user study with a specially created movie
dataset consisting of around 500 movies, 3,000 users, and 173,000 ratings. The study
involved 250 participants divided into five groups, with each group evaluating recom-
mendations produced by one of the five algorithms—a baseline popularity approach, a
content-based approach, an item-based collaborative filtering approach, and two collab-
orative filtering reranking techniques (variations of the greedy reranking technique,
see Algorithm 1). The study results showed that, while the users positively perceived
the diversification (movies suggested by the two diversity-aware techniques received
the highest ratings on average), they had more confidence in recommendations pro-
duced by the least diverse approach—the content-based technique. Castagnos et al.
explain this result in terms of the users’ appreciation of recommendation transparency:
the users were more confident when they clearly understood why a particular item was
recommended (e.g., being very similar to a previously rated item). This result suggests
that while diversity may be positively perceived by users, additional explanations may
be important for improving the acceptance of such recommendations.

Zhang et al. [2012] performed a small-scale user study (21 participants) to evaluate
a serendipity-enhancing recommender for Last.fm music artists (see also Section 3.2).
Participants of the study were asked to provide six artists they like as a “seed” for the
recommender and subsequently to evaluate two recommendation lists generated by a
baseline recommender and the serendipity-enhancing version of the system. The per-
ceived enjoyment (from “dislike the song” to “will definitely listen again”) and serendip-
ity (from “exactly what I listen to normally” to “something I would never have listened
to otherwise”) of the recommendations were measured on a 5-point Likert scale. The
users’ familiarity with the recommended artists was also recorded. The study results
showed the users to perceive recommendations generated by the serendipity-enhancing
system version as less enjoyable, but more serendipitous. The serendipity-enhancing
version was also shown to provide more recommendations of novel artists (i.e., ones un-
known to the users). Interestingly, despite providing less enjoyable recommendations,
the serendipity-enhancing system version was preferred over the baseline system as
the users were willing to sacrifice recommendation accuracy for the sake of discovering
new interesting artists. An important question is whether users in domains where the
cost of receiving inaccurate recommendations is higher (e.g., movie recommendations)
would also be prepared to sacrifice accuracy for serendipity.

Finally, we observe that research discussed in this section deals with user studies
in which participants are aware of their involvement in the experiments. While such
studies may reveal important findings, they can only offer an approximation of the user
behavior in real-life settings. There is a lack of reported A/B evaluation studies (i.e.,
online experiments where the users are unaware of their participation) that analyze
the impact of beyond-accuracy objectives on user behavior.
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7. OFFLINE ANALYSIS OF BEYOND-ACCURACY OBJECTIVES

Having reviewed research that addresses the definition, optimization, and measure-
ment of the different beyond-accuracy objectives, we aim to further contribute to the
beyond-accuracy recommendation research with a novel analysis of relationships be-
tween the different objectives. While existing research on diversity, novelty, serendipity,
or coverage typically addresses one specific objective, we believe it is important to un-
derstand which objectives are corelated, which are in conflict, and how optimizing for
one objective can affect the other objectives.

A number of previous works report on experiments where multiple beyond-accuracy
objectives are measured in offline settings. Next we review their findings and position
our work with respect to these previous efforts.

Ribeiro et al. [2012] proposed an approach for balancing recommendation accuracy,
diversity, and novelty using a weighted combination of the predicted relevance scores
that come from a number of different recommendation algorithms. The authors have
measured the performance of various state-of-the-art recommendation approaches (in-
cluding popularity-based, content-based, k-nearest-neighbor, and matrix factorization
techniques) in terms of accuracy, diversity, and novelty. Offline evaluation results on
MovieLens and Last.fm datasets showed that none of the algorithms dominates in
all three objectives: on the MovieLens dataset, the SVD factor model with 50 factors
provided the most accurate recommendations, the popularity-based approach the most
diverse, and the SVD model with 150 factors the most novel. On Last.fm data, the
factor model for implicit data generated the most accurate recommendations, the SVD
model with 150 factors the most novel, and the user-based k-NN approach the most di-
verse. Combining predictions generated by the different algorithms resulted in hybrid
solutions that performed similarly to the best algorithms in each individual objective
(accuracy, diversity, or novelty), but better in the other two objectives.

Bellogı́n et al. [2013] evaluated the performance of a number of recommendation
approaches that the authors grouped into three categories: rating-based techniques,
content-based techniques (exploiting content labels), and social techniques (exploiting
friendship relations between users). In addition to the traditional precision and recall
metrics, the performance metrics included diversity (α-nDCG metric [Clarke et al.
2008]), novelty, and coverage. Experiments on three datasets—Delicious, Last.fm, and
MovieLens—showed the content-based approach to achieve the highest coverage and
novelty on the Last.fm and Delicious datasets. Interestingly, on the MovieLens dataset,
a user-based k-NN method provided the most novel recommendations. On Last.fm
and Delicious data, the social recommenders were best in terms of diversity. (Social
recommenders could not be applied to the MovieLens dataset as the data contains
no user-to-user relations.) On the MovieLens dataset, content-based approaches were
shown to outperform rating-based techniques in terms of α-nDCG diversity.

Pampı́n et al. [2014] analyzed the performance of item-based and user-based k-NN
approaches in terms of accuracy, diversity, and novelty. They conducted offline experi-
ments on the MovieLens dataset with different values of the neighborhood size k for the
user-based approach and a fixed value of k = 300 for the item-based approach. The eval-
uation results showed that at small values of k, the user-based approach provides more
novel recommendations than the item-based approach, but the novelty decreases for
larger values of k and matches the novelty of item-based recommendations at k = 100.
The user-based approach was also shown to provide more diverse recommendations
compared to the item-based approach, with diversity decreasing for larger values of k
but remaining higher compared to the diversity of item-based recommendations (which
were computed with k = 300).
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Jannach et al. [2013] analyzed the tendency of various recommendation approaches
to focus on certain parts of the item catalog. They evaluated recommendations in
terms of coverage (measured as the aggregate number of items appearing in top-10
recommendation lists and as the Gini coefficient metric [Fleder and Hosanagar 2009])
and popularity bias (measured as the average rating value of recommended items
and as the average number of ratings per item). The recommendation techniques
that they evaluated included state-of-the-art neighbor-based and matrix factorization
algorithms, a learning-to-rank approach for implicit rating data, and a content-based
approach based on item labels. The evaluation results on the MovieLens dataset showed
that the most accurate algorithm—the learning-to-rank approach—tends to focus on
the popular items in the catalog, being also the worst in terms of novelty. Interestingly,
the learning-to-rank approach performed well in terms of coverage, being second only
to the content-based approach. The SVD matrix factorization approach also performed
well in terms of coverage, while neighbor-based approaches achieved low coverage,
showing a tendency to focus on a small portion of the item catalog. Overall, all rating-
based algorithms were shown to suffer to some extent from popularity bias, the content-
based approach being the only approach that was not biased toward popular items.

Compared to the previous efforts discussed, our work contains a broader set of per-
formance metrics, covering the most popular recommender system beyond-accuracy
objectives. For diversity, novelty, and coverage, we employed the metric definitions
most widely encountered in the literature, while for the serendipity objective, we pro-
pose two alternative ways of measuring surprise, which constitutes the core component
of serendipity.

Recently, Maksai et al. [2015] analyzed a wide range of beyond-accuracy metrics—
multiple variants of diversity, novelty, coverage, and serendipity—in an offline setting.
The authors suggested predicting the online performance of a news recommender (mea-
sured by the click-through rate) using the offline metric values. To identify which offline
metrics are most likely to influence online performance of the system, Maksai et al.
analyzed correlations between the metrics by measuring their values at equal time
intervals on a news recommendation dataset. The obtained results indicate no strong
correlations between the metrics, with the exception of a strong (positive) correlation
between coverage (computed using Shannon entropy [Shani and Gunawardana 2011])
and serendipity (computed using the definition of Murakami et al. [2008]).

Our approach to measure metric correlations differs from that of Maksai et al.—
rather than observing the change of metric values over time, we analyze how optimizing
a recommender system for a specific objective affects other beyond-accuracy objectives.
We address this problem by evaluating a number of greedy reranking approaches
against the different beyond-accuracy metrics.

7.1. Reranking Approaches

In earlier sections of this article, we reviewed a number of the different approaches that
have been proposed to enable recommender systems to generate not only accurate but
also novel and surprising recommendations and diverse lists of recommendations. One
approach relies on reranking the lists of recommendations that are generated using
baseline algorithms [Smyth and McClave 2001; Ziegler et al. 2005; Kelly and Bridge
2006; Adomavicius and Kwon 2012]. Other approaches require the development of
new recommendation models where accuracy and additional objectives are addressed
simultaneously [Vargas et al. 2011; Oku and Hattori 2011; Hurley 2013; Su et al. 2013].

In our experiments, we chose to use the reranking approach, since it allows us to use
existing state-of-the-art recommendation algorithms and allows us to explicitly control
the tradeoff between recommendation accuracy and diversity, novelty, or serendip-
ity. The reranking approach that we adopt follows the greedy algorithm described by
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Smyth and McClave [2001] (see Section 2.2.1, Algorithm 1), where a list of candidate
recommendations is reranked by greedily maximizing an objective function:

fobj(i, R) = α · rel(i) + (1 − α) · obj(i, R). (6)

The function combines recommendation accuracy and one of the beyond-accuracy
objectives: given an item i, the item’s predicted relevance, rel(i), is combined with its
diversity, novelty, or surprise score relative to the items already in the result list R,
which we denote by obj(i, R). To control the balance between accuracy and the alterna-
tive objectives, the rel(i) and obj(i, R) scores were standardized and the α parameter
was set to 0.5 in all the experiments. In the following, we describe the different imple-
mentations of obj(i, R) that were used in the experiments.

7.1.1. Diversity Reranking. We adopted the definition of diversity that is based on the
average pairwise item distance, which is widely accepted in the RS literature [Smyth
and McClave 2001; Ziegler et al. 2005; Kelly and Bridge 2006; Vargas and Castells
2011] (see Section 2.2.1, Equation (2)):

objdiversity(i, R) = 1
|R|

∑
j∈R

dist(i, j). (7)

As mentioned in Section 2.1, the item distance function dist(i, j) has been defined
using a variety of metrics. In our experiments, we evaluate two variants of the distance
function—one based on item content labels and the other based on item ratings.

Content-Based Diversity. We employ the complement of the Jaccard similarity metric
for comparing items described with a set of content labels (e.g., movies or artists labeled
with genres):

dist(i, j) = 1 − |Li ∩ Lj |
|Li ∪ Lj | , (8)

where Li and Lj are the sets of labels describing items i and j, respectively.

Rating-Based Diversity. An alternative formulation of item distance is based on user-
assigned ratings. We use the complement of the adjusted cosine similarity normalized
to [0,1]:

dist(i, j) = 1
2

−
∑

u∈U (rui − r̄i)(ruj − r̄ j)

2
√∑

u∈U (rui − r̄i)2
√∑

u∈U (ruj − r̄ j)2
, (9)

where r̄i and r̄ j are the average rating values for items i and j, respectively. Only users
who rated both items are considered for the diversity computation.

7.1.2. Surprise Reranking. Our approach to measuring surprise is based on the intuition
that a recommendation is surprising if it is unlike any item the user has seen before. We
use the lower-bound item distance from the items in the user’s profile as an indicator of
surprise. We chose the lower-bound distance function rather than the more commonly
used average distance since we believe that averaging the distance scores results in
information loss, especially if the user has diverse items in his or her rating profile (see
Kaminskas and Bridge [2014] for details).

We propose two alternative definitions of surprise, based on different item distance
functions. The first metric exploits users’ rating behavior to measure the likelihood
for a pair of items to be seen by the same user. While this information is not direct
evidence of item dissimilarity, it provides a reasonable approximation—items that are
rarely observed together are likely to be different. The second metric employs a more
straightforward item distance function, based on content labels.
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Given the target item and the user’s profile (a set of items rated by the user), both
metrics produce a score that indicates the level of surprise the target item brings to the
user. Note that, unlike some previous works [Vargas and Castells 2011; Adamopoulos
and Tuzhilin 2014], we do not consider item relevance in our definitions of surprise.
While relevance is an important component of serendipity, we leave it to be measured
by dedicated accuracy metrics. Furthermore, neither metric is presently rank aware,
although they could be adapted to discount items that appear lower in the recommen-
dation list.

Co-occurrence-Based Surprise. The first definition is based on the probability for the
item to be seen (i.e., rated) together with the items in the user’s profile. To measure
the pairwise co-occurrence of items, we employed normalized point-wise mutual in-
formation (PMI) [Bouma 2009], which measures the probability of observing specific
outcomes of two independent random variables together. Given a pair of items i and j,
we compute their PMI value as

PMI(i, j) = log2
p(i, j)

p(i)p( j)
/ − log2 p(i, j), (10)

where p(i) and p( j) represent the probabilities for the items to be rated by any user,
that is, p(i) = |{u∈U,rui �=∅}|

|U | , and p(i, j) is the probability for the same user to rate both

items, that is, p(i, j) = |{u∈U,rui �=∅∧ruj �=∅}|
|U | . PMI values range from −1 (in the limit) to 1,

with −1 meaning the two items are never rated together, 0 signifying independence of
the items, and 1 meaning complete co-occurrence of the items.

In order to measure the surprise of a recommended item i, we compute its PMI
with each item in the user’s profile. Since higher values of PMI(i, j) signify higher co-
occurrence of items i and j (and therefore low surprise of seeing the two items together),
we take the complement of the PMI normalized to [0,1]. Taking the minimum of these
values indicates the lower bound of the surprise perceived by the user when item i is
recommended:

objco−occ
surprise(i) = min

j∈P

1 − PMI(i, j)
2

, (11)

where P is the user’s profile (i.e., his or her set of rated items). (In this equation, and
in Equations (12) and (13), we drop the parameter R, i.e., we write objco−occ

surprise(i) rather
than objco−occ

surprise(i, R), since these metrics do not depend on the items already in the result
list.)

Content-Based Surprise. Our second surprise metric is based on distance applied to
item content labels:

objcont
surprise(i) = min

j∈P
dist(i, j), (12)

where the distance is computed as the complement of Jaccard similarity (see
Equation (8)).

Similarly to the co-occurrence-based definition, the distance is computed for all pairs
consisting of the target item i and the items in the user’s profile. Taking the minimum
distance value as the overall surprise represents the lower bound of how surprising
the item is with respect to the seen items.

7.1.3. Novelty Reranking. For novelty, we use the item’s self-information or inverse user
frequency [Zhou et al. 2010; Vargas and Castells 2011], which is the fraction of users
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in the dataset who rated the item i:

objnovelty(i) = − log2
|{u ∈ U, rui �= ∅}|

|U | . (13)

The logarithm is used to emphasize the novelty of the most rare items.

7.2. Experimental Setup

To study the relationships between the different beyond-accuracy objectives, we con-
ducted a number of offline experiments using four state-of-the-art recommendation al-
gorithms and the five variants of the greedy reranking approach described previously—
two variants for both diversity (Equations (8) and (9)) and surprise (Equations (11) and
(12)) and one for novelty (Equation (13)). In each experiment, a recommendation algo-
rithm was used to generate a ranked list of candidate recommendations C (|C| = 50).
Then, we reranked C using each of the five beyond-accuracy objectives (Equation (6),
α = 0.5). Finally, we obtained the list of top-N recommendations (N = 10 was used in
all the experiments) from the reranked lists.

The value of C = 50 has been chosen to allow for a sufficiently large pool of candi-
date items while not slowing the performance significantly. Using the value of α = 0.5
allowed a good balance between the predicted relevance and the beyond-accuracy ob-
jective (the scores of the two components in Equation (6) were standardized).

Next, we describe the evaluation methodology, performance metrics, datasets, and
recommendation algorithms that were employed in the experiments.

7.2.1. Evaluation Methodology. In recent years, rating-based accuracy metrics for offline
RS evaluations have been replaced by precision-oriented metrics that more closely
reflect the users’ interaction with the system—considering only a small set of top-
ranked recommendations, ignoring the lower-ranked items [Bellogı́n et al. 2011]. In
accordance with these state-of-the-art evaluation strategies, in this work we adopt the
one plus random methodology [Koren 2008]. The methodology is based on randomly
splitting each user’s ratings to give a training set M and probe set P. The test set T
is constructed by selecting all highly rated items (e.g., those having a five-star rating
on a 1 to 5 scale) from the user’s probe set P. Then, for each user u and for each test
item (from T ), predictions are computed for 1,000 random unrated items plus the one
test item. The set of 1,001 items is ranked according to the recommender’s predicted
scores and the top-N recommendations are selected. If the test item is among the top-N
items, we have a hit. The overall performance of the system—recall—is calculated as
the ratio of the number of hits over the total number of test cases.

In this article, results were obtained using a slight modification of the methodology—
rather than selecting all highly rated items for each user’s test set T , we only used one
randomly selected test item per user. This way equal importance is given to all test
users, whereas the original methodology allows users with larger test profiles to have
more impact on the evaluation results.4

The underlying assumption of the one plus random methodology that the 1,000 un-
seen items are irrelevant is clearly undervaluing the performance, as certain items
among the 1,000 may be actually relevant for the user. However, we believe this
methodology to be appropriate when measuring the beyond-accuracy objectives of rec-
ommendations as it involves items the user has not discovered (i.e., unrated items),
whereas other offline evaluation strategies only employ items the user has had no
trouble discovering (i.e., already-rated items).

4A subset of the experiments was also conducted using the full test sets of the users as per the methodology
in Koren [2008], but no significant differences in the results were observed.
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All experiment results reported in the following sections were computed using five-
fold cross-validation with 80%/20% training/probe set split.

7.2.2. Performance Metrics. In addition to the Recall metric, for each test user’s top-N
recommendation list R, we compute the following beyond-accuracy metrics:

—Two variants of the diversity metric—the rating-based diversity and the content-
based diversity:

Divratings/cont(R) =
∑

i∈R
∑

j∈R\{i} dist(i, j)

|R|(|R| − 1)
, (14)

where for Divcont, dist(i, j) is computed based on item content labels (Equation (8)),
and for Divratings, dist(i, j) is computed using the rating-based item distance (Equa-
tion (9))

—Two variants of the surprise metric—the co-occurrence-based surprise and the
content-based surprise:

Sco−occ(R) = 1
|R|

∑
i∈R

min
j∈P

1 − PMI(i, j)
2

(15)

Scont(R) = 1
|R|

∑
i∈R

min
j∈P

dist(i, j), (16)

where P is the target user’s profile (i.e., the set of rated items), PMI(i, j) is computed
using Equation (10), and dist(i, j) uses Equation (8)

—The Novelty metric computed as the average item self-information:

Novelty(R) = 1
novmax · |R|

∑
i∈R

− log2
|{u ∈ U, rui �= ∅}|

|U | , (17)

where U is the set of all users in the dataset and novmax = − log2
1

|U | is the maximal
possible novelty value, which is used to normalize the novelty score of each individual
item into [0,1].

The previous metric values are averaged across all test users.
Finally, we measure the Coverage metric as the aggregate number of distinct items

appearing in top-N lists of all test users:

Coverage = | ∪u∈U Ru|, (18)

where Ru is the set of top-N recommendations generated for user u and U is the set of
all test users.

Note that five of the performance metrics (the ones related to diversity, surprise,
and novelty) correspond to the five reranking approaches described in Section 7.1. For
convenience, we adapt the notation of each reranking approach to the corresponding
metric. For instance, we refer to the rating-based diversity metric as Divratings and we
refer to the corresponding reranking approach (i.e., that reranks using this metric) as
Divr

ratings (Section 7.1.1, Equations (7) and (9)).
The Recall and Coverage metrics do not have corresponding reranking approaches.

Thus, in total, we have seven metrics and five reranking approaches.
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7.2.3. Datasets. We tested the proposed beyond-accuracy reranking approaches on two
benchmark datasets for offline recommender system evaluation—the MovieLens 1M
dataset5 and the Last.fm 1K dataset.6

The MovieLens dataset contains ∼1 million ratings, 6,040 users, and 3,706 movies.
The movies are annotated using a vocabulary of 18 genres (on average 1.65 genres per
movie). To obtain richer content descriptors for the movies, we additionally scraped
IMDb plot keywords for each movie and kept those labels that appeared in the profiles
of at least 10 movies. This resulted in an average of 60 labels per movie.

The Last.fm dataset contains the listening events for 992 users and more than 100K
artists. As the dataset is extremely sparse, we cleaned the set of artists by leaving only
those for which we could obtain at least three Last.fm tags (using the artist.getTopTags
method of the Last.fm API7) and discarding artists who were listened to by fewer than
20 users. This resulted in 992 users and 7,280 artists, with a total of 500K ratings. The
listening frequencies of the artists were transformed into ratings from 1 to 5 using the
standard approach for converting frequency-based implicit feedback into numerical
ratings [Celma 2009]. To avoid noisy data, we retrieved a maximum of the 10 most
popular labels for every artist and kept the labels that appeared in the profiles of at
least 10 artists. This resulted in eight labels per artist on average.

7.2.4. Recommendation Algorithms. The reranking approaches described in Section 7.1
were evaluated with four state-of-the-art recommendation algorithms: a pairwise
learning-to-rank algorithm [Weston et al. 2010] (LTR), a PureSVD [Cremonesi et al.
2010] matrix factorization algorithm implemented using the sparsesvd library8 (MF),
and two k-nearest-neighbor algorithms—a user-based collaborative filtering method
(UB) and an item-based collaborative filtering method (IB) [Desrosiers and Karypis
2011]. We note that to achieve an optimal accuracy on the Last.fm dataset (which
consists of implicit feedback data converted to explicit numeric ratings), an algorithm
designed for implicit feedback may be a better choice. However, since the goal of our
experiments was not achieving the highest possible accuracy on both datasets but
rather investigating the behavior of state-of-the-art algorithms with respect to beyond-
accuracy metrics, we chose the four algorithms as representatives of the techniques
most commonly discussed in the RS literature and evaluated the same set of algorithms
with both datasets.

We optimized each algorithm’s parameters (using a grid search strategy) to maxi-
mize recommendation accuracy (i.e., the Recall metric) as this is the standard prac-
tice in RS research. For the LTR algorithm, we optimized the regularization constant
C ∈ {1, 10, 100, 1000}, the learning rate γ ∈ {0.01, 0.001, 0.0001}, and the number of
factors f ∈ {25, 50, 75, 100}; for the MF algorithm, we optimized the number of factors
f ∈ {25, 50, 75, 100, 150, 175, 200, 250}; and for the k-NN algorithms, the neighbor-
hood size k ∈ [20, 250]. The selected parameter values for each algorithm/dataset
combination are as follows:

—LTR: f = 25, C = 1,000, γ = 0.01 for the MovieLens dataset, and f = 50, C = 10,
γ = 0.01 for the Last.fm dataset

—MF: f = 25 for both datasets
—UB: k = 150 for the MovieLens dataset, and k = 20 for the Last.fm dataset
—IB: k = 60 for both datasets

5http://grouplens.org/datasets/movielens/.
6http://www.dtic.upf.edu/∼ocelma/MusicRecommendationDataset/lastfm-1K.html.
7http://www.last.fm/api/show/artist.getTopTags.
8https://pypi.python.org/pypi/sparsesvd/.
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For comparison, we note that Jannach et al. [2013] in their analysis of beyond-
accuracy objectives used item-based and user-based k-NN algorithms with k = 100 and
an SVD matrix factorization algorithm with the number of factors f = 50. Bellogı́n
et al. [2013] conducted experiments with k = 15 for both k-NN algorithms and f = 50
for the matrix factorization algorithm. Pampı́n et al. [2014] found the accuracy of the
user-based k-NN algorithm to improve with increasing k until k = 90 and to thereafter
remain constant at least until k = 200. (They did not optimize the item-based algorithm
and fixed the value at k = 300 for their experiments.)

In the following sections, we report our findings and compare the results with the
previous works discussed in Section 7. It is important to note that any reported differ-
ences should not be treated as definite conclusions but rather as indications for further
research, as they may be influenced by a number of factors, such as the differences
in preprocessing of the datasets, tuning of the algorithm parameters, and evaluation
methodologies [Said and Bellogı́n 2014]. In particular, the one plus random method-
ology adopted in our experiments has been shown to favor approaches recommending
more popular items [Cremonesi et al. 2010; Jannach et al. 2015b]. Consequently, opti-
mizing a recommendation algorithm’s parameters using this methodology may result
in the algorithm’s configuration being more popularity oriented compared to the param-
eter settings used in other studies. However, we believe that the possible popularity
biases of individual algorithms do not invalidate the findings of this research since
we focus on the relative comparison of reranking strategies applied to the output of
individual algorithms.

7.3. Results and Discussion

We conducted two main sets of experiments. One was aimed at comparing the per-
formance of the four recommender algorithms (optimized for recall, as discussed in
the previous section) in terms of the different beyond-accuracy performance metrics
(Section 7.3.1). The other was aimed at evaluating the five reranking approaches: we
used each reranking of the results of each of the four recommendation algorithms and
recorded all performance measures (Section 7.3.2). Furthermore, we report initial ob-
servations regarding the influence of algorithm parameters on the performance metrics
and reranking effectiveness (Section 7.3.3).

7.3.1. Comparison of Recommendation Algorithms. Figures 1 and 2 show the results ob-
tained for each of the four recommendation algorithms on the MovieLens and Last.fm
datasets, respectively.

On the MovieLens dataset (Figure 1), the LTR and MF algorithms show a similar
performance: both are the best in accuracy (Recall) and diversity (Divcont and Divratings)
and lose to the k-NN algorithms in surprise (Scont and Sco−occ). However, the LTR
algorithm significantly outperforms the MF algorithm in Novelty and Coverage, which
indicates a tendency of the matrix factorization algorithm to focus on popular items
(i.e., ones with low novelty).

We compare these results with the findings of Jannach et al. [2013], who used the
MovieLens dataset (although rather than using the 1 million rating set, Jannach et al.
used a subset of the 10 million rating set) and a different learning-to-rank approach (the
Bayesian Personalized Ranking algorithm, which was designed for implicit feedback
data). Jannach et al. report that both learning-to-rank and matrix factorization achieve
high catalog coverage but perform poorly in terms of novelty (the learning-to-rank
algorithm being particularly vulnerable to the popularity bias). In our results, we
observe a more direct link between high coverage and novelty—the LTR algorithm
doing well at both and the MF algorithm showing inferior performance.
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Fig. 1. Metric comparison for the evaluated algorithms (MovieLens dataset).

Fig. 2. Metric comparison for the evaluated algorithms (Last.fm dataset).
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The IB and UB k-NN algorithms show a similar performance in terms of Recall,
Divcont, and Divratings metrics, both losing to the LTR and MF algorithms. The IB k-NN
algorithm achieves second-best performance in Novelty (losing only to the LTR algo-
rithm) and is the best in Coverage. On the other hand, the UB algorithm is generating
the most surprising recommendations (Scont and Sco−occ) but shows the worst perfor-
mance among the four algorithms in terms of Novelty and Coverage, which indicates
a tendency to recommend popular items.

The observed performance of the UB algorithm is in contrast with results reported
by Bellogı́n et al. [2013], who found the user-based k-NN algorithm to generate the
most novel recommendations on the MovieLens dataset (compared to an item-based
k-NN and an SVD algorithm). This difference may be explained by their neighbor-
hood size (k = 15), as smaller neighborhood size corresponds to higher novelty (see
Section 7.3.3). Jannach et al. found the UB algorithm to perform poorly in terms of cov-
erage, which matches our findings. They also report a tendency of the UB algorithm to
recommend either the most popular or the most novel items (with approximately equal
frequency)—a result that could not be confirmed by our experiments, since we measure
the algorithm’s novelty by averaging the novelty scores of items in recommendation
lists (Equation (17)).

On the Last.fm dataset (Figure 2), the results show a few differences compared to
the MovieLens dataset. The main difference in the results is the behavior of the LTR
algorithm, which now loses to other algorithms in terms of Recall, Divratings, Novelty,
and Coverage. Moreover, the LTR algorithm shows the best results in surprise (Scont
and Sco−occ).

The inferior performance of the LTR algorithm in terms of Recall could be caused
by the recommender algorithms we chose to use and the rating data in the dataset—
implicit feedback converted to numeric ratings (Section 7.2.4).

The MF algorithm is the best in diversity (particularly Divcont) and is also second best
in Novelty and Coverage, losing to the IB algorithm. Differently from the MovieLens
results, the MF algorithm also performs better than the k-NN algorithms in terms of
content-based surprise Scont.

Interestingly, the results on Last.fm data also show both k-NN algorithms to achieve
the best Recall, slightly outperforming the MF algorithm. This is in line with previous
works showing that, when evaluating top-N recommendations (particularly using the
one plus random methodology), the accuracy of simple techniques may be similar to
that of the more advanced algorithms [Cremonesi et al. 2010; Jannach et al. 2013].

We compare our results on Last.fm data to the findings of Bellogı́n et al. [2013],
who evaluated (among other techniques) item-based and user-based k-NN algorithms
as well as an SVD factorization algorithm on a Last.fm dataset (the authors built
a dedicated dataset with 1.9K users and 17.6K artists). Results reported by Bellogı́n
et al. confirm the high novelty and coverage achieved by the item-based k-NN algorithm.
However, the authors also report the user-based k-NN algorithm to achieve second-best
novelty and the best coverage results. As said earlier, this result can be explained by
their small neighborhood size (k = 15).

7.3.2. Comparison of Reranking Approaches. Figure 3 shows the performance measure
values obtained using the different reranking approaches with the MF algorithm on
the MovieLens dataset. Analogous sets of results were obtained for every dataset-
algorithm combination (eight sets of results in total). To better describe the results, in
this section, we outline the findings that are largely consistent across both datasets. A
full set of result figures is presented in the appendix.

In Figure 3 (and all the figures in the appendix), each individual chart (a) through (g)
shows the values for one performance metric (named on the y-axis), with the different
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Fig. 3. Metric values for the different reranking approaches with the MF algorithm (MovieLens data).

reranking approaches displayed along the x-axis. The Baseliner approach corresponds
to the original recommendation ranking generated by the respective algorithm. In
other words, in the baseline there is no reranking.

As said in Section 7.2.2, each performance metric except for Recall and Coverage
corresponds to a reranking approach. For instance, the diversity reranking Divr

ratings
is the approach that reranks the list of candidate recommendations according to the
rating-based diversity objective (see Section 7.1.1) and therefore corresponds to the
Divratings metric (see Equation (14)).

As expected, Recall has its highest value when using the Baseliner ranking for each
algorithm and is lowered using any of the reranking approaches (chart (a) in each fig-
ure). This illustrates the well-known tradeoff between recommendation accuracy and
beyond-accuracy objectives. For the diversity, surprise, and novelty metrics (charts (b)–
(f) in each figure), the highest values are achieved using the corresponding reranking
approaches, which is the expected outcome. As said in Section 7, our main focus in these
experiments was observing how each beyond-accuracy metric is affected by reranking
approaches that are not directly optimizing the metric. These observations allow us to
identify positive or negative correlations between the different beyond-accuracy objec-
tives: if a reranking approach significantly improves a metric compared to the baseline
ranking, we can assume there exists a positive correlation between the reranking ob-
jective and the metric; on the other hand, if a reranking approach results in a value for
the metric that is lower than the baseline, we assume a negative correlation between
the reranking objective and the metric.

Here we outline the discovered correlations between the different objectives. As said
earlier, the results for the Last.fm dataset are largely consistent with those obtained
with the MovieLens data (the few notable exceptions are mentioned later).

—Reranking the recommendations for novelty (i.e., using the Noveltyr reranking) hurts
accuracy the most (see Figure 3, chart (a)). This is not surprising in the offline
evaluation setting, as any offline evaluation methodology is (to a certain extent)
biased toward popular items: user ratings in the test set are more likely to belong to
popular items. It is worth noting that in three cases (MF, UB, and IB algorithms on
Last.fm dataset), Noveltyr reranking has the second-worst Recall performance, with
the largest accuracy loss shown for the Sr

cont reranking approach (see the appendix,
Figure 12(a)).

ACM Transactions on Interactive Intelligent Systems, Vol. 7, No. 1, Article 2, Publication date: December 2016.



2:32 M. Kaminskas and D. Bridge

—Rating-based diversity is positively correlated with novelty, since reranking Noveltyr

positively influences the rating-based diversity metric Divratings (Figure 3(c)) and vice
versa—reranking Divr

ratings positively influences the Novelty metric (Figure 3(f)).
—There is a positive correlation between the content-based diversity and the content-

based surprise (Figures 3(b) and 3(d)). This correlation might be explained by the fact
that both Divcont and Scont metrics as well as the corresponding reranking approaches
Divr

cont and Sr
cont use the Jaccard item distance function based on the content labels

(Equation (8)).
—A negative correlation is observed among the co-occurrence-based surprise and nov-

elty, since reranking Noveltyr results in Sco−occ values lower than the baseline (Fig-
ure 3(e)) and reranking Sr

co−occ results in Novelty values slightly lower than the
baseline (appendix, Figure 8(f)). This indicates that the Sco−occ metric is scoring the
long-tail items lower than the popular items. The finding confirms previous results:
the metric is sensitive to item popularity. This is because its core component—point-
wise mutual information (Equation (10))—is sensitive to pairs of rare items (see
Kaminskas and Bridge [2014] for more discussion). For future use, the metric may
need to be modified to avoid such bias.

—Coverage is positively influenced by the Divr
ratings and Noveltyr rerankings (Fig-

ure 3(g)). The positive relationship between coverage and novelty is expected, as
discussed in Section 5, while the positive influence of rating-based diversity may be
linked to its correlation with novelty (see earlier). Interestingly, for the UB and IB k-
NN algorithms (appendix, Figure 8(g)), the highest Coverage value is achieved when
reranking for rating-based diversity Divr

ratings (with Noveltyr reranking achieving
the second-best value).

—An exception to the previous finding is the negative influence on Coverage obtained
by the Noveltyr reranking with the LTR algorithm on the Last.fm dataset (appendix,
Figure 10(g)). This may indicate that the LTR algorithm tends to focus on a partic-
ular section of the long-tail item distribution in the Last.fm dataset; however, more
detailed analysis of the issue is needed before reaching definite conclusions.

As discussed in Section 7.2.4, the evaluation methodology adopted in our experiments
may favor popularity-oriented algorithm configurations. This may have an impact on
the results obtained by the reranking strategies, as certain algorithms can have more
popular items among the reranking candidates. However, we are only interested in
comparison of reranking techniques within the same algorithm recommendations. To
conduct a cross-algorithm comparison of reranking strategies, additional popularity
bias metrics (such as the average rating of recommended items [Jannach et al. 2015b])
could be employed. We leave this to future work.

7.3.3. The Impact of Algorithm Parameters. We also conducted experiments aimed at in-
vestigating the influence of recommendation algorithm parameters on the different
performance metrics. For the UB and IB k-NN algorithms, we computed all the perfor-
mance metrics while varying the value of the neighborhood size parameter k. For the
MF algorithm, we varied the number of factors f . We did not include the learning-to-
rank (LTR) algorithm in this set of experiments, since the algorithm’s three parameters
result in a much larger parameter search space.

Due to the large number of experiment runs required for the different parameter
values, the results reported in this section were computed with a random sample of
1,000 users on the MovieLens dataset (rather than the full set of 6,040 users).

Figures 4 and 5 show results for the different parameter values of the MF and UB
algorithms, respectively.
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Fig. 4. The influence of the number of factors f on performance of the MF algorithm (MovieLens dataset).

Fig. 5. The influence of the neighborhood size k on performance of the user-based k-NN algorithm (Movie-
Lens dataset).
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Fig. 6. Recall and coverage values obtained with the reranking approaches on two versions the UB algo-
rithm: k = 50 and k = 150 (MovieLens data).

—For the MF algorithm, the results show that increasing the number of factors leads
to a loss in accuracy (Recall). However, the beyond-accuracy performance metrics
increase for higher f values. For instance, Coverage goes up from approximately 700
items for f = 25 to almost 1, 200 items for f = 250. The increase is also evident for
the diversity metrics, Novelty, and content-based surprise Scont. The co-occurrence-
based surprise Sco−occ decreases slightly for higher f values, which may be linked to
the metric’s sensitivity to item popularity.

—For the UB algorithm, the results present an “inverted” picture: higher k values
significantly decrease Coverage as well as the diversity metrics, Novelty, and Scont,
while Sco−occ values are slightly increasing. The Recall is increasing with the value
of k, with the maximum reached at k = 150. Further increase of k does not improve
the performance.

—For IB, the trend of decreasing Novelty and Coverage values for larger k values could
be observed. However, we do not show this in a figure, as the observed impact of k
on the metrics was much less pronounced. For instance, Coverage decreased from
approximately 900 items for k = 20 to approximately 800 items for k = 250.

We note that the decreasing coverage values for larger neighborhood sizes in both
k-NN approaches may seem counterintuitive as a larger user/item neighborhood leads
to more items being considered for recommendation. However, this trend can only
be measured using the “prediction coverage” metric (i.e., the ratio of items for which
prediction can be made, see Section 5.1). Since we focus on the coverage of items that
appear in the top-N recommendation lists, we obtain results that are caused by more
popular items appearing among the top recommendations for larger neighborhood
sizes.

An aspect of beyond-accuracy optimization that we did not fully address in our exper-
iments is the influence of recommendation algorithm parameters on the effectiveness
of reranking approaches. We observed interesting changes in the Coverage results for
the different values of neighborhood size k with the UB algorithm (on MovieLens data).
When using the best-performing (in terms of Coverage value) reranking Divr

ratings with
the neighborhood size k = 50, we achieved a 30% higher coverage compared to that
of k = 150 (Figure 6, bottom charts). While the difference in Recall for the Baseliner

rankings of UB with k = 50 and k = 150 is approximately 0.01 (see Figure 6, upper

ACM Transactions on Interactive Intelligent Systems, Vol. 7, No. 1, Article 2, Publication date: December 2016.



A Survey and Empirical Analysis of Beyond-Accuracy Objectives in Recommender Systems 2:35

charts), it increases to approximately 0.05 for the Divr
ratings rankings. Although more

analysis is needed to investigate this tradeoff, it is likely that a 0.05 loss in accuracy is
a price worth paying for a 30% increase in recommendation coverage.

A detailed analysis of the impact of algorithm parameters on beyond-accuracy ob-
jectives is out of the scope of this article. We refer interested readers to Jannach et al.
[2015b], where a number of state-of-the-art algorithms (with different parameter con-
figurations) are analyzed with respect to various recommendation metrics (including
popularity and concentration bias).

8. DISCUSSION AND CONCLUSIONS

In this article, we have reviewed the state-of-the-art research on beyond-accuracy
objectives in recommender systems. We have focused on the four most widely dis-
cussed objectives—diversity, serendipity, novelty, and coverage. For each objective, we
reviewed the relevant definitions found in the literature and methods for optimizing
each objective.

Furthermore, we conducted offline experiments aimed at evaluating how the state-
of-the-art recommendation algorithms perform in terms of the beyond-accuracy objec-
tives and at studying the relationships between the objectives themselves. We have
implemented a number of optimization strategies for improving diversity, serendipity,
and novelty and investigated how optimizing each objective affects recommendation
accuracy and beyond-accuracy metrics.

The main goal of this work was to provide a reference point for further research into
improving the different beyond-accuracy qualities of recommender systems. We aimed
both to survey the existing literature and to identify important relationships between
the different objectives.

There are still many interesting challenges to address in this research area. We
believe the following research directions to be of particular importance:

Evaluation of Beyond-Accuracy Objectives. As stated in Section 6, offline evaluation
is limited when it comes to understanding the real impact of beyond-accuracy objectives
on the users’ experience. The gap between offline metrics and the users’ perception of
recommendation qualities has been exemplified in a recent study [Said et al. 2013],
which showed that two algorithms recommending an almost disjoint set of items and
obtaining significantly different accuracy scores in offline settings were perceived as
equally useful by participants of a user study.

Even when performing user studies, a number of factors such as the domain of rec-
ommended items, the type of survey questions, or item familiarity effects can influence
the results. For instance, it has been shown that item familiarity has a strong correla-
tion with user appreciation of recommendations [Jannach et al. 2015a]. Ultimately, no
results will be complete without conducting A/B experiments, where the users would
be unaware of their involvement in the evaluation.

Adaptivity of Beyond-Accuracy Objectives. Another important challenge in beyond-
accuracy research is developing optimization solutions that are adapted to specific
recommendation domains, since different items may require different levels of recom-
mendation diversity or novelty. For instance, the same novelty-enhancing algorithm
may not suit both a movie recommender (where obvious recommendations are not
desired) and a music streaming service (where well-known items may be among the
desirable recommendations) [Kapoor et al. 2015].

An equally important challenge is to tailor the beyond-accuracy optimization to
the needs or preferences of individual users. Solutions that adapt to users’ needs or
preferences for diversity, serendipity, or novelty may do so implicitly, for example, based
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on the users’ rating behavior [Shi et al. 2012] or the type of consumed items [Oh et al.
2011; Kapoor et al. 2015]. Alternatively, users may be given explicit control over their
recommendations, for example, choosing to see more (or fewer) popular items [Harper
et al. 2015].

Additionally, the solutions may be improved by ensuring transparency of beyond-
accuracy recommendations. For instance, it has been argued that user acceptance of
diversification may suffer if no explanation of the diversity level is provided [Castagnos
et al. 2013].

APPENDIX

The appendix contains the figures of results discussed in Section 7.3.2. Figures 7
through 9 show the performance of the reranking approaches for the LTR, IB, and UB
algorithms on the MovieLens dataset.

Figures 10 through 13 show the results for the LTR, MF, IB, and UB algorithms on
the Last.fm dataset.

Fig. 7. Metric values for the different reranking approaches with the LTR algorithm (Movielens data).

Fig. 8. Metric values for the different reranking approaches with the IB algorithm (MovieLens data).
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Fig. 9. Metric values for the different reranking approaches with the UB algorithm (Movielens data).

Fig. 10. Metric values against the different reranking approaches with the LTR algorithm (Last.fm data).

Fig. 11. Metric values against the different reranking approaches with the MF algorithm (Last.fm data).
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Fig. 12. Metric values against the different reranking approaches with the IB algorithm (Last.fm data).

Fig. 13. Metric values against the different reranking approaches with the UB algorithm (Last.fm data).
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