

Ian Robinson, Jim Webber, and Emil Eifrem

Graph Databases

Graph Databases
by Ian Robinson, Jim Webber, and Emil Eifrem

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

Proofreader: FIX ME!
Cover Designer: FIX ME!

Interior Designer: FIX ME!
Illustrator: FIX ME!

Revision History for the :

2013-02-25: Early release revision 1

See http://oreilly.com/catalog/errata.csp?isbn=9781449356262 for release details.

ISBN: 978-1-449-35626-2

http://oreilly.com/catalog/errata.csp?isbn=9781449356262

Table of Contents

Part I. GDB Book

1. Introduction. 3
What is a Graph? 5
Making the Connection to NOSQL 7

2. The NOSQL Phenomenon. 9
The Rise of NOSQL 9
ACID Versus BASE 11
The NOSQL Quadrants 12
Document Stores 13
Key-Value Stores 16
Column Stores 19
Query Versus Processing in Aggregate Stores 23
Moving Onwards and Upwards 24

3. Graphs and Connected Data. 25
The Aggregate Model: Lacking Relationships 25
The Relational Model: Also Lacking Relationships 29
Connected Data and Graph Databases 32
Schema-Free Development and Pain-Free Migrations 38
Connecting the Dots 39

4. Working with Graph Data. 41
Models and Goals 41
Relational Modeling in a Systems Management Domain 42
Modeling for relational data 44
The Property Graph Model 48
The Cypher Query Language 51

iii

Cypher Philosophy 52
Creating Graphs 53
Beginning a Query 55
Declaring information patterns to find 56
Constraining Matches 57
Processing Results 58
Query Chaining 58

Graph Modeling in a Systems Management Domain 59
Testing the model 62

Common Modeling Pitfalls 63
Email Provenance Problem Domain 63
A Sensible First Iteration? 64
Second Time’s the Charm 66
Evolving the Domain 69

Avoiding Anti-Patterns 74
Summary 74

5. Graph Databases. 75
Graph databases: a definition 75

Hypergraphs 75
Triples 77

Graph-Native Stores 79
Architecture 81
Neo4j Programmatic APIs 88

Kernel API 89
Core (or “Beans”) API 90
Neo4j Traversal API 91

Non-Functional Characteristics 92
Transactions 92
Recoverability 93
Availability 94
Scale 96

Graph Compute Platforms 99
Summary 104

6. Working with a Graph Database. 105
Data Modeling 105

Describe the Model in Terms of Your Application’s Needs 105
Nodes for Things, Relationships for Structure 107
Model Facts as Nodes 107
Represent Complex Value Types as Nodes 109
Time 110

iv | Table of Contents

Iterative and Incremental Development 112
Application Architecture 113

Embedded Versus Server 113
Clustering 118
Load Balancing 119

Testing 122
Test-Driven Data Model Development 122
Performance Testing 129

Capacity Planning 132
Optimization Criteria 133
Performance 133
Redundancy 136
Load 136

7. Graph Data in the Real World. 139
Reasons for Choosing a Graph Database 139
Common Use Cases 140

Social Networks 140
Recommendation Engines 141
Geospatial 142
Master Data Management 142
Network Management 143
Access Control and Authorization 144

Detailed Use Cases 144
Social Networking and Recommendations 145
Access Control 156
Logistics 164

8. Predictive Analysis with Graph Theory. 179
Depth- and Breadth-First Search 179
Path-Finding with Dijkstra’s Algorithm 181
The A* Algorithm 192
Graph Theory and Predictive Modeling 193

Triadic Closures 194
Structural Balance 196

Local Bridges 203
Summary 205

Table of Contents | v

PART I

GDB Book

CHAPTER 1

Introduction

Graph databases address one of the great macroscopic business trends of today: lever‐
aging complex and dynamic relationships to generate insight and competitive advan‐
tage. Whether we want to understand relationships between customers, elements in a
telephone or datacenter network, entertainment producers and consumers, or genes
and proteins, the ability to understand and analyze vast graphs of highly-connected data
will be a key factor in the determining which companies outperform their competitors
over the coming decade.

For data of any significant size or value, graph databases are the best way to represent
and query connected data. While large corporates realized this some time ago, creating
their own proprietary graph processing technologies, we’re now in an era where that
technology has rapidly become democratized. Today, general-purpose graph databases
are a reality, allowing mainstream users to experience the benefits of connected data
without having to invest in building their own graph infrastructure.

What’s remarkable about this renaissance of graph data and graph thinking is that graph
theory itself is not new. Graph theory was pioneered by Euler in the 18th century, and
has been actively researched and improved by mathematicians, sociologists, anthro‐
pologists, and others since then. However, it is only in the last few years that graph theory
and graph thinking have been applied to information management. Graph databases
have been proven to solve some of the more relevant data management challenges of
today, including important problems in the areas of social networking, master data
management, geospatial, recommendations engines, and more. This increased focus on
graph is driven by the massive commercial successes of companies such as Facebook,
Google, and Twitter, all of whom have centered their business models around their own
proprietary graph technologies, together with the introduction of general purpose graph
databases into the technology landscape (a very recent phenomenon in informatics).

Graphs and graph databases are tremendously relevant to anyone seeking to model the
real world. The real world—unlike the forms-based model behind the relational data‐

3

base—is rich and interrelated: uniform and rule-bound in parts, exceptional and irreg‐
ular in others. Unlike relational databases, which require a level of erudition and spe‐
cialized training to understand, graph databases store information in ways that much
more closely resemble the ways humans think about data.

One of the unique things about graph databases that makes them especially adapted to
modelling the real world is that they elevate relationships to be first-class citizens of the
data model. We take for granted the fact that the items stored in a database—whether
they are rows, documents, objects, or nodes—each merit their own rich set of descrip‐
tors. A Person, for example, is often attributed with rich metadata such as name, gender,
and date of birth. What may not be so clear, however, is that metadata also exists in the
relationships between people. Unlike a relational database, where a relationship is ef‐
fectively just a runtime constraint, part of what makes graph databases special is that
they put relationships on the same level as the data items themselves. A “friend” rela‐
tionship can therefore include a “friends since” datestamp, together with properties
describing the degree and quality of friendship, and so on. As information processing
continues to evolve, the next frontier arguably lies in the ability to capture, analyze, and
understand these rich relationships.

We believe, and many of the major analysts agree, that in a few years the “Not Only SQL”
conversation that appears so pertinent today will cease to be about the “Not”, and will
instead focus on what is: a heterogeneous data landscape where post-relational tech‐
nologies sit alongside relational. There is no question that graph databases, which are
currently recognized as one of the four major types of NOSQL database, will be one of
the technology categories from which future data architects will choose the best tool for
the job at hand.

The purpose of this book is to introduce graphs and graph databases to technology
workers, including developers, database professionals, and technology decision makers.
Reading this book, you will come away with a practical understanding of graph data‐
bases. We show how data is “shaped” by the graph model, and how it is queried, reasoned
about, understood and acted upon using a graph database. We discuss the kinds of
problems that are well aligned with graph databases, with examples drawn from prac‐
tical, real-world use cases. And we describe the surrounding ecosystem of complemen‐
tary technologies, highlighting what differentiates graph databases from other database
technologies, both relational and NOSQL.

While much of the book talks about graph data models, it is not a book about graph
theory. The annals of graph theory include numerous fascinating and complex academic
papers, yet very little graph theory is needed in order to take advantage of the practical
benefits afforded by graph databases—provided we understand what a graph is, we’re
practically there. Before we discuss just how productive graph data and graph databases
can be, let’s refresh our memories about graphs in general.

4 | Chapter 1: Introduction

What is a Graph?
Formally a graph is just a collection of vertexes and edges (as we learned in school)--or,
in less intimidating language, a set of nodes and the relationships that connect them.
We can use graphs to model all kinds of scenarios, from the construction of a space
rocket, to a system of roads, and from the supply-chain or provenance of foodstuff, to
medical history for populations, and beyond. Graphs are general-purpose and expres‐
sive, allowing us to model entities as nodes and their semantic contexts using relation‐
ships.

For example, Facebook’s data is easily represented as a graph. In Figure 1-1 we see a
small network of friends. The relationships are key here in establishing the semantic
context: namely, that Billy considers Harry to be a friend, and that Harry, in turn, con‐
siders Billy to be a friend. Ruth and Harry have likewise expressed their mutual friend‐
ship, but sadly, while Ruth is friends with Billy, Billy hasn’t (yet) reciprocated that
friendship.

Figure 1-1. A small social graph

Of course, Facebook’s real graph is hundreds of millions of times larger than the example
in Figure 1-1, but it works on precisely the same principles, plus a few extra features: as
well as being “friends” with one another, Facebook users can express consistency of
opinion by adding “like” links to the things they have positive sentiments about. No
problem: we can do the same. In Figure 1-2 we’ve expanded our sample network to
include “like” relationships.

What is a Graph? | 5

Figure 1-2. Liking posts on Facebook

Though simple, the graph in Figure 1-2 shows the expressive power of the model. It’s
easy to see that Ruth has made a list of status updates (starting from status message 101
all the way back to status message 99); that the most recent of these updates is linked
via a relationship marked CURRENT; and that earlier updates are joined into a kind of list
by relationships marked PREVIOUS, thus creating a timeline of posts. We can also see
that Harry ̀ LIKE`s Ruth’s status message 100, but hasn’t expressed the same sentiments
about any of the others.

6 | Chapter 1: Introduction

1. There are other graph models with different constraints. For example property graphs don’t natively suit
hyperedges without some additional effort, but that’s really the only drawback.

In discussing Figure 1-2 we’ve also informally introduced the most popular variant of
graph model, the Property Graph. A Property Graph has the following characteristics:

• It contains nodes and relationships
• Nodes contain properties (key-value pairs)
• Relationships are named, directed and always have a start and end node
• Relationships can also contain properties

Most people find the Property Graph model intuitive and easy to understand. While
simple, it can be used to describe the overwhelming majority of graph use cases in ways
that yield useful insight into our data.1 The Property Graph model is supported by most
of the popular graph databases on the market today—including the market leader, Neo4j
—and in consequence, it’s the model we’ll use throughout the remainder of this book.

Making the Connection to NOSQL
Now we’ve refreshed our memory on graphs, it’s time for us to to move on to data and
databases. Not only must graph databases support graph modelling, they must also
support querying and analysing graph data. Fortunately, we have hundreds of years of
graph theory to help with analytics, and decades of research into graph algorithms to
help with queries. Today this knowledge has been packaged into a set of database tech‐
nologies that together bring the power of the graph to the developer community.

It’s an exciting time to be working with data, and the current trends around NOSQL
and Big Data are fascinating (and fast-moving). To put the expressive power of graph
databases into context, we need first to understand what is offered by the non-graph
databases.

Making the Connection to NOSQL | 7

CHAPTER 2

The NOSQL Phenomenon

Recent years have seen a meteoric rise in popularity of a family of data storage tech‐
nologies known as NOSQL (a cheeky acronym for Not Only SQL, or more confronta‐
tionally, No to SQL). But NOSQL as a term defines what those data stores are not—
they’re not SQL-centric relational databases—rather than what they are, an interesting
and useful set of storage technologies whose operational, functional, and architectural
characteristics are many and varied.

In this chapter we’re going to discuss some of the recent forces that have given rise to
these NOSQL databases: the exponential growth in data volumes, the rise of connect‐
edness, and the increase in degrees of semi-structure. We define data complexity in
terms of these three forces: data size, connectedness and semi-structure. By examining
how the different NOSQL technologies address these forces, we’ll be better placed to
understand the role of graph databases in the rapidly changing world of data technol‐
ogies.

The Rise of NOSQL
Historically, most enterprise-level Web apps could be run atop a relational database.
The NOSQL movement has arisen in response to the needs of an emerging class of
applications that must easily store and process data which is bigger in volume, changes
more rapidly, and is more structurally varied than can be dealt with by traditional
RDBMS deployments. For these applications, data has begun to move out of the SQL
sweet-spot.

It’s no surprise that as storage has increased dramatically, volume has become the prin‐
cipal driver behind much of the penetration of NOSQL stores into organizations. Vol‐
ume may be defined simply as:

• Volume: the size of the stored data

9

As is well known, large datasets become unwieldy when stored in relational databases;
in particular, query execution times increase as the size of tables and the number of joins
grow (so called join pain). This isn’t the fault of the databases themselves; rather, it is an
aspect of the underlying data model, which builds a set of all possible answers to a query
before filtering to arrive at the correct solution.

In an effort to avoid joins and join pain, and thereby cope better with extremely large
data sets, the NOSQL world has adopted several alternatives to the relational model.
Though more adept at dealing very large data sets, these alternative models tend to be
less expressive than the relational one (with the exception of the graph model, which is
more expressive).

But volume isn’t the only problem modern Web-facing systems have to deal with. Be‐
sides being big, today’s data often changes very rapidly. This is the velocity metric:

• Velocity: the rate at which data changes over time

Velocity is rarely a static metric: internal and external changes to a system and the
context in which it is employed can have considerable impact on velocity. Coupled with
high volume, variable velocity requires data stores to not only handle sustained levels
of high write-loads, but also deal with peaks.

There is another aspect to velocity, which is the rate at which the structure of the data
changes. In other words, as well as the value of specific properties changing, the overall
structure of the elements hosting those properties can change as well. This commonly
occurs for two reasons. The first is fast-moving business dynamics: as the business
changes, so do its data needs. The second is that data acquisition is often an experimental
affair: some properties are captured “just in case”, others are introduced at a later point
based on changed needs; the ones that prove valuable to the business stay around, others
fall by the wayside. Both these forms of velocity are problematic in the relational world,
where high write loads translate into a high processing cost, and high schema volatility
has a high operational cost.

While commentators have later added other useful requirements to the original quest
for scale, the final key aspect is the realization that data is far more varied than we’ve
been comfortably been able to cope with in the relational world — for existential proof
think of all those nulls in our tables and the null checks in our code — that has driven
out the final widely agreed upon facet, variety which we can define as:

• Variety: the degree to which data is regularly or irregularly structured, dense or
sparse, and importantly connected or disconnected.

The notion of variety manifests itself in different ways. For some data stores it’s simply
that denormalized documents are easier for developers than shoe-horning data into a

10 | Chapter 2: The NOSQL Phenomenon

1. For the graph stores that we consider elsewhere, it’s that the relational model is semantically weak in com‐
parison.

2. The .NET-based RavenDB has bucked the trend amongst aggregate stores in supporting ACID transactions.
As we’ll see in subsequent chapters, ACID properties are still upheld by competent graph databases.

relational schema, for others it’s that simple keys and values don’t need all the sophis‐
ticated features that relational databases provide 1.

Nonetheless the point is that we accept data is no longer necessarily tabular in nature,
and retrospectively it’s clear that in the modern era not much of that data ever was.

ACID Versus BASE
When we first encounter NOSQL we often consider it in the context of what many of
us are already familiar with: relational databases. Although we know the data and query
model will be different (after all, there’s no SQL!) the consistency models used by
NOSQL stores tend to be quite different to mature relational databases to support the
volume, velocity and variety of data for which the general NOSQL term is famed.

That being said, it’s worth taking a few moments to explore what consistency features
are available to help keep data safe and what trade-offs are involved when using (most)
NOSQL stores 2.

In the relational database world, we’re all familiar with ACID transactions, which have
been the norm for some time. The ACID guarantees provide us with a safe environment
in which to operate on data:

• Atomic: All operations in a transaction succeed or every operation is rolled back.
• Consistent: On transaction completion, the database is structurally sound.
• Isolated: Transactions do not contend with one another, contentious access to state

is moderated by the database so that transactions appear to run sequentially.
• Durable: The results of applying a transaction are permanent, even in the presence

of failures.

These properties mean that once a transaction completes, its data is consistent (so-called
write consistency) and stable on disk (or disks, or indeed in multiple distinct memory
locations). However while this is a wonderful abstraction for the application developer,
it requires sophisticated locking (causing logical unavailability) and is typically consid‐
ered to be a heavyweight pattern for most use cases.

In the NOSQL world, ACID transactions have gone out of fashion as stores have loos‐
ened requirements for immediate consistency, data freshness, and accuracy in order to
gain other benefits like scale and resilience (with the observation that for many domains,

ACID Versus BASE | 11

3. Though often non-functional requirements strongly influence our choice of database too.

ACID transactions are far more pessimistic than the domain actually requires). Instead
of using ACID, the term BASE has arisen as a popular way of describing the properties
of a more optimistic storage strategy.

• Basic Availability: The store appears to work most of the time.
• Soft-state: Stores don’t have to be write-consistent, nor do different replicas have to

be mutually consistent all the time.
• Eventual consistency: Stores exhibit consistency at some later point (e.g. lazily at

read time).

The BASE properties are far looser than the ACID guarantee, and there is no direct
mapping between them. A BASE store values availability (since that is a core building
block for scale) and does not offer write-consistency (though read your own writes tends
to mask this). BASE stores provide a less strict assurance that data will be consistent in
the future, perhaps at read time (e.g. Riak), or that data will always be consistent but
only for certain processed past snapshots (e.g. Datamic).

Given such loose support for consistency, we as developers need to be far more rigorous
in our approach to developing against these stores and cannot any longer rely on the
transaction manager to sort out all our data access woes. Instead we must be intimately
familiar with the BASE behavior of our chosen stores and work within those constraints.

The NOSQL Quadrants
Having discussed the BASE model that underpins consistency in NOSQL stores, we’re
ready to start thinking about the numerous user-level data models. To disambiguate
these models, we’ve devised a simple taxonomy in Figure 2-1. That taxonomy shows of
the four fundamental types of data store in the contemporary NOSQL space. Within
that taxonomy, each store type addresses a different kind of functional use case 3.

12 | Chapter 2: The NOSQL Phenomenon

Figure 2-1. The NOSQL store quadrants

In the following sections we’ll deal with each of these (with the exception of graphs
which will receive a much fuller analysis in subsequent chapters), highlighting the char‐
acteristics of the data model, operational aspects, and drivers for adoption.

Document Stores
The document databases are perhaps offer the most immediately familiar paradigm for
developers. At its most fundamental level the model is simply that we store and retrieve
documents, just like an electronic filing cabinet. Documents tend to comprise the usual
property key-value pairs, but where those values themselves can be lists, maps, or similar
allowing for natural hierarchies in the document just as we’re used to with formats like
JSON and XML.

At the simplest level, documents can be stored and retrieved by ID. Providing an ap‐
plication remembers the IDs it’s interested in (e.g. usernames) then a document store
can act much like a key-value store (of which we’ll see more later). But in the general
case document stores rely on indexes to facilitate access to documents based on any of
their attributes. For example, in an e-commerce scenario a it would be useful to have
indexes that represent distinct product types so that they can be offered up to potential

Document Stores | 13

4. This isn’t the case for graph databases because the graph itself provides a natural adjacency index

sellers as we see in Figure 2-2. In general indexes are used to reify sets of related docu‐
ments out of the store for some application use.

Figure 2-2. Indexing reifies sets of entities in a document store

Much like indexes in relational databases, indexes in a document store allow us to trade
write performance (since we have to maintain indexes) for greater read performance
(because we examine fewer records to find pertinent data). For write-heavy records, it’s
worth bearing in mind that indexes might actually degrade performance overall.

Where data hasn’t been indexed, queries are typically much slower since a full search
of the data set has to happen 4. This is obviously an expensive task and is to be avoided
wherever possible — and as we shall see rather than process these queries internally, it’s
normal for document database users to externalize this kind of processing in parallel
compute frameworks.

Since the data model of a document store is one of disconnected entities, document
stores tend to have interesting and useful operational characteristics. For example, since
documents are mutually independent, document stores should have the ability to scale

14 | Chapter 2: The NOSQL Phenomenon

5. Key-value and column stores tend not to require this planning, and subsume allocation of data to replicas as
a normal part of their internal implementation

6. assuming the administrator has opted for safe levels of persistence when setting up the database

7. Though optimistic concurrency control mechanisms are useful, we also rather like transactions, and there
are numerous example of high-throughput performance transaction processing systems in the literature.

horizontally very well since there is no contended state between records at write time,
and no need to transact across replicas.

Sharding
Most document databases (e.g. MongoDB, RavenDB) make scaling-out an explicit as‐
pect of development and operations by requiring that the user plan for sharding of data
across logical instances to support horizontal scale 5. It’s often also puzzlingly cited as a
positive reason for embracing such stores, most likely because it induces a (misplaced)
excitement that scale is something to be embraced and lauded rather than something
to be skilfully and diligently mastered.

At the write level, document databases overwhelmingly provide (limited) transaction‐
ality at the individual record level. That is a document database will ensure that writes
to a single document are atomically persisted 6, but do not help across document updates.
That is, there is no locking support for operating across sets of documents atomically,
and such abstractions are left to application code to implement in a domain-specific
manner.

However since stored documents are not connected (save through indexes) there are
numerous optimistic concurrency control mechanisms that can be used to help recon‐
cile concurrent contending writes for a single document without having to resort to
strict locks. In fact some document stores (like CouchDB) have made this a key point
of their value proposition: that documents can be held in a multi-master database which
automatically replicates concurrently accessed, contended state across instances
without undue interference from the user, making such stores very operationally con‐
venient.

In other stores too the database management system may be able to distinguish and
reconcile writes to different parts of a document, or even use logical timestamps to
reconcile several contended writes into a single logically consistent outcome. This kind
of feature is an example of a reasonable, optimistic trade off: it reduces the need for
transactions (which we know tend to be latent and decrease availability 7) by using
alternative mechanisms which optimistically provide greater availability, lower latency
and higher throughput.

Document Stores | 15

8. http://www.allthingsdistributed.com/files/amazon-dynamo-sosp2007.pdf

9. The formula for number of replicas required is given by R = 2F +1 where F is the number of failures we should
tolerate.

Key-Value Stores
Key-value stores are cousins of the document store family but their lineage comes from
the Amazon’s Dynamo database 8. They act like (large, distributed) hashmap data struc‐
tures where (usually) opaque values are stored and retrieved by key.

As shown in Figure 2-3 the key space of the hashmap is spread across numerous buckets
on the network. For fault-tolerance reasons each bucket is replicated onto several ma‐
chines and such that every bucket is replicated the desired number of times 9 and so that
no machine (where possible) is an exact replica of any other so that we can load-balance
during recovery of a machine and its buckets (and avoid hotspots causing inadvertent
self denial-of-service).

Clients by comparison have an easy task. They store a data element by hashing a domain-
specific identifier (key). The hash function is crafted such that it provides a uniform
distribution across the available buckets, so that no single machine becomes a hotspot.
Given the hashed key, the client can use that address to store the value in a corresponding
bucket. A similar process occurs for retrieval of stored values.

16 | Chapter 2: The NOSQL Phenomenon

10. http://en.wikipedia.org/wiki/Consistent_hashing

Figure 2-3. Key-Value stores act like distributed hashmap data structures

Consistent hashing
In any computer system failures will occur. In dependable systems those failures are
masked via redundant replacements being switched in for faulty components. In a key-
value store — as with any distributed database — individual machines will likely be‐
come unavailable during normal operation as networks go down, or internal hardware
fails.

Such events are to be considered normal for any long running system, but the side effects
of recovering from such failures should not itself cause problems. For example if a
machine supporting a particular hash-range fails, it should not prevent new values in
that range being stored or cause unavailability while internal reorganization occurs.

This is where the technique of consistent hashing 10 is often applied. With this technique
writes to a failed hash-range are (cheaply) remapped to the next available machine
without disturbing the entire stored data set (in fact typically only the fraction of the
keys within the failed range need to be remapped, rather than the whole set). When the

Key-Value Stores | 17

http://en.wikipedia.org/wiki/Consistent_hashing

failed machine recovers (or is replaced), consistent hashing again ensures only a fraction
of the total key space is remapped.

Given such a model, applications wishing to store data in, or retrieve data from a key-
value store need only know (or compute) the corresponding key. While there are a very
large number of possible keys in the key set, in practice keys tend to fall out quite
naturally from the application domain. User names and email addresses, Cartesian co‐
ordinates for places of interest, social security numbers and zip codes are all natural
keys for various domains, and so the likelihood of data being “lost” in the store due to
a missing key is unlikely in sensibly designed systems.

Although we’ve dipped into a little bit of basic algorithms and data structures, if we
think only about the key-value data model it’s plainly quite similar in nature to document
stores we discussed earlier. However if we were to draw out a key differentiator in data
model between a document store and a key-value store in terms of data model only, it
would be the level of insight each has into the stored data.

In theory, key-value stores are oblivious to the information contained in the structure
and content of the stored values, considering them opaque. Pure key-value stores simply
concern themselves with efficient storage and retrieval of arbitrary data on behalf of
applications, unencumbered by its nature and application-level usage.

Opacity and access to subelements inside structured data
This opacity has a downside. When extracting an element of data from within a stored
value, often the whole value must be returned to the client which then filters out the
unwanted (parent or sibling) data elements. Compared to document stores where such
operations happen on the server, this is typically somewhat less efficient.

In practice data model such distinctions aren’t always so clear cut. Some of the popular
key-value stores (like Riak for instance) also offer visibility into certain types of struc‐
tured stored data like XML and JSON. Therefore at a product level there is some overlap
between the document and key-value stores.

While the key-value model is unarguably simple, like the document model it can suffer
from paucity of data insight from an application programmer’s point of view. To reify
sets of useful information out of individual records, typically external processing in‐
frastructure like map-reduce frameworks tend to be used, implying high latency in
comparison with queries in the data store.

Though it isn’t rich in terms data model, the key-value model offers certain operational
and scale advantages. Since contemporary key-value stores generally trace their lineage
to Amazon’s Dynamo database — a platform designed for a non-stop shopping cart

18 | Chapter 2: The NOSQL Phenomenon

11. http://research.google.com/archive/bigtable.html

service — they are optimized for high availability and scale, or as the Amazon team puts
it, they should work even “if disks are failing, network routes are flapping, or data centers
are being destroyed by tornados. 9“. This impressive model might sway a decision to use
such a store even if the data model isn’t a perfect fit simply because operationally these
stores tend to be very robust.

Column Stores
The heritage of the column family stores comes from Google’s BigTable paper 11 where
the authors described a novel kind of data store whose data model is based on a sparsely
populated table where each row can contain arbitrary columns. At first this seems an
unusual data model, but a positive side-effect of this model means that column stores
provide natural data indexing based on the keys stored. Let’s dig a little deeper.

In our discussion we’ll use terminology from Apache Cassandra.
Cassandra isn’t necessarily a faithful interpretation of BigTable, but
it is widely deployed and its terminology is widely understood.

In Figure 2-4 we see the four common building blocks used in column stores. The
simplest unit of storage is the column itself, consisting of a name-value pair. Any number
of columns can be combined into a super column which gives a name to a sorted set of
columns. Columns are stored in rows, and when a row contains columns only it is
known as a column family. Similarly when a row contains super columns it is known as
a super column family.

Column Stores | 19

http://research.google.com/archive/bigtable.html

Figure 2-4. The four building blocks of column storage

It might seem odd to focus on rows to such an extent in a data model which is ostensibly
columnar, but at in individual level rows really are important, providing the nested
hashmap structure into which we decompose our data. In Figure 2-5 we’ve shown an
example of how we might map a recording artist and their albums into a super column
family structure — it really is logically nothing more than maps of maps which is a
simple metaphor even if this column nomenclature seems unfamiliar.

20 | Chapter 2: The NOSQL Phenomenon

Figure 2-5. Storing line of business data in a super column family

In a column database, each row in the table represents a particular overarching entity
(e.g. everything about an artist). These column families are containers for related pieces
of data and provide demarcation (e.g. the artist’s name and discography). It is within
the column families we find actual key-value data—the state that the database exists to
store—like the album’s release dates and the artist’s date of birth.

But helpfully, this row oriented view can be turned through 90 degrees to arrive at a
column-oriented view. Where each row gives a complete view of one small part of the
data set, the column view provides a natural index of a particular aspect across the whole
data set. For example as we can see in Figure 2-6, by “lining up” keys we should be able
to find all the rows where the artist is English, and from there it’s easy to extract complete
artist data from each row. It’s not connected data as we’d find in a graph, but it does at
least provide some insight.

Column Stores | 21

Figure 2-6. Keys form a natural index through rows in a column store

But it’s not just the more expressive data model (compared to document and key-value
stores at least) which are exciting about column store, but their operational character‐
istics too. For example, although Apache Cassandra is famed for being based on an
Amazon Dynamo-like infrastructure for distribution, scale, and failover, under the

22 | Chapter 2: The NOSQL Phenomenon

12. http://martinfowler.com/bliki/NosqlDistilled.html

13. http://domaindrivendesign.org/

14. http://research.google.com/archive/mapreduce.html

covers there are several storage engines (including the default) which have shown to be
very competent at dealing with high write loads — the kind of peak write load problem
when popular TV shows encourage interaction for example.

All in all, the column stores present themselves as reasonably expressive and opera‐
tionally very competent. And yet at the end of the day, they’re still simply aggregate
stores just like document and key-value databases and as such querying is still going to
be substantially augmented by processing to reify useful information at scale.

Query Versus Processing in Aggregate Stores
In focussing on the data models for (non-graph) NOSQL stores, we’ve highlighted each
model and some of the similarities and differences between them. But on balance, the
differences have been far fewer than the similarities. In fact these stores are sufficiently
similar to be abstracted into one larger super-class of store which Fowler and Sadalage
12 have chosen to call aggregate stores, stemming from the observation that each of these
stores persists standalone complex records which reflect the notion of an Aggregate in
Domain-Driven design 13.

The details the underlying storage strategy differs a great deal between each aggregate
store, yet they all have a great deal in common when it comes to their query model.
While aggregate stores might provide features like indexing, simple document linking,
or query languages for simple ad-hoc queries, it’s commonplace to identify and extract
(a subset of) data from the store before piping it through some processing external
infrastructure. Typically that infrastructure is a map-reduce framework and it is used
in order to reify deep insight into data which cannot be inferred by considering each
aggregate individually.

Map-reduce, like BigTable, is another technique published by Google 14 and rapidly
implemented in the open source community with Apache Hadoop and its ecosystem
being the frontrunner map-reduce framework for the rest of us.

Map-reduce is a relatively simple parallel programming model where data is split and
operated upon in parallel before being gathered back together and aggregated for pro‐
vide focussed information. For example, if we wanted to count how many Americal
artists are in a database of recording artists we would extract al of the artist records and
discard all those representing non-American artists in the map phase, before counting
the remaining records in the reduce phase to obtain our answer.

Query Versus Processing in Aggregate Stores | 23

http://martinfowler.com/bliki/NosqlDistilled.html
http://domaindrivendesign.org/
http://research.google.com/archive/mapreduce.html

Of course doing this kind of operation on a large database — even where we have many
machines to execute map and reduce code, and fast network infrastructure to move data
around — is an enormous endeavour. Instead the usual approach is to try to use the
features of the data store to provide a more focussed data set (e.g. using indexes or other
ad-hoc queries) asnd then map-reduce that smaller data set to arrive at our answer.

Sometimes processing data in this way can prove to be beneficial, after all map-reduce
is highly parallelizable and frameworks like Hadoop are a commodity. However though
enormous processing throughput can be achieved this comes at the expense of both
latency (extracting and re-assimilating the data) and risk since data is ripped out of its
safe home in the database and crunched through some external machinery that has no
sense of the underlying consistency model the database enforces.

Moving Onwards and Upwards
We’ve seen the three popular aggregate store types—key-value, document, and column
store—in this chapter and understood their strengths and weaknesses. We’ve discussed
how the aggregate data model often results in data stores that have excellent operational
characteristics, but we’ve also seen how the query and processing models supported by
those stores highlight the paucity of the underlying standalone aggregate data model
presented to users, and the (latent) machinery that needs to be deployed to redress that
shortcoming.

Aggregate stores are not natively suited to most domains where data is interconnected
(the canonical case, if you give it a moment’s consideration). You can use them that way,
but then it’s your job as the developer to fill in where the underlying data model leaves
off. While the data might be big, it’s not necessarily smart.

However it’s now time for us to move on from the world of simple aggregates and into
a world where data is habitually interconnected as we delve into the domain of graph
databases.

24 | Chapter 2: The NOSQL Phenomenon

CHAPTER 3

Graphs and Connected Data

In this chapter we’ve going to immerse ourselves in the world of graphs and connected
data and make the case for graph databases as the sanest means for graph storage and
querying. We’re going to define connected data and show the benefits of working with
graphs to solve complex data and business problems, and demonstrate how graphs are
a natural model for a wide variety of domains. But before we dive into that, let’s revisit
why contemporary NOSQL stores and relational databases can struggle when used for
managing graphs and connected data.

The Aggregate Model: Lacking Relationships
As we saw in the previous chapter, aggregate databases — key-value, document, and
column stores — are popular members of the NOSQL family for storing sets of dis‐
connected documents/values/columns. However by convention, it’s possible to fake re‐
lationships (or at least pointers) in these stores by embedding the identifier of one ag‐
gregate inside well-known field in another. As we can see in as we see in Figure 3-1, as
humans it’s deceptively easy for us to infer relationships between our aggregates by
visually inspecting them.

25

1. Remember in most aggregate stores, it’s inside the aggregates themselves are where structure is given to data,
often as nested maps.

Figure 3-1. Reifying relationships in an aggregate store

In Figure 3-1 we can (somewhat reasonably) infer that some property values are really
references to foreign aggregates elsewhere in the database. But that inference doesn’t
come for free, since support for relationships does not exist at all in this data model.
Instead it’s left to developers do the hard work to infer and reify useful knowledge out
of these flat, disconnected data structures 1. It’s also left to developers to remember to
update or delete those foreign aggregate references in tandem with the rest of the data,
otherwise the store will quickly contain overwhelming numbers of dangling references,
both harmful to data quality and query performance.

Links and walking
The Riak key-value store allows each of its stored values to be augmented with link
metadata. Each link is one-way, pointing from one stored value to another. Riak allows
any number of these links to be walked (in Riak terminology), making the model help‐
fully somewhat connected. However as a native key-value store (rather than graph da‐

26 | Chapter 3: Graphs and Connected Data

2. http://en.wikipedia.org/wiki/Graph_database

3. Social graph is the poster child for graphs in general, but as we’ll see there are other interesting and valuable
use cases we can address

tabase) at query time link walking is powered by map-reduce and is relatively latent,
suited for simple graph-structured programming rather than general graph algorithms.

But there’s another weak point in this scheme, because in the absence of more identifiers
to “point” back (the foreign aggregate “links” are not reflexive of course) we also lose
the ability to be able to run other interesting queries on the database. For example with
the current structure it is expensive to ask of the database who has bought a particular
product in order to perhaps recommend it based on customer profile. In those cases we
can export the data set and process it via external compute infrastructure (likely Ha‐
dooop) in order to brute-force compute the result. Another option is to retrospectively
insert the backwards pointing foreign aggregate references before then querying for the
result. Either way the results will be latent.

Sometimes it might be tempting to think that there is equivalence between aggregate
stores and graph databases. This is a forlorn hope since aggregate stores do not maintain
consistency of connected data nor provide index-free adjacency 2, and therefore are slow
when used for graph problems. This results in an inherently latent compute mode where
data is crunched outside the database rather than queried within it.

It’s easy to see how these aggregate model limitations impact us even in a simple social
domain 3. In Figure 3-2 we see a (small) social network — a trivial example of a graph
tacitly encoded inside documents.

The Aggregate Model: Lacking Relationships | 27

http://en.wikipedia.org/wiki/Graph_database

4. Remember a O(log n) algorithm is somewhat efficient because it discards half the potential workload on each
iteration.

Figure 3-2. A small social network encoded in an aggregate store

In Figure 3-2 to find immediate friends of a user is easy in theory — assuming data
access has is disciplined so that the identifiers stored in the friends property are con‐
sistent with other record IDs in the database. In this case we simply look up immediate
friends by their ID, which requires numerous index lookups (one for each friend) but
no brute-force scans of the entire data set. In doing this, for example, we’d find that Bob
considers Alice and Zach to be friends.

But friendship isn’t always reflexive, so what if we’d like to ask, for example, “who is
friends with Bob?” rather than “who are Bob’s friends?” That’s a tougher proposition
and in this case our only option would be to brute force across the whole data set looking
for friends entries that contain Bob.

Brute-force processing
Brute force computing an entire data set is O(n) in terms of complexity since all n
aggregates in the data store must be considered. That’s far too costly for most reasonable
sized data sets where we’d prefer O(log n) or better where possible 4.

28 | Chapter 3: Graphs and Connected Data

Conversely a graph database provides constant order lookup in this case, we’d simply
find the node in the graph that represents Bob, and then follow any incoming friend
relationships to other nodes which represent people who consider Bob to be their friend.
This is far cheaper than brute-forcing (unless everybody is friends with Bob) since far
fewer members of the network are considered — only those that are connected to Bob.

To prevent the need for constant processing of the entire data set, we’d have to further
denormalize the storage model by adding backward links. In this case we’d have to add
a second property, perhaps called friended_by to list the perceived incoming friendship
relations. This doesn’t come for free. For instance we have to pay the initial and ongoing
cost of increased write latency, and increased disk space utilization for storing that ad‐
ditional metadata. Traversing those links is expensive because each hop requires an
index lookup, as aggregates have no notion of locality, unlike graphs which naturally
provide index-free adjacency through real — not reified — relationships. That is, by
implementing a graph structure atop a non-native store, we may get some of the benefits
in terms of partial connectedness but at substantial cost.

That substantial cost is amplified when you consider traversing deeper than just one
hop. Friends are easy enough, but imagine trying to compute — in real time — friends
of friends, or friends of friends of friends. That’s impractical with this kind of database
since traversing a fake relationship is not cheap enough. This doesn’t only limit your
chances of expanding your social network, but in other use cases will reduce profitable
recommendations, will miss faulty equipment in your data center, will let fraudulent
purchasing activity slip through the net. Most systems try to maintain the appearance
of such graph-like processing, but inevitably it’s done in batches and doesn’t provide
that high-value real-time interaction that users demand.

The Relational Model: Also Lacking Relationships
Things aren’t all that rosy in the relational database world either. For several decades,
developers have tried to accommodate increasingly connected, semi-structured datasets
inside relational databases. But whereas relational databases were initially designed to
codify paper forms and tabular structures—something they do exceedingly well—they
struggle when attempting to model the ad hoc, exceptional relationships that crop up
in the real world. It’s an ironic twist that relational databases are in fact so poor at dealing
with relationships. While relationships do at least exist in the vernacular of relational
databases, they exist only as a means of joining tables and are completely free of se‐
mantics (like direction, name). Worse still, as outlier data multiplies, and the amount
of semi-structured information increases, the relational model becomes burdened with
large join tables, sparsely populated rows and lots of null-checking logic. The rise in
connectedness translates in the relational world into increased joins, which impede

The Relational Model: Also Lacking Relationships | 29

performance and make it more difficult to evolve an existing database in response to
changing business needs.

Figure 3-3. Semantic relationships are hidden in a relational database

Even in a simple relational schema like that shown in Figure 3-3, many of these problems
are immediately apparent.

• Manifest accidental complexity and additional development and maintenance
overheads because of join tables and maintaining foreign key constraints just to
make the database work.

• Sparse tables require special checking in code while schema gives false confidence
about perceived data structure.

• Several expensive joins needed just to discover what a customer bought.
• No cheap way of asking reciprocal queries. For example it’s acceptable from a time

perspective to ask ''what products did a customer buy?`` but not at all reasonable
to ask ''which customers bought this product?``, which is the basis of recommen‐
dation systems and numerous other valuable applications.

30 | Chapter 3: Graphs and Connected Data

Even in now commonplace domains like social networks, relational databases can
struggle. For modestly popular people, a relational database will be able to report a set
of friends relatively easily from a simple join-table arrangement like that shown in
Figure 3-4.

Figure 3-4. Modeling friends and friends-of-friends in a relational database

Firstly, let’s satisfy ourselves that easy query of asking “who are Bob’s friends” is indeed
an easy case:

Example 3-1. Bob’s friends
SELECT PersonFriend.friend
FROM Person JOIN PersonFriend
 ON Person.person = PersonFriend.person
WHERE Person.person = 'Bob'

Which results in Alice and Zach — great! This isn’t such an onerous query for the
database either, since it constrains the number of rows under consideration by filtering
on with Person.person='Bob'.

Now we can ask the reciprocal query which is who is friends with Bob, since you’ll recall
friendship isn’t always a reflexive relationship:

Example 3-2. Who is friends with Bob?
SELECT Person.person
FROM Person JOIN PersonFriend
 ON Person.person = PersonFriend.person
WHERE PersonFriend.friend = 'Bob'

The Relational Model: Also Lacking Relationships | 31

5. Some relational databases provide syntactic sugar for this, for instance Oracle supports CONNECT BY which
simplifies the query, but not the underlying computational complexity.

This query results only in the row for Alice being returned, implying that Zach doesn’t
consider Bob to be a friend, sadly. The reciprocal query is still easy to implement, but
for the database to work out who is friends with Bob it requires more effort since all of
the rows in the PersonFriend table must be considered.

Things degenerate further when we ask “who are my friends of friends”. Firstly things
get a little tougher simply because of query complexity, since hierarchies are not a par‐
ticularly natural or pleasant thing to express in SQL, relying on recursive joins 5.

Example 3-3. Alice’s friends-of-friends
SELECT pf1.person as PERSON, pf3.person as FRIEND_OF_FRIEND
FROM PersonFriend pf1 INNER JOIN Person
 ON pf1.person = Person.person
INNER JOIN PersonFriend pf2
 ON pf1.friend = pf2.person
INNER JOIN PersonFriend pf3
 ON pf2.friend = pf3.person
WHERE pf1.person = 'Alice' AND pf3.person <> 'Alice'

This query is computationally complex, not to mention it only deals with Alice’s friends
of friends and goes no further out into Alice’s social network. While “who are my friends-
of-friends-of-friends” is feasible, beyond that to 4, 5, or 6 degrees of friends is not suited
to relational computation due to computational and space complexity of recursively
joining tables, either through clever SQL or by having application code explicitly enu‐
merate the joins.

In a relational database, we work against the grain. We have often brittle schemas which
rigidly describe the structure of the data only to have those schemas’ intended behavior
overridden by code that ostensibly obeys the laws but bends all the rules. Consequently
a web of sparsely populated tables propagates through the database and a plethora of
code to handle each of the exceptional cases is spread through the application. This
increases coupling and all but destroys any semblance of cohesion.

And for most of us, relational technology simply doesn’t evolve or scale easily enough.
It’s time to move on.

Connected Data and Graph Databases
In the previous example with aggregate and relational stores we were dealing with
implicitly connected data. That is, as users we could infer semantic dependencies be‐
tween entities but the data model — and as a consequence the databases themselves —
could not recognize or assist us in taking advantage of those connections. As a result

32 | Chapter 3: Graphs and Connected Data

6. We can expand the network in this example because the graph data model is more expressive and performant
than the other models we’ve considered

the workload of reifying a network out of the flat, disconnected data fell to us and we
had to deal with the consequences of slow queries, latent writes across denormalized
stores, etc.

In reality what we want from our data is a cohesive picture of the data set to suit the
current operation, including the connections between the data. In the graph world,
connected data is represented in high-fidelity. Where there are connections in the do‐
main, there are connections in the data. For example, consider the (expanded 6) social
network in Figure 3-5.

Figure 3-5. Easily modeling friends, colleagues, workers, and (unrequited) lovers in a
graph

Our social network, like so many real-world cases of connected data, the connections
between entities don’t exhibit uniformity across the domain — the domain is then said
to be semi-structured. Social networks are a popular example of a densely-connected,
semi-structured network, one that resists being captured by a one-size-fits-all schema
or conveniently split across disconnected aggregates. That our simple network of friends
has both grown (there are now potential friends up to six degrees away), and has been
enriched to describe other semantics between participants is testament to the scalability

Connected Data and Graph Databases | 33

7. You can infer that Ingrid and Zach both LOVES one-another and that Harriet unrequitedly LOVES Zach, that
Ingrid and Harriet are probably within their rights to DISLIKE each other.

8. http://www.manning.com/partner/

of graph modeling. New nodes and new relationships have been added without com‐
promising the existing social network nor prompting any migrations to occur — the
original data and its intent remain intact.

But now we have a much richer picture of the network. We can see who LOVES someone
(and whether that love is returned), who works with whom via COLLEAGUE_OF, who to
suck up to through BOSS_OF, who’s off the market because they’re MARRIED_TO someone
else even introduce an antisocial element into our otherwise social network with DIS
LIKES 7. With this dataset like this at our disposal, we can now look at the performance
advantages of graph databases for connected data.

In a graph database path operations—traversing the graph-- are not only highly aligned
with the data model (relationships naturally form paths) but also highly efficient. For
example in their book “Neo4j in Action” 8 Partner and Vukotic performed an experiment
using a relational store and Neo4j. In this experiment, the authors wished to validate
(or repute) the notion that Neo4j is substantially quicker for connected data than a
relational store. The domain they chose was to find friends-of-friends at a maximum
depth of 4 in a graph — that is for any person in a social network, is there a route to
some other person in the graph at most 4 hops away. For a social network containing
1,000,000 people each with approximately 50 friends, the results heavily suggest that
graph databases are the best choice for connected data as we can see in Table 3-1.

Table 3-1. Finding extended friends in a relational database versus efficient finding in
Neo4j

Depth RDBMS Execution time (s) Neo4j Execution time (s) Records returned

2 0.016 0.01 ~2500

3 30.267 0.168 ~110,000

4 1543.505 1.359 ~600,000

5 Unfinished 2.132 ~800,000

At depth 2 (friends-of-friends) both databases perform well enough to insert the query
into a user-facing system. The difference of milliseconds would not be noticeable,
though even at this stage it’s illustrative to see that the Neo4j query runs in less than 2/3
the time that the relational query. But by the time we reach depth 3 (friend-of-friend-
of-friend) it’s clear that the relational database can no longer deal with the query in a
reasonable timeframe — taking over 30 seconds to complete the query would be com‐
pletely unacceptable for an online system. Conversely Neo4j’s response time remains

34 | Chapter 3: Graphs and Connected Data

http://www.manning.com/partner/

relatively flat, just a fraction of a second to perform the query and definitely quickly
enough for an online system.

At depth 4 the relational database exhibits terrible latency for an online system, to the
extent where it’s practically useless. Neo4j timing’s are a marginally less good too, but is
still at the periphery of being acceptable for a responsive online system. Finally at depth
5 the relational database simply takes too long to complete the query while Neo4j re‐
mains relatively modest at around 2 seconds, and yet this timing can be highly trimmed
should we (sensibly) choose to return only a handful of the many thousands of possible
distant friends .

Aggregate and relational stores both perform poorly for connected data
Both aggregate stores and relational databases perform poorly we move
away from modestly sized set operations — operations that both kinds
of databases should be good at. When we try to mine path information
out of the graph like the classic finding of friends and friends-of-friends
that we’re all used to from social media platforms and applications
things demonstrably slow down. We don’t mean to unduly beat up on
either aggregate stores or relational databases, they have a fine tech‐
nology pedigree for the things they’re good at but for managing con‐
nected data they fall short as we’ve discussed. Anything more than a
shallow traversal of immediate friends or possibly friend-of-friend will
be slow because of the number of index lookups involved. Graphs on
the other hand offer index-free adjacency so that traversing connected
data is extremely rapid.

Friends and social networks are all well and good, but at this point you might reasonably
wonder whether finding such remote friends is a valid use-case. After all, it’s rare that
we’d be so desperate for company that we’d traverse so far out of the core of our social
network. The point is that we can substitute social networks for any other domain and
experience similar performance, modeling and maintenance benefits. Whether those
domains are music or data center management, bio-informatics or football statistics,
network sensors or time-series of trades, graphs are a powerful source of insight. So let’s
avail ourselves of the power of graphs for connected data with a contemporary example:
social recommendation of products not only based on a user’s purchase history but on
the histories of their friends, neighbours and other people like them, bringing together

Connected Data and Graph Databases | 35

several independent facets of the user’s lifestyle to make more accurate and more prof‐
itable recommendations.

Productive analysis
One of the most appealing aspects of the graph data model is its intuitiveness. People
without any background in data modeling — which is to say, relational modeling —
easily grasp the graph approach. The typical “whiteboard” or “back of the napkin” rep‐
resentation of a data problem is a graph. More often than not such representations can
be directly translated into a graph data model. One of the most important contributions
of graphs to informatics is how they make data modeling and data interrelationships
available to the layperson.

Let’s start off by modeling the classic purchase history of a user as connected data. In a
graph, this can be as simple as linking between the user and their orders, and inserting
links between orders to provide a purchase history as we see in Figure 3-6.

Figure 3-6. Modeling a user’s order history in a graph

36 | Chapter 3: Graphs and Connected Data

9. There’s no need for a reciprocal NEXT relationship unless we’d we want to. Traversing the PREVIOUS relation‐
ship from head to tail provides the same affordance.

10. http://en.wikipedia.org/wiki/R-tree

11. The various terms associated with the geography and nationhood in the British Isles is intricate, but this will
help the unitiated: http://www.visualnews.com/2011/02/03/the-difference-between-great-britain-england-
the-united-kingdom-and-a-whole-lot-more/

The kind of graph shown in Figure 3-6 provides a great deal of insight into customer
behavior. We can see all the orders that the user PLACED and we can easily reason about
what each order CONTAINS. So far so good, but we can take the opportunity to enrich
this graph to support well-known access patterns. For example, users often want to see
their order history, so we’ve added a linked list structure into the graph such that the
user’s most recent order is found by following the outgoing MOST_RECENT relationship,
and we can iterate through the lsat going further back in time by following the PREVI
OUS relationships 9.

Having even this simple data allows us to start to make recommendations. If we notice
that users who buy strawberry ice cream, also buy espresso beans then we can start to
recommend those beans to users who normally only buy the ice cream. But this is a
rather one-dimensional recommendation even if we traverse lots of orders to ensure
there’s a strong correlation between strawberry ice cream and espresso beans. We can
do much better, and the way we do that is to intersect the purchasing graph with graphs
from other domains. Since graphs are naturally multi-dimensional structures, it’s quite
straightforward to ask a much more sophisticated question of the data to gain access to
a fine-tuned market segment. For example to ask “all of the flavors of ice cream that
people living near a user like who also enjoy espresso but dislike Brussels sprouts.”

From our point of view, enjoying and disliking items could be easily considered iso‐
morphic to having ordered those items repeatedly or infrequently (perhaps once only).
How would we define “living near?” Well it turns out that, perhaps unsurprisingly,
geospatial coordinates are easily graphed. The most likely implementation of this is to
create an R-Tree 10 to represent bounded boxes around geographies. Using such a struc‐
ture it’s natural to describe overlapping hierarchies of locations. For example, we can
express that London is in the UK, but we can also express that the postal code SW11
1BD is in Battersea which is a district in London (which is in south-eastern England,
which in turn is in Great Britain 11). And since UK postal codes are fine-grained, we can
use that boundary to target people with somewhat similar tastes.

Connected Data and Graph Databases | 37

http://en.wikipedia.org/wiki/R-tree
http://www.visualnews.com/2011/02/03/the-difference-between-great-britain-england-the-united-kingdom-and-a-whole-lot-more/
http://www.visualnews.com/2011/02/03/the-difference-between-great-britain-england-the-united-kingdom-and-a-whole-lot-more/

12. http://docs.neo4j.org/chunked/milestone/cypher-query-lang.html

Such pattern matching queries are extremely difficult to write in SQL,
and laborious to write against aggregate stores, and tend to perform
very poorly. Graph databases on the other hand are optimized for
precisely these types of traversal and pattern matching queries which
be written very easily using a query language (such as Cypher 12in
Neo4j), and can be expected to perform very well (milliseconds re‐
sponse time).

This graph isn’t only useful for recommendations on the buyer’s side, it’s also useful
operationally for the seller. For example, given certain buying patterns (products, cost
of typical order, etc) we can establish whether a particular transaction might constitute
fraud. Patterns outside of the norm for a given user can easily be detected in a graph
and be flagged for further attention (using well-known similarity measures from the
graph data-mining literature), thus reducing the risk for the seller.

From the data practitioner’s point of view, it’s clear that the graph database’s sweet spot
lies in handling data sets that are so sophisticated that they are unwieldy when treated
in any other form than as a graph. We therefore define the term connected data to
describe data that is best handled as a graph.

Schema-Free Development and Pain-Free Migrations
Notwithstanding the fact that just about anything can be modeled as a graph, we live in
a pragmatic world, and novel, powerful data modeling techniques do not in themselves
provide sufficient justification for replacing standard, well-known platforms. There
must also be an immediate and very significant practical benefit. In the case of graph
databases as we’ve seen, this motivation exists in the form of a set of use cases and data
patterns whose performance improves by one or more orders of magnitude when im‐
plemented in a graph, and whose latency is much lower compared to batch processing
aggregates. However when we factor in the increase in performance with the benefits
of agility, schemaless flexibility, and ease of development, the case for graph databases
can readily be made.

Developers today want to connect data as the domain dictates, thereby allowing struc‐
ture and schema to emerge rather than having to pre-define it upfront. Moreover, they
want to be able to evolve their model in step with the rest of their application, using a
technology aligned with the incremental and iterative software delivery practices that
have come to the fore in recent years. The graph database data model provides the
flexibility necessary to help IT move at the speed of business, while today’s graph database

38 | Chapter 3: Graphs and Connected Data

http://docs.neo4j.org/chunked/milestone/cypher-query-lang.html

technologies provide the APIs and query languages necessary for widespread adoption
by mainstream programmers.

This has generally positive implications for developer productivity and project risk. For
instance, we don’t need to model exhaustively ahead of time — a practice which is all
but foolhardy in the face of changing business requirements since the graph model is
naturally additive. As new facts come to light we design the graph structures for them
and pour in the new data in with the existing. Such an additive mindset tends to mean
that we don’t migrate graphs often either, we migrate much less often, in fact only when
we’re performing breaking changes on existing structures.

There are implications, of course, for development and maintenance of applications
since graph users cannot rely on the (rotten) crutch of a relational schema to try to fix
some level of governance into the database—often much to the confusion of traditional
data and application architects. Instead that governance is typically applied in the ap‐
plications themselves through tests which assert the business rules (and by implication
the way data is stored and queried) are valid over time. This isn’t something to get excited
about, that tests drive out the behavior of a system is uncontroversial in the 21st century
and that tests providing ongoing governance (particularly around regressions) is also
recognized as beneficial by the developer community at large.

Connecting the Dots
In this chapter we’ve highlighted the fact that data is most useful when it’s connected.
We’ve seen how other kinds of data stores leave connectedness as an exercise in data
processing to the developer, and contrasted that with graph databases where connect‐
edness is first-class citizen. Finally we’ve show how the expressive and flexible nature
of graphs makes them ideal for high-fidelity domain analysis, frictionless development
and graceful system maintenance

Connecting the Dots | 39

CHAPTER 4

Working with Graph Data

In previous chapters we’ve described the substantial benefits of the graph database when
compared both with document, columnar and key-value NOSQL stores and with tra‐
ditional relational databases. But having chosen to adopt a graph database, the question
arises: how do we model the world in graph terms?

In this chapter we’ll look at graph modeling. We’ll focus in particular on the expres‐
siveness of the graph model and the ease with which it can be queried. Because graphs
are extremely flexible, lending themselves to many different domain representations,
there’s often no absolute right or wrong way to model with graphs, just some layouts
that work better than others for a given problem. We’ll highlight these good practices
while also covering some classic pitfalls of graph modeling for the unwary.

Models and Goals
Before we dig deeper into modeling with graphs, a word on models in general. Modeling
is an abstracting activity motivated by a particular need or goal. We model in order to
bring specific facets of an unruly domain into a space where they can be structured and
manipulated. There are no natural representations of the world the way it “really is,” just
many purposeful selections, abstractions and simplifications, some of which are more
useful than others for a satisfying a particular goal.

Graph representations are no different in this respect. What perhaps differentiates them
from many other data modeling techniques, however, is the close affinity between the
logical and physical graph models. Relational data management techniques require us
to deviate from our natural language representation of the domain: first by cajoling our
representation into a logical model; and then by forcing it into a physical model. These
transformations introduce semantic dissonance between our conceptualisation of the
world and the database’s instantiation of that model. With graph databases this gap
shrinks considerably.

41

Graph modeling naturally fits with the way we tend to abstract the salient details from
a domain using circles and boxes, and then describe the connections between these
things by joining them with lines. Today’s graph databases, more than any other database
technologies, are “whiteboard friendly.” The typical whiteboard view of a problem is a
graph. What we sketch in our creative and analytical modes maps closely to data model
we implement inside the database. In terms of expressivity, graph databases reduce the
impedance mismatch between analysis and implementation that has plagued relational
database implementations for many years. What is particularly interesting about such
graph models is the fact that they not only communicate how we think things are related,
they also clearly communicate the kinds of questions we want to ask of our domain. As
we’ll see throughout this chapter, graph models and graph queries are really just two
sides of the same coin.

Relational Modeling in a Systems Management Domain
This book is primarily concerned with graphs, graph databases, graph modeling and
graph queries. To introduce graph modeling, however, it’s useful to compare how we
work with graphs versus how we work in relational world, since RDBMS systems and
their associated data modeling techniques are familiar to most developers and data
professionals.

To help compare graph and relational modeling techniques, we’ll examine a simple data-
center management domain. In this domain, data centers support many applications
on behalf of many customers using a whole plethora of infrastructure, from virtual
machines to physical load balancers. A micro-level view of this domain is shown in
Figure 4-1.

42 | Chapter 4: Working with Graph Data

Figure 4-1. Simplified snapshot of application deployment within a data center

In Figure 4-1 we see a somewhat simplified view of several applications and the data
center infrastructure necessary to support them. The applications, represented by nodes
App 1, App 2 and App 3, depend on a cluster of databases labelled Database Server
1, 2, 3. While users logically depend on the availability of an application and its data,
there is additional physical infrastructure between the users and the application; this
infrastructure includes virtual machines (Virtual Machine 10, 11, 20, 30, 31), real
servers (Server 1, 2, 3), racks for the servers (Rack 1, 2), and load balancers (Load
Balancer 1, 2), which front the apps. In between each of the components there are of
course many networking elements: cables, switches, patch panels, NICs, power supplies,
air conditioning and so on—all of which can fail at inconvenient times. To complete the
picture we have a straw-man single user of application 3, represented by User 3.

As the operators of such a system, we have two primary concerns:

• Ongoing provision of functionality to meet (or exceed) a service-level agreement,
including the ability to perform forward-looking analyses to determine single

Relational Modeling in a Systems Management Domain | 43

1. Such approaches aren’t always necessary: adept relational users often move directly to table design and nor‐
malization without first describing an intermediate E-R diagram.

points of failure, and retrospective analyses to rapidly determine the cause of any
customer complaints regarding the availability of service;

• Billing for resources consumed, including the cost of hardware, virtualisation, net‐
work provision and even the costs of software development and operations (since
these are a simply logical extension of the system we see here).

If we are building a data center management solution, we’ll want to ensure that the
underlying data model allows us to store and query data in a way that efficiently ad‐
dresses these primary concerns. We’ll also want to be able to update the underlying
model as the application portfolio changes, as the physical layout of the data centre
evolves or as virtual machine instances migrate. Given these needs and constraints, let’s
see how the relational and graph models compare.

Modeling for relational data
The initial stage of modeling in the relational world is similar to the first stage of many
other data modeling techniques: that is, we seek to understand and agree on the entities
in the domain, how they interrelate and the rules that govern their state transitions.
Most of this tends to be done informally, often through whiteboard sketches and dis‐
cussions between subject matter experts and system and data architects, until the par‐
ticipants reach some kind of agreement—expressed perhaps in the form of a diagram
such as the one in Figure 4-1.

The next stage captures that agreement in a more rigorous form such as an entity-
relationship diagram. This transformation of the model using a more strict notation
provides us with a second chance to refine a common domain vocabulary that can be
shared with relational database specialists 1. In our example, we’ve captured the domain
in the E-R diagram Figure 4-2.

Ironically E-R diagrams immediately demonstrate the shortcomings
of the relational model for capturing a rich domain. Although E-R
diagrams allow relationships to be named (something which rela‐
tional stores disallow, and which graph databases fully embrace) they
only allow single, undirected named relationships between entities. In
this respect, the relational model is a poor fit for real-world domains
where relationships between entities are both numerous and seman‐
tically rich and diverse.

44 | Chapter 4: Working with Graph Data

Figure 4-2. An Entity-Relationship diagram for the data center domain

Once we have arrived at a suitable logical model, we map it into tables and relations,
which are then normalized to ensure high fidelity and zero data redundancy. In many
cases this step can be as simple as transcribing the E-R diagram into a tabular form and
then loading those tables via SQL commands into the database. But even the simplest
case serves to highlight the idiosyncrasies of the relational model. For example, in
Figure 4-3 we see that a great deal of accidental complexity creeps into the model in the
form of foreign key constraints (everything annotated [FK]), which support one-to-
many relationships, and join tables (e.g. AppDatabase), which support many-to-many
relationships—and all this before we’ve added a single row of real user data. These
constraints are model-level metadata that exist simply so that we can reify relations
between tables at query time. Yet the presence of this structural data is keenly felt, for
it clutters and obscures the domain data with data that serves the database, not the user.

Modeling for relational data | 45

Figure 4-3. Tables and relationships for the data center domain

We have now arrived at a high fidelity, normalized model that is relatively faithful to
the domain. This model, though imbued with substantial accidental complexity, con‐
tains no duplicate data. But our design work is not yet complete. One of the challenges
of the relational paradigm is that normalized models generally aren’t fast enough for
real-world needs. For many production systems, a normalized schema, which in theory
is fit for answering any kind of ad hoc question we may wish to pose the domain, must
in practice be further adapted and specialised for specific access patterns. In other words,
to make relational stores perform well enough for regular application needs, we have
to abandon any vestiges of true domain affinity and accept that we have to change the
user’s data model to suit the database engine not the user. This technique is given the
name denormalization.

Denormalization involves duplicating data (substantially in some cases) in order to gain
query performance. Take as an example users and their contact details. A typical user
often has several email addresses, which, in a fully normalised model, we would store
in a separate ‘EMAIL` table. To reduce joins and the performance penalty imposed by
joining between two tables, however, it is quite common to inline this data in the USER
table, adding one or more columns to store users’ most important email addresses.

While denormalization may be a safe thing to do (assuming developers understand the
denormalized model and how it maps to their typically domain-centric code, and have
robust transactional support from the database), it is usually not a trivial task. For the
best results, we usually turn to a true RDBMS expert to munge our normalized model
into a denormalized one that is aligned with the characteristics of the underlying
RDBMS and physical storage tier. In doing this, we accept that there may be substantial
data redundancy.

We might be tempted to think that all this design-normalize-denormalize effort is ac‐
ceptable because it is a one-off task. This school of thought suggests that the cost of the

46 | Chapter 4: Working with Graph Data

2. See: http://guides.rubyonrails.org/migrations.html
3. See: http://databaserefactoring.com/

work is amortized across the entire lifetime of the system (which includes both devel‐
opment and production) such that the effort of producing a performant relational model
is comparatively small compared to the overall cost of the project. This is an appealing
notion, but in many cases it doesn’t match reality, for systems change not only during
development, but also during their production lifetimes.

The amortized view of data model change, in which costly changes during development
are eclipsed by the long-term benefits of a stable model in production, assumes that
systems spend the majority of their time in production environments, and that these
production environments are stable. While it may be the case that most systems spend
most of their time in production environments, these environments are rarely stable.
As business requirements change or regulatory requirements evolve, so must our sys‐
tems and the data structures on which they are built.

Data models invariably undergo substantial revision during the design and development
phases of a project, and in almost every case, these revisions are intended to accom‐
modate the model to the needs of the applications that will consume it once it is in
production. So powerful are these initial influences over the model, it becomes near
impossible to modify the application and the model at a later point in time to accom‐
modate things they were not originally designed to do.

The technical mechanism through which we evolve a database is known
as migration. The migration technique has been popularized by pro‐
ductive application development frameworks such as Rails.2 Migrations
provide a structured, step-wise approach to applying a set of database
refactorings consistently so that a database can be responsibly evolved
to meet the changing needs of the applications that use it.3

The problem with the denormalized model is its resistance to the kind of rapid evolution
the business demands of its systems. As we’ve seen with the data center example, the
changes imposed on the whiteboard model over the course of implementing a relational
solution create a gulf between the conceptual world and the way the data is physically
laid out; this dissonance all but prevents business stakeholders from actively collabo‐
rating in the further evolution of a system. On the development side, the difficulties in
translating changed business requirements into the underlying database structure cause
the evolution of the system to lag the evolution of the business. Without expert assistance
and rigorous planning, migrating a denormalized database poses several risks. If the
migrations fail to maintain storage-affinity, performance can suffer. Just as serious, if

Modeling for relational data | 47

http://guides.rubyonrails.org/migrations.html
http://databaserefactoring.com/

deliberately duplicated data is left orphaned after a migration, we risk compromising
the integrity of the data as a whole.

Relational databases—with their rigid schemas and complex modeling characteristics
—are not an especially good tool for supporting rapid change. To face up to these chal‐
lenges we need a model that is closely aligned with the domain without sacrificing
performance, that supports evolution while providing enough structural affordances to
guide the designer, and that maintains the integrity of the data as it undergoes rapid
change and growth. To that end, it’s time for us to get to grips with property graphs and
graph modeling.

The Property Graph Model
The rise of graph databases like Neo4j helps bridge the divide between businesses and
their data. In terms of domain affinity, Euler’s graph theory (from the first half of the
eighteenth century) is an early example of structured business analysis, whereby a real-
world problem (the Seven Bridges of Königsberg) is purposely abstracted to a data
model that can generate useful insight. What graph databases provide is a platform for
storing and querying that data to generate insight on-demand.

While there are numerous kinds of graphs, Neo4j, like several other notable graph da‐
tabases, has settled on the property graph as its graph model. The property graph bal‐
ances simplicity and expressiveness. (The next most-popular alternative, the triple store,
popularized by RDF, is theoretically elegant but generally considered less practicable,
in large part because in a triple store everything is decomposed into individual nodes
and relationships.) Property graphs sacrifice some graph purity for pragmatism by
grouping properties into nodes, thereby making them easier to work with. The main
abstractions in a property graph are nodes, relationships and properties.

• Nodes are placeholders for properties. Think of nodes as documents that store
properties in the form of arbitrary key-value pairs. The keys are strings and the
values can be arbitrary data types.

• Relationships connect nodes. Relationships in Neo4j are always connected and
directed (that is, they always have a start node and an end node). In addition, every
relationship has a label. A relationship’s label and its direction add semantic clarity
to the connections between nodes. Like nodes, relationships can also house prop‐
erties. The ability to add properties to relationships is particularly useful for pro‐
viding additional metadata for graph algorithms, and for constraining queries at
run time.

These simple primitives are all we need to create some sophisticated and semantically
rich models. For example, in Figure 4-4 we have high-quality information about Shake‐
speare and some of his plays, together with details of one of the companies that has

48 | Chapter 4: Working with Graph Data

4. History’s actually a little vague on this, but 1599 is a good enough approximation for this example

recently performed the plays, and a theatrical venue, with geospatial data. We’ve even
added a review. In all, the graph describes and connects at last three different domains.
In the diagram we’ve distinguished these three domains with different coloured nodes:
green for the literary nodes, white for the theatrical nodes, and red for the geospatial
nodes.

Figure 4-4. An example property graph

Looking first at the literary nodes, we have a node that represents Shakespeare himself,
with properties firstname : 'William' and lastname : 'Shakespeare'. This node
is connected to a pair of nodes representing the plays Julius Caesar (title : 'Julius
Caesar') and The Tempest (title : 'The Tempest') via relationships labelled WROTE.

Reading this subgraph left-to-right, following the direction of the relationship arrow,
conveys the fact that William Shakespeare wrote Julius Caesar. If we’re interested in
provenance, the WROTE relationship has a date property, which tells us that the play was
written in 1599 4. It’s a trivial matter to see how we could add the rest of Shakespeare’s
works—the plays and the poems—into the graph simply by adding more nodes to rep‐
resent each work, and joining them to the Shakespeare node via more WROTE relation‐
ships.

The Property Graph Model | 49

5. Part of the RSC’s summer season which they traditionally spend touring

By traversing the WROTE relationship—even by tracing that arrow with
our finger—we’re effectively doing the kind of work that a graph data‐
base performs, albeit at human latency rather than at microsecond-
level. As we’ll see later, this simple traversal primitive is the building
block for arbitrarily sophisticated graph queries.

Turning next to the theatrical nodes, you can see that we’ve added some information
about the Royal Shakespeare Company (often known simply as the RSC) in the form of
a node with the key company and value Royal Shakespeare Company. The theatrical
domain is, unsurprisingly, connected to the literary domain: in our graph, this is re‐
flected by the fact that the RSC has PRODUCED versions of Julius Caesar and The Tem‐
pest. The graph also captures details of specific performances: the RSC’s production of
Julius Caesar, for example, was performed on the 29 July 2012. 5 If we’re interested in
the performance venue, we simply follow the outgoing VENUE relationship from the
performance node to find that the play was performed at the Theatre Royal.

The graph also allows us to capture reviews of specific performances. In our sample
graph we’ve included just one review, for the 29 July performance, written by the user
Billy. We can see this in the top right of Figure 4-4 with the interplay of the performance,
rating and user nodes. In this case we have a node representing Billy (user :

'Billy') whose outgoing WROTE relationship connects to a node representing his review.
The review node contains a numeric rating property and a free-text review property.
The review is linked to a specific performance through an outgoing RATED relationship.
To scale this up to many users, many reviews and many performances we simply add
more nodes and more identically-named relationships to the graph.

The third domain, that of geospatial data, comprises a simple hierarchical tree of places.
This geospatial domain is connected to the other two domains at several points in the
graph. The town of Stratford upon Avon (with property town : 'Stratford upon
Avon') is connected to the literary domain as a result of its being Shakespeare’s birthplace
(Shakespeare is FROM Stratford). It is connected to the theatrical domain insofar as it is
home for the RSC (the RSC is BASED_IN Stratford). To learn more about Stratford upon
Avon’s geography, we can follow its outgoing IN relationship to discover it is in the
United Kingdom.

The property graph makes it possible to capture more complex geospatial data. Looking
at the Theatre Royal, for example, we see that it is located in Grey Street, which is IN
the city of Newcastle, which is IN the county of Tyne and Wear, which ultimately is IN
the United Kingdom—just like Stratford upon Avon.

50 | Chapter 4: Working with Graph Data

6. This section is not intended to be a reference document for Cypher, merely a friendly introduction to enable
us to explore more interesting graph query scenarios. For reference documentation see: http://docs.neo4j.org/
chunked/milestone/cypher-query-lang.html

7. http://www.w3.org/TR/rdf-sparql-query/

As you can see from this relatively simple example, property graphs make it easy to unite
different domains—each with its own particular entities, properties and relationships
—in a way that not only makes each domain accessible, but also generates insight from
the connections between domains.

Unlike document, column, or key-value stores, graph databases don’t
require us to infer connections between documents using contrived
properties such as foreign keys, or out-of-band processing like map-
reduce. Instead, relationships are a first-class citizen in the data model.
By assembling the simple abstractions of nodes and relationships into
connected structures, graph databases allow us to build arbitrarily so‐
phisticated models with high domain affinity. Modeling is simpler and
at the same time more expressive than what we experience with both
traditional relational database and the other NOSQL stores.

Diagrams are good for communicating the fundamentals of the property graph model,
but when it comes to using a database, we need to create, manipulate and query data.
Having familiarised ourselves with the property graph model, it’s now time to look at
query languages.

The Cypher Query Language
Modeling expressivity is only one of the reasons graph databases appeal to the needs of
today’s IT professionals. The graph model really shines when the interpretation of the
domain requires an understanding of how, or in what way, or to what degree entities
are related or connected to one another. That is, graph databases address the increasing
need to not only store but also to query connected data. In Neo4j the humane and
expressive query language Cypher is the primary means of accessing the database. Both
in this chapter and throughout this book we’ll use Cypher extensively to illustrate graph
queries and graph constructions and so at this point it’s worthwhile taking a brief detour
to learn the basics 6 of the language.

Other query languages
Other graph databases have other means of querying data. Most, including Neo4j, sup‐
port the RDF query language SPARQL 7 and the imperative, path-based query language

The Cypher Query Language | 51

http://docs.neo4j.org/chunked/milestone/cypher-query-lang.html
http://docs.neo4j.org/chunked/milestone/cypher-query-lang.html
http://www.w3.org/TR/rdf-sparql-query/

8. https://github.com/tinkerpop/gremlin/wiki/

Gremlin. 8 Our interest, however, is in the expressive power of the declarative model,
and so in this book we’ll focus almost exclusively on Cypher.

Cypher Philosophy
Cypher is a humane query language for developers and database operations professio‐
nals alike. By humane we mean a language that is aligned with how we intuitively de‐
scribe graphs—which, as we’ve already seen, is often through a diagram. The interesting
thing about graph diagrams is that they tend to contain specific instances of nodes and
relationships, rather than classes or archetypes. Even very large graphs are illustrated
using smaller subgraphs made from real nodes and relationships. In other words, we
describe graphs using specification by example.

Cypher enables a user (or an application acting on behalf of a user) to ask the database
to find data that matches a pattern. Colloquially, we say that we ask the database to “find
things like this"--and the way we specify the things we want the database to find is to
draw a picture of them, in ASCII art. We have to employ a few tricks to get around the
fact that a query language has only one dimension (text proceeding from left to right),
whereas a graph diagram can be laid out in two dimensions, but on the whole, Cypher
patterns follow very naturally from the way we draw graphs on the whiteboard.

Like most query languages, Cypher is composed of clauses. A reasonably simple query
is made up of START, MATCH and RETURN clauses (we’ll describe the other clauses you can
use in a Cypher query later in this chapter):

• START: Specifies one or more starting points in the graph. These starting points are
obtained via index lookups or, more rarely, accessed directly based on element IDs.

• MATCH: This is the specification by example part. Using ASCII characters to represent
nodes and relationships (round brackets for nodes, dashes, and greater-than and
less-than signs for relationships), we draw the data we’re interested in.

• RETURN: Specifies which nodes, relationships and properties in the matched data
should be returned to the client.

Here’s an example of a Cypher query that uses these three clauses to find the plays written
by Shakespeare:

START bard=node:authors('firstname:"William" AND lastname:"Shakespeare"')
MATCH (bard)-[:WROTE]->(plays)
RETURN plays

52 | Chapter 4: Working with Graph Data

https://github.com/tinkerpop/gremlin/wiki/

At the heart of this query is the simple pattern (bard)-[:WROTE]->(plays). This pattern
describes two nodes, one of which we’ve bound to an identifier bard, the other to an
identifier plays. These nodes are connected by way of a WROTE relationship, which ex‐
tends from bard to plays. The dashes and greater-than sign that surround the rela‐
tionship name (-->) indicate relationship direction. The rounded brackets help further
discriminate the node identifiers.

Now this pattern could, in theory, occur many times throughout our graph data. To
localise the query, we need to anchor some part it to one or more places in the graph.
What we’ve done with the START clause is lookup a real node in the graph—the node
representing Shakespeare. We bind this Shakespeare node to the bard identifier, which
then carries over to the MATCH clause. This has the effect of anchoring our pattern to a
specific point in the graph. Cypher can then rotate the pattern around this anchor point
to discover actual nodes to bind to the plays identifier. While bard will always be anch‐
ored to the one real Shakespeare node in our graph, plays will (in our sample data) be
bound to a list of nodes representing the plays Julius Caesar and The Tempest. These
nodes are returned to the client in the RETURN clause.

The other clauses we can use in a Cypher query include:

• WHERE: Provides criteria for filtering portions of a pattern.
• CREATE and CREATE UNIQUE: Creates nodes and relationships.
• DELETE: Removes nodes, relationships and properties.
• SET: Set property values.
• FOREACH: Performs an updating action for each element in a list.
• WITH: Divides a query into multiple, distinct parts.

If these clauses look familiar—especially if you’re a SQL developer—that’s great! Cypher
isn’t intended to cause headaches when it’s written or read; it’s intended to be familiar
enough to help you rapidly along the learning curve. At the same time, it’s different
enough to emphasize that we’re dealing with graphs not sets. With that in mind, let’s
look in more detail at the kind of Cypher queries we can write for the graph in Figure 4-4.

Creating Graphs
To create the Figure 4-4 graph, we use a number of CREATE statements to build the overall
structure. These statements are executed by the Cypher runtime within a single trans‐
action such that once the statements have executed, we can be confident the graph is

The Cypher Query Language | 53

9. Normally it’s applications that issue database commands: humans don’t normally have to see so many CRE
ATE statements!

present in the database (or not at all, should the transaction fail). As we might expect,
Cypher has a humane and visual way of building graphs: 9

CREATE shakespeare = { firstname : 'William', lastname : 'Shakespeare' },
 juliusCaesar = { title : 'Julias Caesar' },
 (shakespeare)-[:WROTE { date : 1599 }]->(juliusCaesar),
 theTempest = { title : 'The Tempest' },
 (shakespeare)-[:WROTE { date : 1610}]->(theTempest),
 rsc = { company : 'Royal Shakespeare Company' },
 production1 = { production : 'Julius Caesar' },
 (rsc)-[:PRODUCED]->(production1),
 (production1)-[:PRODUCTION_OF]->(juliusCaesar),
 performance1 = { performance : 20120729 },
 (performance1)-[:PERFORMANCE_OF]->(production1),
 production2 = { production : 'The Tempest' },
 (rsc)-[:PRODUCED]->(production2),
 (production2)-[:PRODUCTION_OF]->(theTempest),
 performance2 = { performance : 20061121 },
 (performance2)-[:PERFORMANCE_OF]->(production2),
 performance3 = { performance : 20120730 },
 (performance3)-[:PERFORMANCE_OF]->(production1),
 billy = { user : 'Billy' },
 rating = { rating: 5, review : 'This was awesome!' },
 (billy)-[:WROTE]->(rating),
 (rating)-[:RATED]->(performance1),
 theatreRoyal = { theatre : 'Theatre Royal' },
 (performance1)-[:VENUE]->(theatreRoyal),
 (performance2)-[:VENUE]->(theatreRoyal),
 greyStreet = { street : 'Grey Street' },
 (theatreRoyal)-[:IN]->(greyStreet),
 newcastle = { city : 'Newcastle' },
 (greyStreet)-[:IN]->(newcastle),
 tyneAndWear = { county: 'Tyne and Wear' },
 (newcastle)-[:IN]->(tyneAndWear),
 uk = { country: 'United Kingdom' },
 (tyneAndWear)-[:IN]->(uk),
 stratford = { town : 'Stratford upon Avon' },
 (stratford)-[:IN]->(uk),
 (rsc)-[:BASED_IN]->(stratford)

In the Cypher code above, we’re doing two different things: creating nodes and their
properties, and relating nodes (with relationship properties where necessary). For ex‐
ample CREATE shakespeare = { firstname : 'William', lastname : 'Shake
speare' } creates a node representing William Shakespeare. The newly created node
is assigned to the identifier shakespeare, which remains available for the duration of

54 | Chapter 4: Working with Graph Data

10. The identifiers we introduce are only available within the current scope. Should we wish to give long-lived
names to nodes (or relationships) then we simply add them to an index.

the current scope 10. This shakespeare identifier is used later in the code to attach
relationships to the underlying node. For example, the clause CREATE (shakespeare)-
[:WROTE { date : 1599 }]->(juliusCaesar)" creates a WROTE relationship from
Shakespeare to the play Julius Caesar. With enough of these, we can build some very
interesting and expressive graphs.

Unlike the relational model, these commands don’t introduce any ac‐
cidental complexity into the graph. The information meta-model—
that is, the structuring of nodes through relationships—is kept sepa‐
rate from the business data, which lives exclusively as properties. We
no longer have to worry about foreign key and cardinality constraints
polluting our real data, since both are explicit in the graph model as
the nodes and the semantically rich relationships that interconnect
them.

We can modify the graph at a later point in time in two different ways. We can, of course,
continue using the CREATE clause to simply add to the graph. But we can also use CREATE
UNIQUE, which has the semantics of ensuring a particular sub-graph structure—some of
which may already exist, some of which may be missing—is in place once the command
has executed. In practice, we tend to use CREATE when we’re adding to the graph and
don’t mind duplication, and CREATE UNIQUE when duplication is not permitted by the
domain.

Beginning a Query
Now that we have a graph, we can start to query it. In Cypher we always begin our
queries from one or more well-known starting points in the graph—what are called
bound nodes. (We can also start a query by binding to one or more relationships, but
this happens far less frequently than binding to nodes.). This is the purpose of the START
clause: to give us some starting points, usually drawn from underlying indexes, from
which we can explore the remainder of the graph.

For instance, if we wanted to discover more about the performances at the Theatre
Royal, we would use that as our starting point. However, if we were more interested in
the works of reviewers or the county of Tyne and Wear, we’d use those nodes to start
instead. Since we want to know about all things Shakespeare that have taken place in
the Theatre Royal in Newcastle, we’ll start our query with these three nodes.

START theater=node:venues(theatre = 'Theatre Royal'), newcastle=node:cities(city = 'Newcastle'),
 bard=node:authors('firstname:"William" AND lastname:"Shakespeare"')

The Cypher Query Language | 55

11. This is in fact Lucene query syntax. Lucene is Neo4j’s default index provider.

This START clause identifies all nodes that have a property key venue and property value
Theatre Royal in a node index called venues. The results of this index lookup are bound
to the identifier theater. (What if there are many Theatre Royal nodes in this index?
We’ll deal with that shortly.) In a second index lookup, we find the node representing
the city of Newcastle; we bind this node to the identifier newcastle.

To find the Shakespeare node itself, we use a more sophisticated query syntax: we declare
that we want to retrieve the node that has properties firstname:William and last
name:Shakespeare 11. We bind the result of this lookup to bard.

From now on in our query, wherever we use the identifiers theater, newcastle and
bard in a pattern, that pattern will be anchored to the real nodes associated with these
identifiers. In effect, the START clause localises the query, giving us starting points from
which to match patterns in the surrounding nodes and relationships.

Declaring information patterns to find
The MATCH clause in Cypher is where the magic happens. Much as the CREATE clause
tries to convey intent using ASCII art to describe the desired state of the graph, so the
MATCH clause uses the same syntax to describe patterns to discover in the database. We’ve
already looked at a very simple MATCH clause; now we’ll look at a more complex pattern
that finds all the Shakespeare performances at Newcastle’s Theatre Royal:

MATCH (newcastle)<-[:IN*1..4]-(theater)<-[:VENUE]-()-[p:PERFORMANCE_OF]->()-[:PRODUCTION_OF]->(play)<-[w:WROTE]-(bard)

This MATCH pattern uses several syntactic elements we’ve not yet come across. As well
as including bound nodes based on index lookups (discussed above), it uses pattern
nodes, arbitrary depth paths, and anonymous nodes. Let’s take a look at these in turn:

• The identifiers newcastle, theater and bard carry over from the START clause,
where they were bound to nodes in the graph using index lookups, as described
above.

• If there are several Theatre Royals in our database (the cities of Plymouth, Bath,
Winchester and Norwich all have a Theatre Royal, for example), then theater will
be bound to all these nodes. To restrict our pattern to the Theatre Royal in New‐
castle, we use the syntax <-[:IN*1..4]-, which means the theater node can be no
more than four outgoing IN relationships away from the node representing the city
of Newcastle. By providing a variable depth path, we allow for relatively fine-grained
address hierarchies (comprising, for example street, district or borough, and city).

• The syntax (venue)<-[:VENUE]-() uses the anonymous node, hence the empty
parentheses. Knowing the data as we do, we expect the anonymous node to match

56 | Chapter 4: Working with Graph Data

performances, but because we’re not interested in using the details of individual
performances elsewhere in the query or in the results, we don’t name the node or
bind it to an identifier.

• We use the anonymous node again to link the performance to the production (()-
[:PERFORMANCE_OF]->()). If we were interested in returning details of perform‐
ances and productions, we would replace these occurrences of the anonymous node
with identifiers: (performance)-[:PERFORMANCE_OF]->(production).

• The remainder of the MATCH is a straightforward (play)<-[w:WROTE]-(bard) node-
to-relationship-to-node pattern match. This pattern ensures we only return plays
written by Shakespeare. Since (play) is joined to the anonymous production node,
and by way of that to the performance node, we can safely infer that it has been
performed in Newcastle’s Theatre Royal. In naming the play node we bring it into
scope so that we can use it later in the query.

• Finally, while most relationships are not bound to identifiers (for example, -
[:VENUE]- doesn’t have an identifier), two relationships -[w:WROTE]- and -
[p:PERFORMANCE_OF]- do include identifiers (w and p respectively). This allows us
to refer to those relationships later in the query (in the WHERE and RETURN clauses).

At this point our query looks like this:

START theater=node:venues(theatre = 'Theatre Royal'), newcastle=node:cities(city = 'Newcastle'),
 bard=node:authors('firstname:"William" AND lastname:"Shakespeare"')
MATCH (newcastle)<-[:IN*1..4]-(theater)<-[:VENUE]-()-[p:PERFORMANCE_OF]->()-[:PRODUCTION_OF]->(play)<-[w:WROTE]-(bard)
RETURN play

Running this query yields all the Shakespeare plays that have been performed at the
Theatre Royal in Newcastle. That’s great if we’re interested in the entire history of
Shakespeare at the Theatre Royal, but if we’re only interested in specific plays, produc‐
tions or performances, we need somehow to constrain the set of results.

Constraining Matches
We constrain graph matches using the WHERE clause to stipulate one or more of the
following:

• That certain additional nodes and relationships must be present (or absent) in the
matched subgraphs.

• That specific properties on matched nodes and relationships must be present (or
absent)--irrespective of their values.

• That certain properties on matched nodes and relationships must have specific
values.

The Cypher Query Language | 57

Compared to the MATCH clause, which describes structural relationships and assigns
identifiers to parts of the pattern, WHERE is more of a tuning exercise to refine the current
pattern match. For example, if we want to restrict the range of plays that we’re interested
in to Shakespeare’s final period, we can supplement our MATCH with the following WHERE
clause:

WHERE w.date > 1608

Adding this clause means that for each successful match, the Cypher execution engine
will check that the WROTE relationship between the Shakespeare node and the matched
play has a date property with a value greater than 1608—the generally accepted begin‐
ning of Shakespeare’s late period. Matches with a WROTE relationship whose date value
is greater than 1608 will pass the test; these plays will then be included in the results.
Matches that fail the test will not be included in the results. By adding this clause we
ensure that only plays from Shakespeare’s late period are returned.

Processing Results
Cypher’s RETURN clause allows us to perform some processing on the matched graph
data before returning it to the user (or the application) that executed the query.

The simplest thing we can do is to return the plays that matched our criteria:

RETURN play

We can enrich this result in several ways: by aggregating, ordering, filtering and limiting
the returned data. For example, if we’re only interested in how many plays match our
criteria, we apply the count aggregator:

RETURN count(play)

If we want to rank the plays by the number of performances, we count a different value,
and use ORDER BY:

RETURN play, count(p) AS performance_count ORDER BY performance_count DESC LIMIT 10

This RETURN clause counts the number of PERFORMANCE_OF relationships using the iden‐
tifier p (which is bound to the PERFORMANCE_OF relationships in the MATCH clause) and
aliases the result as performance_count. It then orders the results based on perfor
mance_count, with the most frequently performed listed first, and limits the final results
to the top 10.

Query Chaining
Before we leave our brief tour of Cypher, there is one more feature that it is useful to
know about—the WITH clause. Sometimes it’s just not practical (or possible) do every‐
thing you want in a single MATCH clause. The WITH clause allows us to chain together
several matches, with the results of the previous MATCH being piped into the next.

58 | Chapter 4: Working with Graph Data

As queries become more complex, WITH instils a sense of discipline, in large part because
it insists on separating read-only clauses from write-centric SET operations.

The Neo4j Core API and Traverser Framework
Besides Cypher, which we use for graph pattern matching, Neo4j has several lower-level
APIs, which developers can use to perform graph traversals. A traversal is effectively a
set of instructions for following a path, from one or more starting points to some in‐
formational goal elsewhere in the graph. Traversals are the building blocks of other graph
query approaches. In Neo4j, traversals can be programmed either imperatively against
the low-level Core API, or declaratively against the Traverser Framework.

The Core API allows developers to fine-tune their queries so that they exhibit high
affinity with the underlying graph. A well-written Core API query is often faster than
any other approach. The downside is that such queries can be verbose, requiring con‐
siderable developer effort. Moreover, their high affinity with the underlying graph makes
them tightly coupled to its structure: when the graph structure changes, they can often
break. Cypher can be more tolerant of structural changes—things such as variable length
paths help mitigate variation and change.

The Traverser Framework is both more loosely coupled than the Core API (since it
allows the developer to declare informational goals), and less verbose, and as a result a
query written using the Traverser Framework typically requires less developer effort
than the equivalent written using the Core API. Because it is a general-purpose frame‐
work, however, the Traverser Framework tends to perform marginally less well than a
well-written Core API query.

If we find ourselves in the unusual situation of coding at with the Core API or Traverser
Framework (and thus eschewing Cypher and its affordances), it’s because we are work‐
ing on an edge case where we need to finely craft an algorithm that cannot be expressed
effectively using Cypher’s pattern matching. Choosing between the Core API and the
Traverser Framework is a matter of deciding whether the higher abstraction/lower cou‐
pling of the Traverser Framework is sufficient, or whether the close-to-the-metal/higher
coupling of the Core API is in fact necessary for implementing an algorithm correctly
and in accordance with our performance requirements.

Graph Modeling in a Systems Management Domain
Now that we understand the property graph model and the basics of the Cypher query
language, we’re ready to revisit the systems management domain from Figure 4-1. In
this section we’ll walk through the analysis and modeling steps necessary to build a
graph representation of the domain.

Graph Modeling in a Systems Management Domain | 59

In the early stages of analysis the work required of us is similar to the relational approach:
using lo-fi methods such as whiteboard sketches, we describe and agree upon the do‐
main. After that, however, the methodologies start to diverge. Instead of transforming
the domain model into tables, we enrich it, with the aim of producing a high-fidelity
representation of the domain suited to what we are trying to achieve in that domain.
That is, for each entity in our domain we ensure that we’ve captured both the properties
and the connections to neighbouring entities necessary to support our application goals.

Helpfully, domain modeling is completely isomorphic to graph modeling. By ensuring
the correctness of the domain model we’re implicitly improving the graph model, since
in a graph database what you sketch on the whiteboard is typically what you store in
the database. Remember, the domain model is not a transparent, context-free window
onto reality: rather, it is a purposeful abstraction of those aspects of our domain relevant
to our application goals. By enriching the domain model, we effectively produce a graph
model attuned to our application’s data needs.

In graph terms what we’re doing is ensuring each node has the appropriate properties
so that it can fulfil its specific domain responsibilities. But we’re also ensuring that every
node is in the correct semantic context; we do this by creating named and directed (and
often attributed) relationships between the nodes to capture the structural aspects of
the domain. For our data center scenarion, the resulting graph model looks like
Figure 4-5.

60 | Chapter 4: Working with Graph Data

Figure 4-5. Example graph for the data center deployment scenario

And logically, that’s all we need to do. No tables, no normalization, no de-normalization.
If we have a high-fidelity domain model then moving that into the database is, logically
at least, child’s play.

Modeling guidelines
While there is usually a very close affinity between the domain model and the resulting
graph model, there are occasions where the two will necessarily diverge slightly. These
are our rules of thumb for refining the graph model:

• Use nodes to represent things in the domain; use relationships to represent the
structural relationships between those things.

• Every entity—that is, everything with an identity—should be a separate node.
• Complex, multi-part property values—addresses, for example—should usually be

pulled out into separate nodes, even though they typically don’t have their own
global identity.

Graph Modeling in a Systems Management Domain | 61

• Actions should be modeled in terms of their products, which should be represented
as nodes. Prefer (alice)-[:WROTE]->(review)-[:OF]->(film) to (alice)-
[:REVIEWED]->(film).

Be diligent about discovering and capturing domain entities. As we shall see later in the
chapter, it’s relatively easy to transpose roles that ought to be assigned to nodes to
sloppily-named relationships instead. This is particularly true when modeling actions
or activities. Look for the thing—the result or product—that can be represented as a
node. Even the smallest domain entities can require their own nodes.

As described in the next section, reviewing the model with an eye to queryability will
help determine which of these guidelines apply in any particular case.

Testing the model
Once we’ve refined our domain model, the next step is to test how suitable it is for
answering realistic queries. While graphs are great for supporting a continuously evolv‐
ing structure (and therefore for correcting any erroneous earlier design decisions), there
are a number of design decisions which, once they are baked into our application, can
hamper us further down the line. By reviewing the domain model and the resulting
graph model at this stage we can avoid these pitfalls; thereafter, changes to the graph
structure will likely be driven solely by changes in the business, rather than by the need
to mitigate a poor design decision.

In practice there are two techniques that we can apply here. The first, and simplest, is
just to check that the graph reads well. Pick a start node, and then follow relationships
to other nodes, reading each node’s role and each relationship’s name as you go. Doing
so should create some sensible sentences. For our data center example, we can read off
sentences like “Load balancer 1 fronts the App, which consists of App Instance 1, 2 and
3, and the Database, which resides on Database Machine 1 and Database Machine 2,”
and “Blade 3 runs VM 3 which hosts App Instance 3.” If reading the graph in this way
makes sense, we can be reasonably confident it has good domain affinity and fidelity.

To further increase our confidence, we also need to consider the queries we’ll run on
the graph. Here we adopt a design for queryability mindset. To validate that the graph
supports the kinds of queries we expect to run on it, we must describe those queries.
This requires us to understand our end-users’ goals; that is, the use cases to which the
graph is to be applied. In our data center scenario, for example, one of our use cases
involves end-users reporting that an application or service is unresponsive. To help these
users, we must identify the cause of the unresponsiveness and then resolve it. To de‐
termine what might have gone wrong we need to identify what’s on the path between
the user and the application, and also what the application depends on to deliver func‐
tionality to the user. Given a particular graph representation of the data center domain,

62 | Chapter 4: Working with Graph Data

12. With a large physical network, we might use Complex Event Processing to process streams of low-level
network events, updating the graph only when the CEP solution raises a significant domain event. See: http://
en.wikipedia.org/wiki/Complex_event_processing

if we can craft a Cypher query that addresses this use case, we can be even more certain
that the graph meets the needs of our domain.

Continuing with our example use case, let’s assume that we can update the graph from
our regular network monitoring tools, thereby providing us with a near real-time view
of the state of the network 12. When a user reports a problem, we can limit the physical
fault-finding to problematic network elements between the user and the application and
the application and its dependencies. In our graph we can find the faulty equipment
with the following query:

START user=node:users(id = 'User 3')
MATCH (user)-[*1..5]-(asset) WHERE asset.status! = 'down'
RETURN distinct asset

That is, starting from the user who reported the problem, we MATCH against all assets in
the graph along an undirected path of length 1 to 5. We store asset nodes with a sta
tus property whose value is 'down' in our results. The exclamation mark in asset.sta
tus! ensures that assets that lack a status property are not included in the results.
RETURN distinct asset ensures that unique assets are returned in the results, no matter
how many times they are matched.

Given that such a query is readily supported by our graph, we gain confidence that the
design is fit for purpose.

Common Modeling Pitfalls
While graph modeling is a very expressive way of mastering the complexity in a problem
domain, expressivity in and of itself is no guarantee that a particular graph is fit for
purpose. In fact there have been occasions where even those of us who work with graphs
all the time make mistakes. In this section we’ll take a look at a model that went wrong.
In so doing, we’ll learn how to identify problems early in the modeling effort, and how
to fix them.

Email Provenance Problem Domain
In this case we were working on a problem involving the analysis of email communi‐
cations. Communication pattern analysis is a classic graph problem. Normally, we’d
interrogate the graph to discover subject matter experts, key influencers, and the com‐
munication chains through which information is propagated. On this occasion, how‐
ever, instead of looking for positive role models (in the form of experts) we were search‐

Common Modeling Pitfalls | 63

http://en.wikipedia.org/wiki/Complex_event_processing
http://en.wikipedia.org/wiki/Complex_event_processing

ing for rogues: that is, suspicious patterns of email communication that fall foul of
corporate governance—or even break the law.

A Sensible First Iteration?
In analyzing the domain we learnt about all the clever patterns that potential wrong-
doers adopt to cover their tracks: using BCC, using aliases—even conducting conver‐
sations with those aliases to mimic legitimate interactions between real business stake‐
holders. Based on this analysis we produced a representative graph model that seemed
to capture all the relevant entities and their activities.

To illustrate this early model, we’ll use Cypher’s CREATE clause to generate some nodes
representing users and aliases. We also generate a relationship that shows that Alice is
one of Bob’s known aliases. (We’ll assume that the underlying Neo4j instance is indexing
these nodes so that we can later look them up and use them as starting points in our
queries.) Here’s the Cypher query to create our first graph:

CREATE alice = {username : 'alice'}
CREATE bob = {username : 'bob'}
CREATE charlie = {username : 'charlie'}
CREATE davina = {username : 'davina'}
CREATE edward = {username : 'edward'}

CREATE (alice)-[:ALIAS_OF]->(bob)

The resulting graph model makes it easy to observe that Alice is an alias of Bob, as we
see in Figure 4-6.

Figure 4-6. Users and aliases

Now we join the users together through the emails they’ve exchanged:

CREATE (bob)-[:EMAILED]->(charlie)
CREATE (bob)-[:CC]->(davina)
CREATE (bob)-[:BCC]->(edward)

At first sight this looks like a reasonably faithful representation of the domain. Each
clause lends itself to being read comfortably left to right, thereby passing one of our

64 | Chapter 4: Working with Graph Data

informal tests for correctness. For example, it’s deceptively easy to read the sentence
“Bob emailed Charlie”. The limitations of this model only emerge when it becomes
necessary to determine exactly what was exchanged by the potential miscreant Bob (and
his alter-ego Alice). We can see that Bob CC’d or BCC’d some people, but we can’t see
the most important thing of all: the email itself.

This first modeling attempt results in a star-shaped graph. Bob is represented by a central
node; his actions of emailing, copying and blind-copying are represented by relation‐
ships that extend from Bob to the nodes representing the recipients of his mail. The
problem is, as we see in Figure 4-7, the most critical element of the data (the actual
email) is missing.

Figure 4-7. Missing email node leads to lost information

That such a structure is lossy becomes evident when we pose the following query:

START bob=node:users(username, "Bob"), charlie=node:users(username, "Charlie")
MATCH (bob)-[e:EMAILED]->(charlie)
RETURN e

This query returns the EMAILED relationships between Bob and Charlie (there will be
one for each email that Bob has sent to Charlie). This tells us that emails have been
exchanged, but it tells us nothing about the emails themselves. We might think we can
remedy the situation by adding properties to the EMAILED relationship to represent an
email’s attributes, but that’s just playing for time. Even with properties attached to each
EMAILED relationship, we would still be unable to correlate between the EMAILED, CC and
BCC relationships; that is, we would be unable to say which emails were copied and blind-
copied, and to whom.

The fact is we’ve unwittingly made a simple modeling mistake, caused mostly by a lax
use of English rather than any shortcomings of graph theory. Our everyday use of lan‐

Common Modeling Pitfalls | 65

guage has lead us to focus on the verb “emailed” rather than the email itself, and as a
result we’ve produced a model lacking domain insight.

In English, it’s easy and convenient to shorten the phrase “Bob sent an email to Charlie”
to “Bob emailed Charlie”. In most cases that loss of a noun (the actual email) doesn’t
matter since the intent is still clear. But when it comes to our forensics scenario, these
elided statements are problematic. The intent remains the same, but the details of the
number, contents and recipients of the emails that Bob sent have been lost through
having been folded into a relationship EMAILED, rather than being modeled explicitly as
nodes in their own right.

Second Time’s the Charm
To fix our lossy model, we need to insert email nodes to represent the real emails ex‐
changed within the business, and expand our set of relationship names to encompass
the full set of addressing fields that email supports. Now instead of creating lossy struc‐
tures like this:

CREATE (bob)-[:EMAILED]->(charlie)

-we’ll instead create more detailed structures, like this:

CREATE email = {id : '1234', content : "Hi Charlie, ... Kind regards, Bob"}

CREATE (bob)-[:SENT]->(email)
CREATE (email)-[:TO]->(charlie)
CREATE (email)-[:CC]->(davina)
CREATE (email)-[:CC]->(alice)
CREATE (email)-[:BCC]->(edward)

This results in the kind of graph structure we see in Figure 4-8:

66 | Chapter 4: Working with Graph Data

Figure 4-8. High fidelity modeling yields a classic star graph for a single email

Of course in a real system there will be many more of these emails with their intricate
web of interactions for us to explore. It’s quite easy to imagine that over time many more
CREATE statements are executed as the email server logs the interactions, like so:

CREATE email_1234 = {id : '1234', content : "email contents"}
CREATE (bob)-[:SENT]->(email_1234)
CREATE (email_1234)-[:TO]->(charlie)
CREATE (email_1234)-[:TO]->(davina)
CREATE (email_1234)-[:CC]->(alice)
CREATE (email_1234)-[:BCC]->(edward)

CREATE email_2345 = {id : '2345', content : "email contents"}
CREATE (bob)-[:SENT]->(email_2345)
CREATE (email_2345)-[:TO]->(davina)
CREATE (email_2345)-[:BCC]->(edward)

CREATE email_3456 = {id : '3456', content : "email contents"}
CREATE (davina)-[:SENT]->(email_3456)
CREATE (email_3456)-[:TO]->(bob)
CREATE (email_3456)-[:CC]->(edward)

CREATE email_4567 = {id : '4567', content : "email contents"}
CREATE (charlie)-[:SENT]->(email_4567)
CREATE (email_4567)-[:TO]->(bob)
CREATE (email_4567)-[:TO]->(davina)
CREATE (email_4567)-[:TO]->(edward)

CREATE email_5678 = {id : '5678', content : "email contents"}
CREATE (davina)-[:SENT]->(email_5678)
CREATE (email_5678)-[:TO]->(alice)

Common Modeling Pitfalls | 67

CREATE (email_5678)-[:BCC]->(bob)
CREATE (email_5678)-[:BCC]->(edward)

In turn this leads to interesting graphs, as we see in Figure 4-9.

Figure 4-9. A high fidelity graph of email interactions

Now we can query this high-fidelity graph to identify potentially suspect behaviour:

START bob=node:users(username, 'Bob'), charlie=node:users(username, 'Charlie'), davina=node:users(username, 'Davina')
MATCH (bob)-[:SENT]->(email)-[:TO]->(charlie),
 (bob)-[:SENT]->(email)-[:CC]->(davina)
 (bob)-[:SENT]->(email)-[:CC]->(alice)
RETURN email

Here we retrieve (and process) those emails that Bob sent to Charlie while copying
Davina and Alice (trying to throw us off the scent, since we know Alice is one of Bob’s
aliases). And since both Cypher and the underlying graph database have graph affinity
these queries—even over large datasets—run very quickly.

68 | Chapter 4: Working with Graph Data

Evolving the Domain
As with any database, our graph serves a system that is bound to evolve over time (if it’s
at all useful). So what should we do when the graph evolves? How do we know what
breaks, or indeed how to we even tell that something has broken? The fact is, we can’t
avoid migrations in a graph database: they’re a fact of life just like with any data store.
But in a graph database they’re often simpler.

In a graph, to add new facts or compositions, we tend to add nodes and relationships
rather than changing the model in place. Adding to the graph using new kinds of rela‐
tionships will not affect any existing queries, and is completely safe. Changing the graph
using existing relationship types, and changing the properties (not just the property
values) of existing nodes might be safe, but we need to run a representative set of queries
to maintain confidence that the graph is still fit for purpose after the the structural
changes. However these activities are precisely the same kind of actions we perform
during normal database operation, so in a graph world a migration really is just business
as normal.

At this point we have a useful graph of who sent a particular email and who received it
(by whatever means). But of course one of the joys of email is that recipients can forward
or reply to an email they’ve received, to increase interaction and knowledge sharing,
and in some cases even to leak critical business information. Given we’re looking for
suspicious communication patterns, it makes sense for us to also take into account
forwarding and replies.

At first glance, there would appear to be no need to use database migrations to update
our graph to support our new use case. The simplest additions we can make involve
adding FORWARDED and REPLIED_TO relationships into the graph. Doing so won’t affect
any pre-existing queries: these new relationships will be ignored because the pre-existing
queries aren’t coded to recognise them.

Common Modeling Pitfalls | 69

Figure 4-10. A naive, lossy approach fails to appreciate that forwarded and replied
emails are first-class entities

However, this approach quickly proves inadequate. Adding FORWARDED or REPLIED re‐
lationships is naive and lossy in much the same way as our original use of an EMAILED
relationship. To illustrate this, consider the following CREATE statements:

START email = node:emails(id, 1234)
CREATE (alice)-[:REPLIED_TO]->(email)
CREATE (davina)-[:FORWARDED]->(email)-[:TO]->(charlie)

In the first CREATE statement we’re trying to record the fact that Alice replied to a par‐
ticular email. The statement makes logical sense when read from left to right, but the
sentiment is lossy—we can’t tell whether Alice replied to all the recipients of the
email_1234 or directly to the author. All we know that is that some reply was sent. The
second statement also reads well from left to right: Davina forwarded email_1234 to
Charlie. The problem is, we already use the TO relationship to indicate that a given email
has a to header that identifies the primary recipients. Reusing TO here makes it impos‐
sible to tell who was a recipient and who received a forwarded version of an email.

To resolve this problem, we have to consider the fundamentals of the domain. A reply
to an email is itself a new email, albeit with some relationship to a previous message.
Whether the reply is to the original sender, all recipients, or a subset can be easily mod‐

70 | Chapter 4: Working with Graph Data

eled using the same familiar TO, CC and BCC relationships, while the original email itself
can be referenced via a REPLY_TO relationship. Here’s a revised series of writes resulting
from several email actions:

CREATE email = {id : '0', content : "email"}
CREATE (bob)-[:SENT]->(email)
CREATE (email)-[:TO]->(charlie)
CREATE (email)-[:TO]->(davina)

CREATE reply_1 = {id : '1', content : "response"}
CREATE (reply_1)-[:REPLY_TO]->(email)
CREATE (davina)-[:SENT]->(reply_1)
CREATE (reply_1)-[:TO]->(bob)
CREATE (reply_1)-[:TO]->(charlie)

CREATE reply_2 = {id : '2', content : "response"}
CREATE (reply_2)-[:REPLY_TO]->(email)
CREATE (bob)-[:SENT]->(reply_2)
CREATE (reply_2)-[:TO]->(davina)
CREATE (reply_2)-[:TO]->(charlie)
CREATE (reply_2)-[:CC]->(alice)

CREATE reply_11 = {id : '11', content : "response"}
CREATE (reply_11)-[:REPLY_TO]->(reply_1)
CREATE (charlie)-[:SENT]->(reply_11)
CREATE (reply_11)-[:TO]->(bob)
CREATE (reply_11)-[:TO]->(davina)

CREATE reply_111 = {id : '111', content : "response"}
CREATE (reply_111)-[:REPLY_TO]->(reply_11)
CREATE (bob)-[:SENT]->(reply_111)
CREATE (reply_111)-[:TO]->(charlie)
CREATE (reply_111)-[:TO]->(davina)

This creates the graph in Figure 4-11 where numerous replies and replies-to-replies
have been recorded.

Common Modeling Pitfalls | 71

Figure 4-11. Explicitly modeling replies in high-fidelity

Now it is easy to see who replied to Bob’s original email. First locate the email of interest,
then match against incoming REPLY_TO relationships (since there may be multiple re‐
plies) and from there match against incoming SENT relationships to find the sender(s).
In Cypher this is simple to express. In fact, Cypher makes it easy to look for replies to
replies to replies, and so on to an arbitrary depth (though we limit it to depth 4 here):

START email = node:emails(id, '6789')
MATCH (email)<-[:REPLY_TO*1..4]-()<-[:SENT]-(replier)
RETURN replier

It’s a similar pattern for a forwarded email: a forwarded email is simply a new email that
happens to contain some of the text of the original email (possibly with additions by
the forwarder). In that case we should model the new email explicitly, just as in the reply
case. But from an application point of view we should also be able to reference the
original email from the forwarded mail so that we always have high fidelity provenance
data. And the same applies if the forwarded mail is itself forwarded, and so on. For
example, if Alice (Bob’s alter-ego) emails Bob to try to establish separate concrete iden‐
tities, and then Bob (wishing to perform some subterfuge) forwards that email onto
Charlie who forwards it onto Davina, we actually have three emails to consider. As‐
suming the users (and their aliases) are already in the database, in Cypher we’d write
that audit information into the database as follows:

72 | Chapter 4: Working with Graph Data

CREATE email = {id : '0', content : "email"}
CREATE (alice)-[:SENT]->(email)-[:TO]->(bob)

CREATE email_101 = {id : '101', content : "email"}
CREATE (email_101)-[:FORWARD_OF]->(email)
CREATE (bob)-[:SENT]->(email_101)-[:TO]->(charlie)

CREATE email_102 = {id : '102', content : "email"}
CREATE (email_102)-[:FORWARD_OF]->(email_101)
CREATE (charlie)-[:SENT]->(email_102)-[:TO]->(davina)

On completion of those writes, this particular sub-graph in our database will resemble
Figure 4-12, continuously adding new nodes to represent physical domain entities just
as in the case where we modeled replies.

Figure 4-12. Explicitly modeling email forwarding in high-fidelity

Again as we modeled queried replied emails, we can query this graph too and, for ex‐
ample, determine the length of an email chain.

START email = node:emails(id, '0')
MATCH (email)<-[f:FORWARD_OF*]-()
RETURN count(f)

The above query starts at the given original email and then matches against all incoming
FOWARD_OF relationships to any depth. In this case those relationships are bound to a
variable f and we simply return the number of times that relationship has matched by
counting the number of times f has been bound using Cypher’s count function. In this
example, we see the original email has been forwarded twice.

Common Modeling Pitfalls | 73

Avoiding Anti-Patterns
In the general case, don’t encode entities (nouns) into relationships. Use relationships
to convey semantics about how entities are related, and the quality of those relationships,
not to directly encode verbs. And remember that domain entities aren’t always clear in
the way humans communicate, so think carefully about the nouns that you’re actually
dealing with.

It’s also important to realize that graphs are a naturally additive structure. Pouring in
facts in terms of domain entities and how they interrelate is natural, even if it might at
first feel like you’re flooding the database with a great deal of painstaking data. In general
it’s a both bad practice and futile to try to conflate data elements at write time to preserve
query-time efficiency, so model naturally and in high-fidelity and trust in the graph
database to do the right thing.

Good graph databases like Neo4j maintain fast query times even when
storing vast amounts of data. Learning to trust your graph database is
important when learning to structure (and not denormalize) your
graphs.

Summary
Modeling with graphs is one of the most expressive and powerful tools at our disposal
as software professionals, providing high affinity between domain and data and re‐
moving the need for complex normalization and deormalization and the correspond‐
ingly complex data management code. However, modeling with graphs is a new tech‐
nique for most of us, and so we should take care to ensure that the graphs we’re creating
read well (for queries) and don’t conflate entities and actions (losing useful domain
knowledge). While there are no absolute rights or wrongs to graph modeling, by fol‐
lowing the guidance in this chapter, we can have confidence that our graph data will
serve our systems’ needs over many iterations and keep pace with code evolution.

74 | Chapter 4: Working with Graph Data

CHAPTER 5

Graph Databases

In this chapter we discuss the characteristics of graph database management systems
(“graph databases” for short, or Graph DBMSs), showing how graph databases differ
from other means of storing and querying complex, semi-structured, densely-
connected data. Throughout this chapter we’re going to ground the discussion in the
architecture and open source code of Neo4j - the most popular graph database.

Graph databases: a definition
A graph database is a storage engine which supports a graph data model backed by
native graph persistence, with access and query methods for the graph primitives to
make querying the stored data pleasant and performant. However there are numerous
graph data models and while the rest of this book focuses on the most common and
pragmatic model — the property graph, or simply graph database — there are other
kinds of stores which lay claim to the name “graph database” including triple stores and
hypergraph stores.

Hypergraphs
Hypergraphs are a generalized graph model where a relationship (called a hyper-edge)
can connect any number of nodes. More specifically while the property graph model
permits a relationship have a single start and end node, the hypergraph model allows
any number of nodes at a relationship’s start and end. For some problems hypergraphs
could be a useful model. For example in Figure 5-1 we see that Alice and Bob are the
owners of three vehicles which is expressed through a single hyper-edge (rather than
potentially six relationships in a property graph).

75

Figure 5-1. A simple (directed) hypergraph

However we saw in the anti-patterns discussion Chapter 4 how high-fidelity is important
to graph modeling. While in theory hypergraphs are high-fidelity, in practice it’s very
easy to produce lossy models with them. To illustrate this point, let’s consider the prop‐
erty graph in Figure 5-2.

Figure 5-2. A property graph is semantically fine-tuned

The Figure 5-2 property graph contains several OWNS relationships to express the same
information that required only a single relationship in Figure 5-1. Yet in using several
relationships, not only are we able to use a familiar and very explicit modeling technique,

76 | Chapter 5: Graph Databases

1. http://www.w3.org/standards/semanticweb/

2. http://www.w3.org/TR/rdf-sparql-query/

3. http://www.w3.org/RDF/

but we’re also able to fine-tune that model. For example we’ve taken the opportunity to
distinguish the “primary driver” for each vehicle for insurance purposes by adorning
the appropriate relationships, something which can’t be done with a single hyper-edge.

It’s a fair to say that hypergraphs are a more general model than property
graphs since hyper-edges are multidimensional. However it is possible
to represent the information of any hypergraph as a property graph
(albeit using more relationships and intermediary nodes) because the
two models are isomorphic. Whether a hypergraph or a property graph
is best for you is going to depend on your modeling mindset and the
kinds of applications you’re building. Anecdotally, for most purposes
property graphs seem to have the best balance of pragmatism and mod‐
eling efficiency, hence their overwhelming popularity in the graph da‐
tabase space. However for situations where meta-intent is desired (e.g.
I like the fact that you liked that car) then hypergraphs require fewer
primitives than property graphs.

Triples
The triple-store family of databases comes from the Semantic Web 1 movement, where
researchers are interested in large-scale knowledge inference by adding semantic mark‐
up on links between Web resources. To-date there’s relatively little of the Web which is
usefully marked-up so running queries across the semantic layer is uncommon. Instead
most effort in the semantic Web appears to be invested in harvesting useful data and
relationship information from the Web (or other more mundane data sources like ap‐
plications) and depositing it in triple stores for querying.

Triple stores are a specialized kind of database into which harvested triples are deposited.
Triple typically provide SPARQL 2 capabilities to reason about stored RDF 3 data. In
turn, the stored triples of the form subject-predicate-object provide a set of facts such
that we can easily capture knowledge via numerous pithy statements like “Ginger dances
with Fred” and “Fred likes ice cream.” Individually a single triple is semantically rather
poor, but en-masse they provide a rich data set from which to harvest knowledge and
infer connections.

While RDF — the lingua franca of triple stores and the Semantic Web — can be serial‐
ized several ways, using the RDF/XML format we can begin to see how triples come
together to form linked data in RDF encoding of a simple three-node graph.

Graph databases: a definition | 77

http://www.w3.org/standards/semanticweb/
http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/RDF/

4. http://geoff.nigelsmall.net/

5. http://docs.neo4j.org/chunked/milestone/cypher-query-lang.html

RDF encoding of a simple three-node graph.

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns="http://www.example.org/terms/">
 <rdf:Description rdf:about="http://www.example.org/ginger">
 <name>Ginger Rogers</name>
 <occupation>dancer</occupation>
 <partner rdf:resource="http://www.example.org/fred"/>
 </rdf:Description>
 <rdf:Description rdf:about="http://www.example.org/fred">
 <name>Fred Astaire</name>
 <occupation>dancer</occupation>
 <likes rdf:resource="http://www.example.org/ice-cream"/>
 </rdf:Description>
</rdf:RDF>

W3C support
The logical representation of the triple store doesn’t imply any triple-like implementa‐
tion internally for a store. However the various triple stores are almost all unified by
their support for Semantic Web technology like RDF and SPARQL. While there’s noth‐
ing particularly special about RDF as as means of serializing linked data from a format
perspective, it is endorsed by the W3C and therefore benefits from being widely un‐
derstood and well documented. The query language SPARQL benefits from similar
W3C patronage.

In the graph database space there is a similar raft of innovation around graph seriali‐
zation formats (e.g. GEOFF 4) and inferencing query languages (e.g. the Cypher query
language 5 that we use throughout this book). The key difference is that such innovation
does not enjoy the patronage of a well-regarded body like the W3C, though they do
benefit from strong engagement within their user and vendor communities.

However triple stores are not graph databases, though they ostensibly deal in data
which — once processed — tends to be logically linked. Native storage of triples all but
precludes the kind of rapid traversal of relationships that are the bedrock of graph da‐
tabases, graph algorithms and graph-oriented programming. Instead a strength of the
triple model is that it is easy to scale horizontally for storage since triples are independent
artefacts. Yet native triple storage all but implies latent at query time for the same rea‐
son — the linked data has to be reified from independent facts into a connected struc‐
ture. Given those assertions, the sweet spot for a triple store is generally not OLTP (that
is for responsive online transaction processing systems), instead triples may be of use
for analytics where latency is a secondary consideration.

78 | Chapter 5: Graph Databases

http://geoff.nigelsmall.net/
http://docs.neo4j.org/chunked/milestone/cypher-query-lang.html

6. https://github.com/tinkerpop/blueprints/wiki/Sail-Implementation
7. The main citation for the term is at http://en.wikipedia.org/wiki/Graph_database, but it is believed to have

originated from Marko Rodriguez, a well-known graph advocate.

Though it’s clear that graph databases emphasize traversal performance
and the ability to execute graph algorithms, it is possible to use a graph
database as a backing store behind a RDF/SPARQL endpoint. For ex‐
ample the Blueprints SAIL 6API provides an RDF interface to several
graph databases, including Neo4j. In practice this implies a level of
functional isomorphism between graph databases and triple stores.
However each store type is suited to different kinds of workload, with
graph databases being optimized for graph workloads and especially
rapid traversals.

Graph-Native Stores
We’ve discussed the property graph model several times throughout this book, and by
now we’re familiar with the notion of nodes containing properties connected by named,
directed relationships which themselves can contain properties. However there a nu‐
merous ways to encode and store a property graph, some of which take advantage of
their natural index-free adjacency model which is which is crucial for fast, efficient graph
traversals.

The term index-free adjacency 7 has been advanced as a means of reasoning about non-
graph native databases from more general-purpose graph databases. In a non-native
store (global) indexes are used to link together nodes, where as in a native graph store
each node acts as a kind of micro-index of other nearby nodes (at low computational
cost). In a native property graph, there is no requirement to maintain large overarching
indexes to describe connectivity (at greater computational cost).

Using indexes to discover adjacent nodes is a more expensive operation case than using
the relationships incident on a node. Depending on the implementation, index lookups
are typically O(log n) in algorithmic complexity versus O(1) for looking up relationships.
To traverse a network, the cost of an indexed approach at O(m log n) dwarfs the cost of
O(m) for an index-free adjacency approach for a traversal of m steps.

Graph-Native Stores | 79

https://github.com/tinkerpop/blueprints/wiki/Sail-Implementation
http://en.wikipedia.org/wiki/Graph_database

Figure 5-3. Non-native graph stores use indexing to traverse between nodes

For example in Figure 5-3 to find Alice’s friends costs an index lookup at cost O(log n)
which may be an acceptable cost for occasional lookups. But to find who is friends with
Alice, the costs are far more onerous. For example, it’s O(log n) cost to find out who
Alice’s friends are, but O(m log n) to find out who is friends with Alice as we have to
interrogate the index for each node that could potentially be a friend with Alice.

Index-free adjacency leads to lower-cost “joins”
When using indexes to fake connections between records, there is no actual relationship
stored in the database. This is problematic when we try to traverse in the “opposite”
direction compared to how the index was constructed. Since we have to brute force
search through the index — an O(n) operation — joins like this are simply too costly to
be of any practical use.

While the cost of index lookups might not be considered too onerous for very small
networks like Figure 5-3 or the kind of example often seen in demos, in the general case
it is too costly to be practical since it directly limits the scope and richness of the result
set for a responsive application. It is for that reason that performant graph databases
like Neo4j tend towards index-free adjacency to ensure high performance traversals as
an essential design goal.

80 | Chapter 5: Graph Databases

Recall that in a general-purpose graph database relationships can be traversed in either
direction (tail to head, or head to tail) extremely cheaply. The graph in Figure 5-4 helps
illustrate this point in contrast to the far more expensive index-bound approach.

Figure 5-4. Neo4j uses relationships, not indexes for fast traversals

As we can see in Figure 5-4, to discover who Alice’s friends are in a graph, we simply
follow her outgoing FRIEND relationships at O(1) cost each. For who is friends with Alice,
we simply follow all her incoming FRIEND relationships to their source at O(1) cost each
once again. This observation should lead to very efficient graph traversals in theory, but
such high-performance traversals only become reality when they are supported by an
architecture designed for that purpose as we shall now discuss.

Architecture
Given that index-free adjacency is the key to high performance traversals and thus high
performance queries and writes, one key aspect of the design of a graph database is the
way in which graphs are stored. An efficient, native graph storage format supports ex‐
tremely rapid traversals for arbitrary graph algorithms — an important reason for using
graphs — and is a key differentiator between a native graph database and other non-
native graph databases (e.g. triple stores).

For illustrative purposes we’ll use the Neo4j database as a canonical example of how a
graph database is architected. We choose Neo4j for a variety of reasons — it’s very pop‐
ular, it’s graph-native, and it’s open source so our discussion here can be readily tied
back to corresponding code.

Firstly let’s contextualize our discussion by looking at Neo4j’s high level architecture,
presented in Figure 5-5. We’ll work bottom-up from the files on disk through to the
programmatic APIs and up to the Cypher query language. Along the way we’ll discuss
the performance and dependability characteristics and the design decisions that enable
Neo4j to be a performant, reliable graph database.

Architecture | 81

Figure 5-5. Neo4j architecture

Neo4j stores graph data spread across a number of store files. Each store file contains
the data for a specific part of the graph (e.g. nodes, relationships, properties). The di‐
vision of storage responsibilities — particularly the separation of graph structure from
property data — exists for performant graph traversals even if though it means the user’s
view of their graph and the actual records on disk are structurally dissimilar. Let’s start
our exploration of physical storage by looking at the structure of nodes and relationships
on disk as shown in Figure 5-6.

Figure 5-6. Neo4j Node and Relationship Store File Record Structure

The node store file is where, unsurprisingly, node records are stored. Every node created
in the user-level graph ends up in this node store, and is stored in the physical file

82 | Chapter 5: Graph Databases

neostore.nodestore.db. Like most of the Neo4j store files, the node store is a fixed-
size record store where each record is 9 bytes in length. Fixed record sizes enable fast
lookups for nodes within the store file — if we have a node with id 100 then we know
its record begins 900 bytes into the file and so the database can directly compute the
record location at cost O(1) without performing a search at cost O(log n).

Inside a node record, the first byte is the in-use flag which tells the database whether
the record is currently used or can be reclaimed to store new records (with
Neo4j’s .id files being used to keep track of unused records). The next four bytes are
the of the first relationship connected to the node. The last four nodes bytes are the id
of the first property for the node. The node record is pretty lightweight, it’s really just a
couple of pointers to lists of relationships and properties.

Correspondingly, relationships are stored in the relationship store file ‘neostore.rela‐
tionshipstore.db`. Like the node store file, the relationship store contains fixed-size (in
this case 33 bytes) records and each record contains the id of the nodes at the start and
end of each relationship, a pointed to the relationship type (stored in the relationship
type store) and pointers for the relationship chains for the start and end node (as a
doubly linked list) since a relationships logically belongs to both nodes and therefore
should appear in the list of both nodes’ relationships.

Both the node and relationship stores are only concerned with the
structure of the graph, not the property data it holds. Furthermore, both
node and relationship stores use fixed-sized records such that any in‐
dividual record’s location within the store file can be rapidly computed
given its id. These are critical design decisions that underlines Neo4j’s
commitment to high performance traversals.

In Figure 5-7 we see how the various store files interact on disk. The node records
contain only a pointer to their first property and their first relationship (in what is often
termed the _relationship chain). From here, we can follow the (doubly) linked-list of
relationships until we find the one we’re interested in, the LIKES relationship from Node
1 to Node 2 in this case. Once we’ve found the relationship record of interest, we can
simply read its properties if there are any via the same singly-linked list structure as
node properties, or we can examine the node records that it relates via its start node and
end node IDs. These IDs, multiplied by the node record size, of course give the imme‐
diate offset of both nodes in the node store file.

Architecture | 83

Figure 5-7. How a graph is physically stored in Neo4j

Doubly linked lists in the relationship store
Don’t worry if the relationship store structure seems a little complex at first; it’s definitely
not as simple as the node store or property store.

It’s helpful to think of a relationship record as “belonging” to two nodes—the start node
and the end node of the relationship. Clearly, however, we don’t want to store two re‐
lationship records, because that would be wasteful. And yet it’s equally clear that the
relationship record should somehow belong to both the start node and the end node.

That’s why there are pointers (aka record ids) for two doubly-linked lists: one is the list
of relationships visible from the start node; the other is the list of relationships visible
from the end node. That each list is doubly-linked simply allows us to rapidly iterate
through that list in either direction, and insert and delete relationships efficiently.

Choosing to follow a different relationship involves iterating through a linked list of
relationships until we find a good candidate (e.g. matching the correct type, or having
some matching property value). Once we have a suitable relationship we’re back in
business simply multiplying id by record size, and thereafter chasing pointers.

84 | Chapter 5: Graph Databases

8. in fact these computations are much cheaper than searching global indexes as we’d do if faking a graph in a
non-graph native database

9. Neo4j allows any primitive JVM type, plus strings and arrays of all the previous.

10. Recall that properties are held as a singly linked-list on disk compared to the doubly linked-list for relation‐
ships.

With fixed sized records and pointer-like record ids, traversals are implemented simply
by`‘pointer chasing’' around a data structure which can be performed at very high speed.
To traverse a particular relationship from one node to another the database performs
several cheap id computations 8:

1. From a given node record, locate the first record in the relationship chain by com‐
puting its offset into the relationship store by multiplying its id by the fixed rela‐
tionship record size (remember that’s 33 bytes at time of writing). This gets us into
right record in the relationship store.

2. From the relationship record look at the second node field for the id of the second
node. Multiply that id by the node record size (9 bytes at time of writing) to locate
the correct node record in the store.

Should we wish to constrain the traversal to relationships with particular types, then
we’d add a lookup in the relationship type store. Again this is a simple multiplication of
id by record size (5 bytes at time of writing) to find the offset for the appropriate rela‐
tionship type record in the relationship store.

In addition to the node and relationship stores which contain the graph structure, we
have the property store files that store the user’s key-value pairs. Recall that Neo4j, as a
property graph database, allows properties — name-value pairs — to be stored in both
nodes and relationships and so the property store is referenced from both node and
relationship records.

Records in the property store are physically stored in the neostore.propertys
tore.db file, and in that file each (fixed-size) entry contains fields representing the
property type 9, a pointer into the property index store file (neostore.propertys
tore.db.index), a pointer to a DynamicStore record (being either in the Dynami‐
cStringStore in neostore.propertystore.db.strings or the DynamicArrayStore in
neostore.propertystore.db.arrays depending on the property type) and finally the
id of the next property in the chain 10.

Inlining and optimizing property store utilization
Neo4j supports store optimizations where some properties can be inlined into the prop‐
erty store file directly (neostore.propertystore.db). This can happen where property

Architecture | 85

11. See: http://docs.neo4j.org/chunked/stable/configuration-caches.html for tuning options

data can be encoded to fit within the size normally allocated for a pointer to a record
(minus a little overhead for descriptive metadata). In practice this means that data like
phone numbers and zip codes can be inlined in the property store file directly rather
than being pushed out to the dynamic stores. This results in reduced I/O operations
and improved throughput since only a single file access is required.

In addition to inlining certain compatible property values, Neo4j also maintains space
discipline on property names. For example in a social graph, there will likely be many
nodes with properties like first_name and last_name. It would be wasteful if each
property name was written out to disk verbatim, and so instead property names are
indirectly referenced from the property store through the property index file. The prop‐
erty index allows all properties with the same name to share a single record, and thus
for repetitive graphs — a very common use case — a great space, and subsequently I/O,
saving is achieved.

Having an efficient storage layout is only half of the picture. Even though the store files
are optimized for rapid traversals, we live in a world where disk storage vastly outsizes
main memory capacity. However disks have seek times in single digit milliseconds for
spinning disks which — although fast by human standards — are ponderously slow in
computing terms. Though Solid State Disks (SSDs) are far better (since there’s no sig‐
nificant seek penalty waiting for platters to rotate) the path between CPU and disk is
still more latent than the path to L2 cache or main memory where we’d ideally like to
operate on our graph.

However we can use in-memory caching to mask the lower performance characteristics
of mechanical/electronic mass storage devices and probabilistically provide low latency
access to the graph. In Neo4j there is a two-tiered caching architecture which provides
this functionality.

The lowest tier in the Neo4j cache stack is the filesystem cache. This cache is page-affined,
dividing the store into discrete regions with the cache holding a fixed number of those
regions per store file. The actual amount of memory to be used to cache each store file’s
pages can be fine-tuned, though Neo4j will use sensible default values based on the
capacity of the underlying hardware in the absence of input from the user 11.

Pages are evicted based on a least frequently used policy, with the default implementation
delegating responsibility for to underlying operating system’s memory mapped file sys‐
tem such that the operating system itself determines which segments of virtual memory
will be in real memory and which will be flushed out to disk. The filesystem cache is
particularly beneficial where related parts of the graph are written together so that they
occupy the same page. This is a common pattern for writes since we tend to persist
whole subgraphs to disk rather than random nodes and relationships.

86 | Chapter 5: Graph Databases

http://docs.neo4j.org/chunked/stable/configuration-caches.html

If the filesystem cache reflects the write characteristics of typical usage, then the high
level or object cache is all about optimizing for arbitrary read patterns. The high-level
cache stores nodes, relationships, and properties for rapid, in-memory graph traversal.
Unlike the store files where the node records are light compared to the relationship
records, in the high level cache nodes are richer and much closer to what we expect as
programmers since they hold properties and references to their relationships. Con‐
versely the relationship objects refer only to their properties. Relationships for each
node are grouped by RelationshipType and direction for fast lookup of specific rela‐
tionships based on those characteristics. As with the underlying stores, all lookups are
by id meaning they are very performant as we can see in Figure 5-8.

Architecture | 87

Figure 5-8. Nodes and relationships in the object cache

Neo4j Programmatic APIs
While the filesystem and caching infrastructure is fascinating, it is all for nothing
without the APIs to drive it. Though we’ve focussed on the high-level query language
Cypher for much of this book, Neo4j also offers programmatic APIs, which Cypher uses,

88 | Chapter 5: Graph Databases

12. See: http://docs.neo4j.org/chunked/stable/transactions-events.html

but which are also available to developers. Logically it’s easy to think of these APIs in a
stack where at the top of the stack we prize expressiveness and declarative programming,
while at the bottom of the stack we prize precision and imperative style, as depicted in
Figure 5-9.

Figure 5-9. Logical view of the user-facing APIs in Neo4j

We’ll step through these from the bottom up in the following sections.

Kernel API
Though it’s not too often the focus of development, the lowest level API that regular
Neo4j users access are transaction event handlers 12 in the kernel. These allow user code
to listen to transactions as they flow through the kernel and react (or not) based on the
data content and lifecycle stage of each transaction by user code.

Kernel transaction event handlers
A typical use-case for transaction event handlers is to prevent physical deletion of re‐
cords. A handler can be set up to intercept deletion of a node and instead simply mark

Neo4j Programmatic APIs | 89

http://docs.neo4j.org/chunked/stable/transactions-events.html

13. See: https://github.com/jimwebber/neo4j-tutorial. Doctor Who is the world’s longest-running science-fiction
show and a firm favorite of the Neo4j team.

that node as deleted logically (or in a more sophisticated manner move the node ''back
in time`` by creating timestamped archive relationships).

Core (or “Beans”) API
Neo4j’s core API is a popular imperative Java API which exposes the graph primitives
of node, relationship, and properties to the user. As a rule, it’s a lazily evaluated API for
reads which means a relationships are only traversed as quickly as the API caller can
consume the data being returned. For writes, the Core API provides transaction man‐
agement capabilities to ensure atomic, consistent, isolated, and durable persistence.

In the following code, we see a snippet of code borrowed from the Neo4j tutorial in
which we try to find human companions from the Doctor Who universe.13

// Index lookup for the node representing the doctor is omitted for brevity

Iterable<Relationship> relationships = doctor.getRelationships(Direction.INCOMING,
 COMPANION_OF);

for (Relationship rel : relationships)
{
 Node companionNode = rel.getStartNode();
 if (companionNode.hasRelationship(Direction.OUTGOING, IS_A))
 {
 Relationship singleRelationship = companionNode
 .getSingleRelationship(IS_A,
 Direction.OUTGOING);
 Node endNode = singleRelationship.getEndNode();
 if (endNode.equals(human))
 {
 // Found one!
 }
 }
}

The specific domain in the code in this snippet isn’t too important, but it’s safe to say
the code is very imperative (and somewhat verbose compared the the equivalent Cypher
query). We simply loop round the Doctor’s companions and check to see if any of the
companion nodes have an IS_A relationship to the node representing the human species.
If so we do something with it.

As an imperative API, the Core API can be fine-tuned to the underlying graph structure.
However compared to the higher-level APIs (and particularly Cypher) more code is
needed to achieve an equivalent goal. Nonetheless the affinity between the Core API

90 | Chapter 5: Graph Databases

https://github.com/jimwebber/neo4j-tutorial

and the underlying record store is plain to see — with the structures used at the store
and cache level being represented relatively faithfully to user code.

Neo4j Traversal API
The traversal API is a declarative Java API whereby the user provides a set of constraints
about which parts of the graph the traversal is allowed to visit. These constraints are
expressed in terms of relationship type, direction and breadth versus depth-first search,
coupled with a user-defined path evaluator which is triggered on each node encoun‐
tered. In the following code snippet we see an example of the traverser API in action.

Traversal.description()
 .relationships(DoctorWhoRelationships.PLAYED, Direction.INCOMING)
 .breadthFirst()
 .evaluator(new Evaluator()
 {
 public Evaluation evaluate(Path path)
 {
 if (path.endNode().hasRelationship(DoctorWhoRelationships.REGENERATED_TO))
 {
 return Evaluation.INCLUDE_AND_CONTINUE;
 }
 else
 {
 return Evaluation.EXCLUDE_AND_CONTINUE;
 }
 }
 });

The declarative nature of the traversal API is plain to see in the snippet, where we declare
that only PLAYED relationships in the INCOMING direction may be traversed, and that we
traverse the graph in a breadth-first manner (visiting all nearest neighbors before going
further outwards).

Even though the traversal API is declarative for graph structure, we still rely on the
imperative Core API both to support within each traversal to determine whether further
hops through the graph are necessary or to modify the graph. In the previous code
snippet this is the function of the Evaluator which, given a path, allows user code to
determine an action on the graph and whether to permit a further traversal. Again the
native graph structures inside the database bubble close to the surface here, with the
graph primitives of node, relationship and property taking center stage in the API.

The traversal API isn’t just for user code, the current Cypher imple‐
mentation uses the traverser framework too!

Neo4j Programmatic APIs | 91

14. The formal definition of dependability is the “trustworthiness of a computing system which allows reliance
to be justifiably placed on the service it delivers” as per http://www.dependability.org/

15. Because there’s an unvalidated assumption that transactional systems scale less well. There is some truth to
this, insofar as (distributed) two-phase commit can to exhibit unavailability problems in pathological cases,
but for the most part transactions don’t limit scalability.

We’ve now seen the graph-centric APIs, and how they are sympathetic to the structures
used in the lower levels of the Neo4j stack to support rapid graph traversals. Accordingly,
we can now move begin to discuss why we can depend on Neo4j to store our data reliably,
and not just idiomatically and rapidly.

Non-Functional Characteristics
At this point we’ve understood a great deal about how Neo4j is designed and what it
means to construct a native graph database. But to be considered dependable any data
storage technology must provide some level of guarantee as to the durability and ac‐
cessibility of the stored data.14

Relational databases are traditionlly evaluated on the number of transactions per second
they can process. It is assumed that these transactions uphold the ACID properties (even
in the presence of failures) such that data is consistent and recoverable. For non-stop
processing and managing large volumes, a database is expected to scale so that many
instances are available to process queries and updates, with the loss of an individual
instance not unduly affecting the running of the cluster as a whole.

At a high level at least, much the same applies to graph databases: they need to guarantee
consistency, and to recover gracefully from crashes and prevent data corruption; further,
they need to scale out to provide high availability, and scale up for performance. In the
following sections we’ll explore what each of these means to a graph database and show
why Neo4j’s architecture means it can be considered dependable from a systems engi‐
neering point of view.

Transactions
Transactions have been a bedrock of dependable computing systems for decades, and
though many NOSQL stores aren’t transactional 15 they remain a fundamental abstrac‐
tion for dependability in contemporary graph databases (including Neo4j).

Transactions in Neo4j are semantically identical to traditional database transactions.
Writes occur within a transaction context, taking write locks (for consistency) on any
necessary nodes and relationships, and on successful completion of the transaction only
(for atomicity) the changes made to the graph and/or index is flushed to disk (for du‐
rability) and the write locks released. Should the transaction fail for some reason then

92 | Chapter 5: Graph Databases

http://www.dependability.org/

16. Even Neo4j cannot be provably bug-free.

the writes will be discarded and the write locks released maintaining the graph in its
previous consistent state.

Should two or more transactions attempt to mutate the same data concurrently, Neo4j
will detect that potential deadlock and serialize the transactions. Furthermore writes
within a single transactional context will not be visible to other transactions (for isola‐
tion).

Transactions in Neo4j
In Neo4j the transaction implementation is conceptually straightforward. Each trans‐
action is represented as an in-memory object whose state represents writes to the da‐
tabase. This object is supported by a lock manager that applies write locks to nodes and
relationships as they are created, updated, and deleted. On transaction rollback, the
transaction object is simply discarded and the write locks released, whereas on successful
completion the transaction is committed to disk.

Committing data to disk in Neo4j uses a Write Ahead Log approach whereby changes
are appended as actionable entries in the active transaction log. On transaction com‐
mit (assuming a positive response to the prepare phase) a commit entry will be written
to the log, causing it to be flushed to disk, thereby making the changes durable. Once
the disk flush has occurred the changes are applied to the graph itself. After all the
changes have been applied to the graph, any write locks associated with the transaction
are released.

One of the advantages of transactional behavior from a database system is that once the
transaction has committed, the system is in a state where changes are guaranteed to be
in the database even if a fault causes a (non-pathological) failure. This, as we shall now
see, confers substantial advantages for recoverability and hence ongoing provision of
service.

Recoverability
Databases are no different from any other software in that they are susceptible to bugs
in their implementation 16, in the hardware they run on and in the power and cooling
infrastructure that hardware needs. Though diligent engineers try to minimize the pos‐
sibility of failure in all of these, at some point it’s inevitable the database will crash
(though the mean time between failures should be very long indeed).

In a well designed system, a database server crash is an annoyance but does not impinge
availability (though it may affect throughput). However when that failed server resumes

Non-Functional Characteristics | 93

17. This is a simplification, in reality the master and some slaves have a completely up to date copy of the graph,
while other slaves will be catching up typically being milliseconds behind.

operation it must not source corrupt data to its users irrespective of how inconvenient
or problematic the nature or timing of the crash.

In case of an unclean shutdown (perhaps caused by a fault or even an overzealous op‐
erator), Neo4j checks in the most recently active transaction log and replays any trans‐
actions it finds against the store. It’s possible that some of those transactions may have
already been applied to the store, but since replaying is an idempotent action, the net
result is the same: that the store is consistent with all successfully committed transac‐
tions prior to the failure when recovery completes.

Of course, recovering locally is fine if all we have is a single database instance, but
generally we run databases in clusters (which we’ll discuss next) to assure high availa‐
bility to applications. Fortunately clustering confers an additional benefit to the recov‐
ering database that, not only will it be consistent with respect to the time of failure when
it recovers, but it can quickly catch up to be consistent with other instances in the cluster.
That is, once local recovery has completed, then a replica can ask other members of the
cluster (typically the master) for any newer transactions that it has missed which it then
applies to its own data set via transaction replay.

Recoverability deals with the capability of the database to set things right after a fault
has arisen. Even so, a good database still needs to be highly available to meet the in‐
creasingly sophisticated needs of data-heavy applications.

Availability
Since Neo4j is both transactional and recoverable, it bodes well for availability since the
ability to recognize and (if necessary) repair an instance after crashing means that data
quickly becomes available again without human intervention. And of course, more live
instances increases the overall availability of the database to process queries.

However it’s uncommon that we want individual disconnected database instances in a
typical production scenario. In those cases databases (of all kinds) tend to be clustered
for high availability. In Neo4j’s case a master-slave cluster arrangement is used so that
a complete replica of the graph is stored on each machine 17.

For writes, the classic write-master with read-slaves is a popular topology whereby all
database writes are directed at the master, while read operations are directed at slaves.
This provides asymptotic scalability for writes (up to the capacity of a single spindle)
but allows for near linear scalability for reads (accounting for the modest overhead in
managing the cluster).

94 | Chapter 5: Graph Databases

Although write-master with read-slaves is a classic deployment topology, Neo4j also
supports writing through slaves. In this scenario, the slave first ensures that it is con‐
sistent with the master (it is said to “catch up”) and then the write is synchronously
transacted across both instances. This is useful where we want immediate durability in
two database instances but at the cost of higher write latency owing to the forced catchup
phase, and offers additional deployment flexibility. However it does not imply that writes
are distributed around the system, since all writes must still pass through the master at
some point.

Other replication options in Neo4j
In Neo4j version 1.9 onwards it’s also possible to specify an arbitrary number of replicas
to be written before a transaction is considered complete in a best-effort manner. This
an be combined with writing through slaves to provide “at least two” level of durability.

Another aspect of availability is contention for access to resources. A query that con‐
tends for exclusive access (e.g. for writes) to a particular part of the graph may suffer
from high enough latency to appear unavailable. We’ve seen similar contention with
coarse-grained table-level locking in RDBMSs where writes are latent even when there’s
logically no contention.

Fortunately in a graph, access patterns tend to be more evenly spread, especially where
idiomatic graph-local queries are executed. A graph local operation is one that starts at
one or more given places in the graph and traverses the surrounding subgraphs from
there. The starting points for such queries tend to be things that are especially significant
in the domain, such as users or products, and so the overall query load tends to be
distributed with low contention. In turn the perception is one of greater responsiveness
and higher availability.

The benefits of idiomatic queries
Jackie Stewart, the Formula 1 racing driver, is reputed to have said that to drive a car
well you don’t need to be an engineer but you do need mechanical sympathy with your
car. That is, the best performance comes as a result of the driver and car working together
harmoniously.

In much the same way, Neo4j queries are mechanically sympathetic to the database when
they are framed as idiomatic, graph local queries that begin their traversal from one or
more start points. The underlying infrastructure, including caching and store access, is
optimized to support this kind of workload.

Being idiomatic has beneficial side effects. For example, because caching is aligned with
idiomatic searches, queries that are themselves idiomatic tend to exploit caches better

Non-Functional Characteristics | 95

and run faster than non-idiomatic queries. In turn, faster running queries free up the
database to run more of them, which means higher throughput and the sense of better
availability from the client’s point of view because there’s less waiting around.

Unidiomatic queries (e.g. those which pick random nodes/relationships rather than
traversing) exhibit the opposite characteristics: they disrespect the underlying caching
layers and therefore run more slowly as more disk I/O is needed. Since the queries run
slowly, the database can process fewer of them per second, which means the availability
of the database to do useful work diminishes from the client’s point of view.

Therefore in Neo4j, we should always strive for idiomatic operations so that we are
mechanically sympathetic to the database and so maximise its performance.

Our final observation on availability is that scaling for cluster-wide replication has a
positive impact not just in terms of fault-tolerance, but also in terms of responsiveness.
Since there are many machines available for a given workload, query latency is low and
availability is maintained. But as we’ll now discuss, scale itself is more nuanced than
simply the number of servers we deploy.

Scale
The topic of scale has become more important now that we’re in an era where we are
aware of enormous and ever-increasing data volumes that surround us. In fact, a sub‐
stantial motivation for the NOSQL movement has been to address the problems of data
at scale which have proven difficult to solve with relational databases. In some sense,
graph databases are no different since they also need to scale to meet the workload
demands of modern applications. But scale isn’t a simple value like transactions per
second, it’s an aggregate value that we measure across multiple axes.

For graph databases, we will decompose our broad discussion on scale into three key
themes: * Graph size * Response time * Read and write throughput

Starting with Graph size, Neo4j can store tens of billions of nodes, relationships, and
properties in a single (non-distributed) graph. Specifically the upper bound for the
current (at time of writing) release of Neo4j (1.9) is as follows: * Number of nodes: 34
billion * Number of relationships: 34 billion * Number of properties: 68 billion

These (relatively generous) upper bounds result from a technical drive to balance effi‐
ciency versus scale. One reason Neo4j is so fast for graph traversals is that it makes
extensive use of fixed record sizes behind the scenes as we have discussed. Each record
includes a number of pointers: the larger the pointers, the larger the fixed record sizes,

96 | Chapter 5: Graph Databases

18. This means Neo4j can grow to accommodate a very large number of records, but it tries to stay in the sweet
spot for most users, maintaining a careful balance of disk footprint versus storage headroom.

19. This simple fact of life is one of the key reasons that performance tuning is nearly always the very top issue
on a relational DBA’s mind.

20. As we discussed in Chapter 4, it’s still sensible to tune the structure of the graph to suit the queries, even if
we’re dealing with lower data volumes

and the more capacious the graph can be. However as these pointers increase in size,
memory and disk requirements increase 18.

At time of writing, the Neo4j team has publicly expressed its inten‐
tion to support 100B+ nodes/relationships/properties in a forth‐
coming release. At some point the fixed limit will be so large as to be
logically infinite, but retain the benefits of fixed-sized records and
pointers for high-speed traversals.

In terms of latency, graph databases don’t suffer the same problems as traditional
RDBMS where the more data you have in in tables — and in indexes — the longer join
operations take 19. Instead with Neo4j, most queries follow a pattern where an index is
used simply to find a starting node (or nodes), and the remainder of the traversal uses
a combination of pointer chasing and pattern matching to search the datastore. Where
this is very different from a relational database is that performance does not depend on
the total size of the data set, but only on the data being queried. This leads to performance
times that are nearly constant (i.e. are related to the size of the result set), even as the
size of the data set grows 20.

Capacity and latency leave only one remaining axis along which we measure database
performance: IO throughput (for mature databases, this is measured in transactions per
second). It’s a simple trap to fall into to immediately think that we need to scale databases
horizontally, especially since we can also scale graph databases vertically to great effect.
Vertical scale is in fact an important distinguishing feature of graphs. Because when it
comes to vertical scaling, not all databases are created equal. In fact graphs tend to scale
very well vertically because they need fewer writes to store the same high-fidelity data
because of the incredible expressiveness of the data model - graphs scale vertically by
doing less work for the same outcome.

For example, imagine a publishing platform where we’d like to read the latest piece from
an author. In a RDBMS we typically select the author’s works by joining the authors
table to a table of publications on matching author id, and then ordering them by pub‐
lication date and limiting to the newest handful. Depending on the characteristics of
the ordering operation that might be a O(log(n)) operation which isn’t so very bad.

Non-Functional Characteristics | 97

However as we can easily see in Figure 5-10, the equivalent graph operation is O(1) —
meaning constant performance irrespective of dataset size. With a graph we simply
follow the outbound relationship called WROTE from the author to the work at the head
of a list (or tree) of published articles. Should we wish to find older publications, we
simply follow the PREV relationships and iterate through a linked list (or alternatively
recurse through a tree). Writes follow suit because we always insert new publications at
the head of the list (or root of a tree), which is another constant time operation. This
compares favourably to the alternatives, particularly since it naturally maintains con‐
stant time performance for reads.

Figure 5-10. Constant time operations for a publishing system

Of course it may be the case that eventually a single machine won’t have sufficient IO
throughput to serve all the queries directed to it. In that case it’s straightforward with
Neo4j to build a cluster that allows both high availability and the opportunity to spread
read load across many machines. For typical workloads with more reads than writes
this solution architecture can be ideal.

But finally, should we exceed the capacity of a cluster then graphs can be still spread
across database instances if the application builds in sharding logic. Sharding involves
the use of a synthetic identifier to join records across database instances at the applica‐
tion level. How well this will perform depends very much on the shape of the graph.
Some graphs lend themselves very well to this. Mozilla for instance use the Neo4j graph
database as part of their next-generation cloud browser: Pancake. Rather than having
a single large graph, they store a large number of small independent graphs, each tied
to an end user. This makes it very easy to scale with no performance penalty.

Of course not all graphs have such convenient boundaries. If your graph is large enough
that it needs to be broken up and no natural boundaries exist, then the approach you
would use is much the same as one would use with a NOSQL store like MongoDB: we
create synthetic keys, and relate records via the application layer using those keys plus
some application-level resolution algorithm. The main difference from the MongoDB
approach is that Neo4j will provide you with a performance boost anytime you are doing
traversals within a database instance, while hose parts of the traversal that run between

98 | Chapter 5: Graph Databases

21. A graph global operation is one in which elements from the graph are accessed at random to calculate some
property of the graph (e.g. PageRank), by contrast a graph-local operation is where we find a specific starting
point and traverse paths from there.

22. See: http://dl.acm.org/citation.cfm?id=1807184

instances will run at roughly the same speed as a MongoDB join. Overall performance
should be markedly faster however.

The holy grail of graph scalability
The eventual aim of most graph databases is to be able to partition a graph across many
machines without application-level intervention so that access to the graph can be scaled
horizontally. In the general case this is known to be an NP Hard problem, and thus is
impractical to solve. This manifests itself in graph databases as unpredictable query
times as traversals unexpectedly jump between machines over a (relatively slow) net‐
work. However there is innovation happening in this space with triple stores able to
scale horizontally very well (at the expense of latency), some non-native graph stores
piggy-backing on other distributed databases like Cassandra or HBase, or Neo4j’s own
horizontally scalable solution. This is certainly an exciting time to be in the data space.

Graph Compute Platforms
One key characteristic of a native graph database is its OLTP capabilities, with clients
able to modify and query data in end-user in near real time. While this behavior fits a
majority of user-facing applications, sometimes we’re prepared to sacrifice latency to
permit more sophisticated processing. In the broader NOSQL world, this is most clearly
epitomized by the affinity between aggregate data stores and map-reduce, whereby data
is pumped through external processing infrastructure (e.g. Apache Hadoop) to distil
useful information out of disconnected records.

In the graph space there is a related technology category, the Graph Compute Engine,
which is used to conduct specialized analytics involving graph-global operations in
contrast to the graph-local operations for which graph databases are optimized 21. A
prominent example of this technology in the literature is Google’s Pregel 22 which has

Graph Compute Platforms | 99

http://dl.acm.org/citation.cfm?id=1807184

23. See: http://incubator.apache.org/giraph/

24. See: http://incubator.apache.org/giraph/

an open-source copycat implementation in Apache Giraphe 23 which can both helpfully
be thought of as a kind of “Hadoop for graphs.”

Graph theory
For analytics, it’s truly hard to beat graphs. The properties of graph data are well un‐
derstood and the fundamental toolkit that is graph theory has broad applicability across
domains. From its Eulerian origins in the 18th century, our understanding of networks
has continued to provide amazing insight and predictive analysis into data. Graph anal‐
ysis will be a tremendously important aspect of data science in the coming years.

While some may choose to analyze networks the hard way by reifying graphs out of
disconnected aggregates and pumping that data through a plain map-reduce imple‐
mentation, the combination of a native graph database and native graph processing is
far more powerful.

Pregel and equivalent open source implementations like Apache Giraph 24 are examples
of just such a graph processing platform (as distinct from, but complimentary to graph
databases). Pregel is an evolution of the map-reduce pattern to take advantage of the
implicit locality provided by a graph structure. It’s no surprise then, that at a high level
the architecture resembles the familiar picture of any map-reduce architecture as we
see in Figure 5-11.

Figure 5-11. Pregel high-level architecture

100 | Chapter 5: Graph Databases

http://incubator.apache.org/giraph/
http://incubator.apache.org/giraph/

The input to a Pregel computation is a directed graph. The source of the graph can come
from any source (e.g. flat files), but it is reasonable to use a graph database as the source
since it allows subgraphs to be easily extracted for graph-global processing. The graph
is then partitioned so that it can be distributed across machines. While default strategies
are available for this, it’s typically better for developers to provide a domain-aware
strategy to preserve subgraph locality. Once partitions are distributed to machines any
non-local accesses are punished by network latency. In turn this implies that each par‐
tition tends to contain many nodes to exploit coarse-grained computation.

Pregel has a very node-centric approach to processing. The graph algorithm to be com‐
puted is implemented from the point of view of a single node and the transformations
that happen to its messages, data and local topology. A node consists solely of its algo‐
rithm and an incoming and outgoing communication port. Scaling that algorithm to
all of the nodes in the graph is how the overall behavior the system is expressed, while
the scheduling of execution and communication for each node is the responsibility of
the platform.

Each node uses its incoming and outgoing message queues to transmit the (partial)
results of processing between nodes. Communication paths are (usually) constrained
by the structure of the graph such that nodes can only address messages to other nodes
to which they have an outgoing relationship. However messages can also be sent to any
node whose identifier is known (thus avoiding intermediate nodes having to act as latent
relays). The logical architecture for partitions and local graph topology is shown in
Figure 5-12.

Graph Compute Platforms | 101

Figure 5-12. Partitions and local graph topology in Pregel

Processing is performed as a set of steps separated by synchronous barriers as per the
Bulk Synchronous Parallel (or BSP) model. In BSP each superstep contains arbitrary
parallel computation ending in a barrier where all concurrent processes are synchron‐
ized. Within each superstep the code embedded within each node executes logically in
parallel, consuming input messages, changing node state (and possibly local graph top‐
ology) and producing output messages until the algorithm halts.

When each node’s program has ended the superstep ends and messages are transmitted
between nodes such that at the start of the next superstep all previous computation is
guaranteed to have completed and all message exchanges and topology changes (a by-
product of nodes’ computation) will be visible.

Since OLAP queries are typically long-running (they process a lot of data), graph com‐
pute platforms need to be fault-tolerant. In Pregel, this is achieved via checkpointing
where each machine saves its current state into durable storage (such as a graph data‐
base) at the beginning of each superstep. In the case of failures the affected partitions
can be restarted from checkpoints and recomputed.

Pregel optimizations
Since Pregel assumes that computation is distributed over machines to harness greater
processing power, its designers have sensibly baked in a number of optimizations to

102 | Chapter 5: Graph Databases

help reduce the overheads of running a distributed computation, particularly for avoid‐
ing expensive network transfers.

Pregel’s Combiners allow for multiple messages between nodes on one machine to a
node on another to be combined into a single value before transmission. A motivating
example is to send a single value for a weighted path over the network rather than
numerous individual weights. However combining makes no guarantees about how
values are combined, and so it’s unlikely they can be uncombined. Hence it’s safe to use
only functions which are both commutative and associative in a combiner.

Aggregators allow (computed) values to be shared across all nodes the graph. Any node
can provide a value to an aggregator in a superstep, which is combined with values from
any other nodes. On the next superstep, the aggregate value is made available to every
node in the graph. The typical use-case for aggregators is for global coordination, for
example to terminate computation upon reaching some graph-wide condition. Another
motivating case is to maintain graph statistics like the number of relationships or nodes
in the graph.

In Pregel, processing completes when all nodes in the graph vote to halt — that each
node believes it has no more work to do and when no messages are incident on a node.
When processing ends a final result (from an entire graph to as little as a single value)
is produced.

Compute or query?
Given that graph compute platforms are powerful machines for processing connected
data, the question naturally arises why we wouldn’t use them habitually in our infor‐
mation systems? The key to answering this question is understanding our appetite for
latency.

Graph compute platforms can compute over large graphs but they do so in a latent
manner by the very nature of the work they undertake. Even if we choose to process
small graphs in this way however, we still have to deal with the latency of extracting and
loading data into the platform which may still take several seconds.

Ultimately today’s graph processing platforms are far more suited to OLAP analysis than
in-the-clickstream OLTP applications. And in OLTP applications most of the time we
don’t want to compute enormous volumes of data anyway since most requests are highly
contextualized by user, product, etc and are therefore generally graph local.

For a point in case, consider a typical e-commerce solution. A local graph query from
the user will be able to efficiently recommend friends’ and friend-of-friends’ purchases
taking into account both the user’s recently viewed and purchased items. This is the
right choice for an interactive Web store.

Graph Compute Platforms | 103

However to analyse all products, to rank them against one-another is a reasonable can‐
didate for a graph compute solution. The synergy between the two is when the ranking
algorithm enriches the graph such that the recommendations query provides even more
accurate recommendations to the user.

Though a distinct technology category in their own right, it’s clear that graph databases
are a sensible underlay — they have the right APIs and data model affordances to sup‐
port seamless integration — for graph compute platforms (like Pregel). The virtuous
cycle of enriching the (authoritative) graph with the results from graph-global process‐
ing is a compelling strategy. Combining the ability to perform graph-local queries for
OLTP scenarios on authoritative data in the graph database with the ability to perform
arbitrary (graph) computation in an OLAP scenario that enriches the authoritative data
provides covers all reasonable expectations of data platform.

Summary
In this chapter we’ve discussed the common types of graph and shown how property
graphs are an excellent choice for pragmatic data modelling. We’ve also explored the
architecture of a popular graph database (Neo4j) and discussed the non-functional
characteristics of graph database implementations and what it means for them to be
dependable. Finally we discussed the different between a graph database (OLTP, for
graph local queries) and a graph processing engine (OLAP, for graph global processing)
and explained how graph databases and graph processing are natural bedfellows.

Yet the discussion to this point has asked the reader to take on faith and implied rea‐
soning that the technology is a sound choice (and not just an exciting one). In the next
chapter we’ll set that straight by presenting real-world deployment planning use cases
— harvested from production systems — to bring home the utility of graphs and graph
databases for a range of sophisticated scenarios.

104 | Chapter 5: Graph Databases

CHAPTER 6

Working with a Graph Database

In this chapter we discuss some of the practical issues of working with a graph database.
In previous chapters we’ve looked graph data, and the architecture and capabilities of
graph databases; in this chapter, we’ll apply that knowledge in the context of developing
a graph database application. We’ll look at some of the data modeling questions that
may arise, and at some of the application architecture choices available to you.

In our experience, graph database applications are highly amenable to being developed
using the evolutionary, incremental and iterative software development practices that
have risen to prominence in the last decade. A key feature of these practices is the
prevalence of testing throughout the software development lifecycle. Here we’ll show
how to develop your data model and your application in a test-driven fashion.

At the end of the chapter, we’ll look at some of the issues you’ll need to consider when
planning for production.

Data Modeling
We covered modeling and working with graph data in detail in Chapter 4. Here we
summarize some of the more important modeling guidelines, and discuss how imple‐
menting a graph data model fits with iterative and incremental software development
techniques.

Describe the Model in Terms of Your Application’s Needs
The questions you need to ask of the data help identify entities and relationships. Agile
user stories provide a concise means for expressing an outside-in, user-centred view of

105

1. For agile user stories, see Mike Cohn, User Stories Applied (Addison-Wesley, 2004)

an application’s needs, and the questions that arise in the course of satisfying this need.
1 Here’s an example of a user story for a book reviews Web application:

• AS A reader who likes a book
• I WANT to know which books other readers who like the same book have liked
• SO THAT I can find other books to read

This story expresses a user need, which motivates our data model. From a data modeling
point of view, the AS A clause establishes a context comprising two entities—a reader
and a book—and the LIKES relationship that connects them. The I WANT clause then
poses a question: which books have other readers who like the book I’m reading liked?
This question exposes more LIKES relationships, and more entities: other readers and
other books.

The entities and relationships that we’ve surfaced in analyzing the user story quickly
translate into a simple data model, as shown in Figure 6-1:

Figure 6-1. Data model for the book reviews user story

Because this data model directly encodes the question presented by the user story, it
lends itself to being queried in a way that similarly reflects the structure of the question
we want to ask of the data:

START reader=node:users(name={readerName})
 book=node:books(isbn={bookISBN})
MATCH reader-[:LIKES]->book<-[:LIKES]-other_readers-[:LIKES]->books
RETURN books.title

106 | Chapter 6: Working with a Graph Database

Nodes for Things, Relationships for Structure
While not applicable in every situation, these general guidelines will help you to choose
when to use nodes, and when relationships:

• Use nodes to represent entities—that is, the things that are of interest to you in your
domain.

• Use relationships to express the connections between entities and establish semantic
context for each entity, thereby structuring the domain.

• Use node properties to represent entity attributes, plus any necessary entity meta‐
data, such as timestamps, version numbers, etc.

• Use relationship properties to express the strength, weight or quality of a relation‐
ship, plus any necessary relationship metadata, such as timestamps, version num‐
bers, etc.

If you’re tempted to use a relationship to model an entity—an email, or a review, for
example—make certain that this entity cannot be related to more than two other entities.
Remember, a relationship must have a start node and an end node—nothing more,
nothing less. If you find later that you need to connect something you’ve modeled as a
relationship to more than two other entities, you’ll have to refactor the entity inside the
relationship out into a separate node. This is a breaking change to the data model, and
will likely require

Model Facts as Nodes
When two or more domain entities interact for a period of time, a fact emerges. Rep‐
resent these facts as separate nodes, with connections to each of the entities engaged in
that fact. Modeling an action in terms of its product—that is, in terms of the thing that
results from the action—produces a similar structure: an intermediate node that rep‐
resents the outcome of an interaction between two or more entities. You can use time‐
stamp properties on this intermediate node to represent start and end times.

The following examples show how we might model facts and actions using intermediate
nodes.

Employment
Figure 6-2 shows how the fact of Ian being employed by Neo Technology in the role of
engineer can be represented in the graph.

Data Modeling | 107

Figure 6-2. Ian was employed as an engineer at Neo Technology

In Cypher, this can be expressed as:

ian-[:EMPLOYMENT]->employment-[:EMPLOYER]->neo,
employment-[:ROLE]->engineer

Performance
Figure 6-3 shows how the fact of William Hartnell having played the Doctor in the story
The Sensorites can be represented in the graph.

Figure 6-3. William Hartnell played the Doctor in the story The Sensorites

In Cypher:

hartnell-[:PERFORMANCE]->performance-[:ROLE]->doctor,
performance-[:STORY]->sensorites

Emailing
Figure 6-4 shows the act of Ian emailing Jim and copying in Alistair.

108 | Chapter 6: Working with a Graph Database

Figure 6-4. Ian emailed Jim, and copied in Alistair

In Cypher, this can be expressed as:

ian-[:SENT]->email-[:TO]->jim,
email-[:CC]->alistair

Reviewing
Figure 6-5 shows how the act of Alistair reviewing a film can be represented in the graph.

Figure 6-5. Alistair wrote a review of a film, which was published in a magazine

In Cypher:

alistair-[:WROTE]->review-[:OF]->film,
review-[:PUBLISHED_IN]->magazine

Represent Complex Value Types as Nodes
Value types are things that do not have an identity, and whose equivalence is based solely
on their values. Examples include money, address, and SKU. Complex value types are

Data Modeling | 109

value types with more than one field or property. Address, for example, is a complex
value type. Such multi-property value types are best represented as separate nodes:

START ord=node:orders(orderid={orderId})
MATCH ord-[:DELIVERY_ADDRESS]->address
RETURN address.first_line, address.zipcode

Time
Time can be modelled in several different ways in the graph. Here we describe two
techniques: timeline trees and linked lists.

Timeline trees
If you need to find all the events that have occurred over a specific period, you can build
a timeline tree, as shown in Figure 6-6:

Figure 6-6. A timeline tree showing the broadcast dates for four episodes of a TV pro‐
gramme

You need only insert nodes into the timeline tree as and when they are needed. Assuming
the root timeline node has been indexed, or is in some other way discoverable, the
following Cypher statement will insert all necessary nodes—year, month, day, plus the
node to be attached to the timeline:

110 | Chapter 6: Working with a Graph Database

START timeline=node:timeline(name={timelineName})
CREATE UNIQUE timeline-[:YEAR]->(year{value:{year}, name:{yearName}})
 -[:MONTH]->(month{value:{month}, name:{monthName}})
 -[:DAY]->(day{value:{day}, name:{dayName}})
 <-[:BROADCAST_ON]-(n {newNode})

Querying the calendar for all events between a start date (inclusive) and an end date
(exclusive) can be done with the following Cypher:

START timeline=node:timeline(name={timelineName})
MATCH timeline-[:YEAR]->year-[:MONTH]->month-[:DAY]->day<-[:BROADCAST_ON]-n
WHERE ((year.value > {startYear} AND year.value < {endYear})
 OR ({startYear} = {endYear} AND {startMonth} = {endMonth}
 AND year.value = {startYear} AND month.value = {startMonth}
 AND day.value >= {startDay} AND day.value < {endDay})
 OR ({startYear} = {endYear} AND {startMonth} < {endMonth}
 AND year.value = {startYear}
 AND ((month.value = {startMonth} AND day.value >= {startDay})
 OR (month.value > {startMonth} AND month.value < {endMonth})
 OR (month.value = {endMonth} AND day.value < {endDay})))
 OR ({startYear} < {endYear}
 AND year.value = {startYear}
 AND ((month.value > {startMonth})
 OR (month.value = {startMonth} AND day.value >= {startDay})))
 OR ({startYear} < {endYear}
 AND year.value = {endYear}
 AND ((month.value < {endMonth})
 OR (month.value = {endMonth} AND day.value < {endDay}))))
RETURN n

The WHERE clause here, though somewhat verbose, simply filters each match based on
the start and end dates supplied to the query.

Linked lists
Many events have temporal relationships to the events that precede and follow them.
You can use NEXT and PREVIOUS relationships (or similar) to create linked lists that
capture this natural ordering, as shown in Figure 6-7. Linked lists allow for very rapid
traversal of time-ordered events.

Figure 6-7. A doubly linked list representing a time-ordered series of events

Data Modeling | 111

2. See, for example, https://github.com/dmontag/neo4j-versioning, which hooks into Neo4j’s transaction lifecycle
to created versioned copies of nodes and relationships.

Versioning
A versioned graph allows you to recover the state of the graph at a particular point in
time. Neo4j doesn’t support versioning as a first-class concept: it is possible, however,
to create a versioning scheme inside the graph model whereby nodes and relationships
are timestamped and archived whenever they are modified.2 The downside of such
versioning schemes is they leak into any queries written against the graph, adding a
layer of complexity to even the simplest query.

Iterative and Incremental Development
Develop the data model feature by feature, user story by user story. This will ensure you
identify the relationships your application will use to query the graph. A data model
that is developed in line with the iterative and incremental delivery of application fea‐
tures will look quite different from one drawn up using data model-first approach, but
it will be the correct model, motivated throughout by specific needs, and the questions
that arise in conjunction with those needs.

Graph databases provide for the smooth evolution of your data model. Migrations and
denormalization are rarely an issue. New facts and new compositions become new nodes
and relationships, while optimizing for performance-critical access patterns typically
involves introducing a direct relationship between two nodes that would otherwise be
connected only by way of intermediaries. Unlike the relational model, this is not an
either/or issue: either the high-fidelity structure, or the high performance compromise.
With the graph we retain the original high-fidelity graph structure while at the same
time enriching it with new elements that cater to new needs.

You’ll quickly see how different relationships can sit side-by-side with one another,
catering to different needs without distorting the model in favour of any one particular
need. Addresses help illustrate the point here. Imagine, for example, that we are devel‐
oping a retail application. While developing a fulfilment story, we add the ability to
dispatch a parcel to a customer’s delivery address, which we find using the following
query:

START user=node:users(id={userId})
MATCH user-[:DELIVERY_ADDRESS]->address
RETURN address

Later on, when adding some billing functionality, we introduce a BILLING_ADDRESS
relationship. Later still, we add the ability for customers to manage all their addresses.
This last feature requires us to find all addresses—whether delivery, or billing, or some
other address. To facilitate this, we introduce a general ADDRESS relationship:

112 | Chapter 6: Working with a Graph Database

https://github.com/dmontag/neo4j-versioning

START user=node:users(id={userId})
MATCH user-[:ADDRESS]->address
RETURN address

By this time, our data model looks something like the one shown in Figure 6-8. DELIV
ERY_ADDRESS specializes the data on behalf of the application’s fulfilment needs; BILL
ING_ADDRESS specializes the data on behalf of the application’s billing needs; and AD
DRESS specializes the data on behalf of the application’s customer management needs.

Figure 6-8. Different relationships for different application needs

Being able to add new relationships to meet new application needs doesn’t mean you
should always do this. You’ll invariably identify opportunities for refactoring the model
as you go: there’ll be plenty of times, for example, where renaming an existing relation‐
ship will allow it to be used for two different needs. When these opportunities arise, you
should take them. If you’re developing your solution in a test-driven manner—described
in more detail later in this chapter—you’ll have a sound suite of regression tests in place,
allowing you to make substantial changes to the model with confidence.

Application Architecture
In planning a graph database-based solution, there are several architectural decisions
to be made. These decisions will vary slightly depending on the database product you’ve
chosen; in this section, we’ll describe some of the architectural choices, and the corre‐
sponding application architectures, available to you when using Neo4j.

Embedded Versus Server
Most databases today run as a server that is accessed through a client library. Neo4j is
somewhat unusual in that it can be run in embedded as well as server mode—in fact,
going back nearly ten years, its origins are as an embedded graph database.

Application Architecture | 113

3. See http://docs.neo4j.org/chunked/stable/transactions-events.html

An embedded database is not the same as an in-memory database. An
embedded instance of Neo4j still makes all data durable on disk. Later,
in the “Testing” section, we’ll discuss ImpermanentGraphDatabase,
which is an in-memory version of Neo4j designed for testing purposes.

Embedded Neo4j
In embedded mode, Neo4j runs in the same process as your application. Embedded
Neo4j is ideal for hardware devices, desktop applications, and for incorporating in your
own application servers. Some of the advantages of embedded mode include:

• Low latency. Because your application speaks directly to the database, there’s no
network overhead.

• Choice of APIs. You have access to the full range of APIs for creating and querying
data: the core API, traversal framework, and the Cypher query language.

• Explicit transactions. Using the core API, you can control the transactional lifecycle,
executing an arbitrarily complex sequence of commands against the database in
the context of a single transaction. The Java APIs also expose the transaction life‐
cycle, allowing you to plug in custom transaction event handlers that execute ad‐
ditional logic with each transaction.3

• Named indexes. Embedded mode gives you full control over the creation and man‐
agement of named indexes. This functionality is also available through the REST
interface; it is not, however, available in Cypher.

When running in embedded mode, however, you should bear in mind the following:

• JVM only. Neo4j is a JVM-based database. Many of its APIs are, therefore, only
accessible from a JVM-based language.

• GC behaviours. When running in embedded mode, Neo4j is subject to the garbage
collection behaviours of the host application. Long GC pauses can effect on query
times. Further, when running an embedded instance as part of an HA cluster, long
GC pauses can cause the cluster protocol to trigger a master reelection.

• Database lifecycle. The application is responsible for controlling the database life‐
cycle, which includes starting it, and closing it safely.

Embedded Neo4j can be clustered for high availability and horizontal read scaling just
as the server version. In fact, you can run a mixed cluster of embedded and server
instances (clustering is performed at the database level, rather than the server level).
This is common in enterprise integration scenarios, where regular updates from other

114 | Chapter 6: Working with a Graph Database

http://docs.neo4j.org/chunked/stable/transactions-events.html

4. A list of Neo4j remote client libraries, as developed by the community, is maintained at http://docs.neo4j.org/
chunked/stable/tutorials-rest.html

systems are executed against an embedded instance, and then replicated out to server
instances.

Server mode
Running Neo4j in server mode is the most common means of deploying the database
today. At the heart of each server is an embedded instance of Neo4j. Some of the benefits
of server mode include:

• REST API. The server exposes a rich REST API that allows clients to send JSON-
formatted requests over HTTP. Responses comprise JSON-formatted documents
enriched with hypermedia links that advertise additional features of the dataset.

• Platform independence. Because access is by way of JSON-formatted documents
sent over HTPP, a Neo4j server can be accessed by a client running on practically
any platform. All that’s needed is an HTTP client library.4

• Scaling independence. With Neo4j running in server mode, you can scale your
database cluster independently of your application server cluster.

• Isolation from application GC behaviours. In server mode, Neo4j is protected from
any untoward GC behaviours triggered by the rest of the application. Of course,
Neo4j still produces some garbage, but its impact on the garbage collector has been
carefully monitored and tuned during development to mitigate any significant side
effects. Note, however, that because server extensions allow you to run arbitrary
Java code inside the server (see “Server extensions” later in this section), the use of
server extensions may impact the server’s GC behaviour.

When using Neo4j in server mode, bear in mind the following:

• Network overhead. There is some communication overhead to each HTTP request,
though it’s fairly minimal. After the first client request, the TCP connection remains
open until closed by the client.

• Per request transactions. Each client request is executed in the context of a separate
transaction, though there is some support in the REST API for batch operations.
For more complex, multistep operations requiring a single transactional context,
consider using a server extension (see “Server extensions” later in this section).

Access to Neo4j server is typically by way of its REST API, as discussed above. The REST
API comprises JSON-formatted documents over HTTP. Using the REST API you can
submit Cypher queries, configure named indexes, and execute several of the built-in
graph algorithms. You can also submit JSON-formatted traversal descriptions, and per‐

Application Architecture | 115

http://docs.neo4j.org/chunked/stable/tutorials-rest.html
http://docs.neo4j.org/chunked/stable/tutorials-rest.html

5. See http://docs.neo4j.org/chunked/stable/rest-api.html

6. See http://jax-rs-spec.java.net/

form batch operations. 5 For the majority of use cases the REST API is sufficient; how‐
ever, if you need to do something you cannot currently accomplish using the REST API,
you may wish to consider developing a server extension.

Server extensions
Server extensions allow you to run Java code inside the server. Using server extensions,
you can extend the REST API, or replace it entirely.

Extensions take the form of JAX-RS annotated classes. JAX-RS is a Java API for building
RESTful resources.6 Using JAX-RS annotations, you decorate each extension class to
indicate to the server which HTTP requests it handles. Additional annotations control
request and response formats, HTTP headers, and the formatting of URI templates.

Here’s an implementation of a simple server extension that allows a client to request the
distance between two members of a social network:

@Path("/distance")
public class SocialNetworkExtension
{
 private final ExecutionEngine executionEngine;

 public SocialNetworkExtension(@Context GraphDatabaseService db)
 {
 this.executionEngine = new ExecutionEngine(db);
 }

 @GET
 @Produces("text/plain")
 @Path("/{name1}/{name2}")
 public String getDistance (@PathParam("name1") String name1,
 @PathParam("name2") String name2)
 {
 String query = "START first=node:user(name={name1}),\n" +
 " second=node:user(name={name2})\n" +
 "MATCH p=shortestPath(first-[*..4]-second)\n" +
 "RETURN length(p) AS depth";

 Map<String, Object> params = new HashMap<String, Object>();
 params.put("name1", name1);
 params.put("name2", name2);

 ExecutionResult result = executionEngine.execute(query, params);

 return String.valueOf(result.columnAs("depth").next());

116 | Chapter 6: Working with a Graph Database

http://docs.neo4j.org/chunked/stable/rest-api.html
http://jax-rs-spec.java.net/

 }
}

Of particular interest here are the various annotations:

• @Path("/distance") specifies that this extension will respond to requests directed
to relative URIs beginning /distance.

• The @Path("/{name1}/{name2}") annotation on getDistance() further qualifies
the URI template associated with this extension. The fragment here is concatenated
with /distance to produce /distance/{name1}/{name2}, where {name1} and {name2}
are placeholders for any characters occurring between the forward slashes. Later
on, in the section “Testing server extensions”, we’ll register this extension under
the /socnet relative URI. At that point, these several different parts of the path ensure
that HTTP requests directed to a relative URI beginning /socnet/distance/{name1}/
{name2} (for example, http://<server>/socnet/distance/Ben/Mike) will be dispatch‐
ed to an instance of this extension.

• @GET specifies that getDistance() should be invoked only if the request is an HTTP
GET. @Produces indicates that the response entity body will be formatted as text/
plain.

• The two @PathParam annotations prefacing the parameters to getDistance() serve
to map the contents of the {name1} and {name2} path placeholders to the method’s
name1 and name2 parameters. Given the URI http://<server>/socnet/distance/Ben/
Mike, getDistance() will be invoked with Ben for name1 and Mike for name2.

• The @Context annotation in the constructor causes this extension to be handed a
reference to the embedded graph database inside the server. The server infrastruc‐
ture takes care of creating an extension and injecting it with a graph database in‐
stance, but the very presence of the GraphDatabaseService parameter here makes
this extension exceedingly testable. As we’ll see later, in “Testing server extensions”,
we can unit test extensions without having to run them inside a server.

Server extensions can be powerful elements in your application architecture. Their chief
benefits include:

• Complex transactions. Extensions allow you to execute an arbitrarily complex se‐
quence of operations in the context of a single transaction.

• Choice of APIs. Each extension is injected with a reference to the embedded graph
database at the heart of the server. This gives you access to the full range of APIs—
core API, traversal framework, graph algorithm package, and Cypher—for devel‐
oping your extension’s behaviour.

• Encapsulation. Because each extension is hidden behind a RESTful interface, you
can improve and modify its implementation over time.

Application Architecture | 117

7. See http://docs.neo4j.org/chunked/milestone/ha-configuration.html

• Response formats. You control the response: both the representation format and
the HTTP headers. This allows you to create response messages whose contents
employ terminology from your domain, rather than the graph-based terminology
of the standard REST API (users, products and orders for example, rather than
nodes, relationships and properties). Further, in controlling the HTTP headers at‐
tached to the response, you can leverage the HTTP protocol for things such as
caching and conditional requests.

If you’re considering using server extensions, bear in mind the following points:

• JVM only. As with developing against embedded Neo4j, you’ll have to use a JVM-
based language.

• GC behaviours. You can do arbitrarily complex (and dangerous) things inside a
server extension. Monitor garbage collection behaviours to ensure you don’t in‐
troduce any untoward side effects.

Clustering
As discussed in “Availability” in Chapter 5, Neo4j clusters for high availability and hor‐
izontal read scaling using master-slave replication. In this section we discuss some of
the strategies you should consider when using clustered Neo4j.

Replication
While all writes to a cluster are coordinated through the master, Neo4j does allow writing
through slaves, but even then, the slave syncs with the master before returning to the
client. Because of the additional network traffic and coordination protocol, writing
through slaves can be an order of magnitude slower than writing direct to the master.
The only reasons for writing through slaves are to increase the durability guarantees of
each write (the write is made durable on two instances, rather than one) and to ensure
you can read your own writes when employing cache sharding (see “Cache sharding”
and “Read your won writes” later in this chapter). Since newer versions of Neo4j allow
you to specify that writes to the master must be replicated out to one or more slaves,
thereby increasing the durability guarantees of writes to the master, the case for writing
through slaves is now less compelling. Today it is recommended that all writes be di‐
rected to the master, and then replicated to slaves using the ha.tx_push_factor and
ha.tx_push_strategy configuration settings.7

118 | Chapter 6: Working with a Graph Database

http://docs.neo4j.org/chunked/milestone/ha-configuration.html

Buffer writes using queues
In high write load scenarios, use queues to buffer writes and regulate load. With this
strategy, writes to the cluster are buffered in a queue; a worker then polls the queue and
executes batches of writes against the database. Not only does this regulate write traffic,
it reduces contention, and allows you to pause write operations without refusing client
requests during maintenance periods.

Global clusters
For applications catering to a global audience, it is possible to install a multi-region
cluster in multiple datacenters and on cloud platforms such as Amazon Web Services
(AWS). A multi-region cluster allows you to service reads from the portion of the cluster
geographically closest to the client. In these situations, however, the latency introduced
by the physical separation of the regions can sometimes disrupt the coordination pro‐
tocol; it is, therefore, often desirable to restrict master reelection to a single region. To
achieve this, create slave-only databases for the instances you don’t want to participate
in master reelection; you do this by including the ha.slave_coordinator_up
date_mode=none configuration parameter in an instance’s configuration.

Load Balancing
If you’re using a clustered graph database, consider load balancing traffic across the
cluster to help maximize throughput and reduce latency. Neo4j doesn’t include a native
load balancer, relying instead on the load balancing capabilities of the network infra‐
structure.

Separate read traffic from write traffic
Given the recommendation to direct the majority of write traffic to the master, you
should consider clearly separating read requests from write requests. Configure your
load balancer to direct write traffic to the master, while balancing the read traffic across
the entire cluster.

In a Web-based application, the HTTP method is often sufficient to distinguish a request
with a significant side-effect—a write—from one that has no significant side-effect on
the server: POST, PUT and DELETE can modify server-side resources, whereas GET
is side-effect free.

If you’re using server extensions, make sure to distinguish read and write operations
using @GET and @POST annotations. If your application depends solely on server exten‐
sions, this will suffice to separate the two. If you’re using the REST API to submit Cypher
queries to the database, however, the situation is not so straightforward. The REST API
uses POST as a general “process this” semantic for requests whose contents can include
Cypher statements that modify the database. To separate read and write requests in this
scenario, introduce a pair of load balancers: a write load balancer that always directs

Application Architecture | 119

requests to the master, and a read load balancer that balances requests across the entire
cluster. In your application logic, where you know whether the operation is a read or a
write, you will then have to decide which of the two addresses you should use for any
particular request, as illustrated in Figure 6-9.

When running in server mode, Neo4j exposes a URI that indicates whether that instance
is currently the master, and if it isn’t, which is. Load balancers can poll this URI at
intervals to determine where to route traffic.

Figure 6-9. Using read/write load balancers to direct requests to a cluster

Cache sharding
Queries run fastest when the portions of the graph needed to satisfy them reside in main
memory (that is, in the filesystem cache and the object cache). A single graph database
instance today can hold many billions of nodes, relationships and properties; some
graphs, therefore, will be just too big to fit into main memory. Partitioning or sharding

120 | Chapter 6: Working with a Graph Database

a graph is a difficult problem to solve (see “The holy grail of graph scalability” in Chapter
5). How, then, can we provide for high-performance queries over a very large graph?

One solution is to use a technique called cache sharding (Figure 6-10), which consists
in routing each request to a database instance in an HA cluster where the portion of the
graph necessary to satisfy that request is likely already in main memory (remember:
every instance in the cluster will contain a full copy of the data). If the majority of an
application’s queries are graph-local queries, meaning they start from one or more spe‐
cific points in the graph, and traverse the surrounding subgraphs, then a mechanism
that consistently routes queries beginning from the same set of start points to the same
database instance will increase the likelihood of each query hitting a warm cache.

The strategy used to implement consistent routing will vary by domain. Sometimes it’s
good enough to have sticky sessions; other times you’ll want to route based on the
characteristics of the data set. The simplest strategy is to have the instance which first
serves requests for a particular user thereafter serve subsequent requests for that user.
Other domain-specific approaches will also work. For example, in a geographical data
system we can route requests about particular locations to specific database instances
that have been warmed for that location. Both strategies increase the likelihood of the
required nodes and relationships already being cached in main memory, where they
can be quickly accessed and processed.

Figure 6-10. Cache sharding

Application Architecture | 121

Read your own writes
Occasionally you may need to read your own writes—typically when the application
applies an end-user change, and needs on the next request to reflect the effect of this
change back to the user. While writes to the master are immediately consistent, the
cluster as a whole is eventually consistent. How can we ensure that a write directed to
the master is reflected in the next load-balanced read request? One solution is to use
the same consistent routing technique used in cache sharding to direct the write to the
slave that will be used to service the subsequent read. This assumes that the write and
the read can be consistently routed based on some domain criteria in each request.

This is one of the few occasions where it makes sense to write through a slave. But
remember: writing through a slave can be an order of magnitude slower than writing
direct to the master. Use this technique sparingly. If a high proportion of your writes
require you to read your own write, this technique will significantly impact throughput
and latency.

Testing
Testing is a fundamental part of the application development process—not only as a
means of verifying that a query or application feature behaves correctly, but also as a
way of designing and documenting your application and its data model. Throughout
this section we emphasize that testing is an everyday activity; by developing your graph
database solution in a test-driven manner, you provide for the rapid evolution of your
system, and its continued responsiveness to new business needs.

Test-Driven Data Model Development
In discussing data modeling, we’ve stressed that your graph model should reflect the
kinds of queries you want to run against it. By developing your data model in a test-
driven fashion you document your understanding of your domain, and validate that
your queries behave correctly.

With test-driven data modeling, you write unit tests based on small, representative
example graphs drawn from your domain. These example graphs contain just enough
data to communicate a particular feature of the domain; in many cases, they might only
comprise ten or so nodes, plus the relationships that connect them. Use these examples
to describe what is normal for the domain, and also what is exceptional. As you discover
anomalies and corner cases in your real data, write a test that reproduces what you’ve
discovered.

The example graphs you create for each test comprise the setup or context for that test.
Within this context you exercise a query, and assert that the query behaves as expected.
Because you control the context, you, as the author of the test, know what results to
expect.

122 | Chapter 6: Working with a Graph Database

8. Tests not only act as documentation, they can also be used to generate documentation. All of the Cypher
documentation in the Neo4j manual (see http://docs.neo4j.org/chunked/stable/cypher-query-lang.html) is
generated automatically from the unit tests used to develop Cypher.

Tests can act like documentation. By reading the tests, developers gain an understanding
of the problems and needs the application is intended to address, and the ways in which
the authors have gone about addressing them. With this is mind, it’s best to use each
test to test just one aspect of your domain. It’s far easier to read lots of small tests, each
of which communicates a discrete feature of your data in a clear, simple and concise
fashion, than it is to reverse engineer a complex domain from a single large and unwieldy
test. In many cases, you’ll find a particular query being exercised by several tests, some
of which demonstrate the happy path through your domain, others of which exercise
it in the context of some exceptional structure or set of values.8

Over time, you’ll build up a suite of tests that act as a power regression test mechanism.
As your application evolves, and you add new sources of data, or change the model to
meet new needs, your regression test suite will continue to assert that existing features
continue to behave as they ought. Evolutionary architectures, and the incremental and
iterative software development techniques that support them, depend upon a bedrock
of asserted behaviour. The unit testing approach to data model development described
here allows developers to respond to new business needs with very little risk of under‐
mining or breaking what has come before, confident in the continued quality of the
solution.

Example: A test-driven social network data model
In this example we’re going to demonstrate developing a very simple Cypher query for
a social network. Given the names of a couple of members of the network, our query
determines how far apart: direct friends are at distance 1, friends-of-a-friend at distance
2, and so on.

The first thing we do is create a small graph that is representative of our domain. Using
Cypher, we create a network comprising ten nodes and eight relationships:

public GraphDatabaseService createDatabase()
{
 // Create nodes
 String cypher = "CREATE\n" +
 "(ben {name:'Ben', _label:'user'}),\n" +
 "(arnold {name:'Arnold', _label:'user'}),\n" +
 "(charlie {name:'Charlie', _label:'user'}),\n" +
 "(gordon {name:'Gordon', _label:'user'}),\n" +
 "(lucy {name:'Lucy', _label:'user'}),\n" +
 "(emily {name:'Emily', _label:'user'}),\n" +
 "(sarah {name:'Sarah', _label:'user'}),\n" +
 "(kate {name:'Kate', _label:'user'}),\n" +
 "(mike {name:'Mike', _label:'user'}),\n" +

Testing | 123

http://docs.neo4j.org/chunked/stable/cypher-query-lang.html

 "(paula {name:'Paula', _label:'user'}),\n" +
 "ben-[:FRIEND]->charlie,\n" +
 "charlie-[:FRIEND]->lucy,\n" +
 "lucy-[:FRIEND]->sarah,\n" +
 "sarah-[:FRIEND]->mike,\n" +
 "arnold-[:FRIEND]->gordon,\n" +
 "gordon-[:FRIEND]->emily,\n" +
 "emily-[:FRIEND]->kate,\n" +
 "kate-[:FRIEND]->paula";

 GraphDatabaseService db = new ImpermanentGraphDatabase();

 ExecutionEngine engine = new ExecutionEngine(db);
 engine.execute(cypher);

 // Index all nodes in "user" index
 Transaction tx = db.beginTx();
 try
 {
 Iterable<Node> allNodes =
 GlobalGraphOperations.at(db).getAllNodes();
 for (Node node : allNodes)
 {
 if (node.hasProperty("name"))
 {
 db.index().forNodes("user")
 .add(node, "name", node.getProperty("name"));
 }

 }
 tx.success();
 }
 finally
 {
 tx.finish();
 }

 return db;
}

There are two things of interest in createDatabase(). The first is the use of Imperma
nentGraphDatabase, which is a lightweight, in-memory version of Neo4j designed
specifically for unit testing. By using ImpermanentGraphDatabase, you avoid having to
clear up store files on disk after each test. The class can be found in the Neo4j kernel
test jar, which can be obtained with the following dependency reference:

<dependency>
 <groupId>org.neo4j</groupId>
 <artifactId>neo4j-kernel</artifactId>
 <version>${project.version}</version>
 <type>test-jar</type>

124 | Chapter 6: Working with a Graph Database

 <scope>test</scope>
</dependency>

ImpermanentGraphDatabase should only be used in unit tests. It is not
a production-ready, in-memory version of Neo4j.

The second thing of interest in createDatabase() is the code for adding nodes to a
named index. Cypher doesn’t add the newly created nodes to an index, so for now, we
have to do this manually by iterating all the nodes in the sample graph, adding any with
a name property to the users named index.

Having created a sample graph, we can now write our first test. Here’s the test fixture
for testing our social network data model and its queries:

public class SocialNetworkTest
{
 private static GraphDatabaseService db;
 private static SocialNetworkQueries queries;

 @BeforeClass
 public static void init()
 {
 db = createDatabase();
 queries = new SocialNetworkQueries(db);
 }

 @AfterClass
 public static void shutdown()
 {
 db.shutdown();
 }

 @Test
 public void shouldReturnShortestPathBetweenTwoFriends() throws Exception
 {
 // when
 ExecutionResult results = queries.distance("Ben", "Mike");

 // then
 assertTrue(results.iterator().hasNext());
 assertEquals(4, results.iterator().next().get("distance"));
 }

 // more tests
}

This test fixture includes an initialization method, annotated with @BeforeClass, which
executes before any tests start. Here we call createDatabase() to create an instance of

Testing | 125

the sample graph, and an instance of SocialNetworkQueries, which houses the queries
under development.

Our first test, shouldReturnShortestPathBetweenTwoFriends(), tests that the query
under development can find a path between any two members of the network—in this
case, Ben and Mike. Given the contents of the sample graph, we know that Ben and Mike
are connected, but only remotely, at a distance of 4. The test, therefore, asserts that the
query returns a non-empty result containing a distance value of 4.

Having written the test, we now start developing our first query. Here’s the implemen‐
tation of SocialNetworkQueries:

public class SocialNetworkQueries
{
 private final ExecutionEngine executionEngine;

 public SocialNetworkQueries(GraphDatabaseService db)
 {
 this.executionEngine = new ExecutionEngine(db);
 }

 public ExecutionResult distance(String firstUser, String secondUser)
 {
 String query = "START first=node:user({firstUserQuery}),\n" +
 " second=node:user({secondUserQuery})\n" +
 "MATCH p=shortestPath(first-[*..4]-second)\n" +
 "RETURN length(p) AS distance";

 Map<String, Object> params = new HashMap<String, Object>();
 params.put("firstUserQuery", "name:" + firstUser);
 params.put("secondUserQuery", "name:" + secondUser);

 return executionEngine.execute(query, params);
 }

 // More queries
}

In the constructor for SocialNetworkQueries we create a Cypher ExecutionEngine,
passing in the supplied database instance. We store the execution engine in a member
variable, which allows it to be reused over and again throughout the lifetime of the
queries instance. The query itself we implement in the distance() method. Here we
create a Cypher statement, initialize a map containing the query parameters, and execute
the statement using the execution engine.

If shouldReturnShortestPathBetweenTwoFriends() passes (it does), we then go on to
test additional scenarios. What happens, for example, if two members of the network
are separated by more than 4 connections? We write up the scenario and what we expect
the query to do in another test:

126 | Chapter 6: Working with a Graph Database

@Test
public void shouldReturnNoResultsWhenNoPathUnderAtDistance4OrLess() throws Exception
{
 // when
 ExecutionResult results = queries.distance("Ben", "Arnold");

 // then
 assertFalse(results.iterator().hasNext());
}

In this instance, this second test passes without us having to modify the underlying
Cypher query. In many cases, however, a new test will force you to modify a query’s
implementation. When that happens, modify the query to make the new test pass, and
then run all the tests in the fixture. A failing test anywhere in the fixture indicates you’ve
broken some existing functionality. Continue to modfy the query until all tests are green
once again.

Testing server extensions
Server extensions can be developed in a test-driven manner just as easily as embedded
Neo4j. Using the simple server extension described earlier, here’s how we test it:

@Test
public void extensionShouldReturnDistance() throws Exception
{
 // given
 SocialNetworkExtension extension = new SocialNetworkExtension(db);

 // when
 String distance = extension.getDistance("Ben", "Mike");

 // then
 assertEquals("4", distance);
}

Because the extension’s constructor accepts a GraphDatabaseService instance, we can
inject a test instance (an ImpermanentGraphDatabase instance), and then call its meth‐
ods as per any other object.

If, however, we wanted to test the extension running inside a server, we have a little
more setup to do:

public class SocialNetworkExtensionTest
{
 private static CommunityNeoServer server;

 @BeforeClass
 public static void init() throws IOException
 {
 server = ServerBuilder.server()
 .withThirdPartyJaxRsPackage(

Testing | 127

9. See http://jersey.java.net/

 "org.neo4j.graphdatabases.queries.server",
 "/socnet")
 .build();
 server.start();
 populateDatabase(server.getDatabase().getGraph());
 }

 @AfterClass
 public static void teardown()
 {
 server.stop();
 }

 @Test
 public void serverShouldReturnDistance() throws Exception
 {
 ClientConfig config = new DefaultClientConfig();
 Client client = Client.create(config);

 WebResource resource = client
 .resource("http://localhost:7474/socnet/distance/Ben/Mike");
 ClientResponse response = resource
 .accept(MediaType.TEXT_PLAIN)
 .get(ClientResponse.class);

 assertEquals(200, response.getStatus());
 assertEquals("text/plain",
 response.getHeaders().get("Content-Type").get(0));
 assertEquals("4", response.getEntity(String.class));
 }

 // Populate graph

}

Here we’re using an instance of CommunityNeoServer to host the extension. We create
the server and populate its database in the test fixture’s init() method using a Server
Builder, which is a helper class from Neo4j’s server test jar. This builder allows us to
register the extension package, and associate it with a relative URI space (in this case,
everything below /socnet). Once init() has completed, we have a server instance up
and running and listening on port 7474.

In the test itself, serverShouldReturnDistance(), we access this server using an HTTP
client from the Jersey client library.9 The client issues an HTTP GET request for the
resource at http://localhost:7474/socnet/distance/Ben/Mike. (At the server end, this re‐
quest is dispatched to an instance of SocialNetworkExtension.) When the client re‐

128 | Chapter 6: Working with a Graph Database

http://jersey.java.net/
http://localhost:7474/socnet/distance/Ben/Mike

ceives a response, the test asserts that the HTTP status code, content-type, and content
of the response body are correct.

Performance Testing
The test-driven approach that we’ve described so far communicates context and domain
understanding, and tests for correctness. It does not, however, test for performance.
What works fast against a small, twenty node sample graph may not work so well when
confronted with a much larger graph. Therefore, to accompany your unit tests, you
should consider writing a suite of query performance tests. On top of that, you should
also invest in some thorough application performance testing early in your application’s
development lifecycle.

Query performance tests
Query performance tests are not the same as full-blown application performance tests.
All we’re interested in at this stage is whether a particular query performs well when
run against a graph that is proportionate to the kind of graph you expect to encounter
in production. Ideally, these tests are developed side-by-side with your unit tests. There’s
nothing worse than investing a lot of time in perfecting a query, only to discover it is
not fit for production-sized data.

When creating query performance tests, bear in mind the following guidelines:

• Create a suite of performance tests that exercise the queries developed through your
unit testing. Record the performance figures so that you can see the relative effects
of tweaking a query, modifying the heap size, or upgrading from one version of
Neo4j to another.

• Run these tests often, so that you quickly become aware of any deterioration in
performance. You might consider incorporating these tests into a continuous de‐
livery build pipeline, failing the build if the test results exceed a certain value.

• You can run these tests in-process on a single thread. There’s no need to simulate
multiple clients at this stage: if the performance is poor for a single client, it’s unlikely
to improve for multiple clients. Even though they are not strictly speaking unit tests,
you can drive them using the same unit testing framework you use to develop your
unit tests.

• Run each query many times, picking starting nodes at random each time, so that
you can see the effect of starting from a cold cache, which is then gradually warmed
as multiple queries execute.

Testing | 129

10. A thorough discussion of agile performance testing can be found in Alistair Jones and Patrick Kua, “Extreme
Performance Testing”, The ThoughtWorks Anthology, Volume 2 (Pragmatic Bookshelf, 2012)

11. See http://grinder.sourceforge.net/, http://jmeter.apache.org/ and http://gatling-tool.org/. Max De Marzi de‐
scribes using Gatling to test Neo4j here: http://maxdemarzi.com/2013/02/14/neo4j-and-gatling-sitting-in-a-
tree-performance-t-e-s-t-ing/

Application performance tests
Application performance tests, as distinct from query performance tests, test the per‐
formance of the entire application under representative production usage scenarios.

As with query performance tests, we recommend that this kind of performance testing
is done as part of everyday development, side-by-side with the development of appli‐
cation features, rather than as a distinct project phase.10 To facilitate application per‐
formance testing early in the project lifecycle, it is often necessary to develop a “walking
skeleton”, an end-to-end slice through the entire system, which can be accessed and
exercised by performance test clients. By developing a walking skeleton, you not only
provide for performance testing, you also establish the architectural context for the
graph database part of your solution. This allows you to verify your application archi‐
tecture, and identify layers and abstractions that allow for discrete testing of individual
components.

Performance tests serve two purposes: they demonstrate how the system will perform
when used in production, and they drive out the operational affordances that make it
easier to diagnose performance issues, incorrect behaviour, and bugs. What you learn
in creating and maintaining a performance test environment will prove invaluable when
it comes to deploying and operating the system for real.

As with your unit tests and query performance tests, application performance tests
prove most valuable when employed in an automated delivery pipeline, where succes‐
sive builds of the application are automatically deployed to a testing environment, the
tests executed, and the results automatically analyzed. Log files and test results should
be stored for later retrieval, analysis and comparison. Regressions and failures should
fail the build, prompting developers to address the issues in a timely manner. One of
the big advantages of conducting performance testing over the course of an application’s
development lifecycle, rather than at the end, is that failures and regressions can very
often be tied back to a recent piece of development; this allows you to diagnose, pinpoint
and remedy issues rapidly and succinctly.

For generating load, you’ll need a load-generating agent. For Web applications, there
are several open source stress and load testing tools available, including Grinder, JMeter
and Gatling.11 When testing load balanced Web applications, you should ensure your
test clients are distributed across different IP addresses so that requests are balanced
across the cluster.

130 | Chapter 6: Working with a Graph Database

http://grinder.sourceforge.net/
http://jmeter.apache.org/
http://gatling-tool.org/
http://maxdemarzi.com/2013/02/14/neo4j-and-gatling-sitting-in-a-tree-performance-t-e-s-t-ing/
http://maxdemarzi.com/2013/02/14/neo4j-and-gatling-sitting-in-a-tree-performance-t-e-s-t-ing/

12. See https://github.com/iansrobinson/neode. Max De Marzi describes an alternative graph generation techni‐
que here: http://maxdemarzi.com/2012/07/03/graph-generator/

Testing with representative data
For both query performance testing and application performance testing you will need
a dataset that is representative of the data you will encounter in production. It will,
therefore, be necessary to create or otherwise source such a dataset. In some cases you
can obtain a dataset from a third party, or adapt an existing dataset that you own, but
unless these datasets are already in the form of a graph, you will have to write some
custom export-import code.

In many cases, however, you’re starting from scratch. If this is the case, dedicate some
time to creating a dataset builder. As with the rest of the software development lifecycle,
this is best done in an iterative and incremental fashion. Whenever you introduce a new
element into your domain’s data model, as documented and tested in your unit tests,
add the corresponding element to your performance dataset builder. That way, your
performance tests will come as close to real-world usage as your current understanding
of the domain allows.

When creating a representative dataset, try to reproduce any domain invariants you
have identified: the minimum, maximum and average number of relationships per node,
the spread of different relationship types, property value ranges, and so on. Of course,
it’s not always possible to know these things upfront, and often you’ll find yourself
working with rough estimates until such point as production data is available to verify
your assumptions.

While ideally we would always test with a production-sized dataset, it is often not pos‐
sible or desirable to reproduce extremely large volumes of data in a test environment.
In such cases, you should at least ensure that you build a representative dataset whose
size exceeds the capacity of the object cache. That way, you’ll be able to observe the effect
of cache evictions, and querying for portions of the graph not currently held in main
memory.

Representative datasets also help with capacity planning. Whether you create a full-sized
dataset, or a scaled-down sample of what you expect the production graph to be, your
representative dataset will give you some useful figures for estimating the size of the
production data on disk. These figures then help you plan how much memory to allocate
to the filesystem cache and the JVM heap (see “Capacity Planning” for more details).

In the following example we’re using a dataset builder called Neode to build a sample
social network:12

private void createSampleDataset(GraphDatabaseService db)
{
 DatasetManager dsm = new DatasetManager(db, new Log()

Testing | 131

https://github.com/iansrobinson/neode
http://maxdemarzi.com/2012/07/03/graph-generator/

 {
 @Override
 public void write(String value)
 {
 System.out.println(value);
 }
 });

 // User node specification
 NodeSpecification userSpec =
 dsm.nodeSpecification("user",
 indexableProperty("name"));

 // FRIEND relationship specification
 RelationshipSpecification friend =
 dsm.relationshipSpecification("FRIEND");

 Dataset dataset =
 dsm.newDataset("Social network example");

 // Create user nodes
 NodeCollection users =
 userSpec.create(1000000)
 .update(dataset);

 // Relate users to each other
 users.createRelationshipsTo(
 getExisting(users)
 .numberOfTargetNodes(minMax(50, 100))
 .relationship(friend)
 .relationshipConstraints(BOTH_DIRECTIONS))
 .updateNoReturn(dataset);

 dataset.end();
}

Neode uses node and relationship specifications to describe which nodes and relation‐
ships are to be found in the graph, together with their properties and permitted property
values. Neode then provides a fluent interface for creating and relating nodes.

Capacity Planning
At some point in your application’s development lifecycle you’ll want to start planning
for production deployment. In many cases, an organization’s project management gat‐
ing processes mean a project cannot get underway without some understanding of the
production needs of the application. Capacity planning is essential both for budgeting
purposes and for ensuring there is sufficient lead time for procuring hardware and
reserving production resources.

132 | Chapter 6: Working with a Graph Database

In this section we describe some of the techniques you can use for hardware sizing and
capacity planning. Your ability to estimate your production needs depends on a number
of factors: the more data you have regarding representative graph sizes, query perfor‐
mance, and the number of expected users and their behaviors, the better your ability to
estimate your hardware needs. You can gain much of this information by applying the
techniques described in the “Testing” section early in your application development
lifecycle. In addition, you should understand the cost/performance tradeoffs available
to you in the context of your business needs.

Optimization Criteria
As you plan your production environment you will be faced with a number of optimi‐
zation choices. Which you favour will depend upon your business needs:

• Cost. You can optimize for cost by installing the minimum hardware necessary to
get the job done.

• Performance. You can optimize for performance by procuring the fastest solution
(subject to budgetary constraints).

• Redundancy. You can optimize for redundancy and availability by ensuring the
database cluster is big enough to survive a certain number of machine failures (i.e.,
to survive two machines failing, you will need a cluster comprising five instances).

• Load. With a replicated graph database solution, you can optimize for load by scal‐
ing horizontally (for read load), and vertically (for write load).

Performance
Redundancy and load can be costed in terms of the number of machines necessary to
ensure availability (five machines to provide continued availability in the face of two
machines failing, for example) and scalability (one machine per some number of con‐
current requests, as per the calculations in the “Load” section later in this Chapter). But
what about performance? How can we cost performance?

Calculating the cost of graph database performance
In order to understand the cost implications of optimizing for performance, we need
to understand the performance characteristics of the database stack. As we describe in
“Architecture” in Chapter 5, a graph database uses disk for durable storage, and main
memory for caching portions of the graph. In Neo4j, the caching parts of main memory
are further divided between the filesystem cache (which is typically managed by the
operating system) and the object cache. The filesystem cache is a portion of off-heap
RAM into which files on disk are read and cached before being served to the application.

Capacity Planning | 133

The object cache is an on-heap cache that stores object instances of nodes, relationships
and properties.

Spinning disk is by far the slowest part of the database stack. Queries that have to reach
all the way down to spinning disk will be orders of magnitude slower than queries which
touch only the object cache. Disk access can be improved by using SSDs in place of
spinning disks, providing an approximate 20 times increase in performance, or enter‐
prise flash hardware, which can reduce latencies yet further.

Spinning disks and SDDs are cheap, but not very fast. Far more significant performance
benefits accrue when the database has to deal only with the caching layers. The filesystem
cache offers up to 500 times the performance of spinning disk, while the object cache
can be up to 5000 times faster.

For comparative purposes, graph database performance can be expressed as a function
of the percentage of data available at each level of the object cache-filesystem cache-disk
hierarchy:

(% graph in object cache x 5000) * (% graph in filesystem cache * 500) * 20 (if using SSDs)

An application in which 100 percent of the graph is available in the object cache (as well
as in the filesystem cache, and on disk) will be more performant than one in which 100
percent is available on disk, but only 80 percent in the filesystem cache and 20 percent
in the object cache.

Performance optimization options
There are, then, three areas in which we can optimize for performance:

• Increase the object cache (from 2 GB, all the way up to 200 GB or more in exceptional
circumstances)

• Increase the percentage of the store mapped into the filesystem cache
• Invest in faster disks: SSDs or enterprise flash hardware

The first two options here require adding more RAM. In costing the allocation of RAM,
however, there are a couple of things to bear in mind. First, while the size of the store
files in the filesystem cache map one-to-one with the size on disk, graph objects in the
object cache can be up to 10 times bigger than their on-disk representations. Allocating
RAM to the object cache is, therefore, far more expensive per graph element than allo‐
cating it to the filesystem cache. The second point to bear in mind relates to the location
of the object cache. If your graph database uses an on-heap cache, as does Neo4j, then
increasing the size of the cache requires allocating more heap. Most modern JVMs do

134 | Chapter 6: Working with a Graph Database

13. Neo4j Enterprise Edition includes a cache implementation that mitigates the problems encountered with
large heaps, and is being successfully used with heaps in the order of 200 GB.

not cope well with heaps much larger than 8 GB. Once you start growing the heap beyond
this size, garbage collection can impact the performance of your application.13

As Figure 6-11 shows, the sweet spot for any cost versus performance tradeoff lies
around the point where you can map your store files in their entirety into RAM, while
allowing for a healthy, but modestly-sized object cache. Heaps of between 4 and 8 GB
are not uncommon, though in many cases, a smaller heap can actually improve per‐
formance (by mitigating expensive GC behaviors).

Calculating how much RAM to allocate to the heap and the filesystem cache depends
on your knowing the projected size of your graph. Building a representative dataset
early in your application’s development lifecycle will furnish you with some of the data
you need to make your calculations. If you cannot fit the entire graph into main memory
(that is, at a minimum, into the filesystem cache), you should consider cache sharding
(see the section on “Cache sharding” earlier in this chapter).

The Neo4j documentation includes details of the size of records
and objects that you can use in your calculations. See http://
docs.neo4j.org/chunked/stable/configuration-caches.html.

Figure 6-11. Cost versus performance tradeoffs

In optimizing a graph database solution for performance, bear in mind the following
guidelines:

Capacity Planning | 135

http://docs.neo4j.org/chunked/stable/configuration-caches.html
http://docs.neo4j.org/chunked/stable/configuration-caches.html

• Utilize the filesystem cache as much as possible; if possible map your store files in
their entirety into this cache

• Tune the JVM heap and keep an eye on GC behaviors
• Consider using fast disks—SSDs or enterprise flash hardware—to bring up the

bottom line when disk access becomes inevitable

Redundancy
Planning for redundancy requires you to determine how many instances in a cluster
you can afford to lose while keeping the application up and running. For non-business
critical applications, this figure might be as low as one (or even zero); once a first instance
has failed, another failure will render the application unavailable. Business-critical ap‐
plications will likely require redundancy of at least two; that is, even after two machines
have failed, the application continues serving requests.

For a graph database whose cluster management protocol requires a majority of coor‐
dinators to be available to work properly, redundancy of one can be achieved with three
or four instances, redundancy of two with five instances. Four is no better than three
in this respect, since if two instances from a four-instance cluster become unavailable,
the remaining coordinators will no longer be able to achieve majority.

Neo4j permits coordinators to be located on separate machines from
the database instances in the cluster. This allows you to scale the coor‐
dinators independently of the databases. With three database instances
and five coordinators located on different machines, you could lose two
databases and two coordinators, and still achieve majority, albeit with
a lone database.

Load
Optimizing for load is perhaps the trickiest part of capacity planning. As a rule of thumb:

number of concurrent requests = (1000 / average request time (in milliseconds)) * number
of cores per machine * number of machines

Actually determining what some of these figures are, or are projected to be, can some‐
times be very difficult:

• Average request time. This covers the period from when a server receives a request,
to when it sends a response. Performance tests can help determine average request
time, assuming the tests are are running on representative hardware against a rep‐
resentative dataset (you’ll have to hedge accordingly if not). In many cases, the

136 | Chapter 6: Working with a Graph Database

“representative dataset” itself is based on a rough estimate; you should modify your
figures whenever this estimate changes.

• Number of concurrent requests. You should distinguish here between average load
and peak load. Determining the number of concurrent requests a new application
must support is a difficult thing to do. If you’re replacing or upgrading an existing
application you may have access to some recent production statistics you can use
to refine your estimates. Some organizations are able to extrapolate from existing
application data the likely requirements for a new application. Other than that, it’s
down to your stakeholders to estimate the projected load on the system, but beware
inflated expectations.

Capacity Planning | 137

CHAPTER 7

Graph Data in the Real World

In this chapter we look at some of the common real-world use cases for graph databases
and identify the reasons why organisations choose to use a graph database rather than
a relational or other NOSQL store. The bulk of the chapter comprises three in-depth
use cases, with details of the relevant data models and queries. Each of these examples
has been drawn from a real-world production system; the names, however, have been
changed, and the technical details simplified where necessary to hide any accidental
complexity, and thereby highlight key design points.

Reasons for Choosing a Graph Database
Throughout this book, we’ve sung the praises of the graph data model, its power and
flexibility, and its innate expressiveness. When it comes to applying a graph database to
a real-world problem, with real-world technical and business constraints, organisations
choose graph databases for the following reasons:

1. “Minutes to milliseconds” performance. Query performance and responsiveness
are top of many organisations’ concerns with regard to their data platforms. Online
transactional systems, large Web applications in particular, must respond to end-
users in milliseconds if they are to be successful. In the relational world, as an
application’s dataset size grows, join pains begin to manifest themselves, and per‐
formance deteriorates. Using index-free adjacency, a graph database turns complex
joins into fast graph traversals, thereby maintaining millisecond performance ir‐
respective of the overall size of the dataset.

2. Drastically-accelerated development cycles. The graph data model reduces the im‐
pedance mismatch that has plagued software development for decades, thereby
reducing the development overhead of translating back and forth between an object
model and a tabular relational model. More importantly, the graph model reduces
the impedance mismatch between the technical and business domains: subject

139

matter experts, architects and developers can talk about and picture the core do‐
main using a shared model that is then incorporated into the application itself.

3. Extreme business responsiveness. Successful applications rarely stay still; changes
in business conditions, user behaviours and technical and operational infrastruc‐
tures drive new requirements. In the past, this has required organisations to un‐
dertake careful and lengthy data migrations that involve modifying schemas, trans‐
forming data, and maintaining redundant data to serve old and new features. The
schema-free nature of a graph database coupled with the ability to simultaneously
relate data elements in lots of different ways allows a graph database solution to
evolve as the business evolves, reducing risk and time-to-market.

4. Enterprise ready. Data is important: when employed in a business-critical applica‐
tion, a data technology must be robust, scalable, and more often than not, trans‐
actional. A graph database like Neo4j provides all the enterprise -ilities --ACID
transactionality, high-availability, horizontal read scalability, and storage of billions
of entities—on top of the performance and flexibility characteristics discussed
above.

Common Use Cases
In this section we describe some of the most common graph database use cases, iden‐
tifying how the graph model and the specific characteristics of the graph database can
be applied to generate competitive insight and significant business value.

Social Networks
Social networking allows organisations to gain competitive and operational advantage
by leveraging social computing to identify the impact of social context on individual
preferences and behaviour. As Facebook’s use of the term social graph implies, the graph
data model and by extension graph databases are a natural fit for this overtly
relationship-centerd domain. Social networks help us identify the direct and indirect
relationships between people, groups and the things with which they interact, allowing
users to rate, review and discover each other and the things they care about. By under‐
standing who interacts with whom, how people are connected, and what representatives
within a group are likely to do or choose based on the aggregate behaviour of the group,
we generate tremendous insight into the unseen forces that influence individual be‐
haviours. We discuss predictive modeling and its role in social network analysis in more
detail in the section “Graph Theory and Predictive Modeling”, in Chapter 8.

Social relations may be either explicit or implicit. Explicit relations occur wherever social
subjects volunteer a direct link—by liking someone on Facebook, for example, or in‐
dicating someone is a current or former colleague, as happens on LinkedIn. Implicit
relations emerge out of other relationships that indirectly connect two or more subjects

140 | Chapter 7: Graph Data in the Real World

by way of an intermediary. We can relate subjects based on their opinions, likes, pur‐
chases, even the products of their day-to-day work. Such indirect relationships lend
themselves to being applied in multiple suggestive and inferential ways: we can say that
A is likely to know, or like, or otherwise connect to B based on some common inter‐
mediaries. In so doing, we move from social network analysis into the realm of recom‐
mendation engines.

Recommendation Engines
Recommendation engines are a prime example of generating end-user value through
the application of an inferential or suggestive capability. Whereas line of business ap‐
plications typically apply deductive and precise algorithms—calculating payroll, apply‐
ing tax, and so on—to generate end-user value, recommendation engines are inductive
and suggestive, identifying people, products or services an individual or group is like‐
ly to have some interest in.

Recommendation engines establish relationships between people and things: other
people, products, services, media content—whatever is relevant to the domain in which
the engine is employed. Relationships are established based on users’ behaviours,
whether purchasing, producing, consuming, rating or reviewing the resources in ques‐
tion. The engine can then identify resources of interest to a particular individual or
group, or individuals and groups likely to have some interest in a particular resource.
With the first approach, identifying resources of interest to a specific user, the behaviour
of the user in question—their purchasing behaviour, expressed preferences, and atti‐
tudes as expressed in ratings and reviews—are correlated with those of other users in
order to identify similar users and thereafter the things with they are connected. The
second approach, identifying users and groups for a particular resource, focusses on the
characteristics of the resource in question; then engine then identifies similar resources,
and the users associated with those resources.

As with social networks, recommendation engines depend on understanding the con‐
nections between things, as well as the quality and strength of those connections—all
of which are best expressed as a property graph. Queries are primarily graph local, in
that they start with one or more identifiable subjects, whether people or resources, and
thereafter discover surrounding portions of the graph.

Taken together, social networks and recommendation engines provide key differenti‐
ating capabilities in the areas of retail, recruitment, sentiment analysis, search and
knowledge management. Graphs are a good fit for the densely connected data structures
germane to each of these areas; storing and querying this data using a graph database
allows an application to surface end-user realtime results that reflect recent changes to
the data, rather than pre-calculated, stale results.

Common Use Cases | 141

1. See http://en.wikipedia.org/wiki/R-tree

2. Neo4j Spatial is an open source library of utilities that implement spatial indexes and expose Neo4j data to
geotools. See https://github.com/neo4j/spatial

Geospatial
Geospatial is the original graph use case: Euler solved the Seven Bridges of Königsberg
problem by positing a mathematical theorem which later came to form the basis of graph
theory. Geospatial applications of graph databases range from calculating routes be‐
tween locations in an abstract network such as a road or rail network, airspace network,
or logistical network (as illustrated by the logistics example later in this chapter) to
spatial operations such as find all points of interest in a bounded area, find the center
of a region, and calculate the intersection between two or more regions.

Geospatial operations depend upon specific data structures, ranging from simple
weighted and directed relationships, through to spatial indexes, such as R-Trees, which
represent multi-dimensional properties using tree data structures.1 As indexes, these
data structures naturally take the form of a graph, typically hierarchical in form, and as
such they are a good fit for a graph database. Because of the schema-free nature of graph
databases, geospatial data can reside in the database beside other kinds of data—social
network data, for example—allowing for complex multidimensional querying across
several domains.2

Geospatial applications of graph databases are particularly relevant in the areas of tel‐
ecommunications, logistics, travel, timetabling and route planning.

Master Data Management
Master data is data that is critical to the operation of a business, but which itself is non-
transactional. Master data includes data concerning users, customers, products, sup‐
pliers, departments, geographies, sites, cost centers and business units. In large organ‐
isations, this data is often held in many different places, with lots of overlap and redun‐
dancy, in many different formats, and with varying degrees of quality and means of
access. Master Data Management (MDM) is the practice of identifying, cleaning, stor‐
ing, and, most importantly, governing this data. Its key concerns include managing
change over time as organisational structures change, businesses merge, and business
rules change; incorporating new sources of data; supplementing exiting data with ex‐
ternally sourced data; addressing the needs of reporting, compliance and business in‐
telligence consumers; and versioning data as its values and schemas change.

Graph databases don’t provide a full MDM solution; they are however, ideally applied
to the modeling, storing and querying of hierarchies, master data metadata, and master
data models. Such models include type definitions, constraints, relationships between
entities and the mappings between the model and the underlying source systems. A

142 | Chapter 7: Graph Data in the Real World

http://en.wikipedia.org/wiki/R-tree
https://github.com/neo4j/spatial

3. See http://en.wikipedia.org/wiki/Complex_event_processing

graph database’s structured yet schema-free data model provides for ad hoc, variable
and exceptional structures—schema anomalies that commonly arise when there are
multiple redundant data sources—while at the same time allowing for the rapid evolu‐
tion of the master data model in line with changing business needs.

Network Management
In Chapter 4 we looked at a simple data center domain model, showing how the physical
and virtual assets inside a data center can be easily modeled with a graph. Communi‐
cations networks are graph structures; graph databases are, therefore, a great fit for
modeling, storing and querying this kind of domain data.

A graph representation of a network allows us to catalogue assets, visualize how they
are deployed, and identify the dependencies between them. The graph’s connected
structure, together with a query language like Cypher, enable us to conduct sophisticated
impact analyses, answering questions such as:

• Which parts of the network—which applications, services, virtual machines, phys‐
ical machines, data centers, routers, switches and fibre—do important customers
depend on? (top-down analysis)

• Conversely, which applications and services, and ultimately, customers, in the net‐
work will be affected if a particular network element—a router or switch, for ex‐
ample—fails? (bottom-up analysis)

• Is there redundancy throughout the network for the most important customers?

Graph database solutions complement existing network management and analysis
tools. As with master data management, they can be used to bring together data from
disparate inventory systems, providing a single view of the network and its consumers,
from the smallest network element all the way to application and services and the cus‐
tomer who use them. A graph database representation of the network can also be used
to enrich operational intelligence based on event correlations: whenever an event cor‐
relation engine (a Complex Event Processor, for example) infers a complex event from
a stream of low-level network events, it can assess the impact of that event using the
graph model, and thereafter trigger any necessary compensating or mitigating actions.
3

Today, graph databases are being successfully employed in the areas of telecommuni‐
cations, network management and analysis, cloud platform management, data center
and IT asset management, and network impact analysis, where they are reducing impact
analysis and problem resolution times from days and hours down to minutes and sec‐

Common Use Cases | 143

http://en.wikipedia.org/wiki/Complex_event_processing

onds. Performance, flexibility in the face of changing network schemas, and fit for the
domain are all important factors here.

Access Control and Authorization
Access control and authorization solutions store information about parties (e.g. ad‐
ministrators, organizational units, end-users) and resources (e.g. files, shares, network
devices, products, services, agreements), together with the rules governing access to
those resources; they then apply these rules to determine who can access or manipulate
a resource. Access control has traditionally been implemented either using directory
services or by building a custom solution inside an application’s back-end. Hierarchical
directory structures, however, cannot cope with the non-hierarchical organizational
and resource dependency structures that characterize multi-party distributed supply
chains. Hand-rolled solutions, particularly those developed on a relational database,
suffer join pain as the dataset size grows, becoming slow and unresponsive, and ulti‐
mately delivering a poor end-user experience.

A graph database such as Neo4j can store complex, densely-connected access control
structures spanning billions of parties and resources. Its structured, schema-free data
model supports both hierarchical and non-hierarchical structures, while its extensible
property model allows for capturing rich metadata regarding every element in the sys‐
tem. With a query engine that can traverse millions of relationships per second, access
lookups over large, complex structures execute in milliseconds.

As with network management and analysis, a graph database access control solution
allows for both top-down and bottom-up queries:

• Which resources—company structures, products, services, agreements and end-
users—can a particular administrator manage? (Top-down)

• Which resource can an end-user access?
• Given a particular resource, who can modify its access settings? (Bottom-up)

Graph database access control and authorization solutions are particularly applicable
in the areas of content management, federated authorization services, social networking
preferences, and software as a service offerings, where they realizing minutes to milli‐
seconds increases in performance over their hand-rolled, relational predecessors.

Detailed Use Cases
In this section we describe three use cases in detail: social networking and recommen‐
dations, access control, and logistics. Each use case is drawn from one or more pro‐
duction applications of Neo4j; however, company names, context, data models and

144 | Chapter 7: Graph Data in the Real World

queries have been tweaked to eliminate accidental complexity and so highlight impor‐
tant design and implementation choices.

Social Networking and Recommendations
SocNet is a social networking and recommendations application that allows users to
discover their own professional network, and identify other users with particular skill
sets. Users work for companies, work on projects, and have one or more interests or
skills. Based on this information, SocNet can describe a user’s professional network by
identifying other subscribers who share their interests. Searches can be restricted to the
user’s current company, or extended to encompass the entire subscriber base. SocNet
can also identify individuals with specific skills who are directly or indirectly connected
to the current user; such searches are useful when looking for a subject matter expert
for a current engagement.

SocNet illustrates how a powerful inferential capability can be developed using a graph
database. While many line-of-business applications are deductive and precise—calcu‐
lating tax or salary, or balancing debits and credits, for example—a new seam of end-
user value opens up when we apply inductive algorithms to our data. This is what SocNet
does. Based on people’s interests and skills, and their work history, the application can
suggest likely candidates for including in one’s professional network. These results are
not precise in the way a payroll calculation must be precise, but they are extremely useful
nonetheless.

The important point with SocNet is that the connections between people are inferred.
Contrast this with LinkedIn, for example, where users explicitly declare that they know
or have worked with someone. This is not to say that LinkedIn is solely a precise social
networking capability, for it too applies inductive algorithms to generate further insight.
But with SocNet even the primary tie, A-[:KNOWS]->B, is inferred, rather than volun‐
teered.

Today, SocNet depends on users having supplied information regarding their interests,
skills and work history before it can infer their professional social relations. But with
the core inferential capabilities in place, the platform is set to generate even greater
insight for less end-user effort. Skills and interests, for example, can be inferred from
the processes and products surrounding people’s day-to-day work activities. Writing
code, writing documents, exchanging emails: activities such as these require interacting
with systems that allow us to capture hints as to a person’s skills. Other sources of data
that help contextualize a user include group memberships and meetup lists. While the
use case presented here does not cover these higher-order inferential features, their
implementation requires mostly application integration and partnership agreements
rather than any significant change to the graph or the algorithms used.

Detailed Use Cases | 145

SocNet data model
To help describe the SocNet data model, we’ve created a small sample graph, as shown
in Figure 7-1, which we’ll use throughout this section to illustrate the Cypher queries
behind the main SocNet use cases.

Figure 7-1. Sample of the SocNet social network

The sample graph shown here has just two companies, each with several employees. An
employee is connected to their employer by a WORKS_FOR relationship. Each employee
is INTERESTED_IN one or more topics, and has WORKED_ON one or more projects. Occa‐
sionally, employees from different companies work on the same project.

This structure addresses two important use cases:

• Given a user, inferring social relations—that is, identifying their professional social
network—based on shared interests and skills.

• Given a user, recommend someone that they have worked with, or who has worked
with people they have worked with, who has a particular skill.

The first use case helps build communities around shared interests; the second helps
identify people to fill specific project roles.

146 | Chapter 7: Graph Data in the Real World

Inferring social relations
SocNet’s graph allows it to infer a user’s professional social network by following the
relationships that connect an individual’s interests to other people. The strength of the
recommendation depends on the number of shared interests. If Sarah is interested in
Java, graphs, and REST, Ben in graphs and REST, and Charlie in graphs, cars and med‐
icine, then there is a likely tie between Sarah and Ben based on their mutual interest in
graphs and REST, and another tie between Sarah and Charlie based on their mutual
interest in graphs, with the tie between Sarah and Ben stronger than the one between
Sarah and Charlie (two shared interests versus one).

The following illustration shows the pattern representing colleagues who share a user’s
interests. The subject node refers to the subject of the query (in the example above,
this will be Sarah). This node can be looked up in an index. The remaining nodes will
be discovered once the pattern is anchored to the subject node and then flexed around
the graph.

Figure 7-2. Pattern to find colleagues who share a user’s interests

The Cypher to implement this query is shown below:

START subject=node:user(name={name})
MATCH subject-[:WORKS_FOR]->company<-[:WORKS_FOR]-person,
 subject-[:INTERESTED_IN]->interest<-[:INTERESTED_IN]-person
RETURN person.name AS name,
 COUNT(interest) AS score,
 COLLECT(interest.name) AS interests
ORDER BY score DESC

Detailed Use Cases | 147

The query works as follows:

• The START clause looks up the subject of the query in the user index, and assigns
the result to the subject identifier.

• The MATCH clause then matches this person with people who work for the same
company, and who share one or more of their interests. If the subject of the query
is Sarah, who works for Acme, then in the case of Ben, this MATCH clause will match
twice: ('Acme')<-[:WORKS_FOR]-('Ben')-[:INTERESTED_IN]->('graphs') and
('Acme')<-[:WORKS_FOR]-('Ben')-[:INTERESTED_IN]->('REST'). In the case of
Charlie, it will match once: ('Acme')<-[:WORKS_FOR]-('Charlie')-

[:INTERESTED_IN]->('graphs').
• The RETURN clause creates a projection of the matched data: for each matched col‐

league, we extract their name, count the number of interests they have in common
with the subject of the query (aliasing this result as score), and, using COLLECT,
create a comma-separated list of these mutual interests. Where a person has mul‐
tiple matches, as does Ben in our example, COUNT and COLLECT serve to aggregate
their matches into a single row in the returned results (in fact, both COUNT and
COLLECT can perform this aggregating function alone).

• Finally, we order the results based on each colleague’s score, highest first.

Running this query against our sample graph, with Sarah as the subject, yields the fol‐
lowing results:

+---------------------------------------+
| name | score | interests |
+---------------------------------------+
| "Ben" | 2 | ["Graphs","REST"] |
| "Charlie" | 1 | ["Graphs"] |
+---------------------------------------+
2 rows
0 ms

Here’s the portion of the graph that was matched to generate these results:

148 | Chapter 7: Graph Data in the Real World

Figure 7-3. Colleagues who share Sarah’s interests

You’ll notice that this query only finds people who work for the same company as Sarah.
If we want to extend the search to find people who work for other companies, we need
to modify the query slightly:

START subject=node:user(name={name})
MATCH subject-[:INTERESTED_IN]->interest<-[:INTERESTED_IN]-person,
 person-[:WORKS_FOR]->company
RETURN person.name AS name,
 company.name AS company,
 COUNT(interest) AS score,
 COLLECT(interest.name) AS interests
ORDER BY score DESC

The changes are as follows:

• In the MATCH clause, we no longer require matched persons to work for the same
company as the subject of the query. (We do, however, still capture the company
for whom each matched person works, because we want to return this information
in the results.)

• In the RETURN clause we now include the company details for each matched person.

Running this query against our sample data returns the following results:

+---+
| name | company | score | interests |

Detailed Use Cases | 149

+---+
"Arnold"	"Startup, Ltd"	3	["Java","Graphs","REST"]
"Ben"	"Acme, Inc"	2	["Graphs","REST"]
"Gordon"	"Startup, Ltd"	1	["Graphs"]
"Charlie"	"Acme, Inc"	1	["Graphs"]
+---+
4 rows
0 ms

And here’s the portion of the graph that was matched to generate these results:

Figure 7-4. People who share Sarah’s interests

While Ben and Charlie still figure in the results, it turns out that Arnold, who works for
Startup, Ltd, has most in common with Sarah: three topics compared to Ben’s two and
Charlie’s one.

Finding colleagues with particular interests
In the second SocNet use case, we turn from inferring social relations based on shared
interests to finding individuals who have a particular skill-set, and who have either
worked with the person who is the subject of the query, or worked with people who
have worked with the subject. By applying the graph in this manner, we can source
individuals to staff project roles based on their social ties to people we trust—or at least
have worked with.

150 | Chapter 7: Graph Data in the Real World

The social ties in question arise from individuals having worked on the same project.
Contrast this with the previous use case, where the social ties were inferred based on
shared interests. If people have worked on the same project, we infer a social tie. The
projects, then, form intermediate nodes that bind two or more people together: they are
instances of collaboration that have brought people into contact with one another. Any‐
one we discover in this fashion is a candidate for including in our results—as long as
they possess the interests or skills we are looking for.

Here’s a Cypher query that finds colleagues, and colleagues-of-colleagues, who have one
or more particular interests:

START subject=node:user(name={name})
MATCH p=subject-[:WORKED_ON]->()-[:WORKED_ON*0..2]-()
 <-[:WORKED_ON]-person-[:INTERESTED_IN]->interest
WHERE person<>subject AND interest.name IN {interests}
WITH person, interest, MIN(LENGTH(p)) as pathLength
RETURN person.name AS name,
 COUNT(interest) AS score,
 COLLECT(interest.name) AS interests,
 ((pathLength - 1)/2) AS distance
ORDER BY score DESC
LIMIT {resultLimit}

This is quite a complex query. Let’s break it down little, and look at each part in more
detail:

• The START clause looks up the subject of the query in the user index, and assigns
the result to the subject identifier.

• The MATCH clause finds people who are connected to the subject by way of having
worked on the same project, or having worked on the same project as people who
have worked with the subject. For each person we match, we capture their interests.
This match is then further refined by the WHERE clause, which exclude nodes that
match the subject of the query, and ensures we only match people who are interested
in the things we care about. For each successful match, we assign the entire path of
the match—that is, the path that extends from the subject of the query all the way
through the matched person to their interest—to the identifier p. We’ll look at this
MATCH clause in more detail shortly.

• The WITH clause pipes the results to the RETURN clause, filtering out redundant paths
as it does so. Redundant paths are present in the results at this point because col‐
leagues and colleagues-of-colleagues are often reachable through different paths,
some longer than others. We want to filter these longer paths out. That’s exactly
what the WITH clause does. The WITH clause emits triples comprising a person, an
interest, and the length of the path from the subject of the query through the person
to their interest. Given that any particular person/interest combination may appear
more than once in the results, but with different path lengths, we want to aggregate

Detailed Use Cases | 151

these multiple lines by collapsing them to a triple containing only the shortest path,
which we do using MIN(LENGTH(p)) as pathLength.

• The RETURN clause creates a projection of the data, performing more aggregation
as it does so. The data piped by the WITH clause to the RETURN clause contains one
entry per person per interest: if a person matches two of the supplied interests, there
will be two separate data entries. We aggregate these entries using COUNT and COL
LECT: COUNT to create an overall score for a person, COLLECT to create a comma-
separated list of matched interests for that person. As part of the results, we also
calculate how far the matched person is from the subject of the query: we take the
pathLength for that person, subtract 1 (for the INTERESTED_IN relationship at the
end of the path), and then divide by 2 (because the person is separated from the
subject by pairs of WORKED_ON relationships). Finally, we order the results based on
score, highest score first, and limit them according to a resultLimit parameter
supplied by the query’s client.

The MATCH clause in the preceding query uses a variable length path,
[:WORKED_ON*0..2], as part of a larger pattern to match people who have worked di‐
rectly with the subject of the query, as well as people who have worked on the same
project as people who have worked with the subject. Because each person is separated
from the subject of the query by one or two pairs of WORKED_ON relationships, SocNet
could have written this portion of the query as MATCH p=subject-[:WORKED_ON*2..4]-
person-[:INTERESTED_IN]->interest, with a variable length path of between two and
four WORKED_ON relationships. However, long variable length paths can be relatively
inefficient. When writing such queries, it is advisable to restrict variable length paths
to as narrow a scope as possible. To increase the performance of the query, SocNet use
a fixed length outgoing WORKED_ON relationship that extends from the subject to their
first project, and another fixed length WORKED_ON relationship that connects the matched
person to a project, with a smaller variable length path in between.

Running this query against our sample graph, and again taking Sarah as the subject of
the query, if we look for colleagues and colleagues-of-colleagues who have interests in
Java, travel or medicine, we get the following results:

+--+
| name | score | interests | distance |
+--+
| "Arnold" | 2 | ["Travel","Java"] | 2 |
| "Charlie" | 1 | ["Medicine"] | 1 |
+--+
2 rows
0 ms

152 | Chapter 7: Graph Data in the Real World

Note that the results are ordered by score, not distance. Arnold has two out of the
three interests, and therefore scores higher than Charlie, who only has one, even though
he is at two removes from Sarah, whereas Charlie has worked directly with Sarah.

This is the portion of the graph that was traversed and matched to generate these results:

Figure 7-5. Finding people with particular interests

Let’s take a moment to understand how this query executes in more detail. Figure 7-6
shows three stages in the execution of the query. The first stage shows each of the paths
as they are matched by the MATCH and WHERE clauses. As you can see, there is one re‐
dundant path: Charlie is matched directly, through Next Gen Platform, and indirectly,
by way of Quantum Leap and Emily. The second stage represents the filtering that takes
place in the WITH clause. Here we emit triples comprising the matched person, the
matched interest, and the length of the shortest path from the subject through the
matched person to their interest. The third stage represents the RETURN clause, wherein
we aggregate the results on behalf of each matched person, and calculate their score and
distance from the subject.

Detailed Use Cases | 153

Figure 7-6. Query pipeline

Adding WORKED_WITH relationships
The query for finding colleagues and colleagues-of-colleagues with particular interests
is the one most frequently executed on SocNet’s site, and the success of the site depends
in large part on its performance. The query uses pairs of WORKED_ON relationships (for
example, (Sarah)-[:WORKED_ON]->(Next Gen Platform)<-[:WORKED_ON]-

(Charlie)) to infer that users have worked with one another. While reasonably per‐
formant, this is nonetheless inefficient, in that it requires traversing two explicit rela‐
tionships to infer the presence of a single implicit relationship.

To eliminate this inefficiency, SocNet now pre-compute WORKED_WITH relationships,
thereby enriching the data and providing shorter paths for these performance-critical
access patterns. This is a common optimisation strategy: introducing a direct relation‐
ship between two nodes that would otherwise be connected only by way of interme‐
diaries. Unlike the optimisation strategies we employ in the relational world, however,

154 | Chapter 7: Graph Data in the Real World

which typically involve denormalising and thereby compromising a high-fidelity model,
this is not an either/or issue: either the high-fidelity structure, or the high performance
compromise. With the graph we retain the original high-fidelity graph structure while
at the same time enriching it with new elements catering to different access patterns.

In terms of the SocNet domain, WORKED_WITH is a bi-directional relationship. In the
graph, however, it is implemented using a uni-directional relationship. While a rela‐
tionship’s direction can often add useful semantics to its definition, in this instance the
direction is meaningless. This isn’t a significant issue, so long as any queries that operate
with WORKED_WITH relationships ignore the relationship direction.

Calculating a user’s WORKED_WITH relationships and adding them to the graph isn’t dif‐
ficult, nor is it particularly expensive in terms of resource consumption. It can, however,
add milliseconds to any end-user interactions that update a user’s profile with new
project information, so SocNet have decided to perform this operation asynchronously
to end-user activities. Whenever a user changes their project history, SocNet add a job
that recalculates that user’s WORKED_WITH relationships to a queue. A single writer thread
polls this queue and executes the jobs using the following Cypher statement:

START subject = node:user(name={name})
MATCH subject-[:WORKED_ON]->()<-[:WORKED_ON]-person
WHERE NOT(subject-[:WORKED_WITH]-person)
WITH DISTINCT subject, person
CREATE UNIQUE subject-[:WORKED_WITH]-person
RETURN subject.name AS startName, person.name AS endName

This is what our sample graph looks like once it has been enriched with WORKED_WITH
relationships:

Detailed Use Cases | 155

Figure 7-7. SocNet graph enriched with WORKED_WITH relationships

Using the enriched graph, SocNet now finds colleagues and colleagues-of-colleagues
with particular interests using a slightly simpler version of the query we looked at above:

START subject=node:user(name={name})
MATCH p=subject-[:WORKED_WITH*0..1]-()-[:WORKED_WITH]-person-[:INTERESTED_IN]->interest
WHERE person<>subject AND interest.name IN {interests}
WITH person, interest, MIN(LENGTH(p)) as pathLength
RETURN person.name AS name,
 COUNT(interest) AS score,
 COLLECT(interest.name) AS interests,
 (pathLength - 1) AS distance
ORDER BY score DESC
LIMIT {resultLimit}

Access Control
SaasNet is an international telecommunications services company, with millions of do‐
mestic and business users subscribed to its products and services. For several years, it
has offered its largest business customers the ability to self-service their accounts. Using
a browser-based application, administrators within each of these customer organisa‐
tions can add and remove services on behalf of their employees. To ensure that users
and administrators see and change only those parts of the organisation and the products
and services they are entitled to manage, the application employs a complex access
control system, which assigns privileges to many millions of users across tens of millions
of product and service instances.

156 | Chapter 7: Graph Data in the Real World

SaasNet has decided to replace the existing access control system with a graph database
solution. There are two drivers here: performance and business responsiveness.

Performance issues have dogged SaasNet’s service-service application for several years.
The original system is based on a relational database, which uses recursive joins to model
complex organisational structures and product hierarchies, and stored procedures to
implement the access control business logic. Because of the join-intensive nature of the
data model, many of the most important queries are unacceptably slow: for an admin‐
istrator in a large company, generating a view of the things that administrator can man‐
age takes many minutes. This creates a very poor user experience, and hampers the
revenue-generating capabilities of the self-service offering.

The performance issues that affect the original application suggest it is no longer fit for
today’s needs, never mind tomorrow’s. SaasNet has ambitious plans to move into new
regions and markets, effectively increasing its customer base by an order of magnitude.
The existing solution clearly cannot accommodate the needs of this new strategy. A
graph database solution, in contrast, offers the performance, scalability and adaptive‐
ness necessary for dealing with a rapidly changing market.

SaasNet data model
Figure 7-8 shows a sample of the SaasNet data model. The model comprises two hier‐
archies. In the first hierarchy, administrators within each customer organization are
assigned to groups; these groups are then accorded various permissions against that
organization’s organizational structure:

• ALLOWED_INHERIT connects an administrator group to an organizational unit,
thereby allowing administrators within that group to manage the organizational
unit. This permission is inherited by children of the parent organizational unit. We
see na example of inhereited permissions in the SaasNet example data model in the
relationships between Group 1 and Acme, and the child of Acme, Spinoff. Group
1 is connected to Acme using an ALLOWED_INHERIT relationship. Ben, as a member
of Group 1, can manage employees both of Acme and Spinoff thanks to this AL
LOWED_INHERIT relationship.

• ALLOWED_DO_NOT_INHERIT connects an administrator group to an organizational
unit in a way that allows administrators within that group to manage the organi‐
zational unit, but not any of its children. Sarah, as a member of Group 2, can ad‐
minister Acme, but not its child Spinoff, because Group 2 is connected to Acme by
an ALLOWED_DO_NOT_INHERIT relationship, not an ALLOWED_INHERIT relationship.

• DENIED forbids administrators from accessing an organizational unit. This permis‐
sion is inherited by children of the parent organizational unit. In the SaasNet dia‐
gram, this is best illustrated by Liz and her permissions with respect to Big Co,
Acquired Ltd, Subsidiary and One-Map Shop. As a result of her membership of

Detailed Use Cases | 157

Group 4 and its ALLOWED_INHERIT permission on Big Co, Liz can manage Big
Co. But despite this being an inheritable relationship, Liz cannot manage Acquired
Ltd or Subsidiary; the reason being, Group 5, of which Liz is a member, is DE
NIED access to Acquired Ltd and its children (which includes Subsidiary). Liz
can, however, manage One-Map Shop, thanks to an ALLOWED_DO_NOT_INHERIT per‐
mission granted to Group 6, the last group to which Liz belongs.

DENIED takes precedence over ALLOWED_INHERIT, but is subordinate to AL

LOWED_DO_NOT_INHERIT. Therefore, if an administrator is connected to a company by
way of ALLOWED_DO_NOT_INHERIT and DENIED, ALLOWED_DO_NOT_INHERIT prevails.

Figure 7-8. Access control graph

Fine-grained relationships, or relationships with properties?
You’ll notice that the SaasNet access control data model uses fine-grained relationships
(ALLOWED_INHERIT, ALLOWED_DO_NOT_INHERIT and DENIED) rather than a single rela‐
tionship type qualified by properties—something like PERMISSION with allowed and
inherited boolean properties. Why is this? And when would you choose between these
two options?

158 | Chapter 7: Graph Data in the Real World

SaasNet performance tested both approaches and determined that the fine-grained,
property-free approach was nearly twice as fast as the one using properties. This should
come as no surprise. Relationships are the royal road into the graph; differentiating by
relationship type is the best way of eliminating large swathes of the graph from a tra‐
versal. Using one or more property values to decide whether or not to follow a rela‐
tionship incurs extra IO—because the properties reside in a separate store file from the
relationships—the first time those properties are accessed (after that, they’re cached).

Consider using fine-grained relationships whenever you have a closed set of relationship
types. Here, SaasNet has a closed set of permissions, ideal for representing as fine-
grained relationships. In contrast, weightings—as required by a shortest weighted path
algorithm—rarely comprise a closed set, and these are usually best represented as prop‐
erties on relationships.

Sometimes, however, you have a closed set of relationships where in some traversals you
want to follow specific kinds of relationship within that set, but in others you want to
follow all of them, irrespective of type. Addresses are a good example. Following the
closed-set principle, we might choose to create HOME_ADDRESS, WORK_ADDRESS and DE
LIVERY_ADDRESS relationships. This allows us to follow specific kinds of address rela‐
tionship (DELIVERY_ADDRESS, for example) while ignoring all the rest. But what do we
do if we want to find all addresses for a user? There are a couple of options here. First,
we can encode knowledge of all the different relationship types in the relevant MATCH
clauses: e.g. MATCH user-[:HOME_ADDRESS|WORK_ADDRESS|DELIVERY_ADDRESS]-

>address. This, however, quickly becomes unwieldy when there are lots of different
kinds of relationship. Alternatively, we can add a more generic ADDRESS relationship to
our model, in addition to the fine-grained relationships. Every node representing an
address is then connected to a user using two relationships: a fined-grained relationship
(e.g. DELIVERY_ADDRESS) and the more generic ADDRESS relationship.

As we discuss in “Describe the Model in Terms of Your Application’s Needs” in Chapter
6, the key here is to let the questions you want to ask of your data guide the kinds of
relationship you introduce into the model.

Finding all accessible resources for an administrator
The SaasNet application uses many different Cypher queries; we’ll look at just a few of
them here.

First up is the ability to find all resources accessible by a particular administrator.
Whenever an onsite administrator logs in to the system, they are presented with a
browser-based list of all the employees and employee accounts they can administer. This
list is generated based on the results returned by the following query:

START admin=node:administrator(name={administratorName})
MATCH paths=admin-[:MEMBER_OF]->()-[:ALLOWED_INHERIT]->()<-[:CHILD_OF*0..3]-company
 <-[:WORKS_FOR]-employee-[:HAS_ACCOUNT]->account

Detailed Use Cases | 159

WHERE NOT (admin-[:MEMBER_OF]->()-[:DENIED]->()<-[:CHILD_OF*0..3]-company)
RETURN employee.name AS employee, account.name AS account
UNION
START admin=node:administrator(name={administratorName})
MATCH paths=admin-[:MEMBER_OF]->()-[:ALLOWED_DO_NOT_INHERIT]->()
 <-[:WORKS_FOR]-employee-[:HAS_ACCOUNT]->account
RETURN employee.name AS employee, account.name AS account

This query sets the template for all the other queries we’ll be looking at in this section,
in that it comprises two separate queries joined by a UNION operator. The query before
the UNION operator handles ALLOWED_INHERIT relationships qualified by any DENIED
relationships; the query following the UNION operator handles any ALLOWED_DO_NOT_IN
HERIT permissions. This pattern, ALLOWED_INHERIT minus DENIED, followed by AL
LOWED_DO_NOT_INHERIT, is repeated in all of the access control example queries that
follow.

The first query here, the one before the UNION operator, can be broken down as follows:

• The START clause finds the logged-in administrator in the administrator index,
and binds the result to the admin identifier.

• The MATCH clause matches all the groups to which this administrator belongs, and
from these groups, all the parent companies connected by way of an ALLOWED_IN
HERIT relationship. The MATCH then uses a variable length path ([:CHILD_OF0..3])
to discover children of these parent companies, and thereafter the employees and
accounts associated with all matched companies (whether parent company or
child). At this point, the query has matched all companies, employees and accounts
accessible by way of ALLOWED_INHERIT relationships.

• The WHERE clause eliminates matches where the company bound in the MATCH clause,
or any of its parents, is connected by way of DENIED relationship to the adminis‐
trator’s groups. This WHERE clause is invoked for each match; if there is a DENIED
relationship anywhere between the admin node and the company node bound by
the match, that match is eliminated.

• The RETURN clause creates a projection of the matched data in the form of a list of
employee names and accounts.

The second query here, following the UNION operator, is a little simpler:

• The MATCH clause simply matches companies (plus employees and accounts) which
are directly connected to an administrator’s groups by way of an AL

LOWED_DO_NOT_INHERIT relationship.

160 | Chapter 7: Graph Data in the Real World

The UNION operator joins the results of these two queries together, eliminating any du‐
plicates. Note that the RETURN clause in each query must contain the same projection of
the results; in other words, the column names in the results must match.

Cypher supports both UNION and UNION ALL operators. UNION eliminates
duplicate results from the final result set, whereas UNION ALL includes
any duplicates.

Figure 7-9 shows how this query matches all accessible resources for Sarah in the sample
SaasNet graph. Note how, because of the DENIED relationship from Group 2 to Skunk
workz, Sarah cannot administer Kate and Account 7.

Figure 7-9. Finding all accessible resources for a user

Determining whether an administrator has access to a resource
The query we’ve just looked at returned a list of employees and accounts that an ad‐
ministrator can manage. In a Web application, each of these resources (employee, ac‐
count) is accessible through its own URI. Given a friendly URI (e.g. http://saasnet/

Detailed Use Cases | 161

http://saasnet/accounts/5436

accounts/5436), what’s to stop someone from hacking a URI and gaining illegal access
to an account?

What’s needed is a query that will determine whether an administrator has access toa
specific resource. This is that query:

START admin=node:administrator(name={adminName}),
 company=node:company(resourceName={resourceName})
MATCH p=admin-[:MEMBER_OF]->()-[:ALLOWED_INHERIT]->()<-[:CHILD_OF*0..3]-company
WHERE NOT (admin-[:MEMBER_OF]->()-[:DENIED]->()<-[:CHILD_OF*0..3]-company)
RETURN COUNT(p) AS accessCount
UNION
START admin=node:administrator(name={adminName}),
 company=node:company(resourceName={resourceName})
MATCH p=admin-[:MEMBER_OF]->()-[:ALLOWED_DO_NOT_INHERIT]->company
RETURN COUNT(p) AS accessCount

This query works by determining whether an administrator has access to the company
to which an employee or an account belongs. How do we identify to which company
an employee or account belongs? Through clever use of indexes.

In the SaasNet data model, companies are indexed both by their name, and by the names
of their employees and employee accounts. Given a company name, employee name,
or account name, we can, therefore, lookup the relevant company node in the company
index.

Given that bit of insight, we can see that this resource authorization check query is
similar to the query for finding all companies, employees and accounts, but for several
small differences:

• company is bound in the START clause, not the MATCH clause. Using the indexing
strategy described above, we lookup the node representing the relevant company
based on the name of the resource to be authorized—whether employee or account.

• We don’t match any further than company. Since company has already been bound
based on an employee or account name, there’s no need to drill further into the
graph to match that employee or account.

• The RETURN clauses for the queries before and after the UNION operator return a
count of the number of matches. For an administrator to have access to a resource,
one or other of these accessCount values must be greater than 0.

The WHERE clause in the query before the UNION operator once again eliminates matches
where the company in question is connected to one of the administrator’s groups by way
of a DENIED relationship.

Because the UNION operator eliminates duplicate results, the overall result set for this
query can contain either one or two values. The client-side logic for determining
whether an administrator has access to a resource looks like this in Java:

162 | Chapter 7: Graph Data in the Real World

http://saasnet/accounts/5436

private boolean isAuthorized(ExecutionResult result)
{
 Iterator<Long> accessCountIterator = result.columnAs("accessCount");
 while (accessCountIterator.hasNext())
 {
 if (accessCountIterator.next() > 0L)
 {
 return true;
 }
 }
 return false;
}

Finding administrators for an account
The previous two queries represent “top-down” views of the graph. The last SaasNet
query we’ll discuss here provides a “bottom-up” view of the data. Given a resource—an
employee or account—which administrators can manage it? Here’s the query:

START resource=node:resource(name={resourceName})
MATCH p=resource-[:WORKS_FOR|HAS_ACCOUNT*1..2]-company
 -[:CHILD_OF*0..3]->()<-[:ALLOWED_INHERIT]-()<-[:MEMBER_OF]-admin
WHERE NOT (admin-[:MEMBER_OF]->()-[:DENIED]->()<-[:CHILD_OF*0..3]-company)
RETURN admin.name AS admin
UNION
START resource=node:resource(name={resourceName})
MATCH p=resource-[:WORKS_FOR|HAS_ACCOUNT*1..2]-company
 <-[:ALLOWED_DO_NOT_INHERIT]-()<-[:MEMBER_OF]-admin
RETURN admin.name AS admin

As before, the query consists of two independent queries joined by a UNION operator.
Of particular note are the following clauses:

• The START clauses use a resource index, a named index for both employees and
accounts.

• The MATCH clauses contain a variable length path expression that uses the | operator
to specify a path that is one or two relationships deep, and whose relationship types
comprise WORKS_FOR and HAS_ACCOUNT. This expression accomodates the fact that
the subject of the query may be either an employee or an account.

Figure 7-10 shows the portions of the graph matched by the query when asked to find
the administrators for Account 10.

Detailed Use Cases | 163

Figure 7-10. Finding an administrator for a specific account

Logistics
LogisticsNet is a large courier company whose domestic operation delivers millions of
parcels to over 30 million addresses each day. In recent years, as a result of the rise in
internet shopping, the number of parcels has increased significantly. Amazon and eBay
deliveries now account for over half the parcels routed and delivered by LogisticsNet
each day.

With parcel volumes continuing to grow, and facing strong competition from other
courier services, LogisticsNet has begun a large change programme to upgrade all as‐
pects of its parcel network, including buildings, equipment, systems and processes.

One of the most important and time-critical components in the parcel network is the
route calculation engine. Between one and three thousand parcels enter the network
each second. As parcels enter the network they are mechanically sorted according to
their destination. To maintain a steady flow during this process the engine must calculate
a parcel’s route before it reaches a point where the sorting equipment has to make a
choice, which happens only seconds after the parcel has entered the network—hence
the strict time requirements on the engine.

164 | Chapter 7: Graph Data in the Real World

As well as being time critical, the engine must also be time sensitive. Parcel routes change
throughout the year, with more trucks, delivery people and collections over the Christ‐
mas period than during the summer, for example. The engine must, therefore, apply its
calculations using only those routes that are available for a particular period.

On top of accommodating different routes and levels of parcel traffic, the new parcel
network must also allow for far more significant change and evolution. The platform
that LogisticsNet develops today will form the business-critical basis of its operations
for the next ten years or more. During that time, the company anticipates that large
portions of the network—including equipment, premises, and transport routes—will
change considerably to match changes in the business environment. The data model
underlying the route calculation engine must, therefore, allow for rapid and significant
schema evolution.

LogisticsNet data model
Figure 7-11 shows a simple example of the LogisticsNet parcel network. The network
comprises parcel centers, which are connected to delivery bases, each of which covers
several delivery areas; these delivery areas in turn are subdivided into delivery segments
covering many delivery units. There are around 25 national parcel centers and roughly
two million delivery units (corresponding to postal or zip codes).

Figure 7-11. Elements in the LogisticsNet network

Detailed Use Cases | 165

Over time, the delivery routes change. Figure 7-12, Figure 7-13 and Figure 7-14 show
three distinct delivery periods. For any given period there is at most one route between
a delivery base and any particular delivery area or segment. In contrast, there may be
multiple routes between delivery bases and parcel centers. For any given point in time,
therefore, the lower portions of the graph—the individual subgraphs that depend from
each delivery base—comprise simple tree structures, whereas the upper portions of the
graph—made up of delivery bases and parcel centers—are more complexly structured.

Figure 7-12. Structure of the delivery network for Period 1

166 | Chapter 7: Graph Data in the Real World

Figure 7-13. Structure of the delivery network for Period 2

Figure 7-14. Structure of the delivery network for Period 3

You’ll notice that delivery units are not included in the production data. This is because
each delivery unit is always associated with the same delivery segments, irrespective of
the period. Because of this invariant, it is possible to index each delivery segment by its
many delivery units. To calculate the route to a particular delivery unit, the system need
only actually calculate the route to its associated delivery segment, which can be recov‐
ered from the index using the delivery unit as a key. This optimisation helps both reduce

Detailed Use Cases | 167

the size of the production graph, and reduce the number of traversals needed to calculate
a route.

The production database contains the details of many different delivery periods, as
shown in Figure 7-15. This multi-period graph demonstrates some of the overall com‐
plexity present in the data.

Figure 7-15. Sample of the LogisticsNet network

In the production data, nodes are connected by multiple relationships, each of which is
timestamped with a start_date and end_date property, whose long value represents
the number of milliseconds since 1970-01-01T00:00:00Z. Relationships are of two
types: CONNECTED_TO, which connect parcel centers and delivery bases, and DELIV
ERY_ROUTE, which connect delivery bases to delivery areas, and delivery areas to delivery
segments. These two different types of relationship effectively partition the graph into
its upper and lower parts, which, as we’ll see shortly provides for efficient traversals.
Figure 7-16 shows three of the timestamped CONNECTED_TO relationships connecting a
parcel center to a delivery base:

168 | Chapter 7: Graph Data in the Real World

Figure 7-16. Timestamp properties on relationships

Route calculation

As described in the previous section, the CONNECTED_TO and DELIVERY_ROUTE relation‐
ships partition the graph into upper and lower parts, with the upper parts made up of
complexly connected parcel centers and delivery centers, the lower parts of delivery
bases, delivery areas and delivery segments organised—for any given period—in simple
tree structures.

Route calculations involve finding the cheapest route between two locations in the lower
portions of the graph. The starting location is typically a delivery segment or delivery
area, whereas the end location is always a delivery segment (indexed, as we discussed
earlier, by its delivery units). Irrespective of the start and end locations, the calculated
route must go via at least one parcel center in the upper part of the graph.

In terms of traversing the graph, a calculation can be split into three legs. Legs one and
two, shown in Figure 7-17, work their way upwards from the start and end locations
respectively, with each terminating at a delivery center. Because there is at most one
route between any two elements in the lower portion of the graph for any given delivery
period, traversing from one element to the next is simply a matter of finding an incoming
DELIVERY ROUTE relationship whose interval timestamps encompass the current delivery
period. By following these relationships, the traversals for legs one and two navigate a
pair of tree structures rooted at two different delivery centers. These two delivery centers
then form the start and and end locations for the third leg, which crosses the upper
portion of the graph.

Detailed Use Cases | 169

Figure 7-17. Shortest path to delivery bases from start and end points

As with legs one and two, the traversal for leg three, as shown in Figure 7-18, looks for
relationships—this time, CONNECTED_TO relationships—whose timestamps encompass
the current delivery period. Even with this time filtering in place, however, there are for
any given period potentially several routes between any two delivery centers in the upper
portion of the graph; thus the third leg traversal must sum the cost of each route, and
select the cheapest, making this a shortest weighted path calculation.

Figure 7-18. Shortest path between delivery bases

170 | Chapter 7: Graph Data in the Real World

To complete the calculation, we need then simply add the paths for legs one, three and
two, which gives the full path from the start to the end location.

Finding the shortest delivery route using Cypher
The Cypher query to implement the parcel route calculation engine is as follows:

START s=node:location(name={startLocation}),
 e=node:location(name={endLocation})
MATCH p1 = s<-[:DELIVERY_ROUTE*1..2]-db1
WHERE ALL(r in relationships(p1)
 WHERE r.start_date <= {intervalStart}
 AND r.end_date >= {intervalEnd})
WITH e, p1, db1
MATCH p2 = db2-[:DELIVERY_ROUTE*1..2]->e
WHERE ALL(r in relationships(p2)
 WHERE r.start_date <= {intervalStart}
 AND r.end_date >= {intervalEnd})
WITH db1, db2, p1, p2
MATCH p3 = db1<-[:CONNECTED_TO]-()-[:CONNECTED_TO*1..3]-db2
WHERE ALL(r in relationships(p3)
 WHERE r.start_date <= {intervalStart}
 AND r.end_date >= {intervalEnd})
WITH p1, p2, p3,
 REDUCE(weight=0, r in relationships(p3) : weight+r.cost) AS score
 ORDER BY score ASC
 LIMIT 1
RETURN (nodes(p1) + tail(nodes(p3)) + tail(nodes(p2))) AS n

At first glance this query appears quite complex. It is, however, made up of four simpler
queries joined together with WITH clauses. We’ll look at each of these subqueries in turn.

Here’s the first subquery:

START s=node:location(name={startLocation}),
 e=node:location(name={endLocation})
MATCH p1 = s<-[:DELIVERY_ROUTE*1..2]-db1
WHERE ALL(r in relationships(p1)
 WHERE r.start_date <= {intervalStart}
 AND r.end_date >= {intervalEnd})

This query calculates the first leg of the overall route. It can be broken down as follows:

• The START clause finds the start and end locations in an index, binding them to the
s and e identifiers respectively. (Remember, the endLocation lookup term describes
a delivery unit, but the node returned from the location index represents a delivery
segment.)

• The MATCH clause finds the route from the start location, s, to a delivery base using
a directed, variable length DELIVERY_ROUTE path. This path is then bound to the
identifier p1. Because delivery bases are always the root nodes of DELIVERY_ROUTE

Detailed Use Cases | 171

trees, and therefore have no incoming DELIVERY_ROUTE relationships, we can be
confident that the db1 node at the end of this variable length path represents a
delivery base and not some other parcel network element.

• The WHERE clause applies additional constraints to the path p1, ensuring that we
only match DELIVERY_ROUTE relationships whose start_date and end_date prop‐
erties encompass the supplied delivery period.

The second subquery calculates the second leg of the route, which comprises the path
from the end location to another delivery center elsewhere in the network. This query
is very similar to the first:

WITH e, p1, db1
MATCH p2 = db2-[:DELIVERY_ROUTE*1..2]->e
WHERE ALL(r in relationships(p2)
 WHERE r.start_date <= {intervalStart}
 AND r.end_date >= {intervalEnd})

The WITH clause here chains the first subquery to the second, piping the end location
and the first leg’s path and delivery base to the second subquery. The second subquery
uses only the end location, e, in its MATCH clause; the rest is provided so that it can be
piped to subsequent queries.

The third subquery identifies all candidate paths for the third leg of the route, as follows:

WITH db1, db2, p1, p2
MATCH p3 = db1<-[:CONNECTED_TO]-()-[:CONNECTED_TO*1..3]-db2
WHERE ALL(r in relationships(p3)
 WHERE r.start_date <= {intervalStart}
 AND r.end_date >= {intervalEnd})

This subquery is broken down as follows:

• The WITH clause chains this subquery to the previous one, piping the delivery bases
and paths identified in legs one and two to the current query.

• The MATCH clause identifies all paths between the first and second leg delivery bases,
to a maximum depth of four, and binds them to the p3 identifier.

• The WHERE clause constrains the p3 paths to those whose start_date and end_date
properties encompass the supplied delivery period.

The fourth and final subquery selects the shortest path for leg three, and then calculates
the overall route:

WITH p1, p2, p3,
 REDUCE(weight=0, r in relationships(p3) : weight+r.cost) AS score
 ORDER BY score ASC
 LIMIT 1
RETURN (nodes(p1) + tail(nodes(p3)) + tail(nodes(p2))) AS n

172 | Chapter 7: Graph Data in the Real World

This subquery works as follows:

• The WITH clause pipes one or more triples, comprising p1, p2 and p3, to the current
query. There will be one triple for each of the paths matched by the third subquery,
with each path being bound to p3 in successive triples (the paths bound to p1 and
p2 will stay the same, since the first and second subqueries matched only one path
each). Each triple is accompanied by a score for the path bound to p3 for that triple.
This score is calculated using Cypher’s REDUCE function, which for each triple sums
the cost properties on the relationships in the path currently bound to p3. The
triples are then ordered by this score, lowest first, and then limited to the first triple
in the sorted list.

• The RETURN clause sums the nodes in the paths p1, p3 and p2 to produce the final
results. The tail function drops the first node in each of paths p3 and p2, since that
node will already be present in the preceding path.

Implementing route calculation with the traversal framework
The time-critical nature of the route calculation coupled with the high throughput of
the parcel network impose strict demands on the route calculation engine. As long as
the individual query latencies are low enough, it’s always possible to scale horizontally
for increased throughput. The Cypher-based solution is fast, but with such high sus‐
tained throughput, every millisecond impacts the cluster footprint. For this reason,
LogisticsNet adopted an alternative approach: calculating routes using the Java traversal
framework.

A traversal-based implementation of the route calculation engine must solve two prob‐
lems: finding shortest paths, and filtering paths based on time period. We’ll look at
filtering paths based on time period first.

Traversals should only follow relationships which are valid for the specified delivery
period. In other words, as the traversal progresses through the graph, it should only be
presented with relationships whose periods of validity, as defined by their start_date
and end_date properties, contain the specified delivery period.

We implement this relationship filtering using a PathExpander. Given a path from a
traversal’s start node to the node where it is currently positioned, a PathExpander’s
expand() method returns the relationships that can be used to traverse further. This
method is called by the traversal framework each time the framework advances another
node into the graph. If needed, the client can supply some initial state that flows along
each branch; expand() can then use (and even change) this state in the course of de‐
ciding which relationships to return. The route calculator’s ValidPathExpander imple‐
mentation uses this branch state to supply the delivery period to the expander.

Detailed Use Cases | 173

Here’s the code for the ValidPathExpander:

private static class ValidPathExpander implements PathExpander<Interval>
{
 private final RelationshipType relationshipType;
 private final Direction direction;

 private ValidPathExpander(RelationshipType relationshipType, Direction direction)
 {
 this.relationshipType = relationshipType;
 this.direction = direction;
 }

 @Override
 public Iterable<Relationship> expand(Path path, BranchState<Interval> deliveryInterval)
 {
 List<Relationship> results = new ArrayList<Relationship>();
 for (Relationship r : path.endNode().getRelationships(relationshipType, direction))
 {
 Interval relationshipInterval = new Interval(
 (Long) r.getProperty("start_date"),
 (Long) r.getProperty("end_date"));
 if (relationshipInterval.contains(deliveryInterval.getState()))
 {
 results.add(r);
 }
 }

 return results;
 }

 @Override
 public PathExpander<Interval> reverse()
 {
 return null;
 }
}

The ValidPathExpander’s constructor takes two arguments: a relationshipType and
a direction. This allows the expander to be re-used for different types of relationship:
in the case of the LogisticsNet graph, the expander will be used to filter both CONNEC
TED_TO and DELIVERY_ROUTE relationships.

The expander’s expand() method takes the path to the current node, and the deliver
yInterval as supplied by the client. Each time it is called, expand() iterates the relevant
relationships on the current node (the current node is given by path.endNode()). For
each relationship, the method then compares the relationship’s interval with the delivery
interval. If the relationship interval contains the delivery interval, the relationship is
added to the results.

174 | Chapter 7: Graph Data in the Real World

Having looked at the ValidPathExpander, we can now turn to the ParcelRouteCalcu
lator itself. This class encapsulates all the logic necessary to calculate a route between
the point where a parcel enters the network and the final delivery destination. It employs
a similar strategy to the Cypher query we’ve already looked at: it works its way up the
graph from both the start node and the end node in two separate traversals, until it finds
a delivery base for each leg. It then performs a shortest weighted path search that joins
these two delivery bases.

Here’s the beginning of the ParcelRouteCalculator class:

public class ParcelRouteCalculator
{
 private static final PathExpander<Interval> DELIVERY_ROUTE_EXPANDER =
 new ValidPathExpander(withName("DELIVERY_ROUTE"), Direction.INCOMING);

 private static final PathExpander<Interval> CONNECTED_TO_EXPANDER =
 new ValidPathExpander(withName("CONNECTED_TO"), Direction.BOTH);

 private static final TraversalDescription TRAVERSAL = Traversal.description()
 .depthFirst()
 .evaluator(new Evaluator()
 {
 private final RelationshipType DELIVERY_ROUTE = withName("DELIVERY_ROUTE");

 @Override
 public Evaluation evaluate(Path path)
 {
 if (!path.endNode()
 .hasRelationship(DELIVERY_ROUTE, Direction.INCOMING))
 {
 return Evaluation.INCLUDE_AND_PRUNE;
 }

 return Evaluation.INCLUDE_AND_CONTINUE;
 }
 });

 private static final CostEvaluator<Double> COST_EVALUATOR =
 CommonEvaluators.doubleCostEvaluator("cost");

 private final Index<Node> locationIndex;

 public ParcelRouteCalculator(GraphDatabaseService db)
 {
 this.locationIndex = db.index().forNodes("location");
 }

 ...

}

Detailed Use Cases | 175

Here we define two expanders—one for DELIVERY_ROUTE relationships, another for
CONNECTED_TO relationships—and the traversal that will find the two legs of our route.
This traversal terminates whenever it encounters a node with no incoming DELIV
ERY_ROUTE relationships. Since each delivery base is at the root of a delivery route tree,
we can infer that a node without any incoming DELIVERY_ROUTE relationships represents
a delivery base in our graph.

The constructor for ParcelRouteCalculator accepts the current database instance.
From this it obtains the location index, which it stores in a member variable.

Each route calculation engine maintains a single instance of this route calculator. This
instance is capable of servicing multiple requests. For each route to be calculated, the
client calls the calculator’s calculateRoute() method, passing in the names of the start
and end points, and the interval for which the route is to be calculated:

public Iterable<Node> calculateRoute(String start, String end, Interval interval)
{
 TraversalDescription deliveryBaseFinder = createDeliveryBaseFinder(interval);

 Collection<Node> upLeg = findRouteToDeliveryBase(start, deliveryBaseFinder);
 Collection<Node> downLeg = findRouteToDeliveryBase(end, deliveryBaseFinder);
 Collection<Node> topRoute = findRouteBetweenDeliveryBases(
 IteratorUtil.last(upLeg),
 IteratorUtil.last(downLeg),
 interval);

 return combineRoutes(upLeg, downLeg, topRoute);
}

calculateRoute() first obtains a deliveryBaseFinder for the specified interval, which
it then uses to the find the routes for the two legs. Next, it finds the route between the
delivery bases at the top of each leg, these being the last nodes in each leg’s node col‐
lection. Finally, it combines these route to generate the final results.

The createDeliveryBaseFinder() helper method creates a traversal description con‐
figured with the supplied interval:

private TraversalDescription createDeliveryBaseFinder(Interval interval)
{
 return TRAVERSAL.expand(DELIVERY_ROUTE_EXPANDER,
 new InitialBranchState.State<Interval>(interval, interval));
}

This traversal description is built by expanding the ParcelRouteCalculator’s static
TRAVERSAL description using the DELIVERY_ROUTE_EXPANDER. The branch state for the
expander is initialised at this point with the interval supplied by the client.

176 | Chapter 7: Graph Data in the Real World

Properly configured with an interval, the traversal description is then supplied to fin
dRouteToDeliveryBase(), which looks up a starting node in the location index, and
then executes the traversal:

private Collection<Node> findRouteToDeliveryBase(String startPosition,
 TraversalDescription deliveryBaseFinder)
{
 Node startNode = locationIndex.get("name", startPosition).getSingle();
 return IteratorUtil.asCollection(deliveryBaseFinder.traverse(startNode)
 .nodes());
}

That’s the two legs taken care of. The last part of the calculation requires us to find the
shortest path between the delivery bases at the top of each of the legs. calculate
Route() takes the last node from each leg’s node collection, and supplies these two nodes
together with the client-supplied interval to findRouteBetweenDeliveryBases().
Here’s the implementation of findRouteBetweenDeliveryBases():

private Collection<Node> findRouteBetweenDeliveryBases(Node deliveryBase1,
 Node deliveryBase2,
 Interval interval)
{
 PathFinder<WeightedPath> routeBetweenDeliveryBasesFinder = GraphAlgoFactory.dijkstra(
 CONNECTED_TO_EXPANDER,
 new InitialBranchState.State<Interval>(interval, interval),
 COST_EVALUATOR);

 return IteratorUtil.asCollection(routeBetweenDeliveryBasesFinder
 .findSinglePath(deliveryBase1, deliveryBase2)
 .nodes());
}

Rather than use a traversal description to find the shortest route between two nodes,
this method uses a shortest weighted path algorithm from Neo4j’s graph algorithm li‐
brary—in this instance, we’re using the Dijkstra algorithm (see “Path-Finding with
Dijkstra’s Algorithm” in Chapter 8 for more details of the Dijkstra algorithm). This
algorithm is configured with ParcelRouteCalculator’s static CONNECTED_TO_EXPAND
ER, which in turn is initialised with the client-supplied branch state interval. The algo‐
rithm is also configured with a cost evaluator (another static member), which simply
identifies the property on a relationship representing that relationship’s weight or cost.
A call to findSinglePath on the Dijkstra path finder returns the shortest path between
the two delivery bases.

That’s the hard work done. All that remains to do is to join these routes to form the final
results. This is relatively straightforward, the only wrinkle being that the down leg’s node
collection must be reversed before being added to the results (the leg was calculated
from final destination upwards, whereas it should appear in the results delivery base
downwards):

Detailed Use Cases | 177

private Set<Node> combineRoutes(Collection<Node> upNodes,
 Collection<Node> downNodes,
 Collection<Node> topNodes)
{
 Set<Node> results = new LinkedHashSet<Node>();
 results.addAll(upNodes);
 results.addAll(topNodes);
 List<Node> downNodesList = new ArrayList<Node>(downNodes);
 Collections.reverse(downNodesList);
 results.addAll(downNodesList);
 return results;
}

178 | Chapter 7: Graph Data in the Real World

CHAPTER 8

Predictive Analysis with Graph Theory

In this chapter we’re going consider analytical techniques and algorithms for processing
graph data. Both graph theory and graph algorithms are mature and well-understood
fields of computing science and we’ll demonstrate how both can can be used to mine
sophisticated information from graph databases. While the reader with a background
in computing science will no doubt recognize (and reminisce about) these algorithms
and techniques, the discussion in this chapter is handled as humanely as possible —
with virtually no mathematics — to encourage the curious reader to dive right in.

Depth- and Breadth-First Search
Before we can dive into higher-order analytical techniques we need to re-acquaint our‐
selves with the fundamental breadth-first search algorithm, which is used as the basis
for iterating over an entire graph. Most of the queries we’ve seen throughout this book
have been depth-first rather than breadth-first in nature. That is, they traverse outwards
from a starting node to some end node before repeating a similar search down a different
path from the same start node. Depth-first is a good strategy when we’re trying to follow
a path to discover discrete information goals.

Informed depth-first search
The classic depth-first algorithm search is said to be uninformed in that it simply searches
a path until it finds the end of the graph before backtracking to the start node and trying
a different path. However graph databases are semantically rich, so terminating a search
along a particular branch (for example having found a node with no compatible out‐
going relationships, or having traversed “far enough”) can happen early resulting in
typically lower execution times for such informed cases — exactly the kind of situation
for which we optimized our Cypher matches and traversals in previous chapters.

179

Though we’ve used depth-first search as our underlying strategy for general graph tra‐
versals, many interesting “higher order” algorithms traverse the (entire) graph in a
breadth-first manner. That is they explore the graph layer by layer exploring the nearest
neighbor nodes of a starting node before the next nearest and so on until the search
terminates.

Breadth-first search by contrast explores the graph one layer at a time, by first visiting
each node at depth 1 from the start node, then depth 2, then depth 3 and so on potentially
until the entire graph has been visited. This progression is easily visualized starting at
the node labelled O (for origin) and progressing outwards a layer at a time as per
Figure 8-1.

180 | Chapter 8: Predictive Analysis with Graph Theory

Figure 8-1. The progression of a breadth-first search

Where the search terminates depends on the algorithm being executed (since most
useful algorithms aren’t pure breadth-first search but are informed to some extent), but
breadth-first search is often used in path-finding algorithms and when the entire graph
needs to be systematically searched (for the likes of graph global algorithms we discussed
in Chapter 5).

Path-Finding with Dijkstra’s Algorithm
Breadth-first search underpins numerous classical graph algorithms, including Dijk‐
stra’s algorithm. Dijkstra (as it is often abbreviated) is used to find the shortest path

Path-Finding with Dijkstra’s Algorithm | 181

1. That is, the algorithm runs in time proportional to the number of relationships in the graph plus the size of
the number of nodes multiplied by the log of the size of the node set

2. The algorithm runs in time proportional to the square of the size of the number of relationships in the graph

between two nodes in a graph. Dijkstra’s algorithm is mature (having first been published
in 1956) and widely studied and optimized by computer scientists and behaves as fol‐
lows:

1. Pick the start and end nodes, and add the start node to the set of solved nodes (nodes
with known shortest path from the start node) with value 0, since the start node is
by definition 0 path length away from itself.

2. From the starting node, traverse (breadth-first) to the nearest neighbors and record
the path length against each neigbor node.

3. Take the shortest path found to one of the neighbors (picking arbitrarily in the case
of ties) and mark that node as solved since we now know the shortest path from
the start node to this neighbor.

4. From the set of solved nodes, visit the nearest neighbors (notice the breath-first
progression) and record the path lengths from the start node against those neig‐
bors — but don’t both visiting any neighboring solved nodes since we know the
shortest paths to them already.

5. Repeat steps 3 and 4 until the destination node has been marked solved.

Efficiency of Dijkstra’s algorithm
Dijkstra’s algorithm is quite efficient since it computes only the lengths of a (relatively
small) subset of the possible paths through the graph. When we’ve solved a node, the
shortest path from the start node is then known meaning all subsequent paths can safely
build on that knowledge.

In fact we know Dijkstra’s algorithm has performance of O(|R| + |N| log |N|) 1 fastest
known worst-case implementation though the original was O(|R|^2) 2.

Since Dijkstra is often used to find real-world shortest paths (e.g. for navigation), it’s
fun to see how it plays out in a real country, certainly more so than the rather dry
algorithmic description. In Figure 8-2 we see a logical map of the (rather large) country
of Australia, and our challenge is to discover the shortest driving route between Sydney
on the East coast (marked SYD) and Perth — a continent away — on the West coast of
the country marked PER. The other major towns and cities are marked with their re‐
spective airport codes and we’ll discover many of them along the way.

182 | Chapter 8: Predictive Analysis with Graph Theory

Figure 8-2. A logical representation of Australia and its arterial road network.

Starting at the node representing Sydney in Figure 8-3, we know the shortest path to
Sydney is 0 hours since we’re already there. Recall that in terms of Dijkstra’s algorithm
Sydney is now said to be solved insofar as we know the shortest path from Sydney to
Sydney (which is probably not all that helpful for drivers!). Accordingly we’ve greyed
out the node representing Sydney, added the path length (0), and thickened the node’s
border — a convention that we’ll maintain throughout the remainder of this example.

Path-Finding with Dijkstra’s Algorithm | 183

Figure 8-3. The shortest path from Sydney to Sydney is unsurprisingly 0 hours.

Moving one level out from Sydney, our candidate cities are Brisbane to the North by 9
hours, Canberra (surprisingly Australia’s capital city) 4 hours to the West and Melbourne
12 hours to the South.

The shortest path we can find is Sydney to Canberra at 4 hours, and so we consider
Canberra to be solved as we see in Figure 8-4.

184 | Chapter 8: Predictive Analysis with Graph Theory

Figure 8-4. Canberra is the closest city to Sydney

The next nodes out are Melbourne at 10 hours from Sydney via Canberra or 12 hours
from Sydney directly as we’ve already seen. We also have Alice Springs at 15 hours from
Canberra (19 hours from Sydney) or Brisbane at 9 hours direct from Sydney.

Accordingly we explore the shortest path which is 9 hours from Sydney to Brisbane and
consider Brisbane solved at 9 hours in Figure 8-5.

Path-Finding with Dijkstra’s Algorithm | 185

Figure 8-5. Brisbane is the next closest city

The next neighboring nodes from our solved ones are Melbourne (at 10 hours via Can‐
berra or 12 hours direct from Sydney along a different road), Cairns at 31 hours from
Sydney via Brisbane, Alice Springs at 40 hours via Brisbane or 19 hours via Canberra
— some eye-reddening drive times before we’ve even left the East coast!

Accordingly we choose the shortest path which is Melbourne at 10 hours from Sydney
via Canberra which is shorter than the existing 12 hours direct link, and now consider
Melbourne solved as shown in Figure 8-6.

186 | Chapter 8: Predictive Analysis with Graph Theory

Figure 8-6. Reaching Melbourne, the third-closest city to the start node at representing
Sydney

In Figure 8-7 the next layer of neighboring nodes from our solved ones are Adelaide at
18 hours from Sydney (via Canberra and Melbourne), Cairns at 31 hours from Sydney
(via Brisbane), and Alice Springs at 19 or 40 hours from Sydney via Canberra or Brisbane
respectively. Accordingly we choose Adelaide and consider it solved at a cost of 18 hours.

We don’t consider the path Melbourne → Sydney since its destination
is a solved node (in fact in this case the start node, Sydney).

Path-Finding with Dijkstra’s Algorithm | 187

Figure 8-7. Solving Adelaide

The next layer of neighboring nodes from our solved ones are Perth — our final desti‐
nation — at 50 hours from Sydney (via Adelaide), Alice Springs at 19 hours from Sydney
(via Canberra) or 33 hours via Adelaide, and Cairns at 31 hours from Sydney (via Bris‐
bane).

We choose Alice Springs in the case since it has the current shortest path, even though
with a god’s eye view we know that actually it’ll be shorter in the end to go from Adelaide
to Perth — just ask any passing bushman. Our cost is 19 hours as shown in Figure 8-8.

188 | Chapter 8: Predictive Analysis with Graph Theory

Figure 8-8. Taking a “detour” through Alice Springs

In Figure 8-9, the next layer of neighboring nodes from our solved ones are Cairns at
31 hours via Brisbane or 43 hours via Alice Springs, or Darwin at 34 hours via Alice
Springs, or Perth via Adelaide at 50 hours. So we’ll take the route to Cairns via Brisbane
and consider Cairns solved with a shortest driving time from Sydney at 31 hours.

Path-Finding with Dijkstra’s Algorithm | 189

Figure 8-9. Back to Cairns on the East coast

The next layer of neighboring nodes from our solved ones are Darwin at 34 hours from
Alice Springs, 61 hours via Cairns, or Perth via Adelaide at 50 hours. Accordingly, we
choose the path to Darwin from Alice Springs at a cost of 34 hours and consider Darwin
solved as we can see in Figure 8-10.

190 | Chapter 8: Predictive Analysis with Graph Theory

Figure 8-10. To Darwin in Australia’s “top-end”

Finally the only neighboring node left is Perth itself as we can see in Figure 8-11. It is
accessible via Adelaide at a cost of 50 hours or via Darwin at a cost of 82 hours. Ac‐
cordingly we choose the route via Adelaide and consider Perth from Sydney solved at
a shortest path of 50 hours.

Path-Finding with Dijkstra’s Algorithm | 191

Figure 8-11. Finally reaching Perth, a mere 50 driving hours from Sydney

Dijkstra’s algorithm is a good approach but since it’s exploration is undirected, there are
some pathological graph topologies that can cause worst-case performance problems
(where we explore more of the graph that is intuitively necessary, up to the entire graph).
Since each possible node is considered one at a time in relative isolation, the algorithm
necessarily follows paths that intuitively will never contribute to the final shortest path.

Despite successfully computing the shortest path between Sydney and Perth using
Dijkstra’s algorithm, anyone with any intuition about map reading would likely not have
chosen, for instance, to explore the route northwards from Adelaide since it feels longer.
If we had some heuristic mechanism to guide the algorithm like in a best-first search
(e.g. prefer to head west over east, prefer south over north) we could have perhaps
avoided the side-trips to Brisbane, Cairns, Alice Springs, and Darwin in this example.
However best-first searches are greedy and try to move towards the destination node
even if there is an obstacle (e.g. dirt track), but we can do better.

The A* Algorithm
The A* (pronounced “A-star”) algorithm is an improvement on the classic Dijkstra
algorithm based on the observation that some searches are informed and that by being

192 | Chapter 8: Predictive Analysis with Graph Theory

informed we can make better choices about paths to take through the graph (for example
that we don’t reach Perth from Sydney traversing the height of an entire continent to
Darwin first). A* is both like Dijkstra in that it can potentially search a large swathes of
a graph, but it’s also like a greedy best-first search insofar as it uses a heuristic to guide
it. A* thus combines aspects of Dijkstra’s algorithm (which prefers nodes close to the
current starting point) and best-first search (which prefers nodes closer to the destina‐
tion) to provide a provably optimal solution for finding shortest paths in a graph.

In A* we split the path cost into two parts, one g(n) that is the cost of the path from the
starting point to some node n and h(n) which represents the estimated cost of the path
from the node n to the destination node, computed by heuristic (an intelligent guess).
The A* algorithm balances g(n) and h(n) as it iterates the graph ensuring that at each
iteration it chooses the node with the lowest overall cost f(n) = g(n) + h(n).

But breadth-first algorithms aren’t only good for path finding. In fact using breadth-
first search as our method for iterating over all elements of a graph, we can now consider
a number of interesting higher-order algorithms from graph theory that yield significant
(predictive) insight into the behavior of connected data.

Graph Theory and Predictive Modeling
Graph theory is a mature and well-understood field of study concerning the nature of
networks (or from our point of view, connected data). The analytic techniques that have
been developed by graph theoreticians can be brought to bear on a range of interesting
problems, and since the low-level traversal mechanisms (like breadth-first search) are
already known to us, we can start to consider higher order analyses.

What’s particularly appealing about applying graph theory techniques to data analysis
is their broad applicability. They’re especially valuable where we’re presented with a
domain into which we have little insight, or little comprehension of what insight we’re
even able to extract. In such cases there are a range of techniques from graph theory
and social sciences which we can straightforwardly apply to gain insight.

In the next few sections we’ll introduce some of the key concepts in social graph theory.
And we’ll introduce those concepts in a humane and (mostly) non-mathematical way

Graph Theory and Predictive Modeling | 193

3. In particular his pivotal work on the strength of weak ties in social communities, see: http://sociology.stan
ford.edu/people/mgranovetter/documents/granstrengthweakties.pdf

4. See: http://www.cs.cornell.edu/home/kleinber/networks-book/

in a typical social domain based on the works of sociologist Mark Granovetter 3 and
Easley/Kleinberg 4.

Property graphs and graph theory
Much of the work on graph theory assumes a slightly different model to the property
graphs we’ve been using throughout this book. Typical problem spaces ignore direction
and labeling of graphs, instead assuming a single label derived from the domain (e.g.
friend or colleague) and ignoring direction.

We’re going to take a hybrid approach here. Supporting relationship names is helpful
for naming various kinds of relationships from graph theory with more domain-specific
meaning. However where it suits, we’ll ignore (or not) relationship direction.

Importantly, the same principles are upheld by the graph structure whether we’re using
a property graph or a semantically poorer graph model.

Triadic Closures
A triadic closure is a property of (social) graphs whereby if two nodes are connected via
a path involving a third node, there is an increased likelihood that the two nodes will
become directly connected in future. This is a familiar enough situation for us in a social
setting whereby if we happen to be friends with two people, ultimately there’s an in‐
creased chance that those people will become direct friends too, since by being our friend
in the first place, it’s an indication of social similarity and suitability.

From his analysis, Granovetter noted that a subgraph upholds the strong triadic closure
property if it has a node A with strong relationships to two other nodes B and C, and
those two other nodes B and C then have at least a weak and potentially a strong rela‐
tionship between them. This is an incredibly strong assertion and will not be typically
upheld by all subgraphs in a graph. Nonetheless it is sufficiently commonplace (partic‐
ularly in social networks) to be trusted as a predictive aid.

Strong and weak relationships
We purposely won’t explicitly define weak and strong relationships, since they’re
domain-specific characteristics. But for example a strong social relationship might be

194 | Chapter 8: Predictive Analysis with Graph Theory

http://sociology.stanford.edu/people/mgranovetter/documents/granstrengthweakties.pdf
http://sociology.stanford.edu/people/mgranovetter/documents/granstrengthweakties.pdf
http://www.cs.cornell.edu/home/kleinber/networks-book/

friends who’ve exchanged phone calls in the last week, whereas a weak social relationship
might be friends who’ve merely observed one-another’s Facebook status.

Let’s see how the strong triadic closure property works as a predictive aid in a workplace
graph. Let’s start with a simple organizational hierarchy where Alice managed Bob and
Charlie, but where there are not (yet) any connections between her subordinates as in
Figure 8-12.

Figure 8-12. Alice manages Bob and Charlie

This is a rather strange situation in the workplace, since it’s unlikely that Bob and Charlie
will be disconnected strangers. Whether they’re high level executives and will therefore
be peers under Alice’s executive management or whether they’re assembly line workers
and therefore will be close colleagues again under Alice who acts as foreman, even
informally we expect Bob and Charlie to be somehow connected.

Graph Theory and Predictive Modeling | 195

Figure 8-13. Bob and Charlie work together under Alice

However since Bob and Charlie both work with Alice, there’s a strong possibility they’re
going to end up working together as we see in Figure 8-13. This is consistent with the
strong triadic closure property, which suggests that either Bob is a peer of Charlie (we’ll
call this a weak relationship) or Bob works with Charlie (which we’ll term a strong
relationship). Adding the third WORKS_WITH or PEER_OF relationship between Bob and
Charlie closes the triangle and hence the term triadic closure.

The empirical evidence from many domains including sociology, public health, psy‐
chology, anthropology and even technology (e.g. Facebook, Twitter, LinkedIn) suggests
that the tendency towards triadic closure is real and substantial, consistent with anec‐
dotal evidence and sentiment. But simple geometry isn’t all that’s at work here, the
sentiment of the relationships involved in a graph also have a significant bearing on the
formation of stable triadic closures.

Structural Balance
If we recall Figure 8-12 it’s intuitive to see how Bob and Charlie can become co-workers
(or peers) under Alice’s management. For example purposes, we’re going to make an
assumption that the MANAGES relationship is somewhat negative (after all people don’t

196 | Chapter 8: Predictive Analysis with Graph Theory

like getting bossed around) whereas the PEER_OF and WORKS_WITH relationship are pos‐
itive (since people like their peers and the folks they work with).

We know from our previous discussion on the strong triadic closure principle that in
Figure 8-12 where Alice MANAGES Bob and Charlie, a triadic closure should be formed.
That is in the absence of any other constraints, we would expect at least a PEER_OF, a
WORKS_WITH or even a MANAGES relationship between Bob and Charlie.

A similar tendency towards creating a triadic closure exists if Alice MANAGES Bob who
in turn WORKS_WITH Charlie as we can see in Figure 8-14. Anecdotally this rings true: if
Bob and Charlie work together it makes sense for them to share a manager, especially
if the organization seemingly allows Charlie to function without managerial supervi‐
sion.

Figure 8-14. Alice manages Bob who works with Charlie

However, applying the strong triadic closure principle blindly can lead to some rather
odd and uncomfortable-looking organization hierarchies. For instance, If Alice MAN
AGES Bob and Charlie but Bob also MANAGES Charlie, we have a recipe for discontent.
Nobody would wish it upon Charlie that he’s managed both by his boss and his boss’
boss as in Figure 8-15!

Graph Theory and Predictive Modeling | 197

Figure 8-15. Alice manages Bob and Charlie, while Bob also manages Charlie

Similarly it’s uncomfortable for Bob if he is managed by Alice while working with Charlie
who is also Alice’s workmate. This cuts awkwardly across organization layers as we see
in Figure 8-16. It also means Bob could never safely let off steam about Alice’s man‐
agement style!

198 | Chapter 8: Predictive Analysis with Graph Theory

Figure 8-16. Alice manages Bob who works with Charlie, while also working with
Charlie

The awkward hierarchy in Figure 8-16 whereby Charlie is both a peer of the boss and
a peer of another worker is unlikely to be socially pleasant so Charlie and Alice will
agitate against it (either wanting to be a boss or a worker). It’s similar for Bob who doesn’t
know for sure whether to treat Charlie in the same way he treat his manager Alice (since
Charlie and Alice peers) or as his own direct peer.

It’s clear that the triadic closures in Figure 8-15 and Figure 8-16 are palpably uncom‐
fortable to us, eschewing our innate preference for structural symmetry and rational
layering. This preference is given a name in graph theory: structural balance.

Anecdotally, there’s a much more acceptable — structurally balanced — triadic closure
if Alice MANAGES Bob and Charlie, but where Bob and Charlie are themselves workmates
connected by a WORKS_WITH relationships as we can see in Figure 8-17.

Graph Theory and Predictive Modeling | 199

Figure 8-17. Workmates Bob and Charlie are managed by Alice

The same structural balance manifests itself in an equally acceptable triadic closure
where Alice, Bob, and Charlie are all workmates. In this arrangement the workers are
in it together which can be a socially amicable arrangement that engenders camaraderie
as in Figure 8-18.

200 | Chapter 8: Predictive Analysis with Graph Theory

Figure 8-18. Alice, Bob and Charlie are all workmates

In Figure 8-17 and Figure 8-18 the triadic closures are idiomatic and constructed with
either three WORKS_WITH relationships or two MANAGES and a single WORKS_WITH rela‐
tionship. They are all balanced triadic closures. To understand what it means to have
balanced and unbalanced triadic closures, we’ll add more semantic richness to the model
by declaring that the WORKS_WITH relational is socially positive (since co-workers spend
a lot of time interacting) while MANAGES is negative relationship since managers spend
overall less of their time interacting with individuals in their charge.

Given this new dimension of positive and negative sentiment, we can now ask the ques‐
tion “What is so special about these balanced structures?” It’s clear that strong triadic
closure is still at work, but that’s not the only driver. In this case the notion of structural
balance also has an effect. A structurally balanced triadic closure consists of relation‐
ships of all strong sentiments (our WORKS_WITH or PEER_OF relationships) or two rela‐
tionships have negative sentiments (MANAGES in our case) with a single positive rela‐
tionship.

We see this often in the real world. If we have two good friends, then social pressure
tends towards those good friends themselves becoming good friends. It’s unusual that
those two friends themselves are enemies because that puts a strain on our friendships.

Graph Theory and Predictive Modeling | 201

5. With due respect to our colleagues in HR, the map is not the territory.

One friend cannot express their dislike of the other to us, since the other person is our
friend too! Given those pressures, it’s reasonably likely that ultimately the group will
resolve its differences and good friends will emerge.

This would change our unbalanced triadic closure (two relationships with positive sen‐
timents and one negative) to a balanced closure since all relationships would be of a
positive sentiment much like our collaborative scheme where Alice, Bob, and Charlie
all work together in Figure 8-18.

However another plausible (though arguably less pleasant) outcome would be where
we take sides in the dispute between our “friends” creating two relationships with neg‐
ative sentiments — effectively ganging up on an individual. Now we can engage in gossip
about our mutual dislike of a former friend and the closure again becomes balanced.
Equally we see this reflected in the organizational scenario where Alice, by managing
Bob and Charlie, becomes in effect their workplace enemy as in Figure 8-17.

Mining organizational data in the real world
We don’t have to derive these graphs from analyzing organizational charts, since that’s
a static and often inconsistent view of how an organization really works 5. A practical
and timely way of generating the graph would instead be to run these kinds of analyses
over the history of email exchanges between individuals within a company.

We’d easily be able to identify a graph at large scale and from that we’d be able to make
predictive analyses about the evolution of organizational structure by looking for op‐
portunities to create balanced closures. Such structures might be a boon – that we ob‐
serve employees are already self-organizing for a successful outcome – or they might be
indicative of some malpractice – that some employees moving into shadowy corners to
commit corporate fraud! Either way the predictive power of graphs enable us to engage
those issues proactively.

Balanced closures add another dimension to the predictive power of graphs. Simply by
looking for opportunities to create balanced closures across a graph, even at very large
scale, we can modify the graph structure for accurate predictive analyses. But we can
go further, and in the next section we’ll bring in the notion of local bridges which give
us valuable insight into the communications flow of our organization and from that
knowledge comes the ability to adapt it to meet future challenges.

202 | Chapter 8: Predictive Analysis with Graph Theory

Local Bridges
An organization of only three people as we’ve been using is anomalous, and the graphs
we’ve studied in this section are best thought of as small sub-graphs as part of a larger
organizational hierarchy. When we start to consider managing a larger organization we
expect a much more complex graph structure, but we can also apply other heuristics to
the structure to help make sense of the business. In fact once we have introduced other
parts of the organization into the graph, we can reason about global properties of the
graph based on the locally-acting strong triadic closure principle.

Figure 8-19. Alice has skewed line management responsibility

In Figure 8-19 we’re presented with a counter-intuitive scenario where two groups in
the organization are managed by Alice and Davina respectively. However, we have the
slightly awkward structure that Alice not only runs a team with Bob and Charlie but
also manages Davina. While this isn’t beyond the realms of possibility (Alice may indeed
have such responsibilities) it feels intuitively awkward from an organization design
perspective.

From a graph theory perspective it’s also unlikely. Since Alice participates in two strong
relationships, she MANAGES Charlie (and Bob) and MANAGES Davina, naturally we’d like

Local Bridges | 203

to create a triadic closure by adding at least a PEER_OF relationship between Davina and
Charlie (and Bob). But Alice is also involved in a local bridge to Davina – together they’re
a sole communication path between groups in the organization. Having the relationship
Alice MANAGES Davina means we’d in fact have to create the closure. These two properties
– local bridge and strong triadic closure – are in opposition.

Yet if Alice and Davina are peers (a weak relationship), then the strong triadic closure
principle isn’t activated since there’s only one strong relationship — the MANAGES rela‐
tionship to Bob (or Charlie) — and the local bridge property is valid as we can see in
Figure 8-20.

Figure 8-20. Alice and Davina are connected by a local bridge

What’s interesting about this local bridge is that it describes a communication channel
between groups in our organization and those channels are extremely important to the
vitality of our enterprise. In particular to ensure the health of our company we’d make

204 | Chapter 8: Predictive Analysis with Graph Theory

sure that local bridge relationships are healthy and active, or equally we might keep an
eye on local bridges to ensure no impropriety (embezzlement, fraud, etc) occurs.

Finding your next job
This notion of weak social links is particularly pertinent in algorithms like (social) job
search. The remarkable thing about job searches is that it’s rarely a close friend that
provides the best recommendation, but a looser acquaintance.

Why should this be? Our close friends share a similar world view (they’re in the same
graph component) and have similar access to the available jobs data and hold similar
opinions about those jobs. A friend across a local bridge is clearly in a different social
network (a different component) and have correspondingly different access to jobs and
a different viewpoint about them. So if you’re going to find a job, look across a local
bridge since that’s where people who have different knowledge to you and your friends
hang out.

This same property of local bridges being weak links (PEER_OF in our example organi‐
zation) is a property that is prevalent throughout social graphs. This means we can start
to make predictive analyses of how our organization will evolve based on empirically-
derived local bridge and strong triadic closure notions. So given an arbitrary organi‐
zational graph we can see how the business structure is likely to evolve and plan for
those eventualities.

Summary
Graphs are a remarkable structure and are well studied and often fruitfully applied to
modeling and analysis. We now have native graph databases which project the powerful
graph model into our applications, bringing with them numerous powerful algorithmic
and graph theory techniques which we can use to build better, smarter information
systems.

As we’ve seen throughout this book, graph algorithms and analytical techniques from
graph theory are not demanding: we need only understand how to apply them to achieve
our goals since the fundamental techniques are mature and well-studied. We leave this
book with a simple call to arms: to ask the reader to embrace graph data and to apply
the modeling, processing, and analytical patterns we’ve shown in this book to create
truly pioneering and impactful information systems.

Summary | 205

	Cover
	Copyright
	Table of Contents
	Part I. GDB Book
	Chapter 1. Introduction
	What is a Graph?
	Making the Connection to NOSQL

	Chapter 2. The NOSQL Phenomenon
	The Rise of NOSQL
	ACID Versus BASE
	The NOSQL Quadrants
	Document Stores
	Key-Value Stores
	Column Stores
	Query Versus Processing in Aggregate Stores
	Moving Onwards and Upwards

	Chapter 3. Graphs and Connected Data
	The Aggregate Model: Lacking Relationships
	The Relational Model: Also Lacking Relationships
	Connected Data and Graph Databases
	Schema-Free Development and Pain-Free Migrations
	Connecting the Dots

	Chapter 4. Working with Graph Data
	Models and Goals
	Relational Modeling in a Systems Management Domain
	Modeling for relational data
	The Property Graph Model
	The Cypher Query Language
	Cypher Philosophy
	Creating Graphs
	Beginning a Query
	Declaring information patterns to find
	Constraining Matches
	Processing Results
	Query Chaining

	Graph Modeling in a Systems Management Domain
	Testing the model

	Common Modeling Pitfalls
	Email Provenance Problem Domain
	A Sensible First Iteration?
	Second Time’s the Charm
	Evolving the Domain

	Avoiding Anti-Patterns
	Summary

	Chapter 5. Graph Databases
	Graph databases: a definition
	Hypergraphs
	Triples

	Graph-Native Stores
	Architecture
	Neo4j Programmatic APIs
	Kernel API
	Core (or “Beans”) API
	Neo4j Traversal API

	Non-Functional Characteristics
	Transactions
	Recoverability
	Availability
	Scale

	Graph Compute Platforms
	Summary

	Chapter 6. Working with a Graph Database
	Data Modeling
	Describe the Model in Terms of Your Application’s Needs
	Nodes for Things, Relationships for Structure
	Model Facts as Nodes
	Represent Complex Value Types as Nodes
	Time
	Iterative and Incremental Development

	Application Architecture
	Embedded Versus Server
	Clustering
	Load Balancing

	Testing
	Test-Driven Data Model Development
	Performance Testing

	Capacity Planning
	Optimization Criteria
	Performance
	Redundancy
	Load

	Chapter 7. Graph Data in the Real World
	Reasons for Choosing a Graph Database
	Common Use Cases
	Social Networks
	Recommendation Engines
	Geospatial
	Master Data Management
	Network Management
	Access Control and Authorization

	Detailed Use Cases
	Social Networking and Recommendations
	Access Control
	Logistics

	Chapter 8. Predictive Analysis with Graph Theory
	Depth- and Breadth-First Search
	Path-Finding with Dijkstra’s Algorithm
	The A* Algorithm
	Graph Theory and Predictive Modeling
	Triadic Closures
	Structural Balance

	Local Bridges
	Summary

