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Information Theory
"A Mathematical Theory of Communication", 
Bell System Technical Journal. 1948 

All about max-min problems 
in communications

 Information theory deals with fundamental limits on comm.
 Channel transmission rate: What is the maximum rate at which 

information can be reliably transmitted over a communication 
channel?

 Source compression rate: What is the minimum rate at which 
information can be compressed and still be retrievable with small or 
no error?

 What is the complexity of such optimal schemes?
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Topics to Discuss

 Modeling of information source

 Source coding theorem

 Modeling of communication channel

 Channel coding theorem
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 A full description of DMS:
 Alphabet set                           where the random variable X

takes its values
 Probabilities

9.1 Modeling of Information Source

 Information source can be modeled by random process

 Discrete memoryless source (DMS)
 A discrete-time, discrete-amplitude random process with i.i.d

random variables
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Information

 How to measure information?
 Examples:

 “The sun will rise” 
 “It will rain tomorrow”
 “Every one got ‘A+’ in the mid-term test”

 The smaller the probability of an event is, the more 
information the occurrence of that event will convey
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III. Consider multiple independent events              , …

II. decreases → increases, vice versa
I.

Measure of Information

 The information that a source event      can convey and 
the probability of the event satisfy:
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 Solution:

Entropy (熵)

 Consider a discrete source with N possible symbols
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 Entropy H(.): average amount of information conveyed per 
symbol

 Example: Consider a discrete memoryless source having 3 
symbols alphabet where                                           . 
Determine the entropy of the source.
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Entropy (Cont’d)

 What is the maximum entropy? 
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 N symbols: 

 Consider binary case            with
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 Assuming that the resulting sequence can be modeled by a 
discrete memoryless source                 with 
probabilities 

Exercise

 A source with bandwidth 4KHz is sampled at the Nyquist rate

 What is the information rate 
of the source in bit/sec?
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Solution

 We have

2 2 2 2
1 1 1 1( ) log 2 log 4 log 8 2 log 16
2 4 8 16
15  bits/sample
8
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 Since we have 8000 samples/sec, the source 
produces information at a rate of 15k bits/sec.

 Can it be reliably transmitted over a channel with rate         
10 kbps?
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Joint and Conditional Entropy

,
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 The joint entropy of               is defined as

 The conditional entropy of X given Y is defined as

 Using chain rule, it can be shown that
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Mutual Information (互信息)

 Given that 
 denotes the uncertainty of the random variable X

( ; ) ( ) ( | )I X Y H X H X Y= −

 denotes the uncertainty of random variable X after 
random variable Y is known

 Then, 
 Denotes the amount of uncertainty of X that has been 

removed given Y is known

 In other words, it is the amount of information provided 
by random variable Y about random variable X

 Definition of mutual information
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Entropy, Conditional Entropy and Mutual 
Information

H(X) H(Y)

I(X ;Y)
H(X |Y) H(Y |X)

H(X,Y)
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Differential Entropy

 The differential entropy of a discrete-time continuous 
alphabet source X with pdf f(x) is defined as:

 Example: the differential entropy of                       is

 Mutual information between two continuous random 
variables X and Y: 

( ) ( ) log ( )X Xh X f x f x dx
∞

−∞
= −∫

( ; ) ( ) ( | )I X Y h X h X Y= −

2~ (0, )X N σ

( )2
2

1( ) log 2  bits
2

h X eπ σ=

15



Meixia Tao @ SJTU

9.2 Source Coding Theorem

 Source coding theorem: 
 A source with entropy (or entropy rate) H can be 

encoded with an arbitrarily small error probability at any 
rate R (bits/source output) as long as R > H. 

 Conversely, if R < H, the error probability will be 
bounded away from zero, independent of the complexity 
of the encoder and decoder employed

H: the minimum rate at which an information source 
can be compressed for reliable reconstruction. 
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Huffman Source Coding

 Huffman coding is a variable-length binary coding. 

 The idea is to map the more probable source sequences to 
shorter binary codewords

 Synchronization is a problem in variable-length coding

 Example:

Huffman code
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9.3 Modeling of Communication Channel

 Recall that a communication channel is any medium over 
which information can be transmitted

 It is characterized by a relationship between its input and 
output, which is generally a stochastic relation due to the 
presence of fading and noise

Waveform (continuous-time) channel

Discrete-time channel

Sampling theorem

Discrete-input discrete-
output channel 

continuous alphabet  
channel 

18



Meixia Tao @ SJTU

Binary-Symmetric Channel 

 BSC channel is characterized by the crossover probability 
e=P(0|1)=P(1|0)

 For instance, 

P(0/0)=1-e

P(1/0)= P(0/1)=e

P(1/1)=1-e

0

2 bEe Q
N

 
=   

 
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AWGN Channel

 Both input and output are real numbers

+
Channel

 The input satisfies some power constraint
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The Noisy Channel Coding Theorem

9.4 Channel Capacity

 Channel capacity: a maximum rate, C in bits/sec of a channel
 If R ≤ C, theoretically guarantee almost error free transmission
 If R>C,  reliable transmission is impossible

( )
max ( ; )

p x
C I X Y= (max over all possible input distribution)

 The capacity of a discrete-memoryless channel:
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Binary Symmetric Channel Capacity

 Since

 Here,

 Thus, the capacity of a BSC is 
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Capacity of a BSC
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Example

 A binary source with is to be 
transmitted over a BSC channel with a crossover 
probability    . Assume that the channel can be used once 
per symbol output. 

 Determine the range of      for reliable communication of 
the source. 
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Gaussian Channel Capacity

 Consider a discrete-time Gaussian channel with

 Input power constraint:



 Its capacity is given by

Y X Z= +

~ (0, )NZ N P

1 log 1
2 N
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bits/channel use
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Proof of AWGN Channel Capacity

 A sketch from
 http://www.eecs.berkeley.edu/~dtse/book.html

Fundamentals of Wireless Communications 
Cambridge University Press, 2005

David Tse
UC Berkeley

Pramod Viswanath
UIUC
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Proof
 AWGN channel model

where m is the discrete time index and          is

 Using uncoded BPSK                          , the error prob. Is

 Repetition code of block length N (average out the randomness of noise):

 The error prob is, which decays exponentially with the block length N

 arbitrary reliability by choosing a large enough N

 data rate is only 1/N
27
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Proof (cont’d)
 Repetition codes are on the same line

 Inefficient!
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Proof (cont’d) – Sphere Packing
 By law of large number 

 y lies near the surface of a noise sphere of radius             around x 

N-dim sphere of radius with high prob

The max number of codewords that can be 
packed with no-overlap is:

Thus, capacity is

29



Meixia Tao @ SJTU

Notes

 The sphere-packing argument only yields the 
maximum number of codewords that can be 
packed while ensuring reliable communication

 How to construct codes to achieve the promised 
rate is another story

 From an engineering stand point, the essential 
problem is to identify easily encodable and 
decodable codes that have performance close to 
the capacity
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 Consider a continuous-time, bandlimited AWGN channel with noise 
PSD =         , input power constraint P, bandwidth W.

 Sample it at Nyquist rate and obtain a discrete-time channel. The 
power/sample will be P and the noise power/sample will be

 Thus, 

 Since the number of transmissions/sec is 2W, we obtain the channel 
capacity in bits/sec 

0
02

W

N
W

NP df WN
−

= =∫

0

1 log 1
2

PC
N W

 
= + 

 
bits/transmission

0

log 1  bits/secPC W
N W

 
= + 

 
(Shannon Formula)

Capacity of Bandlimited AWGN channel
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Example

 Find the capacity of a telephone channel with bandwidth 
W=3000Hz, and SNR of 39dB

 Solution:
 The SNR of 39 dB is equivalent to 7943. Using Shannon formula, 

we have

( )3000log 1 7943  ~38,867 bits/secC = + ≈
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Insights from Shannon Formula

1. Increasing signal power P increases the capacity C
 When SNR is high enough, every doubling of P adds additional B 

bits/s in capacity
 When P approaches infinity, so is C

2. Increasing channel bandwidth W can increase C, but cannot 
increase infinitely (as noise power also increases)
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3. Bandwidth efficiency – energy efficiency tradeoff
 In any practical system, we must have

 Defining r=R/W, the spectral bit rate

 Let Eb be the energy per bit, 

 Then, 

2
0

log 1 PR W
N W

 
≤ + 

 

2
0

log (1 )R Pr
W N W

= ≤ +

b
PE
R

=

2
0

log 1 bEr r
N

 
≤ + 

 
Eb/N0 = SNR per bit
r = spectral efficiency
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Capacity boundary 
with R = C

0
0 0

1lim (2 1)

ln 2
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Shannon Limit，an 
absolute minimum for 
reliable communication

 As

Picture from: Proakis J G, Salehi M. Fundamentals of communication 
systems[M]. Pearson Education India, 2007.
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Capacity of MIMO channel

 Channel capacity [Foschini-Gans-98]

 Degrees of freedom (DoF)                         

Tx Rx
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Network Information Theory

 Noisy channel coding

 Lossy source coding

 Joint source-channel coding

Network

Sender Node

Source

Dest. Node

(from D.Tse ISIT09) 37
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Basic Elements

 Multiple Access Channel
 Capacity is known for any number 

of users and for general channel 
models. 

Ahlswede 71
Liao 72

Rx

Tx 1

Tx 2

Rx1

Tx

Rx 2

 Broadcast Channel
 Partly known. 

Cover 72
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Basic Elements

 Interference channel

 Relay Channel

Tx 1

Tx 2 Rx 2

Rx 1

Best known achievable region: Han & Kobayashi 81

D

Relay

S relay
Best known achievable strategy: Cover & El Gamal 79
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