Principles of Communications

Meixia Tao
Shanghai Jiao Tong University
Chapter 10: Channel Coding

Selected from Chapter 13.1-13.3 of Fundamentals of Communications Systems, Pearson Prentice Hall 2005, by Proakis \& Salehi

Topics to be Covered

- Linear block code（线性分组码）
- Convolutional code（卷积码）

Information Theory and Channel Coding

- Shannon's noisy channel coding theorem tells that adding controlled redundancy allows transmission at arbitrarily low bit error rate (BER) as long as $\mathrm{R}<=\mathrm{C}$
- Error control coding (ECC) uses this controlled redundancy to detect and correct errors
- ECC depends on the system requirements and the nature of the channel
- The key in ECC is to find a way to add redundancy to the channel so that the receiver can fully utilize that redundancy to detect and correct the errors, and to reduce the required transmit power - coding gain

Example

- We want to transmit data over a telephone link using a modem under the following conditions
- Link bandwidth $=3 \mathrm{kHz}$
- The modem can operate up to the speed of $3600 \mathrm{bits} / \mathrm{sec}$ at an error probability $P_{e}=8 \times 10^{-4}$
- Target: transmit the data at rate of 1200 bits/sec at maximum output SNR $=13 \mathrm{~dB}$ with a prob. of error 10^{-4}

Solution: Shannon Theorem

- Channel capacity is

$$
C=B \log _{2}\left(1+\frac{S}{N}\right)=13,000 \mathrm{bits} / \mathrm{sec}
$$

Since B = 3000 and $\mathrm{S} / \mathrm{N}=20\left(13 \mathrm{~dB}=10 \log _{10} 20\right)$

- Thus, by Shannon's theorem, we can transmit the data with an arbitrarily small error probability
- Note that without coding $\mathrm{P}_{\mathrm{e}}=8 \times 10^{-4}$

For the given modem, criterion $\mathrm{P}_{\mathrm{e}}=10^{-4}$ is not met.

Solution: A Simple Code Design

- Repetition code: every bit is transmitted 3 times when $b_{k}=$ " 0 " or " 1 ", transmit codeword " 000 " or " 111 "
- Based on the received codewords, the decoder attempts to extract the transmitted bits using majority-logic decoding scheme
- Clearly, the transmitted bits will be recovered correctly as long as no more than one of the bits in the codeword is affected by noise

Tx bits b_{k}	0	0	0	0	1	1	1	1
Codewords 000	000	000	000	111	111	111	111	
Rx bits 000	001	010	100	011	101	110	111	
\hat{b}_{k}	0	0	0	0	1	1	1	1

- With this simple error control coding, the probability of error is

$$
\begin{aligned}
P_{e} & =P\left(b_{k} \neq \hat{b}_{k}\right) \\
& =P(2 \text { or more bits in codeword are in error }) \\
& =\binom{3}{2} q_{c}^{2}\left(1-q_{c}\right)+\binom{3}{3} q_{c}^{3} \\
& =3 q_{c}^{2}-2 q_{c}^{3} \\
& =0.0192 \times 10^{-4} \\
& \leq \text { Required } P_{e} \text { of } 10^{-4}
\end{aligned}
$$

Channel Coding

- Coding techniques are classified as either block codes or convolutional codes, depending on the presence or absence of memory
- A block code has no memory
- Information sequence is broken into blocks of length k
- Each block of k infor. bits is encoded into a block of n coded bits
- No memory from one block to another block
- A convolutional code has memory
- A shift register of length $k_{0} L$ is used.
- Information bits enter the shift register k_{0} bits at a time; then n_{0} coded bits are generated
- These n_{0} bits depend not only on the recent k_{0} bit that just entered the shift register, but also on the $k_{0}(L-1)$ previous bits.

Block Codes

- An (n, k) block code is a collection of $M=2^{k}$ codewords of length n
- Each codeword has a block of k information bits followed by a group of $r=n-k$ check bits that are derived from the k information bits in the block preceding the check bits

- The code is said to be linear if any linear combination of 2 codewords is also a codeword
- i.e. if c_{i} and c_{j} are codewords, then $c_{i}+c_{j}$ is also a codeword (where the addition is always module-2)
- Code rate (rate efficiency) $=\frac{k}{n}$
- Matrix description
- codeword $\mathbf{c}=\left(c_{1}, c_{2}, \ldots, c_{n}\right)$
- message bits $\mathbf{m}=\left(m_{1}, m_{2}, \ldots, m_{k}\right)$
- Each block code can be generated using a Generator Matrix G (dim: $k \times n$)
- Given G, then

Generator Matrix G

$$
\begin{aligned}
\mathbf{G} & =\left[\mathbf{I}_{k} \mid \mathbf{P}\right]_{k \times n} \\
& =\left[\begin{array}{cccc:cccccc}
11 & 0 & \cdots & 0 & 1 & p_{11} & p_{12} & \cdots & p_{1, n-k} \\
1 & 1 & & 0 & p_{21} & p_{22} & & p_{2, n-k}^{\prime} \\
1 & & \ddots & \vdots & \vdots & & \cdots & \vdots & \vdots \\
1 & 0 & \cdots & 1 & p_{k, 1} & p_{k, 2} & \cdots & p_{k, n-k}^{\prime} \\
1 & 0 & \cdots & 1 & p_{k}
\end{array}\right]
\end{aligned}
$$

- I_{k} is identity matrix of order k
- \mathbf{P} is matrix of order $k \times(n-k)$, which is selected so that the code will have certain desirable properties

Systematic Codes

- The form of G implies that the $1^{\text {st }} \mathrm{k}$ components of any codeword are precisely the information symbols
- This form of linear encoding is called systematic encoding
- Systematic-form codes allow easy implementation and quick look-up features for decoding
- For linear codes, any code is equivalent to a code in systematic form (given the same performance). Thus we can restrict our study to only systematic codes

Example: Hamming Code

- A family of (n, k) linear block codes that have the following parameters:
- Codeword length $n=2^{m}-1, \quad m \geq 3$
- \# of message bits $k=2^{m}-m-1$
- \# of parity check bits $n-k=m$
- Capable of providing single-error correction capability with $d_{\text {min }}=3$

(7, 4) Hamming Code

- Consider a $(7,4)$ Hamming code with generator matrix

$$
\mathbf{G}=\left[\begin{array}{llll|lll}
1 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 0 & 1
\end{array}\right]
$$

- Find all codewords

Solution

- Let $\mathbf{m}=\left[\begin{array}{llll}1 & 1 & 1 & 1\end{array}\right]$

$$
\left.\begin{array}{rl}
c & =m G=\left[\begin{array}{llll}
1 & 1 & 1 & 1
\end{array}\right]\left[\begin{array}{llll|lll}
1 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{llllll}
1 & 1 & 1 & 1 & 1 & 1
\end{array}\right]
\end{array}\right]
$$

List of all Codewords

- $\mathrm{n}=7, \mathrm{k}=4 \rightarrow 2^{k}=16$ message blocks

Message				codeword						
0	0	0	0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1	1	0	1
0	0	1	0	0	0	1	0	1	1	1
0	0	1	1	0	0	1	1	0	1	0
0	1	0	0	0	1	0	0	0	1	1
0	1	0	1	0	1	0	1	1	1	0
0	1	1	0	0	1	1	0	1	0	0
0	1	1	1	0	1	1	1	0	0	1
1	0	0	0	1	0	0	0	1	1	0
1	0	0	1	1	0	0	1	0	1	1
1	0	1	0	1	0	1	0	0	0	1
1	0	1	1	1	0	1	1	1	0	0
1	1	0	0	1	1	0	0	1	0	1
1	1	0	1	1	1	0	1	0	0	0
1	1	1	0	1	1	1	0	0	1	0
1	1	1	1	1	1	1	1	1	1	1
						Meixia Tao @ SJTU				16

Parity Check Matrix

- For each G, it is possible to find a corresponding parity check matrix \mathbf{H}

$$
\mathbf{H}=\left[\mathbf{P}^{T} \mid \mathbf{I}_{n-k}\right]_{(n-k) \times n}
$$

- H can be used to verify if a codeword C is generated by G
- Let C be a codeword generated by $\mathrm{G}=\left[\mathrm{I}_{k} \mid \mathrm{P}\right]_{k \times n}$

$$
\mathbf{c H}^{T}=\mathrm{mGH}^{T}=0
$$

Example: Find the parity check matrix of $(7,4)$ Hamming code

Error Syndrome

- Received codeword $\mathbf{r}=\mathbf{c}+\mathrm{e}$
where $\mathbf{e}=$ Error vector or Error Pattern
it is 1 in every position where data word is in error
- Example

$$
\begin{aligned}
& \quad \downarrow=\left[\begin{array}{lll}
1 & 0 & 1
\end{array}\right] \\
& \mathbf{r}=\left[\begin{array}{lll}
1 & 1 & 0
\end{array}\right] \\
& \mathbf{e}=\left[\begin{array}{llll}
0 & 1 & 1 & 0
\end{array}\right]
\end{aligned}
$$

Error Syndrome (cont'd)

- $\mathrm{s} \triangleq \mathbf{r H}^{T}=$ Error Syndrome
- But

$$
\begin{aligned}
\mathrm{s} & =\mathrm{rH}^{T}=(\mathrm{c}+\mathrm{e}) \mathbf{H}^{T} \\
& =\mathrm{cH}^{T}+\mathrm{eH}^{T} \\
& =\mathrm{eH}^{T}
\end{aligned}
$$

1. If $\mathrm{s}=0 \rightarrow \mathrm{r}=\mathrm{c}$ and m is the $1^{\text {st }} \mathrm{k}$ bits of r
2. If $s \neq 0$, and s is the $\mathrm{j}^{\text {th }}$ row of $\mathbf{H}^{T} \rightarrow 1$ error in jth position of r

- Consider the $(7,4)$ Hamming code example

$$
\begin{aligned}
& \mathbf{H}^{T}=\left[\mathbf{P}^{T} \mid \mathbf{I}_{n-k}\right]^{T}=\left[\begin{array}{c}
\mathbf{P} \\
\mathbf{I}_{n-k}
\end{array}\right] \begin{array}{l}
\text { How many error } \\
\text { syndromes in total }
\end{array} \\
& \quad\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right]
\end{aligned}
$$

$$
=\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
1 & 1 & 1 \\
\hdashline 1 & 0 & 1 \\
\hline 1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

- Note that s is the last row of H^{\top}
- So if $\mathbf{r}=\left[\begin{array}{lllllll}1 & 1 & 1 & 1 & 1 & 1 & 1\end{array}\right]$

$$
\Longrightarrow \quad \mathbf{r H}^{T}=\left[\begin{array}{lll}
0 & 0 & 0
\end{array}\right]
$$

- But if $\mathbf{r}=\left[\begin{array}{lllllll}1 & 1 & 1 & 1 & 1 & 1 & 0\end{array}\right]$
$\Rightarrow \mathbf{r H}^{T}=\left[\begin{array}{lll}0 & 0 & 1\end{array}\right]$
= Error syndrome s
- Also note error took place in the last bit
=> Syndrome indicates
position of error

Cyclic Codes

- A code $C=\left\{\mathbf{c}_{1}, \mathbf{c}_{2}, \ldots, \mathbf{c}_{2^{k}}\right\}$ is cyclic if

$$
\left(c_{1}, c_{2}, \ldots, c_{n}\right) \in C \quad \triangleleft\left(c_{n}, c_{1}, \ldots, c_{n-1}\right) \in C
$$

- $(7,4)$ Hamming code is cyclic

message	codeword
0001	0001101
1000	1000110
0100	0100011

Important Parameters

- Hamming Distance between codewords c_{i} and c_{j} :

$$
\mathrm{d}\left(\mathrm{c}_{\mathrm{i}}, \mathrm{c}_{\mathrm{j}}\right)=\# \text { of components at which the } 2 \text { codewords differ }
$$

- Hamming weight of a codeword c_{i} is

$$
w\left(c_{i}\right)=\# \text { of non-zero components in the codeword }
$$

- Minimum Hamming Distance of a code:

$$
\mathrm{d}_{\text {min }}=\min \mathrm{d}\left(\mathrm{c}_{\mathrm{i}}, \mathrm{c}_{\mathrm{j}}\right) \text { for all } \mathrm{i} \neq \mathrm{j}
$$

- Minimum Weight of a code:

$$
\mathrm{w}_{\text {min }}=\min \mathrm{w}\left(\mathrm{c}_{\mathrm{i}}\right) \text { for all } \mathrm{c}_{\mathrm{i}} \neq 0
$$

- Theorem: In any linear code, $d_{\text {min }}=w_{\text {min }}$
- Exercise: Find $\mathrm{d}_{\text {min }}$ for $(7,4)$ Hamming code

Soft-Decision and Hard-Decision Decoding

- Soft-decision decoder operates directly on the decision statistics

- Hard-decision decoder makes "hard" decision (0 or 1) on individual bits

- Here we only focus on hard-decision decoder

Hard-Decision Decoding

- Minimum Hamming Distance Decoding
- Given the received codeword \mathbf{r}, choose c which is closest to r in terms of Hamming distance
- To do so, one can do an exhaustive search
- too much if k is large.

- Syndrome Decoding
- Syndrome testing: $\mathbf{r}=\mathbf{c}+\mathrm{e}$ with $\mathrm{s}=\mathrm{rH}^{T}$
- This implies that the corrupted codeword r and the error pattern have the same syndrome
- A simplified decoding procedure based on the above observation can be used

Standard Array

- Let the codewords be denoted as $\left\{c_{1}, c_{2}, \ldots, c_{M}\right\}$ with c_{1} being the all-zero codeword
- A standard array is constructed as

$$
\begin{aligned}
& \text { Syndrome s } \\
& \qquad \begin{array}{l}
0 \\
s=e_{1} H^{T} \\
s=e_{2} H^{T} \\
\vdots \\
s=e_{2^{n-k}-1} H^{T}
\end{array}
\end{aligned}
$$

Error patterns

Hard-Decoding Procedure

- Find the syndrome by r using $\mathrm{s}=\mathrm{r} \mathbf{H}^{T}$
- Find the coset corresponding to s by using the standard array
- Find the cost leader and decode as $\mathbf{c}=\mathrm{r}+\mathrm{e}_{j}$
- Exercise: try $(7,4)$ Hamming code

Error Correction Capability

- A linear block code with a minimum distance $\mathrm{d}_{\text {min }}$ can
- Detect up to ($d_{\text {min }}-1$) errors in each codeword
- Correct up to $t=\left\lfloor\frac{d_{\text {min }}-1}{2}\right\rfloor$ errors in each codeword
- t is known as the error correction capability of the code

$d\left(\mathbf{c}_{i}, \mathbf{c}_{j}\right) \geq 2 t+1$

$d\left(\mathbf{c}_{i}, \mathbf{c}_{j}\right)<2 t$

Probability of Codeword Error for HardDecision Decoding

- Consider a linear block code (n, k) with an error correcting capability t. The decoder can correct all combination of errors up to and including t errors.
- Assume that the error probability of each individual coded bit is p and that bit errors occur independently since the channel is memoryless
- If we send n-bit block, the probability of receiving a specific pattern of m errors and ($n-m$) correct bits is

$$
p^{m}(1-p)^{n-m}
$$

- Total number of distinct pattern of n bits with m errors and ($\mathrm{n}-\mathrm{m}$) correct bits is

$$
\binom{n}{m}=\frac{n!}{m!(n-m)!}
$$

- Total probability of receiving a pattern with m errors is

$$
P(m, n)=\binom{n}{m} \cdot p^{m}(1-p)^{n-m}
$$

- Thus, the codeword error probability is upper-bounded by

$$
P_{M} \leq \sum_{m=t+1}^{n}\binom{n}{m} p^{m}(1-p)^{n-m}
$$

(with equality for perfect codes)

Error Detection vs. Error Correction

(c)

- To detect e bit errors, we have $d_{\text {min }} \geq e+1$
- To correct t bit errors, we have $d_{\min } \geq 2 t+1$

Major Classes of Block Codes

- Repetition Code
- Hamming Code
- Golay Code
- BCH Code
- Reed-Solomon Codes
- Walsh Codes
- LDPC Codes: invented by Robert Gallager in his PhD thesis in1960, now proved to be capacityapproaching

Convolutional Codes

- A convolutional code has memory
- It is described by 3 integers: n, k, and L
- Maps k bits into n bits using previous (L-1) k bits
- The n bits emitted by the encoder are not only a function of the current input k bits, but also a function of the previous (L-1)k bits
- k/n = Code Rate (information bits/coded bit)
- L is the constraint length and is a measure of the code memory
- n does not define a block or codeword length

Convolutional Encoding

- A rate k/n convolutional encoder with constraint length L consists of
- kL-stage shift register and n mod-2 adders
- At each unit of time:
- k bits are shifted into the $1^{\text {st }} \mathrm{k}$ stages of the register
- All bits in the register are shifted k stages to the right
- The output of the n adders are sequentially sampled to give the coded bits
- There are n coded bits for each input group of k information or message bits. Hence $R=k / n$ information bits/coded bit is the code rate ($k<n$)

Encoder Structure (rate k/n, constraint length L)

- Typically, k=1 for binary codes. Hence, consider rate $1 / \mathrm{n}$ codes

Convolution Codes Representation

- Encoding function: characterizes the relationship between the information sequence m and the output coded sequence U
- Four popular methods for representation
\checkmark Connection pictorial and connection polynomials (usually for encoder)
\checkmark State diagram
- Tree diagram Usually for decoder
\checkmark Trellis diagram

Connection Representation

- Specify n connection vectors, $\mathrm{g}_{i}, i=1, \ldots, n$ for each of the n mod- 2 adders
- Each vector has kL dimension and describes the connection of the shift register to the mod-2 adders
- A 1 in the $i^{\text {th }}$ position of the connection vector implies shift register is connected
- A 0 implies no connection exists

Example: L = 3, Rate 1/2

If Initial Register content is 000 and Input Sequence is 100 . Then Output Sequence is 111011

State Diagram Representation

- The contents of the rightmost L-1 stages (or the previous L-1 bits) are considered the current state $=>2^{L-1}$ states
- Knowledge of the current state and the next input is necessary and sufficient to determine the next output and next state
- For each state, there are only 2 transitions (to the next state) corresponding to the 2 possible input bits
- The transitions are represented by paths on which we write the output word associated with the state transition
- A solid line path corresponds to an input bit 0
- A dashed line path corresponds to an input bit 1

Example: L =3, Rate = 1/2

Current State	Input	Next State	Output
00	0	00	$\mathbf{0 0}$
	1	10	$\mathbf{1 1}$
10	0	01	$\mathbf{1 0}$
	1	11	$\mathbf{0 1}$
01	0	00	$\mathbf{1 1}$
	1	10	$\mathbf{0 0}$
11	0	01	$\mathbf{0 1}$
	1	11	$\mathbf{1 0}$

Example

- Assume that $m=11011$ is the input followed by $L-1=2$ zeros to flush the register. Also assume that the initial register contents are all zero. Find the output sequence U

Input bit $\boldsymbol{m}_{\boldsymbol{i}}$	Register contents	State at time $\boldsymbol{t}_{\boldsymbol{i}}$	State at time $\boldsymbol{t}_{\boldsymbol{i}+1}$	Branch word at time $\boldsymbol{t}_{\boldsymbol{i}}$	
				u_{1}	u_{2}
--	000	00	00	--	--
1	100	00	10	1	1
1	110	10	11	1	1
0	011	11	01	0	0
1	101	01	10	1	1
1	110	10	11	1	1
0	011	11	01	0	0
0	Q01	01	00	0	0

Trellis Diagram

- The trellis diagram is similar to the state diagram, except that it adds the dimension of time
- The code is represented by a trellis where each trellis branch describes an output word

Blue trellis lights
-- Columbus Park, New York City

Trellis Diagram

- Every input sequence (m_{1}, m_{2}, \ldots) corresponds to
- a path in the trellis
- a state transition sequence ($\left.s_{0}, s_{1}, \ldots\right)$, (assume $s_{0}=0$ is fixed)
- an output sequence $\left(\left(u_{1}, u_{2}\right),\left(u_{3}, u_{4}\right), \ldots\right)$
- Example: Let $s_{0}=00$, then
- $b_{1} b_{2} b_{3}=000$ gives output 000000 and states aaaa
- $b_{1} b_{2} b_{3}=100$ gives output 111011 and states $a b c a$

- We have introduced conv. code
- Constraint length L and rate $R=1 / n$
- Polynomials representation
- State diagram representation
- Trellis diagram representation
- We will talk about decoding of convolutional code
- Maximum Likelihood Decoding
- Viterbi Algorithm
- Transfer Function

Maximum Likelihood Decoding

- Transmit a coded sequence $\mathrm{U}^{(\mathrm{m})}$ (correspond to message sequence m) using a digital modulation scheme (e.g. BPSK or QPSK)
- Received sequence z
- Maximum likelihood decoder
- Find the sequence $\mathrm{U}^{(\mathrm{j})}$ such that

$$
P\left(\mathbf{Z} \mid \mathbf{U}^{j}\right)=\max _{\forall \mathbf{U}(m)} P\left(\mathbf{Z} \mid \mathbf{U}^{(m)}\right)
$$

- Will minimize the probability of error if m is equally likely

Maximum Likelihood Metric

- Assume a memoryless channel, i.e. noise components are independent. Then, for a rate $1 / \mathrm{n}$ code

$$
P\left(\mathbf{Z} \mid \mathbf{U}^{(\mathrm{m})}\right)=\prod_{i=1}^{\infty} P(\underbrace{Z_{i} \mid U_{i}^{(m)}}_{i \text {-th branch of } \mathbf{Z}})=\prod_{i=1}^{\infty} \prod_{j=1}^{n} P\left(z_{j i} \mid u_{j i}^{(m)}\right)
$$

- Then the problem is to find a path through the trellis such that

Decoding Algorithm: Log-Likelihood

- For AWGN channel (soft-decision)
- $z_{j i}=u_{j i}+n_{j i}$ and $\mathrm{P}\left(z_{j i} \mid u_{j i}\right)$ is Gaussian with mean $u_{j i}$ and variance σ^{2}
- Hence

$$
\ln p\left(z_{j i} \mid u_{j i}\right)=-\frac{1}{2} \ln \left(2 \pi \sigma^{2}\right)-\frac{\left(z_{j i}-u_{j i}\right)^{2}}{2 \sigma^{2}}
$$

- Note that the objective is to compare which $\Sigma_{\mathrm{i}} \ln (\mathrm{p}(\mathrm{z} \mid \mathrm{u}))$ for different \mathbf{u} is larger, hence, constant and scaling does not affect the results
- Then, we let the log-likelihood be $L L\left(z_{j i} \mid u_{j i}\right)=-\left(z_{j i}-u_{j i}\right)^{2}$ and

$$
\log P\left(Z \mid U^{(m)}\right)=-\sum_{i=1}^{\infty} \sum_{j=1}^{n}\left(z_{j i}-u_{j i}^{(m)}\right)^{2}
$$

- Thus, soft decision ML decoder is to choose the path whose corresponding sequence is at the minimum Euclidean distance to the received sequence
- For binary symmetric channel (hard decision)

$$
\begin{aligned}
L L\left(z_{j i} \mid u_{j i}\right) & =\ln p\left(z_{j i} \mid u_{j i}\right)=\left\{\begin{array}{cc}
\ln p & \text { if } z_{j i} \neq u_{j i} \\
\ln (1-p) & \text { if } z_{j i}=u_{j i}
\end{array}\right. \\
& = \begin{cases}\ln p /(1-p) & \text { if } z_{j i} \neq u_{j i} \\
0 & \text { if } z_{j i}=u_{j i}\end{cases} \\
& = \begin{cases}-1 & \text { if } z_{j i} \neq u_{j i} \quad(\text { since } p<0.5) \\
0 & \text { if } z_{j i}=u_{j i}\end{cases}
\end{aligned}
$$

- Thus

$$
\log P\left(Z \mid U^{(m)}\right)=-d_{m} \quad \begin{aligned}
& \text { Hamming distance between } Z \text { and } \\
& U^{(m)}, \text { i.e. they differ in } \mathrm{d}_{\mathrm{m}} \text { positions }
\end{aligned}
$$

Hard-Decision ML Decoder = Minimum Hamming Distance Decoder

- Maximum Likelihood Decoding Procedure
- Compute, for each branch i, the branch metric using the output bits $\left\{u_{1, i}, u_{2, i}, \ldots, u_{n, i}\right\}$ associated with that branch and the received symbols $\left\{z_{1, i}, z_{2, i}, \ldots, z_{n, i}\right\}$
- Compute, for each valid path through the trellis (a valid codeword sequence $\mathbf{U}^{(m)}$), the sum of the branch metrics along that path
- The path with the maximum path metric is the decoded path
- To compare all possible valid paths we need to do exhaustive search or brute-force, not practical as the \# of paths grow exponentially as the path length increases
- The optimum algorithm for solving this problem is the Viterbi decoding algorithm or Viterbi decoder

Andrew Viterbi (1935-)

- BS \& MS in MIT
- PhD in University of Southern California
- Invention of Viterbi algorithm in 1967
- Co-founder of Qualcomm Inc. in 1983

Viterbi Decoding (R=1/2, L=3)

Input data sequence $\mathbf{m}:$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	\ldots
Coded sequence $\mathbf{U}:$	$\mathbf{1 1}$	$\mathbf{0 1}$	$\mathbf{0 1}$	$\mathbf{0 0}$	$\mathbf{0 1}$	\ldots
Received sequence Z:	$\mathbf{1 1}$	$\mathbf{0 1}$	$\mathbf{0 1}$	$\mathbf{1 0}$	$\mathbf{0 1}$	\ldots

Branch metric

Viterbi Decoder

- Basic idea:
- If any 2 paths in the trellis merge to a single state, one of them can always be eliminated in the search
- Let cumulative path metric of a given path at $\mathrm{t}_{\mathrm{i}}=$ sum of the branch metrics along that path up to time t_{i}
- Consider t_{5}
- The upper path metric is 4 , the lower math metric is 1
- The upper path metric CANNOT be part of the optimum path since the lower path has a lower metric
- This is because future output branches depend only on the current state and not the previous state

Path Metrics for 2 Merging Paths

Viterbi Decoding

- At time t_{i}, there are 2^{L-1} states in the trellis
- Each state can be entered by means of 2 states
- Viterbi Decoding consists of computing the metrics for the 2 paths entering each state and eliminating one of them
- This is done for each of the 2^{L-1} nodes at time t_{i}
- The decoder then moves to time t_{i+1} and repeats the process

Example

(e)

(f)

Distance Properties

- $\mathrm{d}_{\text {free }}=$ Minimum Free distance $=$ Minimum distance of any pair of arbitrarily long paths that diverge and remerge
- A code can correct any t channel errors where (this is an approximation)

$$
t \leq\left\lfloor\frac{d_{\text {free }}-1}{2}\right\rfloor
$$

Transfer Function

- The distance properties and the error rate performance of a convolutional code can be obtained from its transfer function
- Since a convolutional code is linear, the set of Hamming distances of the code sequences generated up to some stages in the trellis, from the all-zero code sequence, is the same as the set of distances of the code sequences with respect to any other code sequence
- Thus, we assume that the all-zero path is the input to the encoder

State Diagram Labeled according to distance from all-zero path

- D^{m} denote m non-zero output bits
- N if the input bit is non-zero
- L denote a branch in the path

$$
\left\{\begin{array}{l}
X_{b}=D^{2} N L X_{a}+L N X_{c} \\
X_{c}=D L X_{b}+D L X_{d} \\
X_{d}=D N L X_{b}+D N L X_{d} \\
X_{e}=D^{2} L X_{c}
\end{array}\right.
$$

- The transfer function T(D,N,L), also called the weight enumerating function of the code is

$$
T(D, N, L)=\frac{X_{e}}{X_{a}}
$$

- By solving the state equations we get

$$
\begin{aligned}
T(D, N, L)= & \frac{D^{5} N L^{3}}{1-D N L(1+L)} \\
= & D^{5} N L^{3}+D^{6} N^{2} L^{4}(1+L)+D^{7} N^{3} L^{5}(1+L)^{2} \\
& \quad+\ldots+D^{l+5} N^{l+1} L^{l+3}(1+L)^{l}+\ldots
\end{aligned}
$$

- The transfer function indicates that:
- There is one path at distance 5 and length 3 , which differs in 1 input bit from the correct all-zeros path
- There are 2 paths at distance 6, one of which is of length 4, the other length 5 , and both differ in 2 input bits from all-zero path
- $d_{\text {free }}=5$

Known Good Convolutional Codes

- Good convolutional codes can only be found in general by computer search
- There are listed in tables and classified by their constraint length, code rate, and their generator polynomials or vectors (typically using octal notation).
- The error-correction capability of a convolutional code increases as n increases or as the code rate decreases.
- Thus, the channel bandwidth and decoder complexity increases

Good Codes with Rate 1/2

Constraint Length	Generator Polynomials	$\mathrm{d}_{\text {free }}$
3	$(5,7)$	5
4	$(15,17)$	6
5	$(23,35)$	7
6	$(53,75)$	8
7	$(133,171)$	10
8	$(247,371)$	10
9	$(561,753)$	12
10	$(1167,1545)$	12

Good Codes with Rate 1/3

Constraint Length	Generator Polynomials	$\mathrm{d}_{\text {free }}$
3	$(5,7,7)$	8
4	$(13,15,17)$	10
5	$(25,33,37)$	12
6	$(47,53,75)$	13
7	$(133,145,175)$	15
8	$(225,331,367)$	16
9	$(557,663,711)$	18
10	$(1117,1365,1633)$	20

Basic Channel Coding for Wideband CDMA

Convolutional Codes

Service-specific coding

Convolutional code is rate $1 / 3$ and rate $1 / 2$, all with constraint length 9

Channel Coding for Wireless LAN (IEEE802.11a)

Table 11-3. Encoding details for different OFDM data rates

$\begin{aligned} & \begin{array}{l} \text { Speed } \\ \text { (Mbps) } \end{array} \end{aligned}$	Modulation and coding rate (R)	Coded bits per carrier ${ }^{\text {[al }}$	Coded bits per symbol	Data bits per symbol ${ }^{[b]}$
6	BPSK, R=1/2	1	48	24
9	BPSK, R=3/4	1	48	36
12	QPSK, R=1/2	2	96	48
18	QPSK, R=3/4	2	96	72
24	16-QAM, R=1/2	4	192	96
36	16-QAM, R=3/4	4	192	144
48	64-QAM, R=2/3	6	288	192
54	64-QAM, R=3/4	6	288	216

Source: 802.11 Wireless Networks: The Definitive Guide / by M. Gast / O'Reilly

Other Advanced Channel Coding

- Low-density parity check codes: Robert Gallager 1960
- Turbo codes: Berrou et al 1993
- Trellis-coded modulation: Ungerboeck 1982
- Space-time coding: Vahid Tarokh et al 1998
- Polar codes: Erdal Arikan 2009

Exercise

- Find out the coding techniques adopted in LTE

