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Topics to be Covered

 Linear block code (线性分组码) 
 Convolutional code  (卷积码)
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Information Theory and Channel Coding

 Shannon’s noisy channel coding theorem tells that adding 
controlled redundancy allows transmission at arbitrarily low 
bit error rate (BER) as long as R<=C

 Error control coding (ECC) uses this controlled redundancy 
to detect and correct errors

 ECC depends on the system requirements and the nature 
of the channel 

 The key in ECC is to find a way to add redundancy to the 
channel so that the receiver can fully utilize that redundancy to 
detect and correct the errors, and to reduce the required 
transmit power – coding gain
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Example

 We want to transmit data over a telephone link using a 
modem under the following conditions
 Link bandwidth = 3kHz
 The modem can operate up to the speed of 3600 bits/sec at an 

error probability 

 Target: transmit the data at rate of 1200 bits/sec at 
maximum output SNR = 13 dB with a prob. of error 
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Solution: Shannon Theorem
 Channel capacity is

Since B = 3000 and S/N = 20 (13 dB = 10log1020)
 Thus, by Shannon’s theorem, we can transmit the data 

with an arbitrarily small error probability 
 Note that without coding Pe = 

For the given modem, criterion Pe =           is not met.
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Solution: A Simple Code Design
 Repetition code: every bit is transmitted 3 times

when bk = “0” or “1”, transmit codeword “000” or “111” 

 Based on the received codewords, the decoder attempts to extract the 
transmitted bits using majority-logic decoding scheme

 Clearly, the transmitted bits will be recovered correctly as long as no 
more than one of the bits in the codeword is affected by noise

Tx bits bk

Codewords 

Rx bits 
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 With this simple error control coding, the probability of error is 
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Channel Coding

 Coding techniques are classified as either block codes or 
convolutional codes, depending on the presence or 
absence of memory

 A block code has no memory
 Information sequence is broken into blocks of length k
 Each block of k infor. bits is encoded into a block of n coded bits
 No memory from one block to another block

 A convolutional code has memory
 A shift register of length         is used.
 Information bits enter the shift register     bits at a time; then 

coded bits are generated 
 These     bits depend not only on the recent     bit that just entered 

the shift register, but also on the                 previous bits.
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Block Codes

 An (n,k) block code is a collection of            codewords of length n2kM =

 Each codeword has a block of k information bits followed by a 
group of r = n-k check bits that are derived from the k information 
bits in the block preceding the check bits

 The code is said to be linear if any linear combination of 2 
codewords is also a codeword
 i.e. if      and      are codewords, then               is also a 

codeword (where the addition is always module-2)

Channel Encoder
Message

k bits

n bit codewords

k r
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 Code rate (rate efficiency) =

 Each block code can be generated using a Generator 
Matrix G (dim:          )

messageCodeword

 Matrix description

 Given G, then




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 is matrix of order                   , which is selected so 
that the code will have certain desirable properties

 is identity matrix of order k

Generator Matrix G
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Systematic Codes

 The form of G implies that the 1st k components of any 
codeword are precisely the information symbols

 This form of linear encoding is called systematic 
encoding

 Systematic-form codes allow easy implementation and 
quick look-up features for decoding

 For linear codes, any code is equivalent to a code in 
systematic form (given the same performance). Thus 
we can restrict our study to only systematic codes
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Example: Hamming Code

 A family of (n,k) linear block codes that have the 
following parameters:
 Codeword length  
 # of message bits
 # of parity check bits
 Capable of providing single-error correction 

capability with
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(7, 4) Hamming Code

 Consider a (7,4) Hamming code with generator 
matrix 

 Find all codewords
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Solution 

 Let 
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List of all Codewords

0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 1 1 0 1
0 0 1 0 0 0 1 0 1 1 1
0 0 1 1 0 0 1 1 0 1 0
0 1 0 0 0 1 0 0 0 1 1
0 1 0 1 0 1 0 1 1 1 0
0 1 1 0 0 1 1 0 1 0 0
0 1 1 1 0 1 1 1 0 0 1
1 0 0 0 1 0 0 0 1 1 0
1 0 0 1 1 0 0 1 0 1 1
1 0 1 0 1 0 1 0 0 0 1
1 0 1 1 1 0 1 1 1 0 0
1 1 0 0 1 1 0 0 1 0 1
1 1 0 1 1 1 0 1 0 0 0
1 1 1 0 1 1 1 0 0 1 0
1 1 1 1 1 1 1 1 1 1 1

 n = 7, k = 4 message blocks

Message codeword 
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Parity Check Matrix

 For each G, it is possible to find a corresponding parity 
check matrix H

 H can be used to verify if a codeword C is generated by G

 Let C be a codeword generated by

Example: Find the parity check matrix of (7,4) Hamming code
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Error Syndrome

 Received codeword

where e = Error vector or Error Pattern

it is 1 in every position where data word is in error

 Example
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Error Syndrome (cont’d)

 = Error Syndrome

 But

1. If s=0 → r = c and m is the 1st k bits of r

2. If s ≠0, and s is the jth row of HT → 1 error in jth
position of r

19



Meixia Tao @ SJTU

 Consider the (7,4) Hamming code example

 So if

 But if

= Error syndrome  s

 Note that s is the last row
of HT

 Also note error took place 
in the last bit

=> Syndrome indicates 
position of error

How many error 
syndromes in total

20



Meixia Tao @ SJTU

Cyclic Codes

 A code                             is cyclic if 

 (7,4) Hamming code is cyclic 

0001 0001101 

1000110 1000 

0100011 0100

message codeword
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Important Parameters

 Hamming Distance between codewords ci and cj:

 Hamming weight of a codeword ci is 

 Minimum Hamming Distance of a code:

 Minimum Weight of a code:

 Theorem: In any linear code, 

 Exercise: Find dmin for (7,4) Hamming code

d(ci, cj) = # of components at which the 2 codewords differ

w(ci) = # of non-zero components in the codeword

dmin = min d(ci, cj)  for all i ≠ j

wmin = min w(ci)  for all ci ≠ 0
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Soft-Decision and Hard-Decision 
Decoding

 Soft-decision decoder operates directly on the 
decision statistics

 Hard-decision decoder makes “hard” decision (0 or 1) 
on individual bits 

 Here we only focus on hard-decision decoder
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Hard-Decision Decoding

 Minimum Hamming Distance Decoding
 Given the received codeword r, choose c which is closest to r

in terms of Hamming distance
 To do so, one can do an exhaustive search

– too much if k is large. 

 Syndrome Decoding
 Syndrome testing:                 with 
 This implies that the corrupted codeword r and the error 

pattern have the same syndrome
 A simplified decoding procedure based on the above 

observation can be used 
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Standard Array

 Let the codewords be denoted as                   with     being 
the all-zero codeword

 A standard array is constructed as

1 2{ , , , }Mc c c

1 2

1 1 2 1

2 2 2 2

22 1 2 1 2 1n k n k n k

M

M

M

M

c c c
e e c e c
e e c e c

e e c e c− − −− − −

⊕ ⊕
⊕ ⊕

⊕ ⊕
  

2n k−

2k

Error patterns

coset

Coset leader

1

2

2 1

0

n k

T

T

T

s e H
s e H

s e H− −

=
=

=


Syndrome s
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Hard-Decoding Procedure
 Find the syndrome by r using s=rHT

 Find the coset corresponding to s by using the 
standard array

 Find the cost leader and decode as

 Exercise: try (7,4) Hamming code
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Error Correction Capability

 A linear block code with a minimum distance dmin can 
 Detect up to errors in each codeword
 Correct up to  errors in each codeword
 t is known as the error correction capability of the code
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Probability of Codeword Error for Hard-
Decision Decoding

 Consider a linear block code (n, k) with an error correcting 
capability t. The decoder can correct all combination of 
errors up to and including t errors. 

 Assume that the error probability of each individual coded 
bit is p and that bit errors occur independently since the 
channel is memoryless

 If we send n-bit block, the probability of receiving a specific 
pattern of m errors and (n-m) correct bits is 
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 Total number of distinct pattern of n bits with m errors and 
(n-m) correct bits is 

 Total probability of receiving a pattern with m errors is 

 Thus, the codeword error probability is upper-bounded by 

(with equality for perfect codes)
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Error Detection vs. Error Correction

 To detect e bit errors, we have

 To correct t bit errors, we have

0 1 2 3 0 1 2 3 4 5

dmin dmin

A AB B
e t t

(a) (b)

t
A B

t
e

1

(c)

min 1d e≥ +

min 2 1d t≥ +
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Major Classes of Block Codes

 Repetition Code

 Hamming Code

 Golay Code

 BCH Code

 Reed-Solomon Codes

 Walsh Codes

 LDPC Codes: invented by Robert Gallager in his 
PhD thesis in1960, now proved to be capacity-
approaching
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Convolutional Codes

 A convolutional code has memory
 It is described by 3 integers: n, k, and L
 Maps k bits into n bits using previous (L-1) k bits
 The n bits emitted by the encoder are not only a function of 

the current input k bits, but also a function of the previous    
(L-1)k bits

 k/n = Code Rate (information bits/coded bit)
 L is the constraint length and is a measure of the code 

memory
 n does not define a block or codeword length
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Convolutional Encoding

 A rate k/n convolutional encoder with constraint length L 
consists of
 kL-stage shift register and n mod-2 adders

 At each unit of time:
 k bits  are shifted into the 1st k stages of the register
 All bits in the register are shifted k stages to the right
 The output of the n adders are sequentially sampled to give 

the coded bits
 There are n coded bits for each input group of k information 

or message bits. Hence R = k/n information bits/coded bit is 
the code rate (k<n)
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Encoder Structure 
(rate k/n, constraint length L)

1 …2 k 1 …2 k 1 …2 k

+ + +

1 2

input bit 
sequence m

encoded sequence U

modulo-2 adder

 Typically, k=1 for binary codes. Hence, consider rate 1/n codes
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 Encoding function: characterizes the relationship 
between the information sequence m and the output 
coded sequence U

 Four popular methods for representation
Connection pictorial and connection polynomials 

(usually for encoder)
State diagram
 Tree diagram
Trellis diagram

Convolution Codes Representation

Usually for decoder
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Connection Representation

 Specify n connection vectors,                      for 
each of the n mod-2 adders

 Each vector has kL dimension and describes the 
connection of the shift register to the mod-2 
adders

 A 1 in the ith position of the connection vector 
implies shift register is connected

 A 0 implies no connection exists
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Example: L = 3, Rate 1/2

If Initial Register content is 0 0 0 
and Input Sequence is 1 0 0. Then 
Output Sequence is 11 10 11

Or 0    0    0100
11 10 11
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State Diagram Representation

 The contents of the rightmost L-1 stages (or the previous 
L-1 bits) are considered the current state =>           states

 Knowledge of the current state and the next input is 
necessary and sufficient to determine the next output and 
next state

 For each state, there are only 2 transitions (to the next 
state) corresponding to the 2 possible input  bits

 The transitions are represented by paths on which we write 
the output word associated with the state transition 
 A solid line path corresponds to an input bit 0
 A dashed line path corresponds to an input bit 1

38



Meixia Tao @ SJTU

Example: L =3, Rate = 1/2

Current
State

Input Next
State

Output

00 0
1

00
10

00
11

10 0
1

01
11

10
01

01 0
1

00
10

11
00

11 0
1

01
11

01
10

b=10 c=01

a=00

d=11

0/00

1/11 0/11

1/00
0/10

0/01

1/10

1/01

Input/output
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Example
 Assume that m =11011 is the input followed by L-1 = 2 zeros to 

flush the register. Also assume that the initial register contents 
are all zero. Find the output sequence U

Output sequence: U = 11 01 01 00 01 01 11
State ti+1

State ti

Input
bit mi

Register 
contents

State at 
time ti

State at 
time ti+1

Branch word at time ti 
u1                          u2

--
1
1
0
1
1
0
0

000
100
110
011
101
110
011
001

00
00
10
11
01
10
11
01

00
10
11
01
10
11
01
00

--
1
1
0
1
1
0
0

--
1
1
0
1
1
0
0
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Trellis Diagram

 The trellis diagram is similar to the state diagram, 
except that it adds the dimension of time

 The code is represented by a trellis where each 
trellis branch describes an output word

Blue trellis lights

-- Columbus Park, New York City
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Trellis Diagram
state
a=00

b=10

c=01

d=11

11

01

10 10 10

11 11 11 11

01 01 0101 01 01

10
00 00 00

10 10 10

11 11 11

00 00 00 00 00

Trellis structure repeats itself after depth L = 3
0

1
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 Every input sequence (m1 ,m2 ,…) corresponds to 
 a path in the trellis
 a state transition sequence (s0 ,s1 ,…), (assume s0=0 is fixed) 
 an output sequence ((u1 ,u2) , (u3 ,u4) ,…)

 gives output 000000 and states aaaa
 gives output 111011 and states abca

11

10
11

a = 00

b = 10

c = 01

d = 11

00

10

01

11

00

10

01

11

00

10

01

11

00 00 00
b1 b2 b3

 Example: Let s0 =00, then

0

1
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 We have introduced conv. code
 Constraint length L and rate R = 1/n
 Polynomials representation
 State diagram representation
 Trellis diagram representation

Update

 We will talk about decoding of convolutional code
 Maximum Likelihood Decoding
 Viterbi Algorithm
 Transfer Function
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Maximum Likelihood Decoding

 Transmit a coded sequence         (correspond to 
message sequence m) using a digital modulation 
scheme (e.g. BPSK or QPSK)

 Received sequence
 Maximum likelihood decoder
 Find the sequence         such that

 Will minimize the probability of error if m is equally 
likely
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Maximum Likelihood Metric
 Assume a memoryless channel, i.e. noise components are 

independent. Then, for a rate 1/n code

 Then the problem is to find a path through the trellis such that
i-th branch of Z

Log-likelihood path metric

i-th branch metric
by taking log

Log-likelihood of
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Decoding Algorithm: Log-Likelihood

 For AWGN channel (soft-decision)
 and P(           ) is Gaussian with mean       and 

variance 
 Hence 

 Note that the objective is to compare which Σi ln(p(z|u)) for different 
u is larger, hence, constant and scaling does not affect the results

 Then, we let the log-likelihood be  
and

 Thus, soft decision ML decoder is to choose the path whose 
corresponding sequence is at the minimum Euclidean distance to 
the received sequence 47
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 For binary symmetric channel (hard decision)

 Thus 

Hard-Decision ML Decoder = Minimum Hamming Distance Decoder

u z
0 0

1 1
p

p
1-p

1-p





=−
≠

=
uzp
uzp

uzp
 if1
 if

)|(





=−
≠

==
jiji

ijiji
jijijiji uzp

uzp
uzpuzLL

 if)1ln(
 ifln

)|(ln)|(

(since p<0.5)

Hamming distance between Z and 
U(m) , i.e. they differ in dm positions
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 Maximum Likelihood Decoding Procedure
 Compute, for each branch  , the branch metric using the 

output bits                              associated with that branch and 
the received symbols

 Compute, for each valid path through the trellis (a valid 
codeword sequence        ), the sum of the branch metrics 
along that path

 The path with the maximum path metric is the decoded path

 To compare all possible valid paths we need to do 
exhaustive search or brute-force, not practical as the # of 
paths grow exponentially as the path length increases

 The optimum algorithm for solving this problem is the 
Viterbi decoding algorithm or Viterbi decoder

49



Meixia Tao @ SJTU

Andrew Viterbi
(1935- )

 BS & MS in MIT

 PhD in University of Southern California

 Invention of Viterbi algorithm in 1967

 Co-founder of Qualcomm Inc. in 1983
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Viterbi Decoding (R=1/2, L=3)
Input data sequence m: 1        1       0       1        1        …

Coded sequence U: 11     0 1     01     00      01        …

Received sequence Z: 11     0 1     01     10   01        …

0

1

Branch metric

a=00

b=10

c=01

d=11

10

2 1 1

0

2

1

1

1

0

1

0

2 0 2

02

1

1

1 1
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Viterbi Decoder
 Basic idea:
 If any 2 paths in the trellis merge to a single state, one of 

them can always be eliminated in the search

 Let cumulative path metric of a given path at ti = sum of the 
branch metrics along that path up to time ti

 Consider t5
 The upper path metric is 4, the lower math metric is 1
 The upper path metric CANNOT be part of the optimum 

path since the lower path has a lower metric
 This is because future output branches depend only on 

the current state and not the previous state
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Path Metrics for 2 Merging Paths

a=00

b=10

c=01

d=11

1

0

1

0

2 1 1

0

2

1

1

1

0

1

0

2 0 2

01

1

1

1 1

Path metric = 4

Path metric = 1
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Viterbi Decoding

 At time ti, there are           states in the trellis

 Each state can be entered by means of 2 states

 Viterbi Decoding consists of computing the metrics for 
the 2 paths entering each state and eliminating one of 
them

 This is done for each of the          nodes at time ti
 The decoder then moves to time ti+1 and repeats the 

process
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Example
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Distance Properties

 dfree= Minimum Free distance = Minimum distance of any 
pair of arbitrarily long paths that diverge and remerge 

 A code can correct any t channel errors where (this is an 
approximation)

a=00

b=10

c=01

d=11

11

01

10 10 10

11 11 11 11

01 01 0101 01 01

10
00 00 00

10 10 10

11 11 11

00 00 00 00 00
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Transfer Function
 The distance properties and the error rate performance of 

a convolutional code can be obtained from its transfer 
function

 Since a convolutional code is linear, the set of Hamming 
distances of the code sequences generated up to some 
stages in the trellis, from the all-zero code sequence, is the 
same as the set of distances of the code sequences with 
respect to any other code sequence

 Thus, we assume that the all-zero path is the input to the 
encoder
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State Diagram Labeled according to 
distance from all-zero path

 Dm denote m non-zero output bits 
 N if the input bit is non-zero 
 L denote a branch in the path

a=00 b=10 c=01 e=00

d=11

11

00

10

01

10 DNL

11

10input output
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 The transfer function T(D,N,L), also called the weight 
enumerating function of the code is 

 By solving the state equations we get

 The transfer function indicates that:
 There is one path at distance 5 and length 3, which differs in 1 input 

bit from the correct all-zeros path
 There are 2 paths at distance 6, one of which is of length 4, the 

other length 5, and both differ in 2 input bits from all-zero path

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Known Good Convolutional Codes

 Good convolutional codes can only be found in general by 
computer search

 There are listed in tables and classified by their constraint 
length, code rate, and their generator polynomials or 
vectors (typically using octal notation).

 The error-correction capability of a convolutional code 
increases as n increases or as the code rate decreases.

 Thus, the channel bandwidth and decoder complexity 
increases 
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Good Codes with Rate 1/2
Constraint 

Length
Generator 

Polynomials
dfree

3 (5,7) 5

4 (15,17) 6

5 (23,35) 7

6 (53,75) 8

7 (133,171) 10

8 (247,371) 10

9 (561,753) 12

10 (1167,1545) 12
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Good Codes with Rate 1/3

Constraint 
Length

Generator 
Polynomials

dfree

3 (5,7,7) 8
4 (13,15,17) 10
5 (25,33,37) 12
6 (47,53,75) 13
7 (133,145,175) 15
8 (225,331,367) 16
9 (557,663,711) 18
10 (1117,1365,1633) 20
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Basic Channel Coding for Wideband 
CDMA

Inner coding
(conv.)

Inner 
interleaving

Inner coding
(conv.)

Inner 
interleaving

Outer
interleaving

Outer coding
(RS)

BER = 10-3

BER = 10-6

Convolutional Codes

Block Codes

Service-specific coding

Convolutional code is rate 1/3 and rate ½,
all with constraint length 9
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Channel Coding for Wireless LAN 
(IEEE802.11a)

PuncturingConv. Encoder
r=1/2, K=7 OFDMBaseband

Modulator

Input bits TX signals

Source: 802.11 Wireless Networks: The Definitive Guide / by M. Gast / O’Reilly
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Other Advanced Channel Coding 

 Low-density parity check codes: Robert Gallager 1960

 Turbo codes: Berrou et al 1993

 Trellis-coded modulation: Ungerboeck 1982

 Space-time coding: Vahid Tarokh et al 1998

 Polar codes: Erdal Arikan 2009
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Exercise

 Find out the coding techniques adopted in LTE
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