Principles of Communications

Meixia Tao Shanghai Jiao Tong University

Chapter 10: Channel Coding

Selected from Chapter 13.1 – 13.3 of *Fundamentals of Communications Systems*, Pearson Prentice Hall 2005, by Proakis & Salehi

Topics to be Covered

- Linear block code (线性分组码)
- Convolutional code (卷积码)

Information Theory and Channel Coding

- Shannon's noisy channel coding theorem tells that adding controlled redundancy allows transmission at arbitrarily low bit error rate (BER) as long as R<=C
- Error control coding (ECC) uses this controlled redundancy to detect and correct errors
- ECC depends on the system requirements and the nature of the channel
- The key in ECC is to find a way to add redundancy to the channel so that the receiver can fully utilize that redundancy to detect and correct the errors, and to reduce the required transmit power – coding gain

Example

- We want to transmit data over a telephone link using a modem under the following conditions
 - Link bandwidth = 3kHz
 - The modem can operate up to the speed of 3600 bits/sec at an error probability $P_e = 8 \times 10^{-4}$
- Target: transmit the data at rate of 1200 bits/sec at maximum output SNR = 13 dB with a prob. of error 10⁻⁴

Solution: Shannon Theorem

Channel capacity is

$$C = B \log_2 \left(1 + \frac{S}{N} \right) = 13,000 \text{ bits/sec}$$

Since B = 3000 and S/N = 20 (13 dB = $10\log_{10}20$)

- Thus, by Shannon's theorem, we can transmit the data with an arbitrarily small error probability
- Note that without coding $P_e = 8 \times 10^{-4}$ For the given modem, criterion $P_e = 10^{-4}$ is <u>not met.</u>

Solution: A Simple Code Design

- Repetition code: every bit is transmitted 3 times when b_k = "0" or "1", transmit codeword "000" or "111"
- Based on the received codewords, the decoder attempts to extract the transmitted bits using majority-logic decoding scheme
- Clearly, the transmitted bits will be recovered correctly as long as no more than one of the bits in the codeword is affected by noise

Tx bits b _k	0	0	0	0	1	1	1	1
Codewords	000	000	000	000	111	111	111	111
Rx bits	000	001	010	100	011	101	110	111
$\widehat{b}_{m k}$	0	0	0	0	1	1	1	1

• With this simple error control coding, the probability of error is

$$P_e = P(b_k \neq \hat{b}_k)$$

= P (2 or more bits in codeword are in error)

$$= \binom{3}{2} q_c^2 (1 - q_c) + \binom{3}{3} q_c^3$$

= $3q_c^2 - 2q_c^3$
= 0.0192×10^{-4}
 $\leq \text{Required } P_e \text{ of } 10^{-4}$

Channel Coding

- Coding techniques are classified as either block codes or convolutional codes, depending on the presence or absence of memory
- A block code has no memory
 - Information sequence is broken into blocks of length k
 - Each block of k infor. bits is encoded into a block of n coded bits
 - No memory from one block to another block
- A convolutional code has memory
 - A shift register of length k_0L is used.
 - Information bits enter the shift register k_0 bits at a time; then n_0 coded bits are generated
 - These n_0 bits depend not only on the recent k_0 bit that just entered the shift register, but also on the $k_0(L-1)$ previous bits.

Block Codes

- An (n,k) block code is a collection of $M = 2^k$ codewords of length n
- Each codeword has a block of k information bits followed by a group of r = n-k check bits that are derived from the k information bits in the block preceding the check bits

- The code is said to be linear if any linear combination of 2 codewords is also a codeword
 - i.e. if c_i and c_j are codewords, then $c_i + c_j$ is also a codeword (where the addition is always module-2)

- Code rate (rate efficiency) = $\frac{k}{n}$
- Matrix description
 - codeword $\mathbf{c} = (c_1, c_2, ..., c_n)$
 - message bits $\mathbf{m} = (m_1, m_2, ..., m_k)$
- Each block code can be generated using a Generator Matrix G (dim: $k \times n$)
- Given G, then

Generator Matrix G

$$\mathbf{G} = [\mathbf{I}_k | \mathbf{P}]_{k \times n}$$

 1 0	0 1	•••	0 0	$p_{11} \\ p_{21}$	$p_{12} \\ p_{22}$		$p_{1,n-k}$ $p_{2,n-k}$
	0	•••	:	÷		•••	:
	0		L I	$p_{k,1}$	$p_{k,2}$	•••	$p_{k,n-k}$

- I_k is identity matrix of order k
- **P** is matrix of order $k \times (n k)$, which is selected so that the code will have certain desirable properties

Systematic Codes

- The form of G implies that the 1st k components of any codeword are precisely the information symbols
- This form of linear encoding is called systematic encoding
- Systematic-form codes allow easy implementation and quick look-up features for decoding
- For linear codes, any code is equivalent to a code in systematic form (given the same performance). Thus we can restrict our study to only systematic codes

Example: Hamming Code

- A family of (n,k) linear block codes that have the following parameters:
 - Codeword length $n = 2^m 1, m \ge 3$
 - # of message bits $k = 2^m m 1$
 - # of parity check bits n k = m
 - Capable of providing single-error correction capability with $d_{\min} = 3$

(7, 4) Hamming Code

 Consider a (7,4) Hamming code with generator matrix

$$\mathbf{G} = \begin{bmatrix} 1 & 0 & 0 & 0 & | & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & | & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & | & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & | & 1 & 0 & 1 \end{bmatrix}$$

Find all codewords

Solution

• Let
$$m = [1 \ 1 \ 1 \ 1]$$

 $c = mG = [1 \ 1 \ 1 \ 1] \begin{bmatrix} 1 & 0 & 0 & 0 & | & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & | & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & | & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & | & 1 & 0 & 1 \end{bmatrix}$
 $= [1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \end{bmatrix}$

List of all Codewords

• n = 7, k = 4 $\rightarrow 2^k = 16$ message blocks

Message					code	eword				
0	0	0	0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1	1	0	1
0	0	1	0	0	0	1	0	1	1	1
0	0	1	1	0	0	1	1	0	1	0
0	1	0	0	0	1	0	0	0	1	1
0	1	0	1	0	1	0	1	1	1	0
0	1	1	0	0	1	1	0	1	0	0
0	1	1	1	0	1	1	1	0	0	1
1	0	0	0	1	0	0	0	1	1	0
1	0	0	1	1	0	0	1	0	1	1
1	0	1	0	1	0	1	0	0	0	1
1	0	1	1	1	0	1	1	1	0	0
1	1	0	0	1	1	0	0	1	0	1
1	1	0	1	1	1	0	1	0	0	0
1	1	1	0	1	1	1	0	0	1	0
1	1	1	1	1	1	1	1	1	1	1

Parity Check Matrix

- For each G, it is possible to find a corresponding parity check matrix H $\mathbf{H} = \begin{bmatrix} \mathbf{P}^T & |\mathbf{I}_{n-k}\end{bmatrix}_{(n-k) \times n}$
- H can be used to verify if a codeword C is generated by G
- Let C be a codeword generated by $\mathbf{G} = [\mathbf{I}_k | \mathbf{P}]_{k \times n}$

$$\mathbf{c}\mathbf{H}^T = \mathbf{m}\mathbf{G}\mathbf{H}^T = \mathbf{0}$$

Example: Find the parity check matrix of (7,4) Hamming code

Error Syndrome

Received codeword r = c + e where e = Error vector or Error Pattern it is 1 in every position where data word is in error
Example

$$c = [1 \ 0 \ 1 \ 0]$$
$$r = [1 \ 1 \ 0 \ 0]$$
$$e = [0 \ 1 \ 1 \ 0]$$

Error Syndrome (cont'd)

- $\mathbf{s} \stackrel{\Delta}{=} \mathbf{r} \mathbf{H}^T$ = Error Syndrome
- But $\mathbf{s} = \mathbf{r}\mathbf{H}^T = (\mathbf{c} + \mathbf{e})\mathbf{H}^T$ $= \mathbf{c}\mathbf{H}^T + \mathbf{e}\mathbf{H}^T$ $= \mathbf{e}\mathbf{H}^T$

- 1. If $s=0 \rightarrow r = c$ and **m** is the 1st k bits of r
- 2. If s \neq 0, and s is the jth row of $\mathbf{H}^T \rightarrow 1$ error in jth position of r

Consider the (7,4) Hamming code example

$$\mathbf{H}^{T} = \begin{bmatrix} \mathbf{P}^{T} | \mathbf{I}_{n-k} \end{bmatrix}^{T} = \begin{bmatrix} \mathbf{P} \\ \mathbf{I}_{n-k} \end{bmatrix}$$
How many error
syndromes in total
$$= \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 Note that s is the last row
of HT

• So if r = [1 1 1 1 1 1 1] \implies rH^T = [0 0 0]

• But if
$$\mathbf{r} = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 0 \end{bmatrix}$$

 $\implies \mathbf{r}\mathbf{H}^T = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}$
 $= \text{Error syndrome s}$

- Also note error took place in the last bit
- => Syndrome indicates position of error

Cyclic Codes

• A code $C = \{c_1, c_2, \dots, c_{2^k}\}$ is cyclic if

$$(c_1, c_2, \ldots, c_n) \in C$$
 $(c_n, c_1, \ldots, c_{n-1}) \in C$

(7,4) Hamming code is cyclic

message	codeword
0001	0001101
1000	1000110
0100	0100011

Important Parameters

Hamming Distance between codewords c_i and c_i:

 $d(c_i, c_j) = \#$ of components at which the 2 codewords differ

Hamming weight of a codeword c_i is

 $w(c_i) = #$ of non-zero components in the codeword

• Minimum Hamming Distance of a code:

 $d_{min} = min d(c_i, c_j)$ for all $i \neq j$

Minimum Weight of a code:

 $w_{min} = min w(c_i)$ for all $c_i \neq 0$

- Theorem: In any linear code, $d_{\min} = w_{\min}$
- Exercise: Find d_{min} for (7,4) Hamming code

Soft-Decision and Hard-Decision Decoding

Soft-decision decoder operates directly on the decision statistics

 Hard-decision decoder makes "hard" decision (0 or 1) on individual bits

Here we only focus on hard-decision decoder

Hard-Decision Decoding

- Minimum Hamming Distance Decoding
 - Given the received codeword r, choose c which is closest to r in terms of Hamming distance
 - To do so, one can do an exhaustive search

- too much if k is large.

- Syndrome Decoding
 - Syndrome testing: $\mathbf{r} = \mathbf{c} + \mathbf{e}$ with $\mathbf{s} = \mathbf{r}\mathbf{H}^T$
 - This implies that the corrupted codeword r and the error pattern have the same syndrome
 - A simplified decoding procedure based on the above observation can be used

Standard Array

- Let the codewords be denoted as {c₁, c₂,..., c_M} with c₁ being the all-zero codeword
- A standard array is constructed as

Hard-Decoding Procedure

- Find the syndrome by r using $s=rH^T$
- Find the coset corresponding to s by using the standard array
- Find the cost leader and decode as $\mathbf{c} = \mathbf{r} + \mathbf{e}_j$
- Exercise: try (7,4) Hamming code

Error Correction Capability

A linear block code with a minimum distance d_{min} can

- Detect up to (d_{min} 1) errors in each codeword
- Correct up to $t = \lfloor \frac{d_{\min} 1}{2} \rfloor$ errors in each codeword
- t is known as the error correction capability of the code

Probability of Codeword Error for Hard-Decision Decoding

- Consider a linear block code (n, k) with an error correcting capability t. The decoder can correct all combination of errors up to and including t errors.
- Assume that the error probability of each individual coded bit is p and that bit errors occur independently since the channel is memoryless
- If we send n-bit block, the probability of receiving a specific pattern of m errors and (n-m) correct bits is

$$p^m(1-p)^{n-m}$$

 Total number of distinct pattern of n bits with m errors and (n-m) correct bits is

$$\binom{n}{m} = \frac{n!}{m!(n-m)!}$$

Total probability of receiving a pattern with m errors is

$$P(m,n) = \left(\begin{array}{c}n\\m\end{array}\right) \cdot p^m (1-p)^{n-m}$$

Thus, the codeword error probability is upper-bounded by

$$P_M \leq \sum_{m=t+1}^n \left(\begin{array}{c} n \\ m \end{array} \right) p^m (1-p)^{n-m}$$

(with equality for perfect codes)

Error Detection vs. Error Correction

- To detect e bit errors, we have $d_{\min} \ge e+1$
- To correct t bit errors, we have $d_{\min} \ge 2t+1$

Major Classes of Block Codes

- Repetition Code
- Hamming Code
- Golay Code
- BCH Code
- Reed-Solomon Codes
- Walsh Codes
- LDPC Codes: invented by Robert Gallager in his PhD thesis in1960, now proved to be capacityapproaching

Convolutional Codes

- A convolutional code has memory
 - It is described by 3 integers: n, k, and L
 - Maps k bits into n bits using previous (L-1) k bits
 - The n bits emitted by the encoder are not only a function of the current input k bits, but also a function of the previous (L-1)k bits
 - k/n = Code Rate (information bits/coded bit)
 - L is the constraint length and is a measure of the code memory
 - n does not define a block or codeword length

Convolutional Encoding

- A rate k/n convolutional encoder with constraint length L consists of
 - kL-stage shift register and n mod-2 adders
- At each unit of time:
 - k bits are shifted into the 1st k stages of the register
 - All bits in the register are shifted k stages to the right
 - The output of the n adders are sequentially sampled to give the coded bits
 - There are n coded bits for each input group of k information or message bits. Hence R = k/n information bits/coded bit is the code rate (k<n)

Encoder Structure (rate k/n, constraint length L)

Typically, k=1 for binary codes. Hence, consider rate 1/n codes

Convolution Codes Representation

- Encoding function: characterizes the relationship between the information sequence m and the output coded sequence U
- Four popular methods for representation
 - Connection pictorial and connection polynomials (usually for encoder)
 - ✓ State diagram -
 - Tree diagram Usually for decoder
 - ✓ Trellis diagram

Connection Representation

- Specify *n* connection vectors, g_i, *i* = 1,..., *n* for each of the n mod-2 adders
- Each vector has kL dimension and describes the connection of the shift register to the mod-2 adders
- A 1 in the *i*th position of the connection vector implies shift register is connected
- A 0 implies no connection exists

Example: L = 3, Rate 1/2

If Initial Register content is 0 0 0 and Input Sequence is 1 0 0. Then Output Sequence is 11 10 11

State Diagram Representation

- The contents of the rightmost L-1 stages (or the previous L-1 bits) are considered the current state => 2^{L-1} states
- Knowledge of the current state and the next input is necessary and sufficient to determine the next output and next state
- For each state, there are only 2 transitions (to the next state) corresponding to the 2 possible input bits
- The transitions are represented by paths on which we write the output word associated with the state transition
 - A solid line path corresponds to an input bit 0
 - A dashed line path corresponds to an input bit 1

Example: L =3, Rate = 1/2

Current	Input	Next	Output
State		State	
00	0	00	00
	1	10	11
10	0	01	10
	1	11	<i>01</i>
01	0	00	11
	1	10	00
11	0	01	01
	1	11	10

Example

 Assume that *m* =11011 is the input followed by *L*-1 = 2 zeros to flush the register. Also assume that the initial register contents are all zero. Find the output sequence *U*

Input	Register	State at	State at	Branch w	vord at time t_i			
bit m _i	contents	time t_i	time t_{i+1}	<i>u</i> ₁	<i>u</i> ₂			
	000	00	00					
1	100	00	10	1	1			
1	110	10	11	1	1			
0	011	11	01	0	0			
1	101	01	10	1	1			
1	110	10	11	1	1			
0	011	11	01	0	0			
0	001	01	00	0	0			
State t_i								
State t_{i+1} Output sequence: U = 11 01 01 00 01 01 11								

Trellis Diagram

- The trellis diagram is similar to the state diagram, except that it adds the dimension of time
- The code is represented by a trellis where each trellis branch describes an output word

Blue trellis lights

-- Columbus Park, New York City

Trellis Diagram

- Every input sequence $(m_1, m_2, ...)$ corresponds to
 - a path in the trellis
 - a state transition sequence $(s_0, s_1, ...)$, (assume $s_0=0$ is fixed)
 - an output sequence $((u_1, u_2), (u_3, u_4), ...)$
- Example: Let $s_0 = 00$, then
 - $b_1b_2b_3 = 000$ gives output 000000 and states aaaa
 - $b_1b_2b_3 = 100$ gives output **111011** and states *abca*

- We have introduced conv. code
 - Constraint length L and rate R = 1/n
 - Polynomials representation
 - State diagram representation
 - Trellis diagram representation

- We will talk about decoding of convolutional code
 - Maximum Likelihood Decoding
 - Viterbi Algorithm
 - Transfer Function

Maximum Likelihood Decoding

- Transmit a coded sequence U^(m) (correspond to message sequence m) using a digital modulation scheme (e.g. BPSK or QPSK)
- Received sequence z
- Maximum likelihood decoder
 - Find the sequence $U^{(j)}$ such that

 $P(\mathbf{Z}|\mathbf{U}^{j}) = \max_{\forall \mathbf{U}^{(m)}} P(\mathbf{Z}|\mathbf{U}^{(m)})$

 Will minimize the probability of error if m is equally likely

Maximum Likelihood Metric

 Assume a memoryless channel, i.e. noise components are independent. Then, for a rate 1/n code

$$P(\mathbf{Z}|\mathbf{U}^{(\mathbf{m})}) = \prod_{i=1}^{\infty} P(Z_i|U_i^{(m)}) = \prod_{i=1}^{\infty} \prod_{j=1}^{n} P(z_{ji}|u_{ji}^{(m)})$$

i-th branch of **Z**

Then the problem is to find a path through the trellis such that

by taking log

$$\max_{\mathbf{U}^{(m)}} \prod_{i=1}^{\infty} \prod_{j=1}^{n} P(z_{ji}|u_{ji}^{(m)}) \quad \text{Log-likelihood path metric} \\
\max_{\mathbf{U}^{(m)}} \sum_{i=1}^{\infty} \sum_{j=1}^{n} \log P(z_{ji}|u_{ji}^{(m)}) \quad \text{i-th branch metric} \\
= \max_{\mathbf{U}^{(m)}} \sum_{i=1}^{\infty} \sum_{j=1}^{n} \left(LL\left(z_{ji}|u_{ji}^{(m)}\right) - \text{Log-likelihood of } z_{ji}|u_{ji}^{(m)}\right)$$

Decoding Algorithm: Log-Likelihood

For AWGN channel (soft-decision)

- $z_{ji} = u_{ji} + n_{ji}$ and $P(z_{ji}|u_{ji})$ is Gaussian with mean u_{ji} and variance σ^2
- Hence

$$\ln p(z_{ji}|u_{ji}) = -\frac{1}{2}\ln(2\pi\sigma^2) - \frac{(z_{ji} - u_{ji})^2}{2\sigma^2}$$

- Note that the objective is to compare which Σ_i ln(p(z|u)) for different u is larger, hence, constant and scaling does not affect the results
- Then, we let the log-likelihood be $LL(z_{ji}|u_{ji}) = -(z_{ji} u_{ji})^2$ and $\log P(Z|U^{(m)}) = -\sum_{i=1}^{\infty} \sum_{j=1}^{n} \left(z_{ji} - u_{ji}^{(m)}\right)^2$
- Thus, soft decision ML decoder is to choose the path whose corresponding sequence is at the minimum Euclidean distance to the received sequence Meixia Tao @ SJTU

For binary symmetric channel (hard decision)

$$LL(z_{ji} | u_{ji}) = \ln p(z_{ji} | u_{ji}) = \begin{cases} \ln p & \text{if } z_{ji} \neq u_{ji} \\ \ln(1-p) & \text{if } z_{ji} = u_{ji} \end{cases}$$
$$= \begin{cases} \ln p/(1-p) & \text{if } z_{ji} \neq u_{ji} \\ 0 & \text{if } z_{ji} = u_{ji} \end{cases}$$
$$= \begin{cases} -1 & \text{if } z_{ji} \neq u_{ji} \\ 0 & \text{if } z_{ji} = u_{ji} \end{cases} \text{ (since p<0.5)}$$
$$\text{Thus}$$
$$\log P(Z|U^{(m)}) = -d_m \checkmark \qquad \text{Hamming distance between Z and } U^{(m)}, \text{ i.e. they differ in } d_m \text{ positions} \end{cases}$$

Hard-Decision ML Decoder = Minimum Hamming Distance Decoder

- Maximum Likelihood Decoding Procedure
 - Compute, for each branch *i*, the branch metric using the output bits $\{u_{1,i}, u_{2,i}, \ldots, u_{n,i}\}$ associated with that branch and the received symbols $\{z_{1,i}, z_{2,i}, \ldots, z_{n,i}\}$
 - Compute, for each valid path through the trellis (a valid codeword sequence $U^{(m)}$), the sum of the branch metrics along that path
 - The path with the maximum path metric is the decoded path
- To compare all possible valid paths we need to do exhaustive search or brute-force, not practical as the # of paths grow exponentially as the path length increases
- The optimum algorithm for solving this problem is the Viterbi decoding algorithm or Viterbi decoder

Andrew Viterbi (1935-)

- BS & MS in MIT
- PhD in University of Southern California
- Invention of Viterbi algorithm in 1967
- Co-founder of Qualcomm Inc. in 1983

Viterbi Decoding (R=1/2, L=3)

Input data sequence **m**: Coded sequence **U**: Received sequence **Z**:

Branch metric

Viterbi Decoder

- Basic idea:
 - If any 2 paths in the trellis merge to a single state, one of them can always be eliminated in the search
- Let cumulative path metric of a given path at t_i = sum of the branch metrics along that path up to time t_i
- Consider t₅
 - The upper path metric is 4, the lower math metric is 1
 - The upper path metric CANNOT be part of the optimum path since the lower path has a lower metric
 - This is because future output branches depend only on the current state and not the previous state

Path Metrics for 2 Merging Paths

Viterbi Decoding

- At time t_i , there are 2^{L-1} states in the trellis
- Each state can be entered by means of 2 states
- Viterbi Decoding consists of computing the metrics for the 2 paths entering each state and eliminating one of them
- This is done for each of the 2^{L-1} nodes at time t_i
- The decoder then moves to time t_{i+1} and repeats the process

Example

Distance Properties

- d_{free} = Minimum Free distance = Minimum distance of any pair of arbitrarily long paths that diverge and remerge
- A code can correct any t channel errors where (this is an approximation) $t \leq \lfloor \frac{d_{\text{free}} 1}{2} \rfloor$

Transfer Function

- The distance properties and the error rate performance of a convolutional code can be obtained from its transfer function
- Since a convolutional code is linear, the set of Hamming distances of the code sequences generated up to some stages in the trellis, from the all-zero code sequence, is the same as the set of distances of the code sequences with respect to any other code sequence
- Thus, we assume that the all-zero path is the input to the encoder

State Diagram Labeled according to distance from all-zero path

 The transfer function T(D,N,L), also called the weight enumerating function of the code is

$$T(D, N, L) = \frac{X_e}{X_a}$$

By solving the state equations we get

$$T(D, N, L) = \frac{D^5 N L^3}{1 - D N L (1 + L)}$$

= $D^5 N L^3 + D^6 N^2 L^4 (1 + L) + D^7 N^3 L^5 (1 + L)^2$
+ $\dots + D^{l+5} N^{l+1} L^{l+3} (1 + L)^l + \dots$

- The transfer function indicates that:
 - There is one path at distance 5 and length 3, which differs in 1 input bit from the correct all-zeros path
 - There are 2 paths at distance 6, one of which is of length 4, the other length 5, and both differ in 2 input bits from all-zero path
 - $d_{\text{free}} = 5$

Known Good Convolutional Codes

- Good convolutional codes can only be found in general by computer search
- There are listed in tables and classified by their constraint length, code rate, and their generator polynomials or vectors (typically using octal notation).
- The error-correction capability of a convolutional code increases as n increases or as the code rate decreases.
- Thus, the channel bandwidth and decoder complexity increases

Good Codes with Rate 1/2

Constraint Length	Generator Polynomials	d _{free}
3	(5,7)	5
4	(15,17)	6
5	(23,35)	7
6	(53,75)	8
7	(133,171)	10
8	(247,371)	10
9	(561,753)	12
10	(1167,1545)	12

Good Codes with Rate 1/3

Constraint Length	Generator Polynomials	d _{free}
3	(5,7,7)	8
4	(13,15,17)	10
5	(25,33,37)	12
6	(47,53,75)	13
7	(133,145,175)	15
8	(225,331,367)	16
9	(557,663,711)	18
10	(1117,1365,1633)	20

Basic Channel Coding for Wideband CDMA

Service-specific coding

Convolutional code is rate 1/3 and rate 1/2, all with constraint length 9

Channel Coding for Wireless LAN (IEEE802.11a)

Table 11-3. Encoding details for different OFDM data rates							
Speed (Mbps)	Modulation and coding rate (R)	Coded bits per carrier ^[a]	Coded bits per symbol	Data bits per symbol ^{ibi}			
6	BPSK, R=1/2	1	48	24			
9	BPSK, R=3/4	1	48	36			
12	QPSK, R=1/2	2	96	48			
18	QPSK, R=3/4	2	96	72			
24	16-QAM, R=1/2	4	192	96			
36	16-QAM, R=3/4	4	192	144			
48	64-QAM, R=2/3	6	288	192			
54	64-QAM, R=3/4	6	288	216			

Source: 802.11 Wireless Networks: The Definitive Guide / by M. Gast / O'Reilly

Other Advanced Channel Coding

- Low-density parity check codes: Robert Gallager 1960
- Turbo codes: Berrou et al 1993
- Trellis-coded modulation: Ungerboeck 1982
- Space-time coding: Vahid Tarokh et al 1998
- Polar codes: Erdal Arikan 2009

Find out the coding techniques adopted in LTE

