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Indoor localization is essential for healthcare, security, augmented reality gaming, and many other location-

based services. There is currently a wealth of relevant literature on indoor localization. This article focuses

on recent advances in indoor localization methods that use spatial context to improve the location estima-

tion. Spatial context in the form of maps and spatial models have been used to improve the localization by

constraining location estimates in the navigable parts of indoor environments. Landmarks such as doors and

corners, which are also one form of spatial context, have proved useful in assisting indoor localization by cor-

recting the localization error. This survey gives a comprehensive review of state-of-the-art indoor localization

methods and localization improvement methods using maps, spatial models, and landmarks.
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1 INTRODUCTION

Indoor localization has been studied for decades and a number of indoor localization solutions
have been proposed [72, 124, 149, 173, 174] that use different localization signals such as WiFi,
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Table 1. Comparison of This Work with Existing Survey Works

Reference Year Indoor Localization Methods
Spatial Constraints

Used Landmark

Liu et al. [94] 2007 Proximity, triangulation, fingerprinting Not covered Not covered

Gu et al. [51] 2009
Proximity, triangulation,

Not covered Not covered
fingerprinting, visual localization

Harle et al. [52] 2013 Dead-reckoning Map Not covered

Yang et al. [188] 2015
Triangulation, fingerprinting,

Not covered Context landmarks
dead-reckoning

Shang et al. [149] 2015
Triangulation, fingerprinting, Map, grid model,

Not covered
dead-reckoning, hybrid localization graph model

Davidson et al. [27] 2016
Triangulation, fingerprinting,

Map Not covered
dead-reckoning

Pei et al. [124] 2016
Fingerprinting, dead-reckoning,

Map Not covered
hybrid localization

Zafari et al. [192] 2017 Triangulation, fingerprinting Not covered Not covered

This paper 2019 Triangulation, fingerprinting, dead-reckoning Map, grid model Comprehensive

Ultra-wideband (UWB), Zigbee, Bluetooth, Radio-frequency Identification (RFID), Global System
for Mobile Communication (GSM), and inertial sensors. However, each of these techniques suf-
fers from limitations in accuracy, coverage, cost, complexity, and applicability. To achieve a higher
accuracy with relatively low cost, hybrid methods combining multiple localization signals have
been used. Common hybrid methods include multimodal fingerprinting, triangulation-based fu-
sion, and pedestrian dead-reckoning-based fusion. The problem of combining several localization
signals is that the required infrastructure (e.g., Bluetooth beacons or WiFi access points) may not
be available in many environments or it may be available at a high cost.

Spatial context such as maps and landmarks, which is available in many scenarios, can be used
to assist localization without additional hardware. While complex indoor spaces attenuate many
localization signals such as WiFi, which makes localization challenging and difficult, they supply
spatial constraints that are helpful for calibrating the localization error. Landmarks are one form of
spatial context useful for indoor localization, which can be sensed by the sensors built in a smart
device. A landmark in linguistics and cognitive science is generally defined as: everything that

stands out of the background [129]. In the context of indoor localization, a landmark stands for a
location point that imposes a certain pattern on the sensor readings [45, 46, 165]. Since these loca-
tion points exist in indoor environments naturally, one can combine them to bound the localization
error at no extra cost.

In this article, we provide a comprehensive survey of state-of-the-art indoor localization meth-
ods with particular focus on how spatial context is used to enhance indoor localization. Although
several surveys on indoor localization have been conducted, a comprehensive survey focusing on
the role of spatial context in various localization methods is currently not available. Table 1 lists
existing surveys on indoor localization and demonstrates how the scope of this survey is different
from the existing ones.

To summarize, the main contributions of this article are as follows:

• We provide a comprehensive survey on methods for localization improvement using spatial
constraints that are in the form of maps, grid models, and graph models.

• We survey state-of-the-art indoor localization methods that use landmarks. Methods for
landmark detection are discussed and state-of-the-art indoor localization systems based on
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landmarks are introduced. To the best of our information, this survey is the first work on
reviewing landmark-based indoor localization systematically.

This survey is structured as follows: Section 2 introduces the taxonomy of indoor localization
and gives a systematic review on the state-of-the-art indoor localization methods. Section 3 sur-
veys indoor localization improvement methods, including map -matching-based and spatial -model-

based. Section 4 first gives the definition of landmark in the context of indoor localization, followed
by the introduction of different types of landmarks, and then presents the landmark detection as
well as the state-of-the-art systems using landmarks. Section 5 concludes this article and gives
open research challenges.

2 INDOOR LOCALIZATION METHODS

Indoor localization methods estimate the location of an entity (e.g., a person or object) by using
localization signals such as WiFi, UWB, Zigbee, Bluetooth, RFID, Cellular, Infrared (IR), Frequency
Modulation (FM), inertial sensors, and camera [27, 43, 51, 94, 100, 123, 157]. According to the
localization principles, we categorize indoor localization methods into five types: Proximity, Trian-

gulation, Fingerprinting, Dead -reckoning, and Hybrid Localization. The performance of each local-
ization method can be improved by making use of spatial context in the form of a map or landmark
representation of the environment. The relationship between localization signals, measurements,
methods, and spatial context is illustrated in Figure 1. Localization methods use measurements
from localization signals to estimate the location of a person or object, which can be further im-
proved by spatial context. Note that this survey focuses on localization for a single individual user
or object, and methods for multiple users or objects, such as cooperative localization [26, 175], are
out of the scope of this article.

2.1 Proximity

Proximity approaches determine the location of an object by sensing whether the object is close
to a known location or an area [56]. Proximity approaches can be categorized as three types. The
first one is detecting physical contact, which is usually based on touch sensors, pressure sensors,
or capacitive field detectors. A typical system that detects physical contact is the Touch Mouse
[58], which can sense the contact from user’s hand by using capacitive sensors. The second one is
monitoring wireless anchor devices such as WiFi access points (APs) or near-field communication
(NFC) readers, which locates a user by checking whether he or she is in range of one or more
anchor devices. For example, the Active Badge system [169] determines the location of an individ-
ual equipped with an Infrared (IR) badge by detecting at which sensor the badge is observed. The
third one is observing automatic identification systems such as public transport card terminals
and point-of-sale terminals. These systems usually require to attach a tag, button, or barcode on
the object and then locate the object when the attached tag is observed at a terminal or device
with known location. In Reference [113], an RFID-based localization system is presented, which
consists of tags and readers. By placing a number of readers in known locations, the location of
a person or object with a tag can be inferred when a reader receives signals from the tag. The
proximity localization approaches are simple and easy to implement, but they can only sense the
location within a limited area, and the achieved localization accuracy is low.

2.2 Triangulation

Triangulation localization approaches estimate the location of an object by utilizing triangles’
geometry properties [94]. The location is estimated from the measurements between the mo-
bile object and transmitters (e.g., WiFi access points, GSM towers, Bluetooth beacons). These
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Fig. 1. The relationship between localization signals, measurements, methods, and spatial information.

Fig. 2. The principle of localization by triangulation, where the green dot indicates the location of a mo-

bile object or person, and the black dot represents the location of a transmitter or base station. d is the

distance between the object and the transmitter, and θ is the angle. (a) The location is estimated by the

intersection point of three circles. (b) The location is estimated by the intersection point of two hyperbo-

las. (c) The location is estimated by the intersection point of directional lines. The figures are adapted from

Reference [94].

measurements can be the received signal strength (RSS) [125], time-of-arrival (TOA) [127], time-
difference-of-arrival (TDOA) [186], round-trip time-of-flight (RTOF) [73], angle of arrival (AOA)
[162], and camera pose [143, 163]. These measurements can be obtained from different localization
signals such as WiFi, cellular, FM, IR, Bluetooth, UWB, sound, light, and camera. Figure 2 shows
the triangulation localization principle of using different measurements.

RSS-based triangulation relies on an accurate signal propagation model, which converts the
RSS into the distance, from which the location of an object is computed using the geometry of
circles [116]. RSS-based methods are simple, low-cost, and easy-to-implement; however, building
an accurate signal propagation model is challenging in indoor environments because of multipath
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interference and shadowing [27]. Besides, RSS is vulnerable to mobility of the phone or reflec-
tors (e.g., people walking in the environment), device orientation, device type and model, and so
on. The accuracy of RSS-based methods is usually low due to the inaccuracy of converting RSS
measurements to corresponding distances.

TOA-based triangulation estimates the locations of an object by measuring the time-of-arrival
between the object (equipped with a receiver) and transmitters [42]. To achieve 2D localization, at
least three TOA measurements from different transmitters are required. Since the speed of wireless
signal is constant, the distance to different transmitters can be calculated once the TOA measure-
ment is obtained. Then the object’s location can be computed by using least-squares algorithm,
closest neighbor, or residual weighting [67]. Compared to the RSS-based methods, the TOA-based
methods can achieve a high localization accuracy. The main problem of TOA-based methods is
the requirement of precise synchronization between all transmitters and receivers, resulting in a
relatively high cost.

Similar to TOA-based triangulation, RTOF-based triangulation locates an object by measuring
the round-trip time of flight (RTOF) of the signal propagating from the mobile receiver to the trans-
mitters and back [140]. However, the RTOF-based approach has no need for clock synchronization
between the mobile receiver and transmitters [105]. A challenge of the RTOF-based approach is
to obtain the exact delay/processing time caused by the mobile receiver, which cannot be ignored
when the distance between the receiver and transmitters is short.

TDOA-based triangulation has been proposed to relieve the need of TOA-based methods for
precise synchronization, which measures the time difference of receiving the signal at multiple
transmitters. A 2D object’s location can be calculated with two or more TDOA measurements via
nonlinear regression methods such as a linear iterative algorithm [160]. TDOA-based methods can
achieve a relatively high accuracy and have no requirement for strict clock synchronization be-
tween transmitters and mobile object. However, it is still required to synchronize the clock between
transmitters.

AOA-based triangulation determines the location of an object by measuring the AOA from mul-
tiple transmitters [162], which can be done with an array of antennas or directional antennas. The
advantages of AOA-based approaches are that the 2D location estimation can be made only with
two transmitters and that it has no requirement for clock synchronization. Its drawbacks include
the need for special and expensive hardware (e.g., directional antennas) and the degradation of
location estimates as the distance between the mobile object and the transmitters increases [94,
123]. ArrayTrack [184] and SpotFi [75] use the channel status information (CSI) from existing WiFi
APs to derive AOA and/or TOF information, which achieve a decimeter-level accuracy.

The triangulation principle for localization has been widely used in visual localization by one
or more cameras, which is usually called camera-pose-estimation-based method. It estimates the
location by calculating the pose of the camera carried by a user. Visual features in the images
such as point descriptors and image edges have been used for estimating the camera pose [143,
163] by modeling the transformation between the image coordinate system and the world coordi-
nate system (e.g., perspective n-point problem) [144]. Visual odometry [114], visual simultaneous
localization and mapping (SLAM) [28], and model-based visual tracking [83] fall under this cate-
gory. Pose-estimation-based methods are able to achieve a centimeter-level accuracy when there
are sufficient distinctive visual landmarks or features in the environment. However, these meth-
ods are likely to fail in environments with poorly textured surfaces. Also, visual odometry and
visual SLAM methods suffer from the drift of the estimated trajectory due to the accumulation
of local motion estimation errors, whereas model-based visual tracking does not have this prob-
lem, because the errors are continuously corrected by using the known world coordinates of the
landmarks.
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Fig. 3. The principle of WiFi fingerprinting.

2.3 Fingerprinting

Fingerprinting is a popular method for estimating an object’s location, the key idea behind which
is computing the location of the object by matching a set of measurements called a fingerprint with
a set of fingerprints that are collected and stored in a pre-built database [27, 60, 153]. A fingerprint
is the measurements from a localization signal at a certain location. For example, WiFi fingerprints
are the RSS measurements from visible APs. Fingerprinting consists of two phases: training and
localization. In the training phase, a fingerprint database within the area of interest is established
at a certain level of granularity. Finer granularity usually means better accuracy, but requires more
effort in terms of time and labor for the collection of fingerprints. In the localization phase, the
location of the object is computed by matching the collected fingerprint with the fingerprints in
the database using deterministic algorithms or probabilistic algorithms [29]. Depending on the
used localization signals, fingerprinting can be categorized as wireless fingerprinting, magnetic fin-

gerprinting, and visual fingerprinting.
Wireless fingerprinting uses wireless signals including WiFi, cellular, FM, Zigbee, RFID, Blue-

tooth, and so on to locate an object. Among them, WiFi fingerprinting is the most popular one
because of its ubiquity in public areas. Figure 3 shows the rationale of WiFi fingerprinting us-
ing RSS measurements. Apart from RSS measurements, CSI measurements can also be used for
localization. The difference is that RSS-based fingerprinting uses the total received power [53],
while CSI-based fingerprinting utilizes the amplitude and/or phase of each subcarrier of the chan-
nel [167, 189]. Compared with RSS-based fingerprinting, CSI-based fingerprinting is more robust
and has higher accuracy [145]. However, the WiFi cards on modern smartphones and other smart
devices (except some laptops) do not support the extraction of CSI, which constrains the applica-
bility of CSI fingerprinting. The main challenge of wireless fingerprinting is that the construction
of a fingerprint database is troublesome and time-consuming. Many efforts have been made to
relieve the site survey task, mainly including WiFi SLAM [36, 38] and crowdsourcing [101, 121,
187]. However, the heavy computational load of these WiFi SLAM systems prevents them from
being implemented on the resource-limited mobile devices. Compared with WiFi SLAM methods,
crowdsourcing methods consume less computational cost, but they suffer from the requirement
for active user participation, low accuracy, and limited applicability.

Magnetic fingerprinting is similar to wireless fingeprinting. A magnetic field map, composed of
tuples of magnetic readings and location coordinates, is constructed in the training phase. Each
tuple is called a fingerprint. Unlike WiFi fingerprints, which can be collected by the user standing
at known points, magnetic fingerprints are usually extracted from temporal traces, since a sin-
gle magnetic fingerprint is not useful for localization. There are usually three forms of magnetic
measurements: raw 3D magnetometer readings [24], magnitude [155], and horizontal and vertical
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Fig. 4. The principle of pedestrian dead-reckoning.

components [85, 183]. Magnetic fingerprinting based on raw readings is easy to implement and
has high location discernibility, but it is sensitive to noise. Magnitude-based fingerprinting is rela-
tively robust to noise, but it has low location discernibility. Methods using horizontal and vertical
components of magnetic fields perform moderately in terms of robustness to noise and location
discernibility. Similar to the construction of a wireless radio map, the cost of constructing a mag-
netic field map can be very high if it is conducted manually. To reduce the time and effort required
to build the magnetic field map, one can either deploy other localization systems such as vision-
based systems [194] or use crowdsourcing [121]. In the localization phase, the newly measured
magnetic field trace is matched with magnetic fingerprints from the magnetic field map to infer
the location through spatial-temporal sequence-based methods [54]. Spatial-temporal sequence-
based methods model the magnetic localization problem as a sequence/string matching problem,
which can then be done via dynamic time warping [152] or probabilistic approaches such as hidden
Markov model [146] and conditional random fields [181].

The principle of fingerprinting can be applied to visual localization as well. In fact, image re-
trieval and pose regression methods can be categorized as visual fingerprinting methods [132]. In
nonparametric image retrieval approaches, the location of a query image is inferred by search-
ing for the images from a large geo-tagged reference image database that are best matched with
the query image [108]. Parametric approaches train a model (a classifier or regressor) using geo-
tagged images and predict the corresponding location of the query image using the trained model
[68, 171]. Images can be represented by different types of features, including local features (e.g.,
point features, geometric features, point features with geometric relations), global features (e.g.,
GIST-descriptor-based, CNN-based), hybrid features (e.g., patch features, combined features), and
semantic features (e.g., skyline features, point ray) [128]. The main challenges of visual finger-
printing include construction of an accurate reference image database, image annotation, and ro-
bustness improvement against different conditions.

2.4 Dead Reckoning

Dead Reckoning (DR) uses inertial sensors to estimate relative location and requires little or no
infrastructure to be deployed [15, 52]. The basic idea is inferring the current location from the
moving direction, velocity, and sampling interval, given an initial position. The ubiquity of sensor-
rich smart devices has made DR a popular indoor localization method [25, 95, 147]. In this study,
we focus on reviewing dead-reckoning for pedestrians called pedestrian dead-reckoning (PDR).
As shown in Figure 4, PDR is composed of three components: step detection (or counting), step
length estimation, and heading estimation.

Step detection can be done by using camera [119], accelerometer [15], commercial pedome-
ters [106], and so on. This article reviews mainly the step detection methods using smartphone
accelerometers, including peak detection [47], threshold setting [151], auto-correlation analysis
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[133], and spectral analysis [52]. Peak-detection-based methods are based on the observation that
the number of steps corresponds to the number of acceleration peaks [193]. Therefore, by detecting
these peaks, one can count how many steps a user takes. The threshold-based methods detect steps
by comparing the accelerometer readings with a certain threshold [93, 117]. The auto-correlation
analysis methods utilize the auto-correlation of the acceleration signal to detect steps. The spec-
tral analysis methods work by first transforming accelerometer data into frequency domain and
then identifying the dominant frequency corresponding to a step [52]. The main challenges of step
detection are variations in phone poses and walking modes, which may lead to a large detection
error if not properly considered.

After detecting steps, different models can be used to compute the step length. Because of the
inherent smartphone sensor noise, double integration of the acceleration measurements results in
inaccurate estimates of step length. Weinberg [170] proposed a step length estimation approach
based on the maximum vertical displacement of the hip. Kim et al. [74] also introduced a similar
model that uses the acceleration samples to estimate the step length. The disadvantage of these
acceleration-based models is that they do not consider different phone poses and varying walk-
ing speeds, which have an important effect on the accuracy of step length estimation. A linear
model that considers walking speeds was used in Reference [139], but it requires users’ height
information, which may limit its applicability, since some users may not be comfortable provid-
ing their individual information. An adaptive step model is proposed in Reference [86], which
uses a personalization algorithm to learn a personal model from a generic step model. However,
this personalization process is based on spatial constraints from a floor plan, which may not al-
ways be available. In Reference [23], a neural-network-based method is introduced, which consid-
ers walking frequency, variance of the accelerometer signals, and the ground inclination. However,
it is based on the shoe-mounted accelerometer and hence is unsuitable for smartphone-based ap-
plications. In addition, the step length can be estimated by combining step counting with spatial
information such as landmarks or floor plans [147, 165]. Although these methods eliminate the re-
quirement of users’ height information and are independent of phone poses, they assume that the
user walks at a consistent speed, which may not always be a valid assumption. A deep-learning-
based step length estimation method is presented in Reference [50], which considers different
phone poses, varying walking speeds, and different users.

Another important component of PDR is heading estimation, which is usually based on the
compass [95] or the gyroscope [165]. The compass measures the angle with respect to the Earth’s
magnetic north, while the gyroscope reports the angular velocity. However, the compass is vulner-
able to ferromagnetic materials (e.g., metals) and the gyroscope readings drift over time. To tackle
these problems, some researchers have suggested combining with different sensors or spatial in-
formation. A combination of the compass readings and gyroscope readings by using the Kalman
filter is presented in Reference [147]. WalkCompass fuses the gyroscope readings with the com-
pass readings and the accelerometer readings [141]. WiDir uses WiFi signals to estimate a human’s
walking direction [177]. Zee infers the heading by using a particle filter to fuse the compass read-
ings with a floor plan [133]. In UnLoc [165], the drift problem of gyroscope readings is addressed
with landmarks. A landmark graph is used to assist in achieving accurate heading estimation in
Reference [45].

Overall, PDR is a self-localization technique that has become one of the mainstream indoor
localization methods. The advantages of PDR are that it needs no extra infrastructure and has
no coverage limitation. This makes it especially applicable to locate and navigate in the WiFi-
deprived areas. However, it suffers from the accumulated error problem, leading to the degradation
of accuracy over time. Thus, it needs to be corrected periodically, which can be done by using other
localization methods or using spatial information such as maps and landmarks.
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2.5 Hybrid Localization

Different localization techniques have various advantages and limitations in terms of accuracy,
coverage, requirement for infrastructure, and cost of deployment, and no single localization
method can meet the demands of all applications. The key to implementing a practical localization
system is fusing different localization signals such that they can complement each other [149]. The
method integrating multiple localization signals is called hybrid localization. The most common
hybrid localization methods include multimodal fingerprinting [152], triangulation-based fusion

[17], and PDR-based fusion [18].
Multimodal fingerprinting is similar to WiFi fingerprinting, but it uses signals from multiple

sources. The commonly used multimodal fingerprinting combines WiFi fingerprints and magnetic
fingerprints [7]. Generally, WiFi fingerprinting is able to provide a global location accuracy, but
its accuracy is relatively low. On the contrary, magnetic fingerprinting can achieve a higher ac-
curacy, yet it works only locally. The combination of WiFi fingerprints and magnetic fingerprints
can compensate the drawbacks of the two methods, achieving a high accuracy. Another popular
implementation of multimodal fingerprinting is integrating WiFi with other opportunistic signals
such as FM, GSM, and DTV, which exist in the environment but are not specially created for local-
ization purposes [124]. Apart from the above combinations, ambient features such as color, light,
and sound can also be regarded as fingerprints. The advantage of multimodal fingerprinting is that
it can achieve a higher localization accuracy than using single fingerprinting without needing ex-
tra infrastructure. Nevertheless, the construction of the fingerprint database is labor-intensive and
time-consuming. Although many efforts have been made to accelerate the site survey process of
fingerprinting, most of them rely heavily on fine-grained maps or active user participation.

Triangulation-based fusion improves the localization accuracy by integrating multiple types
of measurements, such as RSS, TOA, TDOA, and AOA. In complex indoor environments, using
one single type of measurement is insufficient to obtain a satisfactory accuracy due to the non-
line-of-sight propagation of signals, but fusing multiple kinds of measurements can overcome this
issue to some extent. Typical fusion methods are least squares (LS) [164], Bayes filters [168], max-
imum likelihood [17], and Taylor series [79]. The main drawback of triangulation-based fusion is
its requirement for two or more types of hardware, which increases the cost of deployment and
maintenance.

PDR-based fusion combines PDR with wireless localization methods, which is widely used in
the literature. PDR is a self-localization technique that provides continuous relative location esti-
mation, but it suffers from the drift problem, resulting in unsuitability for long-term localization.
By contrast, wireless localization gives absolute location but fails to achieve continuous location
estimation when there are not enough access points or beacons in the environment. Fusing PDR
with wireless localization addresses both the drift problem of PDR and the failure of wireless local-
ization methods for continuous localization (tracking). This fusion is usually implemented using
Bayes techniques such as Kalman filter [21] or extended Kalman filter [30], particle filter [64], and
hidden Markov model [95]. The main challenge of PDR-based fusion is the accurate heading esti-
mation of the user, which is especially difficult when the user carries their device in an arbitrary
pose.

Fusion of visual observations taken from a single or multiple cameras with inertial measure-
ments can also be categorized as PDR-based localization [69, 135]. Since localization only by vi-
sual observations can be compromised in low-textured environments due to insufficient geometric
features, inertial measurements such as the outputs of accelerometers and gyroscopes can comple-
ment visual observations, resulting in a seamless localization. The integration of visual observa-
tions with inertial measurements is known as visual-inertial odometry (VIO) [89]. State-of-the-art
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VIOs exploit different types of cameras such as perspective, which have a limited field-of-view
(FoV) and follow the standard perspective projection model in mono mode [84, 89, 136] or stereo
mode [136, 158]; rolling-shutter [88, 90], in which images are stored row by row, typically with a
constant delay; and omnidirectional cameras [137, 138], which have a FoV wider than 180◦ utiliz-
ing the maximum potential of surrounding visual observations. From an estimation point of view,
VIO techniques mostly use either non-linear optimization [84], which minimizes a least-squares
error function iteratively [76], or a recursive algorithm, which estimates motion parameters re-
cursively in a filter as visual and inertial measurements become available. Although localization
by using visual observations decreases the drift over time to a considerable extent and provides
fully seamless localization, the VIO approach still suffers from drift over long trajectories.

2.6 Summary and Discussion

Table 2 gives a summary of popular indoor localization systems and solutions. It presents the used
localization signal, reference, measurement, method, accuracy, cost, complexity, and test area. Note
that the test area is provided to avoid prejudice on the performance of different technologies that
are affected by the test environments.

Overall, proximity methods are very simple and easy to deploy, but their localization accuracy
of proximity methods depends on the number of anchor devices (e.g., POS terminals, RFID readers)
that sense the tags. The coverage and applicability of proximity approaches are poor, since these
anchor devices are usually installed at certain areas, making it difficult to scale up proximity-based
systems.

Triangulation methods have a much larger coverage and usually achieve a higher localization
accuracy than proximity methods. For example, triangulation using UWB or light signals can gen-
erally achieve centimeter-level accuracy. However, triangulation methods using wireless signals
also suffer from varying limitations, such as multipath interference and shadowing, time synchro-
nization, and requirement for specific hardware. Triangulation using vision does not have the
above limitations and can achieve a high accuracy by making use of visual features from the envi-
ronment. However, it is affected by light conditions, resolution of camera, and richness of texture
in the environment. Also, camera-based methods are intrusive towards people’s privacy, which
may prohibit their application in some scenarios.

Fingerprinting is one of the commonly used indoor localization methods because of its ability
to make use of existing infrastructure (e.g., WiFi APs) or indoor signatures (e.g., magnetism, visual
features of objects). The main challenge is the construction of a fingerprint database, which can be
cost-prohibitive for large-scale environments if it is done manually. Many efforts have been made
to reduce the time and effort of constructing the fingerprint database, such as SLAM methods and
crowdsourcing methods. Nevertheless, these methods of fast fingerprint database construction are
usually computationally expensive or cannot obtain accurate results.

DR is a self-localization method that can provide continuous location estimates given an initial
localization. However, it cannot be used for long-term localization and tracking tasks because of
its accumulated error problem. Specifically, DR is affected by different user motion states, device
poses, device heterogeneity, and ferromagnetic disturbance (affecting the heading estimation using
the compass). To overcome these challenges, DR is often combined with other localization methods
or spatial information.

Hybrid localization combines multiple localization signals to improve localization accuracy or
expand localization coverage. It can somehow overcome the limitations of single individual local-
ization signal. However, multiple localization signals may not exit in the environment of interest.
Also, it is challenging to decide which localization signal should be used in different areas or to
fuse these localization signals in an efficient way.
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3 LOCALIZATION IMPROVEMENT BY SPATIAL CONSTRAINTS

While hybrid localization methods are successful in improving localization accuracy, they usually
require additional hardware or infrastructure such as WiFi APs and Bluetooth beacons. However,
spatial context, which is available or easy to obtain in many situations, can be used to improve the
localization accuracy to alleviate the need for extra hardware or infrastructure. Dey [31] defined
context as any information that can be used to characterize the situation of an entity (e.g., a person

or object). In this study, we consider spatial context as spatial information that imposes constraints
on the entity’s location or characterizes a certain area. Three types of context are taken into ac-
count in this article, namely maps, spatial models, and landmarks. Maps and spatial models impose
spatial constraints on the entity’s reachability, which can be utilized to refine coarse location es-
timates. Landmarks represent a unique area in spatial space, which can be used to correct the
localization error. In this section, we introduce the localization improvement methods provided
by spatial constraints, including map matching and spatial-model-based methods.

3.1 Map Matching

In the context of indoor localization, map matching can be categorized into three types: point-to-

point matching, trajectory matching, and probabilistic graphical model. A map describes the layout
and elements of an indoor environment. It is often in the form of a floor plan. Point-to-point
method matches location points with the places of indoor spaces according to floor plans. Point-
to-point matching is advantageous for its simplicity and high computational efficiency, but it is
sensitive to the way in which the path network is digitized [172].

Trajectory matching utilizes the geometry and topology information of indoor structures (e.g.,
corners, corridors, and rooms) to match the obtained trajectory. A geometric-similarity-based tra-
jectory matching method is applied to correct the drift error of the gyroscope in Reference [81],
which is implemented by comparing the user’s trajectory and the floor plan. Park et al. [122] pro-
posed a method to compare the sequence of user motion states (standing still, walking straight,
turning right, etc.) with a prior map, which can calculate the location of the user at an average
accuracy of 5m. Ma et al. [102] developed a trajectory matching algorithm to automatically de-
termine the absolute locations of a trajectory estimated by PDR methods. Specifically, they match
the PDR trajectory with most-possible trajectories derived from a floor plan by using image pro-
cessing methods. These most-possible trajectories are derived based on the movement patterns
of pedestrians in the environment. Instead of matching users’ trajectories with trajectories de-
rived from floor plans, Abdelbar et al. [1] presented a method to improve the cellular positioning
techniques by matching the low-accuracy motion trajectory computed from them to one of high-
accuracy anonymous building-tracked trajectories. Compared to point-to-point matching, trajec-
tory matching is more robust and has smaller matching error, but it is more complex and has poor
real-time capability.

Localization methods based on probabilistic graphical models determine the location by associ-
ating each location with a probability and then updating the probability using spatial constraints.
The most widely used probabilistic graphical models in localization are conditional random fields
(CRF) [11, 180] and Bayesian techniques, such as particle filters [176, 191] and hidden Markov
models (HMMs) [103, 178]. Bayesian techniques represent the conditional dependence structure
between observation and state variables using directed graphical models, while CRF models the
problem using undirected graphical models. Take the particle filter as an example to illustrate the
rationale behind Bayesian approaches. Particle filters use a set of particles to approximate the dis-
tribution. In each round, particles propagate according to the transition model (e.g., PDR), and
their weight would be updated based on observations and spatial constraints. For instance, if a
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Fig. 5. The grid model of an indoor environment [3].

particle crosses a wall or lies in non-navigable areas, then the weight of this particle would be
set to 0. The final step is to resample these particles according to their weight and those whose
weight value is below a threshold are removed. Over time, the particles typically converge to the
most likely position of the user. Bayesian approaches can achieve higher accuracy than point-to-
point matching and trajectory matching, but the computational burden is also heavy. To overcome
this issue, Xiao et al. [180] proposed a lightweight algorithm based on CRFs, fusing multiple obser-
vations (e.g., dead-reckoning and radio frequency) and constraints (e.g., floor plans, fingerprints,
and landmarks). Experiments by Xiao et al. have showed that CRFs have higher computational
efficiency than the Bayesian techniques.

3.2 Spatial Model-based Methods

Spatial models are another type of spatial information that can be used to improve localization ac-
curacy. Compared with floor plans, which usually include information about basic structures (e.g.,
rooms, doors, and furniture), spatial models contain richer information (e.g., sensors, people). This
extra information that is not described in the floor plans is also useful in improving localization ac-
curacy [4]. In this section, we introduce spatial-model-based used in indoor localization, including
grid models [91, 148] and graph models [80].

The grid model divides indoor spaces into a grid where each cell contains a value that rep-
resents the probability of an object to be tracked within this cell. It is obvious that for all cells
occupied by static objects (e.g, walls, furniture), the corresponding probabilities are 0. A typical
grid model is shown in Figure 5, in which the space is decomposed into regular cells with the exact
same shape and size. Fox et al. [39] used a grid-model-based Markov algorithm to localize robots
in indoor spaces. The probability for each cell is updated as the robot receives new sensor data.
Bhattacharya et al. [12] employed the grid model of a grocery store to refine location results from
WiFi fingerprinting. Recently, Shang et al. [148] proposed a GridiLoc system that uses a backtrack-
ing grid filter to combine grid model and smartphone-based PDR techniques. The backtracking
process is used to recover the estimated trajectory from dead ends.

Different from grid models, which decompose space into grids, graph models represent indoor
environments by using nodes and edges. The graph models can be categorized into five differ-
ent kinds [4]: place graphs, visibility graphs, generalized Voronoi graph (GVG), fine-grained graphs,
and sensor-based graphs. Each node indicates a certain location with semantic information, such
as a room node or a door node. The edges are used to connect nodes, which can be associated
with extra information such as distance or traveling time. Figure 6 shows a typical graph model of
an indoor space. Jensen et al. [63] proposed a graph-model-based method for indoor positioning
and tracking. They constructed a base graph that represents the connectivity and accessibility of
the indoor space. Based on the base graph, an RFID deployment graph is built considering users’
maximum speed, which can improve the traditional RFID localization results. Krumm et al. [77]
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Fig. 6. The graph model of an indoor environment [149].

utilized a graph to enforce constraints on the movements between nodes and obtain location esti-
mates using an HMM. The location error they achieved was much lower than the simple nearest
neighbor algorithm. Qian et al. [130] applied a vector-graph-based particle weighting method to
correct the deviation in step length and heading estimation. Chen et al. [19] proposed a novel WiFi-
based subarea localization method with zero-configuration. To construct subarea fingerprints, the
method uses crowdsourced RSS traces to build a logical floor graph that is then mapped to a phys-
ical floor graph. In the online localization phase, a Bayesian-based approach is utilized to estimate
the unknown subarea.

3.3 Summary and Discussion

Table 3 summarizes popular localization improvement methods using spatial information, which
are compared in terms of the type of spatial information used, granularity (grid size or node interval
for spatial models), localization method/signal, fusion method, accuracy, and cost of creating a
model or running the algorithm.

Map matching is a commonly used localization improvement method that utilizes spatial con-
straints. The main advantage is that it does not require extra hardware to improve localization
accuracy. However, the achieved localization accuracy is determined by the accuracy of maps, and
some maps might not be very precise. Besides, the matching process is computationally expensive,
especially for those using probabilistic methods.

Spatial models, which contain richer information than maps, are used to improve the localization
accuracy by dividing space into a grid of cells or representing space by nodes and edges. Compared
to map-matching methods, spatial-model-based methods can usually achieve better accuracy. The
main challenge is the construction of indoor spatial models. While manual methods are slow and
labor-intensive, automated methods are still in their infancy and not yet applicable in general
practical scenarios [33, 59].

4 LOCALIZATION IMPROVEMENT BY LANDMARKS

4.1 Definition of Landmarks

Researchers in linguistics and cognitive science consider landmarks as decision points or reference
points in the space, which serve as either an organizing concept or a navigational aid in wayfinding
[129, 154]. The concept of landmarks has also been used for the purpose of indoor localization
in recent years [9, 147, 165, 195]. In Reference [9], the authors consider geometric beacons (e.g.,
planes, corners, cylinders, and obstacles) as landmarks, by which a robot is able to construct an
indoor map and localize itself within a SLAM framework. Landmarks in SLAM are described by
a shape model with an embedded coordinate frame representing the landmark origin. Wang et al.
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Table 3. Indoor Localization Improvement Methods Utilizing Spatial Information

Reference
Spatial

Information Granularity Localization Method Fusion Method Accuracy Cost

Rai et al. [133] Map N/A DR Particle filer ∼1.2m (50%) Low

Jung and Myung [65] Map N/A Triangulation Particle filter ∼1.3m (50%) Moderate

Rajagopal et al. [134] Map N/A Triangulation N/A 1m (80%) Medium

Shang et al. [147] Floor plan N/A DR, fingerprinting Particle filter ∼2m (80%) Low

Woodman and Harle [176] Floor plan N/A DR, fingerprinting Particle filter ∼0.5m (70%) Low

Qian et al. [130] Vector graph N/A DR Particle filter sub-meter level Low

Xiao et al. [180] Graphical model 0.8m DR, fingerprinting Conditional
random fields

∼2m (80%) Low

Shang et al. [148] Grid model 0.7m DR Backtracking grid
filter

∼2.5m (95%) High

Fox et al. [39] Grid model 0.1-0.4m Triangulation Markov model a mean error of ∼10 cm Medium

Bhattacharya et al. [12] Grid model Three cells for
an aisle

Fingerprinting N/A ∼3.2m (90%) Medium

Bataineh et al. [11] Grid model 0.8m DR Conditional
random field

∼1m (50%) Medium

Bohn and Vogt [14] Grid model Vary with
scenes

Fingerprinting Probabilistic
algorithm

N/A Moderate

Liao et al. [92] Voronoi graph Room level Proximity Particle filter a mean error of ∼2.3m Low

Krumm et al. [77] Voronoi graph Room level Proximity Viterbi algorithm a mean error of ∼3m Low

Hilsenbeck et al. [57] Generalized
Voronoi graph

0.7m Fingerprinting, DR Particle filter ∼2.2m (50%) Medium

Nurminen et al. [115] Voronoi graph Room level Fingerprinting Particle filter a mean error of ∼4m Low

Chen et al. [19] Voronoi graph Room level Fingerprinting Bayesian
inference

Sub-area localization
(88.2%)

Low

∗N/A indicates not applicable.

[165] consider landmarks as certain location points with identifiable signatures, which exist in
indoor environments naturally and can be sensed by one or more types of sensors. Zhou et al.
[195] define a number of activity-related locations as activity landmarks. Each activity landmark
has two properties: activity type and WiFi fingerprints collected at the activity. Gu et al. [46] give a
systematic definition of landmark for the purpose of indoor localization, which is called a sensory
landmark. In Reference [46], a sensory landmark is defined as: a location point where at least one

type of sensor presents a distinctive, stable, and identifiable pattern in the readings. Accordingly, a
sensory landmark must have three features: distinctiveness, identifiability, and stability.

4.2 Types of Landmarks

According to the sensor pattern used to detect a landmark and its physical location, landmarks
can be categorized as: seed landmarks and organic landmarks [2, 165], as shown in Figure 7. Seed
landmarks are the landmarks whose sensor pattern and physical location are known a priori, while
organic landmarks are those without a priori knowledge about their sensor pattern and physical
location. Seed landmarks correspond to certain structures in a building, such as stairs, elevators,
doors, and escalators. The locations of seed landmarks can be obtained from the floor plan of
the environment. On the contrary, organic landmarks cannot be obtained from a floor plan and
require to be learned dynamically. Organic landmarks can be further divided into three types:
WiFi landmarks, magnetic landmarks, and inertial sensor landmarks [2, 165]. Such taxonomy of
landmarks is adopted in many research works [21, 147].
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Fig. 7. Taxonomy of landmarks in UnLoc [165]

and SemanticSLAM [2].

Fig. 8. Taxonomy of sensory land-

marks.

Nowadays, smart devices have integrated a variety of sensors that can be used to detect a land-
mark. For example, there are 12 types of sensors available in most modern smartphones. Accord-
ing to the type of the used sensor, sensory landmarks are categorized into 12 types, as shown in
Figure 8, namely GNSS landmark, WiFi landmark, NFC (short for near-field communication) land-
mark, visual landmark, Bluetooth landmark, acoustic landmark, magnetic landmark, accelerom-
eter landmark, gyroscope landmark, and barometer landmark [46]. In this article, we extend the
taxonomy of sensory landmarks in Reference [46] by adding three types of landmarks, namely
GSM landmark, Bluetooth landmark, and light landmark. With the development of smart devices,
it is foreseeable that more sensors will be integrated into a smart device and hence more sensory
landmarks can be defined and used for assisting localization and navigation. Compared with the
taxonomy of seed landmarks and organic landmarks, the taxonomy of sensory landmarks elim-
inates the requirement for a priori knowledge of a landmark’s physical location. All the sensory
landmarks can be learned through crowdsourcing. Also, the number of sensory landmarks is much
larger than the number of seed landmarks and organic landmarks, since sensory landmarks in-
volve more sensors available in a smart device. In fact, seed landmarks and organic landmarks are
a subset of sensory landmarks. Therefore, in the following, we focus on sensory landmarks.

4.3 Landmark Detection

In the following, we introduce different sensory landmarks and their common physical location
and detection methods.

GNSS landmark: The number of visible GNSS satellites changes of a user entering or exiting a
building or approaching a window. As shown in Figure 9, the GNSS module built in a smart device
can receive the signal from more satellites when the user is in an open outdoor area and fewer
satellites when the user approaches a building entrance or window. In indoor environments, there
are usually no GNSS satellites visible, since GNSS signals cannot penetrate walls or other obstacles.
The user might only receive the signal from a few satellites when approaching a building entrance
or window. Therefore, the entrance or the window of a building can be regarded as a GNSS land-
mark if it possesses the three features of being a sensory landmark. In Reference [22], the authors
proposed an indoor localization system called EZ, which uses location fixes occasionally obtained
from a GPS lock at the entrance or near a window to solve the equations of the propagation model
of WiFi signals (e.g., the log-distance path loss). GPS location fixes are also used as landmarks to
correct the location estimates of PDR in Reference [107]. In the CrowdInside system [6], the loss of
the GPS signal is used to detect the location of the nearest building entrance/window to improve
the trace accuracy.

GSM landmark: GSM landmarks are defined as location points where the cellular RSS wit-
nesses a significant sudden change. It is observed that a significant variation occurs in the cellular
RSS when the user moves from outdoor environments to indoor spaces and vice versa. Figure 10
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Fig. 9. An example of GNSS land-

marks.

Fig. 10. An example of GSM land-

marks [196].

Fig. 11. An example of WiFi

landmark that receives the

strongest RSS.

Fig. 12. The change in the

gyroscope readings on the

Z-axis when a user takes a

turn.

Fig. 13. The change in the

compass reading (azimuth)

when a user takes a turn.

gives an example of GSM landmarks where the cellular RSS value from the connected cell tower
changes as the user walks out to the balcony and returns back to the office. The physical locations of
GSM landmarks are usually entrances and stairs. In the IODetector system [196], GSM landmarks
are used to distinguish whether the user is in indoor, outdoor, or semi-outdoor environments.

WiFi landmark: WiFi landmarks are defined as location points or small areas that receive the
strongest RSS from an AP or experience a sudden change in the RSS. The WiFi RSS changes with
the distance between the smartphone and the AP. When a user walks around in a building, their
phone receives the strongest RSS from a specific AP only when they are in the vicinity of this
AP. This vicinity can be considered as a WiFi landmark, since the strong RSS is usually stable,
distinctive, and identifiable. Figure 11 illustrates the change of the RSS from an AP while the user
is walking in a corridor. The location point corresponding to the 36th second is a WiFi landmark,
since it receives the strongest RSS from the corresponding AP. Another type of WiFi landmark are
location points that correspond to a sudden change in the RSS. This sudden change may appear
when the user enters an elevator or passes a corner or other obstacles that can lead to an abrupt
attenuation of RSS. This type of WiFi landmark can be detected based on the RSS similarity [165].
In both UnLoc [165] and SemanticSLAM [2] systems, the RSS similarity is used to detect WiFi
landmarks.

Bluetooth landmark: Bluetooth landmarks are similar to WiFi landmarks. The main difference
is that WiFi landmarks are identified by detecting the WiFi RSS from WiFi APs, while Bluetooth
landmarks are recognized by checking the inquiry or the Bluetooth RSS from Bluetooth beacons.
The new generation of Bluetooth low-energy technology, which consumes much less power than
WiFi technology, is promising to be widely used for localization and navigation [37, 197]. In the
BlueDetect system [198], Bluetooth low-energy beacons placed at specific locations are used as
Bluetooth landmarks to detect the entrances/exits of buildings and the boundary of corridors.
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Fig. 14. The change of accel-

eration when a user passes

through a door.

Fig. 15. The change of accel-

eration when a user enters

and exits stairs.

Fig. 16. The change of acceler-

ation when a user takes an ele-

vator down.

Gyroscope landmark: The gyroscope measures the angular velocity without being influenced
by ferromagnetic materials. Figure 12 depicts the change pattern of a user taking a turn with
the phone in hand. Gyroscope landmarks usually correspond to the locations of turns, corners,
and some doors where the user has to change her direction when passing through. It should be
noted that the gyroscope may not be able to detect some turns with small bending coefficient
[165], which represents the notion of path curvature. This is because the change in the gyroscope
readings is insignificant when taking a gentle turn, resulting in difficulty to distinguish it from
noise. Gyroscope landmarks have been used in several works to enhance the accuracy of PDR [2,
21, 147, 165, 195].

Compass Landmark: Similar to the gyroscope readings, the compass readings can be used
to detect turns, corners, and so on. Figure 13 shows the change in the azimuth readings of the
compass when the user takes a turn with the phone in hand. It should be noted that there is no
physical compass sensor in the smartphone; the compass readings are derived from the magne-
tometer readings and accelerometer readings. Consequently, the compass readings are susceptible
to ferromagnetic materials or equipment, which do not affect the gyroscope readings. However,
the advantage of the compass over the gyroscope is that the compass is able to capture turns with
small bending coefficient [165]. Compass landmarks have been applied to correct the accumulated
error of PDR in Reference [147].

Accelerometer landmark: Accelerometer landmarks refer to location points where the motion
state of the user presents a certain change pattern, which can be identified from the accelerome-
ter readings [44, 48, 49]. For example, the change pattern of “Walking–Still–Walking” will appear
when a user opens a door, as shown in Figure 14; the change pattern of “Walking–Stairs–Walking”
will arise as the user goes downstairs/upstairs, as shown in Figure 15. The location of a door and
the entry and exit points of stairs can be regarded as accelerometer landmarks if the correspond-
ing change pattern can be detected every time the user passes through the door or stairs. Simi-
larly, there is a distinctive pattern in the accelerometer readings when the user takes an elevator
downward or upward. Figure 16 demonstrates that a pair of symmetric bumps appear in opposite
directions as the user takes an elevator down. Thus, the location of the elevator can also be consid-
ered as an accelerometer landmark, since it is distinctive, stable, and identifiable. Accelerometer
landmarks have been widely used to improve the accuracy of indoor localization and mapping [6,
35, 55, 147, 165] and label the semantics of indoor environments [2].

NFC landmark: NFC technique is one type of RFID technology that has been built in many
modern smart devices. NFC readers, which are usually fixedly installed, can be considered as
landmarks. The location of an NFC tag can be inferred when it touches on an NFC reader. NFC
technique has wide applications, such as electronic payment and check-in. Since NFC readers are
normally installed at certain locations, their locations can be regarded as NFC landmarks, as shown
in Figure 17. In the research works [40, 120], NFC tags deployed at specific locations were used as
NFC landmarks for indoor navigation.
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Fig. 17. An example of an NFC

landmark [46].

Fig. 18. The sound pattern of using a

ticket vending machine [35].

Fig. 19. (a) A real image captured from a camera where the fire extinguisher is detected and can be used as

a visual landmark. (b) The corresponding location of the fire extinguisher in a 3D model.

Acoustic landmark: The microphone can capture the sound of its surroundings. Certain loca-
tions may be associated with unique sounds, and there might be some unique sounds that can be
considered as landmarks as long as the sound patterns are stable and identifiable. For instance, an
automatic door, which may not be sensed by the accelerometer readings or other sensor readings
due to the lack of corresponding patterns, may be recognizable by the sound it makes when a user
passes through; a ticket/drink vending machine may emit a unique beep sound when used. To rec-
ognize such patterns, the sound signal is typically preprocessed by using a high-pass filter and a
low-pass filter to remove background noise. Then, the preprocessed sound data are segmented. Af-
ter this, acoustic detection algorithms can be used to extract useful features such as Mel frequency
cepstral coefficients (MFCC) [111] and dominant components of fast Fourier transform (FFT)
[35], which makes it possible to recognize the unique pattern of a potential acoustic landmark.
Figure 18 shows that the original sound pattern of using a ticket vending machine in Figure 18(c),
from which the unique beep signal, shown in Figure 18(b), can be extracted from the background
noise, shown in Figure 18(a), and used to detect this acoustic landmark.

Visual landmark: Visual landmarks are generally defined as objects that have salient features
and can be recognized from images. The definition of visual landmark in the context of indoor lo-
calization is similar to its definition in the field of linguistics and cognitive science. However, visual
landmarks for indoor localization are usually small objects such as doorplates, lights, posters, and
signs of fire extinguishers or first-aid kits that can be recognized by certain visual features [143,
156]. To detect a visual landmark, different features can be extracted from the image, including
edge segments, geometric features, SIFT features, CNN features, and so on. Figure 19 shows an
indoor visual landmark and its corresponding location in a 3D model.

Barometer landmark: The barometer measures the air pressure, which changes with altitude.
As such, the barometer readings can be used to detect vertical movements such as taking stairs
or elevator up or down. Although the barometric pressure is influenced by other factors such as
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Fig. 20. The change in the barometer readings when going down/up stairs and taking an elevator down-

ward/upward.

Fig. 21. The change of the mag-

nitude of magnetometer read-

ings when entering an elevator.

Fig. 22. The change of luminance when a

user walks under a ceiling lamp.

temperature, the short-term variations caused by temperature are often negligible. Figure 20 shows
the barometric pattern of different motion states. The entrance and exit points of stairs and ele-
vators can be considered as barometer landmarks, since the changes in barometer readings are
identifiable, distinctive, and stable. The entrance point can be detected by observing the change
pattern “horizontal movement–vertical movement.” Similarly, the exit is detected by using the
pattern “vertical movement–horizontal movement.” Both change patterns are recognized by uti-
lizing the barometer readings. The barometer landmarks are used to assist indoor localization in
References [21, 147].

Magnetic landmark: The magnetometer measures Earth’s magnetic field as well as magnetic
anomalies, and is often used in metal detectors. In most indoor environments, there are ferrous
objects, structures, and equipment, around which the magnetometer readings will present a salient
change. For instance, Figure 21 shows the magnetic pattern of a user entering an elevator. Since the
change pattern of magnetometer readings is stable, distinctive, and identifiable at such locations
(e.g, refrigerator, elevator, metal door), these can be considered as magnetometer landmarks. Mag-
netic landmarks have been widely used to enhance indoor localization and mapping [2, 147, 165],
to detect indoor/outdoor environments [196], and to label the semantics of indoor environments
[35].

Light landmark: The light sensor built in a smartphone is capable of measuring the light in-
tensity of the environment. It can be used to detect various light sources such as a lamp installed
on the ceiling, which can be regarded as a landmark. As shown in Figure 22, the light sensor in
the smartphone presents a peak of illuminance when the user passes below a ceiling lamp. Apart
from detecting lamps in indoor environments, the light sensor can also detect the entrance of a
building and the vicinity of windows, since the illuminance of indoor spaces is different from that
of outdoor spaces. In Reference [185], the authors proposed a system called IDyLL that uses light
landmarks to correct the accumulated error of PDR.

It should be noted that some locations may be associated with multiple landmarks. For example,
a door may be considered as an accelerometer landmark, a gyroscope landmark, a compass land-
mark, and so on, because these sensor readings may present corresponding landmark patterns
when a user passes through the door. In this case, the features extracted from different sensors
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Table 4. Summary of Sensory Landmark Detection

Landmark Sensor Typical Physical Location Common Detection Feature

GNSS landmark GNSS Entrance, exit, window vicinity Number of visible satellites

WiFi landmark WiFi
Vicinity of WiFi access point,

some region with special WiFi features
Change of WiFi RSS

Bluetooth landmark Bluetooth Vicinity of Bluetooth beacon Bluetooth RSS

NFC landmark NFC Vicinity of NFC reader NFC RSS

Light landmark Light sensor Entrance, exit, window vicinity, beneath lamp Change of illuminance

Visual landmark Camera
Objects with special color, background, shape

e.g., doorplates, fire extinguisher signs
Salient Color, shape, edge

Acoustic landmark Microphone Places or locations with distinctive sound Acoustic features, e.g., FFT, MFCC

Magnetic landmark Magnetometer Locations of ferromagnetic equipment Change of magnetometer readings

Accelerometer landmark Accelerometer Door, stair, elevator, escalator Change of walking pattern

Gyroscope landmark Gyroscope Turn, corner
Change of the reading along vertical

component

Compass landmark Compass Turn, corner Change of the azimuth reading

Barometer landmark Barometer Stair, elevator, escalator Change of pressure

Fig. 23. Landmark detection using a decision tree [165].

can be merged together, which will increase the uniqueness of this hybrid landmark that presents
different sensory patterns simultaneously.

Table 4 summarizes the sensors used to detect various sensory landmarks, as well as their typ-
ical physical locations and common detection features. Some sensory landmarks, such as light
landmarks and GNSS landmarks, can be detected simply by applying an appropriate threshold on
certain features (e.g., those given in Table 4); others, such as accelerometer landmarks, require use
of more complex methods. In Reference [165], a decision tree is used to detect seed landmarks
(which correspond to accelerometer landmarks and barometer landmarks). As shown in Figure 23,
the decision tree first distinguishes the elevator based on its distinct acceleration pattern. Then, it
separates stairs and walking from escalator and stationary state according to the variance of the
acceleration. After that, the variance of magnetic field is used to separate the escalator from the
stationary state. The correlation between theY andZ acceleration components is used to recognize
the stairs from walking state. Similar landmarks have also been detected by using least-squares
support vector machines [147].

4.4 Summary and Discussion

Landmark-based indoor localization is a relatively new and promising field of research because
of the increasing ubiquity of sensor-rich smart devices. Compared to methods using other spa-
tial contexts (e.g., those based on maps and spatial models), landmark-based methods have a
much lower computational cost while achieving a high localization accuracy. Table 5 gives the
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state-of-the-art indoor localization systems that utilize landmarks. It can be seen that the most
commonly used landmarks are those corresponding to stationary building structures (e.g., stairs,
elevators, escalators, doors). Magnetic landmarks and WiFi landmarks are also popular because
of the pervasiveness of geomagnetism and the prevalence of WiFi infrastructure. Light landmarks
are becoming increasingly popular, since modern smart devices have integrated the light sensor
that can capture the light intensity. Although different types of landmarks have been applied in
indoor localization, there is still room to investigate the feasibility of other types of landmarks
mentioned above.

Landmark-based methods improve the localization accuracy by recognizing the encountered
landmark and matching it with those that are collected and stored in a database. A major challenge
in using landmarks for assisting localization is the matching, also known as the data association
issue [110]. In other words, when there are multiple landmarks nearby, it is difficult to determine
which one matches with the encountered landmark. This problem is caused by the fact that sensory
landmarks do not have to be unique in the whole environment. Instead, often landmarks are unique
in a local area (e.g., a room). The reason for this is to obtain a sufficient number of landmarks in
the environment.

A simple solution to this problem is to increase the uniqueness of a landmark by adding other
sensor data. WiFi fingerprints are often integrated into the property of accelerometer and gyro-
scope landmarks [2, 165]. When the sensor pattern of a potential landmark is detected, its cor-
responding WiFi fingerprint is first matched with the WiFi fingerprints of the landmarks in the
database, and the landmarks with similar WiFi fingerprints are chosen. Out of these candidates, one
landmark is finally selected by matching the detected sensor pattern with those of the candidates.
The main limitation of this solution is its reliance on WiFi fingerprints, which means that it will
not work when the user is out of WiFi coverage range. In addition to WiFi fingerprints, walking
orientation is useful in solving the data association problem. For example, when the user’s location
is near two doors on two sides of a corridor, the two doors can be distinguished by observing the
walking orientation of the user as they pass through one of the doors.

Another solution to data association is to use the history of detected landmarks. One single
landmark may not be distinguished from other landmarks in the environment, but a trajectory of
several encountered landmarks will make a unique path in the environment. Different methods
such as the Hidden Markov model [131], conditional random field [180], and dynamic time warping
[152], have been used to match the encountered landmark patterns with those in the database,
thereby determining the correct landmark.

An additional challenge of using landmarks is dealing with the case that one or more land-
marks are missed. In some cases, a landmark may be missed for various reasons. For example, an
accelerometer landmark corresponding to a door will be missed if the door is left open, since the
user does not stop to open the door (no “Walking–Still–Walking” pattern); also, lamps might be on
or off at different times of the day, which will lead to failure in the detection of the corresponding
light landmark. In these cases, one can simply ignore the missed landmarks and not correct the
user’s location until the next landmark is detected. However, this simple strategy may lead to a
large error in the location estimation and even result in failure to locate the user. Handling missed
landmarks is an open problem for which no appropriate solution currently exists.

5 CONCLUSION AND OPEN CHALLENGES

In this article, we have surveyed the state-of-the-art indoor localization methods and systems.
Wireless localization and inertial localization are the most popular methods, which have been
applied in many domains. With the advent of smart devices, more sensors have become available
in daily-used devices such as smartphones, enabling more localization methods to be explored,
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such as magnetic localization and light-based localization. Each localization method has its own
advantages and limitations. Hybrid localization methods can overcome the limitations of single
sensors but will increase the cost of deployment.

Fusing spatial context with indoor localization methods is an effective way to achieve a satis-
factory accuracy at no extra cost. The commonly used form of spatial context is map, whereby the
localization accuracy can be improved by map matching. Spatial models contain richer informa-
tion than maps and can better improve the localization performance. However, the construction of
spatial models requires significant efforts, and automatic model reconstruction methods are still
in their infancy. Also, spatial-model-based indoor localization methods, especially those based on
3D spatial models, are usually computationally expensive and consume battery power quickly.

Landmarks, which can be considered as one type of spatial context, are quite useful in indoor
localization. Compared to map-based and spatial-model-based methods, landmark-based methods
have lower computational requirement but can achieve similar localization accuracy.

Overall, indoor localization has been studied for decades, and spatial context can improve the
localization accuracy without increasing the cost of deployment.

The main challenges in indoor localization that remain open for further research are as follows:

• Automatic construction of spatial models. Currently it is feasible to construct a map
efficiently using crowdsourcing or SLAM. Spatial models contain richer information than
maps and are better suited to enhance indoor localization. However, manual construction
of spatial models is labor-intensive and slow, and automatic construction methods are still
in their infancy. More work on automated generation, evaluation, and benchmarking of
indoor models for localization and navigation purposes is needed [70, 71].

• Feature learning for sensory landmark detection. Existing landmark-detection meth-
ods require the manual design of features for detecting a landmark. Further research on au-
tomatic feature learning methods, e.g., deep learning, will improve the landmark-detection
accuracy and lead to more accurate localization methods.

• Hybrid feature database construction and update for indoor localization. Despite
their promise, hybrid methods typically consider only the integration of a few techniques
such as a combination of WiFi fingerprinting and magnetic fingerprinting, a combination
of WiFi fingerprinting and maps, or a combination of PDR and landmarks. It is possible to
achieve better localization accuracy and robustness by building a hybrid feature database,
containing not only WiFi fingerprints, magnetic fingerprints, and sensory landmarks, but
also semantic features and other salient parameters. How to efficiently construct and update
such a hybrid feature database is a topic deserving further research.

• Cross-platform generalization of indoor localization. Most indoor localization sys-
tems are implemented on smartphones, which have relatively better computational capa-
bility and larger memory than other smart devices such as smart bands, smart watches, and
smart glasses. However, existing works usually focus on analyzing the generalization abil-
ity of indoor localization approaches on different users. There is a lack of research on how a
method, developed for smartphones, works on other platforms such as smart watches. De-
veloping cross-platform indoor localization methods is another possible direction for future
research.

• Battery-friendly lightweight indoor localization methods. While many researchers
seek to improve localization accuracy by integrating a variety of sensors and/or spatial
information, the battery power consumption problems are often ignored. Recording data
from multiple sensors simultaneously (e.g., WiFi, accelerometer, magnetometer, gyroscope,
barometer) can consume the device battery quickly, which may prohibit the developed
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systems from being widely used. Also, the fusion of spatial information, especially spatial
models, imposes a high computational cost. Developing battery-friendly lightweight indoor
localization methods will be crucial to launching a system on a global scale.
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