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Large-scale Semantic Integration of Linked Data: A Survey
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A large number of published datasets (or sources) that follow Linked Data principles is currently avail-
able and this number grows rapidly. However, the major target of Linked Data, i.e., linking and integra-
tion, is not easy to achieve. In general, information integration is difficult, because (a) datasets are produced,
kept, or managed by different organizations using different models, schemas, or formats, (b) the same real-
world entities or relationships are referred with different URIs or names and in different natural languages,
(c) datasets usually contain complementary information, (d) datasets can contain data that are erroneous, out-
of-date, or conflicting, (e) datasets even about the same domain may follow different conceptualizations of
the domain, (f) everything can change (e.g., schemas, data) as time passes. This article surveys the work that
has been done in the area of Linked Data integration, it identifies the main actors and use cases, it analyzes
and factorizes the integration process according to various dimensions, and it discusses the methods that are
used in each step. Emphasis is given on methods that can be used for integrating several datasets. Based on
this analysis, the article concludes with directions that are worth further research.
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1 INTRODUCTION

The major target of Linked Open Data (LOD) is linking and integration for easing data discovery
process, for performing data analysis, and for offering integrated query answering. However, we
are still far from achieving this target. The integration process still requires a number of steps,
some of which are difficult or costly. As it is stated in Reference [40], “Integration requires spending
resources on mapping heterogeneous data items, resolving conflicts, cleaning the data, and so on. Such
costs can also be huge. Actually, the cost of integrating some sources may not be worthwhile if the
gain is limited, especially in the presence of redundant data and low quality data.” Moreover, it has
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been written1 that “Data scientists spend from 50 percent to 80 percent of their time in collecting and
preparing unruly digital data, before it can be explored for useful nuggets.”

The integration is an inherently difficult problem for various reasons. Initially, datasets are pro-
duced and managed by different organizations according to conceptualizations, models, schemas,
and formats based on their needs and choice, and these data are stored in different locations and
systems. Another difficulty is that the same real-world entities or relationships are referred to
with different names or URIs and in different natural languages; the synonyms and homonyms
of natural languages further perplex identification and matching. Moreover, quite often there is
not enough data for automated matching, because datasets contain complementary information
about the same entities. Data integration also has to tackle the fact that datasets usually contain
erroneous, out-of-date, or conflicting data. Finally, integration is not a one-shot task in the sense
that everything can change as time passes (e.g., schemas, ontologies, naming conventions, etc.),
necessitating additional actions for curating the integrated access. Compared to other technologies
(e.g., relational databases), Linked Data (and RDF) use URIs instead of simple names, which is a
solution for the problem of homonyms, while the problem of synonyms can be tackled by defining
equivalence relationships among different concepts or entities (e.g., between two different URIs
that describe the same entity). Finally, data that have been described by using different schemas
can be transformed and integrated in a more flexible way, since RDF is a graph-based model.

Data integration has been studied in the context of various data models, namely, in the re-
lational model, e.g., see Reference [65] for a survey of information integration in the relational
model, and in the semi-structured model, e.g., see Reference [11] for a survey of approaches for
integration for XML databases, while Reference [41] surveys works for big data integration for
both models. In this article, we survey the work that has been done in the area of Linked Data in-
tegration. There are surveys for various individual tasks of the general integration process, i.e.,
surveys for distributed RDF processing [74], for ontology matching [144], for instance matching
[108], for integration for OLAP [1], for query federation [130], for visualization and exploration
[10, 29, 153], and for quality [119, 168]. In the current survey, we aim at covering the topic holis-
tically, i.e., from various perspectives, for better understanding the overall problem and process,
and for making more obvious the dependence between the individual tasks. Moreover, since the
LOD cloud already contains a large number of datasets (over 9,000 datasets according to Refer-
ence [47]), we give emphasis on methods that can be applied to very large number of datasets.
This distinction is important in the sense that a semi-automatic process that can be followed for
integrating a few (say five) datasets, is not affordable, due to the required human effort, for in-
tegrating thousands of datasets. Michael Stonebraker (a pioneer researcher in data management)
has mentioned (http://ilp.mit.edu/images/conferences/2013/ict/presentation/stonebraker.pdf) that
data integration at scale is a very big deal and probably the biggest problem that many enterprises
face, since the traditional approaches cannot scale easily to more than 25 sources. For this reason,
in this survey we emphasize on tasks that could aid the integration of large number of datasets,
and discuss the tools that are available for several RDF datasets. Overall this survey provides a
concise overview of the issues, methods, tools and systems for semantic integration of data.

In various places of the article, we shall use a running example from the marine domain. The
rest of this article is organized as follows: Section 2 provides the background and the context,
discusses the Linked Data ecosystem and refers to past surveys. Section 3 introduces the difficulties
of data integration, while Section 4 describes the landscape of data integration. Section 5 surveys
the integration methods, while Section 6 discusses the different integration processes. Section 7

1http://www.nytimes.com/2014/08/18/technology/for-big-data-scientists-hurdle-to-insights-is-janitor-work.html?_r=0.
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focuses on evaluation related to information integration, whereas Section 8 lists tools and services
for several RDF datasets and what steps of the processes they cover and how. Section 9 identifies
some research directions, and Section 10 concludes the article.

2 BACKGROUND AND CONTEXT

In Section 2.1, we introduce the main principles of Linked Data, in Section 2.2, we discuss the
Linked Data Ecosystem, and in Section 2.3, we analyze related surveys.

2.1 Linked Data

Definition and Roots. “Linked Data refers to a method of publishing structured data, so that
it can be interlinked and become more useful through semantic queries, founded on HTTP, RDF
and URIs” [12]. In the 1990s, Tim Berners-Lee, the inventor of the World Wide Web, discussed the
vision for a Semantic Web [8], i.e., “The first step is putting data on the Web in a form that machines
can naturally understand, or converting it to that form. This creates what I call a Semantic Web—a
web of data that can be processed directly or indirectly by machines.” In 2001, Tim Berners-Lee and
his colleagues described the main ideas of Semantic Web [9], e.g., representing data in RDF format,
using ontologies that enable the creation of inference rules, and others, while the May 2006 paper
[143], stressed the emerging need for semantic data integration and described most of the Linked
Data principles, which are discussed below.

Linked Data Principles. The major principles of Linked Data, which are required for reaching
the goal for a “Web of Data” (or Semantic Web) [12], were officially proposed in July 2006 by Tim
Berners-Lee2: “(1) use URIs as names for things, (2) use HTTP URIs so that people can look up those
names, (3) when someone looks up a URI, provide useful information, using the standards (RDF,
SPARQL), and (4) include links to other URIs, so that they can discover more things.” The fourth
principle, which refers to data interlinking, is of primary importance for data integration, since
it suggests to the publishers to create relationships with URIs occurring in different datasets. The
datasets can be linked through common URIs, which can refer to either schema elements (they are
defined through RDF Schema and OWL [5]) or data elements. SPARQL is a standard query lan-
guage (http://www.w3.org/TR/sparql11-query/) for retrieving and managing RDF data, whereas
queries can be expressed across different datasets. Moreover, the urge and tendency towards link-
ing and integration can be observed from proposals for rating open data, i.e., by using the 5-star
Open Data (http://5stardata.info/en/), as well as proposals for rating vocabularies [77].

Formally, the Resource Description Framework (RDF) is a “graph-based data model” [5]. In RDF,
Triples are used for relating resources, i.e., Uniform Resource Identifiers (URIs) or anonymous
ones (blank nodes), with other resources (i.e., URIs or blank nodes) or Literals (i.e., constants).
We define the set of all URIs asU , the set of all blank nodes as B, whereas let L be the set of all Lit-
erals. Each triple is a statement of the following form: subject-predicate-object. A subject describes
an entity, a predicate corresponds to a property of that entity, and an object corresponds to the
value of the aforementioned property for the entity occuring as subject. For instance, in Figure 1,
we can see an example of Linked Data with 9 triples. One triple is the following: 〈Yellowfin_Tuna,
livesInOcean, Pacific〉 where the subject is Yellowfin_Tuna, livesInOcean corresponds to the pred-
icate and Pacific is the object of that triple. Moreover, we define as S the set of all subjects, as P
the set of all properties, whereas the set of all objects is denoted as O . A triple can be defined
formally as any element ofT = S × P ×O , where S = U ∪ B, P = U andO = U ∪ B ∪ L. Finally, an
RDF graph (or dataset) can be constructed by any finite subset of T .

2https://www.w3.org/DesignIssues/LinkedData.html.
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Fig. 1. Example of Linked Data with 9

triples.

Fig. 2. Use case diagram for the Linked Data

ecosystem.

2.2 The Linked Data Ecosystem

To understand the world of Linked Data and the involved stakeholders, we could consider them
as a single ecosystem. Figure 2 provides the Use Case Diagram, and below we identify the main
actors and use cases of that ecosystem.

Dataset’s Owner. The owner of a dataset can be a public organization (e.g., a municipality,
a research centre, a university), a private sector organization (e.g., a company, like BBC, NGOs,
etc.) or even an individual that owns and is responsible for creating, keeping, maintaining, and
publishing the dataset.

Consumer, Services, or Applications. This actor corresponds to entities, services or appli-
cations that consume data for various reasons, i.e., for providing services of various levels or
granularity like Dataset Discovery, Dataset Selection, URI Lookup, Keyword Search, and Query An-
swering services. For instance, LODLaundromat [126] offers URI Lookup and Keyword Search for
over 650,000 documents. Other applications, such as Swoogle [34] and Watson [30], offer keyword
search services for the Semantic Web datasets and resources, while LODsyndesis [105] offers ser-
vices for Dataset Discovery and Dataset Selection. Finally, this actor includes end-user applications
(like smart phone applications) that exploit Linked Data for supporting their functionality.

Integrator/Aggregator. This actor captures individuals or organizations whose objective is to
integrate a number of datasets and provide integrated access services. The final output can be ex-
ploited by the members of the corresponding community. One example is Europeana Foundation,
which is responsible for Europeana [76], which is the European digital platform for cultural her-
itage. This platform combines data from more than 3,000 institutions across Europe while these
data were transformed into Linked Data and are represented in the Europeana Data Model [76]. In
other occasions, international projects play this role. Note that the use case “Perform Integration”
is actually the process that will be analyzed in this survey.

Data Scientist. A Data Scientist can be considered as a special case of Consumer and Aggre-
gator/Integrator. A data scientist usually has to find and select the appropriate datasets (or sub-
datasets) for his/her needs and may have to aggregate and integrate data to perform the intended
analysis. Moreover at the end, the data scientist can publish the results of this analysis as a new
dataset (therefore it could be considered as dataset owner).

2.3 Related Surveys

Several surveys have been published in the database world about Data Integration, i.e., surveys as-
suming the relational data model (such as Reference [65]), surveys assuming the semi-structured
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data model (e.g., Reference [11] includes approaches for integrating XML databases), surveys that
concern big data integration for both models (e.g., Reference [41]), as well as surveys for semantic
integration focusing on “ontology-based” approaches [82, 113]. Concerning Linked Data, there are
surveys for various individual tasks of the general integration process. Specifically, Reference [74]
surveys techniques and approaches for scalable distributed RDF processing, querying and reasoning,
e.g., search engines, federated query systems, rule-based reasoning, and so forth. Reference [144]
provides a literature review for the field of ontology matching for the decade 2003–2013, whereas
the authors in Reference [108] compare the features of various tools and frameworks that perform
instance matching. In Reference [1], the objective was to survey how the “Semantic Web technolo-
gies can aid in data discovery, acquisition, integration, and analytical querying of external data,
and thus serve as a foundation for exploratory on-line analytical processing (OLAP).” The authors
analyzed the steps that should be carried out for creating data warehouses and answering OLAP
queries. Moreover, Reference [130] compares novel SPARQL endpoint federation engines in many
dimensions and details the tools that have been created for this specific method of integration,
while Reference [81] surveys approaches that support scalable distributed SPARQL query evalua-
tion. Reference [123] highlights the strong need for holistic data integration approaches that can
integrate many data sources (and not be limited only to pairwise matching). Reference [29] sur-
veys approaches for visualizing Linked Data, Reference [10] surveys a number of systems for data
visualization and exploration, while Reference [153] surveys methods for supporting faceted ex-
ploration over RDF datasets. Concerning the quality of Linked Data, the authors in Reference [168]
survey 21 approaches and describe 26 data quality dimensions, e.g., accuracy, interlinking, concise-
ness, consistency and others, while they introduce corresponding metrics and approaches for each
dimension. Moreover, Reference [119] surveys approaches focusing on knowledge graph refinement
(mainly on error detection and data completion), which are of primary importance for improving
the quality of a single dataset (that could be an integrated dataset). Finally, OCLC Research Team
has provided a survey for hundreds of projects and services from the domain of digital libraries
that exploit Linked Data principles [145]. The key difference between our survey and the afore-
mentioned ones is that they focus on various individual tasks of the general integration process,
whereas we emphasize on the whole integration process and methods that can be applied for large
number of datasets (e.g., thousands of datasets).

3 WHY DATA INTEGRATION IS DIFFICULT

Information integration aims at offering unified access services over a set of information from
heterogeneous datasets (structured, semi-structured or unstructured), which can have different
conceptual, contextual, and typographical representations. Integration is not easy for various rea-
sons. Most of these reasons has attracted the interest of database community for decades, e.g., for
relational model [146, 147] and in the area of Semantic Integration [82, 113]. Below, we list six main
reasons, each exemplified using the running example of Figure 3, which shows the three sources
of Figure 1, i.e., D1, D2, and D3, in the context of four integration scenarios.

(a) Different Authorities. The datasets are produced, kept or managed by different organi-
zations in different formats, schemas, models [82, 113], locations, systems and licenses. There
is not any “centralized control system,” therefore, each publisher decides how to produce, man-
age and publish a dataset based on its needs and choices. For instance, in the marine domain
the dataset of Fishbase (http://www.fishbase.org), that contains information about the “taxonomy,
geographical distribution, biometrics, population, genetic data and many more” [104], is acces-
sible through an SQL server, therefore one needs a fetcher to download it and a transformer to
RDF, for linking it with other datasets. On the contrary, for Ecoscope dataset (http://ecoscopebc.
mpl.ird.fr/joseki/ecoscope), which contains “geographical data, pictures and information about
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Fig. 3. Running example containing the steps of four different integration substances.

marine ecosystems” [104], transformations are not required since this dataset has already been
published in RDF format.

(b) Naming. The same real-world entities or relationships are referred with different URIs and
names and in different natural languages, while natural languages have synonyms and homonyms
that make harder that automatic connection. For instance, the URI of the species Thunnus Albacares
in DBpedia is http://www.dbpedia.com/Thunnus_Albacares, while in Ecoscope the corresponding

ACM Computing Surveys, Vol. 52, No. 5, Article 103. Publication date: September 2019.
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URI is http://www.ecoscope.com/thunnus_albacares. Moreover, the aforementioned species has
348 common names in 82 different natural languages [151]. In addition, we often have to tackle the
problem of homonyms, since the same name can describe two or more different real-world entities.
For example, “Argentina” is used to refer to the country (http://dbpedia.org/resource/Argentina)
but also to a fish genus (http://dbpedia.org/resource/Argentina_(fish)).

(c) Complementarity. The datasets usually contain complementary information, e.g., consider
two datasets about the same domain each modeling a different aspect of the domain. The com-
monalities between these datasets can be very few and this does not aid automated linking and
integration. For example, a dataset can include data about the predators of marine species, and
another one can contain data about the selling price of a species in a fish market. In the former,
the species can be referred by its scientific name, while in the latter by its commercial code.

(d) Errors, Conflicts. The datasets can contain data that are erroneous, out-of-date or conflict-
ing. For example, in the marine domain Fishbase mentions that the max length of thunnus albacares
is 239cm while Wikipedia (whose content is used from many RDF sources such as DBpedia) states
that its max length is 240cm, meaning that conflicts can occur even because one dataset is more pre-
cise than another. Other conflicts are due to erroneous information, e.g., suppose that one dataset
states that the capital of Australia is Sydney and several other datasets that is Canberra. Finally,
out-of-date data are very common in many domains, e.g., the current team of a football player (this
is, however, related also to difficulty (f) described below).

(e) Different Conceptualizations. The datasets about the same domain may follow different
conceptualizations (or modeling decisions) of the domain [82, 113], i.e., they have different schemas
(as we would say in the relational database world). For instance, some datasets conceptualize an
address by using one property (e.g., 〈:Michael, :hasAddress, “Street 1, Heraklion, 71303”〉, others
use one property per address part (e.g., 〈:Michael, :street,“Street 1”〉, 〈:Michael, :city, “Heraklion”〉
and 〈:Michael, :postCode, “71303”〉). Moreover, other datasets use a blank node for representing an
address. Consequently, there is not a general pattern that the creators of the datasets follow for
representing the information for a specific domain.

(f) Evolution. Everything changes: the world, the ontologies (e.g., see Reference [55] for a sur-
vey of ontology change), the data. Thereby, integration actions that have taken place may have to
be updated or revised. This is also a source of possible conflicts as stated earlier.

4 THE DATA INTEGRATION LANDSCAPE

The data integration landscape is wide and complex. For approaching it in a structured manner, we
can describe an integration process through a multidimensional space. Such a space should allow
describing each integration method as one or more points of the multidimensional space in a clear
manner. Specifically, we introduce the space defined by the cartesian product of five dimensions

InteдrationLandScape = (DatasetTypes × BasicServicesToDeliver × IntegrationSubstance

× InternalServices × AuxiliaryServices)

Figure 4 illustrates the basic values that correspond to each dimension. Below, we briefly describe
each one, while a detailed description for each one is given in the next sections.

• DatasetTypes (or input types) refers to the different dataset types that can be used as input,
e.g., RDF files, relational databases, HTML with embedded annotations (e.g., RDFa, JSON-
LD). The dataset’s owner (recall the Linked Data Ecosystem in Section 2.2) is responsible for
the type of the dataset.
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Fig. 4. The dimensions of data integration landscape.

• BasicServicesToDeliver (or output types) refers to the main purpose of integration, i.e.,
what services we would like to offer by integrating several datasets, e.g., see those shown
in Figure 4. This dimension corresponds to Consumer, Services or Applications actor of
Section 2.2.

• IntegrationSubstance (or Integration Architecture) refers to the different integration sub-
stances, physical (materialized) versus virtual, and their specializations (e.g., see those
shown in Figure 4). The responsible actor (according to Section 2.2) is the integrator/
aggregator.

• InternalServices (i.e., how it works) refers to the services used during the integration pro-
cess, e.g., transformations, bindings, and so on, to “connect” the pieces of data, thereby, the
responsible actor is the integrator/aggegator (see Section 2.2).

• AuxiliaryServices (i.e., extra output types, beyond the core ones) refers to services that can be
optionally exploited/offered either before or after the integration process, related to prove-
nance, evolution, quality and others (again integrator/aggregator is the responsible actor).

For tackling the various discrepancies (as mentioned in Section 3), which is actually the “duty”
of the InternalServices mentioned before, the various integration approaches essentially attempt
to “connect” the data of the underlying datasets. Generally, datasets can be connected (or linked)
through (a) instance links, (b) schema concepts, and (c) constants, i.e., literals. According to Refer-
ence [106], LOD cloud datasets are mainly linked through schema concepts (99% of datasets’ pairs
share RDF schema elements) and literals (78% of datasets’ pairs share literals), while only 11.3%
of datasets’ pairs contain common instances. One kind of connection is through canonicalization,
e.g., an integration system can decide to transform every occurrence of “UK” and “Great Britain”
to “United Kingdom.” In this way, semantically equivalent elements can get the same single repre-
sentation. Another kind of connection is through binding, i.e., by adding extra relationships (data
in general) that connect these elements, e.g., “UK” ≡ “Great Britain.” We use the term “binding” to
refer to what is called correspondence, mapping, link, and so on. We can distinguish the following
cases based on the semantics of these bindings; in some parts of the discussion below, we shall
use examples from the two small datasets shown in Figure 5:

• Taxonomy-based relations
—Exact-ones. Here, we have relations expressing equivalence, e.g., owl:EquivalentProperty,

owl:sameAs, skos:exactMatch, or difference, e.g., owl:DifferentFrom.
— Inexact-ones. Here, we have connections between elements of different granularities, e.g.,
〈Researcher, subclassOf, Person〉 and 〈livesAt, subpropertyOf, staysAt〉, connections be-
tween different accuracy levels, e.g., 84 vs. 84.9, or connections between similar concepts
by using relations such as skos:closeMatch.

ACM Computing Surveys, Vol. 52, No. 5, Article 103. Publication date: September 2019.
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Fig. 5. Example of two datasets and possible bindings.

• Enrichment-based. Here the binding of two elements is achieved through non-taxonomic
properties, or paths of properties, e.g., see how Cafe_Terrace_at_Night of Dataset1 can be
connected with Vincent_Van_Gogh of Dataset2.

Now there are several types or sources of evidence for creating bindings of the aforemen-
tioned kinds:

• Axiomatically by users (designers, curators), e.g., the triple 〈leavesAt, subpropertyOf,
staysAt〉 can be provided by a designer.

• Name similarity (string similarity, phonetic similarity, stemming), e.g., Yannis ∼ Yiannis can
be detected through EditDistance.

• Neighborhood (direct or indirect) similarity, e.g., b1 ∼ b2 can be detected by blank node
matching techniques.

• Natural Language Processing-based, e.g., entity or relation mining over the literals associ-
ated through rdfs:label with a URI can be used for connecting that URI with the URI of the
identified (in the literal) entity(-ies). This type of evidence can be based on lexicons, the-
saurus, translators, e.g., multilingual similarities, such as weight ∼ βαρoς (i.e., weight in
greek language) in Figure 5, can be detected by using a translator, and word embeddings
(e.g., word2vec [97]), where words having similar meaning are represented in a similar way.

• Common Instances, for example two classes can be connected with a taxonomic relation
based on the fact that they have common instances (through the ostensive method, or
through inductive and machine learning-based methods).

ACM Computing Surveys, Vol. 52, No. 5, Article 103. Publication date: September 2019.
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• Inference-based (or Reasoning-based), e.g., the equivalence Heraklion ≡ Iraklio is inferred,
because the staysAt is a functional property and livesAt is a subproperty of staysAt.

• Topology-based similarity, e.g., all nodes of the book in the left side can be matched with the
blank nodes subgraph in the right side (because these two graphs are isomorphic).

• Usage-based, e.g., frequently accessed together entities can be connected because of this.
For example, Yannis could be connected with Γιαννης (which is the same name written in
Greek characters) if these two words frequently co-occur in the log file of a search system.

We observe that to integrate properly these two very small and simple datasets, that contain
information about the same (very narrow) domain, we have to combine various kinds of evidence
and create various types of binding.

5 SURVEYING THE INTEGRATION METHODS

For surveying the various integration methods for Linked Data, apart from studying the literature
[2008–2017] (the main works, since it is impossible, for reasons of space, to include the entire lit-
erature), we considered also our experience from various EU projects. This section is structured
according to the dimensions (or aspects) of the Data Integration Landscape introduced in Section 4.
For each dimension, we describe its role, the related challenges, and the related methods, tech-
niques and tools. Specifically, in Section 5.1, we discuss the different dataset types, in Section 5.2,
we describe the basic services that can be delivered through an integration process, in Section 5.3,
we focus on the integration substance, while in Section 5.4, we describe the internal services and in
Section 5.5 the auxiliary services. Finally, in Section 5.6, we classify 18 integration tools according
to the dimensions in Section 4.

5.1 Dataset Types

DatasetTypes refers to the different dataset types that can be used in an integration process as
input. In this survey, we focus on datasets represented in RDF format. However, we should note
that there are several ways and tools for mapping relational databases to RDF format [141] and
for converting CSV (comma separated values) files to RDF [46]. Moreover, a huge volume of RDF
data can be extracted through HTML web pages [18, 121]. Specifically, billions of web pages con-
tain semantic annotations by using Microformats, RDFa, and HTML Microdata mainly inside their
<body> element, and JSON-LD scripts predominantly inside their <head> section.

5.2 Basic Services To Deliver

One aspect of primary importance is what is the purpose of integration, i.e., why we want to inte-
grate data, what we want to achieve and to eventually deliver in terms of input and desired output.
Some forms of the desired integrated access can be simple, while other forms can be more complex.
To this end, below we dichotomize such services to Fine-grained and Coarse-grained services:

• Fine-grained (FG) Services. Here the objective is to find, select and assemble “pieces” of data.
To this category of services, we can distinguish three different levels: Level I. Global URI
Lookup Service (analyzed in Section 5.2.1), Level II. Global Keyword Search (analyzed in Sec-
tion 5.2.2) and Level III. Integrated Query Answering Service (analyzed in Section 5.2.3).

• Coarse-grained (CG) Services. Here the objective is to find or select entire datasets. In this
category of services, we have: Dataset Discovery & Selection (analyzed in Section 5.2.4).

5.2.1 FG: Level I. Global URI Lookup Service. This kind of service can be used for finding all the
URI containing a substring or all the equivalent (or similar) URIs of a given URI u. For realizing
such a service, we have to tackle difficulty (b), i.e., the problem of synonyms and homonyms, which
in turn requires the execution of various tasks including:
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• Cross-dataset completion of the owl:sameAs relationships for completing (with respect
to symmetry and transitivity) the relationships that are already recorded, otherwise
the response would be incomplete. The same is true for schema elements, e.g., for
owl:equivalentClass.

• Matching methods for individuals or schema elements (instance matching is described in
Section 5.4.3 while schema matching is described in Section 5.4.2) for identifying new equiv-
alences between URIs that have not been recorded. However, we should note that not all
entities (or concepts) have necessarily URIs, in the sense that some of them can be rep-
resented as literals, or even not modeled in the datasets themselves (they could be called
hidden intermediate concepts or entities [38]).

5.2.2 FG: Level II. Global Keyword Search. This kind of service can be used for finding URIs,
triples, literals and datasets relevant to an information need that has been expressed as a keyword
query. Such services can be based on Information Retrieval techniques, semantic-based techniques,
or both. The responses of such services is a list of elements ranked according to their estimated
relevance to the user query. It is not hard to see that having achieved an effective (of good qual-
ity) I-service, certainly aids the provision of II-services, since without complete URI lookup the
II-services will miss relevant elements and thus will have low recall.

5.2.3 FG: Level III. Integrated Query Answering Service. This kind of service answers complex
queries containing data derived from more than one dataset over any integrated system. For in-
stance, such a service should be able to answer the following query: “Find the ecosystems, waterar-
eas and countries that http://www.dbpedia.com/Thunnus_Albacares is native to, and the common
names that are used for this species in each country, as well as their commercial codes.” One differ-
ence between level III and level II services is that a III-service takes as input a query expressed in a
structured query language (SPARQL), while II-services receive as input queries expressed in nat-
ural language. Consequently, one major difference between III-services and I/II-services is that a
III-service presupposes a common conceptualization that allows formulating the query and it also
presupposes the existence of data according to this conceptualization (for evaluating the query).
The latter is not always feasible, since we may miss the needed datasets mainly due to the differ-
ent conceptualizations or the complementarity of datasets (difficulties c and e), i.e., we may not
have enough common data to establish connections. Another difference between III-services and
I/II-services is that it is much more difficult to achieve a quality response to a complex query. For
example, suppose that an I-service has recall 80% (e.g., that it only finds 80% of the URIs or triples
about a real-world entity). Now a query that contains a condition that involves 2 URIs (e.g., all x
such that (u1,X ,u2) is expected to have recall equal to 64% (=0.80 * 0.80), with k URIs, the recall
would be 0.8k . Clearly, the more complex the query becomes, the harder to achieve good quality.

5.2.4 CG: Dataset Discovery and Selection. It refers to the discovery of the most relevant
datasets to a given keyword, dataset, or URI and to the selection of the most desired datasets
that fulfill the requirements that the selected integrated access system is intended to serve.

Context. If there is prior knowledge for the datasets that will be integrated (e.g., in MarineTLO
warehouse [151], then the authors already knew which datasets will be used for constructing the
warehouse) there is no need to exploit such a Dataset Discovery service. On the contrary, one
can exploit such a service if there is no knowledge about what datasets exist, or there is prior
knowledge for some datasets that will be surely used, however, more datasets are needed. For
instance, Figure 3 shows an example where the scientist (or user) desires to find datasets whose
domain is about Marine Species by using a keyword search engine that returns a ranked list of
datasets.
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Fig. 6. The different criteria of dataset discov-

ery.

Table 1. Categorizing Existing Dataset

Discovery Approaches According to

the Criteria of Figure 6

Approach Input Based on Output

Nikolov et al. [112] D, K C RL

Leme et al. [91] D M RL

Wagner et al. [163] D, K M+C RL, V

Ellefi et al. [44] D M RL

LinkLion [109] D M UL

RapidMiner Link [127] U L UL

LODVader [6] D M RL, V

LODsyndesis [105] D, U M+C UL, V

Lotus [75] K C UL

Swoogle [34] K, U M+C RL

Sindice [116] K, U M+C RL

SWSE [72] K, U M+C RL

Watson [30] K, U M+C RL

Datahub.io K M UL

Google Dataset Search [18] K M RL

SpEnD [166] K M UL, DS, V

SPARQLES [159] K M UL, DS, V

Difficulties. The heterogeneity in terms of format, schema, and so on, the existence of differ-
ent URIs referring to the same real-world entity, and datasets evolution, i.e., difficulties (a), (b),
and (f), makes it difficult to discover valuable and relevant datasets. Additionally, difficulties (c),
i.e., complementarity of information, and (e), i.e., different conceptualizations, can complicate that
process.

Categorization. Figure 6 depicts the different criteria that can be employed for characterizing
the Dataset Discovery approaches. One criterion is how the information need is expressed: as a
Keyword-query, as a URI or as a Dataset. Another criterion is the method that is used for discov-
ering relevant datasets: there exist Metadata-based approaches that depend on metadata such as
measurements, statistics, and dataset descriptions, Content-based approaches, which exploit the
contents of the datasets for discovering relevant datasets, and Links-to approaches that discover
relevant URIs and datasets on-the-fly by traversing equivalent links. Regarding the output, the sim-
plest one is an Unranked List, which just returns a list of datasets (or links with their provenance)
without ranking, while the output can be a Ranked List, where a score is assigned for each dataset,
e.g., by exploiting Dataset Recommendation techniques. Finally, a Dataset Visualization output can
be more informative for the human users for helping them to understand and explore the struc-
ture and the interconnections of Linked Data and lead to an efficient and intuitive interaction with
them, while Daily Statistics (as an output) are important for checking the evolution of each dataset.

Approaches. Table 1 lists a number of approaches and categorizes them according to the di-
mensions of Figure 6. Below, we describe in brief these approaches.

Dataset-based Approaches. Leme et al. [91] proposed a probabilistic classifier based on
Bayesian theory, for identifying the most relevant datasets that can be interlinked with a given
dataset, i.e., they create a ranking with respect to the probability of a dataset to be relevant with a
given one. LinkLion [109] is a service collecting pairwise mappings for 476 RDF datasets, while one
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can discover mappings for a given dataset. In Reference [44], it is presented a dataset recommen-
dation approach for detecting potential datasets, that can be linked to a given dataset and relies on
the common schema elements among the datasets. LODVader [6] uses Bloom filters to compare, in-
dex and count links between RDF distributions in the streaming process. One can upload a dataset
description file and that system compares its metadata with the existing datasets’ metadata. Then,
it provides to the users a LOD Diagram showing the discovered links for their datasets. Nikolov
et al. [112] proposed a method that takes as input a single dataset and uses an index and keyword
search for retrieving the most relevant datasets to the given one. LODsyndesis [105–107] offers
content-based measurements for 400 datasets, e.g., one can find the “K most connected datasets to
a given one.”

Keyword-based Approaches. Google Dataset Search engine [18] crawls and indexes metadata
from thousands of datasets and HTML web pages. By using that engine, one can retrieve the most
relevant datasets to a set of keywords. Moreover, Datahub.io offers also a keyword search mech-
anism by exploiting the metadata of datasets that have been uploaded from several organizations
and users. Semantic Web Search Engine (SWSE) [72] resembles a classical search engine, i.e., it
crawls and indexes RDF data and provides a keyword search for easing the search, exploration
and retrieval of RDF data. Swoogle [34] crawls and retrieves several semantic web documents by
exploiting metadata and by traversing links. All the retrieved documents are indexed and analyzed
by using several metrics for computing ranks (e.g., ranks for ontologies). The users can exploit the
keyword search functionality for retrieving results about these documents. Sindice [116] uses also a
crawler for discovering and fetching RDF files, while it connects to SPARQL endpoints for retriev-
ing RDF datasets. It uses several indexes (e.g., for URIs and literals), while one can submit a key-
word query in this system for finding relevant data. Watson [30] offers advanced functionality for
searching semantic web resources, i.e., one can search in documents and ontologies, find metadata,
explore ontologies, write their one SPARQL queries and use several metrics by selecting their own
filters. In Reference [163], recommendations are provided through keyword search for integrating
identical schema and instance elements of different datasets. The users can discover more sources,
that are connected with the selected ones by exploiting measurements that try to find similarities
between the datasets. Lotus [75] is a text engine returning URIs and their provenance for a given
set of keywords. Finally, SPARQLES [159] and SpEnD [166] contain a catalog of SPARQL endpoints,
however, their main objective is to monitor the evolution of SPARQL endpoints over specific time
periods by providing daily statistics (and visualizations).

URI-based Approaches. The URI-based approaches are based either on indexes or on the ex-
istence of dereferencing HTTP URIs, where one can discover relevant URIs on-the-fly (by travers-
ing owl:sameAs or other kinds of relationships). LODsyndesis [105, 107] provides a global entity
lookup service based on a owl:sameAs catalog, which retrieves all the datasets (and triples) where
a URI u (or an equivalent URI of u) exists. RapidMiner Link Explorer [127] takes as input a URI
and discovers on-the-fly relevant URIs and datasets by following owl:sameAs paths. The advan-
tage of on-the-fly approaches is that one can explore a large number of URIs for the same entity,
while by using an index, the number of URIs for the same entity is stable. However, they strongly
depend on dereferencing HTTP URIs, since a path terminates when a non-dereferencing URI is
visited. Finally, a number of keyword searching services [30, 34, 72, 116] also offer a URI lookup
service.

5.3 Integration Substance (Materialization vs. Virtualization)

Here, we describe the Integration Substance (or Integration Architecture), which can be materialized
or virtual. The corresponding integration approaches are described below and Figure 7 shows their
main steps.
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Fig. 7. Steps for materialized and virtual integration.

Materialized Approach. In the materialized (or warehouse) integration, the integrated data are
stored in a single repository [21, 151]. As a first step (see upper part of Figure 7), one should select
the datasets (or views of specific datasets) that are appropriate for fulfilling the requirements of the
warehouse, which are defined in its “design” phase. In the “creation phase,” it is a prerequisite to
download (or fetch) the underlying datasets and usually to transform them to a target model before
uploading them in that repository, i.e., since datasets use different schemas, formats and so forth.
Moreover, mappings among the underlying datasets in both schema and instance level should be
defined, for enabling the answering of complex queries, that combine information from two or
more datasets. A crucial step is the “testing phase,” where one assess the quality of the constructed
repository, by using several metrics and by taking into consideration the defined requirements.
In the “monitoring phase,” one should monitor the underlying datasets for identifying possible
changes in one or more of them. Such a change can result to the reconstruction of the whole
warehouse, i.e., “refresh phase.” Regarding the benefits of this integration substance, (a) it is more
flexible in terms of transformations, (b) the stability and robustness of the materialized repository
do not rely on the datasets’ servers, i.e., one should access such a server only either for fetching a
dataset or for monitoring possible changes, instead of answering queries, and (c) it can offer faster
responses, mainly in query evaluation, and secondarily in several other tasks, e.g., for applying
techniques for instance or schema matching. Concerning the drawbacks, there is a cost for hosting
such a repository, while it needs a periodical monitoring and refresh. Figure 3 contains an example
with the required steps for building a Semantic Warehouse. Moreover, we should mention OLAP
approaches, which is a special case of materialized data integration. In this case, data are described
by using a star-schema (modeling entities of a single type), while “data are organized in cubes (or
hypercubes), which are defined over a multidimensional space, consisting of several dimensions”
[160]. That technology is mainly used by enterprises, for producing critical analytics (aggregate
queries), by using internal data (e.g., sales of a company), or/and external data, e.g., through
the exploitation of semantic web technologies [1]. OLAP queries mainly belong to Analytics ser-
vice of BasicServicesToDeliver dimension (see Figure 4). In Reference [1], several OLAP approaches
are surveyed, while “The RDF Data Cube Vocabulary” (http://www.w3.org/TR/vocab-data-cube)
can be exploited for publishing multi-dimensional data (results of aggregated queries) in RDF
format. Finally, we should also mention Data Marts, which are “small units of a Data Warehouse
that are dedicated to the study (analysis) of a specific problem” [17]; i.e., they belong to Analytics
service of BasicServicesToDeliver dimension (see Figure 4).

Mediator (Virtual Integration). In the mediator approach, the data remains in the original
sources [21, 151], while sources can be unaware that they are part of an integration system [74].
Concerning its “‘design phase” (see central part of Figure 7), one should select the datasets that
will be used and to define a mediated schema, which is essential for supporting query translation
among the different models of the underlying datasets’ schemas. Thereby, the mappings between
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the mediated schema and each dataset should be created. The core functionality of a mediator con-
tains three main steps. Initially, a query, expressed by exploiting the mediated schema, is received.
The query is disassembled in smaller sub-queries, where the mappings are exploited for perform-
ing Query Rewriting, i.e., as stated in Reference [22], “the problem of query rewriting consists in
reformulating the query into a (possibly) equivalent expression, called rewriting, that refers only to
the source structures.” Therefore, such a process makes it feasible each sub-query to be answered
by a specific dataset, and for optimizing the query execution plan. Concerning the last step, each
sub-query is sent to a specific dataset’s server, which in turn sends a response with the answer of
such a sub-query, and the responses of all the sub-queries are merged for providing to the user
the answer of the initial query. Concerning the “monitoring phase,” it is of primary importance to
monitor the underlying sources for detecting possible changes that can result to the reconstruc-
tion of the mappings between the datasets and the mediated schema. Regarding the advantages of
a mediator, there is no need to pay a cost for hosting the dataset, while it can access in real-time
updates of datasets’ content. On the contrary, its efficiency, quality and complexity relies mainly
on the sources’ servers. In Figure 3, we can see an example for a Mediator approach.

Federated Query Processing (Virtual Integration). “It refers to the process of running
SPARQL queries over several SPARQL endpoints” [120]. The underlying sources either use terms
from the same schemas for describing their data, or they use common URIs for describing spe-
cific entities. As a consequence, it is a prerequisite that specific schemas and URIs are reused for
achieving federated query processing, i.e., for performing joins among two or more sources. As it
can be seen in Figure 7, the first step is to select which datasets will be used for answering queries.
Afterwards, the federated query processing contains the following steps: “Query Parsing, Data
Source Selection, Query Optimization, and Query Execution.” Query Parsing is the process of parsing
and transforming a given query expressed by using SPARQL query language into a query execu-
tion tree [115], while Data Source Selection is used for finding the relevant datasets (i.e., SPARQL
endpoints) for a triple (or a set of triples) pattern of a given SPARQL query [62]. By having selected
the datasets for a given query, Query Optimization process starts for placing the triple patterns into
groups, and it is used for determining in an efficient way the order of joins and triple patterns. The
last step, i.e., Query Execution, is performed for answering the initial query. Similarly to a mediator
approach, the data remains in the original sources. However, a federated query approach does not
depend on a global schema (and thus there is no need to create mappings among different sources);
instead, it assumes that the underlying sources describe their data by using a common data model
(therefore, it is not capable to tackle heterogeneities such as different conceptualization). More-
over, sources can be aware that they participate in such a federation system [115]. In Figure 3, we
can observe an example of a federated query engine.

Traversal-based Integration (Virtual Integration). The traversal-based integration depends
on the live exploration of data links at query execution time [68]. First, such an approach receives
a query and searches for URIs given either in the query body or as additional parameters. Second,
it discovers URIs that are relevant to that query by traversing paths (e.g., owl:sameAs paths), for
finding more URIs that can be possibly exploited for enriching the results of the given query.
Afterwards, the URIs and datasets that will be used for answering the query are selected, since it
is not necessary to use all the relevant URIs (such a selection can be assisted by predefined rules).
Finally, it collects the answers for each URI and returns the final answer (containing data from
one or more datasets) to the user. One major advantage of this approach is the live exploration
and discovery of relevant datasets that were unknown, since it does not need prior knowledge for
answering a query. Consequently, there is no need to store and transform data in such systems, i.e.,
data remains in the original sources. On the contrary, the data access time can be a drawback due
to the recursive process that is usually followed, while the existence of few available deferencable
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links makes it difficult to discover relevant data. Moreover, since datasets are explored at real time,
it is difficult to measure their quality, while the possible chain of links can be huge. In Figure 3, we
can see that a smaller number of steps is required for a Traversal-based approach. Comparing to
other Virtual Integration approaches, it neither uses a global schema (like in a mediator approach),
nor it knows a priori all the candidate sources that can be used for answering a query.

Hybrid Integration. A Hybrid Integration approach can share characteristics from two or more
integration substances, e.g., suppose an approach, where a part of data are fetched and trans-
formed, while an other part of data is explored at query time (e.g., by following owl:sameAs paths).

5.4 Internal Services

This set of services are usually performed during the integration process. In Section 5.4.1, we
discuss Fetching and Transformation, in Sections 5.4.2 and 5.4.3, we discuss Schema and Instance
Matching, respectively, whereas in Section 5.4.4, we describe the process of Query Answering in
virtual integration.

5.4.1 Fetching and Transformation. It aims at fetching the data that will be used in a material-
ized approach and at transforming them into a common format.

Context. It can be applied in a Materialized approach, since in a Virtual approach, data are left in
their original sources. We can see in Figure 3 (in the materialized approach) that the scientist/user
downloaded the datasets and transformed the blank nodes of D2 to URIs.

Difficulties. It can tackle difficulties (a) and (e), i.e., the heterogeneity of datasets in terms of
format, schema, and modeling decisions that datasets follow for the same real-world objects.

Categorization. A variety of access methods can be offered from each dataset for fetching its
contents, (all contents or a specific “slice” of a dataset). In particular, for many RDF datasets, a
SPARQL endpoint or an RDF dump is provided, while alternative access methods include accessible
files through HTTP, a JDBC connection and others. The datasets that are not provided in RDF for-
mat need to be transformed to that format, i.e., format transformation. For some datasets a logical
transformation should be also performed, i.e., for enabling the representation of these datasets’
content by using a core ontology. The logical transformation can contain rules that change the
language of a literal, rules that transform the type of an RDF resource, e.g., transform a URI to a
blank node, a URI to a literal, a blank node to a URI, and so on, or rules for fixing syntactical errors.

Approaches. Concerning Materialized approaches, LDIF [139] can import data, that are rep-
resented in different formats (e.g., RDF/XML, turtle), from SPARQL endpoints or/and by using a
crawler. It uses the R2R Framework [13] for performing complex logical transformations, to in-
tegrate data represented through different ontologies into a single one (i.e., conceptualization is-
sues). MatWare [156] uses plugins for fetching data that are represented in different formats (e.g.,
RDF, JDBC, HTTP), and for providing format transformation for the fetched data. It also supports
logical transformation through SPARQL queries and plugins, while it uses the X3ML framework
[98], which handles in a state-of-the-art way the URI generation and the logical transformation.
ODCleanstore [83] fetches RDF data through a SOAP web service, and executes a defined set of
transformers for offering a common data representation (i.e., logical transformation). KARMA [84]
imports files in many different formats (csv files, RDF, etc.) and transforms all the different data for-
mats into a nested relational data model. It supports also logical transformation, i.e., one can com-
bine several ontologies for creating mappings between their data and standard ontologies, while
it uses techniques for identifying and suggesting to the user possible mappings. Regarding Hybrid
Integration approaches, TopFed [133] transforms billions of Cancer Genome Atlas (TCGA) data into
RDF format, while the transformed sources are described by using the same schema (i.e., format
and logical transformation). RapidMiner LOD Extension [127] imports data in several formats (e.g.,
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csv, excel), while it offers a SPARQL and an RDF Data Cube importer. It supports both format and
logical transformation for representing data in a common format. FuhSen [25] fetches data from
different formats (e.g., REST, RDF, SQL) by using wrappers, while data are transformed into RDF
molecules, i.e., an RDF molecule is the cluster of all the triples of a specific subject. Furthermore,
the authors in [121] fetched billions of HTML pages and they extracted the data expressed in Mi-
crodata format and RDFa for producing billions of RDF triples (the produced collection is acces-
sible in http://www.webdatacommons.org/). Moreover, there exists approaches focusing mainly
on fetching and transforming datasets. LODLaundromat [126] offers a common representation
for over 650,000 RDF documents after cleaning them, i.e., they are free of syntactic errors. The
authors of Reference [141] have proposed automatic ways for publishing relational databases to
RDF, while Reference [142] surveys various approaches for mapping relational databases to RDF,
e.g., CSV2RDF [46] transforms csv and excel files to RDF.

Evaluation Collections. LODIB [14] is a benchmark for evaluating whether a tool can detect
several mapping patterns and perform the required logical transformations (transforming a literal
to URI, renaming a class, etc.), for representing the data of three different sources by using a sin-
gle target vocabulary. Moreover, it measures the performance of each tool in terms of execution
time. Finally, in Reference [14] several data transformation benchmarks are mentioned (except for
LODIB).

5.4.2 Schema/Ontology Matching (or alignment). It refers to the problem of determining map-
pings at schema level between schema concepts. i.e., classes (e.g., Person owl:equivalentClass Hu-
man) and properties (e.g., staysAt rdfs:subPropertyOf livesAt).

Context. An integration system can (a) use predefined (PD) ontology mappings (and possibly
their closure) that have been declared (e.g., axiomatically) before the integration process or/and
(b) exploit ontology matching techniques (OMT) for producing new mappings during the integra-
tion process. In the simplest case, when two or more datasets use the same schema (or ontol-
ogy), there is no need to create mappings between them (e.g., federated query engines depend on
datasets that share concepts from same schemas). However, by having two or more datasets with
different schemas, mappings are essential for being able to answer queries over the integrated con-
tent. By deciding to build a warehouse, one can either (a) create the mappings between each pair of
datasets or (b) can define a single global schema and create the mappings between that schema and
each dataset, which enables the adequate mapping and integration for data, derived from distinct
datasets. By choosing to build a mediator, a (single global) mediated schema is created, whereas
mappings between that schema and each dataset’s schema are also created. The major advan-
tage of using a single global schema is the less effort that is required for schema mappings: e.g.,
given K sources instead of having to construct K ∗ (K − 1) pair-wise mappings, only K mappings
are required (one for each source). Moreover, the focus is given on one model rather than many.
The most commonly used schemas for declaring mappings among ontologies are RDF/RDFS (e.g.,
rdfs:subClassOf and rdfs:subPropertyOf) and OWL (e.g., owl:equivalentProperty). In Figure 3, for
the Warehouse, the user selected to create the mappings between the underlying sources, while for
the Mediator, the mappings were created between a global schema and each underlying dataset.

Difficulties. This process is not trivial, mainly due to difficulties (a), i.e., datasets are usually
published by using different and heterogeneous schemas and models, (e) different conceptualiza-
tion of the same domain, and (f) evolution, i.e., several ontologies are frequently changed. This
problem has attracted the interest of the community for decades. For instance, References [146,
147] extensively describe the difficulties of integrating different schemas in the area of relational
databases and References [82, 113] analyze the difficulties of matching different ontologies in Se-
mantic Integration area.
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Fig. 8. The different criteria of (schema

and instance) matching tools.

Table 2. Categorizing Existing Schema and Instance

Matching Approaches for Large-scale Datasets

According to the Criteria of Figure 8

Tool
Input

Resources Configuration Solution
Output

Link Types
Types of
Evidence

Yam++ [110] DC+ER M+L C SM NS, NB,
NLP IB

LogMap [78] DC+ER M+L C SM NS, NB,
NLP, IB, TB

StringOpt [24] DC+ER M+L C SM NS, NLP

SBOMT [114] DC+ER M+L C SM NS, NB,
NLP, CI, IB

Agreement
Maker [28]

DC+ER M+L C SM NS, NB,
NLP TB

XMAP++ [37] DC+ER M+L C+P SM NS, NB,
NLP, IB, TB

WebPie [158] DC M P SM+IM IB

PARIS [148] DC L C SM+IM NS, IB

Silk [161] DC M+L C+P SAS+OIR NS, NLP, TB

LIMES [111] DC M+L C+P SAS+OIR NS

LINDA [15] DC L C+P SAS NS, NB, IB

MinoanER [42] DC L P SAS NS, NLP

CoSum-P [169] DC L C SAS+OIR NS, NB, TB

MINTE [26] DC L C SAS NB, NS, TB

Categorization. We categorize matching tools (either schema or instance matching tools) in
manually specified linking configuration tools (i.e., a user manually specifies some rules), learning-
based tools (e.g., they can exploit machine-learning methods) and tools using both techniques [108],
as it can be observed in Figure 8. Moreover, since we emphasize on big number of data (and
datasets), we can categorize the approaches according to the type of the solution that they offer:
a centralized solution, which means that the computation is performed in one machine, a parallel
solution, i.e., a cluster of machines is used for speeding up the process, or both solutions, i.e., they
provide both a centralized and a parallel solution. Furthermore, we can divide the tools accord-
ing to the output that they produce, i.e., a Schema Matching approach produces always Schema
mappings, an Instance Matching approach creates always Instance mappings (see Section 5.4.3),
whereas some tools produce both instance and schema mappings. Moreover, we can distinguish
the approaches according to the types of evidence (which were presented in Section 4) that they
exploit for creating semantic bindings, and the resources that they use, i.e., only datasets’ content
(e.g., triples of datasets), or/and external resources (e.g., lexicons, translators) for improving the
accuracy of mappings.

Approaches. Starting from the area of Relational databases, References [146, 147] have proposed
a generic integration methodology (which can also be adopted by semantic web approaches) that
concern the automatic resolution of conflicts (e.g., structural conflicts) and automatic generation
of mappings among different schemas (or views) and the integrated schema by taking into con-
sideration the underlying semantics of the different schemas. Fully automatic methods have also
been proposed in various contexts, including query-oriented integration of relational databases
[7] and methods for creating automatically mappings between taxonomy-based sources [155]. We
mention eight ontology matching tools, which are categorized in Table 2 by using the criteria of
Figure 8. For reasons of space, a more detailed description of each one of these is available in the
online supplementary material (see Section A).
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Evaluation Collections. The most popular benchmark (and competition) is the OAEI
(Ontology Alignment Evaluation Initiative), which is a yearly evaluation event (http://oaei.
ontologymatching.org/). It contains several test datasets, where each one focuses on different dif-
ficulties of ontology matching process, such as matching ontologies of the same or different do-
mains, ontologies using different languages, and others. Finally, References [117, 144] survey over
60 Ontology Matching tools and a number of benchmarks for comparing the performance of such
tools.

5.4.3 Instance Matching (or alignment). It refers to the problem of determining mappings at
the data level, between real world entities (or instances/individuals), e.g., Thunnus Albacares ≡
Yellowfin Tuna, since they refer to the same marine species.

Context. An integration system can (a) use predefined (PD) instance mappings (and possibly
their closure) that have been declared (e.g., axiomatically) before the integration process or/and
(b) exploit instance matching techniques (IMT) for producing new mappings during the integration
process. A materialized approach can use any of these approaches, while a virtually integration
system usually relies on existing equivalence relationships and on their closure (e.g., traversal-
based engines follow owl:sameAs paths). The most commonly used mapping (or relationship) is
the owl:sameAs relationship, i.e., an entity e1 is same as entity e2 (e1 owl:sameAs e2) when both en-
tities refer to the same real entity, e.g., http://www.dbpedia.com/Thunnus_Albacares owl:sameAs
http://www.ecoscope.com/thunnus_albacares, while such mappings, among the URIs of marine
species Thunnus Albacares) are shown in Figure 3 (i.e., in the Materialized approach). Comparing
to Schema Matching, Instance Matching process produces mappings for instances only (i.e., in-
stances and schema concepts are two disjoint sets), whose number is usually much larger than the
number of schema concepts [106]. However, both processes can be very complex due to several
difficulties (e.g., different conceptualizations), while Reference [23] provides more details about
these two techniques.

Difficulties. It is related to the existence of many URIs for the same real entity (difficulty (b)).
Categorization. We categorize these tools by using the same criteria described in Section 5.4.2,

which are shown in Figure 8. However, we can further categorize instance matching tools accord-
ing to the mappings that they support (see Figure 8). Most tools usually produce owl:sameAs re-
lationships, while some tools are also capable to produce other relationships, such as foaf:based-

near, which declares that an entity has similar meaning with an other one but not exactly the
same.

Approaches. Table 2 (i.e., see the last eight tools) shows scalable tools performing instance
matching, which are briefly described below.

Silk [161] supports manually specified rules and supervised learning for producing owl:sameAs
links (by default) or other user-specified relationships. It uses mainly several string similarity met-
rics, while it provides a parallel version for scaling out to very big datasets. Finally, Silk is used as a
component from three materialized tools, i.e., ODCleanstore [83], MatWare [156], and LDIF [139].

LIMES [111] is a tool that supports both manual configuration and learning techniques (super-
vised and unsupervised). It offers different approximation techniques based on metric spaces for
estimating the similarities between instances. It can produce both owl:sameAs and user-specified
links, it offers both a centralized and a parallel version, while it is used by TopFed [133].

PARIS [148] can detect owl:sameAs relationships by exploiting functional properties. This sys-
tem (which is used by RapidMiner LOD Extension [127]) does not require a configuration from
the user and offers a centralized solution that has been tested with a large number of triples and
entities.

WebPie [158] can take as input owl:sameAs relationships and computes in a parallel way their
transitive and symmetric closure to produce inferred owl:sameAs relationships.
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LINDA [15] is a fully automatic system offering both a centralized and a parallel version and
has been tested for over 100 million entities. It uses several techniques for identifying owl:sameAs
relationships, while it checks the neighborhood of different entities for inferring relationships.

MinoanER [42] is a system that discovers owl:sameAs relationships by placing similar descrip-
tions into blocks, while it tries to discover mappings by using descriptions that occur in the same
block. It has been built by using parallel frameworks and has been tested with millions of entities.

CoSum-P [169] is a generic framework that performs entity matching by solving a multi-type
graph summarization problem. It receives an RDF graph and creates a summary graph, while it
uses several structural similarity metrics, such as the number of common neighbors.

MINTE [26] (which is a component of FuhSen [25]) computes similarities between RDF molecules
for matching equivalent entities by using semantic similarity functions, e.g., GADES [149], while
except for perfoming instance matching, it integrates also all the triples of a specific real entity.

Recently, there is trend for approaches that use embeddings and Machine Learning techniques
for finding similarities. MateTee [102] is an approach that creates a vector representation of entities
and uses a Stohastic Gradient Descent method for computing similarities among entities. RDF2VEC
[128] converts an RDF graph in sequences of entities and relations, and adapts neural language
models, such as word2vec [97]. The produced vectors can be exploited for Machine Learning tasks
(e.g., for identifying similarities between two entities). Finally, the task of matching different enti-
ties can become more complicated, since there exists a remarkable percentage of unnamed entities
(e.g., see the example with the book in Figure 5), i.e., blank nodes. For such a case, there have been
proposed techniques based on signatures [88] for blank nodes matching.

Evaluation Collections. One can exploit the OAEI benchmark (as in the case of Ontology
Matching) for evaluating the performance of Instance Matching systems with respect to various dif-
ficulties, such as detecting differences on the values or/and the structure of different datasets that
contain information about the same entities. Moreover, it contains a track, which can be used (a) for
both Ontology and Instance Matching, and (b) for creating mappings not only between pairs but
also among triads of datasets (http://oaei.ontologymatching.org/2018/knowledgegraph). Finally,
Reference [31] contains several real and synthetic benchmarks for evaluating instance matching
systems.

5.4.4 Query Answering in Virtual Integration. It refers to the process of answering of a given
query in virtual integration.

Context. In Figure 3, one can see specific examples of answering a query by using a mediator,
a federated query engine and a traversal-based approach.

Difficulties. For a mediator, the task of query rewriting requires the computation of mappings
between the mediated schema and the underlying datasets, thereby, the heterogeneity in terms of
schema, i.e., difficulty (a), and different conceptualizations, i.e., difficulty (e), can make this process
more difficult. For a federated query or a traversal-based engine, it is important to select datasets
that use the same model or/and URIs (they should be dereferencing in a traversal-based case), since
they do not produce mappings, thereby, i.e., difficulties (a) and (b) should be overcome.

Approaches. We introduce approaches concerning the Query Answering process for each dif-
ferent virtual integration type.

Query Answering over a Mediator. In the database field, there exist two main approaches
that can be defined for this process with respect to the way that the mappings have been defined.
Specifically, they are called LAV (local as view) and GAV (global as view) while there exists ap-
proaches containing a combination of them, i.e., GLAV (global local as view) [22, 92]. LAV is an
approach where “the source structures are defined as views over the global schema” [165] and
most of the proposed solutions are based on query answering by using query rewriting, i.e., after
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the query rewriting process the query can be evaluated over the underlying sources for obtaining
the results. GAV is an approach where “each global concept is defined in terms of a view over the
source schemas” [165] and most solutions try to substitute each global relation with its correspond-
ing definition concerning the sources. GLAV is an approach specifying the mappings between the
source schemas and the global one. Finally, Lenzerini, Calvanese, and colleagues have extensively
studied the aforementioned LAV, GAV, and GLAV techniques and have surveyed a lot of approaches
using these techniques [22, 92].

The above techniques have been also applied in the context of Linked Data [100]. In partic-
ular, SemLAV [101] is a LAV-based approach for processing in a scalable way SPARQL queries,
by producing answers for SPARQL queries against large integration systems, whereas in Refer-
ence [89], GAV SPARQL views are exploited for rewriting queries against a global vocabulary. Re-
garding other query rewriting approaches, in Reference [157] techniques for query rewriting over
taxonomy-based sources were proposed while in Reference [95] the authors proposed a framework
performing query rewriting for SPARQL queries. It takes as input a SPARQL query represented
by a specific ontology, and transforms it to a semantically equivalent query, by using an other on-
tology. Finally, in Reference [27] a technique is described for exploiting transformations between
RDF graphs for enabling query rewriting.

Query Answering over a Federated Query Engine. The proposed engines can be distin-
guished in three different categories [130], according to the approach that they follow for se-
lecting the datasets that can answer a given sub-query. First, there exists Catalog/index-assisted
approaches, where they maintain a catalog for the available endpoints while indexes have been
created and statistics have been collected during the construction of the virtually integrated sys-
tem. Then, for each query the aforementioned indexes and metadata are exploited for selecting
the most relevant datasets for a given triple pattern. Second, Catalog/index-free solutions maintain
a catalog for the endpoints, however, they collect statistics on-the-fly (e.g., by exploiting SPARQL
ASK queries) and the datasets are selected through the aforementioned statistics. Finally, Hybrid
solutions combine both techniques for selected the datasets that can answer the initial query. Con-
cerning Catalog/index-assisted approaches, DaRQ [122] system uses an index containing service
descriptions for each source, which include the triple patterns that are answerable by each source.
As regards Catalog/index-free approaches, FedX [140] system sends one SPARQL ASK query per
triple pattern to the federated datasets’ endpoints for detecting relevant datasets, e.g., for a triple
pattern {?s foaf:name ?name}, it send the following query to each dataset Di : “ASK {?s foaf:name
?name}”, which returns true if Di contains triples with this property. Finally, for decreasing the
execution time of source selection task, query approximation techniques have been proposed [62].

On the contrary, most tools use a hybrid approach for answering a given query. In particular,
SPLENDID [60] uses an index containing VoID descriptions for finding the candidate sources for
answering a triple pattern, however, for triples containing variables that are not included in the
VoID statistics, it sends SPARQL ASK queries. HiBISCuS [131] exploits an index for the subjects
and the objects and SPARQL ASK queries for the predicates for discovering the relevant datasets
for a given triple. ANAPSID [3] uses a catalog containing the available SPARQL endpoints and
their ontology concepts, while statistics for the endpoints are updated on-the-fly to maintain
up-to-date information. DAW [132] constructs indexes that contain information about a distinct
predicate of a specific dataset (e.g., how many triples contain this predicate), and uses a novel
source selection algorithm for ranking the sources based on their contribution, to select the most
relevant sources for a given triple pattern. MULDER [45] sends SPARQL queries for collecting
descriptions of RDF molecules templates, i.e., “descriptions of entities of the same RDF class.”
It mainly exploits that descriptions to select the datasets that can increase the completeness of
the answer. Finally, more details about dataset selection of federated query engines and issues
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that concern query optimization (e.g., query planning, join strategy) are out of the scope of this
survey, however, one can find surveys containing analytical details for these steps [115, 129, 130].

Query Answering over Traversal-based Integration Approaches. SQUIN [69] receives a
query and tries to retrieve triples by using the URIs that can be found in that query. Then, a re-
cursive iterative process (which stops only when a fixed point is reached) that relies on the afore-
mentioned triples starts, and in each step, SQUIN tries to discover incrementally more URIs and
triples that are related to the given query. Linked-Data-Fu [66] system supports traversal-based
integration, by following links based on specific rules that can be declared by using Data-Fu Lan-
guage. It exploits REST technology, i.e., it starts by sending a POST requests to a specific URI, and
the results can be derived through a GET request. By sending such requests, it can discover on-
the-fly links and it can send new requests for retrieving even more data. SWGET uses NautiLOD
formal language [53], for retrieving in a recursive way data from several linked datasets. It relies
on regular expressions and ASK SPARQL queries for selecting the most appropriate sources to
continue the navigation (e.g., by traversing owl:sameAs paths), while one can control the nav-
igation through SPARQL queries. Moreover, we should mention SPARQL-LD [48], an extension
of SPARQL 1.1 that enables to combine in a single query (and perform whatever transformation
is possible via SPARQL) data coming not only from external SPARQL endpoints but also from
external data stored in RDF, JSON-LD files, as well as data from deferenceable URIs, and others.

Query Answering over Hybrid-Integration Approaches. TopFed [133] is a hybrid approach
(mainly a federated query engine) that contains biological data. We categorize TopFed as a hybrid
approach, since data are transformed for being described by the same schema and they are linked
with external sources through schema/instance matching techniques. For answering a specific
query, this engine uses both a metadata catalog and ASK queries. FuhSen [25] takes as input a
keyword query and a similarity threshold for creating a knowledge graph at query time. It uses a
global vocabulary (called OntoFuhSen) for transforming the initial query to a SPARQL query or
to a REST request, and sends federated queries to the relevant sources. Finally, the responses of
the queries are enriched, by integrating all the triples of a specific entity (by using MINTE [26]).
RapidMiner LOD Extension [127] is partially a traversal-based approach. It follows paths of a given
type (e.g., owl:sameAs paths) for finding and integrating data over different sources; however, it
can fetch data and perform instance/schema matching, while it offers data fusion mechanisms.

Evaluation Collections. There exists benchmarks like FedBench [137], LargeRDFBench,
SP2Bench, and others [129], which cover several dimensions such as the result completeness,
ranking of the returned answers and efficiency of each different step of the process (e.g., source
selection).

5.5 Auxiliary Services

This set of services are auxiliary and can be exploited before or after the integration process. In
Section 5.5.1, we analyze issues concerning data Provenance, while in Section 5.5.2, we introduce
ways to measure and improve the Quality of one or more datasets. In Section 5.5.3, we show
how one can Monitor the Evolution of datasets, whereas in Section 5.5.4, we discuss the process of
Publishing an integrated dataset.

5.5.1 Provenance. “It focuses on how to represent, manage and use information about the origin
of the source or data to enable trust, assess authenticity and allow reproducibility” [168].

Context. Data provenance should be preserved regardless of the selected integration approach.
Difficulties. It mainly refers to difficulty (a), i.e., the initial format of the datasets can change

and the contents of a dataset can be transformed (e.g., for being compatible with a global schema).
In such cases, one should respect the datasets’ licenses, and record the provenance of each triple.
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Categorization. There are various levels of provenance support that are usually required:
“(i) Conceptual level, (ii) URIs and Values level, (iii) Triple Level, and (iv) Query level” [151]. Re-
garding level (i), the key point is that one can transform specific triples according to a conceptual
model that models provenance; i.e., it is mainly applicable in a Materialized approach. Concern-
ing level (ii), one can adopt the “namespace mechanism for URIs,” i.e., the prefix of the URI can
be exploited for providing information about the origin of the data (can be supported from any
approach), while for literals one can use the extension “@Source” to the end of every literal (e.g.,
“Thunnus” @Dbpedia). Regarding level (iii), by storing each dataset in a separate graphspace, the
origin of a triple can be obtained by asking for the graphspace containing that triple (applicable
only in a Materialized approach), while N-Quads format can be exploited for storing each triple’s
provenance. Finally, level (iv) can be supported by offering query rewriting techniques, i.e., one
can exploit the graphspaces’ contents for showing the contribution of each dataset to the answer
of the query. It can be supported from any integration substance (mainly for Virtual Integration
approaches).

Approaches. In the first provenance challenge [103] (held on 2006), several teams selected to
exploit Semantic Web technologies for creating systems to represent the provenance for a “func-
tional magnetic resonance imaging workflow” and to answer some predefined provenance queries.
A provenance model for RDF data, containing the dimensions of data creation and data access, is
described in Reference [67]. Specifically, the authors analyzed the major types and relationships
of each dimension. Moreover, they showed ways for accessing provenance metadata, while they
introduced properties form popular ontologies (such as Dublin Core and FOAF), that can be ex-
ploited for storing provenance information. The aforementioned model was used in Reference [70]
along with a method for assessing the trustworthiness of the Web data. By using that method, one
can assess the timeliness of the existing provenance metadata and check whether important prove-
nance information are missing for a given dataset. A provenance ontology, which can be used for
describing the provenance for both data access and data creation is presented in Reference [71].
In particular, they describe how one can include metadata provenance information to a specific
dataset by using that ontology, and how to access and query such metadata, since it is important for
several tasks, e.g., for evaluating the timeliness of provenance information. A generic provenance
vocabulary, called PROV Model (http://www.w3.org/TR/2013/NOTE-prov-primer-20130430/), has
been standardised by the W3C community. By using the PROV Model, one can describe the main
entities, agents and activities being part of the production of a specific dataset, while information
about the conceptual model, the constraints and applications using the PROV Model, can be found
in Reference [99].

5.5.2 Quality Assessment. “It is the analysis of data to measure the quality of datasets by using
relevant quality dimensions” [168].

Context. Quality is of primary importance for any integrated system. Figure 3 shows an exam-
ple where a data fusion algorithm resolved a conflict, i.e., two sources agree that the max length
of Thunnus Albacares is 240cm, while the remaining one contains another value for that fact.

Difficulties. It is predominantly related to difficulty (d) and secondarily to difficulty (f).
Categorization. There are various quality dimensions that can be measured in the context of

an integrated system. Some of these dimensions can be used for assessing the quality of a single
dataset, e.g., dimensions such as completeness, accuracy, data cleaning, consistency, and others
[168]. For example, the completeness of a dataset can be measured for detecting and correcting
possible errors and inconsistencies. Other dimensions, such as Data Interlinking, Connectivity, and
Data fusion require information from two or more datasets (mainly evaluated by materialized ap-
proaches), while Virtual Integration systems mainly evaluate their Query Performance [115, 129,
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130]. Below, we emphasize on quality dimensions requiring two or more datasets (mainly large
number of datasets); however, we mention some novel approaches for the single dataset case,
since the quality of an underlying dataset can affect the quality of the whole integrated content.

Data Interlinking. “It refers to the degree up to which entities that represent the same concept
are linked to each other” [168]. For evaluating this quality dimension, one can check the quality
of owl:sameAs links, the interlinking degree of a given dataset, and others. In Reference [167], the
authors distinguished two categories for dataset interlinking: interlinking of external websites, i.e.,
for measuring the availability of links between different sources, and interlinks with other datasets,
i.e., for identifying possible mappings that are inaccurate or links containing not so useful infor-
mation. Reference [136] focused on crawling a large number of datasets and on providing statistics
for them. The authors described data interlinking measurements such as the degree distribution of
each dataset (how many datasets link to a specific dataset). LODStats [47] retrieves thousands of
number of documents for providing useful statistics about how interlinked each document is, while
Reference [63] introduces network measures (e.g., interlinking degree and clustering coefficient),
for assessing the quality of mappings and for detecting bad quality links (e.g., owl:sameAs links).
Finally, there exists approaches, where one can find the number of common links [105, 109], and
the number of common triples, literals and schema elements [106], between two or more datasets.

Connectivity Assessment. “Connectivity express the degree up to which the contents of a
warehouse form a connected graph that can serve, ideally in a correct and complete way, the query
requirements of a semantic warehouse, while making evident how each source contributes to that
degree” [104]. Connectivity can occur both in schema and instance level. It is useful to measure
connectivity “(a) for assessing how much the aggregated content is connected, (b) for getting an
overview of the warehouse, (c) for quantifying the value of the warehouse (query capabilities),
since poor connectivity can result to less expressive queries, (d) for making easier its monitoring
after reconstruction, and (e) for measuring the contribution of each source to the warehouse” [104].

Data Fusion, Trust, and Fact Checking. “Data fusion aims at resolving conflicts from
different sources and find values that reflect the real world,” according to Reference [41]. In
Reference [83] conflicts are defined as the cases where two triples, belonging in different sources,
contain conflicting object values for a specific subject-predicate pair. Regarding the differences
with Data Interlinking, the latter aims at evaluating how connected two or more datasets are,
i.e., whether they contain information about the same entities, while in Data Fusion case, such
connections among datasets have already been discovered, and the goal is to find the triples
containing URIs that represent the same real-world object and transform them into a single ac-
curate representation by resolving conflicts. In the context of integrated (mainly non-structured)
data and relational databases, there exists several proposed methods and approaches, depending
on multiple techniques (e.g., probabilistic-based, IR models) [93]. Regarding approaches using
Semantic Web notions, Google Knowledge Vault [39] stores the information in the form of RDF
triples and identifies for such triple a confidence score. However, it extracts information from
both RDF sources (i.e., FreeBase) and non-RDF ones.

Concerning the different strategies of data fusion [93, 96], the simplest case is to provide to the
users all the conflicted objects for a given subject-predicate pair with their provenance, and let
them decide whether an object is correct or not, i.e., User-based approaches. Another technique
called Resolution-based, exploits a number of functions, such as majority or average for deciding
which object to keep. Moreover, Trust-based methods take into account the degree up to which we
trust the provenance of data, i.e., dataset trustworthiness can be measured as a whole, by measuring
the accuracy of all the triples of a dataset, however, it is usually difficult to know dataset’s trust-
worthiness a priori. Concerning semantic integration tools, LDIF uses Sieve [96] for assessing the
quality of the integrated data and exploits Resolution-based techniques (e.g., average), Trust-based
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Table 3. Categorizing Existing Quality Tools According to Their Characteristics

�����Categ.
Tool

LinkQA [63] Luzzu [32]
ODCleanStore

[83] Sieve [96] SWIQA [56] RDFUnit [86]
MatWare

[156] SeaStar [135]

Quality
Dimensions
[168]

Completeness,
Interlinking

Consistency,
Conciseness,
and others

Accuracy,
Completeness,
Consistency,
Conciseness

Completeness,
Consistency,
Conciseness

Accuracy,
Completeness,
Timeliness

Accuracy,
Consistency

Connectivity,
Interlinking,
Relevancy

Accuracy,
Interlinking,
Connectivity

Sources
Number

Set of
Mappings

One Source Collection of
Quads

One Integrated
Source

One Source One Source Set of
Sources

One or Two
Sources

Output Format HTML RDF RDF, HTML N-Quads HTML RDF, HTML RDF, HTML HTML

Progr. Lang. JAVA JAVA JAVA JAVA - - JAVA JAVA

Query Lang. - - - - SPARQL SPARQL SPARQL -

techniques (e.g., prefer data from trusted sources), and configurable metrics for deciding whether
a specific value is correct or a transformation is required for improving its accuracy. ODCleanStore
[83] offers several conflict resolution rules, where some of them select only one value among the
conflicting values (e.g., MAX, ANY), while it can also compute a new value based on the conflicting
values. Fuhsen uses MINTE [26], which applies three fusion policies for performing data fusion of
two RDF datasets, while RapidMiner LOD extension [127] uses some simple data fusion operators
(e.g., majority) for resolving conflicts. Finally, in Reference [58] PageRank is computed for 319 RDF
datasets for offering trust measurements that are also useful for evaluating dataset interlinking.

Regarding Fact Checking, it can be defined as the “area which focuses on computing which sub-
set of a given set of statements can be trusted” [57, 118]. DeFacto [57] is a temporal approach that
checks for the validity of facts. It takes RDF triples as input facts, and it exploits the web for search-
ing for possible proofs, by supporting multiple languages. In particular, they propose supervised
learning methods that require a large volume of training data while they use a combination of
trustworthiness metrics and textual evidence for measuring an evidence score for a specific fact.

Crowdsourcing and Data Quality. “Crowdsourcing refers to the process of solving a problem
formulated as a task by reaching out to a large network of (often previously unknown) people”
[4]. There exists two different crowdsourcing mechanisms, called content-based and micro-task
[4]. Content-based crowdsourcing concerns a group of Linked Data experts. In Reference [87],
each expert used TripleCheckMate tool, which enables users to select specific DBpedia resources
[90], to detect problems for the triples containing that resources, and to categorize them by using
a predefined set of quality issues (described in Reference [168]). Micro-task mechanism concerns
anonymous (even non-experts) users, thereby, the authors decided to restrict the scope of the
possible errors that these users can detect [87]. For a specific triple, they can identify datatype or
language errors, and incorrect links and object values (e.g., a person’s birth place). Afterwards, for
any mechanism that tool stores the incorrect triples (classified according to their quality issue) for
further checking. Regarding other approaches, HARE [2] is a SPARQL query engine that exploits
micro-task mechanism for completing missing values, which can occur at query execution time.
Moreover, such a mechanism is used from ZenCrowd [33] for improving the quality of instance
mappings (e.g., detecting incorrect owl:sameAs links), and from CrowdMap [134] for improving
ontology alignment process.

Tools assessing the quality of RDF datasets. Table 3 lists and categorizes various tools for
assessing the quality of RDF datasets. For reasons of space, a more detailed description of each one
of these is available in the online supplementary material (see Section B).

5.5.3 Dynamics/Evolution and Monitoring. “Dynamics quantifies the evolution of a dataset over
a specific period of time and takes into consideration the changes occurring in this period” [36].
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The objective of Monitoring is to observe and check the progress or quality of an integrated access
system over a period of time.

Context. Since everything changes very fast, any integration system should take this dimension
into account. For instance, we see in Figure 3 an example where the schema of a dataset changed,
thereby, the mappings in a materialized or in a mediator approach should be regenerated.

Difficulties. It is predominantly related to difficulty (f) and secondarily to difficulty (d).
Categorization. We can distinguish the integration approaches in three categories according to

how they are affected when a dataset changes: (a) approaches that needs to be updated manually,
(b) approaches that can be semi-automatically updated (e.g., by modifying a part of a configuration
file and by pushing a “reconstruction” button) and (c) approaches that are automatically updated
(i.e., not affected from datasets’ updates). Moreover, datasets’ evolution can occur in ontology level
and instance level. Evolution in ontology level occurs when the schema of at least one dataset
changes or the global schema changes. By using a global schema, only the mappings between
that dataset and the global schema should be recreated (i.e., in a mediator or/and in a warehouse).
However, the construction of pair-wise mappings results to the recreation of the mappings be-
tween the aforementioned dataset and every other dataset (i.e., in a warehouse). For Catalog/index-
assisted or hybrid federated query approaches (such as DaRQ [122]), the indexes containing statis-
tics for properties/classes should be refreshed, while approaches such as FedX [140] (which relies
on ASK queries), or ANAPSID [3] (which collects statistics on-the-fly) are automatically updated.
On the contrary, evolution in instance level occurs when the policy (e.g., the prefix) of a dataset’s
URIs changes, or when more URIs are added in a specific dataset. For a materialized approach,
instance matching rules should be reconstructed and all the mappings containing the dataset that
changed should be recreated. Regarding virtual integration, it is essential to update indexes or/and
statistics, that are affected through such an evolution (e.g., the number of triples where a property
occurs can be changed when more URIs are added). Finally, by storing in a warehouse the inte-
grated content as a single integrated dataset, the evolution of a dataset can result to its whole
reconstruction. For avoiding this time consuming process, one can store the datasets in different
graphspaces (e.g., like in MarineTLO warehouse [151]) and update only the dataset(s) that changed.

Approaches. In Reference [85], the authors provide an approach that allows query answering
in virtual integration systems under evolving ontologies without recreating mappings between the
mediator and the underlying sources. In particular, it can be achieved by rewriting queries between
different ontology versions and then forwarding them to the underlying sources to be answered.
Moreover, in Reference [79] a “Dynamic Linked Data Observatory” is introduced for monitoring
Linked Data over a specific period of time, whereas Reference [36] proposes a function for measur-
ing the dynamics of a specific dataset, while they list several approaches related to datasets’ dynam-
ics. SPARQLES [159] and SpEnD [166] monitor the health of hundreds of public SPARQL endpoints,
by sending SPARQL queries at regular intervals, e.g., for checking the availability of each endpoint
over time. Finally, incosistencies can occur in the specificity of ontological instance descriptions,
when such descriptions are migrated to the up-to-date version of a given ontology [152].

5.5.4 Publishing an Integrated Dataset. Its objective is to publish an integrated dataset to be
reused by others for several tasks (e.g., query evaluation, data analysis, etc.).

Context. A scientist/user can publish an integrated dataset to be findable and reusable by
others. However, Linked Data are not so “open” for the consumers or the scientists to be reused,
since in many cases they are published under a license. According to References [54, 73], each
RDF dataset should contain such a license in order the datasets to be reused under legal terms.
Moreover, the license should be both machine-readable (e.g., mentioned in the VoID description of
a dataset) and human-readable (e.g., mentioned in the documentation of the dataset). According
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to Reference [54] a license should contain information for the permission that concern the
reproduction, distribution, modification or redistribution. Therefore, in case of publishing an
integrated dataset, the publishers should respect both the provenance and the licenses of the
constituent datasets. Such information should be included in the metadata of the dataset and
published along with the dataset. Moreover, the publisher of any dataset (e.g., integrated dataset)
should use recommended standards and follow specific principles, such as Linked Data principles
[12] and FAIR principles [164], for making their dataset more discoverable, reusable and readable
from both “‘humans and computers.” In Figure 3, we can see some ways for publishing an
integrated dataset in the warehouse approach.

Difficulties. Datasets are produced by several organizations in different licenses, places,
schemas, formats, and so forth (difficulty (a)).

Recommended Standards for Data Publishing. There exists several W3C standards that
are recommended to be used during the creation and before publishing any dataset (a single or
an integrated one), for enhancing Data Exchange and Data Integration. The key standards can be
divided in (a) standards for creating links among a single dataset and other datasets (e.g., rela-
tionships between instances and ontologies), and (b) standards for creating basic metadata for
a dataset (e.g., description, name, language, provenance). Concerning (a), it is important each
dataset to contain links to (schema/instance) URIs of other datasets, by using standard vocabu-
laries such as OWL, RDF/RDFs, SKOS (http://www.w3.org/2004/02/skos/) and so forth. Regarding
(b), the basic metadata of each dataset should be desribed by using standard vocabularies, such
as DCAT (http://www.w3.org/TR/vocab-dcat/), schema.org, VoID (http://www.w3.org/TR/void/),
Dublin Core (http://dublincore.org), FOAF (http://xmlns.com/foaf/spec/), PROV [99], and so on. In-
deed, there is an emerging trend of using such vocabularies in several cases, i.e., they are used by
billions of Web Pages [18, 121] (mainly through Microdata or/and JSON-LD), by Digital Libraries
[145], and by Governments [35], e.g., Open Government Data from European Union, Unites States,
United Kingdom, and others, usually through the creation of descriptions using schema.org or/and
DCAT vocabulary. Furthermore, Google’s dataset search engine collects and indexes datasets’
metadata that have been expressed by using such ontologies [18]. Therefore, it is clearly of primary
importance for any publisher to use these standards, for enabling data sharing, and for easing the
integration of their dataset with other ones. Moreover, it is worth noting that VoID vocabulary can
be exploited for deciding whether two or more datasets are worth to be integrated, since it can
be used for describing metadata concerning the links that exist between two datasets. Finally, we
should also mention the Shapes Constraint Language, i.e., SHACL (http://www.w3.org/TR/shacl/),
which is a language for “validating RDF graphs against a set of conditions,” that can used for
several purposes, such as for data cleaning before publishing the dataset.

Where to Publish Datasets. First, dataset catalogs such as datahub (http://datahub.io/) and
Zenodo (http://zenodo.org/), offer services for uploading a dataset, metadata about the dataset and
so forth. Second, a SPARQL endpoint can be exploited in order the dataset to be directly published
and accessed by humans and machines (e.g., for query answering). In particular, there are several
available tools offering query evaluation such as Virtuoso (http://virtuoso.openlinksw.com/), Blaze-
Graph (http://www.blazegraph.com), AllegroGraph (http://www.franz.com/agraph/), and Stardog
(http://www.stardog.com/), which has been successfully used in NASA MARS mission (see more
details in https://cdn2.hubspot.net/hubfs/2820685/Assets/Case Studies/Stardog_Nasa Case Study.
pdf).

5.6 Integration Tools

Table 4 lists a number of integration tools and categorizes them according to the dimensions of
Section 4, i.e., the integrated method that they offer, their input and output types and what internal
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Table 4. Categorizing Existing RDF Integration Tools

Tool/ Framework
Integration
Substance

Dataset
Types

Output
Types

Transfor-
mations

Schema
Match-

ing

Instance
Match-

ing V Q A
Provenance

Levels Quality Evolution
Tested

|D|
Tested

|T|

LDIF [139] Materialized RDF Any LT PD+OMT PD+IMT ✗ CL,UVL,TL DF S-Aut. 1–9 B

ODCleanstore [83] Materialized RDF Any LT PD+OMT PD+IMT ✗ CL,UVL,TL DF S-Aut. 1–9 M

MatWare [156] Materialized RDF+O Any LT, FT PD+OMT PD+IMT ✗ CL,UVL,TL Con. S-Aut. 1–9 M

KARMA [84] Materialized RDF+O Any LT, FT PD+OMT PD ✗ CL,UVL,TL DC S-Aut. 1–9 B

FuhSen [25] Hybrid RDF+O KS FT PD PD+IMT � UVL,QL DF S-Aut. 1–9 M

TopFed [133] Hybrid RDF QA LT, FT PD+OMT PD+IMT � UVL,QL QP S-Aut. 10–19 B

RapidMinerLOD [127] Hybrid RDF+O Any LT, FT PD+OMT PD+IMT � UVL,QL DF Aut. 1–9* M

SQUIN [69] Traversal RDF QA ✗ PD PD+C � UVL,QL QP Aut. 1–9* M

SWGET [53] Traversal RDF QA ✗ PD PD+C � UVL,QL QP Aut. 1–9* M

Linked-Data-Fu [66] Traversal RDF+O Any ✗ PD PD+C � UVL,QL QP Aut. 10–19* M

SEMLAV [101] Mediator RDF QA ✗ PD+OMT PD � UVL,QL QP S-Aut. 1–9 M

DaRQ [122] Federated RDF QA ✗ PD PD � UVL,QL QP S-Aut. 10–19 M

Splendid [60] Federated RDF QA ✗ PD PD � UVL,QL QP S-Aut. 10–19 B

HiBISCuS [131] Federated RDF QA ✗ PD PD � UVL,QL QP S-Aut. 10–19 B

FedX [140] Federated RDF QA ✗ PD PD � UVL,QL QP Aut. 10–19 B

ANAPSID [3] Federated RDF QA ✗ PD PD � UVL,QL QP Aut. 10–19 B

DAW [132] Federated RDF QA ✗ PD PD � UVL,QL QP S-Aut. 1–9 M

MULDER [45] Federated RDF QA ✗ PD PD � UVL,QL QP S-Aut. 10–19 M

O =Other Formats, Any =Any Service, QA =Query Answering, KS = Keyword Search, FT = Format Transformation, LT =

Logical Transformation, PD = Predefined Mappings, OMT = Ontology Matching Techniques, C = Closure, IMT = Instance

Matching Techniques, VQA=Virtual Query Answering, CL=Conceptual Level, UVL=URIs and Values Level, TL= Triples

Level, QL = Query Level, DF = Data Fusion, Con. = Connectivity, DC = Data Cleaning, QP = Query Performance, Aut. =

Automatically, S-Aut. = Semi-Automatically, |D| =Datasets, *discovers more datasets on-the-fly, |T| = Triples, M =Millions,

B = Billions.

(e.g., instance matching) and auxiliary services (e.g., provenance) they support. Although these
tools can support millions or even billions of triples, to the best of our knowledge, they have been
tested by using a small number (below 20) of real or synthetic datasets (see the last two columns
of Table 4). Materialized approaches have mainly been tested by using real datasets [84, 139, 156],
while federated approaches have been evaluated by using benchmarks such as LargeRDFBench
[129] (having billions of triples) and FedBench [137] (having millions of triples). Materialized
approaches are difficult to scale up to a big number of datasets, since some steps require manual
effort, e.g., defining and configuring matching/transformation rules. On the contrary, virtual
integrated systems do not offer transformation and data fusion mechanisms and mainly rely on
a common schema (or/and common URIs), therefore, conceptualization, naming and conflicts
issues are difficult to be tackled. Finally, when a dataset evolves, some steps that possibly require
manual effort (e.g., defining new matching rules) should be repeated for most integration tools.

6 PROCESSES FOR INTEGRATION

In the previous sections, we have factorized the integration problem to various dimensions, and
we have analyzed the approaches and methods for each one of these dimensions. Regarding Inter-
nalServices dimension, one question is what processes (i.e., sequence of steps) are usually followed.
For instance, given two or more sets of triples to be integrated, does one start from ontology match-
ing or from instance matching? Of course, various processes could be followed according to the
context. Below, we distinguish the main ones, each accompanied by a real-world case.
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Fig. 9. Top level—ontology-based integration.

P1. (Processes for) Top-level Ontology-based or Competency Query-based Integration: Here, the de-
sired Level III requirements are specified either as competency queries and/or by providing the
ontology or schema that the integrated view of the datasets should have. Then, the data of the
individual datasets should be transformed (physically or virtually) according to the integrated
schema. Indeed, information integration is traditionally done in the context of databases by rec-
onciling data coming from different sources under a common schema. An analogous process for
the case of the RDF data (that follows the materialized approach), is the one that is followed by
LDIF [139] and ODCleanStore [83], which are generic frameworks for integrating Linked Data.
MatWare [156] follows a similar process and it has been used for building and maintaining real
and operational warehouses, i.e., MarineTLO warehouse [151] and the ongoing GRSF warehouse
[154]. In Figure 9, one can observe the process that is usually followed by such frameworks and
tools. In general, we could say that the process starts with the specification of a kind of “integration
template” that the data of the underlying datasets should “fill.” This template can be specified by
(competency) queries, schemas/ontologies or both.

P2. (Processes for) General purpose integration (fully automatic): In this case, we do not have
an “integration template,” either because we are not aware about the contents of the underlying
datasets, and/or because the integration does not have a specific purpose, i.e., we aim at building
a general purpose integrated view of a set of datasets. Therefore, here we try to do the best that
we can, and usually in such cases it is more difficult to guarantee that the integrated view satisfies
the criteria of completeness, validity and accuracy. We can say that approaches and systems that
fall into this category include LODLaundromat [126], LOD-a-Lot [51], and LODsyndesis [105, 107].
In these systems the process followed varies.

Specifically, LODLaundromat [126] starts by collecting URLs denoting dataset dumps and down-
loads the datasets by connecting to the hosting servers. Afterwards, it performs data cleaning by
finding and correcting syntax errors, by replacing blank nodes with well-known URIs and by re-
moving duplicate triples. Then, it stores the documents in a uniform serialization format (each
document is stored in a different file), it creates the metadata for the underlying datasets and it
publishes the data for being reused for various purposes in N-Triples and HDT format [52]. LOD-
a-Lot [51] is a service that integrate all the documents of LODLaundromat (over 650K documents)
into a single indexed HDT file [52] for easing the process of accessing and querying the full cor-
pus as a whole. LODsyndesis [105, 107] starts by collecting hundreds of available datasets from
online catalogs (such as datahub.io) and then it computes the transitive and symmetric closure
of owl:sameAs relationships to find all the equivalent entities among the datasets. Afterwards, it
creates indexes and performs measurements that are exploited for offering several services such as
object coreference dataset discovery and selection, connectivity assessment and others. Figure 10
illustrates an indicative lifecycle model of an integrated dataset in the form of UML State Diagram.
Each integration process can be conceived as a series of transitions between the illustrated states.

P3. Composite Processes: Composite processes are also possible. A composite process can be seen
as a sequence of points of the multidimensional space that we defined. For example, suppose an
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Fig. 10. Lifecycle of an integrated dataset.

integration process that comprises two subprocesses: the first aims at discovering and selecting
the 10 most related datasets to one information need, and the second aims at five-level integration
of these 10 datasets of the first step. In general, workflow management systems could be exploited
for specifying and enacting complex processes for data integration.

Remark about evaluation. It is easier to evaluate how successful a P1 process was. It is harder
for P2 processes and even harder for P3 processes.

7 EVALUATION OF INTEGRATION

How an integration approach can be evaluated? In general, we could identify two basic evaluation
aspects, quality and cost (the latter includes the human effort required), and ideally we would like
optimal quality and fully automatic (and cost-effective) integration processes. Of course, an inte-
gration process comprises various steps, each one could be evaluated independently of the others,
and in Section 5 we referred to such benchmarks. However, there is a need for evaluating also the
overall process and its outcome, and for this reason below we discuss how each kind of services
(that can be delivered through an integration process), either fine-grained or coarse-grained (as
distinguished in Section 5.2), can be evaluated.

Evaluation of Fine-grained Services. Here, we describe ways and we introduce evaluation
collections concerning the fine-grained services.

• FG: Level I. For offering complete Global URI Lookup Services, i.e., for finding all the datasets
and the equivalent URIs of a URIu, it is important to produce high quality mappings among
URIs and to offer cross-dataset completion (see Section 5.2.1). Incorrect owl:sameAs map-
pings result to low quality services, i.e., URIs referring to different entities are considered
as equivalent. The quality of mappings is mainly evaluated by using metrics such as pre-
cision and recall [63], whereas cross-dataset completion is evaluated through connectivity
metrics [104, 105]. Concerning the cost, several tools automate such processes and produce
mappings having high precision (see Sections 5.4.2 and 5.4.3); however, they are not free of
errors. Consequently, human effort is required for interpreting the results of the measure-
ments and the produced mappings. For this reason, crowdsourcing approaches are used for
improving the precision and recall of matching process [2, 4, 33, 87, 134].

• FG: Level II. The evaluation of Global Keyword Search Services relates more to Information
Retrieval techniques. In particular, a straightforward way for evaluating such a service is
to use reference collections [138]. LUBM benchmark [64] contains an evaluation collection
with keyword queries (and their corresponding answer) that can be evaluated over RDF
datasets. Concerning Virtual Integration Systems, there exists benchmarks like FedBench
[137], LargeRDFBench, SP2Bench, and others [129], which cover several dimensions, such
as the result completeness, ranking of the returned answers, and efficiency (e.g., execution
time). INEX Linked Data track provides a collection, which contains Wikipedia articles,
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and DBpedia and YAGO links (and triples) for the entities that occur in each article [43].
The main task of that track was to find the most relevant articles for a keyword query.
Finally, in SemSearch workshops the challenge was to evaluate semantic web Keyword
Search engines at large scale, by using the “Billion Triples Challenge 2009” dataset, which
contains 1.4 billion of triples [43].

• FG: Level III. The evaluation of Integrated Query Answering Services differs from the previ-
ous level, since the input for such an evaluation is a query expressed in a structured query
language. One way to evaluate such an approach, is to predefine some competency queries
[104] (MarineTLO warehouse [151] and GSRF warehouse [154] are evaluated in this way).
“A competency query is a query that is useful for the community at hand, e.g., for a hu-
man member (e.g., a scientist)” [104], and sketches the desired scope and structuring of
the information before the creation of the integrated system. For evaluating correctly each
competency query, the expected results should be predefined. However, this type of evalu-
ation requires human effort for defining the requirements of the integrated access system.
Concerning Virtual Integration Systems, in Section 5.4.4 we mentioned several benchmarks
for evaluating such systems. General question answering benchmarks are also used for
testing such services, e.g., Free917 [19] is an open question answering benchmark contain-
ing 917 natural language questions that can be answered by using the content of Freebase
dataset. Moreover, QALD [94] is an evaluation series campaigns on question answering over
Linked Data. The major challenge for the participants, is to use as input several RDF datasets
and natural language questions, for returning the desired answers or a SPARQL query that
is able to produce the correct answers. QALD is used for evaluating several aspects such
as multilinguality, large-scale question answering and others, while for each aspect it con-
tains several questions and tasks. Finally, LC-QuAD [150] is a corpus containing 5,000 ques-
tions for testing several different cases, while it provides the corresponding SPARQL queries
that are essential for answering questions over DBpedia [90]. Finally, a framework is pro-
vided for generating natural language questions and their corresponding SPARQL queries
for reducing the manual effort.

Evaluation of Coarse-grained Services. Concerning Dataset Discovery and Selection Services,
the results of such services for a specific integration task, are usually evaluated by measuring the
marginal gain of the selected sources [40], or/and by measuring the level of connectivity among
any set of datasets [106], i.e., for evaluating whether the selected datasets contain information for
the same entities. Additional quality dimensions can be considered, such as timeliness, accuracy,
coverage and efficiency [125], as well as constraints such as the cost of integration (e.g., in terms
of money amount for private datasets).

8 SEMANTIC INTEGRATION ON A LARGE SCALE

Table 5 compares the running LOD cloud tools/services that contain information on over 100 LOD
datasets, according to the services that they provide (each service can be exploited for different
dimensions of Data Integration), while each tool/service is described in more detail in the online
supplementary material (see Section C).

Below, we mention some real, and noteworthy, cases of integration in a large scale, and we divide
them in domain-specific and domain-independent cases. These cases either contain large number of
datasets, or the number of datasets is not big but the integrated dataset is itself big (and popular).

Domain-Specific Integration Use Cases. Here, we introduce use cases of successful data
integration that have been applied for a specific domain. Europeana [76] is a digital library for
cultural heritage combines data from than 3,000 institutions across Europe while these data were
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Table 5. Existing Services for Large Numbers of RDF Datasets

Tool/Service
Total

Triples
Include >
Datasets

Global
URI

Lookup
Dataset

Discovery

Dataset
Visual-
ization Connectivity

Fetching
Trans-

forming
Keyword
Search

Dataset
Analysis

Querying
Datasets

Dataset
Evolution

LODLaundromat
[126]

38 Bil. >100,000* � � � �

LOD-a-lot [51] 28 Bil. >100,000* � � �
LODStats [47] 130 Bil. >1,000 � �
LODsyndesis [105] 2 Bil. >100 � � � �
Datahub.io Unk. >1,000 � � �
LinkLion [109] 77 Mil. >100 � � �
DyLDO [79] Unk. >10,000* �
LODCache 4 Bil. >10,000* � �
LODCloud [136] Unk. >1,000 � � � �
sameAs.org [59] Unk. >100 �
SPARQLES [159] Unk. >100 � � �
SpEnD [166] Unk. >100 � � �

*Documents, Mil. =Million, Bil. = Billion, Unk. = Unknown.

transformed into Linked Data (over 1.8 billion of triples). One can query the integrated content by
using SPARQL queries. OCLC (http://www.oclc.org) is a “global library cooperative” that supports
data from thousands of libraries. OCLC has developed WorldCat (http://worldcat.org), which con-
tains 2.7 billion records with bibliographic metadata in Linked Data format. For making the data
more findable by search engines (e.g., Google Dataset Search [18]) and reusable from other users,
data are expressed by using standard formats and vocabularies, such as RDFa and schema.org.
PhLeGrA [80] has integrated data from four heterogeneous large scale biomedical datasets. The
authors analyzed the integrated graph for discovering associations between drugs, and they used
that graph and machine learning techniques for improving the accuracy of predictions of adverse
drug reactions. Bio2RDF is “the largest network of Linked Data for Life Sciences” [20]. It contains
approximately 11 billion triples from 35 datasets, and it can execute federated queries among the
underlying sources, since it creates mappings between the ontology of each dataset and a global
schema, called Semanticscience Integrated Ontology (SIO). Finally, Open Phacts [61] has integrated
over 3 billion triples from approximately 20 datasets containing information about drugs, and it
exploits a mediator mechanism for supporting complex SPARQL queries.

Domain Independent Integration Use Cases. Here, we introduce domain-independent use
cases of successful data integration. Google Knowledge Graph contains over 18 billion facts for
over 570 million entities [39] and exploits Semantic Web technologies for integrating informa-
tion for any domain. It integrates both semi-structured data (e.g., from organizations and com-
panies) and data from millions of HTML web pages that are mainly expressed in standard for-
mats and vocabularies, such as JSON-LD, Microdata, and schema.org. Except for Google Knowledge
Graph, Google uses similar mechanisms for providing integration for specific domains, such as
for Shopping (http://developers.google.com/search/docs/data-types/product), for providing Maps
(http://developers.google.com/search/docs/data-types/local-business) and others. Wikidata [162]
is a free and open knowledge base that contains over 26 million entities and it is readable
and editable by both humans and machines. It contains data in over 350 different languages,
while it mainly integrates data from Wikipedia (different languages) and users’ data. Freebase
[16] is a former knowledge base that integrated data from four sources: Wikipedia, MusicBrainz
(http://musicbrainz.org), FMD (http://www.fashionmodeldirectory.com) and the dataset of NNDB
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(http://www.nndb.com), and contained approximately 2 billion triples. The users had the opportu-
nity to contribute to the knowledge base by editing structured data. YAGO [124] is a multilingual
knowledge base that integrates data from Wikipedia, Wordnet (http://wordnet-rdf.princeton.edu/),
and Geonames (http://www.geonames.org). It includes over 1 billion triples for approximately
17 million entities. It is constructed through information extraction and merging and not by com-
munity effort. DBpedia [90] is a knowledge base that integrates multilingual data extracted from
Wikipedia (http://www.wikipedia.org) in 125 languages. It contains over 3 billion triples, and de-
scribes over 38 million things. For easing the integration process with other sources, it contains
large number of links to other datasets in the LOD cloud. In a comparative survey [50], the authors
defined 35 aspects according to which knowledge bases can be analyzed, while in Reference [49]
they analyzed the quality of the aforementioned knowledge bases in several dimensions.

9 DISCUSSION AND PROMISING RESEARCH DIRECTIONS

The presented integration tools (in Section 5.6) have been applied over a small number of datasets
and cannot easily scale up to large number of datasets. For this reason there is a recent trend for
services for several RDF datasets (as mentioned in Section 8); however, each one mainly focuses
on a single aspect of the integration problem. Although there is a number of successful integration
examples including domain specific (e.g., References [20, 61, 76]) and domain independent (e.g.,
References [39, 90, 162]), we can identify several topics that are worth further research, including:
(i) Advanced Dataset Discovery and Selection, (ii) Data Quality and Veracity, (iii) Measurements and
Services in Global Scale, and (iv) Evaluation Collections and Reproducible Results. In the online
supplementary material (see Section D), we present a more detailed discussion of these topics.

10 CONCLUDING REMARKS

In this article, we described the Linked Data Ecosystem by identifying the main actors and use
cases, and then we discussed the main difficulties of the data integration process. Since the inte-
gration landscape is wide and complex, we factorized the process according to five dimensions,
we discussed the spectrum of binding types that are used for achieving integration, as well as the
kinds of evidence that are usually used for creating such bindings. Subsequently, we used these
dimensions for describing the work that has been done in the area. Apart from discussing the main
works, we gave emphasis on approaches for large scale semantic integration. We identified and
discussed 18 tools for linked data integration and 12 services that are available for several RDF
datasets. By analyzing the integration problem and the existing methodologies and tools, we iden-
tified various directions that are worth further research, including services for large scale dataset
discovery, and quality/veracity testing. Finally, we should stress that evaluation methodologies
and collections appropriate for obtaining reproducible and comparative evaluation results, for the
overall integration process, would be very useful for the community, since they would aid the
evaluation of novel integration processes.
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