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Security Modeling of Autonomous Systems: A Survey
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Autonomous systems will soon be integrating into our lives as home assistants, delivery drones, and driverless
cars. The implementation of the level of automation in these systems from being manually controlled to fully
autonomous would depend upon the autonomy approach chosen to design these systems. This article reviews
the historical evolution of autonomy, its approaches, and the current trends in related fields to build robust
autonomous systems. Toward such a goal and with the increased number of cyberattacks, the security of
these systems needs special attention from the research community. To gauge the extent to which research
has been done in this area, we discuss the cybersecurity of these systems. It is essential to model the system
from a security perspective, identify the threats and vulnerabilities, and then model the attacks. A survey in
this direction explores the theoretical/analytical system and attack models that have been proposed over the
years and identifies the research gap that needs to be addressed by the research community.
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1 INTRODUCTION

With the advancement in the field of artificial intelligence (AI) and machine learning (ML) in the
last few decades, the increased usage of autonomous systems is evident in almost every domain.
The design and development of autonomous vehicles in several developed countries to ease trans-
portation is no secret. On the other hand, domains such as agriculture, healthcare, military, and
space exploration have found many use cases for these systems. The driverless car revolution has
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already begun, and the self-driving technology has been embraced by Tesla, Uber, and Waymo
(McBride 2018). Robots will soon be integrated into our lives as a home assistant, a pet (Dormehl
2017), or a friend like Sophia (the AI) (Galeon 2017).

The primary objective to develop an autonomous system is to collaborate with humans and as-
sist them in various tasks. These tasks could be the ones that require: precision such as surgeries;
operation in challenging and life-threatening situations, such as space exploration, search and
rescue missions, or nuclear power plants; or assistance to elders at home. However, improper im-
plementation or malicious intent may lead to disasters. An incident was reported in a San Francisco
mall where a patrolling robot failed to recognize a toddler and accidentally attacked him (Kashmir
Hill 2016). Recently, a self-driving Uber vehicle was caught up in a fatal accident (Wakabayashi
2018). Armed and autonomous weapons are manufactured by high-tech military organizations in
the USA, China, and South Korea. Sci-Fi novels and movies like “I, Robot” and “Terminator” have
created a negative image and fear for these systems that they may go against humans and harm
them. There is an ongoing campaign against killer robots (fully autonomous weapons) that would
have complete decision controls on their target (CCW 2018). If malicious users hack or control
such systems by exploiting their vulnerabilities, machines turning against humans would not just
be concepts and scenes from movies. These autonomous systems are still in the evolving stage.
Analyzing the security and safety issues associated with these machines and thoroughly testing
them before they are made part of our lives (Caughill 2017; Galeon 2017) become essential.

The researchers from different focus groups have put a lot of effort to bring us to the current
level of understanding regarding autonomy. In the last few years, excellent surveys on autonomy
have been published (Baxter et al. 2012; Beer et al. 2014; Mostafa et al. 2017). Goodrich et al. (2007)
presented an overview of human-robot interaction (HRI). Huang has described autonomy related
terminologies and jargon in Huang (2004). Level of trust could be a significant factor in deciding
the autonomy levels in autonomous systems—discussed in Shahrdar et al. (2017). However, to the
best of our knowledge, the research community lacks literature that discusses the cybersecurity
of autonomous systems in general. The primary objective of this work is to provide an in-depth
study of cybersecurity modeling of different classes of autonomous systems. The work can help
carry out further research on the security modeling of a generalized autonomous system archi-
tecture. In addition, we discuss the historical evolution of the concepts and factors that define
autonomy and its levels. In general, the term “autonomy” discusses the representation and imple-
mentation of its levels determined by factors and functionality of the system from being manual to
fully-autonomous and in-between. Having a perspective of the application domain and the scope
of implementation may provide a different look to the security modeling of these systems. The
following are the key contributions of the article toward the body of knowledge on autonomous
systems:

—A discussion on the historical evolution of autonomy and the current trends in this area,
—A discussion on the cybersecurity of these systems that are being explored in industry and

academia alike,
—Threats, vulnerabilities, and attack modeling of various autonomous systems.

This article is organized as follows. Section 3 reflects on the historical evolution of autonomy, ap-
proaches, and current trends in this domain. Section 4 discusses cybersecurity issues related to
these systems. Section 5 discusses the system modeling along with threats, vulnerabilities, and at-
tacks modeling. Section 6 summarizes the overall concept of the article. Finally, we discuss some of
the research challenges and future directions in Section 7 and conclude in Section 8. The complete
structure of the article is shown in Figure 1.
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Fig. 1. Structure of the article.

2 METHOD

2.1 Keywords and Databases

Based on the industrial and academic domains that focus on autonomous systems, a group of key-
words was chosen to limit the scope of this survey. The autonomous systems that we have explored
in this study include unmanned vehicles (UXVs), robots, driverless cars, swarms, and autonomous
Internet of Things (IoT), focusing more on the former three. The survey was restricted to secu-
rity (threats, vulnerabilities, and attacks) and applications of these systems in the domains such as
home assistants, healthcare, surveillance, search and rescue missions, and space exploration. The
keywords used for the search process are listed in Table 1 and the resources availed for literature
search include Google Scholar, ACM, and IEEE Xplorer digital libraries, and ScienceDirect.

2.2 Selection Criteria

After a detailed search, we evaluated the articles based on the following criteria:

—the history of automation and its levels
—approaches of autonomy and current trends
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Table 1. Keywords Used

Core Concepts Primary keywords

Autonomy autonomous systems, level of automation (LoA), autonomy
approaches, UXVs, driverless cars,

Artificial Intelligence robots, software agents, IoT
Human Machine Teaming swarms, transfer of control
Autonomous System Modeling analytical and theoretical system modeling; threats,

vulnerabilities, and attack modeling
Autonomous System Security DDoS, jamming, ransomware, stealthy deception attack

Secondary keywords
supervisory control, mixed-initiative, goal-driven,
collaborative control, sliding scale, hierarchical, healthcare,
home-assistants, industrial robots

—cybersecurity of an autonomous system
—modeling of an autonomous system, vulnerabilities, threats, and attacks

We further refined the selected articles using primary and secondary keywords for each section.
We identified the theoretical and analytical security modeling of the autonomous systems and
carried out another level of filtration to obtain the most appropriate research work. Experimental
modeling and evaluation of these systems were beyond our scope of research. Hundreds of articles
were narrowed out in the search process based on the keywords and objectives. Out of these, a
total of 88 articles were considered to discuss the cybersecurity of the autonomous systems and
26 articles to discuss the cybersecurity modeling of these systems.

2.3 Limitations

A fundamental constraint that we found during the review process is the lack of literature that
discusses the security of individual as well as generalized autonomous systems. The study of cy-
bersecurity is new in this domain and so is its implementation. This resulted in a limited number
of primary articles reviewed for the security and modeling sections of the survey. The discussion
focuses on the security of three autonomous systems (Unmanned Aerial Vehicles (UAVs), robots
and driverless cars) that are worth a detailed review because of their popularity. Swarms are an
extension of these systems, and Autonomous Internet of Things (AIoT) is a new concept yet to be
explored. We believe in having studied the most applicable works available in this area of research.

3 HISTORICAL EVOLUTION OF AUTONOMY, APPROACHES, AND CURRENT

TRENDS

3.1 Historical Evolution

In the last few decades, concepts and modeling of automation have evolved considerably. Fields
such as HRI, Human Machine Teaming (HMT), AI, and Unmanned Systems (UMS) share the
concepts of autonomy. As with many inconceivable technologies of the current era, the ideation
of such systems can be dated back to religious myths (Origins 2013), poets (Homer n.d.; Yeats
1933), artists (Rosheim 2006), and storytellers (Wiener and Others 1964), thereby materializing
into remote-controlled inventions (Turi 2014a, 2014b), movies (Wold and Staff 2015; ZDNet
2018), and science fiction literature (Newitz 2013). With the advancement in associated areas and
state-of-the-art technologies like robot mechanics, sensors and actuators, processors, navigation
and communication, the definition and levels of autonomy (LoA) have gone through multiple
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revisions and modifications to be up-to-date with the other emerging and advancing technologies
so that it can be adapted for more robust use.

The word “Robotics” was first invented by Isaac Asimov in the story “Liar” in 1941 while “Au-
tomation” was first coined by Dal Harder, a Ford executive, in 1947. As recounted in Sheridan and
Verplank (1978), vehicles remotely controlled by human operators were called master-slave ma-
nipulators in the early history (1954) of robotics. In the 1950s, when industries like General Electric
(GE) was working to build industrial robots such as “Yes Man” and “Handyman,” the US Army was
exploring the ideas of teleoperated rovers (MOBOT) and Project Horizon (Turi 2014a).

In 1978, Sheridan and Verplank (1978) discussed the idea of supervisory control and explained
how it is different from teleoperators and manipulators, listing the 10-level scale of autonomy
(LoA), which has been a background work for further research in this area till today (Farooqui and
Niazi 2016; Goodrich et al. 2008; Navarro 2018; Parasuraman et al. 2000; van der Kleij et al. 2018).
As more systems were gaining autonomy, operators’ roles were getting reduced to a supervisor or
passive monitor of these systems and performance problems on human out-of-the-loop emerged
because of many failure incidents of these systems (Bainbridge 1983; Norman 1990; Wiener and
Curry 1980). The authors realized the lack of feedback, poor communication interfaces, and lower
levels of situation awareness (Norman 1990). A new approach to automation was a solution to these
problems with new roles for automation, opting for adaptive automation, incorporating situational
awareness in the design process, and revisiting the LoA (Endsley 1995). Endsley et al. (1987, 1988)
focused their research on improving situational awareness. They worked on bringing human-
in-the-loop (Endsley 1987), moving toward adaptive autonomy and enhancing the LoA (McDaniel
1988). Adaptive autonomy, proposed back in 1976 by Rouse, is an autonomous system in which the
LoA changes, initiated by particular events in the task environment, physiological methods, task
load, or by changes in operator performance (Parasuraman et al. 1992). An initial survey (Sheridan
1992) on telerobotic, supervisory control, and automation tried to address questions arising in
those fields at that time; provided application history of such systems in the field of aircraft, nuclear
power, and intelligent vehicle highway (IVH), brought forth the areas that were still immature and
the prospects.

In Parasuraman et al. (1992), the authors took a step back and did extensive research on the
issues related to adaptive autonomy and how it should be approached in design. They outlined
what, when, and how the adaptation would be invoked. Would it be a measurement- or modeling-
based adaptive system? What would be the logic of implementation? And so on. The idea was
that adaptive automation would aid in solving human out-of-the-loop performance problems and
provide a dynamic allocation of tasks between the operator and the system, as and when needed.
It could increase the operator’s performance thereby increasing management load, which would,
in turn, affect the operator’s situation awareness (Endsley 1995). As recounted in Beer et al. (2014),
Endsley and Kaber (1999) proposed a revised 10-scale taxonomy based on input functions rather
than fixed-task allocation, organized according to four generic functions of “monitoring displays,”
generating various courses of action or “strategies to meet goals,” deciding on a course of action,
and then implementing the selected one. A year later, Parasuraman et al. proposed an extension
of their previous work (Parasuraman et al. 1992), suggesting a similar model to Endsley and Kaber
(1999) and adopting a “four-stage view of human information processing (Information acquisition,
Information analysis, Decision and action selection, Action implementation)” where automation
can be applied to each of these stages to different degrees and levels (Parasuraman et al. 2000).

By the beginning of the 21st century, the Department of Defense (DoD) was actively employing
UAVs on different “dull, dirty, and dangerous” missions and had long-term innovative programs
for deploying these UAVs in various areas. One of the focus areas, along with the development
of several other technological requirements for the enhancement of UAVs’ reliability and
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survivability was autonomy (DC 2001). Within the next decade, ongoing research and goals of
the Air Force Research Laboratory (AFRL) were to demonstrate the autonomous capability of
level 8 out of 10 based on autonomous capability level (ACL) metrics (Clough 2002). The National
Institute of Standards and Technology (NIST) realized the need for some standard definitions
for autonomous levels based on system specifications and performance measurements. They
assembled an ad hoc group for the generic framework development of unmanned systems’
autonomy level specification called Autonomy Levels for Unmanned Systems (ALFUS) (Huang
et al. 2003a). The results of their various workshops include:

—a complete list of terminologies and definitions (Huang 2004),
—a set of metrics for ALFUS detailed model identifying “mission complexity, environmental

difficulty, and HRI” as the combination of factors indicating LoA (Huang et al. 2003b, 2004a,
2004b),

—an executive model showing general trends in the transitions of levels of aforementioned
factors (Huang et al. 2005), and

—illustrating applications of ALFUS in military, homeland security, and manufacturing
(Huang 2007).

Meanwhile, research communities were moving toward “adjustable autonomy” where the hu-
man user, autonomous system, or another system itself can adjust the LoA during the operation.
After the comeback from a severe “AI winter” (Cognilytica 2018), AI created a boom in intelligent
and smart systems such as smartphones, smart home appliances, and assisted technologies. In AI
research domain, these intelligent autonomous systems are referred to as “agents.” Research in
the areas of adaptive and advanced interfaces facilitated the easy deployment and operations of
adjustable autonomous agents providing multiple channels of communication between the human
user and the system such as gestures, voice, and touch. Social acceptability, trust, reliability, mu-
tual situation awareness, coordination of tasks among users and agents, and transfer of control
strategies formed the elements of the new set of concerns for the researchers along with safety
and robustness. Efforts were made to include these variables in the LoA framework (Beer et al.
2014).

In summary, industrial and academic research on robotics and automation started in the 1950s.
However, the progress was slow for more than a decade due to the lack of proper understanding
and implementation of autonomy; trained operators that had good situational awareness in case
of failures; and resources such as high-computing processors, cameras, and sensors. Supervisory
control advanced to adaptive and adjustable autonomy. A summary of various taxonomy for LoA
that various researchers proposed over the years, listed in Table 2, shows the work done to over-
come the challenges raised by design approaches of autonomous systems. Research advancement
in the areas of AI and HMT also paved the way for more trust and social acceptance toward these
systems.

3.2 Approaches of Autonomy

The challenges in an autonomous system are how to implement the LoA and who would have the
control to adjust it and in what scenarios. It would fundamentally mean what, when, who, and how
the necessary actions need to be taken. Various works have been done to recognize the balance
between the flexibility of control over the autonomy levels such that HMT outperforms either
the human or machine working alone. Comparative studies were also done to test the efficiency,
robustness, and workload in various modes of an autonomy spectrum (Heger and Singh 2006;
Heger et al. 2005). A systematic literature review on adjustable autonomy has been done (Mostafa
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Table 2. Level of Automation (LoA) Frameworks Summary

Level
LoA (Sheridan and

Verplank 1978)
LoA (Endsley and

Kaber 1999)
ACL (AFRL)

(Clough 2002)
ALFUS (NIST)

(Huang et al. 2005)

1 Low/
Remote
Control

No assistance from
system/Humans
decide

Manual Control Remotely guided — High-level HRI
— Low-level tactical
Behaviour
— Simple environment2 System offers set of

decision alternatives
Action Support Real-time

Health/Diagnosis

3 Narrows selection
down to few

Batch Processing Adapt to failure and
flight conditions

4 Suggests one
alternative

Shared Control Onboard route
replan

— Mid-level HRI
— Mid complexity,
multi-functional
missions
— Moderate
environment

5 Executes the
suggestion if human
approves

Decision Support Group Coordination

6 Allows human
restricted time to
veto before
automatic execution

Blended Decision
Making

Group tactical replan

7 Executes
automatically,
informs human

Rigid System Group tactical goals — Low-level HRI
— Collaborative, high
complexity missions
— Difficult
environment

8 Informs human if
asked

Automated Decision
Making

Distributed control

9 Informs human if the
system decides to

Supervisory Control Group Strategic
goals

10 High/
Fully Au-
tonomous

System acts
autonomously,
ignores human

Full Automation Fully autonomous
swarms

— Approaching 0 HRI
— High complexity
— Extreme
environment

et al. 2019) that listed approaches to autonomy. We have an updated list here with additional
references and a comparative study of different approaches in Table 3.

3.2.1 Supervisory Control/Task-based Approach. The user acts as a system supervisor who mon-
itors the activities of the system and has the privilege to modify the system behavior dynamically
without taking over complete control of the system, which could be necessary to avoid task fail-
ure (Reed 2005). In this approach, both the user and the system may have individual subtasks to
perform in the entire mission, and the system passes control when it is done with its subtask. For
example, mission and payload management in a UAV requires monitoring of sensors and mak-
ing knowledge-based decisions to meet overall mission requirements (Cummings et al. 2007). In
these situations, the human power of judgment, experience, and intuition exceeds intelligence al-
gorithms while the system is better controlling the navigation and motion controls (Cummings
2014).

3.2.2 System-Initiative Approach. Some research has been done in the area where the au-
tonomous robotic team requests for help from the human operator. The system only passes control
when it is stuck and no longer can perform its assigned task and needs human intervention to take
further action. The efficiency of such type of adjustable autonomy depends on how rapidly and
accurately the human operator responds to the situation while engaged in different unrelated tasks
(Sellner et al. 2006). For example, Roomba vacuum cleaner can serve as an excellent example of
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such a system that would need human intervention when stuck in a corner (Zilberstein 2010).
In peer-to-peer human-robot teams, maintaining coordination and learning from “interactions at
different levels of granularity” would increase the situational awareness of the team and, in turn,
increase the overall productivity (Dias et al. 2008).

3.2.3 Mixed-Initiative/Teamwork-centered Approach. In this approach, the user and the system
smoothly exchange controls throughout the mission. The idea of such a system where human and
robots complement each other and collaborate in a safe, productive, and cost-efficient environment
is not novel. The aim of NASA’s Astronaut-Rover (ASRO) project, first tested in 1999 (Clough 2002),
is to bring together human and planetary rovers to work together seamlessly, communicating
throughout the mission and be a scout, technical field assistant, infrastructure assistant, and much
more to the crew (Fong et al. 2001), with adjustable LoA during system operation (Dorais et al.
1999). In such systems, the back-and-forth transfer of control between the system and the human
should be smooth and quick, along with the guarantee that each entity would be able to handle
its part competently (Wray et al. 2016). This approach would be able to address several challenges,
including maintaining consistent and stable operation, user trust, and situation awareness during
the transfer of control at different LoA (De Brun et al. 2008; Moffitt et al. 2006). Research in the
area of urban search and rescue missions utilizing mixed-initiative control autonomy shows that a
robot was able to make better navigation decisions (Bruemmer et al. 2002). It holds for a large-scale
team of robots as well indicating that theoretical benefits of this approach could be met if system
and operators have complementary abilities in such a way that the systems must be able to make
progress without waiting for human intervention (Hardin and Goodrich 2009).

3.2.4 Sliding Scale Approach. In sliding scale autonomy, the intermediate LoA between the dis-
crete modes: teleoperation, safe, shared, and fully autonomous, can be achieved. It is more of a
continuous mode of autonomy where the autonomy of the system increases with the proportional
decrease of user’s control on the system. It is achieved by blending human and system’s desired
characteristics or variables. The user can guide the actions/operations of the autonomous systems
in different modes or dimensions, which provides authority and flexibility to the user in managing
the autonomous systems (Desai and Yanco 2005; Lin et al. 2012). In these works, variables that
characterize the systems are provided on a sliding scale, which would influence the autonomy lev-
els. In Goodrich and Schultz (2007) and Desai (2007), the authors designed a trust scale to adjust the
autonomy level (Dias et al. 2008). Another work implements sliding autonomy to develop a coor-
dinated team of robots to dock both ends of a suspended beam in assembling of structures. These
robots interact with a human operator in case they need help if stuck or to improve efficiency.

3.2.5 Hierarchical Approach. It is comparatively easy for two systems or a human and a ma-
chine to cooperate and coordinate. As the number of systems or agents increases, coordination and
management conflicts arise between them. In this approach, systems are structured in a hierarchy
through which a global problem can be solved based on the knowledge of lower level systems
(Wakulicz-Deja and Przybyła-Kasperek 2007). It helps to localize specific tasks to systems based
on goals, control, duration of execution, the complexity of tasks, and the amount of interaction or
supervision needed by the operator, hence, defining the autonomy levels. A group of researchers
proposed a “hierarchical control loop” architecture for single user-multiple UAVs as three loops
(“Motion control inner loop,” “navigation,” and “mission management outer loop”) (Cummings
et al. 2007). Their case studies conclude that an operator can control an increased number of UAVs
if the automation is increased in the “control and navigation loops” with good user-system col-
laborative decision making in the mission management loop. Similarly, Proscevicius et al. (2011)
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suggests a five-level control hierarchy for autonomous mobile robots to speed up communications
and control in the hierarchy levels.

3.2.6 Policy-based Approach. Policies are a set of guidelines defined by the designer that an
autonomous system must abide by in any given situation. They are permissions given to the au-
tonomous system for the adjustment of autonomy in changing operational environment without
changing the code. Such an approach increases the trust of the user in the system as he/she can
set bounds on the system based on his competency level. Moreover, a policy-based approach pro-
vides re-usability, efficiency, extensibility, context-sensitivity, verifiability, protection from mal-
ware, poorly-designed or buggy agents, and reasoning about agent’s behavior (Bradshaw et al.
2004b). One such work based on policies is the driving mission for the human-robot team (De Brun
et al. 2008) in which one of the policies could be “if the road is slippery, the human should drive.”
Another example is the Electric Elves, a multi-agent system acting as a personal assistant to a group
of researchers for their daily activities such as ordering, scheduling meetings, selecting presenters
in the research group, and organizing lunch meetings. This system is based on policies to the strate-
gic transfer of control (Scerri et al. 2003). The Knowledgeable Agent-oriented System (KAoS) is an
example of platform-independent policy services (Bradshaw et al. 2003) used in areas like model-
ing human-machine team, military, and space applications (Bradshaw et al. 2004a), which enable
users to define policies of autonomous systems or agents that govern the autonomy and adjust
them dynamically so that the system could adapt to the changing situation (Bradshaw et al. 2005).

3.2.7 Goal-driven Approach. It is a conceptual model to build an autonomous agent that ob-
serves a set of expectations during the execution of a plan, detects discrepancies if they occur,
details the reasons of failures, and creates new goals to pursue if the execution of a current plan
fails (Weber et al. 2012). It incorporates a model for goal reasoning and has been applied in various
domains such as responding to unexpected events in strategy simulations (Klenk et al. 2013), Star-
Craft game for strategic planning, and so on. A group of researchers demonstrated this conceptual
framework through Autonomous Response to Unexpected Events (ARTUE) in a navy training
simulation—Tactical Action Officer (TAO) Sandbox—and showed that it could perform well in a
complex dynamic environment (Molineaux et al. 2010). Preliminary works by Wilson et al. (2016)
show that a goal-driven autonomous underwater vehicle can successfully detect a potentially hos-
tile surface vehicle when pursuing a different goal of surveying a bay area.

3.2.8 Collaborative Approach. In collaborative autonomy, multiple individual agents, each hav-
ing their own specific individual task to complete, collaborate to serve toward completing a higher
collective goal. The multiple individual agents form a complex system whose autonomy is decided
based on the autonomous actions of the collective individual agents depending on sharing infor-
mation and goals (Dufrene 2005). A conceptual example of this approach could be seen in the
system design for Mars exploration with a UAV and a ground vehicle in collaboration. The goal
is that UAV would have the capability to dock to a charging station on the ground rover without
human intervention. The ground rover would serve as a mobile-base that would provide charging,
communication, and docking capabilities to the UAV (Lacerda et al. 2018).

3.3 Current Trends

In recent years, the research focus has moved to implement adjustable autonomy in the real world,
and other more challenging areas such as transfer-of-control, goal reasoning, deliberation, and
collaboration with multiple heterogeneous agents and individuals. Companies like Google and
Nissan are predicted to launch their self-driving cars by 2020, while GM’s Cruise and Waymo are
not behind. Although cars like Tesla, Navya, and others have advanced autonomous features, there
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are still significant challenges to make them completely driverless. Automated path and motion
planning with efficient computational paradigm and a well-planned execution model would facil-
itate a smooth transfer of control between the user and the system. As discussed in Zilberstein
(2010), to build robust autonomous systems, a human action model, a user’s state monitoring, in-
tent recognition techniques, and efficient interfaces to facilitate collaboration between the user
and the system are required. These emerging fields of AI and HMT are gaining momentum and
works are being done in facial and emotion recognition (Corneanu et al. 2016; Mehta et al. 2018)
that would be helpful in monitoring a user’s state while augmented reality devices, gesture, and
voice user interface would facilitate easy communication.

Autonomous systems operating in the complex dynamic environment need to make informed
decisions promptly to react safely and reliably in complex dynamic situations based on an accu-
rate perception of its surrounding. More than one sensor is employed in these systems to assess
the surrounding environment accurately. The fusion of data from multiple sensors and multiple
modalities has become crucial in the perception process of autonomous systems in various appli-
cation fields and can be used in image registration (Giering et al. 2015) along with the detection
and mapping of static and dynamic obstacles along the trajectory (Korthals et al. 2018). A recent
survey discusses the current developments in the areas of perception, planning, coordination, and
control of autonomous systems (Pendleton et al. 2017).

The fast pace of research advancements in autonomous systems require that different aspects of
these systems have a benchmark and a proper metric designated for each of them. It would not only
set a standard for the development of an autonomous system with a certain degree of autonomy
but would be helpful as well to recognize appropriate systems for particular scenarios that require a
certain level of autonomy (Hrabia et al. 2015). Some earlier works were done to establish a common
metric for autonomous systems by government agencies (Clough 2002; Huang et al. 2004b). In the
field of HRI, common metrics for autonomous systems concerning five categories of “navigation,
perception, management, manipulation, and social” have been presented in Steinfeld et al. (2006),
while another work addresses the benchmarking of socially assistive robots on aspects of robot
technology, social interaction, and assistive technology (Feil-Seifer et al. 2007). A review of these
works is presented in Damacharla et al. (2018) to identify common metrics and set a benchmark
in the field of HMT. Most recent works reviewed autonomy measures to compare and contrast
autonomy approaches and discussed the capabilities of autonomous systems (Bihl et al. 2018).

4 CYBERSECURITY OF AUTONOMOUS SYSTEMS

Autonomous systems can be broadly seen as a type of cyber-physical systems that has embedded
computers and physical elements connected and controlled by sophisticated software, exhibiting
distinct behaviors through multiple means of communication with the outside world. Most of these
systems are deployed in critical areas such as nuclear power plants, automatic pilot avionic, and
war zones. Some of these systems are highly vulnerable to cyberattacks; hence, the security of these
systems poses significant concerns if they are entrusted with our lives. Complete failure of these
systems through cyberattacks, failure to correctly respond to critical missions, or even a slight
change in the desired output data can leave the operator in a confused or ignorant state. Some
research work has been done on the comprehensive review of threats, vulnerabilities, attacks, and
control on cyber-physical systems (Abdul-Ghani et al. 2018; Alguliyev et al. 2018; Ding et al. 2018;
Huang et al. 2003a; Lin et al. 2016; Wu et al. 2016). Extrapolated from these works, we present a
taxonomy of common attacks on autonomous systems in Figure 2 and a brief description of some
of these attacks and their effects in Table 4. A comprehensive list of cyberattacks and its detailed
survey on autonomous systems is beyond the scope of the article. In this section, we discuss some
of the highly researched autonomous systems (Figure 3) and work done on their cybersecurity.
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Fig. 2. Taxonomy of attacks on autonomous systems.

4.1 UXVs

The increasing popularity of unmanned systems (UAVs, Unmanned Ground Vehicles (UGVs), Un-
manned Underwater Vehicles (UUVs)) in various mission-critical tasks have forced the researchers
to work on their autonomy-level related to task complexity, human interaction, environmental dif-
ficulty, and so forth (Behzadan 2017; Goodrich and Schultz 2007; Huang 2007). Commercialization
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Table 4. Effects of Cyberattacks on Autonomous Systems

Attack Types Description
Effects on Autonomous

Systems Works

Jamming Caused by intentional
interference, e.g., GPS
Jamming

Loss or corruption of packets
disrupting communication

(Bhattacharya and Basar
2010; Javaid et al. 2015)

Spoofing Masquerading as a legitimate
source, e.g., GPS Spoofing

Gain access to the system,
information, etc.

(Humphrey 2012; Javaid
et al. 2017; Petit et al. 2015)

Flooding Flooding of packets thereby
overloading the host, e.g.,
DoS, DDoS

Loss of communication
through network congestion

(Javaid et al. 2015;
Vasconcelos et al. 2016)

Side-channel
Attack

Attack based on the extra
information gained by the
physical analysis

Leakage of sensitive
information without
exploiting any flaw or
weakness in the components

(Akram et al. 2016;
Cornelius et al. 2017)

Stealthy
Deception
Attack

Tampering system
component or data

Mislead the system to take
undesirable action

(Kwon et al. 2013)

Sensor input
spoofing

Manipulate environment to
form implicit control channel

Exercise direct control over
system’s actions

(Davidson et al. 2016)

Fig. 3. Autonomous systems.

of UAVs, a.k.a drones, is gaining momentum as multiple industries are planning to use them for
their business functions. Door-to-door delivery and hauling cargos as far as 300 miles with a weight
of up to 200 pounds is not a distant dream. Industries like Bell Labs are working on prototypes that
can use gas or electric power and convert to a plane during mid-flight, addressing some aerody-
namic concerns (Joe Pappalardo 2018). These systems are at a higher risk of becoming targets of
cyberattacks. One of the earliest works to identify vulnerabilities in a UAV auto-pilot system was
done in Kim et al. (2012). A group of researchers analyzed system safety (Kwon et al. 2013) and de-
veloped a real-time safety assessment algorithm (Kwon et al. 2016) to investigate the performance
of such systems against stealthy deception attacks.

A review of all recent major attacks on UAVs has been presented in Krishna and Murphy (2017).
Global Positioning System (GPS) Jamming and Spoofing are the two most common attacks on
UAVs’ navigation. GPS jamming is a type of interference that specifically restricts GPS signals. In
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Table 5. Driverless Car Technology Trend

Proposed Launch Manufacturer
Pilot

Project Features Works

2005 2021 Ford – Level 4 Automation, no gas
pedal, no steering wheel

(Chad Vander
Veen 2015)

2009 2020 Google Waymo Fully self-driving, no
steering wheel, no
accelerator and brake pedal

(Chad Vander
Veen 2015)

2014 2015 Tesla Model S Autopilot, 360 degree view,
real-time traffic updates,
automatic parking

(Fred Lambert
2018)

2014 2025 Mercedes-Benz Future
Truck 2025

Autonomous Driving (Chad Vander
Veen 2015)

2015 2021 Volvo Drive Me Level 4 Automation,
IntelliSafe Auto Pilot lets
user activate and deactivate
autonomous mode

(Tom
Huddleston Jr.
2018)

2015 2020 Nissan ProPILOT Automatic lane change on
highways, autonomous
driving on urban roads and
intersections

(Chad Vander
Veen 2015)

2016 2019 General Motors Super
Cruise

Hands-Off lane following,
brake, and speed control

(Joe Williams
2018)

2014 2016 Induct
Technology

Navya Autonomous shuttle,
deployed in specific loops,
closed environment, and
half-mile radius

(Navya 2018)

2016 2018 Drive.ai – Autonomous driving, remote
monitoring, LED screens
display car’s next action to
pedestrian

(Alex Davies
2018)

2016 2021 BMW-Intel-
Mobileye

BMW
iNEXT

Develop open standard
platform for highly and fully
automated driving

(Sarah Sloat
2016)

a GPS spoofing attack, a false GPS signal is transmitted to the GPS receiver of the autonomous
system to introduce an unnoticeable error in the position, navigation, and time (PNT) calculation,
which results in the deviation of the system from its original path toward a malicious destination.
US Maritime Administration reported a recent incident of GPS spoofing where around 20 ships
off the Russian port of Novorossiysk found themselves in the wrong spot—more than 32 kilome-
ters inland, at Gelendzhik Airport (Hambling 2017). While the military GPS signals are encrypted,
civilian GPS signals are publicly known. Hence, the GPS spoofing attack poses a significant threat
to critical infrastructure and public lives in case spoofed systems are used maliciously. Some re-
searchers have tried to demonstrate these attacks on a small, but sophisticated UAV (Humphrey
2012). Other researchers have simulated those attacks on academic testbeds (Jahan et al. 2015;
Javaid et al. 2017, 2015).

4.2 Driverless Cars

Major car manufacturing companies like Google, Audi, BMW, Ford, GM, and Uber have envisioned
a future of autonomous vehicles on the road. Table 5 lists some of the major autonomous car
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manufacturers and their pilot projects. By the end of 2018, Waymo tested about 5 million miles
nationwide while Cruise racked up second (David Welch, Keith Naughton 2019). The year 2019
may be the year of the driverless car as GM prepares to launch its fleet (Joe Williams 2018) while
Waymo is already on the streets of Phoenix, Arizona opening initially to early-riders (Matthew
DeBord 2018). Another startup, Drive.ai, launched its self-driving shuttle service around a geo-
fenced area of Frisco, Texas (Alex Davies 2018). In the effort of envisioning a “smart city,” Lake
Nona, Florida would soon see AUTONOM, a self-driving bus deployed by Beep in partnership
with the French company Navya (Joey Roulette 2019). Companies like Nissan are planning to put
driverless cars on the streets of Tokyo by 2020 (Greenberg 2015). Today, many new cars already in-
corporate state-of-the-art driver-assistance features such as autopilot, self-parking, and summon-
ing, blind spot, and lane-monitoring systems. Future autonomous vehicles need to be connected
through sophisticated vehicular networks such as the Vehicular Ad hoc Network (VANET) so that
they may exchange traffic and routine information such as speed, location, or notification of any
traffic collision. It increases the potential for cyberattacks. In 2015, Wired documented a hacking
experiment on Jeep Cherokee where an intruder took the car control from the driver on the high-
way. In the beginning, the hackers toyed with air conditioning, radio, and windshield wipers. It
became scary for the driver when the accelerator stopped working on the long overpass with no
shoulder to escape. It would have been a lot worse if the intruder had abruptly engaged the brakes
or disabled them all together (Mejri et al. 2014).

The communication over VANET would help the vehicles to plan for better driving decisions
and performance. However, a significant amount of confidential data would also be circulating on
the network. A simple attack such as eavesdropping on a user’s habit of commuting can reveal a lot
of valuable information about the user to the attackers. Also, the next-level of cyberattacks such
as ransomware attack could be executed in the middle of the commute. A secured network would
throttle all the possible attacks at the point of entry. Many researchers have reviewed the contribu-
tion of others in this area by identifying and classifying the vulnerabilities and security challenges
in VANETs (Al-Kahtani 2012; Azees et al. 2016; Bariah et al. 2015; Dhamgaye and Chavhan 2013;
Elsadig and Fadlalla 2016; Gillani et al. 2013; La Vinh and Cavalli 2014; Mejri et al. 2014; Saini
et al. 2015; Sumra et al. 2011). As these vehicles will communicate with nearby devices and in-
frastructure, it is important to explore the architecture and main characteristics of these systems,
and analyze the corresponding countermeasures against the possible attacks (Hamida et al. 2015;
Mejri and Hamdi 2015). Authenticating vehicles entering into VANET through dual authentication
methods or highly secure mechanisms should be the first line of defense (Vijayakumar et al. 2015).
Authors have dedicated their research to individual attack detection such as DoS (Lyamin et al.
2014; Mejri and Ben-Othman 2014a), jamming (Hamieh et al. 2009; Puñal et al. 2012), and greedy
behavior (Mejri and Ben-Othman 2014b). Sending false congestion messages to the vehicles by
exploiting congestion avoidance mechanisms (Bauza et al. 2010; Fontanelli et al. 2010) in VANET
would be an easy way for attackers to re-route and position them in zones of interest (Garip et al.
2015).

4.3 Robotics

Robots are marking their place in our lives with the significant investments in robotics technology
(Waters and Bradshaw 2016), advancement in cutting-edge technologies like 5G, Augmented Re-
ality (AR), IoT (Fearn 2018), reduced cost of electronic devices, and people’s need for assistance in
mundane activities. Being an evolutionary industry, they are designed based on the environment
they would be deployed in and work side-by-side with humans. Their reach varies from space to
manufacturing, from home to war front. Surgical or industrial robots need to have an extremely
high level of accuracy while rescue robots should be fast and efficient in locating survivors in

ACM Computing Surveys, Vol. 52, No. 5, Article 91. Publication date: September 2019.



91:16 F. Jahan et al.

inaccessible areas. Home-assistive robots such as Care-O-Bot should be able to help in household
tasks, be a mobility aid for the elderly and needy, and a medium for communication and social
integration (Hans et al. 2002).

Several cybersecurity issues and vulnerabilities identified by researchers pose serious threats
that can be easily exploited by malicious users. Industrial and academic researchers have demon-
strated attacks on industrial robots that can be hacked and manipulated to introduce a few mil-
limeters of a defect in a manufactured product, which could result in a catastrophic failure of that
system (Quarta et al. 2017). They analyzed the standard architecture of an industry robot from a
security point-of-view and developed an attack model based on the attacker’s goal, an access level
to the system, and their capabilities (Maggi et al. 2017). An independent security firm took the
initiative to evaluate currently available robots in the market from different vendors. Their initial
search report reflects several cybersecurity vulnerabilities in robot technology (Cerrudo and Apa
2017). Although some of these vulnerabilities are common cybersecurity problems, vendors should
implement and address them from the very first phase of the software development process.

Surgical robots are the new trends in the medical industry, even in third world countries such
as India, which reported 26 da Vinci systems in 2015 (Ians 2015). These robotic surgeries result
in small incisions, minimal loss of blood, and faster recovery of patients with less post-operative
pain. These robots work very closely with humans. It is essential to ensure the security and safety
of robots that operate around people and animals in home and organizations alike. Various attacks
were reported that compromised a potential entry point to get into the hospital network in the
last few years (Snell 2015; Zetter 2014). Network vulnerabilities could easily be exploited to access
surgical systems, bypassing intrusion detection systems and firewalls (Alemzadeh et al. 2016).

The same goes for household robots on a home network as well. Since such types of robots are
near children and adults in the house, it is more likely that an onboard camera can be exploited to
capture inappropriate audio/video streams (Denning et al. 2009) by pedophiles and online sexual
offenders (Yong et al. 2011). Besides privacy issues, the home robot’s sensors can be used to collect
sensitive data that can be used to launch different types of cyber or physical environment attacks.
For example, a home robot acting as a scheduler would know when the owners would be away
from home, and a planned burglary could be attempted or a family member could be physically
harmed in the worst-case scenario. A group of researchers investigated possible attacks on these
service robots, analyzed the threat, and listed different available defense mechanisms against such
attacks (Cornelius et al. 2017).

4.4 Internet of Autonomous Things (IoAT)/Autonomous Internet of Things (AIoT)

There are two future concepts that are more or less intertwined in researchers’ opinions. One is
the Internet of Autonomous Things (IoAT) where smart autonomous devices would be connected
through the network and would be able to solve the problems or adapt themselves through infor-
mation exchange with peers. The other concept is an AIoT connecting smart devices that would
“actively manage data and decisions on behalf of users” (University of Nottingham-Mixed Reality
Laboratory 2016). These two concepts overlap each other in the sense that smart devices would
have some autonomous decision-making and would be connected through a network. The future
is not so far away from where IoT devices will be information generators, and the edge devices will
be consumers with cloud-based control. The statistics generated by Statista shown in Figure 4 pre-
dicts that the number of connected devices would be 75 billion by 2025 (Statista 2018). Most of these
devices would be autonomous (or semi-autonomous). In Engineering (2016), Tom Keeley discussed
the market of IoAT and how they will be able to solve newer problems through self-organization
and team operation. Markets like personal security, home automation, and healthcare will lead the
way with IoAT. Intelligent actuators will be the tools, arms, and hands for IoAT devices.
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Fig. 4. Statistics of the number of devices connected worldwide from 2015 to 2025 (in billions) published in

Statista, 2016 (Statista 2018). Note: Data is a forecast from 2017–2025.

As big data, machine learning, and Blockchain technologies advance alongside the innovation
of IoT devices, it would be sooner than expected that these devices would achieve autonomy at
the level of human actors (Industry 2017). Future IoT infrastructures should be able to support
heterogeneous platforms, locations, and environments. For smart and reliable autonomous IoT
infrastructures, it should be easily scalable via decentralized management mechanisms and self-
adapting to the changes in the environmental context (Kyriazis and Varvarigou 2013). Moreover, it
should support confidentiality and prevent personal information infringement, allowing the users
to keep their confidential data “in-house.” For example, an AIoT would range from the smart pantry
for automatic inventory tracking or washing machines that would order detergent once the supply
is about to finish (University of Nottingham-Mixed Reality Laboratory 2016). Again, since this area
itself calls for further research, cybersecurity and privacy of data should be one of the primary
goals in the architectural design of such a network. For sure, a list of cyberattacks that could be
performed on IoT devices (Abdul-Ghani et al. 2018) would be applicable on AIoT devices as well.

4.5 Swarms

An emerging area of research is swarm robotics. It is directly inspired by nature where, for ex-
ample, a swarm of insects or a flock of birds perform tasks beyond individual capabilities. It has
found applications in varied areas (Sahin 2005) such as detecting lives in disaster rescue missions,
an inspection of industrial machinery (Correll and Martinoli 2009), mapping agricultural fields
(Albani et al. 2017), and monitoring for undesired environmental events. Swarm robotics is much
researched for military applications as well. Since individual entities that make the swarm are
dispensable and redundant, they can be applied in mining or places dangerous/inaccessible to hu-
mans. Also, swarms of robots can complete a particular task faster than an individual robot as
they are self-organized and work in parallel with a distributed command and control structure of
communication.

Currently, researchers mainly focus on modeling methods and algorithms of swarm robotics of
flocking, foraging (Winfield and T. 2010), navigating, and searching applications (Haque et al. 2018;
Tan, Ying and Zheng 2013). The papers of Higgins et al. (2009) and Sharma and Bagla (2009) are
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early works on considering security challenges in swarm robotics and analyzing possible threats
to the swarms. They also compare the specific characteristics of the swarms with other similar
systems such as multi-robots, multi-agent systems, mobile sensor networks, and Mobile Ad hoc
Network (MANET). This area of research is still raw, and not much work has been done related to
individual attacks on the swarm robotic network.

5 MODELING SYSTEM, VULNERABILITIES, THREATS, AND ATTACKS

It is of utmost importance to have a clear picture of what an autonomous system can do, when it
needs to send an alarm signal to the user, when it must transfer the control altogether, or when
it is under attack. At the same time, the operator should also be aware of the cues the system is
sending. Researchers have tried to model different aspects of the system using different techniques.
From a security point of view, it is essential to analyze the system model to find the vulnerabilities
and threats to each part of the system, which can be further utilized to create an attack model.
These areas have been studied, and various theoretical and analytical models have been proposed.
We have tried to capture these works concerning UAVs, robots, and driverless cars as these au-
tonomous systems are widely being researched and incorporated into the real world.

5.1 System Modeling

System modeling describes an abstract view of a system, ignoring its details. It can be used to
illustrate the functions, behavior, or architecture of the system without going into other details.
It reflects how the system reacts at certain events or how it communicates with sub-parts and its
environment.

5.1.1 Theoretical Model.

—UAVs: Significant parts of a UAV architecture, which make up the guidance, navigation,
and control systems, have been described in Kim et al. (2012). Modeling a UAV from the
communication network perspective has been discussed in Javaid et al. (2012), detailing
communication among various modules. The model described in the paper has six modules
starting from the data acquisition module, which collects data from the sensors and sends
the required information to respective modules such as altitude data to the Altitude and
Heading Reference System (AHRS) module, and camera data to the telemetry module. The
navigation module provides PNT information while the control module sends speed and
orientation control signals to actuators of the system. These systems also have a data log-
ging module that logs flight details such as PNT data to keep track of the missions and for
further analysis in case of failure. Another work proposed a hierarchical model for coor-
dinated control of multiple UAVs and used differential game theory for collision avoidance
and formation control as a pursuit-evasive game (Vachtsevanos and Reimann 2004).

—Autonomous Vehicles: DARPA Urban Challenge accelerated the research for full-sized
autonomous vehicles. A team from MIT was one of them who completed the race. They dis-
cussed their autonomous vehicle architecture in Leonard et al. (2008) where the requirement
was to perceive and navigate a road network segment in a GPS-denied and highly dynamic
environment. Another team designed the autonomous vehicle based on the “Sense-Plan-
Act” model of an autonomous system (Urmson et al. 2007). Based on these works, Guo et al.
modeled a mobile robot system that consists of a robotic platform and a planner to detect
sensor and actuator attacks. Sensors are the eyes and ears of an autonomous system to the
outside world while actuators can be compared to the limbs that execute control commands
transmitted by the sensors (Guo et al. 2017).
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—Robots: Gage (1985) was the first work to present a generic model of an autonomous robot
related to security modeling. Recently, some industrial researchers presented the architec-
ture of an industrial robot for security and threat modeling. In this architecture, a pro-
grammer communicates with the robot controller over the network, which, in turn, sends
the command signals to the sensors and actuators of the robot to accomplish the assigned
task (Maggi et al. 2017).

5.1.2 Analytical Model. Each autonomous system has some unique system dynamics, and a
generalized study of such systems could be limited to standard parts. Goppert et al. (2012) modeled
the dynamics of a UAV system using JSBSim and Scios for the control, guidance, and navigation
system of the UAV, which was used to simulate the response of the UAVs to several identified
cyberattacks such as a fuzzing attack and digital update rate attack, where an increased sampling
rate would make the system unstable. Some of the works describe a UAV as a linear transitional
time-invariant dynamic system with zero-mean Gaussian white noise and a constant co-variance
matrix (Kwon et al. 2016; Su et al. 2016). Authors have also used game theory to describe the
kinematic model of a UAV using variables to express the 3-D coordinate frame (Bhattacharya and
Basar 2010). Guo et al. (2017) modeled a mobile robot as a nonlinear discrete-time dynamic system
where the robot states evolve from xk−1 to xk after the robot actuators execute the command
generated by the planner.

5.2 Threat Modeling

Threat modeling is a process of identifying and understanding the threats to a system and then
defining countermeasures to mitigate the threats. Not only does it helps to visualize the system
model through potential adversaries’ eyes, but it also helps to evaluate security risks and coun-
termeasures in the case of possible attacks (Oladimeji et al. 2006). Envisioning potential threats
is a daunting task. Modeling strategies like STRIDE (Spoofing, Tampering, Repudiation, Informa-
tion Disclosure, Denial of Service, and Elevation of Privilege) can help to analyze the data flow
through the system (Madan et al. 2016). Another threat modeling approach is Persona Non-Grata
that focuses on attackers, their motivations, and abilities (Shull 2016).

Analyzing each part of the system for a different aspect of security by following the CIA model
(Confidentiality, Integrity, Availability) lays the foundation for researchers to identify certain at-
tacks (Javaid et al. 2012). As technology advances, so do the attackers’ strategies and attack vectors
(Tomas Foltyn 2018). Based on the vulnerabilities of the UAV’s auto-pilot, threats in different com-
ponents and the effect on the proper functioning of the UAV were analyzed in Kim et al. (2012).
These were preliminary works in this field that lacked identification of hardware vulnerabilities
or insider threats to the system. Another group of researchers developed a threat model for smart
device ground control station (a portable hand-held ground control stations for UAVs) that allows
soldiers to pilot UAVs in the battlefield. The key components addressed in the model are attack
motivation, vulnerabilities in these systems, cybersecurity threats, and mitigation steps in case of
attacks on these devices (Mansfield et al. 2013). They presented a risk analysis summary of threats
and their impact based on hardware, software, communication network, and human errors. Similar
discussion based on policies to defend against CIA threats in the context of unmanned autonomous
systems has been done in Madan et al. (2016) along with threat modeling and risk analysis using
the STRIDE approach. Some software products like Microsoft Threat Modeling Tool and Threat-
Modeler automate threat modeling, with the latter offering more sophisticated features (Beyst
2016).

The study of cybersecurity issues in robotics is also gaining pace in academia and industries.
Most preliminary work in the identification of direct and indirect threats to robotic systems could
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Fig. 5. Vulnerabilities of an autopilot system reproduced from Kim et al. (2012).

be found in Gage (1985). Gage discussed direct threats on the sensor, actuator, communication net-
work, and processing elements along with some derived threats. Cornelius et al. (2017) identified
four threat vectors in a mobile service robot: attacks on sensor data, hardware attacks, software
attacks, and attacks on infrastructure. While Clark et al. (2017) discusses cyber threats to robots at
“hardware, firmware/OS, and application levels,” Lera et al. (2017) models cybersecurity threats,
risks, and safety issues of using robots. They grouped the threats based on the origin of attack
(natural, accidental, or intentional), the target (physical, cyber, or both), the impact on robot and
external entities, and the risk associated with them. Threat scenarios based on the vulnerabilities
found in the security analysis of an industrial robot have been discussed in Maggi et al. (2017).
An attacker could alter the production outcome, introduce defects in the products, cause physi-
cal damage to the robot, or cause harm to coworkers. They can also be used as an entry point to
extract company sensitive data or hacked to perform ransomware attacks.

5.3 Vulnerability Modeling

Kim et al. (2012) identified control system security and application logic security as the two vul-
nerabilities of an autopilot system in UAVs and categorized the identified threats under them, as
shown in Figure 5. In control system vulnerability, the attackers exploit the vulnerabilities in the
hardware or software programs such as buffer overflow attack and malware installation. Attacks
in which manipulated input data are fed into the control systems exploit the application logic vul-
nerability such as GPS spoofing and automatic dependent surveillance-broadcast (ADS-B) attack.
The mode of communication among UAVs or with ground control station is over wireless commu-
nication networks. It widens the grounds for cyber-physical attacks ranging from the disruption
of communication links to the capture and use of one of the UAVs as an adversary. In Behzadan
(2017), the author emphasized on the vulnerabilities of different layers (physical layer, link layer,
network layer) of a communication network of UAVs. Krishna and Murphy (2017) reviewed the
cyber vulnerabilities of UAVs based on recent real and simulated attacks.

There are more than 100 built-in or installed Electronic Control Units (ECUs) within a mod-
ern car, listed in Koscher et al. (2010), to control and regulate various functions of the vehicle.
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These ECUs are connected through an in-vehicular network of sensors, processors, control sys-
tems, and communication applications along with a wireless gateway for external communications
with other vehicles and infrastructure. Each system in the automated vehicle has some vulnera-
bilities. A group of researchers extensively reviewed the vulnerabilities in an autonomous vehi-
cle. They highlighted the vulnerabilities based on sensors and control modules, behavioral and
privacy aspects of humans, and connection infrastructure (Parkinson et al. 2017). An indepen-
dent security firm evaluated the robots, currently available in the market from different vendors,
to show how insecure robot technology is and reported nearly 50 cybersecurity vulnerabilities
(Cerrudo and Apa 2017). Maggi et al. (2017) were able to identify several weaknesses of an indus-
trial robot. Lack of mandatory user authentication, unsecured network, and naive cryptography
are some of the vulnerabilities identified in the computer interface used to interact with the robot.
An attacker could easily bypass or disable user authentication, tamper existing accounts, or exploit
buffer overflow memory error.

5.4 Attack Modeling

With the increase in cyberattacks, it has become the need of the hour for government, organiza-
tions, and researchers to be ready with planning so that future attacks can be handled rapidly and
efficiently. Attack modeling helps to realize the attacks before they happen and prepare the orga-
nization with mitigation steps that need to be taken if an attack happens. There are various attack
modeling techniques to analyze the cyberattacks such as the attack graph or tree, the diamond
model, attack vectors, and attack surfaces (Al-Mohannadi et al. 2016).

5.4.1 Theoretical Model. Guo et al. (2017) gave the attacker model for a mobile robot where the
attacker can launch actuator or sensor attacks. Potential cyberattacks on automated vehicles have
been discussed in Petit and Shladover (2015) in which the authors have identified attack surfaces
and the possible attacks on automated and connected vehicles. They extend their research by per-
forming real and effective blinding, jamming, relaying, and spoofing attacks on the camera and
LiDAR sensors of automated vehicles (Petit et al. 2015). One of the works in this area classifies cy-
berattacks as passive and active attacks. A passive attack is to extract information from the system
without affecting the system resources, like eavesdropping. An active attack objective is to harm
the system in some ways like the DoS attack that compromises the availability of communication
channel (Yağdereli et al. 2015). A taxonomy of attacks on autonomous vehicles has been presented
in Thing and Wu (2016), which categorized the study based on attacker, attack vector, target, mo-
tive, and potential consequences. This taxonomy was modified to reflect attack taxonomy of a UAV
in Krishna and Murphy (2017) with minor modifications such as the addition of a new subcategory
of “communication stream” and listing references of actual instances of attacks.

As stated earlier, robots have already entered our lives and are making a place around humans.
These robots assist us in our daily lives, including medical services in hospitals, battlefields or
emergency response, factories, and homes. Lives could be put in danger if such robots are at-
tacked. Various works have been done to analyze the possible cybersecurity attacks against them.
In Bonaci et al. (2015), authors presented an attacker model of a teleoperated surgical robot. They
identified possible attacks and classified them as intention modification, intention manipulation,
and hijacking attacks. Robots are connected to a network through an interface used for operator
interaction such as joystick or I/O diagnostic ports. An attacker model of an industrial robot dis-
cussed in Maggi et al. (2017) profiles an attacker based on access level, technical capabilities, access
to equipment, an attacker’s budget, and the type of attacks that could be performed.

5.4.2 Analytical Model. A kinematic model for sensor and actuator attacks has been presented
in Guo et al. (2017) where sensor attacks result in wrong sensor readings that might generate
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erroneous control commands, and actuator attacks could directly alter the control com-
mands. Kwon et al. (2013) modeled the stealthy deception attack and analyzed the security of a
cyber-physical system in case of a deception attack on sensors, actuators, or both, which causes
an unbound estimation error without being detected by the monitoring system using a steady-state
Kalman Filter. They extended their work to model a direct control acquisition attack and onboard
navigation attack, which includes individual as well as combined stealthy deception attacks on
Inertial Measurement Unit (IMU) and GPS. They further proposed a real-time safety assessment
algorithm to verify the safety of the UAV subject to cyberattacks based on reachability analy-
sis (Kwon et al. 2016). Su et al. (2016) define the UAV model under a GPS spoofing attack where
falsified data could be injected into the navigation component either through a GPS signal simula-
tor or by injecting a data level GPS spoofing attack in a hacked onboard navigation system. They
formulated a real-time manipulation method for the UAV under the GPS spoofing attack to drive
the UAV toward a malicious destination without triggering the fault detector, and computed the
attainable location set of the UAV under such attacks.

Decision-making theories have also been used by many researchers to model attack strategies as
games (Bhattacharya and Basar 2010; Merrick et al. 2016; Sanjab et al. 2017; Sourabh Bhattacharya
and Tamer Basar 2012). Bhattacharya and Basar (2010) analyzed the coordination of multiple UAVs
in case of a jamming attack on the communication channel by an aerial jammer and modeled this
scenario as a zero-sum pursuit-evasive game. A zero-sum network interdiction game between a
vendor of a delivery drone and attacker was modeled using the prospect theory (Sanjab et al. 2017).
Here, the attacker’s objective was to prevent the goods delivery drone from taking the optimal path
from the warehouse to the customer’s location chosen by the vendor.

6 DISCUSSION

The technological world is progressing from smart gadgets to smart homes, smart vehicles, and
smart cities. There have been some real-world attacks exploiting the vulnerabilities of the current
cyber-physical systems and network. With the advancement in technologies toward autonomous
systems, the rate of attacks is bound to increase. It has become more important than ever before
that the security challenges and concerns related to autonomous systems are addressed in the
development phase itself.

In this article, we started with a glimpse into the historical evolution of autonomy and the pro-
gressive work done in this broad field. An idea of the background behind complex topics always
clears the questions of how and when for new researchers, and gives a comprehensive understand-
ing of the subject. The different approaches to implement autonomy in intelligent systems could
be a good start to thinking about how the system’s autonomy is going to work. A supervisory
approach can very well be used for robots that would need supervision at some point through the
task completion process. A goal-driven autonomy could be applied to driverless cars. Depending
upon the traffic situation or roadblocks, it could alter its route to the destination. It could decide to
pick up a fellow rider in a “Share-a-Ride” business model while on its way to drop off its customer
and update its goal. The mixed-initiative approach is also one of the better approaches toward
autonomy in a semi-autonomous car. The smooth transfer of control between the vehicle and the
driver is a challenge and a topic of further research where each can take control if one feels that
other is not in a situation to make a better decision. For example, if the driver is sleepy or in a
drunken state, the car can take control of the driving. In a weather condition like heavy rain or
a blizzard, it would be difficult to rely on optical sensors. In such a scenario, the car will not be
in a good state to be driven autonomously, and the driver should take control of the vehicle to
avoid mishaps. In the same scenario, an autonomous vehicle with sliding scale autonomy would
lower its autonomy and give more control to the user, and as the weather clears, it could take back
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Table 6. List of System, Vulnerabilities, Threat, and Attack Modeling Studies

Representative
Works Modeling Description

UAV

Vachtsevanos and
Reimann (2004)

Presented hierarchical model control for multiple UAVs, game theory based
pursuit-evasive game for collision avoidance and formation control

Bhattacharya and Basar
(2010)

Kinematic model of a UAV using game theory in 3-D frame, attack strategies
as zero-sum game

Kim et al. (2012) Discussed architecture and vulnerabilities of UAV autopilot system

Javaid et al. (2012) UAV Communication Network Threat assessment

Goppert et al. (2012) Dynamics of UAV system—Control guidance and navigation

Kwon et al. (2013) Modeled the attack and analyzed the security of the system in case of
deception attack on sensors, actuators, or both

Mansfield et al. (2013) Attack motivation, system vulnerabilities, threats, and mitigation steps

Yağdereli et al. (2015) Classifies cyberattacks as passive attacks and active attacks.

Kwon et al. (2016) Analytical safety-assessment algorithm for unmanned aircraft during
stealthy cyberattacks

Su et al. (2016) Defined the UAV model under GPS spoofing attack, formulated a real-time
manipulation method and computed the attainable location set of the UAV
under such attacks.

Madan et al. (2016) Analyzed CIA threats of UXVs and risk assessment using STRIDE

Sanjab et al. (2017) Modeled zero-sum game between a delivery drone vendor and attacker

Krishna and Murphy
(2017)

Presented attack taxonomy of a UAV

Autonomous Vehicle

Urmson et al. (2007) Autonomous vehicle design based on “Sense-Plan-Act”

Leonard et al. (2008) Autonomous vehicle architecture

Petit and Shladover
(2015)

Attack Surfaces and potential cyberattacks on “autonomous automated
vehicle” and “Cooperative automated vehicle”

Thing and Wu (2016) Presented attack taxonomy of autonomous vehicles

Parkinson et al. (2017) Highlighted vulnerabilities based on sensors and control modules, behavioral
and privacy aspects of humans, and connection infrastructure

Robot

Gage (1985) Presented generic robot model, identified direct/indirect threats

Bonaci et al. (2015) Presented teleoperated surgical robots’ attacker model, possible attacks as
intention modification, manipulation, and hijacking attacks

Guo et al. (2017) Presented mobile robot’s design, sensor, and actuator attacker model

Cerrudo and Apa (2017) Identified Cybersecurity vulnerabilities

Cornelius et al. (2017) Identified possible attacks, threat vectors, and defense mechanisms

Clark et al. (2017) Discusses cyber threats at hardware, firmware/OS, and application levels

Lera et al. (2017) Models cybersecurity threats, risks, and safety issues

Maggi et al. (2017) Discussed industrial robot architecture, vulnerabilities, threats, and attacks

System Modeling Vulnerability Modeling
Threat Modeling Attack Modeling

the full control of the vehicle. We explored some of the trending areas in the development and
enhancement of autonomous systems in the “current trends” section as well.

Our next discussion was on cybersecurity of autonomous systems where we threw some light
on the work done in the industry as well as academia on some of the latest autonomous systems
related to security listed in Table 6. We focused our work on the system, threats, vulnerabilities,
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and attack modeling of a few widely researched autonomous systems, which show how much
work has been done in these areas. Our insight into these discussions is that cybersecurity and
modeling of individual autonomous systems are at a very early stage. As per our findings and
to the best of our knowledge, UAV is the most active field of research concerning the system
modeling and attack scenarios. System modeling of autonomous vehicles started with the DARPA
challenge. While lots of work related to network security of vehicle-to-vehicle (V2V) and vehicle-
to-infrastructure (V2I) VANET network has been done, the modeling of threat and attack vectors of
autonomous vehicles needs lots of attention. Identification of vulnerabilities and threats on robot
security started very recently, which can be inferred from Table 6, as most of the work on robot
security was published in 2017. There is a vast scope of research and simulation/implementation in
these areas. A generalized study on the cybersecurity of these individual systems could be an area
of research. New modeling techniques like game theory and machine learning could be applied
in these areas as well. Also, the autonomy approach should be taken into account while modeling
threats and attack scenarios for these autonomous systems.

7 RESEARCH CHALLENGES AND FUTURE DIRECTIONS

To ensure and assure that these systems are safe and secure to be used by humans, a new ap-
proach toward cybersecurity and autonomy is needed. The research community in this area lacks
algorithmic solutions to address:

—uncertainties in modeling
—security of autonomous systems from malicious attacks
—accomplishing higher goals through cooperation and collaboration

Autonomy is a dynamic property that needs to adapt to varying unknown situations, depending
on the mission complexity. We need a resilient system that performs well over its lifetime. Rig-
orous mathematical modeling could provide a basis for a framework that would help in the early
development study of various capabilities, factors, and tradeoffs between human interaction and
machine automation. It could further be used in the development of an autonomy assessment tool,
keeping factors like security in mind. Though we are moving ahead toward an autonomous future,
there are many research challenges that researches have to face. We have tried to summarize a few
of them as follows:

—Building Human Trust: After Uber’s self-driving car crash in 2018, a survey performed by
Statista shows that trust in self-driving cars dropped to 27% (Felix Richter 2018). This is the
most intimidating challenge the developer of autonomous systems is about to face. While
these systems promise a more comfortable and efficient life, safety and security measures
need to be taken before deployment among the public. The world should be ready in legal,
social, economic, and ethical context before these systems are incorporated in our lives,
as failures of these systems are inevitable at some point in time, either through known or
unknown causes. The trust in these systems could only be built by thorough analysis and
testing. The service providers and manufacturers of these systems should be stringent when
talking about security and be ready with countermeasures when it is compromised.

—Diverse Training Dataset: Autonomous systems need to be trained on a large, diverse,
and complete dataset to be secure and safe. A simulated dataset is incomplete as it fails to
capture critical conditions in the real world. Its relevancy and integrity are questionable
as it lacks the human factor. Machine learning is an area that could be applied to enhance
the cybersecurity of autonomous vehicles. As discussed in Causevic (2018), if a car’s in-
vehicular network logs are monitored and analyzed by a machine learning-based system,
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it can detect malicious activity early and alert the driver or take some preventive measures
to save itself from fatal accidents. With the collected data, machine learning algorithms can
be used to detect malware activities, network attacks, or unusual commands. They can also
be used to establish behavioral profiles of any potential attacker (Critchley 2018). It would
also improve the effectiveness of the security algorithms as the data would be continuously
updated and would be unbiased of any technical or human intentions.

—Data Security: A lot more research needs to be done in the area of security of communica-
tion data and over-the-air updates. Blockchain is an emerging technology that can be used
to provide a more secure and robust solution for these autonomous systems. Blockchain,
devised initially for digital currency (Bitcoin), is a chain of blocks linked through a crypto-
graphic hash from the previous block with a timestamp and distributed over the network,
which makes it resistant to modification of the data. Ferrer (2016) shows that Blockchain has
the necessary capabilities for swarm robotics operations to be more secure, autonomous,
and flexible. This technology would not only provide a private and reliable communica-
tion among swarm agents, but it would also overcome the vulnerabilities, potential threats,
and attacks associated with them (Aggarwal 2017). The decentralized storage of Blockchain
would guarantee the confidentiality and integrity of the driver’s data with no downtime in
network connectivity of autonomous vehicles. It would also ensure the accuracy of data in
a V2V or V2I communication (Williamson 2018).

—Computing Power and Network Management: Current status of autonomous systems
lacks the computational capability to perform computationally intensive tasks on large
datasets such as encryption of collected data to be shared securely over the network. The
end controller of these systems in many cases would be handheld devices such as mobile
phones and controllers, which lack the computational power to run advanced security algo-
rithms. One solution is to embed security into the hardware design. Another solution is to
secure the network against cyberattacks by network softwarization such as Network Func-
tion Virtualization (NFV) and Software Defined Networking (SDN) (Shakhatreh et al. 2018).
SDN provides efficient network management, programmability, and ease of reconfiguration
(Zhang et al. 2017). It provides a flexible and dynamic environment with a view of the entire
network topology, which helps to block specific attacks such as DDoS based on network’s
policy (Niyaz et al. 2016; Ydenberg et al. 2018). A group of researchers proposed a secure
mobility model between UAVs and ground Wireless Sensor Network (WSN) nodes where
communication would be through the SDN controller for authentication and coordination
(Kumar et al. 2017). SDN provides a virtual, centralized, software-based control that allows
easy integration of security-relevant functions into an SDN controller. Along with the holis-
tic view of security, SDN provides an improved response in case of any security incidents,
which would otherwise take a long time to respond to in a traditional network (Edward
Amoroso 2019).

8 CONCLUSION

This article presents a survey on security modeling of autonomous systems. We looked at the
history of automation and the various approaches of autonomy to get a deeper understanding
of the scope of automation in these systems. We also highlighted significant research done to-
ward the study of security in some widely researched systems both in the industry as well as
academia, followed by identification of survey papers regarding the modeling of the systems and
possible attacks. Finally, we provided an overall analysis of the surveyed papers and concluded
with a discussion on future research directions and challenges to enhance the automation and se-
curity of these systems. Adoption of autonomous systems discussed above will usher a new era of

ACM Computing Surveys, Vol. 52, No. 5, Article 91. Publication date: September 2019.



91:26 F. Jahan et al.

technological advances and economic growth. Driverless cars are expected to reduce road acci-
dents, fuel consumption, traffic congestion, and air pollution (Darrell M. West 2017). Robots would
be deployed in homes and various industrial sectors to provide assistance and efficiency in a rou-
tine as well as high-precision jobs. The question is, how secure and safe are these technologies to
be adopted into society? With every new revolution in transportation, there are risk factors in-
volved. These systems should not be immaturely deployed into the public. Researchers in industry
and academia alike have to shoulder the responsibility of addressing the security flaws. The man-
ufacturers have to ensure the safety of its users, considering even the remote scenarios of mishaps
and attacks. Also, the government has to have proper legal policies and supporting infrastructure
in place (Kaur and Rampersad 2018).
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