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A brain-computer interface (BCI) provides a way to develop interaction between a brain and a computer. The
communication is developed as a result of neural responses generated in the brain because of motor move-
ments or cognitive activities. The means of communication here includes muscular and non-muscular actions.
These actions generate brain activities or brain waves that are directed to a hardware device to perform a
specific task. BCI initially was developed as the communication device for patients suffering from neuromus-
cular disorders. Owing to recent advancements in BCI devices—such as passive electrodes, wireless headsets,
adaptive software, and decreased costs—it is also being used for developing communication between the
general public. The BCI device records brain responses using various invasive and non-invasive acquisition
techniques such as electrocorticography (ECoG), electroencephalography (EEG), magnetoencephalography
(MEG), and magnetic resonance imaging (MRI). In this article, a survey on these techniques has been pro-
vided. The brain response needs to be translated using machine learning and pattern recognition methods to
control any application. A brief review of various existing feature extraction techniques and classification al-
gorithms applied on data recorded from the brain has been included in this article. A significant comparative
analysis of popular existing BCI techniques is presented and possible future directives are provided.
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1 INTRODUCTION

The human brain is largest (about 3 pound) and most complex among all the human organs,
consisting of billions of neurons. It is a multiprocessing system that receives information from
our peripherals, processes it and controls our actions accordingly. The human brain has a com-
plex structure and unmatched computational capacity, including the capability of multiprocess-
ing and learning. Therefore, it has always attracted researchers since the early ages. Various new
paradigms—such as neuroscience, artificial intelligence, cognitive science, and brain-computer in-
terface (BCI) have been developed to understand the brain in more depth. The inspiration for
development of BCI come from an urge to provide social recognition to individuals who are suf-
fering from some neuromuscular disabilities. BCI is a system that translates thoughts and provides
an interface for communicating with the outside world. Recent advancements in BCI have made
it possible to understand the functions and neural communication inside the brain. The study of
the brain not only has helped researchers in the medical field but also in the field of engineering.
In addition to recording and displaying of brain activity, BCI allows the user to control programs
such as video games, computational software, spellers [55, 89], web browsers [64], and thought
translation devices [19]. It is a wide area of study and requires knowledge of computer science
engineering, neuroscience, psychology, signal processing, clinical rehabilitation.

A typical BCI system includes a signal acquisition system, signal processing techniques, and
an output device, as shown in Figure 1. Signal acquisition can be performed in three ways: inva-
sive, non-invasive, and semi-invasive. Invasive techniques involve signal acquisition via penetrat-
ing micro-electrodes in the dura matter of the brain. In semi-invasive approaches, electrodes are
placed beneath the scalp but not in the gray matter. Non-invasive techniques involve placing of
electrodes on the scalp without surgery. Some of the non-invasive techniques used to record brain
signals are electroencephalography (EEG), magnetoencephalography (MEG), and magnetic reso-
nance imaging. Non-invasive techniques are extensively used for research, as these techniques are
not prone to any damage to the brain tissues.

The brain signals acquired from signal acquisition devices are processed, amplified, and con-
verted into forms recognizable to humans using amplifiers and converters. Signal processing in-
volves filtering, feature extraction, and classification of brain potentials or brain signals. Raw brain
data is generally contaminated with motor-muscular artifacts. A major task left with scientists and
researchers is to remove that contamination and extract useful data. Feature extraction involves
noise and artifact removal to get pure, non-contaminated data that can be used for developing BCI
applications. Various feature extraction (also known as feature transformation) algorithms are
available to transform the original data into a specified feature vector, such as Independent Com-
ponent Analysis (ICA) [70], Common Spatial Patterns (CSPs) [88], Principal Component Analysis
(PCA) [122], and Wavelet Transform (WT) [107]. The selected feature vectors are classified into
desired classes by applying classification algorithms such as Linear Discriminant Analysis (LDA)
[51] Support Vector Machines (SVMs) [35], Neural Networks (NNs) [111], Fuzzy Inference Sys-
tems (FISs) [177] and many others. Finally, the processed signals are used by prosthetic devices,
wheelchairs, electrical equipment, or computers.

This survey is organized as follows. Section 2 gives a brief description of the brain regions and
their behavior. Section 3 explains various modes of signal acquisition, including the techniques
and devices available to record brain signals. Section 4 gives an overview of the different types of
signals generated from the brain and recorded via acquisition devices. Section 5 reviews the various
feature extraction methods. Section 6 presents some of the important classification algorithms used
in developing the BCI system. Section 7 contains our conclusions and provides some research
directives for the future.
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Fig. 1. Brain-computer interface system.

Fig. 2. Brodmann areas.

2 THE BRAIN AND FUNCTIONALITY OF ITS REGIONS

The brain is a multiprocessing system that receives information from the human body, processes
it, and controls body actions accordingly. Different parts of the brain perform different cognitive
functions, which are further discussed in this article. The brain can be macroscopically classified
into two regions: the cerebral cortex and subcortical region. Another classification of the brain
on the basis of cognitive functionality of different areas has been done by Brodmann [56], who
divided the brain into various regions that are known as Brodmann areas, as shown in Figure 2 [7].

2.1 Cerebral Cortex

The cerebral cortex is the outer covering of gray matter, which is divided into two cerebral hemi-
spheres: left hemisphere and right hemisphere. The functions of the left hemisphere include group
coordination and communication; sensation; vision; control of the right side of body, linear think-
ing (step-by-step progression); verbal memory (thinking in words), including Wernicke’s speech
area and Broca’s speech area (Figure 3); and goal-directed linear planning. The functions of the
right hemisphere include environmental awareness, sensation, vision, control of the left side of
body, non-linear thinking, visuospatial memory (thinking in pictures), mental manipulation of
relationships, complex or emotional decisions, and error detection.

Each hemisphere is partitioned into four brain lobes: frontal, occipital, parietal, and temporal.

2.1.1 Frontal Lobe. The frontal lobe occupies the front part of the brain. Its primary functions
are organizing, planning, social skills, problem solving, decision making, emotional control (Brod-
mann areas 10, 11, and 47), movement planning (Brodmann area 6), control of eye movement
(Brodmann area 8), A-not-B task, object task [143], and comparing two items from memory (Brod-
mann areas 9 and 46). Brodmann areas 9 and 46 are part of frontal lobe, which together are called
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Fig. 3. Broca and Wernicke speech areas.

the Dorsolateral Prefrontal cortex (DLPFC). A person with a lesion in the DLPFC will not be able
to identify objects seen a few hours earlier. The left hemisphere of the DLPFC is activated dur-
ing any verbal working memory task, whereas the right hemisphere is active for visual working
memory tasks [143], [115]. Shackman et al. [139] showed that the DLPFC is involved in telling the
truth/lying and language processing (Broca speech area). The Broca speech area involves semantic
analysis of language, that is, how to use words in a sentence. People with a lesion in the Broca area
can speak but will not be able to form sentences properly (Brodmann areas 44 and 45).

2.1.2 Occipital Lobe. The occipital lobe is located on the back side of the skull (Brodmann areas
17, 18, and 19). The occipital lobe is involved in the processing of visual information. Electrodes
are placed on the occipital lobe to record neuronal activity generated by a given visual stimulus.

2.1.3 Parietal Lobe. The parietal lobe is located immediately above the occipital lobe and be-
hind the frontal lobe. It is responsible for spelling, perception, object manipulation, sense of touch
(Brodmann areas 1, 2, and 3), high processing tasks (Brodmann areas 5 and 7), and visual motor
coordination (Brodmann area 7).

2.1.4 Temporal Lobe. The temporal lobe is located behind the ears on both hemispheres of the
brain. It is responsible for basic hearing function (Brodmann areas 41 and 42), recognizing faces and
numbers (Brodmann area 20), memory formation and optimization during sleep (Brodmann areas
28 and 34), and understanding words (Brodmann area 22, also known as Wernicke’s area) [56].
These areas are affected primarily in patients suffering from Alzheimer’s disease.

2.2 Subcortical Region

The subcortical region is divided into two parts: the cerebrum and cerebellum. The cerebrum com-
prises the thalamus, brain stem, and limbic system. These are responsible for vital functions such
as digestion, breathing, heart rate, and information transfer from the cerebrum to cerebellum. The
thalamus processes information before transferring it to the cerebellum. The limbic system, com-
monly known as the mini-brain, comprises the amygdala, hippocampus, hypothalamus, cingulate
gyrus, and fornix system. The hypothalamus regulates the endocrine system while the hippocam-
pus stores memory. Functions of the limbic system include controlling emotional behavior, eating
habits, anger, and sadness. (Brodmann areas 24, 32, and 33) [56].

3 MODES OF SIGNAL ACQUISITION

The brain’s behavior can be understood by mapping its activities. Activities in the brain are gen-
erated when one neuron transfers a message to other neuron through a synapse. It does so by
transferring ions, which cause a change in the electric potential inside the brain. The change in
potential is generated because of the flow of ions such as sodium and potassium ions in brain cells.
These ions are present inside and outside the brain cell; the difference in the concentration of ions
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Table 1. Comparison between Various Modes of Acquisition

Non-invasive Partially invasive Highly invasive
Cost efficient Costly Costly
Easily monitored Difficult to monitor Difficult to monitor
No medical training
required

Requires medical training
and assistance

Requires medical training and
assistance

Poor spatial resolution High spatial resolution Higher spatial resolution
No risk of infection Risk of infection Risk of infection and inflammation
Long-term recording Short-term recording Very shortterm recording

Fig. 4. Position of electrodes of different acquisition techniques on various brain layers.

causes their flow from higher concentration to lower concentration of ions present in cell. The
difference in potential generated is known as resting potential (-80mV) [91]. The flow of ions is
initiated when certain actions are performed by an individual. The recording of this potential dif-
ference in brain cells caused by various activities can be done using different techniques. A few of
these approaches are discussed in the following section. A comparison between various features
of the acquisition techniques is provided in Table 1 and Figure 4 [6] displays how electrodes are
placed on different layers of the brain.

3.1 Invasive Mode

The invasive mode of acquisition allows recording of brain signals by inserting electrodes surgi-
cally inside the brain.

3.1.1 Penetrating Micro-Electrode in the Brain. Micro-electrodes penetrate the brain gray mat-
ter (area where neurons are present) to record brain signals of higher quality and greater strength
than in non-invasive approaches. The challenges for capturing good-quality signals are high pen-
etration power so that it is easy to capture neuronal activities and number of electrodes required
for better signal acquisition and durability (recording for a long interval of time). Micro-electrodes
were first used to record brain signals from a monkey. Later, Jose M. Delgado [41] used this method
to record human brain signals. A few variants of micro-electrodes are as follows:

• A Micro-Wire Array is made using wires of stainless steel or platinum or iridium alloys to
improve their durability. These wires can be customized, as they are handmade. An increase
in the number of electrodes increases the number of wires needed, which, in turn, increases
cost and time [153].

• A Micro-Fabricated Array is fabricated on a single device, due to which cost and time of cus-
tomization doesn’t see any significant increase. It also enhances spatial resolution. Usually,
micro-electrodes are fabricated with polymers [153] or with silicon [65].
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Table 2. Comparison of Existing Electrode Placement Systems

Electrode
placement system

Number of
electrodes

Distance from nasion
and inion area (%)

Distance between
electrodes (%)

10-20 system 19–21 10 20
10-10 system 64–85 10 10
10-5 system 320–329 10 5

• Polymer-Based Arrays are less prone to chronic injury and can be easily integrated as ca-
bles or wires. Tooker et al. [153] have developed a polymer-based array that is capable of
expanding, providing high-quality signals and long-term recordings.

• Silicon-Based Arrays have good strength to penetrate into the tissue, which make them the
commonly used electrode [65].

• Benzocyclobutene (BCB) is a biopolymer [95] with more flexibility and higher compatibility
than other polymers and also provides long-term recordings.

3.1.2 Electrocorticography (ECoG). ECoG is also known as Intracranial electroencephalogra-
phy (iEEG). It uses electrodes that are implanted at a location close to the cortical surface (outer
layer of neural tissue). Rather than penetrating into the cortical area, electrodes are placed on the
brain cortical area. ECoG provides a higher spatial resolution, less noise, and higher bandwidth
as compared to EEG [15]. ECoG involves two types of electrode placement systems. The first sys-
tem has an array of equally spaced electrodes that are placed on strips or grids of silicone plastic,
which can be altered. To improve spatial resolution, the electrodes are arranged more densely.
The second system arranges individual wired electrodes over the exposed cortical surface. ECoG
recordings have less artifacts than EEG (to be explained later) and this technique is less susceptible
to infection.

3.2 Non-Invasive Mode

Non-invasive BCI techniques involve acquisition of brain signals without harming the brain tis-
sues. Various non-invasive techniques have been adopted to acquire brain signals, some of which
are explained in this article.

3.2.1 Electroencephalography (EEG). It is the most commonly used non-invasive technique for
acquiring the electrical activity generated by brain cells (neurons or nerve cells and glial cells).
The signals are recorded by placing metal electrodes on the scalp. The metal electrodes are mostly
built from German silver, which is an alloy of copper, nickel, and zinc. Polytetrafluoroethylene
(Teflon) is used for coating the wires and metal electrodes. An electrolyte gel or paste is applied
either on the electrodes on the scalp to initiate conductivity between them. The paste is composed
of lanolin and chloride ions, which helps in electrical conduction. The electrodes are positioned on
the brain scalp using the standard 10-20 electrode placement system. In addition, there are 10-10
and 10-5 electrode placement systems for signal acquisition [82]. The 10-10 electrode placement
protocol has been extensively used recently, as it provides more detailed brain signals. The differ-
ence between 10-20, 10-10, and 10-5 electrode systems is distance between each electrode from the
nasion and inion areas, which is given in Table 2. Figure 5 shows the electrode map of the 10-20
and 10-10 electrode systems.

The 10-5 system is covered in [82]. As discussed in Section 2, each brain area works differently.
In order to record a particular brain activity, the knowledge of placing an electrode on that part of
brain is required. Hence, we have listed the electrodes to be placed on various Brodmann areas in
Table 3.
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Fig. 5. The electrode systems usually followed for EEG data collection.

EEG signals are the fluctuations occurring due to the electrical potential generated as a response
to the neuron activity inside the brain and recorded from the scalp [159]. Electrical impulses from
a living brain of a rabbit and monkey were recorded for the first time by Richard Caton in 1875.
He placed the electrodes in two positions: on the gray matter and scalp [117]. In 1890, Adolf Beck
studied the brain activity of animals in response to sensory simulation [33]. In 1913, Napoleon
Cybulski studied the flow of electric current in muscles using his own capacitor. He explained that
the potential in the brain cells is generated because of the ions (such as sodium and potassium)
that flow inside and outside of the cell. This potential is known as the resting current or resting

potential [62]. In 1920, Hans Berger recorded EEG signals from the lesion area of the human
scalp for the first time using a Siemens double-coil galvanometer and non-polarized electrodes.
He observed oscillations in the galvanometer after placing two clay electrodes at a distance of
4 cm apart near a scar. However, these recordings are not clear since they contain a significant
amount of artifacts. The oscillations developed have been quoted as the mirror of the brain—“the
Elektrenkephalogramm” [156]. Berger analyzed waves between 8 and 13 Hz, that is, alpha waves,
which are also known as Berger waves.

Currently, various devices are available to record EEG signals for medical and research purposes.
Some of the commercially available devices are NeuroSky, Neuroscan, EMOTIV EPOC, and Brain
Products. A review on the features of various EEG devices have been given by Ramadan et al.
[126]. Currently, researchers are trying to develop EEG devices that are reliable and provide good
quality signals. A low-density EEG system with 7 channels based on automated artifact removal
for Alzheimer patients has been developed by Raymundo Cassani et al. by analyzing 3-minute
open-eyes and awake time activity. The EEG activity of an Alzheimer patient is different from that
of a healthy person. The EEG signals of an Alzheimer patient are slow because of loss of synaptic
connections and decreased synchronization between cortical regions. Most of the available EEG
devices are high-density devices (a large number of electrodes), such as 32-channel or 64-channel
EEG systems. Because of the large number of electrodes, patients with a brain disorder may feel
uneasy, drowsy, and may sweat, which results in poor signal quality with artifacts. To overcome
these limitations, a low-density, portable, and easy-to-use 7-channel system has been developed
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Table 3. Brodmann Area and Respective EEG Electrodes

Brodmann’s areas Electrode number (10-10 system)
6 FC1, FC3, FC2, FC4
8 F1, F2, F3, F4
9 AF4, AF3
46 AF7, AF8
10 FP1, FP2
11 NZ
47 F7, FT7, FT8
44 and 45 (Broca’s areas) F8, FC6 (left hemisphere)
17 POZ
18 O1, O2
19 PO3, PO4, PO7, PO8
1 C4
2 C3
5 C1, C2
7 P1, P2, Pz
39 P3, P4, P5, P6
37 P8, P10
21 T4
22 (Wernicke’s area) T5, T6

Fig. 6. Theta wave.

by the authors of [26]. In other work, a smart wearable helmet that monitors EEG and ECG activity
has been developed by the authors of [160]. The EEG signals have been recorded by placing a
electrode inside the ear canal with a wearable device. Therefore, it has been named an EarEEG.
Subjects are asked to wear this smart helmet during cycling and walking to deal with artifacts
generated by muscle movement.

Brain signals recorded via EEG devices are classified on the basis of frequency, called Brain

Rhythmic Activity or EEG Rhythms [126]. Delta waves (1–4Hz) are usually present in infants and
during deep sleep. Theta waves (4–7Hz) are generally found in rodents; they are also found in
humans during meditation, the unconscious state, or drowsiness. Alpha waves (8–13Hz) are found
in humans in a relaxed state with closed eyes. Mu waves lie in the alpha-wave frequency range
and are observed when activity in the motor cortex area is maximum. Beta waves (14–30Hz) are
present when a person is alert, attentive, or thinking. Gamma waves (>30Hz) are generated during
voluntary movements or when some stimulus is given. Figures 6 to 9 show various EEG rhythms
that have been recorded from a healthy subject in a suitable environment, performing normal
activities.
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Fig. 7. Alpha wave.

Fig. 8. Beta wave.

Fig. 9. Gamma wave.

3.2.2 Magnetoencephalography (MEG). MEG records magnetic fields produced as a result of
neural activity generated in response to a stimulus. Like EEG, MEG also records postsynaptic
potentials generated by neurons but in the form of magnetic fields. MEG provides good spatio-
temporal resolution and is not severely affected by muscle artifacts [157]. The MEG is based on
Superconducting Interference Devices (SQUIDs), which were introduced in 1960s. SQUIDs are
filled with large liquid helium units that maintain the temperature of the system at approximately
–269◦C. Temperature is kept low in order to achieve low impedance. The SQUID device detects and
amplifies magnetic fields generated by neuronal activity. MEG was first used by David Cohen [34]
to measure α-brain waves from a healthy subject and an epileptic patient. The limitation of using
SQUID-based devices is that it has to be maintained at a very low temperature, for which thermal
isolation is required. A slow change in temperature of liquid helium will affect the system and will
generate high maintenance costs. MEG does not need any referencing, as it provides better spatial
resolution and is less distorted by tissue electrical activity. Hence, authors have preferred MEG
over other acquisition techniques [27].

MEG has also been used recently for clinical and neurological research purposes. But, because
of the cost, this device is not very popular. Hubert Cecotti et al. [27] have used the MEG technique
to detect brain signals and have applied Bayesian Linear Discriminant Analysis (BLDA) on the
input after spatial filtering. The authors have discussed the issues faced in the target detection
system. They have proposed that single-trial detection should be used if continuous or repeated
stimuli identify the target and non-target classes. The difference between functioning of an autistic
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brain and a normal human brain is recorded using MEG by the authors of [148]. Also, using MEG
activity, researchers have recorded differences between the speech of some 11-month-old bilingual
and monolingual infants [49]. In a recent study, a solution for source reconstruction using MEG
and EEG data was given by developing a hierarchical Bayesian algorithm [25]. The algorithm
maximizes the likelihood of data using fast converging rules. Auditory, visual, and face-processing
data have been used for simulation. The authors considered only spatial information for applying
the algorithm. Ford et al. [54] have applied statistical analysis on spatio-temporal data recorded
using MEG. They have provided auditory stimuli to the subject and found the difference in the
continuous MEG data for repeated and novel stimuli. It has been observed that, for novel stimuli,
cortical activity is more than that of repeated stimuli.

3.2.3 Functional Magnetic Resonance Imaging (fMRI). fMRI is also a non-invasive acquisition
technique. It identifies the changes in oxygen flow of the blood or Blood Oxygen Level Depen-
dent (BOLD) [128]. EEG and MEG both capture the rapid changes in cortical activity of the brain.
This reflects the ongoing signal processing in the brain. fMRI indirectly measures neuronal activ-
ity by measuring the oxygen flow in blood. During any neuronal activity, oxygenated blood starts
flowing toward the deoxygenated area and the fMRI records the difference in magnetic proper-
ties generated by oxygen flow. A typical fMRI system performs analysis of images after scanning,
whereas a real-time fMRI performs simultaneous analysis. This feature of fMRI makes it useful
in BCI for visualizing brain activities. The fMRI uses Echo Planar Imaging (EPI) to acquire brain
activity slice by slice (slice defines time period). The real-time fMRI-BCI are influential because
of their magnetic field strength, good spatial and temporal resolution, better echo time, and good
magnetic field homogeneity [142]. The authors of [110] studied the functioning of the brain of
individuals in different age groups. They found similarity and dissimilarity between the func-
tionality of their brains using fMRI. An fMRI study [138] has been performed on children aged
between 5 and 18 years. A task was given to the children to identify an object. They were given
auditory stimuli to which they had to match line drawings (visual stimuli) of those sounds. Later,
Independent Component Analysis (ICA) was applied to separate the task-related components and
non-task components. In a study [71], fMRI was performed on preterm infants. It was used for
early prognosis of brain injury and their neural development. In another work, a novel framework
has been developed to improve the detection accuracy of fMRI [77]. For increasing the detection
rate, signal extraction was performed by converting large brain volume into stimuli-specific parts.
The slicing of brain volume was carried out for a specific point of time relative to the stimulus. Sta-
tistical analysis was applied on each time slice. The signals were extracted using a non-standard
timepoint-by-timepoint approach. fMRI-based BCI has been used by many scientists to control
various prosthetic devices [94], spelling devices [146], for playing table tennis [165] and for many
other tasks. For the analysis of fMRI data, some of the available software programs are GE’s Brain-
Wave [8], AFNI (Analysis of Functional NeuroImages) [36], BrainSuite [140], and BrainVoyager
[57].

3.2.4 Functional Near-Infrared Spectroscopy (fNIRS). fNIRS uses light from the near-infrared
region of the Electromagnetic (EM) spectrum to study the oxygenation and deoxygenation of
hemoglobin in the brain. The oxygenation and deoxygenation of hemoglobin occurs in response
to stimuli or during activity. It works on the principle that, when EM waves are passed through a
substance, the change in light intensities is visible. Based on the changes in the intensity of light,
the property of a given substance can be determined. fNRIS images have high spatial resolution
but low temporal resolution [126]. fNIRS measurements are done by three methods: continuous
wave (CW), time-resolved (TR) and frequency domain (FD). fNIRS-CW is the most widely used
acquisition system. fNIRS acquisition is performed by placing an optode (an optical sensor device)
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on the brain scalp. The placement of an optode is done using the EEG electrode placement map
(see Figure 5). An optode consists of a source and a detector. The source passes EM waves to the
brain scalp, which is then transmitted and received at the detector. The source and the detector
are placed at a distance of 2.5cm from each other [38]. The change in intensity on presentation of
stimuli is recorded and analyzed using different available methods. Signal acquisition with fNIRS
is costly but is relatively cheaper than fMRI data acquisition. The authors of [93] have developed a
computer model for generating synthetic data of fNIRS that can help researchers to understand its
mode of operation. Noori et al. have presented an fNIRS-based BCI system, with which they per-
formed feature extraction and classification of data obtained after motor imagery tasks. The fNIRS
signals have been acquired from the motor cortex area. Postfiltering the raw data and removing
the noise, features such as mean, variance skewness, peak, and kurtosis are extracted. Later, a
genetic SVM was applied on data for classification [118]. Some of the fNIRS-based BCI systems
developed earlier are decoding of brain activity using fNIRS [38, 136], motor cortex activity dur-
ing right-hand movement (active and passive) [96], right-hand and feet movement [1], and signal
acquisition from prefrontal and primary motor cortices for mental tasks [2]. Devices available for
the acquisition of fNIRS are Biopac [52], Artinis [151], and NIRx (NIRSport) [14].

3.2.5 Positron Emission Tomography (PET). PET is another non-invasive approach. It measures
the functionality of the brain by injecting a nuclear substance-emitting positron. It records the
chemical changes occurring in the brain before the symptoms of disease are visible. The dosage
of radionuclide injected into the patient’s body is less and does not cause any damage. Also for
different regions of brain (as discussed in Section 2), different types of isotopes are used to measure
brain functionality. An extensive review of the clinical application of PET has been given in [92].
PET has been mostly used for diagnosis of brain disorders. PET has been used to analyze patients
with myotonic dystrophy type 1 and type 2 [3] and to study the effects of alcohol on the human
brain [5]. Various methods have been applied for reconstruction of PET images [100, 109, 133].

3.2.6 Single-Photon Emission Computed Tomography (SPECT). SPECT is a nuclear medicine
technique that uses gamma rays to study the brain. SPECT provides a look into how the brain
works. While recording brain activity using SPECT, a radioactive substance is injected into the
patient’s body and is scanned using a SPECT machine. The SPECT machine traces the radioactive
substance absorbed by the brain present in patient’s body. The radioactive substance allows doctors
to see how blood flows into tissues and organs. It shows the areas of the brain that are active,
inactive, or overactive. SPECT averages the brain activity over a few minutes and generates an
image. By reading these images, clinicians can identify any lesion in the brain or percent activity
of the brain. SPECT has been widely used in healthcare to detect seizures in patients suffering
from epilepsy [44, 46], Parkinson disease [66], and more.

4 TYPES OF BRAIN SIGNALS

4.1 Event-Related Potentials

Event-Related Potentials (ERPs) are the brain neuron activities stimulated by internal or external
responses (cognitive, motor, or sensory) and are recorded non-invasively. ERP activity changes
with time of onset of stimulus and location of the electrode on the brain scalp. The interest of re-
searchers in the study of ERP is because of its potential in revealing the dynamics of the brain. The
ERP waveform can be represented in the form of various positive and negative components. These
positive and negative components are identified by their temporal occurrence. The components
follow a pattern depending on the type and repetition of the stimulus. Some of the ERP component
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examples are Error-Related Negativity (ERN), Contingent Negative Variation (CNV), N100, N200,
P200, and P300.

Error-Related Negativity is the component of ERP that is generated when the subject responds
incorrectly for any motor task [137]. It is usually found after 80 to 200ms after the erroneous re-
sponse is generated [105]. ERN is the negative peak visible mostly when electrodes are placed at
the frontal and central lobe of the brain [105, 137]. CNV is another ERP component that is atten-
uated when a single type of stimulus is repeated. CNV is visible between when the stimulus is
presented for the first time and second time. The first stimulus is called a warning stimulus; the
second stimulus, which is responsible for the generated response, is called an imperative stimu-
lus. CNV usually appears after about 30 trials of the warning stimulus and imperative stimulus.
The number of trials can be less if the subject easily understands the stimulus. A response to an
imperative stimulus is necessary for a clear CNV elicitation [162]. CNV is also a type of cognitive
ERP component.

Some of the negative and positive ERP responses generated on different types of stimuli are
represented with initial “N” or “P” followed by the latency in milliseconds. N100 and P100 are the
early and exogenous component of ERP having short latency [144]. These responses represent
physical attributes of the presented stimuli, for example, the brightness of an image, frequency
of a sound, and so on. N170 is negative peak generated after 170ms of onset of stimulus [103].
It is generated over the occipital and temporal lobe of the brain. N200 or N2 [53] is the negative
peak that appears after 200ms of onset of stimulus (i.e., before P300). It usually appears on the
frontocentral part of the brain. P200 is the second positive-going peak appearing after 200ms of
onset of the stimulus. P200 records the cognitive activity of the brain. It is also visible in autistic
patients [144]. P300 or P3 is the most widely and commonly used endogenous component of ERP
for many BCI applications. It basically appears after the stimuli, which occurs rarely or is the most
infrequent while presenting stimuli to the subject. It is elicited after 300 to 1,000ms of presentation
of a rarely occurring stimulus [21]. It is generated by cognitive activity performed by the brain.
There are two subcomponents of P3 or P300 waveform, P3a and P3b. P3a is elicited when the
subject pays attention to a certain stimulus while P3b is elicited when some task-related stimuli
are presented. P3a is more over the frontal lobe, whereas is P3b over the central and parietal lobes.
Some of the most commonly studied P300-based BCI applications are conventional row/column
spellers [45, 47], improved flash pattern for P300-based BCIs [78–81], lie detectors [9, 12, 48, 131],
and 2D cursor controllers [32].

4.2 Evoked Brain Potential

Evoked Brain Potentials (EBPs) are generated by neurons in response to a stimulus. EBPs are a
subtype of the ERP. These potentials are developed when a stimulus is given to our sensory organs,
such as eyes responding to flashing of light, ears responding to sound, and the like. Some of the
evoked potentials are described in this section.

4.2.1 Visual Evoked Potential (VEP). VEPs are observed on the occipital lobe (visual cortex) that
can be captured by using various acquisition techniques such as EEG and ECoG. VEP is generated
when a stimulus is presented to a subject, such as flashing a light or flashing words and pictures. If
a stimulus is repetitively given in some fixed interval of time, then it is called a Steady-State Visual
Evoked Potential (SSVEP) [17]. Many scientists and researchers used SSVEPbased BCI for studying
brain responses, developing video games [97], controlling a prosthetic hand [113], developing a
BCI speller [175], controlling 2-D cursor movement (recorded using 12 electrodes placed at the
occipital lobe) [155] and much more.
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4.2.2 Auditory Evoked Potential (AEP). When sound as a sensory stimulus is presented to a
subject, the response generated is called AEP. When auditory stimulus is continuously given, it is
called Auditory Steady-State Response (ASSR) [4]. A non-invasive way to record AEP using EEG
is via EarEEG, in which the signal is recorded from electrodes placed within the ear canal [50, 87].
A BCI system has been purposed [4] to analyze the concentration level of subjects. To accomplish
it, three types of auditory stimulus have been presented to subjects: monotone, music (violin and
piano), and natural sound (cicadas singing and flowing water). Using an EEG device, four electrodes
(Cz, Oz, T7, and T8) were placed on the subject’s head for a BCI experiment. The subject was asked
to concentrate on sounds for 20s. This system was applied to healthy subjects. In future, the same
system can be used for persons with disability and on students using words and sentences to
analyze their concentration power.

4.2.3 Tactile Evoked Potential (TEP). TEP is the response developed when a stimulus is pre-
sented to peripheral nerves, also known as the Somatosensory Evoked Potential (SEP). TEPs are
usually observed at the parietal lobe. Devices [124] have been developed to provide somatosensory
simulation that can be used by various acquisition techniques, such as EEG and MEG. A TEPbased
BCI system has been developed in which the stimulus is presented to both index fingers. The sub-
jects have to focus their attention on either the left or right index fingertips. This experiment has
been performed on healthy subjects [114] and on visually impaired subjects [72]. Both works have
used EEG for signal acquisition and applied linear discriminant analysis for classification. The au-
thors of [114] have used only three electrodes to be placed on C3, Cz, and C4 and achieved an
average accuracy of 70.42%. The authors of [72] used four types of electrode arrangements: 3, 7, 9,
and 19 electrodes. They concluded that as the number of electrodes increases, accuracy improves.
An average accuracy of 80% and 65% with stimuli applied on the index finger of one hand and
index fingers of both hands, respectively, has been achieved.

4.3 Sensorimotor Rhythms (SMRs)

SMRs are voluntarily generated during muscle movement and are acquired from the motor cortex
area of the brain. SMRs are initiated by users’ intentional movements from bilateral limbs and
change in its amplitude help in controlling physical or virtual devices. These potentials are very
useful for persons with muscular disorders, as devices controlled via SMR will help them to perform
motor activities. SMR provides the highest degree of freedom [176] as compared with slow cortical
potential and ERP. Using SMR-based BCI, a virtual helicopter in 3D has been controlled via EEG
signals [132]. Through the virtual world of the software program Blender, subjects have been asked
to move a helicopter left, right, up, and down.

In future, if readers want to extend the abovementioned work, currently with hand movement,
leg movement imagery can be added. This will provide more axis of movement for the virtual
helicopter. Via hand motor imaginary movements and more training for the subject, flying and
landing of the helicopter is also possible. Other acquisition techniques such as MEG [161, 164] and
ECoG [123] were also used for capturing imaginary hand movements and the controlling cursor.

4.4 Slow Cortical Potential (SCP)

SCPs, also referred to as DC potentials or slow oscillations [166], are generated in the cortex area
during EEG recordings. SCPs are lowest-frequency features where potential shift occurs between
0.5s to 10.0s [166]. With any increase or decrease in cortical activity, these SCPs shift toward
negative or positive direction from baseline. Applications such as thought translation [112, 119]
have been developed by voluntary control of SCP. This requires training the subject to produce
SCPs while other potentials are involuntarily generated.
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5 FEATURE EXTRACTION

Previous sections have explained various types of signals generated from the brain and different
acquisition devices used to capture them. The acquisition device records raw signals that consist of
noise or artifacts generated by eye blinks, muscle movement, hair, sweat, and other factors. To ob-
tain useful information from raw signals, feature extraction techniques are applied to remove noise
from signals, transform the signals, and reduce their dimension. In this section, a few commonly
used feature extraction techniques for BCI systems are discussed.

5.1 Common Spatial Pattern (CSP)

The CSP [88] designs a spatial filter or spatial transform so that the filtered brain signal variance
is maximized for classification. To perform CSP, gaussianity is assumed; frequency and time are
considered as known parameters. It projects multichannel EEG data into lower-dimensional sub-
space [127]. It maximizes the variance of classes for a two-class signal matrix. The following steps
are implemented in order to achieve a transformed EEG matrix.

(1) Normalize the spatial co-variance of EEG as

CK =
XKX

T
K

trace
(
XKX

T
K

) , (1)

where K represents the classes and trace(x) the sum of diagonal values of x.
(2) Compute the composite spatial co-variance as

Cov =
∑

CK ,∀classes (2)

CK = VKλKV
T
K , (3)

whereVK represents the eigenvector matrix and λK represents the diagonal matrix of the
eigenvalue.

(3) The projection matrix V is denoted as

P = VTU , (4)

where U is whitening transformation matrixU =
√
λVT

0 . Using the projection matrix, the
original EEG signal is reduced to uncorrelated components

W = PX , (5)

where W is the EEG signals’ source component, which includes common and specific
components of different tasks.

(4) The original EEG “X” is finally transformed as

X = P−1W . (6)

Columns of P−1 are spatial patterns or can be called EEG source distribution vectors.
(5) The first and last column of P−1 explains the largest variance of one task and smallest

variance of the other.

Herbert Ramoser et al. [127] suggested the above formulas to design a spatial filter for classifying
motor imagery EEG data. The variances of only a small number of signals that are most suitable
for discrimination are used for the construction of the classifier. The problem with the method
proposed by the authors is that if the signal is contaminated with a single artifact, the design of
the filter changes severely. The design changes as a result of change in covariance, which is used
to estimate the spatial filters. Thus, there is a need for artifact-free EEG data. Another limitation
of using the CSP is that it does not provide the temporal data of filtered EEG signals. EEG data is
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not stationary, thus we cannot guarantee extraction of the same data from the same subject every
time. This is because of the artifacts and other environmental conditions. The contaminated data
affects the covariance estimation and, in turn, causes overfitting problems.

There are various extensions to CSP that can be easily applied to EEG data, giving good perfor-
mance. These are (a) Regularized CSP, (b) Spectrally weighted CSP, and (c) Stationary CSP. A brief
review on the developments done in the past on CSP has been tabulated in Table 4.

5.2 Principal Component Analysis (PCA)

PCA [73, 122] is another method that performs transformation by maximizing the rate of decrease
of variance of data. PCA (also known as Karhunen-Loveve transformation) uses a transformation
matrix that contain elements with low variances. Transformation matrix A can be written as

A =
1

n

∑
(xi − μ ).(xi − μ )T , (7)

where x ′is are elements of the N dimension dataset and n is the total number of elements in the
original dataset.

A.Y = Λ.Y , (8)

where Y is the matrix containing eigenvector y1,y2, . . .yn and Λ is the eigenvalue diagonal matrix
with elements λ1, λ2, . . . λn . Li [99] has applied dimension reduction on EEG data and proposes a
new, improved and effective PCA that uses a covariance matrix to classify Multivariate Time Series
(MTS) on the basis of time-based variables. PCA has been used to reduce MTS into Principal Com-
ponent Sequences (PCSs) having lesser dimension than MTS. Conventional PCA (PCA) transforms
data into PCSs having different lengths. To measure the distance, functions such as Euclidean Dis-
tance (ED) and Dynamic Time Wrapping (DTW) are mostly used. Li [99] has used DTW instead
of ED, because ED is affected by noisy components. The Common Principal Component Analysis
(CPCA) has been designed for MTS data, comprised of three steps: subspace construction, feature
extraction, and classification. Subspace is constructed similar to traditional PCA, in which same-
label MTS items are used to form a cluster. After constructing subspace, MTS items are projected
into these subspaces. Later, these subspaces are transformed into PCS. However, traditional PCA
produces groups of PCS for a single MTS. The total variance is calculated and a minima is cho-
sen for classification task. Time consumed by CPCA has been analyzed and compared with other
methods, showing that it is faster than others.

In another work [20], EEG-based BCI has been used to detect movement-related cortical poten-
tial (MRCP) by extracting variables using PCA. The authors used PCA, which acts as a temporal
filter and determines a set of linear combinations of data. Coefficients of temporal filters are con-
tained in the resulting transformation matrix. The first component produced features similar to
the waveform that gives the average of various trials of MRCP. During the experiment, the authors
placed EEG electrodes on the motor cortex area, which includes the frontal and parietal lobes. A
generalized linear systems framework for PCA based on the Singular Value Decomposition (SVD)
model for representation of spatio-temporal fMRI data was presented [11]. Time series data from
brains of non-human primates for analysis was considered and PCA was employed. PCA provides
both spatial and temporal characteristics present in short-term brain responses.

5.3 Independent Component Analysis (ICA)

ICA is also called “blind source separation” [70], which decomposes data into various independent
components according to their statistical interdependence. ICA follows a simple linear transfor-
mation method. Let X be a matrix of the original signal of N dimensions, let T be the reduced
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Table 4. Comparative Analysis of Various Common Spatial Pattern Methods

Extension
to CSP

Method Aim Description
Improvement in

classification
accuracy from CSP

Regularized
CSPs

(a) Composite CSP

To improve the
performance of CSP
that is deteriorated

when fewer training
samples are available

for a subject [83]

Using records of users who have
already performed the same task.
Two methods are proposed: (1)

de-emphasized covariance matrix
and (2) emphasized covariance

matrix. More advantageous when a
few training samples of subjects are

considered.

16.65% in mean
using method 1

and 12.1% in mean
using method 2 for
subject with less
training samples

(b) Generic learning
RCSP

To overcome
problem of small

number of training
samples [102]

Two parameters are used to
regularize covariance matrix: one
increases estimation stability and

the other reduces bias.

8.5% in mean

(c) Diagonal
learning RCSP

To estimate
covariance [101].

Reduces covariance matrix to
identity matrix. Regularized

parameter is automatically identified
using Ledoit and Wolf’s method.

Same as CSP

(d) A CSP
regularized with
selected subjects

[101]

Works the same as CCSP but uses
data from some selected subjects
sequentially so that accuracy is

maximized during training.

2.3% in mean and
3.5% in median

(e) A weighted
Tikhonov RCSP

(WTRCSP)

Different large weights are applied
on each channel. Performs best as it
reaches at highest mean and median

among all.

3.9% in mean and
9.4% in median

Spatial
Filtering

(a) A spatial RCSP
(SRCSP).

To obtain smooth
spatial filters [101]

Applied Laplacian penalty term to
get smooth filters. Penalty term has
high value for non-smooth filters.

3.7% in mean and
6.6% in median

(b) Adaptive spatial
filter (ASF)

To suppress all EEG
data that does not

originate in the
region of interest

[60]

ASFs are designed to find out the
maximum ratio of variance of

electrical activity originated in the
region of interest. A priori

knowledge is required to estimate
the covariance.

15% to 42%,
depending on

subject

(c) Beamforming

To obtain EEG signal
from predefined

brain region using
unsupervised spatial

filtering [61]

Spatial filter is derived such that the
ratio of variance is maximized for

recorded EEG data produced within
ROI using Rayleigh quotient.

3% in mean.

Subspace
Analysis

(a) Stationary
Subspace

Analysis (SSA)

To identify
stationary brain data

[120]

SSA aims to divide EEG data into
two components: non-stationary

and stationary.
—

(b) Extended SSA
(Groupwise SSA)

Grouping of signals
into subspaces of

subjects or trials to
find stationary
dataset [134]

To find stationary data in each
group of epochs. Distance between
epochs and mean of distribution is

measured in gwSSA.

0.8% to 6.7%,
varying from

subject to subject

(c) Discriminant SSA
(dSSA)

To extract stationary
subspaces without
losing information

required for
classification [135]

A trade-off parameter λ has been
used to project gwSSA objective
function towards zero. Conjugate

gradient descend has been applied to
minimize objective function.

4.2% in mean and
2% in standard
deviation for

λ = 0.75
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independent component matrix with M dimensions, and let A be the mixing matrix. Then,

X = T .A (9)

T = A−1.X . (10)

ICA provides good accuracy for artifact removal, but it is difficult to get a component consisting
purely of the artifact, which also contains useful brain signals. Thus, ICA has been improved by
applying a combination of different methods. An ICA-based algorithm was developed employing
temporal and spatial characteristics of Independent Components (ICs) for a P300 speller by Neng
Xu et al. [169]. In another work [16], the authors applied Infomax ICA to retrieve P300 signals and
to remove all other evoked potentials. Infomax ICA had also been applied to reduce dimensionality
of 64-channel EEG data into 64 ICs [42]. A number of studies have been done and experiments have
been performed for artifact removal by applying ICA, such as voluntary and involuntary eye blink
detection [84], ICA on time series fMRI data [31], removal of muscles, decay, blink, and auditory
data using Transcranial Magnetic Stimulation and Electroencephalography (TMS-EEG) [129]. The
limitation of using ICA is that there is no procedure for automatic selection of ICs and a risk
that selected ICs are desired ones. To improve on the limitation, ICA with outlier detection [181]
was proposed in which Ocular Artifacts (OA) was detected and removed. The method follows two
steps, initially applying a low-pass filter to EEG and then the filtered independent components are
analyzed one by one. The pattern of artifact generated by eye movement is analyzed by outlier
detection and then artifacts are detected and zeroed. Independent components with artifact are
removed and meaningful EEG signals are retrieved.

5.4 Wavelet Transformation (WT)

WT provides frequency and temporal information of the original signal. It expresses the signal in
the form of a linear combination of a function. These functions are obtained by either shifting or
scaling a single function known as the mother wavelet. After applying WT, signals are reduced into
different frequency ranges. These frequency ranges are classified into approximation and detail
levels. For A detailed study of WT and its various functions, refer to [40, 107, 141].

WT has been used for EEG signal transformation by Ting et al. in [152]. It reduces the original
EEG signal into approximate and detail frequency coefficients. For the first level, the original EEG
signal is transformed into high-frequency and low-frequency components having a length half that
of the original EEG signal. This transformation can be applied till required features are obtained.
As an EEG signal less than 50Hz is useful, hence, the authors of [152] have chosen the sub-band
mean, where the frequency range lies between 0 to 50Hz. Another feature chosen by authors is
sub-band energy, which is the square of the amplitude of the signal, lying in the range of 0 to 50Hz.
The final feature vector has been selected using the Fisher distance criterion applied on the sub-
band mean and sub-band energy. The feature set is finally fed to the classifier. An extension to WT
(or wavelet decomposition), called wavelet packet transformation (or wavelet packet decomposi-
tion), uses multiple bases that, in turn, give variable classification output. Wavelet Packet Trans-
formation (WPT) divides the original signal into two subspaces: Low-Frequency (LF) subspace and
High-Frequency (HF) subspace. WT partitions only LF but WPT partitions both LF and HF. It uses
sub-band energies obtained at final decomposition level as features. The disadvantage of using
WPT is that it is a non-adaptive and non-subject-based approach. An adaptive WPT has been dis-
cussed by Yang et al. [173] to adapt the best basis function fitted for each object. After selecting
the best basis, sub-band energies containing the best basis are selected as features. The number of
features to be extracted depends solely on number of sub-bands containing the selected best basis.
An extension to this work has used a fuzzy inference system with WT [172]. It selects the best
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basis for representing EEG signals from various wavelet bases. Criteria based on the fuzzy set are
defined that select the best basis.

6 CLASSIFICATION ALGORITHM

6.1 Support Vector Machines (SVMs)

SVMs [35] use the approach of projecting the input space to high-dimensional space such that
non-linear data can also be easily separable. The aim of SVM is to choose an optimal separating
hyperplane such that it maximizes the distance between two data points from different classes. The
hyperplane (w0.x + b0 = 0) separating data with maximal width determines the direction w/|w |,
where the distance between two vectors should be maximum. For a detailed study of SVMs, see
Cortes and Vapnik [35].

The SVM has been applied on various types of data to classify them into multiple classes. Simi-
larly, the SVM has been applied on EEG signals for classifying two classes: presence and absence
of P300 data [85]. P300 data has been recorded by using a P300 speller (a 6 × 6 matrix having 36
alphabets arranged in rows and columns). Using Gaussian function, the value of transformation
function (f(x)) has been calculated. Several trials have been performed so that the correct value for
the correct symbol is obtained. For each trial value, f(x) has been calculated and combined by sum-
ming them up with corresponding rows and column values. The target row or column is chosen
having maximum summation value. Similar work using SVMs for classification of data generated
using the P300 speller has been done [125]. The clustering of training data has been performed by
separating these signals into homogeneous groups. A multiple classifier system has been designed,
where the SVM classifier is applied on each cluster of two subjects. The function f(x) is calculated
for each K th partition for both subjects. For multiple classification, each single classifier is trained
and assigned a real valued score fK (xr |c ), where xr |c is a poststimulus vector with row r and col-
umn c. It needs to maximize the score after J number of sequences with the most probable row
and column:

Sr |c =
1

J

1

K
ΣJ

j=1ΣK
k=1 fK

(
x (i )

r |c

)
, (11)

where, x (i )
r |c is the poststimulus vector during the jth sequence.

Sr |c =
1

K
ΣK

k=1Σi ∈Pk
yiα

k
i

〈
1

J
ΣJ

j=1x
(i )
r |c ,xi

〉
+ bk (12)

This classifier performs double averaging, the first averaging on the data space and the second
being done in the classification score space. An SSVEP-based BCI has been developed in which
a brain-controlled device is designed using an SVM. SSVEP data is classified into three classes:
turning left, turning right, and moving forward with Radical basis function as the kernel [18].

An extension to the SVM, Dynamic Adaptation SVM (DASVM), has been proposed by Bruz-
zone and Marconcini [23], which used an unlabeled test sample to exploit the decision or trans-
form function. The decision function is drawn from the target domain, which is different from
the source domain of labeled training samples. The SVM uses both unlabeled and labeled data
that are drawn from the sample domain. Extensive research has been conducted with SVMs and
various researchers have proposed various kernel functions such as linear, Gaussian, and poly-
nomial. However, from the literature, it is not clear which kernel function with what parameters
may be more cost-effective and space-effective and sensitive to noise. To overcome the limitation
of sensitivity toward noise, a Fuzzy Support Vector Machine (FSVM) has been employed by Xu
et al. [170]. A fuzzy membership function is given to each training sample, which enhances the
SVM by reducing the effect of outliers and noise. The FSVM gives less importance to outliers and
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noise by giving them a lower fuzzy membership value. A comparison between the classical SVM
and FSVM using the radial basis function as kernel and DWT as the feature extraction method is
performed by calculating the error rate. The error rate is the ratio of the number of support vectors
to total number of samples. To produce a better performance, the error rate (δ ) should be less than
or equal to the ratio of the number of support vectors and total training samples.

6.2 Neural Networks

NNs are inspired from biological neural systems having features such as parallel computing, non-
linearity, adaptability, responsiveness, and fault tolerance. The inputs in NNs are called neurons,
which are connected with weights (which can be positive or negative). The inputs with weights are
processed through processing units. The processing units consist of a summation part, which is
ultimately connected to output. The main contribution for development of the NN is by McCulloch
and Pitts [111], who in 1943 purposed a neural model that takes a weighted sum as input followed
by a threshold logical function.

6.2.1 Perceptrons and Multilayer Perceptron. Rosenblatt in 1958 [130] purposed a feed-forward
NN called the Perceptron neural model. A single-layer perceptron is not able to classify non-linear
data; hence, a Multilayer Perceptron (MLP) is used to resolve the problem of non-linearity. In MLP,
the output of second input layer is combined to form another layer, and so on, until the problem
is properly classified. These layers that are added into the network are called hidden layers. The
learning law takes error received at the output layer and propagates it to hidden layers for updating
weights. This learning law is called the generalized delta rule or backpropagation or backward error

propagation.
Different MLP architectures have been applied on the EEG data in [163] after applying WT,

SVM, and backpropagation on EEG data. An NN with backpropagation has achieved an accuracy
of 91.4% and an SVM achieved an accuracy of 91.13%. In [13], the authors have used PCA for
feature extraction and applied backpropagation on extracted data. Backpropagation has low com-
putational complexity, but the problem is that it stuck at local minima. To solve the issue of local
minima, hybrid feature selection procedures and extensions to backpropagation have been applied
by researchers. In [67], the authors have compared working with MLP and Finite Impulse Response
(FIR) MLP (an extension of MLP), which uses filters in place of weights in MLP architecture and
performs temporal processing using filters. Keeping the architecture constant, the authors have
found a number of free parameters used in both MLP and FIR-MLP. FIR-MLP reduces the number
of free parameters, which improves the computational capability of the NN. To improve backprop-
agation learning, some improvements have been made, which are in given Table 5. Many works
have used different NN architecture for classification of brain data. An MLP for MEG data analysis
[22], a fully connected cascading NN, has been considered for fMRI data [43], an NN with radial
basis function for classifying fMRI data [104].

6.2.2 Convolutional Neural Network (CNN). A CNN is another type of NN that is architecturally
similar to MLP. It arranges neurons into three dimensions: width, height, and depth. A CNN can be
structured in a five-layered architecture: (a) input layer, (b) convolutional layer, (c) rectified linear
unit layer, (d) pooling layer, and (e) fully connected layer. Let L be the number of layers in CNN
architecture, x is the input vector, w is the weight vector, let M be the number of maps in layer
L, m denotes the mth map, J represents the number of neurons in layer L, Ne is the number of
electrodes, Ns is the number of signal values, and Np is the number of partitions of signal values.

For layer 1:

σ (1,M, J1) = ΣNe

i=0xi jw (1,M, i ) + bias, (13)
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Table 5. Variants of Backpropagation

Variants of
Backpropagation

Improvements Features

Asymptotic
convergence of

backpropagation [149]

Including momentum term in gradient
descent equation.

Convergence rate increases for the
case of sigmoidal transfer function.

Extended
backpropagation [171]

Learning rate adaptation is based on
correlation coefficient between local

gradient and previously updated
weight.

Learning rate increases and
decreases exponentially, which

makes algorithm more optimal in
less iterations and, hence, faster.

Backpropagation with
adaptive learning rate

[106]

Applied Goldstein’s and Armijo’s [58]
work to construct method that can

adapt learning rate.

Automatically adapts convergence
rate; faster training can handle

large learning rates.
Back propagation

using “Self-Determined
Learning Rate” [106]

In place of learning rate, “tuning” was
used to reduce large learning rate and

achieve convergence.

Doesn’t use learning rate and
provides better generalization.

Backpropagation with
learning rate different
for each weight [106]

Learning rate for each weight done by
estimating the local Lipschitz constant

along each weight direction.

Good average, firm learning, better
classification accuracy.

Hierarchical
backpropagation (HBP)

[174]

Divides MLP into sublayers. Each MLP
has one hidden layer and input and

output layer. Each sublayer is trained
with backpropagation individually.

Avoids local minima, noise is not
transmitted onto further layers as
it has been overcome initially, and

error rate is reduced.

Backpropagation based
on Lyapunov stability

[108]

Instead of finding global minima, it
finds energy surface having single

global minima; for fast
errorconvergence, Lyapunov adaptive

BP algorithm has been used to
construct an adaptive filter.

Convergence of error to zero,
adaptively updating weights,
which reduced effect of input

disturbances.

where xi j is the input vector from input layer L0, 0 ≤ i < Ne , and 0 ≤ j < Nt , Nt points considered
for analysis.
For layer 2,

σ (2,M, J2) = Σ
Ns /Np

i=0 x

(
1,M, J ∗ Ns

Np

)
w (2,M, i ) + bias . (14)

For layer 3,

σ (3, J3) = ΣM2
i=0Σ

Np

k=0x (2, i,k )w (4, i,k ) + bias . (15)

For layer 4,

σ (4, J4) = ΣJ3
i=0x (3, i )w (4, i ) + bias . (16)

A classifier based on a CNN to classify EEG data having P300 component of ERP has been used
[29]. The CNN consists of five layers and several maps. The output layer consists of one map,
which has two neurons. These two neurons represent two classes (class 1, P300 detected; class 2,
no P300). To select the order of CNN, first filters (or weights) are applied on the width and height
of the input volume, then signal processing is performed in time domain. Here, authors have used
kernels as vectors, not as matrix. Authors have applied a linear sigmoidal function between hidden
layer 1 and hidden layer 2. Input signal convolution can be represented as

f (σ ) = 1.7159 tanh
( 2

3
σ
)
, (17)
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where, σ is the first deviation and classical sigmoidal function was used in between the last two
hidden layers.

f (σ ) =
1

1 + exp (−σ )
(18)

Authors have applied the set of Equations (13) to (16) in their work on various layers of CNNs
and have used backpropagation for updating the weights. At the output layer, the class score was
calculated as

E[X ] =

{
class1, if output(class1) > output(class2)
class2, otherwise.

(19)

CNN performs better classification than other classifiers, as it uses more hidden layers, but the
number of layers to be used to achieve a better classification cannot be determined. In another
work by Cecotti et al. using Equations (13) to (16), they have classified a set of images: human
face (target) and others (non-target) [28]. In their work, a CNN is embedded with a spatial filter.
The filtering and classification are performed on ERP signals produced during the experiment. The
learning method is based on maximizing the Area Under the Curve (AUC). They had compared a
CNN with SVM, BLDA (with and without spatial filter) and MLP. The finding shows that the CNN
performs better than the other classifiers.

A CNN based on AUC does not require any prior knowledge about the type of spatial filter used
but needs prior information about the type of architecture of the network. Hence, choice of number
of neurons and spatial filter depends on the past experiment, which, in turn, affects the result and
overall performance of the network. In order to achieve optimal performance for classification, a
CNN can be used with legitimate choice of neuron and hidden layer.

6.2.3 Probabilistic Neural Network (PNN). The PNN was introduced by Specht in 1990 [147]
and is based on Bayes probability rule, where the aim of the PNN is non-parametric estimation
of the probability density function to obtain an optimal accuracy. The advantages of using a PNN
are that it is easily operable (much faster than backpropagation), has a parallel structure, provides
instantaneous training, converges optimally, has no local minima issues, and has real-time usage.
An appropriate selection of the smoothing parameter (σ ) helps in modifying the shape of decision
surface [147].

A PNN has been applied to decode the motor cortical signals generated from a rat’s brain by
Zhou et al. The implementation has been done on a Field Programmable Gate Array (FPGA) board.
The method of acquisition is invasive; a total of 32 neurons are sorted and the number of spikes
per neuron is calculated. The rate of spike firing (i.e., time vector) was considered as input to PNN.
The authors have divided various neuronal activities into different classes and applied a PNN to
classify in which class the current neuronal activity belongs [180]. Many other works have been
done in which a PNN or hybrid PNN (PNN with other classifiers) has been applied for classification
of brain data such as emotion recognition [179], PNN based on time series discriminant analysis
applied with a hidden Markov model [68], a fivefold classification of motor imagery in which PNN
was one of the classifiers [158], a PNN and multiclass SVM was trained on data classified using
WT [63], and so on.

6.3 Fuzzy Inference System

Zadeh [177, 178] proposed that in the real world, all classes or sets do not belong to a crisp value
such as yes or no, true or false, or a real number. Thus, he introduced the concept of fuzzy sets. “A
fuzzy set is a set without crisp boundary and transition from crisp to flexible boundary is character-
ized through Membership Function (MF)” [76]. Using the advantages of a fuzzy set giving flexible
boundary conditions, many authors have applied a fuzzy inference system on BCI applications.
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Table 6. Types of FNN

Type of network Input Weight Output
Neural network Crisp Crisp Crisp
Fuzzy NN-1 Crisp Fuzzy Fuzzy
Fuzzy NN-2 Fuzzy Crisp Crisp
Fuzzy NN-3 Fuzzy Crisp Fuzzy
Fuzzy NN-4 Fuzzy Fuzzy Fuzzy

Kumar [90] used fuzzy logic for recognizing patterns of EEG data during human sleep for the first
time. In another work, a fuzzy inference system was implemented to select the number of EEG
channels for imagined speech (in Spanish) recognition [154]. ICA as ocular artifact removal and
discrete WT as feature extracting approach has been used. The fuzzy inference method has been
applied so that the system selects the combination of channels automatically. The channels are
selected such that the error rate is reduced and performance is enhanced. Channel selection is an
important factor, as each channel defines a different feature. Authors have used two components
for channel selection: the first component searches for a non-dominated channel combination and
the second component selects a single channel from a set of channel combinations. For selecting a
single channel for each subject, authors have implemented the Mamdani fuzzy inference system.

In another work, classification of motor imagery tasks was done by Nguyen et al. [116], in
which they applied a combination of a “fuzzy standard additive model” [59] with the tabu search
learning method for classification. WT and the Wilcoxon test were used for feature extraction. A
similar work for motor classification was done using a type-2 fuzzy system and applying WT for
feature extraction [150]. The authors compared their results with other classifiers, such as SVM,
NN, AdaBoost, k-nearest neighbors, and the “Adaptive Neuro-Fuzzy Inference System (ANFIS).”
The accuracy was improved by approximately 2% to 10% with interval type-2 fuzzy systems.

6.4 Neuro-Fuzzy Systems

The neuro-fuzzy system incorporates advantages of both the NN and FIS. Its architecture is similar
to the NN and inputs or weights (or both) are fuzzified [24]. The FNN identifies fuzzy rules and
tunes the membership function by adjusting the connection weights. Different types of neuro-
fuzzy systems are listed in Table 6. Many applications have used FNN-1, FNN-2, and FNN-3. Here,
a review of FNN-4 is given. In FNN-4, inputs and weights use fuzzy parameters that are mapped
using various fuzzy operations such as max (∨) and min (∧) [75]. An FNN has been applied on
EEG recording of patients by applying if & then rules to the output of the NN [10]. An auditory
stimulus has been given via a set of earphones to the patient, which generates AEP. AEP produced
is given as input to a three-layer NN with 31 inputs, a hidden layer of 10 nodes and 5 outputs.
The membership function produced by the NN is passed on to a fuzzy controller, which applies
fuzzy rules. The input given to the if and then rule is the latency that is generated by AEP. The
authors have marked a point Nb and if the amplitude goes to Nb, anesthesia is given to patient.
Thus, the rule defined is if latency is Nb then increase anesthetic dosage. After the fuzzy controller
implements the rule, defuzzification is applied using the centroid method.

A Self Organized FNN (SOFNN) is proposed by Leng et al. [98] using dynamic FNN architecture
to create a self-adaptive architecture for identification of the “singleton” or “Takagi-Sugeno” fuzzy
model [167]. The advantage of designing this hybrid structure is that it is more interpretable, as it
makes use of the learning ability of the NN. The system has to identify the parameters of premise
and consequences and the number of partitions of input and output space and fuzzy rules. The
problem with SOFNN is that if non-linearity increases, the number of neurons will be increased.
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Table 7. Various Latest Techniques on Brain-Computer Interface

Signal acquisition
Feature

extraction
Classifier Description

EEG (4 subjects, 5 mental
tasks) [121]

Elliptic filters
Elman Neural

Network (ENN)

For classifying, mental task asymmetry
ratios are used. Resilient backpropagation
(hyperbolic tangent function) as activation

function is applied.

EEG (3 subjects) [37] Hjorth method SOFNN
SOFNN organizes its neurons during

learning process.

EEG [145] — ENN

Provides a guaranteed convergence,
overfitting avoidance using adaptive dead

zone approach. Extended Elman
backpropagation (eEBP) is applied as

learning algorithm.

EEG (5 healthy subjects
and 5 tetraplegia subjects,
given 3 mental tasks) [30]

Hilbert-Huang
transform [74]

Cross-mutated
ANN with fuzzy
particle swarm
pptimization

Compared results of the classifier
withgenetic algorithm and got higher

accuracy.

EEG (9 subjects, 22
electrodes, motor

imagery tasks) [39]
Robust CSP

Type-2
neuro-fuzzy

classifier system

Uses a 5-layered fuzzy inference system
and a self-regulatory mechanism. Gaussian

membership function is used with
unknown mean and known variance.

EEG, motor imagery
tasks [69]

Common
Bayesian
network

SVM

Shows statistical relationship between
activation areas and motor imagery tasks

using Bayes rules. Gaussian Mixture Model
is used to calculate probability density
function of nodes; also gives common

edges concept in CBN for feature
extraction.

fMRI [86] —
Neucube (A
spiking NN)

Neucube based on evolving (eSTDM) has
been proposed for modelling

spatio-temporal data. It is a 5-module
architecture that consists of encoding

mapping, unsupervised and supervised
learning, and classification.

EEG (10 subjects, motor
imagery tasks) [168]

Sub-band
common spatial

pattern

Fuzzy integral
with PSO

Fuzzy integral uses multiple decisions from
different sources and collects all

inferences. Sugeno integral and Choquet
integral are applied and PSO is used to

determine confidence of classifiers.

EEG (10 subjects)
P300-based BCI [81]

Band pass filter
Bayesian Linear

Discriminant
Analysis (BLDA)

A new P300 paradigm has been designed
with honeycomb-shaped red dots given as
visual stimuli to increase 1000ms duration
stimuli. This increased the classification

accuracy of the system. The ERP response
elicitation is the same as previous

P300-based BCI paradigms.

To ensure feasibility of the network, every time a neuron is added, its impact on the performance
of the system is evaluated. Checking each neuron every time as it enters the system increases the
cost of the system exponentially as fuzzy MFs are expensive. Hence, a modified SOFNN [37] that
improves system efficiency has been proposed. A record of neuron firing strength is kept for all
clustering performed previously. The record is updated as the training progresses. This will reduce
the cost and time of running the system for each training set. A lot of studies in the literature has
been done in the field of BCI, a few of which we list in Table 7.
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Table 8. Comparison of Various Existing Approaches

Performance Measures WT CSP
(in percentage) LDA SVM NN KNN LDA SVM NN KNN
Accuracy 88.8 89.0 86.0 79.5 52.1 88.6 73.6 84.2
Sensitivity 88.7 86.0 88.7 84.1 52.6 88.6 75.6 90.6
Specificity 86.0 87.6 87.0 68.5 51.3 86.2 89.0 77.3

A comparison between existing approaches has been presented in this article. For comparing
various approaches, EEG data was considered. The EEG data was recorded for a lie detection ex-
periment. During the experiment, subjects were presented a set of stimuli for which they had to
respond by either telling the truth or by lying. This stimulus generated the ERP responses, which
were recorded. The ERP data was recorded for 10 subjects. The data is band pass filtered and later
feature extraction and classification approaches are applied. Two feature extraction approaches
were applied on 10 subject EEG data: CSP and WT. After feature extraction, the feature vector
having WT coefficient was given to four classifiers: LDA, SVM, KNN, and NNs. Similarly, CSP also
was applied on the EEG data and later the features were given to a similar set of classifiers. The
results are tabulated in Table 8. From the results, it can be inferred that the SVM among the four
classifiers performs the best for the data recorded for lie detection.

7 CONCLUSION AND RESEARCH DIRECTIVES

The brain-computer interface constructs a pathway that enables users to easily control a computer
through their thoughts. BCI is an interdisciplinary area, since it provides scope for research in
various aspects, such as understanding, acquisition, and processing of brain signals. BCI research
involves biology (psychology and neurology), engineering, computer science, and applied math-
ematics. In this article, we have provided an extensive survey of each phase of the BCI. The first
phase of the BCI is acquiring the brain signals. There are two types of acquisition systems: non-
invasive and invasive. Invasive signal acquisition involves placing microelectrodes and electrode
chips beneath the scalp through surgery. The non-invasive technique captures brain potentials by
either placing a metal electrode on the scalp (as in EEG) or recording magnetic activity and rate
of blood flow using some special apparatus (as in MEG, fMRI, etc.). These signal acquisition meth-
ods record various types of brain potentials, such as those generated by motor activity, cognitive
activity, eye movement, or a stimulus. Researchers prefer non-invasive techniques over invasive
approaches, as they are not prone to injury. The only limitation with non-invasive approaches is
that the resolution of signals is poor in comparison to invasive approaches. Future work could be
to develop brain signal acquisition devices that have low-density electrodes and provide higher
resolution.

The second phase of the BCI involves processing brain signals. In this article, various feature
extraction and classification algorithms have been mentioned. Feature extraction is applied on
raw brain data to extract useful signals and to remove artifacts generated by eye movements,
muscle movements, and the like. Various feature extraction methods have been used, including
CSP, PCA, ICA, and WT. ICA works best for ocular artifact removal (eye movement) and has been
widely adopted by various researchers. CSP and its variants are applied for spatial filtering of
brain signals. PCA helps in transforming the feature space and WT extracts both the frequency
and time information from the raw signals. Classification algorithms such as LDA, SVM, NNs, and
fuzzy inference systems are applied on attributes obtained using feature extraction techniques.
This article gives a brief overview of these classification approaches and presents the recent work
using these techniques. Conventional BCI systems used discriminative models for classification.
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However, now researchers are more interested in deep-learning approaches such as deep belief
networks, CNNs, and a hybrid of various classification algorithms. An advantageous BCI system
is one that has a smooth coordination between all of these parts of the BCI. The main aim of
research in BCI is to provide a better way of communication; however, the methods applied to
achieve this aim can differ.
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