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Introduction

What’s this all about?

Recent literature in forecasting deals with performance improvements
via averaging of different data segments (rolling and recursive
windows). Why not use a similar approach in terms of covariance
estimation?

Large(r)-scale covariance/correlation & portfolio problems are plagued
by difficulties of over-parametrization and numerical optimization.

Improved covariance estimation is needed for portfolio allocation
problems & the construction of hedging strategies in various asset
classes.

A simpler/more robust method of covariance/correlation estimation
might be competitive to existing parametric models even in small(er)
dimensions.

Open questions that we address: set-up for covariance averaging;
selection of weights; optimization of weights; performance assessment
against the sample covariance and covariance shrinkage.
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Related literature

Stuff that has been said before...

On covariance shrinkage see Ledoit and Wolf (2003, 2004) and
reference therein, Wang (2005), Kwan (2008), Kourtis et al. (2012),
Bajeux-Besnainou et al. (forthcoming).

On large(r) scale covariance estimation see (among others) Chan et
al. (1999), Engle (2002), Ledoit, Santa Clara and Wolf (2003),
Andersen et al. (2006), Bauwens et al. (2006), Pelletier (2006), Fan
et al. (2008), Palandri (2009), Silvennoinen and Terasvirta (2009),
Huo et al. (2011).

On portfolio allocation problems (where our results can be of use) see
(among others) Kan and Zhou (2007), Miguel et al. (2007),
Martellini and Ziemann (2009).

On rolling window averaging see Pesaran, Schuermann and Smoth
(2009), Clark and McCracken (2009), Rossin and Inoue (2011),
Bhattacharya and Thomakos (2011).
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Preliminaries

The background

We have N assets whose returns at t are denoted by

Rt
def
= [Rt1, . . . ,RtN ]>. We assume that they have an unknown

conditional distribution with mean µt and covariance matrix Σt :

Rt |Ωt ∼ D (µt ,Σt) (1)

We need not make particular assumptions about the process of the
returns beyond that they have a conditional distribution but we will
provide some explicit results on selecting optimal weights for
covariance averaging for the special case of i.i.d. returns with finite
fourth moments as in covariance shrinkage literature.

For the rest of our discussion we denote by r t
def
= Rt − µ̂t the suitably

demeaned returns.

Given an increasing sample of t observations, {r j}tj=1 we are

interested in obtaining an accurate estimate Σ̂t of the covariance
matrix Σt .
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Shrinkage as averaging

Shrink the covariance - Model averaging
The idea of covariance shrinkage is that a potentially improved
estimator of the covariance matrix can be obtained by taking a linear
combination of an estimator with no structure, e.g. the recursive
sample covariance matrix Σ̂t(t):

Σ̂t(t)
def
=

1

t

t∑
i=1

r i r
>
i (2)

and a highly structured estimator denoted here by S . Note that this
is model averaging!
Regarding the choice of S , we do not consider any highly structured
estimator derived from a factor model but we use the covariance
estimator of the constant correlation model.
The linear combination, i.e. the averaged covariance, can be
represented as:

Σ̂
S

t (δ)
def
= δS + (1− δ)Σ̂t(t) (3)

where δ is the shrinkage (i.e. averaging) coefficient.
Thomakos & Papailias (UoP & QUB) Covariance averaging 7/11/2017 5 / 38



Shrinkage as averaging

An objective function
Formally, the optimal choice δ̂ is obtained as a solution to the
following MSE-type minimisation problem:

δ̂
def
= min

δ
E‖Σ− Σ̂

S

t (δ)‖2
F (4)

Letting σij and σ̂Sij (t, δ) denote the corresponding elements of the
matrices the above is expressed as:

N∑
i=1

N∑
j=1

{
Var

[
σ̂Sij (t, δ)

]
+
(

E
[
σij − σ̂Sij (t, δ)

])2
}

(5)

For any given value of δ the above can be directly estimated (under
the i.i.d. and finite fourth moment assumption) by:

π̂(δ)
def
=

N∑
i=1

N∑
j=1

π̂ij(δ), π̂ij(δ)
def
=

1

t

t∑
h=1

[
rihrjh − σ̂Sij (t, δ)

]2
(6)

assuming unbiasedness.
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A general framework Fixed weights

Rolling window averaging

We turn next to setting up a more general framework for covariance
averaging based on rolling window covariance estimators.

Compute the sample covariance matrix using different segments of
the data, either overlapping or non-overlapping, and average the
resulting covariances.

Consider a sequence of overlapping windows B
def
= (m1,m2, . . . ,mM)

where 1 < m1 < m2 < · · · < mM < t. Using the last ms observations
the sample covariance is estimated:

Σ̂t(ms)
def
=

1

ms

t∑
i=t−ms+1

r i r
> (7)

and we then average as follows:

Σ̂
A

t
def
=

M∑
s=1

wsΣ̂t(ms) (8)
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A general framework Fixed weights

How to weight the rolling estimates? Heuristics first

The main problem is how to choose the averaging weights - either
heuristically or “optimally” as in covariance shrinkage.

The simplest case is, naturally, to assign equal weights to all rolling
estimates:

wE
s

def
=

1

M
(9)

Alternatively, if one wants to assign greater weight to the most recent
data:

wX
s (α)

def
=

(1− α)s−1∑M
s=1(1− α)s−1

(10)

where α ∈ [0, 1] is the smoothing parameter, whose selection we
discuss later.

The next approach is based on the shrinkage objective function
adapted to the context of averaging. The idea is one of assigning
weights based on expected distances from a target, the true
covariance Σ. It is a variation of nearest neighbours!
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A general framework Fixed weights

Consider thus the covariance estimate based on the ms window and
write:

ds
def
= E‖Σ− Σ̂t(ms)‖2

F =
N∑
i=1

N∑
j=1

Var [σ̂ij(ms)] (11)

Note that this does not depend on any parameters, as the δ in
shrinkage, and can be directly estimated:

π̂(ms)
def
=

N∑
i=1

N∑
j=1

π̂ij(ms), π̂ij(ms)
def
=

1

ms

t∑
h=t−ms+1

[rihrjh − σ̂ij(ms)]2

(12)
These estimated distances are then used to construct weights for
averaging which are inversely related to their magnitude: a higher
distance gets lets weight and vice versa.
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A general framework Fixed weights

For example, we can have such heuristics as:

λs
def
= d−1

s , wD
s

def
=

λs∑M
s=1 λs

λs
def
=

∑M
j 6=s dj∑M
j=1 dj

, wD
s

def
=

λs∑M
s=1 λs

κs
def
= exp

[
ds∑M
s=1 ds

]
, λs

def
=

∑M
j 6=s κj∑M
j=1 κj

, wD
s

def
=

λs∑M
s=1 λs

(13)
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A general framework Optimal Weights

We still need some ‘optimal’ weights!
We can get them, under the same assumptions that are used in
shrinkage.

Letting w
def
= [w1,w2, . . . ,wM ]> be the vector of weights, we have

that the general set-up for the optimization problem is given by the
same objective function used in covariance shrinkage as in:

Q(w)
def
= E

∥∥∥Σ− Σ̂
A

t

∥∥∥2

F
= E

∥∥∥∥∥Σ−
M∑
s=1

wsΣ̂t(mj)

∥∥∥∥∥
2

F

(14)

Expanding the above we get:

Q(w) =
∑N

i=1

∑N
j=1

{∑M
s=1 w

2
s Var [σ̂ij(ms)]

}
+
∑N

i=1

∑N
j=1

{
2
∑

k 6=s wkwsCov [σ̂ij(mk), σ̂ij(ms)]
}

+
∑N

i=1

∑N
j=1

(
E
[
σij −

∑M
s=1 ws σ̂ij(ms)

])2

(15)
which now has an extra term!
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A general framework Optimal Weights

This creates a potential problem since these covariance will be
non-zero because of the use of overlapping data, even when the data
are assumed to be i.i.d..

To avoid keeping track of the non-zero elements, and to minimize the
computational burden, we convert the averaging scheme into one
involving non-overlapping data segments at the, trivial, expense of
re-expressing the weights.

To see how the above works consider the simple case of M = 2 and
note that we have the following representations:

Σ̂t(m1) = m−1
1

∑t
i=t−m1+1 r i r

>
i

Σ̂t(m2) = m−1
2

∑t
i=t−m2+1 r i r

>
i

(16)

and note that the second covariance, which depends on more terms
than the first, can be written as:
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A general framework Optimal Weights

Σ̂t(m2) = m−1
2

∑t−m1
i=t−m2+1 r i r

>
i + m−1

2

t∑
i=t−m1+1

r i r
>
i

= [(m2 −m1)/m2] Σ̂t(m2 −m1) + (m1/m2)Σ̂t(m1)

(17)

and the second covariance is now composed of two covariances that are
estimated by non-overlapping data, at the expense of different weights
since we can now write:

Σ̂
A

t = [w1 + w2(m1/m2)] Σ̂t(m1) + w2 [(m2 −m1)/m2] Σ̂t(m2 −m1)

= a1Σ̂t(m1) + a2Σ̂t(m2 −m1)
(18)
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A general framework Optimal Weights

We can easily generalize the above discussion when M > 2. Noticing that
the new weights as depend on some of the old weights ws we first define
the new weights formally as:

a1(w0)
def
=

∑M
s=1

m1
ms

ws with w0 = [w1, . . . ,wM ]>

a2(w−1)
def
=

∑M
s=2

m2−m1
ms

ws with w−1 = [w2, . . . ,wM ]>

a3(w−2)
def
=

∑M
s=3

m3−m2
ms

ws with w−2 = [w3, . . . ,wM ]>

...
...

...

aM(w−M+1)
def
=

mM−mM−1

mM
wM with w−M+1 = wM

(19)

and then (re)define the non-overlapping sample covariances as:

Σ̂t(m1)
def
= m−1

1

∑t
i=t−m1+1 r i r

>
i

Σ̂t(ms −ms−1)
def
= (ms −ms−1)−1

∑t−ms
i=t−ms−1+1 r r

>
i

(20)

for s = 2, . . . ,M with m0 ≡ 0.
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A general framework Optimal Weights

With these we can re-write the objective function of equation (17) as:

Q(w) = E

∥∥∥∥∥Σ−
M∑
s=1

as(w−s+1)Σ̂t(ms −ms−1)

∥∥∥∥∥
2

F

=
∑N

i=1

∑N
j=1

{∑M
s=1 a

2
s (w−s+1)Var [σ̂ij(ms −ms−1)]

}
+
∑N

i=1

∑N
j=1

(
E
[
σij −

∑M
s=1 as(w−s+1)σ̂ij(ms −ms−1)

])2

(21)
which does not involve the covariance terms Cov [σ̂ij(m1), σ̂ij(m2 −m1)].
The optimization of the objective function is most easily done numerically:

compute the estimates for the variance terms, the expectation terms
and the composite weights (for a given value of the original weights
ws), then impose the restrictions on the weights (either the original or
the composite) and optimize the objective function directly.

Under the i.i.d. assumption and the properties of the composite
weights we can work without the expectation terms.
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A general framework Optimal Weights

Do the optimal weights mean anything?

It would be nice to have an explicit formulation and interpretation of
the weights that come from averaging.

The transformation from ws 7→ a(w−s+1) allows us to do so and, in
the process, obtain an explicit expression of these composite weights
that is amenable to a nice interpretation.

Let us start with the first term in equation (21), i.e. ignoring the bias
terms, and pass the double-summation inside the curly brackets to
obtain:

Q(a) =
M∑
s=1

a2
s (w−s+1)π(ms −ms−1) = a

>Πa (22)

where we defined a
def
= [a1(w0), a2(w−1), . . . , aM(w−M+1)]> as the

vector of composite weights and

Π
def
= diag [π(m1), π(m2 −m1), . . . , π(mM −mM−1)] as the diagonal

matrix of the sum of asymptotic variances.
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A general framework Optimal Weights

This is a quadratic form which is to be minimized with respect to the
weights a:

Λ(a) = a
>Πa + 2λ(1− e

>
a) (23)

where e is a vector of ones. The solution is:

a
∗ def

= argmin Λ(α) ≡ Π−1
e

e
>Π−1

e
(24)

which implies, given the diagonal structure of Π that

a∗s
def
=

π−1(ms −ms−1)∑M
s=1 π

−1(ms −ms−1)
(25)

i.e., the weights assigned to the rolling window covariances for averaging
are inversely proportional to the asymptotic variances. Higher estimation
risk vis-a-vis the true covariance leads to a lower weight in constructing
the averaged estimate. Note also tht this result justifies the heuristics
presented in equation (13) which work essentially on the same premise but
using one estimate at a time.
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A general framework Optimal Weights

Extending the above result when including the bias term leads to more
complicated algebra but with the same essential intuitive result. To see
this change the Lagrangian to:

Λ(a) = a
>Πa +

N∑
i=1

N∑
j=1

[
σij − E

>
ij a

]2
+ 2λ(1− e

>
a) (26)

where we define the vectors
E ij

def
= E [σ̂ij(m1), σ̂ij(m2 −m1), . . . , σ̂ij(mM −mM−1)]>. Solving for the

first order conditions we thus obtain:

1
2
∂Λ(a)
∂a =

Π +
N∑
i=1

N∑
j=1

E ijE
>
ij

 a −
N∑
i=1

N∑
j=1

E ijσij − λe

= Va − b − λe

(27)

where we define V
def
=

Π +
N∑
i=1

N∑
j=1

E ijE
>
ij

 and b
def
=

N∑
i=1

N∑
j=1

E ijσij .

Using the first order condition for the Lagrange multiplier we end up with
the new solution:
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A general framework Optimal Weights

a
∗ = argmin Λ(a) = V

−1
b +

(
1− e

>
V
−1
b

)
V
−1
e

e
>
V
−1
e

(28)

Note that there are three parts in the new weights: first, there is a
constant term V

−1
b; second, there is a (scalar) slope term(

1− e
>
V
−1
b

)
; and, third, there is the main term whose structure

resembles the structure of the weights in equation (25). Note that when
we do not take into account the bias term the solution in the above
equation collapses to that of equation (26) and, therefore, both equations
have the same interpretation.
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Simulation analysis

OK, the math is nice but does it work?

We first consider the data generating process (DGP) of Patton and
Sheppard (2008) which allows for time-varying covariances in the
spirit of a multivariate GARCH-type model and also for
DGP-consistent realized covariances to be computed.

Then, we consider another DGP that conforms a bit more closely with
the idea of covariance averaging and is amenable to an analysis where
N is large.

For DGP #1 We take N = 2 and have:

r t
def
= Σ

1/2
t εt

εt
def
=

∑78
k=1 ξkt with ξkt ∼ N(0, 78−1)

Σt
def
= 0.05Σ̄ + 0.85Σt−1 + 0.10r t−1r

>
t−1

(29)

with Σ̄ being the unconditional covariance matrix (with unit
diagonal).
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Simulation analysis

For each of the parameter value combinations we proceed as follows. For
each replication r :

1 Generate an initial sample of size t∗ = t0 + t + τ and discard the
pre-sample observations t0.

2 Using only the t in-sample observations estimate various covariances,
denoted generically by Σ̂

s

t (r), for method s.

3 Repeat the above 3 steps for a number of R = 1000 replications and
then compute the mean distance of the covariance estimates vis-a-vis
the true model covariance for all available values of τ , i.e.:

D̄s
R(h)

def
=

1

R

R∑
r=1

‖Σt+h − Σ̂
s

t (r)‖2
F , for h = 1, 2, ..τ (30)

This last statistic is what we report, across different selections for B – the
number and lengths of rolling windows.
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Simulation analysis

Next consider a simpler model, which has no realized covariance
terms but allows for an arbitrarily large number of assets to enter. It
is based on a finite, exponential weighted scheme of past returns to
generate the covariance. The form of the model now is:

r t
def
= Σ

1/2
t εt with εt ∼ N(0, IN)

Σ∗t
def
=

∑M
j=1 w

X
j (α)r t−j r

>
t−j

Σt
def
= 0.1Σ̄ + 0.9Σ∗t

(31)

where wX
j (α) are the exponential weights of equation (12), with α

fixed at α = 0.9.

We follow a similar set-up as in the previous model for evaluating the
performance of the various estimates and we consider two cases for
N, N = 5 and N = 50
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Simulation results

Results from DGP#1

Covariance Averaging using Bivariate Scalar Diagonal VECH with ρ = 0

B=(5, 20, 50) B=(5, 20, 50, 100) B=(50, 100, 200, 400) B=(5, 20, 50, 100, 200, 400)

Estimator t t + 1 t + 5 t + 10 t t + 1 t + 5 t + 10 t t + 1 t + 5 t + 10 t t + 1 t + 5 t + 10

Realised Covariance 0.47 0.57 0.77 0.89 0.40 0.50 0.75 0.87 0.39 0.47 0.77 0.94 0.40 0.51 0.77 0.96

Sample Covariance (H) 0.81 0.82 0.96 1.04 0.90 0.92 0.99 1.04 0.98 0.99 1.02 1.03 1.00 0.99 1.02 1.03
LW Shrinkage (F) 0.99 0.99 0.99 0.99 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
LW Shrinkage (H) 0.79 0.80 0.94 1.02 0.90 0.91 0.98 1.03 0.98 0.98 1.02 1.03 0.99 0.99 1.02 1.02

Equal Weights 0.64 0.57 0.83 0.96 0.52 0.47 0.75 0.89 0.83 0.83 0.91 0.96 0.52 0.49 0.70 0.85
EMA Weights 1 0.91 0.81 0.99 1.11 0.74 0.66 0.94 1.08 0.79 0.81 0.93 1.00 0.65 0.58 0.88 1.11
EMA Weights 2 1.04 0.92 1.08 1.18 0.88 0.79 1.04 1.17 0.80 0.81 0.94 1.02 0.81 0.73 1.00 1.23

Optimised Weights 1 0.75 0.70 0.81 0.89 0.70 0.68 0.78 0.86 0.86 0.86 0.89 0.92 0.70 0.67 0.77 0.84
Optimised Weights 2 0.83 0.76 0.87 0.94 0.74 0.70 0.83 0.91 0.85 0.85 0.89 0.92 0.74 0.70 0.81 0.90

Optimised EMA Weights 1 0.73 0.64 0.87 0.98 0.57 0.50 0.77 0.91 0.82 0.82 0.90 0.95 0.52 0.49 0.70 0.86
Optimised EMA Weights 2 0.85 0.75 0.94 1.04 0.66 0.58 0.85 0.98 0.81 0.81 0.89 0.95 0.63 0.57 0.78 0.95

Optimised a∗ 0.78 0.73 0.83 0.89 0.74 0.71 0.80 0.87 0.89 0.89 0.91 0.93 0.72 0.70 0.79 0.84
Distance Weights 1 0.84 0.75 0.90 0.95 0.70 0.63 0.81 0.92 0.66 0.61 0.76 0.86 0.84 0.83 0.86 0.95
Distance Weights 2 0.65 0.56 0.80 0.92 0.51 0.46 0.72 0.86 0.81 0.82 0.89 0.94 0.51 0.48 0.68 0.83
Distance Weights 3 0.62 0.55 0.81 0.94 0.51 0.46 0.74 0.88 0.82 0.83 0.90 0.95 0.51 0.49 0.69 0.85
Grid Search Weights 0.72 0.65 0.91 1.02 0.55 0.49 0.80 0.95 0.80 0.81 0.87 0.94 0.46 0.39 0.69 0.93
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Simulation results

Results from DGP#2

Covariance Averaging using Exponential Time Varying True Covariance with N = 50

B=(5, 20, 50) B=(5, 20, 50, 100) B=(50, 100, 200, 400) B=(5, 20, 50, 100, 200, 400)

Estimator t t + 1 t + 5 t + 10 t t + 1 t + 5 t + 10 t t + 1 t + 5 t + 10 t t + 1 t + 5 t + 10

Sample Covariance (H) 0.99 1.01 1.04 1.10 0.95 0.95 0.94 1.17 1.01 1.01 1.03 1.03 0.98 0.97 0.97 1.00
LW Shrinkage (F) 0.92 0.92 0.93 0.90 0.99 0.99 0.99 0.89 0.95 0.95 0.93 0.92 0.93 0.90 0.90 0.91
LW Shrinkage (H) 0.91 0.93 0.96 0.98 0.95 0.95 0.93 1.01 0.95 0.96 0.94 0.94 0.91 0.88 0.88 0.91

Equal Weights 0.75 0.93 0.96 0.98 0.95 0.95 0.93 1.01 0.95 0.96 0.94 0.94 0.91 0.88 0.88 0.91
EMA Weights 1 0.75 0.81 0.95 1.07 0.65 0.67 0.55 1.97 1.04 1.04 1.09 1.09 0.77 0.85 0.96 1.02
EMA Weights 2 0.60 0.81 0.95 1.07 0.65 0.66 0.54 1.98 1.04 1.04 1.09 1.09 0.77 0.85 0.96 1.02

Optimised Weights 1 0.70 0.63 0.91 1.18 0.28 0.31 1.49 4.08 1.14 1.14 1.27 1.31 0.39 0.79 1.21 1.27
Optimised Weights 2 0.64 0.75 0.84 0.82 0.92 0.92 0.89 0.86 0.84 0.85 0.79 0.80 0.69 0.61 0.66 0.70

Optimised EMA Weights 1 0.59 0.69 0.81 0.79 0.91 0.91 0.89 0.85 0.84 0.85 0.79 0.80 0.68 0.60 0.66 0.71
Optimised EMA Weights 2 0.52 0.67 0.85 0.95 0.59 0.61 0.47 1.92 0.95 0.95 0.97 0.98 0.57 0.60 0.76 0.85

Optimised a∗ 0.71 0.61 0.82 0.91 0.58 0.60 0.46 1.91 0.95 0.95 0.96 0.98 0.55 0.59 0.77 0.86
Distance Weights 1 0.63 0.67 0.55 0.79 0.24 0.19 0.48 0.90 1.03 0.78 1.32 1.53 0.65 0.90 0.86 0.75
Distance Weights 2 0.66 0.72 0.85 0.86 0.84 0.85 0.82 1.15 0.93 0.94 0.94 0.94 0.70 0.71 0.80 0.87
Distance Weights 3 0.71 0.77 0.91 0.99 0.71 0.72 0.62 1.73 1.01 1.01 1.04 1.04 0.76 0.82 0.92 0.99
Grid Search Weights 0.93 0.83 0.84 1.03 0.21 0.23 1.22 0.94 1.02 1.24 1.90 1.48 0.89 1.14 1.69 1.16
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Simulation results

Performance rankings based on DGP#1

Covariance Averaging Performance using Bivariate Scalar Diagonal VECH across all ρ

B=(5, 20, 50) B=(5, 20, 50, 100) B=(50, 100, 200, 400) B=(5, 20, 50, 100, 200, 400)

Estimator t t + 1 t + 5 t + 10 t t + 1 t + 5 t + 10 t t + 1 t + 5 t + 10 t t + 1 t + 5 t + 10

Sample Covariance (H) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
LW Shrinkage (F) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
LW Shrinkage (H) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Equal Weights 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
EMA Weights 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
EMA Weights 2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Optimised Weights 1 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.2
Optimised Weights 2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6 0.0 0.0 0.0 0.0

Optimised EMA Weights 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0
Optimised EMA Weights 2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.2 0.2 0.0 0.0 0.0 0.0 0.0

Optimised a∗ 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Distance Weights 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.8 0.8 0.8 0.2 0.0 0.0 0.0 0.0
Distance Weights 2 0.0 0.0 0.4 0.0 0.0 0.0 1.0 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.8 0.8
Distance Weights 3 1.0 1.0 0.6 0.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Grid Search Weights 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 0.0 0.0

Thomakos & Papailias (UoP & QUB) Covariance averaging 7/11/2017 25 / 38



Simulation results

Performance rankings based on DGP#2

Covariance Averaging Performance using Exponential Time Varying True Covariance across N

B=(5, 20, 50) B=(5, 20, 50, 100) B=(50, 100, 200, 400) B=(5, 20, 50, 100, 200, 400)

Estimator t t + 1 t + 5 t + 10 t t + 1 t + 5 t + 10 t t + 1 t + 5 t + 10 t t + 1 t + 5 t + 10

Sample Covariance (H) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
LW Shrinkage (F) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
LW Shrinkage (H) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Equal Weights 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
EMA Weights 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
EMA Weights 2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Optimised Weights 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0
Optimised Weights 2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.5 0.0 0.0 0.5 1.0

Optimised EMA Weights 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.5 0.0 0.5 0.5 0.0 0.0 0.0 0.0
Optimised EMA Weights 2 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Optimised a∗ 0.0 1.0 0.5 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.5 0.5 0.5 0.0
Distance Weights 1 0.0 0.0 0.5 0.5 0.5 1.0 0.5 0.5 0.5 1.0 0.0 0.0 0.0 0.5 0.0 0.0
Distance Weights 2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Distance Weights 3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Grid Search Weights 0.0 0.0 0.0 0.5 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
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Simulation results

Performance rankings overall

Covariance Averaging Performance Across all Simulation Designs

B=(5, 20, 50) B=(5, 20, 50, 100) B=(50, 100, 200, 400) B=(5, 20, 50, 100, 200, 400)

Estimator t t + 1 t + 5 t + 10 t t + 1 t + 5 t + 10 t t + 1 t + 5 t + 10 t t + 1 t + 5 t + 10

Sample Covariance (H) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
LW Shrinkage (F) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
LW Shrinkage (H) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Equal Weights 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
EMA Weights 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
EMA Weights 2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Optimised Weights 1 0.00 0.00 0.00 0.71 0.00 0.00 0.00 0.14 0.00 0.00 0.00 0.14 0.14 0.00 0.00 0.14
Optimised Weights 2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.14 0.57 0.00 0.00 0.14 0.29

Optimised EMA Weights 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.14 0.14 0.00 0.14 0.14 0.00 0.00 0.14 0.00
Optimised EMA Weights 2 0.29 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.14 0.14 0.14 0.00 0.00 0.00 0.00 0.00

Optimised a∗ 0.00 0.29 0.14 0.00 0.00 0.00 0.14 0.00 0.00 0.00 0.00 0.00 0.14 0.14 0.14 0.00
Distance Weights 1 0.00 0.00 0.14 0.14 0.14 0.29 0.14 0.14 0.71 0.86 0.57 0.14 0.00 0.14 0.00 0.00
Distance Weights 2 0.00 0.00 0.29 0.00 0.00 0.00 0.71 0.57 0.00 0.00 0.00 0.00 0.00 0.00 0.57 0.57
Distance Weights 3 0.71 0.71 0.43 0.00 0.71 0.71 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Grid Search Weights 0.00 0.00 0.00 0.14 0.14 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.71 0.71 0.00 0.00
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Application: GMV portfolio allocation GMV portfolio and rebalancing approaches

Would you use the method in real life?!

While the forecasting performance of covariance averaging is very
good this has potential application more in hedging strategies rather
than portfolio problems. We thus examine the real-world performance
of covariance averaging in the context of a GMV portfolio.

Furthermore, we consider in some detail the combined effect of
covariance estimation and portfolio rebalancing - the latter in various
forms that we describe later.

The standard GMV problem is given below:

Minimize: x
>
t Σtx t

subject to: e
>
x t = 1

0 ≤ bL ≤ xti ≤ bU ≤ 1

(32)

where x t changes at rebalancing/re-optimization times.
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Application: GMV portfolio allocation GMV portfolio and rebalancing approaches

In our analysis we consider 5 different cases for rebalancing:
rebalancing at optimization time only (or no-rebalancing in the
interim period); rebalancing based on a time threshold; rebalancing
based on weight threshold; and a combination of time-and-threshold
rebalancing.

Time and threshold rebalancing are not usually used in the academic
literature but they have attracted some attention from practitioners in
the industry.

Time rebalancing refers to the weights’ return into their initial values
in a pre-specified number of days.

Threshold rebalancing refers to the weights’ return into their initial
values in the case when a single’s weight change is greater than a
specified threshold (in percentage).
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Application: GMV portfolio allocation Evaluation procedure

1 Start with an initial wealth of 1 million dollars and set the transaction
cost of buying/selling one share at 0.005 dollars. At the beginning of
the algorithm we decide of the re-optimisation period every E trading
days.

2 Using a rolling window we set an in-sample of Nroll = mM + 1 price
observations.

3 We calculate the returns, the covariance estimators and the portfolio
weights.

4 We find the number of shares that can be purchased and the
positions we need to open/close. and the overall portfolio transaction
costs are calculated.

5 Inbetween E portfolio re-optimisations the time and threshold
rebalancing takes place.

6 Using the Nroll + 1 out-of-sample prices and the corresponding returns
we calculate the overall portfolio value, its return and then wealth
that will be carried over in the next round. item[6] Using the new
wealth we start again from step 2 of the algorithm.
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Application: GMV portfolio allocation Evaluation procedure

R1. Time Rebalancing.

R1a. Set the number of days, RTR , that we want to rebalance the portfolio
weights in-between E days of re-optimisation. By definition, RTR < E
and in the special case where RTR = E re-optimisation takes place.

R1b. We return the weights in their initial values every RTR days. All
transaction weights are calculated and the investor’s current wealth is
again computed.

R1c. The above procedure is carried-out bE/RTRc times.

R2. Threshold Rebalancing.

R2a. Set the threshold parameter, RThR . We rebalance our portfolio every
time that one (or more) of our daily percentage change of the portfolio
weights exceeds the above threshold parameter.

R2b. Then, as before, all transaction weights are calculated and current
wealth is again computed.

R3. Time and Threshold Rebalancing. It combines the two approaches!
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Application: GMV portfolio allocation Evaluation procedure

We use the following parametrizations for the optimization & rebalancing
procedures described above:

The bounds on the weights x t are set to be in these intervals [bL, bU ]:
[0,0.1]; [0,0.25] and [0,1].

The rebalancing parameters are set as follows:
1 E = 20, RTR = 5, RThR = 10%
2 E = 60, RTR = 20, RThR = 10%
3 E = 180, RTR = 60, RThR = 10%
4 E = 20, RTR = 5, RThR = 5%
5 E = 60, RTR = 20, RThR = 5%
6 E = 180, RTR = 60, RThR = 5%

The total, therefore, number of runs for each combination of the
above is 36× NB , where NB is the number of rolling window
combinations that we have.
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Application: GMV portfolio allocation Evaluation procedure

Summarizing the empirical output
Since there is a lot of output being generated we present results on
meta-data analysis based on aggregation across portfolio cases and
methods. Here is how we do it.
For each portfolio case, say i , we compute the performance measures.
Let a representative such measure be called Pijk when is based on
rebalancing method j and estimation approach k.
We compute three types of averaged statistics:

1 The first statistic pools the data across all i , then evaluates across all j
and aggregates across all k (ALL);

2 The second statistic takes the data for each i , then evaluates across all
j and then aggregates across all k (WITHIN);

3 The third statistic pools the data across j , then evaluates across k and
then aggregates across i (BETWEEN).

We employ a GMM-approach to estimate mean differences (of a
method against the benchmarks) for the above measures and type,
and the percentage of times that this difference is in favour of the
new methods is counted and tracked.
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Empirical results

Data

Daily data from S&P500 stocks from to 1990 to October 2012.

Three groups of 8, 20 and 40 stocks - the latter based on (most
recent) largest capitalization.

Need to try other meaningful group combinations!
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Empirical results Success rates based on ALL

Table 1A. Success rates across all runs - SP08 Table 1B. Success rates across all runs - SP20
Sample-Full Sample-Half LW-Full LW-Half Sample-Full Sample-Half LW-Full LW-Half

Average 0.00% 7.69% 7.69% 84.62% Average 23.08% 15.38% 100.00% 92.31%
Volatility 76.92% 69.23% 92.31% 92.31% Volatility 30.77% 30.77% 23.08% 0.00%
Sharpe 7.69% 7.69% 7.69% 84.62% Sharpe 0.00% 0.00% 100.00% 69.23%
Cumulative 0.00% 7.69% 7.69% 84.62% Cumulative 30.77% 7.69% 100.00% 69.23%
Drawdown 7.69% 7.69% 76.92% 76.92% Drawdown 0.00% 0.00% 0.00% 0.00%

Table 1C. Success rates across all runs - SP40
Sample-Full Sample-Half LW-Full LW-Half

Average 92.31% 84.62% 92.31% 84.62%
Volatility 53.85% 38.46% 53.85% 53.85%
Sharpe 76.92% 46.15% 76.92% 69.23%
Cumulative 84.62% 76.92% 84.62% 84.62%
Drawdown 84.62% 69.23% 84.62% 61.54%
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Empirical results Success rates based on WITHIN

Table 2A. Success rates within methods - SP08 Table 2B. Success rates within methods - SP20
Sample-Full Sample-Half LW-Full LW-Half Sample-Full Sample-Half LW-Full LW-Half

Average 26.71% 34.19% 49.15% 66.03% Average 41.60% 44.73% 69.37% 64.10%
Volatility 63.46% 51.50% 73.50% 67.31% Volatility 50.57% 51.14% 48.01% 38.89%
Sharpe 32.26% 33.55% 51.71% 69.23% Sharpe 38.89% 43.45% 65.81% 59.40%
Cumulative 28.21% 33.97% 48.29% 66.03% Cumulative 40.74% 43.02% 67.24% 63.11%
Drawdown 38.46% 32.91% 51.92% 48.29% Drawdown 42.31% 45.01% 45.87% 41.45%

Table 2C. Success rates within methods - SP40
Sample-Full Sample-Half LW-Full LW-Half

Average 51.71% 51.57% 52.71% 52.71%
Volatility 55.40% 47.14% 56.11% 50.41%
Sharpe 55.13% 53.13% 55.70% 54.27%
Cumulative 51.14% 51.85% 53.13% 53.42%
Drawdown 68.74% 58.44% 69.17% 59.16%
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Empirical results Success rates based on BETWEEN

Table 3A. Cumulative return differences in between methods - SP40 Table 3B. Drawdown differences in between methods - SP40
No Rebalance Sample-Full Sample-Half LW-Full LW-Half No Rebalance Sample-Full Sample-Half LW-Full LW-Half

Proportion 92.31% 69.23% 92.31% 76.92% Proportion 84.62% 53.85% 76.92% 53.85%
Mean Difference -7.73% -1.16% -7.31% -2.35% Mean Difference 1.18% -0.02% 1.09% 0.02%

Time only Sample-Full Sample-Half LW-Full LW-Half Time only Sample-Full Sample-Half LW-Full LW-Half
Proportion 92.31% 76.92% 84.62% 76.92% Proportion 0.00% 46.15% 0.00% 53.85%

Mean Difference -6.05% -1.41% -4.86% -1.77% Mean Difference 1.34% 0.24% 1.09% -0.06%
Thresh. #1 only Sample-Full Sample-Half LW-Full LW-Half Thresh. #1 only Sample-Full Sample-Half LW-Full LW-Half

Proportion 15.38% 38.46% 38.46% 69.23% Proportion 7.69% 38.46% 7.69% 38.46%
Mean Difference 7.35% 1.26% 1.67% -3.61% Mean Difference 1.55% -0.02% 1.60% 0.45%

Thresh. #2 only Sample-Full Sample-Half LW-Full LW-Half Thresh. #2 only Sample-Full Sample-Half LW-Full LW-Half
Proportion 84.62% 84.62% 84.62% 84.62% Proportion 23.08% 38.46% 15.38% 38.46%

Mean Difference -7.75% -3.77% -8.43% -7.40% Mean Difference 1.50% 0.30% 1.60% 0.09%
T & T #1 Sample-Full Sample-Half LW-Full LW-Half T & T #1 Sample-Full Sample-Half LW-Full LW-Half
Proportion 92.31% 76.92% 92.31% 76.92% Proportion 7.69% 30.77% 7.69% 30.77%

Mean Difference -8.25% -3.84% -8.83% -3.98% Mean Difference 2.16% 0.75% 2.21% 0.71%
T &T #2 Sample-Full Sample-Half LW-Full LW-Half T &T #2 Sample-Full Sample-Half LW-Full LW-Half
Proportion 84.62% 84.62% 84.62% 84.62% Proportion 23.08% 38.46% 15.38% 46.15%

Mean Difference -2.76% -4.83% -4.19% -6.39% Mean Difference 1.46% 0.23% 1.59% -0.04%
Table 3C. Sharpe ratio differences in between methods - SP40

No Rebalance Sample-Full Sample-Half LW-Full LW-Half
Proportion 92.31% 23.08% 92.31% 30.77%

Mean Difference -0.01 0.00 -0.01 0.00
Time only Sample-Full Sample-Half LW-Full LW-Half
Proportion 76.92% 69.23% 76.92% 69.23%

Mean Difference -0.01 0.00 -0.01 -0.01
Thresh. #1 only Sample-Full Sample-Half LW-Full LW-Half

Proportion 23.08% 23.08% 38.46% 53.85%
Mean Difference 0.00 0.00 0.00 0.00

Thresh. #2 only Sample-Full Sample-Half LW-Full LW-Half
Proportion 76.92% 69.23% 76.92% 76.92%

Mean Difference -0.01 0.00 -0.01 0.00
T & T #1 Sample-Full Sample-Half LW-Full LW-Half
Proportion 92.31% 53.85% 92.31% 53.85%

Mean Difference -0.01 0.00 -0.01 0.00
T &T #2 Sample-Full Sample-Half LW-Full LW-Half
Proportion 76.92% 61.54% 76.92% 76.92%
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Summary and future research

All in all...

Introduce covariance averaging based on rolling window averages of
the sample covariance.

Provide a host of heuristic and optimizing procedures to select the
weights that should be attached to the sample covariances.

Show that the proposed approach has merit in fitting and forecasting
the unknown covariance and in consistently improving portfolio
allocation results, especially in large(r) problems involving many
assets.

Open questions that are not addressed: be more specific as to which
methods of covariance averaging tops all others; how does covariance
averaging performs in forecasting with real series; can covariance
averaging be fruitfully used in other inference problems; can we have
a complete theory based on underlying properties of the time series;
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