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Abstract 

The rapidity with which digitat information, particularly 
video, is being generated, has necessitated the development 
of tools for efficient search of these media. Content based 
visual queries have been primarily focussed on still image 
retrieval. In this papel; we propose a novel, real-time, in- 
teractive system on the Web, based on the visual paradigm, 
with spatio-temporal attributesplaying a key role in video re- 
trieval. We have developed algorithms for automated video 
object segmentation and tracking and use real-time video 
editing techniques while responding to user queries. The 
resulting system pe$orms well, with the user being able to 
retrieve complex video clips such as those of skiers, baseball 
players, with ease. 

1. Introduction 

The ease of capture and encoding of digital images has 
caused a massive amount of visual information to be pro- 
duced and disseminated rapidly. Hence efficient tools and 
systems for searching and retrieving visual information are 
needed. While there are efficient search engines for text doc- 
uments today, there are no satisfactory systems for retrieving 
visual information. 

Content-based visual queries (CBVQJ has emerged as a 
challenging research area in the past few years [Chang 971, 
[Gupta 971. While there has been substantial progress with 
the presence of systems such as QBIC [Flickner 951, Photo- 
Book [Pentland 961, Virage [Hamrapur 971 and VisualSEEk 
[Smith 961 most systems only support retrieval of still im- 
ages. CBVQ research on video databases has not been fully 
explored yet. We propose an advanced content-based video 
search system with the following unique features: 
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Automatic video object segmentation and tracking. 

A rich visual feature library including color, texture, 
shape, motion. 

Query with multiple objects. 

Spatio-temporal constraints on the query. 

Interactive querying and browsing over the World-Wide 
Web. 

Compressed-domain video manipulation. 

Specifically, we propose to develop a novel video search 
system which allows users to search video based on a rich 
set of visual features and spatio-temporal relationships. Our 
objective is to investigate the full potential of visual cues in 
object-orientedcontent-based video search. While thesearch 
on video databases ought to necessarily incorporate the di- 
versity of the media (video, audio, text captions) our research 
will complement any such integration. 

We will present the the visual search paradigm in section 
2, elaborate on the system overview in section 3, describe 
video objects and our automatic video analysis techniques in 
sections 4-5, discuss the matching criteria and query reso- 
lution in sections 7-8 and finally present some preliminary 
evaluation results in section 9. 

2. The Visual Paradigm 

The fundamental paradigm under which VideoQ operates 
is the visual one. This implies that the query is formulated 
exclusively in terms of elements having visual attributes 
alone. The features that are stored in the database are gener- 
ated from an automatic analysis of the video stream. There 
is no information present in the query loop that emanates 
from the captions, textual annotations or the audio stream. 
Many retrieval systems such as PhotoBook [Pentland96], 
VisualSEEk [Smith 961 and Virage [Hamrapur 971 share this 
paradigm, but only support still image retrieval. While QBIC 
[Flickner 951 is visual, it is not exclusively so as the im- 
ages have been manually annotated allowing for keyword 
searches on the database. 

313 



;. 

Figure 1. The visual interface of VideoQ. The figure 
shows an example query to retrieve video shots of 
all high jump sequences in the database. The re- 
trieved shots which include three (the second, third 
and the seventh key-frame) successful matches, 
bear out the importance the ‘motion attribute’ in 
video shot retrieval. 

Video retrieval systems should evolve towards a system- 
atic integration of all available media such as audio, video 
and captions. While video engines such as [Hauptrnann 951, 
[Hamrapur 971, [Shahraray 951, [Mohan 961 attempt at such 
an integration, much research on the representation and anal- 
ysis of each of these different media remains to be,done. 
Those that concentrate on the visual media alone fall into 
two distinct categories: 

l Query by example (QBE) 

l Visual sketches 

In the context of image retrieval, examples of QBE sys- 
tems include QBIC, PhotoBook, VisualSEEk, Virage and 
FourEyes [Minka96]. Examples of sketch based image 
retrieval systems include QBIC,: VisualSEEk, [Jacobs 951, 
[Hirata 921 and [Del Bimbo 971. These two different ways 
of visually searching image databases may also be accompa- 
nied by learning and user feedback winka 961. 

Query by example systems work under the realization that 
since the “correct” match must lie within the database, one 
can begin the search with a member of the database itself. 
With the hope that one can guide the user towards the image 
that he likes over a succession of query examples. In QBE, 
one can use space partitioning schemes to precompute hier- 
archical groupings, which can speed up the database search 
winka 961. While the search speeds up, the.groupings are 
static and need recomputation every time a new video is in- 
serted into the database. QBE in principle, is easily extensi- 
ble to video databases as well, but there are some drawbacks. 
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Video shots generally contain a large number of objects, each 
of whom are described by a complex multi-dimensional fea- 
ture vector. The complexity arises partly due to thaproblem 
of describing shape and motion characteristics. 

Sketch based query systems such as [Hirata 921 compute 
the,correlation between the sketch and the the edge map of 
each of the images in the database, while in [Del Bimbo 971, 
the authors minimize an energy functional to achieve a 
match. In [Jacobs 951, the authors compute a distance be- 
tween the wavelet signatures of the sketch and each of the 
images in the database. 

What makes VideoQ powerful is the idea of an animated 
sketch to formulate the query. In an animated sketch, motion 
and temporal duration are the key attributes assigned to each 
object in the sketch in addition to the usual attributes such as 
shape, color and texture. Using the visual pallette, we sketch 
out a scene by drawing a collection of video objects, It is the 
spatio-temporal ordering (and relationships) of these objects 
that fully define a scene. This is illustrated in Figure 1, 

r ‘While we shall extensively employ this paradigm, some 
important observations are to be kept in mind. The visual 
paradigm works best when there are only a few dominant 
objects in the video with simply segmented backgrounds’. It 
will not work well if the user is interested in video sequences 
that are simple to describe, but are hard to sketch out. For ex- 
ample, a video shot of a group of soldiers marching, shots of 
a crowd on the beach etc. It will also not work well when 
the user is interested in a particular semantic class of shots: 
he might be interested in retrieving that news segment con- 
taining the anchor person, when the news anchor is talking 
about Bosnia. 

3. The VideoQ System Overview 

VideoQ is a Web based video search system, where the 
user queries the system using animated sketches. An ani- 
mated sketch is defined as a sketch where the user can assign 
motion to any part of the scene. 

VideoQ which resides on the Web, incorporates a client- 
server architecture. The client (a java applet) is loaded up 
into a web browser where the user formulates (sketches) 
a query scene as a collection of objects with different at- 
tributes. Kttributes include motion, spatio-temporal order- 
ing, shape and the the more familiar attributes of color and 
texture. 

The query server contains several feature databases, one 
for each of the individual’features that the system indexes 
on. Since we index on motion, shape, as well as color and 
texture, we have databases for each of these features. The 
video shot database is stored as compressed MPEG streams, 

Once the user is ‘done formulating the query, the client 
sends it over the network to the query server. There, the 
features of each object specified in the query are matched 
against the features of the objects in the database. Then, lists 

‘Note, even if the background shows a crowd, due to aggressive region 
merging, they may be merged into one single region. 
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of candidate video shots are generated for each object speci- 
fied in the query. The candidate lists for each object are then 
merged to form a single video shot list. Now, for each of 
these video shots in the merged list, key-frames are dynami- 
cally extracted from the video shot database and returned to 
the client over the network. The matched objects are high- 
lighted in the returned key-frame. 

off-line ---_-___--___-__---_----------------------- ---- 
C_L---__ on-line 

u ‘. aBE ,N --__--- > --. 
‘4 f 

Figure 2. The VideoQ system where the queries are 
in the form of animated sketches. The dashed path 
shows a QBE (query by example) loop, which is ab- 
sent in the current system, but will be incorporated 
into the implementation. 

The user can interactively view these matched video shots 
over the network by simply clicking on the the key-frame. 
Then, in the backend, the video shot corresponding to that 
key frame is extracted in real time from the video database 
by “cutting” out that video shot from the database. The video 
shots are extracted from the video database using basic video 
editing schemes l?Jeng 961 in the compressed domain. The 
user needs an MPEG player in order to view the returned 
video stream. 

Since the query as formulated by the user in the VideoQ 
system comprises of a collection of objects having spatio- 
temporal attributes, we need to formalize the definition of a 
video object. 

4. What is a Video Object? 

We define a region to be a contiguous set of pixels that is 
homogeneous in the the features that we are interested in (i.e 
texture, color, motion and shape). A video object is defined 
as a collection of video regions which have been grouped to- 
gether under some criteria across several frames. Namely, 
a video object is a collection of regions exhibiting consis- 
tency2 across several frames in at least one feature. For ex- 
ample a shot of a person (the person is the “object” here) 
walking would be segmented into a collection of adjoining 
regions differing in criteria such as shape, color and texture, 
but all the regions may exhibit consistency in their motion 
attribute. As shown in Figure 3, the objects themselves may 
be grouped into higher semantic classes. 

The grouping problem of regions is an area of ongoing 
research and for the purposes of this paper, we restrict our 

*If two regions exhibit consistency in all features, then they will be 3This is the factor by which an object changes its size over its duration 
merged into one region. Regions which exhibit no consistency at all in any on the shot. This change could either be induced by camera motion or by 
feature, would probably not belong to the same object the objects intrinsic motion. 

abstractions 
(husMcs. models) 

features 

- spat&lemporal ordering 

Figure 3. The feature classification tree. 

attention to regions only. Regions may be assigned several 
attributes, such as color, texture, shape and motion. 

4.1. Color, Texture, Shape 

In the query interface of VideoQ, the set of allowable col- 
ors is obtained by uniformly quantizing the HSV color space. 
The Brodatz texture set is used for assigning the textural at- 
tributes to the various objects. The shape of the video ob- 
ject can be an arbitrary polygon along with ovals of arbitrary 
shape and size. The visual palette allows the user to sketch 
out zn arbitrary polygon with the help of the cursor, other 
well known shapes such as circles, ellipses and rectangles 
are pre-defined and are easily inserted and manipulated. 

4.2. Motion, Time 

Motion is the key object attribute in VideoQ. The motion 
tiajectory interface (Figure 4) allows the user to specify an 
arbitrary polygonal trajectory for the query object. The tem- 
poral attribute which defines the overall duration of the ob- 
ject, which can either be intuitive (long, medium or short) or 
absolute (in seconds). 

Since’ VideoQ allows users to frame multiple object 
queries, the user has the flexibility of specifying the over- 
all scene temporal order by specifying the “arrival” order of 
the various objects in the scene. The death order (or the or- 
der in which they disappear from the video) depends on the 
duration of each object). 

Another attribute related to time is the scaling3 factor, or 
the rate at which the size of the object changes over the du- 
ration of the objects existence. Additional global scene at- 
tributes include the specification of the (perceived) camera 
motion like panning or zooming. The VideoQ implementa- 
tion of the temporal attributes is shown in figure 4. 
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Figure 4. The spatio-temporal description of an 
video object. The user can assign the duration, 
and an arbitrary trajectory to the video object. In 
addition, the user also specifies the temporal ar- 
rival order of the object in the scene. 

4.3. Weighting the Attributes 

Prior to the actual query, the various features need to be 
weighted in order to reflect their relative importance in the 
query (refer to Figure 1). The.feature weighting is global to 
the entire animated sketch; for example, the attribute color, 
will have the same weight across all objects. The final rank- 
ing of the video shots that are returned by the system is af- 
fected by the weights that the user has assigned to various 
attributes. 

5. Automatic Video Shot Analysis 

The entire video database is processed off-line. The indi- 
vidual videos are decomposed into separate shots, and then 
within each shot, video objects are tracked across frames. 

5.1. Scene Cut Detection 

Prior to any video object analysis, the video must be 
split up into “chunks” or video shots. Video shot separa? 
tion is achieved by scene change detection. Scene change 
are either abrupt scene changes or transitional (e.g. dis- 
solve, fade in/out, wipe). [Meng 951 describes an efiicient 
scene change detection algorithm that operates on com- 
pressed MPEG streams. 

It uses the motion vectors and Discrete Cosine Transform 
coefficients from the MPEG stream to compute statistical 
measures. These measurements are then used to verify the 
heuristic models of abrupt or transitional scene changes. For 
example, when a scene change occurs before a B frame in 
the MPEG stream, most of the motion vectors in that frame 

will point to future reference frame. The real-time algorithm 
operates directly on the compressed MPEG stream, without 
complete decoding. / 

1 
5.2. Global Video khot Attributes 

The global motion (i.e. background motion) of the dam* 
inant background scene is automatically estimated using 
the six parameter affine model [Sawhney 951. A hierarchi- 
cal pixel-domain motion estimation method [Bierling 881 is 
used to extract the optical flow. The affine model of the 
global motion is used to compensate the global motion com- 
ponent of all objects in the scene4. The six parameter model: 

Ax = a,+alx+~y, (1) 
Ay = a3 +aex-kasy, (2) 

where, ai are the affine parameters, Z, y are the pixel coordi- 
nates, and Ax, Ay are the pixel displacements at each pixel, 

Classification of global camera motion into modes such 
as zooming or panning is based on the global affine esti- 
mation. In order to detect panning, a global motion veloc- 
ity histogram is computed along eight directions. If there is 
dominant motion along a particular direction, then the shot 
is labeled as a panning shot along that direction. 

In order to detect zooming, we need to first check if the 
average magnitude of the global motion velocity field and 
two affine model scaling parameters (al and og) satisfy, cer- 
tain threshold criteria. 

When there is sufficient motion, and al and ag are both 
positive, then the shot is labeled as a “zoom-in” shot and if 
they are both negative then the shot is labeled as a “zoom- 
out”. 

5.3. ‘Ikack+g Objects: Motion, Color and Edges 

Our algorithm for segmentation and tracking of image re- 
gions based on the fusion of color, edge and motion infor- 
mation in the video shot. The basic region segmentation and 
tracking procedure is shown in Figure 5. The projection and 
segmentation module is the module where different features ., 
are fused for region segmentation and tracking. 

Color is chosen as the major segmentation feature because 
of its consistency under varying conditions. As boundaries 
of color regions may not be accurate due to noise, each frame 
of the video shot is filtered before color region merging is 
done. Edge ‘information is also incorporated into the seg- 
mentation process to improve the accuracy. Optical flow is 
utilized to project and track color regions through a video 
sequence. , 

The optical flow of current frame n is derived from frame 
n and n + 1 in the motion estimation module using a hierar- 
chical block matching method [Bierling 881. Given color re- 
gions and optical 8ow generated from above two processes, 
a linear regression algorithm is used to estimate the affine 

4Global motionxompensation is not needed if users prefer to search 
videos based on perceived motion. , 
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Figure 5. Region segmentation and tracking of 
frame 72. 

motion for each region. Now, color regions with affine mo- 
tion parameters are generated for frame n, which will the be 
tracked in the segmentation process of frame n + 1. 

53.1. Projection and Segmentation Module 

Now we discuss the projection and segmentation mod- 
ule [Zhong 971 (see Figure 6). In the first step, the current 
frame (i.e. frame n) is quantized in a perceptually uniform 
color space (e.g., CIE LUV space). Quantization palettes can 
be obtained by a uniform quantizer or clustering algorithms 
(e.g., self-organization map). After quantization, non-linear 
median filtering is used to eliminate insignificant details and 
outliers in the image while preserving edge information. In 
the meanwhile, edge map of frame n is extracted using edge 
detectors (e.g. Canny edge detector). 

For the first frame in the sequence, the system will go di- 
rectly to intra-frame segmentation. For intermediate frames, 
as region information is available from frame n - 1, an in- 
terframe projection algorithm is used to track these regions. 
All regions in frame n - 1 are projected into frame n using 
their affine motion estimates. For every pixel in frame n that 
is covered by regions projected from the previous frame, we 
label it as belonging to the region to which it is closest in the 
CIE-LUV space. If a pixel is not covered by any projected 
region, then it remains unlabeled. 

The tracked regions together with un-labeled pixels are 
further processed by an intra-frame segmentation algorithm. 
An iterative clustering algorithm is adopted: two adjoin- 
ing regions with the smallest color distance are continuously 
merged until the difference is larger than a given threshold. 
Finally, small regions are merged to their neighbors by a 
morphological open-close algorithm. Thus, the wholeproce- 
dure generates homogeneous color regions in frame n while 
tracking existing regions from frame n - 1. 

frame n 

I i 

/ +, / 

I 
;,,,-,,-------_-------: 

Figure 6. Region projection and segmentation of 
frame n 

The edge map is used to enhance color segmentation ac- 
curacy [Zhong 971. For example, regions clearly separated 
by long edge lines will not be merged with each other. Short 
edge lines which are usually inside one color region will not 
affect the region merging process. 

Figure 7 shows segmentation results with two sequences. 
In both cases, the top row shows original sequence and the 
second row shows a subset of automatically segmented re- 
gions being tracked. Tracked regions are shown with their 
representative (i.e. average) colors. Experiments show that 
our algorithm is robust for the tracking of salient color re- 
gions under different circumstances, such as multiple ob- 
jects, fast or slow motion and instances of regions being cov- 
ered and uncovered 

6. Building the Visual Feature Library 

Once each object in the video shot has been segmented 
and tracked, we then compute the different features of the 
object and store them in our feature library. For each object 
we store the following features: 

Color The representative color in the quantized CIE-LUV 
space. It is important to bear in mind that the quanti- 
zation is not static, and the quantization palette changes 
with each video shot. The quantization is calculated 
anew for each sequence with the help of a self organiz- 
ing map. 
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Figure 7. Region segmentation on QCIF sequences, 
using feature fusion. The top rows show the origi- 
nal sequence while the corresponding bottom rows 
show the segmented regions. 

Texture Three Tamura [Tamura 781 texture measures, 
coarseness, contrast and orientation, are computed as 
a measure of the textural content of the object. 

Motion The motion of the video object is stored as a list 
of N - 1 vectors (where the number of frames in the 
video is N). Each vector is the average translation of 
the centroid of the object between successive frames5 
after global motion compensation [Sawhney 9.51. Along 
with this information, we also store the frame rate of the 
video shot sequence hence establishing the “speed” of 
the object as well as its duration. 

Shape For each object, we first determine the principal com- 
ponents of the shape by doing a simple eigenvalue anal- 
ysis [Saber 97a]. At the same time we generate first 
and second order moments of the region. Two other 
new features, the normalized area6, and the the percent- 
age area7 are calculated. We then determine if the re- 
gion can be well approximated by an ellipse and label 
it so if that is indeed the case. We chose not to store 
the best fit polygon to the object because of reasons 
of computational complexity. The computational com- 
plexity of matching two arbitrary N vertex polygons is 
O(N2 1ogN) [Arkin 911. 

The resulting library is a simple database having a 
{attribute, value} pair for each object. Creating a relational 
database will obviously allow for more complex queries to 
be performed over the system as well as decrease the overall 
search time. The issue of the structure of the database is an 

‘We could have also stored the the successive afiine transformations, but 
that would have increased the complexity of the search. Also, it is worth 
keeping in mind that the users will not have “exact” idea of the trajectory of 
the object that they wish to retrieve. ’ 

%he ratio of the area of the object to the area of the circumscribing circle. 
Note that this feature is invariant to scale. 

7this is the percentage of the area of the video shot that is occupied by 
the object 

important one, but was not a priority in the current imple- 
mentation of VideoQ. 

7. Feature Space Metrics 

The nature of the metric, plays a key role in any image or 
video retrieval system. Designing good metrics is a challeng 
ing problem as it often involves a tradeoff between computa- 
tional complexity of the metric and the quality of the match. 
For it is not enough to be able to locate images or videos that 
are close under a metric, they must be perceptually close to 
the query. 

While we employ well accepted metrics for color, tex- 
ture and shape, we have designed new metrics to exploit the 
spatio-temporal information in the video. 

7.1. Matching Motion Trails 

A motion trail is defined to be the three dimensional tra- 
jectory of a video object. It is represented by a sequence 
{+I, y[i]}, i E (1, ..N}, the three dimensions comprising 
of the two spatial dimensions 2, y and the temporal dimen- 
sion t (normalized to the frame number. The frame rate pro- 
vides us with the true time information). Prior techniques to 
match motion [Din&ova 941, have used simple chain codes 
or a B-spline to represent the trajectory, without completely 
capturing the spat@-temporal characteristic of the motion 
trail. 

The user sketches out the trajectory as a sequence of ver- 
tices in the 2 - y plane. In order for him to specify motion 
trail completely he must specify the duration of the object 
in the video shot. The duration is quantized (in terms of the 
frame rate*) into three levels: long, medium and short. We 
compute the entire trail by uniformly sampling the motion 
trajectory based on the frame rate. 

We develop two major modes of matching trails: 

Spatial In the spatial mode, we simply project the motion 
trail onto the 2 - y plane. This projection results in 
an ordered contour. The metric is then measures dis- 
tances between the query contour and the correspond- 
ing contour for each object in the database. This kind 
of matching provides a “time-scale invariance”. This is 
useful when the user is unsure of the time taken by an 
object to execute the trajectoryg. 

Spatio-Temporal In the spatio-temporal mode, we simply 
use the entire motion trail to compute the distance. We 
use the following distance metric: 

sWe quantify it in terms of (frame rate)/(unit distance). Where the dis- 
tance refers to the length of the motion trajectory in pixels. We assume a 
canonical frame rate of 30 fmmeslsec. 

gA immediate benefit of using this method is when one is matching 
against a database of sports shots, then “slow-motion” replays as well as 
“normal-speed” shots will be retrieved as they both execute the same zv 
contour. 
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where, the subscripts Q and t refer to the query and the 
target trajectories respectively and the index i runs over 
the the frame numberslo. Since in general, the duration 
of the query object will differ from that of the objects in 
the database, there are some further refinements possi- 
ble. 

l When the durations differ, we could simply 
match the two trajectories up till the shorter 
of the two durations (i.e the index i runs up til 
min (query duration, database object duration) 
and ignore the “tail”). 

l We could also normalize the the two durations to 
a canonical duration and then perform the match. 

7.2. Matching Other Features 

Let us briefly describe the distance metrics used in com- 
puting the distances in the other feature spaces. 

Color The color of the query object is matched with the 
mean color of a candidate tracked object in the database 
as follows: 

cd = &I -Ld2 +4(& - u,)2+4(vq - &)2, 
1 

(4) 
where, cd is the weighted Euclidean color distance in 
the CIE-LUV space and the subscripts q and t refer to 
the query and the target respectively. 

Texture In our system, we compute three Tamura 
[Tamura 781 texture parameters (coarseness, contrast 
and orientation) for each tracked object. The distance 
metric is simply the Euclidean distance weighted along 
each texture feature with the variances along each chan- 
nel: 

Td = 

where, QI, /3 and $J refer to the coarseness, contrast and 
the orientation respectively and the various a,,o,4 refer 
to the variances in the corresponding features. 

Shape In the current implementation, the metric only in- 
volves the principal components of the shape: 

where, Xp and X1 are the eigenvalues along the principal 
axes of the object (their ratio is the aspect ratio). 

Size This is simply implemented as a distance on the area 
ratio”: 

min(A,, At) 
sid=1- max(A,, At)’ 

toAlternately, the index could run over the set of subsampled points 
“This is the area of the object divided by the area of the entire shot. 

where, A,,t refer to the percentage areas of the query 
and target respectively. 

The total distance is simply the weighted sum of these 
distances, after the dynamic range of each metric has been 
normalized to lie in [0, 11. i.e 

D,= c 43, 
iE{features} 

where wi is the weight assigned to the particular feature and 
Di is the distance in that feature space. 

8. Query Resolution 

Using these feature space metrics and the composite dis- 
tance function, we compute the composite distance of each 
object in the database with the each object in the query. Let 
us now examine how we generate candidate video shots, 
given a single and multiple objects as queries. An example 
of an single object query along with the results (the candidate 
result) is shown in Figure 1. 

8.1. Single Object Query 

The search along each feature of the video object pro- 
duces a candidate list of matched objects and the associated 
video shots. Each candidate list can be merged by a rank 
threshold or a feature distance threshold. Then, we merge 
the candidate lists, keeping only those that appear on the 
candidate list for each feature. Next, we compute the global 
weighted distance D,, and then sort the merged list based 
on this distance. A global threshold is computed (based on 
the individual thresholds and additionally modified by the 
weights) which is then used to prune the object list. This is 
schematically shown is Figure 8. Since there is a video shot 
associated with each of the objects in the list, we return the 
key-frames of the corresponding video shots to the user. 

all database objects 

feature match 

Figure 8. Generating the candidate video shot list 
for a single object query. The first column of fea- 
tures shows the features of the query, while the sec- 
ond column shows the features across all objects 
in the database. 

9. How does VideoQ perform? 

Evaluating the performance of video retrieval systems is 
still very much an open research issue [Chang 971. There 
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does not exist a standard video test set to measure retrieval 
performance nor standard benchmarks to measure system 
performance. This is partly due to the emerging status of this 
field. To evaluate VideoQ, we use two different approaches. 
First, we extend the standard precision-recall metrics in in- 
formation retrieval. Although we acknowledge several draw- 
backs of this classical metric, we include it here simply as a 
reference. Another type of metric measures the effort and 
cost required to locate a particular video clip that a user has 
in mind or one that the user may have previously browsed in 
the database. 

9.1. Precision-Recall Type Metrics 

In our experimental setup, we have a collection of 200 
video shots, categorized into sports, science, nature, and his- 
tory. By applying object segmentation and tracking algo- 
rithms to the video shots, we generated a database of more 
than 2000 salient video objects and their related visual fea- 
tures. 

To evaluate our system, precision-recall metrics are com- 
puted. Precision-recall metrics characterize the retrieval ef- 
fectiveness of the system. While the VideoQ system is com- 
posed of many parts, such as scene cut detection, object seg- 
mentation and tracking, and feature selection and matching, 
precision-recall metrics measure how well the system as a 
whole performs. Performance is based solely on how close 
the returned results compare with the ground truth. 

Before each sample query, the user establishes a ground 
truth by choosing a set of relevant or “desired” video shots 
from the database. For each sample query shown in Figure 
9, a ground truth is established by choosing all the relevant 
video shots in the database that have corresponding features. 
The sample query returns a list of candidate video shots, and 
precision-recall values are calculated according to equations 
9, 10. A precision-recall curve is generated by increasing the 
size of the return list and computing precision-recall values 
for each size, 

Recall = 
Retrieved and relevant 

All relevant in the database q 

Precision = 
Retrieved and relevant 

Number retrieved (10) 

where, the relevant video shots are predefined by the ground 
truth database. 

Four sample queries were performed as shown Figure 9. 
The first sample query specifies a skin-colored, medium- 
sized object that follows a motion trajectory arcing to the 
left, The ground truth consisted of nine video shots of vari- 
ous high jumpers in action and brown horses in full gallop. 
The return size is increased from 1 to 20 video shots, and a 
precision-recall curve is plotted in Figure 10 (a). 

An overlay of the four precision-recall curves is plotted in 
Figure 10. For an ideal system, the precision-recall curve is 
a horizontal line with precision value of 1.0 as recall ranges 
from 0.0 to 1.0. For normal systems, the precision-recall 
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curve remains relatively flat up to a certain recall value, after 
which the curve slopes downward. We note that a breakpoint 
as the point where the number of retrieved video shots equals 
the number of relavant video shots. The breakpoints of the 
four precision-recall curves are marked with a cross, The 
distance of the breakpoint from 1.0 (the optimal recall point) 
indicates how effective that particular query was; the farther 
the distance of breakpoint, the less optimal the performance, 

Both sample queries (a) and (c) performed well in Fig- 
ure 10. In both cases, the motion trajectories were well- 
defined, not easily confused with camera motion. The sam- 
ple query (b), however, did not perform as well. One reason 
is that, in some video shots, the background objects were 
not properly compensated by the global motion compensa- 
tion algorithm and were treated as foreground objects. Since 
the video database contains many shots where the camera 
is panning from right to left, those same background objects 
were indexed with left/right motion trajectories. The average 
precision-recall curve is also calculated and plotted in Figure 
11;. 

no n - 
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(c) (4 
FigCre9. Four sample queries used in the preclslon- 
recall experiments. (a-b) Highlights motion, color 
and size. (c) Highlights motion and size. (d) High- 
lights multiple objects in addition to motion and 
size. 

9.2. Time and Cost to Find a Particular Video Shot 

Two benchmarks are used to evaluate how efficiently the 
system uses its resources to find the correct video shot. 
Query frequency measures how many separate queries are 
needed to get a particular video shot in the return list. Band- 
width measures how many different false alarms are returned 



Figure 10. The precision-recall curves correspond- 
ing to the sample queries of Figure 9 

Figure 11. The precision-recall curve averaged over 
the four precision-recall curves of Figure 10 

b&fore obtaining the correct video shot in the return list. 
A randomly generated target video shot, shown in Figure 

12 (b), is chosen from the database. In order to find this 
video shot, we query the system, selecting a combination of 
objects, features, and feature weights. The total number of 
queries to get this video shot is recorded. By varying the size 
of the return list, the query frequency curve is generated. 

Each query returns a list of video shots from an HP 9000 
server over the network to a client. The video shot is actually 
represented by a 88x72 key frame. In many cases, a series 
of queries were needed to reach a particular video shot, The 
number of key frames that were returned are totaled. Repeat 
frames are subtracted from this total since they are stored in 
the cache and not retransmitted over the network. Concep- 
tually bandwidth is proportional to the total number of key 
frames transmitted. Therefore the bandwidth is recorded and 
by varying the size of the return list, the bandwidth curve is 
generated. 

Twenty target video shots, similar to those in Figure 12, 
are randomly selected. For each target video shot, sample 
queries are performed, and query frequency and bandwidth 
curves are generated by varying the return size from 3 to 18 
video shots. 

The query frequeqcy curve in Figure 13 shows that a 
greater number of queries are needed for small return sizes. 
On average for a return size of 14, only two queries are 
needed to reach the desired video shot. 

In Figure 14;the bandwidth curve linearly decreases as 
return size decreases. For small return sizes, many times 
ten or more queries failed to place the video shot within the 
return list. These “failed” videos, shown in Figure 15, were 
simply discarded in this case. In Figure 16, we compensate 
for these failed queries by applying a heuristic to penalize the 
returned videos. Once this was done, the average bandwidth 
was recalculated in Figure 16, which shows that a medium 
return size requires the least amount of bandwidth. 

The system performed better when it was provided with 
more information. Multiple object queries proved more ef- 
fective than single object queries. Also, objects with a 
greater number of features, such as color, motion, size, and 
shape, performed better than those with just a few features. 
It is also important to emphasize that certain features proved 
more effective than others. For example, motion was the 
most effective, followed by color, size, shape and texture. 

9.3. Querying Multiple Objects 

When the query contains multiple video objects, we need 
to merge the resuIts of the individual video object queries. 
The final result is simply an logical intersection of all the 
results of the individual query objects. When we perform 
a multiple object query in the the present implementation, 
we do not use the relative ordering of the video objects in 
space as well in time. These additional constraints could 
be imposed on the result by using the idea of 2D strings 
[Chang 871, [Shearer 971, [Smith 961 (discussed’in 10.3). 
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Figure 12. Three sample queries used in system 
benchmarks. The left column shows the final 
sketch to successfullyretrievethe video. (a) A Skier 
(b) Two soccer players (c) A baseball query. In the 
baseball video clip, the catcher moves to the left. 
Also note the strong match of the sky-like texture 
to the sky. 

Figure 14. Average bandwidth used in reaching a 
video shot (accounting for successful cases only). 

Figure 15. Number of failed videos for a particular 
return size. 

Figure 13. Average number of queries needed to 
reachavideoshot(accountingforsuccessfulcases 
only). 
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Figure 16. Average bandwidth used including the 
failed videos. 

10. Research Issues in VideoQ 

While the results section (Section 9) demonstrates that 
VideoQ works well, there are other issues that need to be ad- 
dressed. This section contains a brief overview of the issues 
that we are currently working on. 

10.1. Region Grouping 

Automatic region grouping, is an open problem in com- 
puter vision, and in spite of decades of research, we are 
still far from completeIy a automated technique that works 
well on unconstrained data. Nevertheless, the segmented re- 
sults, need to be further grouped in order for us to prune 
the search as well search at a higher semantic level. Also 
good region grouping is needed avoid over-segmentation of 
the video shot. 

10.2. Shape 

One of the biggest challenges with using shape as a fea- 
ture is to be able to represent the object while retaining a 
computationally efficient metric to compare two shapes. The 
complexity of matching two arbitrary N point polygons is 
O(N2 1ogN) [Arkin 911. 

One approach is to use geometric invariants to represent 
shape [Mundy 921, [Karen 941, [Lei 951. These are invari- 
ants on the coefficients of the implicit polynomial used to 
represent the shape of the object. However, these coefficients 
need to be very accurately calculated as the representation 
(that of implicit polynomials) is very sensitive to perturba- 
tions. Additionally, generating these coefficients is a compu- 
tationally intensive task. 

10.3. Spatio-Temporal Search 

We are currently extending the work done on VisualSEEk 
[Smith 961 on 2-D strings [Chang 871 in order to effectively 
constrain the query results. There has been work using mod- 
ified 2-D strings as a spatial index into videos [Arndt 891, 
[Shearer 971. 

For video, 2-D strings can be extended to a sequence of 
2D-strings or a 2D-string followed by a sequence of change 
edits [Shearer 971. Building on these observations we pro- 
pose two efficient methods for indexing spatio-temporal 
structures of segmented video objects. 

l In the first method, only frames with significant changes 
of spatial structures need to be explicitly indexed (by 
2D strings of those image frames). Given such a repre- 
sentation, users will be able to search video objects or 
events of interest (e.g., two objects swap locations, birth 
or death of objects) by specifying temporal instances or 
changes of spatial structures. A simplified representa- 
tion is to include the 2D strings at the beginning frame, 
the ending frame, and several sampled frames in be- 
tween. 

l The second method extends the 2D-string based query 
to SD-strings. Video objects may be projected to z,y 
and time dimensions to index their absolute centroid 
position, 3-dimensional support, and relative relation- 
ships. More sophisticated variations of 3D strings can 
be used to handle complex relationships such as adja- 
cency, containment, overlap. 

11. Conclusions 

Video search in large archives is an emerging research 
area. Although integration of the diverse multimedia com- 
ponents is essential in achieving a fully functional system, 
we focus on exploiting visual cues in this paper. Using the 
visual paradigm, our experiments with VideoQ show con- 
siderable success in retrieving diverse video clips such as 
soccer players, high jumpers and skiers. Annotating video 
objects with motion attributes and good spatio-temporal met- 
rics have been the key issues in this paradigm. 

The other interesting and unique contributions include 
developing a fully automated video analysis algorithm for 
object segmentation and feature extraction, a java-based in- 
teractive query interface for specifying multi-object queries, 
and the content-based visual matching of spatio-temporal at- 
tributes. 

Extensive content analysis is used to obtain accurate 
video object information. Global motion of the background 
scene is estimated to classify the video shots as well as to 
obtain the local object motion. A comprehensive visual fea- 
ture library is built to incorporate most useful visual fea- 
tures such as color, texture, shape, size, and motion. To 
support the on-line Web implementation, our prior results in 
compressed-domain video shot segmentation and editing are 
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used. Matched video clips are dynamically “cut” out from 
the MPEG stream containing the clip without full decoding 
of the whole stream. . 

As described earlier, our current work includes region 
grouping, object classification,, more accurate shape repre’ 
sentation, and support of relative spatio-temporal relation; 
ships. An orthogonal direction addresses the integration of 
the video object library with the natural language features to 
fill the gap between low-level visual domain and the high- 
level semantic classes. ,, 
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