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Data Compression

 

I

 

n comparison to the text medium, video frames
have high storage

 

 

 

requirements

 

. 

 

Audio and particularly video pose even greater
demands in this regard. The data rates needed to process and send continuous media are
also considerable. This chapter thus covers the efficient compression of audio and
video, which will be explained first in theory and subsequently in terms of compression
standards.

 

7.1 Storage Space

 

Uncompressed graphics, audio, and video data require substantial storage capac-
ity, which is not possible in the case of uncompressed video data, even given today’s
CD and DVD technology. The same is true for multimedia communications. Data trans-
fer of uncompressed video data over digital networks requires that very high bandwidth
be provided for a single point-to-point communication. To be cost-effective and feasi-
ble, multimedia systems must use compressed video and audio streams.

Most compression methods address the same problems, one at a time or in combi-
nation. Most are already available as products. Others are currently under development
or are only partially completed (see also [SPI94]). While fractal image compression
[BH93] may be important in the future, the most important compression techniques in
use today are JPEG [Org93, PM93, Wal91] for single pictures, H.263 (

 

p

 

×

 

64) [Le 91,
ISO93b] for video, MPEG [Lio91, ITUC90] for video and audio, as well as proprietary
techniques such as QuickTime from Apple and Video for Windows from Microsoft.

In their daily work, developers and multimedia experts often need a good under-
standing of the most popular techniques. Most of today’s literature, however, is either
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too comprehensive or is dedicated to just one of the above-mentioned compression
techniques, which is then described from a very narrow point of view. In this chapter,
we compare the most important techniques—JPEG, H.263, and MPEG—in order to
show their advantages, disadvantages, their similarities and differences, as well as their
suitability for today’s multimedia systems (for further analysis, see [ES98]). First, the
motivation for the use of compression techniques will be illustrated. Subsequently,
requirements for compression techniques will be derived. Section 7.3 covers source,
entropy, and hybrid coding. Sections 7.5 through 7.7 provide details about JPEG,
H.263, and MPEG. Section 7.8 explains the basics of fractal compression.

 

7.2 Coding Requirements

 

Images have considerably higher storage requirements than text, and audio and
video have still more demanding properties for data storage. Moreover, transmitting
continuous media also requires substantial communication data rates. The figures cited
below clarify the qualitative transition from simple text to full-motion video data and
demonstrate the need for compression. In order to be able to compare the different data
storage and bandwidth requirements of various visual media (text, graphics, images,
and video), the following specifications are based on a small window of 640

 

×

 

480
pixels on a display. The following holds always:

1kbit = 1000bit

1Kbit = 1024bit

1Mbit = 1024

 

×

 

1024bit

1. For the representation of the text

 

 

 

medium, two bytes are used for every 8

 

×

 

8 pixel
character.

Character per screen page = 

Storage required per screen page = 

2. For the representation of vector

 

 

 

images

 

,

 

 we assume that a typical image consists
of 500 lines [BHS91]. Each line is defined by its coordinates in the 

 

x

 

 direction and
the 

 

y

 

 direction, and by an 8-bit attribute field. Coordinates in the 

 

x

 

 direction
require 10 bits (log

 

2

 

(640)), while coordinates in the 

 

y

 

 direction require 9 bits
(log

 

2

 

(480)).

Bits per line = 9bits + 10bits + 9bits + 10bits + 8bits = 46bits

Storage required per screen page  

640 480×
8 8×

------------------------ 4 800,=

4 800, 2 byte× 9 600 byte = 9.4, Kbyte=

500
46
8
------× 2 875  byte,== 2.8Kbyte=
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3. Individual pixels of a bitmap can be coded using 256 different colors, requiring a
single byte per pixel.

Storage required per screen page = 640

 

×

 

480

 

×

 

1byte = 307,200 byte = 300Kbyte

The next examples specify continuous media and derive the storage required for
one second of playback.

1. Uncompressed speech of telephone quality is sampled at 8kHz and quantized
using 8bit per sample, yielding a data stream of 64Kbit/s.

Required storage space/s  

2. An uncompressed stereo

 

 

 

audio signal of CD quality is sampled at 44.1kHZ and
quantized using 16 bits.

Data rate =  

Required storage space/s 

3. A video sequence consists of 25 full frames per second. The luminance and
chrominance of each pixel are coded using a total of 3 bytes.
According to the European PAL standard, each frame consists of 625 lines and
has a horizontal resolution of more than 833 pixels. The luminance and color
difference signals are encoded separately and transmitted together using a multi-
plexing technique (4:2:2).
According to CCIR 601 (studio standard for digital video), the luminance (

 

Y

 

) is
sampled at 13.5MHz, while chrominance (

 

R–Y

 

 and 

 

B–Y

 

) is sampled using
6.75MHz. Samples are coded uniformly using 8bits.

Bandwidth = (13.5 MHz + 6.75 MHz + 6.75 MHz)

 

×

 

8bit = 216

 

×

 

10

 

6

 

 bit/s.

Data rate =  

Required storage sapce/s = 

High-resolution television uses twice as many lines and an aspect ratio of 16:9,
yielding a data rate 5.33 times that of current televisions.
These examples briefly illustrate the increased demands on a computer system in

terms of required storage space and data throughput if still images and in particular
continuous media are to be processed. Processing uncompressed video data streams in
an integrated multimedia system requires storage space in the gigabyte range and buffer

64  Kbit/s
8 bit/byte

 ----------------------- 1 s
1 024 byte/Kbyte,

 ------------------------------------------ × = 8  Kbyte=

2
44 100,

s
---------------- 16  bit

8 bit/byte
 ----------------------- ××  176 400  byte/s,=

176 400  byte/s,
1 s

1 024 byte/Kbyte,
 ------------------------------------------ × = 172  Kbyte=

640 480 25 3 byte/s ××× 23 040 000  byte/s,,=

2 304, 104×  byte/s 
1 s

1 024 byte/Kbyte,
------------------------------------------× 22 500Kbyte,=
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space in the megabyte range. The throughput in such a system can be as high as
140Mbit/s, which must also be transmitted over networks connecting systems (per uni-
directional connection). This kind of data transfer rate is not realizable with today’s
technology, or in the near future with reasonably priced hardware.

However, these rates can be considerably reduced using suitable compression
techniques [NH88, RJ91], and research, development, and standardization in this area
have progressed rapidly in recent years [ACM89, GW93]. These techniques are thus an
essential component of multimedia systems.

Several compression techniques for different media are often mentioned in the
literature and in product descriptions:

 

•

 

JPEG (Joint Photographic Experts Group) is intended for still images.

 

•

 

H.263 (H.261 

 

p

 

×

 

64) addresses low-resolution video sequences. This can be com-
plemented with audio coding techniques developed for ISDN and mobile commu-
nications, which have also been standardized within CCITT.

 

•

 

MPEG (Moving Picture Experts Group) is used for video and audio compression.

Compression techniques used in multimedia systems are subject to heavy
demands. The quality of the compressed, and subsequently decompressed, data should
be as good as possible. To make a cost-effective implementation possible, the complex-
ity of the technique used should be minimal. The processing time required for the
decompression algorithms, and sometimes also the compression algorithms, must not
exceed certain time spans. Different techniques address requirements differently (see,
for example, the requirements of [Org93]). 

One can distinguish between requirements of “dialogue” mode applications (e.g.
videoconferencing or picture transmission) and “retrieval” mode applications (e.g.
audiovisual information systems, where a human user retrieves information from a
multimedia database).

Compression techniques like 

 

p

 

×

 

64, with its symmetric processing expenditure for
compression and decompression and its strict delay limits, are better suited to dialogue
applications. Other techniques, such as MPEG-1, are optimized for use in retrieval
applications at the expense of considerable effort during compression.

The following requirement applies to compression techniques used for dialogue
mode

 

 

 

applications:

 

•

 

The end-to-end delay for a technique used in a dialogue system should not exceed
150ms for compression and decompression alone. To support an easy, natural dia-
logue, ideally compression or decompression by itself should introduce an addi-
tional delay of no more than 50ms. The overall end-to-end delay additionally
comprises delay in the network, communications protocol processing in the end
system, and data transfer to and from the respective input and output devices.
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The following requirements apply to compression techniques used for 

 

r

 

etrieval
mode applications:

 

•

 

Fast forward and fast rewind with simultaneous display (or playback) of the data
should be possible, so that individual passages can be sought and found quicker.

 

•

 

Random access to single images or audio passages in a data stream should be pos-
sible in less than half a second. This access should be faster than a CD-DA system
in order to maintain the interactive character of the retrieval application.

 

•

 

Decompression of images, video, or audio passages should be possible without
interpreting all preceding data. This allows random access and editing.

The following requirements apply to compression techniques used for either
dialogue or retrieval mode applications:

 

•

 

To support display of the same data in different systems, it is necessary to define a
format that is independent of frame size and video frame rate.

 

•

 

Audio and video compression should support different data rates (at different
quality) so that the data rate can be adjusted to specific system conditions.

 

•

 

It should be possible to precisely synchronize audio and video. It should also be
possible for a system program to synchronize with other media.

 

•

 

It should be possible to implement an economical solution today either in soft-
ware or using at most a few VLSI chips.

 

•

 

The technique should enable cooperation among different systems. It should be
possible for data generated on a local multimedia system to be reproduced on
other systems. This is relevant, for example, in the case of course materials dis-
tributed on CDs. This allows many participants to read the data on their own sys-
tems, which may be made by different manufacturers. Also, since many
applications exchange multimedia data between systems over communications
networks, the compression techniques must be compatible. This can be assured
with

 

 de jure

 

 (e.g. ITU, ISO, or ECMA) and/or 

 

de facto

 

 standards.

Different compression schemes take these requirements into account to a varying
extent.
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Table 7-1  

 

Overview of some coding and compression techniques.

 

7.3 Source, Entropy, and Hybrid Coding

 

Compression techniques can be categorized as shown in Table 7-1. We distinguish
among three types of coding: entropy

 

, 

 

source

 

, 

 

and hybrid

 

 

 

coding

 

.

 

 Entropy coding is a
lossless process, while source coding is often lossy. Most multimedia systems use
hybrid techniques; most are only combinations of entropy and source coding, without
any new processing algorithms.  

7.3.1 Entropy Coding

 

Entropy coding can be used for different media regardless of the medium’s spe-
cific characteristics. The data to be compressed are viewed as a sequence of digital data
values, and their semantics are ignored. It is lossless because the data prior to encoding
is identical to the data after decoding; no information is lost. Thus run-length encoding,
for example, can be used for compression of any type of data in a file system, for
example, text, still images for facsimile, or as part of motion picture or audio coding.

 

Coding Type Basis Technique

 

Run-length Coding

Entropy Coding Huffman Coding

Arithmetic Coding

Prediction DPCM

DM

Transformation FFT

Source Coding DCT

Bit Position

Layered Coding (according 
to importance)

Subsampling

Subband Coding

Vector Quantization

JPEG

Hybrid Coding MPEG

H.263

Many proprietary systems
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7.3.2 Source Coding

 

Source coding takes into account the semantics of the information to be encoded
[SGC90]. The degree of compression attainable with this often lossy technique depends
on the medium. In the case of lossy compression, a relation exists between the uncoded
data and the decoded data; the data streams are similar but not identical. The character-
istics of the medium can be exploited. In the case of speech, a considerable reduction of
the amount of data can be achieved by transforming the time-dependent signal into the
frequency domain, followed by an encoding of the formants (see Chapter 3 regarding
audio).

Formants are defined as the maxima in the voice spectrum. Generally, five for-
mants along with the voice fundamental frequency suffice for a very good reconstruc-
tion of the original signal, although formant tracking has been shown to be a problem
with this form of speech analysis (see Chapter 3).

In the case of still images, spatial redundancies can be used for compression
through a content prediction technique. Other techniques perform a transformation of
the spatial domain into the two-dimensional frequency domain by using the cosine
transform. Low frequencies define the average color, and the information of higher fre-
quencies contains the sharp edges. Hence, low frequencies are much more important
than the higher frequencies, a feature that can be used for compression.

Table 7-1 shows only a sampling of all coding and compression techniques. The
emphasis is on the algorithms that are most important for multimedia systems and on
their properties. To better understand the hybrid schemes

 

, 

 

we consider a set of typical
processing steps common to all techniques (entropy, source, and hybrid).

 

7.3.3 Major Steps of Data Compression

 

Figure 7-1 shows the typical sequence of operations performed in the compres-
sion of still images and video and audio data streams. The following example describes
the compression of one image:

1. The preparation step (here picture preparation) generates an appropriate digital
representation of the information in the medium being compressed. For example,
a picture might be divided into blocks of 8

 
×

 
8 pixels with a fixed number of bits

per pixel.
2. The processing step (here picture processing) is the first step that makes use of the

various compression algorithms. For example, a transformation from the time
domain to the frequency domain can be performed using the Discrete Cosine
Transform (DCT). In the case of interframe coding, motion vectors can be deter-
mined here for each 8

 

×

 

8 pixel block.
3. Quantization takes place after the mathematically exact picture processing step.

Values determined in the previous step cannot and should not be processed with
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full exactness; instead they are quantized according to a specific resolution and
characteristic curve. This can also be considered equivalent to the 

 

µ

 

-law and 

 

A-
law, which are used for audio data [JN84]. In the transformed domain, the results
can be treated differently depending on their importance (e.g., quantized with
different numbers of bits).

4. Entropy coding starts with a sequential data stream of individual bits and bytes.
Different techniques can be used here to perform a final, lossless compression. For
example, frequently occurring long sequences of zeroes can be compressed by
specifying the number of occurrences followed by the zero itself.

Picture processing and quantization can be repeated iteratively, such as in the case
of Adaptive Differential Pulse Code Modulation (ADPCM). There can either be “feed-
back” (as occurs during delta modulation), or multiple techniques can be applied to the
data one after the other (like interframe and intraframe coding in the case of MPEG).
After these four compression steps, the digital data are placed in a data stream having a
defined format, which may also integrate the image starting point and type of compres-
sion. An error correction code can also be added at this point.

Figure 7-1 shows the compression process applied to a still image; the same prin-
ciples can also be applied to video and audio data.

Figure 7-1 Major steps of data compression.

Decompression is the inverse process of compression. Specific coders and decod-
ers can be implemented very differently. Symmetric coding is characterized by compa-
rable costs for encoding and decoding, which is especially desirable for dialogue
applications. In an asymmetric technique, the decoding process is considerably less
costly than the coding process. This is intended for applications where compression is
performed once and decompression takes place very frequently, or if the decompression
must take place very quickly. For example, an audio-visual course module is produced
once, but subsequently decoded by the many students who use it. The main requirement
is real-time decompression. An asymmetric technique can be used to increase the
quality of the compressed images.

The following section discusses some basic compression techniques. Subsequent
sections describe hybrid techniques frequently used in the multimedia field.

Uncompressed
Picture

Compressed
Picture

Picture
Processing

Quanti-
zation

Entropy
Coding

Picture
Preparation
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7.4 Basic Compression Techniques

The hybrid compression techniques often used on audio and video data in multi-
media systems are themselves composed of several different techniques. For example,
each technique listed in Table 7-1 employs entropy coding (in the form of variations of
run-length coding and/or a statistical compression technique).

The simplest techniques are based on interpolation, whereby it is possible to make
use of properties of the human eye or ear. For example, the eye is more sensitive to
changes in brightness than to color changes. Therefore, instead of dividing an image
into RGB (red, green, blue) components, a YUV representation can be used (see
Chapter 5). The U and V components can then be sampled with lower horizontal and
vertical resolution, a technique called subsampling.

7.4.1 Run-Length Coding

Data often contains sequences of identical bytes. By replacing these repeated byte
sequences with the number of occurrences, a substantial reduction of data can be
achieved. This is known as run-length coding. A special marker M is needed in the data
that does not occur as part of the data stream itself. This M-byte can also be realized if
all 256 possible bytes can occur in the data stream by using byte stuffing. To illustrate
this, we define the exclamation mark to be the M-byte. A single occurrence of an excla-
mation mark is interpreted as the M-byte during decompression. Two consecutive
exclamation marks are interpreted as an exclamation mark occurring within the data.

The M-byte can thus be used to mark the beginning of a run-length coding. The
technique can be described precisely as follows: if a byte occurs at least four times in a
row, then the number of occurrences is counted. The compressed data contain the byte,
followed by the M-byte and the number of occurrences of the byte. Remembering that
we are compressing at least four consecutive bytes, the number of occurrences can be
offset by –4. This allows the compression of between four and 258 bytes into only three
bytes. (Depending on the algorithm, one or more bytes can be used to indicate the
length; the same convention must be used during coding and decoding.)

In the following example, the character C occurs eight times in a row and is com-
pressed to the three characters C!4:

Uncompressed data: ABCCCCCCCCDEFGGG
Run-length coded: ABC!4DEFGGG

7.4.2 Zero Suppression

Run-length coding is a generalization of zero suppression, which assumes that just
one symbol appears particularly often in sequences. The blank (space) character in text
is such a symbol; single blanks or pairs of blanks are ignored. Starting with sequences
of three bytes, they are replaced by an M-byte and a byte specifying the number of
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blanks in the sequence. The number of occurrences can again be offset (by –3).
Sequences of between three and 257 bytes can thus be reduced to two bytes. Further
variations are tabulators used to replace a specific number of null bytes and the defini-
tion of different M-bytes to specify different numbers of null bytes. For example, an
M5-byte could replace 16 null bytes, while an M4-byte could replace 8 null bytes. An
M5-byte followed by an M4-byte would then represent 24 null bytes.

7.4.3 Vector Quantization

In the case of vector quantization, a data stream is divided into blocks of n bytes
each (n>1). A predefined table contains a set of patterns. For each block, the table is
consulted to find the most similar pattern (according to a fixed criterion). Each pattern
in the table is associated with an index. Thus, each block can be assigned an index.
Such a table can also be multidimensional, in which case the index will be a vector. The
corresponding decoder has the same table and uses the vector to generate an approxi-
mation of the original data stream. For further details see [Gra84] for example.

7.4.4 Pattern Substitution

A technique that can be used for text compression substitutes single bytes for pat-
terns that occur frequently. This pattern substitution can be used to code, for example,
the terminal symbols of high-level languages (begin, end, if). By using an M-byte, a
larger number of words can be encoded–the M-byte indicates that the next byte is an
index representing one of 256 words. The same technique can be applied to still images,
video, and audio. In these media, it is not easy to identify small sets of frequently occur-
ring patterns. It is thus better to perform an approximation that looks for the most simi-
lar (instead of the same) pattern. This is the above described vector quantization.

7.4.5 Diatomic Encoding

Diatomic encoding is a variation based on combinations of two data bytes. This
technique determines the most frequently occurring pairs of bytes. Studies have shown
that the eight most frequently occurring pairs in the English language are “E,” “T,”
“TH,” “A,” “S,” “RE,” “IN,” and “HE.” Replacing these pairs by special single bytes
that otherwise do not occur in the text leads to a data reduction of more than ten
percent.

7.4.6 Statistical Coding

There is no fundamental reason that different characters need to be coded with a
fixed number of bits. Morse code is based on this: frequently occurring characters are
coded with short strings, while seldom-occurring characters are coded with longer
strings. Such statistical coding depends how frequently individual characters or



Basic Compression Techniques 115

sequences of data bytes occur. There are different techniques based on such statistical
criteria, the most prominent of which are Huffman coding and arithmetic coding.

7.4.7 Huffman Coding

Given the characters that must be encoded, together with their probabilities of
occurrence, the Huffman coding algorithm determines the optimal coding using the
minimum number of bits [Huf52]. Hence, the length (number of bits) of the coded char-
acters will differ. The most frequently occurring characters are assigned to the shortest
code words. A Huffman code can be determined by successively constructing a binary
tree, whereby the leaves represent the characters that are to be encoded. Every node
contains the relative probability of occurrence of the characters belonging to the subtree
beneath the node. The edges are labeled with the bits 0 and 1.

The following brief example illustrates this process:

1. The letters A, B, C, D, and E are to be encoded and have relative probabilities of
occurrence as follows:

p(A)=0.16, p(B)=0.51, p(C)=0.09, p(D)=0.13, p(E)=0.11

2. The two characters with the lowest probabilities, C and E, are combined in the
first binary tree, which has the characters as leaves. The combined probability of
their root node CE is 0.20. The edge from node CE to C is assigned a 1 and the
edge from CE to C is assigned a 0. This assignment is arbitrary; thus, different
Huffman codes can result from the same data.

3. Nodes with the following relative probabilities remain:

p(A)=0.16, p(B)=0.51, p(CE)=0.20, p(D)=0.13

The two nodes with the lowest probabilities are D and A. These nodes are com-
bined to form the leaves of a new binary tree. The combined probability of the
root node AD is 0.29. The edge from AD to A is assigned a 1 and the edge from
AD to D is assigned a 0.

If root nodes of different trees have the same probability, then trees having the
shortest maximal path between their root and their nodes should be combined
first. This keeps the length of the code words roughly constant.

4. Nodes with the following relative probabilities remain:

p(AD)=0.29, p(B)=0.51, p(CE)=0.20

The two nodes with the lowest probabilities are AD and CE. These are combined
into a binary tree. The combined probability of their root node ADCE is 0.49. The
edge from ADCE to AD is assigned a 0 and the edge from ADCE to CE is assigned
a 1.

5. Two nodes remain with the following relative probabilities:

p(ADCE)=0.49, p(B)=0.51
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These are combined to a final binary tree with the root node ADCEB. The edge
from ADCEB to B is assigned a 1, and the edge from ADCEB to ADCE is assigned
a 0.

6. Figure 7-2 shows the resulting Huffman code as a binary tree. The result is the
following code words, which are stored in a table:

w(A)=001, w(B)=1, w(C)=011, w(D)=000, w(E)=010

Figure 7-2 Example of a Huffman code represented as a binary tree.

Such a table could be generated for a single image or for multiple images together.
In the case of motion pictures, a Huffman table can be generated for each sequence or
for a set of sequences. The same table must be available for both encoding and decod-
ing. If the information of an image can be transformed into a bit stream, then a Huffman
table can be used to compress the data without any loss. The simplest way to generate
such a bit stream is to code the pixels individually and read them line by line. Note that
usually more sophisticated methods are applied, as described in the remainder of this
chapter.

If one considers run-length coding and all the other methods described so far,
which produce the same consecutive symbols (bytes) quite often, it is certainly a major
objective to transform images and videos into a bit stream. However, these techniques
also have disadvantages in that they do not perform efficiently, as will be explained in
the next step.

7.4.8 Arithmetic Coding

Like Huffman coding, arithmetic coding is optimal from an information theoreti-
cal point of view (see [Lan84, PMJA88]). Therefore, the length of the encoded data is

p(ADCEB)=1.00

10

1 0

1 10 0

p(ADCE)=0.49 p(B)=0.51

p(AD)=0.29p(CE)=0.20

p(A)=0.16p(D)=0.13p(E)=0.11p(C)=0.09
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also minimal. Unlike Huffman coding, arithmetic coding does not code each symbol
separately. Each symbol is instead coded by considering all prior data. Thus a data
stream encoded in this fashion must always be read from the beginning. Consequently,
random access is not possible. In practice, the average compression rates achieved by
arithmetic and Huffman coding are similar [Sto88].

Differences in compression efficiency arise in special cases, for example in digi-
tized graphics consisting primarily of a single (background) color. Arithmetic coding is
better suited than Huffman coding in this case. This is always the case if symbols occur
in the input data stream with such a frequency that they have a very small information
content. These can be encoded using less than one bit, whereas in Huffman coding each
symbol requires at least one bit.

7.4.9 Transformation Coding

Transformation coding pursues a different approach. Data is transformed into
another mathematical domain that is more suitable for compression. An inverse trans-
formation must exist. The simplest example is the Fourier transform, which transforms
data from the time domain into the frequency domain. Other examples include the
Walsh, Hadamard, Haar, and Slant transforms. However, the transformed data have no
major advantages with respect to a subsequent compression. The most effective trans-
formations for data reduction are the Discrete Cosine Transform (DCT), described in
Section 7.5.2, and the Fast Fourier Transform (FFT).

7.4.10 Subband Coding

Unlike transformation coding, which transforms all data into another domain,
selective frequency transformation (subband coding) considers the signal only in pre-
defined regions of the spectrum, such as frequency bands. The number of bands is a
crucial quality criterion. This technique is well suited for the compression of speech.

7.4.11 Prediction or Relative Coding

Instead of compressing single bytes or sequences of bytes, differential encoding
can be used. This is also known as prediction or relative coding. For example, if charac-
ters in a sequence are clearly different from zero, but do not differ much amongst them-
selves, then calculating differences from the respective previous value could be
profitable for compression. The following examples explain this technique for different
media:

• For still images, edges yield large difference values, while areas with similar lumi-
nance and chrominance yield small values. A homogeneous area is characterized
by a large number of zeroes, which could be further compressed using run-length
coding.
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• For video, performing relative coding in the time domain leads to an encoding of
differences from the previous image only. In a newscast or a video telephony
application, there will be a large number of zero bytes, because the background of
successive images does not change very often. Motion compensation can also be
performed here (see e.g. [PA91]). Blocks of, for example, 16×16 pixels are com-
pared with each other in successive pictures. In the case of a car moving from left
to right, an area in the current image would be most similar to an area lying further
to the left in the previous image. This motion can be coded as a vector.

• Audio techniques often apply Differential Pulse Code Modulation (DPCM) to a
sequence of PCM-coded samples (see e.g. [JN84]). This technique requires a lin-
ear characteristic curve for quantization. It is thus not necessary to store the whole
number of bits for each sample. It is sufficient to represent the first PCM-coded
sample as a whole and all following samples as the difference from the previous
one.

7.4.12 Delta Modulation

Delta Modulation is a modification of DPCM where difference values are encoded
with exactly one bit, which indicates whether the signal increases or decreases. This
leads to an inaccurate coding of steep edges. This technique is particularly profitable if
the coding does not depend on 8-bit grid units. If the differences are small, then a much
smaller number of bits is sufficient. Difference encoding is an important feature of all
techniques used in multimedia systems. Section 7.5.2 describes other “delta” methods
that can be applied to images.

7.4.13 Adaptive Compression Techniques

Most of the compression techniques described so far take advantage of already
known characteristics of the data to be compressed (e.g., frequently occurring
sequences of bytes or the probability of occurrence of individual bytes). An atypical
sequence of characters results in a poor compression. However, there are also adaptive
compression techniques, which can adjust themselves to the data being compressed.
This adaptation can be implemented in different ways:

• We illustrate the first technique with the following example, which assumes a cod-
ing table has been generated in advance (e.g., as per Huffman). For each symbol
to be encoded, the table contains the corresponding code word and, in an addi-
tional column, a counter. All entries’ counters are initialized to zero at the begin-
ning. For the first symbol to be encoded, the coder determines the code word
according to the table. Additionally, the coder increments the counter by one. The
symbols and their respective counters are then sorted in decreasing order by
counter value. The order of the code words is not changed. The most frequently
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occurring symbols are now at the beginning of the table, since they have the high-
est counter values. Symbols with the highest frequency count are thus always
encoded with the shortest code words.

• Another adaptive compression technique is Adaptive DPCM (ADPCM), a gener-
alization of DPCM. For simplicity, this is often called DPCM.

Here, difference values are encoded using only a small number of bits. With
DPCM, either coarse transitions would be coded correctly (the DPCM-encoded
bits are used represent bits with a higher significance), or fine transitions are
coded exactly (if the bits are used to represent bits with less significance). In the
first case, the resolution of low audio signals would not be sufficient, and in the
second case a loss of high frequencies would occur.

ADPCM adapts to the significance of the data stream. The coder divides the
DPCM sample values by an appropriate coefficient and the decoder multiplies the
compressed data by the same coefficient, thus changing the step size of the signal.
The coder of the DPCM-encoded signal adjusts the value of the coefficient.

A signal with a large portion of high frequencies will result in frequent, very high
DPCM values. The coder will select a high value for the coefficient. The result is a
very rough quantization of the DPCM signal in passages with steep edges. Low-
frequency portions of such passages are hardly considered at all.

In the case of a signal with steady, relatively low DPCM values, that is, with a
small portion of high frequencies, the coder will choose a small coefficient. This
ensures good resolution for the dominant, low frequency portion of the signal. If
high frequencies suddenly occur in such a passage, a signal distortion in the form
of a slope overload occurs. The greatest possible change that can be represented
by an ADPCM value using the available number of bits and the current step size is
not enough to represent the new DPCM value. The jump in the PCM signal will
be faded.

Changes in the adaptively set coefficient can be explicitly inserted in the com-
pressed data by the encoder. Alternatively, the decoder can calculate the coeffi-
cients itself from an ADPCM-coded data stream. This predictor is rated so as to
minimize errors in the data stream. Note that the definition of an error and the
associated predictor rating depends on the medium and is ideally trivial.

An audio signal with frequently changing portions of extreme low or high fre-
quencies is generally not suited for ADPCM coding. For telephone applications,
the ITU has standardized a version of the ADPCM technique using 32Kbit/s that
is based on four bits per difference value and a sampling frequency of 8kHz.
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7.4.14 Other Basic Techniques

Apart from the compression techniques described earlier, some additional well
known techniques are used today:

• Video compression techniques often use Color Look-Up Tables (see
Section 5.1.2). This technique is used in distributed multimedia systems, for
example in [LE91, LEM92].

• A simple technique for audio is silence suppression, whereby data is only encoded
if the volume exceeds a certain threshold.

ITU incorporates some of the basic audio coding techniques in the G.700 series of
standards: G.721 defines PCM coding for 3.4kHz quality over 64Kbit/s channels, and
G.728 defines 3.4kHz quality over 16Kbit/s channels. See [ACG93] for a detailed
description of various audio coding techniques.

The following sections describe the most important work in the standardization
bodies concerning image and video coding. In the framework of ISO/IECJTC1/SC2/
WG8, four subgroups were established in May 1988: JPEG (Joint Photographic Experts
Group), working on coding of still images; JBIG (Joint Bi-Level Image Experts
Group), working on the progressive processing of bi-level coding algorithms; CGEG
(Computer Graphics Experts Group), working on coding principles; and MPEG (Mov-
ing Picture Experts Group), working on the coded representation of motion video. The
next section presents the results of the JPEG activities.

7.5 JPEG

Since June 1982, Working Group 8 (WG8) of ISO has been working on standards
for the compression and decompression of still images [HYS88]. In June 1987, ten dif-
ferent techniques for coding color and gray-scaled still images were presented. These
ten were compared, and three were analyzed further. An adaptive transformation coding
technique based on the Discrete Cosine Transform (DCT) achieved the best subjective
results [LMY88, WVP88]. This technique was then further developed with consider-
ation paid to the other two methods. The coding known as JPEG (Joint Photographic
Experts Group) is a joint project of ISO/IECJTC1/SC2/WG10 and Commission Q.16
of CCITT SGVIII. Hence the “J” (from “Joint”) in JPEG—ISO together with CCITT.
In 1992, JPEG became an ISO International Standard (IS) [Org93].

JPEG applies to color and gray-scaled still images [LOW91, MP91, Wal91].
Video sequences can also be handled through a fast coding and decoding of still
images, a technique known as Motion JPEG. Today, implementations of parts of JPEG
are already available, either as software-only packages or using special-purpose hard-
ware support. It should be noted that as yet, most products support only the absolutely
necessary algorithms. The only part of JPEG currently commercially available is the
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base mode with certain processing restrictions (limited number of image components
and color coding).

7.5.0.1 Requirements

In order to ensure the widespread distribution and application of JPEG, the fol-
lowing requirements were established and fulfilled [Wal91]:

• The standard should be independent of image size.

• It should be applicable to any image aspect ratio and any pixel aspect ratio.

• The color space and the number of colors used should be independent of one
another.

• Image content may be of any complexity, with any statistical characteristics.

• The JPEG standard should be start-of-the-art (or near) regarding the compression
factor and image quality.

• The processing complexity should permit a software solution to run on a large
number of available general-purpose processors, and should be drastically
reduced with the use of special-purpose hardware.

• Sequential (line by line) and progressive (successive refinement of the whole
image) decoding should both be possible. A lossless, hierarchical coding of the
same image with different resolutions should also be possible.

The user can select parameters to trade off the quality of the reproduced image,
the compression processing time, and the size of the compressed image.

7.5.0.2 JPEG Overview

Applications do not have to include both an encoder and a decoder. In many appli-
cations only one of them is needed. The encoded data stream has a fixed interchange
format that includes encoded image data, as well as the chosen parameters and tables of
the coding process, enabling decoding. If there is a common context between the coder
and the decoder (e.g., if the coder and decoder are parts of the same application), then
there can be an abbreviated interchange format. This format includes few if any of the
required tables (Appendix A in [Org93] describes this format in detail). The inter-
change format includes all information required during decoding, if this information is
not available as part of the common context. In the regular, non-abbreviated mode, the
interchange format includes all information required to decode without prior knowl-
edge of the coding process.

Figure 7-3 outlines the fundamental steps of JPEG compression in accordance
with the general scheme illustrated in Figure 7-1. JPEG defines several image compres-
sion modes by selecting different combinations of these steps.
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Figure 7-3 Steps of the JPEG compression technique: summary of the different
modes.

7.5.0.3 JPEG Modes

JPEG defines four modes, which themselves include additional variations:

• The lossy, sequential DCT-based mode (baseline process, base mode) must be
supported by every JPEG decoder.

• The expanded lossy, DCT-based mode provides a set of further enhancements to
the base mode.

• The lossless mode has a low compression ratio and allows a perfect reconstruction
of the original image.

• The hierarchical mode accommodates images of different resolutions by using
algorithms defined for the other three modes.

The baseline process uses the following techniques: block, Minimum Coded Unit
(MCU), FDCT, run-length, and Huffman, which are explained in this section together
with the other modes. Image preparation is first presented for all modes. The picture
processing, quantization, and entropy encoding steps used in each mode are then
described separately for each mode.

7.5.1 Image Preparation

For image preparation, JPEG specifies a very general image model that can
describe most commonly used still image representations. For instance, the model is not
based on three image components with 9-bit YUV coding and a fixed numbers of lines
and columns. The mapping between coded color values and the colors they represent is
also not coded. This fulfills the JPEG requirement of independence from image
parameters such as image size or the image and pixel aspect ratios.

An image consists of at least one and at most N=255 components or planes, as
shown on the left side of Figure 7-4. These planes can be assigned to individual RGB
(red, green, blue) colors, or to the YIQ or YUV signals, for example.
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Figure 7-4 Uncompressed digital image as per [Org93].

Each component is a rectangular array Xi×Yi of pixels (the samples). Figure 7-5
shows an image with three planes, each with the same resolution.

Figure 7-5 Example of JPEG image preparation with three components having the
same resolution.

The resolution of the individual components may be different. Figure 7-6 shows
an image with three planes where the second and third planes have half as many col-
umns as the first plane. A gray-scale image will, in most cases, consist of a single com-
ponent, while an RGB color image will have three components with the same
resolution (same number of lines Y1 = Y2 = Y3 and the same number of columns
X1 = X2 = X3). In JPEG image preparation, YUV color images with subsampling of the
chrominance components use three planes with Y1 = 4Y2 = 4Y3 and X1 = 4X2 = 4X3.
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Figure 7-6 Example of JPEG image preparation with three components having
different resolutions.

Each pixel is represented by p bits with values in the range from 0 to 2p–1. All
pixels of all components of an image must have the same number of bits. The lossy
modes of JPEG use a precision of either 8 or 12 bits per pixel. The lossless modes can
use between 2 and 12 bits per pixel. If a JPEG application uses any other number of
bits, the application itself must suitably transform the image to conform to the number
of bits defined by the JPEG standard.

Instead of the values Xi and Yi, the compressed data includes the values X (maxi-
mum of all Xi) and Y (maximum of all Yi), as well as factors Hi and Vi for each plane. Hi

and Vi represent the relative horizontal and vertical resolutions with respect to the
minimal horizontal and vertical resolutions.

Let us consider the following example from [Org93]. An image has a maximum
resolution of 512 pixels in both the horizontal and vertical directions and consists of
three planes. The following factors are given:

Plane 0: H0 = 4, V0 = 1
Plane 1: H1 = 2, V1 = 2
Plane 2: H2 = 1, V2 = 1

This leads to:

X = 512, Y = 512, Hmax = 4 and Vmax = 2
Plane 0: X0 = 512, Y0 = 256
Plane 1: X1 = 256, Y1 = 512
Plane 2: X2 = 128, Y2 = 256

Hi and Vi must be integers between 1 and 4. This awkward-looking definition is
needed for the interleaving of components.

In the image preparation stage of compression, the image is divided into data
units. The lossless mode uses one pixel as one data unit. The lossy mode uses blocks of
8×8 pixels. This is a consequence of DCT, which always transforms connected blocks.

Up to now, the data units are usually prepared component by component and
passed on in order to the following image processing. Within each component, the data
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units are processed from left to right, as shown in Figure 7-7. This is known as a non-
interleaved data ordering.

Figure 7-7 Noninterleaved processing order of data units when processing a single
component as per [Org93].

Due to the finite processing speed of the decoder, processing of data units of dif-
ferent components may be interleaved. If the noninterleaved mode were used for a very
high-resolution, RGB-encoded image, during rendering the display would first show
only red, then red-green, and finally the correct colors.

Figure 7-8 Interleaved processing order of data units.

Figure 7-8 shows an example with four components from [Org93]. Above each
component, the corresponding values for H and V are shown. The first component has
the highest resolution in both dimensions and the fourth component has the lowest res-
olution. The arrows within each component indicate the sampling order of individual
data units.
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The data units of the first component are Cs1: ...

The data units of the second component are Cs2: ...

The data units of the third component are Cs3: ...

The data units of the fourth component are Cs4: ...

Interleaved data units of different components are combined into Minimum
Coded Units. If all components have the same resolution (Xi × Yi), an MCU consists of
exactly one data unit from each component. The decoder displays the image MCU by
MCU. This allows for correct color presentation, even for partly decoded images.

In the case of different component resolutions, the construction of MCUs
becomes more complex (see Figure 7-8). For each component, regions of data units,
potentially with different numbers of data units, are constructed. Each component con-
sists of the same number of regions. For example, in Figure 7-8 each component has six
regions. MCUs are comprised of exactly one region from each component. The data
units within a region are ordered from left to right and from top to bottom.

According to the JPEG standard, a maximum of four components can be encoded
using the interleaved mode. This is not a limitation, since color images are generally
represented using three components. Each MCU can contain at most ten data units.
Within an image, some components can be encoded in the interleaved mode and others
in the noninterleaved mode.

7.5.2 Lossy Sequential DCT-Based Mode

After image preparation, the uncompressed image samples are grouped into data
units of 8×8 pixels, as shown in Figure 7-9; the order of these data units is defined by
the MCUs. In this baseline mode, each sample is encoded using p=8bit. Each pixel is
an integer in the range 0 to 255.

Figure 7-9 Steps of the lossy sequential DCT-based coding mode, starting with an
uncompressed image after image preparation.

Figure 7-10 shows the compression and decompression process outlined here.
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Figure 7-10 Example of DCT and IDCT.

7.5.2.1 Image Processing

The first step of image processing in the baseline mode (baseline process in
[Org93]), as shown in Figure 7-9, is a transformation coding performed using the Dis-
crete Cosine Transform (DCT) [ANR74, NP78]. The pixel values are shifted into the
zero-centered interval (–128, 127). Data units of 8×8 shifted pixel values are defined
by Syx, where x and y are in the range of zero to seven.

The following FDCT (Forward DCT) is then applied to each transformed pixel
value:

where:  for u, v = 0; otherwise cu, cv = 1

Altogether, this transformation must be carried out 64 times per data unit. The
result is 64 coefficients Svu. Due to the dependence of DCT on the Discrete Fourier
Transform (DFT), which maps values from the time domain to the frequency domain,
each coefficient can be regarded as a two-dimensional frequency.
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Figure 7-11 Relationship between the two-dimensional space and frequency
domains.

The coefficient S00 corresponds to the portion where the frequency is zero in both
dimensions. It is also known as the DC-coefficient (DC voltage portion) and determines
the fundamental color of all 64 pixels of the data unit. The other coefficients are called
AC-coefficients (analogous to the AC voltage portion). For instance, S70 represents the
highest frequency that occurs in the horizontal direction, that is, the closest possible
separation of vertical lines in the 8×8 data unit. S07 represents the highest frequency in
the vertical dimension, that is, the closest possible separation of horizontal lines. S77

indicates the highest frequency appearing equally in both dimensions. Its absolute value
is greatest if the original data unit contains as many squares as possible, that is, if it con-
sists solely of 1×1 squares. Accordingly, for example, S33 will be maximal if a block
consists of 16 squares of 4×4 pixels. Taking a closer look at the above formula, we rec-
ognize that the cosine expressions depend only upon x and u, or upon y and v, but not on
Syx. Therefore, these expressions represent constants that do not need to be recalculated
over and over again. There are many effective DCT techniques and implementations
[DG90, Fei90, Hou88, Lee84, LF91, SH86, VN84, Vet85].

For later reconstruction of the image, the decoder uses the Inverse DCT (IDCT).
The coefficients Svu must be used for the calculation:

where  for u, v = 0; otherwise cu, cv = 1

If the FDCT, as well as the IDCT, could be calculated with full precision, it would
be possible to reproduce the original 64 pixels exactly. From a theoretical point of view,
DCT would be lossless in this case. In practice, precision is limited and DCT is thus
lossy. The JPEG standard does not define any specific precision. It is thus possible that
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two different JPEG decoder implementations could generate different images as output
of the same compressed data. JPEG merely defines the maximum allowable deviation.

Many images contain only a small portion of sharp edges; they consist mostly of
areas of a single color. After applying DCT, such areas are represented by a small por-
tion of high frequencies. Sharp edges, on the other hand, are represented as high fre-
quencies. Images of average complexity thus consist of many AC-coefficients with a
value of zero or almost zero. This means that subsequent entropy encoding can be used
to achieve considerable data reduction.

7.5.2.2 Quantization

Image processing is followed by the quantization of all DCT coefficients; this is a
lossy process. For this step, the JPEG application provides a table with 64 entries, one
for each of the 64 DCT coefficients. This allows each of the 64 coefficients to be
adjusted separately. The application can thus influence the relative significance of the
different coefficients. Specific frequencies can be given more importance than others
depending on the characteristics of the image material to be compressed. The possible
compression is influenced at the expense of achievable image quality.

The table entries Qvu are integer values coded with 8 bits. Quantization is
performed according to the formula:

The greater the table entries, the coarser the quantization. Dequantization is per-
formed prior to the IDCT according to the formula:

Quantization and dequantization must use the same tables.
Figure 7-12 shows a greatly enlarged detail from Figure 7-16. The blocking and

the effects of quantization are clearly visible. In Figure 7-12(b) a coarser quantization
was performed to highlight the edges of the 8×8 blocks.

sqvu round
Svu

Qvu
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Figure 7-12 Quantization effect.

7.5.2.3 Entropy Encoding

During the next step, either the initial step of entropy encoding or preparation for
the coding process, the quantized DC-coefficients are treated differently than the quan-
tized AC-coefficients. The processing order of all coefficients is specified by the zig-zag
sequence.

• The DC-coefficients determine the fundamental color of the data units. Since this
changes little between neighboring data units, the differences between successive
DC-coefficients are very small values. Thus each DC-coefficient is encoded by
subtracting the DC-coefficient of the previous data unit, as shown in Figure 7-13,
and subsequently using only the difference.

Figure 7-13 Preparation of DCT DC-coefficients for entropy encoding. Calculation of
the difference between neighboring values.

• The DCT processing order of the AC-coefficients using the zig-zag sequence as
shown in Figure 7-14 illustrates that coefficients with lower frequencies (typically
with higher values) are encoded first, followed by the higher frequencies (typi-
cally zero or almost zero). The result is an extended sequence of similar data
bytes, permitting efficient entropy encoding.
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Figure 7-14 Preparation of DCT AC-coefficients for entropy encoding, in order of
increasing frequency.

JPEG uses Huffman coding and arithmetic coding as entropy encoding methods.
For the lossy sequential DCT-based base mode, discussed in this section, only Huffman
encoding is allowed. In both methods, a run-length encoding of zero values is first
applied to the quantized AC-coefficients. Additionally, non-zero AC-coefficients as
well as the DC-coefficients are transformed into a spectral representation to further
compress the data. The number of bits required depends on the value of each coeffi-
cient. Non-zero AC-coefficients are represented using between 1 and 10 bits. For the
representation of DC-coefficients, a higher resolution of 1 bit to a maximum of 11 bits
is used.

The result is a representation according to the ISO Intermediate Symbol Sequence
Format, which basically alternates the following three pieces of information:

1. the number of subsequent coefficients with the value zero,

2. the number of bits used for the representation of the coefficient that follows, and

3. the value of the coefficient, represented using the specified number of bits.

An advantage of Huffman coding is that it can be used cost-free, since it is not
protected by patents. A disadvantage is that the application must provide coding tables,
since JPEG does not specify any. In the base mode, two different Huffman tables can be
used, one for AC-coefficients and for DC-coefficients.

In sequential coding, the whole image is coded and decoded in a single run.
Figure 7-15 shows an example of decoding with immediate presentation on the display.
The picture is completed from top to bottom.

DC
AC01 AC07

AC77AC70
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Figure 7-15 Example of sequential picture preparation, here using the lossy DCT-
based mode.

7.5.3 Expanded Lossy DCT-Based Mode

Image preparation in this mode differs from the previously described mode in
terms of the number of bits per pixel. This mode supports 12 bits per sample value in
addition to 8 bits. The image processing is DCT-based and is performed analogously to
the baseline DCT mode. For the expanded lossy DCT-based mode, JPEG defines pro-
gressive coding in addition to sequential coding. In the first decoding run, a very rough,
unsharp image appears. This is refined during successive runs. An example of a very
unsharp image is shown in Figure 7-16(a). It is substantially sharper in Figure 7-16(b),
and in its correct resolution in Figure 7-16(c).

Figure 7-16 Progressive picture presentation: (a) first phase, very unsharp image; (b)
second phase, unsharp image; (c) third phase, sharp image.

(a) (b) (c)
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Progressive image presentation is achieved by expanding quantization. This is
equivalent to layered coding. For this expansion, a buffer is added at the output of the
quantizer that temporarily stores all coefficients of the quantized DCT. Progressiveness
is achieved in two different ways:

• Using spectral selection, in the first run only the quantized DCT-coefficients of
each data unit’s low frequencies are passed on to the entropy encoding. Successive
runs gradually process the coefficients of higher frequencies.

• In successive approximation, all of the quantized coefficients are transferred in
each run, but individual bits are differentiated according to their significance. The
most significant bits are encoded before the least significant bits.

Besides Huffman coding, arithmetic entropy coding can be used in the expanded
mode. Arithmetic coding automatically adapts itself to the statistical characteristics of
an image and thus requires no tables from the application. According to several publica-
tions, arithmetic encoding achieves around five to ten percent better compression than
Huffman encoding. Other authors presuppose a comparable compression rate. Arith-
metic coding is slightly more complex and its protection by patents must be considered
(Appendix L in [Org93]).

In the expanded mode, four coding tables are available for the transformation of
DC- and AC-coefficients. The simpler mode allows a choice of only two Huffman
tables each for the DC- and AC-coefficients of an image. The expanded mode thus
offers 12 alternative types of processing, as listed in Table 7-2.

Table 7-2  Alternative types of processing in expanded lossy DCT-based mode.

Image Display Bits per Sample Value Entropy Coding

Sequential 8 Huffman coding

Sequential 8 Arithmetic coding

Sequential 12 Huffman coding

Sequential 12 Arithmetic coding

Progressive successive 8 Huffman coding

Progressive spectral 8 Huffman coding

Progressive successive 8 Arithmetic coding

Progressive spectral 8 Arithmetic coding

Progressive successive 12 Huffman coding

Progressive spectral 12 Huffman coding

Progressive successive 12 Arithmetic coding

Progressive spectral 12 Arithmetic coding



134 Chapter 7  •  Data Compression

7.5.4 Lossless Mode
The lossless mode shown in Figure 7-17 uses single pixels as data units during

image preparation. Between 2 and 16 bits can be used per pixel. Although all pixels of
an image must use the same precision, one can also conceive of adaptive pixel
precision.

Figure 7-17 Lossless mode, based on prediction.

In this mode, image processing and quantization use a predictive technique
instead of transformation coding. For each pixel X as shown in Figure 7-18, one of
eight possible predictors is selected. The selection criterion is the best possible predic-
tion of the value of X from the already known adjacent samples A, B, and C. Table 7-3
lists the specified predictors.

Figure 7-18 Basis of prediction in lossless mode.

The number of the chosen predictor, as well as the difference between the predic-
tion and the actual value, are passed to the subsequent entropy encoding, which can use
either Huffman or arithmetic coding.

In summary, this mode supports two types of processing, each with between 2 and
16 bits per pixel. Each variant can use either Huffman coding or arithmetic coding.
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Table 7-3  Predictors in lossless mode.

7.5.5 Hierarchical Mode

The hierarchical mode can either use one of the lossy DCT-based algorithms
described above or alternatively use the lossless compression technique, as the need
arises. The main feature of this mode is the encoding of an image at different resolu-
tions, that is, the compressed image contains images at several resolutions. To do this,
the prepared digital image is first reduced by a factor of 2n and compressed. The origi-
nal image is then reduced by a factor of 2n-1 vertically and horizontally. The previously
compressed image is subtracted from this, and the result is once again compressed. This
process is successively repeated until the full resolution of the image is compressed.

Hierarchical coding is computationally intensive and requires considerable stor-
age space. The advantage is the compressed image is available at different resolutions.
Applications working with lower resolutions thus do not need to first decode the whole
image and then reduce the resolution. In other words, scaling becomes cheap. Accord-
ing to the authors’ practical experience, it is often more efficient to display an image in
its full resolution than to first scale it down and display a smaller image. Yet, in the case
of images encoded according to the hierarchical JPEG mode, the display of a reduced
size picture requires less time to process than one of higher resolution.

7.6 H.261 (p×64) and H.263
The driving force behind the H.261 video standard was and is ISDN. One or both

B-channels of a narrowband ISDN connection can transfer video data, for example, in
addition to speech. This requires that both partners connected via the channel have to
use the same coding of video data. In a narrowband ISDN connection, exactly two B-
channels and one D-channel are available at the user interface. The European ISDN
hierarchy also allows a connection with 30 B-channels, intended for PABX. In the fol-

Selection Value Prediction

0 No prediction

1 X=A

2 X=B

3 X=C

4 X=A+B+C

5 X=A+(B-C)/2

6 X=B+(A-C)/2

7 X=(A+B)/2
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lowing, when we speak of the B-channel, this refers to one or more channels. Early on,
the primary applications of ISDN were videophone and videoconferencing systems.
These dialogue applications require that coding and decoding be carried out in real
time. In 1984, Study Group XV of CCITT established a committee of experts to draw
up a standard for the compression of moving pictures [Lio91].

The resulting CCITT Recommendation H.261 Video CoDec for Audiovisual Ser-
vices at p×64Kbit/s [ITUC90] was finalized after five years of work and accepted in
December 1990. In this context, codec (Coder/Decoder) refers to encoding and decod-
ing, or to compression and decompression. North America adopted the recommenda-
tion with slight modifications. Since data rates of p×64Kbit/s are considered, the
recommendation is also known as p×64.

The ITU Study Group XV Recommendation H.261 was developed for real-time
processing during encoding and decoding. The maximum combined signal delay for
compression and decompression must not exceed 150ms. If the end-to-end delay is too
great, the subjective interactivity of a dialogue application using this standard suffers
considerably.

H.263 is a provisional ITU-T Standard published in 1996 to replace H.261 for
many applications. H.263 was designed for low bit rate transmission. Early designs
called for data rates under 64Kbit/s, though this was later revised. As part of the ITU-T
H.320 family of standards (recommendation for real-time voice, data, and video over
V.34 modems using a conventional GSTN telephone network), H.263 is used for a wide
range of bit rates (not just low bit rate applications).

With respect to efficiency of video compression, H.263 is one of the best tech-
niques available today. The H.263 coding algorithm is similar to that of H.261, with
some improvements and changes to further improve performance and add error
correction.

The following are the key differences between the H.261 and H.263 coding
algorithms:

• H.263 uses half pixel precision for motion compensation, while H.261 uses full
pixel precision with a “loop filter.”

• Some parts of the hierarchical structure of the data stream are optional in H.263,
so that the codec can be configured for a lower bit rate or better error correction.

• H.263 includes four optional, negotiable parameters to improve performance:

• the unrestricted motion vector mode,
• the syntax-based arithmetic coding mode,
• the advanced prediction mode,
• and forward and backward frame prediction (similar to the P and B frames in

MPEG).
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• H.263 can often achieve the same quality as H.261 with less than half as many bits
by using the improved negotiable options.

• H.263 supports five resolutions. In addition to QCIF and CIF, which H.261 sup-
ports, H.263 also supports SQCIF, 4CIF, and 16CIF. SQCIF has about half the res-
olution of QCIF. 4CIF and 16CIF correspond to four and 16 times the resolution
of CIF, respectively. Support for 4CIF and 16CIF means that the codec can
unquestionably vie with other high bit rate coding standards, such as MPEG.

7.6.1 Image Preparation

Unlike JPEG, H.261 defines a very precise image format. The image refresh fre-
quency at the input must be 30000/1001 = 29.97frames/s. During encoding, it is possi-
ble to generate a compressed image sequence with a lower frame rate of, for example,
10 or 15 frames per second. Images cannot be presented at the input to the coder using
interlaced scanning. The image is encoded as a luminance signal (Y) and chrominance
difference signals Cb , Cr , according to the CCIR 601 subsampling scheme (2:1:1),
which was later adopted by MPEG.

Two resolution formats, each with an aspect ratio of 4:3 are defined. The so-called
Common Intermediate Format (CIF) defines a luminance component of 352 lines, each
with 288 pixels. As per the 2:1:1 requirement, the chrominance components are sub-
sampled with 176 lines, each with 144 pixels.

Quarter CIF (QCIF) has exactly half the resolution in all components (i.e.,
176×144 pixels for the luminance and 88×72 pixels for the other components). All
H.261 implementations must be able to encode and decode QCIF. CIF is optional.

The following example illustrates the compression ratio necessary to encode even
an image with the low resolution of QCIF for the bandwidth of an ISDN B-channel. At
29.97 frames/s, the uncompressed QCIF data stream has a data rate of 9.115Mbit/s. At
the same frame rate, CIF has an uncompressed data rate of 36.45Mbit/s. The image to
be processed should be compressed at a rate of ten frames per second. This leads to a
necessary compression ratio for QCIF of about 1:47.5, which can be easily supported
by today’s technology.

For CIF, a corresponding reduction to about six ISDN B-channels is possible.
H.261 divides the Y as well as the Cb and Cr components into blocks of 8×8 pixels. A
macro block is the result of combining four blocks of the Y matrix with one block each
from the Cb and Cr components. A group of blocks consists of 3×11 macro blocks. A
QCIF image thus consists of three groups of blocks and a CIF image consists of twelve
groups of blocks.

7.6.2 Coding Algorithms

The H.261 standard uses two different methods of coding: intraframe and inter-
frame. Intraframe coding under H.261 considers only the data from the image being
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coded; this corresponds to intrapicture coding in MPEG (see Section 7.7.1). Interframe
coding in H.261 uses data from other images and corresponds to P-frame coding in
MPEG (see Section 7.7.1). The H.261 standard does not prescribe any criteria for using
one mode or the other depending on specific parameters. The decision must be made
during encoding and thus depends on the specific implementation.

H.263, unlike H.261, recommends four negotiable modes of intraframe coding.
These can be used separately or together. An exception is that the advanced prediction
mode requires use of the unrestricted motion vector mode.

The new intraframe coding modes added to H.263 are briefly described below:

1. Syntax-based arithmetic coding mode
defines the use of arithmetic coding instead of variable-length coding. This results
in identical image recoverability with better compression efficiency.

2. PB-frame mode
can increase the frame rate without changing the bit rate by coding two images as
one unit. The images must be a predicted, or P frame, and a B frame (as defined
by MPEG; see Section 7.7.1), which is predicted bidirectionally from the preced-
ing P frame and the current P frame.

3. Unrestricted motion vector mode
makes it possible for motion vectors to point outside image boundaries. This is
particularly useful for small images with movements in the direction of the edges.

4. Advanced prediction mode
uses the Overlapped Block Motion Compensation (OBMC) technique for P-frame
luminance. The coder can use one 16×16 vector or four 8×8 vectors for each
macro block. Using smaller vectors requires more bits but yields better predic-
tions, and in particular, fewer artifacts.

Like JPEG, for intraframe coding, each block of 8×8 pixels is transformed into 64
coefficients using DCT. Here also, DC-coefficients are quantized differently than AC-
coefficients. The next step is to perform entropy encoding using variable-length code
words.

In interframe coding, a prediction method is used to find the most similar macro
block in the preceding image. The motion vector is defined by the relative position of
the previous macro block with respect to the current macro block. According to H.261,
a coder does not need to be able to determine a motion vector. Thus a simple H.261
implementation can always consider only differences between macro blocks located at
the same position of successive images. In this case, the motion vector is always the
zero vector. Next, the motion vector and the DPCM-coded macro block are processed.
The latter is transformed by the DCT if and only if its value exceeds a certain threshold
value. If the difference is less than the threshold, then the macro block is not encoded
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any further and only the motion vector is processed. The components of the motion
vector are entropy encoded using variable-length coding. This is lossless.

Transformed coefficients are all quantized linearly and entropy encoded using
variable-length code words.

Optionally, an optical low pass filter can be inserted between the DCT and the
entropy encoding. This filter deletes any remaining high-frequency noise. H.261 imple-
mentations need not incorporate this filter.

H.261 uses linear quantization. The step size is adjusted according to the amount
of data in a transmission buffer, thereby enforcing a constant data rate at the output of
the coder. This feedback also influences the image quality.

7.6.3 Data Stream
According to H.261/H.263, a data stream is divided into several layers, the bottom

layer containing the compressed images. Some interesting properties of H.261 and
H.263 are mentioned below (for further details, see [ITUC90]):

• The data stream contains information for error correction, although use of external
error correction, e.g. H.223, is recommended.

• Each image in H.261 includes a five-bit number that can be used as a temporal ref-
erence. H.263 uses eight-bit image numbers.

• During decoding, a command can be sent to the decoder to “freeze” the last video
frame displayed as a still frame. This allows the application to stop/freeze and
start/play a video scene without any additional effort.

• Using an additional command sent by the coder, it is possible to switch between
still images and moving images. Alternatively, instead of using explicit com-
mands, a time out signal can be used.

7.6.4 H.263+ and H.263L
H.263+ is a planned extension of the existing H.263 standard. Improvements will

probably be rather small, especially in the area of coding options. Examples of methods
that will be incorporated in H.263+ are the 4×4 DCT, improved intra coding, and a
deblocking filter in the prediction loop.

H.263L is further improvement on H.263 with a longer time horizon than H.263+.
Here greater changes are expected. H.263L could coincide with the development of
MPEG-4.

7.7 MPEG
MPEG was developed and defined by ISO/IEC JTC1/SC 29/WG 11 to cover

motion video as well as audio coding. In light of the state of the art in CD technology,
the goal was a compressed stream data rate of about 1.2Mbit/s. MPEG specifies a
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maximum data rate of 1,856,000 bit/s, which should not be exceeded [ISO93b]. The
data rate for each audio channel can be chosen between 32 and 448 Kbit/s in increments
of 16Kbit/s. This data rate enables video and audio compression of acceptable quality.
Since 1993, MPEG has been an International Standard (IS) [ISO93b]. MPEG explicitly
takes into account developments in other standardization activities:

• JPEG: Since a video sequence can be regarded as a sequence of still images and
the JPEG standard development was always ahead of the MPEG standardization,
the MPEG standard makes use of the results of the JPEG work.

• H.261: Since the H.261 standard already existed during the MPEG work, the
MPEG group strived to achieve at least a certain compatibility between the two
standards in some areas. This should simplify implementations of MPEG that also
support H.261. In any case, technically MPEG is the more advanced technique.
Conversely, H.263 borrowed techniques from MPEG.

Although mainly designed for asymmetric compression, a suitable MPEG imple-
mentation can also meet symmetric compression requirements. Asymmetric coding
requires considerably more effort for encoding than for decoding. Compression is car-
ried out once, whereas decompression is performed many times. A typical application
area is retrieval systems. Symmetric compression is characterized by a comparable
effort for the compression and decompression processing. This is a requirement for
interactive dialogue applications, as is a bounded processing delay for the processing.

Besides the specification of video coding [Le 91, VG91] and audio coding, the
MPEG standard provides a system definition, which describes the combination of
individual data streams into a common stream.

7.7.1 Video Encoding

In the image preparation phase (according to the reference scheme shown in
Figure 7-1), MPEG, unlike JPEG but similar to H.263, defines the format of an image
very precisely.

7.7.1.1 Image Preparation

An image must consist of three components. In addition to the luminance Y there
are two color difference signals Cr and Cb (similar to the YUV format). The luminance
component has twice as many samples in the horizontal and vertical axes as the other
components, that is, there is color subsampling. The resolution of the luminance com-
ponent should not exceed 768×576 pixels. The pixel depth is eight bits in each
component.

An MPEG data stream also contains information that is not part of a data stream
compressed according to the JPEG standard, for example the pixel aspect ratio. MPEG
supports 14 different pixel aspect ratios. The most important are:
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• A square pixel (1:1) is suitable for most computer graphics systems.
• For a 625-line image, a ratio of 16:9 is defined (European HDTV).
• For a 525-line image, a ratio of 16:9 is also defined (U.S. HDTV).
• For 702×575 pixel images, an aspect ratio of 4:3 is defined.
• For 711×487 pixel images, an aspect ratio of 4:3 is also defined.

The image refresh frequency is also encoded in the data stream. So far, eight fre-
quencies have been defined (23.976Hz, 24Hz, 25Hz, 29.97Hz, 30Hz, 50Hz, 59.94Hz,
and 60Hz), so no low image refresh frequencies are permitted.

Temporal prediction of still images usually yields a considerable data reduction.
Areas within an image with strong, irregular motions can only be reduced by a ratio
similar to that of intraframe coding. The use of temporal predictors requires the storage
of a huge amount of previously determined information and image data. The extent to
which prediction is employed can be determined by balancing the required storage
capacity against the achievable compression rate.

In most cases, predictive coding only makes sense for parts of an image and not
for the whole image. The image is thus divided into areas called macro blocks. An
MPEG macro block is partitioned into 16×16 pixels for the luminance component and
8×8 pixels for each of the two chrominance components. These sizes are well suited for
compression based on motion estimation. This is a compromise between the computa-
tional effort required for estimation and the resulting data reduction. A macro block is
formed of six blocks of 8×8 pixels, ordered as follows: first four blocks for the lumi-
nance component then the two chrominance blocks. There are no user-defined MCUs
as in JPEG since, given the defined frame rates, the maximum time to present an image
is 41.7ms. The three components are compressed and decompressed together. From the
MPEG user’s perspective, there is no fundamental advantage to progressive image
display over sequential display.

7.7.1.2 Image Processing

For the image processing stage, MPEG supports four types of image coding. The
reason for this is the contradictory demands of efficient coding and random access. In
order to achieve a high compression ratio, temporal redundancies of successive images
need to be exploited. Fast random access requires that images be coded individually.
Hence the following image types are distinguished:

• I frames (intra coded pictures) are coded without using information about other
frames (intraframe coding). An I frame is treated as a still image. Here MPEG
falls back on the results of JPEG. Unlike JPEG, real-time compression must be
possible. The compression rate is thus the lowest within MPEG. I frames form the
anchors for random access.

• P frames (predictive coded pictures) require information about previous I and/or P
frames for encoding and decoding. Decoding a P frame requires decompression of
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the last I frame and any intervening P frames. In return, the compression ratio is
considerably higher than for I frames. A P frame allows the following P frame to
be accessed if there are no intervening I frames.

• B frames (bidirectionally predictive coded pictures) require information from pre-
vious and following I and/or P frames. B frames yield the highest compression
ratio attainable in MPEG. A B frame is defined as the difference from a prediction
based on a previous and a following I or P frame. It cannot, however, ever serve as
a reference for prediction coding of other pictures.

• D frames (DC coded pictures) are intraframe-coded and can be used for efficient
fast forward. During the DCT, only the DC-coefficients are coded; the AC-
coefficients are ignored.

Figure 7-19 shows a sequence of I, P, and B frames. This example illustrates the
prediction for the first P frame and the bidirectional prediction for a B frame. Note that
the order in which the images are presented differs from the actual decoding order if B
frames are present in an MPEG-coded video stream.

Figure 7-19 Types of individual images in MPEG: I, B, and P frames.

The pattern of I, P, and B frames in a sequence is determined by the MPEG appli-
cation. For random access, the ultimate resolution would be attained by encoding the
entire stream using I frames. The highest compression rate can be achieved by using as
many B frames as possible. For practical applications, the sequence IBBPBBPBB

IBBPBBPBB... has proven to be useful. This permits random access with a resolution of
nine still images (i.e., about 330ms) and still provides a very good compression ratio.
Every 15 images includes one I frame.
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The following detailed description of image processing, quantization and entropy
encoding distinguishes the four image types.

7.7.1.3 I Frames

I frames are encoded by performing a DCT on the 8×8 blocks defined within the
macro blocks, as in JPEG. The DC-coefficients are then DPCM coded, and differences
between consecutive blocks of each component are calculated and transformed into
variable-length code words. AC-coefficients are run-length encoded and then trans-
formed into variable-length code words. MPEG distinguishes two types of macro
blocks: those that contain only coded data and those that additionally contain a parame-
ter used for scaling the characteristic curve used for subsequent quantization.

7.7.1.4 P Frames

The coding of P frames exploits the fact that in consecutive images, some areas of
the image often shift (move), but do not change. To encode a block, the most similar
macro block in the preceding image must be determined. This is done by calculating the
differences between the absolute values of the luminance component for each macro
block in the preceding image. The macro block with the lowest sum of differences is the
most similar. MPEG does not specify an algorithm for motion estimation, but rather
specifies the coding of the result. Only the motion vector (the spatial difference between
the two macro blocks) and the small difference between the macro blocks need to be
encoded. The search range, that is, the maximum length of the motion vector, is not
defined by the standard. As the search range is increased, the motion estimation
becomes better, although the computation becomes slower [ISO93b].

P frames can consist of macro blocks as in I frames, as well as six different predic-
tive macro blocks. The coder essentially decides whether to code a macro block predic-
tively or like an I frame and whether it should be coded with a motion vector. A P frame
can thus also include macro blocks that are coded in the same way as I frames.

In coding P-frame-specific macro blocks, differences between macro blocks as
well as the motion vector need to be considered. The difference values between all six
8×8 pixel blocks of a macro block being coded and the best matching macro block are
transformed using a two-dimensional DCT. Further data reduction is achieved by not
further processing blocks where all DCT coefficients are zero. This is coded by insert-
ing a six-bit value into the encoded data stream. Otherwise, the DC- and AC-coeffi-
cients are then encoded using the same technique. This differs from JPEG and from the
coding of I frame macro blocks. Next, run-length encoding is applied and a variable-
length coding is determined according to an algorithm similar to Huffman. Since
motion vectors of adjacent macro blocks often differ only slightly, they are DPCM
coded. The result is again transformed using a table; a subsequent calculation performs
a transformation into variable-length coded words.
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7.7.1.5 B Frames

In addition to the previous P or I frame, B-frame prediction takes into account the
following P or I frame. The following example illustrates the advantages of bidirec-
tional prediction:

In a video sequence, a ball moves from left to right in front of a static background.
In the left area of the scene, parts of the image appear that in previous images were cov-
ered by the moving ball. A prediction of these areas would ideally be derived from the
following, not from the previous, image. A macro block can be derived from macro
blocks of previous and following P and/or I frames. Motion vectors can also point in
orthogonal directions (i.e., in x direction and in y direction). Moreover, a prediction can
interpolate two similar macro blocks. In this case, two motion vectors are encoded and
one difference block is determined between the macro block to be encoded and the
interpolated macro block. Subsequent quantization and entropy encoding are performed
as for P-frame-specific macro blocks. Since B frames cannot serve as reference frames
for subsequent decoding, they need not be stored in the decoder.

7.7.1.6 D Frames

D frames contain only the low-frequency components of an image. A D-frame
always consists of one type of macro block and only the DC-coefficients of the DCT are
coded. D frames are used for fast-forward display. This could also be realized by a suit-
able placement of I frames. For fast-forward, I frames must appear periodically in the
data stream. In MPEG, slow-rewind playback requires considerable storage. All images
in a so-called group of pictures must decoded forwards and stored before they can be
displayed in reverse.

7.7.1.7 Quantization

Concerning quantization, it should be noted that AC-coefficients of B and P
frames are usually very large values, whereas those of I frames are very small. Thus,
MPEG quantization quantization adjusts itself accordingly. If the data rate increases too
much, quantization becomes more coarse. If the data rate falls, then quantization is
performed with finer granularity.

7.7.2 Audio Coding

MPEG audio coding is compatible with the coding of audio data used for Com-
pact Disc Digital Audio (CD-DA) and Digital Audio Tape (DAT). The most important
criterion is the choice of sample rate of 44.1kHz or 48kHz (additionally 32kHz) at
16bits per sample value. Each audio signal is compressed to either 64, 96, 128, or
192Kbit/s.
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Three quality levels (layers) are defined with different encoding and decoding
complexity. An implementation of a higher layer must be able to decode the MPEG
audio signals of lower layers [Mus90].

Similar to two-dimensional DCT for video, a transformation into the frequency
domain is applied for audio. The Fast Fourier Transform (FFT) is a suitable technique.
As shown in Figure 7-20, the relevant portion of the spectrum is divided into 32 non-
overlapping subbands. The audio signal is thus split into 32 subbands. Different compo-
nents of the spectrum can then be quantized differently. In parallel with the actual FFT,
the noise level in each subband is determined using a psychoacoustic model. At a
higher noise level, a coarser quantization is performed. A lower noise level results in
finer quantization. In the first and second layers, the appropriately quantized spectral
components are simply PCM-encoded. The third layer additionally performs Huffman
coding.

Figure 7-20 MPEG audio encoding.

Audio coding can be performed on stereo sound, a single channel, or two indepen-
dent channels. MPEG provides for two types of stereo sound. In the first case, two
channels are processed completely independently. In the joint stereo mode, MPEG
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achieves a higher compression ratio by exploiting redundancies between the two
channels.

Each layer defines 14 fixed bit rates for the coded audio data stream, which in
MPEG are addressed by a bit rate index. The minimal value is always 32Kbit/s. The
layers support different maximal bit rates: layer 1 allows for a maximum of 448Kbit/s,
layer 2 for 384Kbit/s, and layer 3 for 320Kbit/s. For layers 1 and 2, a decoder is not
required to support a variable bit rate. In layer 3, a variable bit rate is specified by allow-
ing the bit rate index to be switched. In layer 2, not all combinations of bit rate and
mode are allowed:

• 32Kbit/s, 48Kbit/s, 56Kbit/s, and 80Kbit/s are only allowed for a single channel.
• 64Kbit/s, 96Kbit/s, 112Kbit/s, 128Kbit/s, 160Kbit/s, and 192Kbit/s are allowed

for all modes.
• 224Kbit/s, 256Kbit/s, 320Kbit/s, and 384Kbit/s are allowed for the stereo, joint

stereo and dual channel modes.

7.7.3 Data Stream

Like JPEG, MPEG specifies a precise syntax for the compressed audio and video
data streams.

7.7.3.1 Audio Stream

An audio stream is comprised of frames, which are made up of audio access units,
which in turn are divided into slots. At the lowest coding complexity (layer 1), a slot
consists of 4 bytes; otherwise it is one byte. Frames consist of a fixed number of sam-
ples. An audio access unit is the smallest compressed audio sequence that can be com-
pletely decoded independently of all other data. At 48kHz, the audio access units
contained in a frame have a play time of 8 ms; at 44.1kHz, the play time is 8.7ms; and
at 32kHz, the play time is 12ms. In the case of stereo, data from both channels are
included in one frame.

7.7.3.2 Video Stream

A video stream is comprised of 6 layers:

1. At the highest level, the sequence layer, data buffering is handled. For example, it
does not make sense to generate a data stream that places excessive demands on
storage space in the decoder. Among other things, the beginning of the sequence
layer thus includes two entries: the constant bit rate of the sequence and the
minimum storage capacity required during decoding.

A video buffer verifier is added after the quantizer that uses the bit rate resulting
from decoding in order to monitor the decoding delay. The video buffer verifier
influences the quantizer and forms a type of control loop. Successive sequences



MPEG 147

can have varying bit rates. During decoding of several consecutive sequences,
often no data are output between the end of one sequence and the beginning of the
next sequence because the underlying decoder parameters need to be updated and
an initialization performed.

2. The group of pictures layer is the next layer. This layer contains at least an I
frame, which must be one of the first images. Random access to this image is
always possible. At this layer, it is possible to distinguish between the order of
images in the data stream and their display order. The data stream must always
begin with an I frame so that the decoder can first decode and store the reference
image. In order of presentation, however, B frames can precede the I frame. The
following example illustrates the difference between decoding order and display
order:

3. The picture layer contains a whole still image. The image’s temporal reference is
defined using an image number. This number is shown below each image in the
example above. There are also data fields defined in this layer that are not yet used
in MPEG. These fields are reserved for future extensions and may not be used by
the decoder.

4. The next layer is the slice layer. Each slice consists of macro blocks, the number
of which can vary from image to image. A slice also includes the scaling used for
DCT quantization of all its macro blocks.

5. The next layer is the macro block layer. This contains a macro block with the
properties described above.

6. The lowest layer is the block layer, also described above.

7.7.3.3 System Definition

The MPEG system definition also specifies the combination of both data streams
into a single stream. The most important task of this process is the actual multiplexing.
It includes the coordination of input data streams with output data streams, clock

Decoding order

Type of Frame I P B B P B B P B B I B B

Frame number 1 4 2 3 7 5 6 10 8 9 13 11 12

Display order

Type of Frame I P B B P B B P B B I B B

Frame number 1 2 3 4 5 6 7 8 9 10 11 12 13
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adjustment, and buffer management. Data streams as defined by ISO 11172 are divided
into separate packs. The decoder gets the information it needs from the multiplexed
data stream. For example, the maximal data rate is included at the beginning of every
ISO 11172 data stream in the first pack.

This definition of the data stream makes the implicit assumption that it is possible
to read such a header prior to the first (possibly random) data access from a secondary
storage medium. In dialogue services over communications networks, such as tele-
phone or videophone, a participant will always get the header information first. On the
other hand, this would be inconvenient in a conferencing application where a user can
join at any time. The required header information would not then be immediately avail-
able, since it transmitted only at the beginning of an ISO 11172 data stream. One could,
however, define a protocol to supply the header upon request.

MPEG also supplies time stamps necessary for synchronization in ISO 11172 data
streams. These concern the relationship between multiplexed data streams within an
ISO 11172 data stream and not other ISO 11172 data streams that may exist.

It should be noted that MPEG does not prescribe compression in real-time.
Moreover, MPEG defines the decoding process but not the decoder itself.

7.7.4 MPEG-2

Today one assumes that the quality of a video sequence compressed according to
the MPEG standard at the maximum data rate of about 1.5Mbit/s cannot be substan-
tially improved. Here only the results (the compression ratio and the quality) should
count, not the required processing expenditure. Thus a video compression technique is
being developed for rates up to 100Mbit/s. This is known as “MPEG-2” [ISO93a]. The
previously established technique is now known as “MPEG-1,” while MPEG-2 aims at a
higher image resolution, similar to the CCIR 601 digital video studio standard.

To ensure a harmonized solution that covered a wide range of applications, the
ISO/IEC Working Group ISO/IEC JTC1/SC29/WG11 developed MPEG-2 in close
cooperation with the ITU-TS Study Group 15 Experts Group for ATM Video Coding.
In addition to these two groups, other representatives of the ITU-TS, EBU, ITU-RS,
SMPTE, and North American HDTV developers also worked on MPEG-2.

The MPEG group developed the MPEG-2 Video standard, which specifies the
coded bit stream for higher quality digital video. As a compatible extension, MPEG-2
video builds on the MPEG-1 standard by supporting interlaced video formats and a
number of other advanced features, including support for HDTV.
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Table 7-4  MPEG-2 Profiles and Levels. (Empty cells contain undefined values.)

As a generic international standard, MPEG-2 Video was defined in terms of exten-
sible profiles, each of which supports the features needed by a class of applications. The
MPEG-2 Main Profile was defined to support digital video transmission in the range of
about 2 to 80Mbit/s using cable, satellite, or other broadcast channels, as well as to sup-
port digital storage and other communications applications. The parameters of the Main
Profile and the High Profile are suitable for supporting HDTV.

The MPEG experts also extended the features of the Main Profile by defining a
hierarchical/scalable profile. This profile aims to support applications such as compati-
ble terrestrial TV, packet-network video systems, backwards compatibility with existing
standards (MPEG-1 and H.261), and other applications requiring multi-level coding.
For example, such a system could offer a consumer the option of using a small portable
receiver to decode standard definition TV from a broadcast signal, or using a larger
fixed receiver to decode HDTV from the same signal.

The MPEG-2 profiles arranged in a 5×4 matrix as shown in Table 7-4. The degree
of functionality increases along the horizontal axis. The vertical axis indicates levels
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with increased parameters, such as smaller and larger frame sizes. For example, the
Main Profile in the Low Level specifies 352pixels/line with 288 lines/frame and
30 frames/s, without any B frames and a data rate not to exceed 4Mbit/s. The Main Pro-
file in the High Level specifies 1920 pixels/line with 1152 lines/frame and 60 frames/s
with a data rate not to exceed 80Mbit/s.

MPEG-2 incorporates, in a way similar to the hierarchical mode of JPEG, scaling
of compressed video [GV92]. In particular, video is compressed at different qualities
during encoding, so that different alternatives are available during decompression
[Lip91, GV92]. Scaling may act on various parameters:

• Spatial scaling facilitates decompression of image sequences with different hori-
zontal and vertical resolutions. For example, a single data stream could include
images with 352×288 pixels (H.261 CIF format), 360×240 pixels, 704×576 pix-
els (a format according to CCIR 601) and, for example 1,250 lines at an aspect
ratio of 16:9. These resolutions refer to the luminance component; the chromi-
nance component is subsampled by a factor of two. This can be implemented
using a pyramid for the level of the DCT-coefficients [GV92], that is, 8×8 DCT,
7×7 DCT, 6×6 DCT, and other transformations can be formed. From a technical
standpoint, only steps by a factor of two are useful.

• Scaling the data rate allows for playback at different frame rates. In MPEG-1, this
functionality is achieved by using D frames. This can be implemented in MPEG-2
by using I frames, given a suitable distribution of I frames within the data stream.
This condition must be met not only for a group of pictures, but also for the entire
video sequence.

• Amplitude scaling can be interpreted as affecting either the pixel depth or the res-
olution at which DCT-coefficients are quantized. This then leads to a layered cod-
ing and to the possibility of progressive image presentation, which is not relevant
for video data. However, this can be of interest if certain images of an image
sequence can be extracted from the data stream as still images.

Scaling is one of the most important MPEG-2 extensions to MPEG-1. MPEG-2
also, for example, minimizes the effects of the loss of individual ATM cells in an
MPEG-2 coded data stream. Sequences of different frame types (I, P, B) should be
defined to minimize end-to-end delay at a given data rate.

The MPEG-2 group developed the MPEG-2 Audio Standard for low bit rate cod-
ing of multichannel audio. MPEG-2 supplies up to five full bandwidth channels (left,
right, center, and two surround channels), plus an additional low-frequency enhance-
ment channel and/or up to seven commentary/multilingual channels. The MPEG-2
Audio Standard also extends MPEG-1 coding of stereo and mono channels with half
sampling rates (16kHz, 22.05kHz, and 24kHz), which significantly improves quality at
64Kbit/s or less per channel.
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The MPEG-2 Audio Multichannel Coding Standard is backwards compatible with
the existing MPEG-1 Audio Standard. The MPEG group carried out formal subjective
testing of the proposed MPEG-2 Multichannel Audio codecs and up to three
nonbackward-compatible codecs working at rates from 256 to 448Kbit/s.

7.7.4.1 MPEG-2 System

MPEG-2 addresses video together with associated audio. Note that in order to
provide a precise description, this section uses terminology from the original MPEG-2
specification. MPEG-2 defines how an MPEG-2 system can combine audio, video, and
other data in a single stream, or in multiple streams, suitable for storage and transmis-
sion. MPEG-2 imposes syntactic and semantic rules that are necessary and sufficient to
synchronize the decoding and presentation of video and audio information, while
ensuring that the decoder’s coded data buffers do not overflow or run out of data. The
streams include time stamps used in the decoding, presentation, and delivery of the
data.

In the first step, the basic multiplexing approach adds system-level information to
each stream. Each stream is then divided into packets, forming a Packetized Elementary
Stream (PES). Next, the PESs are combined into a Program Stream or a Transport
Stream. Both streams were developed to support a large number of known or antici-
pated applications. They thus incorporate a significant degree of flexibility while ensur-
ing interoperability between different device implementations.

• The Program Stream resembles the MPEG-1 stream, but should only be used in a
relatively error-free environment. Program stream packets are of variable length.
Timing information in this stream can be used to implement a constant end-to-end
delay (along the path from the input of the coder to the output of the decoder).

• The Transport Stream bundles the PESs and one or more independent time bases
into a single stream. This stream was developed for use with lossy or noisy media.
Each packet has a length of 188 bytes, including a four-byte header. The Transport
Stream is well-suited for transmission of digital television and video telephony
over fiber, satellite, cable, ISDN, ATM, and other networks, as well as for storage
on digital video tape and other devices.

A conversion between the Program Stream and the Transport Stream is possible
and sensible. Note that the MPEG-2 buffer management specification limits the end-to-
end delay for audio and video data to under one second, a value unacceptably high for
users of dialogue mode applications.

A typical MPEG-2 video stream has a variable bit rate. By using a video buffer as
specified in the standard, a constant bit rate can be enforced, at the cost of varying
quality.

MPEG-2 reached the CD (Committee Draft) status in late 1993 and required three
additional months to become a DIS (Draft International Standard). After a six-month
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ballot period, the DIS became an IS (International Standard). Originally, there were
plans to specify an MPEG-3 standard covering HDTV. However, during the develop-
ment of MPEG-2, it was found that scaling up could easily meet the requirements of
HDTV. Consequently, MPEG-3 was dropped.

7.7.5 MPEG-4

Work on another MPEG initiative for very low bit rate coding of audio visual pro-
grams started in September 1993 in the ISO/IEC JTC1. Formally designated ISO/IEC
14496, MPEG-4 was published in November 1998 and adopted as an international
standard in January 1999.

MPEG-4 incorporates new algorithmic techniques, such as model-based image
coding of human interaction with multimedia environments and low bit-rate speech
coding for use in environments like the European Mobile Telephony System (GSM).
The most important innovation is improved flexibility. Developers can use the compres-
sion method in different ways and configure systems to support a multitude of applica-
tions. MPEG-4 is thus not a fixed standard suitable only for a few applications.
Moreover, MPEG-4 integrates a large number of audiovisual data types, for example
natural and synthetic, aimed at a representation in which content-based interactivity is
supported for all media types. MPEG-4 thus allows the design of audiovisual systems
that are oriented around specific users yet are compatible with other systems.

Most currently available audiovisual services allow only playback functionality.
In contrast, MPEG-4 places a strong emphasis on interactivity. Support for random
access to audio and video scenes as well as the ability to revise content are thus among
the main objectives of the MPEG-4 standardization. MPEG-4 provides for a universal
coding of various forms of audiovisual data, called audiovisual objects. In other words,
MPEG-4 seeks to represent the real world as a composition of audiovisual objects. A
script then describes the spatial and temporal relationships among the objects. Using
this form of representation, the user can interact with the various audiovisual objects in
a scene in a manner that corresponds to the actions of everyday life.

Although this content-based approach to scene representation may seem obvious
to the human user, it actually represents a revolution in video representation since it
enables a quantum leap in the functionality that can be offered to the user. If a scene is
represented as a collection of a few or many independent audiovisual objects, the user
has the opportunity to play with the contents of the scene, for example by changing the
properties of some objects (e.g., position, motion, texture, or form), accessing only
selected parts of a scene, or even using cut and paste to insert objects from one scene
into another scene. Interaction with contents is thus a central concept of MPEG-4.

Another major shortcoming of other audiovisual coding standards is the restricted
number of audio and video data types used. MPEG-4 attempts to smoothly integrate
natural and synthetic audiovisual objects, for example mono, stereo, and multiple
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channel audio. Moreover, MPEG-4 supports either 2-D or 3-D (mono or stereo, respec-
tively) video modes, as well as these from additional camera perspectives (so-called
multiview video). This integration should be extended with regard to audiovisual inter-
relationships so that processing can incorporate the mutual influence and dependence
between different types of information. Moreover, new and already available analysis
and coding tools are being integrated into MPEG-4. In the future, MPEG-4 as a whole
will be further developed as new or better tools, data types, or functionality becomes
available.

The quick pace of technological progress in recent years has accentuated the
inflexibility of standards that do not allow for the continuous development of hardware
and methods. Such standards implement only specific solutions that very quickly no
longer reflect technological developments. Flexibility and extensibility are thus impor-
tant objectives of MPEG-4. MPEG-4 provides flexibility and extensibility through the
“MPEG-4 Syntactic Description Language (MSDL).” The MSDL approach to extend-
ing audiovisual coding standards is revolutionary. Not only can new algorithms be inte-
grated by selecting and integrating predefined tools (level 1), but they can be “learned”
in that the coder can download new tools. At the same time, even MSDL is subject to
further development since the MPEG-4 standard can always incorporate new tools,
algorithms, and concepts in MSDL to support new or improved functionalities.

The areas of telecommunications, computers, and television/film are converging
and are in the position of being able to exchange elements that previously were typical
for only one of the three areas. This convergence is more likely viewed as evolutionary
because it is taking place through gradual transitions. Because qualitatively new multi-
media services are emerging from this convergence, a logical consequence is that new
requirements will be placed on coding and transmission techniques. With its official
focus on the three driving forces of content and interaction, integration and flexibility
and extensibility, MPEG-4 seems to be the appropriate answer to such requirements.

7.7.5.1 MPEG-4 Extensions Compared with MPEG-2

The vision of the MPEG-4 standard can be best explained using the eight new or
improved functionalities identified in the MPEG-4 Proposal Package Description.
These were the result of a meeting held to determine which features could be of signifi-
cance in the near future but that were not (or only partially) supported by present-day
coding standards.

MPEG-4 must additionally provide some other important so-called standard func-
tions included in previously available standards, for example synchronization of audio
and video, low-delay modes, and interoperability between networks. Unlike the new or
improved functions, the standard functions can be provided by standards that either
exist or are under development.

MPEG-4 makes it possible to scale content, spatial and temporal resolution,
quality, and complexity with finer granularity. This content-based scalability implies
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the existence of a priority mechanism for a scene’s objects. The combination of various
scaling methods can lead to interesting scene representations, whereby more important
objects are represented using higher spatial-temporal resolution. Content-based scaling
is a key part of the MPEG-4 vision, since other features can easily be implemented once
a list of a scene’s important objects is available. In some cases, these and related fea-
tures may require analyzing a scene to extract the audiovisual objects, depending on the
application and on previous availability of composition information.

MPEG-4 incorporates a syntax and various coding methods to support content-
based manipulation and bit stream editing, without requiring transcoding (conversion
from one coding system to another). This means that the user should be able to access a
specific object within a scene or bit stream, thus making it possible to easily change the
object’s properties.

MPEG-4 offers efficient, content-based tools to access and organize multimedia
data. These features include indexing, addition of hyperlinks, queries, viewing data,
uploading or downloading data, and deleting data.

MPEG-4 supports efficient methods of combining synthetic and natural scenes
(e.g., text and graphics overlays), the ability to code natural and synthetic audio and
video data, as well as methods of mixing synthetic data with conventional video or
audio under decoder control. This feature of MPEG-4 enables extensive interaction fea-
tures. The hybrid coding of natural and synthetic data allows, for the first time, a
smooth integration of natural and synthetic audiovisual objects and thus represents a
first step towards the complete integration of all sorts of types of audiovisual
information.

MPEG-4 supports scenes with different views/sound tracks and can efficiently
code them together with sufficient information to synchronize the resulting basic
streams. For video applications that use stereoscopic pictures or multiple views, this
means that redundancy between multiple views of the same scene can be exploited.
Furthermore, this permits solutions that are compatible with normal (mono) video.
Coding multiple, simultaneous data streams should provide an efficient representation
of natural 3-D objects if a sufficient number of views is available. On the other hand,
this can necessitate a complex analysis process. This functionality should especially
benefit applications that until now have used almost exclusively synthetic objects, for
example in the area of virtual reality applications.

The strong growth of mobile networks in particular has resulted in a need for
improved coding efficiency. MPEG-4 is thus needed in order to provide substantially
better audiovisual quality than either existing standards or standards under development
(e.g. H.263), at comparably low bit rates. It should be noted that the simultaneous sup-
port of other functionality does not necessarily further compression efficiency. How-
ever, this is not problematic since different coder configurations can be used in different
situations. Subjective tests carried out with MPEG-4 in November 1995 showed that, in
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terms of coding efficiency, the available coding standards performed very well in
comparison to most other proposed techniques.

Universal accessibility implies access to applications over a wide range of net-
works (both wireless and cable-based) and storage media. MPEG-4 must therefore
work robustly in environments susceptible to errors. Especially for low bit rate applica-
tions, the system must provide sufficient robustness against serious errors. The
approach used is not to replace the error-control techniques that are implemented in the
network, but rather to offer elasticity against residual errors. This can be achieved with,
for example, selective forward error correction, error containment, or error
concealment.

MPEG-4 incorporates efficient methods to improve temporal random access to
parts of an audiovisual sequence in a limited time interval with fine resolution. These
include conventional techniques for achieving random access at very low bit rates.

7.7.5.2 Audiovisual Objects (AVOs) in MPEG-4

Audiovisual scenes in MPEG-4 are composed of audiovisual objects (AVOs),
which are organized in a hierarchical fashion.

Primitive AVOs are found at the lowest level of the hierarchy. Examples are:

• a two-dimensional fixed background,
• the image of a talking person (without background) or
• the speech associated with the person.

MPEG-4 standardizes a number of these primitive AVOs that can be used to repre-
sent natural as well as synthetic types of content, which can be either two- or three-
dimensional.

MPEG-4 defines the coded representation of such objects, for example:

• text and graphics,
• heads of speaking actors and associated text that the receiver can use to synthesize

corresponding speech and animate the head accordingly,
• animated human bodies.

Figure 7-21 Example of an audiovisual scene in MPEG-4.
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AVOs are individually coded in order to achieve maximum efficiency. They can be
represented independently of other AVOs or of the background information.

MPEG is working with representatives of organizations that manage electronic
media rights on defining a syntax for storing information about Intellectual Property
Rights (IPR) pertaining to MPEG-4 AVOs and on developing tools to support IPR iden-
tification and IPR protection. The MPEG-4 standard thus incorporates support for
unambiguous identification using attributes assigned by international naming authori-
ties. These can be used to identify the current holder of the rights to an AVO. Protection
of the content will be part of a subsequent version of MPEG-4.

7.7.5.3 Combining AVOs into Scenes

AVOs are combined in a hierarchical fashion to make audiovisual scenes. The
result is a dynamic, tree-like structure of AVOs that can be changed through user inter-
action. Since each AVO possesses spatial and temporal components and can be located
in relation to other AVOs, each AVO has coordinates that result from those of its parent
AVO in the tree structure for the audiovisual scene.

7.7.5.4 Coding of Visual Objects

MPEG-4 uses a variety of methods to code visual objects. These are defined for
natural images and videos as a set of tools and algorithms for the efficient compression
of images, videos, textures, and 2-D and 3-D meshes, as well as geometry streams that
animate these meshes in a time-varying manner. Tools to randomly access and manipu-
late all types of visual objects are available. Furthermore, content-based coding as well
as content-based spatial, temporal, and qualitative scaling are supported. For natural
content, there are mechanisms that provide robustness against errors and elasticity
against errors in environments susceptible to errors.

To code synthetic objects, MPEG-4 defines parametric description tools as well as
animated streams of human faces and bodies for static and dynamic mesh coding with
texture mapping and texture coding. MPEG-4 uses wavelet compression techniques to
efficiently code textures. Integration of other standards for synthetic audiovisual
content, such as VRML, is planned as a future extension to MPEG-4.

In efficiently coding multimedia content the greatest gains can be gotten from
video compression. Video coding is thus a particularly important aspect of the MPEG-4
standard. Three fundamental video coding extensions, which are realized by MPEG-4,
are described below in detail:

1. Object-based scene layering and separate coding and decoding of layers

In order to be able to support content-based functionalities, before processing a
video scene, the coder must be able to divide the scene into layers that represent
its physical objects. For example, one could divide a video scene into three layers
O1, O2, and O3, whereby O1 represents the background, O2 represents the person
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in the foreground, and O3 represents the telephone (see Figure 7-22). Each object
is then coded separately and transmitted over its respective bit stream layer.

Figure 7-22 Example of division of a video sequence.

The layering approach has the major advantage that each bit stream layer can be
independently processed and separately coded and decoded. This achieves
efficient coding and permits content-based functionalities.

If transmission takes place in environments susceptible to errors, different layers
can be treated differently. For example, better error protection could be used for
the foreground layer O2 than for the two other layers if the recipient is more inter-
ested in the foreground object. Then at least the foreground layer can be decoded
with sufficient quality if there is significant noise in the transmission channel. In
other applications, the user could be interested in showing only the foreground
layer when the video is being edited, manipulated, and mixed. The person in the
foreground could then be placed in a scene coming from another video with a dif-
ferent background (possibly even a synthetic scene that was created through com-
puter graphics). The bit stream layer O3 can be accessed directly. This can also be
inserted in the bit stream of another video scene without requiring that one of the
two scenes be additionally segmented and transcoded.

2. Shape-adaptive DCT coding

After a scene has been successfully segmented, creating the different object lay-
ers, each layer is coded separately. This is done using a DCT coding technique
that adapts itself to the object’s shape. The fundamental structure of this technique
can be considered an extension to conventional block-based hybrid DCT algo-
rithms that use motion compensation and that code the different object layers. In
contrast to previous standards, images to be coded in each object layer are no
longer considered to be rectangular regions. Their shape and position can change
between successive frames.

In order to model and optimize the performance of an algorithm for the functional
coding of input sequences of arbitrarily shaped images at a bit rate of around
1Mbit/s, the standard MPEG-1 coding system was extended with a shape coding
algorithm and a shape-adaptive DCT technique. Shape-adaptive DCT allows
transformation coding of image blocks of any shape.
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For each object layer, the object shape information is transmitted first. This is fol-
lowed by the blocks’ motion vectors and the DCT coefficients corresponding to
the motion and to the object’s texture information as described by luminance and
chrominance. In order to permit separate decoding of each object layer, the coding
uses no information about shape, motion, or texture outside of the respective layer.
As in previous MPEG definitions, input images to be encoded are split into grids
of macro blocks and blocks. A block motion vector is transmitted for each macro
block. For rectangular blocks, the SA-DCT algorithm reduces to the standard
block DCT algorithm.

3. Object-based tool box for motion prediction

The basic SA-DCT algorithm was developed in order to implement MPEG-4’s
object-based functionalities. The algorithm reduces temporal redundancy by using
block-based motion compensation, comparable to that of the previous MPEG cod-
ing algorithm. An important advantage of the SA-DCT object-based approach is
the significant increase in compression efficiency achieved by using appropriate
tools for motion prediction in each object layer.

The alternative prediction tools Pred 1–Pred 3, for example, extend the basic SA-
DCT motion compensation approach with object-based motion prediction tech-
niques. After the initial scene segmentation and layered description of the video
content, each object layer can be classified in view of specific object properties
during initial scene analysis (e.g., constant background with or without global
camera movement motion, constant foreground objects with global motion or
flexible foreground objects with related motion). This classification can be used to
apply different tools for temporal prediction in layers with different properties.
The set of motion prediction algorithms embedded in the basic SA-DCT coding
system is also described as an object-based prediction tool box, in other words as
a set of motion prediction tools that have been optimized for the motion statistics
of various object layers having different properties in the object model.

For flexible foreground objects with corresponding motion (e.g., the foreground
person O2) or for constant objects with global motion (e.g., a car) it might be more
suitable to code and transmit fixed-motion vector fields or global motion parame-
ters than block vectors. Moreover, a background with global camera motion can
be coded very efficiently by estimating and transmitting global camera parame-
ters, such as zoom, rotation, and translation, that can be mapped to a stationary
panorama image of a constant background. This implies implementation within
the coder and the decoder of a background memory that holds a complete (or as
complete as possible) representation of the stationary background panorama.
Based on these global parameters and on the panorama image stored in the back-
ground memory, a prediction of the background layer image to be coded is gener-
ated by the coder and by the decoder using efficient texturing algorithms.
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Correction images for the background prediction are generated using the SA-DCT
algorithm, similar to the hybrid DPCM/DCT standard coding method.

In the extended SA-DCT approach, conventional block-based motion compensa-
tion (Pred 1) can be used for object layers that do not satisfy the special model
assumptions of the new prediction tools. In any case, intra-coded frames and
regions where the model fails (for each of the prediction tools) are efficiently
coded using the SA-DCT algorithm. 

The MPEG-4 decoder was specified with different complexity levels in order to
support different types of applications. These are: Type 0 (not programmable,
with a predetermined set of tools), Type 1 (flexible, with a set of configurable
tools) and Type 2 (programmable, with the ability to download new tools from the
coder).

7.7.5.5 Streams in the MPEG-4 Standard

Just like MPEG-1 and MPEG-2, MPEG-4 also describes streams. Since MPEG-4
divides content into multiple objects, the stream properties affect multiplexing,
demultiplexing, and synchronization of multiple streams.

AVO data is bundled into one or more Elementary Streams. These are character-
ized by the Quality of Service (QoS) needed for transmission (e.g., maximum bit rate or
bit error rate) as well as other parameters, for example, stream type information, which
helps determine the resources required in the decoder and the precision of time infor-
mation in the coder. The manner in which such information about stream characteristics
is transported from the source to the sink in a synchronized fashion over networks hav-
ing different QoS is specified in terms of an Access Unit Layer and a conceptual two-
layer multiplexer.

The Access Unit Layer allows Access Units to be identified within Elementary
Streams, for example, video or audio frames, and scene description commands. This
layer also permits the reestablishment of the time base of an AV-object or of a scene
description as well as synchronization between them. The header of an Access Unit can
be configured in a variety of ways, permitting a wide range of systems.

The FlexMux Layer (Flexible Multiplex) is fully specified by MPEG-4. It com-
prises a multiplexing tool that allows Elementary Streams (ESs) to be grouped with
minimal multiplexing overhead. For example, Elementary Streams with similar QoS
requirements could be grouped.

The TransMux Layer (Transport Multiplexing) models the layer that provides the
transport services that match the required QoS. MPEG-4 specifies only the interface to
this layer. Thus any suitable transport protocol architecture, such as (RTP)/UDP/IP/
(AAL5)/ATM or MPEG-2’s Transport Stream over a suitable link layer, may become a
specific TransMux instance. The choice is left to the end user/service provider, allowing
MPEG-4 to be used in a multitude of operating environments.
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Figure 7-23 MPEG-4 System Layer Model.

Usage of the FlexMux multiplexing tool is optional. As shown in Figure 7-23, this
layer can be skipped by the underlying TransMux instance since this provides equiva-
lent functionality. The Access Unit Layer, however, is always present.

With this the following are possible:

1. Identification of Access Units, transport timestamps, clock reference information,
and data loss.

2. Optional interleaving of data from different Elementary Streams into FlexMux
streams.

3. Control information:

• to indicate the required QoS for each Elementary Stream and FlexMux
stream,

• to translate such QoS requirements into currently available network
resources,

• to transport the mapping of Elementary Streams associated with AVOs to
FlexMux and TransMux channels.
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Individual Elementary Streams must be read from incoming data on a network
connection or from a storage device. In the MPEG-4 system model, each network con-
nection or file is homogeneously viewed as a TransMux Channel. Multiplexing is car-
ried out partially or completely by layers that are not part of MPEG-4, depending on the
application. The Stream Multiplex Interface is used as a reference point for integrating
MPEG-4 in system environments. Streams packetized by the Adaptation Layer (AL)
are accessed at this interface. The FlexMux layer specifies the optional FlexMux tool.
The TransMux interface specifies how either streams packetized by the AL (no
FlexMux used) or FlexMux streams are received from the TransMux layer. The Trans-
Mux interface thus realizes the passage to transport functionality not defined by MPEG.
The interface’s data part is considered here, while the control part is dealt with in the
context of DMIF.

In the same way that MPEG-1 and MPEG-2 describe the behavior of an ideal
operational decoding device together with the syntax and semantics of the bit stream,
MPEG-4 defines a System Decoder Model

 

.

 

 This allows the precise definition of a ter-
minal’s operation without having to make unnecessary assumptions about implementa-
tion details. This is essential in order to give developers the freedom to implement
MPEG-4 terminals and decoding devices in a multitude of ways. Such devices range
from TV receivers, which cannot communicate with the sender, to computers, which
are fully capable of exchanging data bidirectionally. Some devices receive MPEG-4
streams over isochronous networks, while others use nonisochronous means (e.g., the
Internet) to exchange MPEG-4 information. The System Decoder Model represents a
common model that can serve as the basis for all MPEG-4 terminal implementations.

The MPEG-4 demultiplexing step is specified in terms of a conceptual two-layer
multiplexer consisting of a TransMux layer and a FlexMux layer as well as the Access
Unit Layer, which conveys synchronization information.

The generic term TransMux Layer is used to abstract underlying multiplexing
functionality (existing or future) that is suitable for transport of MPEG-4 streams. It
should be noted that this layer is not defined in the context of MPEG-4. Examples are
the MPEG-2 Transport Stream, H.223, ATM AAL2, and IP/UDP. The TransMux Layer
is modelled by means of a protection sublayer and a multiplexing sublayer, which make
it clear that this layer is responsible for offering a specific QoS. The functionality of the
protection sublayer includes error protection and error detection tools appropriate to the
network or storage medium. In some TransMux instances, it may not be possible to
separately identify the two sublayers.

Every concrete application scenario uses one or more specific TransMux
Instances. Each TransMux Demultiplexer provides access to the TransMux Channels.
Requirements for access to the TransMux Channel at the data interface are the same for
all TransMux Instances. They include reliable error detection, the delivery or erroneous
data with a suitable error indication (if possible), and the division of the payload into
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frames. This division consists of either streams that have been packetized by the AL or
of FlexMux streams. The requirements are summarized in an informal fashion in the
TransMux interface, in the system part of the MPEG-4 standard.

On the other hand, MPEG fully describes the FlexMux Layer

 

. 

 

It provides a flexi-
ble tool for optional interleaving of data with minimal overhead and low delay and is
particularly useful if the underlying TransMux Instance has a large packet size or high
overhead. The FlexMux itself is not robust against errors. It can either be used on top of
TransMux Channels with high QoS or to bundle Elementary Streams, both of which are
equivalent in terms of error tolerance. The FlexMux requires reliable error detection
and sufficient division of the FlexMux packets into frames (for random access and error
correction), which must be provided by the underlying layer. These requirements are
summarized in the Stream Multiplex Interface, which defines data access to individual
transport channels. The FlexMux demultiplexer receives AL-packetized streams from
FlexMux Streams.

The Access Unit Layer has a minimal set of tools for checking consistency, pad-
ding headers, conveying time base information, and transporting time-stamped access
units of an Elementary Stream. Each packet consists of an access unit or fragment
thereof. These time-stamped units represent the only semantic structure of Elementary
Streams that is visible in this layer. The AU Layer requires reliable error detection and
framing of individual packets of the underlying layer, which can for example be per-
formed by the FlexMux. The manner in which the compression layer accesses data is
summarized in the informal Elementary Stream interface, also in the system part of the
MPEG-4 standard. The AU layer retrieves Elementary Streams from the streams
packetized by the AL.

Depending on the degree of freedom allowed by the author of a scene, the user
can interact with the scene’s contents. The user could, for example, navigate through
the scene, move objects to different positions, or trigger a sequence of events by click-
ing on a specific object with the mouse (for example, starting or stopping a video
stream or choosing the desired language if multiple language channels are available). It
would also incorporate more complex behaviors. For example, a virtual telephone rings
and the user answers it, establishing a communications link.

Streams that come from the network (or from a storage device) as TransMux
Streams are demultiplexed into FlexMux Streams and passed on to appropriate
FlexMux demultiplexers, which receive Elementary Streams (see Figure 7-24).
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Figure 7-24

 

Important components of an MPEG-4 terminal.

 

Parts of the control functionality are only available in conjunction with a transport
control unit, such as the DMIF environment, which MPEG-4 defines for precisely this
purpose. The Delivery Multimedia Integration Framework (DMIF) covers operations of
multimedia applications over interactive networks, in broadcast environments or from
hard disks. The DMIF architecture is structured such that applications that use DMIF
for communication do not need to have any knowledge of the underlying communica-
tions methods. The DMIF implementation takes care of the network details, presenting
the application with a simple interface. DMIF can be placed between an MPEG-4 appli-
cation and the transport network (see Figure 7-25).
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Figure 7-25

 

DMIF architecture.

 

To predict the behavior of a decoder during decompression of the various elemen-
tary data streams that make up an MPEG-4 session, the System Decoder Model makes
it possible for the coder to specify and monitor the minimum buffer resources needed to
decode the session. The required resources are conveyed to the decoder with object
descriptors during establishment of the MPEG-4 session so that the decoder can decide
if it is capable of proceeding with the session.

By managing the finite amount of buffer space, for example, the model allows the
sender to transmit nonreal-time data too early, if sufficient space is available to store it
at the receiver. The prestored data can be accessed at the appropriate moment, at which
time real-time information can use a greater portion of the channel capacity, if required.

Real-time operation assumes a timing model where the end-to-end delay from the
signal output of the coder to the signal input of the decoder is constant. Furthermore,
the transmitted data streams must carry either implicit or explicit time information.
There are types of such information. The first is used to convey the clock speed, or the
encoder time base, to the decoder. The second, which consists of time stamps attached
to parts of the coded AV data, contains desired decoding times for access units or the
composition and expiration time for composition units. This information is conveyed in
the AL-PDU headers generated by the Access Unit Layer. This timing information can
be used to adapt the interval between pictures and the audio sampling rate at the
decoder to match the encoder’s values in order to achieve synchronized operation.

Different AV objects can be encoded by encoders with different time bases
together with the slightly different speeds that occur. At any time, it is possible to map
these time bases to the receiving terminal’s time base. However, in this case no real
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implementation of a receiving terminal can avoid the occasional repetition or loss of AV
data caused by temporal aliasing (relative reduction or extension of the time scale).

Although system operation without any timing information is allowed, it is not
possible to define a buffer model in this case.

 7.7.6 MPEG-7  
After MPEG-3 did not materialize, it was decided not to allow MPEG-5 or

MPEG-6 either, in order to preserve the logic of the sequence MPEG-1 (+1) to MPEG-
2 (+2) to MPEG-4 (+3) to MPEG-7 (+4) ...

MPEG-7 is not meant as another compression format, rather the intention of the
MPEG-7 ISO Working Group was to establish a metadata standard to supplement con-
tent coded in other formats (such as MPEG-4). The use of metadata aims at a new type
of extension to the coding of multimedia data: mainly improved searching techniques
and display strategies, but also consistency checking and, for example, scaling that
incorporates consistency and priority. MPEG-7 calls for the integration and extension
of other media content formats (especially MPEG-4) in this way.

In addition to the coding of metadata, MPEG-7 will define interfaces (and only the
interfaces) for working in tandem with tools for automatic content analysis and search
engines, but not these services themselves.

 

7.8 Fractal Compression

 

Fractal image and video compression represents an entirely different coding
method. In this technique, no actual pixel information is transmitted, rather only a
transformation function that contains an image similar to the target image as a fixed
point. The decoding process then consists of an iterative application of this function to
any beginning image.

Various specific attributes of this coding technique follow from this. First of all,
the decoding process is progressive and the decoding efficiency is scalable, since the
quality of the decoded image increases with each iteration step. Additionally, the pro-
cess is independent of the resolution. The mapping function can be applied repeatedly
in order to get more detail. The third attribute is an asymmetry between the encoding
and decoding processes.

This raises the question of how an image can be coded as a transformation func-
tion. The algorithm makes use of a fractal attribute of images: their self-similarity.
Images consist of regions that are similar to one another. A transformation function
then consists of a mapping of each region of an image to the most similar part of the
image. The mapping consists of contracting, stretching, rotating, and skewing the form
of the image regions and adjusting their contrast and brightness. This is a type of vector
quantization that does not use a fixed set of quantization vectors. The mapping will
result in an image if the existence of a fixed point can be guaranteed. The only
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condition required by the theory for this is that of contractivity

 

.

 

 The absolute value of
the contraction factor must lie in the interval [0,1).

The mapping is achieved in current implementations [BH93] by dividing the orig-
inal image into blocks (of 8

 

×

 

8 pixels) and, for each block, finding the most similar
block of image regions (i.e., overlapping 16

 
×

 

16 pixel blocks). The set of blocks com-
pared with each (8  ×  8) original block is increased by the possible geometric transforma-
tions. The most similar block can be found by minimizing a distance measure. Usually
the sum of the quadratic pixel differences is minimized.

For natural images, fractal compression can achieve high compression ratios (up
to 1000:1) with very good image quality. The biggest disadvantage of this coding
method is the complexity of calculation and its low efficacy when applied to graphics
images. In order to keep the complexity within practicable limits, only a subset of all
transformations are considered, for example only rotation angles of 0

 

o

 

, 90

 

o

 

, 180

 

o

 

, and
270

 

o

 

. Nevertheless each original block must be compared with a very large number of
blocks in order to find the mapping to the most similar block. In addition to the com-
plexity of calculation, this coding technique is lossy since it uses only the similarity of
blocks, not their identity.

 

7.9 Conclusions

 

The important compression techniques used in multimedia systems all represent a
combination of many well known algorithms:

 

7.9.0.1 JPEG

 

JPEG is the standard for still image coding that will have the most significance in
the future. Its far-reaching definition allows a large number of degrees of freedom. For
example, an image can have up to 255 components, that is, levels. An image can consist
of up to 65,535 lines, each of which can contain up to 65,535 pixels. Compression per-
formance is measured in bits per pixel

 

.

 

 This is an average value calculated as the quo-
tient of the total number of bits contained in the coded picture and the number of pixels
contained in the picture. That said, the following statements can be made for DCT-
coded still images [Wal91]:

 

•

 

0.25 to 0.50bit/pixel: moderate to good quality; sufficient for some applications.

 

•

 

0.50 to 0.75bit/pixel: good to very good quality; sufficient for many applications.

 

•

 

0.75 to 1.50bit/pixel: excellent quality; suitable for most applications.

 

•

 

1.50 to 2.00bit/pixel: often barely distinguishable from the original; sufficient for
almost all applications, even those with the highest quality requirements.

In lossless mode, a compression ratio of 2:1 is achieved despite the remarkable
simplicity of the technique. Today JPEG is commercially available in software as well
as in hardware and is often used in multimedia applications that require high quality.
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The primary goal of JPEG is compression of still images. However, in the form of
Motion JPEG

 

, 

 

JPEG can also be used for video compression in applications such as
medical imaging.

 

7.9.0.2 H.261 and H.263

 
H.261 and H.263 are already established standards. These were mainly supported

by associations of telephone and wide area network operators. Due to the very
restricted resolution of the QCIF format and reduced frame rates, implementing H.261
and H.263 encoders and decoders does not cause any significant technical problems
today. This is especially true if motion compensation and the optical low-pass filter are
not components of the implementation, although the quality is not always satisfactory
in this case. If the image is encoded in CIF format at 25 frames/s using motion compen-
sation, the quality is acceptable. H.263 is mostly used for dialogue mode applications in
network environments, for example video telephony and conferencing. The resulting
continuous bit rate is eminently suitable for today’s wide area networks operating with
ISDN, leased lines, or even GSM connections.

 

7.9.0.3 MPEG

 

MPEG is the most promising standard for future audio and video compression
use. Although the JPEG group has a system that can also be used for video, it is overly
focussed on the animation of still images, instead of using the properties of motion pic-
tures. The quality of MPEG video (without sound) at about 1.2Mbit/s, appropriate for
CD-ROM drives, is comparable to that of VHS recordings [Le 91]. The compression
algorithm works very well at a resolution of about 360

 

×

 

240 pixels. Obviously, higher
resolutions can also be decoded. However, at a resolution of, for example 625 lines,
quality is sacrificed. The future of MPEG points towards MPEG-2, which defines a data
stream compatible with MPEG-1, but provides data rates up to 100Mbit/s. This signifi-
cantly improves the currently available quality of MPEG-coded data.

MPEG also defines an audio stream with various sampling rates, ranging up to
DAT quality, at 16bit/sample. Another important part of the MPEG group’s work is the
definition of a data stream syntax.

Further, MPEG was optimized by making use of the retrieval model for applica-
tion areas such as tutoring systems based on CD-ROMs and interactive TV. Embedding
this optimization in MPEG-2 will allow TV and HDTV quality at the expense of a
higher data rate. MPEG-4 will provide high compression ratios for video and associated
audio and is furthermore an appropriate tool for creating whole classes of new multime-
dia applications. However, currently the complex and still very new MPEG-4 standard
is little used in widespread commercial applications.

JPEG, H.263, MPEG, and other techniques should not be viewed as competing
alternatives for data compression. Their goals are different and partly complementary.
Most of the algorithms are very similar, but not identical. Technical quality, as well as
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market availability, will determine which of these techniques will be used in future mul-
timedia systems. This will lead to cooperation and convergence of the techniques. For
example, a future multimedia computer could generate still images using JPEG, use
H.263 or MPEG-4 for video conferencing, and need MPEG-2 to retrieve stored multi-
media information. This is, however, a purely hypothetical conception and is not in any
way meant to prejudge future development or strategies for these systems.




