Image Compression

Multimedia - Department of Computing, Imperial College
Professor GZ Yang ! http://www.doc.ic.ac.uk/~gzy

Why Image Compression

Research in compression techniques has stemmed from the ever-increasing need
for efficient data transmission, storage and utilisation of hardware resources.
Uncompressed graphics, audio and video data require considerable storage capacity
and transmission bandwidth. Despite rapid progresses in mass-storage density,
processor speeds, and digital communication system performance, demand for data
storage capacity and data-transmission bandwidth continues to outstrip the
capabilities of avail-able technologies. The recent growth of data intensive digital
audio, image, and video (multimedia) based applications, have not only sustained the
need for more efficient ways to encode signals and images but have made
compression of such signals central to signal-storage and digital communication
technology. Here are some examples of the space required for storing different kinds
of multimedia information:

Multimedia Data Size/Duration B.'tSIP'XEI or Uncompressed Size
Bits/Sample
A Page of text 11" x 8.5 Varying 16 — 32 Kbits
resolution
Telephone quality 1 sec 8 bps 64 Kbits
speech
Grayscale image 512 x 512 8 bpp 2.1 Mbits
Color image 512 x 512 24 bpp 6.29 Mbits
Medical image 2048 x 1680 12 bpp 100 Mbits
Full-motion video 640 x 480, 10 sec 24 bpp 2.21 Gbits

Image compression methods are typically divided into two categories, lossless and
lossy. Compression techniques belonging to the first category have the main
characteristic that the image involved can be perfectly reconstructed from the
compressed file, thus having no information loss. On the other hand lossy
compression methods rely on the fact that some of the data can be discarded with
almost no detectable loss in image quality by the human visual system. When
research into image compression began in the late 1970s, most compression
concentrated on using conventional lossless techniques, meaning that the
reconstructed image after compression is numerically identical to the original image
on a pixel-by-pixel basis. However, such types of compression techniques, which
included statistical and dictionary methods of compression, did not tend to perform
well on photographic, or continuous tone images. The primary problem with statistical
techniques is due to the fact that pixels in photographic images tend to be well spread
out over their entire range. Hence, if the colours in an image are plotted as a
histogram based on frequency, the histogram is not as “spiky” as it would be required
for statistical compression to be effective. Each pixel code has approximately the
same chance of appearing as any other, negating any opportunity for exploiting
entropy differences.

By the late 1980s, extensive research pushed the development of lossy compression
algorithms that take advantage of known limitations of the human eye. Such
algorithms play on the idea that slight modifications and loss of information during the
compression/decompression process often do not affect the quality of the image as
perceived by the human user. One such technique is to exploit the self similarity
nature of image patterns based on fractal geometry for image compression.

-1-

Self similarity in images

Fractal and Iterated Function Systems

The birth of fractal geometry is usually traced to IBM mathematician Benoit B.
Mandelbrot and the 1977 publication of his seminal book The Fractal Geometry of
Nature [35]. It stresses the fact that traditional geometry with its straight lines and
smooth surfaces does not resemble the geometry of trees and clouds and mountains.
Fractal geometry, with its convoluted coastlines and detail ad infinitum, does. This
insight opened vast possibilities, allowing computer scientists to generate artificial yet
realistic looking forms. Shortly after Mandelbrot’s work, mathematicians searched for
a framework underlying fractal geometry. As John Hutchinson demonstrated in 1981,
it is the branch of mathematics known as lterated Function Theory . Later in the
decade Michael Barnsley authored Fractals Everywhere, another milestone work. The
book presents the mathematics of Iterated Functions Systems (IFSs), and develops
aresult known as the Collage Theorem. The Collage Theorem states what conditions
an lterated Function System must satisfy in order to represent an image. This
presented an intriguing possibility. If, in the forward direction, fractal mathematics is
good for generating natural looking images, then, in the reverse direction, could it not
serve to compress images? Going from a given image to an Iterated Function System
that can generate the original (or at least closely resembile it), is known as the inverse
problem. In its general form, the inverse problem remains unsolved. In search of
something practical, Arnaud Jacquin, one of Barnsley’s students, arrived at a modified
scheme for representing images using Partitioned Iterated Function Systems (PIFSs).
In his PhD thesis, Jacquin developed the necessary mathematical foundations and
implemented the new approach in software, a description of which appears in his
landmark 1992 paper “Image Coding Based on a Fractal Theory of Iterated
Contractive Image Transformations”. The algorithm was not sophisticated, and was
computationally expensive, but it was fully automatic. All contemporary fractal image
compression programs are based upon Jacquin’s approach.

An elegant way of introducing the notion of Iterated Functions Systems is by the
metaphor of a Multiple Reduction Copying Machine (MRCM). An MRCM is imagined
to be a regular copying machine except that:

. There are multiple lens arrangements to create multiple overlapping copies
of the original.

. Each lens arrangement reduces the size of the original.

. The copier operates in a feedback loop, with the output of one stage the input
to the next. The initial input may be any image.

The above figure depicts this process for Sierpinski’s Triangle, one of the simplest
(and most well known) IFS. It is comprised of three component functions (“lenses”),
each of which shrinks the input image by one half and translates it to a new position.
This contractive property is crucial, for it guarantees convergence of the iterative
process. Because all initial images are “drawn towards” the same final result, it is
variously referred to as the attractor of the IFS, or the fixed point image.

Mathematically, one can represent each reproduction lens as a contractive affine
transformation which rotates, scales, shears, and translates the original copy to a
target location, i.e.,

W = éa bg+ éeq
- U ecu
- & dg &fyg
which maps a given point in the original image (X, y) to a new coordinates (x',y"),

where

V 0
&, u=e it 8.
& & digvn &b

For the Sierpinski Triangle shown above, the three transformations used can therefore
be represented as

L .05 0 Oy &5 0 051 &5 0 025
- e - e - e
1780 o5 0f 2 &0 o5 of ° g0 05 05§

It can be proven that if the determinant of each transform is strictly less than one, i.e.,
|ad-cb|<1, then the IFS as a whole will converge to the attractor image from any initial
image.

Fractal Image Compression

Fractal image compression is based on the observation that many natural scenes
possess a detail-within-detail structure and IFS can generate fractal images that
resemble natural scenes. The IFS can be reverse-engineered from the original image
such that the corresponding IFS can be represented compactly for the original image.
One unique feature of IFS based image compression is that we only need to store the

-3

transformation found within the image, and the decompression process is to apply
these transformations to any given pattern so as to restore the original data.

The nature of how the Partitioned IFS is used for image compression is illustrated in
the following figure. The basic idea is this: if finding self-similarity between an image
in the whole and its parts is unrealistic, then seek self-similarity between larger parts
and smaller parts. This is accomplished, as the name suggests, by partitioning the
original image at different scales. Since images usually take the form of a rectangular

e [N
P
|| D
L—] ¥
—1
|_—1
___/
-
| <
Domain blocks Range blocks

array of pixels, partitioning the original image into blocks is a natural choice. Using
Jacquin’s notation, the large partitions are called domain blocks, and the small
partitions are range blocks. The range blocks evenly partition the image so that every
pixel is included. The larger domain blocks may overlap, and need not contain every
pixel. The goal of the compression process is to find a closely matching domain block
for every range block. The set of domain blocks considered in this operation is called
the domain pool.

When applied to gray scale images, the intensity value of a pixel, z, is treated as a
third spatial dimension. That is, the blocks in the above figure are actually cuboids,
although the original terminology remains. To achieve convergence the intensity
value of a pixel must also be scaled and offset, i.e.

Z'=sz+0,
so that the affine transformation mentioned earlier becomes

éa b OL‘Jéxu éq u
c u,é u

c di l]éyu é'iu
€ €0 O sEEzf &0 H

The parameter si scales the pixel luminance and its effect is like the contrast knob on
a television. When siis 0 the domain block maps to black, when equal to 1 it remains
unchanged; between 0 and 1 the block loses contrast, and above 1 it gains contrast.
The parameter oiintroduces an offset to the pixel luminance and is like the brightness
knob on a television. Positive values of oi brighten the block and negative values
darken it. With contract and brightness control available, the extended affine
transformation can accurately map grayscale domain blocks to grayscale range
blocks. The above expression indicates that in order to compress a gray scale image,
we have to find 8 variables for the transformation equation of each range block. If

-4-

each coefficient is partitioned as 100 steps, the search space is of the size of 10,
which is computationally very expensive.

To make the compression process tractable, Jacquin restricted equation so that
domain blocks are always square (not rectangles or parallelograms), and always
twice the size of range blocks. If the range blocks are, say, 8x8 pixels in size, then the

Eight symmetry operations
. rotation by 0°
. rotation by 90°

1
2
3. rotation by 180°
1 4. rotation by 270°
{ Z flip about horizontal median
NE 7
8

. flip about vertical median
w, |.--

2 . flip about forward diagonal

. flip about reverse diagonal

domain blocks are always 16x16. By doing so, it greatly reduces the size of the
domain pool. This is favourable since it shortens the search time, but reconstruction
quality suffers as optimal pairings may be excluded from consideration. One simple
and effective way of improving coding quality is by allowing domain blocks to undergo
an isometric symmetry operation prior to being transformed. The benefit of such an
operation is illustrated in the following figure, where block 1 is first rotated clockwise
by 270° to improve the similarity between it and the range block. If the eight symmetry
operations are not allowed, then a less optimal pairing, transformation w2, must be
used instead. With the above simplifications, the new transformation for the gray
scale extension of the PIFS becomes

exu é5 0 Ou éxu éeu
é.u_eé U, &
; g—(:ao 05 0 |\/| > e G
ez €0 O Sﬁl‘,’l ez &oif

where M is a 3x3 matrix representing one of the eight symmetry operations. So the
image compression process involves the identification of (e,f,M, o,s) for each range
block, where the first two coefficients locate the domain block, the third applies a
symmetry operation, and the last two introduce an offset and scaling factor. Because
the numbers associated with these coefficients implicitly define a set of affine
transformations, a fractal encoded image is sometimes described as being
“composed of mathematical equations.”

For a given image, if we use the following quantization for each of the five
parameters,

. e, 8 bits - 256 horizontal positions

. f, 8 bits - 256 horizontal positions

. M. 3 bits - 8 horizontal positions

. s, 5 bits - sufficient from empirical tests
. 0, 6 bits - sufficient from empirical tests

we only need 4 bytes for representing each w.. If the 256x256 image is divided into
8x8 range blocks, there are 1024 altogether, therefore the compressed image only
requires 1024 x 32 bits = 4096 bytes (if uncompressed, it requires 64 Kbytes).

Matching Domain and Range Blocks

Before the actual compression can take place, we need to determine the scaling
parameters for the best range-domain pairing. In the original algorithm of Jacquin, the
goal is to minimize the Haussdorff distance (i.e. greatest pixel-to-pixel difference)
between a specific range block and a candidate domain block. To do so, a small set
of scale values {0.45, 0.60, 0.80, 0.97} are tested in sequence, and the one that
produces the smallest Haussdorff distance is retained.

If, instead, the mean square error measure is used, the optimal scaling parameter can
be determined algebraically. First, assume that the domain block Dxy has been
reduced to the size of the range block Rxy(by averaging 2x2 pixel cells), and that they
have been adjusted to a zero-mean intensity level. Then, the mean square error
between the blocks is

[o]

e:n—]; a (Sny' ny)z

x,yl W
By minimising e, one can solve for s,. This can be achieved by taking the derivative
of e with respect to s, as zero, i.e.,

.23 (sD,- R,JD, =0
ds - nZX’inS xy R<y xy ~
therefore,
é: Ry Dy
—_ X, yIW
S - é: ny
X, yl W

In other words, the optimal scaling factor between a range block and a domain block
is their inner product divided by the domain block sum-of-squares. This value is
calculated for all candidate domain blocks, under all eight symmetry operations, in
search of the smallest error. To ensure convergence of the decompression process
it is common practice to force all component transforms to be contractive, that is, to
restrict |si| < 1.0. This is not strictly necessary. In fact, releasing this constraint has
been shown to improve image quality in some cases.

Search Strategy and Image Partitioning
With fractal image compression, two other important issues needs to be considered.

One is the search strategy used for finding range-domain pairs, and the other is
related to how to effectively partition the range blocks.

ﬁi

P

g

|

%44\\ FF%%H‘ Ja”
mNEE
LT
G T E

The development of an effective search strategy is important in that by using a 8x8
range block partitioning for a 256x256 image, 1024 pairings need to be established.

-6-

Even with Jacquin’s simplification, the domain pool contains 8x(256-16+1)? = 464,648
elements (recall that eight symmetry operations are allowed). Intotal, 464,648 x 1024
= 475,799,552 possible pairings are required for testing, which requires 128 Gflops
(floating point operations), and it takes 10 seconds on a Cray YMP-16 supercomputer
I' (You can workout how long it will take for a 1024x1024 image). To address this
problem, the following search strategies have been developed over the years.

. Heavy brute force - an exhaustive search method, don't expect the
compression algorithm will work on a desktop computer

. Light brute force - look at x2, or x4 pixel locations during matching

. Restricted area search - restrict the search only to nearby areas

. Local Spiral Search - dramatically recudes the search time

The development of an efficient search strategy is only part of the story. In fact, the
performance of the system is closely related to how one partitions the image. In
general, the smaller the number of range blocks, the fewer the number of parings
needs to be identified. The above figure shows three different partitioning schemes
where the number of range blocks varies from 5008, 2910, to 2954.

Decompression

The decompression process usually begins by setting the computer’s image buffer
to a uniform mid-gray value. This is used as the seed image. During one iteration, the
pixels of each range block in the transform list are evaluated. The result is used as
the input for the second stage of iteration. The following figure shows that after just
two iterations, the original image is recognizable, and after four the process will
usually have converged (when eight bit precision is used per pixel). Due to the very
nature of the IFS, the choice of the seed image is not important, they will all ultimately
converge to the attractor image. Although the choice of seed image does not affect
the outcome, it can affect how quickly the decompression process converges. One
could instead begin with an all-black seed image, or an all-white one, but usually mid-
gray is preferable. A successful way of increasing decompression speed, as first
described by Beaumont is to begin with a low resolution version of the original. This
is accomplished by modifying the PIFS equation so that oidescribes the mean value
of a range block, rather than the relative offset from the corresponding domain block.

Initial image 1st iteration

2nd iteration 10th iteration

Limitations and Conclusions

In summary, fractal image compression is a promising technology, although it is still
relatively immature. The technique is block based, lossy compression method. In
general, decompression is very fast, but the compression process can be very slow.
Compared to other parallel techniques, the following table summarised the pros and
cons of each approach:

Image Category

Low Compression

High Compression

text and line art poor poor
computer graphics poor - good poor - fair
photo-realistic good very good

images

Source

J Kominek, Advances in Fractal Compression for Multimedia Applications.

