

by Ph. Rouzet

QoS support on WLANs: basic principles

Philippe Rouzet

January 26, 2002

QoS principles 1/4

3 MAIN TECHNIQUES

- Integrated Services
 - CONNECTION ORIENTED Technique
 - RSVP (Reservation protocol)
 - Telecom philososphy
- Differentiated Services
 - Connection-less Technique
 - DIFSERV (Differentiated Services) Protocol
 - Local network
- Application Level Framing

QoS Basic principles 2/4

<u>3 various approaches of the multimedia traffic</u> over a network

- Integrated Services approach : Quality of Service (QoS) technology
 - each application produces a reservation per traffic flow based on a signalling protocol (e.g. RSVP)
 - each element of the network applies a per flow scheduling (id est connection-oriented)
 - the network service is guaranteed by the mean of the reservation

QoS principles 3/4

3 various approaches of the multimedia traffic over a network

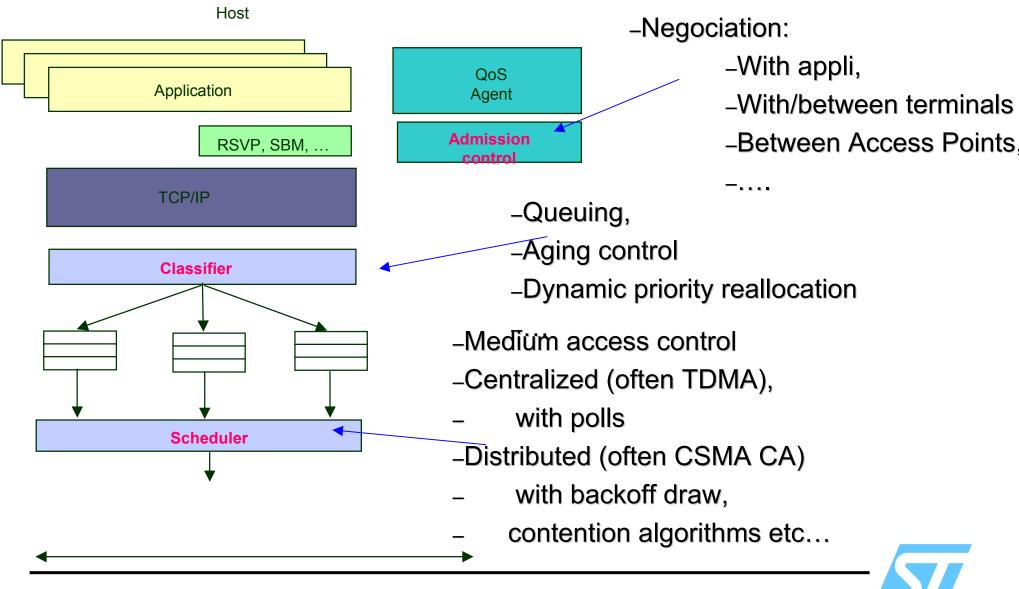
- Differentiated Services approach : Class of Services (CoS) or "soft QoS" technology
 - each packet is tagged (TOS field) and classified by the network (e.g. Diffserv)
 - the network components apply a per <u>packet</u> class scheduling
 - the network service is prioritised (statistical guarantee)

QoS principles 4/4

3 various approaches of the multimedia traffic over a network

- Application Level Framing approach : Adaptive streaming
 - the application
 - Continously assesses the network service properties (RTCP)
 - produces an adaptive streaming (bit rate & redundancy) (RTP)
 - the network is Best Effort (generally with no packet scheduling, QoS is often controlled a-posteriori -e.g. error level control)

QoS policy on BWLAN *QoS at WLAN cell level :*


Algorithms (distributed and or Centralized), Resources and Set of parameters to dynamically monitor and manage:

Medium access on a prioritized /reservation scheme

 Across the air "data" transport (Streams/packets/connexions) with more or less guaranteed performance in term of Bandwidth, bounded time, latency and gitter, (packet) error rate

 ... (security, integrity check, sequencing conservation, ...)

QoS implementation in WLANs

REVAMPING IEEE 802.11 for QoS

- Disclaimer : the new std (802.11e MAC enhancements) is still on debate and unstable. Current presentation based on November 2001 draft version plus IEEE papers.
- Both DCF and PCF are enhanced to support QoS
- Backward compatible
- RESERVATION (PCF) and SCHEDULING (DCF) (Unspecified algorithms)
- Packet aggregation capability (Burst ACK)

What is required for the QoS enhancements (initial list from IEEE-EARLY 2000)

- Dynamic Bandwidth Management
- Stream Synchronization Support
- Reliable Multicast Streaming
- Admission Control
 - Priority Assignment
 - Bandwidth allocation/reservation
 - Guaranteed Latency Bounds
- Selectable Acknowledgement Types
- Roaming and Connection Handling
- BSS Overlap Management
- FEC/Channel Protection
- Direct STA-to-STA Communication
- Dynamic Frequency Selection and TPC

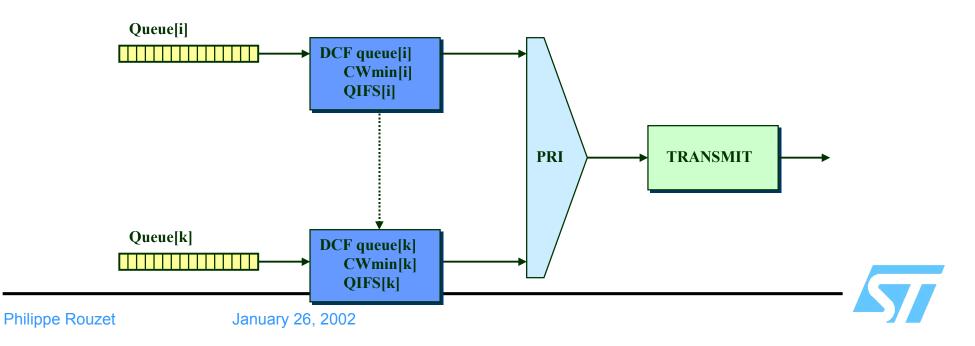
- Initial work was covered by:
- •AT&T (MediaPlex)
- •ShareWave (WhiteCap)
- •Lucent (Blackburst)

IEEE 802.11 Medium Access Model

- STD EVOLUTION(802.11e):
 - DCF => EDCF (Enhanced)
 - PCF => HCF (Hybrid coordination Function)
- 802.11E STD (QoS extension) status:
 - (private to IEEE workgroup) draft version 2.0 Nov. 2001
 - Claimed to be stabilized in Q3 2002

QoS hooks but no fixed policy

- Can be elaborated in PCF mode or DCF mode
- 802.11 does not specify resource allocation schemes:
 - Admission control
 - Buffer management
 - Scheduling
 - How polling list is created in PCF mode
 - When to poll which mobile in PCF mode
- 802.11e specifies medium access policies, algorithms and timing parameters
- 2 main mechanisms (simplified)
 - EDCF : concurrent CSMA/CA for up to 8 queues in one STA
 - HCF : "super-super frame" : STA can send a series of packets in one slot, Ack can be grouped (burst ACK), delayed etc...


Enhanced DCF medium access algorithm

(simplified description) (7) Yes -Same basic algo. as for genuine MAC, but -Several simultaneous message queues in **DIE** Dueue one station Empty? (1) Frame Arrival -All contending together for medium (6) No access -Contention based on priority attributes (2) Yes (8) Yes CCA >PRI (packet tags or bandwidth reservation) OIFS OK? TRANSMIT -ONE DCF state machine per queue (9) No (3) No -For one queue, other internally contending queues act the same way as (12) Retry (11) Fail Retry other contending stations Limit (13) Fail Packet -Simultaneous backoff algorithms (10) Success performed in parallel for each (4) Decrement queue/priority (5) BC=0BACKOFF

EDCF properties

- Same state machine as DCF
- Prioritized access to MAC services per Traffic Category (TC)
- Controls relative bandwidth, latency, jitter per TC
- Based on 3 main parameters : Queue[I], Cwmin[I], QIFS[I](=DFS)

CW and QIFS properties 2/2

- Contention Window (CW)
 - TCs select random backoff counters from CWs, on average Lowerpriority TC get higher delay count thus fewer TxOPS than higherpriority TCs Imposes bandwidth and access delay differentiation between TCs
 - Contention windows expand/contract
 - Local adaptation: binary exponential backoff in response to collision
 - Also controllable by EAP in Beacon
 - CWmin[i] in QoS Parameter Set Element updates aCWmin[i]
- Inter-Frame Space (IFS)
 - Different IFS per TC: TxQIFS[i] = SIFS + aQIFS[i] x aSlotTime
 - Imposes bandwidth and latency differentiation between TCs
 - Controllable by EAP
 - QIFS[i] in QoS Parameter Set Element updates aQIFS[i]

CW and QIFS properties 2/2

- Both controls should help providing effective differentiation
 - CWmin
 - Affects TxOP probability, collision probability
 - average backoff delay
 - QIFS
 - Low-priority traffic defers to high-priority traffic
 - Slower backoff counting rate for lower-priority traffic
- Complementary when used together

- Claimed to achieve differentiation with better latency/jitter (proprietary algorithms to set and assess)

