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Lastly, numbers are applicable even to such things as seem to be governed by no rule, I
mean such as depend on chance: the quantity of probability and proportion of it in any
two proposed cases being subject to calculation as much as anything else. Upon this
depend the principles of game. We find sharpers know enough of this to cheat some
men that would take it very ill to be thought bubbles; and one gamester exceeds another,
as he has a greater sagacity and readiness in calculating his probability to win or lose
in any particular case. To understand the theory of chance thoroughly, requires a great
knowledge of numbers, and a pretty competent one of Algebra.

John Arbuthnot
An essay on the usefulness of mathematical learning
25 November 1700

To this may be added, that some of the problems about chance having a great appearance
of simplicity, the mind is easily drawn into a belief, that their solution may be attained
by the mere strength of natural good sense; which generally proving otherwise, and the
mistakes occasioned thereby being not infrequent, it is presumed that a book of this
kind, which teaches to distinguish truth from what seems so nearly to resemble it, will
be looked on as a help to good reasoning.

Abraham de Moivre
The Doctrine of Chances
1717






Preface to the Third Edition

This book provides an extensive introduction to probability and random processes. It is
intended for those working in the many and varied applications of the subject as well as for
those studying more theoretical aspects. We hope it will be found suitable for mathematics
undergraduates at all levels, as well as for graduate students and others with interests in these
fields.

In particular, we aim:

e to give a rigorous introduction to probability theory while limiting the amount of measure
theory in the early chapters;

e to discuss the most important random processes in some depth, with many examples;

e to include various topics which are suitable for undergraduate courses, but are not routinely
taught;

e to impart to the beginner the flavour of more advanced work, thereby whetting the appetite
for more.

The ordering and numbering of material in this third edition has for the most part been
preserved from the second. However, a good many minor alterations and additions have been
made in the pursuit of clearer exposition. Furthermore, we have included new sections on
sampling and Markov chain Monte Carlo, coupling and its applications, geometrical prob-
ability, spatial Poisson processes, stochastic calculus and the It6 integral, Itd’s formula and
applications, including the Black—Scholes formula, networks of queues, and renewal-reward
theorems and applications. In a mild manifestation of millennial mania, the number of exer-
cises and problems has been increased to exceed 1000. These are not merely drill exercises,
but complement and illustrate the text, or are entertaining, or (usually, we hope) both. In a
companion volume One Thousand Exercises in Probability (Oxford University Press, 2001),
we give worked solutions to almost all exercises and problems.

The basic layout of the book remains unchanged. Chapters 1-5 begin with the foundations
of probability theory, move through the elementary properties of random variables, and finish
with the weak law of large numbers and the central limit theorem; on route, the reader meets
random walks, branching processes, and characteristic functions. This material is suitable for
about two lecture courses at a moderately elementary level. The rest of the book is largely
concerned with random processes. Chapter 6 deals with Markov chains, treating discrete-
time chains in some detail (and including an easy proof of the ergodic theorem for chains
with countably infinite state spaces) and treating continuous-time chains largely by example.
Chapter 7 contains a general discussion of convergence, together with simple but rigorous



viii Preface to the Third Edition

accounts of the strong law of large numbers, and martingale convergence. Each of these two
chapters could be used as a basis for a lecture course. Chapters 8—13 are more fragmented and
provide suitable material for about five shorter lecture courses on: stationary processes and
ergodic theory; renewal processes; queues; martingales; diffusions and stochastic integration
with applications to finance.

We thank those who have read and commented upon sections of this and earlier editions,
and we make special mention of Dominic Welsh, Brian Davies, Tim Brown, Sean Collins,
Stephen Suen, Geoff Eagleson, Harry Reuter, David Green, and Bernard Silverman for their
contributions to the first edition.

Of great value in the preparation of the second and third editions were the detailed criticisms
of Michel Dekking, Frank den Hollander, Torgny Lindvall, and the suggestions of Alan Bain,
Erwin Bolthausen, Peter Clifford, Frank Kelly, Doug Kennedy, Colin McDiarmid, and Volker
Priebe. Richard Buxton has helped us with classical matters, and Andy Burbanks with the
design of the front cover, which depicts a favourite confluence of the authors.

This edition having been reset in its entirety, we would welcome help in thinning the errors
should any remain after the excellent TEX-ing of Sarah Shea-Simonds and Julia Blackwell.

Cambridge and Oxford G.R. G
April 2001 D.R.S.
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1

Events and their probabilities

Summary. Any experiment involving randomness can be modelled as a prob-
ability space. Such a space comprises a set €2 of possible outcomes of the
experiment, a set ¥ of events, and a probability measure P. The definition and
basic properties of a probability space are explored, and the concepts of condi-
tional probability and independence are introduced. Many examples involving
modelling and calculation are included.

1.1 Introduction

Much of our life is based on the belief that the future is largely unpredictable. For example,
games of chance such as dice or roulette would have few adherents if their outcomes were
known in advance. We express this belief in chance behaviour by the use of words such as
‘random’ or ‘probability’, and we seek, by way of gaming and other experience, to assign
quantitative as well as qualitative meanings to such usages. Our main acquaintance with
statements about probability relies on a wealth of concepts, some more reasonable than others.
A mathematical theory of probability will incorporate those concepts of chance which are
expressed and implicit in common rational understanding. Such a theory will formalize these
concepts as a collection of axioms, which should lead directly to conclusions in agreement with
practical experimentation. This chapter contains the essential ingredients of this construction.

1.2 Events as sets

Many everyday statements take the form ‘the chance (or probability) of A is p’, where A is
some event (such as ‘the sun shining tomorrow’, ‘Cambridge winning the Boat Race’, .. .)
and p is a number or adjective describing quantity (such as ‘one-eighthy’, ‘low’, ...). The
occurrence or non-occurrence of A depends upon the chain of circumstances involved. This
chain is called an experiment or trial; the result of an experiment is called its outcome. In
general, we cannot predict with certainty the outcome of an experiment in advance of its
completion; we can only list the collection of possible outcomes.

(1) Definition. The set of all possible outcomes of an experiment is called the sample space
and is denoted by .
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(2) Example. A coin is tossed. There are two possible outcomes, heads (denoted by H) and
tails (denoted by T), so that = {H, T}. We may be interested in the possible occurrences of
the following events:

(a) the outcome is a head;

(b) the outcome is either a head or a tail;

(c) the outcome is both a head and a tail (this seems very unlikely to occur);

(d) the outcome is not a head. o

(3) Example. A die is thrown once. There are six possible outcomes depending on which of
the numbers 1,2, 3, 4, 5, or 6 is uppermost. Thus 2 = {1, 2, 3, 4, 5, 6}. We may be interested
in the following events:

(a) the outcome is the number 1;

(b) the outcome is an even number;

(c) the outcome is even but does not exceed 3;

(d) the outcome is not even. o

We see immediately that each of the events of these examples can be specified as a subset
A of the appropriate sample space €2. In the first example they can be rewritten as

(a) A={H), (b)y A={HJU(T},
() A={H)N({T}, @ A={H),

whilst those of the second example become

@ A={1}, (b) A={2,46)},
© A={2,4,6)Nn(1,23}, (d) A=1(2,4,6)"

The complement of a subset A of 2 is denoted here and subsequently by A®; from now on,
subsets of © containing a single member, such as {H}, will usually be written without the
containing braces.

Henceforth we think of events as subsets of the sample space 2. Whenever A and B are
events in which we are interested, then we can reasonably concern ourselves also with the
events AUB, ANB,and A, representing ‘A or B, ‘A and B’,and ‘not A’ respectively. Events
A and B are called disjoint if their intersection is the empty set @; & is called the impossible
event. The set Q is called the certain event, since some member of 2 will certainly occur.

Thus events are subsets of 2, but need all the subsets of 2 be events? The answer is no, but
some of the reasons for this are too difficult to be discussed here. It suffices for us to think of
the collection of events as a subcollection F of the set of all subsets of 2. This subcollection
should have certain properties in accordance with the earlier discussion:

(a) ifA,Be FthenAUBec FandANB e ¥F,;

(b) if A € ¥ then A € F;

(c) the empty set & belongs to F.
Any collection F of subsets of €2 which satisfies these three conditions is called a field. It
follows from the properties of a field # that

n
if Aj,A,,...,A, e F then UA,-GIF;
i=1
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Typical notation Set jargon Probability jargon

94 Collection of objects Sample space

w Member of 2 Elementary event, outcome

A Subset of Event that some outcome in A occurs
AC Complement of A Event that no outcome in A occurs
ANB Intersection Both A and B

AUB Unton Either A or B or both

A\ B Difference A, butnot B

AAB Symmetric difference Either A or B, but not both

ACB Inclusion If A, then B

@ Empty set Impossible event

94 Whole space Certain event

Table 1.1. The jargon of set theory and probability theory.

that is to say, F is closed under finite unions and hence under finite intersections also (see
Problem (1.8.3)). This is fine when €2 is a finite set, but we require slightly more to deal with
the common situation when €2 is infinite, as the following example indicates.

(4) Example. A coin is tossed repeatedly until the first head turns up; we are concerned
with the number of tosses before this happens. The set of all possible outcomes is the set
Q = {w1, w2, w3, ...}, where w; denotes the outcome when the first i — 1 tosses are tails
and the ith toss is a head. We may seek to assign a probability to the event A, that the first
head occurs after an even number of tosses, that is, A = {w», w4, ws, ... }. This is an infinite
countable union of members of €2 and we require that such a set belong to ¥ in order that we
can discuss its probability. o

Thus we also require that the collection of events be closed under the operation of taking
countable unions. Any collection of subsets of £ with these properties is called a o-field.

(5) Definition. A collection £ of subsets of €2 is called a o -field if it satisfies the following
conditions:

(a) e F;
(b) if A1, Az,... € Fthen U2, A; € F,
(¢) if A € ¥ then A® € ¥.

It follows from Problem (1.8.3) that o-fields are closed under the operation of taking
countable intersections. Here are some examples of o-fields.

(6) Example. The smallest o-field associated with €2 is the collection ¥ = {@, Q}. o
(7) Example. If A is any subset of Q2 then ¥ = {5, A, A®, Q} is a o-field. o

(8) Example. The power set of Q, which is written {0, 1} and contains all subsets of €, is
obviously a o-field. For reasons beyond the scope of this book, when € is infinite, its power
set is too large a collection for probabilities to be assigned reasonably to all its members. @
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To recapitulate, with any experiment we may associate a pair (2, ¥), where €2 is the
set of all possible outcomes or elementary events and ¥ is a o-field of subsets of & which
contains all the events in whose occurrences we may be interested; henceforth, to call a set
A an event is equivalent to asserting that A belongs to the o-field in question. We usually
translate statements about combinations of events into set-theoretic jargon; for example, the
event that both A and B occur is written as A N B. Table 1.1 is a translation chart.

Exercises for Section 1.2

1. Let{A; :i € I} beacollection of sets. Prove ‘De Morgan’s Laws’}:
Cc Cc
(UAi> =) 45, (ﬂA,) =J4s.
i i i i

2. Let A and B belong to some o -field #. Show that ¥ contains the sets AN B, A\ B,and A A B.
3. A conventional knock-out tournament (such as that at Wimbledon) begins with 2" competitors

and has n rounds. There are no play-offs for the positions 2, 3, ..., 2" — 1, and the initial table of
draws is specified. Give a concise description of the sample space of all possible outcomes.

4. Let ¥be a o-field of subsets of €2 and suppose that B € . Showthat$ ={ANB: A e Flisa
o -field of subsets of B.

5.  Which of the following are identically true? For those that are not, say when they are true.
(@ AU(BNC)=(AUB)N(AUC);

by AnNBNC)=(ANB)NC;

©) (AUBYNC=AUBNC);

@ A\(BNC)=(A\B)U(4\O).

1.3 Probability

We wish to be able to discuss the likelihoods of the occurrences of events. Suppose that we
repeat an experiment a large number N of times, keeping the initial conditions as equal as
possible, and suppose that A is some event which may or may not occur on each repetition.
Our experience of most scientific experimentation is that the proportion of times that A occurs
settles down to some value as N becomes larger and larger; that is to say, writing N(A) for
the number of occurrences of A in the N trials, the ratio N(A)/N appears to converge to a
constant limit as N increases. We can think of the ultimate value of this ratio as being the
probability P(A) that A occurs on any particular trialf; it may happen that the empirical ratio
does not behave in a coherent manner and our intuition fails us at this level, but we shall not
discuss this here. In practice, N may be taken to be large but finite, and the ratio N(A)/N
may be taken as an approximation to P(A). Clearly, the ratio is a number between zero and
one; if A = @ then N(@) = 0 and the ratio is 0, whilst if A = € then N(2) = N and the

tAugustus De Morgan is well known for having given the first clear statement of the principle of mathematical
induction. He applauded probability theory with the words: “The tendency of our study is to substitute the
satisfaction of mental exercise for the pernicious enjoyment of an immoral stimulus”.

1This superficial discussion of probabilities is inadequate in many ways; questioning readers may care to
discuss the philosophical and empirical aspects of the subject amongst themselves (see Appendix III).
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ratio is 1. Furthermore, suppose that A and B are two disjoint events, each of which may or
may not occur at each trial. Then

N(AU B) = N(A) + N(B)

and so the ratio N(A U B)/N is the sum of the two ratios N(A)/N and N(B)/N. We now
think of these ratios as representing the probabilities of the appropriate events. The above
relations become

P(AU B) = P(A) +P(B), P®@)=0, P@Q) =1.

This discussion suggests that the probability function P should be finitely additive, which is
to say that

n n
if Ay, Az, ..., A, are disjoint events, then P (U Ai> = ZIP’(Ai);
i=1 i=1

a glance at Example (1.2.4) suggests the more extensive property that P be countably additive,
in that the corresponding property should hold for countable collections A, Aa, ... of disjoint
events.

These relations are sufficient to specify the desirable properties of a probability function P
applied to the set of events. Any such assignment of likelihoods to the members of ¥ is called
a probability measure. Some individuals refer informally to P as a ‘probability distribution’,
especially when the sample space is finite or countably infinite; this practice is best avoided
since the term ‘probability distribution’ is reserved for another purpose to be encountered in
Chapter 2.

(1) Definition, A probability measure P on (2, ) is a function P : ¥ —» [0, 1] satisfying
(@ P@) =0, PE&) =1,
(b) if A1, Az, ... is acollection of disjoint members of ¥, in that A; N A; = & for all pairs
i, j satisfying i # j, then

P (G Ai) = i P(A;).

i) i=1

The triple (2, ¥, P), comprising a set Q, a o-field F of subsets of @, and a probability
measure P on (2, F), is called a probability space.

A probability measure is a special example of what is called a measure on the pair (€2, ).
A measure is a function i : F — [0, 00) satisfying p(@) = 0 together with (b) above. A
measure ( is a probability measure if @« (2) = 1.

We can associate a probability space (2, ¥, P) with any experiment, and all questions
associated with the experiment can be reformulated in terms of this space. It may seem
natural to ask for the numerical value of the probability P(A) of some event A. The answer
to such a question must be contained in the description of the experiment in question. For
example, the assertion that a fair coin is tossed once is equivalent to saying that heads and
tails have an equal probability of occurring; actually, this is the definition of faimess.
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(2) Example. A coin, possibly biased, is tossed once. We can take Q = {H, T} and ¥ =
{2, H, T, 2}, and a possible probability measure P : ¥ — [0, 1] is given by

P(2)=0, PH)=p, P(MD=1-p, PE)=1,

where p is a fixed real number in the interval [0, 1]. If p = % then we say that the coin is
fair, or unbiased. o

(3) Example. A die is thrown once. We can take 2 = {1, 2,3,4,5,6}, F = {0, I}Q, and
the probability measure IP given by

P(A) = Zpi forany A C €,
icA
where p1, p2, ..., pe are specified numbers from the interval [0, 1] having unit sum. The
probability that i turns up is p;. The die is fair if p; = % for each i, in which case

P(A) = £|A| forany A C Q,

where | A| denotes the cardinality of A. o

The triple (2, ¥, P) denotes a typical probability space. We now give some of its simple
but important properties.

(4) Lemma.
(a) P(A°) =1 —P(A),
(b) if B D A thenP(B) = P(A) +P(B\ A) > P(A),
(¢) P(AU B) =P(A) +P(B) —P(AN B),

(d) more generally, if Ay, Az, ..., A, are events, then
n
IP’(UA,-) =) P(A)— Y PANA)+ Y PANANA)— -
i=1 i i<j i<j<k

+ (=D)"PA N AN N Ay)

where, for example, 3, _; sums over all unordered pairs (i, j) withi # j.

i<j
Proof.
(@) AUA°=Qand AN A® = 2,50 P(AU A°) = P(A) + P(A%) = 1.
(b) B =AU (B\ A). This is the union of disjoint sets and therefore

P(B) =P(A) +P(B\ A).
(c)y AUB = AU (B\ A), which is a disjoint union. Therefore, by (b),

P(AU B) = P(A) + P(B \ A) = P(A) + P(B \ (AN B))
— P(A) +P(B) — P(AN B).

(d) The proofis by induction on n, and is left as an exercise (see Exercise (1.3.4)). [ |
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In Lemma (4b), B \ A denotes the set of members of B which are not in A. In order to
write down the quantity P(B \ A), we require that B \ A belongs to ¥, the domain of P; this is
always true when A and B belong to ¥, and to prove this was part of Exercise (1.2.2). Notice
that each proof proceeded by expressing an event in terms of disjoint unions and then applying
P. It is sometimes easier to calculate the probabilities of intersections of events rather than
their unions; part (d) of the lemma is useful then, as we shall discover soon. The next property
of P is more technical, and says that P is a continuous set function; this property is essentially
equivalent to the condition that IP is countably additive rather than just finitely additive (see
Problem (1.8.16) also).

(5) Lemma. Let A, Ay, ... be an increasing sequence of events, so that A} C Ay C A3 C
-+, and write A for their limit.

Then P(A) = lim;_, oo P(A;).
Similarly, if B1, By, ... is a decreasing sequence of events, sothat B1 2 By 2 B3 D - -,
then
e
B={)B; = lim B

i—00
satisfies P(B) = lim;_, o P(B;).

Proof. A = A{ U (A3 \ A1) U (A3 \ Ap) U--. is the union of a disjoint family of events.
Thus, by Definition (1),

P(A) =P(A1) + Y P(Aig1 \ A)
=1
n—1
=P(AD + lim D [P(Ai1) — P(A)]
i=1

= lim P(A,).
n—>00

To show the result for decreasing families of events, take complements and use the first part
(exercise). ||

To recapitulate, statements concerning chance are implicitly related to experiments or
trials, the outcomes of which are not entirely predictable. With any such experiment we can
associate a probability space (2, ¥, P) the properties of which are consistent with our shared
and reasonable conceptions of the notion of chance.

Here is some final jargon. An event A is called null if P(A) = 0. If P(A) = 1, we say
that A occurs almost surely. Null events should not be confused with the impossible event
@. Null events are happening all around us, even though they have zero probability; after all,
what is the chance that a dart strikes any given point of the target at which it is thrown? That
is, the impossible event is null, but null events need not be impossible.
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Exercises for Section 1.3

1. Let Aand B beevents with probabilities P(A) = 7 3 and P(B) = 3 Show that -5 73 <P(ANB) < 5
and give examples to show that both extremes are possible. Find corresponding bounds for P(A U B)

2. A fair coin is tossed repeatedly. Show that, with probability one, a head turns up sooner or later.
Show similarly that any given finite sequence of heads and tails occurs eventually with probability
one. Explain the connection with Murphy’s Law.

3. Six cups and saucers come in pairs: there are two cups and saucers which are red, two white, and
two with stars on. If the cups are placed randomly onto the saucers (one each) find the probability
that no cup is upon a saucer of the same pattern.

4, Let Ay, Ay, ..., A, be events where n > 2, and prove that
n
IP’(UA,-) ZIP(A)—ZIP(A NAD+ Y PA;NA;N AR
i=1 i<j i<j<k

— e (=DIPA N Ay NN A).

In each packet of Corn Flakes may be found a plastic bust of one of the last five Vice-Chancellors
of Cambridge University, the probability that any given packet contains any specific Vice-Chancellor
being % independently of all other packets. Show that the probability that each of the last three

Vice-Chancellors is obtained in a bulk purchase of six packets is 1 — 3(%)6 + 3(%)6 - (%)6.
5. LetA,,r > 1,be events such that P(A,) = 1 for all . Show that P((72, A,) = 1.

6. You are given that at least one of the events A,, | < r < n, is certain to occur, but certainly no
more than two occur. If P(A,) = p, and P(A, N Ag) =¢q,r # s5,show that p > 1/nand g < 2/n.
7. You are given that at least one, but no more than three, of the events A,, 1 < r < n, occur, where
n > 3. The probability of at least two occurring is % IfP(A;) = p, P(Ar NAs) = q.r # 5,and
P(Ar YAs NA) =x,r <s < t,show that p > 3/(2n),and q < 4/n.

1.4 Conditional probability

Many statements about chance take the form ‘if B occurs, then the probability of A is p’,
where B and A are events (such as ‘it rains tomorrow’ and ‘the bus being on time’ respectively)
and p is a likelihood as before. To include this in our theory, we return briefly to the discussion
about proportions at the beginning of the previous section. An experimentis repeated N times,
and on each occasion we observe the occurrences or non-occurrences of two events A and
B. Now, suppose we only take an interest in those outcomes for which B occurs; all other
experiments are disregarded. In this smaller collection of trials the proportion of times that A
occurs is N(A N B)/N(B), since B occurs at each of them. However,

N(ANB) N(ANB)/N
N(BY  N(B)/N

If we now think of these ratios as probabilities, we see that the probability that A occurs, given
that B occurs, should be reasonably defined as P(A N B)/P(B).

Probabilistic intuition leads to the same conclusion. Given that an event B occurs, it is the
case that A occurs if and only if A 1 B occurs. Thus the conditional probability of A given B
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should be proportional to (A N B), which is to say that it equals «P(A N B) for some constant
« = «(B). The conditional probability of & given B must equal 1, and thus «P(2N B) = 1,
yielding o = 1/P(B).

We formalize these notions as follows.

(1) Definition. If P(B) > 0 then the conditional probability that A occurs given that B
occurs is defined to be
PA N B)

P(A| B) = B(E)

We denote this conditional probability by (A | B), pronounced ‘the probability of A given
B’, or sometimes ‘the probability of A conditioned (or conditional) on B’.

(2) Example. Two fair dice are thrown. Given that the first shows 3, what is the probability
that the total exceeds 6? The answer is obviously % since the second must show 4, 5, or
6. However, let us labour the point. Clearly 2 = {1,2,3,4,5, 6}2, the set} of all ordered
pairs (i, j) fori, j € {1,2, ..., 6}, and we can take ¥ to be the set of all subsets of 2, with
P(A) = |A|/36 forany A C Q2. Let B be the event that the first die shows 3, and A be the
event that the total exceeds 6. Then

B={3,0):1<b<6), A={a,b):a+b>6}, ANB={3,4),3,5,3,06)},

and b1 gy FANB) _1ANB| 3 o
(A1B)= P(B)  |B|] 6

(3) Example. A family has two children. What is the probability that both are boys, given
that at least one is a boy? The older and younger child may each be male or female, so there
are four possible combinations of sexes, which we assume to be equally likely. Hence we can
represent the sample space in the obvious way as

Q = {GG, GB, BG, BB}
where P(GG) = P(BB) = P(GB) = P(BG) = %. From the definition of conditional
probability,
P(BB | one boy at least) = P(BB | GB U BGU BB)
_ P(BBN (GBUBG UBB))
" P(GBUBGUBB)
P(BB) 1

~ P(GBUBGUBB) 3

A popular but incorrect answer to the question is % This is the correct answer to another
question: for a family with two children, what is the probability that both are boys given that
the younger is a boy? In this case,
P(BB | younger is a boy) = P(BB | GB U BB)
_P(BBN(GBUBB))  P(BB) 1

P(GRBUBB) _ P(GBUBB) 2

tRemember that A x B = {(a,b):a € A, b Blandthat A x A = A2,
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The usual dangerous argument contains the assertion
P(BB | one child is a boy) = P(other child is a boy).

Why is this meaningless? [Hint: Consider the sample space.] ®

The next lemma is crucially important in probability theory. A family By, B, ..., B, of
events is called a partition of the set 2 if

n
BiNBj=o when i#j, and [ JBi=.

i=1
Each elementary event w € 2 belongs to exactly one set in a partition of €2.

@) Lemma: For any events A and B such that 0 < P(B) < 1,
P(A) = P(A | B)P(B) + P(A | BY)P(BO).

More generally, let By, By, ..., B, be a partition of S2 such that P(B;) > 0 for all i. Then

P(4) = Y P(A | B)P(B)).

i=1
Proof. A = (AN B)U (AN B°. This is a disjoint union and so

P(A) = P(A N B) + P(A N B)
= P(A | B)P(B) + P(A | B®)P(B).

The second part is similar (see Problem (1.8.10)). |

(5) Example. We are given two urns, each containing a collection of coloured balls. Urn I
contains two white and three blue balls, whilst urn II contains three white and four blue balls.
A ball is drawn at random from urn I and put into urn II, and then a ball is picked at random
from urn II and examined. What is the probability that it is blue? We assume unless otherwise
specified that a ball picked randomly from any urn is equally likely to be any of those present.
The reader will be relieved to know that we no longer need to describe (€2, ¥, P) in detail;
we are confident that we could do so if necessary. Clearly, the colour of the final ball depends
on the colour of the ball picked from urn L. So let us ‘condition’ on this. Let A be the event
that the final ball is blue, and let B be the event that the first one picked was blue. Then, by
Lemma (4),
P(A) =P(A | B)P(B) + P(A | BYP(B®).

We can easily find all these probabilities:

P(A | B) = P(A | urn II contains three white and five blue balls) = %
1
ja

P(A | B®) = P(A | urn II contains four white and four blue balls) =
P(B) = 2, P(B°) = .
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Hence
5.3 1.2 23
P(A) 3 sty s=1% o

Unprepared readers may have been surprised by the sudden appearance of urns in this book.
In the seventeenth and eighteenth centuries, lotteries often involved the drawing of slips from
urns, and voting was often a matter of putting slips or balls into urns. In France today, aller aux
urnes is synonymous with voting. It was therefore not unnatural for the numerous Bernoullis
and others to model births, marriages, deaths, fluids, gases, and so on, using urns containing
balls of varied hue.

(6) Example. Only two factories manufacture zoggles. 20 per cent of the zoggles from factory
I and 5 per cent from factory IT are defective. Factory I produces twice as many zoggles as
factory II each week. What is the probability that a zoggle, randomly chosen from a week’s
production, is satisfactory? Clearly this satisfaction depends on the factory of origin. Let A
be the event that the chosen zoggle is satisfactory, and let B be the event that it was made in
factory I. Arguing as before,

P(A) = P(A | BYP(B) + P(A | B9)P(B®)
_4.2,19 1 _51
=35°37T20°37 &0
If the chosen zoggle is defective, what is the probability that it came from factory I? In our
notation this is just P(B | A®). However,
P(BNA®) P(A°|B)P(B)  5-% 8

- = °
P(AC) P(A®) TR

P(B | A%) =

This section is terminated with a cautionary example. It is not untraditional to perpetuate
errors of logic in calculating conditional probabilities. Lack of unambiguous definitions and
notation has led astray many probabilists, including even Boole, who was credited by Russell
with the discovery of pure mathematics and by others for some of the logical foundations of
computing. The well-known ‘prisoners’ paradox’ also illustrates some of the dangers here.

(7) Example. Prisoners’ paradox. In a dark country, three prisoners have been incarcerated
without trial. Their warder tells them that the country’s dictator has decided arbitrarily to free
one of them and to shoot the other two, but he is not permitted to reveal to any prisoner the
fate of that prisoner. Prisoner A knows therefore that his chance of survival is % In order
to gain information, he asks the warder to tell him in secret the name of some prisoner (but
not himself) who will be killed, and the warder names prisoner B. What now is prisoner A’s
assessment of the chance that he will survive? Could it be %: after all, he knows now that
the survivor will be either A or C, and he has no information about which? Could it be %:
after all, according to the rules, at least one of B and C has to be killed, and thus the extra
information cannot reasonably affect A’s earlier calculation of the odds? What does the reader
think about this? The resolution of the paradox lies in the situation when either response (B
or C) is possible.

An alternative formulation of this paradox has become known as the Monty Hall problem,
the controversy associated with which has been provoked by Marilyn vos Savant (and many
others) in Parade magazine in 1990; see Exercise (1.4.5). L
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Exercises for Section 1.4

1. Provethat P(A | B) = P(B | A)P(A)/P(B) whenever P(A)P(B) # 0. Show that, if P(A | B) >
P(A), then P(B | A) > P(B).

2. Forevents A1, Ay, ..., A, satisfying P(A] N Ay N --- N A,_1) > 0, prove that

P(A; M Ay N N AR) =PADNPMA | ADP(A3 | A1 N Ag) - P(Ap | Ay N A NN Ay ).

3. A man possesses five coins, two of which are double-headed, one is double-tailed, and two are
normal. He shuts his eyes, picks a coin at random, and tosses it. What is the probability that the lower
face of the coin is a head?

He opens his eyes and sees that the coin is showing heads; what is the probability that the lower
face is a head?

He shuts his eyes again, and tosses the coin again. What is the probability that the lower face is
a head?

He opens his eyes and sees that the coin is showing heads; what is the probability that the lower
face is a head?

He discards this coin, picks another at random, and tosses it. What is the probability that it shows
heads?

4. What do you think of the following ‘proof’ by Lewis Carroll that an urn cannot contain two balls
of the same colour? Suppose that the urn contains two balls, each of which is either black or white;
thus, in the obvious notation, P(BB) = P(BW) = P(WB) = P(WW) = %. We add a black ball, so
that P(BBB) = P(BBW) = P(BWB) = P(BWW) = %. Next we pick a ball at random; the chance
that the ball is black is (using conditional probabilities) 1 - % —+ % . % —+ % . % + % . % = % However, if
there is probability % that a ball, chosen randomly from three, is black, then there must be two black
and one white, which is to say that originally there was one black and one white ball in the um.

5. The Monty Hall problem: goats and cars. (a) Cruel fate has made you a contestant in a game
show; you have to choose one of three doors. One conceals a new car, two conceal old goats. You
choose, but your chosen door is not opened immediately. Instead, the presenter opens another door
to reveal a goat, and he offers you the opportunity to change your choice to the third door (unopened
and so far unchosen). Let p be the (conditional) probability that the third door conceals the car. The

value of p depends on the presenter’s protocol. Devise protocols to yield the values p = % p= %

Show that, for « € [%, %], there exists a protocol such that p = . Are you well advised to change
your choice to the third door?

(b) In a variant of this question, the presenter is permitted to open the first door chosen, and to reward
you with whatever lies behind. If he chooses to open another door, then this door invariably conceals
a goat. Let p be the probability that the unopened door conceals the car, conditional on the presenter
having chosen to open a second door. Devise protocols to yield the values p = 0, p = 1, and deduce
that, for any o € [0, 1], there exists a protocol with p = «.

6. The prosecutor’s fallacyt. Let G be the event that an accused is guilty, and 7 the event that
some testimony is true. Some lawyers have argued on the assumption that P(G | T) = P(T | G).
Show that this holds if and only if P(G) = P(T').

7. Urns. There are n urns of which the rth contains r — 1 red balls and n — r magenta balls. You
pick an urn at random and remove two balls at random without replacement. Find the probability that:
(a) the second ball is magenta;

(b) the second ball is magenta, given that the first is magenta.

1The prosecution made this error in the famous Dreyfus case of 1894.
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1.5 Independence

In general, the occurrence of some event B changes the probability that another event A
occurs, the original probability P(A) being replaced by P(A | B). If the probability remains
unchanged, that is to say P(A | B) = P(A), then we call A and B ‘independent’. This is
well defined only if P(B) > 0. Definition (1.4.1) of conditional probability leads us to the
following.

(1) Definition. Events A and B are called independent if
P(A N B) = P(A)P(B).

More generally, a family {A; : i € 1} is called independent if

P (ﬂ A;) =[]Pdn

ieJ ict
for all finite subsets J of I.

Remark. A common student error is to make the fallacious statement that A and B are
independentif AN B = @.
If the family {A; : i € I} has the property that

P(A; N Aj) =P(ADP(A;)  foralli # j

then it is called pairwise independent. Pairwise-independent families are not necessarily
independent, as the following example shows.

(2) Example. Suppose Q2 = {abc, acb, cab, cba, bca, bac, aaa, bbb, ccc}, and each of the
nine elementary events in 2 occurs with equal probability é. Let Ay be the event that the kth
letter is a. Itis left as an exercise to show that the family {A1, A2, A3} is pairwise independent
but not independent. [ ]

(3) Example (1.4.6) revisited. The events A and B of this example are clearly dependent
because P(A | B) = £ and P(A) = 2. o

(4) Example. Choose a card at random from a pack of 52 playing cards, each being picked
with equal probability 51—2 We claim that the suit of the chosen card is independent of its rank.
For example,
P(king) = <5, P(king | spade) = 5.
Alternatively,
P(spade king) = Lz = % - % = P(spade)P(king). ®

Let C be an event with P(C) > 0. To the conditional probability measure P(- | C)
corresponds the idea of conditional independence. Two events A and B are called conditionally
independent given C if

) P(ANB[C)=P(A ]| O)PB | C);

there is a natural extension to families of events. [However, note Exercise (1.5.5).]
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Exercises for Section 1.5

1. Let A and B be independent events; show that A, B are independent, and deduce that A®, B®

are independent.

2. Weroll adie n times. Let A;; be the event that the ith and jth rolls produce the same number.

Show that the events {A;; : 1 <i < j < n} are pairwise independent but not independent.

3. A fair coin is tossed repeatedly. Show that the following two statements are equivalent:

(a) the outcomes of different tosses are independent,

(b) for any given finite sequence of heads and tails, the chance of this sequence occurring in the first
m tosses is 27, where m is the length of the sequence.

4. LetQ={1,2,..., p} where p is prime, ¥ be the set of all subsets of €2, and P(A) = |Al|/p for

all A € . Show that, if A and B are independent events, then at least one of A and B is either & or

Q.

5. Show that the conditional independence of A and B given C neither implies, nor is implied by,

the independence of A and B. For which events C is it the case that, for all A and B, the events A and

B are independent if and only if they are conditionally independent given C?

6. Safe or sorry? Some form of prophylaxis is said to be 90 per cent effective at prevention during

one year’s treatment. If the degrees of effectiveness in different years are independent, show that the

treatment is more likely than not to fail within 7 years.

7. Families. Jane has three children, each of which is equally likely to be aboy or a girl independently

of the others. Define the events:

A = {all the children are of the same sex},
B = {there is at most one boy},
C = {the family includes a boy and a girl}.

(a) Show that A is independent of B, and that B is independent of C.
(b) Is A independent of C?

(c) Do these results hold if boys and girls are not equally likely?

(d) Do these results hold if Jane has four children?

8. Galton’s paradox. You flip three fair coins. At least two are alike, and it is an evens chance that
the third is a head or a tail. Therefore P(all alike) = % Do you agree?

9. Two fair dice are rolled. Show that the event that their sum is 7 is independent of the score shown
by the first die.

1.6 Completeness and product spaces

This section should be omitted at the first reading, but we shall require its contents later. It
contains only a sketch of complete probability spaces and product spaces; the reader should
look elsewhere for a more detailed treatment (see Billingsley 1995). We require the following
result.

(1) Lemma. If ¥ and  are two o-fields of subsets of S2 then their intersection ¥ N § is
a o-field also. More generally, if {F; : i € 1} is a family of o-fields of subsets of Q2 then
G = ies Fi is a o-field also.
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The proof is not difficult and is left as an exercise. Note that the union ¥ U § may not be a
o -field, although it may be extended to a unique smallest o -field written o (£ U §), as follows.
Let {; : i € I} be the collection of all o-fields which contain both ¥ and § as subsets; this
collection is non-empty since it contains the set of all subsets of Q. Then § = (1);; $: is the
unique smallest o -field which contains ¥ U §.

(A) Completeness. Let (2, ¥,P) be a probability space. Any event A which has zero
probability, that is P(A) = 0, is called null. It may seem reasonable to suppose that any subset
B of a null set A will itself be null, but this may be without meaning since B may not be an
event, and thus P(B) may not be defined.

(2) Definition. A probability space (2, F, P) is called complete if all subsets of null sets
are events.

Any incomplete space can be completed thus. Let & be the collection of all subsets of
null sets in ¥ and let § = o (F U N) be the smallest o-field which contains all sets in #
and . It can be shown that the domain of P may be extended in an obvious way from ¥ to
G (82, §, P) is called the completion of (2, ¥, P).

(B) Product spaces. The probability spaces discussed in this chapter have usually been con-
structed around the outcomes of one experiment, but instances occur naturally when we need
to combine the outcomes of several independent experiments into one space (see Examples
(1.2.4) and (1.4.2)). How should we proceed in general?

Suppose two experiments have associated probability spaces (€21, 1, Py} and (Q2,, %2, P;)
respectively. The sample space of the pair of experiments, considered jointly, is the collection
Q1 x2 = {(w1, ») : w1 € 21, wy € Ly} of ordered pairs. The appropriate o -field of events
is more complicated to construct. Certainly it should contain all subsets of €2 x €25 of the form
A1 x Ay = {(a1,a2) : a1 € A1, a2 € A2} where A1 and A are typical members of ] and 7,
respectively. However, the family of all such sets, #1 x 5 = {A1 x A2 : A| € F1, Ay € Fal,
is not in general a o-field. By the discussion after (1), there exists a unique smallest o -field
g = o(F1 x F2) of subsets of €21 x €27 which contains 1 x #. All we require now is a
suitable probability function on (21 x €22, §). Let P12 : 1 x F2 — [0, 1] be given by:

3 P12(A; x Ag) = P1(A)P2(A2) for Ay € 1, Az € $3.

It can be shown that the domain of P, can be extended from F; x %3 to the whole of
g = o(¥1 x ¥2). The ensuing probability space (21 x 22, §, P12) is called the product
space of (21, #1, P1) and (22, %3, P2). Products of larger numbers of spaces are constructed
similarly. The measure P15 is sometimes called the ‘product measure’ since its defining
equation (3) assumed that two experiments are independent. There are of course many other
measures that can be applied to (21 x €22, ).

In many simple cases this technical discussion is unnecessary. Suppose that £ and €2,
are finite, and that their o -fields contain all their subsets; this is the case in Examples (1.2.4)
and (1.4.2). Then § contains all subsets of £ x €2,.
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1.7 Worked examples

Here are some more examples to illustrate the ideas of this chapter. The reader is now equipped
to try his or her hand at a substantial number of those problems which exercised the pioneers
in probability. These frequently involved experiments having equally likely outcomes, such
as dealing whist hands, putting balls of various colours into urns and taking them out again,
throwing dice, and so on. In many such instances, the reader will be pleasantly surprised to
find that it is not necessary to write down (£2, ¥, P) explicitly, but only to think of €2 as being
a collection {1, wy, ..., wy} of possibilities, each of which may occur with probability 1/N.
Thus, P(A) = |A]/N for any A C Q. The basic tools used in such problems are as follows.
(a) Combinatorics: remember that the number of permutations of » objects is »! and that
the number of ways of choosing  objects from # is (;’)
(b) Set theory: to obtain P(A) we can compute P(A®) = 1 — P(A) or we can partition A
by conditioning on events B;, and then use Lemma (1.4.4).
(c) Use of independence.

(1) Example. Consider a series of hands dealt at bridge. Let A be the event that in a given
deal each player has one ace. Show that the probability that A occurs at least once in seven

deals is approximately %

Solution. The number of ways of dealing 52 cards into four equal hands is 52!/(13!)*. There
are 4! ways of distributing the aces so that each hand holds one, and there are 48!/(12!)* ways
of dealing the remaining cards. Thus

_Angyaant 1
AT

Now let B; be the event that A occurs for the first time on the ith deal. Clearly B; N B; = &,
i # j. Thus

7
P(A occurs in seven deals) = P(B; U--- U By) = » P(B;) using Definition (1.3.1).
1

Since successive deals are independent, we have
P(B;) = IP(A° occurs on deal 1, A€ occurs on deal 2,
.., A%occursondeali — 1, A occurs on deal i)

= P(A%)"'P(A) using Definition (1.5.1)

- 1_l l_ll
- 10 10°

Thus
! ! i-1
P(A occurs in seven deals) = ZIP(BL') o~ Z (%) % ~ %
1 1
Can you see an easier way of obtaining this answer? L

(2) Example. There are two roads from A to B and two roads from B to C. Each of the four
roads has probability p of being blocked by snow, independently of all the others. What is
the probability that there is an open road from A to C?
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Solution.

P(open road) = P((open road from A to B) N (open road from B to C))
= PP(open road from A to B)P(open road from B to C)

using the independence. However, p is the same for all roads; thus, using Lemma (1.3.4),

P(open road) = (1 — P(no road from A to B))2
= {1 — P((first road blocked) N (second road blocked)) }2
= {1 — P(first road blocked)P(second road blocked) }2

using the independence. Thus
3) P(open road) = (1 — p*)?%.

Further suppose that there is also a direct road from A to C, which is independently blocked
with probability p. Then, by Lemma (1.4.4) and equation (3),

P(open road) = P(open road | direct road blocked) - p
+ P(open road | direct road open) - (1 — p)

=(1-pH*-p+1-(1-p). [

(4) Example. Symmetric random walk (or ‘Gambler’s ruin’). A man is saving up to buy
a new Jaguar at a cost of N units of money. He starts with & units where 0 < k < N, and
tries to win the remainder by the following gamble with his bank manager. He tosses a fair
coin repeatedly; if it comes up heads then the manager pays him one unit, but if it comes up
tails then he pays the manager one unit. He plays this game repeatedly until one of two events
occurs: either he runs out of money and is bankrupted or he wins enough to buy the Jaguar.
What is the probability that he is ultimately bankrupted?

Solution. This is one of many problems the solution to which proceeds by the construction
of a linear difference equation subject to certain boundary conditions. Let A denote the event
that he is eventually bankrupted, and let B be the event that the first toss of the coin shows
heads. By Lemma (1.4.4),

®) Pr(A) = P (A | BYP(B) + P(A | B°)P(B®),

where [P, denotes probabilities calculated relative to the starting point k. We want to find
Py (A). Consider Py (A | B). If the first toss is a head then his capital increases to k + 1 units
and the game starts afresh from a different starting point. Thus Px(A | B) = Pi41(A) and
similarly Px (A | B¢) = Px_1(A). So, writing py = P;(A), (5) becomes

(6) P = 3(pee1 + pro1) if 0 <k <N,

which is a linear difference equation subject to the boundary conditions pg = 1, py = 0.
The analytical solution to such equations is routine, and we shall return later to the general
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method of solution. In this case we can proceed directly. We put by = py — px—1 to obtain
by = by—1 and hence by = b1 forall k. Thus

Pk=b1+pr-1=2b1+pr2=---=kb1+ po

is the general solution to (6). The boundary conditions imply that pg = 1, b1 = —1/N, giving

k
7 Pr(A)=1— —.
Q) k(A) N
As the price of the Jaguar rises, that is as N — oo, ultimate bankruptcy becomes very likely.
This is the problem of the ‘symmetric random walk with two absorbing barriers’ to which we
shall return in more generality later. L

Remark. Our experience of student calculations leads us to stress that probabilities lie be-
tween zero and one; any calculated probability which violates this must be incorrect.

(8) Example. Testimony. A courtisinvestigating the possible occurrence of an unlikely event
T. The reliability of two independent witnesses called Alf and Bob is known to the court:
Alf tells the truth with probability & and Bob with probability 8, and there is no collusion
between the two of them. Let A and B be the events that Alf and Bob assert (respectively)
that 7 occurred, and let T = P(7). What is the probability that 7 occurred given that both
Alf and Bob declare that T occurred?

Solution. We are asked to calculate P(T' | AN B), whichisequalto P(TNANB)/P(ANB).
NowP(TNANB)=P(ANB | T)P(T) and

P(ANB)=P(AN B | T)P(T) +P(AN B | T)P(T®).

We have from the independence of the witnesses that A and B are conditionally independent
given either T or T°. Therefore

PANB|T)=PA|T)PB|T)=aB,
P(ANB |T) =P(A | THPB | T°) = (1 —a)(1 - B),
so that
aft
afr+ (1 —a)1-HA—1)

As an example, suppose thata = 8 = % andt = 1/1000. ThenP(7 | ANB) = 81/1080,
which is somewhat small as a basis for a judicial conclusion.

This calculation may be informative. However, it is generally accepted that such an appli-
cation of the axioms of probability is inappropriate to questions of truth and belief. ]

P(T | ANB) =

(9) Example. Zoggles revisited. A new process for the production of zoggles is invented,
and both factories of Example (1.4.6) install extra production lines using it. The new process
is cheaper but produces fewer reliable zoggles, only 75 per cent of items produced in this new
way being reliable.

Factory I fails to implement its new production line efficiently, and only 10 per cent of its
output is made in this manner. Factory II does better: it produces 20 per cent of its output by
the new technology, and now produces twice as many zoggles in all as Factory 1.
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Worked examples
Is the new process beneficial to the consumer?
Solution. Both factories now produce a higher proportion of unreliable zoggles than before,
and so it might seem at first sight that there is an increased proportion of unreliable zoggles
on the market.
Let A be the event that a randomly chosen zoggle is satisfactory, B the event that it came
from factory I, and C the event that it was made by the new method. Then

P(A) = LP(A | B) + 2P(A | BY)

W= W

(1]—0]P’(A | BNC)+ LP(A | BﬂCC))

+%(§1P>(A | BSNC)+ 4P(A | BCmCC))
9 4 2 (1 19
w'§)+§<§' 'E)

so that the proportion of satisfactory zoggles has been increased.

— 523

3 3, 4 51
03t its — 600 60°

|
W =
—~

[~

(10) Example. Simpson’s paradoxf. A doctor has performed clinical trials to determine
the relative efficacies of two drugs, with the following results.

Women Men
Drugl Drugll Drugl DruglIl
Success 200 10 19 1000
Failure 1800 190 1 1000

Which drug is the better? Here are two conflicting responses.

1. Drug I was given to 2020 people, of whom 219 were cured. The success rate was
219/2020, which is much smaller than the corresponding figure, 1010/2200, for drug II.
Therefore drug II is better than drug I.

2. Amongst women the success rates of the drugs are 1/10 and 1/20, and amongst men
19/20 and 1/2. Drug I wins in both cases.

This well-known statistical paradox may be reformulated in the following more general

way. Given three events A, B, C, it is possible to allocate probabilities such that

an P(A|BNC)>PA|B°NC) and PA|BNC% >PA|B°NCY
but
12) P(A | B) < P(A | BY).

1This paradox, named after Simpson (1951), was remarked by Yule in 1903. The nomenclature is an
instance of Stigler’s law of eponymy: “No law, theorem, or discovery is named after its originator”. This law
applies to many eponymous statements in this book, including the law itself. As remarked by A. N. Whitehead,
“Everything of importance has been said before, by somebody who did not discover it”.
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Figure 1.1. Two unions of rectangles illustrating Simpson’s paradox.

We may think of A as the event that treatment is successful, B as the event that drug I is given
to a randomly chosen individual, and C as the event that this individual is female. The above
inequalities imply that B is preferred to B¢ when C occurs and when C© occurs, but B¢ is
preferred to B overall.

Setting

a=P(ANBNC), b=PA°NBNOC),
c=P(ANB°NC), d=PA°NB°NOC),
e=P(ANBNC®%, f=PA°NBNC,
g=PANB°NCY, h=PA°NB°NCY,

and expanding (11)-(12), we arrive at the (equivalent) inequalities

13) ad > be, eh> fg, (a+e)d+h) <®+ fHic+g),

subject to the conditions a, b,¢,...,h > 0anda+ b+ c+ --- + h = 1. Inequalities (13)
are equivalent to the existence of two rectangles R} and R;, as in Figure 1.1, satisfying

area (Dy) > area(D,), area(Ds3) > area(D4), area(R;) < area(Rp).

Many such rectangles may be found by inspection as forexample those witha = 3%, b= %,

c = 30, d = 30, e = 30, f= 30, g = 30, h = 0. Similar conclusions are valid for finer
partitions {C; : i € I} of the sample space, though the corresponding pictures are harder to
draw.

Simpson’s paradox has arisen many times in practical situations. There are many well-
known cases, including the admission of graduate students to the University of California at
Berkeley and a clinical trial comparing treatments for kidney stones. ]

(14) Example. False positives. A rare disease affects one person in 10°. A test for the
dlsease shows positive with probab1l1ty 100 when applied to an ill person, and with probability

100 when applied to a healthy person. What is the probability that you have the disease given

that the test shows positive?

Solution. In the obvious notation,

P(+ | ilDP(I)
P+ | ill)IP’(ill) + P(+ | healthy)P(healthy)
5
100 <107 99 1

5 _

100 -1075 + 100(1—10 5) T 99+ 1051 1011

PGl | 4) =

The chance of being ill is rather small. Indeed it is more likely that the test was incorrect. @
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Exercises for Section 1.7

1. There are two roads from A to B and two roads from B to C. Each of the four roads is blocked by
snow with probability p, independently of the others. Find the probability that there is an open road
from A to B given that there is no open route from A to C.

If, in addition, there is a direct road from A to C, this road being blocked with probability p
independently of the others, find the required conditional probability.

2. Calculate the probability that a hand of 13 cards dealt from a normal shuffled pack of 52 contains
exactly two kings and one ace. What is the probability that it contains exactly one ace given that it
contains exactly two kings?

3. A symmetric random walk takes place on the integers 0, 1, 2, ..., N with absorbing barriers at 0
and N, starting at k. Show that the probability that the walk is never absorbed is zero.

4. The so-called ‘sure thing principle’ asserts that if you prefer x to y given C, and also prefer x to
y given C€, then you surely prefer x to y. Agreed?

5. A pack contains m cards, labelled 1, 2, ..., m. The cards are dealt out in a random order, one
by one. Given that the label of the kth card dealt is the largest of the first k cards dealt, what is the
probability that it is also the largest in the pack?

1.8 Problems

1. A traditional fair die is thrown twice. What is the probability that:
(a) a six turns up exactly once?

(b) both numbers are odd?

(c) the sum of the scores is 47

(d) the sum of the scores is divisible by 3?

2. A fair coin is thrown repeatedly. What is the probability that on the nth throw:
(a) ahead appears for the first time?

(b) the numbers of heads and tails to date are equal?

(c) exactly two heads have appeared altogether to date?

(d) at least two heads have appeared to date?

3. Let ¥and g be o-fields of subsets of 2.

(a) Use elementary set operations to show that F is closed under countable intersections; that is, if
Ay, Ay, ... arein F, then sois [); A;.

(b) Let # = FN G be the collection of subsets of €2 lying in both ¥ and . Show that # is a o-field.

(c) Show that U §, the collection of subsets of € lying in either F or §, is not necessarily a o-field.

4. Describe the underlying probability spaces for the following experiments:

(a) abiased coin is tossed three times;

(b) two balls are drawn without replacement from an urn which originally contained two ultramarine
and two vermilion balls;

(c) abiased coin is tossed repeatedly until a head turns up.

5. Show that the probability that exactly one of the events A and B occurs is

P(A) + P(B) —2P(AN B).

6. Prove that PLAU BUC) = 1 — P(A° | BN COP(BC | COP(CO).
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7. (a)If A is independent of itself, show that P(A) is 0 or 1.
(b) If P(A) is O or 1, show that A is independent of all events B.

8. Let be a o-field of subsets of €2, and suppose P : ¥ — [0, 1] satisfies: (i) P(€2) = 1, and (ii) P
is additive, in that P(A U B) = P(A) + P(B) whenever A N B = &. Show that P(&) = 0.

9. Suppose (2, F, P) is a probability space and B € ¥ satisfies P(B) > 0. LetQ : ¥ — [0, 1] be
defined by Q(A) = P(A | B). Show that (2, ¥, Q) is a probability space. If C € Fand Q(C) > 0,
show that Q(A | C) = P(A | B N C); discuss.

10. Let Bj, By, ... be a partition of the sample space €2, each B; having positive probability, and
show that

P(A) => P(A| Bj)P(B)).
j=1

11. Prove Boole’s inequalities:

n

IP(U A,-) < P4, P(ﬂ A[> > 1= P(AD).
i=1 i=1

i=1 =1

12. Prove that

]P’(ﬂAl) => P(A)— > P(A;UAD+ > P(AjUAjUAY)
1 i

i<j i<j<k

— = (=D"P(A; U Ay U---U Ap).

13. Let Ay, Ay, ..., A, be events, and let Ny be the event that exactly k of the A; occur. Prove the
result sometimes referred to as Waring’s theorem:

n—k .
ki
P(N) = E (—l)l< « )Sk-i—f’ where §; = E P{A;; N A, ﬂ-“ﬂA,‘j).
=0

i]<[2<---<ij

Use this result to find an expression for the probability that a purchase of six packets of Corn Flakes
yields exactly three distinct busts (see Exercise (1.3.4)).
14. Prove Bayes’sformula: if Ay, A,, ..., A, isapartition of €2, each A; having positive probability,
then

P(B | Aj)P(Aj)
STP(B | ADP(A;)

P(Aj | B) =

15. A random number N of dice is thrown. Let A; be the event that N = i, and assume that
P(A;) = 2_i, i > 1. The sum of the scores is S. Find the probability that:

(a) N =2given § =4;

(b) S =4 given N is even;

(c) N =2, given that S = 4 and the first die showed 1;

(d) the largest number shown by any die is r, where S is unknown.

16. Let Ay, As, ... be a sequence of events. Define

oo o0
Bi=J An, Co= () Anm.
=n m=n
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Clearly C, € An € By. The sequences {By} and {Cy} are decreasing and increasing respectively
with limits

limBy=B=()Ba=[]J Amn. IimCi=C={JCa={][) 4An
n n

n mzn n m>n

The events B and C are denoted lim sup,,_, o, A and liminf,, oo A, respectively. Show that

(@) B={we 2:we A, for infinitely many values of n},

(b) C ={w e Q:w e Ay, for all but finitely many values of n}.

We say that the sequence {A; } converges to alimit A = lim Ay, if B and C are the same set A. Suppose
that A, — A and show that

(c) Aisanevent,inthat A € F,

(d) P(An) — P(A).

17. In Problem (1.8.16) above, show that B and C are independent whenever B, and C,, are inde-
pendent for all n. Deduce that if this holds and furthermore A,, — A, then P(A) equals either zero or
one.

18. Show that the assumption that P’ is countably additive is equivalent to the assumption that P is
continuous. That is to say, show that if a function P : ¥ — [0, 1] satisfies P(¢) = 0, P(2) = 1, and
P(AU B) =P(A) 4 P(B) whenever A, B € Fand AN B = o, then I is countably additive (in the
sense of satisfying Definition (1.3.1b)) if and only if P is continuous (in the sense of Lemma (1.3.5)).

19. Anne, Betty, Chlog, and Daisy were all friends at school. Subsequently each of the (g) =6
subpairs meet up; at each of the six meetings the pair involved quarrel with some fixed probability
p, or become firm friends with probability 1 — p. Quarrels take place independently of each other.
In future, if any of the four hears a rumour, then she tells it to her firm friends only. If Anne hears a
rumour, what is the probability that:

(a) Daisy hears it?

(b) Daisy hears it if Anne and Betty have quarrelled?

(c) Daisy hears it if Betty and Chlog have quarrelled?

(d) Daisy hears it if she has quarrelled with Anne?

20. A biased coin is tossed repeatedly. Each time there is a probability p of a head turning up. Let p,
be the probability that an even number of heads has occurred after n tosses (zero is an even number).
Show that pg = 1 and that p, = p(1 — p,—1)+ (1 — p)p,_1 if n > 1. Solve this difference equation.

21. A biased coin is tossed repeatedly. Find the probability that there is a run of r heads in a row
before there is a run of s tails, where r and s are positive integers.

22. A bowl contains twenty cherries, exactly fifteen of which have had their stones removed. A

greedy pig eats five whole cherries, picked at random, without remarking on the presence or absence

of stones. Subsequently, a cherry is picked randomly from the remaining fifteen.

(a) What is the probability that this cherry contains a stone?

(b) Given that this cherry contains a stone, what is the probability that the pig consumed at least one
stone?

23. The ‘ménages’ problem poses the following question. Some consider it to be desirable that men
and women alternate when seated at a circular table. If n couples are seated randomly according to
this rule, show that the probability that nobody sits next to his or her partner is

1 < p 2n [2n—k
n_!kz:%)(_l) 2n—k( k >("_k)!

You may find it useful to show first that the number of ways of selecting k non-overlapping pairs of
adjacent seats is (an—k)zn(zn -kl
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24. Anurn contains b blue balls and r red balls. They are removed at random and not replaced. Show
that the probability that the first red ball drawn is the (k + 1)th ball drawn equals (r'H;:’f_l) / (r'};b) .
Find the probability that the last ball drawn is red.

25. An urn contains a azure balls and ¢ carmine balls, where ac # 0. Balls are removed at random
and discarded until the first time that a ball (B, say) is removed having a different colour from its
predecessor. The ball B is now replaced and the procedure restarted. This process continues until the
last ball is drawn from the urn. Show that this last ball is equally likely to be azure or carmine.

26. Protocols. A pack of four cards contains one spade, one club, and the two red aces. You deal
two cards faces downwards at random in front of a truthful friend. She inspects them and tells you
that one of them is the ace of hearts. What is the chance that the other card is the ace of diamonds?
Perhaps %?

Suppose that your friend’s protocol was:
(a) with no red ace, say “no red ace”,
(b) with the ace of hearts, say “ace of hearts”,
(c) with the ace of diamonds but not the ace of hearts, say “ace of diamonds”.
Show that the probability in question is %

Devise a possible protocol for your friend such that the probability in question is zero.

27. Eddington’s controversy. Four witnesses, A, B, C, and D, at a trial each speak the truth with
probability % independently of each other. In their testimonies, A claimed that B denied that C declared
that D lied. What is the (conditional) probability that D told the truth? [This problem seems to have
appeared first as a parody in a university magazine of the ‘typical’ Cambridge Philosophy Tripos
question. ]

28. The probabilistic method. 10 per cent of the surface of a sphere is coloured blue, the rest is red.
Show that, irrespective of the manner in which the colours are distributed, it is possible to inscribe a
cube in S with all its vertices red.

29. Repulsion. The event A is said to be repelled by the event B if P(A | B) < P(A), and to be
attracted by B if P(A | B) > P(A). Show that if B attracts A, then A attracts B, and B repels A.
If A attracts B, and B attracts C, does A attract C?

30. Birthdays. If m students born on independent days in 1991 are attending a lecture, show that the

probability that at least two of them share a birthday is p = 1 — (365)!/{(365 — m)!365™}. Show

that p > 7 when m = 23.

31. Lottery. You choose r of the first n positive integers, and a lottery chooses a random subset L of
the same size. What is the probability that:

(a) L includes no consecutive integers?

(b) L includes exactly one pair of consecutive integers?

(c) the numbers in L are drawn in increasing order?

(d) your choice of numbers is the same as L?

(e) there are exactly £ of your numbers matching members of L?

32. Bridge. During a game of bridge, you are dealt at random a hand of thirteen cards. With an
obvious notation, show that P(4S, 3H, 3D, 3C) ~ 0.026 and P(4S, 4H, 3D, 2C) =~ 0.018. However
if suits are not specified, so numbers denote the shape of your hand, show that P(4, 3, 3, 3) >~ 0.11
and P(4, 4, 3,2) ~ 0.22.

33. Poker. During a game of poker, you are dealt a five-card hand at random. With the convention
that aces may count high or low, show that:

P(1 pair) >~ 0.423, P(2 pairs) =~ 0.0475, P(3 of a kind) ~ 0.021,
P(straight) ~ 0.0039, P(flush) >~ 0.0020, P(full house) ~ 0.0014,
P(4 of a kind) =~ 0.00024, P(straight flush) =~ 0.000015.
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34. Poker dice. There are five dice each displaying 9, 10, J, Q, K, A. Show that, when rolled:

P(1 pair) =~ 0.46, P(2 pairs) =~ 0.23, P(3 of akind) >~ 0.15,
P(no 2 alike) >~ 0.093, P(full house) ~ 0.039, P(4 of a kind) ~ 0.019,
P(5 of a kind) >~ 0.0008.

35. You are lost in the National Park of Bandrikat. Tourists comprise two-thirds of the visitors to

the park, and give a correct answer to requests for directions with probability % (Answers to repeated

questions are independent, even if the question and the person are the same.) If you ask a Bandrikan

for directions, the answer is always false.

(a) You ask a passer-by whether the exit from the Park is East or West. The answer is East. What is
the probability this is correct?

(b) You ask the same person again, and receive the same reply. Show the probability that it is correct
1s %

(c¢) You ask the same person again, and receive the same reply. What is the probability that it is
correct?

(d) You ask for the fourth time, and receive the answer East. Show that the probability it is correct
is %.

(e) Show that, had the fourth answer been West instead, the probability that East is nevertheless
correct is T96'

36. Mr Bayes goes to Bandrika. Tom is in the same position as you were in the previous problem,

but he has reason to believe that, with probability €, East is the correct answer. Show that:

(a) whatever answer first received, Tom continues to believe that East is correct with probability e,

(b) if the first two replies are the same (that is, either WW or EE), Tom continues to believe that East
is correct with probability €,

(¢c) after three like answers, Tom will calculate as follows, in the obvious notation:

11e
942¢’

P(East correct | EEE) =

9
€ , [P(East correct | WWW) =
11— 2e¢

Evaluate these when € = %.

37. Bonferroni’s inequality. Show that

P(Lnj Ar> > ZH:JP’(Ar) = P(A N A,
r=1 r=1

r<k
38. Kounias’s inequality. Show that
n n
]P’(U Ar> < min STRA) = Y PA N A
r=1 r=1 rir#k

39. Then passengers for a Bell-Air flight in an airplane with n seats have been told their seat numbers.
They get on the plane one by one. The first person sits in the wrong seat. Subsequent passengers sit
in their assigned seats whenever they find them available, or otherwise in a randomly chosen empty
seat. What is the probability that the last passenger finds his seat free?

tA fictional country made famous in the Hitchcock film ‘The Lady Vanishes’.
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Random variables and their distributions

Summary. Quantities governed by randomness correspond to functions on the
probability space called random variables. The value taken by a random vari-
able is subject to chance, and the associated likelihoods are described by a
function called the distribution function. Two important classes of random
variables are discussed, namely discrete variables and continuous variables.
The law of averages, known also as the law of large numbers, states that the
proportion of successes in a long run of independent trials converges to the
probability of success in any one trial. This result provides a mathematical
basis for a philosophical view of probability based on repeated experimenta-
tion. Worked examples involving random variables and their distributions are
included, and the chapter terminates with sections on random vectors and on
Monte Carlo simulation.

2.1 Random variables

We shall not always be interested in an experiment itself, but rather in some consequence
of its random outcome. For example, many gamblers are more concerned with their losses
than with the games which give rise to them. Such consequences, when real valued, may
be thought of as functions which map €2 into the real line R, and these functions are called
‘random variables’.

(1) Example. A fair coin is tossed twice: = {HH, HT, TH, TT}. For w € €, let X (w) be
the number of heads, so that

X(HH) =2, XHT) =X(TH) =1, X(TT)=0.

Now suppose that a gambler wagers his fortune of £1 on the result of this experiment. He
gambles cumulatively so thathis fortune is doubled each time a head appears, and is annihilated
on the appearance of a tail. His subsequent fortune W is a random variable given by

W(HH) =4, W(HT) = W(TH) = W(TT) = 0. °

tDerived from the Old French word randon meaning ‘haste’.
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Figure 2.1. The distribution function Fx of the random variable X of Examples (1) and (5).

After the experiment is done and the outcome w € €2 is known, arandom variable X : Q2 —
R takes some value. In general this numerical value is more likely to lie in certain subsets
of R than in certain others, depending on the probability space (€2, #, P) and the function X
itself. We wish to be able to describe the distribution of the likelihoods of possible values of
X. Example (1) above suggests that we might do this through the function f : R — [0, 1]
defined by
f(x) = probability that X is equal to x,

but this turns out to be inappropriate in general. Rather, we use the distribution function
F : R — R defined by

F(x) = probability that X does not exceed x.
More rigorously, this is
) F(x) =P(A(x))

where A(x) C Qis givenby A(x) = {w € Q : X(w) < x}. However, P is a function on the
collection ¥ of events; we cannot discuss P(A (x)) unless A(x) belongs to ¥, and so we are
led to the following definition.

(3) Definition. A random variable is a function X : Q — R with the property that {w € Q2 :
X(w) < x} € ¥ foreach x € R. Such a function is said to be ¥ -measurable,

If you so desire, you may pay no attention to the technical condition in the definition
and think of random variables simply as functions mapping €2 into R. We shall always use
upper-case letters, such as X, Y, and Z, to represent generic random variables, whilst lower-
case letters, such as x, y, and z, will be used to represent possible numerical values of these
variables. Do not confuse this notation in your written work.

Every random variable has a distribution function, given by (2); distribution functions are
very important and useful.

(4) Definition. The distribution function of a random variable X is the function F : R —
[0, 1] given by F(x) = P(X < x).

This is the obvious abbreviation of equation (2). Events written as {w € Q : X(») < x}
are commonly abbreviated to {w : X (w) < x} or {X < x}. We write Fy where it is necessary
to emphasize the role of X.
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Figure 2.2. The distribution function Fy of the random variable W of Examples (1) and (5).

(5) Example (1) revisited. The distribution function Fy of X is given by

0 ifx <0,
% if0<x <1,

PO=13 1 <x<n,
1 ifx>2,

and is sketched in Figure 2.1. The distribution function Fy of W is given by

0 ifx <O,
Fy(x)=14 2 if0<x <4,
1 ifx >4,

and is sketched in Figure 2.2. This illustrates the important point that the distribution function
of a random variable X tells us about the values taken by X and their relative likelihoods,
rather than about the sample space and the collection of events. ®

(6) Lemma. A distribution function F has the following properties:
(8 lim F(x)=0, lim F(x)=1,
X—>—00 X—>C0
(b) ifx <y then F(x) < F(y),
(c) F is right-continuous, thatis, F(x + h) - F(x)as h | 0.

Proof.
(a) Let B, = {w € Q: X(w) < —n} = {X < —n}. The sequence By, By, ... isdecreasing
with the empty set as limit. Thus, by Lemma (1.3.5), P(B,;) — P(&) = 0. The other
part is similar.

(b) Let A(x) = {X < x}, A(x,y) = {x < X < y}. Then A(y) = A(x) U A(x,y)is a
disjoint union, and so by Definition (1.3.1),

P(A(y)) = P(A(x)) +P(A(x, y))

giving
F(y)=Fx)+Pkx <X <y) > F(x).

(c) This is an exercise. Use Lemma (1.3.5). ||
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Actually, this lemma characterizes distribution functions. Thatisto say, F is the distribution
function of some random variable if and only if it satisfies (6a), (6b), and (6¢).

For the time being we can forget all about probability spaces and concentrate on random
variables and their distribution functions. The distribution function F of X contains a great
deal of information about X.

(7) Example. Constant variables. The simplest random variable takes a constant value on
the whole domain €2. Let ¢ € R and define X : 2 — R by

X(w)=c forall weQ.

The distribution function F(x) = P(X < x) is the step function

0 x<ec,

F(x) = {

1 x>c.

Slightly more generally, we call X constant (almost surely) if there exists ¢ € R such that
PX=c)=1. [ ]

(8) Example. Bernoulli variables. Consider Example (1.3.2). Let X : 2 — R be given by
XH)y=1, X(T)=0.

Then X is the simplest non-trivial random variable, having two possible values, 0 and 1. Its
distribution function F(x) = P(X < x) is

0 x <0,
Fx)y={1—p 0<x <1,
1 x > 1.
X is said to have the Bernoulli distribution sometimes denoted Bern(p). ®

(9) Example. Indicator functions. A particular class of Bernoulli variables is very useful
in probability theory. Let A be an event and let /4 : € — R be the indicator function of A;
that is,

1 ifweA,

la(w) = { 0 ifw e A°.

Then 14 is a Bernoulli random variable taking the values 1 and 0 with probabilities P(A) and
P(A®) respectively. Suppose {B; : i € I} is a family of disjoint events with A C | J;; Bi.
Then

(10) In=Y lans,.

an identity which is often useful. [ ]
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(11) Lemma. Let F be the distribution function of X. Then
(a) P(X >x)=1— F(x),
(d) P(x <X <y)=F(y) - F(x),
() P(X =x) = F(x)— li%n F(y).
yrx

Proof. (a) and (b) are exercises.
(¢c) Let B, = {x — 1/n < X < x} and use the method of proof of Lemma (6). |

Note one final piece of jargon for future use. A random variable X with distribution function
F is said to have two ‘tails’ given by

Ti(x)=PX >x)=1-Fx), DNx)=PX<x)=F(x),
where x is large and positive. We shall see later that the rates at which the T; decay to zero

as x — 00 have a substantial effect on the existence or non-existence of certain associated
quantities called the ‘moments’ of the distribution.

Exercises for Section 2.1

1. Let X be arandom variable on a given probability space, and let a € R. Show that
(1) aX is arandom variable,
(i) X — X = 0, the random variable taking the value O always, and X + X = 2X.

2. Arandom variable X has distribution function . What is the distribution functionof ¥ = aX +5b,
where g and b are real constants?

3. A fair coin is tossed # times. Show that, under reasonable assumptions, the probability of exactly
k hflads irs) (2)($)". What is the corresponding quantity when heads appears with probability p on
each toss?

4. Show thatif F and G are distribution functions and 0 < A < 1then AF + (1 —A)G is adistribution
function. Is the product FG a distribution function?

5. Let F be a distribution function and r a positive integer. Show that the following are distribution
functions:

(@ F(x)",

®) 1-{1-Fx)},

(©) Fx)+ {1 = Fl)}log{l — F(x)},

(d) {F(x) — 1}e +exp{l — F(x)}.

2.2 The law of averages

We may recall the discussion in Section 1.3 of repeated experimentation. In each of N
repetitions of an experiment, we observe whether or not a given event A occurs, and we write
N(A) for the total number of occurrences of A. One possible philosophical underpinning of
probability theory requires that the proportion N(A)/N settles down as N — 0o to some
limit interpretable as the ‘probability of A’. Is our theory to date consistent with such a
requirement?

With this question in mind, let us suppose that Ay, Az, ... is a sequence of independent
events having equal probability P(A;) = p, where 0 < p < 1; such an assumption requires of
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course the existence of a corresponding probability space (2, ¥, ), but we do not plan to get
bogged down in such matters here. We think of A; as being the event ‘that A occurs on the ith
experiment’. We write S, = Z?:l 14,, the sum of the indicator functionsof A1, Az, ..., Ay
Sy is arandom variable which counts the number of occurrences of A; for 1 < i < n (certainly
S, is a function of €2, since it is the sum of such functions, and it is left as an exercise to show
that S, is ¥ -measurable). The following result concerning the ratio n~1S, was proved by
James Bernoulli before 1692.

(1) Theorem. It is the case that n™' S, converges to p as n — 00 in the sense that, for all
€ >0,
P(p—efn_lSn §p+e)—> 1 as n— oo.

There are certain technicalities involved in the study of the convergence of random variables
(see Chapter 7), and this is the reason for the careful statement of the theorem. For the time
being, we encourage the reader to interpret the theorem as asserting simply that the proportion
n—1S, of times that the events A, Aa, ..., A, occur converges as n — 00 to their common
probability p. We shall see later how important it is to be careful when making such statements.

Interpreted in terms of tosses of a fair coin, the theorem implies that the proportion of heads
is (with large probability) near to % As a caveat regarding the difficulties inherent in studying
the convergence of random variables, we remark that it is not true that, in a ‘typical’ sequence
of tosses of a fair coin, heads outnumber tails about one-half of the time.

Proof. Suppose that we toss a coin repeatedly, and heads occurs on each toss with probability
p- The random variable S, has the same probability distribution as the number H,, of heads
which occur during the first n tosses, which is to say that P(S,, = k) = P(H, = k) for all k.
It follows that, for small positive values of €,

1
P(;Sn 2p+6) = Y. PH,=k).

k>n(p+e)

We have from Exercise (2.1.3) that
P(H, =k) = <Z>pk(l — p)”_k for 0<k <n,

and hence

n

1
2) p(zsn > p+e) => <Z)p"(1 - pyt

k=m

where m = [n(p + €)], the least integer not less than n(p + €). The following argument is
standard in probability theory. Let A > 0 and note that e** > ¢*(P+€) if k > m. Writing
g = 1 — p, we have that

1 - n
P <_Sn >p + 6) < § :ek[k—n(p+e)]< )pkqn—k
n k
k=m
n

< e e Z (Z) (pe)»q)k (qe—)»p)n—k

k=0
— e*)\ne(pe)\q + qe—)\p)n’
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by the binomial theorem. It is a simple exercise to show that ¢* < x + e’ for x € R. With
the aid of this inequality, we obtain

1
(3) ]P’(;Sn > p+€) < e—)\ne[pe)ﬁzﬂ +qex2p2]n

< ek2n—kne )

We can pick A to minimize the right-hand side, namely A = %e, giving
1 1,2

) ]P’(—S,,zp—i—e)ge "€ for € >0,
n

an inequality that is known as ‘Bernstein’s inequality’. It follows immediately that P(n 1S, >
p+¢) > 0asn — oo. An exactly analogous argument shows that P(n!S, <p—€)—0
as n — oo, and thus the theorem is proved. |

Bernstein’s inequality (4) is rather powerful, asserting that the chance that S, exceeds its
mean by a quantity of order # tends to zero exponentially fast as n — 00; such an inequality
is known as a ‘large-deviation estimate’. We may use the inequality to prove rather more than
the conclusion of the theorem. Instead of estimating the chance that, for a specific value of
n, Sp lies between n(p — €) and n(p + ¢€), let us estimate the chance that this occurs for all
large n. Writing A, = {p — ¢ <n~LS, < p + €}, we wish to estimate P((32,, A»). Now
the complement of this intersection is the event | J;2, AS, and the probability of this union

satisfies, by the inequalities of Boole and Bernstein,

o o o
(5) P (U Af,) <> PAH <Y 277 50 as m— oo,
n=m n=m n=m

giving that, as required,

1
(6) ]I"(p—es—Snsp—{—eforallnzm)—»l as m — oo.
n

Exercises for Section 2.2

1. You wish to ask each of a large number of people a question to which the answer “yes” is
embarrassing. The following procedure is proposed in order to determine the embarrassed fraction of
the population. As the question is asked, a coin is tossed out of sight of the questioner. If the answer
would have been “no” and the coin shows heads, then the answer “yes” is given. Otherwise people
respond truthfully. What do you think of this procedure?

2. A coinis tossed repeatedly and heads turns up on each toss with probability p. Let H, and T, be
the numbers of heads and tails in # tosses. Show that, for € > 0,

1
]P’(Zp—l—es—(H,,—T,,)SZp—1+e>—>1 asn — 00.
n

3. Let{X, :r > 1}be observations which are independent and identically distributed with unknown
distribution function F. Describe and justify a method for estimating F'(x).
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2.3 Discrete and continuous variables

Much of the study of random variables is devoted to distribution functions, characterized by
Lemma (2.1.6). The general theory of distribution functions and their applications is quite
difficult and abstract and is best omitted at this stage. It relies on a rigorous treatment of
the construction of the Lebesgue—Stieltjes integral; this is sketched in Section 5.6. However,
things become much easier if we are prepared to restrict our attention to certain subclasses
of random variables specified by properties which make them tractable. We shall consider in
depth the collection of ‘discrete’ random variables and the collection of ‘continuous’ random
variables.

(1) Definition. The random variable X is called discrete if it takes values in some countable
subset {x1,x2,...}, only, of R. The discrete random variable X has (probability) mass
function f : R — [0, 1] given by f(x) = P(X = x).

We shall see that the distribution function of a discrete variable has jump discontinuities
at the values x1, x2, ... and is constant in between; such a distribution is called atomic. this
contrasts sharply with the other important class of distribution functions considered here.

(2) Definition. The random variable X is called continuous if its distribution function can
be expressed as

F(x)mec F)du x eR,

for some integrable function f : R - [0, 0o) called the (probability) density function of X.

The distribution function of a continuous random variable is certainly continuous (actually
it is ‘absolutely continuous’). For the moment we are concerned only with discrete variables
and continuous variables. There is another sort of random variable, called ‘singular’, for a
discussion of which the reader should look elsewhere. A common example of this phenomenon
is based upon the Cantor ternary set (see Grimmett and Welsh 1986, or Billingsley 1995). Other
variables are ‘mixtures’ of discrete, continuous, and singular variables. Note that the word
‘continuous’ is a misnomer when used in this regard: in describing X as continuous, we are
referring to a property of its distribution function rather than of the random variable (function)
X itself.

(3) Example. Discrete variables. The variables X and W of Example (2.1.1) take values in
the sets {0, 1, 2} and {0, 4} respectively; they are both discrete. ®

(4) Example. Continuous variables. A straightrod is flung down atrandom onto a horizontal
plane and the angle w between the rod and true north is measured. The result is a number
in @ = [0,27). Never mind about ¥ for the moment; we can suppose that ¥ contains
all nice subsets of €2, including the collection of open subintervals such as (a, b), where
0 < a < b < 2x. The implicit symmetry suggests the probability measure P which satisfies
P((a, b)) = (b — a)/(27); that is to say, the probability that the angle lies in some interval is
directly proportional to the length of the interval. Here are two random variables X and Y:

X =w, Y=o’
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Fx(x) {l

1 4

Figure 2.3. The distribution function Fy of the random variable X in Example (5).

Notice that Y is a function of X in that ¥ = X2. The distribution functions of X and Y are

0 x <0, 0 y <0,
Fx(x)= 4§ x/Qn) 0<x <2m, Fr(y)={ J/7/Qr) 0<y <4xn?
1 x > 2, 1 y > 472,

To see this,let0 < x <2rand0 <y < 472%. Then
Fx(x) =P({lw e Q:0 < X(w) <x})
:IP’({a) eQR:0<w §x}) =x/(2n),
Fy(y) =P({w: Y(») < y})
=P({w:w® <y)) =P({w:0 < w <./y}) =PX < /y)
= J/y/@n).

The random variables X and Y are continuous because

x ¥y
&mzf Fr ) du, ﬂm:/ Fr () du,

where
1/(2x) if0 <u<2m,
Tx () = { 0 otherwise,
1
u"2/(4m) if0 <u <4n?,
frw) = { / . o
0 otherwise.

(5) Example. A random variable which is neither continuous nor discrete. A coin is
tossed, and a head turns up with probability p (= 1—g¢). If ahead turns up then arod is flung on
the ground and the angle measured as in Example (4). Then Q = {TJU{(H,x) : 0 <x < 2x},
in the obvious notation. Let X : © — R be given by

X(T)=-1, X({(Hx))=x.

The random variable X takes values in {—1} U [0, 27) (see Figure 2.3 for a sketch of its
distribution function). We say that X is continuous with the exception of a ‘point mass (or
atom) at —1°. o
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Exercises for Section 2.3

1. Let X be a random variable with distribution function F, and let a = (a,;, : —00 < m < ©0)
be a strictly increasing sequence of real numbers satisfying a_,, — —oo and @, — co as m — oo.
Define G(x) = P(X < a;y) whena,,_1 < x < apn, so that G is the distribution function of a discrete
random variable. How does the function G behave as the sequence a is chosen in such a way that
Sup,, lam — a,—1| becomes smaller and smaller?

2. Let X be a random variable and let g : R — R be continuous and strictly increasing. Show that
Y = g(X) is a random variable.

3. Let X be a random variable with distribution function

0 ifx <0,
P(X <x}=< x if0<x<l1,
1 ifx > 1.

Let F be a distribution function which is continuous and strictly increasing. Show that ¥ = F~1(X)
is arandom variable having distribution function F. Is it necessary that F be continuous and/or strictly
increasing?

4. Show that, if f and g are density functions, and 0 < A < 1, then Af + (1 — A)g is a density. Is
the product fg a density function?

5. Which of the following are density functions? Find ¢ and the corresponding distribution function
F for those that are.

cx x > 1,
a =
@ f0) { 0 otherwise.

®) fx)=ce*(14+e5)2 x eR.

2.4 Worked examples

(1) Example. Darts. A dart is flung at a circular target of radius 3. We can think of the
hitting point as the outcome of a random experiment; we shall suppose for simplicity that the
player is guaranteed to hit the target somewhere. Setting the centre of the target at the origin
of R?, we see that the sample space of this experiment is

Q={(x,y): x>+ y* <9}

Never mind about the collection ¥ of events. Let us suppose that, roughly speaking, the
probability that the dart lands in some region A is proportional to its area |A|. Thus

@) P(A) = [A]/ (7).

The scoring system is as follows. The target is partitioned by three concentric circles Cy, Cy,
and Cs, centered at the origin with radii 1, 2, and 3. These circles divide the target into three
annuli A, Ay, and A3, where

Akz{(x,y):k—l5,/x2+y2<k}.
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FX(X)A

17 o

4

9 *r—

1| *~r—

9
1 1 T >
1 2 3 x

Figure 2.4. The distribution function Fy of X in Example (1).

We suppose that the player scores an amount & if and only if the dart hits A;. The resulting
score X is the random variable given by

X(w) =k whenever w € Ag.

What is its distribution function?
Solution. Clearly

P(X = k) = P(A) = |Akl/On) = 52k — 1), for k=1,2,3,

and so the distribution function of X is given by

0 ifr <1,
Fx(ry=P(X <r)={ §lr)? ifl<r<3,
1 ifr >3,
where | ] denotes the largest integer not larger than r (see Figure 2.4). o

(3) Example. Continuation of (1). Let us consider a revised method of scoring in which the
player scores an amount equal to the distance between the hitting point w and the centre of
the target. This time the score Y is a random variable given by

Y(w)=+/x2+y2, if w=(x,y).

What is the distribution function of Y?
Solution. For any real r let C, denote the disc with centre (0, 0) and radius r, that is

Cr ={(x,y): x> +y* <r).

Then
Fy(r)=P(Y <r)=P(C,)=4r> if 0=<r<3.
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Fy(r) &

Figure 2.5. The distribution function Fy of ¥ in Example (3).
Fz(r) &
1 -~

1—p

y

Figure 2.6. The distribution function Fz of Z in Example (4).

This distribution function is sketched in Figure 2.5. o

(4) Example. Continuation of (1). Now suppose that the player fails to hit the target with
fixed probability p; if he is successful then we suppose that the distribution of the hitting point
is described by equation (2). His score is specified as follows. If he hits the target then he
scores an amount equal to the distance between the hitting point and the centre; if he misses
then he scores 4. What is the distribution function of his score Z?

Solution. Clearly Z takes values in the interval [0, 4]. Use Lemma (1.4.4) to see that
Fz(r)=P(Z <)
= P(Z < r | hits target) P(hits target) + P(Z < r | misses target)[P(misses target)

0 ifr <0,
=1 (1—p)Fy(r) if0<r <4,
1 ifr > 4,

where Fy is given in Example (3) (see Figure 2.6 for a sketch of Fz). L
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Exercises for Section 2.4

1. Let X be a random variable with a continuous distribution function . Find expressions for the
distribution functions of the following random variables:

@) X2, (b) VX,
(¢) sin X, @ G1x),
() F(X), O G~H(F(X)),

where G is a continuous and strictly increasing function.

2. Truncation. Let X be a random variable with distribution function F, and let a < b. Sketch the
distribution functions of the ‘truncated’ random variables Y and Z given by

a ifX <a,
Y=< X ifa<X <5,

_{X if | X] < b,
b ifX >b,

0 if|X] > b.

Indicate how these distribution functions behave as a — —o00, b — 0.

2.5 Random vectors

Suppose that X and Y are random variables on the probability space (€2, ¥, P). Their dis-
tribution functions, Fy and Fy, contain information about their associated probabilities. But
how may we encapsulate information about their properties relative to each other? The key
is to think of X and Y as being the components of a ‘random vector’ (X, Y) taking values in
R?, rather than being unrelated random variables each taking values in R.

(1) Example. Tontine is a scheme wherein subscribers to a common fund each receive an
annuity from the fund during his or her lifetime, this annuity increasing as the other subscribers
die. When all the subscribers are dead, the fund passes to the French government (this was
the case in the first such scheme designed by Lorenzo Tonti around 1653). The performance
of the fund depends on the lifetimes Ly, L, ..., L, of the subscribers (as well as on their
wealths), and we may record these as a vector (L1, L, ..., L,) of random variables. ®

(2) Example. Darts. A dart is flung at a conventional dartboard. The point of striking
determines a distance R from the centre, an angle ® with the upward vertical (measured
clockwise, say), and a score S. With this experiment we may associate the random vector
(R, ©,9), and we note that S is a function of the pair (R, @). ]

(3) Example. Coin tossing. Suppose that we toss a coin n times, and set X; equal to 0
or 1 depending on whether the ith toss results in a tail or a head. We think of the vector
X = (X, X3, ..., Xp) as describing the result of this composite experiment. The total
number of heads is the sum of the entries in X. [ ]

An individual random variable X has a distribution function Fy defined by Fy(x) =
P(X < x) for x € R. The corresponding ‘joint’ distribution function of a random vector
(X1, X2, ..., Xp) is the quantity P(X; < x1, X2 < x2,..., X, < x,), a function of n real
variables xi, x2, ..., x,. In order to aid the notation, we introduce an ordering of vectors of
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real numbers: for vectors X = (x1,x2,...,%,) andy = (1, ¥2, ..., ¥n) We write X < y if
x; <y foreachi=1,2,...,n

(4) Definition. The joint distribution function of arandom vector X == (X, X2, ..., X,)on
the probability space (2, ¥, P) is the function Fx : R” — [0, 1] givenby Fx(x) = P(X £ x)
forx € R".

As before, the expression {X < x} is an abbreviation for the event {w € 2 : X(w) < x}.
Joint distribution functions have properties similar to those of ordinary distribution functions.
For example, Lemma (2.1.6) becomes the following.

(5) Lemma. The joint distribution function Fx y of the random vector (X, Y) has the follow-
ing properties:

(@) me,y—»—oo Fyy(x,y)=0, me,y—»oo Fyy(x,y)=1,

() if (x1, y1) < (x2, y2) then Fx y(x1,y1) < Fx y(x2, y2),

(c) Fx,y is continuous from above, in that

Fxyy(x+u,y+v) = Fxy(x,y) as u,v]0.

We state this lemma for a random vector with only two components X and Y, but the
corresponding result for n components is valid also. The proof of the lemma is left as an
exercise. Rather more is true. It may be seen without great difficulty that

©) ylgl;o Fxy(x,y) = Fx(x) (=P(X < x))

and similarly
) dim Fyxy(x,y) = Fy(y) (= P(Y = y)).

This more refined version of part (a) of the lemma tells us that we may recapture the individual
distribution functions of X and Y from a knowledge of their joint distribution function. The
converse is false: it is not generally possible to calculate Fx y from a knowledge of Fy and
Fy alone. The functions Fx and Fy are called the ‘marginal’ distribution functions of Fy y.

(8) Example. A schoolteacher asks each member of his or her class to flip a fair coin twice
and to record the outcomes. The diligent pupil D does this and records a pair (Xp, Yp) of
outcomes. The lazy pupil L flips the coin only once and writes down the result twice, recording
thus a pair (X, Y1) where X; = Y. Clearly Xp, Yp, X1, and Y are random variables with
the same distribution functions. However, the pairs (Xp, Yp) and (X, Y1) have different
Jjoint distribution functions. In particular, P(Xp = Yp = heads) = % since only one of the

four possible pairs of outcomes contains heads only, whereas P(X; = Y; = heads) = % o

Once again there are two classes of random vectors which are particularly interesting: the
‘discrete’ and the ‘continuous’.

(9) Definition. The random variables X and Y on the probability space (2, £, IP) are called
(jointly) discrete if the vector (X, Y) takes values in some countable subset of R? only. The
jointly discrete random variables X, Y have joint (probability) mass function f : R? —
[0, 1] givenby f(x,y) =P(X =x, ¥ = y).



40 2.5 Random variables and their distributions

(10) Definition. The random variables X and Y on the probability space (2, £, IP) are called
(jointly) continuous if their joint distribution function can be expressed as

x y
FX,Y(X,)’)=/ / f(u,v)dudv x,y €R,
U=—0Q0 JV=—00

for some integrable function f : R — [0, 0o) called the joint (probability) density function
of the pair (X, Y).

We shall return to such questions in later chapters. Meanwhile here are two concrete
examples.

(11) Example. Three-sided coin. We are provided with a special three-sided coin, each
toss of which results in one of the possibilities H (heads), T (tails), E (edge), each having
probability % Let H,, T,, and E, be the numbers of such outcomes in n tosses of the coin.
The vector (H,, T,, E,) is a vector of random variables satisfying H, + T, + E, = n. If the
outcomes of different tosses have no influence on each other, it is not difficult to see that

n! 1"
P((Hn,Tn,En)=(h”’e)):hme! 3

for any triple (h, t, e) of non-negative integers with sum n. The random variables H,, T,, E,
are (jointly) discrete and are said to have (jointly) the trinomial distribution. {

(12) Example. Darts. Returning to the flung dart of Example (2), let us assume that no
region of the dartboard is preferred unduly over any other region of equal area. It may then
be shown (see Example (2.4.3)) that

2
0
PR<r) =5, PO=0)=:—, for 0<r=p 00=2m,

R

where p is the radius of the board, and furthermore
P(R<r, ® <0)=PR <r)P(® <0).

It follows that
r 8
Fro(r,0) = / £, v) dudo

u=0 Jv=0

where

f(u,v):Lz, O<u<p, 0<v<2m
TP

The pair (R, ®) is (jointly) continuous. o
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-Exercises for Section 2.5
1. A fair coin is tossed twice. Let X be the number of heads, and let W be the indicator function of
the event {X = 2}. Find P(X = x, W = w) for all appropriate values of x and w.

2. Let X be a Bernoulli random variable, so thatP(X =0) = 1—-p,P(X = 1) =p. LetY =1—-X
and Z=XY. FindP( X =x, Y =y)andP(X =x, Z=72) forx, y,z € {0, 1}.

3. The random variables X and Y have joint distribution function
0 ifx <0,

F =
XY=y (%—%—ltan_ly) ifx > 0.
a

Show that X and ¥ are (jointly) continuously distributed.
4. Let X and Y have joint distribution function F. Show that

Pla<X <b,c<Y <d)y=F(,d)— F(a,d)— F(b,c)+ F(a,c)

whenever a < band ¢ < d.
5. Let X, Y be discrete random variables taking values in the integers, with joint mass function f.
Show that, for integers x, y,
fEN=PXzx, Y =y)-PXzx+1,Y =<y)
—PX=x, Y <y—-1D+PX=x+1,Y <y-1).
Hence find the joint mass function of the smallest and largest numbers shown in r rolls of a fair die.

6. Is the function F(x, y) =1 —e ¥ 0 < x, y < 00, the joint distribution function of some pair
of random variables?

2.6 Monte Carlo simulation

It is presumably the case that the physical shape of a coin is one of the major factors relevant
to whether or not it will fall with heads uppermost. In principle, the shape of the coin may
be determined by direct examination, and hence we may arrive at an estimate for the chance
of heads. Unfortunately, such a calculation would be rather complicated, and it is easier to
estimate this chance by simulation, which is to say that we may toss the coin many times and
record the proportion of successes. Similarly, roulette players are well advised to observe
the behaviour of the wheel with care in advance of placing large bets, in order to discern
its peculiarities (unfortunately, casinos are now wary of such observation, and change their
wheels at regular intervals).

Here is a related question. Suppose that we know that our coin is fair (so that the chance of
heads is % on each toss), and we wish to know the chance that a sequence of 50 tosses contains
a run of outcomes of the form HTHHT. In principle, this probability may be calculated
explicitly and exactly. If we require only an estimate of its value, then another possibility is
to simulate the experiment: toss the coin SON times for some &, divide the result into N runs
of 50, and find the proportion of such runs which contain HTHHT.

It is not unusual in real life for a specific calculation to be possible in principle but extremely
difficult in practice, often owing to limitations on the operating speed or the size of the memory
of acomputer. Simulation can provide a way around such a problem. Here are some examples.
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(1) Example. Gambler’s ruin revisited. The gambler of Example (1.7.4) eventually won
his Jaguar after a long period devoted to tossing coins, and he has now decided to save up
for a yacht. His bank manager has suggested that, in order to speed things up, the stake on
each gamble should not remain constant but should vary as a certain prescribed function of
the gambler’s current fortune. The gambler would like to calculate the chance of winning the
yacht in advance of embarking on the project, but he finds himself incapable of doing so.

Fortunately, he has kept a record of the extremely long sequence of heads and tails encoun-
tered in his successful play for the Jaguar. He calculates his sequence of hypothetical fortunes
based on this information, until the point when this fortune reaches either zero or the price of
the yacht. He then starts again, and continues to repeat the procedure until he has completed
it a total of N times, say. He estimates the probability that he will actually win the yacht by
the proportion of the N calculations which result in success.

Can you see why this method will make him overconfident? He might do better to retoss
the coins. [

(2) Example. A dam. It is proposed to build a dam in order to regulate the water supply,
and in particular to prevent seasonal flooding downstream. How high should the dam be?
Dams are expensive to construct, and some compromise between cost and risk is necessary.
It is decided to build a dam which is just high enough to ensure that the chance of a flood
of some given extent within ten years is less than 1072, say. No one knows exactly how
high such a dam need be, and a young probabilist proposes the following scheme. Through
examination of existing records of rainfall and water demand we may arrive at an acceptable
model for the pattern of supply and demand. This model includes, for example, estimates for
the distributions of rainfall on successive days over long periods. With the aid of a computer,
the ‘real world’ situation is simulated many times in order to study the likely consequences
of building dams of various heights. In this way we may arrive at an accurate estimate of the
height required. o

(3) Example. Integration. Letg : [0, 1] — [0, 1] bea continuous but nowhere differentiable
function. How may we calculate its integral I = fol g(x)dx? The following experimental
technique is known as the ‘hit or miss Monte Carlo technique’.

Let (X, Y) be a random vector having the uniform distribution on the unit square. That is,
we assume that IF’((X, Y)e A) = |A|, the area of A, for any nice subset A of the unit square
[0, 11%; we leave the assumption of niceness somewhat up in the air for the moment, and shall
return to such matters in Chapter 4. We declare (X, Y) to be ‘successful’ if ¥ < g(X). The
chance that (X, Y) is successful equals /, the area under the curve y = g(x). We now repeat
this experiment a large number N of times, and calculate the proportion of times that the
experiment is successful. Following the law of averages, Theorem (2.2.1), we may use this
value as an estimate of /. S

Clearly it is desirable to know the accuracy of this estimate. This is a harder problem to
which we shall return later. [

Simulation is a dangerous game, and great caution is required in interpreting the results.
There are two major reasons for this. First, a computer simulation is limited by the degree
to which its so-called ‘pseudo-random number generator’ may be trusted. It has been said
for example that the summon-according-to-birthday principle of conscription to the United
States armed forces may have been marred by a pseudo-random number generator with a bias
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for some numbers over others. Secondly, in estimating a given quantity, one may in some
circumstances have little or no idea how many repetitions are necessary in order to achieve an
estimate within a specified accuracy.

We have made no remark about the methods by which computers calculate ‘pseudo-random
numbers’. Needless to say they do not flip coins, but rely instead on operations of sufficient
numerical complexity that the outcome, although deterministic, is apparently unpredictable
except by an exact repetition of the calculation.

These techniques were named in honour of Monte Carlo by Metropolis, von Neumann, and
Ulam, while they were involved in the process of building bombs at L.os Alamos in the 1940s.

2.7 Problems

1. Each toss of a coin results in a head with probability p. The coin is tossed until the first head
appears. Let X be the total number of tosses. What is P(X > m)? Find the distribution function of
the random variable X.

2. (a) Show that any discrete random variable may be written as a linear combination of indicator
variables.

(b) Show that any random variable may be expressed as the limit of an increasing sequence of discrete
random variables.

(c) Show that the limit of any increasing convergent sequence of random variables is a random
variable.

3. (a) Show that, if X and Y are random variables on a probability space (€2, ¥, P), then so are
X +Y,XY,and min{X, Y}.

(b) Show that the set of all random variables on a given probability space (2, ¥, IP) constitutes a
vector space over the reals. If  is finite, write down a basis for this space.

4. Let X have distribution function

0 if x <0,
F(x) = %x if0<x <2,
1 ifx > 2,
and let Y = X?2. Find
@P(}<x<3), ®PRI<X<2),
©P¥ < X), @D PX <27),

@P(X+7Y <3), () the distribution function of Z = v/X.
5. Let X have distribution function
0 ifx < —1,
I—p if —1<x<0,
F(-x) = 1 .
l—p+s5xp if0<x <2,
1 ifx > 2.
Sketch this function, and find: (@) P(X = —1), (b)P(X =0), (c)PX > 1).

6. Buses arrive at ten minute intervals starting at noon. A man arrives at the bus stop a random
number X minutes after noon, where X has distribution function

0 if x <0,
P(X <x)=¢ x/60 if0<x <60,
1 if x > 60,
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What is the probability that he waits less than five minutes for a bus?

7. Airlines find that each passenger who reserves a seat fails to turn up with probability —1% inde-
pendently of the other passengers. So Teeny Weeny Airlines always sell 10 tickets for their 9 seat
aeroplane while Blockbuster Airways always sell 20 tickets for their 18 seat aeroplane. Which is more
often over-booked?

8. A fairground performer claims the power of telekinesis. The crowd throws coins and he wills
them to fall heads up. He succeeds five times out of six. What chance would he have of doing at least
as well if he had no supernatural powers?

9. Express the distribution functions of
Xt =max{0, X}, X~ =-min{0, X}, [X|=XT+X", -X,

in terms of the distribution function F of the random variable X.
10. Show that Fx (x) is continuous at x = x if and only if P(X = xg) = 0.

11. The real number m is called a median of the distribution function F* whenever limy 4, F(y) <

% < F(m). Show that every distribution function F has at least one median, and that the set of

medians of F is a closed interval of R.
12. Show that it is not possible to weight two dice in such a way that the sum of the two numbers
shown by these loaded dice is equally likely to take any value between 2 and 12 (inclusive).

13. A functiond : S x S — R is called a metric on S if:
(i) d(s,t) =d(t,s) > O0foralls,t € S,
(ii) d(s,t) =0if and only if s = ¢, and
(iil) d(s,t) <d(s,u) +d(u,t) forall s,t,u € S.
(a) Lévy metric. Let F and G be distribution functions and define the Lévy metric

di.(F, G) = inf{e >0:G(x—€)—€ < F(x) < G(x +¢) +e¢ for anx}.

Show that 4y, is indeed a metric on the space of distribution functions.
(b) Total variation distance. Let X and Y be integer-valued random variables, and let

drv(X,Y) =) [P(X =k) —B(Y = k).
k

Show that dpy satisfies (i) and (iii) with S the space of integer-valued random variables, and that
dry(X,Y) = 0if and only if P(X = Y) = 1. Thus drvy is a metric on the space of equivalence
classes of S with equivalence relation given by X ~ Y if P(X = Y) = 1. We call drvy the rotal
variation distance.
Show that
drv(X,Y) =2 sup [P(X € A) —P(Y € A)].
ACZ

14. Ascertain in the following cases whether or not F is the joint distribution function of some pair
(X, Y) of random variables. If your conclusion is affirmative, find the distribution functions of X and
Y separately.

(a) F(x,y)={ I—e™™ ifx,y >0,
0 otherwise.
l—e™®—xe™ if0<x=<y,

(b) Fx,y)=¢ 1l—e Y —ye ™ ifO0<y=<unx,

0 otherwise.
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15. Itisrequired to place in order n books By, By, ..., B, onalibrary shelf in such a way that readers
searching from left to right waste as little time as possible on average. Assuming that each reader
requires book B; with probability p;, find the ordering of the books which minimizes P(T > k) for
all k, where T is the (random) number of titles examined by a reader before discovery of the required
book.

16. Transitive coins. Three coins each show heads with probability % and tails otherwise. The first
counts 10 points for a head and 2 for a tail, the second counts 4 points for both head and tail, and the
third counts 3 points for a head and 20 for a tail.

You and your opponent each choose a coin; you cannot choose the same coin. Each of you tosses
your coin and the person with the larger score wins £10'0. Would you prefer to be the first to pick a
coin or the second?

17. Before the development of radar and inertial navigation, flying to isolated islands (for example,
from Los Angeles to Hawaii) was somewhat ‘hit or miss’. In heavy cloud or at night it was necessary
to fly by dead reckoning, and then to search the surface. With the aid of a radio, the pilot had a good
idea of the correct great circle along which to search, but could not be sure which of the two directions
along this great circle was correct (since a strong tailwind could have carried the plane over its target).
When you are the pilot, you calculate that you can make n searches before your plane will run out of
fuel. On each search you will discover the island with probability p (if it is indeed in the direction of
the search) independently of the results of other searches; you estimate initially that there is probability
« that the island is ahead of you. What policy should you adopt in deciding the directions of your
various searches in order to maximize the probability of locating the island?

18. Eight pawns are placed randomly on a chessboard, no more than one to a square. What is the
probability that:

(a) they are in a straight line (do not forget the diagonals)?

(b) no two are in the same row or column?

19. Which of the following are distribution functions? For those that are, give the corresponding
density function f.

@ o= {1 220
0 otherwise.
—1/x 0
e x >0,

b) F(x) =

(b) Fx) {0 otherwise.

) Fx)=¢e"/(e* +e ™), x eR.
@) Fx)=e ™ 4 /(" +e %), x €R.
20. (a)If U and V are jointly continuous, show that P(U = V) = 0.

(b) Let X be uniformly distributed on (0, 1), and let ¥ = X. Then X and Y are continuous, and
P(X =Y) = 1. Is there a contradiction here?
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Discrete random variables

Summary. The distribution of a discrete random variable may be specified via
its probability mass function. The key notion of independence for discrete
random variables is introduced. The concept of expectation, or mean value,
is defined for discrete variables, leading to a definition of the variance and the
moments of a discrete random variable. Joint distributions, conditional distri-
butions, and conditional expectation are introduced, together with the ideas of
covariance and correlation. The Cauchy—Schwarz inequality is presented. The
analysis of sums of random variables leads to the convolution formula for mass
functions. Random walks are studied in some depth, including the reflection
principle, the ballot theorem, the hitting time theorem, and the arc sine laws
for visits to the origin and for sojourn times.

3.1 Probability mass functions

Recall that a random variable X is discrete if it takes values only in some countable set
{x1, x2, ...). Its distribution function ¥ (x) = P(X < x) is a jump function; just as important
as its distribution function is its mass function.

(1) Definition. The (probability) mass functiontof a discrete random variable X is the
function f : R — [0, 1] given by f(x) = P(X = x).

The distribution and mass functions are related by

Fey= ) fe. f0) =FE —Tm FO).

Iix, <x

(2) Lemma. The probability mass function f : R — [0, 1] satisfies:
(a) the set of x such that f(x) # 0 is countable,
(b) > f(xi) =1, where x1,x2, ... are the values of x such that f(x) # 0.

Proof. The proof is obvious. ]

This lemma characterizes probability mass functions.

tSome refer loosely to the mass function of X as its distribution.
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(3) Example. Binomial distribution. A coin is tossed » times, and a head turns up each time
with probability p (= 1 — ¢). Then @ = {H, T}". The total number X of heads takes values
in the set {0, 1,2, ... ,n} and is a discrete random variable. Its probability mass function
f(x) =P(X = x) satisfies

fxy=0 if x¢{0,1,2,....n).

Let0 < k < n, and consider f(k). Exactly (’1:) points in £ give a total of k heads; each of
these points occurs with probability p*¢™~*, and so

N ¢ opk
f(k)=<k)pq if 0<k<n.

The random variable X is said to have the binomial distribution with parameters n and p,
written bin(n, p). Itisthesum X = ¥ + Y2+ - - -+ Y, of n Bernoulli variables (see Example
(2.1.8)). o

(4) Example, Poisson distribution. Ifarandom variable X takes valuesintheset{0, 1,2, ...}
with mass function .
A
flk)y = —k—'e_)‘, k=0,1,2,...,

where A > 0, then X is said to have the Poisson distribution with parameter . ®

Exercises for Section 3.1

1. For what values of the constant C do the following define mass functions on the positive integers
1,2,...7

(@) Geometric: f(x) =C27*.

(b) Logarithmic: f(x) = C27* /x.

(¢) Inverse square: f(x) = Cx~2,

(d) ‘Modified’ Poisson: f(x) = C2*/x!.
2. For arandom variable X having (in turn) each of the four mass functions of Exercise (1), find:
@) P(X > 1),

(i) the most probable value of X,
(iii) the probability that X is even.
3. We toss n coins, and each one shows heads with probability p, independently of each of the
others. Each coin which shows heads is tossed again. What is the mass function of the number of
heads resulting from the second round of tosses?
4. Let Sy be the set of positive integers whose base-10 expansion contains exactly k elements (so
that, for example, 1024 € S4). A fair coin is tossed until the first head appears, and we write T for
the number of tosses required. We pick a random element, N say, from ST, each such element having
equal probability. What is the mass function of N?

5. Log-convexity. (a) Show that, if X is a binomial or Poisson random variable, then the mass
function f (k) = P(X = k) has the property that f(k — 1) f(k +1) < f&)Z.

(b) Show that, if f(k) = 90/(tk)*, k > 1,then f(k — 1) f(k + 1) > f(k)2.

(c) Find a mass function f such that f(k)2 =ftk—1Dfk+1),k=>1
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3.2 Independence

Remember that events A and B are called ‘independent’ if the occurrence of A does not
change the subsequent probability of B occurring. More rigorously, A and B are independent
if and only if P(4 N B) = P(A)P(B). Similarly, we say that discrete variables X and Y are
‘independent’ if the numerical value of X does not affect the distribution of Y. With this in
mind we make the following definition.

(1) Definition. Discrete variables X and ¥ are independent if the events {X = x} and
{Y = y} are independent for all x and y.

Suppose X takes values in the set {x;, x2,...} and Y takes values in the set {y1, y2,...}.
Let
A; ={X = x;}, B; = {Y =y;}.

Notice (see Problem (2.7.2)) that X and Y are linear combinations of the indicator variables
IA,: IBJ, in that

XZle'IAl and Y:ZyjIB_}'
i J

The random variables X and Y are independent if and only if A; and B; are independent for
all pairs i, j. A similar definition holds for collections { X, X, ..., X,} of discrete variables.

(2) Example. Poisson flips. A coin is tossed once and heads turns up with probability
p =1—gq. Let X and Y be the numbers of heads and tails respectively. It is no surprise that
X and Y are not independent. After all,

PX=Y=1)=0, PX=DPY=1=p-Dp).

Suppose now that the coin is tossed a random number N of times, where N has the Poisson
distribution with parameter A. It is a remarkable fact that the resulting numbers X and Y of
heads and tails are independent, since

PX=x,Y=y)=PX=x,Y=y|N=x+y)P(N=1x+y)

(P gy B pn ORI O
X (x + y)! x!y! '

However, by Lemma (1.4.4),

IP(X:x):Z]P’(X:xIN:n)IP’(N:n)

n>x
n X
=> " qun_xk—e_’\ _ O o,
X n! x!
n>x

a similar result holds for Y, and so

P(X =x, Y =y)=P(X = x)PY = y). °

If X is arandom variable and g : R — R, then Z = g(X), defined by Z(w) = g(X (w)),
is a random variable also. We shall need the following.
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(3) Theorem. If X and Y are independent and g,h : R — R, then g(X) and h(Y) are
independent also.

Proof. Exercise. See Problem (3.11.1). |

More generally, we say that a family {X; : i € I} of (discrete) random variables is
independent if the events {X; = x;},i € [, are independent for all possible choices of the set
{x; 1 i € I} of the values of the X;. Thatis to say, {X; : { € I} is an independent family if
and only if

P(X; = x; foralli e J) = H]P(Xi =x)

iel

for all sets {x; : i € I} and for all finite subsets J of I. The conditional independence
of a family of random variables, given an event C, is defined similarly to the conditional
independence of events; see equation (1.5.5).

Independent families of random variables are very much easier to study than dependent
families, as we shall see soon. Note that pairwise-independent families are not necessarily
independent.

Exercises for Section 3.2

1. Let X and Y be independent random variables, each taking the values —1 or 1 with probability
%, and let Z = XY. Show that X, Y, and Z are pairwise independent. Are they independent?

2. Let X and Y be independent random variables taking values in the positive integers and having

the same mass function f(x) =27* forx =1, 2,.... Find:
(a) P(min{X, Y} <x), O)YPY > X),
©PX =7), (d) P(X > kY), for a given positive integer k,
(e) IP(X divides Y), (f) P(X = rY), for a given positive rational r.

3. LetX;, X7, X3 be independent random variables taking values in the positive integers and having
mass functions given by P(X; = x) = (1 — pi)pf_l forx =1,2,...,andi =1, 2, 3.
(a) Show that
(1= p)U = p2)p2p3
(1 = pap3)d — p1p2p3)

PX|{ <Xy < X3)=

(b) Find P(X; < X5 < X3).

4. Three players, A, B, and C, take turns to roll a die; they do this in the order ABCABCA. ...

(a) Show that the probability that, of the three players, A is the first to throw a 6, B the second, and
C the third, is 216/1001.

(b) Show that the probability that the first 6 to appear is thrown by A, the second 6 to appear is thrown
by B, and the third 6 to appear is thrown by C, is 46656/753571.

5. letX,,1 <r < n, be independent random variables which are symmetric about 0; that is,

X, and — X, have the same distributions. Show that, for all x, P(S, > x) = P(S,;, < —x) where

Sn = Z;lZI Xr.
Is the conclusion necessarily true without the assumption of independence?
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3.3 Expectation

Let x1, xp, ..., xy be the numerical outcomes of N repetitions of some experiment. The
average of these outcomes is

m = %in.
14

In advance of performing these experiments we can represent their outcomes by a sequence
X1, X5, ..., Xn of random variables, and we shall suppose that these variables are discrete
with a common mass function f. Then, roughly speaking (see the beginning of Section 1.3),
for each possible value x, about Nf (x) of the X; will take that value x. So the average m is
about

m 71,—Zx1vf(x) =Y xf(x)

X

where the summation here is over all possible values of the X;. This average is called the
‘expectation’ or ‘mean value’ of the underlying distribution with mass function f.

(1) Definition, The mean value, or expectation, or expected value of the random variable
X with mass function f is defined to be

E(X)= Y xf(x)
x:f(x)>0

whenever this sum is absolutely convergent.

We require absolute convergence in order that E(X) be unchanged by reordering the x;. We
can, for notational convenience, write E(X) = 3, xf (x). This appears to be an uncountable
sum; however, all but countably many of its contributions are zero. If the numbers f(x) are
regarded as masses f(x) at points x then E(X) is just the position of the centre of gravity; we
can speak of X as having an ‘atom’ or ‘point mass’ of size f(x) atx. We sometimes omit the
parentheses and simply write EX.

(2) Example (2.1.5) revisited. The random variables X and W of this example have mean
values

E(X)=) xP(X=x)=0-;+1-3+2-7=1,
X

EW)=> xP(W=x)=0-3+4-1=1. o

If X is a random variable and g : R — R, then ¥ = g(X), given formally by Y (w) =
g(X (w)), is a random variable also. To calculate its expectation we need first to find its
probability mass function fy. This process can be complicated, and it is avoided by the
following lemma (called by some the ‘law of the unconscious statistician’!).
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(3) Lemma, If X has mass function f and g : R — R, then

E(g(X) =Y g(x)f(x)

whenever this sum is absolutely convergent.

Proof. This is Problem (3.11.3). [ |
(4) Example. Suppose that X takes values —2, —1, 1, 3 with probabilities j—L, % le’ % respec-
tively. The random variable Y = X 2 takes values 1, 4, 9 with probabilities % }—P % respectively,
and so
E(Y)=) xP(¥ =x)=1-3+4 1+9.3=1

X

Alternatively, use the law of the unconscious statistician to find that
E(Y)=EX) =) PPX=x)=4-;+1-3+1-;+9.-3 =2 ®
X

Lemma (3) provides a method for calculating the ‘moments’ of a distribution; these are
defined as follows.

(5) Definition. If k is a positive integer, the kth moment my of X is defined to be my, = E(X*).
The kth central moment oy, is oy = E((X — m)¥).

The two moments of mostuse are m; = E(X) and on = E((X —EX)?), called the mean (or
expectation) and variance of X. These two quantities are measures of the mean and dispersion
of X; that is, m, is the average value of X, and o» measures the amount by which X tends to
deviate from this average. The mean m is often denoted ., and the variance of X is often
denoted var(X). The positive square root o = +/var(X) is called the standard deviation, and
in this notation o» = 2. The central moments {o;} can be expressed in terms of the ordinary
moments {m;}. For example, oy = 0 and

o=y (x —m)’f(x)

=322 @) —2m Y xf ) +m? Y )

=my —m%,

which may be written as
var(X) = E((X — EX)?) = E(X?) — (EX)?.

Remark. Experience with student calculations of variances causes us to stress the following
elementary fact: variances cannot be negative. We sometimes omit the parentheses and write
simply var X. The expression E(X)? means (E(X))? and must not be confused with E(X?).
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(6) Example. Bernoulli variables. Let X be a Bernoulli variable, taking the value 1 with
probability p (=1 — ¢). Then

E(X)zzxf(X)=0~q+1~p=p,

X

EXH) =Y x*f(x)=0-qg+1-p=p,
X
var(X) = E(X?) — E(X)* = pqg.
Thus the indicator variable /4 has expectation P(A) and variance P(A)P(A°). ]

(7) Example. Binomial variables. Let X be bin(n, p). Then
n n n
E(X) =) kfth) = Zk(k)pkq"-k.
k=0 k=0

To calculate this, differentiate the identity

¢ n k _ n
Z(k>x =(14+x)",

k=0

multiply by x to obtain

n

Zk(Z)xk =nx(1+x)""1,

k=0
and substitute x = p/q to obtain E(X) = np. A similar argument shows that the variance of
X is given by var(X) = npq. L

We can think of the process of calculating expectations as a linear operator on the space of
random variables.

(8) Theorem. The expectation operator E has the following properties:
(8) if X > 0then E(X) > Q,
(b) ifa, b e RthenE(@X + bY) = aR(X) + bE(Y),
(c) the random variable 1, taking the value 1 always, has expectation E(1) = 1.

Proof. (a) and (c) are obvious.

(b)Let A, = {X = x}, By = {¥ = y}. Then

aX +bY = (ax+by)la,ns,
X,y

and the solution of the first part of Problem (3.11.3) shows that

E(aX +bY) =) (ax + by)P(A; N By).
X,y
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However,

> P(A:NBy,)=P (Ax N (U By)> = P(A, N Q) = P(Ay)
y y
and similarly >, P(A, N B,) = P(B,), which gives

E@X +bY) =Y ax ¥ P(A NBy)+ > by Y P(A; N By)
y y X

X

=a) xP(A)+b) yP(By)
x y

al(X) + bE(Y). ]

Remark. Itis notin general true that E(XY) is the same as E(X)E(Y).
9) Lemma. If X and Y are independent then E(XY) = E(X)E(Y).
Proof. Let A, and B, be as in the proof of (8). Then
XY = ZXyIAxﬂBy
x’y

and so

E(XY) =) xyP(A;)P(By) by independence

X,y
=) xP(Ax) ) yP(By) = E(X)E(Y). [
X y

(10) Definition. X and Y are called uncorrelated if E(XY) = E(X)E(Y).

Lemma (9) asserts that independent variables are uncorrelated. The converse is not true,
as Problem (3.11.16) indicates.

(11) Theorem. For random variables X andY,
(@) var(aX) = a®var(X) fora € R,
(b) var(X +Y) = var(X) + var(Y) if X and Y are uncorrelated.

Proof. (a) Using the linearity of E,
var(aX) = E{(aX — E(aX))*} = E{a*(X — EX)?}
= a’E{(X —EX)*} = a® var(X).
{b) We have when X and Y are uncorrelated that
var(X +Y) = E{(X + ¥ — E(X + 1))}
= E[(X —EX)? + 2(XY — ECOE(D)) + (¥ —EY)?

= var(X) + 2[E(XY) — E(X)E(Y)] + var(Y)
= var(X) + var(Y). [ |
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Theorem (11a) shows that the variance operator ‘var’ is not a linear operator, even when it
is applied only to uncorrelated variables.

Sometimes the sum § = Y xf(x) does not converge absolutely, and the mean of the
distribution does not exist. If § = —o0 or § = 400, then we can sometimes speak of the
mean as taking these values also. Of course, there exist distributions which do not have a
mean value.

(12) Example. A distribution without a mean. Let X have mass function
fk) = Ak™% for k=+1,+2,...

where A is chosensothat } 5 f(k) = 1. Thesum }_, kf (k) = A} o k! does not converge
absolutely, because both the positive and the negative parts diverge. °

This is a suitable opportunity to point out that we can base probability theory upon the
expectation operator E rather than upon the probability measure P. After all, our intuitions
about the notion of ‘average’ are probably just as well developed as those about quantitative
chance. Roughly speaking, the way we proceed is to postulate axioms, such as (a), (b), and
(c) of Theorem (8), for a so-called ‘expectation operator’ E acting on a space of ‘random
variables’. The probability of an event can then be recaptured by defining P(A) = E({4).
Whittle (2000) is an able advocate of this approach.

This method can be easily and naturally adapted to deal with probabilistic questions in
quantum theory. In this major branch of theoretical physics, questions arise which cannot
be formulated entirely within the usual framework of probability theory. However, there still
exists an expectation operator E, which is applied to linear operators known as observables
(such as square matrices) rather than to random variables. There does not exist a sample space
€2, and nor therefore are there any indicator functions, but nevertheless there exist analogues
of other concepts in probability theory. For example, the variance of an operator X is defined
by var(X) = E(X?) — E(X)?. Furthermore, it can be shown that E(X) = tr(U X) where tr
denotes trace and U is a non-negative definite operator with unit trace.

(13) Example. Wagers. Historically, there has been confusion amongst probabilists between
the price that an individual may be willing to pay in order to play a game, and her expected
return from this game. For example, I conceal £2 in one hand and nothing in the other, and
then invite a friend to pay a fee which entitles her to choose a hand at random and keep the
contents. Other things being equal (my friend is neither a compulsive gambler, nor particularly
busy), it would seem that £1 would be a ‘fair’ fee to ask, since £1 is the expected return to
the player. That is to say, faced with a modest (but random) gain, then a fair ‘entrance fee’
would seem to be the expected value of the gain. However, suppose that I conceal £2'° in one
hand and nothing in the other; what now is a ‘fair’ fee? Few persons of modest means can be
expected to offer £2° for the privilege of playing. There is confusion here between fairness
and reasonableness: we do not generally treat large payoffs or penalties in the same way as
small ones, even though the relative odds may be unquestionable. The customary resolution
of this paradox is to introduce the notion of ‘utility’. Writing u(x) for the ‘utility’ to an
individual of £x, it would be fairer to charge a fee of 5 (u(0) +u(2'%)) for the above prospect.
Of course, different individuals have different utility functions, although such functions have
presumably various features in common: u(0) = 0, u is non-decreasing, u(x) is near to x for
small positive x, and u is concave, so that in particular u(x) < xu(1) when x > 1.
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The use of expectation to assess a ‘fair fee’ may be convenient but is sometimes inap-
propriate. For example, a more suitable criterion in the finance market would be absence of
arbitrage; see Exercise (3.3.7) and Section 13.10. And, in a rather general model of financial
markets, there is a criterion commonly expressed as ‘no free lunch with vanishing risk’. @

Exercises for Section 3.3

1. Isitgenerally true that E(1/X) = 1/E(X)? Is it ever true that E(1/X) = 1/E(X)?

2. Coupons. Every package of some intrinsically dull commodity includes a small and exciting

plastic object. There are ¢ different types of object, and each package is equally likely to contain any

given type. You buy one package each day.

(a) Find the mean number of days which elapse between the acquisitions of the jth new type of object
and the (j 4 1)th new type.

(b) Find the mean number of days which elapse before you have a full set of objects.

3. Each member of a group of n players rolls a die.

(a) For any pair of players who throw the same number, the group scores 1 point. Find the mean and
variance of the total score of the group.

(b) Find the mean and variance of the total score if any pair of players who throw the same number
scores that number.

4. St Petersburg paradoxt. A fair coin is tossed repeatedly. Let T be the number of tosses until
the first head. You are offered the following prospect, which you may accept on payment of a fee. If
T =k, say, then you will receive £2F. What would be a ‘fair’ fee to ask of you?

5. Let X have mass function

xax+D)y! ifx=1,2,...,
0 otherwise,

) ={

and let ¢ € R. For what values of « is it the cases that E(X%) < o0?
6. Show that var(a + X) = var(X) for any random variable X and constant a.

7. Arbitrage. Suppose you find a warm-hearted bookmaker offering payoff odds of 7 (k) against
the kth horse in an n-horse race where > }_ {w (k) + 17! < 1. Show that you can distribute your
bets in such a way as to ensure you win.

8. Youroll a conventional fair die repeatedly. If it shows 1, you must stop, but you may choose to
stop at any prior time. Your score is the number shown by the die on the final roll. What stopping
strategy yields the greatest expected score? What strategy would you use if your score were the square
of the final roll?

9. Continuing with Exercise (8), suppose now that you lose ¢ points from your score each time you
roll the die. What strategy maximizes the expected final score if ¢ = %? What is the best strategy if
c=17

1This problem was mentioned by Nicholas Bernoulli in 1713, and Daniet Bernoulli wrote about the question
for the Academy of St Petersburg.

1If « is not integral, than E(X%) is called the fractional moment of order @ of X. A point concerning
notation: for real & and complex x = re'® , x® should be interpreted as r%e®, so that |x*| = r®. In particular,
E(X*)) = E(X]%).
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3.4 Indicators and matching

This section contains light entertainment, in the guise of some illustrations of the uses of
indicator functions. These were defined in Example (2.1.9) and have appeared occasionally

since. Recall that
1 ifweA,

I =
a@) {o if w e A,
and El4 = P(A).

(1) Example. Proofs of Lemma (1.3.4¢c, d). Note that
Ia +1pe = Lavae = Ig =1
and that Ianp = Ialg. Thus
Iaug =1 — Iaupy =1 — Ipenpe

—1—Iaelge =1— (1 — 1)1 — Ip)
=1s+1g—141p.

Take expectations to obtain
P(AU B) =P(A) +P(B) —P(AN B).

More generally, if B = [ J]_, A, then

n

Ip=1-]]~1a)

i=1

multiply this out and take expectations to obtain

@) P(U Ai) = Y B — Y P NA) 4+ (~DMRAT NN Ay).
i=1 i

i<j
This very useful identity is known as the inclusion—exclusion formula. L

(3) Example. Matching problem. A number of melodramatic applications of (2) are avail-
able, of which the following is typical. A secretary types n different letters together with
matching envelopes, drops the pile down the stairs, and then places the letters randomly in
the envelopes. Each arrangement is equally likely, and we ask for the probability that exactly
r are in their correct envelopes. Rather than using (2), we shall proceed directly by way of
indicator functions. (Another approach is presented in Exercise (3.4.9).)

Solution. Let Ly, L, ..., L, denote the letters. Call a letter good if it is correctly addressed
and bad otherwise; write X for the number of good letters. Let A; be the event that L; is
good, and let /; be the indicator function of A;. Let jy, ..., jr, kr+1, ..., ky De a permutation
of the numbers 1, 2, ..., n, and define

C) S= "Ly L (0= D)o (L= Iy,)
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where the sum is taken over all such permutations =. Then

_[0 ifX #r,
Sl rtm=—n) ifX =7

To see this, let L;, , ..., L;, be the good letters. If m # r then each summand in (4) equals
0. If m = r then the summand in (4) equals 1 if and only if ji, ..., j; is a permutation of
it,...,0r and ky41, ..., k, is a2 permutation of the remaining numbers; there are r! (n — r)!

such pairs of permutations. It follows that /, given by

(5) I = —l—s,

Corl(n—r)!
is the indicator function of the event {X = r} that exactly r letters are good. We take
expectations of (4) and multiply out to obtain

]E(S) = Z Z(_l)s (n S_ r)]E(IJI e I]r Ikr+1 e Ikr+.r)

T s=0
by a symmetry argument. However,

(n—r—s)!
(6) Ejy L By i) = ————
since there are n! possible permutations, only (n — r — s)! of which allocate L;,, ..., L;,,
Ly, ..., Ly, totheir correct envelopes. We combine (4), (5), and (6) to obtain

1

B 1 — sfn—r\ (n—r—s)!
_r!(n—r)!g(_l)< s )"! n!

1 &4 1

_— J— S_

Tt ZO( b 5!
5=

1 (1 1, (=D

T ..‘-}-—-(n_r)!) forr <n—2andn > 2.

rt
In particular, as the number n of letters tends to infinity, we obtain the possibly surprising
result that the probability that no letter is put into its correct envelope approaches e~! . It is
left as an exercise to prove this without using indicators. [ ]

(7) Example. Reliability. When you telephone your friend in Cambridge, your call is routed
through the telephone network in a way which depends on the current state of the traffic. For
example, if all lines into the Ascot switchboard are in use, then your call may go through
the switchboard at Newmarket. Sometimes you may fail to get through at all, owing to a
combination of faulty and occupied equipment in the system. We may think of the network
as comprising nodes joined by edges, drawn as ‘graphs’ in the manner of the examples of
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s 4

Figure 3.1. Two networks with source s and sink z.

Figure 3.1. In each of these examples there is a designated ‘source’ s and ‘sink’ ¢, and we
wish to find a path through the network from s to ¢ which uses available channels. As a
simple model for such a system in the presence of uncertainty, we suppose that each edge e is
‘working’ with probability p., independently of all other edges. We write p for the vector of
edge probabilities p,., and define the reliability R(p) of the network to be the probability that
there is a path from s to # using only edges which are working. Denoting the network by G,
we write Rg (p) for R(p) when we wish to emphasize the role of G.

We have encountered questions of reliability already. In Example (1.7.2) we were asked
for the reliability of the first network in Figure 3.1 and in Problem (1.8.19) of the second,
assuming on each occasion that the value of p, does not depend on the choice of e.

Let us write

1 if edge e is working,
‘ { 0 otherwise,

the indicator function of the event that e is working, so that X, takes the values O and 1 with
probabilities 1 — p. and p, respectively. Each realization X of the X, either includes a working
connection from s to ¢ or does not. Thus, there exists a structure function ¢ taking values 0
and 1 such that

1 if such a working connection exists,

® C(X)={

0 otherwise;

thus ¢ (X) is the indicator function of the event that a working connection exists. It is imme-
diately seen that R(p) = E(¢(X)). The function { may be expressed as

9) ((X)y=1- Hl{nnotworking} =1- 1—[ (1 o 1—[ Xe)

ecnm

where 7 is a typical path in G from s to ¢, and we say that 7 is working if and only if every
edge in 7 is working.

For instance, in the case of the first example of Figure 3.1, there are four different paths
from s to . Numbering the edges as indicated, we have that the structure function is given by

(10) (X)) =1-(1-X1X3)(1 = X1 X)(1 — X2X3)(1 — X2X4).

As an exercise, expand this and take expectations to calculate the reliability of the network
when p, = p for all edges e. o
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(11) Example. The probabilistic methodf. Probability may be used to derive non-trivial
results not involving probability. Here is an example. There are 17 fenceposts around the
perimeter of a field, exactly 5 of which are rotten. Show that, irrespective of which these 5
are, there necessarily exists a run of 7 consecutive posts at least 3 of which are rotten.

Our solution involves probability. We label the posts 1, 2, ..., 17,and let Iy be the indicator
function that post k is rotten. Let Ry be the number of rotten posts amongst those labelled
k+1,k+2,...,k+ 7, all taken modulo 17. We now pick a random post labelled X, each
being equally likely. We have that

17 1 17 7 7
E(Rk) = Z ﬁ(1k+1 + L2+ + Iy7) = Z ﬁlj =17 5.
k=1 j=l1

Now ?—3 > 2, implying that P(Rg > 2) > 0. Since Ry is integer valued, it must be the case
that P(Rg > 3) > 0, implying that Ry > 3 for some k. ®

Exercises for Section 3.4

1. A biased coin is tossed n times, and heads shows with probability p on each toss. A run is a
sequence of throws which result in the same outcome, so that, for example, the sequence HHTHTTH
contains five runs. Show that the expected number of runs is 1 +2(n — 1) p(1 — p). Find the variance
of the number of runs.

2. Anurncontains z balls numbered 1, 2, . . ., n. We remove k balls at random (without replacement)
and add up their numbers. Find the mean and variance of the total.

3. Of the 2n people in a given collection of n couples, exactly m die. Assuming that the m have
been picked at random, find the mean number of surviving couples. This problem was formulated by
Daniel Bernoulli in 1768.

4. Um R contains n red balls and urn B contains n blue balls. At each stage, a ball is selected at
random from each urn, and they are swapped. Show that the mean number of red balls in urn R after

stage k is %n{l + (1 - 2/n)k}. This ‘diffusion model” was described by Daniel Bernoulli in 1769.

5. Consider a square with diagonals, with distinct source and sink. Each edge represents a component
which is working correctly with probability p, independently of all other components. Write down an
expression for the Boolean function which equals 1 if and only if there is a working path from source
to sink, in terms of the indicator functions X; of the events {edge i is working} as i runs over the set
of edges. Hence calculate the reliability of the network.

6. A system is called a ‘k out of n” system if it contains n components and it works whenever & or
more of these components are working. Suppose that each component is working with probability
p, independently of the other components, and let X, be the indicator function of the event that
component ¢ is working. Find, in terms of the X, the indicator function of the event that the system
works, and deduce the reliability of the system.

7. The probabilistic method. Let G = (V, E) be a finite graph. For any set W of vertices and any
edge e € E, define the indicator function

1 if e connects W and W€,

0 otherwise.

Iw(e) ={

Set Nw = 3, Iw(e). Show that there exists W C V such that Ny > 1|E|.

tGenerally credited to Erd8s.
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8. A total of n bar magnets are placed end to end in a line with random independent orientations.
Adjacent like poles repel, ends with opposite polarities join to form blocks. Let X be the number of
blocks of joined magnets. Find E(X) and var(X).

9. Matching. (a) Use the inclusion-exclusion formula (3.4.2) to derive the result of Example
(3.4.3), namely: in a random permutation of the first n integers, the probability that exactly r retain

their original positions is
1/1 1 T (-nnr
rt\2t 3! n—ry)
(b) Let d,, be the number of derangements of the first n integers (that is, rearrangements with no

integers in their original positions). Show that d, | = nd, + nd,_y for n > 2. Deduce the result of
part (a).

3.5 Examples of discrete variables

(1) Bernoulli trials. A random variable X takes values 1 and O with probabilities p and ¢
(=1 — p), respectively. Sometimes we think of these values as representing the ‘success’ or
the ‘failure’ of a trial. The mass function is

and it follows that EX = p and var(X) = p(1 — p). L
(2) Binomial distribution. We perform n independent Bernoulli trials X, X», ..., X, and

count the total number of successes ¥ = Xj + X2 4+ -+ - + X,;. As in Example (3.1.3), the
mass function of Y is

f(k)=<:>Pk(1—p)"k, k=0,1,...,n.

Application of Theorems (3.3.8) and (3.3.11) yields immediately
EY = np, var(Y) = np(l — p);
the method of Example (3.3.7) provides a more lengthy derivation of this. o

(3) Trinomial distribution. More generally, suppose we conduct # trials, each of which
results in one of three outcomes (red, white, or blue, say), where red occurs with probability
p, white with probability g, and blue with probability 1 — p — g. The probability of r reds,
w whites, and n — r — w blues is

n! yrr—w

r w
1—p—
Toln—r—wnP @ d=p—a
This is the trinomial distribution, with parameters n, p, and ¢. The ‘multinomial distribution’
is the obvious generalization of this distribution to the case of some number, say ¢, of possible
outcomes. o
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(4) Poisson distribution. A Poisson variable is a random variable with the Poisson mass

function
k

A
f(k)=ﬁe‘*, k=0,1,2,...

for some A > 0. It can be obtained in practice in the following way. Let ¥ be a bin(r, p)
variable, and suppose that » is very large and p is very small (an example might be the number
Y of misprints on the front page of the Grauniad, where n is the total number of characters
and p is the probability for each character that the typesetter has made an error). Now, let
n — oo and p — 0 in such a way that E(Y) = np approaches a non-zero constant A. Then,
fork=0,1,2,...,

n k n—k 1 np ¢ n )‘k —A
P(Y =k) = K pr(1—p) ~ = (1-p) >0

Check that both the mean and the variance of this distribution are equal to A. Now do Problem
(2.7.7) again (exercise). o

(5) Geometric distribution. A geometric variable is a random variable with the geometric
mass function

fy=pd—p*t,  k=1,2,...

for some number p in (0, 1). This distribution arises in the following way. Suppose that
independent Bernoulli trials (parameter p) are performed at times 1,2, .. .. Let W be the time
which elapses before the first success; W is called a waiting time. ThenP(W > k) = (1 — p)k
and thus

P(W=k =P(W >k—1)—P(W > k) = p(1 — p)*~ .

1

The reader should check, preferably at this point, that the mean and variance are p~' and

(1 — p) p~2 respectively. o

(6) Negative binomial distribution. More generally, in the previous example, let W, be the
waiting time for the rth success. Check that W, has mass function

k—1
P(W, = k) = (r_1>p’(1—p)k", k=rr+1,..

it is said to have the negative binomial distribution with parameters r and p. The random
variable W, is the sum of r independent geometric variables. To see this, let X be the waiting
time for the first success, X» the further waiting time for the second success, X3 the further
waiting time for the third success, and soon. Then X, X», ... are independent and geometric,
and

Wr:X1+X2+"'+Xr-

Apply Theorems (3.3.8) and (3.3.11) to find the mean and the variance of W,. o
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Exercises for Section 3.5

1. De Moivre trials. Each trial may result in any of ¢ given outcomes, the ith outcome having
probability p;. Let N; be the number of occurrences of the i th outcome in » independent trials. Show

that

n!
P(N; =n;jforl <i <t)= —————p/'py>--p|"
nypingt ---ng!
for any collection ny, ny, ..., n; of non-negative integers with sum n. The vector N is said to have

the multinomial distribution.

2. In your pocket is a random number N of coins, where N has the Poisson distribution with
parameter A. You toss each coin once, with heads showing with probability p each time. Show that
the total number of heads has the Poisson distribution with parameter Ap.

3. Let X be Poisson distributed where P(X = n) = pu(1) = A"e¢ */n! forn > 0. Show that
P(X <n)=1— [} pn(x)dx.

4. Capture-recapture. A population of » animals has had a number a of its members captured,
marked, and released. Let X be the number of animals it is necessary to recapture (without re-release)
in order to obtain m marked animals. Show that

cen=3(220) (222) /(7))

and find EX. This distribution has been called negative hypergeometric.

3.6 Dependence

Probability theory is largely concerned with families of random variables; these families will
not in general consist entirely of independent variables.

(1) Example. Suppose that we back three horses to win as an accumulator. If our stake is £1
and the starting prices are «, 8, and y, then our total profit is

W=(@+D@+D(y+Dhbilz-1

where /; denotes the indicator of a win in the 7th race by our horse. (In checking this expression
remember that a bet of £B on a horse with starting price « brings a return of £B(« + 1),
should this horse win.) We lose £1 if some backed horse fails to win. It seems clear that the
random variables W and /; are not independent. If the races are run independently, then

P(W = —-1) =P 13 = 0),

but
PW=-1|11=1)=Phl3=0)
which are different from each other unless the first backed horse is guaranteed victory. @

We require a tool for studying collections of dependent variables. Knowledge of their
individual mass functions is little help by itself. Just as the main tools for studying a random
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variable is its distribution function, so the study of, say, a pair of random variables is based
on its ‘joint’ distribution function and mass function.

(2) Definition. The joint distribution function F : R? — [0, 1] of X and ¥, where X and
Y are discrete variables, is given by

Fx,y)=P(X <xand ¥ < y).
Their joint mass function f : R? — [0, 1] is given by
fE,y)=PX =xand Y = y).

Joint distribution functions and joint mass functions of larger collections of variables are
defined similarly. The functions F and f can be characterized in much the same way (Lemmas
(2.1.6) and (3.1.2)) as the corresponding functions of a single variable. We omit the details.
We write Fy y and fy,y when we need to stress the role of X and Y. You may think of the
joint mass function in the following way. If A, = {X = x) and By = {Y = y}, then

f(x,y) =P(Ax N By).
The definition of independence can now be reformulated in a lemma.

(3) Lemma. The discrete random variables X and Y are independent if and only if

@ fxy@. )= fx@)fr(y) foralx,ycR.

More generally, X and Y are independent if and only if fx y(x, y) can be factorized as the
product g(x)h(y) of a function of x alone and a function of y alone.

Proof. This is Problem (3.11.1). [ |

Suppose that X and Y have joint mass function fx y and we wish to check whether or
not (4) holds. First we need to calculate the marginal mass functions fx and fy from our
knowledge of fx, y. These are found in the following way:

fr) =B(X =x) = P(U({x =x}n{y = y}))

y

=Y PX=x.Y=y) =) frrly,
y y

and similarly fy(y) = >, fx,v(x, y). Having found the marginals, it is a trivial matter to
see whether (4) holds or not.

Remark. We stress that the factorization (4) must hold for all x and y in order that X and Y
be independent.

(5) Example. Calculation of marginals. In Example (3.2.2) we encountered a pair X, Y of
variables with a joint mass function

Xy
Foy = 2P e w b for xy=0.12, ...
x!y!
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where «, § > 0. The marginal mass function of X is

X

y
0 =310 = *“Z’i' B
25 i

and so X has the Poisson distribution with parameter «. Similarly ¥ has the Poisson distribution
with parameter 8. It is easy to check that (4) holds, whence X and Y are independent. @

For any discrete pair X, Y, a real function g(X, Y) is a random variable. We shall often
need to find its expectation. To avoid explicit calculation of its mass function, we shall use
the following more general form of the law of the unconscious statistician, Lemma (3.3.3).

(6) Lemma. E(g(X,Y)) =3, ,8(x, ) fxy(x,)
Proof. As for Lemma (3.3.3). |

For example, E(XY) =} y Xyfx. v (x, y). This formula is particularly useful to statisti-
cians who may need to find simple ways of explaining dependence to laymen. For instance,
suppose that the government wishes to announce that the dependence between defence spend-
ing and the cost of living is very small. It should not publish an estimate of the joint mass
function unless its object is obfuscation alone. Most members of the public would prefer to
find that this dependence can be represented in terms of a single number on a prescribed scale.
Towards this end we make the following definitionT.

(7) Definition. The covariance of X and Y is
cov(X, Y) = E[(X —EX)(Y — EY)].

The correlation (coefficient) of X and Y is

cov(X,Y)

PAXY) = J/var(X) - var(Y)

as long as the variances are non-zero.

Note that the concept of covariance generalizes that of variance in thatcov(X, X) = var(X).
Expanding the covariance gives

cov(X, Y) = E(XY) — E(X)E(Y).

Remember, Definition (3.3.10), that X and Y are called uncorrelated if cov(X, Y) = 0. Also,
independent variables are always uncorrelated, although the converse is not true. Covariance
itself is not a satisfactory measure of dependence because the scale of values which cov(X, Y)
may take contains no points which are clearly interpretable in terms of the relationship between
X and Y. The following lemma shows that this is not the case for correlations.

(8) Lemma. The correlation coefficient p satisfies |p(X, Y)| < 1 with equality if and only if
P(aX 4+ bY =c¢) =1 for somea,b,c € R.

1The concepts and terminology in this definition were formulated by Francis Galton in the late 1880s.
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The proof is an application of the following important inequality.
(9) Theorem. Cauchy-Schwarz inequality. For random variables X and Y,
BV < EXPEX?)

with equality if and only if P(aX = bY) = 1 for some real a and b, at least one of which is
non-zero.

Proof. We can assume that E(X?) and E(Y?) are strictly positive, since otherwise the result
follows immediately from Problem (3.11.2). Fora,b € R,let Z = aX — bY. Then

0 < E(Z%) = a’E(X?) — 2abE(XY) + b*E(Y?).

Thus the right-hand side is a quadratic in the variable a with at most one real root. Its
discriminant must be non-positive. That is to say, if b £ 0,

E(XY)? — E(XDEXY?) < 0.
The discriminant is zero if and only if the quadratic has a real root. This occurs if and only if
E((aX —bY)?) =0 forsome a and b,
which, by Problem (3.11.2), completes the proof. ]
Proof of (8). Apply (9) to the variables X —EX and Y — EY. |

A more careful treatment than this proof shows that o = +1 if and only if ¥ increases
linearly with X and p = —1 if and only if Y decreases linearly as X increases.

(10) Example. Here is a tedious numerical example of the use of joint mass functions. Let
X and Y take valuesin {1, 2, 3} and {—1, 0, 2} respectively, with joint mass function f where
f(x, y) is the appropriate entry in Table 3.1.

y=-1 y=0 y=2 fx
— I 3 2 6
X 18 18 13 13
— 2 3 3
x=2 18 0 18 18
_ 4 3 e
X 0 i8 i8 i8
3 7 8
fr 18 18 18

Table 3.1. The joint mass function of the random variables X and Y. The indicated row and
column sums are the marginal mass functions fy and fy.

A quick calculation gives
E(XY) =) xyf(x,y) =29/18,
x,y
E(X) =Y xfx(x) =37/18, E(Y)=13/18,

X

var(X) = E(X?) — E(X)? = 233/324, var(Y) = 461/324,
cov(X, Y) =41/324, p(X,Y) =41/4/107413. )
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Exercises for Section 3.6

1. Show that the collection of random variables on a given probability space and having finite
variance forms a vector space over the reals.

2. Find the marginal mass functions of the multinomial distribution of Exercise (3.5.1).

3. Let X and Y be discrete random variables with joint mass function

C

s x,y=1,2,3,....
+y—DE+y)x+y+1)

Sx,y)=

Find the marginal mass functions of X and Y, calculate C, and also the covariance of X and Y.

4. Let X and Y be discrete random variables with mean 0, variance 1, and covariance p. Show that
E(max{X2, ¥2}) <1+ +/1-pZ
5. Mutual information. Let X and ¥ be discrete random variables with joint mass function f.

(a) Show that E(log fx (X)) > E(log fy (X)).
(b) Show that the mutual information

FX,7) })
= l _—
! E(Og{fx(X)fY(Y)

satisfies / > 0, with equality if and only if X and ¥ are independent.

6. Voter paradox. Let X, Y, Z be discrete random variables with the property that their values are
distinct with probability 1. Leta = P(X > Y), b =P(Y > Z),c =P(Z > X).
(a) Show that min{a, b, c} < % and give an example where this bound is attained.

(b) Show that, if X, ¥, Z are independent and identically distributed, thena = b = ¢ = %

(¢) Find min{a, b, ¢} and sup,, min{a, b, c} when P(X = 0) = 1, and ¥, Z are independent with
P(Z=1)=PF =-1)=p,P(Z=-2)=PF =2) =1- p. Here, sup,, denotes the
supremum as p varies over [0, 1].

[Part (a) is related to the observation that, in an election, it is possible for more than half of the voters

to prefer candidate A to candidate B, more than half B to C, and more than half C to A.}

7. Benford’s distribution, or the law of anomalous numbers. If one picks a numerical entry at
random from an almanac, or the annual accounts of a corporation, the first two significant digits, X,
Y, are found to have approximately the joint mass function

l<x<9 0<y<o.

10x +y>’

Find the mass function of X and an approximation to its mean. [A heuristic explanation for this
phenomenon may be found in the second of Feller’s volumes (1971).]

Sx,y)=logjg (1 +

8. Let X and Y have joint mass function

. c(j +kalth
f(J,k):—ij—’—’ J, k=0,

where a is a constant. Find ¢, P(X = j), P(X +Y =r), and E(X).
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3.7 Conditional distributions and conditional expectation

In Section 1.4 we discussed the conditional probability P(B | A). This may be set in the more
general context of the conditional distribution of one variable ¥ given the value of another
variable X; this reduces to the definition of the conditional probabilities of events A and B if
X=1IgandY = Ip.

Let X and Y be two discrete variables on (2, F, P).

(1) Definition. The conditional distribution function of ¥ given X == x, written Fy;x (- | x),

is defined by
Frx(1x) =P <y | X =x)

for any x such that P(X == x) > 0. The conditional (probability) mass function of ¥ given
X = x, written fyix (- | x), is defined by

() frx@lx)=PF =y|X =x)

for any x such that P(X = x) > 0.

Formula (2) is easy to remember as fy;x = fx,v/fx. Conditional distributions and mass
functions are undefined at values of x for which P(X = x) = 0. Clearly X and Y are
independent if and only if fy|x = fv.

Suppose we are told that X = x. Conditional upon this, the new distribution of ¥ has
mass function fy|x(y | x), which we think of as a function of y. The expected value of this
distribution, Zy ¥frix (¥ | x), is called the conditional expectation of Y given X = x and is
written ¢ (x) = E(Y | X = x). Now, we observe that the conditional expectation depends on
the value x taken by X, and can be thought of as a function ¢/ (X) of X itself.

(3) Definition. Let(x) = E(Y | X = x). Then y/(X) is called the conditional expectation
of Y given X, written as E(Y | X).

Although ‘conditional expectation’ sounds like a number, it is actually a random variable.
It has the following important property.

(4) Theorem, The conditional expectation ¥ (X) = E(Y | X) satisfies
E(¥ (X)) = E(Y).
Proof. By Lemma (3.3.3),

EW Q) =Y ¥ fx@) =Y yfrix(y [ %) fxx)

X,y
=Y yfxr(ny) =Y yfr(3) =EQ¥). n
X,y y

This is an extremely useful theorem, to which we shall make repeated reference. It often
provides a useful method for calculating E(Y), since it asserts that

E(Y)= > E(Y | X =x)P(X =x).
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(5) Example. A hen lays N eggs, where N has the Poisson distribution with parameter A.
Each egg hatches with probability p (= 1 — ¢) independently of the other eggs. Let K be the
number of chicks. Find E(K | N), E(K), and E(N | K).

Solution. We are given that

n

fumy = e ki) = (

n

ke _ ik
k>p (I-=p)" .

Therefore

Y(n) =E(K [N =n) =) kfgn(k|n)=pn.
k

Thus E(K | N) = ¥(N) = pN and
E(K) = E(¥(N)) = pE(N) = pA.
To find E(N | K) we need to know the conditional mass function fyx of N given K.
However,
vk k) =P(N =n| K =k)
_P(K=k|N=nPN=n)
N P(K =k)
A i e

- ifn >k
St (1) P = py" kG fmbye > T
—k
CLY Ay
(n —k)!
Hence k
@n" "
ENITK =k =) n——=e " =k+qi,
,g (n —k)!
giving E(N | K) = K +gA. .

There is a more general version of Theorem (4), and this will be of interest later.
(6) Theorem. The conditional expectation (X)) = E(Y | X) satisfies
(7 E(¥ (X)g(X)) = E(Yg(X))
for any function g for which both expectations exist.

Setting g(x) = 1 for all x, we obtain the result of (4). Whilst Theorem (6) is useful in its
own right, we shall see later that its principal interest lies elsewhere. The conclusion of the
theorem may be taken as a definition of conditional expectation—as a function ¥ (X) of X
such that (7) holds for all suitable functions g. Such a definition is convenient when working
with a notion of conditional expectation more general than that dealt with here.

Proof. As in the proof of (4),
E(y (X)g(X)) = > ¢ (g fx(x) = Y yg(x) frix(y | %) fx(x)
x X,y

=Y ye() fxr(x,y) =E(Yg(X)). u

X,y
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Exercises for Section 3.7

1. Show the following:

(@ E@Y+bZ|X)=aEY | X)+bE(Z | X)fora,beR,

b) E¢Y | X)=0ifY >0,

(© EA1X) =1,

(d) if X and Y are independent then E(Y | X) = E(Y),

(e) (‘pull-through property’) E(Yg(X) | X) = g(X)E(Y | X) for any suitable function g,

(f) (‘tower property ) E{E(Y | X, Z2) | X} =E{Y | X) =E{E(Y | X) | X, Z}.

2. Uniqueness of conditional expectation. Suppose that X and Y are discrete random variables,
and that ¢ (X) and ¥ (X) are two functions of X satisfying

E(¢(X)g(X)) =E(y(X)g(X)) = E(Yg(X))

for any function g for which all the expectations exist. Show that ¢ (X) and ¢ (X) are almost surely
equal, in that P(¢ (X) = ¥ (X)) = L.

3. Suppose that the conditional expectation of ¥ given X is defined as the (almost surely) unique
function ¥ (X) such that E(y(X)g (X)) = E(Yg(X)) for all functions g for which the expectations
exist. Show (a)-(f) of Exercise (1) above (with the occasional addition of the expression ‘with
probability 17).

4. How should we define var(Y | X), the conditional variance of ¥ given X? Show that var(¥) =
E(var(Y | X)) + var(E(Y | X)).

5. The lifetime of a machine (in days) is a random variable T with mass function f. Given that the
machine is working after ¢ days, what is the mean subsequent lifetime of the machine when:

(@ f)=W+D"tforxe{0,1,..., N},

b) fx)=2"*forx=1,2,....

(The first part of Problem (3.11.13) may be useful.)

6. Let X1, X5, ... beidentically distributed random variables with mean p, and let N be a random
variable taking values in the non-negative integers and independent of the X;. Let S = X; + X, +
-«++ Xp. Show that E(S' | N) = uN, and deduce that E(S) = wE(N).

7. A factory has produced r robots, each of which is faulty with probability ¢. To each robot a test
is applied which detects the fault (if present) with probability 6. Let X be the number of faulty robots,
and Y the number detected as faulty. Assuming the usual independence, show that

EX [ Y)={np(1—-8)+ U — )Y }/(1 - ¢).

8. Families. Each child is equally likely to be male or female, independently of all other children.
(a) Show that, in a family of predetermined size, the expected number of boys equals the expected
number of girls. Was the assumption of independence necessary?

(b) A randomly selected child is male; does the expected number of his brothers equal the expected
number of his sisters? What happens if you do not require independence?

9. Let X and Y be independent with mean p. Explain the error in the following equation:

EX|X+Y=0)=EX |X=z-Y)=E@z~Y)=z—pu.

10. A coin shows heads with probability p. Let X,, be the number of flips required to obtain a run of
n consecutive heads. Show that E(X,) = > 7_; pk.
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3.8 Sums of random variables

Much of the classical theory of probability concerns sums of random variables. We have seen
already many such sums; the number of heads in n tosses of a coin is one of the simplest
such examples, but we shall encounter many situations which are more complicated than
this. One particular complication is when the summands are dependent. The first stage in
developing a systematic technique is to find a formula for describing the mass function of the
sum Z = X + Y of two variables having joint mass function f(x, y).

(1) Theorem. We havethat P(X +Y =z2) =Y  f(x,z —x).
X

Proof. The union
(X+y=z=JIX=x}n{¥r =z—x})

X

is disjoint, and at most countably many of its contributions have non-zero probability. There-
fore

PX+Y=2)=) P(X=x,Y=z—x)= ) f(x,z—x). ]

If X and Y are independent, then

PX+Y =2)= fxer@ = ) _ fx&)frle—x) =) fxz—fr).
x ¥

The mass function of X + Y is called the convolution of the mass functions of X and Y,
and is written

2 fx+y = fx * fr.

(3) Example (3.5.6) revisited. Let X; and X3 be independent geometric variables with com-
mon mass function

flo=pa-pt,  k=1,2,....
By (2), Z = X1 + X3 has mass function

PZ=2)=) P(X; =kP(Xy=2—k)
k

z—1
= pd-p*lpa-p*!
k=1
=(z—1Dp*(1 — p)i2, 2=2,3,...

in agreement with Example (3.5.6). The general formula for the sum of a number, r say, of
geometric variables can easily be verified by induction. o
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Exercises for Section 3.8

1. Let X and Y be independent variables, X being equally likely to take any value in {0, 1, ..., m},
and Y similarly in {0, 1, ..., n}. Find the mass function of Z = X 4+ ¥. The random variable Z is
said to have the trapezoidal distribution.

2. Let X and Y have the joint mass function

C

., oxy=1,23....
x+y-Dx+y)x+y+1D)

fox,y) =

Find the mass functionsof U = X +Yand V = X — Y.

3. Let X and Y be independent geometric random variables with respective parameters « and 8.

Show that
P+ =2 = - p - a- ),

4. Let{X, :1 <r < n}beindependent geometric random variables with parameter p. Show that
Z = Z;’Zl X, has a negative binomial distribution. [Hint: No calculations are necessary.}

5. Pepys’s problemt. Sam rolls 67 dice once; he needs at least n sixes. Isaac rolls 6(n + 1) dice;
he needs at least n + 1 sixes. Who is more likely to obtain the number of sixes he needs?

6. Let N be Poisson distributed with parameter A. Show that, for any function g such that the
expectations exist, E(Ng(N)) = AEg(N + 1). More generally, if S = Zﬁvzl X,, where {X, : r > 0}
are independent identically distributed non-negative integer-valued random variables, show that

E(Sg(S)) = AE(g(S + X0)Xo).

3.9 Simple random walk

Until now we have dealt largely with general theory; the final two sections of this chapter
may provide some lighter relief. One of the simplest random processes is so-called ‘simple
random walk’}; this process arises in many ways, of which the following is traditional. A
gambler G plays the following game at the casino. The croupier tosses a (possibly biased)
coin repeatedly; each time heads appears, he gives G one franc, and each time tails appears
he takes one franc from G. Writing S, for G’s fortune after n tosses of the coin, we have
that S,+1 = S, + X,,4+1 where X,,4 is a random variable taking the value 1 with some fixed
probability p and —1 otherwise; furthermore, X4 is assumed independent of the results of
all previous tosses. Thus

n
¢ Se=So+ > Xi,
i=1

tPepys put a simple version of this problem to Newton in 1693, but was reluctant to accept the correct reply
he received.

tKarl Pearson coined the term ‘random walk’ in 1906, and (using a result of Rayleigh) demonstrated the
theorem that “the most likely place to find a drunken walker is somewhere near his starting point”, empirical
verification of which is not hard to find.
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so that S, is obtained from the initial fortune Sy by the addition of » independent random
variables. We are assuming here that there are no constraints on G’s fortune imposed externally,
such as that the game is terminated if his fortune is reduced to zero.

An alternative picture of ‘simple random walk’ involves the motion of a particle—a particle
which inhabits the set of integers and which moves at each step either one step to the right,
with probability p, or one step to the left, the directions of different steps being independent of
each other. More complicated random walks arise when the steps of the particle are allowed
to have some general distribution on the integers, or the reals, so that the position S, at time
n is given by (1) where the X; are independent and identically distributed random variables
having some specified distribution function. Even greater generality is obtained by assuming
that the X; take values in R for some d > 1, or even some vector space over the real numbers.
Random walks may be used with some success in modelling various practical situations, such
as the numbers of cars in a toll queue at 5 minute intervals, the position of a pollen grain
suspended in fluid at 1 second intervals, or the value of the Dow—Jones index each Monday
morning. In each case, it may not be too bad a guess that the (n + 1)th reading difters from the
nth by a random quantity which is independent of previous jumps but has the same probability
distribution. The theory of random walks is a basic tool in the probabilist’s kit, and we shall
concern ourselves here with ‘simple random walk’ only.

At any instant of time a particle inhabits one of the integer points of the real line. At time
0 it starts from some specified point, and at each subsequent epoch of time 1, 2, ... it moves
from its current position to a new position according to the following law. With probability
p it moves one step to the right, and with probability g = 1 — p it moves one step to the left;
moves are independent of each other. The walk is called symmetric if p = g = % Example
(1.7.4) concerned a symmetric random walk with ‘absorbing’ barriers at the points O and N.
In general, let S, denote the position of the particle after n moves, and set Sy = a. Then

n
) Se=a+)_ X
i=1
where X1, X», ... is a sequence of independent Bernoulli variables taking values +1 and —1

(rather than 41 and O as before) with probabilities p and q.

We record the motion of the particle as the sequence {(n, S,) : » > 0} of Cartesian
coordinates of points in the plane. This collection of points, joined by solid lines between
neighbours, is called the path of the particle. In the example shown in Figure 3.2, the particle
has visited the points 0, 1,0, —1, 0, 1, 2 in succession. This representation has a confusing
aspect in that the direction of the particle’s steps is parallel to the y-axis, whereas we have
previously been specifying the movement in the traditional way as to the right or to the left.
In future, any reference to the x-axis or the y-axis will pertain to a diagram of its path as
exemplified by Figure 3.2.

The sequence (2) of partial sums has three important properties.

(3) Lemma. The simple random walk is spatially homogeneous; that is

P(S,=j|So=a)=P(Sy = j+b|So=a+b).

Proof. Both sides equal P(}_7 X; = j — a). |



3.9  Simple random walk 73

Sn
(position)

2 -

Y

1 2 3 4 5 6 n (time)

Figure 3.2. A random walk §,.
(4) Lemma. The simple random walk is temporally homogeneous; that is

PSSy =j | So =a) =P(Sm+n = Jj | Sm = a).

Proof. The left- and right-hand sides satisfy

n m-+n
LHS:]P’(ZXi:j—a>:]P> > Xi=j—a|=RHS. ]
1 m+1

(5) Lemma. The simple random walk has the Markov property; that is

P(Sman =Jj | S0,81,...,8m) = P(Sm+n =J | Sm), n>0.

Statements such as P(S = j | X, Y) = P(S = j | X) are to be interpreted in the obvious
way as meaning that

PS=j|X=x,Y=y)=P(S=j|X=x) forallxandy;

this is a slight abuse of notation.

Proof. If one knows the value of §,,, then the distribution of S,,+, depends only on the
jumps Xpm41, - - - , Xm+n, and cannot depend on further information concerning the values of
So, S1, ..., Sm—1. [ ]

This ‘Markov property’ is often expressed informally by saying that, conditional upon
knowing the value of the process at the mth step, its values after the mth step do not depend
on its values before the mth step. More colloquially: conditional upon the present, the future
does not depend on the past. We shall meet this property again later.
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(6) Example. Absorbing barriers. Let us revisit Example (1.7.4) for general values of p.
Equation (1.7.5) gives us the following difference equation for the probabilities {px} where
pr is the probability of ultimate ruin starting from k:

7 Pk=p Prr1+q -pe— if 1<k<N-1

with boundary conditions pg = 1, py = 0. The solution of such a difference equation
proceeds as follows. Look for a solution of the form p; = #*. Substitute this into (7) and
cancel out the power %! to obtain p8? — 6 + ¢ = 0, which has roots 8; = 1,6 = ¢q/p. If
p # % then these roots are distinct and the general solution of (7) is px = A19{‘ + A29’2‘ for
arbitrary constants Ay and A;. Use the boundary conditions to obtain

_ /et —w/pn”
1—(/p)¥

If p = % then ) = 6, = 1 and the general solution to (7) is px = A + Azk. Use the
boundary conditions to obtain py = 1 — (k/N).

A more complicated equation is obtained for the mean number Dy of steps before the
particle hits one of the absorbing barriers, starting from k. In this case we use conditional
expectations and (3.7.4) to find that

(8) Dy=p(l+ Dy} +q(l+Dr—y) if 1<k<N-—1

with the boundary conditions Dy = Dy = 0. Try solving this; you need to find a general so-
lution and a particular solution, as in the solution of second-order linear differential equations.
This answer is

1 1—<q/p>">} . .
k=N —Z )| ifp#£ L
) Di = q—p[ (1—<q/p>N fp#: °

k(N — k) if p=

N,

(10) Example. Retaining barriers. In Example (1.7.4), suppose that the Jaguar buyer has
a rich uncle who will guarantee all his losses. Then the random walk does not end when the
particle hits zero, although it cannot visita negative integer. Instead P(S,41 =0 S, =0) =¢
and P(S,4+1 = 1| S» = 0) = p. The origin is said to have a ‘retaining’ barrier (sometimes
called ‘reflecting’).

What now is the expected duration of the game? The mean duration ¥y, starting from £,
satisfies the same difference equation (8) as before but subject to different boundary conditions.
We leave it as an exercise to show that the boundary conditions are Fy =0, pfy =1+ pFj,
and hence to find Fj. o

In such examples the techniques of ‘conditioning’ are supremely useful. The idea is that
in order to calculate a probability P(A) or expectation E(Y) we condition either on some
partition of 2 (and use Lemma (1.4.4)) or on the outcome of some random variable (and use
Theorem (3.7.4) or the forthcoming Theorem (4.6.5)). In this section this technique yielded
the difference equations (7) and (8). In later sections the same idea will yield differential
equations, integral equations, and functional equations, some of which can be solved.
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Exercises for Section 3.9

1. LetT be the time which elapses before a simple random walk is absorbed at either of the absorbing
barriers at O and N, having started at k where O < k < N. Show that P(T < co) = 1 and E(Tk) < 00
forall k > 1.

2. For simple random walk S with absorbing barriers at 0 and N, let W be the event that the particle
is absorbed at O rather than at N, and let py = P(W | Sp = k). Show that, if the particle starts at
k where 0 < k < N, the conditional probability that the first step is rightwards, given W, equals
PPk+1/ Pk- Deduce that the mean duration Ji, of the walk, conditional on W, satisfies the equation

PPi+1Jky1 — peJk + (pk — pox+1)Je—1 = —pr,  for0 <k < N.

Show that we may take as boundary condition Jo = 0. Find J in the symmetric case, when p = %

3. With the notation of Exercise (2), suppose further that at any step the particle may remain where
it is with probability r where p + g + r = 1. Show that J; satisfies

PPe+1Jk+1 — (L =) piJe + gpk—1Jk—1 = — Pk

and that, when p =g /p # 1,

1 k. Ny 2NpN (=Y

Jk=—"—" - F— 7w (k0" +p") - ———x— -
pk _ ,ON { 1-— pN

4. Problem of the points. A coin is tossed repeatedly, heads turning up with probability p on each
toss. Player A wins the game if m heads appear before n tails have appeared, and player B wins
otherwise. Let pny, be the probability that A wins the game. Set up a difference equation for the pyx.
What are the boundary conditions?
5. Consider a simple random walk on the set {0, 1,2, ..., N} in which each step is to the right with
probability p or to the left with probability ¢ = 1 — p. Absorbing barriers are placed at 0 and N.
Show that the number X of positive steps of the walk before absorption satisfies

E(X) = 3{Dy —k+ N - pp)}

where Dy is the mean number of steps until absorption and py is the probability of absorption at 0.

6. (a) “Millionaires should always gamble, poor men never” [J. M. Keynes].

(b) “If I wanted to gamble, I would buy a casino” [P. Getty].

(c) “That the chance of gain is naturally overvalued, we may learn from the universal success of
lotteries” [Adam Smith, 1776].

Discuss.

3.10 Random walk: counting sample paths

In the previous section, our principal technique was to condition on the first step of the walk
and then solve the ensuing difference equation. Another primitive but useful technique is
to count. Let X1, X7, ... be independent variables, each taking the values —1 and 1 with
probabilities ¢ = 1 — p and p, as before, and let

n
1) Sa=a+) X
i=]
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be the position of the corresponding random walker after  steps, having started at Sy = a.
The set of realizations of the walk is the set of vectors s = (sg, s1,...) with sp = a and
si+1 —s; = %1, and any such vector may be thought of as a ‘sample path’ of the walk, drawn
in the manner of Figure 3.2. The probability that the first n steps of the walk follow a given path
s = (sg, S1,...,8,) 1S p’ql where r is the number of steps of s to the rightand [ is the number
to the leftt; thatis to say,r = [{i : s;41 —s; = 1}{and ! = |{i : s;41 —s; = —1}|. Any event
may be expressed in terms of an appropriate set of paths, and the probability of the eventis the
sum of the component probabilities. For example, P(S, = b) =Y, M} (a, b)p"q"~" where
M} (a, b) is the number of paths (sg, 51, ..., s») with 5o = a, s, = b, and having exactly r
rightward steps. It is easy to see that r 4+ = n, the total number of steps, andr —[ = b —a,
the aggregate rightward displacement, so that r = %(n +b—a)and! = %(n —b+a). Thus
(n+bfa)q%(n7b+a),

2) P(S, = b) = ( p?

n
7(n+b— a))
since there are exactly () paths with length n having r rightward steps and n — r leftward
steps. Formula (2) is useful only if %(n + b —a) is an integer lying in therange 0, 1, ..., n;
otherwise, the probability in question equals 0.

Natural equations of interest for the walk include:
(a) when does the first visit of the random walk to a given point occur; and
(b) whatis the furthest rightward point visited by the random walk by time n?
Such questions may be answered with the aid of certain elegant results and techniques for
counting paths. The first of these is the ‘reflection principle’. Here is some basic notation. As
in Figure 3.2, we keep a record of the random walk § through its path {(n, Sx) : n > 0}.
Suppose we know that Sy = @ and S, = . The random walk may or may not have visited
the origin between times 0 and n. Let N, (a, b) be the number of possible paths from (0, a) to
(n, b), and let N,?(a, b) be the number of such paths which contain some point (k, 0) on the
x-axis.

(3) Theorem. The reflection principle. Ifa, b > 0 then N,? (a, b) = Np(—a,b).

Proof. Each path from (0, —a) to (n, b) intersects the x-axis at some earliest point (k, 0).
Reflect the segment of the path with 0 < x < k in the x-axis to obtain a path joining
(0, a) to (n, b) which intersects the x-axis (see Figure 3.3). This operation gives a one—one
correspondence between the collections of such paths, and the theorem is proved. ]

We have, as before, a formula for N, (a, b).
n
4L . N,(a,b)= .
(4) Lemma. Ny(a,b) (%(n—{-b—a))

Proof. Choose a path from (0, a) to (n, b) and let ¢ and § be the numbers of positive and
negative steps, respectively, in this path. Thena + 8 = nand ¢« — 8 = b — q, so that
a = %(n -+ b — a). The number of such paths is the number of ways of picking « positive
steps from the » available. That is

® a0 = (D B (%(n ‘b —a))‘ .

1The words ‘right’and ‘left’are to be interpreted as meaning in the positive and negative directions respec-
tively, plotted along the y-axis as in Figure 3.2.
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Figure 3.3. A random walk; the dashed line is the reflection of the first segment of the watk.

The famous ‘ballot theorem’ is a consequence of these elementary results; it was proved
first by W. A. Whitworth in 1878.

(6) Corollaryt. Ballot theorem. If b > 0 then the number of paths from (0, 0) to (n, b)
which do not revisit the x-axis equals (b/n) N, (0, b).

Proof. The first step of all such paths is to (1, 1), and so the number of such path is
Nu-1(1,6) = Ny_{(1,6) = No—1(1,5) = No—1(=1,b)

by the reflection principle. We now use (4) and an elementary calculation to obtain the required
result. B

As an application, and an explanation of the title of the theorem, we may easily answer
the following amusing question. Suppose that, in a ballot, candidate A scores ¢ votes and
candidate B scores 8 votes where « > . What is the probability that, during the ballot, A was
always ahead of B? Let X; equal 1 if the ith vote was cast for A, and —1 otherwise. Assuming
that each possible combination of « votes for A and 8 votes for B is equally likely, we have
that the probability is question is the proportion of paths from (0, 0) to (« + B, @ — ) which
do not revisit the x-axis. Using the ballot theorem, we obtain the answer (« — 8)/(x + B).

Here are some applications of the reflection principle to random walks. First, what is the
probability that the walk does not revisit its starting point in the first n steps? We may as well
assume that S§g = 0, sothat S; #0,..., S, ZOifandonly if S8 ---S, # 0.

(7) Theorem. If So = O then, forn > 1,

(8) PS1S---8 #0, Su=b)= I:;IIP’(S,z =b),
and therefore

1
&) P(S1S2-- 8 #0) = ~ES].

tDerived from the Latin word ‘corollarium’ meaning ‘money paid for a garland’ or ‘tip’.

NIEDIL. o
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Proof. Suppose that Sg = 0 and S, = & (> 0). The event in question occurs if and only if the
path of the random walk does not visit the x-axis in the time interval [1, n]. The number of
such paths is, by the ballot theorem, (b/n) N, (0, b), and each such path has %(n +b) rightward
steps and %(n — b) leftward steps. Therefore

1

b b
P(S1S2 -8y #0, Sy =b) = ;Nn(O, b)p%(ner)qZ(n—b) — ;]P’(Sn =b)

as required. A similar calculation is valid if » < 0. |

Another feature of interest is the maximum value attained by the random walk. We write
M, = max{S; : 0 < i < n} for the maximum value up to time n, and shall suppose that
So = 0, so that M,, > 0. Clearly M, > S,, and the first part of the next theorem is therefore
trivial,

(10) Theorem. Suppose that So = 0. Then, forr > 1,

B(S, = b) ifb>r,

an P(M, >r, Sn=b)={ (q/p)rfb]P)(Sn:Zr_b) [fb<r,

It follows that, forr > 1,

r—1

(12) P(My > 1) =P(S, =)+ »_ (q/p) "P(S, =2r — b)
b=—00

=P(Sa=r)+ Y [1+@/p) RS, =0,
c=r+1

yielding in the symmetric case when p = g = % that
13) P(Mp =1) =2P(Sp 2 r +1) + P(S, =71),

which is easily expressed in terms of the binomial distribution.

Proof of (10). We may assume thatr > 1 and b < r. Let N] (0, b) be the number of paths
from (0, 0) to (n, ) which include some point having height r, which is to say some point
(i,r) with 0 < i < n; for such a path 7, let (i, r) be the earliest such point. We may
reflect the segment of the path with i, < x < n in the line y = r to obtain a path 7’ joining
(0, 0) to (n, 2r — b). Any such path 7’ is obtained thus from a unique path 7, and therefore
NI (0, b) = N, (0, 2r — b). It follows as required that

P(M, >r, S, =b)= N, (0, b)pé(ﬂ-i*b)q%(n—b)
= (q/p)rben (0,2r — b)p%(n+2r7b)q%(n—2r+b)
=(q/p) "P(Sy =2r —b). -
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What is the chance that the walk reaches a new maximum at a particular time? More
precisely, what is the probability that the walk, starting from 0, reaches the point b (> 0) for
the time time at the nth step? Writing f3,(n) for this probability, we have that

o) =PM, 1 =Sp—1=b—1, Sy =b)
= [Py b =1, Sy =b— D) —P(Maoy 2 b, Sp1=b—1D)]
= p[B(Sa1=b—1 = (q/P)P(Se1 =b+ D] by 1D
b
= -P(S, =b)
n
by a simple calculation using (2). A similar conclusion may be reached if » < 0, and we
arrive at the following.

(14) Hitting time theorem. The probability f,(n) that a random walk S hits the point b for
the first time at the nth step, having started from 0, satisfies

(13) fo(n) = %P(Sn =b) if n=z1

The conclusion here has a close resemblance to that of the ballot theorem, and particularly
Theorem (7). This is no coincidence: a closer examination of the two results leads to another
technique for random walks, the technique of ‘reversal’. If the first n steps of the original
random walk are

n
(0,51, 82, . Sa) = {o,xl,x1 +Xa, ... ,in}
1
then the steps of the reversed walk, denoted by O, 71, ... , T, are given by
n
0.7, T, ..., T} = {o,xn,xn +Xno1, .. ,in}.
1

Draw a diagram to see how the two walks correspond to each other. The X; are independent
and identically distributed, and it follows that the two walks have identical distributions even
if p # % Notice that the addition of an extra step to the original walk may change every step
of the reversed walk.

Now, the original walk satisfies S, = & (> 0)and $1.52 - - - S, % Oif and only if the reversed
walk satisfied T, = band T, — T,,_; = X1 +---+ X; > Oforalli > 1, which is to say that
the first visit of the reversed walk to the point » takes place at time n. Therefore

(16) P(S15 S0 #0, Sy =b) = fp(n) if b>0.

This is the ‘coincidence’ remarked above; a similar argument is valid if » < 0. The technique
of reversal has other applications. For example, let up be the mean number of visits of the
walk to the point b before it returns to its starting point. If Sg = 0 then, by (16),

an =) P(Si1S2- S #0, Sa=b) =Y _ fo(n) =P(S, = b for some n),
n=1

n=1
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the probability of ultimately visiting 5. This leads to the following result.

(18) Theorem. If p = % and So = 0, for any b (# 0) the mean number 11y, of visits of the
walk to the point b before returning to the origin equals 1.

Proof. Let f;, = P(S, = b for some n > 0). We have, by conditioning on the value of Sy,
that f, = %( Sfo+1 + fo—1) for b > 0, with boundary condition fy = 1. The solution of this
difference equation is f = Ab + B for constants A and B. The unique such solution lying
in [0, 1] with fy = 1 is given by f, = 1 forall b > 0. By symmetry, f, = 1 forb < 0.
However, f, = up for b # 0, and the claim follows. |

‘The truly amazing implications of this result appear best in the language of fair games. A
perfect coin is tossed until the first equalization of the accumulated numbers of heads and tails.
The gambler receives one penny for every time that the accumulated number of heads exceeds
the accumulated number of tails by m. The “fair entrance fee” equals 1 independently of m.’
(Feller 1968, p. 367).

We conclude with two celebrated properties of the symmetric random walk.

(19) Theorem. Arc sine law for last visit to the origin. Suppose that p = % and So = 0. The
probability that the last visit to O up to time 2n occurred attime 2k is P(Sor = 0)P(S25—2% = 0).

In advance of proving this, we note some consequences. Writing «, (2k) for the probability
referred to in the theorem, it follows from the theorem that «, (2k) = uogur, 25 wWhere

2k 2k
uy =P(Su =0) = i 274,
In order to understand the behaviour of uyy for large values of k, we use Stirling’s formula:

(20) n!~n"e"V2rn as n— oo,

which is to say that the ratio of the left-hand side to the right-hand side tendsto 1 as n — oo.
Applying this formula, we obtain that uyy ~ 1/+/mk as k — oo. This gives rise to the

approximation
1

a/k(n — k)’
valid for values of k which are close to neither O nor n. With 7»,, denoting the time of the last
visit to O up to time 2n, it follows that

g (2k)

2
du = =sin~ ' /x,

1 xH 1
P(Ty, <2xn) ~ ) ATk /u:o T uln — ) ™

k<xn

which is to say that 75,/ (2r) has a distribution function which is approximately (2/7) sin ! /x
when n is sufficiently large. We have proved a limit theorem.

The arc sine law is rather surprising. One may think that, in a long run of 2# tosses of a
fair coin, the epochs of time at which there have appeared equal numbers of heads and tails
should appear rather frequently. On the contrary, there is for example probability % that no
such epoch arrived in the final » tosses, and indeed probability approximately % that no such
epoch occurred after the first %n tosses. One may think that, in a long run of 2n tosses of a
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fair coin, the last time at which the numbers of heads and tails were equal tends to be close to
the end. On the contrary, the distribution of this time is symmetric around the midpoint.

How much time does a symmetric random walk spend to the right of the origin? More
precisely, for how many values of k satisfying 0 < k < 2n is it the case that §; > 07
Intuitively, one might expect the answer to be around n with large probability, but the truth is
quite different. With large probability, the proportion of time spent to the right (or to the left)
of the origin is near to 0 or to 1, but not near to % That is to say, in a long sequence of tosses
of a fair coin, there is large probability that one face (either heads or tails) will lead the other
for a disproportionate amount of time.

(21) Theorem. Arc sine law for sojourn times. Suppose that p = 5 and So = 0. The
probability that the walk spends exactly 2k intervals of time, up to time 2n to the right of the
origin equals P(S2p = 0)P(S24—2¢ = 0).

We say that the interval (k, k + 1) is spent to the right of the origin if either Sy > 0 or
St+1 > 0. It is clear that the number of such intervals is even if the total number of steps is
even. The conclusion of this theorem is most striking. First, the answer is the same as that
of Theorem (19). Secondly, by the calculations following (19) we have that the probability
that the walk spends 2xr units of time or less to the right of the origin is approximately

@/m)sin~! \/x.
Proof of (19). The probability in question is

a2q (2k) = P(Sox = O)P(Sak+152%+2 -+ S2n 0 | Sox = 0)
=P(S2u = OP(S152 -+ Son—2k #0).

Now, setting m = n — k, we have by (8) that

m ok m ) 1 2m
22) P(Slsz~--S2m¢0)=2k§gﬂ”(&m=2k)=2k;_m<m+k)<5)
2m m
(") -]
2 = m+k—1 m+k
=2 (1)2”‘ (2'" N 1)
2 m
(G)”
— )} =P(Sm = 0). n
m 2

In passing, note the proof in (22) that
(23) P(S152 -~ Som # 0) =P(Som = 0)

for the simple symmetric random walk.

Proof of (21). Let B,,(2k) be the probability in question, and write us, = P(S2, = 0) as
before. We are claiming that, for all m > 1,

24 Bom (2k) = uppuom 2k if 0<k <m.
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First,
PS1S% - Som>0)=PS1=1, SK=>1,..., Sam=1)
=IP(S1 >0, $>0,..., Som—1 > 0),
where the second line follows by considering the walk S} — 1,8 — 1,...,5, — 1. Now

Sam—1 is an odd number, so that S, > 0 implies that Sy, > 0 also. Thus
P(S182 -+ Som > 0) = 2P($1 20, % > 0,..., S > 0),
yielding by (23) that
suom =P(S152- - Som > 0) = 3 Pom(2m),

and (24) follows for k = m, and therefore for k = 0 also by symmetry.
Let n be a positive integer, and let T be the time of the first return of the walk to the origin.
If $5, = O then T < 2r; the probability mass function f,, = P(T = 2r) satisfies

P(S2n =0) =Y P(S20 =0T =2r)P(T =2r) = Y P(S20-2, = OP(T = 2r),

r=1 r=1

which is to say that

n
(25) Upn = ZMZn—erZr-

r=1

Letl <k <n — 1, and consider 8,,(2k). The corresponding event entails that T = 2r
for some r satisfying 1 < r < n. The time interval (0, T) is spent entirely either to the right
or the left of the origin, and each possibility has probability % Therefore,

k n—k
(26)  Bon(2k) =) 3P(T =2r)Bon—2,(2k — 2r) + ) _ JP(T = 2r)2n2,(2K),

r=1 r=1

We conclude the proof by using induction. Certainly (24) is valid for all k if m = 1. Assume
(24) is valid for all k and all m < n.
From (26),

k n—k
1 1
Ban(2k) = 5 E fartok—2rtion—2k + 5 E fartorton—2k—2r

r=1 r=1

1 1
= SU2n—2kU2k T FUKUR—2k = U2kU2n—2k

by (25), as required. | |
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Exercises for Section 3.10

1. Consider a symmetric simple random walk § with Sg = 0. Let T = min{n > 1 : S = 0} be the
time of the first return of the walk to its starting point. Show that

1 2n\__»
P(T =2n) = —— 27",
( ") 2n—l<n>

and deduce that E(T%) < oo if and only if ¢ < % You may need Stirling’s formula: n! ~

1
n"Tie " 2x.
2. For a symmetric simple random walk starting at 0, show that the mass function of the maximum
satisfies P(My, =r) =P(Sn =r) +P(S, =r + 1) forr > 0.

3. For a symmetric simple random walk starting at 0, show that the probability that the first visit to
S,y takes place at time 2k equals the product P(S; = O)P(S2,—2x = 0), for0 <k < n.

3.11 Problems

1. (a)Let X and Y be independent discrete random variables, and let g, 2 : R — R. Show that g(X)
and A (Y) are independent.
(b) Show that two discrete random variables X and Y are independent if and only if fx y(x,y) =

fx) fy(y) forallx, y € R.
(c) More generally, show that X and Y are independent if and only if fx y(x, y) can be factorized
as the product g(x)A(y) of a function of x alone and a function of y alone.

2, Show that if var(X) = 0 then X is almost surely constant; that is, there exists a € R such that
P(X = a) = 1. (First show that if E(X%) = O then P(X = 0) = 1.)

3. (a)Let X be adiscrete random variable and let g : R — R. Show that, when the sum is absolutely
convergent,

E(g(X)) =Y  g(x)P(X =x).

(b) If X and Y are independent and g, 2 : R — R, show that E(g(X)A(Y)) = E(g(X)EH(Y))
whenever these expectations exist.

4. LetQ = {w, wp, w3}, with P(w)) = P(w) = P(w3) = §. Define X, ¥, Z : @ — Rby

X(o) =1, X(wm) =2, X(w3)=3,
Yiw) =2, Y(wp)=3, TY(w)=1,
Zw) =2, Z(w) =2, Z(w3)=1L

Show that X and Y have the same mass functions. Find the mass functions of X + ¥, XY, and X/Y.
Find the conditional mass functions fy)z and f7)y.

5. For what values of k£ and « is f a mass function, where:

@ f)=k/Inn+1)}L,n=12,...,

by f(n)y=kn%, n=1,2,... (zeta or Zipf distribution)?
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6. Let X and Y be independent Poisson variables with respective parameters A and p. Show that:
(a) X 4 Y is Poisson, parameter A + 4,

(b) the conditional distribution of X, given X 4+ Y = n, is binomial, and find its parameters.

7. If X is geometric, show that P(X = n+k | X > n) = P(X = k) fork, n > 1. Why do you think
that this is called the ‘lack of memory” property? Does any other distribution on the positive integers
have this property?

8. Show that the sum of two independent binomial variables, bin(m, p) and bin(n, p) respectively,
is bin(m + n, p).

9. Let N be the number of heads occurring in  tosses of a biased coin. Write down the mass function
of N in terms of the probability p of heads turning up on each toss. Prove and utilize the identity

n . 9
> <2i)ley" P=a{E "+ 0 -0"
in order to calculate the probability p, that N is even. Compare with Problem (1.8.20).

10. Anurn contains N balls, b of which are blue and r (= N — b) of which are red. A random sample
of n balls is withdrawn without replacement from the urn. Show that the number B of blue balls in
this sample has the mass function

=]

This is called the hypergeometric distribution with parameters N, b, and n. Show further that if N, b,
and r approach oo in such a way that /N — pandr/N — 1 — p, then

P(B = k) — (Z) pAa—py k.

You have shown that, for small » and large N, the distribution of B barely depends on whether or not
the balls are replaced in the urn immediately after their withdrawal.

11. Let X and Y be independent bin(n, p) variables, and let Z = X + Y. Show that the conditional
distribution of X given Z = N is the hypergeometric distribution of Problem (3.11.10).

12. Suppose X and Y take values in {0, 1}, with joint mass function f(x, y). Write f(0,0) = a,
fO,1)=0b, f(1,0) =¢, f(1,1) = d, and find necessary and sufficient conditions for X and ¥ to
be: (a) uncorrelated, (b) independent.

13. (a) If X takes non-negative integer values show that
o0
E(X) =Y P(X > n).
n=0

(b) An um contains b blue and r red balls. Balls are removed at random until the first blue ball is
drawn. Show that the expected number drawn is (b + r + 1)/(b + 1).

(c) The balls are replaced and then removed at random until all the remaining balls are of the same
colour. Find the expected number remaining in the umn.
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14. Let X1, X3, ..., X, be independent random variables, and suppose that Xy is Bernoulli with
parameter py. Show that ¥ = X1 + X3 4+ - - - 4+ X, has mean and variance given by

E(Y) =) pr, var(¥) =) pr(l = pp).
1 1

Show that, for E(Y) fixed, var(Y) is a maximum when p; = pp = --- = p,. That is to say, the
variation in the sum is greatest when individuals are most alike. Is this contrary to intuition?

15. LetX = (X4, Xp, ..., X,) be avector of random variables. The covariance matrix V(X) of X is
defined to be the symmetric # by n matrix with entries (v;; : 1 <, j < n) givenby v;; = cov(X;, X;).
Show that |V(X)| = 0 if and only if the X; are linearly dependent with probability one, in that
Pla1 X| +aXy+---+anXn = b) =1 for some a and b. (| V| denotes the determinant of V.)

16. Let X and Y be independent Bernoulli random variables with parameter % Show that X + Y and
|X — Y| are dependent though uncorrelated.

17. A secretary drops n matching pairs of letters and envelopes down the stairs, and then places the
letters into the envelopes in a random order. Use indicators to show that the number X of correctly
matched pairs has mean and variance 1 for all n > 2. Show that the mass function of X converges to
a Poisson mass function as n — oo.

18. LetX = (X1, X3, ..., Xn)be avector of independent random variables each having the Bernoulli

distribution with parameter p. Let f : {0, 1}" — R be increasing, which is to say that f(x) < f(y)

whenever x; < y; foreach i.

(a) Lete(p) = E(f(X)). Show that e(p;) < e(py) if p; < p2.

(b) FKG inequality . Let f and g be increasing functions from {0, 1}" into R. Show by induction
on n that cov(f (X), g(X)) = 0.

19. Let R(p) be the reliability function of a network G with a given source and sink, each edge of
which is working with probability p, and let A be the event that there exists a working connection
from source to sink. Show that

R(p) =) I4(@)p"N @ (1 - pym N

where o is a typical realization (i.e., outcome) of the network, N(w) is the number of working edges
of w, and m is the total number of edges of G.
Deduce that R'(p) = cov(Is, N)/{p(1 — p)}, and hence that

R(p)(1 - R(p)) <R(p) < mR(p)(1 — R(p))
pl—p) ~ - pl—p)

20. Let R(p) be the reliability function of anetwork G, each edge of which is working with probability
p.

(a) Show that R(p1p2) < R(p1)R(p2)if0 < p1,pp < 1.

(b) Show that R(p?) < R(p)Y forall0 < p<landy > 1.

21. DNA fingerprinting. In a certain style of detective fiction, the sleuth is required to declare “the
criminal has the unusual characteristics . . . ; find this person and you have your man”. Assume that
any given individual has these unusual characteristics with probability 10~ independently of all other
individuals, and that the city in question contains 107 inhabitants. Calculate the expected number of
such people in the city.

tNamed after C. Fortuin, P. Kasteleyn, and J. Ginibre (1971), but due in this form to T. E. Harris (1960).
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(a) Given that the police inspector finds such a person, what is the probability that there is at least
one other?

(b) If the inspector finds two such people, what is the probability that there is at least one more?

(c) How many such people need be found before the inspector can be reasonably confident that he
has found them all?

(d) For the given population, how improbable should the characteristics of the criminal be, in order
that he (or she) be specified uniquely?

22. In 1710, J. Arbuthnot observed that male births had exceeded female births in London for 82
successive years. Arguing that the two sexes are equally likely, and 2782 is very small, he attributed
this run of masculinity to Divine Providence. Let us assume that each birth results in a girl with
probability p = 0.485, and that the outcomes of different confinements are independent of each other.
Ignoring the possibility of twins (and so on), show that the probability that girls outnumber boys in 2n
live births is no greater than (2: )p"q"{q/(q — p)}, where g = 1 — p. Suppose that 20,000 children
are born in each of 82 successive years. Show that the probability that boys outnumber girls every
year is at least 0.99. You may need Stirling’s formula.

23. Consider a symmetric random walk with an absorbing barrier at N and a reflecting barrier at 0
(so that, when the particle is at O, it moves to 1 at the next step). Let (/) be the probability that
the particle, having started at &, visits O exactly j times before being absorbed at N. We make the
convention that, if k£ = 0, then the starting point counts as one visit. Show that

N —k 1)/ 1
ak(j)ZW“(l—N) , Jj=1,0<k<N.

24. Problem of the points (3.9.4). A coin is tossed repeatedly, heads turning up with probability p
on each toss. Player A wins the game if heads appears at least m times before tails has appeared n
times; otherwise player B wins the game. Find the probability that A wins the game.

25. A coin is tossed repeatedly, heads appearing on each toss with probability p. A gambler starts
with initial fortune k (where 0 < k < N); he wins one point for each head and loses one point for
each tail. If his fortune is ever O he is bankrupted, whilst if it ever reaches N he stops gambling to buy
a Jaguar. Suppose that p < % Show that the gambler can increase his chance of winning by doubling

the stakes. You may assume that k and N are even.
What is the corresponding strategy if p > %?
26. A compulsive gambler is never satisfied. At each stage he wins £1 with probability p and loses

£1 otherwise. Find the probability that he is ultimately bankrupted, having started with an initial
fortune of £k.

27. Range of random walk. Let {X, : n > 1} be independent, identically distributed random
variables taking integer values. Let Sy = 0, S, = ;’:1 X;. The range Ry of Sy, S1, ..., Sn is the
number of distinct values taken by the sequence. Show thatP(R, = R, 1+ 1) =P(S5;S2---Sn # 0),
and deduce that, as n — o0,

1
—E(Rp) — P(Sk # 0 forall k > 1).
n

Hence show that, for the simple random walk, n_llE(R,,) — |p—glasn — oo,

28. Arc sine law for maxima. Consider a symmetric random walk § starting from the origin, and
let Mp, = max{S; : 0 <i < n}. Show that, for i = 2k, 2k + 1, the probability that the walk reaches
M,,, for the first time at time i equals %]P’(Szk = 0)P(S2p_2r = 0).
29. Let S be a symmetric random walk with Sy = 0, and let N, be the number of points that have
been visited by S exactly once up to time n. Show that E(N,) = 2.
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30. Family planning. Consider the following fragment of verse entitled ‘Note for the scientist’.
People who have three daughters try for more,
And then its fifty—fifty they’ll have four,
Those with a son or sons will let things be,
Hence all these surplus women, QED.
(a) What do you think of the argument?
(b) Show that the mean number of children of either sex in a family whose fertile parents have
followed this policy equals 1. (You should assume that each delivery yields exactly one child
whose sex is equally likely to be male or female.) Discuss.

31. Let 8 > 1, let py, pp, ... denote the prime numbers, and let N(1), N(2), ... be independent
random variables, N (i) having mass function P(N(i) = k) = (1 — y,-)yl.k fork > 0, where y; = pi_ﬂ

for all i. Show that M = [, p;v(i) is a random integer with mass function P(M = m) = Cm™8
for m > 1 (this may be called the Dirichlet distribution), where C is a constant satisfying

lly)-(Ea)

m=1

32. N + 1 plates are laid out around a circular dining table, and a hot cake is passed between them in
the manner of a symmetric random walk: each time it arrives on a plate, it is tossed to one of the two
neighbouring plates, each possibility having probability % The game stops at the moment when the
cake has visited every plate at least once. Show that, with the exception of the plate where the cake
began, each plate has probability 1/N of being the last plate visited by the cake.

33. Simplex algorithm. There are (;,) points ranked in order of merit with no matches. You seek to
reach the best, B. If you are at the jth best, you step to any one of the j — 1 better points, with equal
probability of stepping to each. Let r; be the expected number of steps to reach B from the jth best

vertex. Show that r; = Z,{;ll k=1, Give an asymptotic expression for the expected time to reach B
from the worst vertex, for large m, n.

34. Dimer problem. There are n unstable molecules in a row, mq,mp,... ,m,. Oneof the n — 1
pairs of neighbours, chosen at random, combines to form a stable dimer; this process continues until
there remain Uy, isolated molecules no two of which are adjacent. Show that the probability that #11
remains isolated is Z;‘;& =D'/rt—> e~ 1asn — oo. Deduce that lim,_; oo n_llEU,, =e¢ 2,

35. Poisson approximation. Let {I, : 1 < r < n} be independent Bernoulli random variables with
respective parameters {py : 1 <r < n} satisfying p, < ¢ < 1forallr andsomec. LetA =) »_; pr
and X = Y 7_; X,. Show that

Ake_)‘ k2
P(X =k) = X 140 Amraxpr-{-Tmaxpr .

36. Sampling. The length of the tail of the rth member of a troop of N chimeras is x,. A random
sample of n chimeras is taken (without replacement) and their tails measured. Let I, be the indicator
of the event that the rth chimera is in the sample. Set

1Y 1 & 1
Xr =xrIy, Y:;ZXI‘» f:Nle‘v UZZEZ(M—E)Z»
r=1

Show that E(Y) = u, and var(Y) = (N — n)o 2/{n(N — 1)}.
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37. Berkson’s fallacy. Any individual in a group G contracts a certain disease C with probability
y; such individuals are hospitalized with probability ¢. Independently of this, anyone in G may be
in hospital with probability a, for some other reason. Let X be the number in hospital, and ¥ the
number in hospital who have C (including those with C admitted for any other reason). Show that the
correlation between X and Y is

4 (1-a)(1—yc)
p(X, Y)=\/1 r_. :
—Yp a+yc—ayc

where p =a 4+ ¢ —ac.
It has been stated erroneously that, when p(X, Y) is near unity, this is evidence for a causal
relation between being in G and contracting C.

38. A telephone sales company attempts repeatedly to sell new kitchens to each of the N families

in a village. Family i agrees to buy a new Kkitchen after it has been solicited K; times, where the K;

are independent identically distributed random variables with mass function f(n) = P(X; = n). The

value oo is allowed, so that f(00) > 0. Let X, be the number of kitchens sold at the nth round of
solicitations, so that X, = E,N: 1 {{k;=n}. Suppose that N is a random variable with the Poisson

distribution with parameter v.

(a) Show that the X, are independent random variables, X, having the Poisson distribution with
parameter vf (r).

(b) The company loses heart after the Tth round of calls, where T = inf{rn : X, = 0}. Let
S = X1 + Xy + --- + X7 be the number of solicitations made up to time T. Show further that
E(S) = vE(F(T)) where F(k) = f(D) + f(D) + - + f(k).

39. A particle performs a random walk on the non-negative integers as follows. When at the point n

(> 0) its next position is uniformly distributed on the set {0, 1,2, ..., n + 1}. When it hits O for the

first time, it is absorbed. Suppose it starts at the point a.

(a) Find the probability that its position never exceeds a, and prove that, with probability 1, it is
absorbed ultimately.

(b) Find the probability that the final step of the walk is from 1 to O whena = 1.

(c) Find the expected number of steps taken before absorption when a = 1.

40. Let G be a finite graph with neither loops nor multiple edges, and write dy, for the degree of
the vertex v. An independent set is a set of vertices no pair of which is joined by an edge. Let
a(G) be the size of the largest independent set of G. Use the probabilistic method to show that
a(G) = >, 1/(dy + 1). [This conclusion is sometimes referred to as Turdn’s theorem.]
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Continuous random variables

Summary. The distribution of a continuous random variable may be specified
via its probability density function. The key notion of independence is explored
for continuous random variables. The concept of expectation and its conse-
quent theory are discussed in depth. Conditional distributions and densities
are studied, leading to the notion of conditional expectation. Certain specific
distributions are introduced, including the exponential and normal distribu-
tions, and the multivariate normal distribution. The density function following
a change of variables is derived by the Jacobian formula. The study of sums
of random variables leads to the convolution formula for density functions.
Methods for sampling from given distributions are presented. The method of
coupling is discussed with examples, and the Stein—Chen approximation to
the Poisson distribution is proved. The final section is devoted to questions of
geometrical probability.

4.1 Probability density functions

Recall that a random variable X is continuous if its distribution function F(x) = P(X < x)
can be written ast

M F(x) = / F ) du

for some integrable f : R — [0, c0).

(2) Definition. The function f is called the (probability) density function of the continuous
random variable X.

The density function of F is not prescribed uniquely by (1) since two integrable functions
which take identical values except at some specific point have the same integrals. However,
if F is differentiable at u then we shall normally set f(u) = F'(«). We may write fx(u) to
stress the role of X.

tNever mind what type of integral this is, at this stage.
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(3) Example (2.3.4) revisited. The random variables X and Y have density functions

y~3/(dm) if0 <y <4r?

0 otherwise.

m)~! ifo<x <2,

0 otherwise,

fx(x) = { fr) = {

These density functions are non-zero if and only if x € [0,27] and y € [0, 472]. In such
cases in the future, we shall write simply fx(x) = (27)~! for 0 < x < 27, and similarly for
fr. with the implicit implication that the functions in question equal zero elsewhere.

Continuous variables contrast starkly with discrete variables in that they satisfy P(X =
x) = 0 for all x € R; this may seem paradoxical since X necessarily takes some value.
Very roughly speaking, the resolution of this paradox lies in the observation that there are
uncountably many possible values for X; this number is so large that the probability of X
taking any particular value cannot exceed zero.

The numerical value f(x) is not a probability. However, we can think of f(x) dx as the
element of probability P(x < X < x + dx), since

Px <X <x+4+dx)=F(x+dx)—F(x)~ f(x)dx.

From equation (1), the probability that X takes a value in the interval [a, b] is

b
Pla <X 5b)=/ f(x)dx.

Intuitively speaking, in order to calculate this probability, we simply add up all the small
elements of probability which contribute. More generally, if B is a sufficiently nice subset of
R (such as an interval, or a countable union of intervals, and so on), then it is reasonable to
expect that

“) P(X € B) =/ fx)dx,
B

and indeed this turns out to be the case.

We have deliberately used the same letter f for mass functions and density functionsf
since these functions perform exactly analogous tasks for the appropriate classes of random
variables. In many cases proofs of results for discrete variables can be rewritten for continuous
variables by replacing any summation sign by an integral sign, and any probability mass f(x)
by the corresponding element of probability f(x) dx.

(5) Lemma. If X has density function f then

@) [To f)dx =1,
(b) P(X = x) =0forall x € R,

© Pla<X<b)= [l fx)dx.

Proof. Exercise. [ |

tSome writers prefer to use the letter p to denote a mass function, the better to distinguish mass functions
from density functions.
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Part (a) of the lemma characterizes those non-negative integrable functions which are
density functions of some random variable.

We conclude this section with a technical note for the more critical reader. For what sets B
is (4) meaningful, and why does (5a) characterize density functions? Let ¢ be the collection
of all open intervals in R. By the discussion in Section 1.6, g can be extended to a unique
smallest o-field B = o (§) which contains §; B is called the Borel o -field and contains Borel
sets. Equation (4) holds for all B € B. Setting Px(B) = P(X € B), we can check that
(R, B, Py) is a probability space. Secondly, suppose that f : R — [0, co) is integrable and
f_oooo f(x)dx = 1. Forany B € B, we define

P(B) = / f(x)dx.
B

Then (R, 8, P) is a probability space and f is the density function of the identity random
variable X : R — R given by X (x) = x for any x € R. Assiduous readers will verify the
steps of this argument for their own satisfaction (or see Clarke 1975, p. 53).

Exercises for Section 4.1

1. For what values of the parameters are the following functions probability density functions?
1
(@) f(x)=C{x(1 -x)} Z, 0 < x < 1, the density function of the ‘arc sine law’.

(®) f(x) = Cexp(—x —e™*), x € R, the density function of the ‘extreme-value distribution’.
(© f(x)=CA+x3H™™ xeR.
2. Find the density function of ¥ = aX, where @ > 0, in terms of the density function of X. Show

that the continuous random variables X and —X have the same distribution function if and only if
fx(x) = fx(—x) forallx € R.

3. If f and g are density functions of random variables X and Y, show that «f + (1 — @)g is a
density function for 0 < o < 1, and describe a random variable of which it is the density function.

4. Survival. Let X be a positive random variable with density function f and distribution function
F. Define the hazard function H(x) = — log[1 — F(x)] and the hazard rate

1
r(x):}zi%EP(Xfx+h|X>x), x>0

Show that:

@ r(x) = H'(x) = fx)/{1 = F(0)},

(b) If r(x) increases with x then H (x)/x increases with x,

(c) H(x)/x increases with x if and only if [1 — F(x)]* <1— F(ax)forall0 <« <1,
(d) If H(x)/x increases with x, then H(x + y) > H(x) + H(y) forallx,y > 0.

4.2 Independence

This section contains the counterpart of Section 3.2 for continuous variables, though it con-
tains a definition and theorem which hold for any pair of variables, regardless of their types
(continuous, discrete, and so on). We cannot continue to define the independence of X and Y
in terms of events such as {X = x} and {Y = y}, since these events have zero probability and
are trivially independent.
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(1) Definition. Random variables X and ¥ are called independent if
2) {X <x} and {Y <y} areindependenteventsforallx,y € R.

The reader should verify that discrete variables satisfy (2) if and only if they are independent
in the sense of Section 3.2. Definition (1) is the general definition of the independence of any
two variables X and Y, regardless of their types. The following general result holds for the
independence of functions of random variables. Let X and Y be random variables, and let
g,h :R — R. Then g(X) and A (Y) are functions which map €2 into R by

g(X)(w) = g(X(w)), h(Y)(w) = h(Y (w))

as in Theorem (3.2.3). Let us suppose that g(X) and A(Y) are random variables. (This holds
if they are # -measurable; it is valid for instance if g and A are sufficiently smooth or regular
by being, say, continuous or monotonic. The correct condition on g and 4 is actually that, for
all Borel subsets B of R, g—l(B) and A~} (B) are Borel sets also.) In the rest of this book,
we assume that any expression of the form ‘g(X)’, where g is a function and X is a random
variable, is itself a random variable.

(3) Theorem. If X and Y are independent, then so are g(X) and h(Y).
Move immediately to the next section unless you want to prove this.

Proof. Some readers may like to try and prove this on their second reading. The proof does not
rely on any property such as continuity. The key lies in the requirement of Definition (2.1.3)
that random variables be # -measurable, and in the observation that g (X) is ¥ -measurable if
g : R — R is Borel measurable, which is to say that g_l(B) € B, the Borel o-field, for all
B € B. Complete the proof yourself (exercise). |

Exercises for Section 4.2

1. I am selling my house, and have decided to accept the first offer exceeding £K. Assuming
that offers are independent random variables with common distribution function F, find the expected
number of offers received before I sell the house.

2. Let X and Y be independent random variables with common distribution function F and density
function f. Show that V = max{X, Y} has distribution function P(V < x) = F(x)2 and density
function fy(x) =2 f(x)F(x), x € R. Find the density function of U = min{X, ¥}.

3. Theannual rainfall figures in Bandrika are independent identically distributed continuous random
variables {X, : r > 1}. Find the probability that:

(a) Xl <X2 <X3 <X4,

(b) X > X < X3 < X4.

4. Let{X, :r > 1} beindependent and identically distributed with distribution function F satisfying
F(y) < 1forall y,andlet Y(y) = min{k : X} > y}. Show that

yime(Y(y) <EY()=1-e1
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4.3 Expectation

The expectation of a discrete variable X is EX = > xP(X = x). This is an average of the
possible values of X, each value being weighted by its probability. For continuous variables,
expectations are defined as integrals.

(1) Definition. The expectation of a continuous random variable X with density function f
is given by

]EX:zfoo xf(x)dx

hase

whenever this integral exists.

There are various ways of defining the integral of a function g : R — R, but it is not
appropriate to explore this here. Note that usually we shall allow the existence of [ g(x) dx
only if [ |g(x)|dx < oo.

(2) Examples (2.3.4) and (4.1.3) revisited. The random variables X and Y of these examples

have mean values

21 472
EX)= | “—dr=n &)= Y gy = 42 °
2 3
0 T 0 4

Roughly speaking, the expectation operator E has the same properties for continuous vari-
ables as it has for discrete variables.

(3) Theorem. If X and g(X) are continuous random variables then

oL
E(g(X)) = j () f(x) dx.

-0

We give a simple proof for the case when g takes only non-negative values, and we leave
it to the reader to extend this to the general case. Our proof is a corollary of the next lemma.

(4) Lemma. If X has density function f with f(x) = Owhen x < 0, and distribution function
F, then

EX = /00[1 — F(x)]dx.
0

/00[1—F(x)]dx:/oop(x>x)alx:/00/0o f(y)dydx.
0 0 0 Jy=x

Now change the order of integration in the last term. |

Proof of (3) when g > 0. By (4),

E(g(X))=/(; P(g(X) > x)dx =/(; (/; fx(y)dy> dx

where B = {y : g(y) > x}. We interchange the order of integration here to obtain

Proof.

oo rg(y) 00
E(g(X)) = /O /O dx fx(y)dy = /0 e fx(») dy. n
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(5) Example (2) continued. Lemma (4) enables us to find E(Y) without calculating fy, for

x2

2n 2w
E(Y) = E(Xz) = / xzfx(x)dx = / —dx = 712_ o
0 0

Wl

2

We were careful to describe many characteristics of discrete variables—such as moments,
covariance, correlation, and linearity of E (see Sections 3.3 and 3.6)—in terms of the operator
E itself. Exactly analogous discussion holds for continuous variables. We do not spell out
the details here but only indicate some of the less obvious emendations required to establish
these results. For example, Definition (3.3.5) defines the kth moment of the discrete variable
X tobe

(6) my = E(X5);

we define the kth moment of a continuous variable X by the same equation. Of course, the
moments of X may not exist since the integral

E(X%) = /xkf(x)dx

may not converge (see Example (4.4.7) for an instance of this).

Exercises for Section 4.3

1. For what values of « is E(| X |%) finite, if the density function of X is:

(@ f(x)=e¢*forx >0,

(b) f(x)=CQA+x2)"" forx € R?

If « is not integral, then E(|X|¥) is called the fractional moment of order a of X, whenever the
expectation is well defined; see Exercise (3.3.5).

2. Let Xy, X>, ..., X, be independent identically distributed random variables for which E(X 1“1)
exists. Show that, if m < n, then E(S,,/S,) = m/n, where S;p = X1 + X2+ -+ X

3. Let X be a non-negative random variable with density function f. Show that
o0
E(X") = / rx" T IP(X > x)dx
0

for any r > 1 for which the expectation is finite.

4. Show that the mean y, median m, and variance o2 of the continuous random variable X satisfy

(n—m)? < o2

5. Let X be a random variable with mean p and continuous distribution function F. Show that

/a F(x)dx :/00[1 — F(x)]dx,

if and only if a = p.
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4.4 Examples of continuous variables

(1) Uniform distribution. The random variable X is uniform on [a, b] if it has distribution
function

0 ifx <a,
Fo)=1 =2 ifa<x<b,
b—a
1 if x > b.
Roughly speaking, X takes any value between a and b with equal probability. Example (2.3.4)
describes a uniform variable X. o

(2) Exponential distribution. The random variable X is exponential with parameter A (> 0)
if it has distribution function

3 F(x)=1—¢e, x > 0.

This arises as the ‘continuous limit’ of the waiting time distribution of Example (3.5.5) and
very often occurs in practice as a description of the time elapsing between unpredictable
events (such as telephone calls, earthquakes, emissions of radioactive particles, and arrivals
of buses, girls, and so on). Suppose, as in Example (3.5.5), that a sequence of Bernoulli trials
is performed at time epochs 8, 28, 36, ... and let W be the waiting time for the first success.
Then

P(W>k8)=(1—p)* and EW=26/p.

Now fix a time ¢. By this time, roughly k = ¢/4 trials have been made. We shall let§ | 0. In
order that the limiting distribution lims o P(W > ¢) be non-trivial, we shall need to assume
that p | 0 also and that p/& approaches some positive constant A. Then

PW >t) =P (W > (g) 5) ~(1=a8) > ™

which yields (3).
The exponential distribution (3) has mean

EX :/ [1— F(x)]dx = 1
0 )

Further properties of the exponential distribution will be discussed in Section 4.7 and Problem
(4.11.5); this distribution proves to be the cornerstone of the theory of Markov processes in
continuous time, to be discussed later. o

(4) Normal distribution. Arguably the mostimportant continuous distribution is the normalt
(or Gaussian) distribution, which has two parameters ;. and o2 and density function

)
exp e , —o0 < x < 00,
202

fx)=

2ol

tProbably first named ‘normal’ by Francis Galton before 1885, though some attribute the name to C. S.
Peirce, who is famous for his erroneous remark “Probability is the only branch of mathematics in which good
mathematicians frequently get results which are entirely wrong”.
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It is denoted by N(u, o). If © = 0 and 0 = 1 then

1 _1-2
fx) = e 2%, —00 < X < 00,

NG

is the density of the standard normal distribution. It is an exercise in analysis (Problem
(4.11.1)) to show that f satisfies Lemma (4.1.5a), and is indeed therefore a density function.
The normal distribution arises in many ways. In particular it can be obtained as a continuous
limit of the binomial distribution bin(n, p) as n — oo (this is the ‘de Moivre—Laplace limit
theorem’). This resultis a special case of the central limit theorem to be discussed in Chapter
5; it transpires that in many cases the sum of a large number of independent (or at least not too
dependent) random variables is approximately normally distributed. The binomial random
variable has this property because it is the sum of Bernoulli variables (see Example (3.5.2)).
Let X be N(u, 02), where o > 0, and let

(5) Y =

For the distribution of Y,

P(Y <y)=P((X —p)/o <y)=P(X <yo +p)

1 yo+u ( (x _ M)Z J
X —_—— X
o2 /.—oo P 207 )

e 3V du by substituting x = vo + .

[N

-7 L

Thus Y is N(0, 1). Routine integrations (see Problem (4.11.1)) show that EY = 0, var(Y) = 1,

and it follows immediately from (5) and Theorems (3.3.8), (3.3.11) that the mean and variance

of the N(u, o%) distribution are x and o2 respectively, thus explaining the notation.
Traditionally we denote the density and distribution functions of Y by ¢ and &:

¢(v>=\/;_ne—3”2, <1>(y>=P(Y5y>=/_yoo¢<v>dv. °

(6) Gamma distribution. The random variable X has the gamma distribution with parameters
A, t > 0, denotedt I'(A, ), if it has density

1
fx) = —alx!"le ™, x> 0.

I'(1)

Here, I'(¢) is the gamma function
o
@) = / x'le™* dx.
0

tDo not confuse the order of the parameters. Some authors denote this distribution I"(¢, A).
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If + = 1 then X is exponentially distributed with parameter A. We remark that if A =

= %d , for some integer d, then X is said to have the chi-squared distribution x*(d) with d
degrees of freedom (see Problem (4.11.12)). o

(7) Cauchy distribution. The random variable X has the Cauchy distributiont if it has density
function

1
fx)= —00 < x < 00.
m(1+x2)’
This distribution is notable for having no moments and for its frequent appearances in counter-
examples (but see Problem (4.11.4)). o

(8) Beta distribution. The random variable X is beta, parameters a, b > 0, if it has density
function

x4 11— x)P L, 0<x<l.

O = @
We denote this distribution by S(a, b). The ‘beta function’

1
B(a,b) = / N1 —x)P Tdx
0

is chosen so that f has total integral equal to one. You may care to prove that B(a,b) =
I'@)T'(b)/T'(a +b). If a = b =1 then X is uniform on [0, 1]. o

(9) Weibull distribution. The random variable X is Weibull, parameters «, 8 > 0, if it has
distribution function
Fx)=1-— exp(—a'xﬂ), x>0.

Differentiate to find that
fx) =apxPLexp(—axf), x=>0.

Set f = 1 to obtain the exponential distribution. L

Exercises for Section 4.4

1. Prove that the gamma function satisfies I'(t) = (¢t — 1)I'(t — 1) for ¢+ > 1, and deduce that
'n) =@ —N!forn=1,2,.... Show that F(%) = /7 and deduce a closed form for I'(n + %)
forn=0,1,2,....

2. Show, as claimed in (4.4.8), that the beta function satisfies B(a, b) = T'(a)T'(b)/T'(a + b).

3. Let X have the uniform distribution on [0, 1]. For what function g does ¥ = g(X) have the
exponential distribution with parameter 1?7

4. Find the distribution function of a random variable X with the Cauchy distribution. For what
values of « does | X| have a finite (possibly fractional) moment of order «?

5. Log-normal distribution. Let Y = X where X has the N(0, 1) distribution. Find the density
function of Y.

+This distribution was considered first by Poisson, and the name is another example of Stigler’s law of
eponymy.
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6. Let X be N(u, 02). Show that E{(X — u)g(X)} = o2E(g' (X)) when both sides exist.

7. With the terminology of Exercise (4.1.4), find the hazard rate when:

(a) X has the Weibull distribution, P(X > x) = exp(—ax?™1), x > 0,

(b) X has the exponential distribution with parameter A,

(c) X has density function af + (1 — «)g, where 0 < @ < 1 and f and g are the densities of
exponential variables with respective parameters A and . What happens to this last hazard rate
r(x) in the limit as x — o0o?

8. Mills’s ratio. For the standard normal density ¢ (x), show that ¢’ (x) + x¢ (x) = 0. Hence show
that

x > 0.

4.5 Dependence

Many interesting probabilistic statements about a pair X, Y of variables concern the way X
and Y vary together as functions on the same domain .

(1) Definition. The joint distribution function of X and Y is the function F : R? — [0, 1]
given by
Fx,)=PX =x, Y £).

If X and Y are continuous then we cannot talk of their joint mass function (see Definition
(3.6.2)) since this is identically zero. Instead we need another density function.

(2) Definition, The random variables X and Y are (jointly) continuous with joint (proba-
bility) density function f : R? — [0, 00) if

y x
F(x,y) = / f flu,v)dudv foreachx,y € R.
=00 o Pz OQ

If F is sufficiently differentiable at the point (x, y), then we usually specify

2

dxdy

flx,y)= F(x,y).

The properties of joint distribution and density functions are very much the same as those of
the corresponding functions of a single variable, and the reader is left to find them. We note
the following facts. Let X and Y have joint distribution function F and joint density function
f- (Sometimes we write Fx y and fx, y to stress the roles of X and Y.)

(3) Probabilities.
P(QSXEZ?, chgd):F(b,d)—F(a,d)—F(b,c)+F(a,c)

d b
=/ (e, y) dx dy.
Yy

=c vx=a
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Think of f(x, y) dxdy as the element of probability P(x < X < x+dx, y <Y < y+dy),

so that if B is a sufficiently nice subset of R? (such as a rectangle or a union of rectangles and
so on) then

@) P((X,Y) € B) =//B flx,y)dxdy.

We can think of (X, Y) as a point chosen randomly from the plane; then IP’((X, Y)e B) is the
probability that the outcome of this random choice lies in the subset B.

(5) Marginal distributions. The marginal distribution functions of X and Y are
Fx(x) =P(X < x) = F(x, 00), Fy(y) =P(Y < y) = F(o0,y),

where F(x, 00) is shorthand for limy_, o, F(x, y); now,

Fk(X)=t[;Q</j:f(m)0dy)du

and it follows that the marginal density function of X is

fﬂn=/ £ y) dy.

Similarly, the marginal density function of Y is

ﬁ®=/ Flx, y) dx.

(6) Expectation. If ¢ : R> — R is a sufficiently nice function (see the proof of Theorem
(4.2.3) for an idea of what this means) then

MAKYD=/0t/ g, ) F(x, ) dx dy;

in particular, setting g(x, y) = ax + by,

E(aX +bY) = aEX + DEY.

(7) Independence. The random variables X and Y are independent if and only if
F(x,y) = Fx(x)Fy(y) forall x,yeR,
which, for continuous random variables, is equivalent to requiring that

flx,y)= fx) fr»
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whenever F is differentiable at (x, y) (see Problem (4.14.6) also) where f, fx, fy are taken
to be the appropriate derivatives of F, Fx and Fy.

(8) Example. Buffon’s needle. A planeisruled by thelinesy =n(n =0,+1,+2,...)and
aneedle of unit length is cast randomly on to the plane. What is the probability that it intersects
some line? We suppose that the needle shows no preference for position or direction.
Solution. Let (X, Y) be the coordinates of the centre of the needle and let ® be the angle,
modulo 7, made by the needle and the x-axis. Denote the distance from the needle’s centre
and the nearest line beneath itby Z = Y — | Y|, where | Y | is the greatest integer not greater
than Y. We need to interpret the statement ‘aneedle is cast randomly’, and do this by assuming
that:

(a) Z is uniformly distributed on [0, 1], so that fz(z) =1if0 <z <1,

(b) ® is uniformly distributed on [0, ], so that fe () =1/mwif0 <6 <,

(c) Z and © are independent, so that fz ¢(z,0) = fz(z) fo(0).
Thus the pair Z, ® has joint density function f(z,0) = 1/m for0 <z < 1,0 <6 < &. Draw
adiagram to see that an intersection occurs if and only if (Z, ®) € B where B < [0, 1]x [0, ]
is given by

B={(z,0):z<sinforl—z< lsing}.

Hence

1 11 %sin@ 1 2
P(intersection) = // f(z,0)dzdo = —/ / dz +/ dz |df = —.
B T Jo 0 1-1sing T

Buffont designed the experiment in order to estimate the numerical value of . Try it if you
have time. L

(9) Example. Bivariate normal distribution. Let f : R> — R be given by

(10) flx,y) =

(x% = 2p0xy + y2))

1 1
exp| —
271 — p? ( 2(1 —p?)

where p is a constant satisfying —1 < p < 1. Check that f is a joint density function by
verifying that

fx,y»)=0, / / flx,y)dxdy =1;

f is called the standard bivariate normaldensity function of some pair X and Y. Calculation ot
its marginals shows that X and Y are N (0, 1) variables (exercise). Furthermore, the covarianc.

cov(X,Y) = E(XY) — E(X)E(Y)
is given by

x x
cov(X, Y):/ / xyf(x,y)ydxdy = p;
—00 J —00

tGeorges LeClerc, Comte de Buffon. In 1777 he investigated the St Petersburg problem by flipping a coi:
2084 times, perhaps the first recorded example of a Monte Carlo method in use.
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you should check this. Remember that independent variables are uncorrelated, but the converse
is not true in general. In this case, however, if p = 0 then

1 1.2 1 1,2
flx,y)= (EG_EX ) <me_5y ) = fxx) fr(»)

and so X and Y are independent. We reach the following important conclusion. Standard
bivariate normal variables are independent if and only if they are uncorrelated.

The general bivariate normal distribution is more complicated. We say that the pair X, Y has
the bivariate normal distribution with means ] and p, variances 012 and 022, and correlation

p if their joint density function is

fx,y) = exp[—5Q(x, )]

1
20100y 1 — p?

where o1, 0o > 0 and Q is the following quadratic form

2 2
Ox. 5) = 1 : <x—m> _2p<x—u1><y—uz>+<w> .
(1 —p%) o] g1 02 %)

Routine integrations (exercise) show that:
(@) Xis N(ui,0f) and Y is N(uz, 03),
(b) the correlation between X and Y is p,
(c) X andY are independent if and only if p = 0.
Finally, here is a hint about calculating integrals associated with normal density functions.
It is an analytical exercise (Problem (4.11.1)) to show that

[o,0]
/ 3 dx = 27
—0Q

and hence that
2

1 1,
fx)= me

is indeed a density function. Similarly, a change of variables in the integral shows that the

more general function
1 1 /x—u\?
(x) = exp| —— ( )
f o2 P |: 2 o

is itself a density function. This knowledge can often be used to shorten calculations. For
example, let X and Y have joint density function given by (10). By completing the square in
the exponent of the integrand, we see that

cov(X. Y) = / / xyf (x, y) dx dy

Z/lez_ne—%YQ (/xg(x,y)dx) dy
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where

e L e (JM)
B = i P\ 2=

is the density function of the N(py, 1 — p?) distribution. Therefore [ xg(x, y) dx is the mean,
py, of this distribution, giving

cov(X,Y)=p | y? ! em3Y’ dy

' V2 ’
However, the integral here is, in turn, the variance of the N (0, 1) distribution, and we deduce
that cov(X, Y) = p, as was asserted previously. ]

(11) Example. Here is another example of how to manipulate density functions. Let X and
Y have joint density function

1
f(x,y)=—exr><—y—f>, 0<x,y <00
y y

Find the marginal density function of Y.
Solution. We have that

fy(y)=/oof(x,y)dx=/oole><p<—y—£> dx =e7?, y>0,
—00 o Yy y

and hence Y is exponentially distributed. o

Following the final paragraph of Section 4.3, we should note that the expectation operator
[E has similar properties when applied to a family of continuous variables as when applied to
discrete variables. Consider just one example of this.

(12) Theorem. Cauchy-Schwarz inequality. For any pair X, Y of jointly continuous vari-
ables, we have that
EX) < EXDET?),

with equality if and only if P(aX = bY) = 1 for some real a and b, at least one of which is
non-zero.

Proof. Exactly as for Theorem (3.6.9). | |

Exercises for Section 4.5

1. Let N
x
f(x,y):——\/g_;exp{—m—%xzyz}, x,yeR.

Show that f is a continuous joint density function, but that the (first) marginal density function
glx) = f‘_’ooo f{x, y)dy is not continuous. Let Q = {g, : n > 1} be a set of real numbers, and define

foG, ) =" f&x —qn, ).

n=1
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Show that fg is a continuous joint density function whose first marginal density function is discon-
tinuous at the points in Q. Can you construct a continuous joint density function whose first marginal
density function is continuous nowhere?

2. Buffon’s needle revisited. Two grids of parallel lines are superimposed: the first grid contains
lines distance a apart, and the second contains lines distance b apart which are perpendicular to those
of the first set. A needle of length r (< min{a, b}) is dropped at random. Show that the probability it
intersects a line equals 7 (2a + 2b — r)/(;ab).

3. Buffon’s cross. The plane is ruled by the lines y = n, forn = 0, =1, ..., and on to this plane
we drop a cross formed by welding together two unit needles perpendicularly at their midpoints. Let
Z be the number of intersections of the cross with the grid of parallel lines. Show that E(Z/2) =2/n
and that

var(Z/2) = i_nﬁ - i

If you had the choice of using either a needle of unit length, or the cross, in estimating 2/, which
would you use?

4. Let X and Y be independent random variables each having the uniform distribution on [0, 1]. Let
U = min{X, Y} and V = max{X, ¥'}. Find E(U/), and hence calculate cov(U, V).

5. Let X and ¥ be independent continuous random variables. Show that

E(g(X)h(Y)) = E(g(X)EH(Y)),

whenever these expectations exist. If X and ¥ have the exponential distribution with parameter 1, find
E{exp(} (X +Y))}.

6. Three points A, B, C are chosen independently at random on the circumference of a circle. Let
b(x) be the probability that at least one of the angles of the triangle ABC exceeds x7. Show that

1

IA

1-CBx =12 if
b(x) = ) )
3(1—x) if

= N—

X
X

Rol— W
IA
IA

Hence find the density and expectation of the largest angle in the triangle.

7. Let{X,:1 <r < n}beindependent and identically distributed with finite variance, and define
X =n"'3"_, X,. Show that cov(X, X, — X) = 0.

8. Let X and ¥ be independent random variables with finite variances, and let U = X + Y and
V = XY. Under what condition are I/ and V uncorrelated?

9. Let X and Y be independent continuous random variables, and let U be independent of X and Y
taking the values 31 with probability % Define S = UX and T = UY. Show that S and T are in

general dependent, but S 2 and T? are independent.
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4.6 Conditional distributions and conditional expectation

Suppose that X and Y have joint density function f. We wish to discuss the conditional
distribution of Y given that X takes the value x. However, the probability P(Y <y | X = x)
is undefined since (see Definition (1.4.1)) we may only condition on events which have strictly
positive probability. We proceed as follows. If fx(x) > 0 then, by equation (4.5.4),

PY <y, x<X<x+dx)
P(x < X <x+dx)
Y fx,v)dxdv

V=—00

fx(x)dx
y
_ / fov)
v=—o0 Jx(X)
Asdx | 0, the left-hand side of this equation approaches our intuitive notion of the probability
that ¥ < y given that X = x, and it is appropriate to make the following definition.

P(Y§y|x§X§x+dx)=

(1) Definition. The conditional distribution function of ¥ given X = x is the function
Fyix (- | x) given by
7 fxv)
et dy
oo fx(x)

for any x such that fx(x) > 0. It is sometimes denoted P(Y < y | X = x).

Fyix(y | x) =

Remembering that distribution functions are integrals of density functions, we are led to
the following definition.

(2) Definition. The conditional density function of Fyy, written fr|x, is given by

flx, )

frx{ylx) = ) )
for any x such that fx(x) > 0.

Of course, fx(x) = [ f(x,y)dy, and therefore

fx,y)
[0, fx,ydy

Definition (2) is easily remembered as fy|x = fx,y/fx. Here is an example of a conditional
density function in action.

Srix(y 1 x)=

(3) Example. Let X and Y have joint density function
1
fX,Y(xsy):_v OS}’Exﬁl
x
Show for yourself (exercise) that

1
fxx)y=1 1if 0=<x <1, frixGlx)y=—- if 0=sy=<x=<l,
x
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which is to say that X is uniformly distributed on [0, 1] and, conditional on the event {X = x},

Y is uniform on [0, x]. In order to calculate probabilities such as P(X%? + ¥? < 1| X = x),
say, we proceed as follows. If x > 0, define

A(x):{ye]R:OgyEx, x2+y2§1};
clearly A(x) = [0, min{x, v/1 — x2}]. Also,
P(X*+Y><1|X=1x) =/ frix(y [ x)dy
A(x)

= lmin{x, V1—x2} =min{l,vVx2—1}.
X

Next, let us calculate P(X> + Y2 < 1). Let A = {(x,») : 0 <y <x <1, x> +y* < 1}.
Then
@ P+ ¥2 < 1) =// fry (c,y) dxdy

A

1
=/ fx(X)/ Frix(y | x) dydx
x=0 yeA(x)

1
=/ min{l,\/x—z—l}dx:log(l+«/§). )
0

From Definitions (1) and (2) it is easy to see that the conditional expectation of Y given X
can be defined as in Section 3.7 by E(Y | X) = ¥ (X) where

oo

x/f(x>=E<Y|X=x>=/ frix( | 0 dy:

once again, E(Y | X) has the following important property

(5) Theorem, The conditional expectation r(X) = E( | X) satisfies

B(y (X)) = E(Y).

We shall use this result repeatedly; it is normally written as E(E(Y | X)) = E(Y), and it
provides a useful method for calculating E(Y) since it asserts that

[o0)

E(Y) = / EY | X =x)fx(x)dx.
-0

The proof of (5) proceeds exactly as for discrete variables (see Theorem (3.7.4)); indeed the

theorem holds for all pairs of random variables, regardless of their types. For example, in

the special case when X is continuous and Y is the discrete random variable /g, the indicator

function of an event B, the theorem asserts that

oo

© P(B) = E() (X)) = / BB | X = x) fx (x) dx,

—00
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of which equation (4) may be seen as an application.
(7) Example. Let X and Y have the standard bivariate normal distribution of Example (4.5.9).
Then 5
1 (y —px)
frix( 1 x) = fxr(x,y)/fx(x) = exp (—
| V(- ) 20— %)

is the density function of the N(px, 1 — p?) distribution. Thus E(Y | X = x) = px, giving
that E(Y | X) = pX. ®

(8) Example. Continuousand discrete variables have mean values, but what can we say about
variables which are neither continuous nor discrete, such as X in Example (2.3.5)? In that
example, let A be the event that a tail turns up. Then
E(X) = E(E(X | 1))

=EX [Ia=DPUa=1)+EX |14 =0)P(s=0)

= E(X | tail)P(tail) + E(X | head)P(head)

=—-l-g+m-p=np—gq
since X is uniformly distributed on [0, 2] if a head turns up. ®
(9) Example (3) revisited. Suppose, in the notation of Example (3), that we wish to calculate
E(Y). By Theorem (5),

1 1
E(Y) =/ E(Y | X = x) fx(x)dx =/ Ixdx =
0 0
since, conditional on {X = x}, Y is uniformly distributed on [0, x]. o
There is a more general version of Theorem (5) which will be of interest later.

(10) Theorem. The conditional expectation y(X) = E(Y | X) satisfies
amn E(y(X)g(X)) = E(Yg(X))

for any function g for which both expectations exist.

As in Section 3.7, we recapture Theorem (5) by setting g(x) = 1 for all x. We omit the
proof, which is an elementary exercise. Conclusion (11) may be taken as a definition of the
conditional expectation of Y given X, that is as a function ¥ (X) such that (11) holds for all
appropriate functions g. We shall return to this discussion in later chapters.

Exercises for Section 4.6

1. A point is picked uniformly at random on the surface of a unit sphere. Writing ® and & for its
longitude and latitude, find the conditional density functions of ® given &, and of P given ©.

2. Show that the conditional expectation v (X) = E(Y | X) satisfies E(y/ (X)g (X)) = E(Yg(X)),
for any function g for which both expectations exist.

3. Construct an example of two random variables X and ¥ for which E(Y) = oo but such that
E(Y | X) < oo almost surely.
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4. Find the conditional density function and expectation of ¥ given X when they have joint density
function:

@) f(x,y)=A2e Mfor0<x<y< oo,

(b) flx,y)=xe*O*tDforx,y > 0.

5. Let Y be distributed as bin(n, X), where X is a random variable having a beta distribution on
[0, 17 with parameters a and b. Describe the distribution of ¥, and find its mean and variance. What
is the distribution of ¥ in the special case when X is uniform?

6. Let{X, :r > 1} be independent and uniformly distributed on [0, 1]. Let 0 < x < 1 and define
N=minfn>1:X;+ X3+ ---+ Xn > x}.

Show that P(N > n) = x"/n!, and hence find the mean and variance of N.
7. Let X and Y be random variables with correlation p. Show that E(var(¥Y | X)) < (1 — p2) varY.

8. LetX,Y, Z beindependent and exponential random variables with respective parameters X, i, v.
Find P(X <Y < 2Z2).

9. Let X and Y have the joint density f(x,y) =cx(y —x)e Y, 0<x <y < c0.
(a) Find c.
(b) Show that:

iyl y)=6x(y —x)y™>, 0<x<y,

frix(y 1 x) =@ —x)e7, 0<x<y<oo.

(c) Deduce that E(X | ¥) = LY and E(Y | X) = X + 2.

10. Let {X, : r > 0} be independent and identically distributed random variables with density
function f and distribution function F. Let N = min{n > 1 : X, > Xg}and M = min{n > 1 :
Xo> X1 >---> X, | < X,}. Show that X  has distribution function F + (1 — F)log(l — F),
and find P(M = m).

4.7 Functions of random variables

Let X be a random variable with density function f, and let g : R — R be a sufficiently nice
function (in the sense of the discussion after Theorem (4.2.3)). Then y = g(X) is a random
variable also. In order to calculate the distribution of Y, we proceed thust:

PY <y)=P(g(X) <y)=P(g(X) € (00, y])

=P(X e g (~00,y]) = / f(x)dx.

8 (—o0,y]
Example (2.3.4) contains an instance of this calculation, when g(x) = x2.

(1) Example. Let X be N(0, 1) and let g(x) = x?. Then Y = g(X) = X? has distribution
function

P(Y <y)=P(X* <y) =P(—/y <X <./3)
= <b(ﬁ) — <b(—ﬁ) = 2<b(ﬁ) -1 ify>0,

1If A C R then g_IA ={xeR:gx)e A}
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by the fact that &(x) = 1 — &(—x). Differentiate to obtain

1 1
—= V() = —=e
2n

d
=2—& =
i) =200 = N

for y > 0. Compare with Example (4.4.6) to see that X 2 is F(%, %), or chi-squared with one
degree of freedom. See Problem (4.14.12) also. ®

(2) Example. Let g(x) = ax + b for fixed a,b € R. Then Y = g(X) = aX + b has
distribution function

P(X < (y —b)/a) ifa>0,

]P(YSy)ZP(aX+b5y):{P(Xz(y_b)/a) ifa < 0.

Differentiate to obtain fy(y) = |a|™! fx((y — b)/a). )

More generally, if X and X, have joint density function f, and g, & are functions mapping
R? to R, then what is the joint density function of the pair Y1 = g(X1, X2), Y2 = h(X|, X2)?
Recall how to change variables within an integral. Let y; = yi(x(, x2), y2 = y2(x1, x2)
be a one—one mapping 7 : (x1,x2) +— (y1, y2) taking some domain D C R? onto some
range R C RZ. The transformation can be inverted as x; = x1(y1, y2), x2 = x2(y1, y2); the
Jacobiant of this inverse is defined to be the determinant

dx1 0x2
go| P | _dmdn dndn
dx; 0xy ayy 0yz ayz 0y
ay: oy
which we express as a function J = J(y1, y2). We assume that these partial derivatives are
continuous.

(3) Theorem. If g : R? — R, and T maps the set A C D onto the set B C R then

/f ¢ Ce1, x2) dxy dx = /f g (1101, 32 21 ) G, y2)l dyn dya.
A B

(4) Corollary, If X, X3 have joint density function f, then the pair Y1, Yy given by (Y1, ¥p) =
T{(X1, X3) has joint density function

F(E1O1 ¥2), 2201, YN G, Y2l i (31, ¥2) is in the range of T,
0 otherwise.

friy,(, ) = {

A similar result holds for mappings of R” into R". This technique is sometimes referred
to as the method of change of variables.

tIntroduced by Cauchy (1815) ahead of Jacobi (1841), the nomenclature conforming to Stigler’s law.
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Proof of Corollary. Let A € D, B C R be typical sets such that T(A) = B. Then
(X1, X3) € Aifand only if (Y1, Y2) € B. Thus

P((Y], ) € B) = P((X], Xo) € A) = ///; fx1, x2)dx1dxs
://B F(x1 G, y2), 201, Y)Y 1, y2) | dy1 dyz

by Example (4.5.4) and Theorem (3). Compare this with the definition of the joint density
function of Y| and Y>,

P((Y1,Y2) € B) = //B fri.v,(01, y2) dy1 dy,  for suitable sets B C R?,
to obtain the result. [ |
(5) Example. Suppose that
X1 =aY| +bYs, Xy=cY+dYs,
where ad — bc # 0. Check that
fri, v, (01, y2) = lad — bel fx, x, @y + byz, ey1 +dy2). ®

(6) Example. If X and Y have joint density function f, show that the density function of
U=XYis

x>
fut) = [ flroupolxidx,
—0o0
Solution. Let 7 map (x, y) to (u, v) by
u=xy, v =x.

The inverse 7! maps (u, v) to (x, y) by x = v, y = u/v, and the Jacobian is

ox dy
du  du 1
T, v) = ou Ou __L
dx Jy v
dv v
Thus fy.v u,v) = f(v, u/v)|v|~!. Integrate over v to obtain the result. o

(7) Example. Let X; and X, be independent exponential variables, parameter A. Find the
joint density function of

Y1 = X1+ Xo, Y2 = X1/ Xo,

and show that they are independent.
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Solution. Let T map (x1, x2) to (y1, y2) by
y1 = x1+ x2, Y2 = x1/x2, x1,x2,¥1,y2>0.
The inverse 7! maps (y1, y2) to (x1, x2) by

x1 = y1y2/(1 + y2), x2=y1/(1+y2)

and the Jacobian is
TO1, y2) = —y1/(1+ )2,
giving
B21

Jri (1 y2) = fxy x, (viya/ (L4 y2), y1/(1 + yz))m.

However, X and X, are independent and exponential, so that

Fxoxa (01, 22) = fx, (01) fx, (x2) = A2e 252 if xy x5 >0,

whence
A2e My
. OLY2)=—"= if y,»2>0
Jriry 1+ y)?
is the joint density function of Y7 and Y,. However,
1

le,Yz 1, y2) = [)\ZYIe_Ayl]m

factorizes as the product of a function of y; and a function of y;; therefore, by Problem
(4.14.6), they are independent. Suitable normalization of the functions in this product gives

—Ay1 1
SO = )\2)’16 by s Jr.(y2) = m ®

(8) Example. Let X and X7 be given by the previous example and let
X=X, S=X1+Xo.
By Corollary (4), X and S have joint density function
f(x,s)= AZe™ if 0<x <s.

This may look like the product of a function of x with a function of s, implying that X and S
are independent; a glance at the domain of f shows this to be false. Suppose we know that
S = 5. What now is the conditional distribution of X, given S = s?

Solution.

]P’(sz|S=s)=/ fu, s)du// f(u,s)du

x)LZ —As

= — = — 1f O<x<s
2,—As

sh=e S
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Therefore, conditional on S = s, the random variable X is uniformly distributed on [0, s].
This result, and its later generalization, is of great interest to statisticians. o

(9) Example. A warning. Let X and X, be independent exponential variables (as in Ex-
amples (7) and (8)). What is the conditional density function of X1 + X7 given X1 = X;?
‘Solution’ 1. LetY; = X1+ Xp and ¥» = X1/ X2. Now X1 = X if and only if Y» = 1.
We have from (7) that ¥ and Y» are independent, and it follows that the conditional density
function of Y7 is its marginal density function

(10) fri1) = A2ye ™ for y; > 0.

‘Solution’ 2. Let Yy = X; + Xp and Y3 = X; — Xp. It is an exercise to show that
SrivsOn,y3) = %Aze_kyl for |y3] < yi, and therefore the conditional density function
of Y1 given Y3 is

FrovsO1 | y3) = e 200730 for |y < yp.

Now X1 = X» ifand only if Y3 = 0, and the required conditional density function is therefore
(11) fravsO110) = xe™* for y; > 0.

Something is wrong: (10) and (11) are different. The error derives from the original ques-
tion: what does it mean to condition on the event {X| = X}, an event having probability 0?7
As we have seen, the answer depends upon how we do the conditioning—one cannot condition
on such events quite so blithely as one may on events having strictly positive probability. In
Solution 1, we are essentially conditioning on the event {X| < X» < (1 + )X} for small 4,
whereas in Solution 2 we are conditioning on {X| < X» < X1 + A}; these two events contain
different sets of information. L

(12) Example. Bivariate normal distribution. Let X and Y be independent random vari-
ables each having the normal distribution wth mean 0 and variance 1. Define

13) U=0X,

14 V =0pX 4+ 024/1 — p?Y.

where 01,02 > 0and [p| < 1. By Corollary (4), the pair U, V has joint density function

(15) flu,v) = exp[—3Qu, v)]

1
201004/ 1 — p?

o= () () () ()]

We deduce that the pair U, V has a bivariate normal distribution.
This fact may be used to derive many properties of the bivariate normal distribution without
having recourse to unpleasant integrations. For example, we have that

where

E(UV) = 0102{pB(X?) + /1 — p?E(XY)} = 01020,
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whence the correlation coefficient of U and V equals p.
Here is a second example. Conditional on the event {U/ = u}, we have that

o
V=—2—'0u+02Y‘/1—,02.
o1

Hence E(V | U) = (o2p/01)U, and var(V | U) = o2(1 — p?). o

The technology above is satisfactory when the change of variables is one—one, buta problem
can arise if the transformation is many—one. The simplest examples arise of course for one-
dimensional transformations. For example, if y = x? then the associated transformation
T : x + x? is notone—one, since it loses the sign of x. Itis easy to deal with this complication
for transformations which are piecewise one—one (and sufficiently smooth). For example, the
above transformation 7" maps (—oo, 0) smoothly onto (0, co) and similarly for [0, co): there
are two contributions to the density functionof ¥ = X 2 one from each of the intervals (—00,0)
and [0, co). Arguing similarly but more generally, one arrives at the following conclusion, the
proof of which is left as an exercise.

Let I1, I, . .., I, be intervals which partition R (it is not important whether or not these
intervals contain their endpoints), and suppose that ¥ = g(x) where g is strictly monotone
and continuously differentiable on every I;. For each i, the function g : I; — R is invertible
on g(I;), and we write k; for the inverse function. Then

(16) o)=Y fxhi(y)Ih ()l
i=1

with the convention that the ith summand is O if &; is not defined at y. There is a natural
extension of this formula to transformations in two and more dimensions.

Exercises for Section 4.7

1. LetX,Y,and Z beindependent and uniformly distributed on [0, 1]. Find the joint density function
of XY and Zz, and show that P(XY < Zz) = %

2. Let X and Y be independent exponential random variables with parameter 1. Find the joint density
functionof U = X + Y and V = X /(X + Y), and deduce that V is uniformly distributed on [0, 1].

3. Let X be uniformly distributed on [0, %n]. Find the density function of ¥ = sin X.

4. Find the density function of ¥ = sin~! X when:
(a) X is uniformly distributed on [0, 1],
(b) X is uniformly distributed on [—1, 1].

5. Let X and Y have the bivariate normal density function

S, y)y= (x2—2pxy+y2)}.

1
exp {—
2m/1— p? 2(1 — p?)
Show that X and Z = (¥ — pX)/+/1 — p? are independent N (0, 1) variables, and deduce that

1 1
P(X >0, Y>0)=-+—sin"!p.
4 27
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6. Let X and Y have the standard bivariate normal density function of Exercise (5), and define
Z = max{X, ¥}. Show that E(Z) = /(1 = p)/7, and E(Z?) = 1.

7. Let X and Y be independent exponential random variables with parameters 2 and . Show that
Z = min{X, Y} is independent of the event {X < Y}. Find:

(@) P(X = 2),

(b) the distributions of U = max{X — ¥, 0}, denoted (X — ¥)*, and V = max{X, Y} — min{X, Y},
() P(X <t < X+ Y)wheret > 0.

8. A point (X, Y) is picked at random uniformly in the unit circle. Find the joint density of R and
X, where R?=x?47?

9. Apoint (X, ¥, Z) is picked uniformly at random inside the unit ball of R3. Find the joint density
of Z and R, where R? = X2 + Y2 + 72

10. Let X and Y be independent and exponentially distributed with parameters X and p. Find the
joint distribution of S = X + Y and R = X /(X + Y). What is the density of R?

11. Find the density of ¥ = a/(1 + X?), where X has the Cauchy distribution.
12. Let (X, Y) have the bivariate normal density of Exercise (5) with 0 < p < 1. Show that
pp (D)1 — P(d)]

-2@N -2} =P(X >a, Y >b) <[l - 2@l - )]+ v

where ¢ = (b — pa)/\/1 — p%,d = (a — pb)//1 — p?, and ¢ and @ are the density and distribution
function of the N (0, 1) distribution.

13. Let X have the Cauchy distribution. Show that ¥ = X~ has the Cauchy distribution also. Find
another non-trivial distribution with this property of invariance.

14. Let X and Y be independent and gamma distributed as I'(%, &), I' (A, ) respectively. Show that
W = X+Yand Z = X/(X +7) are independent, and that Z has the beta distribution with parameters

a, B.

4.8 Sums of random variables

This section contains an important result which is a very simple application of the change of
variable technique.

(1) Theorem. If X and Y have joint density function f then X + Y has density function

fx+y(z)=/ flx,z —x)dx.

Proof. Let A = {(x,y) : x +y <z}. Then

P(X—{-Yfz):// f(u,v)dudv:/Oo /Z—“ dvdu
A u=—00 Ju=—co

:/OO /Z fx,y —x)dydx
x=—00J y=—00

by the substitution x = u, y = v + u. Reverse the order of integration to obtain the result. Bl
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H X and Y are independent, the result becomes

o]

oQ
Frar@ = [ Fr) friz - x)dx = [ frz =y fr()dy.

The function fy.y is called the convolution of fx and fy, and is written

(2 fxar = fx * fr.

(3) Example. Let X and Y be independent N(0, 1) variables. Then Z = X + Y has density
function

" exp[x? — L — )2
p[ 37X 7@z )C)]dx

fz@)

:g_oo
1 1.2

1 12 [
= _——e 3° / e 2V dv
2w —o0 V21

by the substitution v = (x — %z)«/ﬁ. Therefore,

f2) = e ¥
= 4
z\Z Zﬁe ,
showing that Z is N(0, 2). More generally, if X is N(u1, 012) and Y is N(u2, 022), and X and
Y are independent, then Z = X + Y is N(u1 + p2, 612 + 0’22). You should check this. ®

(4) Example (4.6.3) revisited. You must take great care in applying (1) when the domain of
f depends on x and y. For example, in the notation of Example (4.6.3),

1
fX+Y(Z)=/ Yax, o0<z=<2,
Ax

where A={x:0<z—x<x<l1}= [%z, min{z, 1}]. Thus

log2 0<z<1,

Py @ = { log2/z) 1<z<2.

(5) Example. Bivariate normal distribution. It is required to calculate the distribution of
the linear combination Z = qU’ + bV’ where the pair U’, V’ has the bivariate normal density
function of equation (4.7.15). Let X and Y be independent random variables, each having
the normal distribution with mean 0 and variance 1, and let U and V be given by equations
(4.7.13) and (4.7.14). It follows from the result of that example that the pairs (U, V) and
(U’, V') have the same joint distribution. Therefore Z has the same distribution as aU + bV,
which equals (@0 +bao2p) X +bo2Y+/1 — p?. The distribution of the last sum is easily found
by the method of Example (3) to be N (0, 02012 + 2aboiozp0 + b2022). ®
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Exercises for Section 4.8

1. Let X and Y be independent variables having the exponential distribution with parameters A and

1 respectively. Find the density function of X + Y.

2. Let X and Y be independent variables with the Cauchy distribution. Find the density function of

aX + BY where af # 0. (Do you know about contour integration?)

3. Find the density function of Z = X 4+ Y when X and Y have joint density function f(x, y) =

%(x +y)e ) x y > 0.

4. Hypoexponential distribution. Let {X, : r > 1} be independent exponential random variables

with respective parameters {%, : r > 1} no two of which are equal. Find the density function of

Sp =37, X,. [Hint: Use induction.]

5. (a)Let X, Y, Z be independent and uniformly distributed on [0, 1]. Find the density function of
X+Y+Z

(b) If {X, : r > 1} are independent and uniformly distributed on [0, 1], show that the density of
>or_| X, atany point x € (0, n) is a polynomial in x of degree n — 1.

6. For independent identically distributed random variables X and Y, show that U = X 4+ Y and

V = X — Y are uncorrelated but not necessarily independent. Show that U and V are independent if

X and Y are N(0, 1).

7. Let X and Y have a bivariate normal density with zero means, variances o
0. Show that:

(@ E(X|Y)= ”—}Y,

(b) var(X | ¥) =o%(1 - p?),
(0% + pot)z
0?4+ 2p01 + 12’
o212(1 = p?)
2 + 2007 + o2’
8. Let X and Y be independent N (0, 1) random variables, and let Z = X 4 Y. Find the distribution
and density of Z given that X > O and Y > 0. Show that

E(Z|X>0,Y>0)=2/2/7.

2, 1'2, and correlation

© EX|X+Y=z2)=

d var(X | X+Y =2) =

4.9 Multivariate normal distribution

The centerpiece of the normal density function is the function exp(—x2), and of the bivariate
normal density function the function exp(—x? — bxy — y?) for suitable b. Both cases feature
a quadratic in the exponent, and there is a natural generalization to functions of n variables
which is of great value in statistics. Roughly speaking, we say that X;, X2, ..., X, have the
multivariate normal distribution if their joint density function is obtained by ‘rescaling’ the
function exp(— ¥, x? —2 i bijx;x;j) of the n real variables x, x2, ..., x,. The exponent
here is a ‘quadratic form’, but not all quadratic forms give rise to density function. A quadratic
form is a function @ : R" — R of the form

@€ Qox) = Z ajjxixj = xAx’

1<i,j<n
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where x = (x1, x2, ..., x,), X is the transpose of x, and A = (g;;) is a real symmetric matrix
with non-zero determinant. A well-known theorem about diagonalizing matrices states that
there exists an orthogonal matrix B such that

(2) A = BAB

where A is the diagonal matrix with the eigenvalues Aj, A2, ..., A, of A on its diagonal.
Substitute (2) into (1) to obtain

3) Q) =yAy = > Ay}

where y = xB. The function Q (respectively the matrix A) is called a positive definite
quadratic form (respectively matrix) if Q(x) > 0 for all vectors x having some non-zero
coordinate, and we write Q > O (respectively A > 0) if this holds. From (3), Q > 0 if and
only if A; > O for all i. This is all elementary matrix theory. We are concerned with the
following question: when is the function f : R” — R given by

f(®) = K exp(—30(x)), x € R",

the joint density function of some collection of n random variables? It is necessary and
sufficient that:
(@) f(x) > Oforallx € R”,

(b) fzn f)dX =1,
(this integral is shorthand for [--- [ f(x1, ..., xx) dx1-- - dxn).
It is clear that (a) holds whenever K > 0. Next we investigate (b). First note that ) must be
positive definite, since otherwise f has an infinite integral. If @ > 0,

/ f(x)dx=/ K exp(—3Q (%)) dx
R” R

=/ KeXP(-%E Kiyiz)dy
R" .
1

by (4.7.3) and (3), since |J| = 1 for orthogonal transformations
oo
=K H/ exp(—34i ) dyi
;v —00
I

= K/Q2r)"/(uarg - dn) = K/ 210)7/|A]

where |A| denotes the determinant of A. Hence (b) holds whenever K = /(2w) "|A|.
We have seen that

Al

oy exp(—%xAx’), x € R,

fx) =

is a joint density function if and only if A is positive definite. Suppose that A > 0 and that
X = (X1, X2, ..., X,) is a sequence of variables with joint density function f. It is easy
to see that each X; has zero mean; just note that f(x) = f(—x), and so (X1,..., X,) and
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(—X1, ..., —X},) are identically distributed random vectors; however, E|X;| < oo and so
E(X;) = E(—X;), giving E(X;) = 0. The vector X is said to have the multivariate normal
distribution with zero means. More generally, if Y = (¥, Y,, ..., ¥,) is given by

Y=X+u

for some vector g = (i1, 2, ..., in) of constants, then Y is said to have the multivariate
normal distribution.

(4) Definition. The vector X = (X1, X», ..., X,) has the multivariate normal distribution
(or multinormal distribution), written N (g, V), if its joint density function is

fx) = exp[—3(x—mV'x—p)], xeR",

1
V@)V
where V is a positive definite symmetric matrix.

We have replaced A by V™! in this definition. The reason for this lies in part (b) of the
following theorem.

(5) Theorem. If X is N(i, V) then
(@) EX) = u, which is to say that B(X;) = u; foralli,
(b) V = (vij) is called the covariance matrix, because v;j = cov(X;, X;).

Proof. Part (a) follows by the argument before (4). Part (b) may be proved by performing
an elementary integration, and more elegantly by the forthcoming method of characteristic
functions; see Example (5.8.6). |

We often write
V=E(X-p)X-pn)
since (X — p)'(X — p) is a matrix with (i, j)th entry (X; — ui)(X; — u)).
A very important property of this distribution is its invariance of type under linear changes

of variables.

(6) Theorem. If X = (X1, Xs,..., X)) is NO,VYand Y = (Y1,Ys, ..., Yy) is given by
Y = XD for some matrix D of rankm < n, then'Y is N(0, D'VD).

Proof when m = n. The mapping 7' : x — y = xD is a non-singular and can be inverted as
T~ :y+> x = yD~!. Use this change of variables in Theorem (4.7.3) to show that, if A,
B C R" and B = T(A), then

P(Y ¢ B) = / fx)dx = exp(—%xV‘lx') dx
A

1

/A 2m)"|V|
1 y

= fB T exp(—2yW™ly)) dy

where W = D’VD as required. The proof for values of m strictly smaller than n is more
difficult and is omitted (but see Kingman and Taylor 1966, p. 372). u

A similar result holds for linear transformations of N{(u, V) variables.



118 4.9  Continuous random variables

There are various (essentially equivalent) ways of defining the multivariate normal distri-
bution, of which the above way is perhaps neither the neatest nor the most useful. Here is
another.

(7) Definition. The vector X = (X, X», ..., X,,) of random variables is said to have the
multivariate normal distribution whenever, for all a € R", the linear combination Xa’' =
a1 X1 +axXs + -+ -+ ay X, has a normal distribution.

That is to say, X is multivariate normal if and only if every linear combination of the
X; is univariate normal. It often easier to work with this definition, which differs in one
important respect from the earlier one. Using (6), it is easy to see that vectors X satisfying
(4) also satisfy (7). Definition (7) is, however, slightly more general than (4) as the following
indicates. Suppose that X satisfies (7), and in addition there existsa € R” and » € R such that
a # 0 and P(Xa’ = b) = 1, which is to say that the X; are linearly related; in this case there
are strictly fewer than n ‘degrees of freedom’ in the vector X, and we say that X has a singular
multivariate normal distribution. It may be shown (see Exercise (5.8.6)) that, if X satisfies (7)
and in addition its distribution is non-singular, then X satisfies (4) for appropriate g and V.
The singular case is, however, not covered by (4). If (8) holds, then 0 = var(Xa’) = aVa’,
where V is the covariance matrix of X. Hence V is a singular matrix, and therefore possesses
no inverse. In particular, Definition (4) cannot apply.

Exercises for Section 4.9

1. A symmetric matrix is called non-negative (respectively positive) definite if its eigenvalues are
non-negative (respectively strictly positive). Show that a non-negative definite symmetric matrix V
has a square root, in that there exists a symmetric matrix W satisfying W2 = V. Show further that W
is non-singular if and only if V is positive definite.

2. If X is a random vector with the N (g, V) distribution where V is non-singular, show that Y =
X - ;L)W_l has the N (0, I distribution, where I is the identity matrix and W is a symmetric matrix
satisfying W2 = V. The random vector Y is said to have the standard multivariate normal distribution.

3. LetX = (Xq, X9, ..., Xn) have the N(u, V) distribution, and show that ¥ = a1 X1 + ar X, +
-+« 4+ an X, has the (univariate) N (u, 02) distribution where

n n
,u:ZailE(Xi), 02:Zal-zvar(Xi)—FZZaiajcov(Xi,Xj).

i=1 i=1 i<j

4. Let X and Y have the bivariate normal distribution with zero means, unit variances, and correlation
p. Find the joint density function of X + ¥ and X — Y, and their marginal density functions.

5. Let X have the N(0, 1) distribution and let @ > 0. Show that the random variable ¥ given by
{ X if|X|<a
Y = ,
-X if|X|>a
has the N(0, 1) distribution, and find an expression for p(a) = cov(X, ¥) in terms of the density
function ¢ of X. Does the pair (X, ¥) have a bivariate normal distribution?

6. Let{Y; : 1 <r < n} beindependent N (0, 1) random variables, and define X; = Z;’zl cirYr,
I <r < n, for constants c;,. Show that

E(Xj | Xp) = ( ——Zz’cfc’; "’) Xp.
r “kr



4.10  Distributions arising from the normal distribution 119

What is var(X; | Xg)?

7. Letthe vector (X, : 1 <r < n) have a multivariate normal distribution with covariance matrix
V = (v;;). Show that, conditional on the event Z'f X, = x, X1 has the N(a, b) distribution where

a=(ps/Dx,b=5(1—p%),and s2 = vy, 12 = 3, vij, p = 3, vit / (st).

8. Let X, Y, and Z have a standard trivariate normal distribution centred at the origin, with zero
means, unit variances, and correlation coefficients p1, py, and p3. Show that

1 1
P(X>0Y>0,Z>0 = 3 + 4—{sin_1 P11+ sin™! P+ sin™! P3}-
T

9. LetX,Y, Z have the standard trivariate normal density of Exercise (8), with p; = p(X, ¥). Show
that

E(Z|X,Y) ={(03 — p1p2)X + (02 — p193)Y }/(1 — pP),
var(Z | X, Y) = {1 = pf — p3 — p2 +2p1p203}/(1 — p}).

4.10 Distributions arising from the normal distribution

This section contains some distributional results which have applications in statistics. The
reader may omit it without prejudicing his or her understanding of the rest of the book.

Statisticians are frequently faced with a collection X1, X5, ..., X,, of random variables
arising from a sequence of experiments. They might be prepared to make a general assumption
about the unknown distribution of these variables without specifying the numerical values
of certain parameters. Commonly they might suppose that X1, X», ..., X, is a collection
of independent N (i, o?) variables for some fixed but unknown values of & and o?; this
assumption is sometimes a very close approximation to reality. They might then proceed to
estimate the values of u and o2 by using functions of X1, X, ..., X,. Forreasons which are
explained in statistics textbooks, they will commonly use the sample mean

- 1<
ng;xi

as a guess at the value of u, and the sample variance?

as a guess at the value of o?; these at least have the property of being ‘unbiased’ in that
E(X) = p and E(S?) = 02 The two quantities X and S? are related in a striking and
important way.

(1) Theorem. If X1, X,, ... are independent N(u, ) variables then X and §* are inde-
pendent. We have that X is N(u, 0% /n) and (n — 1)8% /0% is x*(n — 1).

+In some texts the sample variance is defined with # in place of (n — 1).
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Remember from Example (4.4.6) that x2(d) denotes the chi-squared distribution with d
degrees of freedom.

Proof. Define ¥; = (X; — u)/o, and

>< |

=|~

=iy

1

From Example (4.4.5), ¥; is N(0, 1), and clearly

o?
1

The joint density function of Y1, Y2, ..., Ys is

fy) = \/(—21—-6 p(——Zx)

This function f has spherical symmetry in the sense that, if A = (a;;) is an orthogonal rotation
of R” and

n n n
2) Y, = Z Zjaj; and Z Yi2 = Z Ziz,
j=1 1 1

then Z1, Z,, ..., Z, are independent N(0, 1) variables also. Now choose
1 n
3) zl=ﬁ213yi=ﬁy

It is left to the reader to check that Z; is N(0, 1). Then let Z», Z3, ..., Z, be any collection
of variables such that (2) holds, where A is orthogonal. From (2) and (3),

@ »z-y (L)

1

_ZYZ——ZZYY + — Z( ; Y,)

i=1 j=1 i=1 ‘j=1
2 2
n—10§
:2(&_;;@) -e 27
1=

Now, Z; is independent of Z», Z3, ..., Z,, and so by (3) and (4), Y is independent of the
random variable (n — 1)$%/02. By (3) and Example (4.4.4), Y is N(0, 1/n) and so X is
N(u,o?/n). Finally, (n — 1)8? /02 is the sum of the squares of n — 1 independent N(0, 1)
variables, and the result of Problem (4.14.12) completes the proof. ]
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We may observe that o is only a scaling factor for X and S (= +/52). That is to say,

n—1

U=—-5is x*(n—1

o
which does not depend on o, and

vzg(i—u) is N(,1)

which does not depend on . Hence the random variable

\%
JU/(n—1)
has a distribution which does not depend on ¢. The random variable 7 is the ratio of two
independent random variables, the numerator being N(0, 1) and the denominator the square
root of (n — 1)1 times a x%(n — 1) variable; T is said to have the ¢ distribution with n — 1
degrees of freedom, written ¢t(r — 1). It is sometimes called ‘Student’s ¢ distribution’ in

honour of a famous experimenter at the Guinness factory in Dublin. Let us calculate its
density function. The joint density of U and V is

1 1
(%)re_iuuir_l 1 -
(u,v) = . exp(—5v°)
! rdn Vo P2
where r = n — 1. Then map (u, v) to (s, t) by s = u, t = v+/r/u. Use Corollary (4.7.4) to

obtain
fur(s,t) =/s/rf(s,ty/s/r)

and integrate over s to obtain

1 2\ ~50r+D)
fT(f):M(]+L> , —00 < t < 00,
\/Hr(ir) r

as the density function of the ¢ (r) distribution.

Another important distribution in statistics is the F distribution which arises as follows.
Let U and V be independent variables with the x%(r) and x?(s) distributions respectively.
Then

U /r
T V/s
is said to have the F distribution with r and s degrees of freedom, written F(r,s). The
following properties are obvious:
(a) F7lis F(s,r),
(b) T?is F(1,r)if Tisz(r).

As an exercise in the techniques of Section 4.7, show that the density function of the F(r, s)

distribution is
rl“(%(r —i—s)) (rx/s)%'_1

- : : 0.
fx) sF(%r)F(%S) [1+ (rx/s)]%(r-ks) X >

In Exercises (5.7.7, 8) we shall encounter more general forms of the x2, ¢, and F distribu-
tions; these are the (so-called) ‘non-central’ versions of these distributions.
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Exercises for Section 4.10

1. Let X and X, be independent variables with the x2(m) and x2(n) distributions respectively.
Show that X; + X, has the x2(m + n) distribution.

2. Show that the mean of the ¢(r) distribution is 0, and that the mean of the F(r, s) distribution is
s/(s —2)if s > 2. What happens if s < 2?

3. Show that the (1) distribution and the Cauchy distribution are the same.

4. Let X and Y be independent variables having the exponential distribution with parameter 1. Show
that X/Y has an F distribution. Which?

5. Use the result of Exercise (4.5.7) to show the independence of the sample mean and sample
variance of an independent sample from the N (i, o-%) distribution.

6. Let (X, : 1 < r < n} be independent N(0, 1) variables. Let ¥ € [0, 7] be the angle
between the vector (X1, X2,..., X,) and some fixed vector in R”. Show that ¥ has density
f) = (sin y[r)”_z/B(%, %n - %), 0 < ¥ < m, where B is the beta function.

4.11 Sampling from a distribution

It is frequently necessary to conduct numerical experiments involving random variables with
a given distributiont. Such experiments are useful in a wide variety of settings, ranging from
the evaluation of integrals (see Section 2.6) to the statistical theory of image reconstruction.
The target of the current section is to describe a portfolio of techniques for sampling from
a given distribution. The range of available techniques has grown enormously over recent
years, and we give no more than an introduction here. The fundamental question is as follows.
Let F be a distribution function. How may we find a numerical value for a random variable
having distribution function F'?

Various interesting questions arise. What does it mean to say that a real number has a non-
trivial distribution function? In a universe whose fundamental rules may be deterministic, how
can one simulate randomness? In practice, one makes use of deterministic sequences of real
numbers produced by what are called ‘congruential generators’. Such sequences are sprinkled
uniformly over their domain, and statistical tests indicate acceptance of the hypothesis that
they are independent and uniformly distributed. Strictly speaking, these numbers are called
‘pseudo-random’ but the prefix is often omitted. They are commonly produced by a suitable
computer program called a ‘random number generator’. With a little cleverness, such a
program may be used to generate a sequence U, Us, ... of (pseudo-)random numbers which
may be assumed to be independent and uniformly distributed on the interval [0, 1]. Henceforth
in this section we will denote by U a random variable with this distribution.

A basic way of generating a random variable with given distribution function is to use the
following theorem.

(1) Theorem. Inverse transform technique. Let F' be a distribution function, and let U be
uniformly distributed on the interval [0, 1].
(a) If F is a continuous function, the random variable X = F ~W(U) has distribution
function F.

+Such experiments are sometimes referred to as ‘simulations’.
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(b) Let F be the distribution function of a random variable taking non-negative integer
values. The random variable X given by

X =k ifandonlyif Flk—1) <U < F(k)

has distribution function F.

Proof. Part (a) is Problem (4.14.4a). Part (b) is a straightforward exercise, on noting that
P(F(k—1) <U < F(k)) = F(k) — F(k — 1).

This part of the theorem is easily extended to more general discrete distributions. u

The inverse transform technique is conceptually easy but has practical drawbacks. In
the continuous case, it is required to know or calculate the inverse function F~!; in the
discrete case, a large number of comparisons may be necessary. Despite the speed of modern
computers, such issues remain problematic for extensive simulations.

Here are three examples of the inverse transform technique in practice. Further examples
may be found in the exercises at the end of this section.

(2) Example. Binomial sampling. LetUi, Us, ..., U,, ... beindependent random variables
with the uniform distribution on [0, 1]. The sequence X = Iy, <p} of indicator variables
contains random variables having the Bernoulli distribution with parameter p. The sum
S = 3"7_; X has the bin(n, p) distribution. o

(3) Example. Negative binomial sampling. With the X} as in the previous example, let W,

be given by
n
W, = min{n : ZXk = r},
k=1
the ‘time of the rth success’. Then W, has the negative binomial distribution; see Example
(3.5.6). o

(4) Example. Gamma sampling. With the Uy as in Example (2), let
X = ! log U
=——1lo .
k y g Uk

It is an easy calculation (or use Problem (4.14.4a)) to see that the X are independent expo-
nential random variables with parameter A. It follows that § = ZZZI X has the T"(A, n)
distribution; see Problem (4.14.10). o

Here are two further methods of sampling from a given distribution.

(5) Example. The rejection method. It is required to sample from the distribution having
density function f. Letus suppose that we are provided with a pair (U, Z) of random variables
such that:
(i) U and Z are independent,
(i) U is uniformly distribution on [0, 1], and
(iii) Z has density function fz, and there exists a € R such that f(z) < afz(z) forall z.
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We note the following calculation:

S o PaUf2(2) < f(Z)| Z =2) f2() dz
IS P(aUfz(Z) < f(2)]| Z =2)fz() dz’

P(Z <x|aUfz(2) < £(2)) =

Now,

_Jf®
afz(z)

P(aUfz(Z) < f(Z)|Z =2) =P(U < f@)/{afz(2)})

whence

P(Z < x|aUfz(Z) < f(2)) =/ f@)dz.

That is to say, conditional on the event £ = {aUfz(Z) < f(Z)}, the random variable Z has
the required density function f.

We use this fact in the following way. Let us assume that one may use a random number
generator to obtain a pair (U, Z) as above. We then check whether or not the event E occurs.
If E occurs, then Z has the required density function. If E does not occur, we reject the pair
(U, Z), and use the random number generator to find another pair (U’, Z’) with the properties
(1)—(iii) above. This process is iterated until the event corresponding to E occurs, and this
results in a sample from the given density function.

Each sample pair (U, Z) satisfies the condition of E with probability a. It follows by the
independence of repeated sampling that the mean number of samples before E is first satisfied
isa~l.

A similar technique exists for sampling from a discrete distribution. L

(6) Example. Ratio of uniforms. There are other ‘rejection methods’ than that described in
the above example, and here is a further example. Once again, let f be a density function
from which a sample is required. For a reason which will become clear soon, we shall assume
that f satisfies f(x) = 0if x < 0, and f(x) < min{l, x 2} if x > 0. The latter inequality
may be relaxed in the following, but at the expense of a complication.

Suppose that U; and U; are independent and uniform on [0, 1], and define R = U,/ U;.
We claim that, conditional on the event E = {U; < / f(U,/U;)}, the random variable R

has density function f. This provides the basis for a rejection method using uniform random
variables only. We argue as follows in order to show the claim. We have that

]P’(E N{R Sx}) = //;mlo ” duidus

where T = [(ul,uz) Ul < N f(ur/uy), ur < xul}. We make the change of variables
s =up/ui, t = uj, to obtain that

x NEIG) | x
IP’(E(‘I{RSx}):/O/ tdtds:§/0 f(s)ds,
§ = 1=

0

from which it follows as required that

]P’(Rsx|E)=/xf(s)ds. o
0
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In sampling from a distribution function F', the structure of F may itself propose a workable
approach.

(7) Example. Mixtures. Let F; and F> be distribution functions and let0 < «¢ < 1. Itis
required to sample from the ‘mixed’ distribution function G = ¢ F; + (1 — @) F>. This may
be done in a process of two stages:
(i) first toss a coin which comes up heads with probability & (or, more precisely, utilize the
random variable Iy <4} where U has the usual uniform distribution),
(i1) if the coin shows heads (respectively, tails) sample from F; (respectively, F).
As an example of this approach in action, consider the density function

+3x(1 — x), 0<x <1,

1
i) = ———
71— x?
and refer to Theorem (1) and Exercises (4.11.5) and (4.11.13). ®

This example leads naturally to the following more general formulation. Assume that the
distribution function G may be expressed in the form

G(x) =E(F(x,Y)), xeR,

where Y is a random variable, and where F (-, y) is a distribution function for each possible
value y of Y. Then G may be sampled by:

(i) sampling from the distribution of ¥, obtaining the value y, say,

(ii) sampling from the distribution function F (., y).

(8) Example. Compound distributions. Here is a further illustrative example. Let Z have
the beta distribution with parameters a and b, and let

o =E <<Z>z"(1 —_ Z)”_k>, k=0,1,2,.. ,n.

It is an exercise to show that
e (:)F(a FROT(+b—k), k=01,2,...,n,

where I" denotes the gamma function; this distribution is termed a negative hypergeometric

distribution. In sampling from the mass function (pr : k =0, 1,2, ..., n) itis convenient to
sample first from the beta distribution of Z and then from the binomial distribution bin(n, Z);
see Exercise (4.11.4) and Example (2). ®

Exercises for Section 4.11

1. Uniform distribution. If U is uniformly distributed on [0, 1], what is the distribution of X =

inU] +1?
2. Random permutation. Given the first » integers in any sequence Sg, proceed thus:
(a) pick any position Py from (1, 2, ... , n} at random, and swap the integer in that place of Sy with

the integer in the nth place of Sy, yielding ;.
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(b) pick any position P; from {1,2,... ,n — 1} at random, and swap the integer in that place of Sy
with the integer in the (n» — 1)th place of Sy, yielding S7,

(c) atthe (r — 1)th stage the integer in position P,_1, chosen randomly from {1,2,...,n —r + 1},
is swapped with the integer at the (n — r + 1)th place of the sequence S, _1.

Show that S,,_ 1 is equally likely to be any of the n! permutations of {1, 2, ... ,n}.

3. Gamma distribution. Use the rejection method to sample from the gamma density I'(A, ¢) where
t (> 1) may not be assumed integral. [Hint: You might want to start with an exponential random
variable with parameter 1/¢.}

4. Beta distribution. Show how to sample from the beta density 8(«, ) where @, § > 1. [Hint:
Use Exercise (3).]

5. Describe three distinct methods of sampling from the density f(x) = 6x(1 —x), 0 <x < 1.

6. Aliasing method. A finite real vector is called a probability vector if it has non-negative entries
with sum 1. Show that a probability vector p of length n may be written in the form

1 n
p= E Vr,
r=1

n—1

where each v, is a probability vector with at most two non-zero entries. Describe a method, based on
this observation, for sampling from p viewed as a probability mass function.

7. Box-Muller normals. Let Uy and U; be independent and uniformly distributed on [0, 1], and
let T; = 2U; — 1. Show that, conditional on the event that R = 4/ Tl2 + T22 <1,

T T
x=22y/210gR2, v =22\/-2l0gR2,
R R

are independent standard normal random variables.

8. Let U be uniform on [0, 1]and O < g < 1. Show that X = 1 + {log U /log g | has a geometric
distribution.

9. A point (X, Y) is picked uniformly at random in the semicircle x2 + y? < 1, x > 0. What is the
distribution of Z =Y/ X?

10. Hazard-rate technique. Let X be a non-negative integer-valued random variable with A(r) =
P(X =r | X >r). If {U; :i{ > 0} are independent and uniform on [0, 1], show that Z = min{n :
U, < h(n)} has the same distribution as X.

11. Antithetic variables. Let g(x1, x3, ..., X,) be an increasing function in all its variables, and
let {Uy : r > 1} be independent and identically distributed random variables having the uniform
distribution on [0, 1]. Show that

cov{g(U1, Uy, ..., Up), g1 = Uy, 1= Uy, ..., 1= Up)} <0.

[Hint: Use the FKG inequality of Problem (3.10.18).] Explain how this can help in the efficient
estimation of I = fol g(x)dx.

12. Importance sampling. We wish to estimate [/ = fg(x)fx (x)dx = E(g(X)), where either it
is difficult to sample from the density fx, or g(X) has a very large variance. Let fy be equivalent
to fx, which is to say that, for all x, fy(x) = Qifand onlyif fy(x) =0. Let {Y; : 0 <i < n} be
independent random variables with density function fy, and define

L& s fx ()
J= oy SR

=1 fY(Yr)
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Show that:

@® E(J):z:m{w

fr ()
g2 fx (2
fr(¥)? ’
) J B lasn — oo (See Chapter 7 for an account of convergence.)

The idea here is that fy should be easy to sample from, and chosen if possible so that var J is
much smaller than n~1[E(g(X)%) — I?]. The function fy is called the importance density.

’

(b) var(J) = % [E(

13. Construct two distinct methods of sampling from the arc sin density

0<x<l.

W=

4.12 Coupling and Poisson approximation

It is frequently necessary to compare the distributions of two random variables X and Y.
Since X and Y may not be defined on the same sample space €2, it is in general impossible
to compare X and Y themselves. An extremely useful and modern technique is to construct
copies X" and Y’ (of X and Y) on the same sample space €2, and then to compare X’ and Y’.
This approach is known as couplingt, and it has many important applications. There is more
than one possible coupling of a pair X and Y, and the secret of success in coupling is to find
the coupling which is well suited to the particular application.

Note that any two distributions may be coupled in a trivial way, since one may always find
independent random variables X and Y with the required distributions; this may be done via
the construction of a product space as in Section 1.6. This coupling has little interest, precisely
because the value of X does not influence the value of Y.

(1) Example, Stochastic ordering. Let X and Y be random variables whose distribution
functions satisfy

2) Fx(x) < Fr(x) forall x € R.

In this case, we say that X dominates Y stochastically and we write X >4 Y. Note that X
and Y need not be defined on the same probability space.

The following theorem asserts in effect that X > Y if and only if there exist copies of X
and Y which are ‘pointwise ordered’.

(3) Theorem. Suppose that X >4 Y. There exists a probability space (2, ¥ ,P) and two
random variable X' and Y' on this space such that:

(a) X' and X have the same distribution,

(b) Y’ and Y have the same distribution,

© PX' =Y)y=1.

+The term ‘coupling’ was introduced by Frank Spitzer around 1970. The coupling method was developed by
W. Doeblin in 1938 to study Markov chains. See Lindvall (1992) for details of the history and the mathematics
of coupling.
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Proof. Take 2 = [0, 1], ¥ the Borel o-field of €2, and let P be Lebesgue measure, which is
to say that, for any sub-interval [ of 2, P(/) is defined to be the length of /.
For any distribution function F, we may define a random variable Zg on (2, ¥, P) by

Zr(w) =inf{z : w < F(2)}, w € Q.
Note that
@ w < F(z) ifandonlyif Zp(w) <z.

It follows that
P(Zr < 2) =P([0, F(2)]) = F(2),

whence Z r has distribution function F.

Suppose now that X > Y and write G and H for the distribution functions of X and
Y. Since G(x) < H(x) for all x, we have from (4) that Zy < Z5. We set X/ = Zg and
Y =2Zy. | { )

Here is a more physical coupling.

(5) Example. Buffon’s weldings. Suppose we cast at random two of Buffon’s needles (in-
troduced in Example (4.5.8)), labelled N; and Na. Let X (respectively, ¥) be the indicator
function of a line-crossing by N; (respectively, N2). Whatever the relationship between N
and N;, we have that P(X = 1) = P(Y = 1) = 2/x. The needles may however be coupled
in various ways.

(a) The needles are linked by a frictionless universal joint at one end.

(b) The needles are welded at their ends to form a straight needle with length 2.

(c) The needles are welded perpendicularly at their midpoints, yielding the Buffon cross of

Exercise (4.5.3).
We leave it as an exercise to calculate for each of these weldings (or ‘couplings’) the

probability that both needles intersect a line. o

(6) Poisson convergence. Consider a large number of independent events each having small
probability. In a sense to be made more specific, the number of such events which actually
occur has a distribution which s close to a Poisson distribution. An instance of this remarkable
observation was the proof in Example (3.5.4) that the bin(n, A/n) distribution approaches the
Poisson distribution with parameter A, in the limit as n — co. Here is a more general result,
proved using coupling.

The better to state the result, we introduce first a metric on the space of distribution functions.
Let F and G be the distribution functions of discrete distributions which place masses f,, and
gn at the points x,, forn > 1, and define

(7) drv(F,G) =Y _|fi — gl-

k>1

The definition of drv (¥, G) may be extended to arbitrary distribution functions as in Problem
(7.11.16); the quantity drv(F, G) is called the total variation distancet between F and G.

tSome authors define the total variation distance to be one half of that given in (7).



4.12  Coupling and Poisson approximation 129
For random variables X and Y, we define d1v (X, Y) = drv(Fx, Fy). We note from Exercise
(4.12.3) (see also Problem (2.7.13)) that
®) drv(X,Y) =2 sup[P(X € A) —P(Y € A)|
ACS

for discrete random variables X, Y.

(9) Theoremt. Let {X, : 1 < r < n} be independent Bernoulli random variables with
respective parameters {p, : 1 <r <n},andletS = ,_, X,. Then

n
drv(S,P) <2 p}

r=1
where P is a random variable having the Poisson distribution with parameter .. =y ' _| p;.
Proof. The trick is to find a suitable coupling of S and P, and we do this as follows. Let

(X,,Y:),1 <r < n,beasequence of independent pairs, where the pair (X, Y,) takes values
in the set {0, 1} x {0, 1, 2, ...} with mass function

1—p,r ifx=y=0,
—Pr _ i = =

P(X,=x, Y, =y)=1¢] IL+pr ifx=1y=0,
p—re_p’ ifx=1, y>1.
y!

It is easy to check that X, is Bernoulli with parameter p,, and ¥, has the Poisson distribution
with parameter p,.
We set

n n
§= Z Xy, P = Z Y,
r=1 r=1
noting that P has the Poisson distribution with parameter A = Zle pr; cf. Problem (3.11.6a).
Now,
[P(S=k) —P(P=k)|=|P(S=k, P#k) — P(S#k, P =4k)|
<P =k S#P)+P(P =k, S#P),
whence
drv(S, P) = ) |P(S = k) —P(P = k)| < 2P(S # P).
k

We have as required that

P(S # P) < P(X, # Y, for somer) < ZIP’(X, £7Y,)

r=1

=Y {e™” —1+4p +P(¥, 2 2)}

r=1
n n

=Y pd-e )<y pi u
r=1 r=1

tProved by Lucien Le Cam in 1960.
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(10) Example. Set p, = A/n for 1 < r < n to obtain the inequality dry(S, P) < 21%/n,
which provides a rate of convergence in the binomial-Poisson limit theorem of Example
(3.5.4). L

In many applications of interest, the Bernoulli trials X, are not independent. Nevertheless
one may prove a Poisson limit theorem so long as they are not ‘too dependent’. A beautiful
way of doing this is to use the so-called ‘Stein—Chen method’, as follows.

As before, we suppose that {X, : 1 < r < n} are Bernoulli random variables with
respective parameters p,, but we make no assumption concerning their independence. With

S = Zle X, we assume that there exists a sequence Vi, V,, ..., V, of random variables
with the property that
an PV, =k—1) =Pl =k| X, =1, 1<k<n.

[We may assume that p, # O for all , whence P(X, = 1) > 0.] We shall see in the
forthcoming Example (14) how such V, may sometimes be constructed in a natural way.

(12) Theorem. Stein—Chen approximation. Let P be a random variable having the Poisson
distribution with parameter . = Y__, p,. The total variation distance between S and P
satisfies

n
drv(S, P) <2(1 AX7H Zpr]EIS - Vil

r=1

Recall that x A y = min {x, y}. The bound for d1v (X, Y) takes a simple form in a situation
where P(S > V,) = 1 for every r. If this holds,

S prBIS = Vil = 3 5o (B ~ (V) = Zpruav,

r=1 r=1

By (11),

PEV=p Y k—=DPS =k | X, =1) =) (k- DPX, =1{5=kPES = k)
k=1 k=1

= Z(k — DE(X, | S =k)P(S = k),
k=1
whence

Z pE(V,) = Z(k — DKP(S = k) = E(5%) — E(S).

r=1
It follows by Theorem (12) that, in such a situation,

13) dry (S, P) < 2(1 A A7H (% — var($)).

Before proving Theorem (12), we give an example of its use.

(14) Example. Balls in boxes. There are m balls and »n boxes. Each ball is placed in a box
chosen uniformly at random, different balls being allocated to boxes independently of one
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another. The number S of empty boxes may be written as S = Y _, X, where X, is the
indicator function of the event that the rth box is empty. It is easy to see that

n—1\"
prZP(XrZI)Z( - ) )

whence A = np, = n(1 —n~!)™. Note that the X, are not independent.

We now show how to generate a random sequence V, satisfying (11) in such a way that
> . prE|S — V;| is small. If the rth box is empty, we set V, = § — 1. If the rth box is not
empty, we take the balls therein and distribute them randomly around the othern — 1 boxes; we
let V, be the number of these n — 1 boxes which are empty at the end of this further allocation.
It becomes evident after a little thought that (11) holds, and furthermore V, < S. Now,

E(S?) =Y E(XiXj) =Y E(X})+2) E(X:X))
ij i i<j

=E(S) + n(n — DE(X1X2),

where we have used the facts that Xl.2 = X;and E(X;X;) = E(X1X2) fori # j. Furthermore,
n—2\"
E(X1X2) = P(boxes 1 and 2 are empty) = | —— | ,
n
whence, by (13),

drv (S, P) 52(1AA—1){,\2_n(n_1)(1_3> } °

n

Proof of Theorem (12). Letg : {0, 1,2, ...} — R be bounded, and define

Ag =sup{lg(r +1) — g},

so that
(15) lg) —gk)| < |l — k|- Ag.

We have that

16)  |[Eg(S+1) — S| =Y _{pEe(S+ 1) —E (Xrg(S))}‘

r=1

> prE{e(S+ 1) —g(V, + 1)}‘ by (11)

r=1

n
<Ag)  prEIS— V| by (15).

r=1
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Let A be a set of non-negative integers. We choose the function g = g4 in a special way
so that g4 (0) = 0 and

a7 Aga(r +1) —rga(r) = 1a(r) —P(P € A), r=0.
One may check that g4 is given explicitly by

rle

(18) gA("‘i'l):W

[IP’({P <r}N{P e A —P(P < r)P(P € A)], r>0.

A bound for Ag4 appears in the next lemma, the proof of which is given later.
(19) Lemma. We have that Ags < 1 A AL

We now substitute » = § in (17) and take expectations, to obtain by (16), Lemma (19), and
(8), that

drv(S, P) —2sup|IP’(S € A)—P(P € A)] <2(1 AA~ I)ZprIEIS v ]
r=1

Proof of Lemma (19). Let g; = g{;; for j > 0. From (18),

r k —A
_kr+1 J)Z 5 ifr < j,
gir+1)= o o )J‘ .
Ar+l PP =) Z ifr > J:
k=r+1

implying that g; (r + 1) is negative and decreasing when r < j, and is positive and decreasing
when r > j. Therefore the only positive value of g;(r + 1) — g;(r) is when r = j, for which

© ok d Mok
gj(j+1>—gj(j>——{z .+ -;}

when j > 1. If j =0, we have that g;(r + 1) — g;(r) < Oforall r.
Since ga(r +1) = ZjeA g;j(r 4+ 1), it follows from the above remarks that

1—e?

galr+1)—galr) < forall r > 1.

Finally, —g4 = gac, and therefore Ags < )»‘1(1 — e_}‘). The claim of the lemma follows
onnoting that A™1(1 —e™) < 1 AX7L. [ ]
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Exercises for Section 4.12

1. Show that X is stochastically larger than Y if and only if E(u(X)) > E(u(Y)) for any non-
decreasing function u for which the expectations exist.

2. Let X and Y be Poisson distributed with respective parameters X and p. Show that X is stochas-
tically larger than Y if X > p.

3. Show that the total variation distance between two discrete variables X, Y satisfies

drv(X,Y) =2 sup |[P(X € A) —P(Y € 4)|.
ACR

4. Maximal coupling. Show for discrete random variables X, ¥ thatP(X = ¥) < 1— %dTV(X , YY),
where dTvy denotes total variation distance.

5. Maximal coupling continued. Show that equality is possible in the inequality of Exercise
(4.12.4) in the following sense. For any pair X, Y of discrete random variables, there exists a pair X',
Y’ having the same marginal distributions as X, ¥ such that P(X' = Y’) =1 — %dTV(X, Y).

6. Let X and Y be indicator variables with EX = p, EY = g. What is the maximum possible value
of P(X = Y), as a function of p, 4? Explain how X, Y need to be distributed in order that P(X = Y)
be: (a) maximized, (b)minimized.

4.13 Geometrical probability

In many practical situations, one encounters pictures of apparently random shapes. For exam-
ple, in a frozen section of some animal tissue, you will see a display of shapes; to undertake
any serious statistical inference about such displays requires an appropriate probability model.
Radio telescopes observe a display of microwave radiation emanating from the hypothetical
‘Big Bang’. If you look at a forest floor, or at the microscopic structure of materials, or at
photographs of a cloud chamber or of a foreign country seen from outer space, you will see
apparently random patterns of lines, curves, and shapes.

Two problems arise in making precise the idea of a line or shape ‘chosen at random’. The
first is that, whereas a point in R” is parametrized by its n coordinates, the parametrizations
of more complicated geometrical objects usually have much greater complexity. As a con-
sequence, the most appropriate choice of density function is rarely obvious. Secondly, the
appropriate sample space is often too large to allow an interpretation of ‘choose an element
uniformly at random’. For example, there is no ‘uniform’ probability measure on the line,
or even on the set of integers. The usual way out of the latter difficulty is to work with the
uniform probability measure on a large bounded subset of the state space.

The first difficulty referred to above may be illustrated by an example.

(1) Example. Bertrand’s paradox. What is the probability that an equilateral triangle, based
on a random chord of a circle, is contained within the circle? This ill-posed question leads us
to explore methods of interpreting the concept of a ‘random chord’. Let C be a circle with
centre O and unit radius. Let X denote the length of such a chord, and consider three cases.
(i) A point P is picked at random in the interior of C, and taken as the midpoint of AB.
Clearly X > +/3 if and only if OP < §. Hence P(X > +/3) = (3)* = 1.
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(i1) Pick a point P at random on a randomly chosen radius of C, and take P as the midpoint
of AB. Then X > +/3 if and only if OP < % Hence P(X > +/3) = %

(iii) A and B are picked independently at random on the circumference of C. Then X > /3
if and only if B lies in the third of the circumference most distant from A. Hence

P(X > +/3) = 1. )

The different answers of this example arise because of the differing methods of interpreting
‘pick a chord at random’. Do we have any reason to prefer any one of these methods above
the others? It is easy to show that if the chord L is determined by IT and ®, where I1 is the
length of the perpendicular from O to L, and @ is the angle L makes with a given direction,
then the three choices given above correspond to the joint density function for the pair (I1, ®)
given respectively by:

@ filp,0) =2p/m,

(i) falp,6) =1/m,
(i) f3(p,0) =2/(x*y1— p2},
for0 < p <1,0 <6 <m. (See Example (4.13.1).)

It was shown by Poincaré that the uniform density of case (ii) may be used as a basis
for the construction of a system of many random lines in the plane, whose probabilities are
invariant under translation, rotation, and reflection. Since these properties seem desirable for
the distribution of a single ‘random line’, the density function f, is commonly used. With
these preliminaries out of the way, we return to Buffon’s needle.

(2) Example. Buffon’s needle: Example (4.5.8) revisited. A needle of length L is cast ‘at
random’ onto a plane which is ruled by parallel straight lines, distance d (> L) apart. It is
not difficult to extend the argument of Example (4.5.8) to obtain that the probability that the
needle is intersected by some line is 2L /(rd). See Problem (4.14.31).

Suppose we change our viewpoint; consider the needle to be fixed, and drop the grid of
lines at random. For definiteness, we take the needle to be the line interval with centre at O,
length L, and lying along the x-axis of R?. ‘Casting the plane at random’ is taken to mean the
following. Draw a circle with centre O and diameter d. Pick a random chord of C according
to case (il) above (re-scaled to take into account the fact that C does not have unit radius), and
draw the grid in the unique way such that it contains this random chord. It is easy to show that
the probability that a line of the grid crosses the needle is 2L/ (;rd); see Problem (4.14.31b).

If we replace the needle by a curve S having finite length L(S), lying inside C, then the
mean number of intersections between S and the random chord is 2 L(S)/(rrd). See Problem
(4.14.31c).

An interesting consequence is the following. Suppose that the curve S is the boundary of
a convex region. Then the number 7 of intersections between the random chord and S takes
values in the set {0, 1, 2, oo}, but only the values 0 and 2 have strictly positive probabilities.
We deduce that
L(S)

7d

Suppose further that S’ is the boundary of a convex subset of the inside of S, with length
L(S"). If the random chord intersects S’ then it must surely intersect S, whence the conditional
probability that it intersects S’ given that it intersects S is L(S")/L(S). This conclusion may
be extended to include the case of two convex figures which are either disjoint or overlapping.
See Exercise (4.13.2). L

IP’(the random chord intersects S) = 1EW) =
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Figure 4.1. Two intersecting circles with radit ¢ and x . The centre of the second circle lies
on the first circle. The length of the emboldened arc is 2x cos™" (x/2a).

We conclude with a few simple illustrative and amusing examples. In a classical branch of
geometrical probability, one seeks to study geometrical relationships between points dropped
at random, where ‘at random’ is intended to imply a uniform density. An early example was
recorded by Lewis Carroll: in order to combat insomnia, he solved mathematical problems in
his head (that is to say, without writing anything down). On the night of 20th January 1884
he concluded that, if points A, B, C are picked at random in the plane, the probability that
ABC is an obtuse triangle is %n / {%n — %«/3}. This problem is not well posed as stated. We
have no way of choosing a point uniformly at random in the plane. One interpretation is to
choose the points at random within some convex figure of diameter d, to obtain the answer
as a function of d, and then take the limit as d — oo. Unfortunately, this can yield different
answers depending on the choice of figure (see Exercise (4.13.5)).

Furthermore, Carroll’s solution proceeded by constructing axes depending on the largest
side of the triangle ABC, and this conditioning affects the distribution of the position of the
remaining point. It is possible to formulate a different problem to which Carroll’s answer is
correct. Other examples of this type may be found in the exercises.

A useful method for tackling a class of problems in geometrical probability is a technique
called Crofton’s method. The basic idea, developed by Crofton to obtain many striking results,
is to identify a real-valued parameter of the problem in question, and to establish a differential
equation for the probability or expectation in question, in terms of this parameter. This vague
synopsis may be made more precise by an example.

(3) Example. Two arrows A and B strike at random a circular target of unit radius. What is
the density function of the distance X between the points struck by the arrows?
Solution. Letustake astarget the disk of radius a given in polar coordinates as {(r, 8) : r < a}.
We shall establish a differential equation in the variable a. Let f(-, a) denote the density
function of X.

We have by conditional probability that
@
fx,a+da) = folx,a+da)Patsa(Ro)+ fi(x, a+da)Patsa(R1)+ f2(x, a+da)Patsa(R2),

where R; be the event that exactly { arrows strike the annulus {(r,08) : @ < r < a + éa},
fi(x, a-+éa)is the density function of X given the event R;, and IP, is the probability measure
appropriate for a disk of radius y.
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Conditional on Ry, the arrows are uniformly distributed on the disk of radius a, whence
fo(x,a + da) = f(x,a). By considering Figure 4.1, we have thatt

2x _1{ X
filx,a+68a)= — ¢cos (—) +o0(1), aséda — 0,
Ta 2a

and by the independence of the arrows,

4
) 1% oa),

]P)a+8a(R0) = (a T sa T

48a
Potsa(R1) = T +o(a), Piisqa(R2) =0(da).

Taking the limit as a — 0, we obtain the differential equation

af 4 8x i x
(5) = (r@) = ——f(x,a) + —3 cos (2a),

Subject to a suitable boundary condition, it follows that

a8
a*f(x,a) =f0 —j?fcos_1 (%) du

U

2xa’ /X x x\2
- 2cos (—)—— 1—(—) . 0<x<2a
T 2a a 2a

The last integral may be verified by use of a symbolic algebra package, or by looking it up
elsewhere, or by using the fundamental theorem of calculus. Fans of unarmed combat may
use the substitution & = cos~!{x/(2u)}. The required density functionis f (x, 1). ®

We conclude with some amusing and classic results concerning areas of random triangles.
Triangles have the useful property that, given any two triangles T and 77, there exists an
affine transformation (that is, an orthogonal projection together with a change of scale) which
transforms 7" into 7’. Such transformations multiply areas by a constant factor, leaving many
probabilities and expectations of interest unchanged. In the following, we denote by [ABC]|
the area of the triangle with vertices A, B, C.

(6) Example. Area of a random triangle. Three points P, Q, R are picked independently at
random in the triangle ABC. Show that

@) EIPQR| = {5|ABC|.

Solution. We proceed via a sequence of lemmas which you may illustrate with diagrams.

(8) Lemma. Let Gy and Gy be the centres of gravity of ABM and AMC, where M is the
midpoint of BC. Choose P at random in the triangle ABM, and Q at random (independently
of P) in the triangle AMC. Then

9) E|APQ| = E|AG1G,| = Z|ABC|.

TSee Subsection (10) of Appendix I for a reminder about Landau’s O/o notation.
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Proof. Elementary; this is Exercise (4.13.7). [ |

(10) Lemma. Choose P and Q independently at random in the triangle ABC. Then

(1) E|APQ| = »|ABC|.

Proof. By the property of affine transformations discussed above, there exists a real number
«, independent of the choice of ABC, such that

(12) E|APQ| = |ABC|.

Denote ABM by T} and AMC by 75, and let C;; be the event that {P € T;, Q € T}}, for
i, j €{1,2}. Using conditional expectation and the fact that P(C;;) = ‘11 for each pair i, j,

E[APQ| = Y E(|APQ| | C;j)B(Cyj)
i
= a| ABM[P(C11) + a| AMC[P(C22) + 5|ABC|(P(C12) + P(Ca21)) by (9)
= Ja|ABC| + } - 3|ABC|.

We use (12) and divide by |[ABC] to obtain o = %, as required. |
(13) Lemma. Let P and Q be chosen independently at random in the triangle ABC, and R
be chosen independently of P and Q at random on the side BC. Then

E|PQR| = %|ABC|.

Proof. If the length of BC is a, then |BR] is uniformly distributed on the interval (0, a).
Denote the triangles ABR and ARC by S and S5, and let D;; = {P € §;, Q € §;} for
i,j €{1,2}. Letx > 0, and let P, and E, denote probability and expectation conditional on
the event {|BR| = x}. We have that

a—Xx

2 x(a — x)
) , Px(D1) =Px(Dr1) = —Qz

X2
P:(Dy1) = o Pr(D2) = (
By conditional expectation,

E«|PQR| = Y E.(|PQR| | D;j)P(D)).
i’j

By Lemma (10),

4 4 x
E.(IPQR|| D11} = 57—]Ex|ABR| =5 5|ABC|,

and so on, whence

3
E.|PQR| = {_4_ (f)3 + i (a —x) + % x(aa;ﬁ} |ABC|.

27 \a
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Averaging over |BR| we deduce that

M@m:éﬁﬁmﬂmﬁ:émm& ]

We may now complete the proof of (7).

Proof of (7). By the property of affine transformations mentioned above, it is sufficient to
show that E|[PQR| = % |ABC]| for any single given triangle ABC. Consider the special choice
A =(0,0),B = (x,0), C = (0, x), and denote by P, the appropriate probability measure
when three points P, Q, R are picked from ABC. We write A(x) for the mean area E,|PQR]|.
We shall use Crofton’s method, with x as the parameter to be varied. Let A be the trapezium
with vertices (0, x), (0, x + 8x), (x + 6x,0), (x,0). Then

2

’ 65x
X

(x +8x)2
and
26x
MHARQEAMHHREAD=7?+MM)

Hence, by conditional expectation and Lemma (13),

65 1 1., 68
x>+§ 2.29% 4 o6,

A@+&0=Au)0—w—— 12 68
X 2 X
leading, in the limit as §x — 0, to the equation
dA _ 64 1
dx ~—  «x 3%
with boundary condition A(0) = 0. The solution is A(x) = 5;x2. Since |ABC| = 1x2, the
proof is complete. e

Exercises for Section 4.13

With apologies to those who prefer their exercises better posed . ..

1. Pick two points A and B independently at random on the circumference of a circle C with centre
O and unit radius. Let IT be the length of the perpendicular from O to the line AB, and let ® be the
angle AB makes with the horizontal. Show that (TT, ®) has joint density

f(p,f)):;, 0<p<1,0<8<2nm

2./1 = p2
2. Let S; and S, be disjoint convex shapes with boundaries of length b(S1), b(S3), as illustrated
in the figure beneath. Let b(H) be the length of the boundary of the convex hull of S and S,
incorporating their exterior tangents, and »(X) the length of the crossing curve using the interior
tangents to loop round S; and S;. Show that the probability that a random line crossing S; also
crosses Sy is {b(X) — b(H)}/b(S1). (See Example (4.13.2) for an explanation of the term ‘random
line’.) How is this altered if S; and S, are not disjoint?
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The circles are the shapes S] and S;. The shaded regions are denoted A and B, and 5(X) is

the sum of the perimeter lengths of A and B.
3. Let Sy and S; be convex figures such that S, € S1. Show that the probability that two independent
random lines Aq and A7, crossing S, meet within S5 is 27r|S2|/b(S1)2, where | S| is the area of S,
and b(Sy) is the length of the boundary of S;. (See Example (4.13.2) for an explanation of the term
‘random line’.)
4. Let Z be the distance between two points picked independently at random in a disk of radius a.
Show that E(Z) = 128a/(457), and E(Z?%) = a?.
5. Picktwo points A and B independently at random in a ball with centre O. Show that the probability
that the angle AOB is obtuse is %. Compare this with the corresponding result for two points picked
at random in a circle.

6. A triangle is formed by A, B, and a point P picked at random in a set S with centre of gravity G.
Show that E|ABP| = |ABG]|.

7. ApointDis fixed on the side BC of the triangle ABC. Two points P and Q are picked independently
at random in ABD and ADC respectively. Show that E|APQ| = |AGG,| = %IABCl, where G| and
G, are the centres of gravity of ABD and ADC.

8. From the set of all triangles that are similar to the triangle ABC, similarly oriented, and inside
ABC, one is selected uniformly at random. Show that its mean area is % |ABC].

9. Two points X and Y are picked independently at random in the interval (0, a). By varying a,
show that F(z,a) = P(|X — Y| < z) satisfies

oF 2 2z
—+-F=—, 0<z<a,
da a a?

and hence find F(z, a). Letr > 1, and show that m,(a) = E(|X — Y|") satisfies
dm, 5 a”
a = — .
da r+1 r

10. Lines are laid down independently at random on the plane, dividing it into polygons. Show that
the average number of sides of this set of polygons is 4. [Hint: Consider » random great circles of a
sphere of radius R; then let R and n increase.]

11. A point P is picked at random in the triangle ABC. The lines AP, BP, CP, produced, meet BC,
AC, AB respectively at L, M, N. Show that E[LMN| = (10 — 7 2)|ABC].

12. Sylvester’s problem. If four points are picked independently at random inside the triangle ABC,
show that the probability that no one of them lies inside the triangle formed by the other three is %

Hence find m, (a).

13. Ifthree points P, Q, R are picked independently atrandom in a disk of radius a, show that E|PQR| =
35a%/(48). [You may find it useful that fJ [ sin® x sin? ysin |x — y|dxdy = 357/128.]
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Two points A and B are picked independently at random inside a disk C. Show that the probability

that the circle having centre A and radius |AB] lies inside C is %

15.

Two points A and B are picked independently at random inside a ball S. Show that the probability

that the sphere having centre A and radius |AB| lies inside S is %‘

1.

(b)
©

(d)
2.
(a)
(b)
3.

4.14 Problems

(a) Show that [*© e'x2 dx = /7, and deduce that
x>

{ (x—u)z}
CXp —_— N —0 < X < 00,

fo0) = -

1
oA/ 27

is a density function if o > 0.
Calculate the mean and variance of a standard normal variable.
Show that the N (0, 1) distribution function ® satisfies

1.2 1.2
Gl —x™He 7Y < V2r[l - )] < x leT 2, x > 0.
These bounds are of interest because ® has no closed form.
Let X be N(0, 1), and a > 0. Show that P(X > x +a/x | X > x) > ¢ %asx — Q.

Let X be continuous with density function f(x) = C(x — xz), where <x < fand C > 0.
What are the possible values of « and 87
What is C?

Let X be a random variable which takes non-negative values only. Show that

(o] (o]
Z(i - DIy, =X < ZilAi,
i=1

i=1

where A; = {i — 1 < X < i}. Deduce that

(b)

5.
X,

Z]P’(X > i) <E(X) < I+Z]P’(X > §).

i=1 i=1

(a) Let X have a continuous distribution function . Show that

(1) F(X) is uniformly distributed on [0, 1],

(i1) —log F(X) is exponentially distributed.
A straight line [ touches a circle with unit diameter at the point P which is diametrically opposed
on the circle to another point Q. A straight line QR joins Q to some point R on /. If the angle PYjR
between the lines PQ and QR is a random variable with the uniform distribution on [— %n, %n],
show that the length of PR has the Cauchy distribution (this length is measured positive or negative
depending upon which side of P the point R lies).

Let X have an exponential distribution. Show that P(X > s +x | X > s5s) = P(X > x), for
> 0. This is the ‘lack of memory’ property again. Show that the exponential distribution is the

only continuous distribution with this property. You may need to use the fact that the only non-negative
monotonic solutions of the functional equation g(s + ¢) = g(s)g(¢) for s, ¢ > 0, with g(0) = 1, are
of the form g(s) = ¢**. Can you prove this?
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6. Show that X and Y are independent continuous variables if and only if their joint density function
[ factorizes as the product f(x, y) = g(x)h(y) of functions of the single variables x and y alone.

7. Let X and Y have joint density function f(x,y) = 2¢7*7Y, 0 < x < y < o0o. Are they

independent? Find their marginal density functions and their covariance.

8. Bertrand’s paradox extended. A chord of the unit circle is picked at random. What is the

probability that an equilateral triangle with the chord as base can fit inside the circle if:

(a) the chord passes through a point P picked uniformly in the disk, and the angle it makes with a
fixed direction is uniformly distributed on [0, 27),

(b) the chord passes through a point P picked uniformly at random on a randomly chosen radius, and
the angle it makes with the radius is uniformly distributed on [0, 27).

9. Monte Carlo. It is required to estimate J = fol g(x)dx where 0 < g(x) < 1 for all x, as

in Example (2.6.3). Let X and Y be independent random variables with common density function

f&x)=1if0 <x <1, f(x) = 0 otherwise. Let U = Iy <¢(x)}, the indicator function of the event

that Y < g(X),andletV = g(X), W = %[g(X)—I—g(l—X)}. Show that E(U) = E(V) = E(W) = J,

and that var(W) < var(V) < var(U), so that, of the three, W is the most ‘efficient’ estimator of J.

10. Let Xy, X5, ..., X, be independent exponential variables, parameter A. Show by induction that

S =X+ Xy +---+ X, has the I'(, n) distribution.

11. Let X and Y be independent variables, I"(A, m) and ["(A, n) respectively.

(a) Use the result of Problem (4.14.10) to show that X 4+ Y is '(x, m + n) when m and » are integral
(the same conclusion is actually valid for non-integral m and »).

(b) Find the joint density function of X 4+ Y and X/(X + Y), and deduce that they are independent.

(c) If Z is Poisson with parameter At, and m is integral, show that P(Z < m) = P(X > 1).

(d) If0 < m < nand B is independent of ¥ with the beta distribution with parameters m and n — m,
show that Y B has the same distribution as X.

12. Let X1, X5, ..., X be independent N (0O, 1) variables.

(@) Show that X is x2(1).

(b) Show that X? + X% is x2(2) by expressing its distribution function as an integral and changing
to polar coordinates.

(¢) More generally, show that X% + X% + -+ X,2Z is xz(n).

13. Let X and Y have the bivariate normal distribution with means 1, py, variances 012, 022, and
correlation p. Show that

@) E(X |Y) =pj + po1(Y — u2)/o2,
(b) the variance of the conditional density function fx|y isvar(X [ ¥) = 012(1 - pz).
14. Let X and Y have joint density function f. Find the density functionof Y/X.

15. Let X and Y be independent variables with common density function f. Show that tan ! (Y/ X)
has the uniform distribution on (—%n, %n) if and only if

/_ F@)fey)lxldx = JeR.

m(l+y?)’
Verify that this is valid if either f is the N (0, 1) density function or f(x) = a(l + x*~1 for some
constant a.

16. Let X and Y be independent N (0, 1) variables, and think of (X, Y) as a random point in the plane.
Change to polar coordinates (R, ©) given by R? = X2 472 tan® = Y/ X; show that RZis x2(2),
tan @ has the Cauchy distribution, and R and ® are independent. Find the density of R.

Find E(X2/R?) and
E{ min{| X|, [YI}}
max(|X|, [Y[} )
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17. If X and Y are independent random variables, show that U = min{X, ¥} and V = max{X, Y}
have distribution functions

Fyw)=1-{1-Fx}l - Fy@)}, Fy@) =FxQ@)FyQ).

Let X and Y be independent exponential variables, parameter 1. Show that
(a) U is exponential, parameter 2,
(b) V has the same distribution as X + %Y . Hence find the mean and variance of V.

18. Let X and Y be independent variables having the exponential distribution with parameters A and

w respectively. Let U = min{X, Y}, V = max{X, Y},and W =V — U.

(8 FindP(U =X) =P(X <7).

(b) Show that U and W are independent.

19. Let X and Y be independent non-negative random variables with continuous density functions

on (0, 00).

(a) If, given X + Y = u, X is uniformly distributed on [0, ] whatever the value of u, show that X
and Y have the exponential distribution.

(b) If, given that X + Y = u, X /u has a given beta distribution (parameters « and 8, say) whatever
the value of u, show that X and Y have gamma distributions.

You may need the fact that the only non-negative continuous solutions of the functional equation

gls +1) = g(s)g(t) for s,¢t > 0, with g(0) = 1, are of the form g(s) = ¢**. Remember Problem

(4.14.5).

20. Show that it cannot be the case that U = X + Y where U is uniformly distributed on [0, 1] and X

and Y are independent and identically distributed. You should not assume that X and Y are continuous

variables.

21. Order statistics. Let X, X», ..., X, beindependent identically distributed variables with a com-
mon density function f. Sucha collectionis called a random sample. Foreachw € €2, arrange the sam-
ple values X;(w), ..., Xn () in non-decreasing order X(1y(w) < Xy (@) < --- < X(ny(w), where
(1), 2), ..., (n) is a (random) permutation of 1,2, ..., n. The new variables X(1y, X(2), ..., X(n)
are called the order statistics. Show, by a symmetry argument, that the joint distribution function of
the order statistics satisfies

]P’(X(l) =¥ X @) <y)=nPX1 <y, . Xn <y, X <Xp<---<Xyp)
:/~-~/c15y1L(xl,...,xn)n!f(xl)---f(xn)d)q < dxy
X25¥2
xné)‘n

where L is given by
L) = { 1 if xy <‘x2 <o < Xp,
0 otherwise,
and X = (x[,x2,...,%). Deduce that the joint density function of X(1y,..., X(,) is g(y) =
rLLW D) - fn)-
22. Find the marginal density function of the kth order statistic X (x) of a sample with size n:
(a) by integrating the result of Problem (4.14.21),
(b) directly.
23. Find the joint density function of the order statistics of # independent uniform variables on [0, T].
24, Let X1, X5, ..., X, be independent and uniformly distributed on [0, 1], with order statistics
X(l)’ X(z), ey X(n).
(a) Show that, for fixed &, the density function of n X (k) converges as n — 09, and find and identify
the limit function.
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(b) Show that log X () has the same distribution as — > 7, i~1Y;, where the ¥; are independent
random variables having the exponential distribution with parameter 1.

(c) Show that Z, Z,, ..., Zn, defined by Z;, = (X(k)/X(k+1))k fork < nand Z, = (X(n))", are
independent random variables with the uniform distribution on [0, 1].

25. Let X1, X5, X3 be independent variables with the uniform distribution on [0, 1]. What is the

probability that rods of lengths X;, X5, and X3 may be used to make a triangle? Generalize your

answer to n rods used to form a polygon.

26. Let Xj and X, be independent variables with the uniform distribution on [0, 1]. A stick of unit

length is broken at points distance X; and X, from one of the ends. What is the probability that the
three pieces may be used to make a triangle? Generalize your answer to a stick broken in n places.

27. Let X, Y be a pair of jointly continuous variables.
(a) Holder’s inequality. Show that if p, g > 1and p~! +¢~! = 1 then

EIXY| < {EIXP|}"/P{&]ye}/1,

Set p = g = 2 to deduce the Cauchy—Schwarz inequality E(X ? < B(XHEI?).
(b) Minkowski’s inequality. Show that, if p > 1, then

(B(X + ¥1")}P < {RIXP|}7 + {BIYP}7P

Note that in both cases your proof need not depend on the continuity of X and ¥'; deduce that the same
inequalities hold for discrete variables.

28. Let Z be a random variable. Choose X and Y appropriately in the Cauchy—Schwarz (or Holder)
inequality to show that g(p) = log E| ZP| is a convex function of p on the interval of values of p such
that E|Z”| < co. Deduce Lyapunov’s inequality:

[E|Z7 37 > [E|Z°}}/5  wheneverr > s > 0.

You have shown in particular that, if Z has finite rth moment, then Z has finite sth moment for all
positive s < r.

29. Show that, using the obvious notation, E{E(X | ¥, Z) | Y} = E(X | ¥).

30. Motor cars of unit length park randomly in a street in such a way that the centre of each car, in

turn, is positioned uniformly at random in the space available to it. Let m(x) be the expected number
of cars which are able to park in a street of length x. Show that

1 X
m(x+1)= ;/0 {my) +mx —y) + 1} dy.

It is possible to deduce that m(x) is about as big as %x when x is large.

31. Buffon’s needle revisited: Buffon’s noodle.

(a) A plane is ruled by the lines y = nd (n = 0, £1,...). A needle with length L (< d) is cast
randomly onto the plane. Show that the probability that the needle intersects a line is 2L /(7 d).

(b) Now fix the needle and let C be a circle diameter 4 centred at the midpoint of the needle. Let
A be a line whose direction and distance from the centre of C are independent and uniformly
distributed on [0, 27} and [0, Lg ] respectively. This is equivalent to ‘casting the ruled plane at
random’. Show that the probability of an intersection between the needle and A is 2L /(7 d).

(c) Let S be a curve within C having finite length L(S). Use indicators to show that the expected
number of intersections between S and A is 2L (S)/(w d).

This type of result is used in stereology, which seeks knowledge of the contents of a cell by studying

its cross sections.
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32. Buffon’s needle ingested. In the excitement of calculating 7, Mr Buffon (no relation) inadver-
tently swallows the needle and is X-rayed. If the needle exhibits no preference for direction in the
gut, what is the distribution of the length of its image on the X-ray plate? If he swallowed Buffon’s
cross (see Exercise (4.5.3)) also, what would be the joint distribution of the lengths of the images of
the two arms of the cross?

33. Let Xy, X2, ..., X, be independent exponential variables with parameter A, and let X1y <
X(2y < --+ < X(y) be their order statistics. Show that

Y1:nX(1), Yr:(n+l—r)(X(r)—X(r,1)), l<r<n

are also independent and have the same joint distribution as the X;.

34. Let X(1y, X2y, - - - » X(n) be the order statistics of a family of independent variables with common
continuous distribution function F. Show that

F(X(r)) }r
Yo = {F(Xeu)))" Y:{g , 1<r<n,
n {F( (n) } r F(X(r+1))

are independent and uniformly distributed on [0, 1]. This is equivalent to Problem (4.14.33). Why?

35. Secretary/marriage problem. You are permitted to inspect the n prizes at a féte in a given order,
at each stage either rejecting or accepting the prize under consideration. There is no recall, in the sense
that no rejected prize may be accepted later. It may be assumed that, given complete information, the
prizes may be ranked in a strict order of preference, and that the order of presentation is independent
of this ranking. Find the strategy which maximizes the probability of accepting the best prize, and
describe its behaviour when 7 is large.

36. Fisher’s spherical distribution. Let R2=X24+Y24+ 7% where X, ¥, Z are independent normal
random variables with means A, x, v, and common variance 02, where (A, u, v) # (0, 0, 0). Show

that the conditional density of the point (X, ¥, Z) given R = r, when expressed in spherical polar
coordinates relative to an axis in the direction e = (A, i, v), is of the form

F0,0) = —2 20 Gng  0<6<x 0<¢ <2m,
47 sinh a
where a = rle|.
37. Let ¢ be the N(0, 1) density function, and define the functions H,, n > 0, by Hy = 1, and

(—1)" Hyp = ¢'™, the nth derivative of ¢. Show that:
(a) H,(x) is a polynomial of degree n having leading term x”, and

ifm < n,

ifm =n.

/_oo Hp (x)Hy (X)¢ (x) dx = { 2'

= " 1,2
OB Hy () = exp(tx — 31%).

n=0
38. Lancaster’s theorem. Let X and Y have a standard bivariate normal distribution with zero
means, unit variances, and correlation coefficient p, and suppose U = u(X) and V = v(¥) have finite
variances. Show that |p(U-, V)| < |p|. [Hint: Use Problem (4.14.37) to expand the functions u and
v. You may assume that » and v lie in the linear span of the Hy.]

39. Let X(1y, X(2), ... » X(n) be the order statistics of » independent random variables, uniform on
[0, 1]. Show that:
r r(n—s+1)
a) E(X =——, (Bcov(Xy, X =——— " forr <s.
(@) E(X()) — (b) cov(X (), X(5)) (s D2+ 2) orr <s
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40. (a) Let X, Y, Z be independent N (0, 1) variables, and set R = /X2 + Y2 4+ Z2. Show that
x? / R? has a beta distribution with parameters % and 1, and is independent of RZ.

(b) Let X, ¥, Z be independent and uniform on [—1, 1] and set R = /X2 + Y2 + Z2. Find the
density of X2/R? given that R? < 1.

41. Let ¢ and @ be the standard normal density and distribution functions. Show that:

(@ ®x)=1-o(-x),

(b) f(x) =2¢(x)P(Ax), —00 < x < 00, is the density function of some random variable (denoted
by Y), and that |Y| has density function 2¢.

(c) Let X beastandard normal random variable independent of ¥, and define Z = (X+A|Y|)/v/ 1+ 2.
Write down the joint density of Z and |Y|, and deduce that Z has density function f.

42. The six coordinates (X;, ¥;), 1 < i < 3, of three points A, B, C in the plane are independent

N(0, 1). Show that the the probability that C lies inside the circle with diameter AB is %.

43. The coordinates (X;, ¥;, Z;), 1 < i < 3, of three points A, B, C are independent N (0, 1). Show
NE]

1
that the probability that C lies inside the sphere with diameter AB is T 1
b4

44. Skewness. Let X have variance o2 and write my = ]E(Xk). Define the skewness of X by

skw(X) = E[(X — m1)°]/o>. Show that:

(a) skw(X) = (m3 — 3mmy + 2m?)/o3,

(b) skw(Sp) = skw(X1)/+/n, where S, = >_7_; X, is a sum of independent identically distributed
random variables,

(c) skw(X) = (1 —2p)/./npq, when X is bin(n, p) where p +q =1,

(d) skw(X) = 1/+/4, when X is Poisson with parameter A,

(e) skw(X) =2/+/t, when X is gamma I"(A, t), and ¢ is integral.

45. Kurtosis. Let X have variance o2 and E(X*) = my. Define the kurtosis of X by kur(X) =

E[(X — m1)4]/a4. Show that:

(a) kur(X) = 3, when X is N (i, 02),

(b) kur(X) =9, when X is exponential with parameter A,

(¢) kur(X) = 3 + A~ !, when X is Poisson with parameter A,

(d) kur(S,) = 3 + {kur(Xy) — 3}/n, where S, = Z;’zl X, is a sum of independent identically
distributed random variables.

46. Extreme value. Fisher—Gumbel-Tippett distribution. Let X,, 1 < r < n, be independent and
exponentially distributed with parameter 1. Show that X,; = max{X, : 1 <r < n} satisfies

: _ _ =X
n1—1>moo]P(X(n) logn < x) =exp(—e ).

Hence show that fooo{l —exp(—e™*)}dx = y where y is Euler’s constant.

47. Squeezing. Let S and X have density functions satisfying b(x) < fs(x) < a(x) and fg(x) <
fx(x). Let U be uniformly distributed on [0, 1] and independent of X. Given the value X, we
implement the following algorithm:

ifUfx(X) > a(X), reject X;
otherwise: if Ufyx(X) < b(X), accept X;
otherwise: if Ufy(X) < fs(X), accept X;
otherwise: reject X.

Show that, conditional on ultimate acceptance, X is distributed as S. Explain when you might use this
method of sampling.
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48. Let X, Y, and {Ur : r > 1} be independent random variables, where:

1
——forx,y=1,2,...,
eyt oY
and the U, are uniform on [0, 1]. Let M = max{Uy, Uy, ..., Uy}, and show that Z = X — M is
exponentially distributed.

PX=x)=(e—1De ™, P(Y =y)=

49. Let U and V be independent and uniform on [0, 1]. Set X = —a~! logUand Y = —logV

where o > 0.

. 1 5 ) . —1x2

(a) Show that, conditional on the event ¥ > 5 (X —a)“, X has density function f(x) = /2/me 2
for x > 0.

(b) Insampling from the density function f, it is decided to use a rejection method: for given o > 0,
we sample U and V repeatedly, and we accept X the first time that ¥ > %(X — a)?. What is the
optimal value of a?

(c) Describe how to use these facts in sampling from the N (0, 1) distribution.

50. Let S be a semicircle of unit radius on a diameter D.

(a) A point P is picked at random on D. If X is the distance from P to S along the perpendicular to
D, show E(X) = n /4.

(b) A point Q is picked at random on S. If Y is the perpendicular distance from Q to D, show
E(Y)=2/m.

51. (Set for the Fellowship examination of St John’s College, Cambridge in 1858.) ‘A large quantity

of pebbles lies scattered uniformly over a circular field; compare the labour of collecting them one by

one:

(i) atthe centre O of the field,

(ii) ata point A on the circumference.
To be precise, if Lo and L are the respective labours per stone, show that E(Lg) = %a and

E(LA) = 32a/(97) for some constant a.

(iii) Suppose you take each pebble to the nearer of two points A or B at the ends of a diameter. Show
in this case that the labour per stone satisfies

4a (16 17 1 2
E(Lap) = Rl V24 Zlogl+v2)} ~1.13x Za.
37 | 3 6 2 3

(iv) Finally suppose you take each pebble to the nearest vertex of an equilateral triangle ABC inscribed
in the circle. Why is it obvious that the labour per stone now satisfies E(Lapc) < E(Lg)?
Enthusiasts are invited to calculate E(L sp¢)-

52. The lines L, M, and N are parallel, and P lies on L. A line picked at random through P meets M

at Q. A line picked at random through Q meets N at R. What is the density function of the angle ®

that RP makes with L? [Hint: Recall Exercise (4.8.2) and Problem (4.14.4).]

53. Let A denote the event that you can form a triangle with three given parts of a rod R.

(a) R is broken at two points chosen independently and uniformly. Show that P(A) = i‘

(b) R is broken in two uniformly at random, the longer part is broken in two uniformly at random.
Show that P(A) = log(4/e).

(c) R is broken in two uniformly at random, a randomly chosen part is broken into two equal parts.
Show that P(A) = 1.

(d) In case (c) show that, given A, the triangle is obtuse with probability 3 — 24/2.

54. You break arod at random into two pieces. Let R be the ratio of the lengths of the shorter to the

longer piece. Find the density function fg, together with the mean and variance of R.

55. Let R be the distance between two points picked at random inside a square of side a. Show that
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]E(Rz) = %az, and that R2 /a2 has density function

) r—4Jr+m ifo<r<l,
r)=
4r—1-2-r+2sin7 ' Vr 1= 2sin ' V1—r1 ifl<r<2

56. Show that a sheet of paper of area A cm? can be placed on the square lattice with period 1 cm in
such a way that at least [ A] points are covered.

57. Show that it is possible to position a convex rock of surface area S in sunlight in such a way that
its shadow has area at least 41—¥S .

58. Dirichlet distribution. Let {X, : 1 < r < k + 1} be independent I"'(X, §,) random variables
(respectively).

(@) Show that Y, = X,./(X; 4+ ---+ Xr), 2 <r <k + 1, are independent random variables.

(b) Show that Z, = X, /(X1 +--- + Xy41), 1 <r <k, have the joint Dirichlet density

P14+ Brt1) g1—1 g1 _p—1 Bra—1
z z ez l_z -z _..._Z)k+1 s
PGB Ty T 2 o (mam k

59. Hotelling’s theorem. Let X, = (Xy,, X2,, ... , Xmr), 1| <r < n, be independent multivariate
normal random vectors having zero means and the same covariance matrix V = (v;;). Show that the
two random variables

n n n n—1
1
Si= XirXjr =~ > Xir Y Xjr Tj=Y Xir X,
r=1 r=1 r=1 r=1

are identically distributed.

60. Choose P, Q, and R independently at random in the square S(a) of side a. Show that E|PQR| =
1142 /144. Deduce that four points picked at random in a parallelogram form a convex quadrilateral
with probability (2)2.

61. Choose P, Q, and R uniformly at random within the convex region C illustrated beneath. By
considering the event that four randomly chosen points form a triangle, or otherwise, show that the
mean area of the shaded region is three times the mean area of the triangle PQR.

62. Multivariate normal sampling. Let V be a positive-definite symmetric n x n matrix, and L
a lower-triangular matrix such that V = L’L; this is called the Cholesky decomposition of V. Let
X = (Xy, X3, ..., Xn) be a vector of independent random variables distributed as N (0, 1). Show that
the vector Z = p + XL has the multivariate normal distribution with mean vector g and covariance
matrix V.

63. Verifying matrix multiplications. We need to decide whether or not AB = C where A, B, C are
given n X n matrices, and we adopt the following random algorithm. Let x be a random {0, 1}"*-valued
vector, each of the 2" possibilities being equally likely. If (AB — C)x = 0, we decide that AB = C,
and otherwise we decide that AB # C. Show that

=1 ifAB=C,

>1 ifAB#C.

Describe a similar procedure which results in an error probability which may be made as small as
desired.

IP’(the decision is correct) {
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Generating functions and their applications

Summary. A key method for studying distributions is via transforms such as the
probability generating function of a discrete random variable, or the moment
generating function and characteristic function of a general random variable.
Such transforms are particularly suited to the study of sums of independent
random variables, and their areas of application include renewal theory, random
walks, and branching processes. The inversion theorem tells how to obtain
the distribution function from knowledge of its characteristic function. The
continuity theorem allows us to use characteristic functions in studying limits
of random variables. Two principal applications are to the law of large numbers
and the central limit theorem. The theory of large deviations concerns the
estimation of probabilities of ‘exponentially unlikely’ events.

5.1 Generating functions

A sequencea = {a; : i =0, 1,2, ...} of real numbers may contain a lot of information. One
concise way of storing this information is to wrap up the numbers together in a ‘generating
function’. For example, the (ordinary) generating function of the sequence a is the function
G, defined by

o0
1) Gu(s) = Z a;s'  fors € R for which the sum converges.
(=0

The sequence a may in principle be reconstructed from the function G, by setting a; =
Gf,l) (0)/i!, where f @) denotes the ith derivative of the function f. In many circumstances it
is easier to work with the generating function G, than with the original sequence a.

(2) Example. De Moivre’s theorem. The sequence a,, = (cosf + i sin )" has generating
function
> 1

Gals) = Z[s(cose +isin®)]" =

T 1—s(cosf +isinb)
n=0

if |s] < 1; here i = +/—1. It is easily checked by examining the coefficient of s™ that

[1—s(cos® +isin6)] > s"[cos(nd) +isin(nd)] =1
n=0
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when |s| < 1. Thus

1
1 —s(cosf +isinf)

Zs”[cos(n@) +isin(nd)] =

n=0
if |[s| < 1. Equating the coefficients of s” we obtain the well-known fact that cos(nf) +
i sin(nf) = (cos O + i sin 6)". o

There are several different types of generating function, of which G, is perhaps the simplest.
Another is the exponential generating function E, given by

N
3) E, (s) = E a—;—r for s € R for which the sum converges.
i=0 ’

Whilst such generating functions have many uses in mathematics, the ordinary generating
function (1) is of greater value when the a; are probabilities. This is because ‘convolutions’
are common in probability theory, and (ordinary) generating functions provide an invaluable
tool for studying them.

(4) Convolution. The convolution of the real sequencesa = {a; : i > 0}andb = {b; : i > 0}
is the sequence ¢ = {¢; : i > 0} defined by

5 Cpn = apby +arby_1 + - - +apbo;

we write ¢ = a * b. If a and b have generating functions G, and Gy, then the generating
function of ¢ is

©® Ge(s) =) cus" = Z(Z a,-bn_,->s"
n=0 n=0 *i=0

o . 0 .
= Zais[ an_isﬂ_l = Ga(S)Gb(S).
(=0 n=i

Thus we learn that, if ¢ = a * b, then G.(s) = G,(5)Gp(s); convolutions are numerically
complicated operations, and it is often easier to work with generating functions.

(7) Example. The combinatorial identity

=) -()

1

may be obtained as follows. The left-hand side is the convolution of the sequence a; = (:l)
i=0,1,2,..., withitself. However, G,(s) = Zi ('il)s" = (1 + s5)", so that

Gara(s) = Gals) = (1 + )% = Y <2,”>sf.

1

Equating the coefficients of s” yields the required identity. [
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(8) Example. Let X and Y be independent random variables having the Poisson distribution
with parameters A and u respectively. What is the distribution of Z = X +Y?

Solution. We have from equation (3.8.2) that the mass function of Z is the convolution of
the mass functions of X and Y, fz = fx % fr. The generating function of the sequence
(fx@):i =0} is

0 i,

O) Gxls) =) st =D,

N
i=0

and similarly Gy (s) = e~ Hence the generating function Gz of { fz(i) : i > 0} satisfies
Gz(s) =Gx()Gy(s) = exp[(A+u)(s —1)], which we recognize from (9) as the generating
function of the Poisson mass function with parameter A + . L

The last example is canonical: generating functions provide a basic technique for dealing
with sums of independentrandom variables. With this example in mind, we make an important
definition. Suppose that X is a discrete random variable taking values in the non-negative
integers {0, 1,2, ...}; its distribution is specified by the sequence of probabilities f(i) =
P(X =i).

(10) Definition. The (probability) generating function of the random variable X is defined
to be the generating function G(s) = E(s%) of its probability mass function.

Note that G does indeed generate the sequence { f (i) : i > 0} since
EGs*) =) s'P(X=i)=)_s'f()
i i

by Lemma (3.3.3). We write Gy when we wish to stress the role of X. If X takes values
in the non-negative integers, its generating function G x converges at least when {s| < 1 and
sometimes in a larger interval. Generating functions can be defined for random variables taking
negative as well as positive integer values. Such generating functions generally converge for
values of s satisfying ¢ < |s| < B for some «, 8 such that ¢ < 1 < . We shall make
occasional use of such generating functions, but we do not develop their theory systematically.

In advance of giving examples and applications of the method of generating functions, we
recall some basic properties of power series. Let G(s) = Zgo a;s' wherea = {a; : i > 0} is
a real sequence.

(11) Convergence. There exists a radius of convergence R (> 0) such that the sum converges
absolutely if |s| < R and diverges if |s| > R. The sum is uniformly convergent on sets of the
form {s : |s| < R} forany R’ < R.

(12) Differentiation. G,(s) may be differentiated or integrated term by term any number of
times at points s satisfying |s| < R.

(13) Uniqueness. If G,(s) = Gp(s) for |s| < R’ where 0 < R’ < R then a, = b, for all n.
Furthermore

1

n!

(14) an = =G (0).
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(15) Abel’s theorem. If g; > O for all i and G, (s) is finite for |s| < 1, then lims41 Go(s) =
3", ai, whether the sum is finite or equals +oo. This standard result is useful when the
radius of convergence R satisfies R = 1, since then one has no a priori right to take the limit
ass 1 1.

Returning to the discrete random variable X taking values in {0, 1, 2, ...} we have that
G(s) =Y o’ s'P(X =), so that

(16) GO)=P(X =0), G(l)=1.

In particular, the radius of convergence of a probability generating function is at least 1. Here
are some examples of probability generating functions.

(17) Examples.
(a) Constant variables. If P(X = ¢) = 1 then G(s) = E(s¥) = s°.
(b) Bernoulli variables. If P(X = 1) = pand P(X =0) =1 — p then

G(s) = Es™) = (1 — p) + ps.

(c) Geometric distribution. If X is geometrically distributed with parameter p, so that
P(X = k) = p(1 — p)* ! fork > 1, then

DS

— Xy — k _ o\
G6) =EG™ =) s'p =)™ = 77—

k=1

(d) Poisson distribution. If X is Poisson distributed with parameter A then

G(s) = EG¥) = Zskﬁe_)‘ = D), o
k=0 )

Generating functions are useful when working with integer-valued random variables. Prob-
lems arise when random variables take negative or non-integer values. Later in this chapter
we shall see how to construct another funct