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Preface

The field of telecommunication consists of the theory and the practice of communication
at a distance, principally electronic communication. Many systems for telecommuni-
cation now take the form of large, complex, interconnected data networks with both
wired and wireless segments, and the design of such systems is based on a rich the-
ory. Communication theory studies methods for the design of signaling waveforms to
transmit information from point to point, as within a telecommunication system. Com-
munication theory is that part of information theory that is concerned with the explicit
design of suitable waveforms to convey messages and with the performance of those
waveforms when received in the presence of noise and other channel impairments. Dig-
ital telecommunication theory, or modem theory, is that part of communication theory
in which digital modulation and demodulation techniques play a prominent role in the
communication process, either because the information to be transmitted is digital or
because the information is temporarily represented in digital form for the purpose of
transmission.

Digital communication systems are in widespread use and are now in the process of
sweeping away even the time-honored analog communication systems, such as those
used in radio, television, and telephony. The main task of communication theory is the
design of efficient waveforms for the transmission of information over band-limited or
power-limited channels. The most sweeping conclusion of information theory is that
all communication is essentially digital. The nature of the data that is transmitted is
unimportant to the design of a digital communication system. This is in marked contrast
to analog communication systems, such as radio or television, in which the properties of
the transmitted waveform are inextricably tied up with the properties of the application,
and only weakly tied to considerations of the communication channel. To make the
point more strongly, we can give a whimsical definition of a digital communication
system as a communication system designed to best use a given channel, and an analog
communication system as one designed to best fit a given source. The spectrum of
a well-designed digital communication waveform is a good match to the passband
characteristics of the channel; the only essential way in which the source affects the
spectrum of the waveform is by the bit rate. In contrast, the spectrum of an analog
communication waveform depends critically on the properties of the source.
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The purpose of this book is to give a general introduction to the modulation
waveforms and demodulation techniques that are central to the design of digital telecom-
munication systems. Moreover, because recording is essentially a communication
process – from a past time to a future time – modulation techniques are also cen-
tral to the design of magnetic and optical recording systems. Modulation waveforms
for passband channels and for baseband channels, such as magnetic recording channels,
are treated in a common setting and with unified terminology.

The topics of this book are confined to the modulation layer of communication theory.
The topics at the modulation layer lie above other topics needed for the physical design
of communication equipment and lie below topics in other layers of the theory that deal
with networking, routing, and application sessions. These are topics for other books.
The compaction and compression of source data, including analog or voice, are also
topics that are not treated in this book. These, also, are topics for other books.

The material in this book consists, for the most part, of selected chapters from
Digital Transmission of Information (published in 1990), which have been rewritten
and expanded to fit the needs of a course in modem theory and digital telecommu-
nications. Waveforms and modulators are studied in Chapters 2 and 5 for baseband
and passband channels, respectively. Basic demodulators are developed in Chapters 3
and 6 for baseband and passband channels, respectively. More advanced methods of
demodulation for channels with dispersion are studied in Chapter 4. In Chapter 3, the
matched filter is introduced as a filter to maximize signal-to-noise ratio prior to a demod-
ulation decision. A stronger statement of optimality of the matched filter is deferred
to Chapter 7, where it is shown to be part of the maximum-likelihood demodulator
for both coherent and noncoherent demodulation in gaussian noise. These first seven
chapters contain the central ideas of modulation and demodulation, which are at the
core of the theory of modems. The final five chapters then go deeper into the subject by
developing some of the other topics that are needed to round out the foundations of the
theory of modems. Chapter 8 treats methods of synchronizing the transmitter and the
receiver so that they have the same time reference. Chapters 9 and 10 discuss methods
of coding for communication channels to control errors. Rather than modulate one data
bit, or a few data bits, at a time into a communication waveform, a coded representation
modulates an entire message into a communication waveform so that cross-checks can
eliminate errors. Chapter 9 discusses codes designed for an additive noise channel,
Chapter 10 discusses codes designed for a discrete channel, usually binary. Finally,
Chapters 11 and 12 advance the theory beyond the simple linear channel studied in
most of the book. Chapter 11 studies the robustness of modems in the presence of
simple nonlinearities and fading. Chapter 12 discusses techniques for the prevention of
intentional disruption of communications by a malicious adversary known as a jammer.

Modern digital telephony, now in widespread use, is an almost miraculous system –
partly wireless and partly wired – in which our everywhere environment is filled with
a dense but faint electromagnetic fabric that millions of telephone users can tap into
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to draw out conversations, text, and data almost without end, and certainly without
awareness of the immense theory and the extensive industry that make this fabric
possible. This is the real miracle of the recent decades, and this technological miracle
has changed the world far more than has any political theory or practice. This book
studies digital communication theory, which consists of the collection of waveform
methods that underlie the telecommunication system. A deeper investigation of the
merits of these methods is provided within the subject of information theory, which is
only touched on in this book. The study of modems is a first step in understanding this
wondrous wireless fabric, as well as the enormous and sophisticated wired backbone
that underlies this global system. The study of information theory provides a fuller
understanding of the optimality of these methods.

This book evolved within the rich environment of students and faculty at the
University of Illinois. I could not have found a better set of colleagues anywhere with
which to interact, and no environment more intellectually stimulating. The quality of
the book has much to do with the typing skills of Mrs Frances Bridges and the editing
skills of Mrs Helen Metzinger. And, as always, Barbara made it possible.



A man may expresse and signifie the intentions of his minde,
at any distance of place by objects . . . capable of a twofold
difference onely.

Sir Francis Bacon (1561–1626)





1 Introduction

A point-to-point communication system transfers a message from one point to another
through a noisy environment called a communication channel. A familiar example of
a communication channel is formed by the propagation of an electromagnetic wave
from a transmitting antenna to a receiving antenna. The message is carried by the time-
varying parameters of the electromagnetic wave. Another example of a communication
channel is a waveform propagating through a coaxial cable that connects a jack mounted
on an office wall to another such jack on another wall or to a central node. In these
examples, the waveform as it appears at the receiver is contaminated by noise, by
interference, and by other impairments. The transmitted message must be protected
against such impairments and distortion in the channel. Early communication systems
were designed to protect their messages from the environment by the simple expedient
of transmitting at low data rates with high power. Later, message design techniques
were introduced that led to the development of far more sophisticated communication
systems with much better performance. Modern message design is the art of piecing
together a number of waveform ideas in order to transmit as many bits per second
as is practical within the available power and bandwidth. It is by the performance at
low transmitted energy per bit that one judges the quality of a digital communication
system. The purpose of this book is to develop modern waveform techniques for the
digital transmission of information.

1.1 Transmission of information

An overview of a digital communication system is shown in Figure 1.1. A message
originating in an information source is to be transmitted to an information user through
a channel. The digital communication system consists of a device called a transmitter,
which prepares the source message for the communication channel, and another device
called a receiver, which prepares the channel output for the user. The operation of the
transmitter is called modulation or encoding. The operation of the receiver is called
demodulation or decoding. Many point-to-point communication systems are two-way
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Source Transmitter Receiver User

Digital Communication System

Channel
Waveform Waveform

Figure 1.1. Overview of a digital communication system.

systems in which both a modulator and a demodulator are combined in a single package
called a modem, the theory of which is the topic of this book.

At the physical level, a communication channel is normally an analog channel in
that it transmits waveforms. The user information may arise as digital source data or
may arise as an analog signal. The source data must eventually be modulated into an
analog waveform that suits the analog channel. When the source signal is an analog
waveform – perhaps a continuous-time analog waveform such as voice or video – a
digital communication system first converts that waveform to a digital representation
(which may take the form of a stream of bits), processes that digital representation
in some way, but then converts it back into a continuous-time analog waveform for
passage through the channel. The analog waveform passing through the channel will
be completely different from the analog waveform generated by the source. The analog
waveform at the channel output may be converted later by means of sampling and
quantization to intermediate digital data for processing and demodulation. The inter-
mediate digital data may be very different in its character from both the digital data that
was transmitted and the final digital data produced by the demodulator. Ultimately, if
required by the user, the digital data may be reconverted to its original analog form,
such as voice or video. This multiple conversion between digital data and analog data
may seem to be complicated and expensive, but it is worthwhile for many reasons.
The channel waveform is matched to the nature of the channel, not to the nature of the
source. Moreover, the digital data can be rerouted through many kinds of digital links
or storage devices while it is in digital form, or it can be merged and mingled with other
data traffic passing through a network.

Analog modulation is still widely used in radio and television, and until recently, was
also used in phonography and voice telephony. Analog modulation techniques make
relatively superficial changes to the signal in order to send it through the channel; there
is no significant effort to tailor the waveform to suit the channel at any deeper level.
Digital communication waveforms are more sophisticated. Digital communication the-
ory endeavors to find waveforms that are closely matched to the characteristics of the
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channel and that are tolerant of the impairments in the channel so that the reliable flow
of information through the channel is ensured. The characteristics of the source are of
no interest in designing good waveforms for a channel. Good waveforms for digital
communication are designed to match the characteristics of the channel; the source
information is then encoded into this channel waveform. A digital communication sys-
tem might require a considerable amount of electronic circuitry to translate the source
waveform into a form more suitable for the channel, but electronics is now cheap. In
contrast, most channels are comparatively expensive, and it is important to make the
best use of a channel.

Even an application that might appear to be intrinsically an analog application, such
as broadcast television, can be partitioned into two tasks – the task of delivering so
many bits per second through the channel and the task of representing the video signal
by the available number of bits per second. This is the important and (once) surprising
separation principle of information theory, which says that the task of transmitting
the output of a source through a channel can be separated, without meaningful loss,
into the task of forming a binary representation of the source output and the task
of sending a binary datastream through the channel. For digital transmission to be
effective, both of these tasks must be implemented efficiently. Otherwise, there will
be disadvantages such as increased bandwidth or larger transmitted power. The source
data must first be compressed, then modulated into a suitable transmission waveform,
perhaps a spectrally-efficient waveform that carries multiple bits per second per hertz,
or perhaps an energy-efficient waveform that uses low power but occupies a large
bandwidth.

The disadvantages that were once cited for digital communications are really not
compelling; any validity that these claims once had has crumbled under the progress of
technology. Cost was once a significant disadvantage of digital communication systems,
but is no longer. Digital modulation of an analog signal was once believed to require
larger bandwidth than direct analog modulation. This is not true. By using modern
methods of data compression, data compaction, and bandwidth-efficient modulation –
conveying multiple bits per second per hertz – a digital communication system will
actually use less bandwidth than an analog communication system. Another presumed
disadvantage that is sometimes mentioned is that of quantization noise. Quantization
noise, however, is completely under the control of the designer of the quantization
scheme and will be the only important source of noise in the signal that is presented
to the user. The modern view is that quantization noise is a price cheerfully paid
for the more important advantage of removing the effects of channel noise and other
impairments from the received signal. It is a truism of information theory that, in a
well-designed system, the quantization noise will always be less than the channel noise
it replaces.

On the other hand, there are numerous and compelling advantages of digital com-
munication. Every link becomes simply a “bit pipe” characterized by its data rate and



4 Introduction

its probability of bit error. It makes no difference to the communication links whether
the transmitted bits represent a digitized voice signal or a computer program. Many
kinds of data source can share a common digital communication link, and the many
kinds of communication links are suitable for any data source. Errors due to noise and
interference are almost completely suppressed by the use of specialized codes for the
prevention of error. A digital datastream can be routed through many physically differ-
ent links in a complex system, and can be intermingled with other digital traffic in the
network. A digital datastream is compatible with standardized encryption and antijam
equipment.

The digital datastream can be regenerated and remodulated at every repeater that it
passes through so that the effect of additive channel noise, or other impairments, does
not accumulate in the signal. Analog repeaters, on the other hand, consist of amplifiers
that amplify both signal and noise. Noise accumulates in an analog communication
waveform as it passes through each of a series of repeaters.

Finally, because digital communication systems are built in large part from digital
circuitry, data can be readily buffered in random-access digital memories or on mag-
netic disks. Many functions of a modem can be programmed into a microprocessor or
designed into a special-purpose digital integrated circuit. Thus a digital data format is
compatible with the many other digital systems and subsystems of the modern world.

1.2 A brief historical survey

The historical development of modem theory can be divided into several phases: tra-
ditional methods such as PSK, PAM, QAM, and orthogonal signaling, which were
developed early; the multilevel signal constellation designs of the 1970s; the coded
modulation and precoding techniques of the 1980s and 1990s, and the graphical
methods of the past decade. It is a curiosity of technological history that the earli-
est communication systems such as telegraphy (1832,1844) actually can be classified
as digital communication systems. Even the time-honored Morse code is a digital com-
munication waveform in that it uses a discrete alphabet. Telegraphy created an early
communications industry but lacked the popular appeal of later analog communica-
tion systems such as the telephone (1876) and the phonograph (1877). These analog
communication systems were dominant for most of the twentieth century.

The earliest broadcast systems for communication were concerned with the transfer
of analog continuous signals, first radio signals (1920) and then television sig-
nals (1923, 1927). Analog modulation techniques were developed for embedding a
continuous-time signal into a carrier waveform that could be propagated through a
channel such as an electromagnetic-wave channel. These techniques are still employed
in systems that demand low cost or have strong historical roots, such as radio, telephony,
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and television. There are indications, however, that analog modulation is becoming
outdated even for those applications, and only the enormous investment in existing
equipment will forestall the inevitable demise of the familiar AM and FM radios.
Indeed, the evolution from digital communication to analog communication that began
in the 1870s is now being countered by an evolution from analog communication back to
digital communication that found its first strength in the 1970s. Even the analog phono-
graph record, after 100 years of popularity and dominance, has now been completely
superseded by the compact disk.

The earliest radio transmitters used a form of analog modulation called amplitude
modulation. This method maps a signal s(t) into a waveform c(t) given by

c(t) = [1 + ms(t)] cos 2π f0t

where m is a small constant called the modulation index such that ms(t) is much
smaller than one, and f0 is a constant called the carrier frequency such that f0 is large
compared to the largest frequency for which S( f ), the Fourier transform of s(t), is
nonzero. Even though the fidelity of the received signal is not noteworthy, amplitude
modulation became very popular early on because the mapping from s(t) to c(t) could
be implemented in the transmitter very simply, and the inverse mapping from c(t) to
s(t) could be implemented simply in the receiver, though only approximately.

Frequency modulation is an alternative analog modulation technique given by the
following map from s(t) to c(t):

c(t) = sin

(
2π f0t +

∫ t

0
ms(ξ)dξ

)
where, again, the carrier frequency f0 is large compared to the largest frequency for
which S( f ) is significant. Frequency modulation was naively proposed very early as a
method to conserve the radio spectrum. The naive argument was that the term ms(t) is
an “instantaneous frequency” perturbing the carrier frequency f0 and, if the modulation
index m is made very small, the bandwidth of the transform C( f ) could be made much
smaller than the bandwidth of S( f ). Carson (1922) argued that this is an ill-considered
plan, as is easily seen by looking at the approximation

c(t) ≈ sin 2π f0t + cos 2π f0t

[
m
∫ t

0
s(ξ)dξ

]
when m is small. The second term has the same Fourier transform as the bracketed
component, but translated in frequency by f0. Because the integral of s(t) has the same
frequency components as s(t), the spectral width is not reduced. As a result of this
observation, frequency modulation temporarily fell out of favor. Armstrong (1936)
reawakened interest in frequency modulation when he realized it had a much different
property that was desirable. When the modulation index is large, the inverse mapping
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from the modulated waveform c(t) back to the signal s(t) is much less sensitive to
additive noise in the received signal than is the case for amplitude modulation, – at
least when the noise is small. Frequency demodulation implemented with a hardlimiter
suppresses noise and weak interference, and so frequency modulation has come to be
preferred to amplitude modulation because of its higher fidelity.

The basic methods of analog modulation are also used in modified forms such as
single-sideband modulation or vestigial-sideband modulation. These modified forms
are attempts to improve the efficiency of the modulation waveform in its use of the
spectrum. Other analog methods, such as Dolby (1967) modulation, are used to match
the analog source signal more closely to the noise characteristics of the channel. All
methods for modifying the techniques of analog modulation are stopgap methods. They
do not attack the deficiencies of analog modulation head-on. Eventually, possibly with
a few exceptions, such methods will be abandoned in favor of digital modulation.

The superiority of digital communication seems obvious today to any observer of
recent technological trends. Yet to an earlier generation it was not obvious at all. Shan-
non’s original development of information theory, which was published in 1948 and
implicitly argued for the optimality of digital communications, was widely questioned
at the time. Communication theory became much more mathematical when Shannon’s
view became widely appreciated. His view is that communication is intrinsically a sta-
tistical process, both because the message is random and because the noise is random.
The message is random because there is little point in transmitting a predetermined
message if the receiver already knows it. If there are only a few possible predetermined
messages already known to the receiver, one of which must be sent, then there is no
need to send the entire message. Only a few prearranged bits need to be transmitted
to identify the chosen message to the receiver. But this already implies that there is
some uncertainty about which message will be the chosen message. Even this simple
example introduces randomness, and as the number of possible messages increases,
the randomness increases, and so the number of bits needed in the message increases
as well.

Randomness is an essential ingredient in the theory of communication also because
of noise in the channel. This statistical view of communication, encompassing both
random messages and noisy channels, was promoted by Shannon (1948, 1949). Ear-
lier, Rice (1945) had made extensive study of the effect of channel noise on received
analog communication waveforms. Shannon developed the broader and (at that time)
counterintuitive view that the waveform could be designed to make the channel noise
essentially inconsequential to the quality of the received waveform. He realized that
combating noise was a job for both the transmitter and the receiver, not for the receiver
alone. In his papers, Shannon laid a firm foundation for the development of digital com-
munication. A different paper dealing with applications that were transitional between
analog and digital communication was due to Oliver, Pierce, and Shannon (1948). The
period of the 1940s appears to be the time when people began thinking deeply about the
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fundamental nature of the communication problem and the return to digital signaling
began to accelerate. There were, however, many earlier studies and applications of digi-
tal signaling as in the work of Nyquist (1924, 1928) and Hartley (1928). Aschoff (1983)
gives a good early history of digital signaling.

1.3 Point-to-point digital communication

A simple block diagram of a point-to-point digital communication system is shown in
Figure 1.1. The model in Figure 1.1 is quite general and can be applied to a variety
of communication systems, and also to magnetic and optical storage systems. The
boxes labeled “channel,” “source,” and “user” in Figure 1.1 represent those parts of
the system that are not under the control of the designer. The identification of the
channel may be somewhat arbitrary because some of the physical components such as
amplifiers might in some circumstances be considered to be part of the channel and in
other circumstances might be considered to be part of the modulator and demodulator.

It is the task of the designer to connect the data source to the data sink by design-
ing the boxes labeled “transmitter” and “receiver”. These boxes are also called, more
simply, the encoder and decoder or the modulator and demodulator. The latter names
are usually preferred when the channel is a waveform channel while the former are
usually preferred for discrete channels. Consequently, the transmitter is also called the
encoder/modulator, and the receiver is also called the demodulator/decoder. Often a
single package that can be used either as a transmitter or a receiver (or both simultane-
ously) is desired. A modulator and demodulator combined into a single box is called a
modem. The term “modem” might also be used to include the encoder and decoder as
well, and usually includes other supporting functions that extend beyond modulation
and demodulation but which are needed to make the modem work. The terms “trans-
mitter” and “receiver” are sometimes preferred as the broader terms that include such
supporting functions. Figure 1.2 and Figure 1.3 show the functions normally included
in the transmitter and receiver.

Modern practice in the design of communication systems is to separate the design
tasks associated with the data source and the data user from the design tasks associated
with the channel. This leads technology in the direction of greater flexibility in that
the source data, when reduced to a stream of bits, might be transmitted through any
one of many possible channels or even through a network of different channels. To

Input
from
Source

Source
Encoder Encryptor

Channel
Encoder Modulator

Band
Spreading

to
Channel

Figure 1.2. Primary transmitter functions.
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Pulse
Synchronization

Message
Synchronization

Carrier
Acquisition

Band
Despreading

from
Channel

Equalization

Channel
Modeling

Demodulator

Symbol
Recovery

Channel
Decoder

Decryptor
Source

Decoder
to
User

Figure 1.3. Primary receiver functions.

do this, the functions of the transmitter and receiver are broken into more detailed
functions as described by the block diagrams of Figures 1.2 and 1.3. The trans-
mitter includes a source encoder, a channel encoder, and a modulator; the receiver
includes a demodulator, a channel decoder, and a source decoder. Information theory
teaches us that there is no consequential loss in performance because of partitioning
the problem in this way. Moreover, for our topics, there is no loss in generality if the
interface between the source encoder and the channel encoder, as well as the interface
between the channel decoder and source decoder are regarded to be serial streams of
binary data.

The source data entering a digital communication system may be analog or digital.
Upon entering the transmitter, analog data will first be digitized. In the process of
digitization, continuous time may be reduced to discrete time by the process of sampling
a source waveform of finite bandwidth. Then the datastream is processed by a source
encoder, whose purpose is to represent the source data compactly by a stream of bits
called the source codestream. At this point, the source data has been reduced to a
commonplace stream of bits, superficially displaying no trace of the origin of the
source data. Indeed, data from several completely different kinds of sources now may
be merged into a single bit stream. The source data might then be encrypted to prevent
eavesdropping by an unauthorized receiver. Again, the encrypted bit stream is another
commonplace bit stream superficially displaying no trace of its origin.

The datastream is next processed by the channel encoder, which transforms the data-
stream into a new datastream called the channel codestream. The channel codestream
has redundancy in the form of elaborate cross checks built into it, so that errors arising
in the channel can be corrected by using the cross checks. Redundancy may also be
added to remove subpatterns of data that are troublesome to transmit. The symbols of
the new datastream might be binary or might be symbols from a larger alphabet called
the channel alphabet. The stream of channel codewords is passed to the modulator,
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which converts the sequence of discrete code symbols into a continuous function of
time called the channel waveform. The modulator does this by replacing each sym-
bol of the channel codeword by the corresponding analog symbol from a finite set
of analog symbols composing the modulation alphabet. Here, discrete time is also
reconverted to continuous time by some form of interpolation. The sequence of ana-
log symbols composes the channel waveform, which is either transmitted through the
channel directly or after it is further modified to spread its bandwidth. The reason that
bandspreading might be used is to protect the signal from some kinds of fading or
interference, possibly intentional interference created by an adversary. The input to the
channel is the channel waveform formed by the transmitter. The channel waveform is
now a continuous-time waveform. Although the source waveform might also have been
a continuous-time waveform, the appearance and properties of the channel waveform
will be quite different from those of the source waveform. The channel waveform then
passes through the channel where it may be severely attenuated and usually changed in
other ways.

The input to the receiver is the output of the channel. Because the channel is subject
to various types of noise, dispersion, distortion, and interference, the waveform seen
at the channel output differs from the waveform at the channel input. The waveform
will always be subjected to thermal noise in the receiver, which is additive gaussian
noise, and this is the disturbance that we shall study most thoroughly. The waveform
may also be subjected to many kinds of impulsive noise, burst noise, or other forms of
nongaussian noise. Upon entering the receiver, if the waveform has been bandspread
in the transmitter, it is first despread. The demodulator may then convert the received
waveform into a stream of discrete channel symbols based on a best estimate of each
transmitted symbol. Sometimes the demodulator makes errors because the received
waveform has been impaired and is not the same as the waveform that was transmitted.
Perhaps to quantify its confidence, the demodulator may append confidence annotations
to each demodulated symbol. The final sequence of symbols from the demodulator is
called the received word or the senseword . It is called a soft senseword if it is not
reduced to the channel input alphabet or if it includes confidence annotations. The
symbols of the senseword need not match those of the transmitted channel codeword;
the senseword symbols may take values in a different alphabet.

The function of the channel decoder is to use the redundancy in the channel codeword
to correct the errors in the senseword and then to produce an estimate of the datastream
that appeared at the input to the channel encoder. If the datastream has been encrypted, it
is now decrypted to produce an estimate of the sequence of source codewords. Possibly
at this point the datastream contains source codewords from more than one source, and
these source codewords must be demultiplexed. If all errors have been corrected by
the channel decoder, each estimated source codeword matches the original source
codeword. The source decoder performs the inverse operation of the source encoder
and delivers its output to the user.
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The modulator and the demodulator are studied under the term modulation the-
ory. Modulation theory is the core of digital communications and the subject of this
book. The methods of baseband modulation and baseband demodulation are studied in
Chapters 2 and 3, while passband modulation and passband demodulation are studied
in Chapter 5 and Chapter 6. The formal justification for the structure of the optimal
receiver will be given with the aid of the maximum-likelihood principle, which is
studied in Chapter 7.

The receiver also includes other functions, such as equalization and synchronization,
shown in Figure 1.3, that are needed to support demodulation. The corresponding
structure of the optimal receiver will not fully emerge until these functions are developed
as a consequence of the maximum-likelihood principle in Chapter 7. The receiver may
also include intentional nonlinearities, perhaps meant to clip strong interfering signals,
or to control dynamic range. These are studied in Chapter 11.

1.4 Networks for digital communication

Digital point-to-point communication systems can be combined to form digital com-
munication networks. Modern communication networks were developed relatively
recently, so they are mostly digital. The main exception to this is the telephone network
which began early as an analog network, and was converted piecemeal to a digital
network through the years, but still with some vestiges of analog communication. The
telephone network is a kind of network in which switching (circuit switching) is used to
create a temporary communication channel (a virtual channel) between two points. A
broadcast system, shown in Figure 1.4, might also be classified as a kind of communi-
cation network. However, if the same waveform is sent to all receivers, the design of a
broadcast system is really quite similar to the design of a point-to-point communication
system. Therefore both the early telephone network and a broadcast system, in their
origins, can be seen as kinds of analog point-to-point communication systems. Other,
more recent, communication networks are digital.

Receiver

TransmitterSource

Receiver

Receiver

Figure 1.4. Broadcast communications.
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User

User

UserUser

User

User

Common
Medium

Figure 1.5. A multiaccess communication network.

Figure 1.5 shows a modern form of a communication network, known as a multiac-
cess network. It consists of a single channel, called a multiaccess channel, to which is
attached a multitude of users who exchange messages. The rules by which the users
access the shared channel are called channel protocols. The protocol is one new ele-
ment that makes a digital communication network more complicated than a digital
point-to-point communication system.

The simplest multiaccess channel is the fixed-assignment multiaccess channel of
which time-division multiaccess signaling is a good example. In a time-division mul-
tiaccess system, each user is preassigned a fixed time interval called a time slot during
which it can transmit. In this way, the channel is available to each user in turn. Similarly,
for frequency-division multiaccess signaling each user is assigned a fixed frequency
slot. One disadvantage of the time-division or frequency-division protocol is that it is
inefficient; if a user has nothing to transmit, its time slot or frequency slot is wasted.
Another disadvantage is that the set of users needs to be fairly well specified so that
time slots or frequency slots can be assigned. Both transmitter and receiver need to
know the slot assignments. Moreover, each user of a time-division system needs to
have its clock synchronized to system time. If it is possible for new or dormant users to
become active, then there must be a control channel to assign time slots or frequency
slots.

At the other extreme are networks for which the set of users is very large, not very
well defined, and each individual user wants to transmit only rarely but at random
times and at its own convenience. Then the signaling method is known as demand-
assignment multiaccess signaling. One kind of protocol for this case is the kind known
as a contention-resolution algorithm. Users transmit whenever it suits them, but the
collision of simultaneous messages may cause those messages to be lost or damaged.
In the event of such a conflict, all users in the collision retransmit their lost messages
at a later time. Each user chooses a later time to retransmit by a common algorithm
that chooses a random, or effectively random, time so that another collision is unlikely.
Contention-resolution algorithms have seen wide use, but the behavior and optimality
of these algorithms is not fully understood.
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1.5 The Fourier transform

The design of communication waveforms makes extensive use of the Fourier transform.
We shall review the theory of the Fourier transform in this section.

Asignal s(t) is a real-valued or complex-valued function of time that has finite energy

Ep =
∫ ∞

−∞
|s(t)|2dt < ∞.

We shall also call the signal s(t) a pulse, usually when we can regard it as a simple
signal. The support of s(t) is the set of t for which s(t) is nonzero. The pulse s(t) has a
finite duration – or has finite timewidth – if its support is contained in a finite interval.
Because we regard t to be time, the pulse s(t) is called a time-domain signal.

The Fourier transform S( f ) of the signal s(t) is defined as

S( f ) =
∫ ∞

−∞
s(t)e−j2π ftdt.

The function S( f ) is sometimes called the frequency-domain signal. The relationship
between a function and its Fourier transform is denoted in summary form by the notation

s(t) ↔ S( f ).

The two-way arrow implies that s(t) can be converted to S( f ), and S( f ) can be
converted to s(t). Sometimes this relationship is abbreviated by the functional notation

S( f ) = F [s(t)]

and

s(t) = F−1[S( f )].

We also call the Fourier transform S( f ) the spectrum or the amplitude spectrum of
the pulse s(t), and we call |S( f )|2 the power spectrum of the pulse s(t). The support of
S( f ) is the set of f for which S( f ) is nonzero. The spectrum S( f ) has finite bandwidth
if its support is contained in a finite interval.

The Fourier transform is a linear operation. This means that if

s(t) = as1(t) + bs2(t)

for any complex constants a and b, then

S( f ) = aS1( f ) + bS2( f ).
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If S( f ) is the Fourier transform of the signal s(t), then it is not the Fourier transform of
any other signal.1 Consequently, the Fourier transform can be inverted. This is proved
in the following theorem, which gives an explicit formula for the inverse Fourier
transform.

Theorem 1.5.1 (Inverse Fourier transform) If S( f ) is the Fourier transform of
s(t), then

s(t) =
∫ ∞

−∞
S( f )e j2π ftdf

for all t at which s(t) is continuous.

Proof We shall sketch only an informal “proof” here, because the symbolism of the
impulse function δ(t) is used. (The impulse function is defined in Section 1.6.) By
definition

S( f ) =
∫ ∞

−∞
s(ξ)e−j2π f ξ dξ .

Therefore∫ ∞

−∞
S( f )e j2π ftdf =

∫ ∞

−∞

[∫ ∞

−∞
s(ξ)e−j2π f ξ dξ

]
e j2π ftdf

=
∫ ∞

−∞
s(ξ)

[∫ ∞

−∞
e−j2π(ξ−t)f df

]
dξ .

The inner integral does not have a proper meaning. The integral is infinite if ξ = t
and otherwise is the integral of a sine wave over all time, which is undefined. Without
further justification, we replace the inner integral by a delta function to write∫ ∞

−∞
S( f )e j2π ftdf =

∫ ∞

−∞
s(ξ)δ(ξ − t)dξ

= s(t).

This completes the informal proof. �

The formula for the inverse Fourier transform has the same structure as the formula for
the Fourier transform itself except for a change in sign in the exponent. Consequently,
there is a duality in Fourier transform pairs. Specifically, if

s(t) ↔ S( f )

1 This statement requires the definition that two pulses s1(t) and s2(t) are equivalent if and only if the difference
pulse s1(t) − s2(t) has zero energy.
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is a Fourier transform pair, then

S(t) ↔ s(−f )

is also a Fourier transform pair.

Theorem 1.5.2 Scaling of the time axis by the real constant a changes s(t) to s(at)
and changes the transform S( f ) to |a|−1S( f /a).

Proof If a is positive, set at = t′, so that∫ ∞

−∞
s(at)e−j2π ftdt =

∫ ∞

−∞
s(t′)e−j2π ft′/adt′/a

= 1

a
S( f /a).

If a is negative, the sign reversal can be accommodated by writing |a|. �

In the next several theorems we develop a general shift property, which is known as
the delay theorem when used to shift the time origin, and as the modulation theorem
when used to shift the frequency origin.

Theorem 1.5.3 (Delay theorem) If s(t) has Fourier transform S( f ), then s(t − t0)
has Fourier transform S( f )e−j2π t0f .

Proof By a simple change in variable,∫ ∞

−∞
s(t − t0)e

−j2π ftdt =
∫ ∞

−∞
s(τ )e−j2π f (τ+t0)dτ

= S( f )e−j2π t0f

as was to be proved. �

The delay theorem is illustrated in Figure 1.6.

Theorem 1.5.4 (Modulation theorem) If s(t) has Fourier transform S( f ), then
s(t)e j2π f0t has Fourier transform S( f − f0).

Proof By a simple change in variable,∫ ∞

−∞
s(t)e j2π f0te−j2π ftdt =

∫ ∞

−∞
s(t)e−j2π( f −f0)tdt

= S( f − f0),

as was to be proved. �
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Figure 1.6. Illustrating the delay theorem.
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Figure 1.7. Illustrating the modulation theorem.

Corollary 1.5.5 (Modulation theorem) If s(t) has Fourier transform S( f ), then
s(t) cos 2π f0t has Fourier transform 1

2 [S( f + f0) + S( f − f0)], and s(t) sin 2π f0t has
Fourier transform 1

2 j[S( f + f0) − S( f − f0)].
Proof The proof follows immediately from the theorem and the relations

cos 2π f0t = 1

2

(
e j2π f0t + e−j2π f0t

)
sin 2π f0t = 1

2j

(
e j2π f0t − e−j2π f0t

)
.

�

The modulation theorem is illustrated in Figure 1.7.
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Theorem 1.5.6 (Energy theorem) If s(t) has Fourier transform S( f ), then the pulse
energy Ep of s(t) satisfies

Ep =
∫ ∞

−∞
|s(t)|2dt =

∫ ∞

−∞
|S( f )|2df .

Proof This is a straightforward manipulation as follows:∫ ∞

−∞
|s(t)|2dt =

∫ ∞

−∞
s(t)

[∫ ∞

−∞
S( f )e j2π ftdf

]∗
dt

=
∫ ∞

−∞
S∗( f )

[∫ ∞

−∞
s(t)e−j2π ftdt

]
df

=
∫ ∞

−∞
|S( f )|2df . �

The energy theorem is a special case of the following theorem.

Theorem 1.5.7 (Parseval’s theorem) If pulses s1(t) and s2(t) have Fourier trans-
forms S1( f ) and S2( f ), respectively, then∫ ∞

−∞
s1(t)s

∗
2(t)dt =

∫ ∞

−∞
S1( f )S∗

2 ( f )df .

Proof The proof is similar to the proof of Theorem 1.5.6. �

A linear filter with impulse response g(t) and input signal s(t) has an output signal
r(t) given by the convolution

r(t) =
∫ ∞

−∞
s(ξ)g(t − ξ)dξ

=
∫ ∞

−∞
s(t − ξ)g(ξ)dξ .

The next theorem, a fundamental theorem for the study of the effect of a linear filter on
a signal, says that a convolution in the time domain becomes a product in the frequency
domain. Because multiplication is simpler than convolution, it often is easier to think
about a filtering problem in the frequency domain.

Theorem 1.5.8 (Convolution theorem) If s(t), g(t), and r(t)have Fourier transforms
S( f ), G( f ), and R( f ), respectively, then

r(t) =
∫ ∞

−∞
g(t − ξ)s(ξ)dξ

if and only if

R( f ) = G( f )S( f ).
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Proof Expressing s(t) as an inverse Fourier transform gives

r(t) =
∫ ∞

−∞
g(t − ξ)

[∫ ∞

−∞
S( f )e j2π f ξ df

]
dξ

=
∫ ∞

−∞
S( f )e j2π ft

[∫ ∞

−∞
g(t − ξ)e−j2π f (t−ξ)dξ

]
df .

Let η = t − ξ . Then

r(t) =
∫ ∞

−∞
S( f )e j2π ft

[∫ ∞

−∞
g(η)e−j2π f ηdη

]
df

=
∫ ∞

−∞
S( f )G( f )e j2π ftdf .

Consequently, by the uniqueness of the inverse Fourier transform,

R( f ) = S( f )G( f ).

Because the argument can be read in either direction, the theorem is proved in both
directions. �

Aspecial case of the convolution theorem says that the convolution of a pulse s(t) with
the pulse s∗(−t) has Fourier transform |S( f )|2 because the Fourier transform of s∗(−t)
is S∗( f ). Similarly, the pulse |s(t)|2 has Fourier transform equal to the convolution of
S( f ) with S∗(−f ).

Theorem 1.5.9 (Differentiation) If pulse s(t) has Fourier transform S( f ), then the
derivative ds(t)/dt, if it exists, has Fourier transform j2π fS( f ).

Proof Allowing the interchange of differentiation and integration gives

ds(t)

dt
= d

dt

∫ ∞

−∞
S( f )e j2π ftdf

=
∫ ∞

−∞
[j2π fS( f )]e j2π ftdf .

Then

ds(t)

dt
↔ j2π fS( f )

by the uniqueness of the Fourier transform. �

Theorem 1.5.10 (Poisson sum formula)

∞∑
�=−∞

s(t + �T ) = 1

T

∞∑
�=−∞

e j2π�t/T S

(
�

T

)
.
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Proof The expression

∞∑
�=−∞

s(t + �T ) = s(t) ∗
∞∑

�=−∞
δ(t + �T )

has the Fourier transform

∞∑
�=−∞

s(t + �T ) ↔ S( f )
1

T

∞∑
�=−∞

δ

(
f + �

T

)

(as derived in the next section). Expressing the left side as an inverse Fourier transform
of the right side gives

∞∑
�=−∞

s(t + �T ) =
∫ ∞

−∞
e j2π ft

[
1

T

∞∑
�=−∞

S( f )δ

(
f + �

T

)]
df

= 1

T

∞∑
�=−∞

∫ ∞

−∞
e j2π ftS( f )δ

(
f + �

T

)
df

= 1

T

∞∑
�=−∞

e j2π�t/T S

(
�

T

)

as was to be proved. �

1.6 Transforms of some useful functions

A list of some useful one-dimensional Fourier transform pairs is given in Table 1.1.
Some of the entries in this table are developed in this section. Other entries will arise
later in the book.

The most elementary pulse is the rectangular pulse, defined as

rect(t) =
{

1 if |t| ≤ 1/2
0 if |t| > 1/2.

The Fourier transform of a rectangular pulse is readily evaluated. Let

s(t) = rect

(
t

T

)
.
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Table 1.1. A table of one-dimensional
Fourier transform pairs

s(t) S( f )

rect(t) sinc(f )
sinc(t) rect(f )

δ(t) 1
1 δ( f )

e−π t2
e−π f 2

e jπ t2 1+j√
2

e−jπ f 2

cos π t 1
2 δ
(

f − 1
2

)
+ 1

2 δ
(

f + 1
2

)
sin π t j

2 δ
(

f − 1
2

)
− j

2 δ
(

f + 1
2

)
e−|t| 2

1+(2π f )2

combN (t) dircN ( f )

comb(t) comb( f )

Figure 1.8. The sinc function.

Then

S( f ) =
∫ T/2

−T/2
e−j2π ftdt

= 1

−j2π f

[
e−jπ fT − e jπ fT

]
= T sinc( fT )

where the sinc function or sinc pulse, illustrated in Figure 1.8, is defined as

sinc(x) = sin πx

πx
.
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This Fourier transform pair is written concisely as

rect

(
t

T

)
↔ T sinc( fT ).

By the duality property of the Fourier transform, we can immediately write

W sinc(tW ) ↔ rect

(
f

W

)
.

The next example is the impulse function δ(t). Though the impulse function is not a
true function,2 it is very useful in formal manipulations. It can be defined in a symbolic
way as follows. A rectangular pulse of unit area and width T is given by

s(t) = 1

T
rect

(
t

T

)

=
{

1
T |t| ≤ T/2
0 |t| > T/2.

This pulse has a unit area for every value of T , and the energy Ep of this pulse is 1/T .
As T decreases, the pulse becomes higher and thinner, and the pulse energy goes to
infinity. The impulse function δ(t) is defined formally as the limit of this sequence of
rectangular pulses as T goes to zero. The Fourier transform of the impulse function of
δ(t) does not exist, but it can be defined formally as the limit as T goes to zero of the
sequence of Fourier transforms of rectangular pulses.

Thus, we write

δ(t) ↔ 1

to indicate that

S( f ) = lim
T→0

1

T
(T sinc fT )

= 1.

Because the energy Ep of δ(t) is not finite, nor is δ(t) a proper function, this is not a
proper Fourier transform pair in the sense of the original definition. However, because
this improper pair is frequently useful in formal manipulations, the notion of a Fourier
transform is enlarged by appending this pair to the list of Fourier transform pairs.

2 The impulse function is an example of a generalized function. Generalized functions are created to enlarge
the notion of a function so that certain converging sequences of functions do have a limit. A formal theory of
generalized functions has been developed. The impulse function, and its properties, properly belong to that
theory.



21 1.6 Transforms of some useful functions

Adoublet of impulses, given by δ(t− 1
2 )+δ(t+ 1

2 ) has Fourier transform e−jπ f +e jπ f ,
as follows from the delay property. More generally, a finite train of N regularly spaced
impulses, called a finite comb function, and denoted

combN (t) =
N−1∑
�=0

δ(t − � + 1
2 (N − 1))

has a Fourier transform

S( f ) =
N−1∑
�=0

e−j2π(�− 1
2 (N−1)f ).

Using the identity
∑N−1

�=0 x� = 1−xN

1−x , the summation can be reduced to

S( f ) = e jπNf − e−jπNf

e jπ f − e−jπ f

= sin πNf

sin π f
.

The right side is known as a dirichlet function, which is denoted dircN (x) and defined by

dircN (x) = sin πNx

sin πx
.

For integer values of x, the dirichlet function has value ±N (the sign depending on
whether N is odd or even). It has its first zeros at x = ±1/N . The dirichlet function is
small if x differs from an integer by more than a few multiples of 1/N . For any integer i,
dircN (x + i) = ± dircN (x).

Informally, as N goes to infinity, the train of impulses is known as the comb function,
which is defined by

comb(x) =
∞∑

�=−∞
δ(t − �).

The Fourier transform of the improper function comb(t) is comb( f ). This improper
Fourier transform pair is informally justified by regarding comb(t) as the limit as N
goes to infinity, N odd, of combN (t). Then the Fourier transform of comb(t) is the limit
of dircN ( f ), N odd, as N goes to infinity. For integer values of f , this is the limit of
N as N goes to infinity. For other values of f , the limit is zero. Thus, in the limit, the
Fourier transform is the comb function.

Other simple pulses are shown in Figure 1.9. Some of these pulses are concentrated
in a time interval, say between −T/2 and T/2, and are equal to zero outside of this
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a) Square Pulse

b) Triangular Pulse

c) Gaussian Pulse

d) Sine Pulse

e) Cosine Pulse

f) Raised Cosine Pulse
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Figure 1.9. Some simple pulses and their spectra.

interval. For example, the rectangular pulse and the triangular pulse are of this form.
Other pulses, such as the sinc pulse, have tails that go on indefinitely. The gaussian
pulse

s(t) = e−π t2

also has tails that go on indefinitely. The Fourier transform of the gaussian pulse is

S( f ) =
∫ ∞

−∞
e−π t2

e−j2π ftdt.
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Because s(t) is an even function, this integral can be written

S( f ) =
∫ ∞

−∞
e−π t2

cos 2π ftdt

= e−π f 2

where the last line follows from consulting a table of definite integrals. Thus we have
the following elegant Fourier transform pair

e−π t2 ↔ e−π f 2
.

More generally, using the scaling property of the Fourier transform, we have

e−at2 ↔
√

π

a
e−π2f 2/a.

The rectangular pulse, the sinc pulse, and the gaussian pulse all have finite energy,
and so each has a Fourier transform. Other pulses, such as the impulse, have infinite
energy and so do not have a Fourier transform. Often, however, (as for the comb
function) it is possible to enlarge the definition of the Fourier transform by appending
appropriate limits of sequences. Thus, the chirp pulse

s(t) = e jπ t2

has infinite energy. However, the finite chirp pulse,

sT (t) = e jπ t2
rect

(
t

T

)
,

has finite energy and so has a Fourier transform ST ( f ) for every value of T . The Fourier
transform of s(t) can be defined informally as the limit of the transform ST ( f ) as T
goes to infinity. This limit can be computed directly by writing

S( f ) =
∫ ∞

−∞
e jπ t2

e−j2π ftdt.

To evaluate the integral complete the square in the exponent

S( f ) = e−jπ f 2
∫ ∞

−∞
e jπ(t−f )2

dt.
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By a change of variables in the integral, and using Euler’s formula, this becomes

S( f ) = e−jπ f 2
[∫ ∞

−∞
cos π t2dt + j

∫ ∞

−∞
sin π t2dt

]
.

The integrals are now standard tabulated integrals, and each is equal to 1/
√

2. Therefore
the Fourier transform of the chirp pulse is

S( f ) = 1 + j√
2

e−jπ f 2

as is listed in Table 1.1.
Notice that in the foregoing derivation, as in the derivation of the Fourier transform

of an impulse, the Fourier transform of a limit of a sequence of functions is defined
as the limit of the sequence of Fourier transforms. This technique, used with care, is a
very useful way to enlarge the set of Fourier transform pairs.

1.7 Gaussian random variables

The analysis of the performance of a digital communication system involves the com-
putation of the probability of bit error when the received signal is corrupted by noise,
interference, and other impairments. Thus, the methods of probability theory are essen-
tial, as is the theory of random processes. The most important random variables in this
book are gaussian random variables, and the most important random processes are
gaussian random processes. In this section, we shall briefly review the fundamental
principles of the theory of gaussian random variables.

Any continuous real random variable X can be described by its probability density
function p(x). This function is defined so that the probability that the random variable
X lies in the interval [a, b] is given by

Pr[X ∈ [a, b]] =
∫ b

a
p(x)dx.

A gaussian random variable X is a real random variable that is described by a gaussian
probability density function. The gaussian probability density function of mean x̄ =
E[x] and variance σ 2 = E[(x − x̄)2] is given by

p(x) = 1√
2πσ 2

e−(x−x̄)2/2σ 2
.
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We shall want to know the probability that a gaussian random variable Y exceeds a
value x. This is expressed in terms of a function3 Q(x), defined as

Q(x) =
∫ ∞

x

1√
2π

e−y2/2dy.

This integral cannot be expressed in closed form. It can be integrated numerically and
is widely tabulated.

For positive values of x, the function Q(x) can be bounded as

Q(x) ≤ e−x2/2

x
√

2π

which is sometimes helpful in understanding the behavior of expressions involv-
ing Q(x).

The probability that the random variable X with mean x̄ and variance σ 2 exceeds the
threshold 	 is given by

p =
∫ ∞

	

1√
2πσ 2

e−(x−x̄)2/2σ 2

= Q

(
	 − x̄

σ

)
.

A pair of jointly gaussian random variables (X , Y ) is described by the bivariate
gaussian probability density function

p(x, y) = 1

2π |
| |e−(x−x̄,y−ȳ)
| −1(x−x̄,y−ȳ)T

with mean (x̄, ȳ) = E[(x, y)] and covariance matrix E[(x− x̄, y− ȳ)T (x− x̄, y− ȳ)] = 
| ,
where |
| | denotes the determinant of 
| .

To find the probability that a bivariate gaussian random variable (X , Y ) with mean
(x̄, ȳ) and diagonal covariance matrix 
| = σ 2I lies in the half plane defined to be on
the side of the line ax + by = c that does not include the point (x̄, ȳ), simply translate
and rotate the coordinate system so that, in the new coordinate system, the mean (x̄, ȳ)

3 The function Q(x) is closely related to a function known as the complementary error function

erfc(x) = 2√
π

∫ ∞
x

e−y2
dy.

The error function erf(x) = 1 − erfc(x) is a widely tabulated function.
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is at the origin, and the straight line becomes the vertical line at x = d/2. Then

p =
∫ ∞

d/2

∫ ∞

−∞
1

2πσ 2
e−x2/2σ 2

e−y2/2σ 2
dxdy

= Q

(
d

2σ

)
where d/2 is the perpendicular distance from the straight line to the point (x̄, ȳ). (This
useful fact will be restated in Section 6.10 as Theorem 6.10.1 at which time the plane
is partitioned into two half planes with respect to two points separated by distance d .)

1.8 Circular random processes

The study of noise in a receiver requires the introduction of the topic of random pro-
cesses. Most of our needs regarding random processes will be met by an understanding
of the important class of random processes known as stationary, complex baseband
random processes. These are largely studied by means of their correlation functions
and by the Fourier transform of the correlation function, known as the power density
spectrum.

A stationary, real baseband random process X (t) has an autocorrelation function (or,
more simply, correlation function) defined as

RXX (τ ) = E[X (t)X (t + τ)].

The correlation function is independent of t, and always exists for stationary random
processes. It also exists for some other random processes that are not stationary. Accord-
ingly, a random process X (t) for which E[X (t)X (t + τ)] is independent of t is called
a covariance-stationary random process.

The cross-correlation function between two stationary random processes X (t) and
Y (t) is given by

RXY (τ ) = E[X (t)Y (t + τ)].

It is clear that RYX (τ ) = RXY (−τ).
A stationary, complex baseband, random process, denoted Z(t) = X (t) + jY (t),

where X (t) and Y (t) are real random processes, has an autocorrelation function given by

RZZ (τ ) = E[Z∗(t)Z(t + τ)]
= RXX (τ ) + RYY (τ ) + j[RXY (τ ) − RXY (−τ)]

using the elementary fact that RYX (τ ) = RXY (−τ).
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It is generally not possible to recover RXX (τ ), RYY (τ ), and RXY (τ ) from RZZ (τ ).
Accordingly, define

R̃ZZ (τ ) = E[Z(t)Z(t + τ)]
= RXX (τ ) − RYY (τ ) + j[RXY (τ ) + RXY (−τ)].

Then

RXX (τ ) = 1
2 Re [RZZ (τ ) + R̃ZZ (τ )]

RYY (τ ) = 1
2 Re [RZZ (τ ) − R̃ZZ (τ )]

RXY (τ ) = 1
2 Im [RZZ (τ ) + R̃ZZ (τ )].

The most common random processes that occur in the study of modems are the
random processes caused by thermal noise in the receiver. Thermal noise is always gaus-
sian, and ordinarily stationary. We shall have frequent occasion to encounter gaussian
noise at baseband, at passband, and at complex baseband.

Definition 1.8.1 A circular random process is a complex baseband, covariance
stationary random process for which

RXX (τ ) = RYY (τ )

RXY (τ ) = 0.

It is straightforward to verify that the circular property of a stationary random process
is preserved under the operations of filtering, modulation, and sampling. In particu-
lar, the circular property is preserved under multiplication by e jθ . We shall often use
complex, circular, and stationary gaussian noise in this book because complex thermal
noise is complex, circular, and stationary gaussian noise.

Problems for Chapter 1

1.1. a. Derive the Fourier transform of the trapezoidal pulse given in the following
illustration.
(Hint: The trapezoidal pulse can be obtained by convolving two rectangular
pulses.)

s(t )

2
T

2
T

t
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b. Derive the Fourier transform of the cosine pulse

s(t) =
{

cos π t/T |t| ≤ T/2
0 otherwise

by using the modulation theorem combined with the formula for the Fourier
transform of a rectangular pulse.

1.2. Prove that

2

π2

∫ ∞

0

sin(ax) sin(bx)

x2
dx = min(a, b).

1.3. a. A die has six distinguishable faces. How many bits are needed to specify the
outcome of a roll of a die? How many bits are needed to specify the outcome
of a roll of a pair of dice? Does the answer depend on whether the two dice
are identical or not?

b. How many bits are needed to specify a single letter of English (from an
alphabet of 26 letters)? How many bits are needed to specify an ordered pair
of letters of English?

c. A deck of cards is a set of 52 distinguishable elements. How many bits does
it take to describe a selection of one card from a deck? How many bits does
it take to describe a selection of two cards from a deck? How many bits does
it take to describe a selection of 26 cards from a deck?

1.4. If S( f ) and R( f ) are the Fourier transforms of s(t) and r(t), what is the Fourier
transform of s(t)r(t)?

1.5. A sequence of binary digits is transmitted in a certain communication system.
Any given digit is received in error with probability p and received correctly
with probability 1 − p. Errors occur independently from digit to digit. Out of a
sequence of n transmitted digits, what is the probability that no more than j of
these are received in error?

1.6. The operation known as “mixing” is a fundamental operation of modulation
and demodulation. It consists of multiplying a passband signal

s(t) = a(t) cos 2π f0t

by cos 2π( f0 − f1)t followed by a filtering operation. Show that, under suitable
conditions, mixing changes the carrier frequency f0 to f1. What happens if s(t)
is instead multiplied by sin 2π( f0 − f1)t?

1.7. Given a device that squares its input signal, and an unlimited number of adders
and filters, show how one can construct a mixer to generate a(t) cos 2π f1t from
a(t) cos 2π f0t and cos 2π( f0 − f1)t. What are the restrictions on f0, f1, and the
spectrum of a(t)?
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1.8. Find a set of sixteen binary words of blocklength seven such that every word of
the set differs from every other word in at least three bit positions. Explain how
this code can be used to transmit four bits at a time through a binary channel
that never makes more than one bit error in a block of seven bits.

1.9. Show that the amplitude and phase of a passband waveform

ṽ(t) = vR(t) cos 2π f0t − vI (t) sin 2π f0t

are the same as the amplitude and phase of the complex representation

v(t) = vR(t) + jvI (t)

of that passband waveform. If the phase of the passband waveform is offset
by φ, how does the phase of the complex representation change? If the reference
frequency of the passband waveform is changed by f , what happens to the
complex representation?

1.10. a. Show that Q(x) < 1
2 e−x2/2 for x > 0.

Hint: First show that t2 − x2 > (t − x)2 for t > x > 0. Then apply this
inequality to

ex2/2Q(x) = 1√
2π

∫ ∞

x
e−(t2−x2)/2dt.

b. Show that Q(x) < e−x2/2/x
√

2π for x > 0.
Hint: First show that∫ ∞

x

x − t√
2π

e−t2/2dt ≤ 0.

c. Estimate the tightness of the bound in part b when x is large.
1.11. a. Prove that if random variables X and Y are independent, they are

uncorrelated.
b. Prove that if random variables X and Y are uncorrelated and gaussian, they

are independent.
1.12. a. Prove that for any vector random variable X n, the covariance matrix 
| is

positive definite. That is, show that

aT 
| a ≥ 0

for any vector a of blocklength n.
b. Prove, for any random variables X , Y , and Z , that

cov(aX + bY + c, dZ + e) = adcov(X , Z) + bdcov(Y , Z).
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1.13. (Function of a random variable.) Let y = f (x) where f (x) is a monotonic
function. Let g be the inverse of f (x) so that g( f (x)) = x. If X is a real-valued
random variable with probability density function pX (x), prove that Y is a
random variable with probability density function pY (y) given by

pY (y) = pX (g(y))
dg(y)

dx
.

1.14. Prove that the circular property of a stationary, complex baseband random
process is preserved under the operations of filtering, modulation, and sampling.

1.15. Let s(t) be a waveform, possibly complex, whose energy is finite. Let

S( f ) =
∫ ∞

−∞
s(t)e−j2π ftdt

be the Fourier transform of s(t). The sampled version of s(t) is

sδ(t) =
∞∑

�=−∞
δ(t − �T )s(t)

where δ(t) is the delta function. Prove that sδ(t) has the Fourier transform

Sδ( f ) = 1

T

∞∑
�=−∞

S( f − �/T ).

1.16. The central limit theorem says that if X1, X2, . . . , Xn are independent, identically
distributed random variables with zero mean and finite variance σ 2, then Zn =

1√
n
(X1 + X2 + · · · + Xn) has a probability density function that approaches the

gaussian distribution with zero mean and variance σ 2.
a. Explain why this suggests that the gaussian distribution is the (only) fixed

point of the following recursion of probability density functions:

p2n(
√

2x) = p2n−1(x) ∗ p2n−1(x).

b. Compute and graph the terms of the recursion starting with p1(x) = rect(tx).
How many iterations does it take to make your graph visually identical to a
gaussian?



2 Baseband Modulation

Awaveform channel is a channel whose inputs are continuous functions of time. Abase-
band channel is a waveform channel suitable for an input waveform that has a spectrum
confined to an interval of frequencies centered about the zero frequency. In this chapter,
we shall study the design of waveforms and modulators for the baseband channel.

The function of a digital modulator is to convert a digital datastream into a waveform
representation of the datastream that can be accepted by the waveform channel. The
waveform formed by the modulator is designed to accommodate the spectral character-
istics of the channel, to obtain high rates of data transmission, to minimize transmitted
power, and to keep the bit error rate small.

A modulation waveform cannot be judged independently of the performance of the
demodulator. To understand how a baseband communication system works, it is neces-
sary to study both the baseband modulation techniques of this chapter and the baseband
demodulation techniques of Chapter 3. The final test of a modem is in the ability of
the demodulator to recover the symbols of the input datastream from the channel out-
put signal when received in the presence of noise, interference, distortion, and other
impairments.

2.1 Baseband and passband channels

A waveform channel is a channel whose input is a continuous function of time, here
denoted c(t), and whose output is another function of time, here denoted v(t). A linear
channel is one that satisfies the superposition principle: if input c(t) causes output v(t)
and input c′(t) causes output v′(t), then for any real numbers a and b, input ac(t)+bc′(t)
causes output av(t) + bv′(t).

Every linear, time-invariant channel can be described as a linear filter. A linear
baseband channel is depicted in Figure 2.1 as a linear filter with impulse response h(t)
and transfer function H ( f ), which is the Fourier transform of h(t). The output of the
linear channel h(t) is given by the convolution

v(t) =
∫ ∞

−∞
h(ξ)c(t − ξ)dξ .
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c (t ) v (t )

|H(f )|2

f
0

Figure 2.1. A baseband transfer function.

In the frequency domain, the convolution becomes the product

V ( f ) = H ( f )C( f )

as stated by the convolution theorem.
A baseband channel is a linear channel h(t) for which the support of H ( f ) is a

finite interval of the frequency axis that contains the origin. In practice, this condition
is relaxed to require only that H ( f ) is large at frequencies in the vicinity of the zero
frequency, and negligible at frequencies far away from zero. A passband channel is a
linear channel for which the support of H ( f ) is confined to two finite intervals centered
at frequencies ±f0, where f0 is large compared to the width of each of the intervals.
In practice, this condition is relaxed to require only that H ( f ) be negligible outside of
these two intervals centered at ±f0.

In this chapter, we shall usually suppress consideration of the channel by setting
H ( f ) = 1. This assumption is the same as assuming that H ( f ) is at least as wide as
C( f ) and equal to one whenever C( f ) is significantly different from zero. Then V ( f )

is equal to C( f ), and the precise shape of H ( f ) at other frequencies is not important.
On occasion, as in Chapter 9, we will impose other requirements on H ( f ), and H ( f )

will play a larger role in the discussion.

2.2 Baseband waveforms for binary signaling

The purpose of the modulator is to convert a stream of digital data into a waveform
c(t) that is suitable to pass through the channel. Usually, we shall think of the input to
the modulator as a serial stream of binary data flowing at a constant rate, say one input
data bit every Tb seconds.

A pulse, s(t), is a real function of time whose energy, defined by

Ep =
∫ ∞

−∞
s2(t)dt

is finite. Often we prefer to display a separate amplitude, expressed as a free parameter
A, in addition to the pulse shape s(t). Then the pulse will be denoted As(t) and the
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energy is

Ep =
∫ ∞

−∞
A2s2(t)dt.

Although it may seem simpler to simply use s(t) for the pulse, it will prove to be useful
to have the pulse amplitude A displayed separately so that the pulse s(t) can be chosen
to be without physical units. The physical units such as volts or amperes can be attached
to the amplitude A. When we choose to use the latter form, we may choose to normalize
s(t) so that

∫∞
−∞ s2(t)dt = 1. Then Ep = A2.

A simple way to modulate the datastream into a channel waveform is to map the
datastream into a concatenation of pulses, called a modulation waveform, as described
by the equation

c(t) =
∞∑

�=−∞
a�s(t − �T )

where a� depends on the �th data bit. The equation for c(t) can be regarded as a
prescription for converting discrete time to continuous time. The discrete-time sequence
a� for � = . . . , −1, 0, 1, . . . representing the sequence of data bits is converted into a
continuous-time waveform c(t) using the pulse shape s(t) to fill in the time axis.

Whenever we prefer, we may instead write the one-sided expression

c(t) =
∞∑

�=0

a�s(t − �T )

to show the datastream beginning at time zero.
One way to define a� is

a� =
{

1 if the �th data bit is a 1
−1 if the �th data bit is a 0.

Alternatively, when s(t) is normalized so that
∫∞
−∞ |s(t)|2dt = 1, we may define

a� =
{

A if the �th data bit is a 1
−A if the �th data bit is a 0.

This waveform c(t) is called an antipodal signaling waveform or, when at passband,
a binary phase-shift keyed signaling waveform (BPSK). An example of an antipodal
waveform using triangular pulses is shown in Figure 2.2.
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1 1 1 10 0 0.  .   .  

Figure 2.2. Example of an antipodal waveform.

Data
Bits

Impulse
Generator

Filter

s (t )

Figure 2.3. Functional description of a modulator for antipodal signaling.

The energy per transmitted bit, denoted Eb, is equal to the energy Ep in the pulse
As(t) because there is one bit for every pulse. If A is the amplitude of the transmitted
pulse and s(t) has unit energy, then

Eb =
∫ ∞

−∞
A2s2(t)dt = A2.

We shall usually prefer to use this convention in which the energy in the pulse s(t) is
equal to one and the bit energy is carried by the term A2.

One can choose any convenient pulse shape for an antipodal signaling waveform.
The distinction between the role of the pulse shape and the decision to use the sign of
the pulse as the method of modulating data bits is emphasized by writing an equivalent
mathematical expression for the waveform as

c(t) =
[ ∞∑

�=−∞
a�δ(t − �T )

]
∗ s(t).

With this description, the signs of the impulses a�δ(t − �T ) convey the data bits; the
stream of impulses is then passed through a filter with impulse response s(t) in order
to create a practical waveform formed using pulse s(t). A functional description of an
antipodal modulator is shown in Figure 2.3.

An alternative way to relate the pulse amplitude a� to the �th data bit is as follows:

a� =
{

A if the �th data bit is a 1
0 if the �th data bit is a 0.



35 2.3 Baseband waveforms for multilevel signaling

1 1 0 0 01 1 .  .  .

Figure 2.4. Example of an OOK waveform.

1 1 0 0 01 1 .  .  .

Figure 2.5. Example of an NRZ waveform.

This waveform is called a binary on–off-keyed (OOK) signaling waveform. An example
of an OOK waveform is shown in Figure 2.4. The energy needed to transmit a one is
Ep, while no energy is needed to transmit a zero. If the data bits are half zeros and half
ones, the average energy per transmitted bit is

Eb = 1
2

∫ ∞

−∞
A2s2(t)dt + 1

2 0

= 1
2 A2.

It might appear from this simple analysis that OOK uses less energy than antipodal
signaling. This is so if A is held fixed, but we shall see in Chapter 3 that, in order to
combat noise, a larger value of A must be used for OOK than for antipodal signaling.

An on–off-keyed waveform using rectangular pulses is shown in Figure 2.5. In
this example, the pulse width is equal to the pulse spacing T . This special case of
OOK is called a nonreturn-to-zero (NRZ) signaling waveform, which is often used in
applications in which waveform simplicity is of first importance. The disadvantage of
NRZ is the same as any waveform using a rectangular pulse; the spectrum S( f ) has
sidelobes that fall off very slowly, as 1/f . A large bandwidth is needed to support the
leading and trailing edges of the pulses. Accordingly, to transmit NRZ requires a large
bandwidth in comparison to the data rate. This requirement is not acceptable in most
modern communication systems.

2.3 Baseband waveforms for multilevel signaling

Instead of modulating one bit at a time at each signaling instant �T , as in antipodal
signaling, one can modulate several bits at a time at each signaling instant. Thus in place
of binary signaling, we shall introduce M-ary signaling. There are two main variations
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2-ary 4-ary

16-ary8-ary

Figure 2.6. Some signal constellations on the real line.

11 1110 10 .  .  .

.  .  .

00 01 01

Figure 2.7. Example of a multilevel baseband waveform.

of M-ary signaling. In Section 2.8, we shall study the M-ary orthogonal pulse families.
This method of signaling requires bandwidths that grow larger with M ; increasing M
is paid for with more bandwidth. In the present section, we shall study the opposite
case in which bandwidth is constrained. Only one pulse shape s(t) is used, and there
are M pulse amplitudes. Figure 2.6 shows some alphabets of pulse amplitudes. These
alphabets are called signal constellations and are denoted S . The signal constellation
S = {c0, c1, . . . , cM −1} on the real line is a finite set of M real numbers; usually M = 2k

for some integer k. The uniformly-spaced four-ary signal constellation, for example, is
S = {−3A, −A, A, 3A}.

Each point of the signal constellation S represents one of the allowable ampli-
tudes of the transmitted pulse. The modulation waveform, called a multilevel signaling
waveform, is

c(t) =
∞∑

�=−∞
a�s(t − �T ) a� ∈ S

where
∫∞
−∞ s(t)2dt = 1. To use the signal constellation, one must choose a pulse s(t)

and assign a k-bit binary number to each of the 2k points of the signal constellation.
The k data bits at the �th time are then represented by a pulse of the amplitude specified
by those k bits.

An example of a four-ary waveform, using a triangular pulse and the signal con-
stellation S = {−3A, −A, A, 3A}, is shown in Figure 2.7. This waveform c(t) can be
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expressed as

c(t) =
∞∑

�=−∞
a�s(t − �T )

where

a� =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−3A if the �th pair of data bits is 00
−A if the �th pair of data bits is 01

A if the �th pair of data bits is 10
3A if the �th pair of data bits is 11.

This waveform, called an amplitude-shift keyed (ASK) signaling waveform or a pulse-
amplitude modulation (PAM) signaling waveform, transmits two data bits in time T by
using the four-ary signal constellation on the real line from Figure 2.6 and a triangular
pulse. In the same way, one could design a four-ary ASK waveform using this same
signal constellation, but using a different pulse for s(t).

In this example, the data patterns have been assigned to points of the signal constel-
lation in the natural counting order. This means that 01 and 10 are assigned to adjacent
points. If an error confusing these two points is made, it results in two bit errors. An
alternative assignment is to use a Gray code

a� =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−3A if the �th pair of data bits is 00
−A if the �th pair of data bits is 01

A if the �th pair of data bits is 11
3A if the �th pair of data bits is 10.

Now a single symbol error rarely results in two bit errors. The use of a Gray code gives
only a trivial performance improvement, but it does so for very little cost.

The average energy per symbol of the signal constellation {c0, c1, . . . , cM −1} with
M = 2k is

Es = 1

M

M −1∑
m=0

c2
m

under the assumption that each symbol is used with the same probability. Because there
are k = log2 M bits in a symbol, the average energy per bit of the signal constellation is

Eb = 1

k
Es.
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The expected energy EL contained in a block of L symbols is the expectation

EL =
∫ ∞

−∞
E

[
L∑

�=0

a�s(t − �T )dt

]2

=
∫ ∞

−∞

L∑
�=0

L∑
�′=0

E[a�a�′ ]s(t − �T )s(t − �′T )dt

=
L∑

�=0

L∑
�′=0

E[a�a�′ ]
∫ ∞

−∞
s(t − �T )s(t − �′T )dt.

We may assume that the data bits are maximally random. This means that every data
pattern is equally probable, and the symbols are independent. Therefore

E[a�a�′ ] =
{

Es if � = �′
0 if � �= �′.

Finally, we have

EL =
L∑

�=0

Es

∫ ∞

−∞
s2(t − �T )dt = LEs

∫ ∞

−∞
s2(t)dt.

Using the convention that the pulse s(t) has energy equal to one, the average energy in
a block of L symbols is LEs. The average energy Es of the k bits resides in the energy
of the signal constellation.

For example, for the four-point signal constellation defined above,

Es = 1
4 [(−3A)2 + (−A)2 + (A)2 + (3A)2]

= 5A2.

The expected energy per block is LEs. Because there are two bits in each symbol and
L symbols in the block, the average energy per bit is 5A2/2.

2.4 Nyquist pulses

For any choice of signaling waveform, the pulse shape s(t) must be chosen so that the
sequence of modulation amplitudes a� representing the sequence of data bits can be
recovered from the signaling waveform

c(t) =
∞∑

�′=−∞
a�′s(t − �′T ).
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–T

–3T

3T
t

–T 2TT

T0

Figure 2.8. Some pulses displaying intersymbol interference.

Let t = �T . Then

c(�T ) =
∞∑

�′=−∞
a�′s(�T − �′T ).

If s(�T ) is nonzero for some value of � other than zero, as illustrated by two examples
in Figure 2.8, then the pulse s(t) is said to have intersymbol interference because
c(�T ) will then depend on a�′ for some �′ other than �. There will be no intersymbol
interference if s(�T ) = 0 for all � not equal to zero because then

c(�T ) =
∞∑

�′=−∞
a�′s(�T − �′T )

= a�.

Definition 2.4.1 A Nyquist pulse for a signaling interval of duration T is any pulse
s(t) that satisfies

s(�T ) =
{

1 � = 0
0 � �= 0.

A Nyquist pulse must be used for signaling whenever one wants to avoid intersymbol
interference at the sampling instants �T . These Nyquist samples are samples of the pulse
as it is received, not as it is transmitted. This remark is important whenever the pulse
changes shape within the channel. In Chapter 3, we shall require the Nyquist property
to hold for a filtered version of s(t) rather than for s(t) itself. This will be appropriate
because our concern will be with intersymbol interference in the signal after it is filtered
in the receiver and not with intersymbol interference in the transmitted signal.
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The rectangular pulse rect(t/T ) is one example of a Nyquist pulse; it has no
intersymbol interference because rect(�T/T ) = 0 if � is any nonzero integer. Then

s(�T ) =
{

1 � = 0
0 � �= 0.

The rectangular pulse can be used only when the channel can support the wide spectrum
of a rectangular pulse. The spectrum of the rectangular pulse falls off as 1/f – so slowly
that the channel bandwidth must be many times larger than 1/T in order to transmit
the pulse without significant distortion.

The sinc pulse, sinc(t/T ), is another example of a Nyquist pulse. The sinc pulse
has no intersymbol interference because sinc(�T/T ) = 0 for integer � �= 0. However,
the sinc pulse suffers from the fact that it has infinite duration. More seriously, the
amplitude of the sinc pulse falls off only as 1/t. The amplitude falls off so slowly that
in the modulated waveform

c(t) =
∞∑

�=−∞
a�s(t − �T ),

the distant sidelobes of many pulses will occasionally reinforce each other to produce
very large amplitudes in c(t) at times t that are not integer multiples of T , possi-
bly exceeding the linear region of the transmitter or receiver. The possibility of large
amplitudes also implies that the signal c(t) may pass through its sample points at �T
very steeply, which in turn suggests sensitivity to timing errors. Therefore the sinc pulse
is not often a useful pulse shape in practice.

The rectangular pulse and the sinc pulse may be regarded as the two extreme cases
of pulses, one of which is too spread on the frequency axis, and one of which is too
spread on the time axis. Good pulses avoid each of these disadvantages.

To design a practical pulse s(t) that has no intersymbol interference, one must design
a Nyquist pulse whose time-domain sidelobes fall off rather quickly. This means that the
spectrum S( f ) should not have sharp edges. The next theorem, known as the Nyquist
criterion, shows how the pulse s(t) may be designed in the frequency domain so that
there is no intersymbol interference.

Theorem 2.4.2 The pulse s(t) is a Nyquist pulse if and only if the transform S( f )

satisfies

1

T

∞∑
n=−∞

S
(

f + n

T

)
= 1 | f | ≤ 1/2T .

Proof The inverse Fourier transform is

s(t) =
∫ ∞

−∞
S( f )e j2π ftdf .



41 2.4 Nyquist pulses

Therefore

s(�T ) =
∫ ∞

−∞
S( f )e j2π f �T df .

We break up the frequency axis into contiguous intervals of length 1/T , with the nth
interval running from (2n − 1)/2T to (2n + 1)/2T , and then express s(�T ) as a sum of
pieces

s(�T ) =
∞∑

n=−∞

∫ (2n+1)/2T

(2n−1)/2T
S( f )e j2π f �T df .

In the nth term of the sum, replace f by f + n
T and notice that e j2π�n = 1 to write

s(�T ) =
∞∑

n=−∞

∫ 1/2T

−1/2T
S
(

f + n

T

)
e j2π f �T df

=
∫ 1/2T

−1/2T

[ ∞∑
n=−∞

S
(

f + n

T

)]
e j2π f �T df

=
∫ 1/2T

−1/2T
S ′( f )e j2π f �T df

where S ′( f ) is equal to the bracketed term in the previous line. Suppose that S ′( f ) =
rect

( t
T

)
. Then s(�T ) = sinc(�). Therefore

s(�T ) =
{

1 if � = 0
0 if � �= 0.

Moreover, the uniqueness of the Fourier series expansion says that the Fourier coeffi-
cients of S ′( f ) uniquely specify S ′( f ). Therefore S ′( f ) can be equal to rect

( t
T

)
only if

s(�T ) = sinc(�). Thus there is only one function, namely S ′( f ), on the stated interval
that corresponds to the stated sequence of samples s(�T ). �

Nyquist pulses are pulses that satisfy Theorem 2.4.2. Figure 2.9 illustrates the mean-
ing of the theorem. It shows how translated copies of the spectrum must add to a
constant. We may describe this more vividly by saying that “out-of-band” tails of the
spectrum “fold” back into the band to form a virtual rectangular spectrum. Often, as
in Figure 2.9, the infinite sum on n appearing in Theorem 2.4.2 can be replaced by
a finite sum because S( f ) is nonzero only on a finite interval of the frequency axis.
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Figure 2.9. Illustrating the Nyquist criterion.
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Figure 2.10. Raised-cosine spectra.

Specifically, let W be such that S( f ) = 0 if | f | > W . Then the condition can be written
as the finite sum

1

T

N∑
n=−N

S
(

f + n

T

)
= 1 for | f | ≤ 1

2T

where N is the integer 2TW �. If

W

2
<

1

2T
< W ,

then N equals 1 in the sum.
Some common examples of Nyquist pulses are those whose Fourier transforms are

defined as

S( f ) =

⎧⎪⎨⎪⎩
T 0 ≤ | f | ≤ 1−α

2T
T
2

[
1 − sin πT (| f |−1/2T )

α

]
1−α
2T ≤ | f | ≤ 1+α

2T

0 | f | ≥ 1+α
2T

where α is a parameter between 0 and 1. These spectra, sometimes called raised-cosine
spectra, are shown in Figure 2.10. The figure makes it obvious that the raised-cosine
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Figure 2.11. Some Nyquist pulses.

spectra satisfy the Nyquist criterion. The corresponding Nyquist pulses s(t), shown in
Figure 2.11, are given by

s(t) = sin π t/T

π t/T

cos απ t/T

1 − 4α2t2/T 2
.

For fixed nonzero α, the tails of the pulse s(t) decay as 1/t3 for large |t|. Although the
pulse tails persist for an infinite time, they are eventually small enough so they can be
truncated with only negligible perturbations of the zero crossings.

2.5 Eye diagrams

For an antipodal signaling waveform using the pulse s(t), the set of all possible data-
streams corresponds to the set of all possible sequences of the values a� = ±A for
� = . . . , −1, 0, +1, . . .. Therefore, corresponding to the infinite number of possible
datastreams, one obtains an infinite number of possible waveforms, each of the form

c(t) =
∞∑

�=−∞
a�s(t − �T ).

Figure 2.12 shows some of these waveforms superimposed on a common graph using
the Nyquist pulse

s(t) = sin π t/T

π t/T

cos π t/2T

1 − t2/T 2
.

The superimposed waveforms in Figure 2.12 form what is called an eye diagram.
Every waveform forming the eye diagram neatly passes through either +A or −A at
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SampleSampleSampleSample

Figure 2.12. Eye diagram for a Nyquist pulse.

Figure 2.13. Eye diagram for a four-level baseband waveform.

every sampling instant according to the values of its data sequence. Between sampling
instants, however, the waveforms take values that depend on the pulse shape s(t) and the
specific sequence of bits. Figure 2.12 should make it visually apparent why a Nyquist
pulse other than a sinc pulse should be used. The waveforms in the figure do not have
unreasonably large values between the sampling instants, but if a sinc pulse were used,
some very large excursions of the waveforms would occasionally occur because of the
constructive superposition of sidelobes.

Another observation from Figure 2.12 is that the waveforms do not cross the zero
line at the same time. If the system uses the zero crossings to synchronize time – as
some systems do – there will be some data-dependent time jitter in the local clock.

The eye diagram for a multilevel signaling waveform is defined in the same way. It
is the set of all possible modulated waveforms c(t) superimposed on the same graph.
The eye diagram for a four-ary ASK waveform, shown in Figure 2.13, consists of the
superposition of many signaling waveforms, each of which passes through one of the
four values −3A, −A, A, or 3A at every sampling instant. As before, the data is found
by the value of c(t) at the sampling instants. The values of c(t) between the sampling
instants are related to the shape of the spectrum of the Nyquist pulse s(t).
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2.6 Differential modulation

An alternative modulation convention for converting a user datastream into a baseband
waveform that is sometimes preferred is described in this section. Figure 2.14 shows a
waveform in which the data bits are used to define the transitions in the pulse amplitude
rather than the amplitude itself. This waveform, which looks like NRZ, is called NRZ
inverse (NRZI). It can be defined mathematically as

c(t) =
∞∑

�=−∞
a�s(t − �T )

where a� = 0 if the �th data bit is equal to the (� − 1)th data bit, and otherwise
a� = A. The pulse s(t) is a rectangular pulse of width T . The NRZI waveform requires
a reference bit at the start that does not convey a data bit. If the datastream begins at
time zero, say, then set a−1 = 0.

The NRZI waveform may be used in conjunction with a demodulator that uses a
transition detector. This is because a transition detector does not reproduce a trans-
mitted NRZ bitstream. Instead, at each bit time, it produces a zero bit if the current
channel waveform level is the same as the previous channel waveform level; otherwise
it produces a one. Therefore, this demodulator does recover the datastream modulated
into the NRZI waveform.

The behavior of the transition demodulator has something of the nature of a differ-
entiation; indeed, this demodulator is often implemented with a differentiator and a
threshold. This kind of demodulator is frequently used in applications where a differ-
entiation occurs naturally as part of the receiver, as in many read heads for magnetic
tapes and disks. Since a differentiation is inevitable in such applications, one might
choose a waveform that can be so demodulated.

If for an NRZI waveform, however, a demodulator reconstructs instead the bit
sequence a�/A, then the demodulator output datastream is not equal to the input data-
stream; it has been changed. In this case, the modulator sends (or writes) the data as
NRZI data, but the demodulator senses (or reads) the data instead as NRZ data. One
might also have the opposite situation where the modulator sends the data as NRZ and
the demodulator senses the data as NRZI. In either case, an additional device must be

0 01 1 1 1 .  .  .

Figure 2.14. Example of an NRZI waveform.
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Figure 2.15. Precoder or Postcoder for NRZI.
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Figure 2.16. Trellis for NRZI.

used to reconvert the data between the two forms because the user will want the data
returned to its original form.

A waveform with data represented in one form, such as NRZI, can be made to look
like a waveform with data represented in another form by the use of an operation prior
to the modulator that prepares the data. A precoder is a transformation on a bitstream
prior to entering a channel that cancels another transformation that will take place on
the bitstream within the modulator/demodulator or within the channel. The cascade of
the precoder and the modulator/demodulator returns the bitstream to its original form.
Figure 2.15 shows a precoder for an NRZI waveform that is demodulated as NRZ.
The plus sign denotes a modulo-two adder, or an exclusive-or gate, and the box is a
delay of one time unit. The precoder requires only that the initial reference level for
the NRZI modulation is the zero level. Alternatively, one can use a device following
the demodulator. Then it is known as a postcoder. The precoder shown in Figure 2.15
works equally well as a postcoder for an NRZI waveform demodulated as NRZ. It does
not matter whether the logic circuit is placed prior to the modulator or following the
demodulator.

The NRZI waveform is our first example of a channel waveform with memory within
the waveform. In later chapters, we shall encounter channel waveforms with much more
elaborate memory. To keep track of these kinds of waveforms, a kind of graph known
as a trellis is very useful. Figure 2.16 gives a trellis for the NRZI waveform.

In the trellis of Figure 2.16, there are two nodes in a column, denoting the states 0
and 1. These nodes represent the two levels that the waveform could have had at the
previous time instant. The column of states is replicated horizontally to represent the
possible states at successive time instants. The horizontal direction represents time,
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and the column of nodes is replicated at each time instant. The nodes are connected
by branches that show how the situation might change. Each branch is labeled by two
bits. The bit on the left is the new data bit that takes the system to a new state. The bit
on the right is the new channel bit. In this simple example, the new channel bit and the
new state are equal. This need not be true in other labeled trellises.

The notion of a trellis will be used later in more general situations. A general trellis
consists of a set of nodes arranged in a vertical column used to represent the state of a
memory at a single time instant; each of the nodes represents one of the possible states
of the memory. Each step through the trellis is called a frame of the trellis. Permissible
transitions in the state of the memory are depicted by lines connecting the nodes at
successive time instants. One can see how the state changes with time by following a
path through the trellis. The branches are labeled with data bits, and in this way, the
data bits specify the path. The branches are also labeled with the channel bits to the
right of the data bit labels. The sequence of channel bits on the path taken through the
trellis forms the channel sequence.

We shall examine many trellises in later chapters.

2.7 Binary orthogonal signaling at baseband

A much different kind of binary signaling waveform can be defined that uses two
different pulses to represent the two bit values. Two such pulses, s0(t) and s1(t), are
called an orthogonal pair of pulses1 if they satisfy∫ ∞

−∞
s0(t)s

∗
1(t)dt = 0.

For baseband signaling, both s0(t) and s1(t) are real-valued pulses. Usually there is also
an implied requirement that both pulses are Nyquist pulses and that, for all integer �,∫ ∞

−∞
s0(t)s

∗
1(t − �T )dt = 0.

This condition will hold trivially if both pulses are supported only on the interval
[−T/2, T/2].

To modulate the datastream into a channel waveform, let

c(t) =
∞∑

�=−∞
[a�s0(t − �T ) + ā�s1(t − �T )]

1 Although we use only real pulses for baseband signaling, we regard it as good practice here to write a complex
conjugate here because it would be required if the pulse were complex. For real pulses, the complex conjugation
operator ∗ is completely superfluous.
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Figure 2.17. An example of a binary orthogonal waveform at baseband.
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Figure 2.18. Another example of a binary orthogonal waveform at baseband.

where

(a�, ā�) =
{

(A, 0) if the �th data bit is a 0
(0, A) if the �th data bit is a 1.

This waveform is called a binary orthogonal signaling waveform.
One example of a binary orthogonal signaling waveform is shown in Figure 2.17.

Clearly, that pair of pulses, s0(t) and s1(t), is an orthogonal pair. The waveform has
the appearance of a binary antipodal waveform with a bit duration of T/2. In fact,
however, it is something different. This example shows that one cannot always identify
a signaling waveform from its appearance alone.

A second example of a waveform for binary orthogonal signaling is the pair of pulses

s0(t) = sin 2π f0t 0 ≤ t ≤ T

s1(t) = sin 2π f1t 0 ≤ t ≤ T

with∫ T

0
sin 2π f0t sin 2π f1tdt = 0,

as shown in Figure 2.18. To ensure that the pulses are orthogonal, the frequencies f0 and
f1 are chosen to have the harmonic relationship f0 = m/(2T ) and f1 = m′/(2T ) where
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m and m′ are distinct positive integers. When f0 and f1 are very large in comparison to
1/T , this signaling waveform is better treated as a passband waveform. Then it is called
(binary) frequency-shift keying (FSK). Moreover, any pair of orthogonal signaling
waveforms often is loosely referred to as binary FSK, the general case then taking its
name from the special case.

2.8 M-ary orthogonal signaling at baseband

In general, we are concerned with both the power and the bandwidth used by a wave-
form. A channel for which the power constraint is the more important constraint is
called a power-limited channel. A channel for which the bandwidth constraint is the
more important constraint is called a bandwidth-limited channel. Of course, both con-
straints are important in every application, but usually one or the other is of primary
importance.

In Section 2.3, we studied a signaling method known as M-ary pulse amplitude
modulation, which is suitable for channels with a tight bandwidth constraint. In this
section, we shall study M-ary orthogonal signaling at baseband, which is suitable for
channels whose bandwidth constraint is so weak that it can be ignored, but for which
power must be limited. In contrast to the M-ary orthogonal signaling alphabets, which
use M distinct pulses, are the M-ary signal constellations, which are used with a single
pulse.

The pulse alphabets for M-ary signaling without a bandwidth constraint that we shall
study are the orthogonal pulse alphabets and the simplex pulse alphabets. These signal-
ing alphabets are the most important by far, both in practice and in theory, whenever the
bandwidth constraint is not a factor. Nonorthogonal pulse alphabets may also be used
when there is no bandwidth constraint, but orthogonal pulses are generally preferred.
The reason for the orthogonality condition is to make the pulses easy to distinguish in
the presence of noise.

Definition 2.8.1 An M-ary orthogonal pulse alphabet is a set of M pulses sm(t) for
m = 0, . . . , M − 1 having the properties of equal energy and orthogonality, given by∫ ∞

−∞
sm(t)s∗

n(t)dt =
{

1 m = n
0 m �= n

and∫ ∞

−∞
sm(t)s∗

n(t − �T )dt = 0 � �= 0.

In this section we consider only pulse alphabets of real pulses. Waveforms that form
an orthogonal pulse alphabet are usually designed to have a finite interval of duration
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T as their common support and this property means that the second condition of the
theorem is trivial.

Usually for applications, M = 2k for some integer k. To use the M-ary pulse alphabet,
one must assign one k-bit binary number to each of the 2k pulses of the pulse alphabet.
A k-bit number is transmitted at time �T by transmitting the pulse sm(t − �T ) assigned
to that k-bit number.

An M-ary modulator is a device that, upon receiving discrete symbol m, forms pulse
sm(t) and passes Asm(t) to the waveform channel. To transmit a stream of binary data,
the datastream is broken into k-bit words; the �th such word defines a k-bit number m�

that is mapped into the pulse sm�
(t). The transmitted waveform is

c(t) =
∞∑

�=−∞
Asm�

(t − �T ).

An M-ary demodulator is a device that, based on the noisy output of the waveform
channel, forms an estimate, m̂�, of the integer m� at the input to the modulator at the �th
input time. The waveform channel, combined with an M-ary modulator and an M-ary
demodulator, constitutes a finite-input, discrete-time channel. When m̂� is not equal to
m� the demodulator has made a symbol error at time �T .

Figure 2.19 shows examples of signaling waveforms using three different sets of
four-ary orthogonal pulses. They are known as four-ary frequency-shift keying (FSK),
four-ary pulse-position modulation (PPM), and four-ary code-shift keying (CSK). A
four-ary CSK waveform is shown in Figure 2.20. Larger alphabets of M-ary orthogonal
pulses, perhaps with M equal to 32 or 64, are in common use. All of these kinds of

a) 4-ary FSK b) 4-ary PPM c) 4-ary CSK

Figure 2.19. Some examples of baseband four-ary waveforms.

11

.  .  .

110001

Figure 2.20. Example of a four-ary CSK waveform.
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orthogonal pulse alphabets are sometimes referred to collectively as M-ary FSK (or
MFSK), where now the term FSK is used in the looser sense to mean orthogonal
signaling.

The total transmitted energy Ep = A2 is used to transmit a symbol that conveys
k = log2 M bits. To express the energy in a standardized way so that performance can
be readily compared for various values of M , the energy per bit is defined as

Eb = Ep

k
= Ep

log2 M
.

The energy per bit Eb is a more useful way to state performance; the energy per pulse
Ep is the more tangible quantity.

Any orthogonal set of M pulses can be used to construct another set of M pulses
known as a simplex pulse alphabet.2 The average of all the pulses is subtracted from
each individual pulse. Thus

qm(t) = sm(t) − 1

M

M −1∑
m=0

sm(t).

The simplex pulses have less energy than the orthogonal pulses. This is shown by the
simple calculation

Eq =
∫ ∞

−∞
A2|qm(t)|2dt =

(
1 − 1

M

)
Ep.

The simplex pulses are not orthogonal. Rather, they have the stronger property of
negative correlation. For m �= m′, the correlation is∫ ∞

−∞
qm(t)qm′(t)dt = − 1

M
.

We shall see in Chapter 3 that a simplex family of pulses constructed from an orthogonal
family has the same probability of error as the orthogonal family of pulses even though
the energy is less.

Any M /2-ary orthogonal set of pulses can be used to construct another set of M
pulses, known as an M-ary biorthogonal pulse alphabet. The biorthogonal alphabet
of M pulses consists of the M /2 orthogonal pulses and the negatives of the M /2
orthogonal pulses. The biorthogonal pulses either have a correlation equal to zero or to
the negative of the pulse energy. The latter case occurs only when a pulse is correlated
with its own negative. Of the M (M − 1)/2 distinct cross-correlations, M /2 of them
will be negative and the rest will be zero.

2 More directly, we could define an M-ary simplex pulse alphabet, renormalized, as any set of M pulses qm(t) of
unit energy such that the correlation of any two distinct pulses is −1/(M − 1).
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2.9 Power density spectrum of baseband waveforms

When modulated with a deterministic datastream of finite duration, the channel
signaling waveform

c(t) =
n−1∑
�=0

a�s(t − �T )

has a Fourier transform that can be calculated by using the delay theorem as

C( f ) = S( f )

n−1∑
�=0

a�e−j2π f �T

= S( f )A( f ).

The spectrum C( f ) factors into a pulse-shape factor S( f ) and an array factor A( f ).
The array factor depends on the actual values taken by the data, so we cannot actually
determine A( f ) without knowing the data. The array factor A( f ) is random if the data
is random.

When modulated with a datastream that is infinitely long, the channel signaling
waveform

c(t) =
∞∑

�=−∞
a�s(t − �T )

has infinite energy, so it does not have a Fourier transform. Moreover, we do not know
the actual data sequence. Indeed, it would be artificial to study only one data sequence.
Instead, we usually prefer a description that is actually more useful: a probabilistic
description. Loosely, we may expect that if n is very large and the data is random, then
the particular A( f ) will not be important and |C( f )|2 will have nearly the same shape
as |S( f )|2. This heuristic picture can be made rigorous by going immediately to the
case of an infinitely long and random datastream. Then c(t) becomes a random process;
the properties of this random process are suggested by the eye diagrams that are shown
in Figures 2.12 and 2.13.

To describe the random process c(t), one wants to deal with some form of the power
density spectrum. However, c(t) is not stationary, so as it stands, it does not have
a power density spectrum. This difficulty can be handled in two ways – either by
treating c(t) as a kind of random process known as a cyclostationary random process,
or alternatively, by introducing a random time delay so that the waveform c(t) now has
no preferred time instants. We will choose the latter approach. The antipodal signaling
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waveform now becomes the stationary random process

c(t) =
∞∑

�=−∞
a�s(t − �T − α)

where α is uniformly distributed over [0, T ], and the a� are independent random vari-
ables taking values in the signal constellation. The autocorrelation function of the
random waveform is

R(τ ) = E[c(t)c(t + τ)]

= E

⎡⎣ ∞∑
�=−∞

∞∑
�′=−∞

a�a�′s(t − �T − α)s(t + τ − �′T − α)

⎤⎦ .

Move the expectation inside the sum and recall that the random variables a� and α are
independent to obtain

R(τ ) =
∞∑

�=−∞

∞∑
�′=−∞

E[a�a�′ ]E[s(t − �T − α)s(t + τ − �′T − α)]

= a2
∞∑

�=−∞
E[s(t − �T − α)s(t + τ − �T − α)]

because E[a�a�′ ] = a2δ��′ . Finally,

R(τ ) = a2

T

∞∑
�=−∞

∫ T

0
s(t − �T − α)s(t + τ − �T − α)dα

= a2

T

∞∑
�=−∞

∫ (�+1)T

�T
s(t − ξ)s(t + τ − ξ)dξ

= a2

T

∫ ∞

−∞
s(t)s(t + τ)dt.

The power density spectrum �c( f ) of the random waveform c(t) is the Fourier
transform of R(τ ), and so it is proportional to |S( f )|2. Thus

�c( f ) = a2

T
|S( f )|2.

The power density spectrum of c(t) is related to the transform of a single pulse. The
bandwidth occupied by the modulated waveform c(t) is the same as the bandwidth
occupied by the pulse s(t).
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Problems for Chapter 2

2.1. The following two sequences of blocklength four are orthogonal

1 1 1 1
1 1 −1 −1

because
∑

i aibi = 0.
a. Construct four sequences of blocklength four that are orthogonal.
b. Can you construct eight sequences of blocklength 4, with “chips” taking

the value 1, −1, j, −j, (j = √−1), that are pairwise orthogonal using the
definition

∑
i aib∗

i = 0 for orthogonality of complex sequences?
c. Repeat part b by using the definition

∑
i aibi = 0 for orthogonality.

d. Repeat part b by using the definition Re[∑i aibi] = 0 for orthogonality.
2.2. Let qm(t) for m = 0, . . . , M −1 denote the elements of a simplex pulse alphabet.

Define the squared euclidean distance between two pulses as

d2(qm, qm′) =
∫ ∞

−∞
|qm(t) − qm′(t)|2dt.

For a simplex alphabet, show that the squared euclidean distance d2(qm, qm′),
where m is not equal to m′, is a constant that is independent of m and m′.

2.3. Prove that an antipodal signaling waveform c(t) based on sinc pulses will
occasionally take on values larger than any constant, no matter how large the
constant.

2.4. a. Show that when M equals 2, M-ary biorthogonal signaling reduces to binary
antipodal signaling (BPSK).

b. Show that when M equals 2, M-ary simplex signaling reduces to binary
antipodal signaling (BPSK).

2.5. A four-level ASK waveform is used on a channel with a possible sign inversion
(“gain” of ±1). Design a differential encoding scheme to make this sign change
“transparent”.

2.6. Sketch a family of eight-ary biorthogonal pulse alphabets.
2.7. The legacy telephone channel can be grossly characterized as an ideal passband

channel from 300 Hz to 2700 Hz.
a. Choose a signal constellation and a symbol rate to obtain a 9600 bits/second

telephone line modem.
b. Choose a pulse shape s(t) that will pass through the channel without causing

intersymbol interference. Describe the transmitted waveform.
2.8. Afilter whose impulse response is a Nyquist pulse is called a Nyquist filter. Does

the cascade of two Nyquist filters, in general, equal a Nyquist filter? Find the
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set of all Nyquist filters that will produce another Nyquist filter when cascaded
with itself.

2.9. Prove that a pulse s(t) with a raised-cosine spectrum is a Nyquist pulse.
2.10. Let

s(t) = cos(π t/T )rect(t/T ).

a. Find the bandwidth B containing 90 percent of the pulse energy. That is,∫ B/2

−B/2
|S( f )|2df = .9Ep.

b. Find the bandwidth B containing 90 percent of the power of a binary antipodal
signaling waveform that uses s(t).

2.11. Prove that if s0(t) and s1(t) are orthogonal baseband pulses whose spectra are
confined to bandwidth W , then s0(t) cos 2π f0t and s1(t) cos 2π f0t are orthogonal
pulses as well, provided f0 is larger than W . Give an example for which the
statement fails when f0 is smaller than W .

2.12. A binary orthogonal signaling waveform at baseband is given by

c(t) =
∞∑

�=−∞
[a�s0(t − �T ) + ā�s1(t − �T )]

where s0(t) and s1(t) are orthogonal with transforms S0( f ) and S1( f ), and

(a�, ā�) =
{

(1, 0) if the �th data bit is a 0
(0, 1) if the �th data bit is a 1.

Find the power density spectrum of c(t) when made stationary by including a
random time offset.

2.13. A baseband antipodal signaling waveform using the pulse shape of width Tb,
described by

s(t) =
{

1 −Tb/2 ≤ t < 0
−1 0 ≤ t ≤ Tb/2,

is called a Manchester signaling waveform. An inverse Manchester signaling
waveform is defined as

c(t) =
∞∑

�=0

a�s(t − �Tb)

where a� = 1 if the �th data bit is the same as a�−1, and otherwise a� = −1.
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Design an encoder and decoder to use with a baseband antipodal modulator and
demodulator with bit duration Tb/2 to obtain an inverse Manchester waveform
with bit duration Tb.

2.14. Suppose that a channel h(t) and a pulse s(t) are given with transforms as
illustrated.

f f

B'B
0

B'

B' – B B' – B

B
0

1

1
2

H(f ) S(f )

a. Show that the pulse can be used for binary antipodal signaling transmitted
at a rate of 2B bits per second without intersymbol interference at the output
of the channel. Is there intersymbol interference at the input to the channel?

b. What might be the purpose of including nonzero energy in the transmitted
pulse at frequencies that are not received at the channel output?

c. Find s(t) and the time-domain pulse shape at the filter output.
d. Is s(t) a Nyquist pulse for any signaling interval?

2.15. Let

s(t) = 4

π
√

T

cos(2π t/T )

1 − (4t/T )2
.

a. Find s(t) ∗ s(−t).
b. Contrast the zeros of s(t) with the zeros of s(t) ∗ s(−t).
c. Is s(t) a Nyquist pulse? Is s(t) ∗ s(−t) a Nyquist pulse?

2.16. A baseband pulse has a transfer function S( f ) that is a trapezoid as illustrated.

f

S(f )

2W0

2W

Prove that, for some T , the pulse s(t) is a Nyquist pulse. At what spacing are
its zeros? Prove that, when the pulse s(t) is convolved with itself, the result of
the convolution is not a Nyquist pulse.
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Notes for Chapter 2

The design of pulses that are free of intersymbol interference was studied by Nyquist
(1928). The construction of waveforms without intersymbol interference is the con-
verse of the sampling problem, so it is not surprising that Nyquist’s work deals with
both topics. The M-ary orthogonal communication systems were first derived and ana-
lyzed by Kotel’nikov (1959), and studied further by Viterbi (1961). The simplex codes
were studied by Balakrishnan (1961), who showed that simplex codes are locally opti-
mal. It has never been proved that simplex codes are globally optimal. A long-standing
conjecture states that, of all M-ary pulse alphabets of energy Ep, none has a smaller
probability of error when used on a white gaussian-noise channel than a simplex fam-
ily. The NRZI waveform is also called differential binary. When used as a passband
waveform, it is called differential phase-shift keying (DPSK).



3 Baseband Demodulation

The function of a digital demodulator is to reconvert a waveform received in noise back
into the stream of data symbols from the discrete data alphabet. We usually regard this
datastream as a binary datastream. A demodulator is judged by its ability to recover
the user datastream with low probability of bit error even when the received channel
waveform is contaminated by distortion, interference, and noise. The probability of
symbol error or bit error at the demodulator output is also called the symbol error rate or
the bit error rate. The demodulator is designed to make these error rates small. We shall
concentrate our discussion on optimum demodulation in the presence of additive noise
because additive noise is the most fundamental disturbance in a communication system.

The energy per data bit is the primary physical quantity that determines the ability
of the communication system to tolerate noise. For this purpose, energy (or power)
always refers to that portion of the energy in the waveform that reaches the receiver.
This will be only a small fraction of the energy sent by the transmitter.

The study of the optimum demodulation of a waveform in additive noise is an appli-
cation of the statistical theory of hypothesis testing. The basic principles are surprisingly
simple and concise. The most basic principle, and the heart of this chapter, is the princi-
ple of the matched filter. Avery wide variety of modulation waveforms are demodulated
by the same general method of passing a received signal through a matched filter
and sampling the output of that matched filter. In this chapter, we shall study the
matched filter and apply it to the demodulation of baseband signaling waveforms. The
demodulators studied in this chapter deal with only one symbol at a time. Sequence
demodulation, which is necessary whenever the channel output exhibits intersymbol
interference, either intentionally or unintentionally, will be studied in Chapter 4. The
matched filter will be applied to passband waveforms in Chapter 6.

3.1 The matched filter

Let As(t) be a pulse of finite energy Ep:

Ep =
∫ ∞

−∞
|As(t)|2dt =

∫ ∞

−∞
|AS( f )|2df ≤ ∞
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where the constant A is included so that we may set the energy of s(t) equal to one
whenever convenient. Equality of the integrals in the time domain and the frequency
domain is a consequence of Parseval’s formula. In this chapter, we shall restrict s(t) to
be a real function of time in order to ensure clarity and because baseband waveforms,
which we treat in this chapter, are real. However, with very little change, the ideas of this
section also apply to complex functions of time, as we shall see in Chapter 6. Therefore,
although this chapter deals only with baseband (or real) signals the derivation of the
matched filter is written so that it can be read for the passband (or complex) case as well.

Let n(t) be zero mean, stationary baseband noise with variance σ 2, correlation func-
tion φ(τ), and power density spectrum N ( f ). It is not necessary in this section to
specify the noise in any further detail. In later sections of this chapter, the noise will
be made more specific by giving its probability density function, usually a gaussian
probability density function.

If the received signal consists of the pulse As(t) in additive stationary noise, it is

v(t) = As(t) + n(t).

If the received signal consists of noise only, it is

v(t) = n(t).

Our task for the moment is to design a procedure that will detect whether the received
signal v(t) consists of a pulse in noise or of noise only. We choose at this time to consider
only the class of linear detectors. That detection procedure is to pass the received signal
v(t) through a filter with impulse response g(t), as shown in Figure 3.1, and then to test
the amplitude of the signal at the output of the filter at time instant t0. If the amplitude
at time t0 is larger than a fixed number, 	, called a threshold , the decision is that the
pulse As(t) is present in the received signal v(t). If the amplitude is smaller than the
threshold, the decision is that the pulse is not present in v(t). It remains only to choose
the filter impulse response g(t) and the decision threshold 	.

The output of a filter with impulse response g(t) and input As(t) + n(t) is

u(t) =
∫ ∞

−∞
g(ξ)[As(t − ξ) + n(t − ξ)]dξ .

t

As (t )
v (t )

g(t )

n(t )

t t

Threshold
at Time t0

t0

Yes

No
+

Figure 3.1. Detection of a pulse in noise.
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We do not yet restrict g(t) to be a causal filter, so we have set the lower limit to −∞.
Because n(t) is a random process, the filter output is a random process. We denote the
expected value of u(t) by Ar(t), which is the noise-free output of the filter, and the
variance of u(t) by σ 2. That is,

Ar(t) = E[u(t)]
σ 2 = var[u(t)].

The variance σ 2 does not depend on t because n(t) is stationary.
The filter g(t) should be chosen to pass the signal s(t) and to reject the noise n(t).

Because it cannot fully achieve both of these goals simultaneously, the filter is chosen
as the best compromise between the two goals. Specifically, we choose to maximize the
ratio of signal power to noise power at the single time instant t = 0. The signal-to-noise
ratio at time zero is simply the ratio S/N = [Ar(0)]2/σ 2. We choose g(t) to maximize
the signal-to-noise ratio S/N . The filter g(t) that achieves this maximum is called the
matched filter for pulse As(t) in noise n(t). We shall derive the matched filter in this
section.

The matched-filter demodulator is optimal in the restricted class consisting of demod-
ulators with this linear structure, although it need not be optimal in the larger class of
all possible demodulators. It is not at all obvious at this point that restricting the search
to demodulators of this form is the optimum thing to do. Indeed, in general, it is not. It
is true, however, that if the noise is gaussian, the matched filter is the first step in any
optimum demodulation procedure. This is a consequence of the maximum-likelihood
principle, which will not be studied until Chapter 7. Even when the noise is not gaus-
sian, it is still a very practical and widely-used demodulation procedure. We shall study
demodulation more fully in the next section, and there we shall see the role of the
matched filter in digital communication.

To proceed, first determine Ar(t) as follows:

Ar(t) = E[u(t)]

= E

[∫ ∞

−∞
g(ξ)[As(t − ξ) + n(t − ξ)]dξ

]
.

The expectation operator can be passed inside the integral, which, because g(t) is not
random, leads to

Ar(t) =
∫ ∞

−∞
g(ξ)[E[As(t − ξ)] + E[n(t − ξ)]]dξ .
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But E[As(t)] = As(t) because the pulse is not random, and E[n(t)] = 0 because n(t)
has zero mean. Therefore the expected value of the output Ar(t) at time zero is the
signal component at the output of the filter at time zero. In particular,

r(0) =
∫ ∞

−∞
g(ξ)s(−ξ)dξ .

Next, Parseval’s formula∫ ∞

−∞
a(ξ)b∗(ξ)dξ =

∫ ∞

−∞
A( f )B∗( f )df

can now be used on the right side with a(ξ) = g(ξ) and b∗(ξ) = s(−ξ). Because
the Fourier transform of b(t) = s∗(−t) is easily found to be B( f ) = S∗( f ), and
(S∗( f ))∗ = S( f ), we conclude that

r(0) =
∫ ∞

−∞
G( f )S( f )df ,

and

|Ar(0)|2 =
∣∣∣∣A ∫ ∞

−∞
G( f )S( f )df

∣∣∣∣2
is the signal power S at time zero.

Next, we find an expression for the noise power. The variance of u(0) is

var[u(0)] = E[|u(0) − E[u(0)]|2]

= E

[∫ ∞

−∞
g(ξ1)n(−ξ1)dξ1

∫ ∞

−∞
g(ξ2)n(−ξ2)dξ2

]
=
∫ ∞

−∞

∫ ∞

−∞
g(ξ1)g(ξ2)E[n(−ξ1)n(−ξ2)]dξ1dξ2.

Now recall that E[n(−ξ1)n(−ξ2)] is the correlation function φ(ξ1 − ξ2). Thus:

σ 2 =
∫ ∞

−∞

∫ ∞

−∞
g(ξ1)g(ξ2)φ(ξ1 − ξ2)dξ1dξ2.

Make the change of variables η = ξ1 − ξ2 and ξ = ξ1. Then dξ1dξ2 = dξdη and

σ 2 =
∫ ∞

−∞
φ(η)

∫ ∞

−∞
g(ξ)g(ξ − η)dξdη.
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The inner integral is the convolution of g(t) with g(−t), which has the Fourier transform
|G( f )|2. The first term φ(η) has the Fourier transform N ( f ). Therefore, by Parseval’s
formula,

σ 2 =
∫ ∞

−∞
N ( f )|G( f )|2df .

This is the noise power N at the output of g(t). Our task is to maximize the ratio S/N
by the choice of G( f ).

The development of the matched filter makes use of a fundamental inequality of
functional analysis, known as the Schwarz inequality, which we shall derive first.

Theorem 3.1.1 (Schwarz inequality) Let r(t) and s(t) be finite energy pulses, real-
valued or complex-valued. Then

∫ ∞

−∞
|r(t)|2dt

∫ ∞

−∞
|s(t)|2dt ≥

∣∣∣∣∫ ∞

−∞
r∗(t)s(t)dt

∣∣∣∣2
with equality if and only if r(t) is a constant (real or complex) multiple of s(t).

Proof Let a and b be any constants, real or complex. Then, because |ar(t) − bs(t)|2
is never negative, we have the inequality

0 ≤
∫ ∞

−∞
|ar(t) − bs(t)|2df

with equality if and only if ar(t) − bs(t) is zero for all t. Therefore expanding the
square,

0 ≤ |a|2
∫ ∞

−∞
|r(t)|2dt − ab∗

∫ ∞

−∞
r(t)s∗(t)dt

− a∗b
∫ ∞

−∞
r∗(t)s(t)dt + |b|2

∫ ∞

−∞
|s(t)|2dt

with equality if and only if ar(t) − bs(t) is zero for all t. Now choose the constants a
and b as follows:

a =
∫ ∞

−∞
r∗(t)s(t)dt

b =
∫ ∞

−∞
|r(t)|2dt.
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For these constants, the inequality becomes

0 ≤ |a|2b − aba∗ − a∗ba + |b|2
∫ ∞

−∞
|s(t)|2dt.

The constant b is real and positive. It can be canceled to give

0 ≤ −|a|2 + b
∫ ∞

−∞
|s(t)|2dt,

which is equivalent to the statement of the theorem. �

We are now ready to state the matched filter. In proving the following theorem, we
make use of the fact that the noise power density spectrum N ( f ) is real and nonnegative
at each f and so has a square root at each f .

Theorem 3.1.2 Suppose that the input pulse As(t) is received in additive gaussian
noise whose power density spectrum N ( f ) is nonzero at all f . The signal-to-noise
power ratio S/N at the output of the filter g(t) satisfies

S

N
≤ A2

∫ ∞

−∞
|S( f )|2
N ( f )

df ,

and equality is achieved when the filter is specified as

G( f ) = S∗( f )

N ( f )
.

Proof The signal power and the noise power were each calculated earlier in the
section. The signal-to-noise power ratio satisfies the following:

S

N
=
∣∣A ∫∞

−∞ G( f )S( f )df
∣∣2∫∞

−∞ N ( f )|G( f )|2df

=
|A|2

∣∣∣∣∫∞
−∞ N ( f )

1
2 G( f )

S( f )

N ( f )
1
2

df

∣∣∣∣2∫∞
−∞ N ( f )|G( f )|2df

≤
|A|2 ∫∞

−∞ N ( f )|G( f )|2df
∫∞
−∞

|S( f )|2
N ( f )

df∫∞
−∞ N ( f )|G( f )|2df

= |A|2
∫ ∞

−∞
|S( f )|2
N ( f )

df
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where the inequality is the Schwarz inequality. This bound does not depend on the filter
G( f ). Choosing

G( f ) = C
S∗( f )

N ( f )

for any (real or complex) constant C makes the signal-to-noise ratio equal to the bound.
Hence this filter provides the maximum signal-to-noise ratio. This completes the proof
of the theorem. �

The filter given in Theorem 3.1.2 is known as the matched filter, and sometimes,
when N ( f ) is not a constant, as the whitened matched filter. Any constant multiple
of the matched filter is also a matched filter. Notice that we did not assume that the
noise is gaussian. The matched filter maximizes signal-to-noise ratio at time zero for
any covariance-stationary noise. More generally, the filter

G( f ) = C
S∗( f )

N ( f )
e−j2π ft0

maximizes the signal-to-noise ratio at time t0.
The signal-to-noise ratio is maximized by the matched filter. To decide whether the

input to the matched filter consists of a pulse in noise or of noise only, the output signal
at time t0 is tested by comparing it to a threshold 	. If the output u(t0) at time t0 exceeds
the threshold 	, then a pulse is declared to be present. If the threshold 	 is set low,
then a pulse will rarely be missed, but noise will often be mistaken for a pulse. If the
threshold is set high, then noise is unlikely to be mistaken for a pulse, but a pulse is
more likely to be missed. By choice of 	, one can trade off the probability of falsely
declaring a pulse when there is none against the probability of missing a pulse when it
is there.

If the power density spectrum of the noise is constant, then the noise is called
white noise. By convention, the power density spectrum of white noise is expressed as
N ( f ) = N0/2 and

G( f ) = C
S∗( f )

N0/2
.

In this case, it is convenient to choose for the constant C = N0/2 so that

G( f ) = S∗( f )

and, as stated in the next theorem,

g(t) = s∗(−t).
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The filter s∗(−t) is then simply known as the matched filter. The complex conjugate
is superfluous in this chapter because s(t) is real, but it is included because we will
encounter complex s(t) in later chapters.

Corollary 3.1.3 Suppose that the pulse As(t) satisfies
∫ |s(t)|2dt = 1. In additive

white noise of power density spectrum N0/2 watts per hertz, the maximum signal-
to-noise power ratio at the output of a filter g(t) is achieved by the matched filter
g(t) = s∗(−t), and is

|A|2
σ 2

= 2Ep

N0

where Ep = |A|2 is the total energy in the signal pulse As(t).

Proof When N ( f ) = N0/2 and G( f ) = S∗( f ), the output noise variance is

σ 2 =
∫ ∞

−∞
N ( f )|S( f )|2df

= N0

2
,

and the output signal-to-noise power ratio becomes

S

N
=
∫ ∞

−∞
|A|2|S( f )|2

N0/2
dt

= 2Ep

N0

= |A|2
σ 2

.

Moreover, because

s(−t) =
∫ ∞

−∞
S( f )e−j2π ftdf ,

the inverse Fourier transform of S∗( f ) is s∗(−t), and so g(t) = s∗(−t), as was to be
proved. �

Notice that, when the noise is white, the shape of the signal pulse plays no role in
calculating the output signal-to-noise ratio. Only the energy of the pulse matters. This
means that one is free to use as a signaling pulse any pulse shape based on criteria other
than signal-to-noise ratio.
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The output of the matched filter at the sampling instant

u(0) =
∫ ∞

−∞
s∗(−ξ)v(−ξ)dξ

=
∫ ∞

−∞
v(t)s∗(t)dt

is the correlation between the received signal v(t) and the transmitted pulse shape s(t).
Thus one can take the view that the function of the matched filter is to compute this
correlation.

The expected value of the matched-filter output is

Ar(t) = A
∫ ∞

−∞
s(ξ)s∗(ξ − t)dξ .

The integral here is sometimes called the autocorrelation function of the pulse s(t).
The matched filter s∗(−t) will usually be a noncausal filter. To remedy this if s∗(−t)

is zero for times t less than −t0, offset the impulse response by a delay time t0, so that

g(t) = s∗(t0 − t),

which is now a causal filter with a delay t0, the signal-to-noise ratio will be maximized
at time t0 rather than at time zero. An example of a matched filter that includes a time
delay to make it causal is shown in Figure 3.2. If, instead, the pulse s(t) has tails that go
on indefinitely, as does the gaussian pulse, then it will not be possible to make s∗(t0 − t)
causal. Figure 3.3 shows the situation for which the matched filter is not causal for any
finite t0. In this case, one can approximate the matched filter as closely as desired by
choosing t0 large enough.

t t

Pulse Shape Matched Filter Response

Figure 3.2. Example of a matched filter.

t t

Pulse Shape Matched Filter Response

Figure 3.3. Example of an approximate matched filter.
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There is a slight problem with units whenever we write the pulse as s(t) and the
impulse response for the matched filter as s∗(−t) because then the output signal of the
matched filter at time t0 is Ep, and the output signal power is E2

p . This is dimensionally
unsatisfactory because the output power has the units of joules-squared. This is why we
find it convenient to redefine the input pulse as As(t) and the matched filter as s∗(−t),
where now the normalized pulse s(t) has energy equal to one and As(t) has energy |A|2.
Then the expected output of the matched filter s∗(−t) is∫ ∞

−∞
A|s(t)|2dt = A.

Similarly, with the filter s(−t), the output noise power now is

σ 2 =
∫ ∞

−∞
N ( f )|S( f )|2df

= N0

2
.

This is summarized in the following theorem.

Theorem 3.1.4 The signal output Ar(t) at time zero of the filter s∗(−t) matched to
pulse As(t), with energy Ep = |A|2, is equal to A. If the input noise is white, the output
noise variance is N0/2.

If there are two or more pulses in a discussion, we may have a matched filter for
each of them, with all matched filters fed by the identical noisy signal v(t). We are then
interested in the correlation between the output noise samples.

Theorem 3.1.5 Filters with common input that are matched to real orthogonal pulses
have uncorrelated noise outputs at time zero if the common noise input is white noise,
and independent noise outputs if the common noise input is white and gaussian.

Proof Consider the outputs of two filters matched to real pulses si(t) and sj(t). Let ni

and nj be the noise outputs of the real filters si(−t) and sj(−t) at time zero. Then

E[ninj] = E

[∫ ∞

−∞
n(ξ)si(−ξ)dξ

∫ ∞

−∞
n(ξ ′)sj(−ξ ′)dξ ′

]
=
∫ ∞

−∞

∫ ∞

−∞
si(−ξ)sj(−ξ ′)E[n(ξ)n(ξ ′)]dξdξ ′.

Because the noise is white, E[n(ξ)n(ξ ′)] = (N0/2)δ(ξ − ξ ′). Therefore

E[ninj] =
∫ ∞

−∞
si(−ξ)sj(−ξ ′)N0

2
δ(ξ − ξ ′)dξdξ ′.
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Noise Correlation = 0

Signal = A 

Noise =
2

N0
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As0(t ) + n(t )

Figure 3.4. Matched filters for orthogonal pulses.

Carrying out one integration gives

E[ninj] = N0

2

∫ ∞

−∞
si(−ξ)sj(−ξ)dξ .

Because when i �= j, the pulses si(t) and sj(t) are orthogonal, the final integral equals
zero, so

E[ninj] = 0

when i �= j. The noise outputs ni and nj are uncorrelated at t = 0 when i �= j. If the
noise inputs are gaussian, then the outputs are also gaussian and so they are independent
because uncorrelated gaussian random variables are independent. �

Theorems 3.1.4 and 3.1.5 contain some of the more important properties of matched
filters. These properties are portrayed in Figure 3.4. Theorem 3.1.5 also implies several
other important facts. Suppose that the real pulse s(t) satisfies∫ ∞

−∞
s(t)s(t − �T )dt = 0.

Then s(t) and s(t −�T ) are orthogonal. When excited by As(t), the real filter s(−t) will
have output signal Ar(t) equal to zero at time �T for � �= 0, and equal to A at time zero.
Thus the output r(t) is a Nyquist pulse. Theorem 3.1.5 tells us further that with white
noise at the input of the matched filter s(−t), samples at the output of the matched filter
will be uncorrelated at times separated by �T .

3.2 Demodulation of binary baseband waveforms

In the remainder of this chapter, we shall develop demodulators for the various
waveforms described in Chapter 2 when received in additive stationary noise. These
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demodulators do not require that the noise is gaussian noise. Any additive stationary
noise is permitted. However, we calculate the probability-of-error performance of these
demodulators only for gaussian noise. We do not make any statement in this chapter
that the demodulators are optimal. In general, they are not optimal, but we shall prove in
Chapter 7 that these demodulators are optimal whenever the additive noise is gaussian
noise.

Figure 3.5 shows the demodulator for binary antipodal signaling. The received signal
is passed through a matched filter to maximize the signal-to-noise ratio at the particular
time instant at which the filter output is to be sampled. The data bit is declared to be a
zero or a one based on whether the sample is positive or negative. Each sample of the
matched-filter output is an example of a decision statistic. A decision statistic is any
function of the received signal upon which a decision is based. The probability that the
decision is wrong is called the probability of bit error or the bit error rate.

The linear demodulator for binary on–off keying is similar. The received signal v(t),
which is either equal to s(t) + n(t) or equal to n(t) only, is passed through the matched
filter s(−t) and sampled at �T . If the �th sample is larger than the threshold 	 = A/2,
then the �th data bit is declared to be a one. Otherwise, it is declared to be a zero. It
should be obvious that the threshold 	 should be set midway between 0 and A.

The demodulator for binary orthogonal signaling (binary FSK) has two matched
filters, as shown in Figure 3.6. One filter is matched to s0(t) and the other is matched to
s1(t). The received signal v(t), which is either equal to s0(t)+ n(t) or to s1(t)+ n(t), is

Pulse 
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n(t)

s(–t )
v (t )

Channel Demodulator

Matched 
Filter

Polarity 
Detector  
at Time 

T

zero 
or 

one

a s(t–  T )

Figure 3.5. Matched-filter demodulation of antipodal signaling.

s0(–t )

s1(–t )

Polarity 
Detector  
at Time 

T

zero
or 

one
  +

+

–

Figure 3.6. Matched-filter demodulation of binary FSK.
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applied to both filters. The filter outputs are both sampled at �T and the �th data bit is
declared to be a zero or a one based on which filter output sample is larger. To decide
which of the two outputs is larger, subtract the two outputs, one from the other, to form
the decision statistic. The sign of the decision statistic determines the demodulated data
bit. The decision statistic has noise from each matched-filter output so it has double the
noise power of BPSK.

Many of the other demodulators that we shall study also recover the datastream by
applying the signal to the input of a matched filter and forming a decision statistic
from the filter output at each sampling instant �T . The use of the matched-filter output
to demodulate one bit at a time implies that there is no intersymbol interference. The
output of the matched filter will have no intersymbol interference if the signal pulses at
the output of the matched filter are Nyquist pulses. This means that we need no longer
require that the pulse at the transmitter be a Nyquist pulse, only that the pulse out of the
matched filter is a Nyquist pulse. Therefore we may require that the transmitted pulse
s(t) be redefined accordingly so that the pulse at the output of the matched filter is the
Nyquist pulse r(t).

For antipodal signaling, the received signal

v(t) =
∞∑

�=−∞
a�s(t − �T ) + n(t)

is passed through the matched filter s(−t). The filter output is

u(t) =
∫ ∞

−∞
a�[s(t − �T ) ∗ s(−t)] + n(t) ∗ s(−t)

=
∞∑

�=−∞
a�r(t − �T ) + n′(t)

where r(t) = s(t) ∗ s(−t) and n′(t) = n(t) ∗ s(−t). There will be no intersymbol
interference at the output of the matched filter if r(t) is a Nyquist pulse. Let R( f ) be
any function of frequency that is real, nonnegative, and satisfies Theorem 2.4.2. Then
r(t) is a Nyquist pulse. Let s(t) have the transform

S( f ) = R
1
2 ( f )e jθ( f )

for any θ( f ). Then s(t) ∗ s(−t) is the Nyquist pulse r(t) because |S( f )|2 = R( f ).
Henceforth, we shall commonly deal with the received signal at the output of the

matched filter and we shall suppose that the transmitted signal s(t) is designed so that
the signal component at the output of the matched filter is

c(t) =
∞∑

�=−∞
a�r(t − �T )
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where r(t) is a Nyquist pulse. Moreover, for antipodal signaling,

a� =
{

A if the �th data bit is a 1
−A if the �th data bit is a 0.

The amplitude A now represents the amplitude at the output of the matched filter. The
�th sample of the matched-filter output, given by

u� = u(�T )

=
∞∑

�′=−∞
a�′r(�T − �′T ) + n′(�T )

= a� + n′
�,

depends on the �th data bit through a�. The �th data bit of the antipodal signaling
waveform is estimated to be a zero or a one depending on whether the �th sample
u(�T ) is negative or positive.

Figure 3.7 shows how the generation of the Nyquist pulse r(t) is now distributed
between the transmitter and the receiver. By distributing the pulse generation in this way,
we can have both a matched filter and a Nyquist pulse. The pulse as it enters the channel
s(t) is no longer a Nyquist pulse. (It might be called a pre-Nyquist pulse.) Therefore,
the modulated waveform c(t) entering the channel can look quite complicated and
separate data bits will interfere. The matched filter in the receiver, however, will render
the waveform more understandable by forming the Nyquist pulse r(t).

For example, let

s(t) = 4

π
√

T

cos(2π t/T )

1 − (4t/T )2
,

which is not a Nyquist pulse. Indeed, for this pulse, s(�T ) is never equal to zero for
integer �. However, at the output of the matched filter

r(t) = s(t) ∗ s(−t)

= sin(π t/T )

π t/T

cos(π t/T )

1 − (4t/T )2
,

s*(–t )Impulse

Transmit 
Filter

Receive 
Filter

Nyquist
Pulses(t )

Figure 3.7. Partitioning the generation of a Nyquist pulse.
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which is a Nyquist pulse. Often, we speak carelessly of transmitting the Nyquist pulse
r(t) when we really mean that the pulse s(t) is actually transmitted; the existence and
role of the matched filter is implied.

3.3 Error rates for binary signaling

The performance of a binary signaling scheme is given by the probability of bit error at
the demodulator output. An error can be made in either of two ways: the demodulator
can detect a zero bit when a one bit was actually transmitted, or the demodulator can
detect a one bit when a zero bit was actually transmitted. The probabilities of these two
error events need not be equal, but usually one prefers to design the demodulator so that
they are equal, and this is the only case we analyze. In order to calculate the probability
of demodulation error, the noise probability density function must be specified.

In this section, we shall derive the demodulated bit error rate Eb for each elemen-
tary binary signaling waveform transmitted through a distortionless, additive white
gaussian-noise channel. The additive white gaussian-noise channel occurs often in prac-
tice, and is a standard channel to judge the performance of a communication system.
Often the actual channel noise is not known.

The received signal is

v(t) = c(t) + n(t)

where c(t) is the transmitted waveform, and n(t) is white gaussian noise. Because the
noise is white, its power density spectrum is given by

N ( f ) = N0

2
.

We shall see that the performance of binary signaling in white gaussian noise depends
on N0 and Eb only through the ratio Eb/N0.

The decision made by the matched-filter demodulator is based on using the matched-
filter output as a decision statistic. When only one pulse shape is used in constructing
the waveform, there is only one matched filter and only one decision statistic at time
�T . There will be no intersymbol interference if the signaling pulse r(t) at the output
of the matched filter is a Nyquist pulse. When v(t) is passed through a filter matched
to s(t), the filter output is

v(t) =
∞∑

�=−∞
a�r(t − �T ) + n′(t).

The decision statistic at time �T , which is equal to the correlation between the received
signal and the transmitted signal, is compared to the threshold 	. If the decision statistic
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is above the threshold, a one is declared to be the data bit; if the decision statistic is
below the threshold, a zero is declared to be the data bit. The value of the threshold is
chosen so that the two kinds of error probability are equal.

When unbiased gaussian noise is applied to the input of any filter, the output of the
filter is also gaussian noise and any sample of the filter output is a gaussian random
variable with probability density function

p(x) = 1√
2πσ

e−x2/2σ 2

where σ 2 is the variance of that random variable.
Let x denote the decision statistic, consisting of the sampled output of the matched

filter. Let p0(x) denote the probability density function on x when a zero is transmit-
ted; let p1(x) denote the probability density function on x when a one is transmitted.
Figure 3.8 shows p0(x) and p1(x) for the case of OOK in gaussian noise. The area of
the hatched region of p0(x) in Figure 3.8 is the probability that the threshold will be
exceeded when a zero is transmitted; the area of the hatched region of p1(x) is the
probability that the threshold will not be exceeded when a one is transmitted. These
error probabilities are denoted pe|0 and pe|1 and are given by

pe|0 =
∫ ∞

	

p0(x)dx

pe|1 =
∫ 	

−∞
p1(x)dx;

where 	 is to be chosen so that pe|0 = pe|1. This value of 	 clearly should be where
the two gaussian distributions cross because then the area under the two tails above and
below 	 are equal. The error probabilities are the areas of the two tails.

To compute the probability of error for each binary signaling scheme that we have
studied, we need to carry out the integration of the corresponding p0(x) and p1(x) over
the appropriate interval. For some probability density functions, p0(x) and p1(x), the

p(x)

p0(x) p1(x)

x

pe|1 pe|0
Θ

Figure 3.8. Error probabilities for binary OOK.
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integrals can be evaluated in closed form, but for gaussian probability density functions,
numerical integration is necessary. This is described by the standard function Q(x) that
was defined in Section 1.7.

The first case we analyze is antipodal signaling in gaussian noise. Then

p0(x) = 1√
2πσ

e−(x+A)2/2σ 2

p1(x) = 1√
2πσ

e−(x−A)2/2σ 2

where A is the mean sampled output of the matched filter, and σ 2 is the noise variance
at the output of the matched filter. By symmetry of this case, it is clear that pe|0 = pe|1
if the threshold 	 equals zero. Therefore

pe|0 =
∫ ∞

0

1√
2πσ

e−(x+A)2/2σ 2
dx

pe|1 =
∫ 0

−∞
1√

2πσ
e−(x−A)2/2σ 2

dx.

These two integrals are illustrated in Figure 3.9. Such integrals cannot be evaluated in
terms of elementary functions, but are expressed in terms of the function Q(x).

Theorem 3.3.1 The average error probability for antipodal signaling (or binary
phase-shift keying) with no intersymbol interference, received in additive white
gaussian noise is

pe = 1
2 pe|0 + 1

2 pe|1

= Q

(√
2Eb

N0

)
.

p(x)

p0(x) p1(x)

x

pe|1 pe|0
0

Figure 3.9. Error probabilities for antipodal signaling.
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Proof Because the two integrals for pe|0 and pe|1 are equal, we need to evaluate only
one of them. Make the change in variables

y = (x + A)

σ
.

Then

pe = pe|0 =
∫ ∞

A/σ

1√
2π

e−y2/2dy

= Q

(
A

σ

)
as was to be proved. �

The signal-to-noise ratio at the output of the matched filter is given by

S/N = A2

σ 2
= 2Ep

N0
= 2Eb

N0

because Ep = Eb. Therefore we can write

pe = Q

(√
2Eb

N0

)
.

The error probability for antipodal signaling is shown in Figure 3.10. For large values
of Eb/N0, we can use the approximation Q(x) ≈ e−x2/2/x

√
2π to write

pe ≈ e−Eb/N0

√
4πEb/N0

or, more coarsely and more simply, the bound that Q(x) < 1
2 e−x2/2 to write

pe <
1

2
e−Eb/N0 .

Approximations of this kind are useful for rough, order-of-magnitude comparisons.
The demodulator for on–off keying uses a single matched filter with a threshold 	

set at A/2, so the probability of error for OOK in gaussian noise, shown in Figure 3.10,
can be obtained in the same way as for antipodal signaling. However, with just a bit
of thought, we can avoid repeating the work while gaining a little insight. Clearly,
the output of the matched filter has the same noise as in the previous case, and the
signal output is either zero or A depending on whether the data bit is a zero or a one.
This means that the difference in the two signals is A – half as much as in the case of
antipodal signaling, which has a difference of 2A between the two signals.
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Figure 3.10. Performance of basic binary modulation methods.

Theorem 3.3.2 The average bit error probability for binary OOK with no intersymbol
interference in white gaussian noise is

pe = Q

(√
Eb

N0

)
.

Proof The detection problem is equivalent to antipodal signaling with the two signal
amplitudes −A/2 and A/2 because the difference between these two numbers is also
A, and the noise is the same as before. In that case, the average energy per bit would
be proportional to (A/2)2, while in the case of OOK, the average energy per bit is
proportional to

1
2 02 + 1

2 A2 = 1
2 A2

because only half the pulses, on average, are nonzero. Therefore the performance of
OOK is the same as the performance of antipodal signaling using half as much energy.
To achieve the same probability of bit error, baseband OOK requires exactly twice as
much power as antipodal signaling. The statement of the theorem follows. �
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The probability of error for binary frequency-shift keying, or binary orthogonal
signaling, will be given next. We will see that, like baseband OOK, binary FSK requires
twice the power of antipodal signaling, but for a different reason.

Theorem 3.3.3 The average bit error probability for a demodulator of binary orthog-
onal signaling (or binary FSK) with no intersymbol interference in additive white
gaussian noise is

pe = Q

(√
Eb

N0

)
.

Proof To decide which output is larger, subtract the two outputs and determine the sign
of the difference. The decision statistic then is the difference between the two matched-
filter outputs, only one of which has a pulse response in its output. Therefore the
expected value of the decision statistic is the same as antipodal signaling with the same
pulse energy. The noise power, however, is twice as large because, by Theorem 3.1.5,
the noise output is the difference of two independent noise terms of equal variance, and
so the noise variances add. Consequently,

pe = Q

⎛⎝√2Ep

2N0

⎞⎠ .

Because Eb = Ep, the theorem is proved. �

3.4 Demodulators for multilevel signaling

An M-ary multilevel signaling waveform, as was described in Section 2.3, is used to
convert a waveform channel into a discrete channel with M input symbols correspond-
ing to the M input amplitudes of a signal constellation S = {c0, c1, . . . , cM −1}. We
shall require that M = 2k for some integer k. The modulator at time �T , upon receiving
the input data symbol cm representing k data bits, sets a� = cm and passes a�s(t − �T )

through the channel. Therefore, the received waveform in additive white noise n(t) is

v(t) =
∞∑

�=−∞
a�s(t − �T ) + n(t)

where s(t) is the pulse shape and a� is the point from the signal constellation chosen at
the �th time instant to represent k data bits. The task of the demodulator is to recognize
that a� = cm. If the demodulator decides that a� = cm′ for some m′ �= m, then the data
symbol demodulated at time �T is in error.
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Because the same pulse shape, s(t), is used for every point of the signal constellation,
there is only one matched filter. We shall suppose again that the pulse shape and the
interval T are chosen so that the pulse r(t) at the output of the matched filter is a Nyquist
pulse. When v(t) is passed through a filter matched to s(t), the filter output is

u(t) =
∞∑

�=−∞
a�r(t − �T ) + n′(t)

where n′(t) = n(t)∗s(−t), and r(t) is a Nyquist pulse. The �th time sample u� = u(�T )

of the matched-filter output is

u� = a� + n′
�

where a� is the element of the signal constellation S = {c0, c1, . . . , cM −1} transmitted at
time �T , and n′

� = n′(�T ) is a sequence of independent noise samples, each of variance
σ 2. These samples are gaussian random variables if the channel noise is gaussian. The
task of the demodulator is to estimate a� from u�. This should be done to minimize the
probability of decision error. Evidently, the estimate â� of a� is the value cm ∈ S that
is closest to u�. That is, the data estimate at time �T is

m̂� = argminm|u� − cm|
= argminmd(u�, cm).

This decision rule partitions the real line representing the values u� into regions. The
region corresponding to cm is called the mth decision region. The decision region
corresponding to cm is denoted Dm.

For example, the four-ary multilevel signal constellation {−3A, −A, A, 3A} is shown
in Figure 3.11 together with the decision regions, D0, D1, D2, and D3. The intervals
(−∞, −2A), (−2A, 0) (0, 2A), (2A, ∞) are the decision regions. If u� ∈ Dm, then m is
chosen as the estimate of the transmitted data symbol. It should be noted that with this
signal constellation and this choice of decision regions, the four points are not equally
vulnerable to noise-induced errors. The point denoted 3A, for example, can only be
demodulated incorrectly when the noise is negative, not when the noise is positive.

–3A 3A–A A

Figure 3.11. Decision regions.
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3.5 Error rates for multilevel signaling

Bit error rates for multilevel signaling can be calculated in nearly the same way as
they were for binary antipodal signaling. For example, if the signal constellation is the
four-ary constellation {−3A, −A, A, 3A} transmitted in additive gaussian noise, then
the probability of error when a� = −A is transmitted is the probability that a gaussian
random variable with mean −A takes a value smaller than −2A or greater than zero.
Altogether, for the four decision regions, there are six probabilities to be tabulated. Each
is a similar tail of a gaussian distribution as illustrated in Figure 3.12. Each of these

tails has the same probability, which is Q
(

A
σ

)
, of confusing a point with its nearest

neighbor. If each of the four symbols is transmitted with equal probability, equal to
1/4, then the probability of symbol error is easily seen to be

pes = 1
4 Q
(

A
σ

)
+ 1

4 2Q
(

A
σ

)
+ 1

4 2Q
(

A
σ

)
+ 1

4 Q
(

A
σ

)
= 3

2 Q
(

A
σ

)
= 3

2 Q

(√
2Ep
N0

)
because the two middle gaussians each have two error tails, and the other two gaussians
each have one error tail. The average energy per symbol is given by

Es = 1
4 (−3A)2 + 1

4 (−A)2 + 1
4 (A)2 + 1

4 (3A)2

= 5A2.

Because each pulse conveys two bits, the average energy per bit is Eb = Es/2 =
5A2/2 = 5Ep/2. Therefore the probability of symbol error is

pes = 3
2 Q

(√
4

5

Eb

N0

)
.

p(x)

0
x

Figure 3.12. Error probabilities for four-ary ASK.
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If the data is Gray-coded, then a symbol error will almost always contain only one bit
error. Therefore the probability of bit error is

peb ≈ 3
4 Q

(√
4

5

Eb

N0

)
.

This is the bit error rate for four-ary amplitude shift keying. This should be compared to

peb = Q

(√
2Eb

N0

)

which is the bit error rate for antipodal signaling. Four-ary ASK requires more than
twice as much energy per bit to achieve the same bit error rate as antipodal signaling,
but it has double the data rate.

3.6 Demodulators for M-ary orthogonal signaling

An M-ary orthogonal waveform is used to convert the waveform channel into a channel
with M discrete input symbols; usually M = 2k for some integer k. Upon receiving
the mth input value, the modulator transmits the pulse sm(t) through the channel. The
demodulator must then determine m, the index of the transmitted symbol, based on an
observation of the received signal v(t) and its knowledge of the M possible choices for
sm(t). The demodulator is based on a bank of matched filters, one filter for each sm(t).

Demodulation of an M-ary orthogonal signaling waveform proceeds much the same
as the demodulation of a binary signaling waveform, but generalized to use multiple
matched filters. The received signal

v(t) =
∞∑

�=−∞
Asm�

(t − �T ) + n(t)

is passed through a bank of matched filters: sm(−t) for m = 0, . . . , M −1, one matched
filter for each pulse in the M-ary orthogonal family. Each of the M filter outputs

um(t) =
∞∑

�′=−∞

∫ ∞

−∞
Asm�′ (ξ − �′T )sm(ξ − t)dξ +

∫ ∞

−∞
n(ξ)sm(ξ − t)dξ

for m = 0, . . . , M − 1, is sampled at t = �T . Because the pulses are orthogonal, the
relationship∫ ∞

−∞
sm(ξ − �′T )sm′(ξ − �T )dξ = δ��′δmm′
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simplifies the expression for the matched-filter output. If the pulses out of the matched
filters are Nyquist pulses, then there is no intersymbol interference. Thus

um(�T ) = Aδm�m + nm�

where the output noise samples nm� are independent, identically distributed random
variables. They are uncorrelated if n(t) is white noise and they are independent if the
noise is white and gaussian. Each transmitted pulse affects only one matched-filter
sample at one time. By finding the index of the matched filter with the largest output
at time �T , one has an estimate m̂� of which pulse was transmitted at time �T .

3.7 Error rates for M-ary orthogonal signaling

A demodulator for an M-ary orthogonal signaling waveform passes the received signal
through a bank of M matched filters, one filter matched to sm(t) for m = 0, . . . , M − 1,
and samples the output at time �T . The value of m corresponding to the filter output
um(�T ) with the largest output value is demodulated as the estimated channel output
symbol m̂ at time �T . Usually, the output of the correct filter will have the largest value,
so m will be correctly demodulated, but sometimes the noise will be such that the wrong
filter will have a larger output than the correct filter. Then a demodulation error occurs.

We saw in Section 3.6 that the bank of matched filters has output samples given by

um(�T ) = Aδm�m + nm�

where the noise samples nm� are identically distributed random variables with variance
σ 2. Suppose that the channel noise n(t) is white gaussian noise. Then the nm� are
independent gaussian random variables and, by Theorem 3.1.4, we have E[nm�]2 =
σ 2 = N0/2.

The discrete channel makes an error at time �T if the mth symbol is the input to the
waveform channel and if the output of some other matched filter exceeds the output of
the mth matched filter. The probability of error is independent of m if all of the pulses
in the pulse alphabet have the same energy. We will evaluate the probability of error
in two ways: first in an approximate way using the union bound,1 then in an exact
way. Each method of analysis has its virtues. An exact analysis is preferred for actual
calculations. The approximate analysis, however, is valuable for the insight it provides.

1 For any set of events Ei , the union bound is

Pr[∪iEi] ≤
∑

i

Pr[Ei].
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Let pm′|m be the probability that the output sample of the m′th matched filter is larger
than the output sample of the mth matched filter under the condition that the mth symbol
was transmitted. Then by the union bound,

pe ≤
∑

m′ �=m

pm′|m.

But a formula for pm′|m is already known. Because it is the probability of incorrectly
separating two orthogonal pulses, it is the same as the probability of error of binary
FSK:

pm′|m = Q

(√
Ep

N0

)
.

For M-ary orthogonal signaling, because Ep = Eb log2 M and there are M −1 identical
terms in the sum, the union bound immediately gives

pe ≤ (M − 1)Q

(√
log2 M

Eb

N0

)
.

This inequality is actually an asymptotic equality as Eb/N0 grows large. The reason
for this can be understood by considering why the union bound yields an inequality
rather than an equality. There will be occasions for which two incorrect matched filters
both have output samples that exceed the output sample of the correct matched filter
and such events are counted as two errors in computing the union bound even though
there is only one error. This double counting occurs with negligible probability for
large Eb/N0, but for small Eb/N0 this double counting overestimates pe and makes the
bound useless. An exact analysis is necessary to understand the error quantitatively.
Fortunately, an exact analysis is possible.

An exact expression for the probability of error is given by the following theorem,
which is a generalization of Theorem 3.3.3.

Theorem 3.7.1 The probability of symbol error pe of a matched-filter demodulator
for an M-ary orthogonal waveform alphabet used without intersymbol interference on
an additive white gaussian-noise channel is given as a function of Eb/N0 by

pe = 1 −
∫ ∞

−∞
1√
2π

e−x2/2

[∫ x+√
(2Eb/N0) log2 M

−∞
1√
2π

e−y2/2dy

]M −1

dx.

Proof Without loss of generality, suppose that sm(t) is the transmitted pulse. Let z be
the sampled output of the mth matched filter. Let σ 2 denote the noise variance at the
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output of each matched filter, and let A denote the signal at the mth filter output. Let
γ = Eb/N0. Recall that

A2

σ 2
= 2Ep

N0
= 2Eb log2 M

N0
= 2γ log2 M .

The probability that the m′th filter output, with m′ �= m, exceeds z is

pe|z,m′ =
∫ ∞

z

1√
2πσ

e−w2/2σ 2
dw.

Hence

1 − pe|z,m′ =
∫ z

−∞
1√

2πσ
e−w2/2σ 2

dw.

The probability that every other filter output is smaller than the mth filter output is

1 − pe|z =
[∫ z

−∞
1√

2πσ
e−w2/2σ 2

dw

]M −1

,

because the filter outputs are independent random variables. This is true for each value
of z. Taking the expected value of this expression with respect to z

1 − pe =
∫ ∞

−∞
1√

2πσ
e−(z−A)2/2σ 2

[∫ z

−∞
1√

2πσ
e−w2/2σ 2

dw

]M −1

dz

gives the average probability of error pe. Finally, make the following changes in the
variables of integration

x = z −√2γ log2 M

σ
y = w

σ

to complete the proof of the theorem. �

The probability of symbol error in Theorem 3.7.1 can be re-expressed in terms of
the function Q(x) as

pe = 1 −
∫ ∞

−∞
1√
2π

e−x2/2
[
1 − Q(x +√2γ log2 M )

]M −1
dx

where γ = Eb/N0.
The probability of symbol error in Theorem 3.7.1 depends only on M and Eb/N0.

The equation can be numerically integrated for each value of M and Eb/N0. The result



84 Baseband demodulation

–4 –1.6

10–4

10–5

10–3

10–2

10–1

1.0

0

P
ro

ba
bi

lit
y 

of
 S

ym
bo

l E
rr

or
. p

e

4

M = 32
M = 2

16
8

4

8

Eb/N0 dB

12 16 20

Figure 3.13. Performance of M-ary orthogonal signaling.

is shown in Figure 3.13. The expression of the theorem is unattractive for computing
very small pe because it finds pe indirectly by first computing a number that is close to
one, then subtracting from one. Integration by parts (left as an exercise) can be used to
put the expression into a more satisfactory form.

Now we will find the probability of symbol error for a simplex family. Because a
simplex family is closely related to an orthogonal family, it is not surprising that this
probability can be stated as a corollary.

Corollary 3.7.2 An M-ary simplex pulse alphabet with pulse energy
(

1 − 1
M

)
Ep can

be demodulated with the same probability of symbol error as an M-ary orthogonal
family with pulse energy Ep.

Proof Let the simplex family be given by

qm(t) = sm(t) − 1

M

M −1∑
m′=0

sm′(t)
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for m = 0, . . . , M − 1 where {sm(t)} is a family of orthogonal pulses. Recall that∫ ∞

−∞
qm(t)qm′(t)dt =

(
1 − 1

M

)
Ep m = m′

= −Ep

M
m �= m′.

To demodulate, pass the received signal through a bank of M filters matched to the M
pulses sm(t) for m = 0, . . . , M − 1. The output of the bank of filters is the same as it
was in the case of the original orthogonal pulses except for the additional term

− 1

M

∫ ∞

−∞
sm(t)

M −1∑
m′=0

sm′(t)dt = −Ep

M
,

which occurs in every filter output. This term is independent of m and so cannot affect
the determination of the largest of the filter outputs. Hence the probability of error for
simplex signaling is the same as the probability of error for orthogonal signaling. The

energy of each waveform, however, is
(

1 − 1
M

)
Ep. �

The performance of simplex waveforms, based on Corollary 3.7.2, is shown in
Figure 3.14.

The probability of bit error, here denoted peb, can be computed from the probability
of symbol error pe for orthogonal or simplex signaling by noting that, when a symbol
error occurs, all M − 1 incorrect symbols are equally probable. Errors occur with a
probability that is independent of the particular symbol that is transmitted. Therefore
we can fix on any symbol that is easy to analyze, in particular the symbol corresponding
to the all-zero binary word. Suppose that M = 2k and that m = 0 is the transmitted
symbol corresponding to an all-zero k-bit binary word. The expected number of ones in
a nonzero symbol can be obtained by summing the total number of ones in all possible
incorrect symbols, then dividing by M − 1. Because the correct symbol contains only
zeros, we can calculate the total number of ones in all symbols, then divide by M − 1.
But the total number of ones in the set of all k-bit binary words is easily seen to be
1
2 k2k . Therefore, on average, there are k2k−1/(M − 1) incorrect bits when a symbol is
incorrect. Whenever the demodulated symbol is incorrect, the conditional probability
of a particular bit being incorrect is 2k−1/(2k − 1). Therefore the formula

peb = 2k−1

2k − 1
pe

provides the conversion from the probability of symbol error to the probability of bit
error. This is the bit error rate for orthogonal signaling or simplex signaling.
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Figure 3.14. Performance of simplex signaling.

As a practical matter, orthogonal (or simplex) signaling is useful only for small
or moderate values of M , at most M = 64 or 128. Nevertheless, it is informative
to examine the performance of M-ary orthogonal signaling for very large values of
M . At fixed values of Eb/N0, the behavior of pe as M becomes large is surprisingly
simple to describe. The next theorem describes this behavior for orthogonal waveforms.
The statement of the theorem also applies to simplex waveforms because, for large
M , the performance of simplex signaling approaches the performance of orthogonal
signaling.

Theorem 3.7.3 As M goes to infinity, the probability of symbol error of an opti-
mally demodulated orthogonal family of waveforms used on an additive gaussian-noise
channel behaves as one of the two cases:

pe → 0 if Eb/N0 > loge 2
pe → 1 if Eb/N0 < loge 2.
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Proof Let γ = Eb/N0. From Theorem 3.7.1, we have

pe = 1 −
∫ ∞

−∞
1√
2π

e−x2/2

[∫ x+√
2γ log2 M

−∞
1√
2π

e−y2/2dy

]M −1

dx

= 1 −
∫ ∞

−∞
1√
2π

e−x2/2eB(x,M )dx

where

B(x, M ) =
log
∫ x+√

2γ log2 M
−∞ 1√

2π
e−y2/2dy

1
M −1

.

We need to determine the behavior of B(x, M ) as M goes to infinity. But as M goes to
infinity, both the numerator and denominator go to zero. To find the limit of B(x, M )

as M goes to infinity, let s = 1/M and use L’Hopital’s rule2 to find the limit as s goes
to zero. Thus

lim
M →∞ B(x, M ) = lim

s→0

log
∫ x+√−2γ log2 s
−∞ 1√

2π
e−y2/2dy

s
1−s

.

The derivative of the denominator with respect to s is

d

ds

[
s

1 − s

]
= 1

1 − s
− s

(1 − s)2

which equals one in the limit as s goes to zero. The derivative of the numerator with
respect to s is

−(γ /s) 1√
2π

e−(x+√−2γ log2 s)2/2

√−2γ log2 s
∫ x+√−2γ log2 s
−∞ 1√

2π
e−y2/2dy

.

2 L’Hopital’s rule, a basic theorem of elementary calculus, states that

lim
x→0

A(x)

B(x)
= A′(x)

B′(x)

whenever A(x)/B(x) is indeterminate at x = 0, where A′(x) and B′(x) denote the derivatives of A(x) and B(x),
respectively.
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To find the limit of this complicated term as s goes to zero, replace s by 1/M and take
the limit as M goes to infinity. The integral in the denominator goes to one and need
not be considered further. Therefore

lim
M →∞B(x, M ) = lim

M →∞

[
− γ M√

2π

1√
2γ log2 M

e−(x+√
2γ log2 M )2

/2

]

= lim
M →∞

[ −γ√
2π

e−(x2+2x
√

2γ log2 M +2γ log2 M −2 loge M +loge(2γ log2 M ))/2
]

.

The behavior for large M is dominated by the terms that are linear in log M

lim
M →∞ B(x, M ) = lim

M →∞[−e−2(γ−loge 2) log2 M )] f(x, M )

where f (x, M ) contains terms that are exponential in x and in
√

γ log2 M . For large M ,
the exponential in the bracket goes either to zero or to infinity depending on the sign
in the exponent. Multiplying by f (x, M ) does not change this limit. Consequently,

lim
M →∞ B(x, M ) =

{
0 if γ > loge 2

−∞ if γ < loge 2.

Hence for all x,

eB(x,M ) → 1 if γ > loge 2

eB(x,M ) → 0 if γ < loge 2.

The proof of the theorem is completed by substituting these limits for the bracketed
term in the expression for pe. �

Theorem 3.7.3 tells us that we cannot transmit reliably with M-ary orthogonal sig-
naling if Eb/N0 is less than loge 2. This statement is more commonly expressed in
decibels: M-ary orthogonal signaling cannot be used to transmit reliably if Eb/N0 is
less than −1.6 dB. Simplex waveforms do better for each finite M , but the relative
advantage becomes insignificant for large M . Asymptotically as M goes to infinity, a
family of simplex waveforms is no better than a family of orthogonal waveforms.

There still remains the question of whether there is another family of waveforms with
better performance than a simplex family of waveforms. We do not answer this question
for finite M , though it is widely believed that a simplex family of waveforms is optimal.
However, we answer the question asymptotically in gaussian noise. The methods of
information theory, as discussed in Chapter 11, tell us that it is not possible to signal



89 Problems

reliably if Eb/N0 is less than −1.6 dB. The information-theoretic proof completely
circumvents the question of waveform design by using the ingenious methods of that
subject, which is not the topic of this book. We simply assert that as M goes to infinity,
an M-ary simplex family or an M-ary orthogonal family is asymptotically optimal for
a channel with no bandwidth constraint.

Problems for Chapter 3

3.1. Let

c(t) =
n∑

�=1

a�s(t − �T ).

Show that a matched filter for the entire waveform c(t) can be constructed as
the cascade (in either order) of a matched filter for the pulse s(t) and a matched
filter for the “array” (a1, . . . , an). More generally, if

c(t) = a(t) ∗ s(t).

Describe how the matched filter for c(t) can be constructed as the cascade of
two matched filters.

3.2. Let g(t) be the matched filter for the pulse s(t). Suppose that instead of g(t),
the filter

gε(t) = g(t) + εh(t)

is used where h(t) has finite energy and ε is a small number. Prove that the
decrease in signal-to-noise ratio at the filter output is quadratic in ε, that is, a
series expansion in ε is

S

N
=
(

S

N

)
− ε2A + · · ·

for some positive constant A. What does this imply about the care with which
a matched filter must be built?

3.3. Prove that if a sinc pulse is passed through its matched filter, the output is the
same sinc pulse.

3.4. Show that

Q(x) = 1

2
erfc

(
x√
2

)
.
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3.5. Derive an equation for the probability of error of an M-ary orthogonal waveform
alphabet used on a channel with additive colored gaussian noise, that is, with
additive gaussian noise of power density spectrum N ( f ).

3.6. The matched filter for a complex pulse s(t) is s∗(−t). Sketch the matched-
filter impulse response and the noise-free matched-filter output for each of the
following pulses.

s(t )

t

a.

s(t )

t

b.

Re[s(t )]

Im[s(t )]

t

t

c.

3.7. A four-ary baseband signal constellation S = {−3A, −A, A, 3A} on the real line
is to be used for a four-aryASK waveform on an additive gaussian noise channel
and demodulated by a matched filter followed by a set of decision regions.
a. With decision regions defined by the points −2A, 0, +2A, and Gray-coded

data, find an exact expression for the bit error rate.
b. As a function of the filtered noise variance σ 2 and the energy per bit Eb, find

the four points of the signal constellation and the thresholds that minimize
the symbol error rate. Does this choice minimize the bit error rate?

3.8. Show how the expression

pe = 1 −
∫ ∞

−∞
1√
2π

e−x2/2
[
1 − Q(x +√2γ log2 M )

]M −1
dx

can be used to derive the bound

pe ≤ (M − 1)Q
(√

γ log2 M
)

.
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A factor of two appears in the square root of the exact equation, but is missing
in the inequality. Why?

3.9. Specify the decision regions for four-ary amplitude shift keying that give the
smallest bit error rate. Are the boundaries uniformly spaced? What is the bit
error rate?

3.10. a. Use integration by parts to convert the formula of Theorem 3.7.1 into the
expression

pe = (M − 1)

∫ ∞

−∞
1√
2π

e−x2/2Q(x)M −2Q
(

x −√2γ log2 M
)

dx.

b. Derive this expression directly from the form of the demodulator.
3.11. A pulse s(t) is a Nyquist pulse for period T if s(0) = 1 and s(�T ) = 0 for every

nonzero integer �.
a. Suppose that s(t) has Fourier transform S( f ) sketched as follows.

A

2B

2W

S(f )

f

A /2

For what values of T is s(t) a Nyquist pulse?
b. If this Nyquist pulse s(t) is to be the output of the matched filter in the

receiver, what pulse should be transmitted?
c. Describe a transmitted four-ary baseband ASK waveform that produces this

Nyquist pulse at the output of the matched filter. What is the data rate? What
signal constellation should be used?

d. Give an approximate expression for Eb/N0 for this ASK waveform. Sketch
a demodulator.

e. Give a bound on the largest value that the (infinitely long) transmitted signal
can take at a value midway between two sampling instants.

3.12. a. Explain why, for fixed Eb/N0, M-ary orthogonal signaling (with M larger
than 2) has a smaller probability of bit error than binary signaling.
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b. Show that when M = 2, the probability of symbol error for M-ary orthogonal
signaling

pe = 1 −
∫ ∞

−∞
1√
2π

e−x2/2

[∫ x+√
(2Eb/N0) log2 M

−∞
1√
2π

e−y2/2dy

]M −1

dx

reduces to the probability of bit error

pe = Q

(√
Eb

N0

)

for binary orthogonal signaling. (Hint: rotate the x, y coordinate system
by 45◦.)

3.13. a. Construct a four-ary orthogonal signaling waveform alphabet of duration T
by using a half-cosine pulse of pulse width T/4 as a “chip”.

b. Given a single matched filter for a half-cosine pulse as an existing com-
ponent, sketch the design of a demodulator.

3.14. A pulse s(t) is required to produce a Nyquist pulse at the output of a whitened
matched filter for a channel with noise whose power density spectrum is N ( f ).
Give the equation that S( f ) must satisfy.

3.15. An antipodal signaling waveform

c(t) =
∞∑

�=−∞
a�s(t − �T )

where

a� =
{

A if the �th data bit is 1
−A if the �th data bit is 0

is transmitted over an additive white gaussian noise channel. At the sampled
output of a matched filter, a three-level decision is used

If x < −A
2 declare data bit is 0

If x > A
2 declare data bit is 1

otherwise declare data bit is lost.

a. Give an expression for the bit error rate in terms of the Q function.
b. Give an expression for the bit lost rate in terms of the Q function.
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Notes for Chapter 3

The matched filter as a filter for maximizing signal-to-noise ratio was introduced by
North (1943), and was named by Van Vleck and Middleton (1946). The alternative
name, North filter, is still used occasionally. The matched filter was studied extensively
by Turin (1960). The matched filter for colored noise was introduced by Dwork (1950)
and by George (1950).
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Communication waveforms in which the received pulses, after filtering, are not Nyquist
pulses cannot be optimally demodulated one symbol at a time. The pulses will overlap
and the samples will interact. This interaction is called intersymbol interference. Rather
than use a Nyquist pulse to prevent intersymbol interference, one may prefer to allow
intersymbol interference to occur and to compensate for it in the demodulation process.

In this chapter, we shall study ways to demodulate in the presence of intersymbol
interference, ways to remove intersymbol interference, and in Chapter 9, ways to
precode so that the intersymbol interference seems to disappear. We will start out in
this chapter thinking of the interdependence in a sequence of symbols as undesirable, but
once we have developed good methods for demodulating sequences with intersymbol
interference, we will be comfortable in Chapter 9 with intentionally introducing some
kinds of controlled symbol interdependence in order to improve performance.

The function of modifying a channel response to obtain a required pulse shape is
known as equalization. If the channel is not predictable, or changes slowly with time,
then the equalization may be designed to slowly adjust itself by observing its own
channel output; in this case, it is called adaptive equalization.

This chapter studies such interacting symbol sequences, both unintentional and inten-
tional. It begins with the study of intersymbol interference and ends with the subject
of adaptive equalization.

4.1 Intersymbol interference

In Chapter 3, we studied the demodulation of a single bit or a single symbol within a
baseband waveform. The methods of that chapter apply whenever the individual sym-
bols can be filtered and sampled without interaction, which requires that the signaling
pulse at the filter output be a Nyquist pulse. In more general cases, the successively
received symbols are overlapped or dependent. Then one speaks of demodulating the
sequence of symbols rather than of demodulating one symbol at a time. The dependence
between symbols is exploited in the structure of the demodulator.
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Figure 4.1. A cause of intersymbol interference.

An elementary communication waveform with intersymbol interference at the
demodulator is best processed as a sequence of dependent symbols. Such dependent
sequences arise in a variety of ways. The intersymbol interference may arise as a result
of the pulse dispersion caused by the channel impulse response. This chapter includes
ways to correct for the intersymbol interference that is created inadvertently such as
by linear dispersion within the channel. Dispersion arises in a linear channel, which
will be described as a filter, h(t), as shown in Figure 4.1. The transmitted pulse and the
received pulse are no longer the same. We shall denote the transmitted pulse by p(t)
and the received pulse by s(t). For a single transmitted pulse, p(t), the received pulse
is s(t) = p(t) ∗ h(t). The received pulse in noise is

v(t) = p(t) ∗ h(t) + n(t)

= s(t) + n(t)

where n(t) is white noise. For a fully modulated waveform at the transmitter, the
waveform at the receiver is

v(t) =
[ ∞∑

�=−∞
a�p(t − �T )

]
∗ h(t) + n(t)

=
∞∑

�=−∞
a�s(t − �T ) + n(t).

How should we process v(t) in the presence of the dispersive filter h(t)? One way is
to pass the received signal through a filter matched to the pulse p(t) and to sample at
times �T . If we specify p(t) ∗ p(−t) to be the Nyquist pulse r(t), then we know by
Theorem 3.1.5 that the successive noise samples out of the filter will be uncorrelated,
and if the noise is gaussian, independent, but the dispersion due to h(t) will cause
intersymbol interference in the output samples. Another way of processing v(t) is to
pass the received signal through a filter matched to s(t) and to then sample at times �T .
Now the output sample due to a single pulse will have maximum signal-to-noise ratio
but, unless s(t) ∗ s(−t) is a Nyquist pulse, there will be intersymbol interference and
the noise in the samples will be correlated. Each method results in a discrete output
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sequence with memory – in one case, memory in the sequence of signal samples; in
the other, memory in both the sequence of signal samples and the sequence of noise
samples – that must be processed further to extract an estimate of the data sequence.

We shall begin the chapter with a study of the first method of filtering – passing
v(t) through a filter matched to p(t) because then, by requiring that p(t) ∗ p(−t) be
a Nyquist pulse, the gaussian noise samples are independent even though the signal
samples are dependent. In Section 7.4 of Chapter 7, we shall see how the second method
of filtering – passing v(t) through a filter matched to p(t) ∗ h(t) – arises as part of the
maximum-likelihood demodulator. In Section 4.7 of this chapter, as an alternative to
these methods, we shall study the method of linear equalization, which eliminates
intersymbol interference by means of a linear filter, but which is not optimum.

With the fully modulated communication waveform stated above, the output of the
channel is the waveform v(t) and the output of the matched filter p(−t) is

u(t) = v(t) ∗ p(−t)

=
⎡⎣ ∞∑

�′=−∞
a�′p(t − �′T )

⎤⎦ ∗ h(t) ∗ p(−t) + n(t) ∗ p(−t)

=
⎡⎣ ∞∑

�′=−∞
a�′p(t − �′T ) ∗ p(−t)

⎤⎦ ∗ h(t) + n(t) ∗ p(−t)

=
∞∑

�′=−∞
a�′g(t − �′T ) + n′(t)

where

g(t) = p(t) ∗ p(−t) ∗ h(t)

= r(t) ∗ h(t).

Consequently

u� = u(�T )

=
∞∑

�′=−∞
a�′g�−�′ + n�

=
∞∑

�′=−∞
g�′a�−�′ + n�,

is the sequence of samples of the waveform as seen at the output of the matched
filter, where g� = g(�T ), and n� = n′(�T ) is the �th sample of the filtered noise. If
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Figure 4.2. An equivalent discrete-time channel.

p(t) ∗ p(−t) is a Nyquist pulse, then p(t) is orthogonal to its delayed version p(t − �T )

for all integer �. Accordingly, by Theorem 3.1.5, the noise samples n� at the output
of the matched filter are uncorrelated. Moreover, if n(t) is gaussian, then the n� are
independent, identically distributed, gaussian random variables.

The �th sample u� of the matched-filter output contains a superposition of responses to
certain of the input pulses as well as additive noise. The sampled coefficient g� = g(�T )

of the pulse g(t) at the output is the �th coefficient of the intersymbol interference. The
sequence of samples of g(t) become the coefficients of a discrete-time filter describing
the formation of the intersymbol interference.

Suppose that g� has only a finite number of nonzero (or nonnegligible) values, specif-
ically that g� = 0 if � < 0 or � > ν. The statement that g� = 0 for � < 0 holds because
g(t) is a causal filter, as must be the case for channel dispersion. The statement that
g� = 0 for � > ν means that the intersymbol interference persists for only ν + 1
samples. Then

u� =
ν∑

�′=0

g�′a�−�′ + n�.

We call ν the constraint length of the intersymbol interference.
Now we have arrived at the discrete-time model, shown in Figure 4.2, in which

the channel is described as a finite-impulse-response filter. This model will be studied
throughout the chapter.

4.2 Decision-feedback demodulation

The task of the demodulator is to recover the data sequence a� from the chan-
nel output sequence u� even when there is intersymbol interference (or interaction),
as described by the coefficients g�. We shall study two demodulators that estimate
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the sequence of data bits a� from the sequence of filter samples u�. This section
describes the decision-feedback demodulator, also called the decision-feedback equal-
izer. Section 4.3 describes the minimum-distance demodulator using the Viterbi
algorithm, and Section 4.8 describes the method of least-mean-square error.

A decision-feedback demodulator for intersymbol interference can be used when the
intersymbol interference caused by a pulse occurs after the peak of the matched-filter
output, as may happen due to dispersion in the channel. Then each channel symbol
creates interference only for those symbols that follow it in time. After a symbol is
correctly demodulated, the interference from that symbol in subsequent symbols can
be calculated and subtracted from those subsequent symbols.

Adecision-feedback demodulator estimates the symbols of the datastream one by one.
After each symbol is estimated, its effect on the next ν received samples is subtracted
from them. In this way, each data symbol can be estimated from one received sample
after the intersymbol interference is removed from that sample. With the received
sample written as

u� =
ν∑

�′=0

g�′a�−�′ + n�,

we see that we can express a� as

a� + 1

g0
n� = 1

g0

[
u� −

ν∑
�′=1

g�′a�−�′

]
.

Because the noise is unknown, we estimate a� as the closest point of the signal
constellation S = {c0, c1, . . . , cM −1} to the updated decision statistic at time �T ,
which is

u′
� = 1

g0

[
u� −

ν∑
�′=1

g�′a�−�′

]
.

That is, the estimate of a� is

â� = argmincm∈Sd(cm, u′
�).

This estimate is the basis of the decision-feedback demodulator. The demodulator
assumes that it has demodulated all earlier symbols correctly and has formed the esti-
mates, â�, which are now used to estimate the intersymbol interference on the current
received sample due to earlier symbols. The estimated value of intersymbol interference
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Figure 4.3. Decision-feedback demodulation.

is subtracted from the received sample, as follows:

û� = 1

g0

[
u� −

ν∑
�′=1

g�′ â�−�′

]

= a� + 1

g0

[
ν∑

�′=1

g�′(a�−�′ − â�−�′) + n�

]
.

If the terms under the summation are equal to zero because previous estimates are
correct, the recovery of a� from û� is reduced to the task of demodulation in the absence
of intersymbol interference.

Figure 4.3 shows a decision-feedback demodulator for an antipodal signaling
waveform. The demodulator implements the equation

â� = A sgn

[
u� −

ν∑
�′=�

g�′ â�−�′

]
.

If the demodulator has made no recent errors, the probability of error is the same as
the probability of error for antipodal signaling without intersymbol interference. If the
demodulator makes an error, however, it will compute the wrong feedback, and so the
probability of error of subsequent bits will be larger. This phenomenon is known as
error propagation. When the magnitude of the correction for intersymbol interference
is large, error propagation will cause a significant degradation of performance. A single
bit error results in the wrong feedback, which then leads to a large probability of a
subsequent bit error, possibly initiating a long run of errors.
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The simplest example is the case of antipodal signaling with ν = 1. The decision
rule is

â� = A sgn [u� − g1̂a�−1]

and the probability of bit error pe is computed as follows. The previous decision â�−1

is correct with probability 1 − pe and â�−1 is incorrect with probability pe. If â�−1 is
correct, u�−g1̂a�−1 has amplitude ±A just as if there were no intersymbol interference.
Otherwise u� − g1̂a�−1 has amplitude ±A ± 2g1, in which case either the signs are the
same or the signs are opposite. Each case happens with probability 1/2. This means that

pe = (1 − pe)Q

(
A

σ

)
+ 1

2
peQ

(
A(1 + 2g1)

σ

)
+ 1

2
peQ

(
A(1 − 2g1)

σ

)
which can be solved for pe as

pe = Q(A/σ)

1 − 1
2 Q(A(1 + 2g1)/σ ) − 1

2 Q(A(1 − 2g1)/σ ) + Q(A/σ)
.

The expression is always larger than Q(A/σ) unless g1 equals zero in which case it
reduces to the performance of antipodal signaling. When A/σ is large and g1 is small,
the last three terms of the denominator are negligible, and pe ≈ Q(A/σ), which is the
performance of antipodal signaling without intersymbol interference.

4.3 Searching a trellis

Adecision-feedback demodulator tries to cancel the effects of intersymbol interference.
An alternative approach is to use the intersymbol interference as an additional source
of information. Accordingly, another method of demodulating the output of a matched
filter in the presence of intersymbol interference is to find the best fit to the noisy received
sequence from the set of all possible noise-free received sequences. The brute-force
way to do this is to compute the noise-free channel output sequence for every possible
data sequence of some fixed length, and then to choose the channel output sequence that
most closely resembles the received noisy sequence. The corresponding data sequence
is the demodulated sequence. This is what we want to do, but it is intractable in the
way that we have described it. This is because if the amplitude of the input pulse can
take on q values, then there are qn sequences of blocklength n, an exponentially large
number. We will describe a better way to do this search.

The sequence demodulator that we shall describe works equally well with intersym-
bol interference occurring on either or both sides of the pulse maximum. It does not
matter if the intersymbol-interference coefficients g� are nonzero for negative as well
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Figure 4.4. A trellis for intersymbol interference.

as positive values of �. Indeed, the sequence demodulator does not even ask that one
of the coefficients g� be singled out as the principal coefficient.

As a simple example, consider a simple case in which the intersymbol interference
has one stage of memory with g0 = 1, g1 is nonzero, and for all other �, g� is zero. The
channel output symbol depends on the current and one past channel input symbol. If
the channel input symbols are +1 and −1, corresponding to antipodal signaling, then
the noise-free channel output only takes the values ±g0 ± g1. The channel memory is
described by a two-state finite-state machine. A trellis for this problem with g0 = 1
is shown in Figure 4.4. There are two states, and those states correspond to the two
possible values of the previous channel bit. Every possible path through the trellis
corresponds to a possible sequence of channel input sequences. Each path is labeled
with the sequence of channel outputs that would occur if that path were followed and
if there were no noise.

In general, a discrete-time channel is described by the finite impulse-response g� for
� = 0, . . . , ν. The channel output depends on the current channel input symbol and the
past ν channel input symbols. If the amplitude of the input pulse can take q values, then
the channel can be in one of qν states and can be described by a trellis with qν states.
Figure 4.4 gave an example of a trellis describing a channel with q = 2 and ν = 1. For
this channel, there are two states.

A trellis whose branches are labeled with real numbers defines an infinite collection
of sequences of real numbers; each sequence is obtained by reading the sequence of
labels along one of the infinite paths through the trellis. For our application, each
sequence specifies one possible noise-free output sequence of the channel. So far, we
have encountered only channels whose outputs form sequences of real numbers, but
for full generality, we allow the branches of the trellis to be labeled with sequences of
complex numbers.

We shall specify the best fit between sequences in terms of the geometrical language
of sequence distance. Because the symbols labeling a trellis are real numbers or complex
numbers, we may speak of euclidean distance between sequences. Let c and c′ denote
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two sequences defined by two paths through the trellis. The euclidean distance between
these sequences is defined as

d(c, c′) =
[ ∞∑

�=0

|c� − c′
�|2
] 1

2

.

Indeed, given an arbitrary sequence v, the euclidean sequence distance between v and
the trellis sequence c is

d(v, c) =
[ ∞∑

�=0

|v� − c�|2
] 1

2

.

Every permitted sequence of labels is a possible noiseless received sequence and v is
a noisy version of one of these sequences

v� = c� + n� � = 1, 2, . . . .

The task of demodulating v is the task of determining which channel sequence c gave
rise to v. We can do this for a sequence of finite length by finding the trellis sequence c

that is closest to v in euclidean sequence distance. When the noise is gaussian, we can
justify this minimum distance criterion, in part, by the maximum-likelihood principle1

to be given in Section 7.1. When the noise is not gaussian, the minimum-distance
demodulator is still an excellent and widely used demodulator, but then it is not the
maximum-likelihood demodulator.

Although each channel input symbol affects only ν + 1 channel output symbols,
it is not true that only ν + 1 output symbols give information about any specific
input symbol. We saw one manifestation of this in the form of error propagation in
decision-feedback demodulation. Received symbols that are far apart become depen-
dent because of the intermediate bits between them. The formal statement is as follows.
Let p(v1, v2, . . . , vn)be the probability density function on the vector random variablev.
It has the structure of a Markov process. Define the marginal distributions

p(v1, vn) =
∫ ∞

−∞

∫ ∞

−∞
· · ·
∫ ∞

−∞
p(v1, v2, . . . , vn)dv2 · · · dvn−1

p(v1) =
∫ ∞

−∞
p(v1, vn)dvn

p(vn) =
∫ ∞

−∞
p(v1, vn)dv1

1 There is a subtle point here. The maximum-likelihood principle should be applied to the raw data v(t) to see if
it directs us to first compute the sequence v�. However, we choose to just compute the sequence v� without this
justification and then apply the maximum-likelihood principle to that sequence to obtain a demodulator that is
optimal, starting from the sequence v�, but might not be optimal when starting from the raw data v(t).
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and the conditional distribution p(v1|vn) = p(v1, vn)/p(vn). Then p(v1|vn) is not equal
to p(v1) even if n is much larger than the constraint length ν. However, it is true that
p(v1|vn) will approach p(v1) as n grows large. This means that, even for large n, the
received sample vn can contribute something to the estimate â1, at least in theory. In
practice, uncertainties in the model will eventually obscure this residual information.

Although the trellis sequences c and the received sequence v, in principle, are
infinitely long, it is not meaningful to process all of the infinitely long received sequence
at the same time. Rather, the demodulator will begin to estimate the data sequence after
receiving only a finite number of components of the received sequence, say the first b
components. Obtaining good demodulator performance will require an integer b that
is larger than the constraint length ν of the intersymbol interference – perhaps at least
twice as large. Conceptually, the demodulator will generate the initial segment of length
b of every possible trellis sequence and compare the first b samples of the senseword
to each of these trellis segments. The codeword that is closest to the senseword in
euclidean distance is the minimum-distance codeword for that finite segment of the
datastream. The first symbol of the data sequence that produces the selected trellis
sequence is chosen as the estimated first symbol of data. The channel response to this
data symbol is then computed and subtracted from the senseword. The first sample of
the senseword is now discarded and a new received sample is shifted into the demod-
ulator so the observed length of the trellis is again b. The process is then repeated to
find the next data symbol.

If this were implemented in this naive way, however, the minimum-distance demod-
ulator would still be quite complex. There is a large amount of structure in the
computation that can be exploited to obtain an efficient method of implementing the
minimum-distance demodulator. One popular and efficient computational procedure is
known as the Viterbi algorithm.

The Viterbi algorithm2 is a fast algorithm for searching a labeled trellis to find the
path that most closely agrees with a given noisy sequence of path labels. When applied
to the trellis describing an instance of intersymbol interference, the Viterbi algorithm
becomes an efficient computational procedure for implementing the minimum-distance
demodulator. The Viterbi algorithm is practical for searching a trellis with a small
number of states; perhaps qν equal to 1024 or 2048 states would be reasonable.

The Viterbi algorithm operates iteratively frame by frame, tracing through the trellis
in search of the correct path. At any frame of the trellis, say the bth frame, the Viterbi
algorithm does not know which node the true path has reached, nor does it try to
determine this node directly. Instead, it finds the best path to every node b frames into
the future. Because there are qν nodes in each frame, there are qν such most likely paths
to the qν nodes in the frame b frames into the trellis. If all of these qν most likely paths

2 The Viterbi algorithm can be described as an application of the general techniques of the subject of dynamic
programming to the task of searching a trellis.
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begin the same, the demodulator has the same estimate of the initial branch of the true
path regardless of which node the true sequence would reach b frames into the trellis.
The demodulator also keeps a record of the euclidean distance between each of these
qν codewords and the senseword. This distance is called the discrepancy of the path.

Given the first b symbols of the senseword, suppose that the demodulator has already
determined the most likely path to every node b − 1 frames into the trellis, and the
discrepancies of these paths. In its next iteration, the demodulator determines the most
likely path to each of the nodes in frame b. But to get to a node in frame b, the path
must pass through one of the nodes in frame b − 1. The candidate paths to a new node
are found by extending to this new node each of the old paths that can be so extended
to that node. The most likely path is found by adding the incremental discrepancy of
each path extension to the discrepancy of the path to the node in frame b − 1. There
are q such paths to any new node, and the path with the smallest total discrepancy is
marked as the most likely path to the new node. The demodulator repeats this process
for every node of frame b. At the end of the iteration, the demodulator knows the most
likely path to every node in frame b, and the discrepancies of these paths.

Consider the set of all surviving paths to the set of nodes in the bth frame. One or
more of the nodes at the first frame will be crossed by these paths. If all paths cross
through the same node of the first frame, then regardless of which node the encoder
visits at the bth frame, the demodulator knows the most likely node that is visited in
the first frame. That is, it knows the best estimate of the first data symbol even though
it has not yet made a decision for the bth data symbol.

The optimum decision delay b of the Viterbi algorithm – or of any minimum-distance
trellis demodulator – is unbounded because an optimum decision cannot be made until
the surviving paths to all states share a common initial subpath and there will always
be rare ambiguous instances that could be resolved if just a little more data were
examined. However, little degradation occurs if a sufficiently large, finite decision delay
b is used.

To build a Viterbi demodulator, one must choose the decoding window width b
usually validated by computer simulation of the demodulator. This sets the decision
delay. At frame b, the demodulator examines all surviving paths to see that they agree
in the first frame. This defines a demodulated data symbol that is passed out of the
demodulator. Next, the demodulator drops the first symbol and takes in a new senseword
symbol for the next iteration. If all surviving paths again pass through the same node
of the now oldest surviving frame, then this data frame is demodulated. The process
continues in this way, decoding frames indefinitely.

If b is chosen large enough, then a well-defined decision will almost always be made at
each frame time. This decision will usually be the correct one. However, several things
can go wrong. Sometimes, the sequence demodulator will reach a decision that is well-
defined but incorrect. This is a demodulation error. When a demodulation error occurs,
the demodulator will necessarily follow it with additional errors because the surviving
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Figure 4.5. A trellis for a Viterbi demodulator.

path passes through the incorrect sequence of states. A sequence of demodulation errors
is called an error event; an error event begins when the surviving path enters an incorrect
state and ends when the surviving path returns to a correct state. Not only does one
want error events to be infrequent, but one wants their duration to be short when they
do occur.

Occasionally all of the surviving paths may not go through a common node in the
initial frame. This is a demodulation default. The demodulator can be designed to put
out an indication of demodulation default to the user whenever this happens, replacing
each received symbol with a special symbol denoting an erasure. Alternatively, the
demodulator can be designed to simply guess, in which case, a demodulation default
becomes equivalent to a demodulation error.

An example of a Viterbi demodulator is shown in Figure 4.5. This trellis is based
on a simple case of intersymbol interference in an antipodal signaling waveform with
g0 = 1 and g1 = 0.1. Because only one bit of memory is needed, there are only two
states in the trellis, corresponding to the two possible values of the previous data bit.
The branches of the trellis are labeled with the values of c�, the expected values of the
received sample.

Suppose the received samples at the output of the matched filter are given by the
sequence

v = 1.0, 0.0, 0.2, −1.1, . . . .

The two paths of length 1 through the trellis have squared euclidean distances from v of

d2(v, (1.1)) = (1.0 − 1.1)2 = 0.01

d2(v, (−0.9)) = (1.0 + 0.9)2 = 3.61.

The right side gives the discrepancies of the two paths to the nodes in frame 1. Each of
the two paths of length one is extended in two ways to form four paths of length two,
two paths to each node in frame 2. The four paths of length two have squared euclidean
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distances from the senseword sequence given by

d2(v, (1.1, 1.1)) = 0.01 + (0.0 − 1.1)2 = 1.22

d2(v, (−0.9, 0.9)) = 3.61 + (0.0 − 0.9)2 = 4.42

d2(v, (1.1, −0.9)) = 0.01 + (0.0 + 0.9)2 = 0.82

d2(v, (−0.9, −1.1)) = 3.61 + (0.0 + 1.1)2 = 4.82

of which the first two paths go to the top node in frame two, and the last two paths go to
the bottom node in frame two. Of these, the first and third paths are selected as the two
most likely paths to each of the two nodes in frame two, which implies that a0 = +1
because both surviving paths begin the same.

Each of the two surviving paths of length two is extended in two ways to form four
paths of length three, two such paths to each node in frame three. The four paths have
squared euclidean distances from the senseword sequence, given by

d2(v, (1.1, 1.1, 1.1)) = 1.22 + (0.2 − 1.1)2 = 2.03

d2(v, (1.1, −0.9, 0.9)) = 0.82 + (0.2 − 0.9)2 = 1.31

d2(v, (1.1, 1.1, −0.9)) = 1.22 + (0.2 + 0.9)2 = 2.43

d2(v, (1.1, 1.1, −1.1)) = 0.82 + (0.2 + 1.1)2 = 2.51,

of which the first two paths go to the top node in frame three, and the last two paths go to
the bottom node in frame three. Of these, the second and third paths are selected as the
two most likely paths to each of the two nodes in frame three. However, in the second
position, the surviving paths do not agree, so it is not yet possible to demodulate a1.

Each of the two surviving paths of length three is extended in two ways to form four
paths of length four, two paths to each node in frame four. The four paths have squared
euclidean distances from the senseword sequence, given by

d2(v, (1.1, −0.9, 0.9, 1.1)) = 1.31 + (−1.1 − 1.1)2 = 6.15

d2(v, (1.1, 1.1, −0.9, 0.9)) = 2.43 + (−1.1 − 0.9)2 = 6.43

d2(v, (1.1, −0.9, 0.9, −0.9)) = 1.31 + (−1.1 + 0.9)2 = 1.35

d2(v, (1.1, 1.1, −0.9, −1.1)) = 2.43 + (−1.1 + 1.1)2 = 2.43,

of which the first two paths go to the top node in frame four, and the last two paths
go to the bottom node. Of these, the first and third paths are selected as the two most
likely paths to each of the two nodes in frame four. The surviving paths agree in the
first three branches, which implies that a0 = +1, a1 = −1, and a2 = +1. Notice that
although a1 could not be demodulated after the third iteration, it can be demodulated
after the fourth iteration.
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Figure 4.6. Example of a Viterbi demodulator.

The trellis in Figure 4.6 is pruned to show how the candidate paths grow and die.
At each iteration, the surviving paths are extended to each of the new nodes, the
cumulative squared euclidean distance is calculated, and the less likely path to each
node is discarded.

4.4 Error bounds for sequence demodulation

A sequence demodulator, such as the Viterbi algorithm, works its way along a noisy
received sequence, reconstructing the modulated datastream symbol by symbol. Occa-
sionally, the demodulator makes errors. Because of the interdependence of the symbols
of the sequence, we expect that errors do not occur in isolation; there will be some
clustering of errors into error events.

A minimum-distance sequence demodulator finds the path through the trellis closest
to the senseword in the sense of minimum euclidean distance. Our goal in this section
is to determine the probability that a wrong path through the trellis is closer to the
senseword than is the right path. Of course, for an infinitely long sequence, we may
always expect that there will be occasional errors, and even though the error rate may
be quite small, the probability of at least one error in an infinitely long sequence is one.
To discuss error rates in a meaningful way, we must define a notion of local errors in a
sequence.

Figure 4.7 shows two of the paths through a trellis. The first path is the upper straight
line. The second path is the lower path, which re-emerges with the upper path briefly,
then moves away again for a time. Suppose that the upper path depicts the correct
path and the lower path depicts the incorrect path that is selected by the minimum-
distance sequence demodulator because it is more similar to the senseword in the sense
of euclidean distance. Twice the demodulated path through the trellis deviates from
the correct path. The segment of the demodulated sequence between the time its path
deviates from the correct path and the time it rejoins the correct path is an error event.
Our example in Figure 4.7 has two error events. Within an error event, some of the
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Figure 4.7. Error events in sequence demodulation.

demodulated symbols will be incorrect and some symbols will be correct. Correct
symbols within an error event are rarely of value, so the probability of an error event
is usually a better way to describe performance than is the probability of symbol error.

In general, we should distinguish between the probability that a symbol is in error,
the probability that a symbol is contained within an error event, and the probability that
a symbol is the first symbol of an error event. Each of these probabilities is difficult to
compute, and we settle for bounds that can be derived conveniently, and for whatever
statements that can be made.

We may design a minimum-distance demodulator so that, whenever the distance
between the senseword and every trellis sequence of some fixed length is larger than
some fixed value, it will refuse to demodulate that section of the sequence. Then over
that section, the demodulator output is the special symbol that denotes an erasure. This
demodulator is called a bounded-distance demodulator, or a demodulator with an era-
sure option. Such demodulators intentionally expand the role of demodulator defaults
into intentional erasures and are useful when one prefers missing data to incorrect data.
For such demodulators, we would also need to study the probability of erasure events.
We will not further consider demodulators with an erasure option, but our methods of
analysis can be extended to this case.

The exact calculation of the probability of demodulation error can be a formidable
task. Fortunately, satisfactory approximations exist, so one often forgoes an exact
calculation.

Definition 4.4.1 The minimum euclidean distance, dmin (or free euclidean distance)
of a set of real-valued sequences is the smallest euclidean distance d(c, c′) between
any two distinct sequences c and c′ in the set.

We are interested in discrete sequences that arise in the demodulation of intersymbol
interference. Such sequences can be generated by exciting a finite-impulse-response
filter, starting at time zero, with sequences of values from a fixed signal constellation.
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It is sufficient to compute the minimum distance only over pairs of sequences that
have different values in the first symbol and differ in only a finite number of symbols
thereafter. This is because, if ci = 
kgi−kak and c′

i = 
kgi−ka′
k , then

ci − c′
i =

ν∑
k=0

gi−kak −
ν∑

k=0

gi−ka′
k

=
ν∑

k=0

gi−k(ak − a′
k).

If c0 = c′
0, then a0 = a′

0 and the first symbol has no contribution to the distance d(c, c′).
The distance d(c, c′) is equal to the distance between another pair of sequences that are
both translated by one position. Furthermore, if d(c, c′) is finite and the ak take values
in a finite set, then the sequences c and c′ must be equal except in a finite number of
places.

The minimum euclidean distance in a set of sequences plays the same role in describ-
ing the probability of error in sequence demodulation as the minimum distance in a
signal constellation plays in describing the probability of symbol error in quadrature
amplitude demodulation in Chapter 6. Specifically, the expression

pe ≈ Ndmin Q

(
dmin

2σ

)
is a widely used approximation, where Ndmin is the number of nearest neighbors,
defined as the number of sequences at distance dmin from a given sequence. When
the signal-to-noise ratio is large enough, this approximation is justified by a satisfac-
tory agreement with the results of many simulations of various examples, and with
measured data. It is also justified in a heuristic way by the approximate upper and
lower bounds we shall discuss in this section. Neither the upper bound nor the lower
bound are mathematically sound. Both have derivations that are flawed. However, the
bounds do aid in understanding. More importantly they are confirmed by simulation
and experimentation.

To develop the upper and lower bounds, we have two tools that are available and
easy to use. One tool is the union bound; the other tool is the nearest-neighbor bound.
The union bound has been defined earlier. The nearest-neighbor bound deletes from
consideration every erroneous sequence that is not a nearest neighbor. The union bound
gives an upper bound, but it is uninformative because there are an exponentially large
number of terms. The nearest-neighbor bound gives a lower bound, but it is uninfor-
mative unless the remaining terms involving the nearest neighbors are not entangled.
To state an upper bound on a lower bound (or a lower bound on an upper bound) by
combining the two bounds is essentially meaningless unless we can claim that the two
bounds are actually good approximations. This we claim only based on experimental
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evidence or on simulations, and then only when the signal-to-noise ratio is sufficiently
large.

We first derive a “lower bound”. Let c and c′ be any two sequences at distance dmin

that have different branches in the first frame of the trellis. Suppose that whenever either
of these two sequences is transmitted, a genie tells the demodulator that the transmitted
sequence was one of the two, but does not say which one. The demodulator only needs
to choose between the two. Such side information from the genie cannot make the
probability of demodulation error worse than it would be without the side information.
Hence the probability of demodulation error for the two-sequence problem can be used
to form a lower bound on the probability of demodulation error whenever c is the
transmitted sequence.

When given v, the minimum-distance demodulator chooses c or c′ according to the
distance test: choose c if d(v, c) < d(v, c′), and otherwise choose c′. (This is as the
maximum-likelihood demodulator to be discussed in Chapter 7 whenever the noise is
white gaussian noise.) This condition can be written∑

�

|v� − c′
�|2 >

∑
�

|v� − c�|2.

An error occurs whenever∑
�

|v� − c′
�|2 ≤

∑
�

|v� − c�|2.

Because v� = c� + n�, the condition for an error becomes∑
�

|(c� − c′
�) + n�)|2 ≤

∑
�

n2
�.

Expanding the square on the right and canceling
∑

� n2
�, we can write the condition for

an error as

Re
[∑

� n�(c′
� − c�)

∗]
d(c, c′)

≤ 1
2 d(c, c′).

When the noise is gaussian, the left side is a zero-mean gaussian random variable with
variance σ 2, as is easily verified. Therefore, we see that this task has the same form as
the task of detecting a pulse whose energy is

Ep = d2(c, c′)

in white gaussian noise of variance σ 2, as was the case in the demodulation of on–off
keying. Consequently, the probability of error for the minimum-distance demodula-
tor for distinguishing between two equally likely sequences c and c′, in memoryless
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gaussian noise of variance σ 2, is

pe(c, c′) = Q

(
dmin

2σ

)
because d(c, c′) = dmin. The probability of error for the original problem, which has
many codewords, can only be larger. Consequently, we have

pe|c ≥ Q

(
dmin

2σ

)
as the lower bound on pe|c, defined as the probability of demodulator error in the first
symbol given that there are only two sequences and one of them is the correct sequence.
By linearity, every c has the same pattern of neighboring sequences, so such a statement
is true for every c. Therefore, the same lower bound holds for the average probability
of error pe.

This inequality is mathematically correct but rather weak because it only considers
the errors that result in a particular nearest neighbor c′ when c is transmitted. There
are many sequences other than c′ that could be the wrong code sequence. In particular,
there may be many sequence nearest neighbors, the number denoted Ndmin , at distance
dmin from c. Therefore, by the union bound, we may expect that

pe � Ndmin Q

(
dmin

2σ

)
is an approximation to a lower bound where pe denotes the probability of error in the first
symbol of a sequence starting from an arbitrary trellis state. The bound is not precise
because it counts as two errors the situation where there are two wrong sequences closer
to the senseword sequence than is the correct sequence. This defect is not significant for
high values of signal-to-noise ratio, but makes the bound questionable for low values
of signal-to-noise ratio.

Next, we shall use a union-bound technique to obtain a corresponding “upper bound”.
Applying the union bound allows us to use the expression for the pairwise probability
of error to bound the probability of error in the general problem. There is a difficulty,
however: because so many codewords are in a code, the union bound can diverge. A
more delicate analysis would be needed to get a rigorous upper bound.

If we apply the union bound directly, we have for the probability pe|c of demodulation
error given that c is the correct sequence

pe|c ≤
∑
c′ �=c

pe(c, c′)

=
∑
c′ �=c

Q

(
d(c, c′)

2σ

)
.
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We can group all terms of the sum for which the distance d(c, c′) is the same; the
distinct values of the distance are countable. That is, let di for i = 0, 1 . . . denote the
distinct values that the distance d(c, c′) takes on. Then

pe|c ≤
∞∑

i=0

Ndi Q

(
di

2σ

)
where Ndi is the number of sequences c′ at distance di from c and differing in the
first symbol. Because of the linearity of the intersymbol interference, the set of di for
i = 0, 1, . . ., does not depend on the choice of codeword c. For values of d smaller
than the minimum distance dmin, the number of sequences at distance d is zero, and
d0 = dmin. Consequently, averaging over all c gives

pe ≤
∞∑

i=0

Ndi Q

(
di

2σ

)

= Ndmin Q

(
dmin

2σ

)
+

∞∑
i=1

Ndi Q

(
di

2σ

)
.

Continuing with the development, we now recall that Q(x) is a steep function of its
argument – at least on its tail, which is where we are interested. Consequently, we make
the naive assumption that the sum on the right is dominated by the first term. Then we
have the approximation to the upper bound

pe � Ndmin Q

(
dmin

2σ

)
,

which matches the approximate lower bound described earlier. The flaw in this discus-
sion, however, is that it is not valid to discard an infinite number of terms just because
each is individually small. Nevertheless this gives a nonrigorous development of a
description of the probability of demodulation error which states that

pe ≈ Ndmin Q

(
dmin

2σ

)
.

This agrees with the usual observations for large signal-to-noise ratio. However,
because there are an infinite number of error sequences, a precise statement for pe

with a rigorous derivation has never been found.

4.5 Dominant error patterns

The nonrigorous approximations to the bounds on error probability, given in the pre-
vious section, can be quite good and the bounds are asymptotically tight for large
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signal-to-noise ratios, as can be verified by simulation. However, the derivations of
both the upper bound and the lower bound are flawed. The derivation of the lower
bound is incorrect because there are so many terms in the union bound that the right
side of the union bound may very well be infinite. It is not correct to discard these
many small terms in the last step under the argument that they are individually small. If
desired, the derivation can be reformulated so that many of these terms are not included
in the bound in the first place. This is the topic of this section.

Some sequences defined by a trellis “lie behind” other sequences when observed from
a fixed sequence, c. They are, in a sense, hidden sequences. This means that whenever
such an incorrect sequence is the most likely sequence then there is a second incorrect
sequence that is also more likely than the correct sequence. That is, if c is transmitted
and the hidden sequence c′′ is the most likely sequence given the senseword v, then
there will be another sequence c′ that, given v, is also more likely than c. Whenever
such a sequence is the incorrect demodulated sequence, there will be at least one other
sequence closer to the senseword than the correct sequence. These hidden sequences
result in double counting of certain error events, which means that these events could be
omitted from the bound. But sequences are complicated and numerous, so this situation
is difficult to identify.

Figure 4.8 shows three of the many paths through a trellis. The horizontal path is
taken to be the correct path. The solid irregular path is taken to be the path at minimum
distance from the senseword, and so is responsible for an error event. The dotted path
is another error path that is closer to the senseword than is the correct path, but not
as close as the chosen error path. Therefore, as we will argue, the chosen error path
could be deleted from the bound on pe without invalidating the union band. To apply
the union bound more carefully to sequence demodulation, we must avoid including
such extraneous terms in the sum. Accordingly, we shall introduce the extended union
bound .

The union bound states that for any set of events,

Pr

[⋃
i

Ei

]
≤
∑

i

Pr[Ei].

To extend the union bound, define a dominant set Ei of the collection of sets {Ei} as a
set that is not contained in any other set of {Ei}, and a hidden set Ei ∈ {Ei} as a set that

Figure 4.8. A likely and an unlikely error path.
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is contained within another set of {Ei}. Let I be the set of indices of the dominant sets.
The extended union bound is

Pr

[⋃
i

Ei

]
≤
∑
i∈I

Pr[Ei].

Bounds on the probability of bit error pe for sequence demodulation will be developed
as an example of the use of dominant sequences, and of the extended union bound.

An antipodal signaling waveform transmits data symbols ±1 and, in general, the
receiver sees intersymbol interference in the matched-filter samples for the antipodal
signaling waveform. We shall treat the case of a finite data sequence {a0, . . . , an−1} of
blocklength n. The matched-filter output is the senseword

v� =
n−1∑
�′=0

a�′g�−�′ + n� � = 0, ±1, ±2, . . .

where a� = ±1 and the noise samples are independent, identically distributed, gaussian
random variables. In general, the intersymbol interference can be two-sided – and even
of infinite duration with little change in the discussion.

An error sequence in the estimated data sequence a of blocklength n is denoted

e = (e0, e1, . . . , en−2, en−1)

where, because an error always changes ±1 to ∓1, e� takes only the values −2, 0, or
+2. The weight of the vector e, denoted wt(e) is the number of places at which e is
nonzero.

An error pattern in the estimated data sequence â corresponds to an error in the
estimated noise-free filter output sequence, which will be denoted δ(e) and defined
componentwise by giving the �th term as

δ�(e) =
n−1∑
�′=0

(a�′ + e�′)g�−�′ −
n−1∑
�′=0

a�′g�−�′

=
n−1∑
�′=0

e�′g�−�′

where δ�(e) is the �th component of δ(e). Notice that δ�(e) does not depend on the
actual data sequence a, only on e. The euclidean distance between any two filter output
sequences whose data sequences differ by the error vector e is denoted by

‖δ(e)‖ =
[ ∞∑

�=−∞
δ2
� (e)

] 1
2

.
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Accordingly, the probability of confusing data vector a with data vector a + e is

p(a + e|a) = Q

(‖δ(e)‖
2σ

)
because this is the same binary decision problem as occurs in antipodal signaling, but
in this case, the two received signals are at distance ‖δ(e)‖.

We shall want to average the probability of bit error over all possible data sequences
and all possible error sequences. To do this, it is productive to invert our point of
view by first fixing a specific error sequence, then matching it to all data sequences
with which that error sequence is compatible. Because a� = ±1 and the components
a� + e� must form another data sequence taking only values ±1, not all data sequences
a are compatible with a fixed error sequence e. A data sequence a is compatible with
a specific e if and only if a� and e� have opposite signs for all nonzero components e�.

For a fixed error vector e, with weight wt(e), the probability that a randomly and
uniformly chosen binary data sequence a is compatible with e is 2−wt(e). This is because
a+e is an element of {−1, +1}n if each nonzero component of e is opposite in sign to the
corresponding component of a. Because each component of a has the appropriate sign
with probability one-half, a + e is an element of {−1, +1}n with probability 2−wt(e).

To bound the probability of error of the kth bit, denoted pe(k), first define

Ek = {e ∈ {−2, 0, 2}n : ek �= 0}

as the set of all error sequences that have an error in the kth bit. Then, when averaged
over all datawords, we have the union bound

pe(k) ≤
∑
e∈E

2−wt(e)Q

(‖δ(e)‖
2σ

)
.

Again, this bound is essentially useless in this form because there are so many terms in
the sum that the right side may be infinite. However, we now have the problem set up
in such a way that we can purge many superfluous terms from the sum. We need only
replace the union bound with the extended union bound. Therefore

pe(k) =
∑
e∈Fk

2−wt(e)Q

(‖δ(e)‖
2σ

)

where Fk is the set of dominant error sequences with a nonzero error in the kth bit
position. All that remains is to specify Fk .

Decompose any error sequence e ∈ Ek into two nonoverlapping nonzero error
sequences, as

e = e′ + e′′
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with e′ ∈ Ek . The requirement that e′ and e′′ be nonoverlapping means that e′ and e′′
cannot have a common nonzero component. This means that wt(e′)+ wt(e′′) = wt(e).
We can also write this property as a dot product of magnitudes: |e′| · |e′′| = 0.

We shall prove that if such a decomposition of the error pattern also satisfies

Re
∞∑

�=−∞
δ�(e

′)δ∗
� (e′′) ≥ 0,

then we do not need to include the error pattern e in the sum for pe(k) because it is
hidden by the error pattern e′. To anticipate this end, define the set of dominant error
patterns Fk as the set of all error patterns that cannot be decomposed to satisfy this
condition. The set of hidden error sequences is the complement of the set of dominant
error patterns, and is given by

F c
k =

{
e ∈ Ek : Re

∑∞
�=−∞δ�(e

′)δ∗
� (e′′) ≥ 0

}
,

it being understood that e′ ∈ Ek , e′′ �= 0, e = e′ + e′′, and |e′| · |e′′| = 0. The next
theorem states that only dominant error patterns need to be included in the union bound.

Theorem 4.5.1 The probability of error in the kth bit of a sequence demodulator for
antipodal signaling in memoryless white gaussian noise of variance σ 2 is bounded by

pe(k) ≤
∑
e∈Fk

2−wt(e)Q

(‖δ(e)‖
2σ

)

where Fk is the set of dominant error sequences.

Proof Let c(a) denote the noise-free senseword corresponding to data sequence a.
Let v be the noisy received sequence v = c(a) + n. The minimum-distance sequence
estimator, when given v, chooses a data sequence â that minimizes d(v, c(a)). Suppose
that e is in Ek but not in Fk , that a is the correct data sequence, that â = a + e is the
minimum-distance data sequence, and that e = e′ + e′′ as defined previously. We shall
show that if e is a hidden error pattern, then d(v, c(a + e′)) ≤ d(v, c(a)) for that v.
This establishes the following containment of events:{
v : d(v, c(a + e)) = min

a
d(v, c(a))

}
⊂
{
v : d(v, c(a + e′)) ≤ d(v, c(a))

}
.

Because the set on the right is a set of dominant error patterns, the set on the left is not
included in the extended union bound.

We now come to the manipulations that will establish these claims and so complete
the proof of the theorem. Let v = c(a) + n, â = a + e, and ĉ = c(a) + δ(e). Then,
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writing the components of v as c� + n�, we have

d(v, c(a + e)) − d(v, c(a + e′)) =
∑

�

|c� + n� − c� − δ�(e)|2

−
∑

�

|c� + n� − c� − δ�(e
′)|2

and

d(v, c(a + e′′)) − d(v, c(a)) =
∑

�

|c� + n� − c� − δ�(e
′′)|2 −

∑
�

|c� + n� − c�|2.

Now compute the difference between the right sides of these two equations, calling
it . Thus

 =
∑

�

[
|n� − δ�(e)|2 − |n� − δ�(e

′)|2 − |n� − δ�(e
′′)|2 + |n�|2

]
.

Next, recall that δ�(e) = δ�(e
′) + δ�(e

′′) and reduce the expression for  to the form

 =
∑

�

[
|δ�(e

′) + δ�(e
′′)|2 − |δ�(e

′)|2 − |δ�(e
′′)|2
]

= 2Re
∑

�

δ�(e
′)δ∗

� (e′′)

≥ 0

where the inequality holds as an assumption of the theorem. Consequently,

d(v, c(a + e)) − d(v, c(a + e′)) − d(v, c(a + e′′)) + d(v, c(a)) ≥ 0.

This can be rewritten as

d(v, c(a + e′)) − d(v, c(a)) ≤ d(v, c(a + e)) − d(v, c(a + e′′))

≤ 0

where the second inequality here holds because d(v, c(a + e)), by definition, is the
minimum distance between v and any c. Thus

d(v, c(a + e′)) ≤ d(v, c(a)),

and the theorem is proved. �

The usefulness of Theorem 4.5.1 is helped by the fact that there are only a finite
number of dominant error patterns of any given weight because if the support of e′
and e′′ are separated by more than the constraint length, then δ�(e

′) and δ(e′′) do not
overlap, so 
�δ�(e

′)δ�(e
′′) is zero.
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4.6 Linear equalization

A signaling waveform that has no intersymbol interference must use a Nyquist pulse.
Otherwise, the intersymbol interference should be compensated in some way, or an
unnecessary performance degradation will occur. This process of compensation for
undesired intersymbol interference is called equalization. We have already studied the
decision-feedback demodulator and the Viterbi algorithm as methods of demodulating
in the presence of intersymbol interference. Accordingly, these are also called decision-
feedback equalization and Viterbi equalization, respectively.

Linear equalization is another method of dealing with intersymbol interference. This
method consists of cascading a filter, called an equalization filter, with the channel so
that the combination of channel and filter now has a predetermined transfer function.
The cascade of the actual channel and the equalization filter has the transfer function
of the desired channel.

The underlying idea of linear equalization, as shown in Figure 4.9, is simple. If
we desire a channel transfer function H ( f ), and the channel has an actual transfer
function that is different from the desired channel transfer function, we can cascade
an equalization filter with the channel. The frequency-domain transfer function of the
equalization filter is equal to the desired transfer function divided by the actual transfer
function. The cascade of the equalization filter with the actual channel then gives the
desired channel response.

The linear equalizer does not rest on the theory of the matched filter or on the
maximum-likelihood principle, so it is not an optimum demodulator in either of these
senses. Because the actual channel transfer function H ′( f ) appears in the denomina-
tor of the equalization filter, there will be noise amplification at frequencies where
H ′( f ) is small, and corresponding performance degradation. This is the disadvantage

Actual
Channel

Equalization
Filter

Effective
Channel

H(f )

H' (f )
H(f )

H' (f )

Figure 4.9. Equalization.
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of the linear equalizer. The advantage of a linear equalizer is its comparative ease of
implementation. Whereas a Viterbi demodulator has a complexity that depends expo-
nentially on the constraint length of the intersymbol interference, a linear equalizer has
a complexity that depends only linearly on the constraint length.

An equalization filter can be placed either in the receiver or in the transmitter. In
magnetic recording, the latter is called write equalization. If the system were linear and
noiseless, it would not matter to the theory whether the equalizer was in the transmitter or
in the receiver but, because noise is always present, the two locations are not equivalent.
The equalizer can even be factored, with part in the transmitter and part in the receiver.
We usually think of the equalizer as residing in the receiver, as shown in Figure 4.9.
This is often the more convenient place to put it, especially if the equalizer is an
adaptive equalizer as described in Section 4.7. Moreover, the equalization filter may be
implemented partially in continuous time before the sampler and partially in discrete
time after the sampler.

When the channel input pulse is p(t), the channel output is

v(t) = p(t) ∗ h(t) + n(t)

= s(t) + n(t),

where h(t) is the impulse response of the channel. The output of the equalization filter
g(t) is

u(t) = v(t) ∗ g(t)

= p(t) ∗ h(t) ∗ g(t) + n(t) ∗ g(t).

Suppose that p(t) has been selected so that p(t) ∗ p(−t) is the Nyquist pulse r(t). We
can easily find the equalization filter g(t) that recreates the Nyquist pulse by working
in the frequency domain. The output pulse of the equalizer has Fourier transform
P( f )H ( f )G( f ), which we want to equal R( f ). Thus

P( f )H ( f )G( f ) = P( f )P∗( f ),

from which we conclude that

G( f ) =
{

P∗( f )/H ( f ) P( f ) �= 0
0 P( f ) = 0.

This simple equalizer is called a zero-forcing equalizer because it restores the equalizer
output to a Nyquist pulse, as shown in Figure 4.10. The zero-forcing equalizer is an
elementary equalizer that gives no consideration to its effect on the noise in the received
waveform. The filter may clash with the goals of a matched filter and may even amplify
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a) Zero-Forcing Equalization

Impulse

b) An Equivalent Model

Synthetic
Channel

Channel

Zero-Forcing
Equalizer

Zero-Forcing
Equalizer

Nyquist
Pulse

r (t )s(t )

r (t )s(t )

p(t ) * h(t )

p(t )
h(t )

Figure 4.10. The zero-forcing equalizer.

the noise. A more sophisticated equalizer compromises between shaping the output
pulse and rejecting channel noise.

An equalizer that consists of a linear finite-impulse-response filter of finite length
cannot, in general, force all intersymbol interference coefficients to zero; there must be
a compromise. This compromise can be based on defining a performance measure, then
selecting the tap weights in order to optimize this performance measure. The obvious
performance measure to minimize is the bit error rate at the output of the demodulator
because bit error rate is a standard performance measure of a modem. However, the bit
error rate is an intractable function of the tap weights so other elementary performance
measures are employed for designing an equalizer, such as the mean-square error or
the peak interference. Of these, the least-mean-square equalizer is noteworthy and
tractable. It is developed in Section 4.8.

4.7 Adaptive equalization

A linear equalizer adjusts the actual linear channel in order to change it to the desired
linear channel. To accomplish this, the equalizer must know the actual channel or an
adequate model of the actual channel. This amounts to knowing the channel impulse
response h(t). In many applications, the channel impulse response is not completely
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known at the receiver; it must be inferred from the received signal itself. This is
inherently a statistical process because of noise and because the data symbols may
not be known. An adaptive equalizer is an equalizer that adjusts itself by using an
observation of a sample output sequence of the actual channel. The output sequence
may be the response of the channel to a prespecified channel input, known as a training
sequence, that is known to the receiver. Alternatively, the output sequence may be the
response of the channel to an ordinary input waveform carrying a random data sequence.
Designing an adaptive equalizer is more difficult if the data itself is not known.

Atraining sequence may be appropriate for a point-to-point communication system in
which messages are of finite length with a beginning and an end. The training sequence
may be placed as a preamble to the overall message, and the receiver is equalized
before the data-bearing portion of the message begins. In a broadcast communication
system, however, there may be many receivers. An individual receiver may choose to
tune in to an ongoing broadcast at its own convenience. In such a system, one might
choose to adjust the equalization based on the ordinary data-carrying waveform. Even
if a training sequence is used initially, it may be appropriate to continue to adjust the
equalization based on the received channel signal so that any variations that occur
in the channel transfer function will be neutralized by changes in the equalization
filter.

Figure 4.11 shows the general plan of an adaptive equalizer. A replica of the mod-
ulator is contained in the receiver. This local modulator generates a signal that will
be compared with the equalizer output to form an error signal, which is the input to
an adaptive equalization filter. The adaptive equalization filter adjusts itself in such a
way that the error signal is driven toward zero. The input to the local modulator may
be either a training sequence or a regenerated sequence of data from the demodulator.
However, there are two reasons why a training sequence is to be preferred. First, the
demodulator will make occasional errors, especially when the adaptive equalizer is far

Local 
Modulator

Reference

+

Error 
Signal

Adaptive 
Equalizer 

Filter

Channel 
Output

Training 
Sequence 
Generator

Demodulator

+
–

Figure 4.11. Schema for adaptive equalization.
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from its correct setting. This will cause errors in the output of the local modulator,
which will tend to drive the adaptive equalizer incorrectly. If the equalizer begins when
it is severely out of adjustment, it may not converge. Second, the datastream coming
from the demodulator might not be sufficiently random. This can fail to expose some of
the errors in the equalizer setting. If the actual datastream results in a waveform without
enough energy in some frequency region, then the equalizer will not be able to adapt
properly in this region, and the demodulator may be vulnerable to future data errors
when this frequency region is used. For example, an antipodal signaling datastream
with a long run of alternating zeros and ones will have little energy near zero frequency
so the equalization may be poor near zero frequency.

4.8 Least-mean-square equalization

Avariety of criteria can be used for designing a linear equalizer, whether it is adaptive or
nonadaptive. We shall describe the popular least-mean-square-error criterion. The goal
of this equalizer is to minimize the mean-square error resulting from the combination
of noise and intersymbol interference.

We will consider a real baseband channel. In this case the time samples are real. The
same techniques can also be used with a complex baseband channel, in which case the
time samples would be complex.

Acommon structure for a discrete-time linear equalizer is the transversal filter, which
consists of a delay line tapped at uniformly spaced intervals. When time is discrete, a
transversal filter is called a finite-impulse-response filter. The output of a typical finite-
impulse-response filter, as shown in Figure 4.12, is a linear convolution of the input
sequence and the sequence described by the filter tap weights

r� =
K−1∑
k=0

gks�−k � = 0, . . .

where gk for k = 0, . . . , K − 1 is the kth tap weight of the filter having a total of K
taps, s� is the �th filter input sample, and r� is the �th filter output sample. The task

.... d2, d1, d0

.... c2, c1, c0

g0 g1

+ + +

g2

.  .  .

Figure 4.12. A finite-impulse-response filter.
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of designing a finite-impulse-response equalizer consists of choosing K and specifying
gk for k = 0, . . . , K − 1. One way of designing this FIR filter of a given length K is
to approximate the ideal linear equalizer with a finite-impulse-response filter. Another
way is to restate the criteria for the equalizer design and to rederive the best linear
equalizer within this class of finite-impulse-response filters of a given length K .

The only linear equalization filters that need be used for our usual waveform of
quadrature-amplitude modulation (QAM) symbols are those that have the form of a
whitened matched filter before the sampler, followed by a discrete-time filter after
the sampler. Later, we shall see in Section 7.3, in the conclusion of Theorem 7.3.1,
that there is no advantage in having another filter prior to the matched filter. Even
when intersymbol interference is present, so long as only the second-order proper-
ties of the noise are considered, the matched filter, followed by a sampler, preserves
all relevant information in the received signal that can be recovered by a linear
filter.

The least-mean-square equalizer minimizes the mean-square value of the error signal
at the output of the equalizer, an error signal that is due to both the residual intersymbol
interference and the unfiltered channel noise. Minimization of mean-square error is an
ad hoc compromise that cannot be motivated by any deeper theory. Minimizing mean-
square-error at the equalizer output does not necessarily minimize the probability of
demodulated symbol error because intersymbol interference does not have the same
probability density function as gaussian noise. Further, dependence will remain in the
sequence of samples; hence following the equalizer by an isolated-symbol demodulator
will ignore available residual information. Nevertheless, the least-mean-square-error
equalizer followed by an isolated-symbol demodulator can be entirely adequate in many
applications.

For the equalization filter, we choose a finite-impulse-response filter of length K so
that the equalized output samples are

a′
� =

K−1∑
k=0

gkv�−k .

The mean-square error criterion requires that the �th sample a′
� out of the filter should

be equal to the �th transmitted pulse amplitude a� with minimum mean-square error due
to the combination of intersymbol interference and noise. The tap weights gk will be
chosen to make the combined result of these two sources of error as small as possible.

The mean-square error of the vector of n output samples is defined as

ε = 1

n

n−1∑
�=0

e2
�
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where e� is the error in the �th sample

e� = a′
� − a�

=
K−1∑
k=0

gkv�−k − a�.

The mean-square error is the expectation of a quadratic function of the K tap weights
as follows

ε = E
1

n

n−1∑
�=0

[
K−1∑
k=0

gkv�−k − a�

][
K−1∑
k ′=0

gk ′v�−k ′ − a�

]

= 1

n

n−1∑
�=0

[
K−1∑
k=0

K−1∑
k ′=0

E [gkgk ′v�−kv�−k ′] − 2a�E
K−1∑
k=0

[gkv�−k ] + a2
�

]
.

Now recall that, for white noise of variance σ 2,

E[v�−kv�−k ′ ] = s�−ks�−k ′ + σ 2δkk ′

where the discrete impulse function δkk ′ is equal to one if k is equal to k ′, and otherwise
is equal to zero. Now we can write

ε = 1

n

n−1∑
�=0

[
K−1∑
k=0

K−1∑
k ′=0

gkgk ′s�−ks�−k ′ +
K−1∑
k=0

g2
k σ 2 − 2a�

K−1∑
k=0

gks�−k + a2
�

]
.

We can visualize this quadratic function in the gk as a bowl in K-dimensional space.
The goal of the adaptive equalizer is to find the minimum of this bowl. A necessary
and sufficient condition on the optimal setting of the tap weights is that the partial
derivatives ∂ε/∂gk are equal to zero for k = 0, . . . , K −1. The partials are evaluated as

∂ε

∂gk
= 2

n

⎡⎣n−1∑
�=0

K−1∑
j=0

gjs�−js�−k + nσ 2gjδjk −
n−1∑
�=0

a�s�−k

⎤⎦ = 0.

Therefore with the notation

Rjk = 1

n

n−1∑
�=0

s�−js�−k + nσ 2δjk
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and

R′
k = 1

n

n−1∑
�=0

a�s�−k ,

the tap vector g is the solution of the equation

K−1∑
j=0

gjRjk = R′
k .

An explicit solution is

gj =
K−1∑
k=0

R−1
jk R′

k .

The explicit solution given above is usually considered unsatisfactory, especially
for adaptive equalization, not only because it may be computationally excessive but
because it weighs all data equally, even the oldest data in use. The preferred approaches
are iterative, updating the tap weights in a way that drives the partial derivatives toward
zero. Iterative computational procedures, such as the stochastic gradient adaptive
equalizer, are in wide use, and form part of a more complete treatment of the subject
of adaptive filtering.

In theory, it is sufficient to use a symbol-spaced equalizer, that is, one with tap
spacing equal to the symbol spacing of T seconds. In practice, a fractionally-spaced
equalizer, such as one with a tap spacing of T/2 is more robust and its performance is
more tolerant of compromises in the complexity of the implementation. We shall only
discuss the simpler case of a symbol-spaced equalizer.

An alternative linear equalizer is the zero-forcing equalizer. The zero-forcing equal-
izer must equalize the channel so that when the received pulse is s(t), the sampled output
of the equalized channel has no intersymbol interference. Specifically, we require r(t)
to have samples

r� = r(�T ) =

⎧⎪⎨⎪⎩
0 � = −N , . . . , −1
1 � = 0
0 � = 1, . . . , N

where we have imposed constraints on only 2N +1 samples because of the finite length
of the FIR filter. Because the constraints are specified for negative values of �, we must
rewrite the filter response in the symmetric form as

r� =
N∑

k=−N

gks�−k .
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Writing this out in matrix form gives⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s0 s−1 · · · s−2N+1 s−2N

s1 s0 · · · s−2N+2 s−2N+1
...

sN sN−1 · · · s−N+1 s−N
...

s2N−1 s2N−2 · · · s0 s−1

s2N s2N−1 · · · s1 s0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

g−N

g−N+1
...

g0
...

gN−1

gN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
...
1
...
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

In compact form, this is the matrix-vector equation

Sg = r .

The vector of tap weights is then given as the solution of this equation

g = S−1r .

Because N is finite, the zero-forcing equalizer does not prevent the impulse response
from being nonzero at sampling instants far from the origin, so intersymbol interfer-
ence is not completely eliminated. Therefore the zero-forcing equalizer forms only an
approximation to a Nyquist pulse at the channel output. However, if the number of filter
taps is large in comparison to the number of sampling intervals in which the channel
output is significant, then we may expect the residual effects to be negligible, although
the theory does not guarantee that this is so.

Problems for Chapter 4

4.1. An antipodal signaling waveform is used on a channel that has intersymbol
interference described by the discrete sequence

g = (1, 0.25, 0, 0, 0, . . .).

Assuming that the binary data symbols are equiprobable, and that each data
symbol is demodulated by a simple threshold without consideration for the
intersymbol interference, find an expression for the probability of error as a
function of Eb/N0. On the same graph, plot pe versus Eb/N0 for antipodal sig-
naling without intersymbol interference, and with this model of uncompensated
intersymbol interference. At pe = 10−5, what is the difference in Eb/N0?
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4.2. The pulse

s(t) = sin π t/T

π t/T

cos π t/T

1 − 4t2/T 2

is a Nyquist pulse for signaling interval T .
a. Describe the zeros of s(t).
b. Describe the intersymbol interference for the situation where the pulse is

used with antipodal signaling, but the channel data rate is doubled. That is,
Tb = T/2 and

c(t) =
∞∑

�=−∞
a�s(t − �Tb).

c. Sketch and label a trellis for demodulation.
4.3. A discrete-time channel has intersymbol interference described by the

polynomial

g(x) = g−1x−1 + g0 + g1x

= 0.1x−1 + 1 + 0.1x.

By combining the techniques of a decision-feedback demodulator and a Viterbi
demodulator, design a demodulator in which the Viterbi algorithm searches a
trellis that has only two states.

4.4. a. Prove that for x ≥ 0 and y ≥ 0,

Q(x + y) ≤ Q(x)e−y2/2.

b. Show that the inequality

pe ≤
∑

i

Q

(
di

2σ

)
can be weakened to give

pe ≤ Q

(
dmin

2σ

)∑
i

e−(di−dmin)2/8σ 2
.

Does the inequality apply to the demodulation of sequences as well as to the
demodulation of amplitude shift keying?

4.5. With the channel output matched-filtered to the data pulse s(t), because of
channel dispersion the samples of a binary antipodal signaling waveform dis-
play intersymbol interference described by g0 = 1, g1 = 0.8, and gi = 0
otherwise.
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a. Given that the previous bit was demodulated correctly, what is the probability
of bit error as a function of Eb/N0? What is the value of pe if Eb/N0 = 10 dB?

b. Given that the previous bit was demodulated in error, what is the probability
of bit error as a function of Eb/N0? What is the value of pe if Eb/N0 = 10 dB?

c. What is the bit error rate if Eb/N0 = 10 dB?
4.6. (Echo cancellation.) An echo channel has the form

g(t) = h(t) + ah(t − )

where  is large in comparison with the signaling symbol duration T of the
waveform

c(t) =
∞∑

�=0

a�s(t − �T ).

Describe a decision-feedback demodulator to remove the intersymbol
interference.

4.7. a. Given a channel with intersymbol interference and two sequences c and
c′ at distance dmin, one of which is known to have been transmitted, a
demodulator selects sequence c or c′ if d(v, c) < dmin/6, or d(v, c′) <

dmin/6, and otherwise declares a sequence erasure (undemodulatable data).
Give an approximate expression for the probability of message error and the
probability of message erasure.

b. Give approximate expressions for these probabilities for a demodulator for
a fully modulated waveform.

4.8. a. Show that the equalization filter

G( f ) =
Ec

S∗( f )

N ( f )

1 + Ec

T

∞∑
k=−∞

∣∣∣S (f + k
T

)∣∣∣2
N
(

f + k
T

)
reduces to a matched filter when the signal-to-noise ratio is small.

b. Show that the output of the equalization filter reduces to a Nyquist pulse as
the signal-to-noise ratio becomes large.

c. Show that when the noise is white and s(t) ∗ s∗(−t) is a Nyquist pulse,
the equalization filter reduces to a matched filter for all values of the noise
power.

d. How should the condition of part c be restated when the noise is not white?
4.9. a. A linear channel is known to have a transfer function H ( f ) and additive

white noise. How should the transmitted pulse shape be designed for binary
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antipodal signaling so that the channel output can be filtered to have a max-
imum signal-to-noise ratio, and so that the samples of the filter output have
no intersymbol interference and uncorrelated noise components?

b. Suppose now that the noise has power density spectrum N ( f ). How does
the answer to part a change?

4.10. The following example is contrived to show that the samples out of a filter
matched to the channel input pulse p(t) can be inferior to the samples out of a
filter matched to the channel output pulse s(t). Let

p(t) = rect

(
t

T

)
and

c(t) =
∞∑

�=−∞
a�rect

(
t − �Tb

T

)
where Tb = 8T . Sketch the signal out of the matched filter p(−t). Is the pulse
p(t) ∗ p(−t) a Nyquist pulse? Given the channel impulse response

h(t) = rect

(
t − 6T

T

)
,

describe the samples when the channel output c(t) ∗ h(t) is sampled at the
symbol signaling instants �Tb. How does this compare with the output samples
of a filter matched to p(t) ∗ h(t)?

4.11. Abinary antipodal signaling waveform is used on a channel that has intersymbol
interference described by the discrete sequence

g = (1, 0.25, 0, 0, 0, . . .).

Assuming that the binary data symbols are equiprobable and the noise is white
and gaussian, and that each data symbol is demodulated by a decision-feedback
demodulator, find an expression for the probability of error as a function of
Eb/N0. On the same graph, plot pe versus Eb/N0 for binary antipodal sig-
naling without intersymbol interference, and with this model of intersymbol
interference. At pe = 10−5, what is the difference in Eb/N0?

4.12. Abinary antipodal signaling waveform is used on a channel that has intersymbol
interference described by the discrete sequence

g = (1, 0.25, 0, 0, 0, . . .).

Given a received sequence v = (v0, v1, v2, . . .) = (1.2, −0, 8, −0.4, −0.5, 0.8,
1.4, . . .), find the first six iterations of the Viterbi demodulator.
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Notes for Chapter 4

Linear equalization, which is perhaps the simplest way of dealing with intersymbol
interference, goes back at least as far as Nyquist (1928). The more difficult topic
of adaptive equalization has its own extensive literature. The alternative method
of decision-feedback demodulation was introduced by Austin (1967) and advanced
by Monsen (1970), Mueller and Salz (1981), and others. However, the essentials
of the idea had been applied earlier by Mathes (1919) for telegraphy over subma-
rine cables. Salz (1973) and Proakis (1975) discussed the superior performance of a
decision-feedback demodulator relative to linear equalization with regard to noise, and
Qureshi (1982) showed the superior performance with regard to clock-synchronization
errors. Tufts (1965) and Aaron and Tufts (1966) discussed the difficult problem of
designing a linear equalizer to minimize the probability of error, and Ericson (1971)
formulated the decomposition of an equalizer into a matched filter followed by a
discrete-time filter after the sampler. The merits of the fractionally-spaced linear equal-
izer were recognized independently by many modem designers. Some early published
papers on this subject were by Lucky (1969), Guidoux (1975), Ungerboeck (1976),
and Qureshi and Forney (1977). Adaptive equalization began with the work of Lucky
(1965, 1966).

The trellis was so named by Forney (1973) as a graphical description of the behav-
ior of any finite state machine. The Viterbi (1967) algorithm was originally devised
as a pedagogical aid for understanding the decoding of convolutional codes. It was
quickly realized that the algorithm is quite practical for convolutional codes of modest
blocklength. Kobayashi (1971) and Omura (1970) established that the Viterbi algo-
rithm could also be used as a demodulator in the presence of intersymbol interference.
Forney (1973) promoted the Viterbi algorithm as a general method of searching a trellis
and as useful for a broad variety of problems, which include demodulation in the pres-
ence of intersymbol interference. The use of the union bound to bound the probability
of error is standard. The upper bound, and a corresponding lower bound appeared in
Viterbi’s 1967 paper for the decoding of convolutional codes.



5 Passband Modulation

A waveform channel is a channel whose inputs are continuous functions of time. A
passband channel is a waveform channel suitable for an input waveform that has a
spectrum confined to an appropriately narrow interval of frequencies centered about a
nonzero reference frequency, f0. A complex baseband channel is a waveform channel
whose input waveform is a complex function of time that has a spectrum confined to an
interval of frequencies containing the zero frequency. We shall see that every passband
channel can be converted to or from a complex baseband channel by using standard
techniques in the modulator and demodulator.

The function of a digital modulator for a passband channel is to convert a digital
datastream into a waveform representation of the data that can be accepted by the
passband channel. The waveform from the modulator is designed to accommodate the
spectral characteristics of the channel, to obtain high rates of data transmission, to
minimize transmitted power, and to keep the bit error rate small.

A passband modulation waveform cannot be judged independently of the perfor-
mance of the demodulator. To understand how a modem works, it is necessary to study
both the passband modulation techniques of this chapter and the passband demodulation
techniques of Chapter 6. The final test of a modem is in the ability of the demodulator
to recover the input datastream from the signal received by the demodulator in the
presence of noise, interference, distortion, and other impairments.

5.1 Passband waveforms

A passband waveform, denoted ṽ(t)1, is a waveform of the form

ṽ(t) = vR(t) cos 2π f0t − vI (t) sin 2π f0t,

where vR(t) and vI (t) are baseband waveforms and the reference frequency f0 is large
in comparison to the spectral components in the Fourier transforms VR( f ) and VI ( f ).

1 Passband waveforms will be indicated by the tilde over the letter that denotes the waveform.
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|S (f )|

f

Figure 5.1. Magnitude spectrum of a passband signal.

f

SI (f )
~

SR(f )
~

Figure 5.2. Complex spectrum of a passband signal.

A passband waveform ṽ(t) has a Fourier transform, or spectrum, Ṽ ( f ), whose nonzero
values lie in an interval of the frequency axis that does not include the origin.

A passband pulse, denoted s̃(t), is a passband waveform with finite energy of
the form

s̃(t) = sR(t) cos 2π f0t − sI (t) sin 2π f0t.

We usually use the term “passband pulse” for a relatively simple function and the term
“passband waveform” for a relatively complicated function, although this distinction is
not precisely defined. Figure 5.1 gives an illustration of the magnitude of the spectrum
of a passband pulse. The transform S̃( f ) is complex in general, so it has both a real
part, Re[̃S( f )], and an imaginary part, Im[̃S( f )]. These are not the translated copies of
the Fourier transforms of sR(t) and sI (t). Figure 5.2 gives an illustration of a transform
S̃( f ), including both the real part and the imaginary part in a single graph, where
S̃( f ) = Re[̃S( f )] + jIm[̃S( f )]. Because the pulse s̃(t) is real, the transform satisfies
S̃∗( f ) = S̃(−f ), so the real and imaginary parts satisfy

Re[̃S( f )] = Re[̃S(−f )]
Im[̃S( f )] = −Im[̃S(−f )].

This relationship can be seen in Figure 5.2.
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A passband pulse has a Fourier transform that is related to the Fourier transforms of
the modulation components sR(t) and sI (t) by the modulation theorem

S̃( f ) = 1

2
[SR( f − f0) + SR( f + f0)] − 1

2
j[SI ( f − f0) − SI ( f + f0)]

where SR( f ) and SI ( f ) may each themselves be complex. This is why Re[̃S( f )] and
Im[̃S( f )] are not, in general, equal to frequency shifted copies of SR( f ) and SI ( f ).

It is always possible to convert a passband waveform ṽ(t) into a complex baseband
waveform v(t). Just as the two baseband waveforms vR(t) and vI (t) can be assembled
into the passband waveform ṽ(t), so the passband waveform ṽ(t) can be decomposed
to form two real baseband waveforms vR(t) and vI (t). Specifically, given any arbitrary
frequency f0 in (or near) the passband, the arbitrary passband waveform ṽ(t) can be
decomposed into a representation consisting of two baseband waveforms vR(t) and
vI (t) multiplying sine and cosine carriers in the standard form

ṽ(t) = vR(t) cos 2π f0t − vI (t) sin 2π f0t.

To verify that any arbitrary passband waveform can be expressed in this form, one can
employ an argument in the frequency domain defining the baseband spectra VR( f ) and
VI ( f ) in terms of Ṽ ( f ), or an argument in the time domain defining the baseband signals
vR(t) and vI (t) by the mixing operations defined in the next paragraph.2 Figure 5.3
illustrates this decomposition of a passband signal. The frequency f0 is called the carrier
frequency in many applications, though for an arbitrary passband signal it is better called
the reference frequency because then f0 is only an arbitrary point of reference on the
frequency axis. It need not have any other special role in ṽ(t). But if there were some
frequency that played a special role in ṽ(t), as when there is an explicit sinusoid, we
would likely choose that frequency as the reference frequency f0. The frequency f0 only
needs to have the property that

Ṽ ( f ) = 0 if |(| f | − f0)| >
B

2

for some constant B smaller than 2f0. In practice, the condition that Ṽ ( f ) is zero is
replaced by the somewhat vague condition that Ṽ ( f ) is negligible.

2 If a more formal procedure is desired, define

vR(t) = Re[v̄(t)e−j2π f0t ]
vI (t) = Im[v̄(t)e−j2π f0t ]
where v̄(t) is the analytic signal associated with v(t) and defined by

v̄(t) = v(t) + jv̂(t),

and v̂(t) is the Hilbert transform of v(t) defined by

v̂(t) =
∫ ∞
−∞

1

π

v(ξ)

t − ξ
dξ .
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Figure 5.3. A passband signal.

To identifyvR(t) andvI (t)directly from ṽ(t), use the standard trigonometric identities

2 cos2 A = 1 + cos 2A

2 sin2 A = 1 − cos 2A

2 sin A cos A = sin 2A

to observe that

2ṽ(t) cos 2π f0t = 2vR(t) cos2 2π f0t − 2vI (t) sin 2π f0t cos 2π f0t

= vR(t) + vR(t) cos 4π f0t − vI (t) sin 4π f0t

−2ṽ(t) sin 2π f0t = −2vR(t) cos 2π f0t sin 2π f0t + 2vI (t) sin2 2π f0t

= vI (t) − vR(t) sin 4π f0t − vI (t) cos 4π f0t.

In each case, the sinusoids are at frequency 2f0. An ideal lowpass filter will reject these
sinusoids, thereby resulting in vR(t) and vI (t).

The choice of reference frequency is arbitrary; any frequency in the vicinity of the
passband will do. The choice of a different reference frequency changes the modulation
components but does not change the form of the passband representation. Thus we can
change the reference frequency to f ′

0 as follows:

ṽ(t) = vR(t) cos 2π f0t − vI (t) sin 2π f0t

= vR(t) cos[2π f ′
0 t + 2π( f0 − f ′

0)t] − vI (t) sin[2π f ′
0 t + 2π( f0 − f ′

0)t]
= [vR(t) cos 2π( f0 − f ′

0)t − vI (t) sin 2π( f0 − f ′
0)t] cos 2π f ′

0 t

− [vR(t) sin 2π( f0 − f ′
0)t + vI (t) cos 2π( f0 − f ′

0)t] sin 2π f ′
0 t.
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Therefore, with new reference frequency f ′
0 ,

ṽ(t) = v′
R(t) cos 2π f ′

0 t − v′
I (t) sin 2π f ′

0 t

now with modulation components

v′
R(t) = vR(t) cos 2π( f0 − f ′

0)t − vI (t) sin 2π( f0 − f ′
0)t

v′
I (t) = vR(t) sin 2π( f0 − f ′

0)t + vI (t) cos 2π( f0 − f ′
0)t.

The receiver may even use a reference frequency that is a little different from the trans-
mitter, say f ′

0 in place of f0. The receiver still sees a passband signal, but the modulation
components will be different when referenced to a different reference frequency. When
it is possible, we should choose the reference frequency f0 according to convenience,
that is, so as to make the modulation components simple to describe or to process.

A passband signal at carrier frequency f0 can be converted to a passband signal at car-
rier frequency f1 without changing the modulation components by an operation known
as mixing, provided f1 and f0 are sufficiently far apart. This involves first multiplying
the passband waveform by 2 cos 2π( f0 − f1)t as follows:

ṽ′(t) = ṽ′(t)2 cos 2π( f0 − f1)t

= [vR(t) cos 2π f0t − vI (t) sin 2π f0t]2 cos 2π( f0 − f1)t.

The product of a passband signal and a sinusoid can be expanded by using the standard
trigonometric identities:

2 cos A cos B = cos(A + B) + cos(A − B)

2 sin A cos B = sin(A + B) + sin(A − B).

Therefore

ṽ′(t) = [vR(t) cos 2π f1t − vI (t) sin 2π f1t]
+ [vR(t) cos 2π(2f0 − f1)t − vI (t) sin 2π(2f0 − f1)t].

The two brackets are called the upper and lower sidebands of the mixing operation.
The frequency f1 is chosen so that the spectra of the two sidebands do not overlap.
The undesired sideband is called the image of the desired sideband. Figure 5.4 shows
the case where f1 is chosen smaller than f0. The upper sideband can be rejected by a
filtering operation to produce the passband signal, which now we also call ṽ(t), but at
the new carrier frequency f1,

ṽ(t) = vR(t) cos 2π f1t − vI (t) sin 2π f1t.
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Figure 5.4. Upper and lower mixing sidebands.

R(t ) cos 2πf0t
–  I(t ) sin 2πf0t

 R(t ) cos 2πf1t
–  I(t ) sin 2πf1t

2 cos 2π(f0 – f1)t

x

Figure 5.5. Symbolic representation of a mixer.
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Figure 5.6. Forming the complex representation of a passband signal.

The function of a mixer is shown symbolically in Figure 5.5. The image suppression
filter is not shown in the figure, but it is understood to be present.

Figure 5.6 shows how the carrier sinusoids of a passband signal can be completely
stripped by the operation of mixing – this time using a reference sinusoid at frequency
f0. Multiplication by 2 cos 2π f0t produces the signal

v′(t) = ṽ(t)2 cos 2π f0t

= [vR(t) cos 2π f0t − vI (t) sin 2π f0t]2 cos 2π f0t

= vR(t) + vR(t) cos 2π(2f0)t − vI (t) sin 2π(2f0)t

where the second line follows from the standard trigonometric identities. A lowpass
filter rejects the terms at frequency 2f0, thereby producing a signal equal to vR(t), the
in-phase modulation component. Similarly, multiplication by 2 sin 2π f0t produces a
signal at baseband equal to the quadrature modulation component vI (t). In this way,
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Figure 5.7. An example of a passband pulse.

every passband waveform ṽ(t) with reference frequency f0 maps into a unique pair
of baseband waveforms (vR(t), vI (t)) from which the passband waveform ṽ(t) can be
recovered by the modulation process.

Figure 5.7 shows a simple example: the modulation of a square pulse by a cosine
wave together with the Fourier transform of this passband pulse. In the general case, a
passband pulse s̃(t) will have both an in-phase and a quadrature modulation component,
and each of these will have a Fourier transform with a real part and an imaginary part.
To see how these components combine in the process of modulation, it is instructive to
look at the examples of the Fourier transforms of simple passband waveforms, shown
in Figure 5.8. These examples are intended to show the interplay between the real and
imaginary components of the spectrum.

The passband pulse

s̃(t) = sR(t) cos 2π f0t − sI (t) sin 2π f0t

has energy

Ep =
∫ ∞

−∞
s̃2(t)dt.

This can be expressed in terms of the modulation components. To show this in the
frequency domain, first write

Ep =
∫ ∞

−∞
|̃S( f )|2df

= 1

4

∫ ∞

−∞
|SR( f − f0) − jSI ( f − f0) + SR( f + f0) + jSI ( f + f0)|2df .
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s (t ) = cos 2πf0t 

s (t ) = sin 2πf0t 

+ A sin 2πf1t cos 2πf0t  
s (t ) = cos 2πf0t 

+ A sin 2πf1t sin 2πf0t  

s (t ) = cos 2πf0t 

+ A sin 2πf1t sin 2πf0t  

s (t ) = sin 2πf0t 

|t | ≤ T
2
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Figure 5.8. Complex spectra of some simple passband waveforms.

When the square is expanded, any product of a term centered at −f0, and a term centered
at +f0, will equal zero by the definition of a passband waveform. Therefore

Ep = 1

4

∫ ∞

−∞
|SR( f − f0) − jSI ( f − f0)|2df + 1

4

∫ ∞

−∞
|SR( f + f0) + jSI ( f + f0)|2df

= 1

4

∫ ∞

−∞
|SR( f ) − jSI ( f )|2df + 1

4

∫ ∞

−∞
|SR( f ) + jSI ( f )|2df .

When the squares are expanded, the cross terms cancel, leaving the expression

Ep = 1

2

∫ ∞

−∞
|SR( f )|2df + 1

2

∫ ∞

−∞
|SI ( f )|2df

= 1

2

∫ ∞

−∞
[s2

R(t) + s2
I (t)]dt.

The energy of the passband pulse is one-half of the energy in the complex baseband
representation developed in the next section. This is easy to see in the time domain.
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Multiplying a baseband pulse by a sinusoid of sufficiently high frequency reduces its
energy by one-half.

5.2 Complex baseband waveforms

The most modern and compact way – and ultimately the simplest way – to think about
a passband waveform v(t) for digital communication is to think of it as a complex
baseband waveform defined as

v(t) = vR(t) + jvI (t).

The complex baseband waveform v(t) is a representation of the passband waveform
v(t), and is called the complex baseband representation of ṽ(t). The complex baseband
representation of a waveform is usually emphasized throughout the book in preference
to a passband representation. Not only is the complex baseband representation nota-
tionally convenient, but it allows one to draw on one’s geometrical intuition when
dealing with the complex plane. Treating the complex representation as the more fun-
damental version of the waveform may also be justified by the fact that the waveforms
usually exist as complex baseband waveforms as they pass through major portions of
the transmitter or receiver, and this is where most of the design details are found.

We shall use the complex representation in two ways. Sometimes it is just a con-
venient shorthand for a signal that is physically a passband signal. We have already
encountered some fairly complicated equations that result when writing out passband
equations explicitly. The complex notation is often used instead because it is much
easier to work with. The complex notation might also represent a signal that has been
physically converted into the form of a pair of baseband signals by stripping off the
carrier sinusoids. Then the complex signal v(t) represents the pair of baseband signals
(vR(t), vI (t)). Figure 5.9 shows a passband pulse and its complex representation. A

s(t )

t Im t

Re

Figure 5.9. A passband pulse and its complex representation.
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Figure 5.10. Convention for depicting complex signals.

complex signal might be denoted in a functional block diagram, as in Figure 5.10, by
a double line, one line depicting the real part and one depicting the imaginary part.
However, a single line will usually suffice with the understanding that it represents a
complex signal.

For passage through a passband channel, the complex baseband waveform is
temporarily converted to the passband representation

ṽ(t) = vR(t) cos 2π f0t − vI (t) sin 2π f0t.

The passband output of the passband channel may be reconverted back to the complex
baseband representation for the computational purpose of demodulation. Because we
do not study propagation, the complex representation is of primary interest in most of
this book.

Moreover, any complex baseband signal, v(t) = vR(t)+ jvI (t), can be used to define
the passband signal ṽ(t) by

ṽ(t) = vR(t) cos 2π f0t − vI (t) sin 2π f0t

where the carrier frequency f0 is a fixed reference frequency. The carrier frequency must
be sufficiently large to make v(t) a proper passband waveform, and the map from vR(t)
and vI (t) into the passband representation ṽ(t) is called passband modulation. The
terms vR(t) and vI (t) are called the in-phase and quadrature modulation components,
or the real and imaginary modulation components.

A compact way of mathematically expressing the map from the complex represen-
tation of the signal into the passband representation of the signal is

ṽ(t) = Re[[vR(t) + jvI (t)]e j2π f0t]
= Re[v(t)e j2π f0t].

Aphase offset or a frequency offset is easy to handle with the complex representation.
Thus a phase offset of v(t) by θ is

v(t) = [vR(t) + jvI (t)]e jθ ,
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corresponding to the passband representation

ṽ(t) = vR(t) cos(2π f0 + θ) − vI (t) sin(2π f0t + θ).

A frequency offset of v(t) by ν is

v(t) = [vR(t) + jvI (t)]e j2πνt

= [vR(t) cos 2πνt − vI (t) sin 2πνt]
+ j[vR(t) sin 2πνt + vI (t) cos 2πνt]

corresponding to the passband representation

ṽ(t) = vR(t) cos 2π( f0 + ν)t − vI (t) sin 2π( f0 + ν)t.

A comparison with the manipulations of the passband waveforms, which we worked
through earlier, should make it evident that great simplicity results when using the com-
plex representation. This is one reason we usually prefer the complex representation.

The energy in the complex baseband pulse

s(t) = sR(t) + jsI (t)

is defined as

Ep =
∫ ∞

−∞
|s(t)|2dt

=
∫ ∞

−∞
[s2

R(t) + s2
I (t)]dt.

This is exactly twice the energy3 of the passband version of s(t). Because we will
usually be interested in the ratio of signal energy to noise density, this factor of two
will cancel in the ratio. Consequently, this factor of two will rarely be a consideration
affecting the interests of this book.

Because our complex baseband representation and passband representation differ in
energy (or power) by a factor of two, one may prefer an alternative definition of the
passband waveform given by

ṽ(t) = vR(t)
√

2 cos 2π f0t − vI (t)
√

2 sin 2π f0t

so that the complex representation and the passband representation have the same
energy. For notational simplicity, however, the usual convention is to suppress the

√
2

when studying waveforms.

3 To avoid this behavior, one could define the passband pulse to include an amplitude of
√

2. We prefer to avoid
complicating the formulas in this manner.
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5.3 Passband filtering

A passband filter is a filter whose impulse response is a passband signal. The impulse
response of the passband filter h̃(t) is

h̃(t) = hR(t) cos 2π f0t − hI (t) sin 2π f0t.

The complex representation of the impulse response is

h(t) = hR(t) + jhI (t).

One reason why the complex notation is useful is that the operation of passband fil-
tering of a passband waveform behaves the same as the operation of complex filtering
of a complex waveform. In Figure 5.11, we illustrate this principle by showing how
to implement a passband filter by using the baseband filters hR(t) and hI (t) following
down-conversion and followed by up-conversion. The complex baseband filter is some-
times a convenient implementation. It is also a useful way of thinking. The following
theorem verifies that passband filtering of a passband waveform exactly corresponds
to the corresponding complex baseband filtering of a complex baseband waveform.

Theorem 5.3.1 If ũ(t) is given by

ũ(t) =
∫ ∞

−∞
ṽ(ξ )̃h(t − ξ)dξ

Passband
Input Oscillator

Passband
Output

cos 2πf0t

sin 2πf0t

x

x

hR(t )

hR(t )

h I(t )

h I(t )

+

+

+

–

+
+

–

+

+

x

x

Figure 5.11. Implementing a passband filter at baseband.
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where h̃(t) and ṽ(t) are both passband signals at carrier frequency f0, then ũ(t) is also
a passband signal at carrier frequency f0, and can be expressed as

ũ(t) =
[

1

2

∫ ∞

−∞
(vR(ξ)hR(t − ξ) − vI (ξ)hI (t − ξ))dξ

]
cos 2π f0t

−
[

1

2

∫ ∞

−∞
(vR(ξ)hI (t − ξ) + vI (ξ)hR(t − ξ))dξ

]
sin 2π f0t

or, more concisely,

ũ(t) = 1

2
[vR(t) ∗ hR(t) − vI (t) ∗ hI (t)] cos 2π f0t

− 1

2
[vR(t) ∗ hI (t) + vI (t) ∗ hR(t)] sin 2π f0t.

Proof The term ṽ(ξ )̃h(t − ξ) when stated in terms of the passband representation and
expanded gives four terms

ṽ(ξ )̃h(t − ξ) = vR(ξ)hR(t − ξ) cos 2π f0ξ cos 2π f0(t − ξ)

+ vI (ξ)hI (t − ξ) sin 2π f0ξ sin 2π f0(t − ξ)

− vR(ξ)hI (t − ξ) cos 2π f0ξ sin 2π f0(t − ξ)

− vI (ξ)hR(t − ξ) sin 2π f0ξ cos 2π f0(t − ξ).

Each of these terms expands into two terms by using standard trigonometric identities.
We write these eight terms as follows:

ṽ(ξ )̃h(t − ξ) = 1

2
vR(ξ)hR(t − ξ) cos 2π f0t − 1

2
vR(ξ)hR(t − ξ) cos 2π2f0(ξ − t/2)

− 1

2
vI (ξ)hI (t − ξ) cos 2π f0t + 1

2
vI (ξ)hI (t − ξ) cos 2π2f0(ξ − t/2)

− 1

2
vR(ξ)hI (t − ξ) sin 2π f0t + 1

2
vR(ξ)hI (t − ξ) sin 2π2f0(ξ − t/2)

− 1

2
vI (ξ)hR(t − ξ) sin 2π f0t − 1

2
vI (ξ)hR(t − ξ) sin 2π2f0(ξ − t/2).

Now integrate with respect to ξ . The theorem will be established if we can show that
each of the terms involving cos 4π f0(ξ − t/2) integrates to zero. We show this for the
first of such terms by using Parseval’s formula. The other three terms can be treated in
the same way. Let

a(ξ) = hR(t − ξ)

b(ξ) = vR(ξ) cos 2π2f0(ξ − t/2).
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By Parseval’s formula,∫ ∞

−∞
a(ξ)b∗(ξ)dξ =

∫ ∞

−∞
A( f )B∗( f )df .

By the properties of the Fourier transform,

A( f ) = H∗
R( f )e−j2πξ f

where HR( f ) is the Fourier transform of hR(t). By definition of h(t) as a passband
filter, H ∗

R( f ) equals zero for | f | ≥ f0. On the other hand, by the definition of v(t),
the Fourier transform of vR(ξ) also equals zero for | f | ≥ f0. Consequently, by the
modulation theorem, B( f ) must be zero for | f | ≤ f0. Therefore A( f )B∗( f ) is zero
everywhere; so by Parseval’s formula,∫ ∞

−∞
a(ξ)b∗(ξ)dξ = 0.

This completes the proof of the theorem. �

5.4 Passband waveforms for binary signaling

A complex baseband waveform can be viewed as two real waveforms; the real com-
ponent forms one waveform and the imaginary component forms the other. Similarly,
a passband waveform can be viewed as two waveforms, the in-phase component and
the quadrature component. Each component of the passband waveform can be used
independently to convey a baseband waveform. It is not even necessary that the same
kind of baseband waveform be used on each component.

The simplest passband waveform for digital communication uses binary antipodal
signaling on one component, and no modulation on the other. This passband version
of antipodal signaling is called binary phase-shift keying (BPSK). The simplest dig-
ital passband waveform that uses both modulation components uses binary antipodal
signaling on each component. This is called quadrature phase-shift keying (QPSK) pro-
vided the time reference is the same on both components. The in-phase and quadrature
components of the passband channel can be viewed as independent channels, modu-
lating two binary datastreams into two baseband waveforms that are modulated onto
the two components of the carrier. A single datastream can be modulated into QPSK,
two bits at a time, with alternate bits going onto the in-phase and quadrature carrier
components. With QPSK, two bits are transmitted in a time interval of duration T , and
the average time per bit Tb is given by Tb = T/2.
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Any passband waveform can be presented as a complex baseband waveform, so
we can view a QPSK waveform as a single complex baseband waveform. Then the
modulation is

c(t) =
∞∑

�=−∞
a�s(t − �T )

where

a� =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(1 + j)A if the �th bit pair is 11
(1 − j)A if the �th bit pair is 10

(−1 + j)A if the �th bit pair is 01
(−1 − j)A if the �th bit pair is 00.

This may also be expressed by using the notation of the impulse function as

c(t) =
[ ∞∑

�=−∞
a�δ(t − �T )

]
∗ s(t).

This factorization makes evident the role of the complex amplitudes a� in representing
the data and the role of the pulse s(t) in creating a continuous-time waveform suitable
for the channel.

Each pair of data bits defines a point in the complex plane. These four complex
points, shown in Figure 5.12, form a simple example of what is known as a complex
signal constellation. This constellation is called the four-ary PSK signal constellation,
or the QPSK signal constellation. The QPSK waveform can be visualized in terms of
the functional modulator shown in Figure 5.13. Bit pairs are mapped into a stream
of complex impulses, with complex amplitudes (±1 ± j)A. The stream of complex
impulses is then passed through a filter with an impulse response s(t) to form the
complex waveform. The waveform itself is a complex function of time and is somewhat
difficult to visualize. It consists of a stream of pulses; each pulse can be at one of
four possible phases. The pulses could be Nyquist pulses, such as those shown in

Im

Re

Figure 5.12. The QPSK signal constellation.
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Figure 5.13. Functional description of a QPSK modulator.

Figure 2.11. Then the complex waveforms would have a complicated phase history.
The real and imaginary components of c(t) will each be as described by the eye diagram
of Figure 2.12.

In QPSK using rectangular pulses, the phase angle can change by multiples of 90◦
between one time interval and the next. Because rectangular pulses, in practice, do not
have perfectly sharp edges, the complex envelope of the waveform will pass through
zero amplitude when the phase changes by 180◦. An alternative method of using rect-
angular pulses, called offset QPSK (OQPSK), delays the quadrature waveform by half
a pulse width so that the phase angle only changes by 90◦ at any given time. The
waveform is then written

c(t) =
∞∑

�=−∞
a2�s(t − �T ) + j

∞∑
�=−∞

a2�+1s(t − �T − T/2)

where

a� =
{

A if the �th data bit is a one
−A if the �th data bit is a zero.

The time T is the duration of a pair of bits. Expressed in terms of bit time, Tb = T/2,
the equation becomes

c(t) =
∞∑

�=−∞
a2�s(t − 2�Tb) + j

∞∑
�=−∞

a2�+1s(t − (2� + 1)Tb).

An alternative way of writing the OQPSK waveform is

c(t) =
∞∑

�=−∞
b�s(t − �Tb)
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Figure 5.14. Trellis for OQPSK modulation.

where now the b� are purely real numbers equal to a� when � is even, and are purely
imaginary numbers equal to ja� when � is odd. If s(t) is a rectangular pulse of duration
2Tb, the waveform c(t) will take the values (±A ± jA) because s(t) has duration 2Tb.

Because of the time offset, OQPSK cannot be described simply in terms of choosing
a point of a signal constellation. However, if a rule is imposed to constrain the choice
of the constellation point as a function of the previous point, the OQPSK waveform can
be viewed in terms of a signal constellation. This means that the encoder is a finite-state
machine. When taking this point of view, it is simpler to think of the data as modulated
into the waveform in a different way that can be represented by a trellis.

In Figure 5.14, we show the trellis for OQPSK. There are four nodes in each column,
corresponding to the four points in the QPSK signal constellation. At even bit times,
only the imaginary component can change, and this is reflected in the destination of
the path leaving each node. Similarly, at odd bit times, only the real component can
change. The sequence of states through which a path passes defines a sequence of
complex numbers that specifies the OQPSK waveform.

5.5 Multilevel signaling at passband

Now we turn attention to methods that transmit multiple bits at one time within a narrow
bandwidth by modulating the complex amplitude of a single pulse s(t). Any of the signal
constellations on the real line that were shown in Chapter 2 (in Figure 2.6) can be used
to define a set of signal amplitudes for the in-phase modulation and also a set of signal
amplitudes for the quadrature modulation. If the signaling alphabets are binary on each
component, and the sample times are synchronized on the two axes, then this is QPSK.
We have seen that QPSK can be represented as four points in the complex plane. More
generally, a q-ary signal constellation on each modulation component becomes a set of
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q2 points in the complex plane, arranged in a q by q grid. Figure 5.15 shows the cases
where q equals 2, 4, and 8. These are signal constellations in the complex plane with 4,
16, and 64 points. Signaling with these constellations is called quadrature amplitude
modulation or QAM.

Viewing the signal constellation in the complex plane immediately suggests that
other sets of points of the complex plane, not necessarily in a rectangular array, can
also be used as signal constellations for passband waveforms. An example of a sig-
nal constellation that is not a rectangular array is shown in Figure 5.16. This signal
constellation is known as eight-ary PSK .

Definition 5.5.1 An M-ary complex signal constellation S is a set of M points in the
complex plane.

cm = cmR + jcmI m = 0, . . . , M − 1.

Usually M = 2k for some integer k.

Figure 5.17 shows several examples of complex (or two-dimensional) signal
constellations.

The average energy per symbol of the signal constellation is

Ec = 1

M

∑
m

[c2
mR + c2

mI ].

4-ary PSK 16-ary 64-ary

Figure 5.15. Signal constellations for quadrature-amplitude modulation.

8-ary PSK

Figure 5.16. A signal constellation for phase-shift keying.
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8-ary QAM

8-cross QAM 32-cross QAM

32-ary QAM

Figure 5.17. More QAM signal constellations with amplitude and phase.

The average energy per bit of the signal constellation is

Eb = Ec/log2M

= 1

k
Ec.

The minimum distance of the signal constellation is defined as the smallest euclidean
distance between any two distinct points in the signal constellation. That is,

dmin = min
m�=m′[(cmR − cm′R)2 + (cmI − cm′I )

2] 1
2 .

The size of a signal constellation will interest us, and also the relative arrangement
of the points. Therefore we may also judge a signal constellation by the figure of merit
ρmin given by ρ2

min = d2
min/Eb and called the normalized minimum distance of the

signal constellation. The normalized minimum distance is defined such that BPSK and
QPSK have a normalized minimum distance of 2. Other signal constellations must have
a normalized minimum distance of less than 2. In the next chapter, we shall see that
the probability of demodulation error in gaussian noise depends on the structure of the
signal constellation primarily through the minimum distance. With Eb held constant,
the probability of demodulation error depends on the normalized minimum distance.
Therefore two signal constellations with the same number of points are compared, in
part, by a comparison of their normalized minimum distances.
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To use a 2k -ary signal constellation, each complex point of the constellation is
assigned to represent one k-bit binary symbol. The modulator breaks the incoming
datastream into a stream of k-bit symbols. The �th data symbol is mapped into the
assigned point a� = a�R + ja�I of the complex signal constellation {c0, c1, . . . , cM −1}.
Then a� is used as the complex amplitude of the pulse s(t −�T ). The complex baseband
waveform is

c(t) =
∞∑

�=−∞
a�s(t − �T ).

This waveform, called a quadrature amplitude modulation (QAM) waveform, transmits
k bits in time T by using the 2k -point complex signal constellation, as is shown in
Figure 5.18. The complex waveform c(t), if s(t) is a Nyquist pulse, neatly passes
through a point of the signal constellation at each sampling instant. The pulse s(t) used
to form the QAM waveform is a real pulse, and if s(t) is a Nyquist pulse, there is no
intersymbol interference. There would be no change in the formal structure if the pulse
s(t) were complex, but there seems to be no reason to use a complex pulse.

The real and imaginary parts of c(t) form the in-phase and quadrature modulation
components. The transmitted passband waveform is

c̃(t) =
[ ∞∑

�=−∞
Re[a�s(t − �T )]

]
cos 2π f0t −

[ ∞∑
�=−∞

Im[a�s(t − �T )]
]

sin 2π f0t.

T

Time

Figure 5.18. Sixteen-ary quadrature amplitude modulation.
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Because the pulse s(t) is a real pulse, this passband waveform can be rewritten as

c̃(t) =
∞∑

�=−∞
[a�R cos 2π f0t − a�I sin 2π f0t]s(t − �T ).

The reorganization of the equation suggests that the pulse shape s(t) can be imposed
after the passband structure is formed. Thus, for example, s(t) might even be formed
as the convolution of two pulses, one pulse introduced at complex baseband and the
second introduced by a passband filter so that the composition of the two pulses is the
actual baseband pulse s(t).

5.6 Power density spectra of passband waveforms

The power density spectrum of a stationary passband random process will be studied
by reference to the power density spectrum of its complex baseband representation.
The power density spectrum of a complex data waveform such as QPSK is determined
primarily by the spectrum |s(t)|2 of the pulse s(t), as was shown for real baseband
waveforms in Section 2.9. Just as for real baseband waveforms, c(t) is not stationary
so it does not have a power density spectrum. To make the waveform stationary, we
replace the expression for c(t) by

c(t) =
∞∑

�=−∞
a�s(t − �T − α)

where α is a random variable uniformly distributed on [0, T ], and a� for � =
0, ±1, ±2, . . . is a series of independent, identically distributed, complex random vari-
ables taking values in some complex signal constellation. Now the waveform is a
stationary random process because the ensemble of waveforms is invariant under a
translation of the time origin.

Theorem 5.6.1 Let

c(t) =
∞∑

�=−∞
a�s(t − �T − α)

where the a� are independent, identically distributed, complex random variables of zero
mean and variance 2, and α is a random variable uniformly distributed over [0, T ] and
independent of the a�. Then c(t) is stationary with power density spectrum

�c( f ) = 2

T
|S( f )|2.
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Proof The random process is stationary because the ensemble is independent of the
time origin. The autocorrelation function of the complex random waveform is

R(τ ) = E[c(t)c∗(t + τ)]

= E

⎡⎣ ∞∑
�=−∞

∞∑
�′=−∞

a�a∗
�′s(t − �T − α)s∗(t + τ − �′T − α)

⎤⎦ .

Move the expectation inside the sum and recall that the random variables a� and α are
independent to obtain

R(τ ) = 2
∞∑

�=−∞

∞∑
�′=−∞

E[a�a∗
�′ ]E[s(t − �T − α)s∗(t + τ − �′T − α)]

=
∞∑

�=−∞
E[s(t − �T − α)s∗(t + τ − �T − α)]

because E[a�a∗
�′ ] = δ��′E[(±1 ± j)(±1 ∓ j)] = 2δ��′ . Moreover, because the delay is

uniformly distributed, we can write

E[s(t − �T − α)s∗(t + τ − �T − α)] = 1

T

∫ T

0
s(t − �T )s∗(t + τ − �T )dt.

This brings us to the final string of equalities

R(τ ) = 2

T

∞∑
�=−∞

∫ T

0
s(t − �T )s∗(t + τ − �T )dt

= 2

T

∞∑
�=−∞

∫ (�+1)T

�T
s(t)s∗(t + τ)dt

= 2

T

∫ ∞

−∞
s(t)s∗(t + τ)dt,

which is independent of t. Therefore c(t) is indeed stationary. The Fourier transform
of R(τ ) is

�c( f ) = 2

T
|S( f )|2,

the power density spectrum. �
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5.7 Minimum-shift keying

An often preferred variation of OQPSK is obtained by taking s(t) to be a half-cosine
pulse

s(t) =
{

cos π t/T |t| ≤ T/2
0 otherwise.

This version of OQPSK is called minimum-shift keying (MSK). A representation of a
minimum-shift keying signaling waveform as a complex function of time is shown in
Figure 5.19. The construction of an MSK waveform as a passband waveform is shown
in Figure 5.20.

An MSK waveform

c(t) =
∞∑

�=−∞
a2�s(t − 2�Tb) + j

∞∑
�=−∞

a2�+1s(t − (2� + 1)Tb)

has a constant amplitude |c(t)| = A. To see this, notice that when offset by T/2, the
half-cosine pulse becomes a half-sine pulse

s(t − T/2) = sin π t/T 0 ≤ t ≤ T .

Choosing A = 1, each a� is either +1 or −1. Therefore we can write c(t) as

c(t) = ± cos π t/T ± j sin π t/T

Imaginary

Real

Time

Figure 5.19. The MSK waveform at complex baseband.
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Carrier

Sine Modulation

Cosine Modulation

Sum

Figure 5.20. The MSK waveform at passband.

where the signs keep changing according to the a�. Therefore

|c(t)|2 = (± cos π t/T )2 + (± sin π t/T )2

= 1.

Because it has no amplitude fluctuation, the MSK waveform is relatively insensitive
to a memoryless nonlinearity in the transmit amplifier. This is the major reason that
MSK is popular. A second reason why it is preferred is that the half-cosine pulse has
spectral sidelobes that fall off in amplitude as f −2 (or as f −4 in spectral power). The
power density spectrum of an MSK waveform inherits the spectrum of the individual
pulse. A comparison of the MSK spectrum with that of OQPSK and BPSK using
rectangular pulses is shown in Figure 5.21.

Alternatively, the MSK waveform can be viewed as a special form of FSK. To develop
this representation, the complex baseband MSK waveform is rewritten using Euler’s
formula as

c(t) = ± cos
π t

2Tb
± sin

π t

2Tb

= ±e±j2π(t/4Tb)
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Figure 5.21. Power spectra for binary signaling.

where the signs remain constant during the interval �Tb ≤ t < (� + 1)Tb, and the
signs change at the start of the next such interval as determined by the next data bit.
Thus within each interval, we see a frequency of ±(1/4Tb). Because the phase changes
linearly with time, it is possible to rewrite c(t) as

c(t) = e jθ(t)

where

θ(t) = θ� ± 2π
t − �Tb

4Tb
�Tb ≤ t < (� + 1)Tb

as can be seen from Figure 5.22. Each phase sample θ(�Tb) = θ�, expressed in degrees,
equals either 0◦ or 180◦ whenever � is even, and equals either 90◦ or 270◦ whenever
� is odd. The actual values depend on the datastream being modulated. The plus or
minus sign in the second term of θ(t) is chosen according to how θ� must change to
become θ�+1. Figure 5.22 shows the set of all such phase functions θ(t) superimposed
on a common graph, which should be interpreted modulo 360◦.

As a passband waveform, c(t) is

c(t) = cos(2π( f0t ± t/4Tb ∓ 1/4) + θ�)

= cos(2π( fit ∓ 1/4) + θ�) �Tb < t ≤ (� − 1)Tb
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Figure 5.22. MSK phase trajectories.

for i equal to 1 or to 2 where

f1 = f0 + 1

4Tb

f2 = f0 − 1

4Tb
.

Any path through the graph in Figure 5.22 corresponds to a possible phase history; the
actual path is determined by the data. If we desire, we can map the data directly into the
phase history by using the alternative modulation rule at each node that a data bit zero
maps into an increasing phase corresponding to frequency f1, and a data bit one maps
into a decreasing phase, corresponding to frequency f2. This is the FSK modulation
rule. Mapping the data into the waveform by the FSK modulation rule will give an
MSK waveform, but not the same MSK waveform as when the data is mapped into
the waveform by the I and Q modulation rule in which the data bits directly define
the in-phase and quadrature components. Under the FSK modulation rule, the data bits
appear in the waveform in a different way than when mapped into the in-phase and
quadrature components. As long as the demodulator reads bits out of the waveform in
the same way that the modulator reads bits into the waveform, then it does not matter
which modulation rule is used. If the demodulator reads bits out of the waveform in a
different way than was used by the modulator, then the demodulated data will not be the
same as the original data. Conversion between the two forms by means of a precoder
or postcoder is necessary.

Of course, the demodulator could be designed to read the data out of the I and Q
samples in the same way that the data was read into the I and Q samples, but we
want to point out that there is no fundamental reason to avoid the combination of an
FSK demodulator with an I and Q modulator. Working through the relationship is an
excellent way of exploring the structure of an MSK waveform.
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Figure 5.23. Relationship between the I and Q format and the FSK format.
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Figure 5.24. The function of a precoder or postcoder.

Figure 5.23 gives an example of an MSK waveform produced by an I and Q mod-
ulator. The datastream specifies the polarities of the in-phase and quadrature pulses.
Also shown in Figure 5.23 is the phase history of that same MSK waveform annotated
with a data record that describes that phase history. Clearly, if the demodulator reads
the phase history, it will not produce the original data. However, the original data can
be recovered by a postcoder, as shown in Figure 5.24. Alternatively, if the modulator
anticipates the demodulation method, the data can be modified by a precoder prior
to modulation, as shown in Figure 5.24, so that it will be correct at the demodulator
output.

To design the postcoder, we will first represent the combined modulator/demodulator
as an equivalent logical transformation of the datastream. It should be clear that the
output of the demodulator depends only on the latest bit into the modulator and on the
immediately previous bit. Older bits will have no effect. In addition, the functional
dependence may be different for odd and even bit times. This motivates us to form
Table 5.1.
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Table 5.1. Bit time indices

Old Time Index Even Time Index

Old
Bit

New
Bit Frequency

Old
Bit

New
Bit Frequency

0 0 0 (up) 0 0 1 (down)
0 1 1 (down) 0 1 0 (up)
1 0 1 (down) 1 0 0 (up)
1 1 0 (up) 1 1 1 (down)

1

1

Serial Bit
Stream

(l and Q)

Serial Bit
Stream
(FSK)

a) l and Q to FSK Conversion

b) FSK to l and Q Conversion

Equivalent Logic

Equivalent Logic

0 Denotes High Frequency
1 Denotes Low Frequency

Odd Bits to In-phase
Even Bits to Quadrature

+

+ +

+

++

Figure 5.25. MSK data format conversion.

Each entry in the frequency column of the table is found by seeking an example of
that combination of bits described by the in-phase and quadrature bits in Figure 5.23.
An inspection of the table reveals that the relationship between the I and Q format and
the FSK format is simply an exclusive-or operation on the last two data bits, followed
by complementation at even time indices. An equivalent logic diagram is shown in
Figure 5.25, with the exclusive-or operation implemented as a modulo-two addition.
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The complementation is effected in the diagram by modulo-two adding the output of a
modulo-two counter to the data. In Figure 5.25b, binary logic is shown that will invert
the effect of the logic in part a of the figure. To verify this, observe that when the circuits
of part a and part b are cascaded, the effect of the modulo-two adders will cancel. The
remaining memory cells always contain the same value, and the modulo-two addition
of this value twice will cancel and have no effect. Consequently, the circuit in part b is
the postcoder that will return the data to its original form.

5.8 M-ary orthogonal signaling at passband

Now we turn attention to methods of passband signaling that do not satisfy a bandwidth
constraint. Just as for baseband waveforms, as discussed in Section 2.8, one can design
passband signaling waveforms that modulate multiple bits at a time using low power.
In this section, we shall study passband signaling techniques that make no attempt to
confine bandwidth but do reduce the energy per bit.

Definition 5.8.1 A complex M-ary orthogonal pulse alphabet is a set of M complex
functions sm(t), for m = 0, . . . , M − 1, having the properties of unit energy and
orthogonality, as described by∫ ∞

−∞
sm(t)s∗

n(t)dt =
{

1 m = n
0 m �= n

and∫ ∞

−∞
sm(t)s∗

n(t − �T )dt = 0 � �= 0.

Any M-ary alphabet, or family, of orthogonal baseband pulses or simplex baseband
pulses, as introduced in Section 2.8, can be modulated onto a carrier to produce an
M-ary alphabet of orthogonal passband pulses or an M-ary simplex pulse alphabet
at passband. Suppose that the set {sm(t) : m = 0, . . . , M − 1} forms an orthogonal
alphabet of real baseband pulses. Then the set {sm(t) cos 2π f0t : m = 0, . . . , M − 1}
forms an M-ary orthogonal alphabet of passband signaling pulses, provided that f0 is
large compared to any frequency contained in any sm(t). These orthogonal passband
pulses, formed in this way from baseband pulses, use only the in-phase modulation
component, but do not use the quadrature modulation component. More general ways
of constructing passband pulses for M-ary orthogonal signaling use the quadrature
modulation component as well. In the general case, one can use passband pulses of
the form

s̃m(t) = smR(t) cos 2π f0t − smI (t) sin 2π f0t
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where f0 is larger than the largest spectral frequency of the modulation components. A
set of M orthogonal pulses of this form, possibly with either smR(t) or smI (t) equal to
zero, is called an M-ary orthogonal passband pulse alphabet. These waveforms can be
expressed in the complex baseband form as

sm(t) = smR(t) + jsmI (t).

The passband pulses s̃m(t) and s̃m′(t) are orthogonal∫ ∞

−∞
s̃m(t)̃sm′(t)dt = 0

if and only if their complex baseband pulses sm(t) and sm′(t) are orthogonal∫ ∞

−∞
sm(t)s∗

m′(t)dt = 0.

The autocorrelation function of the pulse sm(t) is defined as

rmm(τ ) =
∫ ∞

−∞
sm(t)s∗

m(t + τ)dt,

and the cross-correlation function of sm(t) with sm′(t) is defined as

rmm′(τ ) =
∫ ∞

−∞
sm(t)s∗

m′(t + τ)dt.

Figure 5.26 illustrates how some of these correlation functions might look for a typical
family of orthogonal pulses. Specifically, Figure 5.26 shows the autocorrelation func-
tion of sm(t), which equals Ep at t = 0; the autocorrelation function of sm′(t), which

0

sm(t ) * sm* (–t ) sm�(t ) * sm* �(–t ) sm�(t ) * sm* (–t )

0 0

t t t

Figure 5.26. Some matched-filter outputs for an orthogonal family.
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Figure 5.27. A 32-ary orthogonal waveform using MSK pulses.

also equals Ep at t = 0; and the cross-correlation function of sm(t) and sm′(t), which
equals zero at t = 0.

Let M be a power of 2; M = 2k . To transmit a binary datastream using an M-ary
orthogonal alphabet, the datastream is broken into k-bit symbols, the �th such symbol
represents k data bits by the number m�, which is mapped into the pulse sm�

(t). The
transmitted waveform is

c(t) =
∞∑

�=−∞
sm�

(t − �T ).

In this way, the particular pulse contained in the waveform c(t) at the time �T conveys
the k bits of data that were transmitted at that time.

Figure 5.27 illustrates one example of an orthogonal signaling waveform at passband.
The figure suggests that all pulses of that waveform have the same amplitude profile,
and the uniqueness resides in the phase structure of the pulses. Each of the 32 pulses
in such an alphabet represents one of the 32 five-bit numbers. The pulses superficially
look the same, but the phase history within each pulse makes the 32 pulses actually
quite different.

We will design a set of M-ary pulses as an example of an orthogonal waveform
family. The following four sequences

a0 = (1, j, 1, j)

a1 = (1, j, −1, −j)

a2 = (1, −j, −1, j)

a3 = (1, −j, 1, −j)

are orthogonal sequences

3∑
�=0

am�a∗
m′� = 0.

Now choose a pulse s(t), which in this context is called a chip or a pulselet. Using
the real pulse s(t), and the four orthogonal sequences given earlier, we can form the
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following four pulses:

s0(t) = s(t) + js(t − T ) + s(t − 2T ) + js(t − 3T )

s1(t) = s(t) + js(t − T ) − s(t − 2T ) − js(t − 3T )

s2(t) = s(t) − js(t − T ) − s(t − 2T ) + js(t − 3T )

s3(t) = s(t) − js(t − T ) + s(t − 2T ) − js(t − 3T ).

The four new pulses will be orthogonal if the pulselet s(t) satisfies∫ ∞

−∞
s(t)s(t − �T )dt = 0

for all nonzero �. Any s(t) will do as the pulselet, provided s(t) ∗ s(−t) is a Nyquist
pulse.

We can modify this example, recalling the structure of an MSK waveform, to get
another attractive set of M-ary pulses that are not orthogonal, but are partially so. For
the pulselet s(t), choose the half-cosine pulse

s(t) =
{

cos π t/T |t| < T/2
0 |t| ≥ T/2

which we will space by T/2. This is not a Nyquist pulse at spacing T/2. Define the
four pulses

s0(t) = s(t) + js(t − T/2) + s(t − T ) + js(t − 3T/2)

s1(t) = s(t) + js(t − T/2) − s(t − T ) − js(t − 3T/2)

s2(t) = s(t) − js(t − T/2) − s(t − T ) + js(t − 3T/2)

s3(t) = s(t) − js(t − T/2) + s(t − T ) − js(t − 3T/2).

Each of these four pulses has the same amplitude profile, given by

|sm(t)| =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 t ≤ −T/2
cos π t/T −T/2 ≤ t ≤ 0

1 0 ≤ t ≤ 3T/2
cos π

(
t + T

2

)
/T 3T/2 ≤ t < 2T

0 2T < t.

Each pulse has sinusoidal-shaped rising and trailing edges and is constant in the middle.
Consequently, only the energy in the edges of the pulse is affected by a nonlinearity in
the transmitter.
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Even though the underlying sequences of amplitudes are orthogonal as sequences,
these four pulses might not form an orthogonal family of pulses. This is because the
pulselets are of width T and the spacing between pulselets is T/2, so in computing the
correlation∫ ∞

−∞
sm(t)s∗

m′(t)dt

one pulselet of the pulse sm(t) can overlap as many as three pulselets of the pulse sm′(t).
For example, for the correlation between s0(t) and s3(t), we have

∫ ∞

−∞
s0(t)s

∗
3(t)dt =

∫ ∞

−∞

[
s2(t) − s2(t − T/2) + s2(t − T ) − s2(t − 3T/2)

]
dt

+ j
∫ ∞

−∞
[s(t)s(t − T/2) + s(t − T/2)s(t − T ) + s(t − T )s(t − 3T/2)] dt

+ j
∫ ∞

−∞
[s(t − T/2)s(t) + s(t − T )s(t − T/2) + s(t − 3T/2)s(t − T )] dt.

All other terms are equal to zero. The reason that other terms, such as the integral of
s(t)s(t − T ), are not written in the equation is that these pulselets do not overlap, so
their product is zero.

In the first integral on the right, two of the four terms are equal to the pulselet energy
Es, and two are equal to the negative of Es, so that integral is zero. In the second and
third integrals, each term is j

∫∞
−∞ s(t)s(t − T/2)dt. Therefore we conclude that

∫ ∞

−∞
s0(t)s

∗
3(t)dt = 6j

∫ T/2

0
cos

π t

T
sin

π t

T
dt

= j3
T

π
= j

6

π
Es

= j
3

2π
Ep

where Es is the energy in each pulselet and Ep = 4Es is the energy in a pulse. The
cross-correlation between s0(t) and s3(t) is purely imaginary and has a magnitude equal
to 48 percent of the magnitude of the autocorrelation Ep.

For M equal to any power of two, an M-ary family of pulses – MSK pulses – can be
designed in this way. These families of MSK pulses are generally not orthogonal, but
they do satisfy the weaker condition

Re

[∫ ∞

−∞
sm(t)s∗

m′(t)dt

]
= 0.
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Even though they lack orthogonality, such families are in wide use – say for M = 32
or 64 – because the constant amplitude property of MSK pulses is desirable and, for
large M , such a family may be close to orthogonal, and the correlation can be made
small by the choice of code sequences.

5.9 Signal space

The task of designing a communication waveform can be formulated from an abstract
point of view by using the language of geometry. The geometric language develops
intuition because it suggests modes of visualization. Moreover the abstract setting can
often streamline the discussion of many topics. The geometric approach consists of
defining an abstract space as a set of points and also defining a distance between the
points of this space. The points of the space are the waveforms of finite energy that
satisfy the timewidth and bandwidth constraints. This space is called signal space, or
function space. In this setting, we can describe the task of designing a set of modulation
waveforms as the task of choosing a set of points within signal space that are sufficiently
far apart. A modulator then is a rule for mapping data sequences into this set of points
of signal space.

The energy of any waveform w(t) is given by

Ew =
∫ ∞

−∞
|w(t)|2dt.

For a waveform of infinite duration, this energy would usually be infinite. We shall
usually study only signaling waveforms of finite energy. For example, consider a BPSK
waveform of finite duration

c(t) =
n−1∑
�=0

a�s(t − �T ),

using the pulse s(t) such that the filtered pulse r(t) = s(t) ∗ s(−t) is a real Nyquist
pulse. Then the energy in the waveform is

Ew =
∫ ∞

−∞
c2(t)dt

=
n−1∑
�=0

n−1∑
�′=0

a�a�′
∫ ∞

−∞
s(t − �T )s(t − �′T )dt

=
n−1∑
�=0

n−1∑
�′=0

a�a�′δ��′
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where δ��′ = 1 if � = �′, and otherwise δ��′ = 0. Consequently,

Ew =
n−1∑
�=0

a2
� .

The energy per bit is defined as Eb = Ew/n.
In the set of all real square-integrable functions, the euclidean distance between two

functions c(t) and c′(t) is defined as

d(c(t), c′(t)) =
√∫ ∞

−∞
|c(t) − c′(t)|2dt.

The euclidean distance between c(t) and the zero signal is the norm of c(t), denoted
‖c(t)‖. The square of the norm ‖c(t)‖ is equal to the energy in c(t). The distance in
signal space satisfies both the Schwarz inequality and the triangle inequality.

For an example of distance, within the set of all BPSK waveforms of blocklength n,
consider the two waveforms

c(t) =
n−1∑
�=0

a�s(t − �T )

and

c′(t) =
n−1∑
�=0

a′
�s(t − �T )

where a� = ±A and a′
� = ±A. Suppose, again, that s(t) ∗ s∗(−t) is a Nyquist pulse.

The squared euclidean distance between c(t) and c′(t) is given by

d2(c(t), c′(t)) =
∫ ∞

−∞
|c(t) − c′(t)|2dt

=
n−1∑
�=0

n−1∑
�′=0

(a� − a′
�)(a�′ − a′

�′)
∫ ∞

−∞
s(t − �T )s∗(t − �′T )dt

=
n−1∑
�=0

n−1∑
�′=0

(a� − a′
�)(a�′ − a′

�′)δ��′

=
n−1∑
�=0

(a� − a′
�)

2 = d2(a, a′).

For such a case, we can speak interchangeably of the euclidean distance between two
waveforms in signal space, or of the euclidean distance between two sequences of
discrete symbols from the signal constellation.
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What is the smallest euclidean distance between any two such BPSK waveforms?
There will be pairs of data sequences that differ in only a single bit position. For such
sequences,

d2(c(t), c′(t)) = (A + A)2

or

d(c(t), c′(t)) = 2A.

We say that the minimum distance of this set of BPSK waveforms is 2A. This means
that there is at least one pair of waveforms separated by a euclidean distance of 2A, and
there is no pair of distinct waveforms spaced more closely than 2A. In fact, there are a
great many pairs of waveforms separated by distance 2A; these are the pairs differing
only in a single bit position.

In general, the minimum distance, denoted dmin, of a set of waveforms is the smallest
euclidean distance between any pair of distinct waveforms in the set,

dmin = min
c(t)�=c′(t)

d(c(t), c′(t)).

The normalized minimum distance is ρmin = dmin
/√

Eb . The minimum distance
between any two BPSK waveforms is 2A, and the normalized minimum distance is 2.
We shall see eventually that the performance of the set of communication waveforms
is, in large part, an immediate consequence of the minimum distance. We should seek
sets of waveforms that have large minimum distances. Every pair of waveforms should
be far apart in the sense of euclidean distance.

Let v(t) and v′(t) be two real waveforms, each with energy Ew. How far apart can
we make them?

d2(v(t), v′(t)) =
∫ ∞

−∞
[v(t) − v′(t)]2dt

= Ew − 2
∫ ∞

−∞
v(t)v′(t)dt + Ew.

This implies that we should make the correlation negative and as large as possible to
make the distance large. The best we can do is to choose v′(t) = −v(t) in which case

d2(v(t), v′(t)) = 4Ew.

However, if there are a great many such waveforms to be chosen, we will want every
pair of them to be separated by a large distance. We know that we can make every
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pairwise correlation negative by using a simplex pulse alphabet, but for large M , the
negative correlation is not very large. For a simplex family of waveforms,

d2
min = 2

(
1 + 1

M

)
Ew.

When M is large, we can do nearly as well if the pairwise correlation is equal to
zero. Then the family of waveforms is an orthogonal pulse alphabet, and the squared
euclidean distance between any two waveforms is 2Ew.

There are two elementary examples of such families of orthogonal pulses: the families
of orthogonal sinusoids, and the families of orthogonal sinc pulses. Given a frequency
band [−W0, W0], we have the sinc pulses as Nyquist pulses within that band

s(t − �T ) = sin 2πW0(t − �T )

2πW0(t − �T )

where 2W0T = 1. These pulses are pairwise orthogonal, all with the same energy.
Within a long duration T0, there are about 2T0W0 of these pulses, though to get this
many, we must allow the sidelobes of the sinc pulse to extend outside of the specified
interval. Thus, although the bandwidth constraint is precisely satisfied, the timewidth
of this orthogonal alphabet is only loosely constrained.

Alternatively, given a long interval of time, say from −T0/2 to T0/2, we can specify
the orthogonal sinusoids

s1(t) = sin 2π
�

T0
t − T0/2 ≤ 0 ≤ T0/2

s′
1(t) = cos 2π

�

T0
t − T0/2 ≤ 0 ≤ T0/2

where 1/T0 ≤ W0 so that the bandwidth constraint is satisfied. Again, there are 2T0W0

waveforms in this alphabet of orthogonal waveforms, and they can be normalized so
that each has energy Ew. Because the time duration is restricted, these sinusoids have
spectra that are sinc functions in the frequency domain. Again, although the timewidth
constraint is precisely satisfied, the bandwidth of this family is only loosely constrained.

As we have seen, there are practical limits on the use of an orthogonal (or sim-
plex) family because the required bandwidth would be exponential in the number of
bits transmitted. How many orthogonal waveforms with energy Ew can we find that
simultaneously fit within the time interval [−T0/2, T0/2] and the frequency interval
[−W0, W0]? The properties of the Fourier transform tell us that there are no such wave-
forms; a waveform cannot be simultaneously time-limited and band-limited. However,
if the product T0W0 is large and we are allowed to fudge a little in exactly fitting the
time and frequency intervals, then there are approximately 2T0W0 waveforms in any
set of orthogonal waveforms that fit the time and bandwidth constraints. We can choose
these waveforms so that each has energy Ew.
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We can now see that, though an orthogonal pulse alphabet can be used as a set of
building blocks to construct a family of waveforms, the communication waveforms
themselves cannot be orthogonal, even approximately, on an arbitrarily long interval if
the data rate is to be maintained. This is because the number of orthogonal waveforms
can increase only linearly with time, whereas to transmit at a rate of R bits per second,
2RT0 waveforms are needed in time T0.

In practice, because bandwidth is limited, we can choose an M-ary orthogonal alpha-
bet with M fixed. The number of bits in a message is allowed to grow without limit by
concatenating a sequence of M-ary symbols to form the waveform

c(t) =
∞∑

�=−∞
sm�

(t − �T ).

At each time �T , any of the M symbols may be chosen. The minimum distance of this
waveform family occurs for two waveforms c(t) and c′(t) that differ in only a single
symbol, say at � = 0. Then

d2
min =

∫ ∞

−∞
|sm0(t) − sm′

0
(t)|2dt

= 2Ep.

Thus, the minimum distance for orthogonal signaling is established by the energy in a
single symbol, not by the energy in the entire waveform.

Problems for Chapter 5

5.1. Show that the amplitude and phase of a passband waveform are the same as the
amplitude and phase of the complex representation of that passband waveform.
If the phase of the passband waveform is offset by φ, how does the phase of
the complex representation change? If the reference frequency of the passband
waveform is changed by f , what happens to the complex representation?

5.2. The legacy telephone channel can be characterized as an ideal passband channel
from 300 Hz to 2700 Hz. Choose a signal constellation and a symbol rate to
obtain a 9600-bits/second telephone line modem. (See Problem 2.7.) This time
use a 32-ary signal constellation and 1920 symbols per second. Use a pulse
shape s(t) = sinc(at)sinc(bt) where one sinc function is related to the 1920
symbol rate and the other is adjusted to fill out the channel bandwidth. Explain
what the use of s(t) does to the sidelobes. Estimate at what width the pulse
can be truncated if a 1 percent interference is allowed between one pulse and
another at the output of the ideal channel.
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5.3. Show that, when using an MSK waveform with an I and Q modulator and
an FSK demodulator, one can use either a precoder or a postcoder to obtain
consistency between the data sent and the data received, but the use of a post-
coder leaves an ambiguity in the datastream if the demodulation does not begin
with the very first bit. Show that, when using an FSK modulator and an I and
Q demodulator, the use of a precoder causes an ambiguity. In each case that
uses a postcoder, describe what happens at the output of the postcoder if the
demodulator makes a single bit error.

5.4. Given the passband waveform v(t) such that V ( f ) = 0 if |(| f | − f0)| ≥ W/2,
define VR( f ) and VI ( f ) so that

v(t) = vR(t) cos 2π f0t − vI (t) sin 2π f0t.

5.5. An MSK waveform transmits 1/Tb bits per second at carrier frequency f0.
Another communication system operates in a narrow band of W hertz (W small
compared to 1/Tb) at carrier frequency f0 − 10/Tb (see illustration).

f0

f
f0

Tb
– 10

W

A cosine pulse of width T = 2Tb has Fourier transform

S( f ) = 2T cos πTf

π(4T 2f 2 − 1)
.

a. Give a rough bound on the percentage of power of the MSK waveform that
will show up as interference with the second communication system.

b. To satisfy settlement of a lawsuit brought by the owner of the second commu-
nication system because of interference, an ideal passband filter is inserted
between the MSK modulator and the transmitting antenna. What do you
expect this to do to the MSK waveform? Qualitatively discuss (and sketch)
what happens to an individual bit pulse and the interference between bit
pulses.

5.6. An I and Q modulator for minimum-shift keying requires that the two baseband
modulators be precisely matched in time delay and carrier phase. At very high
data rates, perhaps above 100 Mbps, this can be difficult. An alternative, and
somewhat subtle, MSK modulator is the serial MSK modulator. It consists of
a BPSK waveform (with rectangular pulses of bit duration Tb) modulated onto
an offset carrier frequency f0 −1/4Tb, which is then passed through a passband
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filter with impulse response

g(t) =
{

sin 2π( f0 + 1/4Tb)t 0 ≤ t ≤ Tb

0 otherwise.

(Notice that the apparent frequency of the passband filter and the frequency of
the BPSK waveform are offset in opposite directions.)
a. Sketch a functional block diagram of the serial MSK modulator.
b. Prove that the serial MSK modulator does indeed give an MSK waveform.

(Hint: Work with only the first bit, and show in the Fourier transform domain
that the right Fourier transform is obtained, then extend this to the other bits.)

c. What is the relationship between the bit stream that is modulated into the
BPSK waveform and the apparent datastream in the I and Q components of
the final MSK waveform?

5.7. Design a serial demodulator for an MSK waveform by reasoning that one must
reverse the modulator structure given in Problem 5.6.

5.8. A cubic nonlinearity is given by

y = x + Ax2 + Bx3.

Show that if the passband signal

x(t) = cos[2π f0t + θ(t)]

is passed through the nonlinearity, the output signal y(t) in the vicinity of f0 is
a scaled version of x(t), while if the passband signal

x(t) = a(t) cos[2π f0t + θ(t)]

is passed through the nonlinearity, the output signal in the vicinity of f0 is not
a scaled version of x(t) unless a(t) is a constant. Specifically, show that the
error term near f0, when expressed in the frequency domain, is proportional to
A( f ) ∗ A( f ) ∗ X ( f ). Sketch this if θ(t) = 0 and A( f ) is a rectangle.

5.9. A passband MSK waveform, whose carrier frequency f0 is large, is amplified
in a high-power transmitter tube prior to transmission. Because of a desire to
press the transmitted power to its maximum, the tube is operated in a saturating
mode with output

d(t) = sgn [c(t)]

when c(t) is the passband input, where sgn (x) = ±1 according to the sign of
x. This form of saturation is called a (passband) hardlimiter.
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a. Use the Fourier series expansion of a square wave to write d(t) in the form

d(t) = 4

π

∞∑
k=0

(−1)k cos(2k + 1)(2π f0t + θ(t))

2k + 1
.

b. Show that, except for an apparent loss in Eb, an MSK demodulator that
receives only the component of d(t) in the vicinity of f0 will be unaware of
the hardlimiter in the modulator.

c. What is the loss in Eb (expressed in decibels)?
d. Is the received energy more or less than would be received if a linear trans-

mitter tube were used with gain adjusted so that the signal has the same peak
amplitude as above?

e. The nonlinearity acting on the carrier does “splatter” energy into the har-
monics of the carrier frequency. How much energy is splattered into each
harmonic? Why is it important to keep this splattered energy small? Com-
ment on the possible role of the transmit antenna in determining the radiated
splatter energy.

5.10. a. Show that the “in-phase” modulated waveform

c(t) = cR(t) cos 2π f0t

is completely determined by its spectrum C( f ) at those frequencies f
satisfying | f | ≥ f0. That is, if

C ′( f ) =
{

C( f ) if | f | ≥ f0
0 if | f | < f0,

then c(t), in principle, can be exactly recovered from the “single-sideband”
waveform c′(t).

b. Show that this is not true for the fully modulated waveform

c(t) = cR(t) cos 2π f0t − cI (t) sin 2π f0t.

(This shows why single-sideband modulation is not important for modern
digital communication systems. To halve the bandwidth, it is easier to divide
the data between cR(t) and cI (t) and use a fully modulated waveform than
it is to put all the data in cR(t) and then use a single-sideband waveform.
Double-sideband, suppressed-carrier, quadrature-amplitude modulation is
more convenient to use than is single-sideband amplitude modulation,
especially for digital communications.)

5.11. Prove that if two passband waveforms, s̃m(t) and s̃m′(t) are orthogonal, then their
complex baseband representatives sm(t) and sm′(t) are orthogonal also. Explain
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the circumstances under which the converse fails to be true. If two passband
waveforms s̃m(t) and s̃m′(t) are orthogonal, will they remain orthogonal if the
carrier of s̃m′(t) is shifted by θ?

5.12. A sixteen-ary complex signal constellation is sketched below.

By using the perpendicular bisectors of the lines between points of the constel-
lation, sketch the decision regions for this constellation. Prove that an arbitrary
point v can be assigned to its proper region by finding the i that minimizes the
set of distances d(v, ci) = √(vR − cRi)2 + (vI − cIi)2.

5.13. What is the appropriate definition of a complex Nyquist pulse? Does this gener-
alization of a Nyquist pulse depend on the notions of coherent and noncoherent
that are given in Chapter 6? Is the notion of a complex Nyquist pulse ever
useful?

5.14. Which of the following two sixteen-ary signal constellations has the largest
minimum distance if the axes are scaled so that both have the same average
energy per bit?

5.15. A signal constellation for sixteen-ary quadrature-amplitude modulation (QAM)
is as follows:

Q

f



173 Problems

a. If the information rate is 100 Mbps, what is the channel symbol rate?
b. What amplitudes and phases will be seen in the waveform?
c. Assign four data bits to each point of the signal constellation such that

adjacent points (horizontally or vertically) differ in only one bit.
d. Prove that the in-phase and quadrature channels can be processed indepen-

dently if the noise is bandlimited gaussian noise.
e. Partition the plane with the decision regions for which, if the complex number

v in the mth decision region is received, the demodulator decides that the
mth point of the signal constellations was transmitted.

5.16. A signal constellation for a sixteen-ary PSK is as follows

Q

f

a. Sketch the decision regions.
b. Label the points of the signal constellation with four data bits so as to

minimize error probability.
c. Would you prefer QAM or PSK on a channel with amplitude nonlinearities?
d. Would you prefer QAM or PSK on a channel with phase errors (phase noise)?
e. Would you prefer QAM or PSK on a channel with additive white gaussian

noise?
5.17. Two four-ary complex signal constellations in the complex plane are shown in

the following illustration:

In the first signal constellation, three of the points are equispaced on a circle of
radius r1 about the origin. In the second, four points are equispaced on a circle
of radius r2 about the origin. These two complex signal constellations are used
to signal in additive white gaussian noise.
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a. Sketch a demodulator for each signal constellation.
b. For the two constellations, find (union bound) expressions for the probability

of bit error pe as a function of Eb/N0.
c. What is the (approximate) ratio of r1 to r2 if pe is to be the same for both

constellations?
d. Now suppose that the gaussian-noise power is negligible, and the carrier

phase reference is in error by an error angle of θe where θe is a random
variable that is uniform on the interval

[−π
3 , π

3

]
. Give an expression for pe.

e. What are the advantages and disadvantages of the two signal constellations?
f. Suppose that the power of the gaussian noise is not negligible, and the carrier

phase reference is in error as described in part d. Using part b and part d
to form asymptotes, sketch graphs of pe versus Eb/N0 for the two signal
constellations.

5.18. An eight-ary modulation scheme known as π/4-QPSK uses two QPSK signal
constellations offset by 45◦ as shown in the illustration

Data is differentially encoded, two bits at a time as

00 → +45◦

01 → +135◦

10 → −45◦

11 → −135◦.

What is the relationship between pe and Eb/N0? Does this depend on the choice
of demodulator (differential or coherent)? How does the power density spectrum
compare with QPSK?

5.19. The “MSK pulses” were defined as a nonorthogonal M-ary pulse alphabet in
Section 5.8. Prove that the energy in each pulse is the sum of the energy in the
pulselets.

5.20. Prove or disprove the following: two complex baseband pulses s0(t) and s1(t)
are orthogonal if and only if their passband representations are orthogonal.

5.21. a. Prove that the triangle inequality

d(c(t), c′(t)) + d(c(t), c′′(t)) ≥ d(c′(t), c′′(t))
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is equivalent to

‖c′(t)‖ + ‖c′′(t)‖ ≥ ‖c′(t) − c′′(t)‖.

b. Prove that the triangle inequality holds in signal space.

Notes for Chapter 5

The complex representation of a passband signal was introduced by Gabor (1946).
Complex envelopes and pre-envelopes of passband signals have been developed by
Arens (1957) and Dungundji (1958), and surveyed by Rice (1982).

The MSK waveform was introduced by Doelz and Heald (1961) and has been
described in many ways. Amoroso (1976) studied the relationships among the many
ways of viewing MSK, and Amoroso and Kivett (1977) showed how the waveform
can be generated by filtering binary PSK. A popular variant of MSK was introduced
by Murota and Hirada (1981). The design of signal constellations was discussed in
papers by Cahn (1959, 1960), Hancock and Lucky (1960), Lucky and Hancock (1962),
Campopiano and Glazer (1962), and others. Four-dimensional signal constellations
were studied by Welti and Lee (1974). They are related to the permutation codes
contributed by Slepian (1965).



6 Passband Demodulation

The demodulation of a passband waveform or of a complex baseband waveform uses
methods similar to those used to demodulate baseband signals. However, there are
many new details that emerge in the larger setting of passband or complex baseband
demodulation. This is because a complex baseband function (or a passband function)
can be expressed either in terms of real and imaginary components or in terms of
amplitude and phase. It is obvious that phase is meaningful only if there is an absolute
phase reference. A new set of topics arises when the modulator and demodulator do
not share a common phase reference. This is the distinction between coherent and
noncoherent demodulation. When the phase reference is known to the demodulator,
the demodulator is called a coherent demodulator. When the phase reference is not
known to the demodulator, that demodulator is called a noncoherent demodulator.

We begin the chapter with a study of the matched filter at passband. Then we use the
matched filter as a central component in the development of a variety of demodulators,
both coherent and noncoherent, for the passband waveforms that were introduced in
Chapter 5.

The methods for the demodulation of baseband sequences that were described in
Chapter 4 can be restated in the setting of passband waveforms. We shall prefer, how-
ever, the equivalent formulation in terms of complex baseband waveforms. It becomes
obvious immediately how to generalize methods of demodulation from sequences
of real numbers to sequences of complex numbers, so the chapter starts out with
a straightforward reformulation of the topic of demodulation. Soon, however, new
details for the complex case enter the discussion and the topic becomes richer and more
subtle.

6.1 The matched filter at passband

We are interested in passband pulses

s̃(t) = sR(t) cos 2π f0t − sI (t) sin 2π f0t
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received in passband noise

ñ(t) = nR(t) cos 2π f0t − nI (t) sin 2π f0t.

The signal received in noise, given by

ṽ(t) = s̃(t) + ñ(t)

= vR(t) cos 2π f0t − vI (t) sin 2π f0t

is a passband waveform as well.
A passband pulse s̃(t) is a real pulse and has finite energy. Thus, we are free to

ignore the passband property and to treat s̃(t) as any other pulse. The optimality of
the matched filter holds for any pulse of finite energy, so it holds equally well for any
passband pulse. We can simply treat the passband pulse (including the carrier), directly
by Theorem 3.1.2 and Corollary 3.1.3. Thus, the filter matched to s̃(t) is

g̃(t) = s̃(−t)

= sR(−t) cos(−2π f0t) − sI (−t) sin(−2π f0t)

= sR(−t) cos 2π f0t + sI (−t) sin 2π f0t

which is a passband filter matched to the entire passband pulse. This filter is illustrated
in Figure 6.1 for the case in which sI (t) = 0. In Figure 6.2, we show how this can be
alternatively implemented at complex baseband.

The passband pulse s̃(t) and the matched filter g̃(t) can be represented as complex
baseband pulses. Thus

s(t) = sR(t) + jsI (t)

g(t) = gR(t) + jgI (t).

sR (t )cos 2πf0t sR (–t )cos 2πf0t sR (t ) * sR (–t )  cos 2πf0t

Figure 6.1. A passband matched filter for a passband pulse.

x xsR(t ) cos 2πf0t sR(t ) *sR(–t )  cos 2πf0tsR(–t )

cos 2πf0t cos 2πf0t

Figure 6.2. A baseband matched filter for a passband pulse.



178 Passband demodulation

The complex-baseband matched filter is easily seen to be

g(t) = sR(−t) − jsI (−t)

= s∗(−t)

by inspection of the passband matched filter.
A concise expression for the complex-baseband signal output r(t) of the complex-

baseband matched filter g(t) uses the abbreviation of the convolution, given by

r(t) = s(t) ∗ s∗(−t).

In detail, this is

rR(t) + jrI (t)=[sR(t) ∗ sR(−t) + sI (t) ∗ sI (−t)] + j[sI (t) ∗ sR(−t) − sR(t) ∗ sI (−t)].

Notice that a purely real pulse has a purely real matched-filter output, and a purely
imaginary pulse also has a purely real matched-filter output. The imaginary component
at the output of the matched filter is produced by cross-convolution terms between the
real and imaginary components at the input. Furthermore, the imaginary component of
the output is always zero at t = 0. The imaginary component need not be computed if
only the value at t = 0 is of interest.

At the sampling instant t = 0, the output

r(0) =
∫ ∞

−∞
[s2

R(ξ) + s2
I (ξ)]dξ

equals the pulse energy, which is always real.
The complex signals with which we deal are contaminated by complex noise; this

is noise with both a real part and an imaginary part. Rather than deal with the total
noise power, we prefer to deal with the noise power per component of the complex
noise. With this convention, signal-to-noise analyses of real waveforms and of complex
waveforms share the same formulas.

6.2 Coherent demodulation of binary waveforms

The matched filter for a passband waveform can be implemented either at passband
or at complex baseband. Figure 6.3 shows a demodulator with the matched filter at
passband for the case in which the pulse s(t) is confined to the in-phase component
only. The passband demodulator must sample the cosine carrier of the matched-filter
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sR(–t ) cos 2πf0t

Polarity 
Detector 
at Time 

T

zero 
or 
one

Figure 6.3. A BPSK demodulator at passband.

s(–t ) cos 2πf0t

cos 2π(f0–f1)t

zero 
or 
one

Polarity 
Detector 
at Time 

T

Local 
Oscillator

x
v (t )

Figure 6.4. A BPSK demodulator at an intermediate frequency.

output

u(t) =
[ ∞∑

�=−∞
a�r(t − �T )

]
cos 2π f0t + n′

R(t) cos 2π f0t − n′
I (t) sin 2π f0t,

where r(t) = s(t) ∗ s∗(−t) is a Nyquist pulse. Set t = �T . Then

u(�T ) = a� cos 2π f0�T + n′
R(�T ) cos 2π f0�T − n′

I (�T ) sin 2π f0�T .

If f0T = 1, then cos 2π f0�T = 1 and sin 2π f0�T = 0, so this becomes

u(�T ) = a� + n′
R(�T ).

Thus we see a need for a relationship between the sampling interval T and the carrier
frequency f0. This requires that time be known to an accuracy that is small compared
to 1/f0. Otherwise, if the sampling instant is in error by δt, some of the signal will
be missed because cos 2π f0(�T + δt) �= 1. In the extreme case, when the sampling is
incorrectly performed at t = lT +1/4f0, the entire signal is lost because cos 2π f0t = 0.
A small timing error can be very destructive if f0 is large.

The problem here is that the time reference for sampling the output must be aligned
with the time reference of the carrier to within a small fraction of a carrier period. For
this reason, when f0 is very large, the passband demodulator might be performed, as
in Figure 6.4, at an intermediate frequency f1 that is much smaller than f0. To change
the carrier of the passband signal ṽ(t) from f0 to f1, a mixer is used to multiply ṽ(t) by
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zero 
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Figure 6.5. Local-replica demodulation of BPSK.

cos 2π( f0 − f1)t and to accept only the sideband at frequency f1. This process is called
“down-conversion”. The cosine wave entering the mixer is formed for this purpose
by a device called a local oscillator, where the term “local” refers to the fact that this
device is within the receiver itself; it is not a global reference. This alternative method –
moving the passband signal to an “intermediate” frequency – has not eliminated the
need for precise synchronization; it has only moved the need from the sampler where
it appears as a time synchronization, to the local oscillator, where it appears as a phase
synchronization and may be easier to deal with.

Sometimes a correlator is used, as shown in Figure 6.5, in place of a matched filter,
to compute the value

r(0) =
∫ ∞

−∞
v(t)s∗(t)dt.

This correlator is sometimes called a local replica correlator to underscore the fact that
s(t) is generated locally in the receiver as a copy, or replica, of the pulse s(t) sent by the
transmitter. This terminology evolved as a reminder that the two copies of s(t) might
be generated imperfectly, one in the transmitter and one in the receiver, and with some
mismatch. The replica pulse must be synchronized in time with the received pulse that
is contained in v(t). The local replica correlator may be more convenient to use in some
applications and less convenient in others. It is not convenient when the pulses have
overlapping tails, as do many of the Nyquist pulses we deal with, because then it is not
possible to time-share a single integrator.

Now we turn to the demodulation of a binary passband orthogonal signaling wave-
form, shown in Figure 6.6. This is similar to the demodulation of a binary baseband
orthogonal signaling waveform. The received waveform

v(t) =
∞∑

�′=−∞
[a�′̃s0(t − �′T ) + ā�′̃s1(t − �′T )] + ñ(t)
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Figure 6.6. Demodulation of binary FSK at passband.

is the input to two passband filters matched to the two passband orthogonal pulses,
given by

s̃0(t) = s0R(t) cos 2π f0t − s0I (t) sin 2π f0t

s̃1(t) = s1R(t) cos 2π f0t − s1I (t) sin 2π f0t,

and the output of each filter is sampled at time �T .
The output of filter s̃∗

0(−t) is

ũ0(t) =
∞∑

�′=−∞
a�′̃s0(t − �′T ) ∗ s̃∗

0(−t) + ā�′̃s1(t − �′T ) ∗ s̃∗
0(−t) + ñ′

0(t)

where

ñ′
0(t) = ñ(t) ∗ s̃∗

0(−t).

If s̃0(t) ∗ s̃(−t) is a Nyquist pulse and s̃0(t) is orthogonal to s̃1(t − �T ) for all �, then
the samples are

ũ0(�T ) = a� + n′
0�

where n′
0� = ñ′

0(�T ). Similarly, the samples of the second filter output are

ũ1(�T ) = ā� + n′
1�.

All output noise samples, n′
0� and n′

1� for � = . . . , −1, 0, 1, . . ., are uncorrelated and
are independent, identically distributed random variables if n(t) is gaussian, as a con-
sequence of Theorem 3.1.5. Either a� or ā� is equal to zero. The decision at the �th
bit time is based on which of u0(�T ) or u1(�T ) is larger. One way to test which of the
two filter outputs is larger is to test whether the difference in the two filter outputs is
positive or negative, as shown in Figure 6.6.
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s0R(–t ) cos 2πf0t
+s0t (–t )sin 2πf0t
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Figure 6.7. A coherent FSK demodulator at passband.
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Figure 6.8. A coherent FSK demodulator at baseband.

Figure 6.7 shows the coherent demodulator for binary orthogonal signaling – this
time with the matched filters written out at passband.

The development above can be immediately transferred to complex baseband simply
by replacing s̃0(t) and s̃1(t) by their complex baseband representation, s0(t) and s1(t),
given by

s0(t) = s0R(t) + js0I (t)

s1(t) = s1R(t) + js1I (t).

Figure 6.8 shows the coherent demodulator for binary orthogonal signaling with the
matched filters at complex baseband. Only the real part of the matched-filter output is
formed because only the real part contains a nonzero signal component at the sampling
instant.
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6.3 Noncoherent demodulation of binary waveforms

A passband waveform with an unknown phase is a waveform of the form

v(t) = vR(t) cos(2π f0t + θ) − vI (t) sin(2π f0t + θ).

The complex baseband representation of this waveform is

v(t) = [vR(t) + jvI (t)]e jθ .

The phase angle θ is unknown to the demodulator. It may be due to phase shifts in
the atmosphere, in the transmitter power amplifier, in the antennas, or in the front end
of the receiver. When f0 is very large, it is generally not possible to calibrate all of
these parts of the system. The receiver must either demodulate in the presence of an
unknown θ , which is called a noncoherent demodulator, or try to estimate θ from the
datastream itself and then use a coherent demodulator. In this section, we shall study
receiver strategies that demodulate a symbol without knowing the value of θ .

If the complex input to a complex filter is multiplied by e jθ , then, by linearity,
the output of the filter is also multiplied by e jθ and is otherwise unchanged. The
corresponding statement for a passband pulse must also be true, and is given by the
following theorem. The point of the theorem is that an undesired phase can be dealt
with either before the filter or after, as is convenient.

Theorem 6.3.1 If the phase of the carrier of a passband signal at the input to a
passband filter is shifted by θ , then the passband signal at the output of that passband
filter has the same modulation components as before but now modulated onto a carrier
that is also shifted by θ .

Proof A passband signal whose passband carrier has a phase offset by θ can be
written as

s̃′(t) = sR(t) cos(2π f0t + θ) − sI (t) sin(2π f0t + θ).

This signal is passed through the passband filter

g̃(t) = gR(t) cos 2π f0t − gI (t) sin 2π f0t.
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The filter output can be computed with the aid of Theorem 5.3.1 by representing the
passband signal as a complex baseband signal. In the complex representation, the phase
angle appears in a convenient way,

s′(t) = [sR(t) + jsI (t)]e jθ = s(t)e jθ

g(t) = [gR(t) + jgI (t)].

Then

s′(t) ∗ g(t) = [s(t) ∗ g(t)]e jθ

which means that the passband signal is

s̃′(t) ∗ g̃(t) = [̃s(t) ∗ g̃(t)]R cos(2π f0t + θ) − [̃s(t) ∗ g̃(t)]I sin(2π f0t + θ),

as in the statement of the theorem. �

The complex baseband signal multiplied by e jθ can be expanded as

v(t) = [vR(t) cos θ − vI (t) sin θ ] + j[vR(t) sin θ + vI (t) cos θ ],

and θ is unknown. In a simple waveform such as on–off keying, the quadrature modu-
lation is zero, and vR(t) is composed of a stream of pulses of the form As(t) in additive
noise. In the absence of noise, a single data bit at complex baseband leads to

v(t) = As(t) cos θ + jAs(t) sin θ

if a one is transmitted, and

v(t) = 0

if a zero is transmitted. The noncoherent receiver, shown in Figure 6.9, passes the
complex signal v(t) through a complex matched filter with real part and imaginary part
each matched to s(t) and then takes the square root of the sum of the squares of the real
part and the imaginary part to suppress the unknown phase angle.

In general, a fully modulated OOK waveform in the absence of noise is received as

v(t) =
⎡⎣ ∞∑

�′=−∞
a�′s(t − �′T )

⎤⎦ cos θ + j

⎡⎣ ∞∑
�′=−∞

a�′s(t − �′T )

⎤⎦ sin θ .
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Figure 6.9. A noncoherent OOK demodulator at baseband.

When this waveform is passed through the matched filter, the filter output is

u(t) =
⎡⎣ ∞∑

�′=−∞
a�′r(t − �′T )

⎤⎦ cos θ + j

⎡⎣ ∞∑
�′=−∞

a�′r(t − �′T )

⎤⎦ sin θ .

Whenever r(t) is a Nyquist pulse, the sample of u(t) at time �T , in the absence of
noise, is

u(�T ) = a� cos θ + ja� sin θ

= uR(�T ) + juI (�T ).

In the absence of noise,

a� =
√

(uR(�T ))2 + (uI (�T ))2

where a� is either zero or A depending on the value of the databit. In the presence of
noise, the demodulation decision is

â� =
{

A if
√

(uR(�T ))2 + (uI (�T ))2 ≥ 	

0 if
√

(uR(�T ))2 + (uI (�T ))2 < 	.

The calculation of the magnitude rather than the real part of the matched-filter output
is the feature of the noncoherent demodulator that distinguishes it from the coherent
demodulator. Later, we shall analyze the effect of noise in the received signal on this
operation. Then we shall see that the penalty for having a noncoherent demodulator is
that there is more noise sensitivity because both the real part and the imaginary part of
the complex noise play a role.
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Figure 6.10. A noncoherent OOK demodulator at passband.

Figure 6.10 shows a noncoherent demodulator of OOK implemented at passband.
The envelope detector of the passband waveform in Figure 6.10 plays the same role that
the square root of the sum of the squares of the complex waveform does in Figure 6.9.

The noncoherent demodulation of FSK is based on similar reasoning. Suppose that
s0(t) and s1(t) are real orthogonal pulses such that r0(t) and r1(t) are Nyquist pulses.
The received noisy signal at complex baseband is

v(t) =
∞∑

�′=−∞
[a�′s0(t − �′T ) + ā�′s1(t − �′T )]e jθ + nR(t) + jnI (t),

and the sampled outputs of the two filters matched to s0(t) and s1(t) are

u0(�T ) = a� cos θ + ja� sin θ + n′
0�,R + jn′

0�,I

u1(�T ) = ā� cos θ + jā� sin θ + n′
1�,R + jn′

1�,I .

If there were no noise, the pulse amplitudes a� and ā� could be recovered by taking the
square root of the sum of the squares of the components u0(�T ) or u1(�T ). When there
is noise, the magnitudes, given by

|u0(�T )| =
√

([u0R(�T )])2 + ([u0I (�T )])2

|u1(�T )| =
√

([u1R(�T )])2 + ([u1I (�T )])2

are compared to choose the largest. This test is often expressed as

|u0(�T )| − |u1(�T )| ≷ 	.

Anoncoherent demodulator at complex baseband for FSK, using real pulses, is shown in
Figure 6.11. An alternative noncoherent demodulator for FSK – this one at passband – is
shown in Figure 6.12.
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6.4 Rayleigh and ricean probability distributions

In problems of noncoherent demodulation at complex baseband, each sample of the
output of a matched filter is complex, consisting of a real part and an imaginary part.
The decision statistic is the square root of the sum of the squares of the real part and
the imaginary part. This can be viewed as a transformation of the complex baseband
signal from rectangular coordinates to polar coordinates, keeping only the magnitude. It
corresponds to a transformation of the passband signal from the in-phase and quadrature
representation to an amplitude and phase representation. When the input is a signal
in additive gaussian noise, the real and imaginary outputs of the complex baseband
matched filter are each an independent gaussian random variable and the magnitude
is the square root of the sum of the squares. To analyze the probability of error of a
noncoherent demodulator, we must study what happens to two independent gaussian
random variables under the computation of the square root of the sum of the squares.
We shall study this transformation of random variables in this section. In the remainder
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x
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Figure 6.13. Two-dimensional gaussian probability density function.

of the chapter, we apply these results to the computation of the probability of error of
noncoherent demodulators.

A univariate gaussian probability density function is a function of a single variable,
say x. If the random variable X has zero mean and variance σ 2, then the gaussian
probability density function is

p(x) = 1√
2πσ

e−x2/2σ 2

or, if there is a nonzero mean (x̄, ȳ),

p(x) = 1√
2πσ

e−(x−x̄)2/2σ 2
.

A bivariate gaussian probability density function, shown in Figure 6.13, is defined in
terms of two variables, say x and y. If the random variables X and Y are independent,
zero mean, and have equal variance, then the bivariate gaussian probability density
function is

p(x, y) = 1

2πσ 2
e−(x2+y2)/2σ 2

or, if there is a nonzero mean,

p(x, y) = 1

2πσ 2
e−[(x−x̄)2+(y−ȳ)2]/2σ 2

.

The transformation from rectangular coordinates (x, y) to polar coordinates (r, φ) is
given by

r =
√

x2 + y2

φ = tan−1 x

y
.
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We need expressions for the probability density functions of the amplitude r and the
phase φ. Although we are mostly interested in r, the calculations for φ are necessary
as an intermediate step.

The probability of any region A must be the same whether the region is expressed
in rectangular coordinates or in polar coordinates. That is, for any region A,∫

A
p(r, φ)drdφ =

∫
A

1

2πσ 2
e−(x2+y2)/2σ 2

dxdy

where p(r, φ) is the probability density function in polar coordinates. On the right side,
substitute

x2 + y2 = r2

dxdy = rdφdr.

This gives∫
A

p(r, φ)drdφ =
∫

A
1

2πσ 2
e−r2/2σ 2

rdrdφ

from which it follows that

p(r, φ) = r

2πσ 2
e−r2/2σ 2

where 0 ≤ φ < 2π and r ≥ 0. Clearly, the probability density function in φ is uniform,
given by p(φ) = 1

2π
. Therefore, integrating p(r, φ) over φ from 0 to 2π must give

p(r) = r

σ 2
e−r2/2σ 2

r ≥ 0.

This probability density function is known as a rayleigh probability density function.
By direct calculation we can see that the rayleigh density function has a mean σ

√
π/2

and a variance (2 − π/2)σ 2. The rayleigh density function is the probability density
function for the amplitude of unbiased complex gaussian noise. It is also the probability
density function for the envelope of unbiased passband gaussian noise at any instant.

To write the rayleigh density function in a standardized parameter-free form, make
the change in variables

z = r

σ

and define

pRa(z) = ze−z2/2 z ≥ 0
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so that

p(r) = 1

σ
pRa

( r

σ

)
.

Next, to compute the probability density function of the amplitude of a nonzero signal
in complex gaussian noise, we must convert a bivariate gaussian density function with
a mean (x̄, ȳ) to polar coordinates. Write the mean in the form

x̄ = A cos θ

ȳ = A sin θ

where θ is an unknown phase angle. Then

pR(x) = 1√
2πσ

e−(x−A cos θ)2/2σ 2

pI (y) = 1√
2πσ

e−(y−A sin θ)2/2σ 2
.

Carrying through the transformation of variables, as before, gives

p(r, φ) = r

2πσ 2
e−(r2−2Ar cos(φ−θ)+A2)/2σ 2

.

Integrating over φ gives

p(r) =
∫ 2π

0

r

2πσ 2
e−(r2+A2)/2σ 2

e−Ar cos(φ−θ)/σ 2
dφ.

The integral is clearly independent of θ because the integral is periodic and the integral
extends over one period for any value of θ . The integral can be expressed in terms of
a standard function known as the modified Bessel function of the first kind and order
zero, and defined by the integral

I0(x) = 1

2π

∫ 2π

0
ex cos φdφ.

The function I0(x) is shown in Figure 6.14. Hence we can write

p(r) = r

σ 2
e−(r2+A2)/2σ 2

I0

(
Ar

σ 2

)
r ≥ 0.

This probability density function is known as a ricean probability density function.
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x

I 0(x )

Figure 6.14. The function I0(x).

To write the ricean density function in a standardized form, make the change in
variables

z = r

σ

λ = A

σ

and define

pRi(z, λ) = ze−(z2+λ2)/2I0(λz)

so that

p(r) = 1

σ
pRi

(
r

σ
,

A

σ

)
.

The probability density function pRi(z, λ) is known as a ricean probability density
function with parameter λ. It is a family of probability densities, one for each value
of λ, as shown in Figure 6.15. The ricean probability density function reduces to a
rayleigh probability density function when λ is equal to zero. When λ is large, the
ricean probability density resembles a gaussian probability density.

The problem of detecting a passband pulse noncoherently in gaussian noise can be
solved by passing the pulse through a passband matched filter, taking the magnitude
of the output and applying it to a threshold. The probability distributions for the two
hypotheses of pulse absent and pulse present are

p0(r) = r

σ 2
e−r2/2σ 2

r ≥ 0

p1(r) = r

σ 2
e−(r2+A2)/2σ 2

I0

(
Ar

σ 2

)
r ≥ 0.
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Figure 6.15. Some ricean probability density functions.

6.5 Error rates for noncoherent signaling

We now derive expressions for the bit error rate for noncoherent binary signaling over
an additive, white gaussian-noise channel, starting with noncoherent binary OOK. The
OOK demodulator passes the received complex signal through a filter matched to the
pulse s(t). If the pulse is present, the output of the filter at the sampling instant �T will
be the complex value

x + jy = Ar(�T )e jθ + n′
R + jn′

I

= Ae jθ + n′
R + jn′

I ,

provided r(t) is a Nyquist pulse. If the pulse is absent, the output will be the complex
value

x + jy = n′
R + jn′

I .

The complex output sample of the matched filter is described by the two real gaussian
random variables (x, y), and from these the decision is made. The two-dimensional
random variable is characterized by one two-dimensional gaussian probability density
function when the pulse is absent and by another when the pulse is present. Figure 6.16
shows the two-dimensional gaussian probability density functions on the x, y plane.
Both two-dimensional probability density functions are presented on the same graph,
one with the signal absent and one with the signal present.

It is apparent from inspection of Figure 6.16 that, if we knew the phase angle θ ,
we should rotate the coordinate axes to place the displacement along the new x axis.
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Figure 6.17. Error probabilities for noncoherent OOK.

Then the y component of the data would be superfluous and could be discarded, thereby
reducing the problem to coherent OOK.

However, θ is not known. The decision is based not on the displacement along a
fixed axis but on the radial distance of the received point (x, y) from the origin. The
radial distance r = √

x2 + y2 is a random variable described by a ricean probability
density function when the signal is present and a rayleigh probability density function
when the signal is absent. The radial coordinate r is compared to the threshold 	, as
shown in Figure 6.17.

If r is larger than 	, then a pulse is declared to be present. This will be a false
detection if the output is actually noise only. In this case, r will be a rayleigh random
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variable. The error probability is

pe|0 =
∫ ∞

	

r

σ 2
e−r2/2σ 2

dr

= e−	2/2σ 2
.

If r is smaller than 	, then a pulse is declared to be absent. If the pulse is actually
present in the output, this pulse will be missed. In this case, r will be a ricean random
variable. The error probability is

pe|1 =
∫ 	

0

r

σ 2
e−(r2+A2)/2σ 2

I0

(
Ar

σ 2

)
dr.

To simplify this expression, make the changes in variables λ = A/σ and z = r/σ . The
integral becomes

pe|1 =
∫ 	/σ

0
ze−(z2+λ2)/2I0(λz)dz.

This integral can be evaluated numerically for each value of λ and for each value
of 	/σ .

To balance the two types of errors pe|0 and pe|1 for fixed λ, numerically find that
value of 	/σ for which pe|0 equals pe|1. This is the optimum choice of threshold 	 if
data zero and data one are equally probable. Then set pe = pe|0 = pe|1. This gives pe

as a function of λ = A/σ . Because for a matched filter, (A/σ)2 = 2Ep/N0, Eb = Ep/2
for OOK, and λ = A/σ = √

2Ep/N0 = √
4Eb/N0, this also gives pe as a function

of Eb/N0. In this way, using numerical integration, one can plot pe versus Eb/N0 for
noncoherent OOK, as shown in Figure 6.18.

The second case of noncoherent binary signaling that we treat is noncoherent binary
FSK. This calculation requires a different setup. Now there are two matched-filter
outputs, denoted x and y. There are four probability density functions corresponding to
each of two filter outputs under each of two possible transmitted pulses. First, let p0|0(x)
and p1|0(y) denote the two density functions given that pulse s0(t) was transmitted; the
first is ricean and the second is rayleigh. Then let p0|1(x) and p1|1(y) denote the two
density functions, given that pulse s1(t) was transmitted; the first is rayleigh and the
second is ricean. When s0(t) is transmitted, and the filter s0(−t) has output x, an error
occurs if the magnitude of the signal y from the filter s1(−t) is larger than x. That is,
conditional on x, when the data bit is a zero, the error probability is

pe|0,x =
∫ ∞

x
p1|0dy.
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Figure 6.18. Performance of passband binary modulation methods.

The error probability pe|0 is then the expectation of this over x

pe|0 =
∫ ∞

0
p0|0(x)

[∫ ∞

x
p1|0(y)dy

]
dx.

Likewise, when the data bit is a one, the error probability is

pe|1 =
∫ ∞

0
p1|1(x)

[∫ ∞

x
p0|1(y)dy

]
dx.

Surprisingly, these two probabilities can be expressed in a simple form even though
the ricean density in the integrand cannot be expressed in a simple form.

Theorem 6.5.1 The probability of error pe of a noncoherent demodulator for a binary,
orthogonal, equal-energy waveform alphabet used on an additive white gaussian-noise
channel is

pe = 1
2 e− 1

2 Eb/N0 .

Proof Because pe = pe|0 = pe|1 for binary orthogonal, equal-energy pulses in gaus-
sian noise, it is enough to calculate pe|0. We begin with the variables x and y, normalized
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so that p1|0(y) is the rayleigh density function

p1|0(y) = ye−y2/2

and p0|0(y) is the ricean density function

p0|0(x) = xe−(x2+λ2)/2I0(λx)

where λ = A/σ and λ2 = 2Eb/N0. We want to evaluate

pe|0 =
∫ ∞

0
p0|0(x)

[∫ ∞

x
p1|0(y)dy

]
dx.

The inner integral can be evaluated, resulting in

pe|0 =
∫ ∞

0
p0|0(x)e−x2/2dx.

This final integral can be evaluated by first manipulating it into the form of a ricean
density in the variable

√
2x. This is

pe|0 = 1
2 e−λ2/4

∫ ∞

0

√
2xe−(2x2+λ2/4)/2I0

(
λ√
2

√
2x

)
d(

√
2x).

The integral is now a probability density function, so the integral has value one.
Therefore,

pe|0 = 1
2 e−λ2/4.

Because λ2 = 2Eb/N0, the proof is complete. �

6.6 Differential phase-shift keying

Often the phase shift in a channel changes very slowly compared to a bit time. Over a
few bit times, the relative phase is constant, although the absolute phase is unknown.
Differential phase-shift keying (denoted DPSK) is a modulation technique often used
with such a channel. (We have already discussed, in Section 2.6, a similar technique
at baseband called NRZI.) The reason for using DPSK is to allow the use of a simple
demodulator without the need for phase synchronization. In DPSK, as in NRZI, the
input binary datastream is differentially encoded into a new binary datastream. The
new datastream represents a one by a change in polarity and a zero by the absence of
a change in polarity. This operation is made clear by the example of Figure 6.19. In
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Figure 6.19. Differential PSK.

order to establish an initial phase reference, an extra pulse is required at the start. This
is an energy overhead inherent in DPSK, but because large message lengths are usually
used, this overhead in a single start-up pulse is negligible.

We shall discuss three methods for demodulating DPSK; their performance is sum-
marized in Figure 6.20. The first two methods, labeled “single-bit demodulation” in
Figure 6.20, are mathematically equivalent. Either is only optimal for demodulating
a single bit received in gaussian noise. Neither of these two methods is an optimal
method for demodulating the entire bitstream if the phase is slowly varying, because
then the phase can be estimated and the datastream can be coherently demodulated. If
the phase is rapidly varying, then DPSK is not suitable.

The third method, labeled “sequence demodulation” in Figure 6.20, is the optimal
method. It computes the phase angle of a long sequence of bits, then demodulates
that string of bits coherently. If the string of bits is long enough, the residual phase
error will be negligible. Even as few as ten bits may be quite enough because then the
phase measurement is made on a signal with 10 dB more energy than a single bit. After
the phase has been estimated, the waveform can be demodulated as in BPSK. Then a
postcoder must be used to invert the differential encoding. Every demodulated bit error
becomes two bit errors after the postcoder. Thus the bit error rate of optimally demod-
ulated DPSK is double that of BPSK as is shown in Figure 6.20. The optimal method,
however, runs counter to the purpose of transmitting DPSK, which is to eliminate the
need for phase synchronization.

Of the “bit-by-bit” methods of demodulating DPSK, the easier to understand is the
one depicted in Figure 6.21. In this figure, the implementation is at baseband, but an
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equivalent passband implementation could be used instead. This demodulator views
a pair of bits of the DPSK waveform as a noncoherent FSK waveform with a zero
denoted by

s0(t) = s(t) + s(t − T ),

and a one denoted by

s1(t) = s(t) − s(t − T ).

The matched filters for the pulses s0(t) and s1(t) can be implemented concisely by
using a matched filter for the pulselet s(t), followed by a sampler, and an addition
and subtraction of delayed samples, as can be seen in Figure 6.21. Each bit is now
demodulated as noncoherent FSK by computing the square root of the sum of the
squares of the outputs of the matched filters. However, because each individual pulse
s(t) contributes to two successive bits, Eb is half of what it would be for noncoherent
FSK. Thus we can conclude that the performance of the noncoherent matched-filter
demodulator for DPSK has the same performance as noncoherent FSK with twice the
Eb/N0

pe = 1
2 e−Eb/N0 .

Simply stated, DPSK is 3 dB better than noncoherent FSK.
An alternative DPSK demodulator, shown in Figure 6.22. looks quite different, and

it is somewhat surprising that the performance is the same. In fact, it is mathematically
equivalent, which means that the performance must be the same. Let the output of the
filter s(−t) at the �th sampling instant be denoted uR(�T ) + juI (�T ). Then the outputs
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Figure 6.22. Correlation demodulator for DPSK.
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of the filters s0(−t) and s1(−t) are

u0(�T ) = [uR(�T ) + uR((� − 1)T )] + j[uI (�T ) + uI ((� − 1)T )]
u1(�T ) = [uR(�T ) − uR((� − 1)T )] + j[uI (�T ) − uI ((� − 1)T )],

and the demodulation is based on the sign of |u0(�T )|2 − |u1(�T )|2. Consequently, a
trivial computation gives

|u0(�T )|2 − |u1(�T )|2 = 4[uR(�T )uR((� − 1)T ) + uI (�T )uI ((� − 1)T )].

Implementation of the right side of this expression gives the alternative demodulator
for DPSK, shown in Figure 6.22. We can also understand this demodulator on a more
intuitive level. To determine whether the signal component of

u(�T ) = uR(�T ) + juI (�T )

is in phase or 180◦ out of phase with the signal component of

u((� − 1)T ) = uR((� − 1)T ) + juI ((� − 1)T ),

compute u(�T )u∗((� − 1)T ) and detect the sign of the real part.

6.7 Demodulators for M-ary orthogonal signaling

Figure 6.23 shows a coherent demodulator implemented at complex baseband for
M-ary orthogonal signaling for a passband pulse alphabet {sm(t)} whose pulses have

Local
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at  

Time 
T 

and
Pick

Largest

s0(–t )

s1(–t )

sM –1(–t )

x
v (t ) m

Figure 6.23. A coherent demodulator at baseband for M-ary orthogonal signaling.
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only an in-phase component. The quadrature component of each pulse is zero. This
means that at complex baseband, the pulse is real. The imaginary component of the
complex baseband output contains no signal, and so is not processed.

If the pulses were complex, then the matched filter would be

s∗
m(−t) = sRm(−t) − jsIm(−t).

For each m, the outputs of the in-phase filter and the quadrature filter would be added
to form the output of the matched filter for the full complex pulse. Because the decision
of a coherent demodulator is only based on the real part of the matched-filter output,
there is no need to develop the imaginary component of the complex matched-filter
output.

When the phase of the received signal is not known, a noncoherent demodulator must
be used. The complex output samples of the mth matched filter at sampling instant �T are

um(�T ) = Ae jθ δm�m + n′
m�,R + jn′

m�,I

and the decision for the �th symbol is made based on which of the M magnitudes
|um(�T )| is largest. Figure 6.24 shows a baseband implementation of a noncoherent
demodulator for M-ary orthogonal signaling for which the transmitted pulses sm(t)
have only an in-phase component; the quadrature components of the pulses are zero.
The received passband waveform is mixed down into a complex baseband waveform
which contains the signal sm(t)e jθ . The complex baseband waveform enters a bank of
M matched filters, one filter for each sm(t), and, for each m, the outputs of the in-phase
and quadrature filters are root-sum-squared. If the passband pulses also had a quadrature
component, then the matched filters would have both real and imaginary components
corresponding to the passband in-phase and quadrature components of each pulse.
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sM –1(–t )

sM –1(–t )

sM –2(–t )
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Time 
T 
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Largest

Figure 6.24. A noncoherent demodulator at baseband for M-ary orthogonal signaling.
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6.8 Error rates for M-ary orthogonal signaling

A demodulator for a passband or complex baseband M-ary orthogonal signaling wave-
form passes the received signal through a bank of M matched filters. A coherent
demodulator then samples and compares the real parts of the M matched-filter outputs
at time �T . The performance of this demodulator for real baseband M-ary orthogonal
signaling was discussed in detail in Section 3.7. Nothing in that analysis changes if the
waveforms are complex. The performance for complex baseband M-ary orthogonal
signaling, coherently demodulated, is the same as for real waveforms.

The set of complex M-ary orthogonal signaling waveforms also can be noncoherently
demodulated. In fact, if M is moderately large, the degradation in the performance
of M-ary orthogonal signaling because of noncoherent demodulation is fairly small.
Accordingly, one might prefer a noncoherent demodulator to a coherent demodulator
on the grounds of expediency or economics.

We saw in Section 6.7 that, when the phase is unknown, the bank of matched filters
has complex output samples given by

um(�T ) = Ae jθ δm�m + n′
m�,R + jn′

m�,I

where θ is an unknown phase angle distributed uniformly on [0, 2π ], and n′
m�,R and

n′
m�,I are independent, gaussian random variables of equal variance. The demodula-

tion decision is made based on the magnitude |um(�T )|. Because the m�th pulse is
transmitted at time �T , for m = m�, the magnitude

|um| =
√

(A cos θ + n′
m�,R)2 + (A sin θ + n′

m�,I )
2

is a ricean random variable. For m �= m�, the magnitude

|um| �=
√

(n′
m�,R)2 + (n′

m�,I )
2

is a rayleigh random variable. The integer m for which |um| is largest is then selected
as the estimate m̂ of the modulator input m. An error occurs if the correct matched filter
does not have the largest output.

Theorem 6.8.1 The probability of symbol error pe of a noncoherent matched-filter
demodulator for an M-ary orthogonal waveform alphabet used on an additive white
gaussian noise channel at Eb/N0 = γ is given by

pe = 1 −
∫ ∞

0
p1(x)

[∫ x

0
p0(y)dy

]M −1

dx
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where

p0(y) = ye−y2/2

and

p1(x) = xe−x2/2e−γ log2 M I0(x
√

2γ log2 M ).

Proof The proof is the same as the proof of Theorem 3.7.1 except that the gaussian
probability density functions in that proof must be replaced by rayleigh and ricean
probability density functions. If m �= m�, the probability density function of rm is a
rayleigh density function:

p0(r) = r

σ 2
e−r2/σ 2

.

If m = m�, the probability density function is a ricean density function:

p1(r) = r

σ 2
e−(r2+A2)/2σ 2

I0

(
Ar

σ 2

)
.

Change the variables, as in the proof of Theorem 3.7.1, with(
A

σ

)2

= 2Ep

N0
= 2γ log2 M

to complete the proof of the theorem. �

In contrast to the double integral in Theorem 3.7.1, the double integral in
Theorem 6.8.1 can be integrated analytically. First expand the inner integral to write

pe = 1 −
∫ ∞

0
p1(x)[1 − e−x2/2]M −1dx

= 1 −
∫ ∞

0
p1(x)

M −1∑
�=0

(−1)�
(

M − 1

�

)
e−�x2/2dx

= 1 −
M −1∑
�=0

(−1)�
(

M − 1

�

)∫ ∞

0
p1(x)e

−�x2/2dx.

The integral at the right, with x now replaced by r, is written out as follows:∫ ∞

0
p1(r)e

−�r2/2dx =
∫ ∞

0
e−�r2/2

∫ 2π

0

r

2π
e−(r2+γ 2)/2e−γ r cos(φ−θ)dφdr

=
∫ ∞

0

∫ 2π

0

1

2π
e−((�+1)r2+γ 2)/2e−γ r cos(φ−θ)rdrdφ.
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To recognize a two-dimensional gaussian distribution in the integrand, let σ 2 =
1/(� + 1), then multiply through by 1/(� + 1)σ 2 and set a = γ σ 2 to write

∫ ∞

0
p1(r)e

−�r2/2dr = 1

� + 1
e−γ 2/2ea2/2σ 2

∫ ∞

0

∫ 2π

0

1

2πσ 2
e−(r2+a2)/2σ 2

e−ar cos(φ−θ)/σ 2
rdrdφ.

Because the integrand is now a gaussian density function in polar coordinates, the
double integral is equal to one. Then

pe = 1 −
M −1∑
�=0

(−1)�
(

M − 1

�

)[
1

� + 1
e−γ 2/2ea2/2σ 2

]
.

This is summarized in the following corollary.

Corollary 6.8.2 The probability of symbol error for noncoherent demodulation of an
M-ary orthogonal signaling waveform is

pe = 1

M

M∑
m=2

(
M

m

)
(−1)me−[(m−1)/m](Eb/N0) log2 M .

Proof Because(
M − 1

�

)
1

� + 1
= 1

M

(
M

� + 1

)

the expression given prior to the corollary with � + 1 = m reduces to the statement of
the corollary. �

To obtain pe as a function of Eb/N0, one can either evaluate the sum in Corollary
6.8.2, or evaluate the integrals of Theorem 6.8.1 numerically. In either case, the result
is as shown in Figure 6.25. As M becomes larger, the performance of noncoherent
demodulation of M-ary signaling becomes virtually the same as the performance of
coherent demodulation of M-ary signaling. In particular, Theorem 3.7.3 also holds for
the case of noncoherent demodulation of M-ary orthogonal signaling on an additive
gaussian-noise passband channel.

The performance of the three most important M-ary signaling techniques can be
compared by a comparison of Figures 3.13, 3.14, and 6.25. When M equals 2, this
becomes a comparison of the three most important binary signaling techniques: coher-
ent binary FSK, noncoherent binary FSK, and BPSK, all of which have been studied
already in Sections 6.2 and 6.3.
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Figure 6.25. Performance of M-ary orthogonal signaling with noncoherent demodulation.

6.9 Demodulators for M-ary signal constellations

A multilevel signaling waveform using an M-ary signal constellation uses only a single
pulse s(t), which is normally real-valued. The received waveform at complex baseband
is passed through a filter matched to s(t) and the filter output sampled at �T . If s(t)∗s(−t)
is a Nyquist pulse, there is no intersymbol interference. The sample at �T is demodulated
into the closest point of the signal constellation.

Figure 6.26 shows a demodulator implemented at complex baseband for an eight-
ary PSK signal constellation. The outputs of the real and imaginary matched filters
are sampled at time �T to define a point u� in the complex plane. One typical sample
of the filter output is denoted in the figure by an asterisk, and the eight points of the
eight-ary PSK signal constellation are shown as well. Intuitively, it is easy to see that
u(�T ) should be demodulated into that value of a� from the signal constellation that
is closest to it in euclidean distance. That point then is mapped back into the three-bit
data symbol associated with that point of the signal constellation.
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Figure 6.26. A demodulator at complex baseband for a QAM signal constellation.

For any signal constellation used on the additive gaussian-noise channel, the demod-
ulator is similar. Indeed, this demodulator is commonly used even if the noise is not
gaussian. Simply map the complex output of the matched filter into the closest point
of the signal constellation. The decision region for constellation point cm is the set of
all complex numbers that are closer to cm than to any other point of the signal con-
stellation. Decision regions defined in this way for a fixed set of points in the complex
plane are called Voronoi regions. Every side of a Voronoi region is a segment of the
perpendicular bisector of the line connecting two neighbors.

6.10 Error rates for M-ary signal constellations

The calculation of the probability of error for an M-ary signal constellation is quite dif-
ferent from the calculation of the probability of error for an M-ary orthogonal signaling
alphabet. The demodulation decision is now based on the output of a single complex
matched filter, as discussed in Section 6.9. The output of the matched filter is

u(t) =
∞∑

�=−∞
a�r(t − �T ) + n′(t).

We continue to suppose that r(t) is a Nyquist pulse, therefore the time samples u� =
u(�T ) of the matched-filter output are

u� = a� + n′
�

where a� is the point of the complex signal constellation that was transmitted at time �T
and n′

� = n′(�T ) is a sequence of uncorrelated complex noise samples of variance σ 2

in each component; the samples are independent complex gaussian random variables
if the channel noise is gaussian.
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Figure 6.27. Eight probability density functions for eight-ary PSK.
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Figure 6.28. A decision region for eight-ary PSK.

For each �, u� is a complex circular gaussian random variable with a mean equal to the
complex number a� and with variance σ 2 on the real and imaginary axes. Figure 6.27
shows the eight points of the eight-ary PSK signal constellation together with their eight
gaussian probability density functions, each one centered on one of the signal points.
To calculate the probability of error, on the condition that the transmitted symbol is a�,
we must integrate p(x, y|a�) over all x, y not in the decision region corresponding to a�.

Figure 6.28 shows the decision region corresponding to one of the points of the signal
constellation, and the gaussian probability density function for that point. Figure 6.29
shows the same situation in plan view, now with the gaussian density depicted by
contour lines. The probability of error is the integral of the two-dimensional probability
density function over that portion of the complex plane not including the decision
region. This two-dimensional integral can be evaluated numerically. However, it is
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Figure 6.29. A coordinate system for computation.

more informative to approximate the integral by the union bound, especially since the
union bound approximation that we give is quite tight. If we integrate p(x, y) over
the half plane above line B, then over the half plane to the left of line A and add the
results, we obtain the desired integral except that the wedge in the upper left of the
plane is counted twice. But the contribution of this wedge to the integral must be small
because p(x, y) decreases as e−r2/2σ 2

at distance r from the peak, and this wedge is far
away compared to some other parts of the region of integration. Counting a negligible
contribution twice results in a negligible error in the computation of pe.

In this way, the union bound can be used to combine integrals over half planes. The
integration of the probability density function p(x, y) over a half plane can be expressed
concisely with the aid of the following simple theorem.

Theorem 6.10.1 The integral of the gaussian probability density function

p(x, y) = 1

2πσ 2
e−[(x−x̄)2+(y−ȳ)2]/2σ 2

over any half plane not containing (x̄, ȳ) is

pe = Q

(
d

2σ

)

where d/2 is the perpendicular distance from (x̄, ȳ) to the half plane.
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Proof Choose a new coordinate system centered at (x̄, ȳ), with one coordinate line
parallel to the line defining the half plane. Then

pe =
∫ ∞

d/2

∫ ∞

−∞
1

2πσ 2
e−(x2+y2)/2σ 2

dxdy,

which now has the form of a sequence of two integrals. Evaluating the y integral yields

pe =
∫ ∞

d/2

1√
2πσ 2

e−x2/2σ 2
dx

= Q

(
d

2σ

)
,

which completes the proof of the theorem. �

We can now find the probability of symbol error for eight-ary PSK signaling as fol-
lows. All signal points have an identical pattern of neighbors, so the average probability
of error is equal to the conditional probability of error given any signal point. If the
radius of the constellation is A, then a simple calculation gives

d

2
= A sin

π

8
= .3827A.

Finally, because (A/σ)2 = 2Ep/N0, and with the aid of Theorem 6.10.1, we can write
the bound as

pe ≤ 2Q

(√
(.382)2Ep/N0

)
.

The factor of two multiplying the Q function comes about because a signal point has
two nearest neighbors, which leads to an integration over two (overlapping) half planes.
The overlap is incorrectly included twice, but because the overlap is small, this bound
on probability of symbol error will be tight for large values of Eb/N0. If a Gray-coded
signal constellation is used, then a single symbol error will normally lead to one bit
error in three bits. Hence the bit error rate is approximated by

peb ≈ 2

3
Q

(√
0.88Eb

N0

)

where we have also made the substitution Ep = 3Eb. This should be compared to the
expression for BPSK

peb = Q

(√
2Eb

N0

)
.
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For a first approximation, we look only at the argument of Q and see that for eight-ary
PSK, Eb must be larger by 2 divided by 0.88 in order to have the same performance
as BPSK. Thus, we say that eight-ary PSK uses about 3.6 dB more energy per bit than
does binary PSK.

A similar analysis, using Theorem 6.10.1, can be used to approximate the probability
of symbol error for any signal constellation by an expression of the form

pe ≈ Ndmin Q

(
dmin

2σ

)
where dmin is the minimum of the euclidean distances between all pairs of points
of the signal constellation, and Ndmin is the average number of nearest neighbors,
defined as neighbors at minimum distance. This can be rewritten by using the following
substitutions(

dmin

2σ

)2

= d2
min

4A2

A2

σ 2
= d2

min

4Ep

2Ep

N0
= d2

min

4Eb

2Eb

N0
.

Consequently,

pe ≈ Ndmin Q

(
ρmin

2

√
2Eb

N0

)

where ρmin = dmin/
√

Eb is the normalized minimum distance of the signal constella-
tion. Within the accuracy of this approximation, the signal constellation is adequately
described by the two parameters, Ndmin and ρmin.

In particular, the probability of symbol error of 2k -ary PSK is approximated by

pe ≈ 2Q

(
sin

π

M

√
2Eb

N0

)

because dmin = A sin(π/M ) if there are M = 2k uniformly spaced points on the circle
of radius A. With Gray coding, there is usually only one bit error per symbol error, so
the bit error rate is approximated by

pe ≈ 2

k
Q

(
sin(π2−k)

√
2Eb

N0

)
.

Comparing the argument of the Q function with the comparable terms for BPSK, we
say that 2k -ary PSK requires approximately sin2(π2−k) more transmitted energy per
bit to achieve a specified bit error rate. The reason for expending this extra energy per
bit is to increase the data rate from one bit per sampling instant to k bits per sampling
instant.
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Problems for Chapter 6

6.1. a. Explain the underlying intuitive reason why, for fixed Eb/N0, M-ary
orthogonal signaling has a smaller bit error rate than binary signaling.

b. Explain the underlying intuitive reason why, for large M , noncoherent M-
ary orthogonal signaling has nearly the same bit error rate as coherent M-ary
orthogonal signaling.

c. What are the disadvantages of M-ary orthogonal signaling?
6.2. a. An MSK waveform is used for coherent binary signaling in white gaussian

noise. Give an expression for the probability of bit error as a function of Eb

and N0.
b. If QPSK is used instead of MSK, how will the probability of bit error change?

How will the spectrum change?
6.3. The QPSK signal constellation is assigned pairs of data bits in counterclockwise

sequence as 00, 01, 11, 10. (This sequence is known as a two-bit Gray code.)
a. Prove that the (Gray-coded) QPSK waveform received in white gaussian

noise can be demodulated with no loss in performance by demodulating the
in-phase and quadrature channels as independent BPSK waveforms to obtain
the two bits.

b. Prove that if instead the QPSK signal constellation is assigned pairs of data
bits in the counterclockwise sequence 00, 01, 10, 11, then each data bit
cannot be obtained independently from either the in-phase or the quadrature
bit. How does the bit error rate degrade at fixed Eb/N0?

6.4. Suppose that a BPSK waveform is received with a phase error of θ , but never-
theless is demodulated by using a coherent demodulator. By how much is the
signal-to-noise ratio reduced because of the phase error? If Eb/N0 = 10 dB, by
how much will the bit error rate degrade due to a 10◦ phase error? How much
phase error can be accepted in a coherently demodulated binary FSK before it
is better to use a noncoherent demodulator?

6.5. The noncoherent demodulator for binary FSK uses as the decision statistic the
square root of the sum of the squares of the noisy outputs of the in-phase and
quadrature matched filters.
a. A co-worker proposes that instead of using a noncoherent demodulator, one

could instead estimate phase from the matched-filter outputs and correct for
it. Specifically, if uR(t) and uI (t) are the matched-filter outputs, let

θ̂ = tan−1
(

uI (0)

uR(0)

)
and let

û(t) = uR(t) cos θ̂ + uI (t) sin θ̂ .
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Prove that this gives a demodulator that is mathematically equivalent to the
noncoherent demodulator.

b. Now the co-worker proposes that θ be estimated on two successive bit times,
as above, and averaged. Will this give a better or worse demodulator if phase
error is independent from bit to bit? Will this give a better or worse demod-
ulator on a partially-coherent channel? A partially-coherent channel is one
on which phase error changes very slowly compared to one bit duration.

6.6. a. Construct a four-ary orthogonal signaling waveform alphabet of duration T
by using a half-cosine pulse of pulsewidth T/4 as a “chip”.

b. Given a matched filter for a half-cosine pulse as an existing component,
sketch the design of a coherent demodulator.

c. Under the same condition, sketch the design of a noncoherent demodulator.
6.7. a. Sketch a noncoherent binary FSK demodulator at complex baseband for

signaling pulses that have both a real part and an imaginary part.
b. Sketch an equivalent demodulator at passband.

6.8. Apassband PSK waveform is passed through its passband matched filter. Derive
an expression for the signal at the output of the filter.

6.9. Show that the expression for the probability of symbol error of a coherent
demodulator for M-ary orthogonal signaling reduces to the expression for the
probability of bit error of coherent binary FSK when M equals 2.

6.10. Prove that the probability of symbol error of a QPSK waveform on an additive
white gaussian-noise channel is given exactly by

pe = 2Q

(√
2Eb

N0

)
− Q2

(√
2Eb

N0

)
.

How does this compare with the approximate expression based on the union
bound?

6.11. a. Prove that the probability of error of a coherently demodulated 32-ary
biorthogonal alphabet of waveforms with pulse energy Ep is strictly smaller
than the probability of error of a coherently demodulated 32-ary orthogonal
family with the same Ep, and strictly larger than a coherently demodulated
31-ary orthogonal family with the same Ep.

b. Set up an integral expression for the probability of symbol error of an M-ary
biorthogonal family of waveforms coherently demodulated.

6.12. a. Prove that on an additive gaussian-noise channel, as M goes to infinity,
the probability of error of a biorthogonal family of waveforms, coherently
demodulated, behaves as one of the two cases
(i) pe → 0 if Eb/N0 > loge 2

(ii) pe → 1 if Eb/N0 < loge 2.
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(Hint: Show that when M is large, the biorthogonal family is negligibly
different from an orthogonal family.)

b. Prove that as M goes to infinity, an M-ary orthogonal family of waveforms
noncoherently demodulated behaves as one of the two cases
(i) pe → 0 if Eb/N0 > loge 2

(ii) pe → 1 if Eb/N0 < loge 2.
6.13. A QPSK demodulator is designed to put out a null signal, called an erasure,

when the decision is ambivalent. Specifically, the decision regions are modified
as shown in the accompanying diagram.

d d
2

When the received sample lies in the hatched region, the demodulator output is
a special symbol denoting an erasure. When the received sample lies in one of
the other regions, the appropriate two bits of demodulated data are the output
of the demodulator. Use the union bound to set up approximate expressions for
the probability of erasure and the probability of symbol error.

6.14. Orthogonal matrices whose elements are all ±1 are called Hadamard matrices.
When n is a power of two, an n by n Hadamard matrix can be defined by the
recursion

H 2 =
[

1 1
1 −1

]
, H 2n =

[
H n H n

H n −H n

]
.

(The 2n × 2n matrix H 2n is called the Kronecker product of H 2 and H n.)
Hadamard sequences of blocklength n are the rows of H n. A communication
system uses eight-ary Hadamard sequences of blocklength 8 and half-cosine
shaped chips as orthogonal waveforms.
a. Sketch a functional block diagram for a noncoherent receiver for this system.
b. Repeat the design, this time decomposing the matched filter into two filters:

the “chip filter” matched to the chip, and the “sequence filter” matched to
the Hadamard sequences. The use of two local oscillators is suggested with
the chip filter at an intermediate frequency (IF) and the sequence filter at
baseband.

c. Repeat the design, this time decomposing the n sequence filters simultane-
ously based on the structure of the Kronecker product. (This structure is
called a fast-Hadamard-transform receiver.)
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6.15. Derive an approximate expression for the probability of symbol error as a func-
tion of Eb/N0 of a sixteen-ary QAM (square pattern) signal constellation, shown
in Problem 5.15. The energy Eb is the average energy per bit over the sixteen
points of the constellation.

6.16. Derive an approximate expression for the probability of symbol error as
a function of Eb/N0 of a sixteen-ary PSK signal constellation, shown in
Problem 5.16.

6.17. a. Use a series expansion on a term of the form
√

(A + x)2 + y2 to explain
why the ricean probability density function looks like a gaussian probability
density function when A is large.

b. The modified Bessel function of the first kind, I0(x), can be approximated
when x is large as

I0(x) ≈ ex

√
2πx

Using this approximation as a starting point, show again that the ricean prob-
ability density function looks like a gaussian probability density function
when A is large.

6.18. Two eight-ary signal constellations are shown below.

a. If the points in the QAM constellation are spaced as shown (nearest neighbors
separated by two units), what should the radius of the PSK constellation be
so that Eb is the same in both constellations?

b. By studying the distance structure of the two constellations, decide which
constellation will have a lower probability of error in white gaussian noise,
and explain why.

c. Set up approximate expressions for the error probabilities. Describe where
approximations are made.

6.19. Let s(t) be a “half-cosine chip”. That is,

s(t) =
{

cos π t/T |t| ≤ T
2

0 otherwise.

Two “MSK pulses”, each with four chips, are given by

s0(t) = s(t) + js
(

t − 1
2 T
)

+ s(t − T ) + js
(

t − 3
2 T
)

s1(t) = s(t) − js
(

t − 1
2 T
)

− s(t − T ) + js
(

t − 3
2 T
)

.
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a. Show that s0(t) and s1(t) are orthogonal where the definition of orthogonal is∫ ∞

−∞
s0(t)s

∗
1(t)dt = 0.

b. Using s0(t) and s1(t) as a binary orthogonal signaling alphabet, sketch
a coherent demodulator. Sketch a noncoherent demodulator for the same
waveform.

c. In place of s(t), now use the alternative pulse

s′
1(t) = s(t) + js

(
t − 1

2 T
)

− s(t − T ) − js
(

t − 3
2 T
)

.

Show that s0(t) and s1(t) are not orthogonal. Will the use of s′
1(t) instead of

s1(t) degrade the performance if a coherent demodulator is used? What if a
noncoherent demodulator is used?

6.20. Prove that the correlation demodulator for DPSK is equivalent to the noncoher-
ent matched-filter demodulator.

6.21. Keeping Eb constant, draw an eight-ary PSK signal constellation and a sixteen-
ary PSK signal constellation to a common scale. By comparing distances in
the two signal constellations, determine which signal constellation will have
a smaller bit error rate in the same background of white gaussian noise, and
explain how this conclusion is reached. By approximately how much must Eb

be changed in the second constellation to make the bit error rate the same?
6.22. Anoncoherent demodulator for an M-ary orthogonal signaling alphabet flags the

demodulated output symbol as “unreliable” whenever the largest matched-filter
output magnitude is not at least twice as large as the second largest matched-
filter output magnitude. Give an expression for the probability that the output
symbol is wrong but is not flagged as unreliable.

6.23. An eight-ary signal constellation in the complex plane places four points equi-
spaced symmetrically in angle on each of two circles of radii r1 and r2 as
illustrated:

The radii are chosen so that each interior point has four nearest neighbors.
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a. Using the union bound (and mentioning all major details), give an expression
for the probability of symbol error versus d/σ when the modem is used on
an additive white gaussian-noise channel. Explain how to convert d/σ to
Eb/N0.

b. If the modem is now used instead on a channel that makes only phase errors
e jθe , describe the graph of probability of symbol error versus θe. If θe is now
a gaussian random variable with variance σ 2

θ , what is pe as a function of σ 2
θ ?

6.24. Let s(t) be a “half-cosine chip”. That is,

s(t) =
{

cos π t/T |t| ≤ T
2

0 otherwise.

Two “MSK pulses”, each with four chips, are given by

s0(t) = s(t) + js
(

t − 1
2 T
)

+ s(t − T ) + js
(

t − 3
2 T
)

s1(t) = s(t) + js
(

t − 1
2 T
)

− s(t − T ) − js
(

t − 3
2 T
)

.

a. Using s0(t) and s1(t) as a binary orthogonal signaling alphabet, sketch a
functional diagram of a noncoherent demodulator for a communication sys-
tem that sends one bit in time 4T . Include down conversion and clearly
indicate the complex structure of the matched filters.

b. Now describe how to decompose the matched filters into chip filters and
sequence filters.

c. Describe how to implement the chip filter at an intermediate frequency. Is
a single-chip matched filter adequate at intermediate frequency for both the
in-phase and quadrature modulation components?

d. Describe the chip filter output. How can the sampler be implemented at
intermediate frequency?

Notes for Chapter 6

The earliest derivation of the optimum coherent and noncoherent receivers for binary
signaling appears in the work of Woodward (1954). The calculation of error probability
for noncoherent binary signaling is due to Helstrom (1955), based on the noise studies
of Rice (1945). Further contributions were made by Stein (1964), and by Doelz, Heald,
and Martin (1957). Early surveys of the performance of binary signaling were published
by Lawton (1958) and Cahn (1959).
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The performance of M-ary coherent demodulation was studied by Kotel’nikov (1959)
and by Viterbi (1961). The earliest study of the performance of M-ary noncoherent
demodulation was by Reiger (1958), with later work by Nuttall (1962). Turin (1959)
first derived the asymptotic behavior for noncoherent demodulation as M goes to
infinity.



7 Principles of Optimal Demodulation

This chapter approaches the theory of modem design starting from well-accepted basic
principles of inference. In particular, we will study the maximum-likelihood princi-
ple and the maximum-posterior principle. By studying the optimum demodulation of
passband sequences, we shall develop an understanding of the maximum-likelihood
principle and its application. In Chapter 8, we will also treat the topic of synchronization
as applied to both carrier recovery and time recovery by using the maximum-likelihood
principle.

It is appropriate at this point to develop demodulation methods based on the likelihood
function. The maximum-likelihood principle will enable us to derive optimal methods
of demodulating in the presence of intersymbol interdependence and, as a side benefit,
to establish the optimality of the demodulators already discussed in Chapter 3.

The maximum-likelihood principle is a general method of inference applying to many
problems of decision and estimation besides those of digital communications. The
development will proceed as follows. First we will introduce the maximum-likelihood
principle as a general method to form a decision under the criterion of minimum
probability of decision error when given a finite set of measurements. Then we will
approximate the continuous-time waveform v(t) by a finite set of discrete-time samples
to which we apply the maximum-likelihood principle. Finally, we will take the limit
as the number of samples of v(t) goes to infinity to obtain the maximum-likelihood
principle for the waveform measurement v(t).

7.1 The likelihood function

We begin with the general decision problem, not necessarily the problem of demodula-
tion, of deciding between M hypotheses when given a measurement. Suppose that
we are given a finite set of data (x1, . . . , xn) and M probability density functions
pm(x1, . . . , xn) on the data space and indexed m = 0, . . . , M − 1. We are to decide
which probability density function was used to generate the observed data. A decision
rule is a function of the data, denoted m̂(x1, . . . , xn), where m̂ is the estimated value
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of m when given data vector (x1, . . . , xn). A decision error occurs whenever the mth
probability density function was used to generate the observed data, but the decision
m̂(x1, . . . , xn) is not equal to m. The conditional probability of error, given that m is
true, is denoted pe|m. The optimality criterion we shall use for forming the decision
rule is that the average probability of decision error is minimized, given that each m is
equally likely to be true. At the end of this chapter, we will see that this criterion is not
always as compelling as it seems to be.

The following theorem gives optimum decision rules for the case where each
hypothesis occurs with probability 1/M .

Theorem 7.1.1 For the M-ary decision problem with equiprobable hypotheses, the
optimum decision rule when given the vector measurement (x1, . . . , xn) is to choose
that m for which pm(x1, . . . , xn) is largest.

Proof The probability of decision error, given that m is true, is

pe|m =
∫

Uc
m

pm(x1, . . . , xn)dx1 . . . dxn

where Um is the set of data vectors (x1, . . . , xn) for which the mth hypothesis is the
output of the decision rule. The average probability of decision error is

pe =
M −1∑
m=0

1

M

∫
Uc

m

pm(x1, . . . , xn)dx1 . . . dxn

=
M −1∑
m=0

1

M

[
1 −

∫
Um

pm(x1, . . . , xn)dx1 . . . dxn

]
.

Consequently, to minimize pe, the decision set Um should contain the measurement
(x1, . . . , xn) whenever pm(x1, . . . , xn) is larger than pm′(x1, . . . , xn) for all m′ �= m. (A
tie for the largest probability can be broken by any arbitrary rule, say, break a tie in
favor of the smallest index.) This concludes the proof. �

Corollary 7.1.2 If, for each m, the random data vector (Xm1, . . . , Xmn) is a gaussian
vector random variable, corresponding to the mth hypothesis, and with independent
components of means cm1, . . . , cmn and identical variances σ 2, then the optimum deci-
sion rule given observed data (x1, . . . , xn) is to choose the hypothesis indexed by m for
which the euclidean distance

∑n
�=1(x� − cm�)

2 is smallest.
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Proof Suppose that, for each m, (Xm1, . . . , Xmn) is a gaussian vector random variable
with independent components of means cm1, . . . , cmn and identical variances σ 2. Then

pm(x1, . . . , xn) =
n∏

�=1

1√
2πσ

e−(x�−cm�)
2/2σ 2

= 1

(
√

2πσ)n
e−
�(x�−cm�)

2/2σ 2
.

An optimum decision rule decides on that m for which pm(x1, . . . , xn) is maximum.
To maximize pm(x1, . . . , xn) over m, one should minimize 
�(x� − cm�)

2 over m. This
completes the proof of the corollary. �

Corollary 7.1.3 If
∑n

�=1 c2
m� is independent of m, then the optimum decision rule is

to choose that m for which the correlation coefficient
∑n

�=1 x�cm� is largest.

Proof Expand the square and note that the term 
�x2
� and, by the condition of the

corollary, the terms 
�c2
m� are independent of m. The proof of the corollary follows. �

The function pm(x1, . . . , xm) appearing in Theorem 7.1.1 arises as a probability den-
sity function, one such probability density function for each m. However, the theorem
regards m as the variable and the data (x1, . . . , xm) as given. This is the view that one
adopts after the data is observed. Then we think of pm(x1, . . . , xm) as a function of m.
In this role pm(x1, . . . , xm) is called a likelihood function, and its logarithm, denoted

�(m) = log pm(x1, . . . , xn)

is called the log-likelihood function.
In general, the unknown index m can be replaced by a vector of parameters γ , and

the probability density function on the vector of measurements p(x1, . . . , xn | γ ) is
conditional on γ . Possibly, some components of the vector γ are discrete parameters
such as data components and some are continuous parameters, such as carrier phase.
As a function of the vector γ the log-likelihood function is defined as

�(γ ) = log p(x1, . . . , xn | γ ).

The logarithmic form of the likelihood function is preferred because it replaces products
of likelihoods by sums of log-likelihoods, and sums are more convenient to deal with.

7.2 The maximum-likelihood principle

We are usually interested in a log-likelihood function only for the purpose of finding
where it achieves its maximum, but not in the value of the maximum. Constants added to
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or multiplying the log-likelihood function do not affect the location of the maximum, so
it is common practice to suppress such constants when they occur by redefining �(γ ).

For example, the gaussian distribution with unknown mean x̄ has a log-likelihood
function

�(x̄) = − log
√

2πσ 2 − (x − x̄)2/2σ 2.

For economy, we will commonly discard the constants and write

�(x̄) = −(x − x̄)2.

We will also call this function a likelihood “statistic” to recall that is not precisely the
log-likelihood function. A likelihood statistic is an example of a sufficient statistic. In
general, a statistic is any function of the received data, and a sufficient statistic is a
statistic from which the likelihood function can be recovered by reintroducing known
constants; no essential information contained in the data is lost.

We shall be interested in problems in which the number of data measurements n goes
to infinity. In such a case, the limit as n goes to infinity of �(γ ) may be infinite for all
(or many) values of γ . It then would be meaningless to deal with the maximum over
γ of the limit of �(γ ). But we are not interested in the value of the maximum. We are
interested only in the value of γ where the maximum occurs, or, more precisely, in the
limit as n goes to infinity of the sequence of values of γ that achieve the maximum
for each n. Therefore, to avoid divergence to infinity, we may discard terms from the
log-likelihood function that do not affect the location of the maximum.

A satisfying way to do this is to use a form called the log-likelihood ratio, also
denoted by the symbol �, and given by the general form

�(γ , γ ′) = log
p(x1, . . . , xn | γ )

p(x1 . . . , xn | γ ′)
,

or perhaps

�(γ ) = log
p(x1, . . . , xn | γ )

p(x1, . . . , xn)

where p(x1 . . . , xn) is a convenient reference probability distribution, sometimes cor-
responding to noise only. The purpose in introducing either form of the log-likelihood
ratio is to have a form that remains finite as n goes to infinity. The maximum-likelihood
estimate is then that value of γ maximizing �(γ ), or equivalently, that value for which
�(γ , γ ′) is nonnegative for all γ ′.

We are now ready to consider the important instance of a log-likelihood function of
a received noisy waveform v(t), given by

v(t) = c(t, γ ) + n(t),



222 Principles of optimal demodulation

where γ is an unknown vector parameter and n(t) is additive gaussian noise. The
log-likelihood function that we will derive for this waveform often will be written
formally as

�(γ ) = − 1

N0

∫ ∞

−∞
[v(t) − c(t, γ )]2dt.

However, as it is written, the integral is infinite because the noise has infinite energy, so
the formula with infinite limits can only be understood symbolically. We shall derive the
formula only for finite observation time and only for white noise. Nonwhite noise can
be converted to white noise by the use of a whitening filter, but not without violating
the assumption of a finite observation interval. The use of a whitening filter can be
justified under the assumption that the observation interval is very long in comparison
with the response time of the whitening filter, so the transient effects at the edges of
the interval have a negligible effect. A more elegant, and more advanced treatment of
the case of nonwhite noise would use the methods of functional analysis to reach the
same conclusion rigorously.

We shall want to replace the waveform v(t) with a finite-dimensional vector of
samples having independent noise so that Theorem 7.1.1 can be used. In creating this
vector, we suppose that v(t) has been passed through a whitening filter to whiten the
noise.

Proposition 7.2.1 Given the reference signal c(t, γ ) depending on the parameter γ

and the observed signal v(t) supported on [−T/2, T/2] received in white gaussian
noise n(t), the log-likelihood function for γ is the function of γ given by

�(γ ) = − 1

N0

∫ T0/2

−T0/2
[v(t) − c(t, γ )]2dt.

Proof The received signal is given by

v(t) = c(t, γ ) + n(t)

for some actual value of γ . Consider the Fourier series expansion of v(t) on the interval
[−T/2, T/2]. The complex Fourier expansion coefficients . . . , V−1, V0, V1, . . . are an
infinite number of gaussian random variables with means Ck , . . . , C−1, C0, C1, . . . given
by the Fourier coefficients of c(t, γ ) on the interval [−T/2, T/2]. Because the noise is
white, the random variables V−K , . . . , VK are independent and identically distributed.
The probability density function of these 2K + 1 random variables is

p(V−K , . . . , VK | c(t, γ )) = [2πσ 2]−(2K+1)
K∏

k=−K

e−[Vk−Ck ]2/2σ 2
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and σ 2 = N0/2. For a set of samples, we use as the likelihood statistic

�(γ ) = log Bp(V−K , . . . , VK | c(t, γ ))

conditional on the expected complex value c(t, γ ) of the received signal, which may
depend on the vector parameter γ , and where we use the constant

B = [2πσ 2]2K+1

to normalize the log-likelihood function.
With this choice of normalizing constant,

�(C−K , . . . , CK ) = −
K∑

k=−K

[Vk − Ck ]2/N0.

Now let K go to infinity and use the energy theorem for Fourier series1 to write

lim
K→∞ �(C−K , . . . , CK ) = − 1

N0

∫ T0/2

−T0/2
|v(t) − c(t, γ )|2dt

which completes the proof of the theorem. �

The log-likelihood function given in the theorem goes to infinity as T0 goes to
infinity. From a practical point of view, it is always possible to find a way around this
mathematical difficulty by regarding the expression symbolically and its consequences
as a guide.

7.3 Maximum-likelihood demodulation

In this section, we shall derive the maximum-likelihood demodulator for various
modulation waveforms in the absence of intersymbol interference. The maximum-
likelihood demodulator minimizes the probability of demodulated block error. It is

1 The energy theorem for Fourier series∫ T/2

−T/2
|v(t)|2dt =

∞∑
k=−∞

|Vk |2

is a special case of Parseval’s formula for Fourier series∫ T/2

−T/2
v(t)u∗(t)dt =

∞∑
k=−∞

Vk U∗
k .
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not the demodulator that minimizes the bit error rate. This is because the maximum-
likelihood demodulator minimizes the probability of block (or message) error, not the
probability of bit (or symbol) error. It may be that one could increase the message error
rate, but reduce the number of bit errors in each incorrect message in such a way that
the bit error rate decreases.

We shall defer the detailed study of maximum-likelihood demodulation when there is
intersymbol interference to Section 7.4 where we shall see that the maximum-likelihood
demodulator for sequences need not be the same as many of the demodulators studied
in earlier chapters. In this section, we shall specialize the maximum-likelihood demod-
ulator to the simple case in which the channel symbols do not interfere and the noise is
additive white gaussian noise. We shall see that the maximum-likelihood demodulator
then reduces to the matched-filter demodulator. Hence one result of this section is to
establish that some demodulators based on the matched filter that were studied in earlier
chapters are optimal in gaussian noise.

The maximum-likelihood principle will now be applied to the task of demodulation.
As usual, the model of a digital communication waveform that we shall study next, in
Theorem 7.3.1, is

v(t) = c(t) + n(t)

=
n−1∑
�=0

a�s(t − �T ) + n(t)

where s(t) is a general pulse and a� takes values in some real or complex signal con-
stellation. For the moment, the pulse is not necessarily one that satisfies a Nyquist
condition. If there is dispersion in the channel, it is included in the definition of the
pulse s(t). The received pulse may exhibit intersymbol interference, perhaps because
it was generated that way in the transmitter, or perhaps because of dispersion in the
channel.

Theorem 7.3.1 The sequence of (complex) samples at times �T at the output of the
matched filter s∗(−t) is a sufficient statistic for demodulation of any waveform of
the form

c(t) =
n−1∑
�=0

a�s(t − �T )

in additive white gaussian noise.

Proof It suffices to prove that the likelihood statistic can be reconstructed from the
stated sequence of matched-filter outputs. As implied by Corollary 7.1.2, maximizing
the likelihood function �(a0, . . . , an−1) in gaussian noise is equivalent to minimizing
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the euclidean distance d(v(t), c(t)). Thus,

d(v(t), c(t)) =
∫ ∞

−∞
|v(t) − c(t)|2dt

=
∫ ∞

−∞
|v(t)|2dt − 2Re

[∫ ∞

−∞
v(t)c∗(t)dt

]
+
∫ ∞

−∞
|c(t)|2dt

=
∫ ∞

−∞
|v(t)|2dt − 2Re

[
n−1∑
�=0

a∗
�

∫ ∞

−∞
v(t)s∗(t − �T )dt

]

+
n−1∑
�=0

n−1∑
�′=0

a�a∗
�′

∫ ∞

−∞
s(t − �T )s∗(t − �′T )dt

=
∫ ∞

−∞
|v(t)|2dt − 2Re

[
n−1∑
�=0

a∗
�u�

]
+

n−1∑
�=0

n−1∑
�′=0

a�a∗
�′r�′−�

where

u� = u(�T ) =
∫ ∞

−∞
v(t)s∗(t − �T )dt

and

r� = r(�T ) =
∫ ∞

−∞
s(t)s∗(t − �T )dt

= r∗(−�T ) = r∗−�.

Given a received v(t), the first term of the last line on the right is a constant that is
independent of the hypothesized data sequence so it need not be included. A suitable
redefinition of the likelihood statistic to be maximized is

�(a0, . . . , an−1) = 2Re

[
n−1∑
�=0

a∗
�u�

]
−

n−1∑
�=0

n−1∑
�′=0

a�a∗
�′r�′−�,

which depends on the received signal v(t) only through the samples u�, so these samples
form a sufficient statistic. This completes the proof of the theorem. �

The theorem only provides a sufficient method of forming a sufficient statistic, not a
necessary method. The theorem does not preclude the possibility of other statistics that
are just as good, but none is better. Proposition 7.2.1 indicates that, to achieve an optimal
demodulator, the matched filter should be designed for the received pulse (which may
include the effects of dispersion in the channel), rather than for the transmitted pulse.

We shall now apply the maximum-likelihood principle to the case of a BPSK wave-
form in white noise in the absence of intersymbol interference. In the next section we
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shall repeat the discussion in the presence of intersymbol interference. For the demod-
ulation of BPSK, there is no purpose in dealing with the quadrature component, so we
may treat the signal as a real baseband signal. The a� are unknown parameters equal
to ±A. The log-likelihood function is maximized by the sequence of values of a� that
maximize the likelihood statistic that was given at the end of the preceding proof.

Theorem 7.3.2 In additive white gaussian noise, the maximum-likelihood demodu-
lator for the BPSK waveform with no intersymbol interference is to pass the received
signal through the matched filter and detect the sign of the output at each sampling
instant �T .

Proof For this special case, the double summation in the proof of Theorem 7.3.1
reduces to a single summation because of the assumption of the theorem. That is,

d(v(t), c(t)) =
∫ ∞

−∞
v2(t)dt − 2

n−1∑
�=0

a�u� +
n−1∑
�=0

a2
�

∫ ∞

−∞
s2(t)dt.

The first term on the right does not depend on a�. Because a� = ±A, the last term does
not depend on a� either. To maximize 
�a�u�, the estimate of a� should have the same
sign as u� for each �. Because any sequence of data bit values is allowed, this is the
maximum-likelihood demodulator. �

Notice that Theorem 7.3.2 derives, as an optimal demodulator, the same coher-
ent matched-filter demodulator that was studied in Chapter 3, but now starting from
a stronger definition of optimality. The matched-filter demodulator was derived in
Chapter 3 under a simpler setting for the problem. There the demodulator was specified
to have the structure of a linear filter followed by a threshold, and the matched filter
was shown to maximize signal-to-noise ratio over the class of demodulators with this
special structure. In Theorem 7.3.2, the structure itself is developed during the proof
of optimality. On the other hand, Theorem 7.3.2 applies only to white gaussian noise,
while Theorem 3.1.2 applies to any stationary noise.

Theorem 7.3.3 In additive white gaussian noise, the maximum-likelihood demodu-
lator for QAM signaling with complex signal constellation {cm : m = 0, . . . , M − 1},
and with no intersymbol interference, is to pass the signal through a matched filter and
to choose that m for which cm is closest in euclidean distance to the output of the filter
at the sampling instant.

Proof As in the proof of Corollary 7.1.2, maximizing the likelihood function
�(a0, . . . , an−1) is equivalent to minimizing the distance

d(v(t), c(t)) =
∫ ∞

−∞
|v(t)|2dt − 2Re

[
n−1∑
�=0

a∗
�u�

]
+

n−1∑
�=0

|a�|2
∫ ∞

−∞
s2(t)dt
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by choice of the sequence of a� where, for each �, a� ∈ {cm : m = 0, . . . , M − 1}.
But

∫∞
−∞ |v(t)|2dt is a constant throughout the calculation and can be replaced by the

constant
∑n−1

�=0 |u�|2 without affecting which m achieves the minimum. Thereafter, with
the implicit understanding that the pulse s(t) is normalized so that

∫∞
−∞ s2(t)dt = 1,

this is the same as maximizing

d(u, a) =
n−1∑
�=0

|u�|2 − 2Re

[
n−1∑
�=0

a∗
�u�

]
+

n−1∑
�=0

|a�|2

=
n−1∑
�=0

|u� − a�|2.

This is maximized by choosing, for each �, the estimate â� equal to that element of the
signal constellation that minimizes |u� − a�|2. �

The maximum-likelihood principle also can be used to provide an optimality condi-
tion for a noncoherent demodulator of an M-ary orthogonal waveform. The assumption
is that the phase error is independent from symbol to symbol and there is no intersymbol
interference, and therefore nothing is to be gained by demodulating more than one sym-
bol at a time. The following is the optimality theorem for noncoherent demodulation
of a single symbol of an M-ary orthogonal signaling waveform.

Theorem 7.3.4 In additive white gaussian noise, when the carrier phase is unknown,
the maximum-likelihood demodulator for a single symbol of an M-ary orthogonal sig-
naling waveform with no intersymbol interference is a bank of matched filters, followed
by a threshold on the magnitude of the output at the sampling instant.

Proof Because, by assumption, there is no intersymbol interference, and orthogonal
signaling pulses are defined to be orthogonal to all of their translates by �T , it suffices
to consider only a single transmitted pulse. Let sm(t) for m = 0, . . . , M − 1 denote the
M orthogonal pulses. For a single transmitted pulse, the received signal at complex
baseband is

v(t) = sm(t)e jθ + n(t).

The proof consists of writing down the log-likelihood function as a function of the
unknown index m and the unknown phase θ , and then maximizing over both m and θ .
But this reduces to choosing m and θ so as to minimize the squared euclidean distance:

d2(v(t), sm(t)e jθ ) =
∫ ∞

−∞
|v(t) − sm(t)e jθ |2dt

=
∫ ∞

−∞
|v(t)|2dt − 2Re

[
e−jθ

∫ ∞

−∞
v(t)s∗

m(t)dt

]
+
∫ ∞

−∞
|sm(t)|2dt.
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The first term does not depend on m or θ . Because we have defined an M-ary orthogonal
alphabet to have the same energy in each of its pulses, the last term does not depend
on m, nor on θ . The middle term has the form of the number Re[ze−jθ ], which is
maximized over θ by choosing e−jθ = z∗/|z|. Consequently,

min
θ

d2(v(t), sm(t)e jθ ) =
∫ ∞

−∞
|v(t)|2dt − 2

∣∣∣∣∫ ∞

−∞
v(t)s∗

m(t)dt

∣∣∣∣+ Ep,

and the maximum-likelihood demodulator chooses m to minimize the right side. That is,
choose that m for which the magnitude of the mth matched-filter output is largest. �

7.4 Maximum-likelihood sequence demodulation

Maximum-likelihood demodulation of a BPSK waveform in the absence of intersymbol
interference was studied in the previous section. Now we turn to the demodulation of
BPSK in the presence of intersymbol interference. Now, the log-likelihood function for
a block of length n cannot itself be separated in a simple way into a sum of noninteracting
log-likelihood functions, as was done in the proof of Theorem 7.3.2. In its place, we
will formulate an alternative likelihood statistic that can be so separated in a simple
way into an appropriate sum of terms.

We begin with the likelihood statistic for the general case of a QAM waveform

c(t) =
n−1∑
�=0

a�s(t − �T )

received in additive white gaussian noise, which was developed within the proof of
Theorem 7.3.1 as

�(a0, . . . , an−1) = 2Re

[
n−1∑
�=0

a∗
�u�

]
−

n−1∑
�=0

n−1∑
�′=0

a�a∗
�′r�′−�

where the first term involves the matched-filter output u�, given by

u� = u(�T ) =
∫ ∞

−∞
v(t)s∗(t − �T )dt

and the second term involves r�, given by

r� = r(�T )

=
∫ ∞

−∞
s(t)s∗(t − �T )dt

= r∗(−�T ) = r∗−�
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which does not involve the received signal v(t). Because �(a0, . . . , an−1) can be
recovered from the sequence of the matched-filter output samples, the sequence of
the matched-filter output samples is a sufficient statistic for the demodulation of a
QAM waveform, whether or not there is intersymbol interference.

The maximum-likelihood demodulator finds the vector â = (a0, . . . , an−1), of block-
length n, each of whose components is in the QAM signal constellation, that maximizes
�(a0, . . . , an−1). For the special case of BPSK, all of the components of the n-vector
(a0, . . . , an−1) must be ±A. One way of finding this maximum-likelihood solution is
to substitute, in turn, each of the 2n such binary vectors (or, in the general case, each
of the M n such M-ary vectors) into �(a0, . . . , an−1) and then search for the largest
value of �(a0, . . . , an−1). However, this process is rather tedious, even intractable,
for large n. Further, in most applications, n is not fixed but is ever-increasing. In
such applications, one does not want a block-organized computational structure for
the maximum-likelihood demodulator. One wants a recursive computational structure
that will demodulate each bit (or symbol) in turn after a fixed computational delay.
The Viterbi algorithm has this kind of structure, sliding along the incoming senseword
and producing output bits in sequence after some fixed latency. We shall show that,
in the presence of intersymbol interference and white gaussian noise, the maximum-
likelihood principle can be formulated in such a way that theViterbi algorithm provides a
fast computational algorithm with the desired properties. The only condition we impose
is that the intersymbol interference has finite duration. That is, for some integer ν, called
the constraint length, r� = 0 for � > ν and for � < 0. This means that a symbol will
have nonnegligible intersymbol interference only from the ν previous data symbols.
Consequently, we shall refer to the value of the previous ν symbols as the state of the
channel. Specifically, define the state as the ν-tuple consisting of the previous ν data
symbols

σ� = (σ�−ν , σ�−ν+1, . . . , σ�−1).

For QAM signaling, each symbol takes values in a finite signal constellation with
M = 2k points so there are a finite number, 2kν , of states. As � increases by one, the
state σ� changes to state σ�+1. The state transitions define a trellis on the 2kν states.
The cumulative likelihood statistic for the subblock (a0, . . . , a�) is nondecreasing as �

increases.
The next theorem provides a formulation of the likelihood statistic that has a reg-

ular additive structure and can be fitted to the structure of the Viterbi algorithm. Let
λ�+1(σ�, σ�+1) denote the increase in the likelihood statistic in going from state σ� to
state σ�+1. That is, define λ�+1(σ�, σ�+1) by

�(a0, . . . , an−1) = �(a0, . . . , an−2) + λ�+1(σ�, σ�+1).
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Theorem 7.4.1 The likelihood statistic for a QAM signaling waveform in additive
white gaussian noise with modulation levels denoted a�, can be written as the sum

�(a0, . . . , an−1) =
n−1∑
�=0

λ�+1(σ�, σ�+1)

where

λ�+1(σ�, σ�+1) = 2Re[a∗
�u�] − 2Re

⎡⎣a∗
�

�−1∑
k=�−ν

akr�−k

⎤⎦− |a�|2r0,

with the understanding that a� = 0 for � less than zero and where u� and r� are the
actual and expected values of the matched-filter output, respectively.

Proof The equation for �(a0, . . . , an−1) was given at the start of the section. We will
expand the equation for �(a0, . . . , a�) by writing the sum from 0 to � as a sum from 0
to � − 1, then adding the terms at � explicitly. This is

�(a0, . . . , a�) = 2Re

[
�∑

k=0

a∗
k uk

]
−

�∑
k=0

�∑
k ′=0

aka∗
k ′rk ′−k

= 2Re

[
�−1∑
k=0

a∗
k uk

]
−

�−1∑
k=0

�−1∑
k ′=0

aka∗
k ′rk ′−k

+ 2Re[a∗
�u�] − a�

�−1∑
k ′=0

a∗
k ′rk ′−� − a∗

�

�−1∑
k=0

akr�−k − |a�|2r0

= �(a0, . . . , a�−1) + 2Re[a∗
�u�] − 2Re

⎡⎣a∗
�

�−1∑
k=�−ν

akr�−k

⎤⎦− |a�|2r0.

Now use the facts that rk = r∗
−k and rk = 0 for k > ν to rewrite this as

�(a0, . . . , a�) = �(a0, . . . , a�−1) + 2Re[a∗
�u�] − 2Re

⎡⎣a∗
�

�−1∑
k=�−ν

akr�−k

⎤⎦− |a�|2r0

= �(a0, . . . , a�−1) + λ�(σ�, σ�+1).

Hence the same reduction applies to �(a0, . . . , a�+1) and so forth. Because
λ�+1(σ�, σ�+1) = 0 for � less than zero, the theorem is proved. �

The likelihood statistic of Theorem 7.4.1 takes the form of a sum of n terms, the
�th of which depends only on the states at times � and � + 1 and the �th sample u�
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of the matched-filter output. This is the structure that is needed to apply the Viterbi
algorithm. To this end, we use the terminology of “distance”. With a change in sign,
we refer to the negative of the likelihood statistic as a “distance” between an observed
sequence and a code sequence. On the trellis with states σ�, define the branch distance
as d�+1 = −λ�+1(σ�, σ�+1) on the branch between states σ� = (a�−ν , . . . , a�−1) and
σ�+1 = (a�+1−ν , . . . , a�). The path distance, then, between any path through the trellis
and the received sequence of matched-filter samples is the sum of branch distances on
the traversed path. To maximize the likelihood statistic, we must minimize the path
distance by the choice of a path through the trellis.

The likelihood statistic is expressed as a sum of branch distances in Theorem 7.4.1.
Then the term |a2

� |r0 in Theorem 7.4.1 is a constant and need not be included in the
branch distance. We shall also drop a factor of two to obtain the modified branch
distance

d�+1(σ�, σ�+1) = Re

⎡⎣a�

⎛⎝−u� +
�−1∑

k=�−ν

akr�−k

⎞⎠⎤⎦
which conveys all relevant information, and is more compact.

We shall illustrate the use of Theorem 7.3.1 by developing the trellis shown in
Figure 7.1 for the case of BPSK using amplitudes a� = ±A with intersymbol inter-
ference of constraint length one. This is similar to the example studied in Section 4.3.
In that section, we used the Viterbi algorithm to demodulate a BPSK waveform in the
presence of intersymbol interference caused by channel dispersion, but we made no
claims about the optimality of this procedure. Now, we shall describe an alternative
demodulator for BPSK, also using the Viterbi algorithm, that is optimal in the sense
of the maximum-likelihood principle. Because ν = 1 and the data is real, the branch
distance becomes

d�+1 = a�(a�−1r1 − u�).

The sum of the branch distances is to be minimized by the choice of path through the
trellis, as defined by the a�.

r1

r1

–r1

–r1 –r1 –r1 –r1

–r1 –r1 –r1

r1 r1 r1

r1 r1 r1
+1

–1

Figure 7.1. A trellis for a maximum-likelihood demodulator.
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Figure 7.2. A trellis for a specific example.
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Figure 7.3. Example of a Viterbi demodulator.

The trellis shown in Figure 7.1 is for a maximum-likelihood demodulator for a BPSK
waveform with constraint length ν equal to one. The term a�−1r� labels the branches,
and the branch distance is computed from u� by the indicated equation. Notice in this
example that the branch distances are to be combined by direct addition. This is in
marked contrast to the example of Figure 4.5 in which squares of distances were added.

Figure 7.2 shows a specific numerical example using r1 = 0.1. Figure 7.3 shows the
surviving paths for that example at each recursion of the Viterbi algorithm.

Let us pause here to summarize our present position before we move on to conclude
the chapter. We saw earlier that if p(t) ∗ p∗(−t) is a Nyquist pulse where p(t) is
the transmitted pulse, then the sampled output of the matched filter p∗(−t) will have
uncorrelated noise components, but if there is dispersion in the channel, there will be
intersymbol interference. This intersymbol interference can be accommodated by using
the Viterbi demodulator as described in Section 4.3 to search for the minimum euclidean
distance path. However, in Theorem 7.4.1, we saw that the optimum demodulator
actually has a different structure, based on the matched filter s∗(−t) and a Viterbi
algorithm searching a trellis with a much different distance structure. Now we would
like to reconcile these two different demodulators. Specifically, because we may prefer
to work with the euclidean-distance structure of the first demodulator, we would like to
determine the circumstances in which it is equivalent to the second demodulator, and
so itself is a maximum-likelihood demodulator.

Theorem 7.4.2 If p(t) ∗ p∗(−t) is a Nyquist pulse for the sampling interval T , and
s(t) =∑ν

i=0 gip(t − iT ), then the Nyquist samples of the output of the filter p∗(−t) are
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a sufficient statistic for estimating the data symbols a� of the QAM waveform

c(t) =
∞∑

�=−∞
a�s(t − �T )

in additive white gaussian noise.

Proof Because we know that the samples u(�T ) of the output of the filter s∗(−t) form
a sufficient statistic, it suffices to show that these samples can be computed from the
sampled outputs of the filter p∗(−t). Thus,

u(�T ) =
∫ ∞

−∞
v(t)s∗(t − �T )dt

=
∫ ∞

−∞
v(t)

ν∑
�=0

gip(t − �T − iT )dt

=
ν∑

i=0

gi

∫ ∞

−∞
v(t)p(t − �T − iT )dt

=
ν∑

i=0

giu
′(�T + iT )

where u′(�T ) is the �th output sample of the filter p∗(−t). Thus u(�T ) can be computed
from the sequence u′(�T ). �

Because of this theorem, for such a received pulse s(t), we are free to use the outputs
of the matched filter p∗(−t) with no loss of information. Then instead of follow-
ing Theorem 7.3.1, we can formulate the maximum-likelihood demodulator by using
these alternative statistics. This maximum-likelihood demodulator will be the Viterbi
demodulator. Even though the structure may look different, Theorem 7.4.2 allows us
to conclude that this demodulator is equivalent to the demodulator of Theorem 7.3.1,
and usually it is to be preferred because of its more convenient structure.

The essential thought behind Theorem 7.4.2 is also important when there is a precoder
between the datastream and the channel. For such an application, there may be a
modulo-q operation in the precoder. The following theorem confirms that this modulo-q
operation does not invalidate the conclusion of Theorem 7.4.2.

Theorem 7.4.3 Let

c� =
ν∑

i=0

gia�−i (mod q)
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where gi and ai are complex integers modulo q, and

c(t) =
∞∑

�=−∞
c�p(t − �T )

where p(t) ∗ p∗(−t) is a Nyquist pulse for the sampling interval T . Then in additive
white noise, the output samples of the matched filter p∗(−t) are a sufficient statistic for
demodulating the data sequence a�.

Proof This is essentially the same as the proof of Theorem 7.4.2. �

7.5 Noncoherent combining of diversity signals

A diversity communication system sends several copies of the same message to a user
through several different channels so that even if all channels but one are broken, the
message will still arrive at the receiver. Diversity may be at the level of an entire message
with L diversity channels. The same full message is sent independently through the L
diversity channels (or through one channel at L different times). Figure 7.4 shows a
system with two diversity channels. If neither channel is broken or impaired, then the
user receives the same message twice. The duplicate copy of the message gives no
additional value.

Diversity transmission can also be at the symbol level; then it is called symbol split-
ting. Each symbol is transmitted through each of L diversity channels. The demodulator
sees the noisy signal coming out of all L channels and, by appropriately combining the
multiple copies, must decide which symbol was transmitted at time �T . There are many
ways to design this demodulator, and the choice will depend on the kinds of things that
might go wrong on the channel. One may individually demodulate all L channel out-
puts and vote on the correct symbol, but this can be a poor approach if all channels
are equally noisy. Alternatively, one may integrate the set of all L channel output sig-
nals into a single statistic and demodulate based on that statistic. For example, the L

to 
User

Receiver

Channel

Channel

TransmitterSource

Figure 7.4. Diversity transmission.
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matched-filter output samples could be added and the sum applied to a threshold, but
this can be a poor approach if most channels are relatively noise-free and a few are very
noisy. Between these two approaches are alternative methods. One prefers to use an
approach that is robust. This is an approach whose performance depends only weakly
on the disparity in the noise strengths of the channels.

The energy per symbol is Es/L, and the output of each subchannel matched filter
has a signal-to-noise ratio Es/LN0. If the probability of symbol error of the selected
modulation waveform is written pes(Eb/N0) as a function of Eb/N0, then the probability
of demodulation error in a single subchannel is pes(Eb/LN0). When one expects that
more than half of the subchannels are relatively noise free, one should demodulate every
channel output and vote on the correct channel symbol. The vote is correct whenever
more than half of the L subchannels are demodulated correctly.

If every channel has additive gaussian noise of the same power density spectrum
N0/2, the use of voting would have a severe energy penalty. In this case, the probability
of demodulation failure after a majority vote is given by

pe =
L∑

�=L/2�

(
L

�

)
pes

(
Eb

LN0

)� (
1 − pes

(
Eb

LN0

))L−�

.

If the demodulator accepts a plurality decision, then the probability of demodulation
error will not be smaller than this expression. To get a general sense of the consequence
of this equation, let L be even and approximate the sum by its dominant term. It then
becomes

pe ≈
(

L

L/2

)
pes

(
Eb

LN0

)(L−1)/2

.

Now recall that for many of the kinds of modulation that were studied in Chapter 3,
the probability of symbol error for large Eb/N0 can be written as

pes

(
Eb

N0

)
= Q

(√
β

Eb

N0

)

for some constant β that depends on the kind of modulation. Consequently, using
the inequality Q(x) < 1

2 e−x2/2 as a coarse approximation, we can manipulate the
approximate terms as follows:[

pes

(
Eb

LN0

)](L−1)/2

≈
(

e−βEb/2LN0
)(L−1)/2 ≈ e−βEb/4N0

≈ pes

(
Eb

2N0

)
.



236 Principles of optimal demodulation

Consequently,

pe ∼
(

L

L/2

)
pes

(
Eb

2N0

)
.

The appearance of a factor of two in the argument of pes suggests that making a hard
decision in each individual subchannel results in an energy loss of at least 3 dB. The
first term indicates even more degradation in the probability of error. Indeed, an exact
analysis would show an even larger degradation.

For binary modulation, because the total energy expenditure is Eb joules per bit,
each of the L subchannels expends Eb/L joules per bit. If every subchannel were a
white gaussian-noise channel with noise power density spectrum N0/2 watts per hertz,
one would hope to communicate with the same Eb/N0 as would be needed by a single
channel. Indeed, this can be done simply by adding the L outputs of the L matched filters
to form a single statistic. This is referred to as coherent integration. Because the L noise
samples are independent, their variances add when the samples are added, so the noise
power in the composite statistic will increase by L while the signal amplitude increases
by L. The composite signal amplitude is L

√
Eb/L, so the energy of the composite signal

is LEb. Because the signal-to-noise ratio of the sum is just what it would be if a single
channel were used, there is no energy loss in using coherent integration whenever all
subchannel outputs are available and equally noisy. However, in such cases, there is no
point in using a diversity system. It would be enough to use all of the available energy
on a single channel.

When the diversity channels are passband channels with unknown and independent
phase angles, the decision statistic is formed by the method called noncoherent integra-
tion. The absolute value, or a monotonic function of the absolute value, of the output
of each matched filter is computed, and these values are added to form the decision
statistic.

The optimum monotonic function for this decision statistic for L-ary diversity, M-
ary orthogonal, noncoherent signaling will be derived from the maximum-likelihood
principle. Let sm�(t) for m = 0, . . . , M − 1 be a set of M orthogonal pulses of equal
energy and unknown phase. At each sample time, a particular pulse sm(t), representing
k data bits, is transmitted on all L channels. The waveform on the �th diversity channel
is c�(t) =∑∞

i=−∞ smi(t − iT ), which does not depend on �. Let xm� be the magnitude
of the output of the matched filter for the pulse sm�(t). Let pN (xm�) be the probability
density function on xm�, given that the input to the matched filter is noise only, and let
pS(xm�) be the probability density function, given that the input to the matched filter
is signal plus noise. Because the pulses have equal energy, these probability density
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functions do not depend on m or �. The log-likelihood function is

�(m) = log

⎡⎣L−1∏
�=0

pS(xm�)
∏

m′ �=m

L−1∏
�=0

pN (xm′�)

⎤⎦
= log

L−1∏
�=0

pS(xm�)

pN (xm�)

[
M −1∏
m′=0

L−1∏
�=0

pN (xm′�)

]
.

The bracketed term in the second line is independent of m, so it is enough to maximize
the redefined likelihood statistic

�(m) = log
L−1∏
�=0

pS(xm�)

pN (xm�)

by choice of m.

Theorem 7.5.1 Given an M-ary orthogonal signaling scheme with L-ary nonco-
herent diversity, all pulses having the same energy Ep = A2, and all channels
having additive white gaussian noise of two-sided power density spectrum N0/2, the
maximum-likelihood demodulator chooses that m for which

�(m) =
L−1∑
�=0

log I0

(
2Axm�

N0

)

is largest, where xm� is the absolute value of the output sample of the m�th matched
filter.

Proof To evaluate the maximum-likelihood demodulator, we should write the likeli-
hood function with the set of phase angles included as unknown parameters. However,
because each phase term occurs in only one pulse and the pulses are orthogonal, the
maximization with respect to phases will separate into individual maximizations lead-
ing to the prescription that only the absolute value of each matched filter is used.
Consequently, we begin the mathematical treatment at this point.

Let pN (xm�) for m = 0, . . . , M − 1 and � = 0, . . . , L − 1 be the rayleigh density
function describing the magnitude of the matched-filter output when m is not the trans-
mitted symbol; let pS(xm�) for m = 0, . . . , M − 1 and � = 0, . . . , L − 1 be the ricean
density function describing this output when m is the transmitted symbol. Then given
xm� for m = 0, . . . , M − 1, and � = 0, . . . , L − 1, we choose m̂ as the value of m for
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which

�(m) = log
L−1∏
�=0

pS(xm�)

pN (xm�)

= log
L−1∏
�=0

[
xm�e−(x2

m�+A2)/2σ 2

σ 2
I0

(
Axm�

σ 2

)]/
xm�e−x2

m�/2σ 2

σ 2

= log

[
L−1∏
�=0

e−A2/2σ 2
I0

(
Axm�

σ 2

)]

is maximized. Replacing the logarithm of a product by the sum of logarithms and σ 2

by N0/2 completes the proof of the theorem. �

An optimal receiver for a four-ary orthogonal alphabet with noncoherent two-way
diversity is shown in Figure 7.5, in which I0(x) is the modified Bessel function. The
structure of this receiver, using log-Bessel integration, is an immediate consequence of
Theorem 7.5.1.
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Figure 7.5. Noncoherent demodulator for four-ary orthogonal signaling with two-way diversity.
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For small values of x, we may consider the series expansion

log I0(x) = 1

4
x2 − 1

64
x4 + · · · .

Therefore the function log I0(x) can be well approximated by a quadratic function of x
when x is small. The approximation

log I0(x) ≡ 1

4
x2

is sometimes used for all values of x because it does not much matter that the
demodulator is suboptimal when the signal strength is large.

The performance of a noncoherent L-ary diversity system can be evaluated numeri-
cally using the diagram of Figure 7.6. Figure 7.7 shows the performance of an eight-ary
orthogonal modulation system with L-ary symbol splitting and square-law combining in
additive white gaussian noise. If the square-law combining nonlinearity were replaced
by the optimal log I0(x) combining nonlinearity, then the curves for L = 2, 3, and 4
would move slightly to the left. An inspection of Figure 7.7 shows that, to achieve a
given probability of error when all channels have the same noise power, symbol split-
ting requires about 1 dB more energy than would simple orthogonal signaling. This
loss of 1 dB against white gaussian noise is the cost for using a diversity system with
noncoherent combining to protect against channel loss or disparate noise distributions.
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Figure 7.6. Computing the performance of a diversity system.
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Figure 7.7. Performance of noncoherent eight-ary modulation with L-ary symbol splitting and square-
law combining.

7.6 The maximum-posterior principle

The maximum-likelihood principle is a compelling principle of optimality. The fun-
damental premise of this principle is that the most likely explanation of the observed
data is the most desirable explanation of the observed data. However, although this
premise may be compelling, it is not compulsory. It does ignore other possible consid-
erations of merit. One may choose to reject the maximum-likelihood principle, or to
use it only when it fits one’s purpose. Indeed, although the message error rate may be
more meaningful, a communication system is usually judged by the bit error rate, and
the maximum-likelihood demodulator does not attempt to minimize the bit error rate
because the most likely interpretation of the channel senseword does not necessarily
have the fewest bit errors. There may be a less likely interpretation of the senseword
that has a lower bit error rate or possibly favors some other, secondary, consideration.

In this section, we shall introduce the maximum-posterior principle as an alternative
method of inference. Often, for routine applications, the maximum-posterior principle
is equivalent to the maximum-likelihood principle, so is not really an alternative. This
is so, for example, in the case of decisions at the block level when all blocks are equally
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likely. However, when applied at the bit level, the maximum posterior principle can be
quite different.

Discussion of the maximum-posterior principle makes repeated reference to the
notions of marginal probability distributions and conditional probability distributions,
which are defined as follows. Let p(x, y) be any bivariate probability distribution2 on
two random variables X and Y . Then the marginal distributions on X and Y are given by

p(x) =
∑

y

p(x, y)

p(y) =
∑

x

p(x, y).

The conditional distributions on X and Y are given by

p(x|y) = p(x, y)/p(y)

p(y|x) = p(x, y)/p(x).

It follows from these definitions that p(x, y) = p(x|y)p(y) = p(y|x)p(x) from which
the Bayes formula

p(y|x) = p(x|y)p(y)∑
y p(x|y)p(y)

follows immediately.
Similar definitions apply to the multivariate probability distribution p(x1, . . . , xn) on

the block of random variables (X1, . . . , Xn). The block has the marginal distribution

p(x�) =
∑
x1

· · ·
∑
x�−1

∑
x�+1

· · ·
∑
xn

p(x1, . . . , xn)

on random variable X�. Marginalization to several random variables, such as p(x�, x�′),
is defined in a similar way. A variety of conditionals can then be defined, such as
p(x1, . . . , x�−1, x�+1, . . . , xn|x�) or p(x1, x2|x�).

The conditional probability of observation x when given the parameter γ is p(x|γ ).
The task of inference of a parameter γ from an observation x when given the conditional
probability p(x|γ ) led us to introduce the maximum-likelihood principle. However, if
a probability distribution p(γ ) on γ is known, then one can write the joint distribution
p(x, γ ) = p(γ )p(x|γ ). By the Bayes formula, the posterior probability of parameter
γ when given x is

p(γ |x) = p(γ )p(x|γ )


γ p(γ )p(x|γ )
.

2 As is customary, we carelessly use p to denote all of these probability distributions even though they are actually
many different functions.
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The probability p(γ |x) is called the posterior probability of γ , and p(γ ) is called the
prior probability of γ .

The maximum-posterior principle is a principle of inference that states that one should
estimate γ so as to maximize p(γ |x). Thus γ̂ = maxγ p(γ |x). The maximum-posterior
principle can be used only if p(γ ) is known and this is often not known. It is easy to see
that the maximum-posterior principle is the same as the maximum-likelihood principle
if p(γ ) is the uniform distribution. However, if γ is a block of multiple parameters, then
marginalization to one parameter may produce a fundamental change in the structure
of the maximum-posterior estimate.

For example, if there are two parameters γ1 and γ2, then

p(γ1, γ2|x) = p(γ1, γ2)p(x|γ1, γ2)∑
γ1γ2

p(γ1, γ2)p(x|γ1, γ2)

is the posterior probability of the pair (γ1, γ2). The marginalization of p(γ1, γ2|x) to γ1

is the marginal posterior probability

p(γ1|x) =
∑
γ2

p(γ1, γ2|x) =
∑

γ2
p(γ1, γ2)p(x|γ1, γ2)∑

γ1γ2
p(γ1, γ2)p(x|γ1, γ2)

p(γ2|x) =
∑
γ1

p(γ1, γ2|x) =
∑

γ1
p(γ1, γ2)p(x|γ1, γ2)∑

γ1γ2
p(γ1, γ2)p(x|γ1, γ2)

.

The componentwise maximum-posterior estimate then is

(γ̂1, γ̂2) = (argmaxγ1
p(γ1|x), argmaxγ2

p(γ2|x))

which, in general, is not equal to the blockwise maximum-posterior estimate

(γ̂1, γ2) = (argmaxγ1γ2
p(γ1, γ2|x)

)
.

The comparison between blockwise and componentwise maximum-posterior estima-
tion is at the heart of many applications of this principle. Indeed, even if γ1 and γ2 are
independent so that p(γ1, γ2) = p(γ1)p(γ2), a change in p(γ2), the prior on γ2, does
change the marginal p(γ1|x), and so the estimate γ̂1 may change.

7.7 Maximum-posterior sequence demodulation

The maximum-posterior demodulator involves a form of demodulation that is straight-
forward to explain at the conceptual level, although it can be burdensome to implement.
To recover the transmitted dataword, it demodulates each bit or symbol of the received
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senseword individually, but within the context of the entire senseword. It does this by
marginalizing the blockwise posterior probability distribution to the individual bitwise
(or symbolwise) posterior probability distribution. It computes this marginalization for
each bit (or symbol) of the block, and then forms a componentwise maximum-posterior
estimate of the transmitted dataword.

A maximum-posterior demodulator at the block level is not popular for the following
reason. The maximum-posterior block estimate is the maximum of the posterior p(a|v)

over all data sequences a. However, if all data sequences are equally probable, this is
the same as the maximum-likelihood demodulator because then p(a|v) is a constant
multiple of p(v|a). Only when the block probabilities are unequal, and known, is the
maximum-posterior demodulator at the block level useful.

The maximum-posterior demodulator for an intersymbol interference channel forms
the componentwise posteriors on the n data symbols when given the channel output
matched-filter samples, which have the form

vi =
∑

�

g�ai−� + ni

= ci + ni

where c is the noise-free channel output and v is the noisy channel output. If the additive
noise vector n is memoryless gaussian noise, then the conditional probability on v is
given by

p(v|a) =
n∏

�=1

1√
2πσ

e−(v�−c�)
2/2σ 2

where c = g ∗ a. To compute the marginal p(a�|v), we must compute the marginal
component p(a� = sm|v) for m = 0, 1, . . . , M − 1, where sm is the mth point of the
signal constellation S . It will prove convenient to also express the marginal imprecisely
as p(a� = m|v) regarding a� as taking on the data values m rather than the symbols sm

representing the data values.
When the block posterior probability, given by

p(a|v) = p(v|a)p(a)∑
a

p(v|a)p(a)

is marginalized to the single letter a� of the message sequence a, it becomes the
conditional

p(a�|v) =
∑
a0

∑
a1

· · ·
∑
a�−1

∑
a�+1

· · ·
∑
an−1

p(a|v)
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in which all components except a� are summed out, and a� is equal to a fixed value,
say a� = m. Each sum, say the sum on aj, designates a sum over all possible values of
component aj. We will abbreviate this formula for marginalization as

p(a�|v) =
∑
a/a�

p(a|v)

or more specifically, as

p(a� = m|v) =
∑
a/a�

p(a|v)

where the notation a/a� denotes the vector a punctured by a�, so that

a/a� = (a0, . . . , a�−1, a�+1, . . . , an−1).

Then we may write

a = (a/a�, a�)

to reinsert a� into a/a�, with the understanding that a� is to be inserted in its proper
place.

For the simplest case of BPSK, each aj ranges over zero and one. Thus, the sum on
only the jth component is

p(a/aj|v) =
∑

aj

p(a|v)

= p(a|aj = 0, v) + p(a|aj = 1, v).

This sum on only one component provides the marginalization to the punctured block
a/a�, which has n − 1 components. In contrast, to marginalize to a single component
is to compute the marginal p(a�|v) by summing over n − 1 components. To compute
this marginal, one must sum out over all values of a/a�. For BPSK, this requires a sum
over 2n−1 such terms, one summand for each value of the sequence a/a�. For an M-ary
signal constellation, the sum over each aj ranges over the M elements of the signal
constellation S . The sum over the entire punctured data vector a/a� then requires a
sum over M n−1 terms. This componentwise posterior p(a�|v) must be computed for
each of n values of �.

The maximum-posterior estimate of the �th symbol is now given by

â� = argmaxa�∈Sp(a�|v)
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for � = 0, . . . , n − 1. If S contains only two values, as for a BPSK waveform, then the
�th binary data bit is recovered as a one or a zero according to whether the posterior
component p(a� = 1|v) is greater than or less than p(a� = 0 | v). This can be decided
by noting whether p(a� = 1 | v) is greater than or less than 1/2.

If there is no intersymbol interference and the a� are independent, then p(a|v) =∏
� p(a�|v�). In this case, the marginals satisfy

p(a�|v) = p(a�|v�) � = 0, . . . , n − 1.

Accordingly, there is no need then to explicitly marginalize p(a|v) to find p(a�|v)

because, in this situation, p(a�|v) is already given as p(a�|v�). This means that only
the �th component of v gives information about a�. Maximum-posterior demodulation
at the bit (or symbol) level then differs from maximum-likelihood demodulation at the
bit level only if the zeros and ones are not equiprobable.

To compute the marginals of p(a|v) for a vector a of blocklength n in the general
case can be a formidable task because n − 1 summations are required to compute
each marginal, and a marginal is needed for each of the M values of each of the n
symbols. Each summation, itself, is a sum of M terms. This means that there are
M (M −1)(n−1)n additions, where M is the size of the signal constellation. In addition,
to first compute p(a|v) for an intersymbol interference channel can be a substantial task.
Because, however, the symbol interdependence has the form of a trellis, fast algorithms
to compute the collection of all branch probabilities are available, and will be explained
next. This trellis description is always available for intersymbol interference. Indeed,
intersymbol interference is described by a trellis with each branch leaving the same
node labeled by a unique data symbol and each symbol is repeated in that frame on
branches leaving other nodes.

The two-way (or frontward–backward ) algorithm is a fast algorithm for calculating
all of the posterior probabilities on the nodes of a trellis of finite length. The algorithm
starts partial computations at each end of the trellis. It works backwards along the
trellis from one end, and frontwards along the trellis from the other. The task is to
compute, starting with the sequence of matched-filter output samples, denoted v, the
posterior probability for each node of the trellis that was visited by the encoder. The
demodulator can then determine, for each data symbol, the received componentwise
maximum-posterior estimate of that symbol.

The two-way algorithm and the Viterbi algorithm both move through the frames of a
trellis by a sequential process, so it is not surprising that both are similar at the logical
flow level. Both have a similar pattern of walking the trellis. However, they are very
different at the computational level. Whereas the fundamental computational unit of
the Viterbi algorithm is an “add–compare–select” step, the fundamental computational
unit of the two-way algorithm is a “multiply–sum” (or sum of products) step. Moreover,
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0 / 0 0 / –1

0 / –1.1 0 / –1.1 0 / –1.1

1 / +1.1 1 / +1.1 1 / +1.1

0 / +0.1

0 / –0.11 / +0.91 / +0.91 / +0.9

0 / –0.90 / –0.90 / –0.9

a0 / c0 a1 / c1 a2 / c2 a3 / c3 a4 / c4 a5 / c5

Figure 7.8. Trellis for explaining the two-way algorithm.

the two-way algorithm makes two passes through the trellis, one forward pass and one
backward pass.

In contrast to the Viterbi algorithm, the two-way algorithm does not make a hard
decision for each symbol. Instead, as its output the algorithm provides soft informa-
tion. Accordingly, the demodulation decision is not regarded as part of the two-way
algorithm; it comes later. Upon receiving the output of the algorithm, the demodulator
may choose to use other information that was not given to the two-way algorithm. In
Section 10.9, for example, the availability of soft information at the output of the algo-
rithm leads to the possibility of iterative decoding, which makes the performance of
turbo codes so attractive. For the present section, it is enough to posit that the symbols
are demodulated by simple threshold methods.

The motivation for the two-way algorithm is presented in the simple example in
Figure 7.8. This is a trellis for a BPSK waveform of blocklength four preceded and
followed by zeros, with intersymbol interference described by g0 = 1, g1 = 0.1, and
g� = 0 otherwise. The branches in the third frame are highlighted in order to discuss
the computation of the posterior of the third bit. To marginalize to a3, one must sum
the probabilities of all paths of the trellis that have a3 = 0; these are the paths that go
through the top highlighted node. Then one must sum the probabilities of all paths that
have a3 = 1; these are the paths that go through the bottom highlighted node. Because
these two probabilities sum to one, only one of them actually needs to be computed
directly. However, it may be more convenient to ignore common constants during the
computation, and to rescale the result after the computation so that the two probabilities
sum to one.

To compute p(a3 = 0|v), referring to Figure 7.8, first sum the path probabilities
over all paths that start at the beginning of the trellis and reach the top node at the end
of the frame of a3, then sum over all paths from that same top node of the trellis that
reach the end of the trellis. Multiply these together. Do the same for the paths that go
through the bottom highlighted node at the end of the frame of a3. More generally, for
a constraint length of ν, there are 2ν nodes at the end of a frame.
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Now the recursive computation is obvious. Let βi� for i = 0, 1 be the sum of the
probabilities of all paths from the beginning of the trellis to the ith node at the end of
frame �. Let γi� for i = 0, 1, be the sum of the probabilities of all paths from the ith
node of the �th frame to the end of the trellis. To establish the recursion, write β0� and
β1� in terms of β0,�−1 and β1,�−1, which have already been computed in the previous
iteration, then

β0� = β0,�−1p(v�|a�−1 = 0, a� = 0)p(a� = 0) + β1,�−1p(v�|a�−1 = 1, a� = 0)p(a� = 0)

β1� = β0,�−1p(v�|a�−1 = 0, a� = 1)p(a� = 1) + β1,�−1p(v�|a�−1 = 1, a� = 1)p(a� = 1).

The probability of the set of all paths leaving the node with a3 = 0 or with a3 = 1 and
going to the end of the trellis can be computed in the same way simply by viewing the
trellis backwards. The backward recursion is

γ0� = γ0,�+1p(v�+1|a�+1 = 0, a� = 0)p(a�+1 = 0) + γ1,�+1p(v�+1|a�+1 = 1, a� = 0)p(a�+1 = 0)

γ1� = γ0,�+1p(v�+1|a�+1 = 0, a� = 1)p(a�+1 = 1) + γ1,�+1p(v�+1|a�+1 = 1, a� = 1)p(a�+1 = 1).

More generally, if the constraint length of the intersymbol interference is ν, there will
be 2ν terms in each of these sums. The posterior p(a3 = 0|v) is the product of two
terms. Then

βi� =
2ν∑

j=1

βj,�−1p(v�|a�−1 = j, a� = i)

γi� =
2ν∑

j=1

γj,�+1p(v�+1|a�+1 = j, a� = 1).

The two-way algorithm performs two sets of partial computations: one partial com-
putation starts at the beginning of the trellis and works forward until it reaches the end
of the trellis, storing as it goes the result of all partial computations in an array as shown
in Figure 7.9. The other partial computation starts at the end of the trellis and works
backward until it reaches the beginning of the trellis, again storing partial results as it
goes. After the two arrays of partial computations are complete, they are combined to
form the vector of branch posteriors.

After the symbol posterior is computed by the two-way algorithm, it can be converted
to a hard decision or used in some other manner. The symbol value with the largest
posterior probability is the appropriate hard decision.
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p (a  |v ) a ai= β =

Figure 7.9. Partial computations for the two-way algorithm.

Problems for Chapter 7

7.1. A received baseband waveform for digital communication in white noise is

v(t) =
[

n−1∑
�=0

a�s(t − �T )

]
∗ g(t) + n(t)

where s(t) is the transmitted pulse such that s(t) ∗ s(−t) is a Nyquist pulse, and
g(t) is the channel impulse response. The received signal is passed through a filter
matched to s(t) and sampled at �T . We are given the samples as our received
data but we cannot observe the received signal at any point prior to the output of
the sampler.
a. Derive the maximum-likelihood demodulator based on the observed samples,

and describe an efficient implementation.
b. Would it be better to observe the received signal at the input to the matched

filter?
7.2. A baseband BPSK waveform for digital communication is dispersed by a linear

channel with an impulse response g(t) and is received in white noise as

v(t) =
n−1∑
�=0

a�s(t − �T ) ∗ g(t) + n(t).

a. Prove that a sufficient statistic for demodulation is given by the set of r�

given by

r� =
∫ ∞

−∞
V ( f )S∗( f )G∗( f )e j2π f �T df

for all �.
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b. Use the necessary and sufficient conditions of a Fourier series to show that
the sequence of samples

r′
� =

∫ ∞

−∞
V ( f )S∗( f )e j2π f �T df

for all � is not a sufficient statistic for demodulation, that is, show that the r�

need not be recoverable from the r′
�.

7.3. a. Derive the maximum-likelihood demodulator for M-ary orthogonal signaling
with no intersymbol interference.

b. By averaging out phase as a random nuisance parameter, derive the maximum-
likelihood demodulator for noncoherent M-ary orthogonal signaling with no
intersymbol interference.

7.4. Given a channel response

v(t) =
∞∑

�=−∞
a�s(t − �T ) + n(t)

where

s(t) = T sin 2πWt

π t(T − t)

and n(t) is white gaussian noise.
a. Is s(t) a Nyquist pulse for this symbol rate?
b. Let u(t) = v(t) ∗ g(t) where

g(t) = 2W sinc 2Wt.

Does the sequence u(�T ) form a sufficient statistic for demodulating a�?
7.5. Given the sequence of received samples

v� = c� + n�

where the sequence n� is a sequence of white (independent) gaussian-noise sam-
ples, and the sequence c� is one of a given set of fixed code sequences, prove that
the maximum-likelihood estimate of the sequence c� is that sequence for which
the euclidean distance d(v, c) between sequences v and c is minimized.

Notes for Chapter 7

The maximum-likelihood principle is a central principle of statistics and of classi-
cal estimation theory. The development of its properties and appeal as a principle of
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inference are largely due to Fisher (1922). This principle is basic to much of modern
communication theory. Forney (1972) developed the maximum-likelihood demodula-
tor in the presence of noise and intersymbol interference as a matched filter, followed
by a whitening transversal filter to make the noise samples independent, and finally fol-
lowed by the Viterbi algorithm to find the maximum-likelihood explanation for the data
that has thus been reduced to discrete-time data in white gaussian noise. Implicit in this
structure is the fact that the whitening filter can be in discrete time. Ungerboeck (1974)
showed how to eliminate the transversal filter by setting up the trellis so that the Viterbi
algorithm could be used as a maximum-likelihood demodulator even in the presence
of any nonwhite noise. In his paper, Forney also derived bounds on the probability of
error of a maximum-likelihood sequence demodulator.

The notion of diversity communication is very natural, and was used early on by
many. A systematic survey of combining diversity signals was published by Brennen
(1955, 1959).

Maximum-posterior algorithms have long received little attention in comparison
to maximum-likelihood algorithms, but this is no longer the case. The two-way
forward–backward, or BCJR algorithm, developed from the earlier Baum–Welch algo-
rithm (1966), was published by Bahl, Cocke, Jelinek, and Raviv (1974) and was largely
ignored for several decades. Essentially the same algorithm has also appeared inde-
pendently in other fields. The introduction of turbo codes created a need for the BCJR
algorithm, and it was rediscovered for that purpose.



8 Synchronization

A channel may introduce unpredictable changes into the waveform passing through it.
In a passband channel, such as a radio frequency channel, unpredictable phase shifts
of the carrier may occur in the atmosphere, in antennas, and in other system elements
or because of uncertainty in the time of propagation. In order to demodulate a digital
waveform coherently, a coherent replica of the carrier is needed in the receiver. Because
the receiver does not know the carrier phase independently of the received signal, the
receiver must locally regenerate a coherent replica of the carrier. Uncertainty in the
phase of the received waveform introduces the task of phase synchronization in the
receiver.

Uncertainty in the time of propagation also introduces problems of time synchro-
nization. The local clock must be synchronized with the incoming datastream so that
incoming symbols and words can be correctly framed and assigned their proper indices.
Time synchronization may be subdivided into two tasks: symbol synchronization, and
block or frame synchronization. These two kinds of time synchronization are quite
different. Symbol synchronization is a fine time adjustment that adjusts the sampling
instants to their correct value. It exploits the shape of the individual pulses making up
the waveform to adjust the time reference. The content of the datastream itself plays no
role in symbol synchronization. Block synchronization takes place on a much longer
time scale. It looks for special patterns embedded in the datastream so that it can find
the start of a message or break the message into constituent parts.

8.1 Estimation of waveform parameters

A received passband waveform may have an unknown phase and an unknown time
origin. The complex representation of a typical received signal with these unknowns is

v(t) =
∞∑

�=−∞
a�s(t − �T − α(t))e jθ(t) + n(t)
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where θ(t) is a random process called the phase noise, α(t) is a random process called the
timing jitter, and n(t) is additive stationary noise, which is usually gaussian. Whenever
θ(t) and α(t) are varying very slowly compared to the duration of a block of the message
of blocklength n, we can approximate them as constants and write the approximation

v(t) =
n−1∑
�=0

a�s(t − �T − α)e jθ + n(t)

where θ is an unknown parameter in the interval [0, 2π ], representing the phase offset;
α is an unknown parameter in the interval [0, T ], representing the symbol timing offset;
and n(t) is additive noise, which is usually gaussian. Often there is no need to model θ

and α as random variables, but when we want to do so, we may model them as uniform
random variables in their respective intervals. Otherwise, we model them simply as
unknown parameters.

Estimation of the parameter θ is called carrier synchronization. Estimation of the
parameter α is called symbol synchronization. There may also be an uncertainty in the
symbol index � due to uncertainty in the message start time. This is dealt with under
the heading block synchronization, or message synchronization, using techniques that
may be quite different from those used for carrier or symbol synchronization.

Given the received signal v(t), the task is to estimate θ and α. Let us consider
what this involves. A common transmitted signal is a quadrature-amplitude-modulated
signal, given by

c(t) =
∞∑

�=−∞
a�s(t − �T ),

where each a� is a complex number taken from the QAM signal constellation. If the
modulation system is to achieve a data rate that is very nearly equal to the channel
capacity, then we may expect that the signal constellation must appropriately discretize
the complex plane around the origin, and the pulse s(t) must have a spectrum S( f )

closely suitable for the channel bandwidth. This leads to a waveform with a lot of
irregular fluctuations. Indeed, the subject of information theory tells us that a good
waveform c(t) will appear to be very similar to complex gaussian noise; the more
nearly the modulation achieves the capacity of an additive gaussian-noise channel, the
more nearly c(t) will mimic gaussian noise. Consequently, there will be little structure
in v(t) from which to form an estimate of θ or α. To extract its needed information,
an estimator of θ or of α requires some residual inefficiency in the communication
waveform. If the communication waveform is very inefficient, the estimation of θ and
α can be rather trivial. However, because communication systems must now transmit
at data rates ever closer to the channel capacity, the development of synchronization
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techniques has been hard pressed to keep up. Sophisticated techniques are being used,
and continue to evolve.

Simple estimators can be designed in an ad hoc way by using heuristic arguments.
More advanced estimators can be derived by using the maximum-likelihood principle.
The exact maximum-likelihood estimator may be too complicated to use, so one finds
approximations to it.

Consider a received waveform corresponding to a block of symbols of length n,

v(t) = c(t − α)e jθ + n(t)

=
n−1∑
�=0

a�s(t − �T − α)e jθ + n(t).

We want to estimate a� for � = 0, . . . , n − 1. The secondary parameters θ and α

are nuisance parameters that affect the structure of the estimator but themselves are
not of independent interest. In principle, the best way to minimize the probability of
demodulation block error is to simultaneously estimate all the unknowns θ , α, and a�

for � = 0, . . . , n−1 by means of a single maximum-likelihood estimator. The estimates
of α� provide the demodulator output; the estimates of θ and α are not of lasting interest
and can be discarded. The log-likelihood function is of the form

�(θ , α, a0, . . . , an−1) =
∫ ∞

−∞
log p(v(t)|θ , α, a0, . . . , an−1)dt

where, for each t, p(v(t)|θ , α, a0, . . . , an−1) is the probability density function of v(t)
conditional on θ , α, a0, . . . , an−1. The maximum-likelihood estimator computes the
argument over θ , α, a0, . . . , an−1 of the maximum of the log-likelihood function. By
Proposition 7.2.1, when the noise is white and gaussian, this is equivalent to minimizing
the squared distance

d2(v(t), c(t − α)e jθ ) =
∫ ∞

−∞
|v(t) − c(t − α)e jθ |2dt

between the actual received signal v(t) and each possible noise-free received signal
c(t − α)e jθ . The minimum of this distance occurs at (θ̂ , α̂, â0, . . . , ân−1), of which the
n-tuple (̂a0, . . . , ân−1) provides the desired estimate of the data.

We shall see that when the blocklength n is equal to one and α is known, the
maximum-likelihood demodulator reduces to a noncoherent demodulator. This is a
meaningful demodulator for a binary waveform, such as frequency-shift keying or
on–off keying, but is meaningless for binary phase-shift keying when n is equal to
one. For n larger than one, the maximum-likelihood demodulator for BPSK will have
a sign ambiguity; it will not be able to distinguish between the true message and the
complement of that message.
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The maximum-likelihood demodulator for large blocklengths will usually be pro-
hibitively expensive to implement directly. One usually uses a suboptimal procedure
whose performance is a satisfactory approximation of the optimal performance. A
common technique is to use a modular demodulator structure, possibly with feed-
back between the modules. For example, first estimate θ , then estimate α, and then
demodulate the data in the manner discussed in Chapter 6. The demodulated data may
be fed back to aid in refining the estimate of θ or α. We will study phase and time
synchronization for a succession of simple problems evaluating and discussing the
maximum-likelihood estimator for each of them.

8.2 Estimation of phase

We begin our study of phase estimation with the study of estimating the phase angle
of a pure sinusoid of known frequency and unknown phase received in additive white
gaussian noise. The received signal is given by

ṽ(t) = cos(2π f0t + θ) + n(t),

and observed on the interval from −T0/2 to T0/2. The complex baseband representation
of this signal is

v(t) = e jθ + nR(t) + jnI (t) |t| ≤ T0/2

where nR(t) and nI (t) are independent, white, gaussian noise processes. The log-
likelihood decision statistic, as stated in Proposition 7.2.1, is

�(θ) =
∫ T0/2

−T0/2
|v(t) − e jθ |2dt

=
∫ T0/2

−T0/2
[(vR(t) − cos θ)2 + (vI (t) − sin θ)2]dt.

Expanding the squares and discarding irrelevant constants gives

�(θ) = − cos θ

∫ T0/2

−T0/2
vR(t)dt − sin θ

∫ T0/2

−T0/2
vI (t)dt

as an expression to be minimized by the choice of θ . The derivative of �(θ) with
respect to θ , when set equal to zero, gives

sin θ

∫ T0/2

−T0/2
vR(t)dt − cos θ

∫ T0/2

−T0/2
vI (t)dt = 0,
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Figure 8.1. Estimating the phase of a sinusoid.
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Figure 8.2. Estimating the phase of a known pulse.

and the estimate of θ is the solution of this equation:

θ̂ = tan−1

⎡⎣ ∫ T0/2
−T0/2 vI (t)dt∫ T0/2
−T0/2 vR(t)dt

⎤⎦ .

Figure 8.1 shows a block diagram of this maximum-likelihood estimator of phase.
There is nothing in this analysis that requires the waveform c(t) to have a constant

amplitude, or even a constant phase. The more general case is described by the following
theorem, and illustrated in Figure 8.2.

Theorem 8.2.1 Suppose that a received signal at complex baseband is

v(t) = s(t)e jθ + nR(t) + jnI (t)

where nR(t) and nI (t) are independent, gaussian, white noise processes, and s(t) is a
finite energy pulse, possibly complex. The maximum-likelihood estimator of θ is

θ̂ = tan−1

[∫∞
−∞[sR(t)vI (t) − sI (t)vR(t)]dt∫∞
−∞[sR(t)vR(t) + sI (t)vI (t)]dt

]
.
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Proof As in the development prior to the statement of the theorem, we can formulate
the likelihood statistic as

�(θ) = − cos θ

∫ ∞

−∞
[sR(t)vR(t) + sI (t)vI (t)]dt − sin θ

∫ ∞

−∞
[sR(t)vI (t) − sI (t)vR(t)]dt.

Maximizing this over θ completes the proof of the theorem. �

The estimated phase angle θ̂ , given by Theorem 8.2.1, is simply the phase angle of
the output of the matched filter s∗(−t) at t = 0. A block diagram for this estimator is
shown in Figure 8.2.

Now that we know the maximum-likelihood estimator of the phase of an otherwise
known pulse, we need to determine the accuracy of the phase estimate by finding the
variance of the phase error. This can be difficult to analyze for low values of Ep/N0.
When the signal-to-noise ratio is high, however, the error can be found by a linearized
analysis of the output of the matched filter, as in the following theorem.

Theorem 8.2.2 Asymptotically, for high signal-to-noise ratio, the maximum-
likelihood estimator of the received phase of a known pulse s(t) of energy Ep in white
gaussian noise has a phase error variance (in radians) satisfying

σ 2
θ = 1

2Ep/N0
.

Proof The condition for the estimate θ̂ as given in Theorem 8.2.1 can be written as

sin θ̂uR − cos θ̂uI = 0

where

uR + juI =
∫ ∞

−∞
[vR(t) + jvI (t)][sR(t) + jsI (t)]∗dt.

Then, because

v(t) = s(t)e jθ + n(t),

this reduces to

uR + juI = e jθ
∫ ∞

−∞
|s(t)|2dt +

∫ ∞

−∞
n(t)s∗(t)dt.

For high signal-to-noise ratio, the error in the estimate θ̂ may be expressed by
considering the first-order infinitesimals satisfying

δθ̂(cos θ̂uR + sin θ̂uI ) = − sin θ̂duR + cos θ̂duI
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where all terms but the infinitesimals are to be evaluated at their undisturbed values.
Therefore

δθ̂EP = − sin θ

∫ ∞

−∞
[sR(t)nR(t) + sI (t)nI (t)]dt − cos θ

∫ ∞

−∞
[sI (t)nR(t) − sR(t)nI (t)]dt

= −
∫ ∞

−∞
[sR(t)n′

R(t) + sI (t)n
′
I (t)]dt

where

n′
R(t) = nR(t) sin θ − nI (t) cos θ

n′
I (t) = nR(t) cos θ + nI (t) sin θ .

By the properties of circular complex gaussian random processes, these are also inde-
pendent, gaussian, random processes, each with power density spectrum N0/2. Take
the expected value of the square of δθ̃Ep to obtain

E2
pσ 2

θ =
∫ ∞

−∞

∫ ∞

−∞

[
sR(t)sR(t′)N0

2
δ(t − t′) + sI (t)sI (t

′)N0

2
δ(t − t′)

]
dtdt′

= N0

2

∫ ∞

−∞
[s2

R(t) + s2
I (t)]dt

from which the theorem follows. �

A similar analysis can be used if the gaussian noise is not white. In that case the
asymptotic expression for the phase variance becomes

σ 2
θ =

[∫ ∞

−∞
|S( f )|2
N ( f )

df

]−1

.

The denominator inside the integral arises due to a whitening filter 1/N ( f ) that becomes
part of the matched filter.

8.3 Recursive phase estimation

As a practical matter when the communication waveform has a very long duration,
the carrier phase angle θ is actually a slowly-varying function of time, θ(t). One then
wants to replace the block structure for estimating a constant phase θ with a recursive
structure for estimating a time-varying phase θ(t). A way to do this for a received
sinusoid in noise, given by

v(t) = cos(2π f0t + θ(t)) + n(t),
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Figure 8.4. Estimating a varying phase of a known waveform.

is shown in Figure 8.3. Now, the integration of Figure 8.1 is replaced with a lowpass
filter, and the output of the estimator is a time-varying function θ̂ (t) that is an estimate
of the time-varying phase angle θ(t). Figure 8.4 shows an estimator of a varying phase
on a more general complex waveform v(t), for which presumably the individual data
symbols have a short duration in comparison to the fluctuations of θ(t).

There is an alternative to the use of the lowpass filters shown in Figures 8.3 and
8.4. This is the phase-locked loop, which is often used in applications because it forms
cos θ̂ and sin θ̂ rather than θ̂ . We shall study this loop initially for a pure sinusoidal
carrier received in noise. Later, in Sections 8.5 and 8.6, we shall extend the discussion
to phase locking of the carrier in the presence of modulation.

Suppose that a sinusoid of an unknown slowly-varying phase angle θ(t) is received
in the presence of additive passband noise

v(t) = cos(2π f0t + θ(t)) + nR(t) cos 2π f0t − nI (t) sin 2π f0t

where nR(t) and nI (t) are independent, identically distributed noise processes. The
amplitude of the signal has been set to one rather than A. Accordingly, we regard the
received signal to be normalized in which case, the noise signal is divided by A and the
noise variance is N0/2A2. The carrier phase will be recovered from v(t) by generating



259 8.3 Recursive phase estimation

a noise-free local carrier

q(t) = sin(2π f0t + θ̂ (t))

where θ̂ (t) is nearly equal to θ(t). This local carrier is generated by a device called a
controlled local oscillator, abbreviated CLO,1 which is a device with input e(t), with
at least one output given by

q(t) = sin

(
2π f0t +

∫ t

0
e(t)dt

)
and possibly a second output in phase quadrature given by

q′(t) = cos

(
2π f0t +

∫ t

0
e(t)dt

)
.

In many applications, in which the second of the two outputs is not needed, it is
suppressed.

A phase-locked loop is a feedback loop containing a controlled local oscillator that is
used to estimate phase angle. The phase-locked loop controls the controlled oscillator
so that the oscillator’s output provides the desired sinusoid for the local replica of
the carrier. The simplest form of the phase-locked loop is shown in Figure 8.5. Many
variations of this basic loop are in use.

When the gain parameter K shown in Figure 8.5 is a constant, the loop is called a
first-order phase-locked loop. In practical applications, it is common for the constant
K to be replaced by a filter to create a more desirable loop transient response. We shall
study only the elementary first-order phase-locked loop.

A phase-locked loop is a nonlinear feedback loop driven by noise and described by
a nonlinear differential equation. The simple case of a first-order loop can be solved in

Passband
Filter

v (t )

r (t ) e (t )

CLO

x
1
4

K

Figure 8.5. A basic phase-locked loop.

1 Often a controlled oscillator is called a voltage-controlled oscillator, abbreviated VCO.
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closed form. The estimate is

θ̂ (t) =
∫ t

0
e(t)dt.

The feedback signal is given by

e(t) = − 1

2
Kq(t)v(t)

= − 1

2
K sin(2π f0t + θ̂ (t)) cos(2π f0t + θ(t))

− 1

2
Kq(t)[nR(t) cos 2π f0t − nI (t) sin 2π f0t]

and ˙̂θ(t) = e(t). The trigonometric product in the first term is expanded into a sum and
difference term, and the composite noise term is denoted n′(t) to give

˙̂θ(t) = −K sin(θ̂(t) − θ(t)) − K sin(4π f0t + θ̂ (t) + θ(t)) + n′(t).

The second term of this expression is at frequency 2f0 and is easily rejected by a simple
lowpass filter within the loop, so that term is ignored in our analysis. The bandwidth
of that lowpass filter can be so large that it does not otherwise affect the loop behavior;
in fact, the phase-locked loop itself acts as a lowpass filter rejecting the unwanted term
at double frequency. Accordingly, this term will be ignored.

We now have the differential equation

˙̂θ(t) + K sin(θ̂(t) − θ(t)) = n′(t)

where the noise n′(t) here is related to the incoming channel noise as follows:

n′(t) = −1

2
K[nR(t) cos 2π f0t − nI (t) sin 2π f0t] sin(2π f0t + θ̂ (t))

= −K[nR(t) sin θ̂ (t) − nI (t) cos θ̂ (t)].

If the channel noise is gaussian, then so is n′(t) and the noise variances are related by
the factor K2. Because θ̂ (t) varies in time very slowly in comparison to nR(t) and nI (t),
n′(t) can be considered to be white noise with power density spectrum related to that
of the channel noise n(t) by N ′( f ) = K2N0/2 if A = 1, or K2N0/2A2 in general.

In the absence of noise, the loop behavior is described by the solution of the first-order
differential equation

ψ̇ + K sin ψ = 0
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where θe = θ̂ − θ is the phase error. It is now easy to find that

tan
θe(t)

2
= tan

θe0

2
e−Kt

is the transient solution to the differential equation.
In the steady state, θe(t) will consist of a fluctuating error signal called phase noise

whose variance depends on the noise n′(t). We will calculate this error variance under
the assumption that sin(θ̂ − θ) can be approximated by θ̂ − θ in the steady state. In this
approximation, the differential equation is

θ̇e + Kθe = n′(t),

with the inhomogeneous solution

θe(t) =
∫ ∞

0
h(ξ)n′(t − ξ)dξ

where the impulse-response function is h(ξ) = e−Kξ for ξ ≥ 0.
The correlation function of the phase noise is

E[θe(t)θe(t + τ)] = E
∫ ∞

0
h(ξ)n′(t − ξ)dξ

∫ ∞

0
h(ξ ′)n′(t + τ − ξ ′)dξ ′

=
∫ ∞

0

∫ ∞

0
e−Kξ e−Kξ ′

E[n′(t − ξ)n′(t + τ − ξ ′)]dξdξ ′

= K2N0

2

∫ ∞

0

∫ ∞

0
e−Kξ e−Kξ ′

δ(τ − (ξ ′ − ξ))dξdξ ′

if A = 1. The range of integration requires that both ξ and ξ ′ are nonnegative, while τ

can be negative or positive. If τ is positive, then the impulse occurs at ξ ′ = ξ + |τ |. In
this case,

E[θe(t)θe(t + τ)] = K2N0

2

∫ ∞

0
e−Kξ e−K(ξ+|τ |)dξ

= KN0

4
e−K |τ |.

If τ is negative, then the impulse occurs at ξ = ξ ′ + |τ |. In this case

E[θe(t)θe(t + τ)] = K2N0

2

∫ ∞

0
e−K(ξ ′+|τ |)e−Kξ ′

dξ ′

= KN0

4
e−K |τ |
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which is the same integral as before. In general, N0 should be replaced by N0/A2. Thus,
the correlation function of the phase error is

φθeθe(τ ) = E[θe(t)θe(t + τ)]

= KN0

4A2
e−K |τ |.

The variance in the phase error is found by setting τ = 0. Then

σ 2
θ = KN0

4A2

= 1

2Eeff/N0

where the effective energy Eeff is set to 2A2/K so that this equation can be compared
to the variance of the optimal estimator of phase of a finite-energy pulse, which was
given as

σ 2
θ = 1

2Ep/N0

in Theorem 8.2.2. To decrease the phase-noise variance, the constant K should be made
smaller, but this means that time variations in θ(t) are not tracked as closely.

8.4 Estimation of delay

Next, we turn to synchronization of the sampling interval. The estimation of a time
delay α in a received waveform is very similar to the estimation of phase offset θ . We
will structure the development to underscore this parallel: first by finding an estimator
for a known pulse, then giving a recursive structure for tracking a time-varying time
delay α(t).

The estimation of the pulse arrival time is based on a received signal of the form

v(t) = s(t − α) + n(t)

where s(t) is a known pulse, possibly complex, with finite energy Ep, and n(t) is sta-
tionary gaussian noise, possibly complex, whose correlation function φ(τ) and power
density spectrum N ( f ) (per component) are known. The estimation problem is to
determine the unknown delay α from v(t). We will develop the maximum-likelihood
estimator of α.
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Theorem 8.4.1 Suppose that a received signal at complex baseband is

v(t) = s(t − α) + nR(t) + jnI (t)

where nR(t) and nI (t) are independent, identically distributed, white gaussian-noise
processes, and s(t) is a known differentiable finite energy pulse, possibly complex. The
maximum-likelihood estimator of the unknown α is a value of α satisfying

Re

[∫ ∞

−∞
ds(t − α)

dα
v∗(t)dt

]
= 0.

Proof The log-likelihood function in additive gaussian noise can be written as the
distance

�(α) = −
∫ ∞

−∞
|v(t) − s(t − α)|2dt

= −2
∫ ∞

−∞
[vR(t)sR(t − α) + vI (t)sI (t − α)]dt + constant

where the constant does not depend on α. The maximum-likelihood estimate occurs
where the derivative with respect to α equals zero, which is equivalent to the statement
of the theorem. �

To calculate the variance of the estimate, which is given next, we will assume that the
signal-to-noise ratio is large enough so that the noise causes only a small perturbation
in �(α), which can be analyzed by treating only the dominant term in a Taylor series
expansion. Because α̂ is the point at which �′(α) = 0, we will write up to first-order
terms

(δα)�′′(α) = δ�′(α)

and

σ 2
α = E[δ�′(α)]2

[�′′(α)]2
.

Proposition 8.4.2 Asymptotically, for high signal-to-noise ratio, the variance of the
maximum-likelihood estimator of the arrival time of a known pulse s(t) of energy Ep

in white gaussian noise is

σ 2
α = 1

(2π)2f 2(2Ep/N0)

where

f 2 =
∫∞
−∞ f 2|S( f )|2df∫∞
−∞ |S( f )|2df

.
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Proof For a high signal-to-noise ratio, the condition of Theorem 8.4.1 may be used
to form an equation involving first-order infinitesimals

Re

[∫ ∞

−∞
d2s(t − α)

dt2
(δα)v∗(t)dt −

∫ ∞

−∞
ds(t − α)

dt
δv∗(t)dt

]
= 0.

Replace the infinitesimal δv∗(t) by n(t) and v∗(t) by its expectation s∗(t), leaving

Re

[
δα

∫ ∞

−∞
d2s(t − α)

dt2
s∗(t)dt −

∫ ∞

−∞
ds(t − α)

dt
n∗(t)dt

]
= 0.

Using Parseval’s inequality on the first term and squaring leads to

(δα)2
[∫ ∞

−∞
|2π fS( f )|2df

]2

=
[∫ ∞

−∞

[
dsR(t − α)

dt
nR(t) + dsI (t − α)

dt
nI (t)

]
dt

]2

.

The expectation of this equation gives

σ 2
α

[∫ ∞

−∞
|2π fS( f )|2df

]2

= N0

2

∫ ∞

−∞

∣∣∣∣ds(t)

dt

∣∣∣∣2 dt.

Using Parseval’s formula on the right side gives

σ 2
α

[∫ ∞

−∞
|2π fS( f )|2df

]2

= N0

2

∫ ∞

−∞
|2π fS( f )|2df ,

and, because Ep = ∫∞
−∞ |S( f )|2df , the theorem follows. �

More generally, when the gaussian noise is not white, the expression for the
asymptotic error variance is replaced by

σ 2
α =

[
(2π)2

∫ ∞

−∞
f 2 |S( f )|2

N ( f )
df

]−1

.

The appearance of N ( f ) in the denominator can be thought of as a whitening filter
1/N ( f ) applied to s(t).

As a practical matter, the time delay will be a slowly varying function of time, α(t),
throughout the duration of a long waveform c(t). One wishes to replace the block
structure for estimating constant delay with an iterative structure for estimating the
time-varying delay α(t). This can be accomplished for a sequence of pulses by using
the delay-locked loop, shown in Figure 8.6, in which the error signal is used to drive
the controlled clock.
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Figure 8.6. A basic delay-locked loop.

A delay-locked loop is a discrete-time version of the phase-locked loop. The purpose
of a delay-locked loop is to adjust the time reference of a controlled clock. This is a
version of a controlled oscillator whose output is a sequence of timing impulses rather
than a sinusoidal signal. Whereas a phase-locked loop slews the phase of a controlled
oscillator continuously based on the phase error signal, a delay-locked loop increments
the reference time of a controlled clock based on the timing error signal. The delay-
locked loop of Figure 8.6 obtains its error signal by sampling the output of the matched
filter at each side of the presumed peak, called the early-gate sample and the late-gate
sample, and computing the difference. The difference gives an approximation to the
derivative, and provides the error signal. The error signal is multiplied by a loop gain
constant (not shown) and adjusts the controlled clock. The trade between response time
and noise sensitivity is determined by choice of loop gain constant.

8.5 Carrier synchronization

The phase-locked loop studied in Section 8.3 is used to acquire the phase of a pure
sinusoid. However, a pure sinusoid conveys no information. It is usually necessary
to apply the phase-locked loop in more complicated situations in which the received
signal contains modulation. We shall study the phase-locked loop embedded into larger
structures containing more of the receiver functions.

A large variety of techniques can be employed to recover the carrier phase of a
data-modulated waveform. We shall first discuss methods that devote a portion of the
transmitted energy to a data-free segment of the waveform. This method imposes an
energy overhead on the system and so reduces the overall Eb/N0 of the system. The
overhead may not be acceptable in a high-performance system. We shall also study
techniques that recover the carrier phase from a fully modulated waveform. In general,
the more sophisticated the waveform modulation, the more difficult it is to extract the
carrier phase.
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The simplest method of carrier phase recovery is to periodically interrupt the modu-
lation to transmit an unmodulated segment of the sinusoidal carrier. Figure 8.7 shows a
periodic segment of the clear sinusoid interspersed with the fully modulated waveform.
The clear carrier segment is used to lock a time-sampled phase-locked loop by using
the sampled phase error as a feedback to a controlled local oscillator. The output of
the loop’s local oscillator provides a continuous local replica of the carrier with proper
phase and frequency.

Alternatively, the clear carrier might be transmitted as a pilot signal by a frequency
side tone, say a sine wave whose frequency is an integer multiple of the carrier fre-
quency. Figure 8.8 shows how a side tone of frequency 2f0 can be used to drive a
phase-locked loop at frequency f0.

In either of these methods, the clear carrier contains transmitted power but no message
bits. The power in the pilot signal divided by the bit rate is the energy overhead per data
bit. The power in the side tone increases the required Eb/N0 because, in calculating Eb,
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the fraction of the total power devoted to the side tone must be apportioned among the
data bits.

More general methods of carrier phase recovery will recover the phase of a fully
modulated waveform directly from the waveform. Then one should use the maximum-
likelihood principle to simultaneously estimate both the data and the phase. This
process, however, is usually far too complicated to use for a practical application.
Somehow one must decouple the task of phase estimation from the task of data demod-
ulation. We shall study a suboptimal technique based on the so-called generalized
likelihood function, in which the data is regarded as a random nuisance parameter
in the likelihood function for the phase, and averaged out. This is justified primarily
by pragmatism, not by a deeper theory. Thus, the method of averaging out nuisance
parameters gives a tainted – but not discredited – form of the maximum-likelihood
principle.

The starting point for forming the generalized likelihood function lies in the fact that
if a measurement, x, is governed by the probability density function p0(x|θ) with prob-
ability 1

2 , and is governed by the probability density function p1(x|θ) with probability
1
2 , then its unconditional probability density function is

p(x) = 1
2 p0(x|θ) + 1

2 p1(x|θ).

This statement says that the likelihood functions (rather than the log-likelihood func-
tions) are to be averaged. Therefore the expected likelihood function e� can be related
to the conditional log-likelihood functions �0 and �1 by

e� = 1
2 e�0 + 1

2 e�1 .

Thus, rather than maximize the log-likelihood function, we maximize the log of the
expected likelihood function.

Let us first see what this principle tells us about acquiring the phase of a single bit
of a BPSK waveform. When the single bit of a BPSK waveform is a one, the received
signal is

v(t) = As(t)e jθ + nR(t) + jnI (t),

and the log-likelihood function is

�0(θ) = − 1

N0

∫ ∞

−∞
|v(t) − As(t)e jθ |2dt.

When the single bit is a zero, then the received signal is

v(t) = −As(t)e jθ + nR(t) + jnI (t)
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and the log-likelihood function is

�1(θ) = − 1

N0

∫ ∞

−∞
|v(t) + As(t)e jθ |2dt.

The expected likelihood function is

e�(θ) = 1
2 e�0(θ) + 1

2 e�1(θ).

Expand the squares in the exponents and collect the terms that do not depend on θ into
a constant C. This gives

e�(θ) = C
[
e(2A/N0)Re

[∫∞
−∞ v∗(t)s(t)e jθ dt

]
+ e−(2A/N0)Re

[∫∞
−∞ v∗(t)s(t)e jθ dt

]]
= C cosh

[
(2A/N0)Re

[∫ ∞

−∞
v∗(t)s(t)e jθdt

]]
= C cosh

[
(2A/N0)

[
cos θ

∫ ∞

−∞
vR(t)s(t)dt + sin θ

∫ ∞

−∞
vI (t)s(t)dt

]]
= C cosh

[
uR(0) cos θ + uI (0) sin θ

N0/2A

]
.

Therefore, the (generalized) maximum-likelihood estimate is

θ̂ = argmaxθ log cosh

[
uR(0) cos θ + uI (0) sin θ

N0/2A

]
.

To maximize the quantity cosh[Re[ze jθ ]] where z is any complex number, we can
choose the estimate θ̂ equal to the negative of the angle of z. However, because the
hyperbolic cosine is an even function, there will be another maximum at θ̂ + 180◦. We
say that there is a 180◦ phase ambiguity in acquiring the phase of BPSK. Because of
this ambiguity, a single bit cannot be demodulated if phase is not known.

We shall now derive a more general procedure for estimating the phase from the entire
BPSK waveform of finite length. For a randomly modulated BPSK waveform with n
data bits, and with no intersymbol interference, the probability of output sequence v is

p(v|θ) =
n−1∏
�=0

[
1
2 p0(v�|θ) + 1

2 p1(v�|θ)
]

.

Theorem 8.5.1 The log-likelihood function for an unknown phase θ in a randomly
modulated BPSK waveform of blocklength n with no intersymbol interference is

�(θ) =
n∑

�=1

log cosh

[
uR(�T ) cos θ + uI (�T ) sin θ

N0/2A

]
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where

uR(t) =
∫ ∞

−∞
vR(ξ)s(ξ − t)dξ

and

uI (t) =
∫ ∞

−∞
vI (ξ)s(ξ − t)dξ

are the components of the matched-filter output.

Proof The BPSK data block of blocklength n is a = (a0, . . . , an−1), where a� = ±A.
Each block occurs with probability 2−n. The log-likelihood function is

�(θ , a) = − 1

N0

∫ ∞

−∞

∣∣∣∣∣v(t) − e jθ
n−1∑
�=0

a�s(t − �T )

∣∣∣∣∣
2

dt.

When the square inside the integral is opened, there will be a term in |v(t)|2 that does
not depend on θ , and a double sum on k that also does not depend on θ . Because there
is no intersymbol interference and a2

� is independent of the data, the latter term will
not depend on the data either. By collecting terms that do not depend on θ or a into a
constant, we have the log-likelihood function

�(θ , a) = − 2

N0

n−1∑
�=0

Re
[
a�u(�T )e−jθ

]
+ log C

where u(�T ) is the �th sample of the matched-filter output. Therefore

e�(θ ,a) = C
n−1∏
�=0

e−(2/N0)Re[a�u(�T )e−jθ ].

Now average over all data vectors a, each of which occurs with probability 2−n. Thus

e�(θ) = C
∑
a

1

2n

n−1∏
�=0

e−(2/N0)Re[a�u(�T )e−jθ ]

= C
n−1∏
�=0

[
1

2
e(2A/N0)Re[u(�T )e−jθ ] + 1

2
e−(2A/N0)Re[u(�T )e−jθ ]

]

= C
n−1∏
�=0

cosh

[
Re[u(�T )e−jθ ]

N0/2A

]
,

and the theorem follows. �
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Because the hyperbolic cosine is an even function, it is clear that if θ̂ maximizes �(θ),
then θ̂ + 180◦ does also. Thus BPSK has a 180◦ phase ambiguity even when the phase
is recovered from an entire waveform. This was obvious at the outset because changing
phase by 180◦ affects the waveform in the same way as replacing the datastream by its
complement.

To maximize the log-likelihood statistic �(θ), we differentiate �(θ) in The-
orem 8.5.1 with respect to θ and drive the derivative to zero. The value of θ

satisfying

n∑
�=1

[−uR(�T ) sin θ + uI (�T ) cos θ

N0/2A

]
tanh

[
uR(�T ) cos θ + uI (�T ) sin θ

N0/2A

]
= 0,

is the output θ̂ of the block estimator.
For a single pulse at time �T , n = 1, and the equation is satisfied when either of the

two bracketed terms is equal to zero. Of these two, we choose the solution that gives
the maximum. But the maximum cannot occur when the argument of the hyperbolic
tangent equals zero because cosh x has a minimum at x = 0. Hence the maximum
occurs when

uR(�T ) sin θ − u1(�T ) cos θ = 0.

This leads to the maximum-likelihood estimate

θ̂ = tan−1 uI

uR
,

as was also the case for an unmodulated carrier.

8.6 Recursive carrier synchronization

The derivative of the log-likelihood function given in Theorem 8.5.1 tells how the
matched-filter samples should be weighted, combined, and set equal to zero to find the
maximum. Because this implicit equation cannot be solved explicitly, one can use a
recursive procedure on the entire block to find the solution, which we write as

θr+1 = θr + K

n

n∑
�=1

[−uR(�T ) sin θr + uI (�T ) cos θr

N0/2A

]
tanh

[
uR(�T ) cos θr + uI (�T ) sin θr

N0/2A

]

where K is a constant that can be chosen to control convergence. This expression, as
written, requires all n samples to be collected before the iterations can begin. Moreover,
all terms of the equation must be updated every iteration.
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To make the estimator into a recursive estimator, the update increment θ̂ is made
proportional to the summand at each sampling instant. If θ̂ is small at each bit time,
the incremental phase update can be approximated as the differential equation

d θ̂

dt
= −K[uR(t) sin θ̂ − uI (t) cos θ̂ ] tanh

[
uR(t) cos θ̂ + uI (t) sin θ̂

N0/2A

]
= Ku′

I (t) tanh

(
2A

N0
u′

R(t)

)

where K is a constant that controls the rate of the convergence, and

u′
R(�T ) = uR(�T ) cos θ̂ + uI (�T ) sin θ̂

u′
I (�T ) = −uR(�T ) sin θ̂ + uI (�T ) cos θ̂ .

This equation suggests a recursive phase estimator at complex baseband, which
can be reformulated at an intermediate frequency to obtain the estimator shown in
Figure 8.9. The double-loop structure is composed of two matched filters implemented
at passband with inputs that are in phase quadrature. The sampled outputs (of the
amplitude modulation) of the two passband matched filters are exactly the two terms
u′

R and u′
I that are required. The product of u′

I and the hyperbolic tangent of u′
R provides

the feedback signal to the controlled local oscillator to drive the loop. This means that
if the input to a controlled oscillator is held constant, the output frequency is changed
by an amount proportional to this constant.

The feedback circuit of Figure 8.9 can be simplified by approximating the hyperbolic
tangent in either of two ways. Each approximation results in a different popular version
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Figure 8.9. A recursive phase estimator for a BPSK waveform.
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Figure 8.10. The Costas loop.

of the estimator. An estimator based on the approximation,

tanh x ∼ x,

shown in Figure 8.10, is most appropriate at low signal-to-noise ratios. This estimator,
called a Costas loop, is used for estimating phase not only of a BPSK waveform but
also of a variety of other amplitude-modulated carriers, even in situations where it is
not an approximation to the maximum-likelihood phase estimator. In one application
of the Costas loop, c(t) is an arbitrary pulse-amplitude-modulated waveform received
in noise, and no time reference is available for sampling the matched-filter output.
Therefore a weaker form of the Costas loop is used. The loop may be driven by the raw
received signal lightly filtered, without full benefit of a matched filter. By using both
sine and cosine outputs of the controlled local oscillator as reference signals to mix
with the received passband signal v(t), noisy versions of both c(t) cos[θ − θ ′(t)] and
c(t) sin[θ −θ ′(t)] are formed. Taking the product of the two terms gives c(t)2 sin 2(θ −
θ ′(t)). This provides the error signal for locking the loop, which is independent of the
sign of c(t). If desired, a hardlimiter (defined in Section 11.8) may be inserted in the
loop to remove the amplitude fluctuations that occur in c(t)2.

The loop now is mathematically equivalent to the estimator shown in Figure 8.11,
which is based on the square of the passband signal. An advantage of this form of the
estimator is that the opportunity is more apparent for incorporating additional filtering
or integration into the phase-locked loop to enhance the loop response.

An alternative estimator based on the hardlimiter approximation

tanh x ≈
{

1 if x > 0
−1 if x ≤ 0,
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Figure 8.11. Phase-locking to a squared signal.
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Figure 8.12. A decision-directed phase estimator.

as shown in Figure 8.12, is most appropriate at high signal-to-noise ratios. Notice that
the nonlinearity can be viewed as a threshold that is demodulating the BPSK datastream
to form ±1. The multiplication by ±1 can be viewed as an inversion of those negative
pulses in the waveform corresponding to −As(t). For this reason, this form of the
estimator is called a decision-directed phase estimator.

In a data-directed phase estimator, the estimated data samples â� are used to strip
the modulation from the modulated carrier. From the demodulated output, a copy of
the estimated data, called a local replica sequence, and synchronous with the received
signal, is generated in the receiver. This replica multiplies the received signal, as shown
in Figure 8.12. After multiplication, the signal is

u′(�T ) = a�u(�T ) sin θ

= a2
� sin θ + n�,
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which always has a positive modulation A2 multiplying sin θ . The modulation has now
been stripped from the carrier signal, and the signal is suitable for phase locking.

With this procedure, because a regenerated modulation signal is needed, the phase
can be locked only if the demodulator is operating properly, and the demodulator will
operate properly only if the phase is locked. Thus the system can be used with confidence
only to maintain an already established phase lock, or possibly to improve a crude phase
lock. Occasional erroneous data estimates will be made by the demodulator. When this
happens, the phase-locked loop will be driven with a spurious input, but the loop time
constant is usually quite large compared to a bit duration, so these spurious inputs
will be inconsequential. For initialization, the datastream may be preceded by a fixed
preamble, called a training sequence, which is known to the receiver and so simplifies
the problem of initial phase acquisition.

More generally, a receiver must acquire and lock the phase of a signal that has both
in-phase and quadrature modulation. The simplest such example of a QAM waveform is
QPSK. An estimator for the phase of a QPSK waveform can be found by the maximum-
likelihood principle.

Theorem 8.6.1 A log-likelihood function for an unknown phase in a randomly
modulated QPSK waveform of blocklength n, with no intersymbol interference, is

�(θ) =
n∑

�=1

[
log cosh

uR(�T ) cos θ + uI (�T ) sin θ

N0/2A
+ log cosh

uR(�T ) sin θ − uI (�T ) cos θ

N0/2A

]
.

Proof We will carry through the steps of the proof for n = 1. Because there is no
intersymbol interference, it is clear that the solution for general n is a sum of such
terms.

There are now four log-likelihood functions corresponding to the four QPSK points.
They are

�00(θ) = − 1

N0

∫ ∞

−∞
|v(t) + (−1 − j)As(t)e jθ |2dt

�01(θ) = − 1

N0

∫ ∞

−∞
|v(t) + (1 − j)As(t)e jθ |2dt

�10(θ) = − 1

N0

∫ ∞

−∞
|v(t) + (1 + j)As(t)e jθ |2dt

�11(θ) = − 1

N0

∫ ∞

−∞
|v(t) + (−1 + j)As(t)e jθ |2dt.
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Consequently,

e�(θ) = 1
4 e�00(θ) + 1

4 e�01(θ) + 1
4 e�10(θ) + 1

4 e�11(θ),

which can be reduced to

e�(θ) = C cosh

[
uR(0) cos θ + uI (0) sin θ

N0/2A

]
cosh

[
uR(0) sin θ − uI (0) cos θ

N0/2A

]
.

For a train of QPSK pulses, indexed by �, this becomes the equation in the theorem,
with �(θ) redefined to suppress the constant C. �

The derivative of �(θ) is

d�

dθ
=

n∑
�=1

[−uR(�T ) sin θ + u�(�T ) cos θ

N0/2A
tanh

uR(�T ) cos θ + uI (�T ) sin θ

N0/2A

+uR(�T ) cos θ + uI (�T ) sin θ

N0/2A
tanh

uR(�T ) sin θ − uI (�T ) cos θ

N0/2A

]
,

which leads to a recursive feedback estimator for θ , as shown in Figure 8.13. As for
BPSK, each hyperbolic tangent can be approximated, either by its argument to obtain
a circuit known as an extended Costas loop, or by a hardlimiter to obtain a decision-
directed phase estimator. The extended Costas loop can be manipulated into the form
of a phase-locked loop on the fourth power of the received signal.
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Figure 8.13. A sequential phase estimator for a QPSK waveform.
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8.7 Symbol synchronization

The task of time synchronization is divided into symbol synchronization (studied in this
section) and block synchronization (studied in the next section). The task of symbol
synchronization is to synchronize the local clock to the incoming datastream so that each
incoming symbol can be detected at the proper time. Symbol synchronization will not
necessarily provide block synchronization or frame synchronization. This is because
there can be ambiguities in a frame synchronization. An analogy can be seen in setting
the second hand of a clock. Even though the second hand is set precisely, the minute and
hour may be completely unknown. Similarly, a receiver may learn to sample precisely
at the center of each data symbol, and yet not know the index of that symbol within
a block. Usually, the method of block synchronization will be completely separate
from the method of symbol synchronization. Symbol synchronization is more closely
related to carrier recovery than it is to block synchronization. Just as carrier recovery
techniques are built around the idea of a phase-locked loop, so symbol synchronization
is built around the idea of a delay-locked loop.

Symbol synchronization works directly from the modulated datastream corrupted
by noise as it is seen by the receiver. One method of synchronization is to extract a
harmonic of the symbol frequency from the received signal. Then a local symbol clock
can be synchronized by methods that are very similar to the phase-locked loops used to
recover the carrier phase. If necessary, a start-up procedure, such as one that uses a slow
search, can be used for initialization. Synchronization is then maintained by locking a
feedback loop to a clock signal that is extracted from the modulated waveform.

We shall develop the techniques for symbol time synchronization more formally
by starting from the maximum-likelihood principle. The log-likelihood function for a
single bit of a BPSK waveform with unknown delay α is either

�0(α) = − 1

N0

∫ ∞

−∞
|vR(t) + As(t − α)|2dt

or

�1(α) = − 1

N0

∫ ∞

−∞
|vR(t) − As(t − α)|2dt,

depending on the value of the modulating bit. The following theorem gives a suboptimal
statistic for delay estimation from a block of data that is obtained by treating data as
a random nuisance parameter and averaging over all data. Consequently, the average
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log-likelihood statistic is given by

e�(α) = 1
2 e�0(α) + 1

2 e�1(α)

= C cosh

[
2A

N0

∫ ∞

−∞
vR(ξ)s(ξ − α)dξ

]
.

The constant C does not depend on α, and can be suppressed by redefining �(α).
Therefore, the log-likelihood statistic is

�(α) = log cosh

[
2A

N0
uR(α)

]
where uR(α) is the real component of the matched filter output sampled at time α.

Theorem 8.7.1 A log-likelihood statistic for an unknown delay in a randomly
modulated BPSK waveform of blocklength n is

�(α) =
n∑

�=1

log cosh

[
2A

N0
uR(�T + α)

]

where

uR(t) =
∫ ∞

−∞
vR(ξ)s(ξ − t)dξ .

Proof For a single pulse, we have seen that

�(α) = log cosh

[
2A

N0
uR(α)

]
.

For a train of BPSK pulses, the log-likelihood function becomes the sum

�(α) =
n∑

�=1

log cosh

[
2A

N0

∫ ∞

−∞
vR(ξ + �T )s(ξ − α)dξ

]
,

and the theorem follows. �

The log-likelihood function is to be maximized by the choice of α. The maximum
over α occurs where the derivative with respect to α is zero. The derivative of �(α),
set equal to zero, gives

n∑
�=1

2A

N0

duR(�T + α)

dα
tanh

uR(�T + α)

N0/2A
= 0.
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This implicit equation in α must be solved by computing the left side for sufficiently
many α to find the value of α that solves the equation.

Alternatively, one can work directly with the derivative to develop a sequential
estimator. To solve this implicit equation for α, one can use an iterative procedure. A
delay tracker is a delay-locked loop consisting of an iterative procedure that drives the
term on the right side to zero by processing one term of the sum at a time. To form the
iteration, write the feedback equation

α(�T ) = K

[
duR(�T + α)

dα
tanh

uR(�T + α)

N0/2A

]
.

If a large value of K is chosen for the feedback signal adjusting α, then the likelihood
statistic �(α) would quickly be driven to its maximum provided there is no noise.
However by choosing a large value of K , the loop will be sensitive to noise. By choosing
a small value of K , the expected response is slowed, and the loop is less sensitive to
noise. If the delay is a time-varying function, α(t), then K should be selected to best
compromise between the loop’s ability to track α(t), and the loop’s sensitivity to noise.

A feedback implementation based on this condition is shown in Figure 8.14. The
matched-filter output is sampled on each side of the presumed peak. The difference in
these samples approximates the derivative and provides the error signal that drives the
controlled clock.

A baseband implementation of the feedback equation is shown in Figure 8.15. A
passband implementation suggested by this equation is shown in Figure 8.16. The
derivative of the matched-filter output is obtained directly by passing the received
signal through a filter equal to the derivative of the matched filter ṡ(−t).

Just as in the case of phase synchronization, the hyperbolic tangent can be
approximated in either of two ways. For large signal-to-noise-ratios, the approximation

tanh x ≈ sgn x

may be considered appropriate. Because a BPSK demodulator can be written as the
function sgn x, this approximation can be interpreted as replacing the nonlinearity
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Figure 8.14. A sequential delay estimator for a BPSK waveform.
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Figure 8.15. Another sequential delay estimator for a BPSK waveform.
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Figure 8.16. A sequential delay estimator at passband for a BPSK waveform.

shown in Figure 8.15 by a BPSK demodulator, thereby leading to a decision-directed
delay estimation. Each BPSK data bit is estimated and then is used to invert or not
invert the feedback signal according to the value of the data bit.

For small signal-to-noise ratios, the approximation of tanh x by x may be considered
appropriate. This approximation is equivalent to replacing the feedback equation by

dα

dt
= K

[
duR(�T + α)

dα
uR(�T + α)

]

= 1

2
K

du2
R(t)

dt

∣∣∣∣∣
t=�T+α

.

This approximation leads to the square-law delay estimator, which is given by

α̂ = argmaxα

n−1∑
�=0

u2
R(�T + α).
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Figure 8.17. An equivalent delay tracker.

This expression tells us to divide the time axis into segments of length T , to align such
segments of uR(t) and add their squares, and then to find the arg maximum of this sum
as the estimate of α.

An equivalent delay tracker based on the square-law delay estimator is shown in
Figure 8.17. The square-law delay tracker of Figure 8.17 is only an approximation,
at small signal-to-noise ratios, to the maximum-likelihood tracker formed from the
generalized maximum-likelihood principle. We shall analyze variations of it in some
detail.

Because the data was treated as a random nuisance parameter in deriving the esti-
mator – rather than as an additional set of parameters to be estimated – the estimator is
not a true maximum-likelihood estimator. It is not optimal with respect to the data, and
a data-dependent timing jitter will contaminate the delay estimate. We shall see that
the timing jitter can be improved by additional prefiltering. This example illustrates
that the generalized maximum-likelihood principle, though a valuable tool, does not
always optimize with respect to the most important criteria.

The next task is to calculate the accuracy of the delay tracker both in the presence
of noise and in the absence of noise. We shall study the timing jitter for the received
BPSK waveform, given by

v(t) =
∞∑

�=−∞
a�s(t − �T − α) + n(t).

The output of the matched filter s(−t) is

u(t) =
∞∑

�=−∞
a�r(t − �T − α) + n′(t).

The output r(t) of the matched filter might be a Nyquist pulse to suit the needs of the
data modulator, but the square-law delay tracker will see data-dependent timing jitter
in the samples of the derivative of u2(t). This defect in the synchronization process can
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Figure 8.18. A simplified model of a delay tracker.

be seen by ignoring the noise term for the moment and writing

d

dt
u2(t) = 1

2

∞∑
�=−∞

a�r(t − �T − α)

∞∑
�=−∞

a�

dr(t − �T − α)

dt
.

Then, at the sample point t = �T + α, this becomes

d

dt
u2(t)

∣∣∣∣
t=�′T+α

= 1

2
a�′

∞∑
�=−∞

a�

dr(t)

dt

∣∣∣∣
t=(�′−�)T

which need not equal zero because only that term of the sum with � = �′ is sure to have
its derivative equal to zero.

The tracker is shown in its simplest representation in Figure 8.18. The delay-locked
loop is depicted in Figure 8.18 simply as a narrow passband filter at frequency 1/T .
The desired output of the filter is a sinusoid. Alternate zero crossings (or peaks) of
this desired sinusoid provide the data sample times. However, the output is not a pure
sinusoid. It has phase jitter due to the random data modulating the input. We shall be
concerned with this data-dependent phase jitter. The filter g(t) has been the matched
filter s(−t), but for the delay tracker, we can use a different filter in order to reduce
data-dependent timing jitter.

If the data symbols are independent and E[a2
�] = A2, the expected value of the

squared output of filter g(t) is

E[u2(t)] = A2
∞∑

�=−∞
r2(t − �T − α) + σ 2

n′

where for now, r(t) = g(t)∗ s(t). By using the relationship r2(t) ↔ R( f )∗ R(−f ) and
the Poisson sum formula, this can be expressed more conveniently in the frequency
domain as

E[u2(t)] = A2

T

∞∑
�=−∞

[∫ ∞

−∞
R( f )R

(
�

T
− f

)
df

]
e j2π�(t−α)/T + σ 2

n′
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Figure 8.19. Illustrating the calculation of the tracking signal.

where now � indexes translates on the frequency axis. The nature of the frequency
integral appearing here is illustrated in Figure 8.19. For many pulses of interest, R( f )

and its translate overlap only for � = −1, 0, 1. This means that only the terms in the
sum with � = 0 or ±1 are nonzero. Therefore

E[u2(t)] = U0 + U1R cos 2π(t − α)/T + U1I sin 2π(t − α)/T + σ 2
n′

where

U0 = A2

T

∫ ∞

−∞
R( f )R(−f )df

and

U1 = A2

T

∫ ∞

−∞
R( f )R

(
1

T
− f

)
df .

Indeed, for the case of a sinc pulse r(t) with the first zero at T , the integral is nonzero
only for � = 0, and so E[u2(t)] is a constant. This can be seen more directly in the
time domain where u2(t) = A2. This means that, for sinc pulses, timing recovery is
impossible by this method.

It is only the overlap in Figure 8.19 that provides a signal to drive the delay tracker.
Consequently, there is no harm in filtering out, prior to the squarer, those regions of
R( f ) that will not overlap.

The timing jitter is evaluated not from the expectation E[u2(t)] but from the actual
squared signal u2(t). There will be no timing jitter if u2(t), in the absence of noise, is
purely a (amplitude-modulated) cosine wave at frequency 1/T . Thus we will choose
the filter g(t) to suppress the sine component. Suppose that the filter g(t) is now chosen
so that its output pulse, r(t) = g(t) ∗ s(t), has the form

r(t) = sin(2π t/2T )p(t)

for some pulse p(t). This filter output pulse r(t) is an amplitude-modulated sinusoid
that can be formed from the transmitted pulse by an appropriate filter g(t), as shown
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Figure 8.20. Spectrum of the filtered pulse.

in Figure 8.20. In any case, we have already seen that only the portion of the pulse
spectrum in the vicinity of frequency 1/2T is used by the tracker. The new filter g(t)
will give the tracker signal a new shape that suppresses jitter. To see this, note that the
output, in the absence of noise, is

u(t) =
∞∑

�=−∞
a� sin(2π(t − �T )/2T )p(t − �T )

= sin π t/T
∞∑

�=−∞
(±a�)p(t − �T ).

The square of u(t),

u2(t) = (1 − cos 2π t/T )

[ ∞∑
�=−∞

±a�p(t − �T )

]2

,

has a sinusoidal component at frequency 1/T that is amplitude modulated but has no
phase modulation. Consequently, a time reference that is locked to this sinusoid will
be free of data-dependent timing jitter.

Figure 8.21 shows a demodulator for a BPSK waveform that uses two receiver filters:
one filter for data and the other filter, called the bandedge timing recovery filter, for
the timing loop. The demodulator is free of data-dependent jitter, but not free of noise
effects. By using a transmitted pulse such that the pulse out of the matched filter is a
Nyquist pulse, there is no intersymbol interference at the sampling instants. By using
a different filter g(t) in the timing loop that is symmetric about the frequency 1/2T ,
the time reference will predict the correct sampling instants without error caused by
the signal. Of course, there will be sampling time jitter due to additive gaussian noise,
which was not included in our analysis. The sensitivity to that noise can be made small
by making the loop bandwidth small.
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Figure 8.21. Demodulation of BPSK with a jitter-free clock.

8.8 Block synchronization

The task of symbol synchronization is to establish the proper sampling instants in the
receiver. This task was studied in Section 8.7 and in this section, we regard symbol
synchronization to be perfect and turn to block synchronization. The task of block
synchronization is to establish a reference instant in time so that incoming symbols
can be assigned their proper indices within a data block or data frame. If symbols are
misframed, then subsequent operations will be incorrect and the entire communication
link will go down.

Block synchronization may employ a special binary sequence as a marker; or a special
pulse shape inserted periodically into the message waveform to mark the start of a new
data block, as shown in Figure 8.22; or it may employ a synchronization-correcting
code in which the data symbols are mapped into self-synchronizing codewords.

Abinary marker for block synchronization is a special binary sequence that is embed-
ded into the datastream to represent the start of a block, as shown in Figure 8.23. The
appearance of this sequence designates the start of a block. If the random data contains
this binary sequence, there may be a block synchronization error. In contrast, a pulse
for block synchronization is a special waveform element, as shown in Figure 8.24, that
is detected as a unit. A synchronization marker differs from a synchronization pulse in
that it is superficially indistinguishable from the data. The bits of a marker may be first
demodulated individually, then the bit sequence is recognized in the demodulated data.
A synchronization pulse, on the other hand, is detected as a unit. A synchronization
pulse may lead to a synchronization error only when the random data and the channel
noise combine to form a received waveform segment that resembles the synchronization
pulse.

The distinction we are making between a synchronization marker and a synchroniza-
tion pulse is intended to underscore the variety of options from which one can choose
in designing a block synchronizer. There is not a sharp distinction between the two
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Figure 8.22. Embedding synchronization markers in the datastream.
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concepts: the synchronization marker may be more suitable for a bandwidth-limited
communication system, while the synchronization pulse may be more suitable for a
power-limited communication system.

We define a block to have duration NT of which the first nT seconds contain the
synchronization pulse or marker. The block structure defined for synchronization need
not coincide with other block structures identified in the datastream for other purposes,
such as channel coding. We shall study only the task of initial block synchronization
using only a single block. However, the synchronization may be repeated every block,
and so the proper synchronization can be anticipated in subsequent blocks once it is
found. The block synchronizer then has the form of a delay-locked loop on the time
scale of a block. Isolated synchronization errors can be rejected if they are clearly
inconsistent with a synchronization reference propagated from earlier blocks.

The use of a special pulse for synchronization may lead to additional circuit com-
plexity because there will be one matched filter for the sync pulse and one matched
filter for each data pulse. Synchronization is easiest to analyze if the synchronization
pulse is chosen to be orthogonal to every data pulse. This will not be acceptable if
bandwidth is to be conserved, but might be attractive if bandwidth is plentiful, as for
M-ary orthogonal signaling.

Let sm(t) for m = 0, . . . , M − 1 be the data pulses used in the waveform. Let
the synchronization pulse b(t) be a pulse of duration nT and energy Es satisfying the
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orthogonality condition∫ ∞

−∞
b(t)s∗

m(t − �T )dt = 0

for each of the data pulses sm(t) that are used in the waveform, and for all �. This means
that, at the sampling instants, the output of a filter matched to b(t) will have no output
due to the data pulses. The output of the sync-matched filter equals Es at every sync
sampling instant and is zero at all data sampling instants.

The maximum-likelihood procedure is to sample the sync matched-filter output at
each of the sampling instants, and then to choose the time at which the output is largest
to estimate the block synchronization. It may be cumbersome, however, to store and
sort the successive output values of the matched filter if the time interval between
sync pulses is very large. Nevertheless, in contrast to the suboptimal procedure to be
discussed next, there will always be a sync decision, and there is no fixed decision
threshold.

Asimpler procedure is to examine one sampling instant at a time, ignoring other sam-
pling instants. Synchronization is declared each time the output of the sync matched
filter rises above a fixed threshold. The detection of a sync pulse in gaussian noise then
is similar to the task of demodulating an OOK pulse, except that the probability of a
sync pulse being present at any sampling instant is 1/N whereas the probability of a
pulse being present in a simple OOK waveform is 1/2. Furthermore, the probabilities
of error need not be equal. The threshold is set to compromise between the probability
of sync detection and the probability of false synchronization. Synchronization may fail
because of a missed sync pulse or because of a false sync detection. One or more false
sync detections, combined with the true sync detection, will mean that the synchroniza-
tion is ambiguous and unresolved. This is a synchronization default. Even worse, one
may miss the true sync pulse and detect a false sync pulse. This is a synchronization
error. At a higher level, it is possible to make inferences from a stream of such events
because synchronization detections are expected periodically with period nT .

For signaling in the bandwidth-limited region, one prefers to avoid a sync pulse
that is orthogonal to the data pulse because this requires additional bandwidth, and also
because it requires an additional matched filter. Instead, one may use a special sequence
of data bits for a synchronization marker. We shall investigate the use of a marker for
the case of a BPSK waveform with an encoded bit sequence

(b0, b1, b2, . . . , bn−1, d0, d1, . . . , dN−1−n)

where b0, . . . , bn−1 is the n-bit marker repeated at the beginning of each transmitted
block, and d0, . . . , dN−1−n is the random data. In the absence of correct block synchro-
nization, the marker may be delayed by any number of bit positions in the received data
block. Possibly a beginning segment of the marker may appear at the end of one block



287 8.8 Block synchronization

22

21

20

19

18

17

16

15

14

13

12

11

10

9

8

7

1111111100011011001010

111111010001011000110

11111011100010110100

1111000111011101101

111110100101110011

11001111101010010

1110111000010110

111110011010110

11111001100101

1111100110101

10110111000

1011000
Turyn Markers

1111001101101010000000

111011101001011000000

11101101111000100000

1111100110010100000

111100110101000000

11110011010100000

1110101110010000

111011001010000

11100110100000

1110101100000

110101100000

10110111000

1101111000

101110000

10111000

1011000
Maury–Styles MarkersBlocklength

Figure 8.25. Some binary markers.

and the remaining segment of the marker will then appear at the beginning of the next
block. For this reason, we think of the N bits cyclically, and look for the n-bit marker
appearing cyclically within an unframed block.

Figure 8.25 gives examples of binary markers known as the Maury–Styles markers
and the Turyn markers. Those binary markers have been designed so that the Hamming
distance2 between a marker and each of its translates is large; the Hamming distance is
computed only over the overlapping segment of the marker and its translate. The design
criterion is selected so that it is unlikely for a translate of the marker, possibly with
some error bits and filled out with random data bits, to cause a false synchronization.
When the marker is embedded in data, however, there may be a false sync.

One can detect a synchronization marker by working either with demodulated data
bits – called postdetected data – or by working directly with the received signal –
called predetected data. When working with postdetected data bits, one searches an
N -bit sequence for a known n-bit marker that can start on any of the N places. The
probability is 2−n that a randomly chosen sequence of n data bits is the marker sequence.
This is the probability of a false synchronization at any sampling instant following n
random data bits. To find the probability of at least one false occurrence of the sync

2 The Hamming distance between two sequences of the same length is equal to the number of components in
which the two sequences differ.
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pattern in the block of N bits is a more difficult computation and depends on the specific
pattern in the sync marker.

When Eb/N0 is small, there will be bit errors in the detected data. Then the synchro-
nization marker may be missed altogether, or may be found in the wrong place. At low
Eb/N0, it is better to use a maximum-likelihood synchronization detector that has full
access to the predetection matched-filter outputs. The following theorem assumes that
the matched-filter outputs (prior to the detection threshold) are partitioned into blocks of
length N , with each block treated separately to find a cyclically shifted marker within it.

Theorem 8.8.1 In the absence of intersymbol interference, a sufficient statistic for the
detection of a sync marker in additive gaussian noise samples and cyclically embedded
in a block of random BPSK data is

�(�) =
n−1∑
i=0

[
u((i+�))bi − N0

2
loge cosh

2A

N0
u((i+�))

]

for � = 0, . . . , N − 1, where ui is the output of the matched filter s∗(−t) at time iT , and
((i + �)) denotes (i + �) modulo n.

Proof It is sufficient to work with the output of the matched filter at the Nyquist
sampling instants. The transmitted block

(b0, b1, b2, . . . , bn−1, d0, d1, . . . , dN−1−n),

is followed by the block

(b0, b1, b2, . . . , bn−1, d ′
0, d ′

1, . . . , d ′
N−1−n).

The received block of matched-filter outputs is a vector random variable whose com-
ponents are independent, gaussian random variables of variance σ 2 and mean given
by the bit values. With a shift of � places of the matched-filter samples, the probability
density function of the block is

p(u|b, d, �) = 1

(
√

2πσ)N

n−1∏
i=0

e−(ui+�−bi)
2/2σ 2

N−1∏
i=n

e−(ui+�−di−n)
2/2σ 2

.

Open the squares and collect the terms to write,

p(u|b, d, �) = B
n−1∏
i=0

eui+�bi/σ
2

N−1∏
i=n

eui+�di−n/σ
2
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where

B = 1

(
√

2πσ)N

N−1∏
i=0

e−(u2
i+�/2σ 2)

n−1∏
i=0

e−b2
i /2σ 2

N−1∏
i=n

e−d2
i−n/2σ 2

.

The term denoted by B is actually independent of � because the first product extends
over all N indices. Therefore the term in brackets will have no effect on computing the
maximum-likelihood and need not be inspected further. It will be dropped.

The data bits are random, independent, and equiprobable. Averaging over the random
data gives

E[p(u|b, d, �)] =
n−1∏
i=0

eui+�bi/σ
2

N−1∏
i=n

E
[
eui+�di−n/σ

2
]

.

But

E[eui+�di−n/σ
2] = 1

2
eui+�A/σ 2 + 1

2
e−ui+�A/σ 2

= cosh(ui+�A/σ 2).

Therefore the log-likelihood statistic is

�(�) = log

[
n−1∏
i=0

eui+�bi/σ
2

N−1∏
i=n

cosh(ui+�A/σ 2)

]

= log

[
n−1∏
i=0

eui+�bi/σ
2

cosh(ui+�A/σ 2)

N−1∏
i=0

cosh(ui+�A/σ 2)

]
.

The second product is now independent of � because it ranges over all �. It is constant
and can be dropped. Then

�(�) = log
n−1∏
i=0

eui+�bi/σ
2

cosh(ui+�A/σ 2)
.

Expanding the logarithm leads to the log-likelihood statistic

�(�) =
n−1∑
i=0

[
ui+�bi

σ 2
− log cosh

ui+�A

σ 2

]
.

Finally, replace σ 2 by N0/2 and readjust the multiplying constant to complete the proof
of the theorem. �
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The maximum-likelihood block synchronizer will compute �(�) for each � from 0
to N − 1, and choose as the estimate �̂ that value of � for which �(�) is largest. If
the sync marker appears in the data, then the maximum-likelihood block synchronizer
cannot protect against the possibility of choosing the false marker. It will, however,
reduce the possibility of an occasional badly corrupted bit, either in the marker or in
the data, leading to a lost sync.

It is interesting and informative to examine approximations to the likelihood statistic
for the case of a large signal-to-noise ratio, and for the case of a small signal-to-
noise ratio. For a large signal-to-noise ratio, we can make the approximation that
cosh x ∼ 1

2 exp |x|, and log cosh x ∼ |x| − log 2. Then

�(�) ∼
n−1∑
i=0

[
ui+�bi

σ 2
− A|ui+�|

σ 2
+ log 2

]
.

Suppressing the constants, and noting that bits are detected by the rule |ui|/ui = b̂i this
becomes

�(�) =
n−1∑
i=0

ui+�[bi − b̂i+�]

where b̂i = ±A is the regenerated value of the ith symbol. The sign of ±A is the
sign of ui. For any � at which the demodulated sequence matches the marker, we have
b̂i+� = bi for i = 0, . . . , n − 1, so �(�) = 0. For other �, �(�) is negative because if
bi = A and b̂i+� = −A, then ui+� must be negative, while if bi = −A and b̂i+� = A,
then ui+� must be positive. Hence the approximation under consideration leads to the
conclusion that the data sequence should be demodulated and searched for the sync
pattern. If there are two or more copies of the sync pattern, their likelihoods under the
approximation are identical, and the ambiguity cannot be resolved.

On the other hand, for a small signal-to-noise ratio, we use the approximation
log cosh x ∼ x2 obtained from the first term of a Taylor series expansion. Then

�(�) ∼
n−1∑
i=0

[
ui+�bi − 2A2

N0
u2

i+�

]
.

This tells us that, to estimate �, correlate the predetected data samples with the marker
samples, offset the correlation by a term in the sample power for the segment of length
n, and then select the largest. We can contrast this approximation with the earlier
approximation if we write it as

�(�) =
n−1∑
i=0

ui+�[bi − b̃i+�]
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where b̃i = (2A2/N0)ui is a soft output from the demodulator. Now the received signal
ui+� is weighted by the soft error signal bi − b̃i+�, and the sum forms the likelihood
statistic.

8.9 Synchronization sequences

Sequences are used to construct pulses for block synchronization, as described in
Section 8.8, and also for spread-spectrum communication, as described in Chapter 12.
For the problem of block synchronization in some forms of wideband communications,
we are interested in the properties of the pulse s(t) when it appears in isolation. Then we
speak of the aperiodic autocorrelation function, and in this section, we consider pulses
with good aperiodic autocorrelation functions. For application to spread-spectrum com-
munications, we will be interested in the properties of the infinitely long waveform
obtained by periodically repeating s(t). Then we speak of the periodic autocorrelation
function.

A pulse for synchronization should have a strongly distinguishable characteristic.
Typically, this means that it should have a strong and sharp matched-filter output.
However, a narrow pulse will usually be unacceptable to the transmitter if its amplitude
is much larger than the amplitude of the data waveform. To get a strong matched-
filter output for a sync pulse with limited peak amplitude, one may need to use a
synchronization pulse s(t) that has both a large timewidth and a large bandwidth,
perhaps one whose bandwidth is much larger than the reciprocal of its timewidth.

Other constraints may be imposed on synchronization pulses. A simple constraint
is that s(t) takes on only the values ±1, and that transitions occur only at multiples
of a fixed time interval T . Alternative constraints may be that s(t) = ±1 ± j, or that
|s(t)| = 1. Each such constraint leads to a class of synchronization pulses with a rich
structure. These pulses have not been completely classified. We shall describe only one
such class, the class of Barker pulses, as an example of such pulses for synchronization.

Definition 8.9.1 A Barker sequence of blocklength n is a sequence of symbols cj,
for j = 0, . . . , n − 1, taking values +1 and −1, with the properties that the discrete
(aperiodic) autocorrelation function

φ(k) =
n−1∑
j=0

cjcj+k

satisfies φ(k) = n if k = 0 and |φ(k)| ≤ 1 if k �= 0.

Thus when k is not zero, the only allowed values of φ(k) are −1, 0, and +1. The
known Barker sequences are given in Figure 8.26. It is not known if there are other
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Figure 8.26. Known Barker sequences.
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Figure 8.27. A Barker pulse and its autocorrelation function.

Barker sequences, but it is known that there are no others with n odd, and no others
with n smaller than 12,100.

To form a pulse from the Barker sequence, choose a pulselet s′(t). The Barker pulse
is then

s(t) =
n−1∑
�=0

c�s′(t − �T ).

Figure 8.27 shows a Barker pulse using square pulselets together with its autocorrelation
function.

It is not possible to design a binary sequence of finite length whose autocorrelation
function has no sidelobes. However, it is possible to design a pair of binary sequences
such that the sum of their two autocorrelation functions has no sidelobes. The sidelobes
of the two autocorrelation functions must have opposite signs, and so they cancel. The
mainlobes are both positive, and so they add positively. Such sequences can be used,
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for example, as the real and imaginary parts of a complex sequence. Then the real part
of the autocorrelation function will have no sidelobes.

Definition 8.9.2 A pair of finite sequences, of blocklength n, from the binary alphabet
{+1, −1} is called a complementary code (or a Golay complementary code) if the sum
of their autocorrelation functions is zero for all nonzero integer shifts.

There is essentially only one complementary code with a blocklength equal to two,
namely the one with codewords c1 = (+1, +1) and c2 = (+1, −1). The autocorrelation
sequences are φ1 = (+1, +2, +1) and φ2 = (−1, +2, −1). These sum to (0, 4, 0).
Either codeword c1 or c2 could be replaced by its negative or by its reciprocal without
changing its autocorrelation sequence. New codes obtained by these slight changes are
not essentially different from the given code.

There are no complementary codes with a blocklength equal to three. There is essen-
tially only one complementary code with a blocklength equal to four. It has codewords
c1 = (+1, +1, +1, −1) and c2 = (+1, +1, −1, +1). The autocorrelation sequences of
c1 and c2 are

φ1 = (−1, 0, 1, 4, 1, 0, −1)

φ2 = (1, 0, −1, 4, −1, 0, 1).

These sum to (0, 0, 0, 8, 0, 0, 0).
We can express the notion of a complementary code in the language of polynomials.

Acodeword with components ci for i = 0, . . . , n−1 can be represented by the codeword
polynomial

c(x) =
n−1∑
i=0

cix
i.

The reciprocal polynomial of c(x), denoted c̃(x), is given by

c̃(x) =
n−1∑
i=0

cn−1−ix
i

= xn−1c(x−1).

The two polynomials c1(x) and c2(x) of degree n form a complementary code if and
only if

c1(x)c1(x
−1) + c2(x)c2(x

−1) = 2n.
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Figure 8.28. An application of complementary codes.

The right side is a discrete impulse of amplitude 2n, the left side is a complicated way
of writing the impulse. Each polynomial on the left can be represented by a finite-
impulse-response filter, so this equation can be represented by a network of such filters,
as shown in Figure 8.28. The coded signals can be passed through a pair of channels,
each channel with a peak power constraint. The output of the complete circuit is an
impulse whose amplitude is 2n times larger than the peak signal of either channel. In
this way, the complementary code enables one to transmit a large impulse through a
channel with a peak amplitude constraint. The advantage of using a complementary
code is that there are no sidelobes in the output of the demodulator.

The two channels can be obtained by partitioning a single channel, as by frequency
division or time division. Another possibility is to use the two polarization components
of an electromagnetic signal. Of course, the most evident is to use the in-phase and
quadrature components of a complex waveform.

Problems for Chapter 8

8.1. Sketch in detail a complete functional block diagram of a coherent receiver for
offset QPSK, including carrier recovery and data clock synchronization. Can
this receiver be used for MSK?

8.2. Two different methods are proposed for handling phase in a sixteen-ary orthog-
onal communication system. One method uses a noncoherent demodulator.
The other method uses a coherent demodulator, but for carrier recovery, the
waveform consists of alternating segments, 75 milliseconds of data symbols,
followed by 25 milliseconds of unmodulated carrier, with the same average
power as the modulated carrier. The average data rate of the two methods is the
same. Which method should be preferred at a symbol error rate of 10−5? Give
a reason. Does the answer depend on error rate?

8.3. Based on the maximum-likelihood principle, develop and sketch a phase
synchronization procedure for a binary OOK waveform.
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8.4. Agiven digital communication system has a sync procedure that can track phase
noise θ(t) to within an error signal θe(t). Model the error signal as bandlimited
gaussian noise. Explain how, if the phase noise in the received signal is removed
by eliminating its cause, the sync procedure can be used to increase the data
rate. Does this imply that a waveform of maximum data rate for an additive
noise channel cannot be self-synchronized? Repeat the argument for symbol
synchronization.

8.5. A given digital communication system for a passband dual polarization channel
uses four-dimensional modulation, consisting of QPSK on each polarization
axis of an electromagnetic wave. Within the channel, there is an arbitrary phase
shift on the carrier and an arbitrary polarization rotation. Use the maximum-
likelihood principle to set up a method for recovering phase and polarization.
Will the solution change if each polarization channel can have an independent
phase shift on its carrier?

8.6. With data treated as a random nuisance parameter, derive the likelihood function
for the phase of a binary FSK waveform. Sketch a coherent receiver designed
around the maximum-likelihood estimator. Explain how the nonlinearity in the
phase estimator may be approximated in a way that results in a decision-directed
estimator.

8.7. The maximum-likelihood estimator developed in Problem 8.6 can be used bit
by bit to estimate the phase on every received bit of a binary FSK waveform.
Is the demodulator that results equivalent to, better than, or poorer than a non-
coherent FSK demodulator? If these demodulators are not equivalent, explain
the difference and decide whether this means that there is some weakness in the
theory.

8.8. a. With data treated as a random nuisance parameter, develop and sketch a
maximum-likelihood procedure for simultaneously estimating phase and
symbol timing for a BPSK waveform.

b. Repeat the development for a QPSK waveform.
8.9. By showing that the feedback signal is identical, prove that the Costas loop is

mathematically equivalent to a phase-locked loop driven by the square of the
received signal.

8.10. a. With data treated as a random nuisance parameter, develop a maximum-
likelihood procedure for finding a marker, consisting of n QPSK symbols,
in a QPSK block of length N . Compare the procedure to the solution for
BPSK.

b. Repeat for an eight-ary PSK waveform.
8.11. In a partially-coherent channel, the phase angle is not known, but it changes

so slowly with respect to the bit rate that phase offset can be estimated from a
long sequence of bits and can be corrected. However, there is a residual sign
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ambiguity if the modulation is BPSK because the phase estimate has a 180◦
ambiguity. Instead of using DPSK, it is proposed to use BPSK and to resolve
this ambiguity by inserting a sequence of four ones after every 100 channel bits,
and to use a data translation code to remove any sequence of four ones from
the channel bit stream. (An example of such a code inserts in the encoder an
artificial zero after every three consecutive ones and deletes in the decoder a
zero after every three consecutive ones.)
a. Explain how this resolves the ambiguity.
b. By how much, in the best case, is the data rate reduced?
c. Sketch a copy of Figure 3.10 and on the sketch plot a curve for the proposed

scheme. In the best case, what must be the change in Eb/N0 at a bit error
rate of 10−5?

8.12. The likelihood function with extraneous parameters averaged out is called
the generalized likelihood function. Maximizing the generalized likelihood
function is not the same as the maximum-likelihood principle. This can be
demonstrated by deriving the estimates of the amplitude of a BPSK waveform
from each point of view. Let s(t) be a pulse such that

∫ ∞

−∞
s(t)s∗(t − �T )dt = 0 for � �= 0.

The received BPSK waveform is

v(t) =
n−1∑
�=0

a�s(t − �T ) + n(t)

where a� = ±A and A is an unknown parameter to be estimated.
a. Show that the simultaneous maximum-likelihood estimate of both data and

amplitude is

â� = sgn [u�]

Â = 1

n
u�sgn [u�]

where u� is the �th output sample of the matched filter.
b. By averaging over all data sequences, develop a generalized log-likelihood

function

�(A) =
n−1∏
�=0

[
1
2 e2Au�−A2 + 1

2 e−2Au�−A2
]

.
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What estimator for A maximizes this function? How does this estimator
compare to the estimator of part a?

8.13. By reference to the noise analysis of the phase-locked loop, analyze the accuracy
of the delay-locked loop used for symbol synchronization.

8.14. A passband sampler improperly samples with respect to a carrier frequency f ′
0

instead of with respect to the correct carrier frequency. Explain how a suffi-
ciently good equalization procedure will automatically correct for small carrier
offsets.

8.15. The first three Barker sequences of odd blocklength are

n = 3 : + + −; n = 5 : + + + − +; n = 7 : + + + − − + −.

Sketch the output of a matched filter for each of these Barker sequences under
the following conditions:
a. The waveform consists of a single Barker sequence.
b. The waveform is periodic, consisting of a periodic repetition of the Barker

sequence with period n.
8.16. Construct a list of all complementary codes of blocklength 4. How many pairs

are there on the list? Show that essentially there is only one pair. We say that
two codeword pairs are essentially the same if one can be turned into the other
by the operations of replacing either codeword by its negative or of replacing
either codeword by its reciprocal.

8.17. The two components of a real complementary code are used as the in-phase
and quadrature components of an MSK pulse. Prove that all sidelobes in
the matched-filter output for this MSK pulse are in phase quadrature to the
main lobe.

Notes for Chapter 8

Techniques of automatic phase control go back to the early days of electronic sys-
tems and it is difficult to identify a specific starting point. Jaffe and Rechtin (1955)
seem to be the first to explicitly identify the phase-locked loop as a technique to track
a time-varying sinusoid in the presence of noise. The study of phase-locking in the
presence of noise has been studied by Gruen (1953), by Viterbi (1963), and by many
others. The application of the phase-locked loop to communication systems was dis-
cussed by Costas (1956). Bandedge timing recovery was discussed by Lyon (1975).
The removal of data-dependent jitter from the timing recovery loop is due to Franks
and Bubrouski (1974).

Marker design has been studied by Maury and Styles (1964), by Turyn (1968), and
by others. Comprehensive surveys of phase and symbol synchronization have been
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written by Stiffler (1971), by Lindsey (1972), and by Franks (1980, 1983), and surveys
of block synchronization have been written by Scholtz (1980).

The design of special pulse shapes and sequences for aperiodic synchronization has
a rich literature starting with the work of Barker (1953), and including further work
by Welti (1960), Turyn and Storer (1961), Frank (1963), Golomb and Scholtz (1965),
and others. The maximum-likelihood strategy for finding such sequences embedded in
a random datastream was studied by Massey (1972). The probability of synchroniza-
tion error was studied by Nielsen (1973). Complementary codes were introduced by
Golay (1949, 1961). Variations on this idea include the phase-modulated pulses studied
by Frank (1980).



9 Codes for Digital Modulation

Rather than modulate one data symbol at a time into a channel waveform, it is possible
to modulate the entire datastream as an interlocked unit into the channel waveform. The
resulting waveform may exhibit symbol interdependence that is created intentionally
to improve the performance of the demodulator. Although the symbol interdependence
does have some similarity to intersymbol interference, in this situation it is designed
deliberately to improve the minimum euclidean distance between sequences, and so to
reduce the probability of demodulation error.

The methods developed in Chapter 4 for demodulating interdependent sequences
led us to a positive view of intersymbol interdependence. This gives us the incen-
tive to introduce intersymbol interdependence intentionally into a waveform to make
sequences more distinguishable. The digital modulation codes that result are a form of
data transmission code combined with the modulation waveform. The output of the data
encoder is immediately in the form of an input to the waveform channel. The modulator
only needs to apply the proper pulse shape to the symbols of the code sequence.

In this chapter, we shall study trellis-coded modulation waveforms, partial-response
signaling waveforms, and continuous-phase modulation waveforms. Of these various
methods, trellis-coded modulation is the more developed, and is in widespread use at
the present time.

9.1 Partial-response signaling

The simplest coded-modulation waveforms are called partial-response signaling wave-
forms. These coded waveforms can be motivated by recalling the method of decision-
feedback equalization. That method suffers from the occurrence of error propagation. A
code can be used to eliminate, or reduce, the possibility of error propagation by moving
the function of the decision feedback into a precoder prior to the modulator. By antic-
ipating the intersymbol interference, its effect can be subtracted out before it happens
provided the sampled channel coefficients g� are integers. This clever technique can be
applicable without affecting the channel input alphabet.
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A channel that might require great care to avoid intersymbol interference is the ideal
rectangular baseband channel

H ( f ) =
{

1 | f | ≤ W
0 | f | > W .

A pulse s(t) will only completely fill the band of this channel if its transform satisfies

S( f ) =
{

(2W )−1 | f | ≤ W
0 | f | > W .

The inverse Fourier transform of this S( f ) gives the pulse shape

s(t) = sin 2πWt

2πWt

= sinc 2Wt.

The pulse s(t) is a Nyquist pulse at symbol spacing T = 1/2W .
To use the ideal bandlimited channel to transmit data that is represented in the form

of a stream of real numbers, simply change the stream of real numbers into a stream of
pulse-amplitude modulated sinc pulses, given by

c(t) =
∞∑

�=−∞
a�sinc 2W (t − �T ).

If a� = ±1, this is binary phase-shift keying using sinc pulses. The choice of a sinc
pulse as the pulse shape ensures that the bit rate of the BPSK waveform is as high as
possible for the given ideal bandlimited channel. If one tried to signal with BPSK at a
faster bit rate, the channel response would surely create intersymbol interference.

Of course, waveform design with sinc pulses to make full use of an ideal bandlimited
channel, though mathematically simple, is impossible to implement. Not only is the
sinc pulse unrealizable, but the ideal bandlimited channel is unrealizable also. In this
section, we shall come to a remarkable reformulation of this signaling waveform by
the observation that the unrealizability of the waveform and the unrealizability of the
channel can be made to cancel each other, leaving a scheme that is realizable in both
respects.

The method of partial-response signaling can be viewed as a way to obtain high data
rate by allowing symbols to overlap intentionally. Partial-response signaling creates
intentional intersymbol interference. Usually the constraint is that the intersymbol
interference coefficients take on integer values. The partial-response waveform can
be demodulated by a decision-feedback demodulator or by a maximum-likelihood
sequence demodulator using the Viterbi algorithm.
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A practical alternative to a BPSK waveform with sinc pulses is the simplest partial-
response waveform, which is known as the duobinary (partial-response) waveform.
Define the duobinary pulse as

duob(t) = sin π t

π t(1 − t)
.

A sketch of the duobinary pulse is shown in Figure 9.1. It is not a Nyquist pulse because
duob(1) is equal to one. For other nonzero values of �, duob(�) = 0. We can eliminate
the need to generate the pulse s(t) from the modulator if we choose a channel with the
impulse response s(t). The Fourier transform of duob(t) is

S( f ) =
{

2e−jπ fT cos π fT | f | ≤ 1/2T
0 | f | > 1/2T .

The complex exponential corresponds to a delay of T/2 and can be absorbed into
the timing of the modulator and demodulator. Thus with the timing adjusted and the
transmitted pulses replaced by impulses, the channel can have the transfer function
H ( f ) = cos π fT for | f | ≤ 1/2T , and otherwise H ( f ) = 0. Not only is this lowpass
channel a practical channel in contrast to the ideal rectangular lowpass channel, but it
makes the modulator trivial, as is shown in Figure 9.2.

–2T 2T 3T–T T0
t

h (t )

Figure 9.1. The duobinary pulse.

to
demodulator

Binary
Data
Stream

Impulse
Generator
0 → –1 
1 → +1

Channel

H (f )

Figure 9.2. Equivalent modulation scheme.
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The duobinary pulse can be viewed as a pair of pulses by observing that

s(t) = sinc(t) + sinc(t − 1)

= sin π t

π t(1 − t)

= duob(t).

This has the Fourier transform

S( f ) = rect( f ) + e−j2π f rect( f )

= 2e−jπ f cos π f rect( f ).

Accordingly, the duobinary partial-response signaling waveform is defined as binary
antipodal signaling using the duobinary pulse as the modulation pulse. Then

c(t) =
∞∑

�=−∞
a�duob 2W (t − �T )

=
∞∑

�=−∞
(a� + a�−1)sinc 2W (t − �T ).

Thus, the waveform c(t), although formed as BPSK with the duobinary pulse, can be
interpreted as

c(t) =
∞∑

�=−∞
c�sinc 2W (t − �T )

where c� = a� + a�+1, and so takes values −2, 0, and +2.
How should the channel output be filtered? The received signal is

v(t) =
∞∑

�=−∞
a�s(t − �T ) + n(t)

=
∞∑

�=−∞
c�p(t − �T ) + n(t)

where s(t) is the duobinary pulse created by the channel and p(t) is the sync pulse
sinc 2Wt and c� = a� + a�+1. It would not be convenient to design a matched filter
based on the pulse s(t) because that pulse is not a Nyquist pulse so the noise samples
would be correlated. However, the waveform can also be viewed as consisting of the
coded data c� modulating sinc pulses at the Nyquist rate. Theorem 7.4.2 tells us that,
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for this situation, the outputs of the matched filter p(−t) form a sufficient statistic. The
matched filter is the sinc pulse

p(−t) = sinc(t/T ).

The output is a Nyquist pulse, so the output noise samples are uncorrelated if the input
noise is white.

The conversion of the data symbols a� into the channel code symbols can be regarded
as an encoding operation. The binary datastream a�, which is a stream of +1 and −1
symbols, can be represented by the polynomial

a(x) =
∞∑

�=−∞
a�x�.

Conceptually, this datastream can be regarded as encoded by passing it through a real,
finite-impulse-response filter represented by the polynomial g(x) = 1+x. The encoded
datastream c�, which is represented by the polynomial

c(x) =
∞∑

�=−∞
c�x�,

is defined by the polynomial product

c(x) = g(x)a(x)

= (1 + x)a(x).

Figure 9.3 shows this form of the conceptual encoder for duobinary signaling. The
waveform is formed by first passing the datastream, represented by a series of impulses,
through a discrete-time finite-impulse-response filter with generator polynomial g(x),
and then passing the encoded output through an ideal lowpass filter that will turn

Binary
Data
Stream 
(Impulses)

sinc 2W t
Interpolating

Filter

Ideal
Low-Pass

Filter

Channel

to
Demodulator

Modulator

g (x) = 1 +  x

+

Figure 9.3. Conceptual modulation scheme.
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impulses into sinc pulses. But this is equivalent to passing the data through the single
filter that is equal to the cascade of a finite-impulse-response filter and the ideal low-
pass filter. The single filter has an impulse response equal to the convolution of the
impulse responses of its two subfilters, and this is the duobinary pulse. Similarly, in the
frequency domain, the cosine pulse spectrum is the sum of two rectangular spectra as
modified by the translation theorem.

The demodulator samples the matched-filter output v(t) at the sampling instants
�T . The intersymbol interference is easy to see by inspection of the pulse shape in
Figure 9.5. A single pulse will produce two nonzero samples, both equal to one; all
remaining samples of the intersymbol interference are equal to zero. In effect, the
samples are noisy copies of the output of the encoding polynomial g(x) = 1 + x. The
sampled output of the matched filter is

u� =
∞∑

�=−∞

⎡⎣ μ∑
�′=−∞

g�′a�−�′ + n�

⎤⎦
=

∞∑
�=−∞

c� + n�

where c� = a� + a�−1 for duobinary signaling. For binary signaling, a� takes values
in the set {−1, 1}, so c� takes values in the set {−2, 0, 2}. The possible sequences of
received samples c� for the duobinary waveform are compactly displayed by the trellis
in Figure 9.4.

The data symbols can be recovered from the samples by means of a Viterbi demod-
ulator or by a decision-feedback demodulator. Figure 9.5 shows the waveform used
with a decision-feedback demodulator. A decision-feedback demodulator is subject to
error propagation; a single demodulation error will produce incorrect feedback, which
can lead to more errors. In this way, one demodulation error may propagate into many
subsequent errors.

A better method is to use a precoder. A precoder can be thought of as the decision-
feedback demodulator moved across the channel into the modulator where there are
no errors and so no possibility of error propagation. The decision-feedback precoder

1

–1

0

2

–2 –2 –2

222

0

0

0

0

0

.  .  .

Figure 9.4. Trellis for duobinary partial-response.
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Figure 9.5. Decision-feedback demodulator.

anticipates what will happen in the channel and does the inverse to the data before it
reaches the channel. However, the decision feedback deals with real numbers and real
arithmetic, whereas the precoder deals with binary data and modulo-two arithmetic.
For this reason, it is not completely obvious that the decision feedback can be moved
into the modulator.

The structure of the precoder will be easy to develop if we first replace our demod-
ulator by one that uses digital logic in the form of a postcoder. This means that we
want to postpone the decision feedback to a point at which all variables are binary.
Specifically, the threshold will be disentangled from the decision feedback.

The threshold test is

â� =
{

1 if u� − â�−1 ≥ 0

−1 if u� − â�−1 < 0.

We can rewrite this as

If â�−1 = 1,

â� =
{

1 if u� ≥ 1

−1 if u� < 1.

If â�−1 = −1,

â� =
{

1 if u� ≥ −1

−1 if u� < −1.

We want to decouple the threshold tests from the decision feedback, which means that
the threshold circuit is not privy to â�−1. It is sufficient, then, to quantize u� into the
three intervals u� ≥ 1, −1 < u� < 1, and u� ≤ −1. Because we want a binary-valued
implementation, we will use instead a suboptimal two-level quantization by rewriting
the case −1 < u� < 1 as |u�| < 1, and merging the other two cases, u� ≥ 1 and
u� ≤ −1 as |u�| ≥ 1.
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0

0

b) Suboptimal Decision Regions

a) Optimal Decision Regions

–1 1

Figure 9.6. Error probabilities for two threshold rules.

The decision rule now is replaced by the suboptimal rule

If â�−1 = 1,

â� =
{

1 if |u�| ≥ 1
−1 if |u�| < 1.

If â�−1 = −1,

â� =
{

1 if |u�| < 1
−1 if |u�| ≥ 1.

The suboptimal decision rule will have degraded performance because the decision
regions have been altered. Figure 9.6 compares the probability of error of the optimal
ternary decision regions with the probability of error of the suboptimal binary decision
regions. For example, for the case in which a� = −1 and a�−1 = 1, the mean of u� is
zero. Then, for the optimal decision rule, an error will occur only if u� is greater than one.
For the suboptimal decision rule, an error will also occur if u� is less than minus one.
By inspection of Figure 9.6, it becomes clear that for the suboptimal decision regions,
the probability of error is twice as large as for the optimal decision rule. In return for
accepting this larger error probability, we can now design the decision feedback circuit
as a binary postcoder in series with the threshold, as shown in Figure 9.7.

We now have reached the point where the design of a precoder is obvious. Indeed,
for the example of duobinary partial-response, we can simply move the postcoder into
the modulator where it becomes the required precoder. The duobinary partial-response
modulation with a precoder is shown in Figure 9.8.
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Figure 9.8. Duobinary partial-response modulation with precoding.

Our detailed study of the duobinary partial-response waveform typifies other forms
of partial-response signaling, and these are also important in applications. Each choice
of the generator polynomial g(x) gives another partial-response waveform. Several
choices for the generator polynomial of partial-response signaling are in common use,
and the simpler of them have conventional names. The most widely used partial-
response waveforms are defined as follows:

duobinary g(x) = 1 + x

dicode g(x) = 1 − x

modified duobinary g(x) = 1 − x2.

Notice that the two latter examples have negative signs, which leads to a considerable
difference both in the pulse shape and in the spectrum. The signaling pulse s(t) will
have a Fourier transform S( f ) that is zero for f = 0. This is an important consideration
for channels, such as magnetic recording channels, that cannot pass zero frequency.

The output of the dicode channel is the arithmetic difference, as real numbers, of
the past two channel input bits. The channel output alphabet is {−2, 0, 2} as for the
duobinary waveform but, in this case, the output is 0 if the last two input symbols are
the same, and otherwise it is either −2 or 2. It is 2 if the current input symbol is 1 and
the previous channel input symbol is −1.

Most partial-response waveforms can be used with a precoder. The formulation of
the precoder is generalized as follows. Suppose that gk is an integer for all k and that
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g0 is not even. Let the input datastream be precoded by the equation

bi = di − 1

g0

[
n−1∑
i=1

gjbi−j

]
(mod 2).

Except for the modulo-two operation, this amounts to moving the feedback operation
from the demodulator to the modulator. The precoding is the inverse of the encoding.
By doing this inverse operation before the encoding, we eliminate the need to do it in
the demodulator. It is trivial to verify that the output of the encoder is identical to the
input of the precoder.

9.2 Continuous-phase modulation

A phase-modulated signaling waveform is a waveform of the form

c(t) = cos(2π f0t + θ(t)).

Acontinuous-phase signaling waveform is a phase-modulated waveform for which θ(t)
is a continuous function of time. We are interested in continuous-phase waveforms for
digital communications. The special feature of a continuous-phase waveform is that its
amplitude is constant. This makes it tolerant of severe nonlinearities in the transmission
system. A continuous-phase waveform is a generalization of the minimum-shift keying
waveform, which was studied in Section 5.7.

We shall require that the datastream is modulated into the phase θ(t) in such a
way that the data can be conveniently demodulated directly from the in-phase and
quadrature components of c(t). This requirement is imposed because phase demodu-
lation – recovering an unstructured phase waveform θ(t) from the waveform c(t) – is
a nonlinear operation that can behave poorly in noise and so should be avoided. The
maximum-likelihood demodulator tells us how to recover the data sequence when given
the received signal v(t) = c(t) + n(t). We want the maximum-likelihood demodulator
to be a matched filter followed by a (complex) sequence demodulator. Consequently,
we want to choose the method of modulating data into θ(t) in such a way that the
maximum-likelihood demodulator is easy to implement – in particular, so that the
Viterbi algorithm can be used to process matched-filter output samples.

We begin the discussion with the study of a demodulator for MSK that will recover
the FSK phase sequence directly by using a maximum-likelihood demodulator. This
is an alternative to using a matched filter on the in-phase and quadrature half-cosine
pulses.
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When viewed as a phase-modulated waveform at complex baseband, the MSK
waveform is

c(t) = e jθ(t)

where

θ(t) = θ� ± 2π
t − �Tb

4Tb
�Tb ≤ t < (� + 1)Tb.

These phase trajectories were illustrated in Figure 5.22. This is a form of FSK modu-
lation with the frequencies f0 ± 1/4Tb and the starting phase of each pulse adjusted to
make the phase continuous. The phase of this waveform changes by ±π/2 as � changes
to �+1. For odd �, θ� = ±π/2, and for even �, θ� = 0 or π . Although we could proceed
using this definition of c(t), the trellis for this description of the MSK waveform and
the Viterbi demodulator will be easier to discuss if we first multiply c(t) by e j2π t/4Tb so
that the phase changes by 0 or +π for every change in �. This is equivalent to offsetting
the definition of the carrier frequency of the passband representation so that the two
FSK frequencies are now f0 and f0 + 1/2Tb. Define

c′(t) = c(t)e j2π t/4Tb

so that the phase changes either by 0 or by +π as � changes to � + 1. Thus

c′(t) = e jθ ′(t)

where, on the interval �Tb < t ≤ (� + 1)Tb,

θ ′(t) =
{

θ ′
� if the �th data bit is a zero

θ ′
� + 2π

t−�Tb
2Tb

if the �th data bit is a one.

These modified phase trajectories are illustrated in Figure 9.9. The advantage of the
phase trajectories depicted in Figure 9.9 as compared to those in Figure 5.22 is that the
structure is now invariant to a translation of the time index. The modified trellis is the
same at even time indices as at odd time indices.

We shall develop a coherent demodulator for this representation of the MSK wave-
form. Normally, when we speak of a coherent demodulator, we mean that the reference
phase is known modulo 2π . In this case, it is actually enough that the reference phase
is known modulo π/2.

The FSK description of the MSK waveform now is

c(t) =
∞∑

�=−∞
[a�e jθ�s0(t − �Tb) + ā�e jθ�s1(t − �Tb)]
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Figure 9.9. Modified phase trajectories for MSK.

where θ� = 0 or π ,

(a�, ā�) =
{

(A, 0) if the �th data bit is a zero
(0, A) if the �th data bit is a one,

and

s0(t) = rect

(
t

Tb
− 1

2

)
s1(t) = rect

(
t

Tb
− 1

2

)
e jπ t/Tb .

The maximum-likelihood demodulator consists of first forming the decision statistics
used for coherent FSK, then using the Viterbi algorithm to deduce the data sequence.
The decision statistics are formed by passing the received waveform through the pair
of matched filters, s∗

0(−t) and s∗
1(−t), and sampling the real parts of the outputs at time

�Tb to give u0� = u0(�Tb̂) and u1� = u1(�Tb̂). Because the pulses for different � do not
overlap, the matched filter can be implemented with integrate and dump correlators.

The pulses s0(t) and s1(t) are not orthogonal because

∫ Tb

0
s0(t)s

∗
1(t)dt = −2j

π/Tb
.

However, this term is purely imaginary, which, for our present purposes, is as good
as orthogonal because we deal only with the real part of the matched-filter outputs.
Further, although the noise samples caused by n(t) passing through the two matched
filters are not uncorrelated, the real parts of the noise samples are uncorrelated.
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Figure 9.10. Trellis for the MSK waveform.
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Figure 9.11. FSK demodulator for an MSK waveform.

Now we are ready to draw the trellis shown in Figure 9.10. There are two states
corresponding to the two values, 0 and π , that θ� can take. There are two paths out
of each node corresponding to the two possible values of the data bit. A data bit zero
causes no change in state. A data bit one causes a change in state. Each branch is labeled
with the expected value of the pair of decision statistics: (Ae jθ� , 0) for a data bit zero,
and (0, −Aejθ�) for a data bit one, with A set equal to one. The Viterbi algorithm is used
to search this trellis for the path that best agrees with the sequence of matched-filter
outputs.

Figure 9.11 shows the maximum-likelihood demodulator for MSK that we have
developed. The performance of the demodulator is easily determined by finding the
minimum distance of the set of sequences described by the trellis. The minimum dis-
tance is set by the two paths highlighted in the trellis, from which we conclude that
dmin = 4. In fact, every path has one neighboring path at distance dmin = 2. This is the
same minimum distance as BPSK (whose trellis is shown in Figure 9.12). Consequently,
the probability of an error event for the demodulator of Figure 9.11 is given by the
approximation

pe ≈ Q

(√
2Eb

N0

)
.
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BPSK

1 1

dmin = 2

dmin =

–1 –1

FSK
2

(0,1)

(1,0) (1,0)

(0,1)

Figure 9.12. Degenerate trellises for BPSK and coherent FSK.

On the one hand, this is unexpected because the probability of error of a coherent binary
FSK (whose trellis is shown in Figure 9.11) is

pe ≈ Q

(√
Eb

N0

)
.

Remarkably, by using a continuous-phase FSK waveform rather than a more elemen-
tary FSK waveform, a 3 dB energy advantage has been obtained. On the other hand,
however, we might have anticipated this because we know that an MSK waveform can
be demodulated by demodulating its in-phase and quadrature modulation components
separately, and each of these demodulators will have the probability of error of BPSK.

Many other continuous-phase waveforms can be designed. Each may be regarded as
a generalization of the MSK waveform. The general case at passband is described by

c(t) = cos(2π f0t + θ(t)),

and at complex baseband

c(t) = e jθ(t)

where the phase modulation θ(t) is given by

θ(t) = 2πh
∫ t

−∞

∞∑
�=0

a�s(ξ − �T )dξ .

The phase modulation may also be specified by giving its derivative

θ̇ (t) = 2πh
∞∑

�=0

a�s(t − �T ).
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The parameter h is a constant called the modulation index. The modulation index h is
usually chosen to be a rational number

h = K

N

because otherwise θ(t) would take on an infinite number of states and our demodulation
methods would not apply. The integers K and N should be chosen to be coprime.
The data symbols a� take values in an M-ary real-valued and uniformly-spaced signal
constellation. When M is even, we may choose the symmetric signal constellation

a� ∈ {±1, ±3, . . . , ±M /2}.

The pulse shape s(t) is chosen based on its effect on the spectrum of c(t) and to
simplify the modulator and demodulator. We shall consider only the simplest pulse
shape

s(t) = rect

(
t

T
− 1

2

)
for the phase modulation. In this case,

θ̇ (t) = 2πha� �T ≤ t < (� + 1)T .

Consequently, the continuous-phase waveforms are also M-ary FSK waveforms. Such
waveforms are called continuous-phase FSK (CPFSK) waveforms. During each symbol
time, an M-ary data symbol is modulated onto one of M frequencies, f0 +ha�, forming
one of M sinusoids not necessarily orthogonal. The sinusoids of a CPFSK waveform
fill out the T second interval, and the phase of each sinusoid is adjusted so that the
phase is continuous at the symbol boundaries. The waveform is

c(t) = e jθ(t)

where

θ(t) = 2πh

T
a�

(
t

T
− � − 1

2

)
+

�∑
i=0

2πhai + θ0 �T ≤ t ≤ (� + 1)T ,

and θ0 is the initial phase angle, which is known if the demodulator is coherent and
unknown if the demodulator is noncoherent.

Because of the imposed phase continuity, computation of the power density spectrum
of a CPFSK waveform can be quite difficult, but generally, the spectrum of c(t) will
fall off much more quickly with f than will the spectrum of s(t).
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Binary CPFSK with modulation index h = 1/2 is MSK, which we have already
studied in detail. There we found it convenient to redefine the signal constellation
by redefining the carrier frequency. Similarly, by redefining the carrier frequency of
CPFSK, we can choose to view the signal constellation as

a� ∈ {0, 1, 2, . . . , M − 1},

which has the same form for odd M as for even M .
To complete the discussion of continuous-phase modulation, we must describe the

demodulator. In principle it is straightforward to formulate a demodulator. Simply
inspect the likelihood function to construct the appropriate bank of matched filters and
the appropriate trellis, then apply the Viterbi demodulator. When the additive noise is
gaussian, maximizing the likelihood function is equivalent to minimizing the euclidean
distance

d(c(t), v(t)) =
∫ ∞

−∞
|v(t) − e jθ(t)|2dt

over all e jθ(t) that are legitimate waveforms that can be produced by the modulator.
Expanding the square, we see that minimizing the euclidean distance for a block of
length L is equivalent to maximizing the correlation

ρ(a0, a1, . . . , aL) = Re

[∫ ∞

−∞
v(t)e−jθ(t)dt

]

= Re

[
L∑

�=0

e−jθ�

∫ (�+1)T

�T
v(t)e−j2πha�(t−�T )/T

]

where

θ� = θ(�T ) = 2πh
�∑

i=0

ai

and t has been offset by 1/2.
For the example of MSK, shown in Figure 9.10, it was possible to replace the distance

d(v(t), c(t)) by a euclidean distance between sequences for labeling and searching the
trellis. For the general case of CPFSK, the likelihood statistic does not take the form of
a euclidean-distance computation in sequence space1. It is, however, still in the form

1 The form of a euclidean distance could be obtained by passing v(t) through an infinite bank of orthogonal filters
to form the output samples equal to the Fourier coefficients of a Fourier expansion of v(t) in one symbol interval.
Then each branch of the trellis would be labeled with an infinite vector of Fourier coefficients, and the distance
computation would be the computation of the euclidean distance between infinite sequences on each branch.
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of a sum

ρ(a0, a1, . . . , aL) = ρ(a0, a1, . . . , aL−1) + Re

[
e−jθL

∫ (L+1)T

LT
v(t)e−j2πhaL(t−LT )/T dt

]
.

Therefore the Viterbi algorithm still applies, using the second term on the right as the
branch distance.

For each data sequence, the correlationρ(a0, a1, . . . , aL) can be recursively computed
from the sequence of output samples of the bank of M filters with impulse responses

gm(t) = e j2πhmt/T m = 0, . . . , M − 1.

Let um(t) be the output of filter gm(t) excited by v(t). Then the set of

{um(�T ) : m = 0, . . . , M − 1; � = 0, 1, 2, . . . , }

is a sufficient statistic for demodulation because it is sufficient for reconstructing
ρ(a0, a1, . . . , aL), and so for reconstructing d(c(t), v(t)) for each possible codeword.
However, the computation of ρ(a0, a1, . . . , aL) from the statistics um(�T ) does not have
the form of a euclidean-distance computation. Rather, we have the recursion

ρ(a0, a1, . . . , a�) = ρ(a0, a1, . . . , a�−1) + Re[e−jθ�um(�T )]

where a� = m�. This is exactly the kind of additive structure needed to apply the Viterbi
algorithm.

The structure of the demodulator is illustrated by a binary CPFSK waveform that
is similar to MSK except that the phase changes by ±45◦ rather than by ±90◦. For
convenience, we will redefine the frequency reference so that the phase changes by 0◦
for a data bit zero and by 90◦ for a data bit one. The trellis is shown in Figure 9.13. The
highlighted pair of paths is separated by the minimum distance

d2
min =

∫ T

0
|1 − e j(π/2)(t/T )|2dt +

∫ T

0
|e j(π/2)(t/T ) − j|2dt

= 4T

(
1 − 2

π

)
= 4

(
1 − 2

π

)
Eb.
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Figure 9.13. Trellis for a binary CPFSK waveform.
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Figure 9.14. Demodulator for a binary CPFSK waveform.

Because dmin = 2Eb for MSK, this form of binary CPFSK has a smaller minimum
distance and a larger bit error rate than MSK. Indeed, based on the discussion of
Section 4.3, we have the approximation

pe ≈ Q

(
dmin

2σ

)

≈ Q

(√
(1 − 2/π)Eb

σ 2

)
.

Because of its poorer minimum distance, this waveform will not be preferred to MSK
very often, but it does have a different spectrum, and it does provide a simple example
of a demodulator for CPFSK. The demodulator is shown in Figure 9.14. One matched
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filter is provided for each pulse, in this case,

s0(t) = rect

(
t

T
− 1

2

)
s1(t) = e j(π/2)(t/T )rect

(
t

T
− 1

2

)
.

The outputs of the matched filters are sampled and, for each path of the trellis, the appro-
priate sample is multiplied by the appropriate phase term e jθ� . The Viterbi algorithm
then searches the trellis for the maximum-likelihood path.

9.3 Trellis codes for digital modulation

An M-ary signal constellation in the complex plane can be used to transmit k = log2 M
bits per signaling interval, as was discussed in Section 2.3. Figure 9.15 shows an exam-
ple of a complex (or two-dimensional) sixteen-ary signal constellation and a scatter
diagram of received samples at some fixed signal-to-noise ratio. The scatter diagram
shows a large number of matched-filter output samples to the same scale as the input
signal constellation. Each point in the scatter diagram is one of the points of the signal
constellation perturbed by noise. In this example, the noise is severe, and it is obvi-
ous that there will be many demodulation errors. To reduce the error rate, we must
make changes in the waveform. The timid approach is simply to replace the sixteen-
ary signal constellation by an eight-ary or a four-ary signal constellation. This reduces
the probability of error but also reduces the data rate. A much better approach is to
use a code to increase the minimum euclidean sequence distance dmin. The minimum
euclidean distance, or the free distance, is the smallest euclidean distance between any

Channel Input Channel Input Severe Noise

(0000)

(1111)

Figure 9.15. Effect of severe channel noise on a sixteen-ary signal constellation.
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two codewords of the code. In Section 4.5, we studied in some detail the approximation

pe ≈ Ndmin Q

(
dmin

2σ

)
.

This section is based on the observation that the probability of error pe can be reduced by
increasing the minimum sequence distance provided the number of nearest neighbors
Ndmin is not too large. A trellis code is so designed to increase the minimum sequence
distance. In comparison to an uncoded signaling waveform of the same data rate, a trellis
code uses a larger signal constellation, but does not use all of the possible sequences.

These motivating comments can be repeated: if an uncoded four-ary or an eight-ary
signaling waveform has too high a probability of error, increase the number of points
in the signal constellation and use a trellis code on this larger signal constellation such
that the original data rate is unchanged, but the bit error rate is less. By using a larger
signal constellation and a trellis code, we shall see that one can reduce the required
Eb/N0 at a fixed probability of error.

The capacity curves that are shown later in Figure 11.8 of Chapter 11 provide a
way to understand the advantages of coding. If we compare, for example, the capacity
of eight-ary PSK and sixteen-ary PSK shown in Figure 11.8, we see that to transmit
at a rate of three bits per symbol with a low probability of symbol error will take
considerably more energy with eight-ary PSK than with sixteen-ary PSK. Therefore
better performance is achieved by using the larger signal constellation and some form
of coding. For this application, trellis codes have been preferred to block codes, in large
part because the special distance structure of the signal constellation can be treated in
a simple way by the Viterbi algorithm.

A trellis code that is defined on a finite set of points of the complex plane is called an
Ungerboeck code, and the resulting waveform c(t) is called a trellis-coded modulation
signaling waveform. The Ungerboeck codes form a class of trellis codes with much
of the structure of convolutional codes, which are discussed in Chapter 10. These
codes are not convolutional codes because the codewords do not satisfy the necessary
linearity condition at the code symbol level. For a given fixed k and n, an (n, k)

Ungerboeck code is designed to encode k bits in each dataframe into a complex signal
constellation with 2n points, the encoding depending also on the state of the encoder.
The code alphabet is the signal constellation, which is a discrete set of points chosen
from the field of complex numbers. A codeword is a sequence of points of this signal
constellation.

A binary trellis code of constraint length ν is based on a trellis with 2ν nodes at each
stage. Each node has 2k branches leaving it, and 2k branches entering it. Each branch
is labeled with one of the points of the signal constellation. A trellis code is completely
defined by its signal constellation and a trellis whose branches are labeled with code
symbols from the signal constellation. However, to use the code, the encoding rule
must also be given. Each of the 2k possible dataframes must be assigned to one of the
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branches leaving a node. The data value of the incoming dataframe then determines
which branch is selected. The label on that branch determines the output symbol of the
encoder.

The complex representation of the transmitted signal is

c(t) =
∞∑

�=−∞
c�s(t − �T )

where s(t) is such that s(t) ∗ s∗(−t) is a Nyquist pulse and the c� are generated by
the encoder for the Ungerboeck code. We now have arrived at a waveform for digital
communication wherein the data is indeed deeply buried. The waveform c(t) is such
that only when suitably mixed to complex baseband and passed through a matched
filter will its expected waveform samples pass through the points of the complex sig-
nal constellation. The user data residing in the history of those points is determined
according to the dictates of the Ungerboeck code.

We shall study larger examples of Ungerboeck codes for QAM signal constellations
in Section 9.5. In this section, we will construct two simple (3, 2) codes with constraint
length 2 for the eight-ary-PSK signal constellation; the first example is the one that
initially suggests itself, but the second example is actually a much better code. To
design the code, we draw a trellis and label the trellis with channel symbols. Because
the constraint length ν = 2 is chosen, the trellis consists of four states. Because k = 2,
each state has four branches entering and four branches leaving. Two such trellises are
shown in Figure 9.16. We shall design codes for each of them.

To design a code, we must label the branches of the trellis with the symbols of the
eight-ary PSK signal constellation. This is done so as to make the euclidean free distance
of the code as large as possible. Figure 9.17 shows one way to label the branches of
the first trellis of Figure 9.16 that has large euclidean free distance. By inspection, we
see that the path labeled 001 011 000 . . . is at the minimum squared euclidean distance
from the all-zero codeword. Specifically, by inspection of Figure 9.17, the following
two squared euclidean distances are found:

d2(000, 001) = d2
0

d2(000, 011) = d2
1 .

Therefore, the sequence distance between (000, 000) and (001, 011) is d2
0 + d2

1 . The
squared free euclidean distance is defined as the squared euclidean distance between
any two paths of the trellis for which the distance is smallest, and no distance between
two paths is smaller. Therefore the free squared euclidean distance of the trellis code
is d2

0 + d2
1 .

To judge the performance of the code, we will compare it to simple uncoded QPSK,
which also transmits two data bits per symbol. Figure 9.18 shows QPSK as a degenerate
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Figure 9.16. Two trellises with k = 2 and ν = 2.

trellis code of the same energy per data bit. The free squared euclidean distance of
the uncoded QPSK waveform is d2

1 . In comparing the two codes, we see that the
asymptotic coding gain is G = 10 log10[(d2

0 + d2
1 )/d2

1 ] or 1.1 dB. This gain is only a
small improvement, but it is surprisingly good for such a simple code. However, we
shall see in Figure 9.21 that there is another trellis code for this signal constellation
that yields a 3 dB improvement and is not more complicated, so our first example is
unlikely to be used in practice.

The trellis and signal constellation in Figure 9.17 completely define the code, but to
use the code, we also need to assign four two-bit datawords uniquely to each of the
four paths leaving each node. We may do this in any convenient way. One way is to
assign, at each node, the four data patterns 00, 01, 10, 11 to the four branches in order
from the topmost to the bottommost. Then the encoder can be a simple look-up table.
The two data bits and the two state bits are used as a four-bit address, at which address
are stored five bits. Two of the five bits specify the new state, and three of the five bits
specify the constellation point. A table look-up encoder is shown in Figure 9.19. This
kind of encoder requires 2ν+k words of memory and will be impractical if ν + k is
large.

An equivalent encoder can be designed in the form of a shift register if we assign
input bits to branches carefully. With the same assignment – the four data patterns 00,
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Figure 9.17. A simple trellis code for eight-ary PSK.
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Figure 9.18. QPSK described as a degenerate trellis code.
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Figure 9.19. Table look-up encoder for a trellis code.
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Figure 9.20. Encoders for a simple trellis code.

01, 10, 11 assigned to the four branches in order from the topmost to the bottommost –
we notice that the two data bits are equal to the next state bits. Therefore we can
configure an encoder by using two bits of memory and associated logic, as shown as
the feedforward encoder in Figure 9.20.

There are other ways of assigning data bits to the branches of the trellis. The assign-
ment can be made in a way that makes the implementation easy. We notice that at
each node of the trellis in Figure 9.17, the last two bits of the code label are different.
We will assign the data bits to agree with these two bits in expectation of obtaining a
simple implementation. This leads to the encoder with feedback shown in Figure 9.20.
It is easy to verify that this encoder will produce the codewords shown on the trellis of
Figure 9.17 if the states are labeled 00, 01, 10, 11 from top to bottom.

The first encoder in Figure 9.20 can be described by a matrix of polynomials. By
following the incoming data bits through the shift-register circuit, we deduce that

[c0(x) c1(x) c2(x)] = [a0(x) a1(x)]
[

1 + x 1 + x 1
0 x 1 + x

]
.
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The polynomial matrix

G(x) =
[

1 + x 1 + x 1
0 x 1 + x

]

is called the generator matrix of the trellis code.
To design an encoder in which the data bits appear explicitly within the code bits, we

must transform the generator matrix so that all the columns of an identity matrix appear
as columns in the generator matrix. This is called the systematic form of the generator
matrix. Hence we will form an identity submatrix in the matrix G(x) by elementary row
operations. We will divide G(x) by 1+x because a feedback shift-register corresponding
to 1/(1+x) is preferred to one corresponding to 1/x. Consequently, the matrix becomes⎡⎢⎣1 1

1

1 + x
0

x

1 + x
1

⎤⎥⎦ .

We will form an identity matrix in the first and third columns. To the first row, add
1/(1 + x) times the second row, using modulo-two polynomial arithmetic, to obtain
the generator matrix in systematic form as

G′(x) =
⎡⎢⎣1 1 + x

1 + x2
0

0
x

1 + x
1

⎤⎥⎦

=

⎡⎢⎢⎣1 1 + x

1 + x2
0

0
x + x2

1 + x2
1

⎤⎥⎥⎦ .

This systematic generator matrix leads to the systematic encoder with feedback,
shown in Figure 9.20b. It is easy to verify that the systematic encoder also produces
the codewords shown on the trellis of Figure 9.17 – this time with the states labeled
00, 11, 10, 01 from top to bottom.

The generator matrix is a k by n matrix of polynomials. Another kind of polynomial
matrix describing the trellis code, called a check matrix, is any n − k by n matrix of
polynomials, denoted H (x), with the property that H (x)G(x) = 0. To compute H (x)
from G(x), divide by an appropriate polynomial and permute columns to put G(x) in
systematic form as the new generator matrix G(x) = [I P (x)] where I is a k by k
identity matrix, and P (x) is a k by n − k matrix of rational forms of polynomials. Then
H (x) = [−P (x)T I ] is a check matrix in systematic form. It can be put into a form
corresponding to the original nonsystematic form of G(x) by inverting permutations
and clearing the denominators.
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For example, the systematic generator matrix for the trellis code just given can be
rewritten as

G′(x) =

⎡⎢⎢⎣1 0 1 + x

1 + x2

0 1
x + x2

1 + x2

⎤⎥⎥⎦
by transposing two bit positions, so

H ′(x) =
[

1 + x

1 + x2

x + x2

1 + x2
1

]
.

Now multiply by 1 + x2 and retranspose the bit positions to obtain

H (x) = [1 + x + x2 1 + x2 x + x2].

It is easy to verify that G(x)H (x) = 0 for the original generator matrix G(x).
There is another useful trellis having four nodes and four branches per node, as shown

in Figure 9.16. It may be surprising that this trellis can define a better code than the one in
Figure 9.17. Clearly, the free distance cannot be larger than the distance between points
assigned to “parallel” branches beginning and ending on the same node. To maximize
the free distance, each pair of branches should be labeled with pairs of points from the
signal constellation that are 180◦ apart. This means that the free euclidean distance is
not larger than d3. The task then is to assign labels so that the free euclidean distance is
not smaller than d3. It turns out that, by trial and error, points of the signal constellation
can be assigned to the trellis branches so that d3 is, indeed, the free distance of the code.
A labeled trellis is shown in Figure 9.21, and an encoder is shown in Figure 9.22. The
generator matrix is

G(x) =
[

1 0 0
0 1 + x2 x

]
.

This encoder is both feedforward and systematic, except that odd and even data bits
are transmitted in different frames. If desired, a simple delay in either the encoder or
decoder will recover the timing between odd and even bits. The gain of the code is

Gain = 10 log10(d
2
3 /d2

1 ) = 3 dB.

The performance of this better four-state code for eight-ary PSK is shown in Figure 9.23
and is contrasted to QPSK. For an uncoded QPSK, dmin = √

2A and there are two
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Figure 9.21. A better trellis code for eight-ary PSK.
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Figure 9.22. Encoder for the better trellis code.

nearest neighbors. Thus our approximation to the probability of an error event for
QPSK is

pe ≈ 2Q

(
dmin

2σ

)

= 2Q

(√
2Eb

N0

)
.
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Figure 9.23. Performance of a four-state trellis code for 8-PSK.

For the trellis-coded eight-ary PSK, dmin = 2A and there is one nearest neighbor.
Thus

pe ≈ Q

(
2A

2σ

)
= Q

(√
4Eb

N0

)
.

Consequently, the asymptotic bound in Figure 9.23 can be obtained from the curve for
QPSK by sliding that curve to the left by 3 dB and down by the factor 1

2 . Figure 9.23 also
shows a more accurate curve for pe showing poorer performance, which was obtained
by simulation and includes error events due to neighbors other than the nearest neighbor.
Astudy of Figure 9.23 is a good way to judge the accuracy of the free euclidean distance
as a figure of merit.

It is not possible to achieve a better (3, 2) trellis code for an eight-ary PSK with
constraint length 2. To improve the asymptotic coding gain, it is necessary to use a code
with a larger constraint length – that is, to increase the number of states in the trellis.
Figure 9.24 shows an Ungerboeck code with a constraint length 3 and a 3.6 dB coding
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Figure 9.24. More trellis encoders for the eight-ary PSK channel.

gain, and another Ungerboeck code with constraint length 4 and a 4.1 dB coding gain.
These trellises do not contain the curious double paths like those seen in Figure 9.21.

The trellises shown in Figure 9.24 are already becoming too large to draw conve-
niently. For larger constraint lengths, we rarely draw the trellis, though we may discuss
it conceptually. A code with a large constraint length is described by giving its k by
n polynomial generator matrix or its (n − k) by n polynomial check matrix. For the
(k + 1, k) codes, which are the codes of interest, the polynomial check matrix is easier
to give.

Table 9.1 is a table of polynomial check matrices for good Ungerboeck codes for
the eight-ary PSK signal constellations with the polynomials for the last three codes
expressed in terms of the binary coefficients of the monomials. Any of these codes can
be used as a transparent plug-in replacement for the popular uncoded (four-ary) QPSK
modulator. The data rate is still two bits per symbol. There is no change in the symbol
rate, so the coded system has the same bandwidth as the uncoded system and transmits
the same number of data bits per symbol; hence the user of the system is unaware of
the code’s presence. However, the system now can run at a lower signal-to-noise ratio;
the code with constraint length 9 has a gain of 5.7 dB.

The encoder that was shown in Figure 9.22 is so simple that we should be able to find
a simplified explanation for it and for the parallel paths of its trellis. Indeed, we can if
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Table 9.1. Ungerboeck codes for the eight-ary PSK signal constellation

Constraint
length h1(x) h2(x) h3(x) d2

min/d2
0

Gain over
uncoded QPSK

2 x2 + 1 x 0 4.00 ∼3.0 dB
3 x3 + 1 x x2 4.59 3.6
4 x4 + x + 1 x2 x3 + x2 + x 5.17 4.1
5 x5 + x2 + 1 x3 + x2 + x x4 + x3 + x2 5.76 4.6
6 1000011 11000 110110 6.34 5.0
7 10111111 101100 1010010 6.59 5.2
8 100011101 111010 1011000 7.52 5.7
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Figure 9.25. Another view of a trellis code for eight-ary PSK.

we adopt the view that the symbols of the code are subsets of the signal constellation
instead of points of the signal constellation. This is a somewhat abstract view that can
be understood by studying Figure 9.21. Close examination of the branch labels on the
trellis of Figure 9.21 will show that the labels can be decomposed into two parts. The
second and third bits label the pair of branches, and the first bit labels the individual
branch within a pair. Therefore we can choose to regard the code as a mapping into
a subset of the signal constellation rather than a point. Figure 9.25 shows how the
description of the trellis is recast into this framework. Now the underlying code has
k = 1 and ν = 2. The symbols, however, are pairs of points of the signal constellation,
and the extra data bit is encoded into the choice from the two points of the pair.
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Figure 9.26. A partition of the sixteen-ary PSK constellation.

This idea of regarding the trellis code as a mapping from a subset of the data bits
into a subset of the signal constellation followed by the selection of one point of the
subconstellation is actually quite useful. For example, we can reuse the trellis for the
eight-ary PSK signal constellation, shown in Figure 9.25, to create a rate three-fourths
code for a sixteen-ary PSK signal constellation. Simply double the total number of
points, assigning eight points to each of two subconstellations. Each symbol of the
code is actually a pair of points, one from each subconstellation, chosen to be far apart.
The output of the eight-ary PSK encoder is used to select one of eight such two-point
symbols. The extra data bit is used to select one point from the two-point symbol.

As a second example, Figure 9.26 shows an appropriate subdivision of a sixteen-
ary PSK constellation into four subconstellations, each with four points. With these
subconstellations replacing the subconstellations in Figure 9.25, the design of the new
code is complete. The encoder is exactly the encoder of Figure 9.22 except that there
is one new data bit a2, and one new code bit c3 with c3 = a2.

The free distance of the code for a sixteen-ary PSK code and the free distance of
the code for an eight-ary PSK code are not established by the same pairs of paths. To
compute the free distance of the code for the sixteen-ary PSK signal constellation, it is
convenient initially to write down the distances between each pair of subconstellations,
which are defined as the smallest distance between any point in one subconstellation
and a point in the other subconstellation. Referring to Figure 9.26, we have

d(10, 01) = d3

d(10, 00) = d2

d(10, 11) = d3

d(01, 00) = d3

d(01, 11) = d2

d(00, 11) = d3.

Referring to the trellis in Figure 9.21, we can find that the free distance is established
by the path that stays in state 00, and the path that goes from state 00 to state 01, then
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to state 10, and then back again to state 00. Thus

d2
min = d2(10, 00) + d2(01, 00) + d2(10, 00)

= 2d2
2 + d2

3

= 2.259A2.

The gain with respect to uncoded eight-ary PSK is G = 10 log10(d
2
min/d2

1 ) = 3.54 dB.
However, for this code, Ndmin = 43, so the asymptotic coding gain will not be fully
effective. It will be diminished by the large number of nearest neighbors.

9.4 Lattices and lattice cosets

The construction of many of the Ungerboeck trellis codes, as illustrated at the end of the
last section, can be placed in a formal mathematical setting by introducing the notions of
a lattice and a lattice coset. The Ungerboeck codes on a square signal constellation will
be developed in this way in Section 9.5. While we could develop such codes in an infor-
mal way, as was done for the eight-ary PSK signal constellation in the previous section,
we shall use the formal setup because it gives new insights into the structure of the codes.
Figure 9.27 shows a 32-ary signal constellation broken down into eight subsets of four
points each, with a somewhat regular structure so that, in each subset, the points are
far apart. Such a partition has a structure that underlies the design of good codes.

A two-dimensional lattice � is a periodic arrangement of points in the plane. Specif-
ically, let A be a fixed nonsingular two by two matrix. The lattice is the set of all
points in the plane that can be written as the two-component vector s = Am, where
m = (m1, m2)

T is a two-dimensional vector with integer components. The columns
of A are called the generators of the lattice. The most important example is the two-
dimensional square lattice whose points are at the intersections of an infinitely large

Figure 9.27. Partitioning a 32-ary signal constellation.
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checkerboard. More generally, an N -dimensional lattice is a periodically arranged set
of points in N -dimensional space, formally defined as follows:

Definition 9.4.1 Let A be a fixed, nonsingular, real N by N matrix. An N-dimensional
lattice is the set of all N-tuples that can be written s = Am where m = (m1, . . . , mN )T

is a vector of dimension N with integer components.

The matrix A, in the general case, is called the generator matrix of the lattice, and
its columns are called generators. The dual lattice is the lattice with generator matrix
(A−1)T . The minimum distance of the lattice is defined as the smallest distance between
any two of its points. The quantity det A is the volume of one cell of the lattice. This cell
may be taken as the parallelepiped cell formed by the generators of A or, alternatively,
as the “Voronoi region”, consisting of those points that are closer to the origin than to
any other point of the lattice. The Voronoi regions form a partition of the space with the
same number of cells per unit volume as the partition formed by the parallelepiped cells.

The integers Z are themselves a one-dimensional lattice with generator 1. The set of
all integer-valued N -tuples is the N -dimensional square lattice ZN , whose generator
matrix is the N by N identity matrix. The lattices ZN have a minimum distance equal
to one. Figure 9.28 shows the two-dimensional lattice Z2.

The two-dimensional hexagonal lattice is shown in Figure 9.29. The two-dimensional
hexagonal lattice, denoted A2, has the generator matrix

A =
[

0
√

3
2 1

]
.

Figure 9.28. The lattice Z2 and sublattice RZ2 (black dots).

Figure 9.29. The hexagonal lattice.
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The lattice A2 is the densest of any lattice in two dimensions with the same minimum
distance. Many of the frequently used two-dimensional signal constellations are subsets
of either Z2 or A2.

As the dimension of the space increases, the number of interesting lattices increases
rapidly. Many of the most important lattices have been given conventional names. For
example, the Schlafli lattice D4 consists of all points of the four-dimensional lattice Z4

whose coordinates add to an even integer. Good four-dimensional signal constellations
can be constructed by working with the Schlafli lattice D4, choosing a subset of points
with a good structure. More generally, DN consists of all points ofZN whose coordinates
add to an even integer. Also worth mention in passing is the Gosset lattice E8, which
is the densest known eight-dimensional lattice, and the ultradense Leech lattice �24,
which is the densest known 24-dimensional lattice.

A sublattice �′ of a given lattice � is another lattice, all of whose points are in
the given lattice �. This can be so if and only if the generators of the sublattice are
elements of the given lattice. If in Figure 9.28, the origin is at the center dot, then the
set of black dots forms a sublattice. The sublattice, in fact, is seen to be a magnified
and rotated version of the original lattice. A coset of the sublattice �′ is the set of all
N -tuples obtained by summing all sublattice points �′ with some fixed lattice point
c, for instance, one that is in the lattice but not in the sublattice. The coset is the set
{λ + c : λ ∈ �′}. Each coset is simply a translation of the sublattice �′. In Figure 9.28
there are two cosets: the set of white dots and the set of black dots that is the same
set as the sublattice �′. All cosets are of the same type and have the same minimum
squared distance as the sublattice itself. In general, given the sublattice �′, a lattice has
an m-way partition into m cosets of the sublattice, including the sublattice itself. All
of the cosets are implied as soon as the sublattice �′ is specified. The set of cosets is
specified by the notation �/�′ because we think of �′ as dividing � into the collection
of cosets. The set of all cosets of a lattice is called a partition of the lattice. A partition
is called a binary partition if the number of cosets is a power of 2.

For example, the N -dimensional square lattice ZN has as a sublattice the lattice of all
even integer N -tuples denoted 2ZN , and ZN is partitioned into 2N cosets by 2ZN , each
with minimum squared distance 4. The coset leaders may be taken as the 2N binary
combinations of the N generators that comprise the identity matrix IN . In shorthand,
this partition is written ZN /2ZN . The partition has 2N cosets in it, and so it is a binary
partition.

9.5 Trellis codes on lattice cosets

Now we are ready to return to the study of trellis codes. For a signal constellation
that is a subset of a lattice, one can construct a trellis code in terms of an algebraic
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Figure 9.30. General structure of a trellis encoder on a lattice coset.

construction on a lattice. The lattice � is partitioned into 2n′
cosets, and each coset is

labeled with n′ bits. Aset of 2k ′′
points near the origin is chosen from each coset to form a

subconstellation, and the full signal constellation is the union of these subconstellations.
Normally, one would choose the subconstellations to be translates of each other, but
this is not a requirement.

Next, choose a suitable (n′, k ′) polynomial generator matrix. We take the symbols
of the code to be cosets – that is, elements of �/�′ for some lattice � and sublattice
�′ – and the symbols of the transmitted waveform to be elements of these cosets. A set
of 2k ′′

points near the origin forms a subconstellation within the coset.
Figure 9.30 shows the general structure of a trellis code on a lattice coset. The lattice

is partitioned into 2n′
cosets, each labeled by n′ bits. An (n′, k ′) code generates an n′-bit

symbol that selects one of the 2n′
cosets. One of the 2k ′′

points of the subconstellation
of the encoded coset is then selected by the remaining k ′′ uncoded data bits. In each
frame, a total of k = k ′ + k ′′ bits is modulated into the sequence of code symbols from
the 2n′+k ′′

-point signal constellation. Usually, n′ = k ′ + 1 so that, in each frame, k data
bits are mapped into a 2k+1-point signal constellation.

Figure 9.31 shows a simple example of encoding five data bits into 64-point signal
constellations. Either one of the two variations of the signal constellation shown can be
used. The lattice Z2 is partitioned into four cosets that are denoted {A, B, C, D}. The
output of the (2,1) encoder selects one of the four cosets. Four uncoded bits then select
one of the points from that coset. This means that sixteen of the points in each coset
have been singled out to be assigned a four-bit binary index. The specification of these
subconstellations is independent of the design of the encoder. Either the square signal
constellation or the cross signal constellation (or some other signal constellation) may
be selected to specify the set of points chosen from the cosets. The number of data bits
k can be readily enlarged or reduced by enlarging or reducing the number of uncoded
data bits k ′′. This means simply that the size of the subconstellation is enlarged or
reduced, thereby enlarging or reducing the size of the signal constellation.
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Figure 9.31. A ν = 2 Ungerboeck code with two alternative signal constellations.

To find the asymptotic coding gain of one of the resulting codes is largely a matter
of finding the free distance of the code. We shall find that the free distance of the trellis
code is due either to the euclidean free distance of the underlying code, whose code
alphabet consists of cosets, or is due to the euclidean distance between points within
a coset. The latter, which we will call d (1)

min, dictates the distance when the coded bits

are the same and the uncoded bits are different. The former, which we will call d (2)
min,

dictates the distance when the coded bits are different and the uncoded bits are arbitrary.
The free distance of the trellis code is

dmin = min(d (1)
min, d (2)

min).

The smallest squared euclidean distance between two points in the same coset of our
example is 22. The smallest distances (in units of the lattice spacing d0) between points
in different cosets is given by

d2(A, B) = 1

d2(A, C) = 1
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d2(A, D) = 1

d2(B, C) = 1

d2(B, D) = 1

d2(C, D) = 1.

Therefore the square of the free euclidean distance of the code is found from Figure 9.31
to be

(d (1)
min)

2 = d2(A, D) + d2(A, B) + d2(A, D)

= 5.

Consequently,

d2
min = min(5, 4)

= 4.

The structure described, as portrayed in Figure 9.31, essentially decouples the choice
of the encoding and the coset selection from the choice of the signal constellation.
By using the language of lattice cosets, the treatment is streamlined, although not
essentially different from the development in Section 9.3. However, the extensive topic
of systematically choosing the map from the output of the encoder into the collection
of cosets so as to maximize the minimum distance has not yet been discussed. This task
consists of labeling the branches of the trellis with cosets as illustrated in Figure 9.31.
It can be done by hand, by trial and error, if the trellis is not too large.

Figure 9.32 shows an example of a (3, 2) trellis code with eight states. This code
has a free distance dmin = √

5d0, and no path has more than four nearest neighbors at
distance dmin, though some have fewer. Thus

pe ≈ 4Q

(√
5d0

2σ

)
.

Each node has four branches leaving it, and these must be labeled with the four two-
bit patterns. Every labeling gives the same code, but different labelings give different
encoders. The labeling is chosen to make the encoder easy to design.

Table 9.2 shows the check polynomials for some good Ungerboeck codes for the
sixteen-ary QAM signal constellation. Each of the last three entries has the same asymp-
totic coding gain so the larger constraint length does not improve the asymptotic coding
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Figure 9.32. A (3, 2) trellis code with eight states.

gain. It does, however, reduce the number of nearest neighbors from 344 to 44 to 4, as
the constraint length changes from 7 to 8 to 9. By appending some uncoded bits, each
of these codes can be used for a larger QAM signal constellation but, of course, the
coding gain must then be recomputed.
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Table 9.2. Ungerboeck codes for the sixteen-ary QAM signal constellation

Constraint
length h1(x) h2(x) h3(x) d2

min/d2
0

Gain over
uncoded
8-PSK (dB)

2 x2 + 1 x 0 4.0 ∼4.36
3 x3 + 1 x x2 5.0 5.33
4 x4 + x + 1 x2 x3 + x2 + x 6.0 6.12
5 x5 + 1 x2 + x x3 6.0 6.12
6 x6 + 1 x3 + x2 + x x5 + x4 + x2 7.0 6.79
7 x7 + x + 1 x3 + x2 x5 + x 8.0 7.37
8 x8 + 1 101110 x7 + x6 + x2 8.0 7.37
9 x9 + 1 11100110 x8 + x6 + x3 8.0 7.37

9.6 Differential trellis codes

Adifferential method for digital modulation maps the datastream into a continuous-time
waveform in such a way that the datastream can be recovered despite some form of
ambiguity in the received waveform, usually a phase ambiguity. The simplest example
is differential PSK. This modulation technique protects against a 180◦ phase ambiguity
in the received waveform. Other differential modulation codes are more sophisticated,
and protect against multiple ambiguities.

The differential trellis codes discussed in this section are a generalization of dif-
ferential QPSK. They are used for passband channels in which the carrier phase is
known only to within a multiple of 90◦. These codes can simplify the carrier acquisi-
tion problem because, after a temporary interruption in carrier phase synchronization,
it is enough for the carrier phase to relock in any one of four phase positions. The
phase of the received waveform may be offset by 0◦, 90◦, 180◦, or 270◦ from the
phase of the transmitted waveform. Nevertheless, for each of these four possibilities,
the demodulated datastream is the same. The technique is to design a code such that
every 90◦ rotation of a codeword is another codeword. Then by differential encoding,
the end-to-end transmission is made transparent to 90◦ offsets of carrier phase.

The idea of differential trellis codes will be easier to understand if we first examine
differential modulation in the absence of coding. We shall describe differential sixteen-
ary signaling. Figure 9.33 shows a sixteen-ary square signal constellation that we
will visualize as four subconstellations, each with four points. Each subconstellation is
invariant under a rotation by any multiple of 90◦. Each of its points is given an identical
two-bit label characterizing that subconstellation.

Two bits of data are encoded into a point of the signal constellation by using the
indicated labels. Two more bits are used to select the quadrant. The quadrant is selected
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differentially by the rule

00 → φ = 0◦

10 → φ = 90◦

11 → φ = 180◦

01 → φ = 270◦.

A modulator for the differential sixteen-ary signal constellation is shown in
Figure 9.34. Two of the data bits define a point in the subconstellation, and two of
the data bits define a phase rotation as one of the four multiples of 90◦. The demod-
ulator is easily designed to undo what the modulator has done, first by detecting the
proper points in the signal constellation, then mapping the sequence of labels into the
sequence of data.

The primary requirement of differential encoding is that the signal constellation be
labeled in a special way. A secondary requirement that the data be expressed in a special
differential form is easily accomplished by proper precoding and postcoding. Conse-
quently, for suitable trellis codes, the method of differential coding can be combined
with the method of trellis coding. Some trellis codes are invariant under a 90◦ phase
rotation; others are not. If a code does have this property, it should be exploited by the
design of the encoder and decoder to make the system transparent to 90◦ rotations in the
channel. Therefore the encoder and decoder should employ some form of differential
encoding.
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Figure 9.34. A differential modulator for a sixteen-ary constellation.

Some trellis codes on Z2 have a structure that is immediately compatible with differ-
ential encoding. In particular, trellis codes with two or more uncoded bits may have this
property. Recall the partition of sixteen-ary PSK that was shown in Figure 9.26. Dif-
ferential encoding can be readily used with that partition by changing the way in which
the two uncoded data bits are mapped into points of the coset. We regard these two
bits as an integer modulo-four and, instead of encoding this integer directly, encode the
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Figure 9.36. A nonlinear encoder for a rotationally invariant trellis code.

modulo-four sum of it and the previous encoded value. This amounts to a precoding of
the uncoded data bits, which is undone by a postcoder after demodulation. Figure 9.35
shows this kind of differential encoding. Essentially, the same idea can be used with
the partition of an eight-ary PSK signal constellation shown in Figure 9.25, to give an
eight-ary PSK code invariant under 180◦ offsets of carrier phase.

Other trellis codes are not invariant under a 90◦ phase rotation. If the best (n, k)

code of a given constraint length is not invariant under a 90◦ phase rotation, then
one may choose to use a code with less coding gain in order to obtain the property
of rotational invariance. Even if the trellis code is invariant under 90◦ rotations, it
may not be possible to find a linear encoder that is transparent to rotations and also
can be decomposed into a precoder and a linear encoder such that the encoder has
only linear feedback or feedforward shift registers. A transparent encoder must then be



341 9.7 Four-dimensional trellis codes

nonlinear, using nonlinear elements such as complex rotation. This makes the task of
finding the minimum distance harder.

Figure 9.36 shows a nonlinear encoder for the trellis code of Figure 9.32 that is
transparent to 90◦ phase rotations. This encoder is referred to as nonlinear because, as
a consequence of the and gates in the encoder, there is no longer a linearity property
between the input and output of the logic circuit under modulo-two addition.

9.7 Four-dimensional trellis codes

Nothing in the definition of a trellis code is peculiar to a two-dimensional signal con-
stellation. Trellis codes can be constructed for signal constellations of any dimension;
we shall consider binary trellis codes in four dimensions. A four-dimensional symbol
can be sent over a two-dimensional channel such as a complex baseband channel, by
sending two components of the four-dimensional symbol at a time. The reason for
using a four-dimensional signal constellation is to make the minimum distance larger
without increasing the computational complexity, although the conceptual complexity
is increased. The potential gains, however, are modest. Using four-dimensional lattice
cosets in the construction of these codes makes it easy to construct the four-dimensional
trellis codes.

Choose any four-dimensional lattice that can be partitioned into 2n′
cosets, in each

of which 2k ′′
points are selected as the points of a signal subconstellation. Choose

any (n′, k ′) binary polynomial generator matrix to form a code. To encode k bits, set
k = k ′ + k ′′ and encode k ′ bits each frame using the (n′, k ′) encoder. The n′ bits out
of the encoder each frame select a subconstellation, and the k ′′ uncoded bits select a
point from that subconstellation. In this way in each frame, k bits are represented by
n′ + k ′′ bits. Commonly, n′ = k ′ + 1 so that, in each frame, k data bits are mapped into
a 2k+1-point four-dimensional signal constellation.

There are two reasons why the four-dimensional code may be superior to a two-
dimensional code. First, points can be packed more densely into four dimensions than
into two dimensions. Second, if k is even, to send k/2 points using a two-dimensional
trellis code would require a 2k/2+1-point signal constellation, while to send k bits would
require, in effect, a (2k/2+1)2 = 2k+2 four-dimensional signal constellation. Designing
the code in four dimensions makes a four-dimensional signal constellation possible
with fewer points, thereby improving the minimum distance of the signal constellation
(though not necessarily of the code).

We will construct a trellis code for the four-dimensional square trellis Z4. This
example is not too difficult and yet provides a practical code. Consider the points of
Z4 as pairs of points from Z2, that is, Z4 = Z2 × Z2, and Z2 is partitioned, as shown
in Figure 9.37, into subsets A, B, C, and D, each of which has minimum distance 4.
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Figure 9.37. A partition of Z2.

Eight subsets of Z4 are defined as follows:

E0 = {C, C} ∪ {B, B} E4 = {C, A} ∪ {B, D}
E1 = {A, A} ∪ {D, D} E5 = {A, B} ∪ {D, C}
E2 = {C, B} ∪ {B, C} E6 = {C, D} ∪ {B, A}
E3 = {A, D} ∪ {D, A} E7 = {A, C} ∪ {D, B}

where, for example, {A, B} denotes the set of points Z4, combining one point from
two-dimensional subset A and one from two-dimensional subset B. It takes three bits
to specify the set E� and twelve bits to specify an element of E�. The minimum distance
of each two-dimensional pair is again four because, in any two elements of {A, B},
either the first component or the second component must be different. Further, the eight
four-dimensional subsets are defined in such a way that the minimum distance between
them is again four. This is because, for example, the first component of {A, B}∪{C, D}
must lie in A ∪ C, which has minimum squared euclidean distance 2 and the second
must lie in B ∪ D, which again has minimum squared euclidean distance 2.

Because of the relationship

dmin = min(d (1)
min, d (2)

min),

we see that it is sufficient to choose a generator matrix for a (3, 2) code encoding two
data bits into the eight subsets E�, � = 1, . . . , 8. An additional twelve uncoded bits select
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an element of E� with d (2)
min at least 4. Then we will have a (15, 14) four-dimensional

trellis code with dmin = 4.

Problems for Chapter 9

9.1. The “modified duobinary” partial-response signaling waveform has the gener-
ator polynomial g(x) = 1 − x2.
a. Find the impulse response.
b. Find the channel transfer function that will provide the encoding.
c. Show that even and odd output samples are independent and can be

deinterleaved and demodulated separately.
d. Describe the output sequences on a trellis.
e. Design a precoder that will make the outputs independent.

9.2. Precoding for partial-response signaling fails if the generator polynomial g(x)
has its low-order coefficient g0 equal to zero modulo 2. For example, g(x) =
2 + x − x2 cannot be precoded.
a. Explain why this is so.
b. Prove that the data can be “partially precoded” by using

bj−� = 1

g�

⎡⎣dj −
n−1∑

i=�+1

gibj−i

⎤⎦ (mod 2)

where g� is the lowest index coefficient of g(x) that is not zero modulo 2.
What is the channel output? Are the symbols of the received datastream
independent?

9.3. Partial-response signaling can also be used when the input to the channel takes
more than two amplitudes.
a. Describe a duobinary system with a four-level input alphabet. Give a

decision-feedback demodulator including the detection rule.
b. Can a precoder be used in place of the decision-feedback demodulator? If

so, describe it.
c. Can one choose a duobinary system for an eight-ary PSK signal constellation?
d. If so, can a precoder be used?

9.4. A partial-response waveform can be designed by using any Nyquist pulse in
place of the sinc pulse.
a. What is the equivalent channel for a duobinary partial-response waveform

based on the Nyquist pulse

p(t) = sin π t/T

π t/T

cos aπ t/T

1 − 4a2t2/T 2

and the generator polynomial g(x) = x + 1?
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b. What is the matched filter for this waveform? Sketch a decision-feedback
demodulator. Sketch an alternative implementation that uses a precoder.

9.5. a. By examining the trellis for duobinary partial-response signaling, show that
there are some paths that have an infinite number of neighbors at a distance
equal to the minimum euclidean distance. How do the error events differ?
What does this mean in the application of the Viterbi demodulator to this
waveform?

b. Sketch a labeled trellis for a duobinary signaling waveform used with a
precoder.

9.6. A telephone channel with echo (idealized) is an ideal passband channel from
300 Hz to 2700 Hz with an echo of 1/1200 sec and an echo amplitude of 0.1 of
the desired signal. That is, the true impulse response h′(t) is

h′(t) = h(t) + 0.1h

(
1 − 1

1200

)

where h(t) is the impulse response without the echo. The transmitted signal is
a sixteen-ary PSK using a sinc pulse to fill the bandwidth.
a. What is the data rate?
b. Describe how to use the Viterbi algorithm to cancel the effects of the echo.

How many states are in the trellis? Is it possible to use interleaving to simplify
the Viterbi receiver?

c. We now desire to add a modified duobinary partial-response technique so
that h(t) can be replaced by a more practical h(t), but the echo is still present.
How many states will there be in the Viterbi algorithm?

d. Can (partial-response) precoding be used with a sixteen-ary PSK? Why?
9.7. Differential QPSK is a modulation scheme that works in the presence of a fixed

unknown phase offset. Each pair of bits is modulated into a phase change as
follows:

00 → φ = 0◦

01 → φ = 90◦

11 → φ = 180◦

10 → φ = 270◦.

a. If noninterfering sinc pulses are used to modulate the QPSK points, what is
the bandwidth of the signal as a function of the data rate?

b. Give a demodulator for a differential QPSK as a variation of a demodulator
for QPSK. What is the probability of error as a function of Eb/N0?
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c. Describe a duobinary partial-response modulator, including a precoder, for
this passband waveform. Include all major modulator functions. What is the
channel transfer function?

9.8. A (2, 1) trellis code of constraint length 1 for the real signal constellation
{−3, −1, 1, 3} has generator polynomials g1(x) = x + 1 and g2(x) = 1. The
output of the encoder is two bits and is used to specify a point in the signal
constellation.
a. Sketch an encoder. Is it systematic?
b. Sketch a trellis.
c. Label the trellis with the points of the signal constellation to make the free

euclidean distance large. (Choose the map from pairs of encoder output bits
to signal constellation points.)

d. What is the free euclidean distance?
e. Compare the performance with BPSK.

9.9. A (2, 1) trellis code of constraint length 1 for the real signal constellation
{−3, −1, 1, 3} has generator polynomials g1(x) = x3 + x + 1 and g2(x) = 1.
The output of the encoder is two bits and is used to specify a point in the signal
constellation.
a. Sketch an encoder.
b. Sketch a trellis.
c. Label the trellis with the points of the signal constellation to make the

euclidean free distance large. (Choose the map from pairs of encoder output
bits to points of the signal constellation.)

d. What is the euclidean free distance?
e. Compare the performance with BPSK.

9.10. The points of an eight-ary PSK signal constellation are sequentially labeled
with three-bit numbers in the sequence (000, 111, 110, 101, 100, 011, 010,
001, 000). An Ungerboeck code of constraint length 4 and rate 2

3 for this signal
constellation has check polynomials

h1(x) = x4 + x + 1 h2(x) = x2 h3(x) = x3 + x2 + x.

a. Design a nonsystematic encoder without feedback.
b. Design a systematic encoder with feedback.

c. The free distance is dmin =
√

2d2
0 + 2d2

1 where d0 and d1 are the smallest
and next smallest euclidean distances between two points in the signal con-
stellation. Find two input data patterns that produce codewords separated by
the free distance.

d. What is the asymptotic coding gain?
9.11. Prove that the following is an equivalent definition of a lattice. A lattice is a set

of points in Rn such that if x and y are in the set, then so is ax + by for any
integers a and b.
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9.12. a. Show that no (2, 1) trellis code can have a 90◦ phase invariance when its
four two-bit codeword frames are mapped onto the four points of the QPSK
signal constellation.

b. Show that some (4, 2) trellis codes do have a 90◦ phase invariance. Explain
how to design an encoder and decoder so that the 90◦ phase offsets in the
channel are transparent to the user.

c. Show that no trellis code can have a 45◦ phase invariance when used with
the eight-ary PSK signal constellation.

9.13. A rate 2
3 , constraint length 2, Ungerboeck code for an eight-ary PSK signal

constellation with generator polynomials (1, 1 + x2, x) has an asymptotic cod-
ing gain of 3 dB. Describe how this code can be used as the basis for an
Ungerboeck code for a 2m-ary PSK with a rate of m/(m + 1) and a constraint
length of 2. What is the asymptotic coding gain for large m? How does Ndmin

depend on m?
9.14. As outlined below, show that, when the spectral bit rate density is large, using

a signal constellation without coding uses about eight times (9 dB) as much
energy as does a more sophisticated waveform.
a. Show that the real 2r-point signal constellation {±1, ±3, . . . , ±2r − 1} has

an average energy Ec = (4r − 1)/3. Show that the 22r-point square signal
constellation that uses this real signal constellation on the real and imaginary
axes has an average energy Ec = 2(4r − 1)/3.

b. Show that the probability of symbol error for the real signal constellation is
approximated by

pe ≈ Q

(√
6r

4r

Eb

N0

)
.

Show that this same approximation holds for the complex square signal
constellation.

c. Given the value

Q
(√

22.4
)

= 10−6,

show that achieving a symbol error rate of 10−6 requires an energy satisfying

Eb

N0
≈
(

2r

6r

)
22.4.

Compare this to the Shannon capacity bound

Eb

N0
>

2r − 1

r
.
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Notes for Chapter 9

The MSK waveform was generalized to continuous-phase modulation by Pelchat,
Davis, and Luntz (1971), and by de Buda (1972). The performance of suboptimal
methods of demodulation of CPFSK was studied by Osborne and Luntz (1974), and
by Schonhoff (1976). Guided by the ideas of partial-response signaling for the base-
band channel and by the CPFSK signaling waveform, Miyakawa, Harashima, and
Tanaka (1975), and Anderson and Taylor (1978), developed continuous-phase digital
modulation waveforms. This line of work was continued by Aulin, Rydbeck, and Sund-
berg (1981). Rimoldi (1988) developed an alternative formulation of continuous-phase
modulation.

Ungerboeck (1977, 1982) was the first to recognize that convolutional codes designed
with a large free Hamming distance need not be the best codes when the decoder is based
on euclidean distance in the complex plane. For these applications, he introduced the
use of trellis codes that are designed with a large free euclidean distance. These codes
rapidly found wide application, and many tried their hands at alternative descriptions,
including Calderbank and Mazo (1984), and Forney and his coauthors (1984). This
elaboration of the Ungerboeck codes included the introduction of multidimensional
trellis codes by Forney and his coauthors (1984). The best rotationally invariant trellis
codes were discovered by Wei (1984), who recognized that nonlinear elements were
necessary in the encoder to obtain the best such codes.

The use of lattices to construct block codes started with unpublished work by
Lang, and included further work by de Buda (1975), Blake (1971), and Leech and
Sloane (1970). Lattices were studied in a classical paper by Voronoi (1908). The
best tables of lattices have been published by Sloane (1981), and by Conway and
Sloane (1987).

Forney and his coauthors (1984) recognized the role of lattices in describing the
Ungerboeck codes, and made an explicit distinction between the design of codes and
the design of constellations. Calderbank and Sloane (1987) discussed the role of lattice
partitions in constructing codes. Forney (1988) provided an elegant formal development
of trellis codes as a construction within lattice cosets. Trellis codes for four-dimensional
and eight-dimensional signal constellations were studied by Wilson, Sleeper, and Sri-
nath (1984); by Calderbank and Sloane (1985, 1986); and by Wei (1987). Forney
explained the advantages of obtaining a nonequiprobable probability distribution on
lattice points, and Calderbank and Ozarow (1990) discussed ways to do this.

The use of partial-response signaling to increase data rate was introduced by
Lender (1964) and developed by Kretzmer (1966) under the terminology of partial-
response classes, as well as by others. Kabal and Pasupathy (1975) surveyed and
unified the many contributions. The idea of precoding the decision-feedback within the
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transmitter to eliminate error propagation can be found in the work of Tomlinson (1971)
and also Miyakawa and Harashima (1969). Partial-response signaling plays an essential
role in most digital magnetic recording systems, as was suggested by Kobayashi and
Tang (1970). The applicability of the Viterbi algorithm to partial-response signaling
was observed by Omura (1970) and Kobayashi (1971).



10 Codes for Data Transmission

The modulator and demodulator make a waveform channel into a discrete commu-
nication channel. Because of channel noise, the discrete communication channel is
a noisy communication channel; there may be errors or other forms of lost data. A
data transmission code is a code that makes a noisy discrete channel into a reliable
channel. Despite noise or errors that may exist in the channel output, the output of the
decoder for a good data-transmission code is virtually error-free. In this chapter, we
shall study some practical codes for data transmission. These codes are designed for
noisy channels that have no constraints on the sequence of transmitted symbols. Then
a data transmission code can be used to make the noisy unconstrained channel into a
reliable channel.

For the kinds of discrete channels formed by the demodulators of Chapter 3, the
output is simply a regenerated stream of channel input symbols, some of which may
be in error. Such channels are called hard-decision channels. The data transmission
code is then called an error-control code or an error-correcting code. More generally,
however, the demodulator may be designed to qualify its output in some way. Viewed
from modulator input to demodulator output, we may find a channel output that is less
specific than a hard-decision channel, perhaps including erasures or other forms of
tentative data such as likelihood data on the set of possible output symbols. Then it is
not possible to speak of an error or of an error-correcting code. Thus, for the general
case, the codes are called data transmission codes.

10.1 Block codes for data transmission

A block code for data transmission is a code that protects a discrete-time sequence of
symbols from noise and random errors. To every k data symbols in the alphabet of the
code, a t-error-correcting code forms a codeword by appending n − k new symbols
called check symbols. The codeword now has blocklength n and is constructed so that
the original k data symbols can be recovered even when up to t codeword symbols are
corrupted by additive channel noise. The relationship between the number of check
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Figure 10.1. The (7, 4) Hamming code.

symbols, n − k, and the number of symbols t that can be corrected can be quite
complicated, in general. We shall only study several popular and often-used examples
of block codes.

There are a great many kinds of block codes known for data transmission. We
shall study those bit-organized codes known as (n, k) Hamming codes and those
byte-organized codes known as (n, k) Reed–Solomon codes.

The simplest Hamming code is the (7, 4) binary Hamming code shown in Figure 10.1.
There are sixteen binary codewords. A four-bit dataword is represented by a seven-bit
codeword. By inspection of Figure 10.1 we can see that every codeword differs from
every other codeword in at least three places. We express this in the language of
geometry, saying that every codeword is at Hamming distance at least three from every
other codeword. If a codeword is sent through a channel and the channel makes a single
error, then the senseword will differ from the correct codeword in one place, and will
differ from every other codeword in at least two places. The decoder will recover the
correct codeword if it decides that the codeword closest to the senseword in Hamming
distance was the codeword transmitted. However, if the channel makes more than one
error, then the decoder will be wrong. Thus, the (7, 4) Hamming code can correct one
bit error but not more. It is called a single-error-correcting code.

The seven bit positions of the (7, 4) Hamming code can be rearranged into a permuted
order without changing the distance structure. Similarly, the sixteen codewords can be
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Figure 10.2. Systematic encoding of (7, 4) Hamming code.

rearranged into a permuted order without changing the distance structure. Any such
change creates what is called an equivalent (7, 4) Hamming code. In general, two codes
are called equivalent if they differ only in some trivial way, such as a permutation of
bit positions.

The mapping between four-bit datawords and seven-bit codewords is arbitrary but
usually the systematic form of encoding shown in Figure 10.2 is used. There the first four
bits of the codeword are equal to the four data bits. In general, a systematic encoding
rule is one in which the data bits are included unchanged as part of the codeword. The
remaining bits are the check bits.

In general, for each positive integer m, there is a binary (2m−1, 2m−1−m) Hamming
code that can correct a single error. The construction of the codes can be expressed in
matrix form using the following definition of addition and multiplication of bits:

+ 0 1
0 0 1
1 1 0

· 0 1
0 0 0
1 0 1

The operations are the same as the exclusive-or operation and the and operation, but
we will call them addition and multiplication so that we can use a matrix formalism to
define the code. The two-element set {0, 1} together with this definition of addition and
multiplication is a number system called a finite field or a Galois field , and is denoted
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by the label GF(2). In Section 10.2 we shall discuss the finite field known as GF(2m),
which has 2m elements.

To construct a (2m −1, 2m −1−m) Hamming code, we first write down a matrix H ,
known as a check matrix and consisting of all of the 2m − 1 nonzero m-bit numbers as
columns. If the code is to be systematic, then the first m columns should contain, in the
form of an identity matrix, those m-bit numbers with a single one. For example, when
m = 3,

H =
⎡⎢⎣1 0 0 0 1 1 1

0 1 0 1 0 1 1
0 0 1 1 1 0 1

⎤⎥⎦ .

We partition this as

H = [I ...P ]

where I is the m by m identity matrix and P is an m by (2m − 1 − m) matrix containing
all other nonzero m-bit binary numbers as columns.

Next define the generator matrix

G = [P T ...I ]

where I is now a (2m − 1 − m) by (2m − 1 − m) identity matrix.
For our running example with m = 3,

G =

⎡⎢⎢⎢⎣
0 1 1 1 0 0 0
1 0 1 0 1 0 0
1 1 0 0 0 1 0
1 1 1 0 0 0 1

⎤⎥⎥⎥⎦ .

The codewords are given as the row vectors c formed by the vector-matrix product

c = aG

with operations in the field GF(2), where the row vector a is a 2m −1−m bit dataword
and the row vector c is a 2m − 1 bit codeword. Because G has a (2m − 1 − m) by
(2m − 1 − m) block equal to the identity, the generator matrix will construct the code
in systematic form.

The codeword is transmitted and some bit errors are made. The senseword v with
components vi, i = 0, . . . , n−1, is received with errors. The senseword has components

vi = ci + ei i = 0, . . . , n − 1.
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If there is a single bit error, it must be corrected, and by assumption, ei is nonzero for at
most one value of i. (If there are two or more bit errors, correction is neither required
nor possible.) Then we can compute the matrix-vector product

sT = HvT

= HGT aT + HeT

= HeT

in the field GF(2). Now observe that

HGT = [I P ]
[
P

I

]
= P + P

= 0.

The last line follows because 1+1 = 0 and 0+0 = 0 under the exclusive-or definition
of addition in GF(2). Therefore

sT = HeT .

The vector s, called the syndrome, is equal to zero if there is no error. If there is one
error the syndrome is equal to the corresponding column of H . Every column of H is
distinct so it is trivial to find the column of H matching s and then to invert that bit of
v to obtain c.

The Hamming codes are quite simple, and their application is limited. In contrast,
the Reed–Solomon codes, described next, are more complicated and are more widely
used in communication systems. A Reed–Solomon code, for many practical reasons, is
normally constructed in a number system called a Galois field, which will be studied
in Section 10.2.

We shall first study Reed–Solomon codes constructed in the complex number system
because these codes are easier to understand in the complex number system. The
complex number system is a very familiar example of an arithmetic structure known
as an algebraic field. The complex field is not used in practice for the construction
of Reed–Solomon codes because of issues of computational precision that arise. In
the next section we shall see how a Galois field can be used as an alternative number
system in place of the complex field so that the issue of precision is avoided. By defining
Reed–Solomon codes in the complex field first, we are able to separate our study of the
principle behind the code from our study of the Galois fields that are used to bypass
the precision problems of the complex field.

A Reed–Solomon code will be defined using the language of the discrete Fourier
transform. Let c be a vector of blocklength n over the complex field with discrete
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Fourier transform C given by

Cj =
n−1∑
i=0

ωijci i = 0, . . . , n − 1

where ω is an nth root of unity in the complex field.1 Specifically,

ω = e−j2π/n.

Definition 10.1.1 The t-error-correcting Reed–Solomon code of blocklength n is the
set of all vectors c whose spectrum satisfies Cj = 0 for j = n − 2t, . . . , n − 1. This set
is described briefly as an (n, n − 2t) Reed–Solomon code over the complex field.

One way to find the Reed–Solomon codewords is to encode in the frequency domain.
This means setting Cj equal to zero for j = n − 2t, . . . , n − 1, and setting the remaining
n − 2t components of the transform equal to the n − 2t data symbols given by
a0, . . . , an−2. That is,

Cj =
{

aj j = 0, . . . , n − 2t − 1
0 j = n − 2t, . . . , n − 1.

An inverse Fourier transform produces the codeword c. The number of data symbols
encoded equals n − 2t and there are 2t extra check symbols in the codeword to correct
t errors. A Reed–Solomon code always uses two check symbols for every error to be
corrected.

Using the Fourier transform is not the only way to encode the n − 2t data symbols
into the codewords – others may yield a simpler implementation – but the frequency-
domain encoder is the most instructive because it exhibits very explicitly the notion
that the codewords are all those words with the same set of 2t zeros in the transform
domain.

An alternative encoder in the time domain works as follows. The n−2t data symbols
are expressed as a polynomial

a(x) = an−2t−1xn−2t−1 + an−2t−2xn−2t−2 + · · · + a1x + a0

where a0, a1, . . . , an−2t−1 are the n − 2t data symbols. Then the n codeword symbols
are given by the coefficients of the polynomial product

c(x) = g(x)a(x)

1 The letter j is used both for
√−1 and as an integer-valued index throughout this section. This should not cause

any confusion.



355 10.1 Block codes for data transmission

where g(x) is a fixed polynomial called the generator polynomial. The generator poly-
nomial is the unique monic (leading coefficient equals 1) polynomial of degree 2t
that has zeros at ωn−2t , ωn−2t+1, . . . , ωn−1. It can be obtained by multiplying out the
expression

g(x) = (x − ωn−2t)(x − ωn−2t+1) · · · (x − ωn−1).

We can verify as follows that this time-domain encoder does indeed produce a Reed–
Solomon code. The Fourier transform of the codeword is formally the same as
evaluating the polynomial c(x) at ωj. That is,

Cj =
n−1∑
i=0

ciω
ij = c(ωj) = g(ωj)a(ωj).

By the definition of g(x), g(ωj) equals zero for j = n − 2t, . . . , n − 1. Consequently
Cj = 0 for j = n−2t, . . . , n−1. Therefore the encoding in the time domain does produce
legitimate Reed–Solomon codewords. The set of codewords produced by the time-
domain encoder is the same as the set of codewords produced by the frequency-domain
encoder, but the mapping between datawords and codewords is different.

Both methods of encoding discussed so far have the property that the symbols of
the dataword do not appear explicitly in the codeword. Encoders with this property
are called nonsystematic encoders. Another method of encoding, known as systematic
encoding, leaves the data symbols unchanged and contained in the first n − 2t compo-
nents of the codeword. Multiplication of a(x) by x2t will move the components of a(x)
left 2t places. Thus, we can write an encoding rule as

c(x) = x2ta(x) + r(x)

where r(x) is a polynomial of degree less than 2t appended to make the spectrum be a
legitimate codeword spectrum. The spectrum will be right if c(x) is a multiple of g(x)
and this will be so if r(x) is chosen as the negative of the remainder when x2ta(x) is
divided by g(x). Thus, because it gives a multiple of g(x),

c(x) = x2ta(x) − Rg(x)[x2ta(x)]
defines a systematic form of encoder, where the operator Rg(x) takes the remainder
under division by g(x). This definition of c(x) is indeed a codeword because it has zero
remainder when divided by g(x). Thus,

Rg(x)[c(x)] = Rg(x)[x2ta(x)] − Rg(x)[Rg(x)[x2ta(x)]]
= 0

because remaindering can be distributed across addition.
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A decoder for a Reed–Solomon code does not depend on how the codewords are
used to store information except for the final step of reading the data symbols out of
the codeword after error correction is complete.

To prove that an (n, n − 2t) Reed–Solomon code can correct t symbol errors, it is
enough to prove that every pair of codewords in the code differ from each other in at
least 2t + 1 places. This is because, if this is true, then changing any t components
of any codeword will produce a word that is different from the correct codeword in t
components and is different from every other codeword in at least t + 1 components. If
at most t errors occur, then choosing the codeword that differs from the noisy senseword
in the fewest number of components will recover the correct codeword. If each symbol
of the senseword is more likely to be correct than to be in error, then choosing the
codeword that differs from the senseword in the fewest places will recover the most
likely codeword and will minimize the probability of decoding error.

Theorem 10.1.2 An (n, n − 2t) Reed–Solomon code can correct t symbol errors.

Proof By definition of the code,

Cj = 0 j = n − 2t, n − 2t + 1, . . . , n − 1.

By linearity of the Fourier transform, the difference in two codewords (computed
componentwise) then must also have a spectrum that is zero for j = n − 2t, . . . , n − 1
and so itself is a codeword. We only need to prove that no codeword has fewer than
2t + 1 nonzero components unless it is zero in every component. Let

C(y) =
n−2t−1∑

j=0

Cjy
j.

This is a polynomial of degree at most n − 2t − 1, so by the fundamental theorem of
algebra it has at most n − 2t − 1 zeros. Therefore,

ci = 1

n

n−1∑
j=0

ω−ijCj

= 1

n
C(ω−i)

can be zero in at most n − 2t − 1 places, and so it is nonzero in at least 2t + 1 places.
This completes the proof of the theorem. �
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10.2 Codes constructed in a finite field

Reed–Solomon codes in the complex number system have symbols that are arbitrary
complex numbers and hence may require an infinite number of bits to represent exactly.
This leads to two concerns. One must consider how the code symbols are to be trans-
mitted through the channel, and one must consider the effects of numerical precision in
the encoder and decoder. Because of limited wordlength, questions of precision arise
in the computations of the encoder and decoder. In a large code, in which the number
of correctable errors t is large, the precision difficulties encountered in inverting large
matrices in the decoder may cause the decoder calculations to collapse.

In addition to the question of computational precision, one must also consider the
question of what an error is, and this depends on how the code symbols are transmitted.
This question might be severe if analog pulse amplitude modulation were used in which
the components of the codeword are converted to analog signals for passage through
the channel, and then redigitized. There may be an error in the low-order bit of every
component of the codeword. This sort of error must be distinguished from the t “major”
errors that the code is designed to correct.

Rather than tackle these two problems head on, it has been found to be cleaner
and more elegant to simply step around the problems by using a different arithmetic
system in place of the complex field, an arithmetic system with only a finite number
of elements. As long as the data consist merely of bit packages, it does not matter
what arithmetic system is used by the encoder and decoder. We are free to invent any
definition of addition and multiplication, however artificial, as long as the theory of
Reed–Solomon codes is still valid in that number system.

Fortunately, there is a suitable system of arithmetic known as a Galois field . In gen-
eral, an algebraic field is a set of elements, called numbers or field elements, and a
definition of two operations, called “addition” and “multiplication” such that the formal
properties satisfied by the real arithmetic system are satisfied. This means that there are
two field elements 0 and 1 that satisfy a + 0 = a and a · 1 = a; the inverse operations
of subtraction and division are implicit in the definitions of addition and subtrac-
tion; and the rules of algebra known as commutativity, associativity, and distributivity
apply.

For each positive integer m, there is a Galois field called GF(2m) that has 2m elements
in it. The set of elements of GF(2m) can be represented as the set of m-bit binary numbers
(m-bit bytes). Thus, GF(256) consists of the 256 distinct eight-bit bytes, and GF(16)

consists of the sixteen distinct hexadecimal symbols represented as four-bit bytes. To
complete the description of the Galois field GF(2m), we need to define addition and
multiplication. Addition is the easiest. It is defined as bit-by-bit modulo-two addition.
This is the same as bit-by-bit “exclusive-or”. For example, two of the elements of
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GF(16) are 1101 and 1110. Their addition is

(1101) + (1110) = (0011).

Multiplication is more complicated to define. The multiplication in GF(2m) must be
consistent with addition in the sense that the distributive law

(a + b)c = ac + bc

holds for any a, b, and c in GF(2m), where addition is a bit-by-bit exclusive-or. This
suggests that multiplication should have the structure of a shift and exclusive-or, rather
than the conventional structure of shift and add.

We may try to define multiplication in accordance with the following product:

1 1 1 0
1 1 0 1
1 1 1 0

0 0 0 0
1 1 1 0

1 1 1 0
1 0 0 0 1 1 0

where the addition is GF(2) addition (exclusive or). However, the arithmetic system
must be closed under multiplication. The product of two elements of GF(2m) must
produce another element of GF(2m); the wordlength must not increase beyond m
bits. The product of two m-bit numbers must produce an m-bit number. If a shift and
exclusive-or structure is the right definition for the multiplier, then we also need a rule
for folding back the overflow bits into the m bits of the product. The trick is to define
the overflow rule so that division is meaningful. This requires that b = c whenever
ab = ac and a is nonzero. The overflow rule will be constructed in terms of polynomial
division.

Let p(x) be an irreducible polynomial over GF(2) of degree m. This means that p(x)
can have only coefficients equal to zero or one, and that p(x) cannot be factored into
the product of two smaller nontrivial polynomials over GF(2). Factoring p(x) means
writing

p(x) = p(1)(x)p(2)(x)

where polynomial multiplication uses modulo-two arithmetic on the coefficients.
Multiplication of two elements a and b in GF(2m) to produce the element c = ab

is defined as a polynomial multiplication modulo the irreducible polynomial p(x).
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Let a and b be numbers in GF(2m). These are m-bit binary numbers with the binary
representations

a = (a0, . . . , am−1)

b = (b0, . . . , bm−1).

They also have the polynomial representations

a(x) =
m−1∑
i=0

aix
i

b(x) =
m−1∑
i=0

bix
i

where ai and bi are the ith bits of a and b, respectively. Then the product is defined as
the sequence of coefficients of the polynomial

c(x) = a(x)b(x) (mod p(x)).

Because the coefficients are added and multiplied by the bit operations of GF(2), the
polynomial product is equivalent to the shift and exclusive-or operations mentioned
before. The modulo p(x) operation specifies the rule for folding overflow bits back into
the m bits of the field element. With this definition of multiplication and the earlier
definition of addition, the description of the Galois field GF(2m) is complete.

Because the polynomial p(x) is an irreducible polynomial, division will always exist,
although we do not prove this fact in this book. Existence of the division operation means
that the equation ax = b has only one solution denoted b/a, provided a is not zero.

As an example of a Galois field, we will construct GF(24). The elements are the set
of four-bit bytes

GF(24) = {0000, 0001, 0010, . . . , 1111}

and addition of two elements is bit-by-bit modulo-two addition. To define multiplica-
tion, we use the polynomial

p(x) = x4 + x + 1.

To verify that this polynomial is irreducible, we can observe that p(x) must have either
a first-degree factor or a second-degree factor if it is reducible, then check that x, x +1,
x2 + 1, x2 + x + 1 are not factors. There are no other possibilities.
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Thus, to multiply, say, 0101 by 1011, we represent these by the polynomials a(x) =
x2 + 1 and b(x) = x3 + x + 1 and write

c(x) = (x2 + 1)(x3 + x + 1) (mod p(x))

= x5 + x2 + x + 1 (mod x4 + x + 1).

The modulo p(x) operation consists of division by p(x), keeping only the remainder
polynomial. Carrying out the division for the sample calculation gives

c(x) = 1

which is the polynomial representation for binary 0001, so we have the product in
GF(16)

(0101)(1011) = (0001).

Because the product happens to be equal to 1, this example also tells us how to divide
in GF(16). We see that

(0101)−1 = (1011)

because (0101)−1 is defined to be the field element for which (0101)−1(0101) = 1.
Likewise,

(1011)−1 = (0101).

To divide by 0101 we multiply by 1011, while to divide by 1011 we multiply by 0101.
For example

(0110)

(1011)
= (0110)(0101)

= (1101)

where the product is calculated as already described.
Division will be possible for every field element a, if a−1 exists for every a. The

inverse a−1 is the value of b that solves

ab = 1.

This equation always has a solution (except when a = 0) if p(x) is chosen to have no
polynomial factors. This is why p(x) was chosen in the definition to be an irreducible
polynomial.
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Although the multiplication and division rules of a Galois field may be unfamiliar,
logic circuits or computer subroutines to implement them are straightforward. One
could even build a programmable computer with Galois field arithmetic as primitive
instructions.

Algebraic manipulations in the Galois field GF(2m) behave very much like manip-
ulation in the fields more usually encountered in engineering problems such as the real
field or the complex field, although we will not take the trouble to verify this. The
conventional algebraic properties of associativity, commutativity, and distributivity all
hold. Methods of solving linear systems of equations are valid, including matrix alge-
bra, determinants, and so forth. There is even a discrete Fourier transform in the finite
field GF(2m) and it has all the familiar properties of the discrete Fourier transform.
The Fourier transform is particularly important to our purposes because it is the basis
of the definition of the Reed–Solomon code.

Let ω be an element of order n in GF(2m). That is, ωn = 1, and no smaller power of
ω equals 1. (Such an ω exists only if n divides 2m − 1; consequently n cannot be even.)
Then

Vj =
n−1∑
i=0

ωijvi j = 0, . . . , n − 1

vi =
n−1∑
j=0

ω−ijVj i = 0, . . . , n − 1

are the equations of the discrete Fourier transform and the inverse Fourier transform.
The equations look quite familiar, but the product and sums they express are products
and sums in the Galois field GF(2m). The only exception is in the exponent of ω.
Integers in the exponent are conventional integers: ωr means ω multiplied by itself
r − 1 times. The factor n−1 that normally appears in the inverse Fourier transform is
always equal to 1 in a Fourier transform in GF(2m) and so is omitted. This point is a
consequence of the fact that 1 + 1 = 0 in such fields, and n is always equal to the sum
of an odd number of ones.

The proof that the equation for the inverse Fourier transform does indeed produce vi

is exactly the same as the proof in the complex number system. To verify the inverse
Fourier transform, first notice that

(1 + ω + ω2 + · · · + ωn−1)(1 − ω) = 1 − ωn = 0

because ω has order n. But this means that the first term on the left must equal zero
because 1 − ω does not equal zero. The same argument applies to ωij for any distinct i
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and j because ωi−j has order that divides n. Consequently

n−1∑
k=0

ω(i−j)k = 0

unless i − j = 0, in which case the sum is equal to 1. Finally

n−1∑
k=0

ω−jk

[
n−1∑
i=0

ωikvi

]
=

n−1∑
i=0

vi

n−1∑
k=0

ω(i−j)k = vi

which verifies the inverse Fourier transform.
As an example of a Fourier transform, in GF(16) the element (1000), represented

by the polynomial x3, has order 5. Hence, we have a five-point Fourier transform

Vj =
4∑

i=0

ωijvi j = 0, . . . , 4

with ω = 1000. If v = (0001, 0010, 0011, 0100, 0101), then⎡⎢⎢⎢⎢⎢⎣
V0

V1

V2

V3

V4

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
1 1 1 1 1
1 ω ω2 ω3 ω4

1 ω2 ω4 ω1 ω3

1 ω3 ω1 ω4 ω2

1 ω4 ω3 ω2 ω1

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
0001
0010
0011
0100
0101

⎤⎥⎥⎥⎥⎥⎦ .

We can carry out these calculations with the aid of a multiplication table for GF(16).
Alternatively, we can express the computation in the polynomial representation with ω

represented by the polynomial x3. The equation then becomes⎡⎢⎢⎢⎢⎢⎣
V0(x)
V1(x)
V2(x)
V3(x)
V4(x)

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
1 1 1 1 1
1 x3 x6 x9 x12

1 x6 x12 x3 x9

1 x9 x3 x12 x6

1 x12 x9 x6 x3

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
1
x
x + 1
x2

x2 + 1

⎤⎥⎥⎥⎥⎥⎦ (mod x4 + x + 1)

=

⎡⎢⎢⎢⎢⎢⎣
1
x3 + x2 + 1
x3 + x
x3 + x2 + 1
x3 + x

⎤⎥⎥⎥⎥⎥⎦ .
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Consequently,⎡⎢⎢⎢⎢⎢⎣
V0

V1

V2

V3

V4

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
0001
1101
1010
1101
1010

⎤⎥⎥⎥⎥⎥⎦
by the rules of arithmetic in GF(16).

There is one way in which the topic of Fourier transforms in GF(2m) differs from
those in the complex field. In the complex field, there is a discrete Fourier transform
of every blocklength because ω = e−j2π/n exists in the complex field for every n.
In GF(2m), only a few blocklengths have Fourier transforms because an element ω

of order n does not exist for every n. Specifically, there is a Fourier transform of
blocklength n in GF(2m) if and only if n divides 2m − 1.

Now we are ready to look at Reed–Solomon codes in GF(2m). Nothing in the
definition of Reed–Solomon codes is unique to the complex field. We can use the
same definition in GF(2m). Definition 10.1.1 applies, but with the understanding
that the computations are in the field GF(2m). To define the Reed–Solomon code
of blocklength n, one needs a Fourier transform of blocklength n. Thus, we can con-
struct a Reed–Solomon code of blocklength n in GF(2m) if and only if n divides
2m − 1 because a Fourier transform of blocklength n exists if and only if n divides
2m − 1.

For example, in GF(23), we can choose n = 7. If we construct GF(23) using the
irreducible polynomial p(x) = x3 + x + 1, then the element ω = (010) has order 7. To
verify this, we can compute the powers of ω

ω = (010)

ω2 = (100)

ω3 = (011)

ω4 = (110)

ω5 = (111)

ω6 = (101)

ω7 = (001).

Then, using this ω as the kernel of the Fourier transform, we can construct the (7, 7−2t)
Reed–Solomon code in GF(23) for any value of t provided 7 − 2t is nonnegative. In
particular, we can construct a (7, 5) single-error-correcting Reed–Solomon code in



364 Codes for data transmission

GF(23). The generator polynomial is

g(x) = (x − ω)(x − ω2)

= x2 + (ω + ω2)x + ω3

= x2 + ω4x + ω3

= (001)x2 + (110)x + (011)

which can be used to encode the data into the set of codewords. This generator
polynomial is not the same as the polynomial

g(x) = (x − ω5)(x − ω6)

called for by Definition 10.1.1. However, by the translation properties of the Fourier
transform, it gives an equivalent, but different, Reed–Solomon code.

Figure 10.3 shows some of the codewords in the (7, 5) Reed–Solomon code using an
octal notation for the seven components of the codewords. The Fourier transform of each
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Figure 10.3. The (7, 5) Reed–Solomon code.



365 10.3 Decoding of block codes

codeword has components C1 and C2 equal to zero. In all, there are 85 (about 32,000)
codewords in the (7, 5) Reed–Solomon code, so it is pointless and impractical to list
them all even for this small code. In a larger Reed–Solomon code such as a (255, 223)

Reed–Solomon code over GF(256), the number of codewords is astronomical. The
encoder and decoder, however, have no need for an explicit list of codewords. Specific
codewords are easily computed as needed.

10.3 Decoding of block codes

A practical Reed–Solomon decoder cannot exhaustively compare the senseword
directly to every codeword to determine which codeword is at minimum Hamming
distance from the senseword. An efficient computational procedure to find the correct
codeword is needed. Specifically, a computational procedure is needed to find the error
word e with the smallest number of nonzero components whose Fourier transform has
2t components Ej for j = n − 2t, . . . , n − 1 that agree with that set of 2t components
of the senseword. The codeword is then found by subtracting this error word from the
senseword. The procedure that we shall derive is predicated on the assumption that
there is such an error word e with at most t nonzero components because this is the
error-correcting capability of the code. (If there are more than t errors, the decoder is
not able, nor expected, to correct the senseword.)

The codeword c is transmitted and some symbol errors are made. The senseword v is
received and, if there are not more than t errors, the senseword must be corrected. Thus,
the channel errors are represented by the vector e, which is assumed to be nonzero in
not more than t places. The senseword v is written componentwise as

vi = ci + ei i = 0, . . . , n − 1.

The decoder must process the senseword v so as to remove the error word e; the data
symbols are then recovered from c. The senseword v is a noisy codeword and has a
Fourier transform

Vj =
n−1∑
i=0

ωijvi j = 0, . . . , n − 1

with components Vj = Cj + Ej for j = 0, . . . , n − 1. But, by construction of a Reed–
Solomon code,

Cj = 0 j = n − 2t, . . . , n − 1.
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Hence

Vj = Ej j = n − 2t, . . . , n − 1.

This block of 2t components of V gives us a window through which we can look at 2t
of the n components of E, the transform of the error pattern e. The decoder must find
all n components of E given that segment consisting of 2t consecutive components
of E, and the additional information that at most t components of the time-domain
error pattern e are nonzero. Once E is known, the computation is trivial because the
relationship Cj = Vj − Ej recovers C. From C one can compute c. The data symbols
are then recovered easily in various ways depending on the method of encoding.

To find a procedure to so compute E, we will use properties of the Fourier transform.
Suppose for the moment that there exists a polynomial �(x) of degree at most t and
with �0 = 1 such that

�(x)E(x) = 0 (mod xn − 1)

where

E(x) =
n−1∑
j=0

Ejx
j.

The polynomial product is equivalent to a cyclic convolution. Using the defining
property of �(x) we can rewrite the coefficients of the polynomial product as

�0Ej +
t∑

k=1

�kEj−k = 0 j = 0, . . . , n − 1

or, because �0 = 1,

Ej = −
t∑

k=1

�kEj−k j = 0, . . . , n − 1.

This equation may be recognized as a description of the kind of filter known as an
autoregressive filter with t taps. It defines component Ej in terms of the preceding t
components Ej−1, . . . , Ej−t . But we know 2t components of E so by setting in turn
j = n − t, . . . , n − 1, we can write down the following set of n − 1 equations

En−t = −�1En−t−1 −�2En−t−2 − · · · −�tEn−2t

En−t+1 = −�1En−t −�2En−t−1 − · · · −�tEn−2t+1
...

...
En−1 = −�1En−2 −�2En−3 − · · · −�tEn−t−1.
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There are t equations here, linear in the unknown components �k of � and involving
only known components of E. Hence, provided there is a solution, we can find � by
solving this system of linear equations. The solution will give the polynomial �(x)
that was assumed earlier. As long as the linear system of equations has a solution, the
introduction of the polynomial �(x) is meaningful. Once �(x) is known, all other
values of E can be obtained by recursive computation using the equation

Ej = −
t∑

k=1

�kEj−k j = 0, . . . , n − 2t − 1

recalling that the indices are modulo n.
The development of the decoding procedure is now complete provided that the system

of linear equations can be inverted. We must verify that at least one solution to the
system of equations will always exist if there are at most t errors. We know that there
cannot be more than one solution by our geometrical reasoning earlier. Suppose that
there are ν ≤ t nonzero errors at locations with indices i� for � = 1, . . . , ν. Define the
polynomial �(x) by

�(x) =
ν∏

�=1

(1 − xωi�)

which has degree at most t and �0 = 1. We shall show that this polynomial, which is
known as the error-locator polynomial, is the polynomial that we have assumed exists.
The zeros of the error-locator polynomial “locate” the errors, and a decoder that first
finds the error-locator polynomial is called a locator decoder. The vector � of length
n whose components �j are coefficients of the polynomial �(x) (padded with n − ν

zeros) has an inverse Fourier transform

λi = 1

n

n−1∑
j=0

�jω
−ij.

This can be obtained from �(x) by evaluating �(x) at x = ω−i. That is,

λi = 1

n
�(ω−i).

Therefore

λi = 1

n

ν∏
�=1

(1 − ω−iωi�)

which is zero if and only if i = i� for some �, where the i� for � = 1, . . . , ν index
the nonzero components of e. That is, in the time domain, λiei = 0 for all i. There-
fore, because a product in the time domain corresponds to a cyclic convolution in the
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frequency domain, we see that the convolution in the frequency domain is equal to zero

� ∗ E = 0.

Hence, a polynomial �(x) solving the cyclic convolution equation �(x)E(x) = 0 does
exist because the error-locator polynomial is such a polynomial. Thus the decoding
procedure is sound.

The decoding procedure that we have now developed requires solution of the matrix-
vector equation⎡⎢⎢⎢⎣

En−t−1 En−t−2 · · · En−2t

En−t En−t−1 · · · En−2t+1
...

En−2 En−3 · · · En−t−1

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

�1

�2
...

�t

⎤⎥⎥⎥⎦ = −

⎡⎢⎢⎢⎣
En−t

En−t+1
...

En−1

⎤⎥⎥⎥⎦ .

A straightforward way to solve the equation is to compute the matrix inverse. The
matrix, however, is a special kind of matrix known as a Toeplitz matrix, because the
elements in any subdiagonal are equal. The computational problem is one of inverting
a Toeplitz system of equations. This kind of computational problem arises frequently
in the subject of signal processing, as in the decoding of Reed–Solomon codes, in the
design of autoregressive filters, and in spectral analysis. To invert a Toeplitz system
of equations, special fast algorithms – which we shall not study – are commonly used
because they are computationally more efficient than computing the matrix inverse by
a general method.

10.4 Performance of block codes

A decoder for a block code with minimum distance 2t + 1 can correct all error patterns
containing t or fewer symbol errors, and there will be at least one pattern with t+1 errors
that cannot be corrected properly. There may be some error patterns with more than t
errors that could be corrected properly, but this is rarely done in practice. A decoder that
decodes only up to a fixed number of errors, say t errors, is called a bounded-distance
decoder. When there are more than t errors, the decoder will sometimes miscorrect
the codeword, and sometimes flag the codeword as uncorrectable. The user, depending
on this application, may or may not consider a flagged erroneous message (a decoding
failure) as less serious than an unflagged erroneous message (a decoding error).

The decoding task can be described geometrically. Regard each codeword to have
a sphere of radius t drawn around it. Each sphere encompasses all of the sensewords
within distance t of that codeword. They will be decoded into that codeword. Between
the many decoding spheres lie many other sensewords that do not lie within distance t
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of any codeword and so are not decoded. Correspondingly, the computations of locator
decoding for correcting t errors in a Reed–Solomon codeword involve matrix operations
as discussed in Section 10.2, but when there are more than t errors the computations
lose the clean structure of matrix operations and are impractical. When more than t
errors occur, the senseword will often lie between the decoding spheres and then the
decoder can declare that it has an uncorrectable message. Occasionally, however, the
error pattern is such that the senseword will actually lie within the decoding sphere of
an incorrect codeword. Then the decoder makes a decoding error. Hence, the decoder
output can be either the correct message, an incorrect message, or a decoding default
(an erased message). An incorrect message will contain incorrect symbols, but also
may contain many correct symbols, though such a message is rarely of value to the
recipient.

We shall study the performance of codes when used with a discrete memoryless
channel described by a probability of symbol error at the channel output. When used
with a discrete channel, the performance of the code is expressed in terms of the
probability of an error at the output of the decoder as a function of the probability of
symbol error of the channel. We may be interested in the probability of block decoding
error, the probability of symbol decoding error, or the probability of decoding default.
Because not all symbols need be wrong in a wrong message, the probability of symbol
error will usually be smaller than the probability of block error. Because all symbols are
usually rejected when a message is found to be undecidable, the probability of symbol
decoding failure is usually the same as the probability of message decoding failure.

There are three regions into which the senseword can fall. The probability of correct
decoding is the probability that the senseword lies in the decoding sphere about the
transmitted codeword. The probability of incorrect decoding is the probability that the
senseword lies in any decoding sphere about any other codeword. The probability of
decoding default is the probability that the senseword lies in the space between spheres.
The sum of these three probabilities equals one, so formulas for only two of them are
needed. In some applications, decoder defaults are treated differently from incorrect
outputs, so the probability of decoding error is equal to the probability of incorrect
decoding. In other applications there is no distinction and the probability of error is
equal to the sum of the probability of decoding error and the probability of failure.

The discrete channels that we consider are the M-ary symmetric channels that make
independent symbol errors with probability pe in each component. The probability that ν
errors lie within a particular subset consisting of ν symbols and the other n−ν symbols
are error-free is (1 − pe)

n−νpν
e . Conditional on a particular transmitted codeword,

a particular senseword with ν errors has probability (1 − pe)
n−ν(pe/(M − 1))ν of

occurring. The decoder will decode every senseword to the closest codeword provided
that it is within distance t of that codeword. Otherwise there is a decoding default.

For a linear code such as a Hamming code or a Reed–Solomon code, we can analyze
the performance conditional on the all-zero word being transmitted. This is because the
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linear structure of the code ensures that the geometric configuration of the codewords
will look the same as viewed by any codeword. Every codeword will have the same
conditional probability of error. Therefore, the probability of error conditional on the
all-zero word being transmitted is equal to the unconditional probability of error.

The computation of the probability of decoding error is quite tedious. This can
be seen by referring to Figure 10.4. The probabilities of all words lying in all spheres
other than the central sphere must be summed; the probabilities of points lying between
spheres must not be included in the sum. To count up only the points within the spheres
is a complicated combinatorial procedure, which we do not give in this book. The
probability of correct decoding, on the other hand, is easy to compute.

Theorem 10.4.1 A decoder for a t-error-correcting code used with a memoryless
channel has a probability of correct block decoding given by

1 − pem =
t∑

�=0

(n

�

)
p�

e(1 − pe)
n−�.
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Figure 10.4. Illustrating the notion of coding gain.
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Proof There are
( n

�

)
ways that the � places with errors can be selected; each occurs

with probability p�
e(1 − pe)

n−�. The theorem follows. �

Although the theorem holds for any channel alphabet size, only the probability of
channel error enters the formula. It does not matter how this probability of symbol error
is divided among the individual symbols.

We may study the performance of the code when it is used on an additive gaussian
noise channel. Then we may express the performance of the code in terms of the
probability of symbol error at the output of the channel as a function of Eb/N0 of the
channel waveform. Convention requires that Eb is the average energy per information
bit. This is n/k larger than the energy per channel bit because the energy in the check
symbols is divided among the information bits in this calculation.

When a decoder is used with a demodulator for a gaussian noise channel, the decoder
is called a hard-decision decoder if the output of the demodulator is simply a demod-
ulated symbol. Sometimes the demodulator passes other data to the decoder such as
the digitized output of the matched filters. Then the decoder is called a soft-decision
decoder.

When used in conjunction with a demodulator for an additive gaussian noise channel,
the performance of the code is described by a quantity known as the coding gain.
The coding gain is defined as the difference between the Eb/N0 required to achieve a
performance specification, usually probability of error, with the code and without the
code. Figure 10.4 illustrates the coding gain with BPSK as the uncoded reference. The
binary code used for this illustration is a code known as the Golay (23, 12) triple-error-
correcting code. The figure shows that at a bit-error-rate of 10−5, the Golay code has a
coding gain of 2.1 dB.

It is natural to ask if the coding gain can be increased indefinitely by devising better
codes. As shown in Chapter 11, we cannot signal at any Eb/N0 smaller than −1.6 dB, so
there is a very definite negative answer to this question. At a bit error rate of 10−5, the
maximum coding gain relative to BPSK of any coding system whatsoever is 11.2 dB.
If, moreover, a hard-decision BPSK demodulator is used, then a soft-decision decoder
is inappropriate, and 2 dB of coding gain is not available. Then the maximum coding
gain is 9.2 dB. Figure 10.5 shows the regions in which all coding gains must lie.

Simple analytic expressions for the coding gain are not known. The coding gain
must be evaluated numerically for each code of interest. In contrast, the asymptotic
coding gain given in the next definition has a simple definition but does not have as
clear-cut a meaning. It is an approximation to the coding gain in the limit as Eb/N0

goes to infinity and for t small compared to n. The asymptotic coding gain sharpens our
understanding but should be used with great care because of the approximate analysis,
which is sometimes meaningless, and because we are usually interested in moderate
values of Eb/N0.
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Definition 10.4.2 A t-error-correcting block code of rate R has an asymptotic coding
gain of

Ga = R(t + 1)

when used with a hard-decision decoder, and

G = R(2t + 1)

when used with a soft-decision decoder.

The motivation for the definitions of asymptotic coding gain is a pair of approximate
analyses that are valid asymptotically for large signal-to-noise ratios and if t is small
compared to n. Let pe denote the probability of bit error at the output of the hard-
decision BPSK demodulator. Let pem denote the probability of not decoding the block
correctly, either because of block decoding error or because of block decoding default.
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Then, starting with Theorem 10.4.1,

pem =
n∑

�=t+1

(n

�

)
p�

e(1 − pe)
n−�

≈
(

n

t + 1

)
pt+1

e

≈
(

n

t + 1

)[
Q

(√
2REb

N0

)]t+1

using the expression for the probability of error of BPSK and recalling that the energy
in each code bit is REb. For large x, Q(x) behaves like e−x2/2, so for large x, [Q(x)]s ≈
Q(x

√
s). Therefore,

pem ≈
(

n

t + 1

)
Q

(√
R(t + 1)

2Eb

N0

)
.

Asymptotically as Eb/N0 goes to infinity, the argument of Q is as if Eb were amplified
by R(t + 1) – hence the term “asymptotic coding gain”. However, the approximate
analysis is meaningful only if the binomial coefficient appearing as a multiplier is of
second-order importance. This means that t must be small compared to n. In this case,
we may also write the asymptotic approximation

pem ∼ e−RdminEb/2N0

to express the approximate asymptotic behavior of hard-decision decoding as a function
of Eb/N0.

For a soft-decision decoder, the motivation for defining asymptotic coding gain is
an argument based on minimum euclidean distance between codewords. Suppose that
there are two codewords at Hamming distance 2t + 1. Then in euclidean distance they
are separated by (2t +1)REb. By the methods of Chapter 3, the probability of decoding
error, conditional on the premise that one of these two words was transmitted, is

pem ≈ Q

(√
R(2t + 1)

2Eb

N0

)
.

If the linear code has Ndmin nearest codeword neighbors at distance 2t + 1 from each
codeword, then the union bound dictates that the probability of error can be at most
Ndmin times larger:

pem ≈ Ndmin Q

(√
R(2t + 1)

2Eb

N0

)
.
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Again, for large Eb/N0, the argument of the function Q(x) is as if Eb were amplified by
R(2t +1), and again the term “asymptotic coding gain” describes this. The significance
of this term, however, requires that the number of nearest neighbors Ndmin is not so
exponentially large that it offsets the exponentially small behavior of Q(x). In this
case, we may again write an asymptotic approximation

pem ∼ e−RdminEb/N0

to express the asymptotic behavior in Eb/N0 of soft-decision decoding. However, in any
particular case, it is difficult to know whether Ndmin plays a critical role in determining
the order-of-magnitude of pem.

10.5 Convolutional codes for data transmission

In contrast to a block code for data transmission, which encodes a block of k data
symbols into a block of n codeword symbols, is a tree code for data transmission,
which encodes a stream of data symbols into a stream of codeword symbols. The
stream of data symbols has no predetermined length. A data sequence is shifted into
the encoder beginning at time zero and continuing indefinitely into the future, and a
sequence of code symbols is shifted out of the encoder. We are interested in those
tree codes for which the encoder is a finite-state machine whose state depends only
on the past mk data symbols for some constants m and k. Such a tree code is called a
trellis code because the codewords of such a code can be described by a labeled trellis.
The trellis is a compact way to display the codewords of a trellis code. We saw the
Ungerboeck codes as examples of trellis codes in Section 9.4. In this section we shall
study the convolutional codes as another example of trellis codes.

The stream of data symbols entering the canonical encoder for a trellis code is broken
into segments of k symbols each, called dataframes. The encoder can store the past
m dataframes of the datastream. During each frame time, a new dataframe enters the
encoder and the oldest dataframe is discarded by the encoder. At the end of any frame
time the encoder has stored the most recent m dataframes; a total of mk data symbols.
We can regard these data symbols as stored in an mk-stage shift register with memory
cells corresponding to the symbol alphabet. At the beginning of a frame, the encoder
knows only the new incoming dataframe and the m previously stored dataframes. From
these k(m+1) data symbols, the encoder computes a single codeword frame, n symbols
in length by means of a fixed encoding function. This codeword frame is shifted out
of the encoder as the next dataframe is shifted in. Hence the channel must transmit n
codeword symbols for each k data symbols. The rate R of the trellis code is defined as
R = k/n. The constraint length ν of the convolutional code is defined as the number
of memory cells needed by a minimal encoder – that is, an encoder with the fewest
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memory cells. The constraint length satisfies ν ≤ mk, the inequality occurring in codes
for which it is not necessary to retain all mk input symbols. The codewords of the trellis
code are the infinitely long sequences that can be produced by the encoder. These are
the sequences that can be read along the paths through the trellis describing the code.

A special kind of trellis code is a convolutional code, which is the only kind of
code we shall study in this section. A convolutional code is a trellis code over a Galois
field with a linearity property on the codewords. If c and c′ are two codewords of a
convolutional code – that is, two infinitely long sequences that can be generated by the
encoder – and α and β are any elements of the field of the code, then αc + βc′ is also a
codeword. The linear combination αc+βc′ is to be understood as the infinite sequence
αci + βc′

i for i = 0, . . . . A convolutional code also has a shift-invariance property as
do all trellis codes because the encoding rule depends only on the most recent mk data
symbols. Convolutional codes are in common use for data transmission because of their
simple structure and because – as a direct consequence of the linearity property – the
codewords can be generated by the convolutions of finite-impulse-response filters in a
Galois field, usually GF(2).

A convolutional code is a set of codewords. The code itself should not be confused
with the encoder for the convolutional code. Accordingly, we shall develop the structure
of a convolutional code by starting with the trellis definition of the code, then finding
encoders to fit the trellis and its labels. A simple example of a labeled trellis for a binary
convolutional code with k = 1, n = 2, and m = 2 is shown in Figure 10.6. There are
four states (denoted S0, S1, S2, S3) corresponding to the four possible two-bit patterns in
the encoder memory. Every node of the trellis must have two branches leaving it so that
one branch can be assigned to data bit zero and one branch can be assigned to data bit
one. Each branch leads to the new state caused by that input bit. Each branch is labeled
with the pair of codeword bits that will be generated if that branch is transversed. The
convolutional code is the set of all semi-infinite binary words that may be read off by
following any path through the trellis and reading the code bits as they are passed.
The labeled trellis defines a linear code – and hence a convolutional code – because
the GF(2) sum of the symbol sequences along any pair of paths is another symbol
sequence on another path.

10 10 10 10 10 10

01 01 01 01 01 01

01 01 01 01 01 01

10 10 10 10 10 1010

00 00 00 00 00 00

11 11 11 11 11 11 11 11
11 11 11 11 11 11

10 10 10 10 10 1010 10
s0

s1

s2

s3

Figure 10.6. Trellis diagram for a convolutional code with constraint length 2.
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To use the code requires an encoder. This means that at each node we must specify
which branch is assigned to represent a data bit zero and which branch is assigned
to represent a data bit one. In principle, this assignment is completely arbitrary, but
in practice we want a rule that is easy to implement. We shall describe two encoders
for this code, one that uses a two-bit feedforward shift register and is a nonsystematic
encoder, and one that uses a two-bit feedback shift register and is a systematic encoder.
In either case, the state corresponds to the two bits in the shift register and the encoder
produces the same pair of code bits that label the trellis in Figure 10.6. The assignment
of data bits to branches is what makes the encoders different.

To design an encoder that uses a feedforward shift register, we augment the trellis
diagram as shown in Figure 10.7. The states are labeled with the contents of the shift
register which, by assumption, are the two most recent data bits. The states are assigned
to the trellis by placing the four two-bit patterns at the left of the trellis, the most recent
bit to the left. Once this assignment of states is made, a correspondence is established
between each specific value of the incoming data bit and one of the branches. This
correspondence is explicitly recorded by attaching that data bit value as another label
to each branch in Figure 10.7. The data bit on a branch is the input to the encoder,
and the pair of code bits on the branch is the output of the encoder. The code bits can
be regarded as a function of the two state bits and the incoming data bit. A circuit
that implements the required binary logic is shown at the left in Figure 10.8. With this
encoder, an arbitrary binary datastream is shifted into the encoder and the appropriate
codestream is shifted out – two output code bits for each input data bit.

If there are no errors, the datastream is recovered by the circuit on the right side of
Figure 10.8. The shift register circuit mimics the GF(2) polynomial arithmetic given by

x(x2 + x + 1) + (x + 1)(x2 + 1) = 1.

1/10 1/10 1/10 1/10 1/10 1/10

0/ 01

0/ 01

0/10

1/ 00
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0/ 01 0/ 01 0/ 01 0/ 01 0/ 01

0/10 0/10 0/10 0/10 0/10 0/10

1/ 00 1/ 00 1/ 00 1/ 00 1/ 00

1/11 1/11 1/11 1/11 1/11 1/11 1/11
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Input
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0/100/10

11

Figure 10.7. Trellis diagram annotated for a nonsystematic encoder.
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Figure 10.8. Application of a nonsystematic convolutional encoder.

1/10 1/10

0/ 01

1/10

1/11
1/11

0/ 0000

11

01

10

1/11 1/11

State

1/10 1/10 1/10 1/10 1/10 1/10

1/11 1/11 1/11 1/11 1/11
0/ 00 0/ 00 0/ 00 0/ 00 0/ 00

0/000/000/000/000/000/00

1/11 1/11 1/11 1/11 1/11

0/ 01 0/ 01 0/ 01 0/ 01 0/ 01 0/ 01

1/10 1/10 1/10 1/10

0/ 00 0/ 00
1/111/11

0/ 01 0/ 01 0/ 01 0/ 01 0/ 01

Figure 10.9. Trellis diagram annotated for a systematic encoder.
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Figure 10.10. Application of a systematic convolutional encoder.

If there are errors, they are first corrected provided the error-correcting ability of the
code has not been exceeded.

To design an alternative encoder that is systematic, we inspect the trellis of
Figure 10.6 from a different point of view. On the pair of branches out of each node,
the first bit of the label takes on each possible value, so we assign branches so that
the first code bit is equal to the data bit. This leads to the trellis of Figure 10.9 and the
encoder of Figure 10.10. The sets of codewords produced by the encoders of Figure 10.8
and Figure 10.10 are identical, but the way in which codewords represent data bits is
different.
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Figure 10.11. An encoder for another systematic convolutional code.

Each encoder of our example uses two stages of memory and has four states in
the trellis. An encoder for a more general convolutional code would use ν stages of
memory. Then there would be 2ν states in the trellis for a binary code and qν states in
the trellis for a code with a q-ary alphabet. A convolutional code with constraint length
ν = mk can be encoded by n sets of finite-impulse-response filters, each of the n sets
consisting of k finite-impulse-response filters in the Galois field GF(q).

If the convolutional code is binary, then the filters are composed of shift registers one
bit wide; the additions and multiplications are the modulo-two arithmetic of GF(2).
The input to the encoder is a stream of databits at a rate of k bits per unit time and
the output of the encoder is a stream of codebits to the channel at a rate of n bits per
unit time.

A second example of an encoder for a binary convolutional code, one with constraint
length five, is shown in Figure 10.11. This encoder is based on a feedforward shift
register and is a systematic encoder because the data bits appear unaltered. In general,
it is not possible to construct an encoder that is both systematic and uses a feedforward
shift register. It is, however, always possible to construct a systematic encoder that uses
a feedback shift register. We shall develop this statement by studying the structure of
convolutional codes in a more formal way.

Amathematical description of a convolutional code can be formulated in the language
of polynomial arithmetic. A polynomial of degree n − 1 over the field GF(q) is a
mathematical expression

f (x) = fn−1xn−1 + fn−2xn−2 + · · · + f1x + f0

where the symbol x is an indeterminate, the coefficients fn−1, . . . , f0 are elements of
GF(q), and the indices and exponents are integers.

A finite-impulse-response filter of length m can be represented by a polynomial of
degree at most m in the field of the filter. The coefficients of the polynomial are the taps of
the filter. These polynomials are called the generator polynomials of the convolutional
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code. The encoder shown in Figure 10.8 has the two generator polynomials

g0(x) = x2 + x + 1

g1(x) = x2 + 1.

The generator polynomials can be arranged into a matrix of polynomials

G(x) = [x2 + x + 1 x2 + 1].

The encoder shown in Figure 10.11 has the two generator polynomials

g0(x) = 1

g1(x) = x5 + x3 + 1.

These generator polynomials also can be arranged into a matrix of polynomials

G(x) = [1 x5 + x3 + 1].

In general, a convolutional encoder requires a total of kn generator polynomials
to describe it, the longest of which has degree m. Let gij(x) for i = 1, . . . , k and
j = 1, . . . , n be the set of generator polynomials. These can be put together in a k by n
matrix of polynomials, called the generator matrix, and given by

G(x) = [gij(x)].

A convolutional code with an n by k generator matrix is called an (n, k) convolutional
code. When k is greater than one, some of the generator polynomials may be the zero
polynomial. Figure 10.12 shows an example of a (3,2) binary convolutional code that
has generator matrix

G(x) =
[

1 x2 1
0 1 x + x2

]
.

Consider the input frame as k databits in parallel, and consider the sequence of input
frames as k sequences of databits in parallel. These may be represented by k data
polynomials ai(x) for i = 1, . . . , k; or as a row vector of such polynomials

a(x) = [a1(x), a2(x), . . . , ak(x)].

If we break out the vector coefficients of the vector polynomials a(x), we can write
this as

a(x) = [a01, a02, . . . , a0k ] + [a11, a12, . . . , a1k ]x + [a21, a22, . . . , a2k ]x2 + · · · .
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Figure 10.12. Encoder for a rate 2/3 convolutional code.

Each bracketed term displays one frame of input data symbols. Similarly the output
codeword can be represented by n codeword polynomials cj(x) for j = 1, . . . , n; or as
a vector of such polynomials

c(x) = [c1(x), c2(x), . . . , cn(x)].

The �th frame consists of the �th coefficients from each of these n polynomials. That is,

c(x) = [c01, c02, . . . , c0n] + [c11, c12, . . . , c1n]x + [c12, c22, . . . , c2n]x2 + · · ·

To form a serial stream of code symbols to pass through the channel, the coefficients
of the n codeword polynomials are interleaved.

The encoding operation can now be described compactly as a vector-matrix product

c(x) = a(x)G(x)

with jth component given by the polynomial expression

cj(x) =
k∑

i=1

ai(x)gij(x).

The definition of constraint length can be expressed succinctly in terms of the matrix
of generator polynomials G(x). Given the matrix of generator polynomials G(x), the
constraint length of the convolutional code is

ν =
k∑

i=1

max
j

[deg gij(x)].
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Other ways of measuring the memory duration in the convolutional code may be
defined, but are less useful.

A systematic generator matrix for a convolutional code is a matrix of polynomials
of the form

G(x) = [I ...P (x)]

where I is a k by k identity matrix, and P (x) is a k by (n − k) matrix of polynomials.
A generator matrix for a block code always can be put into a systematic form by

permutations of columns and elementary row operations. This is not possible in general
for a matrix of polynomials because the division of a polynomial by a polynomial is not
a polynomial in general. However, if we allow the matrix to include rational functions
of the form a(x)/b(x) as elements, then we can put the generator matrix into systematic
form. For example, the generator matrix

G(x) = [x2 + 1 x2 + x + 1]

is equivalent to the systematic generator matrix

G′(x) =
[

1
x2 + x + 1

x2 + 1

]
=
[

1 1 + x

x2 + 1

]
.

What this means is that a systematic encoder exists, but it includes feedback in the
encoder due to the denominator x2 + 1. Inspection of the systematic generator matrix
shows how the encoder of Figure 10.10 was designed by laying out the feedback shift
register corresponding to the matrix entry

g12(x) = 1 + x

x2 + 1
.

Consequently, we have found a mathematical construction for passing between the two
encoders shown in Figure 10.8 and Figure 10.10.

Acheck matrix H (x) for a convolutional code is an (n−k) by n matrix of polynomials
that satisfies

G(x)H (x)T = 0.

If G(x) is a systematic generator matrix, a polynomial check matrix can be written
down immediately as

H (x) = [−P (x)T ... I ]
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where I here is a (n − k) by (n − k) identity matrix. It is straightforward to verify that

G(x)H (x)T = 0.

We can always find a check matrix corresponding to any generator matrix by manip-
ulating G(x) into a systematic form (with rational functions) by permutations and
elementary row operations, writing down the corresponding systematic check matrix,
then multiplying out the denominators and inverting the permutations.

Just as for block codes, it is not correct to speak of systematic convolutional codes
because the code exists independently of the method of encoding. It is only correct to
speak of systematic encoders for convolutional codes. Systematic encoders for convo-
lutional codes feel more satisfying because the data is visible in the encoded sequence
and can be read directly if no errors are made. However, unlike block codes, not every
convolutional code has a systematic convolutional encoder using only feedforward fil-
ters in the encoder. By using the feedback of polynomial division circuits, however,
one can build a systematic encoder for any convolutional code.

Codewords that have not been systematically encoded do not display the data directly
and must be designed so that the data can be recovered after the errors are corrected.
Moreover they must be designed so that an uncorrectable error pattern will only destroy
a finite amount of data. Let k = 1, so that the generator polynomials have only a single
index. Then

G(x) = [g1(x) g2(x) · · · gn(x)]

and

cj(x) = a(x)gj(x) j = 1, . . . , n.

At least one of the generator polynomials is not divisible by x because otherwise it
corresponds to a pointless delay in each filter.

Definition 10.5.1 An (n, 1) convolutional code whose generator polynomials
g1(x), . . . , gn(x) have greatest common divisor satisfying

GCD[g1(x), . . . , gn(x)] = 1

is called a noncatastrophic convolutional code. Otherwise it is called a catastrophic
convolutional code. The greatest common divisor is the polynomial of largest degree
that divides g1(x), g2(x), . . . , and gn(x).

The reason for the term “catastrophic code” and the reason for dismissing such codes
from further use lies in the fact that for such a code there are error patterns containing
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a finite number of channel errors that must produce an infinite number of errors in the
decoder output. Let

A(x) = GCD[g1(x), . . . , gn(x)]
and consider the data polynomial a(x) = A(x)−1 by which we mean the polynomial
obtained by formally dividing one by A(x). If A(x) is not equal to one, a(x) will have
infinite weight. But for each j, cj(x) = a(x)gj(x) has finite weight because A(x), a
factor of gj(x), cancels a(x). If a(x) is encoded and the channel makes a finite number
of errors, one in each place that one of the cj(x) is nonzero, the decoder will see all
zeros out of the channel and erroneously conclude that a(x) = 0, thereby making an
infinite number of errors.

For example, if g1(x) = x + 1 and g2(x) = x2 + 1, then GCD[g1(x), g2(x)] = x + 1
over GF(2). If a(x) = 1 + x + x2 + x3 + · · · , then c1(x) = 1, and c2(x) = 1 + x so the
codeword has weight 3. Only three channel errors can change the codeword into the
codeword for the all-zero dataword.

In the absence of errors, the datastream can be recovered from the codeword
of any noncatastrophic convolutional code by using a corollary to the euclidean
algorithm for polynomials. This corollary states that for any set of polynomials, if
GCD[g1(x), . . . , gn(x)] = 1, then there exist polynomials b1(x), . . . , bn(x) satisfying

b1(x)g1(x) + · · · + bn(x)gn(x) = 1.

If the data polynomial a(x) is encoded by

cj(x) = a(x)gj(x) j = 1, . . . , n

we can recover a(x) by

a(x) = b1(x)c1(x) + · · · + bn(x)cn(x)

as is readily checked by simple substitution.
For example, in GF(2),

GCD[x5 + x2 + x + 1, x6 + x2 + x] = 1,

so there must exist polynomials b1(x) and b2(x) such that, in GF(2)

b1(x)(x
5 + x2 + x + 1) + b2(x)(x

6 + x2 + x) = 1.

These can be found to be

b1(x) = x4 + x3 + 1

b2(x) = x3 + x2 + 1.
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A codeword composed of

c1(x) = (x5 + x2 + x + 1)a(x)

c2(x) = (x6 + x2 + x)a(x)

with generator polynomials g1(x) = x5 + x2 + x + 1 and g2(x) = x6 + x2 + x can be
inverted with the aid of b1(x) and b2(x)

c1(x)b1(x) + c2(x)b2(x) = (x5 + x2 + x + 1)(x4 + x3 + 1)a(x)

+ (x6 + x2 + x)(x3 + x2 + 1)a(x)

= a(x).

A convolutional code corresponds to a set of coprime generator polynomials. It is
not hard to find arbitrary sets of coprime polynomials. What is hard is to find sets that
have good error-correcting ability.

10.6 Decoding of convolutional codes

When a convolutional codeword is passed through a channel, errors are made from time
to time in the codeword symbols. The decoder must correct these errors by processing
the senseword. However, the convolutional codeword is so long that the decoder can
observe only a part of it at one time. Although the codeword is effectively infinite in
length, all decoding decisions must be made on senseword segments of finite length.
No matter how one chops out a part of the senseword for the decoder to work with,
there may be useful information within other parts of the senseword that the decoder
does not yet see and, in a well designed system, usually does not need.

To develop a decoding procedure for a convolutional code, consider the task of
correcting errors in the first frame. If the first frame of the code can be corrected and
decoded, then the first frame of the datastream will be known. Because the code is linear,
the effect of the first dataframe on subsequent codeword frames can be computed and
subtracted from subsequent frames of the senseword. Then the problem of decoding the
second codeword frame is the same as was the problem of decoding the first codeword
frame. Continuing in this way, if the first j frames can be successfully corrected, then
the problem of decoding the (j + 1)th frame is the same as the problem of decoding the
first frame. In this way, the decoder step by step regenerates frames of the codeword
from which the datastream can be computed.

A minimum Hamming distance decoder is a decoder that finds the codeword that
differs from a demodulated senseword in the fewest places. The following procedure,
which is somewhat analogous to a decision-feedback demodulator, gives in principle
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a good minimum-distance decoder for a convolutional code. Choose an integer b that
is sufficiently large. The integer b can be thought of as the width of a window through
which the initial segment of the senseword is viewed. Usually the decoder window
width is validated by computer simulation of the decoder. The decoder works with only
the first b symbols of the senseword. Generate the initial segment of length b of every
codeword and compare the first b symbols of the senseword to each of the codeword
segments. Select the codeword that is closest to the senseword in Hamming distance in
this segment. The first frame of the data sequence that produces the selected codeword
is chosen as the regenerated first frame of the decoder output. This data frame is then
re-encoded and subtracted from the senseword. The first n symbols of the senseword
are now discarded and n new symbols are shifted into the decoder. The process is then
repeated to find the next data frame.

The minimum-distance decoder would be quite complex if it were implemented in the
naive way described in the preceding paragraph. Just as was the case in demodulating
data in the presence of intersymbol interference, there is a great deal of structure in the
computation that can be exploited to obtain an efficient method of implementing the
minimum-distance decoder. The Viterbi algorithm is such an efficient method and can
be used to search the trellis. For implementing a minimum-Hamming-distance decoder,
the Viterbi algorithm uses Hamming distance in its computations.

At frame time b, the Viterbi algorithm determines the minimum-distance path to
each node in that frame. The decoder then examines all surviving paths to see that they
agree in the first frame. This frame defines a decoded data frame which is passed out
of the decoder. Next, the decoder drops the first frame and takes in a new frame of the
senseword for the next iteration. If again all surviving paths pass through the same node
of the oldest surviving frame, then this data frame is decoded. The process continues
in this way decoding frames indefinitely.

If b is chosen large enough, then a well-defined decision will almost always be made
at each frame time. If the chosen code is properly matched to the channel this decision
will very probably be the correct one. However, several things can go wrong. No
matter how large b is chosen, occasionally the surviving paths might not all go through
a common node in the current initial frame. This is a decoding failure or a decoding
default. The decoder can be designed to put out an indication of decoding default to
the user when this happens. Alternatively, the decoder can be designed to simply guess
a bit.

Sometimes, the decoder will reach a well-defined decision, but a wrong one. This
is a decoding error. It is usually rarer than a decoding default. When a decoding error
occurs, the decoder will necessarily follow this with additional decoding errors.

A dependent sequence of decoding errors is called an error event. Not only does one
want error events to be infrequent, but one wants their duration to be short when they
do occur. A decoder will recover from an error event if the code is a noncatastrophic
code, but a catastrophic code could have infinitely long error events.
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As an example, consider the rate one-half convolutional code with generator poly-
nomials g1(x) = x2 + x + 1 and g2(x) = x2 + 1. We choose a decoder with a decoding
window width b equal to 15. Suppose that the binary senseword is

v = 0 1 1 1 1 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 . . .

The development of the candidate paths through the trellis is shown in Figure 10.13.
At the third iteration, the decoder has already identified the shortest path to each node
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Figure 10.13. Sample of Viterbi algorithm.
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of the third frame. Then, at iteration r, the decoder finds the shortest path to each node
of the rth frame by extending the paths to each node of the (r −1)th frame and keeping
the shortest path to each node. Whenever a tie occurs, as illustrated by the two ties at
iteration 7, the decoder either may break the tie by guessing or may keep both paths in
the tie. In the example, ties are retained until either they are eliminated or they reach
the end of the decoder. As the decoder penetrates into deeper frames, the earlier frames
reach the end of the decoder memory. If a path exists to only one node of the oldest frame,
the decoding is complete. If several paths exist, then an uncorrectable error pattern has
been detected. Either it can be flagged as a decoding default, or a guess can be made.

In the example, the data sequence has been decoded as

a = 1 1 1 1 0 0 0 0 . . .

because these are the data bits labeling the branches of the demodulated path through
the trellis.

The decoder shown symbolically in Figure 10.13 might look much different in its
actual implementation. For example, the active paths through the trellis could be repre-
sented by a table of four fifteen-bit numbers. At each iteration each fifteen-bit number
is used to form two sixteen-bit numbers by appending a zero and a one. This forms
eight sixteen-bit numbers forming four pairs of numbers and to each is attached the
discrepancy of the path. Within each pair, only the minimum-distance number is saved,
the other is discarded. Now the sixteen-bit numbers are shifted left by one bit to form
a new table of four fifteen-bit numbers and the iteration is complete.

As the decoder progresses through any frames, the accumulating discrepancies con-
tinue to increase. To avoid overflow problems, they must be reduced occasionally. A
simple procedure is periodically to subtract the smallest discrepancy from all of them.
This does not affect the choice of the maximum discrepancy.

The Viterbi algorithm contains a fixed decoding window width b, which is the sep-
aration between the frame entering the decoder and the frame leaving the decoder.
Technically, the optimum choice of b is unbounded because an optimum decision can-
not be made until the surviving paths to all states share a common initial subpath, and
this may take an arbitrarily long time. On occasion, however, little degradation occurs
when the algorithm chooses a fixed decoding window width b that is sufficiently large.
Moreover, there will always be imprecision in the channel model that makes overly
precise distinction meaningless.

10.7 Performance of convolutional codes

A convolutional code is used to correct errors at the channel output. However, a con-
volutional codeword is infinitely long in principle and a demodulator with a nonzero
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probability of symbol error, no matter how small, will make an infinite number of errors
in an infinitely long sequence. Thus, the convolutional decoder must correct an infinite
number of errors in an infinitely long codeword. We should think of these errors as
randomly, and sparsely, distributed along the codeword. The decoder begins working
at the beginning of the senseword and corrects errors as it comes to them. Occasionally,
by the nature of randomly distributed errors, there will be a cluster of errors that the
code is not powerful enough to correct. A segment of the decoder output will either
be incorrect, which we call an error event or undecodable, which we call a default or
erasure event. An error event consists of an interval in which the decoded output bits
appear to be normal but in fact are incorrect. A default event consists of an interval
in which the decoder realizes that the senseword contains too many errors and cannot
be corrected. The output bits in that interval are annotated to indicate that the interval
contains too many bit errors to be corrected. We can think of each bit during such an
event replaced by an erasure.

A decoder can be designed to reduce the number of error events by increasing the
number of erasure events. It does this by detecting that during some interval the apparent
number of errors to be corrected is unreasonable. For such a decoder we are interested
in computing both the probability of decoding error (bit or event) and the probability
of decoding erasure (bit or event); the sum of these two is the probability of decoding
failure.

After a decoding error or decoding default occurs, a well-designed system will even-
tually return to a state of correct decoding. Otherwise, if the onset of a decoding failure
can lead to a permanent state of failure, we say that the decoder is subject to infinite
error propagation. Infinite error propagation may be due to the choice of a catastrophic
set of generator polynomials, in which case it is called catastrophic error propagation.
Infinite error propagation might also be caused by deficiencies in the choice of decoding
algorithm, in which case it is called ordinary error propagation. A properly designed
system will avoid both of these defects.

Loosely, to specify the performance of a convolutional code, we specify the bit error
rate at the decoder output for some channel model, say an additive gaussian noise
channel at a specified value of Eb/N0. However, the task is deeper and more subtle
than this. First of all, we cannot completely separate the performance of the code from
the design of the decoder. Second, we need to distinguish between bit errors and bit
erasures whenever the decoder includes an erasure output.

We shall study the performance of a convolutional code by first studying the distance
structure of the code, then studying the relationship between the distance structure
and the probability of error. The simplest decoding rule to study is the minimum-
distance decoder with ties broken arbitrarily (which is the maximum-likelihood decoder
is gaussian noise), because then a bit is either correct or in error; erasures do not occur.
Two error probabilities are of interest. The probability of bit error pe (or the bit error
rate) is the limit, as � goes to infinity, of the probability that the �th data bit at the output
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of the decoder is wrong. The probability of error event pev is the limit, as � goes to
infinity, of the probability that the decoder codeword lies along the wrong branch of the
trellis for the branch corresponding to the �th data bit (this is the �th branch if k = 1).
During an error event, some of the bits may be correct so pe < pev . In fact for a typical
binary code we may presume that pe ≈ 1

2 pev under the argument that about half of the
bits are correct during an error event.

Although the definitions of the probability of bit error and the probability of error
event are precise, they may be difficult to compute. We will be satisfied with close
approximations. Further, it would be a rare user that would care about the precise
difference between a bit error and an event error. A chance correct bit embedded in an
error burst has little value.

The many notions of decoder performance can be discussed in terms of the distance
structure of the code, specifically in terms of the minimum distance of the code. A
convolutional code has many minimum distances determined by the length of initial
codeword segment over which minimum distance is measured. The distance measure
given next is defined such that if two codewords both decode into the same first data
frame, then they can be considered equivalent.

Definition 10.7.1 The �th minimum distance d� of a convolutional code is equal to
the smallest Hamming distance between any two initial codeword segments � frames
long that disagree in the initial frame. The nondecreasing sequence d1, d2, d3, . . . , is
called the distance profile of the convolutional code.

A convolutional code is linear, so in searching over pairs of codewords for the min-
imum distance, one of the two codewords might just as well be the all-zero codeword.
The �th minimum distance then is equal to the weight of the smallest weight codeword
segment � frames long that is nonzero in the first frame. This can be read off a labeled
trellis.

For example, for the convolutional code whose trellis was shown in Figure 10.6, we
see from inspection of the figure that d1 = 2, d2 = 3, d3 = 5, and di = 5 for all i
greater than 5.

Suppose that a convolutional code has �th minimum distance d�. If at most t errors
satisfying

2t + 1 ≤ d�

occur in the first � frames, then those that occur in the first codeword frame can be
corrected.

The sequence d� is an increasing sequence of integers which will reach a largest
value and not increase further. This largest value, which is the minimum sequence
distance between any pair of infinitely long codewords, is conventionally called the
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free distance of the convolutional code. In this context, the terms “free distance” and
“minimum distance” are synonymous.

Definition 10.7.2 The free Hamming distance dmin of a convolutional code C is defined
as the smallest Hamming distance between any two distinct codewords.

To find the free distance of a noncatastrophic convolutional code, it is enough to check
only pairs of paths that diverge from a common node and then rejoin at a common node
after a finite time. Indeed, because the code is linear, it is enough that one of the
two paths be the all-zero path. The free distance can be computed from the distance
profile by

dmin = max
�

d�.

In the example of Figure 10.6, the free Hamming distance equals 5.
The code symbols of a convolutional code may be modulated onto a BPSK waveform

given by

c(t) =
∞∑

�=0

c�s(t − �T )

where now c� = ±1 according to whether the �th bit of the convolutional codeword is a
zero or a one. In such a case we may be interested in the euclidean distance between these
BPSK waveforms in place of the Hamming distance between convolutional codewords.
The euclidean distance is

dE(c(t), c′(t)) =
[ ∞∑

�=0

|c� − c′
�|2
]1/2

.

Clearly

dE(c(t), c′(t)) = 2dH (c, c′).

The euclidean distance between sequences is a generalization of the euclidean dis-
tance between the points of a real or complex signal constellation. The minimum
distance between points of the signal constellation is replaced by the minimum distance
between sequences.

Definition 10.7.3 The free euclidean distance dmin of a set of sequences of real (or
complex) numbers is the smallest euclidean distance between any two of the sequences.

If the BPSK sequences arise by mapping the codebits of a convolutional codeword
into ±1, as in BPSK modulation, then it is evident that

(dmin)euclidean = 2(dmin)Hamming.
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Just as the minimum distance between points of a signal constellation plays a major
role in determining the probability of demodulation error in gaussian noise of a multi-
level signaling waveform, so the minimum distance between sequences plays a major
role in determining the probability of error in sequence demodulation. By reference
to the asymptotic coding gain of block codes, we have the following definition of
asymptotic coding gain for a convolutional code used with a soft-decision decoder.

Definition 10.7.4 The asymptotic coding gain of a binary convolutional code C of
rate R and free Hamming distance dmin modulated into the real (or complex) number
system is

G = Rdmin.

By reference to the situation for block codes we may expect that an approximate
formula for probability of decoding error is

pe ≈ Ndmin Q

(√
G

2Eb

N0

)
.

This formula can be verified by simulation. Alternatively we could show using the
methods of Section 4.3 that this approximation follows roughly from a union bound.
Thus, the asymptotic coding gain G = Rdmin is an approximate measure of the amount
that Eb can be reduced because of the use of the code.

10.8 Turbo codes

The maximum-posterior principle can be used to form a decoder for a convolutional
code. This is similar to the maximum-posterior demodulator for a signaling waveform
with intersymbol interference, as was discussed in Section 7.7. The trellis structure
of the convolutional code again makes it possible to implement a maximum-posterior
decoder using a fast algorithm. However, the trellis structure of a convolutional code
also results in the property that each data bit is directly coupled only to those nearby
check bits that are computed from that data bit while it is still in the encoder, as
is determined by the constraint length of the code. Other codeword bits affect the
decoding of that data bit indirectly because those bits provide information to other near
or far neighbors, which information then couples through the connecting structure.
Bits that are far apart are only weakly and indirectly coupled. This means that only
nearby bits provide significant helpful information for decoding a given bit; distant bits
do not provide significant help. As a result, although maximum-posterior decoding of
a convolutional code is superior to maximum-likelihood decoding, the difference in
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performance is too meager to justify the additional cost and complexity. In order to
realize the performance potential of maximum-posterior decoding, the convolutional
code, in its pure form, must be set aside.

On the other hand, because it enables the use of the two-way algorithm, without which
the computations would be prohibitive, the trellis structure of a convolutional code is too
important to discard. Although the one-dimensional nature of the trellis structure of the
convolutional code is compatible with the fast computations of the two-way algorithm,
the error performance of the convolutional code is limited by the one-dimensional
nature of the trellis structure. Thus, there is good reason to retain the basic structure of
the convolutional code, but it should be strengthened by additional structure.

A certain elaboration of a convolutional code, known as a turbo code, or a Berrou
code, achieves this goal. It does this in a way that retains the linear structure of the convo-
lutional code, but appends a second encoding of each databit into a second convolutional
codeword. The new double-codeword structure greatly enhances the performance of
the maximum-posterior decoder while retaining the feature of an affordable decoding
algorithm.

To encode the data twice, a turbo encoder uses the same convolutional code twice
in the way shown in Figure 10.14. It encodes the data both in its natural order, and
in a scrambled order as provided by the permutation block. In this way each data
bit is encoded twice, thereby providing the three streams of symbols that comprise
the codeword; the first stream is the original datastream c0 = a, the second stream
is the first stream of check symbols c1, and the third stream is the second stream
of check symbols c2. The complete turbo codeword is the interleave of these three
streams c = (c0, c1, c2). The codeword will also be viewed as the two convolutional
codewords c′ = (c0, c1) and c′′ = (̃c0, c2), where c̃0 = π(c0) is a permutation of c.
The structure combining two convolutional codes into one turbo code is referred to as
parallel concatenation. If desired, because the code redundancy is too high, the two
convolutional codes can be punctured by discarding some of the check bits.

In the first convolutional codeword, each data bit finds itself connected to the check
bits according to the linearly-ordered structure of a trellis, and is strongly influenced in

a

DemuxMux

Channel
x

y1

y2

Puncturing
Encoder

Encoder

Permutation

c0

c1

c2

a~

Figure 10.14. The encoder structure of a turbo code.
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the decoder by the soft values of its neighboring check bits and data bits, but only weakly
by the soft value of distant bits. In the second convolutional codeword, a given bit again
finds itself connected to neighbors, but now the neighbors are different. For each data
bit, each of its neighbors will have other neighbors in both codewords, resulting in
a complex tangle of connections. The soft sensed value of each of the other bits can
provide strong information helping to demodulate any given bit through the structure
of the code.

10.9 Turbo decoding

The input to the turbo decoder is the soft senseword v observed as the filtered and
sampled noisy turbo codeword at the output of the channel. The components of the soft
senseword can be regarded as confidence information on each received symbol of the
codeword. The senseword v will be written as v = (x, y1, y2), where x corresponds to
soft noisy data, y1 corresponds to the soft noisy check bits of the first codeword, and
y2 corresponds to the soft noisy check bits of the second codeword. For the topic of
turbo decoding the soft senseword symbols are the codeword symbols contaminated by
additive white (memoryless) noise, usually gaussian. For the more comprehensive topic
of turbo equalization, which we do not study, the received symbols of the convolutional
code also have intersymbol interference.

The block conditional probability vector on the senseword v is

p(v|a) = p(x, y1, y2|a)

and, by Bayes’ formula, the posterior is

p(a|x, y1, y2) = p(x, y1, y2|a)p(a)∑
x
∑

y1

∑
y2

p(x, y1, y2|a)p(a)
.

Although this statement of the problem is straightforward in principle, for a turbo code
the right side is actually extremely complicated and unwieldy. Both y1 and y2 depend
on a in a complicated way, and the blocklength n may be on the order of thousands.
On the other hand, either of the two underlying convolutional codes has a posterior

p(a|x, yi) = p(x, yi|a)p(a)∑
x

∑
yi

p(x, yi|a)p(a)

which is formulated just by ignoring the check symbols of the other convolutional code.
Either convolutional code can be decoded by any posterior decoder, such as the

two-way algorithm. Moreover, if the decoder for the first convolutional code has a
soft output on each symbol, as would be the case for a symbol by symbol posterior
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Figure 10.15. The structure of the turbo decoder.

computation, that soft output can be used as a prior by the decoder for the second
convolutional codeword. But then the first convolutional code can be decoded again
using the soft output of the second decoder as a prior. This leads to the notion of
iterative decoding. The two convolutional codes are decoded alternately, with each
vector of componentwise posteriors computed by one decoder feeding as a vector of
componentwise priors to the other decoder for the next iteration.

As the decoders alternate in this way, the computed posteriors slowly change, each
apparently moving closer either to zero or to one. After a moderate number of itera-
tions, each bit can be demodulated. In this way, one obtains an approximation to the
maximum-posterior decoder for the turbo code. Extensive experience shows that this
iterative process works well. It has been found empirically for large binary Berrou
codes, that ten to twenty iterations are usually sufficient for convergence. It has also
been found empirically that by using a turbo code, bit error rates on the order of 10−6

can be obtained at very small values of Eb/N0.
The structure of an iterative decoder is shown in Figure 10.15.

Problems for Chapter 10

10.1. a. AHamming (7, 4) code is used to correct errors on a binary symmetric chan-
nel with error probability ε. What is the probability of decoding error? (A
binary symmetric channel is a binary channel that has the same probability
of error when a zero is transmitted as it does when a one is transmitted.)

b. If the code is used only to detect errors but not correct them, what is the
probability of undetected error?

c. A Reed–Solomon (7, 5) code is used to correct errors on an octal symmetric
channel with error probability ε. What is the probability of decoding error?

10.2. Let n = 2r −1, and consider a binary word of blocklength n. How many binary
words are there that differ from the given word in not more than one place?
Given 2k distinct binary words of blocklength n with the property that any one
of the words with one bit changed differs from every other word in at least two
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bit positions, how big can k be? Prove that no binary single-error-correcting
code can have fewer check symbols than the Hamming code.

10.3. A sixteen-ary orthogonal signaling alphabet is used on an additive gaussian
noise channel with an Eb/N0 of 4 dB.
a. Write down a probability transition matrix for this channel viewed as a

discrete channel.
b. A (15,13) Reed–Solomon code is used to correct single errors. What is the

probability of error of the overall system as a function of Eb/N0?
10.4. A Reed–Solomon code can be defined alternatively as the set of words of

blocklength n, that have zeros in the spectrum at Cj for j = j0, . . . , j0 + 2t − 1.
Using the modulation/translation properties of the Fourier transform, write out
the proof that the Reed–Solomon code so defined will correct t errors. (It is
common practice to use Reed–Solomon codes with j0 = 1.)

10.5. An (8, 6) Reed–Solomon code over the complex number system (with C1 =
C2 = 0) is given. How many errors can be corrected? The senseword is
(1, 1, 1, 1, 0, 1, 1, 1). What is the error pattern?

10.6. The polynomial p(x) = x3 + x + 1 is irreducible over GF(2).
a. Write out addition and multiplication tables for GF(8).
b. How many codewords are there in the (7, 3) double-error-correcting Reed–

Solomon code over GF(8)?
c. Using this code, and with α denoting the field element x, the senseword in

polynomial notation is

v(y) = α4y6 + α2y5 + α3y3 + α3y2 + α6y + α4.

Find the transmitted codeword.
d. If the encoder is systematic, what are the data symbols?

10.7. A communication system uses a (7, 5) Reed–Solomon code in GF(8), an
eight-ary orthogonal family of waveforms, and a noncoherent demodulator.
a. The waveforms are based on Hadamard sequences and cosine chips on

the in-phase axis and are equal to zero on the quadrature axis. Find the
relationship between the information rate and the width of the cosine chip.

b. Is the choice of Reed–Solomon code well-matched to the choice of signaling
waveform? Why?

c. Set up and describe the sequence of equations that one would need to
calculate pe versus Eb/N0 where pe is the probability of symbol error. How
does the solution change if pe is the probability of bit error?

10.8. An incomplete decoder for a QAM signal constellation demodulates the
received sample v into signal point cm if d(v, cm) < dmin/2, where dmin

is the minimum distance between any two points in the signal constellation.
Otherwise, the demodulator output is a special symbol called data erasure.
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a. Prove that the probability that the decoder is incorrect is

1 − pe = e−dmin/σ 2
.

Express this in terms of Eb/N0 for a sixteen-ary QASK signal constellation.
b. The probability of decoding failure can be subdivided into the probability

of decoding error pe, and the probability of decoding erasure pr . Find
approximate expressions for pe and pr as a function of Eb/N0 for a sixteen-
ary signal constellation.

c. Set up the expressions needed to compute probability of incorrect decoding
as a function of Eb/N0 for a Reed–Solomon (15,13) code used with this
signal constellation and an errors-and-erasures decoder.

10.9. A systematic generator matrix for a (2,1) convolutional code is given by[
1

x2 + 1

x2 + x + 1

]
.

a. What is the free Hamming distance of this convolutional code?
b. Sketch a systematic encoder based on this generator matrix.
c. Sketch a trellis labeled with data bits and codeword bits.

10.10. A (7, 4) Hamming code is used on a white gaussian noise channel with no
intersymbol interference. Based on the vector of matched-filter output samples
v0, v1, . . . , v6, a soft-decision demodulator finds the codeword cr that is closest
in euclidean distance to the senseword. That is, choose r such that

d(cr , v) =
6∑

�=0

(cr� − v�)
2

is minimum. What is the probability of block decoding error as a function of
Eb/N0? What is the asymptotic coding gain with respect to BPSK? What is
the relationship between the two answers?

10.11. A convolutional code with rate 1
3 and constraint length 2 has generator

polynomials g1(x) = x2 + x + 1, g2(x) = x2 + x + 1, g3(x) = x2 + 1.
a. Construct the trellis for this code and find the free distance.
b. Give a circuit for recovering a(x) from c1(x), c2(x), and c3(x) in the absence

of errors.
10.12. a. Draw a trellis for the convolutional code with generator polynomials

[x2 + x + 1 x2 + 1].
b. Use the Viterbi algorithm to decode the senseword

v = 10001000001000000000 . . .
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10.13. A rate 1
2 convolutional code over GF(4) has generator polynomials g1(x) =

2x3 + 2x2 + 1 and g2(x) = x3 + x + 1.
a. Show that the minimum distance is 5.
b. How many double-error patterns can occur within an initial senseword

segment length of 8?
c. Design a syndrome decoder for correcting all double errors.

10.14. a. A pulse (possibly complex) of energy Ep in white noise is passed through
a matched filter. Show that the output signal-to-noise ratio is 2Ep/N0.

b. An M-ary orthogonal set of waveforms with M = 32 is used to transmit
data. What Eb/N0 is needed to obtain a symbol error probability of 10−5?
What is the matched-filter signal-to-noise ratio?

c. The same orthogonal signaling scheme is now used with a (31, 29) Reed–
Solomon code in GF(32). What is the required Eb/N0 to obtain a probability
of block decoding error of 10−5? What is the required Eb/N0 to obtain a
probability of symbol error of 10−5?

10.15. When the bandwidth of a channel is too small compared to the input symbol
rate, “intersymbol interference” occurs. The case known as the “1+D channel”
consists of a discrete-time channel in which each output voltage consists of
the sum of the amplitudes of the last two input pulses.
a. Describe this channel with binary inputs using a trellis, and describe the

demodulator as a procedure for searching a trellis.
b. For this channel construct your own example of a binary input sequence

and a corresponding output sequence. Show how the Viterbi algorithm can
be used for recovering the input sequence from a noisy version of the output
sequence.

10.16. Prove that if the generator polynomials of a binary convolutional code each
have an odd number of nonzero coefficients, then the code is transparent to a
180◦ phase ambiguity in the sense that if the codewords are complemented in
the channel, the decoder will recover the complement of the datastream but is
otherwise unaffected.

Notes for Chapter 10

We owe the idea of channel capacity and the recognition of the importance of data
transmission codes to Shannon (1948, 1949). Shannon showed that the channel noise
only sets a limit on the data rate, not on bit error rate. The bit error rate could be
made as small as is desired by the use of a sufficiently strong data-transmission code.
The first-known and simplest data transmission code is the Hamming code (1950).
The best data-transmission codes in nonbinary finite fields were discovered by Reed
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and Solomon (1960) and independently by Arimoto (1961). The idea of the Fourier
transform is implicit in the Reed–Solomon codes, and was used by many authors, but
the first attempt to develop the Reed–Solomon code entirely from the Fourier transform
point of view can be found in Blahut (1979).

The notion of a convolutional code was introduced by Elias (1954) and developed
by Wozencraft (1957). Studies of the formal algebraic structure of convolutional codes
were carried out by Massey and Sain (1968) and by Forney (1970). The Viterbi (1967)
algorithm was first introduced as a pedagogical device whose practicality for convolu-
tional codes of small constraint length was noticed by Heller (1968). The asymptotic
tightness of the approximate formula for the probability of error of demodulating
convolutional codes was confirmed by simulation by Heller and Jacobs (1971).

The use of iterative decoding was studied in a variety of situations by Hagenauer and
his coauthors (1989, 1996). The notion of parallel concatenation in order to compen-
sate for the limitation of the linear nearest neighbor structure or convolutional codes
as applied to bitwise maximum posterior decoding is due to Berrou, Glaveiux, and
Thitimajshima (1993). They also recognized the role of iterative decoding to combine
the two partial decoders. The Berrou codes are usually called turbo codes because they
are conceived so as to be suitable for turbo decoding.



11 Performance of Practical Demodulators

We have studied in great detail the effect of additive gaussian noise in a linear system
because of its fundamental importance. Usually the ultimate limit on the performance
of a digital communication system is set by its performance in gaussian noise. For this
and other reasons, the demodulators studied in Chapter 3 presume that the received
waveform has been contaminated only by additive gaussian noise. However, there are
other important disturbances that should be understood. The demodulators studied in
Chapter 4 extend the methods to include intersymbol interference in the received wave-
form. While additive gaussian noise and intersymbol interference are the most important
channel impairments, the demodulator designer must be wary of other impairments that
may affect the received signal. The demodulator must not be so rigid in its structure that
unexpected impairments cause an undue loss of performance. This chapter describes a
variety of channel impairments and methods to make the demodulator robust so that
the performance will not collapse if the channel model is imperfect.

Most of the impairments in a system arise for reasons that are not practical to con-
trol, and so the waveform must be designed to be tolerant of them. Such impairments
include both interference and nonlinearities. Sometimes nonlinearities may be intro-
duced intentionally into the front end of the receiver because of a known, desired
outcome. Then we must understand the effect of the nonlinearity in all its ramifications
in order to anticipate undesirable side effects.

Of course, the first requirement is that there is adequate energy in the waveform to
sustain the bit error rate in the presence of the expected impairments. It is customary
to first budget sufficient energy to communicate on an additive gaussian noise channel.
This budget provides a reference which can be adjusted if necessary to accommodate
consideration of other impairments and uncertainties. We begin the chapter with a
discussion of an energy budget.

11.1 Energy budgets

This book deals with modulation and coding for the digital communication of infor-
mation. It does not deal with the electrophysics of waveform propagation and antenna
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theory, nor with detailed questions of the design of circuits or amplifiers. Rather, we
study the relationship between the noise power and the required power in the signal
that reaches the receiver to ensure reliable demodulation.

In this section, however, we would like to touch on the idea of an energy budget.
Suppose that a digital communication system transmits R bits per second, and the power
in the signal that reaches the receiver is S watts. Then in a long time, T , RT bits are
received and the received energy is ST joules. The energy per bit Eb is defined as

Eb = ST

RT

= S

R
.

The energy per bit Eb can also be stated for a message of finite duration. Given a
message m(t) of finite message duration Tm containing K information bits, the energy
per bit is given by

Eb = Em

K

where Em is the message energy

Em =
∫ Tm

0
m2(t)dt.

The bit energy Eb is not an energy that can be measured directly by a meter. It must be
calculated from the message energy and the number of information bits at the input of
the encoder/modulator. At a casual glance, one may find a message structure at the input
to the channel in which one may perceive a larger number of bits as channel symbols.
The extra symbols may be check symbols for error control, or symbols for frame
synchronization or some other channel protocol. These other symbols do not represent
transmitted information, and their energy must be amortized over information bits.
Only information bits are used in calculating Eb. One reason for defining Eb is so that
two waveforms that are quite different in construction can be compared.

In addition to the message, the receiver is degraded by noise. Additive white gaussian
noise arises in most applications and is also a standard noise against which digital
communication systems are judged. White noise has a power density spectrum that is
constant with frequency. The two-sided power density spectrum is

N ( f ) = N0

2
(watts/hertz),

and N0 is called the (one-sided ) noise power density spectrum, this terminology origi-
nating with the notion of power density at frequency −f combined with that at frequency
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+f . The unit of watts/hertz is actually a measure of energy because it is dimensionally
equivalent to the energy unit of joules.

Because white noise is constant over all frequencies, it has infinite power. Conse-
quently, this model of white noise can lead to mathematical and physical absurdities if
it is not handled with care. The white noise model, however, is usually a good fit over
the range of frequencies of interest and is remarkably useful because of its simplicity.
If a baseband channel has an ideal rectangular transfer function

H ( f ) =
{

1 | f | ≤ W
0 | f | > W ,

and W = B, or if a passband channel has an ideal rectangular transfer function1

H ( f ) =
{

1 |f + f0| or | f − f0| ≤ W
0 |f + f0| and | f − f0| > W

and W = B/2, then the received noise power N is given by

N = (2B)
N0

2
= BN0.

In both cases, N is computed by integrating H ( f )N ( f ) from negative infinity to positive
infinity.

The noise power N in a band B can be measured. However, N0 is the more funda-
mental quantity because it does not presume a definition for the transfer function H ( f ).
We shall usually prefer to express fundamental results in terms of N0.

On a linear channel, the reception of the signal cannot be affected if both the signal
and the noise are doubled. It is only the ratio Eb/N0 that affects the bit error rate.
Usually Eb/N0 is expressed in decibels, defined as(

Eb

N0

)
decibels

= 10 log10
Eb

N0
.

Two different signaling schemes are compared by a comparison of their respective
graphs of bit error rate versus required Eb/N0, usually on a decibel scale.

We shall frequently quantify the performance of a digital communication waveform
by stating a ratio Eb/N0 at which that waveform can be satisfactorily demodulated.
Simple waveforms will require large values of Eb/N0 to operate satisfactorily, perhaps
Eb/N0 = 12 dB or more. On the other hand, sophisticated waveforms may be designed

1 Notice that B is defined as the full width of the ideal passband channel centered about f0, and the half width of
the ideal baseband channel centered about f = 0. This definition yields the formula N = BN0 in both cases, but
it opens the possibility of confusion when using the complex baseband representation of the passband channel.
On the other hand, W is always a half width of the ideal channel and does not change when a passband channel
is converted to a complex baseband representation.
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to operate satisfactorily with Eb/N0 less than 5 dB, and ultimately, even as low as
−1.6 dB. This, in fact, may be heralded as one of the great successes of the modern
theory of digital communication – the savings of more than a factor of ten in energy by
the use of a sophisticated waveform.

For free space propagation of electromagnetic waves, we can calculate the energy
per bit at the receiver Eb = EbR in terms of the energy per bit at the transmitter EbT by
the range equation

EbR =
(

λ2

4π
GR

)(
1

4πR2
0

)
GT EbT

where GT and GR are the gains of the transmitting and receiving antennas in the direction
of propagation, R0 is the range from transmitter to receiver, and λ is the wavelength
of the electromagnetic wave. The equation may also be expressed in terms of power
rather than of energy by replacing EbR and EbT by SR and ST , respectively.

The range equation has been introduced with the terms arranged to tell the story of the
energy bookkeeping. Transmitted energy, EbT , appears at the output of the transmitting
antenna as the effective radiated energy GT EbT . The energy spreads in spherical waves.
The term 4πR2

0 is the area of a sphere of radius R0. By dividing GT EbT by this term,
we have the energy per unit area that passes through a surface at a distance of R0 from
the transmitter. The receiving antenna can be characterized simply by its effective area
Ar , which depends on the direction from which the antenna is viewed. The antenna
collects all of the radiation impinging on a region of area Ar and delivers that energy to
the receiver. Characterizing an antenna by its effective area obviates any need here to
study the antenna in detail. The relationship between antenna gain and effective area is

Ar = λ2

4π
Gr .

The product of these several terms yields the range equation.
Thermodynamics tells us that a receiver at absolute temperature TR will always

contaminate the received signal with additive white gaussian noise of power density
spectrum N0 = kTR where k is Boltzmann’s constant (k = 1.38 × 10−23 joules per
degree Kelvin). This noise is called thermal noise and, in electronic receivers, is due
to unavoidable thermal fluctuations of electrons in the first stage of amplification.
Practical receivers will have a somewhat larger value of noise power density spectrum
expressed as N0 = FkTR, where F is a number known as the noise figure of the receiver.
Thermodynamics requires that F is not less than 1. Ideally, F = 1, but in practice it is
larger. A noise figure on the order of 3 or 4 dB is typical of a high-quality receiver.

We now can calculate the ratio Eb/N0 from the data rate and from information
provided by the designers of the antenna, the power amplifier in the transmitter, and the
first-stage amplifier in the receiver. The ratio Eb/N0 will prove to be the most meaningful
measure of signal strength at the receiver. Using the principles of this book, we must
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Table 11.1. Sample energy budget

Transmit power 350 kilowatt
Bit rate 5 × 105

Eb 7 millijoule (mj) 38.45 dB (mj)
Gt 1000 30 dB (isotropic)
Range loss (4πR2)−1 R = 105 meter −110.99 dB (m2)

λ2

4π
GR GR = 1, λ = .1m −40.62 dB (m2)

−93.16 dB (mj)
kT Room temperature −114 dB (milliwatts/per hertz)
Noise figure 4 6 dB

−108 dB (milliwatts/per hertz)
(Eb/N0)act 14.84 dB
(Eb/N0)req 8.00 dB

Margin 6.94 dB

design a waveform that can be demodulated at the value of Eb/N0 seen at the receiver.
Denote by (Eb/N0)act the value of Eb/N0 (in decibels) predicted by the range equation,
and by (Eb/N0)req (in decibels) the value of Eb/N0 required to demodulate the chosen
waveform. The design margin is then given by

design margin = (Eb/N0)act − (Eb/N0)req.

The design margin must be nonnegative. A positive design margin provides insurance
against unforeseen circumstances in the operation of the communication system.

One can construct either a power budget or an energy budget; the two are equivalent.
The energy budget has the advantage that the figure of merit is Eb/N0 rather than
S/N . To compute received noise power N from N0 requires that a definition of system
bandwidth be entered into the power budget. For an energy budget, however, the system
bandwidth, which is clumsy to define, does not enter the calculation and does not even
need to be introduced.

A sample energy budget for a communication system is shown in Table 11.1. The
calculations are made in terms of decibels so that addition and subtraction replace
multiplication and division. Units are annotated to check that the result is dimensionless.
For purposes of this example, (Eb/N0)req = 8 dB has been arbitrarily selected. A major
task of this book is to compute (Eb/N0)req for many communication waveforms of
interest: indeed, to design waveforms so that (Eb/N0)req is small.

11.2 Channel capacity

Is it possible to improve the performance of a digital communication system indefinitely
by the use of ever more complicated modems? An answer to this question is given by
the subject of information theory, and we outline that conclusion in this section.
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Figure 11.1. Making a discrete channel from a waveform channel.

Any communication system in which a sequence of symbols chosen from a fixed
alphabet of symbols {s0, . . . , sM −1} can be transmitted from one point to another is
called a discrete channel. A discrete channel is made from a waveform channel by
the modem as indicated in Figure 11.1. We saw examples in the previous chapter of
modems whose inputs and outputs are streams of bits, and also modems whose inputs
and outputs are streams of symbols in some larger alphabet. Thus we may have a
discrete binary channel or a discrete M-ary channel.

A noiseless discrete channel is one for which the output symbol is completely deter-
mined by the input symbol. A noisy discrete channel, which is studied in this chapter,
is one for which the output symbol is not completely determined by the input symbol;
only some probability distribution on the set of output symbols is determined by the
input symbol. The noisy binary channel is an important example of a noisy channel.

If the probability distribution on the output symbol is independent of previous inputs
or outputs of the channel, the channel is called a memoryless channel. The probability of
error is independent from symbol to symbol for a memoryless channel. In the context
of this book, this means that there is no intersymbol interference, and the noise is
independent from sample to sample.

Information can be sent reliably through a discrete noisy channel by the use of an
elaborate cross-checking technique known as a data transmission code or an error-
control code. A binary data transmission code encodes k data bits into n code bits so as
to combat channel errors, as was discussed in Section 10.1. A general data transmission
code encodes k data symbols into n code symbols. The ratio k/n is called the rate of the
code. It is easy to fall into the misconception that a data transmission code is “wasting”
some of the channel bits (or symbols) because the channel must convey more code bits
than data bits. Actually the data rate is possible only because the error-control code is
used. The more enlightened view is that the use of the code makes it possible to achieve
performance that would not be possible without a code. The code may allow more bits
per second to be run through the channel but then imposes a tax. For a rate one-half
code, for example, the tax is equal to half of the channel bits. We would be willing
to pay this tax whenever the data transmission code allows the channel bit rate to be
increased by more than a factor of two.
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Consider an arbitrary noisy waveform channel used with the most general
encoder/modulator. To use the channel to transmit a message, a waveform of dura-
tion T representing that message is transmitted. The waveform comes from the set of
all possible waveforms that can be created by the encoder/modulator. The demodula-
tor/decoder then tries to determine which waveform was sent so that the message can
be recovered. Because the channel is noisy, there is a probability of error in recovering
the correct message. Let pem denote the average probability of message decoding error
averaged over all messages. For this purpose, all messages are assumed to be equally
likely. The probability of bit error pe (or the probability of symbol error) at the output
of the demodulator will be less than the probability of message error because not every
bit will be wrong in a wrong message. At the output of the demodulator, bit errors may
not be independent but may tend to be clustered by the structure of the waveform, so
we may also speak of error events. The performance of a code for data transmission is
judged by the bit error rate or the message error rate at the decoder output, or by the
probability of an error event.

Figure 11.2 shows an arbitrary and very general family of N waveforms of dura-
tion T . Any modulation scheme for data transmission can be described in principle by
describing, for each T , all of the N waveforms of duration T that it can produce. We
would like to design the waveforms so that N is as large as possible so that log2 N bits
can be transmitted in time T . Clearly, with a largest permissible probability of mes-
sage error pem specified, N cannot be increased indefinitely. Suppose that N (T , pem)

is the largest number of waveforms of duration T in any such set that can be distin-
guished with average probability of error pem. In precise terms, this means that it is
possible to construct N (T , pem) waveforms of duration T such that the waveforms can
be distinguished by the demodulator/decoder with average probability of error pem,
and that it is not possible to construct more than N (T , pem) waveforms satisfying these
requirements. In practice, we have little hope of ever computing N (T , pem), but such
a function exists in principle. Given a message with k databits, one can assign each of
the 2k messages to one of the N (T , pem) channel waveforms provided 2k ≤ N (T , pem).
This means that RT data bits can be transmitted in time T with probability of message
error pem provided

RT ≤ log2 N (T , pem).

The largest rate at which information can be transmitted reliably through a noisy
channel – that is, with very small probability of message error, or of bit error – is called
the capacity of that noisy channel. Specifically, we can define the capacity C (in units
of bits per second) of a noisy channel operationally by

C = lim
pem→0

lim
T→∞

[
log2 N (T , pem)

T

]
.
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Figure 11.2. A family of waveforms.

It is not at all obvious that C is nonzero. This definition of channel capacity implies that
if C is positive, then we can choose any probability of message error pem no matter how
small and there will be a T , perhaps very large, such that there are about 2CT waveforms
of duration T that will be confused only with probability smaller than pem. Thus, we
can send approximately C bits per second at any probability of error we choose, no
matter how small. In principle, we can choose the bit error rate to be thousands of
times smaller than the probability of failure of the channel or of the communication
equipment.

It is not obvious that information can be transmitted reliably through a discrete noisy
channel at any nonzero rate, and it is not obvious that the capacity C is larger than
zero. A remarkable deduction of information theory tells us that for most channels, C
is positive. As long as we are content to signal through the channel at a rate R smaller
than the capacity C, the probability of message decoding error pem, and hence the
probability of decoded bit error pe, can be specified arbitrarily small. Good codes exist
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with arbitrarily small decoded bit error rate and we can choose the code rate R and the
decoded bit error rate pe independently. The required blocklength will depend on these
choices. Conversely, no codes of good performance exist if data is to be transmitted at
a data rate larger than the channel capacity. If the data rate is larger than the channel
capacity, no matter how we encode, the bit error rate will be large. In fact, if we try to
transmit data at a high rate, the channel will be sure to make enough errors on average
so that the actual rate of data transmission will be smaller than the channel capacity.

The promise of the channel capacity is not without a price; to get small pem one
must encode in large blocks of length n or duration T and the cost of such encoders
might be prohibitive. Further, for most channels, we do not know practical procedures
for designing optimum or nearly optimum codes and encoders of large blocklength,
though we do know many procedures that are quite good. The definition of capacity
applies just as well to discrete-time channels or continuous-time channels. In the latter
case, we would speak of “input waveforms of duration T” and express capacity in units
of bits per second, while in the former case, of “input sequences of duration T” (or of
blocklength n) and express capacity in units of bits per symbol.

The definition of channel capacity that we have given is not in a form that is practical
for computing C. Instead, it asks that we design an optimum communication system
for every T and every pem, calculate N (T , Pem), and then take the indicated limits. It
is a major achievement of information theory (which we do not study in this book),
that simple formulas for C are obtained and these formulas are obtained in a way that
completely sidesteps the enormously difficult problem of optimum waveform design.
We shall examine some examples of formulas for the capacity of some channels, but
we forgo the general task of deriving these formulas. The binary symmetric channel is
a binary channel whose probability of error is independent of whether the symbol zero
or one is transmitted, and is memoryless if the probability of error is independent from
bit to bit. The capacity (in units of bits per symbol) of a memoryless binary symmetric
channel with single bit error probability pe at the channel output is

C = 1 + pe log2 pe + (1 − pe) log2(1 − pe)

bits per symbol. The binary symmetric channel is the kind of discrete channel that is
created by a binary phase-shift keying modulator and demodulator. As viewed from
modulator input to demodulator output, BPSK forms a discrete memoryless channel
with a probability of bit error pe. An encoder and decoder surrounding the modulator
and demodulator can reduce the probability of bit error as much as desired, provided
the rate of the code is not larger than C.

An M-ary orthogonal waveform alphabet creates another kind of discrete channel,
known as an M-ary symmetric channel. An M-ary symmetric channel makes inde-
pendent symbol errors with probability pe. Thus, a correct symbol is received with
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probability (1 − pe) and each of the M − 1 wrong symbols is received with probabil-
ity pe/(M − 1). The capacity of a memoryless M-ary symmetric channel with single
symbol error probability of pe is

C = log2 M + pe log2
pe

M − 1
+ (1 − pe) log2(1 − pe)

bits per channel symbol. Again, in principle, an encoder/decoder can reduce the bit
error rate as much as desired provided the code rate is not larger than C.

11.3 Capacity of gaussian channels

The binary symmetric channel and the M-ary symmetric channel have an input alphabet
that is finite. Now, in this section, we shall study channels whose input alphabet is con-
tinuous. First we study the important discrete-time, continuous channel with additive
and memoryless gaussian noise.2 Then we study waveform channels, both baseband
and passband, with additive gaussian noise.

Let S be the average input power to the additive gaussian-noise channel, and let N
be the average noise power. The capacity (in units of bits per sample) of this channel
is given by the Shannon capacity formula

C = 1

2
log2

(
1 + S

N

)
in units of bits per channel symbol.

A baseband waveform channel with the ideal rectangular transfer function

H ( f ) =
{

1 | f | ≤ W
0 otherwise

as shown in Figure 11.3, can be converted into a discrete-time channel by using the
Nyquist sampling theorem, but with a shift in the point of view. Instead of using

H (f )

f

White 
Noise

Noise
+

Figure 11.3. Ideal rectangular baseband channel.

2 In discrete time, white noise is also called memoryless noise.
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the sampling theorem in its original setting to go from a continuous-time signal to
a discrete-time signal, we use the interpolation formula to go from a discrete-time
signal to a continuous-time signal. This provides the modulator. The channel adds
white gaussian noise that is confined to the ideal passband characteristic by filtering in
the receiver. The receiver recreates a discrete-time signal by sampling. There are 2W
Nyquist samples per second consisting of samples of the input signal contaminated by
noise. Because the noise is white gaussian noise, the noise samples are independent.
Because the 2W noise samples per second are independent, the discrete-time channel
is a memoryless noise channel. Hence the Shannon capacity formula can be applied to
give the capacity expressed in units of bits per sample. In units of bits per second, it
becomes

C = W log2

(
1 + S

N

)
because there are 2W independent samples per second.

A complex baseband channel also has a capacity. The capacity of the complex
baseband channel with an ideal rectangular passband of bandwidth W is

C = 2W log2

(
1 + S

N

)
the factor of two occurring because the in-phase and quadrature channels are indepen-
dent. The ratio S/N refers to the ratio of the signal power per component to the noise
power per component. Equivalently, S/N is the ratio of the total signal power to the
total noise power.

A similar discussion applies to the passband channel. A passband waveform channel
with an ideal rectangular transfer function

H ( f ) =
{

1 | f ± f0| ≤ W
0 otherwise

as is shown in Figure 11.4, also can be converted into a discrete-time channel by
sampling. Now there are 4W Nyquist samples per second – 2W in-phase samples per
second and 2W quadrature samples per second. Taken together, these can be written

H (f )

f

White 
Noise

+
Noise

Figure 11.4. Ideal rectangular passband channel.
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as 2W complex Nyquist samples per second. For the passband channel, the Shannon
capacity formula becomes

C = 2W log2

(
1 + S

N

)
just as for the complex baseband channel.

The Shannon capacity formula for the real baseband channel in additive gaussian
noise

C = W log2

(
1 + S

N

)
leads to precise statements about the values of Eb/N0 for which good waveforms exist.
For an infinite-length message of rate R information bits per second, it is meaningful to
define Eb provided the average message power S is constant when averaged over large
time intervals. Then

Eb = S

R
.

This expression can be obtained by breaking the message into large blocks, each block
of duration T having energy ST and containing RT bits.

Let the signal power be written S = EbR and let the noise power N be written N0W .
The rate R must be less than the channel capacity C, so the Shannon capacity formula
yields the inequality

R

W
<

C

W
= log2

(
1 + REb

WN0

)
.

For the corresponding complex baseband channel or for the corresponding passband
channel, the inequality is

R

2W
<

C

2W
= log2

(
1 + REb

2WN0

)
.

Define the spectral bit rate density r by

r = R

B

where B = W for the real baseband channel and B = 2W for the complex baseband
channel or the passband channel.3 The spectral bit rate density r has units of bits per
second per hertz.

3 The intuition here is that the passband channel or the complex baseband channel has, in effect, twice the
bandwidth of the real baseband channel. When normalized by bandwidth, the capacity of all three cases is the
same.
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Figure 11.5. Capacity of baseband gaussian noise channel.

The spectral bit rate density r and Eb/N0 are the two most important figures of merit
of a digital communication system. In terms of these two parameters, the inequality
above becomes

Eb

N0
>

2r − 1

r
.

By designing a sufficiently sophisticated digital communication system, the ratio Eb/N0

can be made arbitrarily close to the bound. The inequality, shown in Figure 11.5, tells
us that increasing the bit rate per unit bandwidth increases the required energy per bit.
This is the basis of the energy/bandwidth trade of digital communication theory, where
increasing bandwidth at a fixed information rate can reduce power requirements.

Every communication system for a gaussian noise channel can be described by a
point lying below the curve of Figure 11.5. For any point below the curve one can
design a communication system that has as small a bit error rate as one desires. The
history of the digital communication industry can be described in part as a series of
attempts to move ever closer to this limiting curve with systems that have very low
bit error rate. The successful systems are those that employ judicious combinations of
modulation techniques and data transmission codes.

Waveforms that achieve most of the capacity of the additive gaussian noise channel
will use a wide range of input and output amplitude values. If the inputs and outputs are
restricted in their values, as in BPSK, then the capacity curves of the additive gaussian
noise channel without such a restriction no longer apply. Now the model of the channel
must be changed and the capacity recomputed. It will, of course, be smaller because a
constraint cannot make the situation better. For an ideal rectangular gaussian channel
(used with no intersymbol interference) whose output samples are demodulated to ±1
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(or to ±A), called a hardlimited output, there is not much point in using other than a
binary input.

To find the capacity of the additive gaussian noise channel when the input values
are constrained to the binary signal constellation ±1, we first recall that the binary
memoryless channel with probability of channel bit error pe has capacity (in units of
bits per symbol)

C = 1 + pe log2 pe + (1 − pe) log2(1 − pe).

In units of bits per second based on transmitting 2W symbols per second, the capacity
(in units of bits per second) is

C = 2W (1 + pe log2 pe + (1 − pe) log2(1 − pe))

and the spectral bit rate density satisfies r ≤ C/W .
Because we want this inequality for binary signaling expressed as a function of

Eb/N0, we must express pe in terms of Eb/N0. The energy Eb is the average energy
per user databit. It is not necessarily equal to the energy per BPSK channel bit because
the definition of capacity makes no statement that the data bits are modulated into the
BPSK sequence with one data bit becoming one channel pulse. The energy per user bit
Eb is related to the energy per BPSK channel pulse Ep by

Ep = R

2W
Eb = r

2
Eb

with R the rate in bits per second and 2W the number of pulses per second. (If it were
possible for every user bit to be a channel bit, and R/2W were equal to 1, then Ep and
Eb would be equal. In the presence of noise, however, reliable transmission will require
that r < 2 and Eb > Ep.) The probability of bit error for BPSK is

pe = Q

⎛⎝√2Ep

N0

⎞⎠
= Q

(√
r

Eb

N0

)
.

Combining this with the inequality

r ≤ 2(1 + pe log2 pe + (1 − pe) log2(1 − pe))

for the spectral bit rate density r gives an inequality relationship between r and Eb/N0.
We can gain another important insight for the additive gaussian noise channel by

replotting Figure 11.5 with Eb/N0 expressed in decibels as given in Figure 11.6. Now
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Figure 11.6. Capacity of baseband gaussian noise channel.

the capacity curve appears as nearly a straight line. The reciprocal slope at r = 6 is
about 2.3 dB/bit per second per hertz. This says that with optimal signaling in the region
of six bits per second per hertz, if we increase the spectral bit rate density by one bit per
second per hertz, then all bits transmitted must have their energy increased by about
2.3 dB. Asymptotically, the slope of this curve approaches one bit per second per hertz
per 3 dB, which can be seen by differentiating(

Eb

N0

)
dB

= log10
2r − 1

r

to get

d

dr

(
Eb

N0

)
dB

=
[

2r

2r − 1
− 1

r loge 2

]
log10 2

for large r. This means that, when r is large, increasing the spectral bit rate density
by one bit per second per hertz requires increasing the energy of every transmitted bit
by about 3 dB. Increasing the data rate by increasing the spectral bit rate density is
exponentially expensive in power.

If bandwidth W is a plentiful resource but energy is scarce, then one can let W go to
infinity. Then the spectral bit rate density r goes to zero. Figure 11.5 shows graphically,
however, that Eb/N0 remains finite, as is reaffirmed by the following theorem.

Theorem 11.3.1 For an additive white gaussian noise channel,

Eb

N0
≥ loge 2 = 0.69.
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Moreover, for an ideal rectangular additive white gaussian noise channel used without
intersymbol interference whose Nyquist samples are demodulated to ±1,

Eb

N0
≥ π

2
loge 2 = 1.18.

Proof Over nonnegative values of r, the function (2r − 1)/r has its minimum when
r is equal to zero. By L’Hopital’s rule, it follows that

Eb

N0
>

2r − 1

r
≥ log2 e

which proves the first line of the theorem.
To prove the second line of the theorem, we first observe that if the channel consists

of an additive gaussian noise channel followed by a hardlimiter, there is evidently no
reason to use other than a binary input. Thus, we can start with the formula for the
capacity of the binary memoryless channel. Because R ≤ C, we recall the following
inequality:

r ≤ 2(1 + pe log2 pe + (1 − pe) log2(1 − pe))

developed earlier. By series expansion of the right side around the point pe = 1
2 ,

r ≤ 4

(
pe − 1

2

)2

log2 e + o

((
pe − 1

2

)4
)

and

pe = Q

(√
r

Eb

N0

)
.

The o

((
pe − 1

2

)4
)

term will not play a role and we will not need to study it closely.

The reason is as follows. The required Eb/N0 is certainly least when r is very small,
because imposing a constraint on the bandwidth cannot possibly decrease the required
Eb/N0. (Otherwise, when bandwidth is large, the optimum waveform would use only
part of the bandwidth.) This means that the required Eb/N0 is least when the probability
of error of a channel bit pe is very close to one-half.

Let z = rEb/N0, and notice that Q(z) satisfies

pe = 1

2
−
∫ z

0

1√
2π

e−x2/2dx

≥ 1

2
− z√

2π
.



415 11.3 Capacity of gaussian channels

Consequently,

r ≤ 4

(
pe − 1

2

)2

log2 e + o

((
pe − 1

2

)4
)

≤ 4
z2

2π
log2 e + o(z4)

= 2

π
r

Eb

N0
log2 e + o

((
r

Eb

N0

)2
)

.

As r is made small, the second term on the right can be neglected. In any case it can
only lead to a larger lower bound on En/N0.

Therefore,

1 ≤ 2

π

Eb

N0
log2 e

and

Eb

N0
≥ π/2

log2 e
= π

2
loge 2

as was to be proved. �

The second inequality of the theorem, when referenced to the first inequality, says
that the energy penalty for using a hard decision in the demodulator is π/2. The first
inequality of the theorem is a fundamental limit. Expressed in terms of decibels, this
inequality states that the ratio Eb/N0 is not less than −1.6 dB for any digital communi-
cation system in gaussian noise. On the other hand, for any Eb/N0 larger than −1.6 dB,
one can communicate with as small a bit error rate as desired, but the communication
system might be outrageously expensive if one demands an unreasonably small bit error
rate. The second inequality of the theorem, which is closely related to the hardlimiter
to be studied in Section 11.8, says that Eb/N0 cannot be less than 0.4 dB if a hard-
decision demodulator is used. It is important to recognize here that the 2 dB penalty of
the hard decision applies to the case of a discrete-time channel, which may have been
created from a continuous-time channel at the Nyquist rate. A continuous-time channel
allows zero crossings at any time and, for this reason, our analysis does not apply. A
continuous-time channel might not suffer the same 2 dB loss in performance due to a
hard decision.

Ahardlimiter may be viewed as a quantizer at the output of a channel. We may instead
consider quantization at the input to the channel with a continuous alphabet at the
output of the channel. A discrete-time channel, real or complex, can be converted into a
discrete-alphabet input channel by choosing a finite set of input amplitudes. Such sets of
input amplitudes are the signal constellations that were studied in Chapter 2. Figure 2.6
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showed some signal constellations for real signaling, and Figure 5.17 showed some
signal constellations for complex signaling. The resulting discrete-time waveforms
are easily turned into continuous-time passband waveforms for passage through the
channel, as by using a Nyquist pulse and the modulation theorem.

When the input amplitude at each sample time is restricted to values in a signal
constellation with 2k points, then we expect that not more than k bits can be transmitted
per input symbol; this occurs reliably only when the signal-to-noise ratio is sufficiently
high. This means that when the channel input is restricted to take values only in a specific
signal constellation, the channel capacity is reduced as compared to the capacity of the
additive gaussian noise channel without such a constraint. This is because many possible
inputs have been lost, so there are fewer possible waveforms that can be transmitted. The
loss in channel capacity is the price paid for the simplification of a signal constellation.
We would like to choose the signal constellation so that reduction in channel capacity
is inconsequential. The methods of information theory can be used to compute the
channel capacity when the input is specified to lie in a given signal constellation. The
channel capacity as a function of signal-to-noise ratio, computed numerically, is shown
in Figures 11.7 and 11.8 for a variety of signal constellations whose symbols are used
equiprobably, as well as the capacity of the unconstrained gaussian channel. For low
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Figure 11.7. Channel capacity for some one-dimensional constellations.
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enough signal-to-noise ratio, each signal constellation has a capacity nearly that of the
unconstrained channel but falling a little short. The constraint that the symbols are used
equiprobably is useful in practice, but the capacity curves would improve slightly if
that constraint were removed. Figures 11.7 and 11.8 can be used to determine which
signal constellation closely enough achieves the available capacity. For example, by
examining Figure 11.8, we see that the capacity of a gaussian passband channel with
a 10 dB signal-to-noise ratio is only slightly degraded by choosing the sixteen-QAM
signal constellation, but the eight-PSK signal constellation would give up more than
0.5 bits/sample.

11.4 Signal impairments and noise

In common practice, the architecture of a modem is developed initially for an additive
gaussian noise channel, and then the design is embellished to protect against other kinds
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of noise and impairments. There are many reasons why the task is approached in this
way. One reason is that gaussian noise is present in every channel. Even when it does
not arise within the channel, gaussian noise arises as thermal noise in the front end of
the receiver.

Besides additive gaussian noise, there may be other additive signals contaminating
the received signal. These may be other communication signals in the environment,
perhaps echoes, or incidental signals from remote transmitters or adjacent frequency
bands. The interference may be from nearby electronic equipment, or intentional jam-
ming signals introduced by an adversary. The interference may even be generated within
the receiver, due to poorly filtered image signals generated in a mixer.

A received signal may be weaker than the gaussian thermal noise and may be much
weaker than other kinds of nongaussian interference. The matched filter will increase
the signal-to-noise ratio so that the signal could be demodulated were only the gaussian
noise present but, if the signal-to-interference ratio is too high, the interference may
limit the performance of the demodulator.

Up to this point another tacit assumption has been that the received signal is a faithful,
perhaps filtered, copy of the transmitted signal but for the noise. In fact, the received
signal can be distorted in many ways. The amplitude attenuation during propagation is
offset by amplifier gain in the front end of the receiver. This requires some form of gain
control, which is never perfect. Therefore there will be some uncertainty in the true
amplitude of the received signal. Amplitude uncertainty will affect the demodulation
error in some systems, such as those that employ a large signal constellation.

If a coherent demodulator is used, the carrier recovery circuit will not be perfect
because it will recover the carrier only with some residual phase error. There will also
be a residual time synchronization error due to the time recovery circuit, with the result
that the output of the matched filter will not be sampled at the correct instant. All of
these impairments will affect the demodulator’s performance. We should recalculate
pe versus Eb/N0 for the signaling waveform of interest in the presence of whatever
significant impairments might be encountered.

Nonlinearities may be present within the receiver as well – some intentional and
some not. In this chapter, we shall study the effects of nonlinearities, especially the
hardlimiter. Many kinds of interference can be suppressed by placing a hardlimiter or
other nonlinearity prior to the matched filter. We shall want to know what effect the
nonlinearity has on the signal-to-interference ratio, and also what effect a nonlinearity
has on the signal-to-noise ratio in case the interference is not present.

11.5 Amplitude uncertainty

A signal constellation has a scale factor and to demodulate a received symbol to the
closest point of the signal constellation requires that the amplitude of the signal be
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Figure 11.9. The effect of amplitude offset on decision regions.

known so that the received signal can be expressed in the same units as the signal
constellation. But the amplitude of the signal entering a receiver is generally not known.
It must be estimated from the signal itself. If the amplitude is known, then the amplitude
or the scale factor of the decision regions can be adjusted and the demodulator remains
optimal with respect to the current value of the scale factor.

There is also the possibility that, while the amplitude varies, the variation is not pre-
cisely known to the receiver. Then the decision regions will be misplaced, and the true
performance will not be described either by the true Eb/N0 or by the apparent Eb/N0.
Figure 11.9 shows a severe case for sixteen-ary quadrature-amplitude modulation. The
dotted lines show the correct decision regions. However, the construction of actual
decision regions is based on the minimum distance to a sixteen-ary QAM constellation
with the wrong scale factor. Because the decision regions are wrong, the probability of
error will be larger than it should be.

If, instead the example were the sixteen-ary PSK signal constellation, there would be
no sensitivity to amplitude uncertainty because in that case the decision regions depend
only on phase. Although the demodulator does not depend on the amplitude parameter,
the probability of error does.

To illustrate how the probability of bit error is affected by uncertainty in the received
amplitude, we shall study the OOK signal constellation. Except for the BPSK sig-
nal constellation, which would not adequately illustrate the point, the simplest signal
constellation is the binary OOK signal constellation. We shall find the probability of
demodulation error for OOK in additive gaussian noise for a pulse whose actual ampli-
tude at the output of the matched filter is the random variable A = aĀ, with mean Ā
and variance Ā2σ 2

a . Intuitively, changing the amplitude A of a pulse by δA should have
the same effect as adding noise of the same magnitude δA. This is the substance of the
following theorem.

Theorem 11.5.1 With a binary OOK waveform, whose amplitude is gaussian dis-
tributed with mean Ā and variance Ā2σ 2

a , by setting the decision threshold at Ā/2, it is
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possible to achieve a bit error rate in additive white gaussian noise of

pe = 1

2
Q

(√
Eb

N0

)
+ 1

2
Q

(√
Eb/N0

(1 + (2Eb/N0)σ 2
a )

)

where 2Eb/N0 = (Ā/σ)2.

Proof A data bit zero is transmitted with probability 1
2 . The first term corresponds to

the case of a transmitted zero. It depends only on the threshold 	 = Ā/2, not on the
actual value taken by A.

A data bit one is transmitted with probability 1
2 . The second term corresponds to the

case of a transmitted one. One can calculate this term directly. It is easier, however,
to bypass the algebraic manipulations by noticing that increasing A by δA changes
the term A + n by the same amount as if the noise instead were increased by δA. In
particular, the probability of error should depend only on the sum σ 2 + Ā2σ 2

a , rather
than on either term individually. Consequently, we reach the expression stated in the
theorem. �

The performance of binary OOK in the presence of random unknown ampli-
tude fluctuations is shown in Figure 11.10. When Eb/N0 is large, the expression in
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Figure 11.10. Performance of OOK with unknown amplitude fluctuations.
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Theorem 11.5.1 is approximated by

pe ∼ 1

2
Q

(√
1

2
σ−2

a

)
,

so the performance is completely dominated by the random amplitude fluctuations.
There is an important lesson here. When pe is very small, one should be wary of
the elementary performance curves that relate pe to Eb/N0 in additive gaussian noise
because phenomena that were neglected in deriving the performance curves may be
significant.

To set the threshold, the amplitude A must be estimated. If A changes very slowly in
comparison to the bit rate, we may estimate A from the received signal. Let

v(t) =
n−1∑
�=0

a�s(t − �T ) + n(t)

where n(t) is white gaussian noise, a� = 0 or A, and s(t) is such that there is no
intersymbol interference at the output of the matched filter. An elementary estimate for
A is based on the assumption that half of the databits are ones. This leads to a simple
average of the matched-filter outputs

Â = 2

[
1

n

n−1∑
�=0

u�

]
.

A better estimator is the maximum-likelihood estimator. The generalized likelihood
function for a single bit that is averaged over the two data values is

��(A) = 1
2 e−(x�−A)2/2σ 2 + 1

2 e−x2
�/2σ 2

,

and the averaged log-likelihood function for the full record is

�(A) =
n−1∑
�=0

log
[
e−(x�−A)2/2σ 2 + e−x2

�/2σ 2
]

.

By factoring out and dropping additive terms that do not depend on A, we can redefine
the likelihood statistic as

�(A) =
n−1∑
�=0

log
[
e2x�A/2σ 2−A2/2σ 2 + 1

]
.



422 Performance of practical demodulators

The maximum-likelihood estimate is that value of A for which the derivative of �(A)

is zero. Thus, the estimate Â satisfies

n−1∑
�=0

(x� − Â)

[
e(2x�Â−Â2)/2σ 2

e(2x�Â−Â2)/2σ 2 + 1

]
= 0.

To understand what this equation tells us, observe that the bracketed term is close to one
if x� is close to Â, and it is close to zero if x� is close to zero. Thus we can approximate
the bracketed term by one or by zero, and so approximate the estimator by

Â = 1

n′
∑
x̂�=1

x�

where the sum is over only those terms with x� ≥ Â/2, and n′ is the number of terms
in the sum. This approximation is still an implicit expression for an estimator – which
can be solved by a search procedure – but the sense of it is fairly transparent.

For a larger signal constellation, the maximum-likelihood estimator of amplitude
can be prohibitively complicated to use. However, one may examine the form of
the maximum-likelihood estimator as a vehicle for prompting the design of ad hoc
estimators that are practical to implement.

11.6 Phase uncertainty

Any unintentional phase modulation that is introduced into the received signal either
by the transmitter, by the propagation medium, or by the receiver is a source of phase
uncertainty. This may be due to the motion of the transmit antenna or the receive antenna
because of vibration; to phase errors arising in the local oscillators; to residual phase
errors arising in the carrier recovery circuitry; or to phase errors due to inhomogeneities
in the propagation medium. That portion of the phase error that fluctuates at a rate
comparable to or faster than the symbol rate is called phase noise.

Phase synchronization was discussed in detail in Chapter 8, as was the variance of
the residual phase error. All that remains to discuss is how the residual phase error folds
into the probability of demodulation error.

Let θ be a random variable denoting the residual phase error. Usually we will model
θ as a gaussian random variable with a zero mean and variance σ 2

θ . When represented
at complex baseband the received signal with a phase error is

v(t) = e jθ(t)c(t) + n(t).
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We can usually assume that the phase error changes slowly enough with time that it can
be treated as a constant over each symbol. This means that we can use the approximation

v(t) =
∞∑

�=−∞
a�e jθ(�T )s(t − �T ) + n(t).

The expected real part of the �th output sample of the matched filter is a� cos θ . The
coherent demodulator determines the data symbol as if θ were zero and the probability
of error depends on θ . Let pe|θ denote the probability of symbol error conditional on θ .
The expected probability of error is

pe = E[pe|θ ]

which will be a function of Eb/N0 and σ 2
θ .

As an example, we will develop an expression for the probability of error of BPSK in
the presence of gaussian-distributed phase noise. Given a phase error of θ , the amplitude
of the real part of the matched-filter output is ±A cos θ , and Eb is degraded by cos2 θ .
Thus

pe|θ = Q

(√
2Eb

N0
cos2 θ

)
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Figure 11.11. Performance loss caused by phase noise.
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and

pe =
∫ ∞

−∞
1√

2πσ 2
θ

e−θ2/2σ 2
θ Q

(√
2Eb

N0
cos2 θ

)
dθ .

This integral can be evaluated by numerical integration to produce curves such as
those shown in Figure 11.11. These curves show that phase noise with variance σ 2

θ

equal to (0.3)2 radians-squared requires about 2 dB larger Eb/N0 to maintain a bit error
rate of 10−5. A phase noise with variance σ 2

θ equal to (0.5)2 radians-squared cannot
maintain a bit error ratio of 10−5 with any reasonable increase in Eb/N0.

11.7 Multipath channels and fading

A multipath channel is one in which there are multiple propagation paths, as shown in
Figure 11.12. Each path is of a different length, and so each copy of the received signal
has a different propagation delay. Multipath arises in free-space propagation because
of reflections from objects in the environment, or for some carrier frequencies because
of multiple reflection layers in the ionosphere. Multipath is common in two-way com-
munication systems, such as mobile telephone circuits in urban environments, because
of multiple echoes caused by varied and unplanned reflections between transmitter and
receiver.

The character of the multipath channel depends strongly on the spread in the various
delays as compared to the duration of a modulation symbol. It may be that the difference
in propagation delay on the various paths is comparable to, or larger than, a symbol
duration. Then a single symbol is received several times, once for each propagation
path, but overlapping other symbols. If, instead, the difference in delay is much shorter
than a symbol duration and the delay changes with time, then a single symbol inter-
feres with itself and the multipath channel reduces to a fading multipath channel. A
fading multipath channel is one in which the received signal strength varies markedly
with time because of the changing relationship between multiple propagation paths
causing constructive and destructive interference. Fading arises in free-space propa-
gation because of changes in the propagation conditions, which may occur because of
changes in reflection layers in the ionosphere, or because of changes due to motion of
the transmitter or receiver.

Transmitter Receiver

Figure 11.12. A simplified multipath geometry.
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t

h (t )

Figure 11.13. Impulse response of a multipath channel.

The impulse response of a multipath channel is of the form

h(t) =
I∑

i=1

hi(t − τi)

where hi(t) is the impulse response and τi is the delay of the ith propagation path. In
some cases, the propagation paths may have slowly varying attenuations and slowly
varying delays. Then we should write τi(t) in place of τi.

Figure 11.13 shows the impulse response of a multipath channel for which each
propagation path has an impulse response whose duration is small compared to the
relative delay between propagation paths, and each path is modeled as a pure delay.

If the duration of a channel symbol is small compared to the separation between
impulses as shown in Figure 11.13, then a multipath channel can be regarded as a kind
of unintentional diversity communication channel. To achieve superior performance, it
is important to collect and combine the energy of all significant multipath signals. If the
multipath response can be learned by the receiver by observation of the received signal,
then it may be possible to coherently or noncoherently combine the diversity “fingers”
if they can be separated. A receiver that has a response at each multipath component is
called a rake receiver.

A slowly fading channel is one for which the received signal strength changes slowly
in comparison to the symbol rate. The received signal is

v(t) = a(t)e jθ(t)c(t) + n(t)

where a(t) and θ(t) vary slowly in comparison to c(t). We shall consider both coherent
and noncoherent demodulators that estimate a(t), and possibly θ(t), from the received
signal. If the phase angle θ(t) is slowly varying, it can be recovered in the demodulator
and stripped from the carrier. Of course, in practice, neither θ(t) nor a(t) will be esti-
mated precisely, and this will cause further degradation as was studied in Sections 11.5
and 11.6.

Before studying the demodulators, we shall first motivate the study of slowly fading
channels by considering a multipath model and the typical circumstances that can lead to
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a fading channel. A passband multipath channel may be given in the complex baseband
representation

h(t) =
I∑

i=1

hi(t − τi)e
jθi

where I is very large, and the phase term (or part of the phase term) is θi = 2π f0τi

which arises due to a delay of τi on the carrier. If the impulse response and the delays τi

of each multipath channel is short compared to the duration of the transmitted signal,
then we can write this as

h(t) = δ(t)
I∑

i=1

hie
jθi

where the hi are random and independent. By reference to the central limit theorem,
when I is large we can approximate this by a complex gaussian random variable.
Changing this representation of the complex gaussian random variable to an amplitude
and phase representation, we have

h(t) = Ae jθ δ(t)

where A is a rayleigh random variable and θ is uniform as was shown in Section 6.4. In
the general case the multipath situation is changing with time, and we write the channel
output as

v(t) = A(t)e jθ(t)δ(t)

with the assumption that A(t) and θ(t) are changing slowly in comparison with c(t), but
are rayleigh and uniform random variables, respectively, at each t. This means that over
one or several channel symbols, the channel can be considered as fixed. This channel
is known as a slowly fading rayleigh channel. We may choose to use a phase-recovery
technique to estimate and remove the slowly varying θ(t). We then have a received
signal of the form

v(t) = A(t)c(t) + n(t),

which can be coherently demodulated. Because A(t) is slowly varying, it can be esti-
mated from the received waveform, and each symbol can be demodulated as if A(t)
were constant and known. The probability of symbol error then depends on the actual
signal-to-noise ratio for that symbol, and on the accuracy of the estimate of A(t).
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For example, in the case that A = aĀ, where a is a fixed and known attenuation,
BPSK has an error probability given by

pe|a = Q

(√
a2 2Eb

N0

)
.

If, instead, a is a random variable with a probability density function p(a), the average
probability of bit error is given by the expectation

pe = E[pe|a]

=
∫ ∞

0
p(a)pe|ada.

For rayleigh fading, p(a) is a rayleigh probability density function. Then

pe =
∫ ∞

0

a

b2
e−a2/2b2

pe|ada

where the parameter b should be chosen such that

E[a2Eb] = Eb.

This requires that 2b2 = 1. Then

p(a) = 2ae−a2
.

Now we are ready for the following theorem.

Theorem 11.7.1 The bit error rate of BPSK on a phase-coherent slowly rayleigh
fading channel is

pe = 1

2

[
1 −

√
Eb

N0 + Eb

]
.

Proof Conditional on a, the probability of error is

pe|a =
∫ ∞

0

1√
2πσ

e−(x−aĀ)2/2σ 2
dx

=
∫ ∞

aĀ

1√
2πσ

e−x2/2σ 2
dx

so that, by reference to the discussion prior to the theorem statement,

pe =
∫ ∞

0
2ae−a2

∫ ∞

aĀ

1√
2πσ

e−x2/2σ 2
dx da.
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Replace x/σ by y and a
√

2 by z to make the exponents compatible. Then

pe =
∫ ∞

0
ze−z2/2

∫ ∞

Āz/
√

2σ

1√
2π

e−y2/2dy dz.

The integration is over a wedge-shaped region in the y, z plane, which is well-suited to
working in polar coordinates. Let

y = r cos φ

z = r sin φ

dy dz = r dr dφ.

The lower limit on the y integration is

y = Ā√
2σ

z,

which translates into

φ = tan−1

(√
2σ

Ā

)
.

Therefore

pe =
∫ ∞

0

∫ tan−1(
√

2σ/Ā)

0

1√
2π

r2 sin φe−r2/2dr dφ,

which separates into two elementary integrals that can be evaluated to give

pe = 1√
2π

(√
2π

2

)[
1 − cos tan−1

(√
2σ

Ā

)]

= 1

2

[
1 − Ā√

2σ 2 + Ā2

]

= 1

2

[
1 −

√
Eb/N0

1 + Eb/N0

]
,

as was to be proved. �
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We could have proved Theorem 11.7.1 in a slightly different way by first deriving
an unconditional probability density function on x as

p(x) =
∫ ∞

0
p(a)p(x|a)da

=
∫ ∞

0
2ae−a2 1√

2πσ
e−(x−aĀ)2/2σ 2

da

and then integrating p(x) from 0 to ∞.

Theorem 11.7.2 The bit error rate of a coherently demodulated binary FSK on a
slowly rayleigh fading channel is

pe = 1

2

[
1 −

√
Eb

2N0 + Eb

]
.

Proof The proof is nearly the same as the proof of Theorem 11.7.1. �

Theorem 11.7.3 The bit error rate of DPSK on a slowly rayleigh fading channel is

pe = 1

2 + 2Eb/N0
,

and the bit error rate of noncoherently demodulated binary FSK on a slowly rayleigh
fading channel is

pe = 1

2 + Eb/N0
.

Proof The starting point is the expression for the probability of error of DPSK

pe = 1
2 e−Eb/N0

= 1
2 e−A2/2σ 2

.

Therefore for the proof at hand,

pe|a = 1
2 e−a2Ā2/2σ 2

and

pe =
∫ ∞

0
2ae−a2 1

2 e−a2Ā2/2σ 2
da

=
∫ ∞

0
ae−a2(1+Ā2/2σ 2)da

= 1

2 + 2Eb/N0
,
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as was to be proved. The second half of the theorem can be proved by noting that
noncoherent FSK requires 3 dB more energy than DPSK. �

Whereas the probability of error on an additive gaussian-noise channel decreases
exponentially with Eb/N0, the probability of error on a slowly rayleigh fading channel
goes as (Eb/N0)

−1. This is a considerable degradation in performance. To recover, a
diversity technique is commonly used. The most important technique is the noncoherent
combining of an M-ary FSK diversity waveform. We shall derive the maximum-
likelihood diversity combining rule for this case, where we shall need to deal with
the probability density function of the magnitude of the matched-filter output. Surpris-
ingly, even though the ricean probability density function cannot be expressed in terms
of elementary functions, when averaged over a rayleigh amplitude distribution, the
probability density function takes on a simple form, as follows.

Theorem 11.7.4 For each a, let p(x|a) be the ricean density function

p(x|a) = xe−(x2+a2)/2I0(ax),

and let a be a rayleigh random variable. Then p(x) is rayleigh with the density function

p(x) = 2x

3
e−x2/3.

Proof The unconditional probability density function is

p(x) =
∫ ∞

0
p(a)p(x|a)da

=
∫ ∞

0
2ae−a2[xe−(x2+a2)/2I0(ax)]da.

Substitute the definition of I0(z) and interchange the order of integration

p(x) =
∫ 2π

0

∫ ∞

0

ax

π
e−((x2−2xa cos φ+a2)/2)−a2

da dφ.

With the change of variables, a cos φ = u, a sin φ = v, and a da dφ = du dv, this
becomes

p(x) = x

π

[∫ ∞

−∞
e−(3u2−2ux+x2)/2du

] [∫ ∞

−∞
e−3v2/2dv

]
.
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Completing the square and redefining the variable of integration in the first integral
gives

p(x) = x

π
e−x2/3

[∫ ∞

−∞
e−3v2/2dv

]2

,

= 2x

3
e−x2/3

which completes the proof of the theorem. �

Theorem 11.7.5 The maximum-likelihood demodulator for a noncoherently received
L-ary diversity, M-ary FSK waveform, with independently fading rayleigh amplitudes
in gaussian noise, chooses that m for which

�(m) =
L−1∑
�=0

u2
m�

is largest, where um� is the output of the mth matched filter at the �th diversity sample.

Proof Let pS(xm�) and pN (xm�) be as in the paragraph leading to Theorem 11.7.1.
The maximum-likelihood principle leads us to maximize the function

�′′(m) =
L−1∑
�=0

log
pS(xm�)

pN (xm�)
.

When there is only noise, each output magnitude is described by a rayleigh random
variable.

pN (x) = x

σ 2
e−x2/2σ 2

.

When there is a rayleigh distributed signal in gaussian noise, the magnitude again is
described by a rayleigh random variable, as asserted by Theorem 11.7.4.

pS(x) = 2x

1 + 2σ
e−x2(1+2σ 2).

Therefore

�′′(m) =
L−1∑
�=0

[
log

2σ 2

1 + 2σ 2
+ x2

m�

2σ 2(1 + 2σ 2)

]
.

This is maximized by the same m that maximizes

�(m) =
L−1∑
�=0

x2
m�,

and the proof is complete. �
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Figure 11.14. Performance of L-ary diversity binary FSK on a rayleigh fading channel.

To evaluate the performance of L-ary diversity signaling on a slowly rayleigh-fading
channel, one must compute the probability of demodulation error. The probability of
demodulation error is computed initially by finding a probability density function on the
decision statistic in the presence of a signal plus noise and in the presence of noise only.
This requires an L-fold convolution of probability densities. The probability of error
is then written in the form of an equation similar to that appearing in Theorem 6.8.1.
Numerical integration gives performance curves, such as those shown in Figure 11.14
for the case M = 2, which is binary FSK. The curve labeled L = 1 is described by
Theorem 11.7.3.

11.8 The hardlimiter at baseband and passband

In applications in which the amplitude of the received signal prior to the matched filter
is small compared to the additive gaussian noise, one may elect to pass the received
signal through a hardlimiter. The reason for this is that strong impulsive interfering
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Figure 11.15. The hardlimiter.

signals are greatly attenuated, and as we shall see in some cases, the signal itself is only
slightly attenuated.

The hardlimiter is defined by the function

y = h(x) =

⎧⎪⎨⎪⎩
1 x > 0
0 x = 0

−1 x < 0.

The equality condition is of little importance, sometimes it is merged with either of the
inequality conditions, as by redefining h(x) = −1 when x ≤ 0. Then the hardlimiter
can be thought of as a one-bit scalar quantizer.

The hardlimiter is represented symbolically in Figure 11.15. Also shown is an exam-
ple of the output of the hardlimiter when the input is a baseband waveform. The only
attribute of the input waveform that is retained in the output waveform is the location
of the zero crossings.

We are interested in the hardlimiter primarily when it is used with passband wave-
forms as inputs. When restricted in this way, the hardlimiter is called a passband
hardlimiter. A passband hardlimiter has been introduced intentionally into many
kinds of communication receivers, particularly in satellite relays and in jam-resistant
communication systems, to prevent a strong signal from masking a weak signal.



434 Performance of practical demodulators

There is an indirect way of specifying a hardlimiter based on the following definite
integral

∫ ∞

−∞
sin(ξa)

ξ
dξ =

⎧⎪⎨⎪⎩
π if a > 0
0 if a = 0

−π if a < 0,

which can be found in most tables of definite integrals. Using this integral, the
hardlimiter can be described as

y(t) = 1

π

∫ ∞

−∞
sin(ξx(t))

ξ
dξ .

This description of the hardlimiter looks complicated and unnatural, but it will prove
to be useful.

We are interested in the output of a passband hardlimiter when the input is a passband
waveform in additive gaussian noise. Thus

x(t) = s(t) + n(t)

where both s(t) and n(t) are passband waveforms.
The proof of the next theorem requires reference to tables of definite integrals.

Specifically, we shall use the well-known definite integrals∫ ∞

0
J0(ξx)xe−x2/2dx = e−ξ2/2

where J0(x) is a Bessel function of the first kind, and∫ ∞

−∞
sin(2xy)e−x2 dx

x
= πerf (y)

where the error function erf (y) is defined as

erf(y) = 2√
π

∫ y

0
e−z2

dz.

Theorem 11.8.1 (Reed–Jain Theorem) The expected output E[y(t)] of a passband
hardlimiter when the input is the passband signal s(t) in additive stationary passband
gaussian noise of variance N is given by

E[y(t)] = erf

(
s(t)√

2N

)
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Proof The proof begins by expressing y(t) as a function of x(t) using the definite
integral

y(t) = 1

π

∫ ∞

−∞
sin[ξx(t)]dξ

ξ
.

When x(t) = s(t) + n(t) is inserted into this integral, the sine of a sum appears. It may
be expanded into the sum of products

y(t) = 1

π

∫ ∞

−∞
sin[ξs(t)] cos[ξn(t)]dξ

ξ
+ 1

π

∫ ∞

−∞
cos[ξs(t)] sin[ξn(t)]dξ

ξ
.

The passband gaussian noise at the hardlimiter input may be expressed as

n(t) = r(t) cos(2π f0t + φ(t))

where the envelope r(t) and the phase φ(t) are slowly time-varying random variables
having, at each instant, rayleigh and uniform probability densities, respectively.

Substitute the above statement of the noise as the noise term in the previous
expression and use the general Fourier expansions

cos(z cos p) = J0(z) + 2
∞∑

m=1

(−1)mJ2m(z) cos 2mp

sin(z cos p) = 2
∞∑

m=0

(−1)mJ2m+1(z) cos(2m + 1)p,

in terms of the Bessel functions J�(z). Then the following expression for the output of
the hardlimiter is obtained:

y(t) = 1

π

∫ ∞

−∞
sin[ξs(t)] · J0(ξr(t))

dξ

ξ

+ 2

π

∞∑
m=1

(−1)m
∫ ∞

−∞
sin[ξs(t)]J2m(ξr(t))

dξ

ξ
cos 2m(2π f0t + φ(t))

+ 2

π

∞∑
m=0

(−1)m
∫ ∞

−∞
cos[ξs(t)]J2m+1(ξr(t))

dξ

ξ
· cos(2m + 1)(2π f0t + φ(t)).

All terms in the above equation are random because the noise amplitude r(t) and phase
φ(t) are present. Because all terms in the second two integrals contain a random phase,
those two integrals will not contribute to the average and can be dropped when taking
the expectation of y(t). Only the first integral will yield an average output. Therefore

E[y(t)] = 1

π

∫ ∞

−∞
sin[ξs(t)]E[J0(ξr)]dξ

ξ
.
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The expected value of J0(ξr) is given by

E[J0(ξr)] =
∫ ∞

0
J0(ξr)p(r)dr

where p(r), the probability density function of the noise amplitude, is a rayleigh density
function

p(r) = r

σ 2
e−r2/2σ 2

.

Therefore

E[J0(ξr)] =
∫ ∞

0
J0(ξr)

r

σ 2
e−r2/2σ 2

dr

= e− 1
2 ξ2σ 2

by the first definite integral given prior to the statement of the theorem. Substitution
into the expression for E[y(t)] gives

E[y(t)] = 1

π

∫ ∞

−∞
sin[ξs(t)]e− 1

2 ξ2σ 2 dξ

ξ

= erf

(
s(t)√

2N

)
by the second definite integral given at the start of the proof. This completes the proof
of the theorem. �

When the signal is weak compared to the noise, the output of the hardlimiter may
be described more simply. We shall establish a model in which the signal s(t) passes
through the hardlimiter attenuated but otherwise unchanged. The noise, on the other
hand, is dispersed in several ways, as shown in Figure 11.16. The noise power is
clustered at the harmonics of f0. At each harmonic, part of the noise power appears in
the form of a scaled replica of the original noise signal, and part of it is smeared out in
a more complicated way.

S (f )

f
–5f0 5f0–3f0 3f0–f0  f0

Figure 11.16. Spectrum of hardlimited passband white gaussian noise.
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Corollary 11.8.2 A weak passband signal s(t) in additive passband gaussian noise has
its signal-to-noise ratio reduced by 2/π when passed through a passband hardlimiter.
That is,(

S

N

)
out

∼= 2

π

(
S

N

)
in

.

Moreover, if the hardlimiter output is passband-filtered to its original bandwidth, then(
S

N

)
out

>
π

4

(
S

N

)
in

.

Proof The error function is defined as

erf(x) = 2√
π

∫ y

0
e−x2

dx.

When x is small, the integrand is approximately equal to one, which leads to the
approximation

erf (x) ≈ 2√
π

x.

Therefore, the expected value of the output of the hardlimiter, by Theorem 11.8.1 is

E[z(t)] =
√

2

π

s(t)

σ
,

so the output power is 2/(πσ 2) times the input power. Because the noise power at
the hardlimiter output is essentially the same as the total output power – which equals
one – the first part of the corollary is proved.

The second statement is a consequence of how the noise power is distributed on
the frequency axis. With s(t) equal to zero, the input of the passband hardlimiter is
passband gaussian noise, which can be put in the form

n(t) = r(t) cos[2π f0t + φ(t)].

The hardlimiter discards r(t) and turns the phase-modulated cosine waveform into a
phase-modulated square waveform. Let

ξ = f0t + 1

2π
φ(t).
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The hardlimiter output n0(t) is a square wave in the variable ξ . Using the Fourier series
expansion of a square wave in ξ gives

n0(t) = 4

π

∞∑
k=0

(−1)k cos(2k + 1)2πξ(t)

2k + 1

= 4

π

∞∑
k=0

(−1)k cos(2k + 1)(2π f0t + φ(t))

2k + 1
.

If f0 is large, then the spectrum of the first term does not overlap with the spectra of
the other terms. All terms but the first can be rejected by a passband filter that is wide
enough to pass only the first harmonic. Then the expression for n0(t) is given by

n0(t) = 4

π
cos[2π f0t + φ(t)].

Because the average of cos2 x equals 1
2 , the average output noise power in the first

harmonic is

N0 = 1

2

(
16

π2

)
.

Because of the phase modulation φ(t), part of the noise power in the first harmonic will
actually lie outside the original passband. This part of the noise also will be rejected,
so the output noise satisfies the strict inequality

Nout <
8

π2
.

Combining this inequality with the first part of the corollary proves the second part of
the corollary. �

Next, we look deeper into the effect of the passband hardlimiter on the spectrum of
the gaussian noise. For this purpose, we take the input to the hardlimiter to be noise
only. We can anticipate something of the behavior. By rewriting the noise n(t) in two
parts,

n(t) = n′(t) + n′′(t),

where n′′(t) is the portion of the noise lying in a narrow-frequency interval about an
arbitrary frequency f , and n′(t) is the remainder of the noise. If the frequency interval
is small, then n′′(t) is small compared to n′(t). We can regard n′′(t) to be the signal and
apply Theorem 11.8.1 and Corollary 11.8.2. They say that n′′(t) passes through the filter
attenuated. Because this is true for every frequency component of n(t), we conclude
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that, in some sense, the output of the hardlimiter preserves some sort of attenuated
replica of n(t), though contaminated by other terms.

The next several theorems will provide a more precise description of the relationship
between the output and the input of a hardlimiter excited by gaussian noise.

Theorem 11.8.3 (Van Vleck–Middleton Theorem) If the input to a hardlimiter is a
zero-mean stationary gaussian process x(t) with autocorrelation function Rxx(t), then
the output has the autocorrelation function

Ryy(τ ) = 2

π
sin−1

[
Rxx(τ )

Rxx(0)

]
.

Proof We begin with the representation

y(t) = 1

π

∫ ∞

−∞
sin[ξx(t)]dξ

ξ
.

Then

Ryy(τ ) = E[y(t)y(t + τ)]

= 1

π2
E
∫ ∞

−∞

∫ ∞

−∞
sin[ξx(t)] sin[ηx(t + τ)]dξ

ξ

dη

η
.

Use Cauchy’s formula to expand each sinusoid into two terms

Ryy(τ ) = − 1

4π2
E
∫ ∞

−∞

∫ ∞

−∞
[e jξx(t) − e−jξx(t)][e jηx(t+τ) − e−jηx(t+τ)]dξ

ξ

dη

η
.

Expanding the product in the integrand gives four terms, and the expectation can be
distributed across these four terms. We shall work through the expectation of one of
these terms. Let

M (ξ , η) = E[e jξx(t)+jηx(t+τ)].

This can be recognized as a bivariate characteristic function. Because x(t) and x(t + τ)

are jointly gaussian, the bivariate characteristic function can be readily evaluated. It
has the form of a two-dimensional Fourier transform, and can be evaluated as such. It is

M (ξ , η) = e−(ξ2+2ρξη+η2)/2

where ρ is the correlation coefficient of x(t) and x(t + τ).
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There will be four such terms, but only two different terms. They are equal in pairs.
The expression for Ryy(τ ) becomes

Ryy(τ ) = − 1

2π2

∫ ∞

−∞

∫ ∞

−∞
[e−(ξ2+2ρξη+η2)/2 − e−(ξ2−2ρξη+η2)/2]dξ

ξ

dη

η

= 1

2π2

∫ ∞

−∞

∫ ∞

−∞
e−(ξ2+η2)/2[eρξη − e−ρξη]dξ

ξ

dη

η
.

Change the integral of a difference into the difference of two integrals. Then in the
second integral, change the dummy variable ξ to −ξ . The second integral changes sign
and is now seen to be the same as the first. Then the two combine to give

Ryy(τ ) = 1

π2

∫ ∞

−∞

∫ ∞

−∞
e−(ξ2+2ρξη+η2)/2 dξ

ξ

dη

η
.

To integrate this, we use the method of differentiating under the integral sign. Let I(ρ)

denote the integral as a function of ρ, and notice that I(0) equals zero. The derivative
of I(ρ) is

dI(ρ)

dρ
= 1

π2

∫ ∞

−∞

∫ ∞

−∞
e−(ξ2+2ρξη+η2)/2dξ dη.

This is in the form of the integral of a two-dimensional gaussian density function and
would be equal to one if normalized properly. Hence by inspection of the required
normalizations, we find that

dI(ρ)

dρ
= 2

π

1√
1 − ρ2

.

Consequently,

I(ρ) = 2

π

∫ ρ

0

dx√
1 − x2

= 2

π
sin−1 ρ,

which, because ρ = Rxx(τ )/Rxx(0) completes the proof of the theorem. �

This theorem and the next theorem are companions: Theorem 11.8.3 gave the
autocorrelation at the output of the hardlimiter, while Theorem 11.8.4 gives the
cross-correlation between the input and the output.

Theorem 11.8.4 If the input to a hardlimiter is a stationary, unbiased gaussian process
with autocorrelation function Rxx(τ ), then the cross-correlation function between input
and output is given by

Rxy(τ ) =
√

2

π

Rxx(τ )√
Rxx(0)

.
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Proof We begin with the representation

y(t) = 1

π

∫ ∞

−∞
sin[ξx(t)]dξ

ξ
.

Then

Rxy(τ ) = E[x(t + τ)y(t)]

= 1

π
E
∫ ∞

−∞
[x(t + τ)] sin[ξx(t)]dξ

ξ
.

Use Cauchy’s formula to expand the sine into two terms

Rxy(τ ) = 1

2jπ
E
∫ ∞

−∞
x(t + τ)[e jξx(t) − e−jξx(t)]dξ

ξ
.

Expanding the product gives two terms: we will work through the expectation of one
of these terms by recalling the bivariate characteristic function

M (ξ , η) = E[e jξx(t)+jηx(t+τ)],

we can write

∂M (ξ , η)

∂η

∣∣∣∣
η=0

= E[jx(t + τ)e jξx(t)],

which has the form of the integrand above. But we know that

M (ξ , η) = e−(ξ2+2ρ(τ)ξη+η2)/2

where ρ = ρ(τ) is the correlation coefficient of x(t) with x(t + τ). Therefore

jE[x(t + τ)e jξx(t)] = −ρ(τ)ξe−ξ2/2.

Because there are two such terms, the expression for Rxy(τ ) becomes

Rxy(τ ) = 1

π

∫ ∞

−∞
ρ(τ)e−ξ2/2dξ

=
√

2

π
ρ(τ) =

√
2

π

Rxx(τ )

Rxx(0)
.

This completes the proof of the theorem. �
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Figure 11.17. Second-order model of hardlimited gaussian noise.

The picture that emerges from Theorems 11.8.3 and 11.8.4 is shown in Figure 11.17.
Up to second-order moments, we can model the effect of the hardlimiter on gaussian
noise x(t) in terms of the equation

y(t) =
√

2

π

x(t)√
Rxx(0)

+ e(t)

where e(t) is a noise term uncorrelated with x(t). We call it “self-noise” because it is
noise created by the signal x(t). To validate this equation, correlate both sides with x(t),
then with y(t). This gives the correlation functions

Rxy(τ ) =
√

2

π

Rxx(τ )√
Rxx(0)

+ E[e(t)x(t + τ)]

and

Ryy(τ ) = 2

π

Rxx(τ )

Rxx(0)
+
√

2

πRxx(0)
E[e(t)x(t + τ) + x(t)e(t + τ)] + E[e(t)e(t + τ)].

The first equation and Theorem 11.8.4 lead to the conclusion that

E[e(t)x(t + τ)] = 0

and the expression for Ryy(τ ) becomes

Ryy(τ ) = 2

π

Rxx(τ )

Rxx(0)
+ E[e(t)e(t + τ)].

Comparing this equation to Theorem 11.8.3 gives the autocorrelation function of the
self-noise

E[e(t)e(t + τ)] = 2

π

[
sin−1 Rxx(τ )

Rxx(0)
− Rxx(τ )

Rxx(0)

]
.

This model is meaningful up to second moments. Even though e(t) is uncorrelated with
x(t), it is not independent of x(t). In fact, e(t) is completely determined by x(t).
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The power density spectrum of the self-noise is obtained by taking the Fourier
transform of the autocorrelation function. Using the Taylor series

sin−1 x − x = 1

6
x3 + 3

40
x5 + 5

112
x7 + · · · ,

we see that the autocorrelation function of the self-noise is

Ree(τ ) = 2

π

[
1

6
Rxx(τ )3 + 3

40
Rxx(τ )5 + 5

112
Rxx(τ )7 + · · ·

]

where the function has been normalized so that Rxx(0) = 1. Then the power density
spectrum is

See( f ) = 2

π

[
1

6
S( f )(∗3) + 3

40
S( f )(∗5) + 5

112
S( f )(∗7) + · · ·

]
,

with the notation defined by

S( f )(∗n) = S( f ) ∗ S( f ) ∗ · · · ∗ S( f )

where there are n copies of S( f ) on the right and S( f ) is the Fourier transform of Rxx( f ).
This is the background that is behind Figure 11.16. The rearrangement of the passband
noise spectrum at the input S( f ) to form the noise spectrum at the output, comprised
of Syy( f ) and See( f ), is illustrated in Figure 11.18. Other terms at harmonics of f0 are
not shown here, but were shown in Figure 11.16. The total power density spectrum
near f0 is shown in Figure 11.19. If the output is filtered back to its original passband,
the small tails of See( f ) will be suppressed.

f0

f

Self-noise Spectrum

Output Spectrum

Input Spectrum

2

4

6

8

1 0

S (f )

Figure 11.18. Rearrangement of spectrum at the output of a hardlimiter.
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Figure 11.19. Passband spectrum at the output of a hardlimiter.

11.9 Smooth nonlinearities

A smooth nonlinearity h(x) is a continuous function that operates on the instantaneous
value of the input waveform x(t) to produce the output y(t) = h(x(t)). Among the
smooth nonlinearities are monotonic nonlinearities, such as softlimiters and compan-
ders, and nonlinearities that are not monotonic, such as square law devices. We shall
examine the effect that a nonlinearity can have on a pulse s(t) or on the pulse spectrum
S( f ). Generally, the nonlinearity will change the way the energy is distributed on the
frequency axis, placing energy in regions of the frequency axis where there was none
prior to the nonlinearity. This is sometimes loosely referred to as energy “splattered”
out of the original band by the nonlinearity. The first principle we will develop shows,
however, a sense in which this newly created signal spectrum is uninformative.

Theorem 11.9.1 Let h(x) be a strictly increasing function of x such that h[s(t)] has
finite energy whenever s(t) does. Suppose that s1(t) and s2(t) are finite energy baseband
pulses whose spectra are zero only at frequencies satisfying | f | ≤ W . If h(s1(t)) and
h(s2(t)) have spectra that are equal for | f | ≤ W , then s1(t) equals s2(t) for all t.

Proof Let r1(t) = h(s1(t)) and r2(t) = h(s2(t)). By Parseval’s theorem, we can write∫ ∞

−∞
[R1( f ) − R2( f )][S∗

1 ( f ) − S∗
2 ( f )]df =

∫ ∞

−∞
[r1(t) − r2(t)][s∗

1(t) − s∗
2(t)]dt.

The left side is zero because the first factor of the integrand is zero when | f | ≤ W , and
each term in the second factor of the integrand is zero when | f | > W . Consequently,∫ ∞

−∞
[r1(t) − r2(t)][s∗

1(t) − s∗
2(t)]dt = 0.
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But h(x) is a strictly increasing function, so the first factor of the integrand has the same
sign as the second factor, thus the integrand is never negative. Because the integral
equals zero, the integrand must be zero. But both factors are nonzero if s1(t) does not
equal s2(t). Therefore s1(t) equals s2(t). �

The point of the theorem is this: obviously because h is strictly increasing, when
s1(t) �= s2(t), then h(s1(t)) �= h(s2(t)). What is not so obvious, but is asserted by the
theorem, is that h(s1(t)) and h(s2(t)) can be passband filtered to the original bandwidth
and will still be different. The difference in the outputs of the filtered pulses, however,
need not be as large as the difference in the original pulses. Although a monotone
nonlinearity, followed by a passband filter, may reduce the euclidean distance between
two distinct waveforms in that passband, it can never reduce that distance to zero. In
additive gaussian noise, the effect of the nonlinearity can be described as an effective
loss in Eb/N0. In gaussian noise, it must be a loss, in general, rather than a gain because
the maximum-likelihood demodulators do not call for any nonlinearity. Determining
the magnitude of this loss is rarely analytically tractable, if ever; it usually requires a
computer simulation to determine.

The effect of a smooth nonlinearity on a passband signal is also of interest. This effect
often can be described separately for the modulation and the carrier. The outgoing
signal of any smooth passband nonlinearity, such as a softlimiter, can be described
in principle by a method slightly similar to the Van Vleck–Middleton theorem. The
smooth nonlinearity affects both the modulation and the carrier, the latter by creating
harmonics. Let the smooth nonlinearity h(x) have input x(t) = A cos(2π f0t + θ).
Because the input is periodic, the output will be periodic. Therefore, the output can be
expanded in a Fourier series, which must have the form

h(x(t)) =
∞∑

�=0

h�(A) cos(2π�f0t + �θ)

where h�(A) is the �th Fourier coefficient, which is a function of A. More generally
when the amplitude and phase are varying slowly in comparison with cos 2π f0t,

x(t) = A(t) cos(2π f0t + θ(t)),

and we have the quasi-stationary approximation

h(x(t)) =
∞∑

�=0

h�(A(t)) cos(2π�f0t + �θ(t)).

In general, it would be tedious to compute the h�(A). However, for integer power-law
nonlinearities, standard trigonometric identities allow a closed-form expression. For
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example, if h(x) = x3, we can state explicitly

h(x(t)) = A3(t) cos3(2π f0t + θ(t))

= 3

4
A3(t) cos(2π f0t + θ(t)) + 1

4
A3(t) cos 3(2π f0t + θ(t)).

The passband signal at f0 can be filtered from the other harmonics if f0 is large. The
effect of the cubic nonlinearity on the passband signal is almost as if the amplitude only
were passed through the cubic nonlinearity, and then modulated. Other odd-power
nonlinearities of passband waveforms behave similarly. Even-power nonlinearities,
however, have no output modulation component at frequency f0.

The quasi-stationary approximation regards the passband waveform as narrow in
frequency with respect to f0, and the nonlinearity affects the carrier and the modulation
separately. The cubic nonlinearity does expand bandwidth because A(t)2 has a wider
bandwidth than A(t), not because the dominant carrier broadens.

This approximation breaks down if the passband waveform is not narrow. This is
demonstrated by considering the case of two sinusoids. When the input to a smooth
linearity is the sum of two passband signals, the output of the nonlinearity may be
predominantly the sum of two passband signals. Consider the passband signal

x(t) = x1(t) + x2(t)

= a0(t) cos 2π f0t + a1(t) cos 2π f1t.

The cubic nonlinearity will form cubes of the terms x1(t) and x2(t) individually, which
can be treated as before, and cross terms such as

3x1(t)
2x2(t) = (a0(t)

2 cos2 2π f0t)(a1(t) cos 2π f1t)

= 3a0(t)2a1(t)

2

[
cos 2π f1t + 1

2
cos 2π(2f0 + f1)t + 1

2
cos 2π(2f0 − f1)t

]
.

If f0 and f1 are not too different, the new carrier at 2f0 − f1 will lie in the modulation
band.

Problems for Chapter 11

11.1. a. Is the performance of an optimal coherent demodulator for M-ary orthogo-
nal signaling affected by amplitude variations in the received signal (slow
variations compared to the symbol duration)? Does the answer depend on
whether the variations are known to the demodulator? Explain.

b. Repeat for a noncoherent demodulator.
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11.2. a. Suppose that a coherent demodulator for M-ary orthogonal signaling con-
tains a noisy reference. The phase error θe is modeled as a zero-mean
gaussian random variable of variance σ 2

θ . Assuming that σ 2
θ � 1, set up an

integral for pe as a function of Eb, N0, and σ 2
θ .

b. For M = 2, express pe using the error integral Q(x).
11.3. Give an ad hoc estimator for the amplitude of a coherent binary FSK wave-

form in additive gaussian noise when it is known that the amplitude does
not change during a block of n bits. Find the maximum-likelihood estima-
tor for estimating amplitude and demodulating data simultaneously. Find
the maximum-likelihood estimator for estimating amplitude only with data
treated as a random nuisance parameter and averaged out. How do these three
estimators compare?

11.4. a. Prove Theorem 11.5.1 by a direct argument as follows. Begin with the
equations

pe|a = 1

2

∫ ∞

A/2

1√
2πσ

e−x2/2σ 2
dx + 1

2

∫ A/2

−∞
1√

2πσ
e−(x−a)2/2σ 2

dx

pe =
∫ ∞

−∞
1

2πAσa
e−(aA−Ā)2/2Ā2σa2

da

and evaluate pe by interchanging integrations, combining exponents, and
completing the square in the exponent.

b. Is it possible to redefine the threshold to reduce the average bit error rate?
11.5. Give a tight approximation for the probability of bit error for a sixteen-ary

square signal constellation if the signal amplitude is multiplied by a gaussian
random variable a of mean one and variance σ 2

a , withσa much smaller than one.

11.6. Let x be the magnitude (normalized by (2N0)
1
2 ) of the matched-filter output of

a pulse output of a rayleigh fading channel. The probability density function
of x is

p(x) = x

1 + 2b2(Ep/N0)
e−x2/(2+4b2Ep/N0).

a. Let y = x2. Show that the probability density function of y is

p(y) = 1

1 + 2b2(Ep/N0)
e−y/(1+2b2Ep/N0)

when the signal is present, and

p(y) = e−y

when the signal is absent.
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b. Given L independent diversity samples with statistic z = ∑L
�=1 x2

� , show
that

p(z) = zL−1

(L − 1)!(1 + 2b2(Ep/N0))
e−z/(1+2b2Ep/N0)

when the signal is present, and

p(z) = zL−1

(L − 1)!e
−z

when the signal is absent.
c. Show that the bit error rate of noncoherently combined L-ary diversity

binary FSK on a slowly fading rayleigh channel is given by

pe =
L−1∑
�=0

(−1)�(2L − 1)!
�!(L − 1)!(L − 1 − 1)!(L + �)

(
2 + 2b

Ep

N0

)−L−�

.

Verify that this reduces to the correct equation when L = 1.
11.7. In contrast to the abrupt transition of a hardlimiter, a softlimiter makes a

gradual transition between the limits of ±1. One possible choice of amplitude
characteristic for the softlimiter is the error function

y = erf

(
x√
2α

)
.

Prove that when a signal s(t) in gaussian noise of variance σ 2 is applied to this
softlimiter, the expected output is

E[y(t)] = erf

[
s(t)√

2(σ 2 + α2)

]
.

11.8. Prove that whereas a weak signal in the presence of gaussian noise is attenuated
with respect to the noise by 1 dB by a passband hardlimiter, a weak signal in
the presence of an interfering pure sinusoid is attenuated with respect to the
sinusoid by 6 dB by a passband hardlimiter. Specifically, let

v(t) = cos 2π f1t + a cos 2π f0t

where cos 2π f1t is the interfering sinusoid, a cos 2π f0t is the signal, and a is
small compared to one. Show that the input to the hardlimiter is

v(t)=
√

(1 + a cos 2π( f0 − f1)t)2 + (a sin 2π( f0 − f1)t)2 cos(2π f1t + φ(t)).
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The output of the hardlimiter, when filtered to the passband, is approximately

v(t) = cos(2π f1t + φ(t))

= cos 2π f1t + a cos 2π f0t√
1 + a2 + 2a cos 2π( f0 − f1)t

≈ cos 2π f1t + a

2
cos 2π f0t − a

2
cos 2π(2f1 − f0)t.

If a is replaced by a pulse, as(t), describe what happens at the output of a filter
matched to the passband pulse s̃(t).

11.9. A diversity communication system sends the same BPSK waveform through
two additive gaussian-noise channels. A malicious source of interference,
called a jammer, randomly chooses one of the two channels independently
from bit to bit and inserts additional gaussian noise into that channel. There-
fore the outputs of a pair of matched filters on the pair of channels both have
a mean output of ±A, depending on the value of the data bit, and have vari-
ances N0, N0 + J0 or N0 + J0, N0, depending on which channel the jammer
chooses.
a. What is the maximum-likelihood decision rule for the �th data bit in terms

of the outputs of the two matched filters at time �T , denoted x� and y�?
b. Write down a likelihood function for the �th data bit with the jammer state

averaged out. What is the decision rule maximizing this function, given
that J0 � N0?

c. Now suppose that there are three diversity channels and the jammer ran-
domly chooses one of the three to jam at each bit time. What is the
maximum-likelihood decision rule?

d. Suppose that there are two diversity channels but that the jammer state
remains the same for a block of n data bits. What is the likelihood function
for the jammer state averaged over data? What is the estimate for the jammer
state that maximizes this function?

11.10. Adiversity communication system uses two diversity channels and binary FSK
signaling. The two channels have identical but unknown phase errors. Sketch
an optimal demodulator and give an expression for the probability of bit error
as a function of Eb/N0, given that both channels are functioning and are of
equal amplitude.

11.11. a. Given that random variable X has a probability density function p(x), what
is the probability density function for X 2?

b. Given that random variables X� have probability density functions p(x�),
what is the probability density function for

∑L−1
�=0 X 2

� ?
c. Write down the set of equations that must be numerically integrated

to compute the probability of bit error as a function of Eb/N0 for an
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eight-ary orthogonal signaling waveform with 4-ary noncoherent diversity
and square-law combining.

11.12. Find the maximum-likelihood demodulator for a noncoherently received L-
ary diversity OOK waveform with independent rayleigh fading amplitudes in
additive gaussian noise.

11.13. Let ε > 0 be given. Show that, for any d , one can find a nonlinearity h(x) and
two pulses s1(t) and s2(t) satisfying Theorem 11.9.1, such that∫ ∞

−∞
(S1( f ) − S2( f ))2df = d

and∫ W

−W
(R1( f ) − R2( f ))2df < ε

where r1(t) and r2(t) are the outputs of the nonlinearity.
11.14. A mixer, used to change carrier frequency from f0 to f1, is constructed from a

nonlinear element

y = a0 + a1x + a2x2 + a3x3

by setting

x(t) = v(t) + cos 2π( f0 − f1)t

and filtering out the component of y(t) at frequency f1. Suppose f0 = 100 MHz,
f1 = 10 MHz and v(t) has bandwidth equal to 1 MHz.
a. Sketch the spectrum of y(t) and specify the filter.
b. Suppose thatv(t) is contaminated by an interfering signal at frequency f ′

0 . At
what values of f ′

0 will there be a problem of interference at the intermediate
frequency?

11.15. A satellite transponder may contain a nonlinearity that will require extensive
numerical computation to study it completely. The flavor of such a problem
may be appreciated, however, by looking at a simple discrete-time problem.
A discrete-time BPSK waveform with intersymbol interference is

ck = ak + 0.1ak−1

(where ak = ±1) and is contaminated by additive gaussian noise and passed
through a hardlimiter

vk = sgn [ck + nk ]
where nk is memoryless zero-mean gaussian noise with variance σ 2 = 1.
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a. Is a decision-feedback demodulator a suitable demodulator? Is the Viterbi
algorithm suitable?

b. What is the maximum-likelihood demodulator?
c. Construct an example of a data sequence and a received sequence and show

how the data sequence can be recovered by a recursive procedure.
11.16. A coherent 32-ary diversity communication channel contains a hardlimiter

prior to the matched filter in each diversity channel and the signal energy is
divided evenly among the channels.
a. Suppose that all channels are equally noisy and that the signal is less than

the noise at the hardlimiter input. What is the penalty in Eb/N0 because of
the presence of the hardlimiters?

b. Now suppose that the noise is twice as strong on sixteen of the diver-
sity channels as on the others. By how much must Eb be increased to
compensate? Compare this to the case in which there is no hardlimiter.

c. Finally, suppose that the noise is eight times as strong on four of the diver-
sity channels as on the others. By how much must Eb be increased to
compensate? Compare this to the case in which there is no hardlimiter.

Notes for Chapter 11

The analysis of the performance degradation due to phase and amplitude imbalance is
a standard calculation and was surveyed by Franks (1980). The method known as a
rake receiver for dealing with multipath was demonstrated by Price and Green (1958)
based on decision-theoretic fundamentals. The optimal diversity combining technique
for a rayleigh fading channel was derived by Pierce (1958). Price (1954, 1956) had
also studied diversity combining. Cheun (1997) calculates the bit error rate of a rake
receiver in various applications.

The effect of a hardlimiter on gaussian noise is important in communication systems,
in radar systems, and in control systems. It has been well-studied, starting with the
work of Davenport (1953) and of Van Vleck and Middleton (1966). The Van Vleck–
Middleton formula can also be obtained as a consequence of Price’s theorem (1958).
The effect of a hardlimiter on a signal in gaussian noise was studied by Reed (1958)
and Jain (1972). The cross-correlation between the input and output of a nonlinear
device was studied by Bussgang (1952). The theorem that a monotonic nonlinearity
cannot reduce the distance to zero between two waveforms within a passband was
given by Beurling and reported by Landau (1960). Continuing work on the study of the
effect of nonlinearities includes contributions by Manasse, Price, and Lerner (1958);
Cahn (1961); Jones (1963); Blachman (1964, 1971); and Davisson and Milstein (1972).
Robust methods for signal processing were studied by Kassam and Poor (1985).
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The deep insight that every stationary channel is described by a constant, called its
capacity, is one of the many great contributions of Shannon (1948). The formula for the
capacity of the additive gaussian noise channel is a fundamental formula of information
theory, and is derived in most textbooks of that subject.

Berger (1966) compared the performance of a linear equalizer to performance bounds
of information theory. Price (1972) extended this comparison to decision-feedback
demodulation, thereby establishing the intrinsic superiority of that technique.
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The communication problem can be given a new dimension of complexity by the
introduction of an adversary. The adversary may have a variety of goals. The goal
may be to interrupt communication, to detect the occurrence of communication, to
determine the specific message transmitted, or to determine the location or the identity
of the transmitter. The communication problem now takes on aspects of the theory of
games. The transmitter and receiver comprise one team while the adversary comprises
the other team.

An adversary may try to interrupt communication by falsifying the messages or by
inserting noise into the channel. In the former case, the adversary is called a spoofer
while in the latter case, the adversary is called a jammer. An adversary who intends to
read the specific message transmitted is called a cryptanalyst. An adversary who intends
to determine the location or the identity of the transmitter or to detect the occurrence
of communication is called a signal exploiter.

Waveform techniques to counter a jammer or an exploiter are similar; both try to
spread the waveform over a wide bandwidth. Such waveforms are called antijam wave-
forms or antiexploitation waveforms. Techniques to counter a spoofer or a cryptanalyst
tend to be similar: these may use a secret permutation on the set of messages to represent
the actual message by a surrogate message formed in an agreed, invertible way based
on a secret key. Techniques to counter a spoofer are called authentication or signature
verification.

12.1 The jammer channel

The jammer channel is a continuous-time waveform channel in which the received
signal is given by

v(t) = c(t) + n(t) + e(t)

where n(t) is additive noise and e(t) is a waveform chosen maliciously by an adversary
who intends to disrupt communication. The jammer channel occurs in military and
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political situations. The jammer selects a noiselike waveform from the set of waveforms
at its disposal; usually, in theoretical analyses, the only limitation on the jammer’s
waveform is average transmitted power.

The jamming problem is not meaningful unless the resources available to each side
are specified. If both sides have unlimited resources, then a meaningful solution to the
problem cannot be found because the opponents will continually increase, without limit,
the sophistication of their respective equipment and their transmitted power. If resource
limitations are specified, then the problem has a meaningful solution and will usually
be expressed in terms of a maximum data rate under these constraints that the optimal
communicator can maintain in the presence of the optimal jammer. For the purpose of
waveform design, the jammer’s resources are usually defined as the average jammer
power measured at the receiver; the transmitter’s resources are defined as the average
signal power measured at the receiver. The transmitter usually is also constrained in
the total occupied bandwidth.

The jammer always has the option of transmitting gaussian noise. It can also transmit
other kinds of noise waveforms, including random pulses and tones. We can view the
problem in two ways. In the first case, which is the best case for the designer of the
communication system, the jammer first selects the noise waveform. We then find the
best communication waveform to penetrate that form of noise. In the second case,
which is the worst case for the designer of the communication system, we first select
the communication waveform. The jammer then selects a noiselike waveform that is
the most disruptive to that communication waveform. The communicator’s strategy is
to turn the second case into the first case by designing the system to make the worst-case
jammer tactic the least disruptive. This assumption, that the jammer always uses the
optimum jamming waveform, is a premise that underlies all of the theory, although real
jammers need not be so diabolical.

Information theory gives us the strong statement, without conditions, that white
gaussian noise is the most difficult noise to communicate through, in the sense that
the achievable bit rate at a given power level is least. Therefore, in the first case, to
reduce capacity, the jammer will select broadband gaussian noise. In the second case,
the jammer has the option of transmitting broadband gaussian noise. However, the
optimal jammer may select a more damaging jamming tactic based on its knowledge
of the communication waveform. The designer tries to construct a waveform such that,
even though the waveform is known, the jammer can find no tactic more damaging
than white gaussian noise.

The jammer saddle point is the name for the equilibrium condition given by that pair
of strategies wherein the transmitter waveform is so clever that it forces the jammer
to use white gaussian noise as its optimum strategy, and the jammer is wise enough to
realize that this is the optimum strategy left open to it, and so it uses gaussian noise. The
jammer saddle point provides a convenient point of reference to describe the quality of
an antijam system. The vulnerability of an antijam waveform is judged by the ratio of
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the power that the optimum jammer needs to jam the system to the power that a white
gaussian-noise jammer needs to jam the system. The waveform design is deficient to
the extent that this ratio is less than one, as it will be for any practical waveform.

The method of spread-spectrum signaling, to be studied in Section 12.3, is central
to most antijam communication systems. The motivation can be developed by recall-
ing that, for any fixed signaling technique in white gaussian noise, the probability
of symbol error depends on Eb/N0. Consequently, when the jammer transmits white
gaussian noise of two-sided power density spectrum J0/2, the probability of symbol
error depends on Eb/J0. To improve performance, one can increase Eb, decrease J0,
or use a waveform allowing demodulation at smaller Eb/N0. To increase Eb, one can
increase the effective transmitted power or reduce the data rate. To decrease J0, one
can use spread spectrum. Spread spectrum is that class of waveform design techniques
that takes a “low” bandwidth signal and converts it to a high bandwidth signal in an
invertible way that is not known to the jammer. The jammer must then cover this wide
bandwidth with its fixed jammer power J . Hence the jammer power density spectrum
J0 is reduced by the ratio of the bandwidths.

The most pessimistic assumption affecting the design of an antijam communication
system is that the jammer will have full knowledge of the design of the transmitter
and receiver. It will only lack knowledge of the secret key controlling the generation
of certain parameters such as the value of a pseudorandom sequence. This jammer
will attack the receiver at its most vulnerable point. Instead of a direct attack trying
to mask the output of the matched filters, the jammer may try to disrupt the carrier
synchronization or time synchronization functions, or it may try to exploit a weakness
introduced by a nonlinearity in the receiver. Indeed, every special defensive mechanism
or circuit introduced into a receiver to counter one jammer tactic needs to be examined
to ensure that it has not introduced a new vulnerability to a different jammer tactic.

Nonlinearities are always present in a practical receiver. Phase and time synchro-
nization circuits will always contain nonlinear elements. The demodulator may include
nonlinear elements either because of unavoidable limitations of the dynamic range, or
because the designer has some other specific reason for including them. To counter cer-
tain jammer tactics, such as partial-message jamming or pulse jamming, a nonlinearity
may be introduced. Therefore the communication system designer must always be wary
of any vulnerability to new jammer tactics created by the nonlinearity, and must ensure
that the jammer cannot find a new strategy that attacks an unrecognized vulnerability.

12.2 Partial-message jamming

A partial-message jammer works on the principle that, in most applications, destroying
only a small part of a message invalidates the entire message. The jammer may not have
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enough average power to jam the entire message, but if it concentrates the available
power on part of the message, the jammer may be able to destroy that part. It is pointless
to inquire about whether this is a sensible strategy for the jammer. The design specifi-
cation for most jam-protected communication equipment will specify a maximum bit
error rate. The communication system must be designed to meet that specification for
any jammer tactic, limited only by jammer average power. In particular, the system
must operate when the jammer uses partial-message jamming.

A simple tactic for the partial-message jammer is to transmit bandlimited white
gaussian noise with power density spectrum J0/ρ in the communications band during a
fraction ρ of the time,1 and to transmit nothing during the remaining time. On average,
the power density spectrum of the jammer is still J0. The receiver sees a total noise
power density spectrum of N0 + J0/ρ for a fraction ρ of the time, and N0 for the
remaining time. The parameter ρ is called the duty factor of the jammer.

We know that, for BPSK in additive white gaussian noise, the probability of bit error
is given by

pe = Q

(√
2Eb

N0

)
.

Similar expressions have been derived in Chapter 3 for other signaling waveforms, and
the following discussion is easily modified to apply to these as well.

The average probability of error in the presence of a partial-message jammer is
obtained by replacing N0 by N0 + J0/ρ during the time when the jammer is on. (We
are ignoring as inconsequential the consideration that the jammer may turn on midway
through a bit interval.) Therefore, for BPSK,

pe = (1 − ρ)Q

(√
2Eb

N0

)
+ ρQ

(√
2Eb

N0 + J0/ρ

)
.

When N0 is small in comparison to J0, we can write

pe ≈ ρQ

(√
2Ebρ

J0

)
.

The intelligent jammer will maximize this expression by choice of ρ. By numerical
methods, we can find that the function zQ(z

1
2 ) has its maximum value of 0.1657 at

z = 1.44. Therefore, provided that it is not larger than one, the maximizing choice of

1 Technically, the power density spectrum is not defined for a nonstationary waveform. To avoid imprecision, we
could replace the jammer signal by w(t)e(t) where w(t) is zero or one, and e(t) is stationary noise.
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Figure 12.1. Performance of PSK against a partial-message jammer.

ρ is 1.44/(2Eb/J0) and

pe = 0.1657

2Eb/J0
.

This expression goes as (Eb/J0)
−1. The probability of error decreases much more

slowly than it does in white gaussian noise, which decrease is asymptotically exponen-
tial in Eb/N0. A comparison is shown graphically in Figure 12.1. At a bit error rate of
10−5, the partial-message jammer needs to use only a thousandth of the average power
of a full-message jammer.2

The tactic of partial-message jamming gives the jammer an enormous advantage
against simple BPSK and, for similar reasons, against most other simple waveforms.
The communication waveform designer must consider the strategy of partial-message
jamming and must try to build a defensive mechanism into the waveform design. The

2 However, there comes a point at which the average jammer power may not be a meaningful limitation on a
jammer if the duty factor is so small that the peak jammer power is unreasonably large.
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two basic defenses within the waveform itself are symbol splitting and error-control
codes. Symbol splitting is a diversity technique, repeating the same symbol L times,
as was described in Section 7.5. To be effective, the symbol energy must be split into
distinctly separated parts of the waveform but recombined in the receiver in such a way
that there is not more than a small penalty in required Eb/N0 when the noise is white
and gaussian. The goal of symbol splitting is to recover each symbol with a probability
of error governed primarily by the copies that have the largest signal-to-jamming ratio,
and to have nearly the performance of a system without symbol splitting whenever the
jammer is absent. This forces the jammer to divide its noise power so that nearly all
symbol copies receive approximately the same jamming power.

To evaluate the performance of a symbol-splitting diversity system against a partial-
message jammer, we will idealize the problem. Specifically, we assume that the receiver
can always recognize without failure which symbols are contaminated by the jamming
signal. We then say that the demodulator has perfect side information. For a partial-
message jammer, the jamming signal is either strong or absent, so the approximation is
a good one. In practice, there is a small probability that the receiver will fail to recognize
that a symbol is jammed, but this small probability is ignored in our simplified analysis.

The simplest diversity waveform is BPSK with each bit transmitted L times in a
pseudorandomly scrambled way in the bit sequence so that the jammer cannot predict
where the L copies of the same bit will appear. To demodulate a bit, the receiver will
examine the L received copies of the bit, identify the jammed copies, and coherently
sum the matched-filter output of all copies of that bit that are not jammed, as shown
in Figure 12.2. The detection decision is made once on the sum of the matched-filter
outputs.

Let the L′ unjammed copies of the bit under discussion be at times k1T , k2T , . . . , kL
′T .

Then the L′ pulses comprising these L′ copies can be considered to form a single
composite pulse, given by

(±a)sc(t) = (±a)

L′∑
�=1

s(t − k�T ).

Sample 
at 
kT

Threshold 
after 

L� copies

Perfect 
Side Information

s*(–t )
Variable 
Delay 

T
∑
L�–1

=1k

Figure 12.2. Elementary combining of diversity BPSK.
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This can be regarded as a single pulse in white gaussian noise and demodulated as
such. The demodulator passes the received copy through the filter matched to sc(t) and
detects the sign of the output at t = 0. The appropriate sampled output of the filter
s∗

c(−t) is

uc =
∫ ∞

−∞
v(ξ)s∗

c(ξ)dξ

=
∫ ∞

−∞
v(ξ)

L′∑
�=1

s∗(ξ − k�T )dξ

=
L′∑

�=1

∫ ∞

−∞
v(ξ)s∗(ξ − k�T )dξ

=
L′∑

�=1

u(k�T ).

This tells us that the output of matched filter s∗
c(−t) can be realized by summing the

appropriate output samples of filter s∗(−t). When there is no jammer, all copies of
the pulse will be integrated, and the demodulation decision will use all of the energy
dedicated to that bit. Each copy of that bit has energy Eb/L and there are L copies.
Consequently, there will be no loss in Eb/N0 when there is no jammer.

When some of the matched-filter outputs u(k�T ) are known to be jammed, then it
is appropriate to discard those outputs or to attenuate their contribution to the sum.
Assuming for the moment that the hypothetical receiver has perfect side information
describing the jammer tactic, we may use for the decision statistic the weighted sum

uc(0) =
L′∑

�=1

N0

N�

u(k�T )

where N� is the total power due to the jammer plus noise at the �th copy of the bit. In
the simplest case

N� =
{

N0 + J0/ρ

N0

according to whether or not the �th copy of the bit is jammed. If J0/ρ is large compared
to N0, we have the approximation

uc(0) ≈
{∑

unjammed u(k�T )∑L′
�=1

N0
N0+J0/ρ

u(k�T ),

according to whether some copies are unjammed or all are jammed. This approximation
makes it easy to write down an approximation to the probability of symbol error.
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Let ρ be the probability that a given copy of the bit is jammed. The probability of

jamming � copies is
(

L
�

)
ρ�(1 − ρ)L−1. When � copies are jammed, the received bit

energy is reduced to Eb(L − �)/L. Therefore

pe =
L−1∑
�=0

(
L

�

)
ρ�(1 − ρ)L−�Q

(√
2Eb(L − �)/L

N0

)
+ ρLQ

(√
2Eb

N0 + J0/ρ

)

where the last term accounts for the case in which all L copies are jammed. If N0 is
negligibly small compared to J0/ρ, the probability of error can be approximated as

pe ≈ ρLQ

(√
2Ebρ

J0

)
.

For fixed L, Eb, and J0, the partial-message jammer will choose ρ to maximize pe.
To find the maximum of pe, we need to maximize the function zLQ

(√
z
)
. For each L,

this function has a unique maximum that can be found numerically or graphically. The
probability of error versus Eb/J0 is shown in Figure 12.3. This figure tells us that, within
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Figure 12.3. Performance of diversity PSK against a partial-message jammer.



461 12.3 Bandwidth expansion

the limits of the approximation, four-way or five-way symbol splitting will ensure that
a partial-message jammer is not much worse than a full-message jammer.

The performance, shown in Figure 12.3, is an approximation because the thermal
noise N0 is neglected and because the side information is assumed to be perfect. Practical
methods for combining diversity pulses must estimate the needed side information from
the received signal itself. The estimate should be robust with respect to variations in
the jammer signal. Otherwise, the jammer may attempt a back-door attack on the
demodulator by trying to create misleading side information.

Diversity transmission can be thought of as a degenerate kind of error-control code.
Such a code is known as a repetition code. If one adopts this view, it must be regarded
as an (L, 1) block code demodulated by using full (soft) side information in the form of
likelihood statistics on the unjammed symbols and erasures on the jammed symbols.

One can also choose to use a general (n, k) block code, but usually in the role of an
outer code. The individual codeword symbols are demodulated as such and errors or
erasures may occur in the symbols that are severely jammed. Erasures correspond to
symbols that are known to be jammed, errors correspond to symbols that are jammed;
but are thought not to be.

12.3 Bandwidth expansion

Bandwidth expansion is at the heart of most antijam communication waveforms, and
spread spectrum is the most common method of bandwidth expansion. Spread spec-
trum achieves its performance by forcing the jammer to cover a wider spectrum than
necessary, thereby diluting the jammer’s power density spectrum. Merely spreading
the bandwidth of the communication waveform is not sufficient. The spreading must
be done in such a way that the jammer cannot mimic the spreading in its waveform.
Thus there must be a secret function associated with the spreading waveform; otherwise
the spread-spectrum waveform will have no jamming advantage against an optimum
jammer.

In this section, we shall explore the relationship between bandwidth expansion and
channel capacity, and then describe some general methods of bandwidth expansion. In
the next two sections, we shall study in some detail specific methods of spreading the
spectrum.

The performance of any digital communication waveform in gaussian noise depends
on Eb/N0. The required value of Eb/N0 depends on the chosen modulation technique,
but once the modulation technique is fixed, the pulses can be redesigned in many
ways without changing Eb. In particular, the pulse can be chosen to have a very large
bandwidth in comparison to the data rate because the energy in a pulse and the bandwidth
of the pulse can be chosen separately. The reason for choosing a pulse with a large
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Figure 12.4. Spread-spectrum signaling.

bandwidth is to force the jammer to occupy a large bandwidth also. If J0 is the power
density spectrum of a white noise jammer that has a fixed total power J , then J0 is made
smaller by increasing the bandwidth W because J0 = J/W . This is the essential idea
of the spread spectrum strategy. It reduces J0 by increasing W when J is fixed.

The term “spread spectrum” describes any of a class of techniques that take a signal
of small bandwidth B and converts it into a signal of large bandwidth W where the ratio
W/B is much larger than one. As shown in Figure 12.4, this is done by modulating
the information waveform with a wideband noiselike waveform that is unknown to the
jammer. The wideband signal is transmitted through the channel, received, compressed
back into the original low bandwidth signal by demodulating the information waveform
from the wideband waveform, and filtering. This scheme requires that the transmitter
and the receiver share knowledge of the spreading waveform through a secure (but
not necessarily contemporaneous) channel. If the jammer does not know the wideband
waveform, its strategy is to use gaussian noise of bandwidth W as the jamming signal.
In any case, after the signal spectrum is compressed, the jammer signal will still have
bandwidth W , as shown in Figure 12.5. After passband filtering of the despread received
signal, the jammer noise power will be reduced by the factor B/W .

The signal power S is equal to EbR where R is the data rate and the jammer power
J is equal to J0W where W is the jammer bandwidth. Then we can write

Eb

J0
= W/R

J/S
.

This relationship is used in the form(
Eb

J0

)
dB

=
(

W

R

)
dB

−
(

J

S

)
dB

.
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Figure 12.5. Heuristic notion of spread spectrum.

The ratio W/R is referred to as the processing gain of the spread-spectrum system.
The reciprocal of the processing gain is just the spectral bit rate density r = R/W . A
spread-spectrum waveform with a very large processing gain, such as 60 dB, has a very
small spectral bit rate density, such as 10−6 bits per hertz.

The value of J/S for which Eb/J0 equals its minimum acceptable value is referred
to as the jamming margin. The jamming margin is the difference between the actual
value of J/S and the required value of J/S to achieve the bit error rate. Thus

jamming margin =
(

J

S

)
dB act

−
(

J

S

)
dB req

=
(

W

R

)
dB act

−
(

Eb

N0

)
dB req

.

Spread-spectrum systems are a straightforward way to expand bandwidth, but are
not an optimum use of the wide bandwidth. This can be seen by looking at the channel
capacity

R ≥ C = W log2

(
1 + Eb

J0

R

W

)
.

For the channel of bandwidth W , this equation can be written

Eb

J0
≥ 2R/W − 1

R/W
.

The total jammer power is fixed at J . With N0 replaced by J/W , one can compare three
inequalities of interest.
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(i) Bandwidth occupancy of W hertz by a direct choice of wideband modulation
waveform

Eb ≥ J

W

2R/W − 1

R/W
.

(ii) Spread spectrum expansion to W hertz from a narrowband modulation waveform
of bandwidth B hertz

Eb ≥ J

W

2R/B − 1

R/B
.

(iii) No bandwidth expansion from a narrowband waveform of bandwidth B hertz

Eb ≥ J

B

2R/B − 1

R/B
.

Acomparison of the second and third options shows that spectrum spreading reduces the
required energy by the value of the processing gain W/B. This ratio is a performance
improvement, but is only linear in the bandwidth ratio. Additional improvement is
possible by a more general bandwidth expansion as indicated by the first inequality.
What this means in practice is that part of the available bandwidth should be used to
support a stronger waveform such as an M-ary orthogonal signaling waveform, or to
transmit the check symbols of a data transmission code. The coding gain provided by
a good code is always larger than the increased bandwidth ratio that will be needed by
the code. The rest of the available bandwidth can then be used for spectrum spreading.

We can make this point another way by considering the probability of error rather
than the channel capacity. For an uncoded BPSK waveform, the probability of error is

pe = Q

(√
2Eb

N0

)
.

For a coded system, with code rate Rc and minimum distance 2t + 1, the probability
of error is approximated by

pe ≈ Q

(√
2Eb

N0
Rc(2t + 1)

)
.

If, further, the system is then spread to bandwidth W with processing gain W/R, the
probability of error in the presence of a jammer can be approximated as

pe ≈ Q

(√
2

W/R

J/S
Rc(2t + 1)

)
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by recalling that J0 = J/W and Eb = S/R. While one may observe that the processing
gain W/R could be increased by a factor of Rc if there were no code, this improvement
would be more than offset by the loss of the term Rc(2t + 1). For small amounts of
excess bandwidth, coding gain is a better investment of bandwidth than processing
gain. Eventually, coding gain can increase with bandwidth not much faster than could
processing gain so when the excess bandwidth is large, part of it should be used for
coding gain and the rest for processing gain. Of course, this conclusion holds only
for wideband gaussian noise. For other jammer tactics, coding can have even more
spectacular advantages and will be far superior to simple spectrum spreading.

The use of M-ary orthogonal signaling and error-control codes will both improve
performance significantly faster than linear in the additional bandwidth required, at
least when the bandwidth expansion is small – a factor of two or three. In addition,
error-control codes are necessary in a spread-spectrum system to protect against partial-
time jamming tactics. Awell-designed spread-spectrum system will use an error-control
code and a modulation waveform that operate at a small Eb/N0 and then spread the
spectrum of this waveform to fill out the available frequency band.

It is common practice to separate the function of spectrum spreading from the function
of modulation. Rather than choosing a pulse shape s(t) that is itself wideband, the
modulator uses a more conventional pulse to create a waveform c(t), which then is
subjected to a second level of modulation to create the wideband signal.

The two spread-spectrum techniques commonly used in practice, known as direct-
sequence spread spectrum and frequency-hopping spread spectrum, are discussed in
detail in the next two sections. Both methods can be subsumed by a single general
discussion that describes the spreading function by a phase-modulated wideband carrier

cs(t) = cos(2π f0t + θ(t))

where the phase modulation θ(t) is selected so that cs(t) is wideband. The communica-
tion waveform c(t) is then modulated onto this carrier to produce the wideband signal
w(t) by the multiplication

w(t) = c(t)cs(t)

= c(t) cos(2π f0t + θ(t)).

If cs(t) is chosen so it has a much wider bandwidth than c(t), then the signal w(t) will
also have a much wider bandwidth than c(t).

Though the jammer may be aware of the general strategy, it is ignorant of the specific
wideband signal cs(t). To ensure that this is true, many applications require θ(t) to
change rapidly with time and in a way that is unpredictable to anyone without a secret
key. To demodulate the signal, the receiver will need a copy of cs(t) or of the secret key
used to generate cs(t). This means that there is a secret channel between the transmitter
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and the receiver, as shown in Figure 12.4, over which the secret key is passed. This
channel need not operate at the same time as the main communication channel. Indeed,
the key distribution may have taken place years before its use.

The receiver has a time-synchronized local replica c′
s(t) of the phase-modulated

carrier cs(t), given by

c′
s(t) = cos(2π f0t + θ(t) + θ0).

The phase offset θ0 will appear in the local replica carrier c′
s(t) in those applications

where it is deemed to be impractical to lock the phases of the carriers and noncoherent
demodulation is used. We will consider only coherent reception in which θ0 is zero,
and c′

s(t) = cs(t).
The jammer adds a jamming signal e(t) to the transmitted signal before it reaches

the receiver. The received wideband signal is

vs(t) = c(t) cos(2π f0t + θ(t)) + eR(t) cos 2π f0t − eI (t) sin 2π f0t.

The receiver mixes the local-replica carrier with the wideband received signal vs(t)
to obtain the narrowband received signal

v(t) = cs(t)vs(t).

Writing this out gives

v(t) = c(t) cos2(2π f0t + θ(t))

+ [eR(t) cos 2π f0t − eI (t) sin 2π f0t] cos(2π f0t + θ(t)).

Expanding the trigonometric functions, and rejecting the terms at frequency 2f0, gives

v(t) = c(t) + eR(t) cos θ(t) − eI (t) sin θ(t).

The signal has now been collapsed back to the original narrowband signal c(t). The
jamming signal, however, now is wideband even if the original jamming signal were
narrowband. This is because cos θ(t) and sin θ(t) are wideband signals. By passing the
signal v(t) through a narrowband filter matched to c(t), most of the jamming power is
rejected. Consequently, the jamming power is reduced by the ratio of the bandwidths.

Of course, if the jammer were omniscient, or has access to the key, it would then use

eR(t) = n(t) cos θ(t)

eI (t) = n(t) sin θ(t)

or something closely related, where n(t) is narrowband noise. Then the jamming sig-
nal would also collapse in the receiver into the narrowband signal, and the spectrum
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spreading would be defeated. It is for this reason that θ(t) must be a secret function
known in complete detail only to the transmitter and receiver.

12.4 Direct-sequence spread spectrum

Let c(t) be the baseband modulation waveform that is to be spread. For a direct-
sequence spread-spectrum system, a BPSK waveform consisting of a sequence of
positive and negative pulses works well. The BPSK baseband modulation waveform
can be expressed as

c(t) =
∞∑

�=−∞
a�s(t − �T )

where s(t) is the baseband pulse shape, and a� is either +A or −A depending on the
data bit to be sent in the �th interval.

A direct-sequence spread-spectrum communication system employs a waveform of
the form w(t) = cs(t)c(t) where c(t) is the baseband modulation waveform, possibly
complex, and cs(t) is a baseband direct-sequence spectrum-spreading signal with a
bandwidth that is large compared to the data rate. Adirect-sequence spectrum-spreading
waveform itself is written as a baseband waveform

cs(t) =
∞∑

j=−∞
bjσ(t − jTc)

where σ(t), called a chip, is usually a time-limited rectangular pulse of duration Tc, and
the sequence of bj is a pseudorandom binary sequence known to both the transmitter and
receiver. The term pseudorandom means that the sequence mimics a random sequence,
although it may be generated deterministically as a function of a secret key. Figure 12.6
shows how any modulation waveform c(t) can be spread and despread by cs(t), relying
only on the property that |cs(t)|2 = 1.

The parameter Tc is called the chip duration, and the sequence

b = . . . , b−1, b0, b1, b2, . . .

is called the signature sequence or the spreading sequence. The signature sequence is
known to the transmitter and receiver, but not to the jammer. For practical reasons, the
signature sequence is usually periodic, but for security, the period should be very long.
For reasonable choices of signature sequence and chip pulse shape, 1/Tc is a rough
estimate of the bandwidth of the spread-spectrum signal. For most direct-sequence
systems, Tc � T , so the bandwidth of the spread-spectrum signal is much larger than
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Figure 12.6. Direct-sequence spread-spectrum.

that of the data signal. For a direct-sequence spread-spectrum waveform, the processing
gain can be written

processing gain = W

R
= T

Tc
.

Often, the duration T of the data pulse is an integer multiple of the chip duration and
the symbol timing is synchronous with the chip timing, but this is not necessary. If
T = NTc for some integer N there are N chips per data pulse, and the bandwidth of the
spread-spectrum waveform is roughly N times the data rate.

To conclude this section, we rewrite the direct-sequence waveform in several other
ways because the alternative descriptions suggest alternative implementations. If s(t) is
also a rectangular pulse, an alternative description of the direct-sequence waveform is
given by redefining the data pulse s(t) to absorb the signature sequence into the pulse.
Then, for each �, the data pulse is different. That is, for the �th data bit, let

s�(t) =
⎡⎣N−1∑

j=0

b�+jσ(t − jTc)

⎤⎦ s(t).

Then,

w(t) =
∞∑

�=−∞
a�s�(t − �T )

is the direct-sequence spread-spectrum waveform. Now the �th bit is modulated as
BPSK onto the wideband pulse s�(t). With this interpretation, we see that we may
demodulate the �th bit as BPSK by using a filter matched to s�(t). This requires a
programmable filter that can be reconfigured for each �.

Figure 12.7 shows an implementation of the modulator and demodulator in which
s�(t) is factored into the cascade of two filters, one an N -tap discrete-time filter whose



469 12.5 Frequency-hopping spread spectrum

  

DemodulatorModulator
Jamming

Data

Sequence 
Filter

Chip 
Filter

σ (t ) σ *(–t )
a(t ) b (t ) b*(–t )+

Threshold
at
T

Figure 12.7. A filtering view of direct-sequence spread spectrum.

coefficients are given by the N coefficients of the signature sequence, and one a filter
whose impulse response is the rectangular pulse σ(t). The sequence filter

b(t) =
N−1∑
j=0

bj+�N δ(t − jTc)

changes from bit to bit, and

a(t) =
∞∑

�=−∞
a�δ(t − �T ).

Yet another way to write this is to allow the �th subsequence of length N of the
signature sequence to be multiplied by a�. This leaves the sign of the signature bit
unchanged if a� is positive and inverted if a� is negative. Thus, let

b′
j+� = a�bj+�

j = 0, . . . , N − 1
� = 0, . . .

and

w(t) =
∞∑

j=−∞
b′

jσ(t − jTc).

With this view, σ(t) can be chosen as a Nyquist pulse for time interval Tc. If σ(t)
is the pulse at the output of its matched filter, the chip matched-filter output samples
w(jTc) are inverted or not inverted according to the value of bj, then added together to
synthesize a matched-filter output for the �th data bit.

12.5 Frequency-hopping spread spectrum

A frequency-hopping antijam waveform employs a large collection of specified carrier
frequencies. The waveform rapidly and randomly moves from one carrier frequency
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to another, perhaps changing carrier frequency after every channel symbol or after
every few channel symbols. The frequency-hopping pattern appears random and is
so-described, but it is a prearranged irregular pattern known to both the transmitter and
the receiver, usually computed from a shared key.

Against a full-band jammer, a frequency-hopping spread-spectrum waveform has
a processing gain of N because, if there are N carrier frequencies, the jammer can
only direct 1/N of the jamming power to any one frequency. However, even a fairly
simple jammer will counter the frequency hopper by using a partial-band jammer. For
example, suppose that a noncoherent, binary orthogonal communication system uses a
randomly selected carrier frequency chosen from a set of N = l000 carrier frequencies;
the processing gain is 30 dB. The jammer will easily notice, however, that a single
frequency of a typical waveform might be jammed with an Eb/J0 of about 4 dB with a
bit error rate of about 10−2, and one bit out of a thousand is on this frequency. Hence
by jamming only one frequency, the jammer produces a 10−5 bit error rate with an
Eb/J0 on that channel of 4 dB, whereas if there were no frequency hopping, it would
need to ensure an Eb/J0 of 9.6 dB to achieve a 10−5 bit error rate. This means that
the frequency-hopping system has only a 5.6 dB advantage over an unprotected single-
frequency system. The apparent 30 dB processing gain implied by using l000 carrier
frequencies turns out to be only a 5.6 dB gain. This frequency-hopping system is nearly
worthless.

To remedy this vulnerability, the antijam waveform can use a diversity system by
sending more than one copy of each symbol. Figure 12.8 shows a binary orthogonal
signaling waveform with two-way diversity. Each bit is sent twice, with each copy of
the bit sent on a randomly selected carrier frequency. In general, one can employ an
M-ary orthogonal signaling waveform with L-ary diversity. Because it is difficult to
build a frequency-hopping local oscillator that maintains coherence across frequency
hops, most such applications use noncoherent demodulation with a noncoherent diver-
sity combination. If, instead, coherence were maintained across frequency hops, there
would be a small improvement. However, with M-ary orthogonal signaling with mod-
erate values of M , noncoherent diversity combining is almost as good as coherent
diversity combining.

Figure 12.9 shows an implementation of a demodulator for a frequency-hopping,
noncoherent-combining, L-ary diversity, binary FSK signaling waveform for the case
of perfect side information. The perfect side information is used to reject the jammed

f1 f2 f3 f4 f5 f6 f7 f8

Bit 1 Bit 2 Bit 3 Bit 4

s0 or s1s0 or s1s0 or s1s0 or s1s0 or s1s0 or s1s0 or s1s0 or s1

Figure 12.8. A binary frequency-hopping system with diversity.
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Figure 12.9. Noncoherent combining of dehopped diversity pulses.

copies of the signal. The remaining received copies of each symbol are noncoherently
summed using log-Bessel-function combining as discussed in Section 7.5.

In practice, perfect side information is not available. Estimated side information
must be generated by the receiver itself by observing the received signal. If the signal
is small compared to the noise, as is often the case prior to the matched filter, then an
estimate of the noise variance on each frequency is simply proportional to the sample
power in the received signal prior to the matched filter:

Ĵ0 ∼
∫ T/2

−T/2
|v(t)|2dt,

with an appropriate proportionality constant that does not concern us here. Indeed,
if the jammer uses white gaussian noise and the signal is negligibly small, this is a
maximum-likelihood estimate of the jammer power and the needed side information is
provided.

Figure 12.10 shows the demodulator using estimated side information. Because
the estimated variance of the jamming power is only an approximation of the true
jamming power, the nonlinear log I0(x) combining rule of Figure 12.9 may not be
justified when the jammer power is not accurately known. Therefore, in Figure 12.10,
the nonlinear combining has been replaced by a simple weighted average. Now this
combining rule is given without formal justification. It may be satisfactory based on
empirical observations.

A simple and robust technique to circumvent the need for side information is to
insert a passband hardlimiter prior to the matched filter, as shown in Figure 12.11. This
method works well whenever the signal is weaker than the noise at the input to the
matched filter.

Recall from Section 11.8 that, if the input to the matched filter is hardlimited, then
both the signal and the noise at the output of the matched filter are attenuated in such
a way that the signal-to-noise ratio is (2/π)Ep/J0�, and the output noise variance is
independent of the input. Because of the hardlimiting, the noise at the output of the
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Figure 12.11. A robust demodulator using a hardlimiter.

matched filter is not gaussian, but we will approximate the output noise as gaussian.
This approximation is good if s(t) has a lot of structure because then the matched filter
is required to sum many input samples suggesting the conclusion of the central limit
theorem. Consequently, we can anticipate the approximate equation

pe ≈ Q

⎛⎝
√√√√( 2

π

) L∑
�=1

Eb/L

N0 + J0�

⎞⎠ .

To maximize the right side, the sum on L should be minimized. A wise jammer
constrained by

∑
� J0� = J will set J0� = J0 for all �. Then

pe ≈ Q

(√(
2

π

)
Eb

N0 + J0

)
.
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The hardlimiter has effectively reduced Eb by 2/π , or 2 dB. This energy penalty is the
cost of using the hardlimiter to create a robust demodulator for a diversity waveform
that counters partial-message jamming.

Problems for Chapter 12

12.1. (High–low game.) Suppose that an adversary randomly selects an integer
between 0 and 127 inclusively, and you are to find that integer by a sequence
of guesses. After each guess you are told whether you are high, low, or correct.
You want to make the expected number of your guesses as small as possible,
and the adversary wants to choose the integer to make it as large as possible.
a. What strategy should you and your adversary each use?
b. Now suppose that you must announce your strategy before the adversary

selects the integer. (A spy divulges your design.) How does this change the
strategies? (Both opponents have generators of random numbers available.)

12.2. a. Given L identical copies of a pulse with equal amplitudes, either +a or
−a, the �th copy is observed in independent, additive white gaussian
noise of power density spectrum N�. Prove that the maximum-likelihood
demodulator for the sign of the amplitude uses the sufficient statistic

u =
L∑

�=1

1

N�

u�

where u� is the matched-filter output for the �th pulse.
b. Prove that the signal-to-noise ratio of this statistic is

S

N
= Ep

(
1

L

∑
�

1

N�

)
.

c. Use a Lagrange multiplier to show that, given the constraint that

1

L

L∑
�=1

N� = N0,

the signal-to-noise ratio is minimized by setting N� = N0 for � = 1, . . . , L.
12.3. Adiversity system for digital communication sends the same waveform through

two additive noise channels so that if one channel is lost, the symbol can still
be received correctly through the other. When both channels are working, it
is best to combine the received signals prior to a threshold. A binary diversity
system sends identical binary FSK signals on two carrier frequencies, f0 and
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f ′
0 , each of which is received noncoherently with independent phase errors and

independent additive gaussian noise.
a. At what point in the demodulator should the two signals be added together?
b. Sketch a block diagram of the demodulator.
c. Set up an equation for the probability of error.
d. How should the demodulator be redesigned if the phase errors on the two

channels are always equal?
12.4. A Barker pulse is a pulse given by

s(t) =
n−1∑
�=0

c�p(t − �T )

where p(t) is a pulselet and c� for � = 0, . . . , n − 1 is a Barker sequence. Show
that ψ(τ), the autocorrelation function of s(t), can be written

ψ(τ) =
n−1∑

�=−n+1

γ�π(τ − �T )

where γi is the autocorrelation function of the Barker sequence, and π(τ) is
the autocorrelation function of the pulselet.

12.5. A communication channel is subjected to additive burst noise that occurs at
random times with a ten-percent duty cycle. This means that the burst noise
occupies ten percent of any time interval that is long compared to the duration
of individual bursts. During the burst, the signal-to-noise ratio is 0 dB and
the additive noise probability density function is unknown; otherwise, the
signal-to-noise ratio is 30 dB and the noise is additive gaussian noise.
a. Specify a combination of a multilevel signaling scheme and a Reed–

Solomon code that will give a good performance on this channel. What
is the data rate?

b. An alternative signaling scheme is proposed that allegedly mitigates the
effects of the burst noise. The proposal is to transform signal intervals of
duration T into another orthogonal coordinate system. (A Fourier transform
is one such transformation.) The alleged justification is that the burst noise
is “spread out” in the new coordinate system. Is this proposal sound? What
data rate may be expected by using this method?

c. To mitigate the effects of defects in an optical storage medium, a proposal
is made to use the Fourier transform property of holography to “spread” the
effect of the defects over all stored bits. Is this a sound technique?

12.6. Partial message jamming can be used against M-ary signaling, either coherent
or noncoherent. On a graph of pe versus Eb/N0 for 32-ary orthogonal signaling,
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sketch the probability of demodulation error against an optimal partial-message
jammer by arguing that, for small Eb/J0, the duty factor must equal one, and
otherwise pe must behave as the reciprocal of Eb/J0.

12.7. A digital communication system uses an eight-ary orthogonal signaling wave-
form with two-way diversity. The diversity receiver is capable of recog-
nizing which symbols are jammed and demodulating using only the single
unjammed pulse when it is available. The data is protected by a (15, 13)
single-error-correcting Reed–Solomon code.
a. What is the minimum jammer duty factor that is meaningful to the jammer

if the decoder uses an errors-only decoder?
b. What is the minimum jammer duty factor that is meaningful to the jammer

if the decoder uses an errors-and-erasures decoder?
c. Set up all equations needed to compute pe versus S/J for a fixed value of

duty factor.
12.8. a. Given the primitive polynomial p(x) = x3 + x + 1, construct an M = 8

simplex family of waveforms by using the seven m-sequences of length 7
and the all-zero sequence to form eight PSK waveforms.

b. Show that an M = 2m simplex pulse alphabet can be formed in this way
for any m.

12.9. An antijam communication system uses a waveform c(t) that is a superposition
of sinc pulses

c(t) =
∞∑

�=−∞
a�sinc

(
t − �Tb

Tb

)
,

and a signature sequence (bk) modulating a sequence of rectangular pulses

g(t) =
∞∑

k=−∞
bk rect

(
t − kTc

Tc

)

where Tb/Tc is an integer. The received signal in additive white gaussian
noise is

v(t) = g(t)c(t) + n(t).

a. Prove that passing the signal g(t)v(t) through the filter h(t) = sinc(t/Tb)

and sampling at time Tb maximizes the signal-to-noise ratio of the �th
symbol. That is,

v(�Tb) =
∫ ∞

−∞
g(ξ)v(ξ)sinc

(
ξ − �Tb

Tb

)
dξ
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is a statistic with a maximum signal-to-noise ratio for the �th bit. Is there
any intersymbol interference?

b. Repeat with the change that

g(t) =
∞∑

k=−∞
bksinc

(
t − kTc

Tc

)
.

12.10. An antijam communication system uses a BPSK waveform c(t), given by

c(t) =
∞∑

�=−∞
a�s(t − �Tb),

where s(t) ∗ s(−t) is a Nyquist pulse, and a signature sequence composed of a
sequence of rectangular pulses

g(t) =
∞∑

k=−∞
bk rect

(
t − kTc

Tc

)
where Tb/Tc is a large integer and bk is a random sequence. The transmitted
signal is w(t) = g(t)c(t). The received signal is

v(t) = w(t) + e(t)

where e(t) is a jamming signal of power J .
a. The receiver consists of the following steps,

1. v′(t) = v(t)g(t)
2. matched filter to s(t) for v′(t)
3. sample at �T .
What (approximate) spectrum should the jammer use to minimize the signal-
to-noise ratio of the samples?

b. What is the (approximate) signal-to-noise ratio if the jammer uses bandlim-
ited white gaussian noise in the band 1/Tc?

c. Given that the jammer is known to use the spectrum calculated in part b,
can the receiver be redesigned to increase the signal-to-noise ratio?

12.11. A conventional QPSK waveform using the square signaling constellation

01

11

00

10

is jammed by a signal
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e(t) = eR(t) + jeI (t)

where eR(t) and eI (t) are white, independent, and gaussian, but with different
variances

var[eR(t)] = 4var[eI (t)] = 4

5
J0.

a. If the receiver is unaware that the variances are unequal, what is the
probability of bit error as a function of Eb/J0?

b. If the receiver (but not the transmitter) is aware of the distribution of jammer
power, how should the decision regions be redefined? What is the probability
of bit error as a function of Eb/J0?

c. If the transmitter is also aware of the distribution of jammer power, how
should the signal constellation be changed? What is the probability of bit
error as a function of Eb/J0?

12.12. An M-ary orthogonal waveform

c(t) =
∞∑

�=−∞
sm�(t − �T ) cos 2π f0t

is transmitted through a jamming channel in which the jammer elects to use a
sinusoid as the jamming signal. The received passband signal is

v(t) = c(t) + n(t) + e(t)

where n(t) is white gaussian noise, and e(t) = E cos 2π f1t and E is large. (See
Problem 11.8.) The demodulator consists of a passband hardlimiter intended
to suppress impulsive interference, f0 allowed by a bank of matched filters,
followed by a coherent threshold test. How does the jamming signal affect the
probability of demodulation error?

12.13. (Voting Systems and Communication Diversity) A large group of voters is
to decide between two candidates. Each voter is to vote for either candidate A
or candidate B. There are 50 million people who have decided to vote for
candidate A and 49 million who have decided to vote for candidate B. An
additional 100 million people have no preference what so ever and will each
vote by making an independent random equiprobable choice. (All numbers are
large enough so that the central limit theorem applies.)
a. What is the probability that candidate A will win in the popular vote?
b. An adversary is able to cast an additional 0.9 million false votes for candi-

date B by fraud. Can the adversary change the outcome? What now is the
probability that candidateAwill win? How does this change if the adversary
can record one million (or more) false votes?
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Suppose now that an electoral system for voting is used as follows: the voters
are divided into fifty regions of equal size. Assume that each region has the three
types of voters in the same proportion: one million voters for candidate A, 0.98
million voters for candidate B, and 2 million undecided. The majority popular
vote in each region determines the single electoral vote from that region. The
candidate with the largest number of electoral votes wins.
c. What is the probability that candidate A will win in the electoral vote?
d. Can the adversary with 0.9 million false votes change the outcome by fraud?

With what strategy? Must the false voters be distributed over more than one
region? How many? What now is the probability that candidate A will win?
How does this change if the adversary can cast one million (or more) false
votes?

Notes for Chapter 12

The method of spread-spectrum signaling has a long and interesting history that has been
summarized in articles by Scholtz (1982) and by Price (1983). Tutorial treatments can
be found in the article by Pickholtz, Schilling, and Milstein (1982), and in the book by
Holmes (1982). An early use of frequency-hopping spread spectrum for radar appeared
in a patent by Guanella (1938). A patent application for a direct-sequence spread-
spectrum communication system was filed in 1953 by deRosa and Rogoff (1979).

The theory of m-sequences was developed by Gilbert, Golomb, Welch, and
Zierler in the mid-1950s, and is described by Zierler (1959), Selmer (1966), and
Golomb (1967). Sets of sequences with good crosscorrelation properties were dis-
covered by Kasami (1966), and Gold (1967). The broad topic of signature sequences
was surveyed by Sarwate and Pursley (1980), and by MacWilliams and Sloane (1976).
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bounded-distance, 108
coherent, 176
decision-feedback, 98, 102, 118, 129, 304, 343
eight-ary PSK, 205
maximum-likelihood, 96, 229
maximum-posterior, 242
noncoherent, 183
on–off keying, 69, 75
orthogonal signaling, 69
passband, 176
sequence, 228
Viterbi, 127

detector
linear, 59

dicode, 307
differential modulation, 337
differential phase-shift keying, 196
differential QPSK, 344
differential trellis code, 337
differentiation property, 17
direct-sequence, 465
direct-sequence spread spectrum, 465
dirichlet function, 21
discrepancy, 104, 387
discrete channel, 404

noiseless, 404
noisy, 404

dispersion, 95, 224
distance, 350

branch, 231
code, 350
free euclidean, 390
minimum, 331
path, 231
signal space, 165

distance profile, 389
diversity, 234, 432, 449, 470, 477

unintentional, 425
Dolby modulation, 6
dominant error pattern, 116
dominant set, 113
down-conversion, 142, 180
dual lattice, 331
duobinary, 301, 307, 343

modified, 307
duobinary pulse, 301
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duty factor
jammer, 456

dynamic programming, 103

early-gate sample, 265
echo cancellation, 128, 344
element

field, 357
encoder, 1, 7

frequency-domain, 354
nonsystematic, 355, 376
systematic, 355, 376, 378
time-domain, 355

energy, 12
bit, 34, 37, 51, 149, 400
block, 38
complex pulse, 141
pulse, 34
symbol, 37, 148

energy budget, 399
energy per bit, 35, 371, 400

amplitude-shift keying, 38
antipodal signaling, 34
M-ary orthogonal signaling, 51
on–off keying, 35

energy theorem, 15
equalization, 94

adaptive, 94, 119, 121, 130
decision-feedback, 98, 118, 299
fractionally-spaced, 125, 130
least-mean-square-error, 123
linear, 118
symbol-space, 125
Viterbi, 118
write, 119
zero-forcing, 119

equalization filter, 118, 128
erasure, 105, 108, 213, 388, 461
erasure event, 388
error

decoding, 385
demodulation, 104
mean-square, 120
synchronization, 286

error event, 105, 107, 385, 388
error function, 25, 434

complementary, 25
error pattern

dominant, 116
hidden, 116

error propagation, 99, 299
error-control code, 404, 458
error-locator polynomial, 367
estimator

decision-aided, 295

delay, 276
phase, 273

euclidean algorithm
polynomial, 383

euclidean distance, 54, 101
minimum, 108

Euler’s formula, 154
event

default, 388
erasure, 388
error, 385, 388

exploiter
signal, 453

extended union bound, 113
eye diagram, 43

fading, 424
rayleigh, 429, 447, 450

fading multipath channel, 424
field

algebraic, 357
complex, 353, 363
finite, 351
Galois, 351

field element, 357
filter

autoregressive, 366
equalization, 118
finite-impulse-response, 97, 122, 375
linear, 31
linear finite-impulse-response, 120
matched, 60
noncausal, 66
Nyquist, 54
whitened matched, 64

finite bandwidth, 12
finite duration, 12
finite field, 351
finite-impulse-response filter, 120, 122, 378
fixed-assignment multiaccess channel, 11
four-dimensional trellis code, 341
Fourier transform, 12, 353

discrete, 353
finite field, 361
inverse, 13

fractionally-spaced equalization, 125
frame, 47, 374
free distance, 390

euclidean, 319
free euclidean distance, 108, 319, 345, 390
free hamming distance, 390, 391
frequency

carrier, 5
frequency modulation, 5
frequency-domain signal, 12
frequency-hopping, 470
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frequency-hopping spread spectrum, 465
frequency-shift keying, 49, 50, 77
frontward–backward algorithm, 245
FSK modulation rule, 156
full width, 401
function

autocorrelation, 160
Bessel, 434
complementary error, 25
cross-correlation, 160
likelihood, 220
log-likelihood, 220

function space, 164

gain
asymptotic coding, 372
coding, 371
processing, 463

Galois field, 351, 357, 375
game theory, 453
gaussian density function, 24

bivariate, 24, 188, 190
univariate, 188

gaussian noise, 69
gaussian pulse, 22
gaussian random variable, 73
gaussian-noise channel, 72, 408
generalized function, 20
generalized likelihood function, 267, 296
generator, 331
generator matrix, 352

block code, 352
convolutional code, 381
trellis code, 323

generator polynomial, 355, 378
convolutional code, 379
partial response, 343

Golay code, 371
Golay complementary code, 293
Gosset lattice, 332
gradient

stochastic, 125
Gray code, 37, 80, 211
greatest common divisor, 382

Hadamard matrix, 213
half width, 401
Hamming code, 350, 369, 395
Hamming distance, 287, 350, 389
hard-decision channel, 349
hard-decision decoder, 371
hardlimiter, 272, 415, 418, 432, 450, 473

passband, 170, 433
hidden sequence, 113
hidden set, 113

Hilbert transform, 133
hypothesis testing, 58, 218

I and Q modulation rule, 156
image, 135
imaginary modulation component, 140
impairment, 131, 417
impulse function, 13, 20

discrete, 124
impulse response, 31
in-phase modulation component, 140
incomplete decoder, 395
index

modulation, 5, 313
inequality

Schwarz, 62, 64, 165
triangle, 165, 174

inference
maximum-likelihood, 218
maximum-posterior, 240

information, 371
information theory, 3, 8, 416, 454
integration

log-Bessel, 238
noncoherent, 236

intermediate frequency, 179
intersymbol interdependence, 218
intersymbol interference, 39, 94
inverse Fourier transform, 13
irreducible polynomial, 358
iterative decoding, 246

jammer, 449, 453
partial-band, 470
partial-message, 455

jammer channel, 453
jammer saddle point, 454
jamming margin, 463
jitter

timing, 252

Kronecker product, 213

late-gate sample, 265
lattice

dual, 331
four-dimensional, 332
Gosset, 332
hexagonal, 331
Leech, 332
Schlafli, 332
square, 331
two-dimensional, 331
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least-mean-square-error equalizer, 123
Leech lattice, 332
length

constraint, 97, 374, 380
likelihood function, 220, 296

generalized, 267
likelihood statistic, 230
linear channel, 31
linear detector, 59
linear dispersion, 95
linear equalization, 96, 118
linear finite-impulse-response filter, 120
local oscillator, 180, 271

controlled, 266, 271
local replica correlator, 180
local replica sequence, 273
locator decoder, 367
log-Bessel function, 471
log-likelihood function, 220

gaussian noise, 222
log-likelihood ratio, 221
loop

Costas, 272, 295
delay-locked, 278
phase-locked, 259

lower sideband, 135

magnetic storage system, 7
Manchester signaling, 55
margin

jamming, 463
marginal probability distribution, 102, 241
marginalization, 242
marker, 284

Maury-Styles, 287
QPSK, 295
Turyn, 287

Markov process, 102
matched filter, 60, 65

passband, 176
whitened, 64

matrix
check-polynomial, 381
generator, 331, 352
Hadamard, 213

maximum-likelihood demodulator, 229
maximum-likelihood principle, 102, 220, 241
maximum-posterior demodulator, 242
maximum-posterior principle, 240
mean

gaussian, 25
mean-square error, 120
memoryless channel, 404
memoryless noise, 408
minimum distance, 149, 331

convolutional code, 389

euclidean, 108
lattice, 331
normalized, 149, 210
signal constellation, 149

minimum euclidean distance, 108, 299
trellis code, 318

minimum Hamming distance, 384
minimum-shift keying, 153, 308

I and Q modulation, 153, 169
FSK modulation, 153
MSK modulation, 153

mixer, 136, 179, 450
mixing, 28, 135
modem, 2, 4, 7
modem theory, 4
modified Bessel function, 190
modified duobinary, 307, 343
modulation, 1

amplitude, 5
continuous-phase, 308
four-dimensional, 295
frequency, 5
frequency-shift keying, 49
pulse-amplitude, 37
pulse-position, 50
single-sideband, 171

modulation alphabet, 9
modulation component

imaginary, 140
in-phase, 140
quadrature, 140
real, 140

modulation index, 5, 313
modulation signaling

trellis-coded, 318
modulation signaling waveform

trellis-coded, 318
modulation theorem, 14
modulation theory, 10
modulation waveform, 33

multilevel, 36
modulator, 7

Viterbi, 233
monic polynomial, 355
Morse code, 4
multiaccess channel, 11
multiaccess communication, 11
multiaccess network, 11
multiaccess signaling

demand-assignment, 11
frequency-division, 11
time-division, 11

multilevel signaling, 36, 44, 77
baseband, 35
passband, 147

multipath channel, 424
multiplication, 351



494 Index

nearest neighbor, 79, 109, 210, 373
nearest-neighbor bound, 109
neighbor, 206
network

multiaccess, 11
telephone, 10

noise, 59
bandlimited, 476
memoryless, 408
phase, 252
thermal, 402
white, 64

noise burst, 474
noise figure, 402
noiseless discrete channel, 404
noncatastrophic, 382
noncoherent demodulator, 183
noncoherent integration, 236
noncoherent signaling

error rate, 192
nonlinearity

smooth, 444
nonreturn-to-zero, 35

inverse, 45
nonsystematic encoder, 355, 376
norm

signal space, 165
normalized minimum distance, 149, 210
NRZ inverse, 45
nuisance parameter, 267
number, 357
Nyquist criterion, 40
Nyquist filter, 54
Nyquist pulse, 39, 54, 55, 91
Nyquist sample, 39, 232
Nyquist sampling theorem, 408

offset QPSK, 146, 153
on–off keying, 35

demodulator, 69
noncoherent demodulator, 186

optical storage system, 7
orthogonal, 47
orthogonal pulse alphabet, 49, 159, 167, 168

passband, 159
orthogonal signaling waveform, 47, 161

passband, 161
oscillator

controlled local, 259
local, 180

parallel concatenation, 392
parallel concatenation puncturing, 392
Parseval’s theorem, 16, 223
partial-message jammer, 455

partial-response signaling, 299, 343, 348
dicode, 307
duobinary, 301, 306, 343
modified duobinary, 306, 343

partially-coherent channel, 212, 295
partition, 332
passband channel, 32, 131
passband hardlimiter, 433
passband modulation, 140
passband pulse, 132
passband signaling pulse, 159
passband waveform, 131, 140, 183
path distance, 231
peak interference, 120
phase estimation

decision-directed, 273, 275
sequential, 271

phase noise, 252, 422
phase offset, 183
phase trajectory, 309
phase-locked loop, 258

Costas, 275
first-order, 259

phase-modulated waveform, 308
phase-shift keying

binary, 33, 144
differential, 196, 337
eight-ary, 148
four-ary, 145
quadrature, 144

phonography, 2
Poisson sum formula, 17, 281
polarization, 294, 295
polynomial

error-locator, 367
generator, 355, 378
irreducible, 358
monic, 355
reciprocal, 293

postcoder, 46, 156, 157, 306
postdetected data, 287
posterior probability, 242
power density spectrum, 26, 52

baseband, 52
complex baseband, 151
jammer, 461
noise, 400
passband, 151
self-noise, 443
white noise, 64, 72

power spectrum, 12
power-limited channel, 49
precoder, 46, 156, 304

partial response, 343
predetected data, 287
prior probability, 242
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probability
conditional, 241
marginal, 241
posterior, 242
prior, 242

probability density function
gaussian, 24, 188
rayleigh, 189
ricean, 190

probability of bit error, 69, 388
probability of symbol error

eight-ary PSK, 209
orthogonal signaling, 82
simplex family, 84

processing gain, 463, 468
protocol

channel, 11
pseudorandom sequence, 467
pulse, 12

chirp, 23
duobinary, 301
finite chirp, 23
gaussian, 22
Nyquist, 39
passband, 132
rectangular, 18, 27
sinc, 19
trapezoidal, 27
trianglular, 22

pulse alphabet
biorthogonal, 51
orthogonal, 49, 167
simplex, 49, 51, 54, 167

pulse-amplitude modulation, 37
pulse-position modulation, 50
pulse-shape factor, 52
pulselet, 161

QPSK, 144, 174
offset, 146
phase locking, 274

quadrature amplitude constellation, 419
quadrature modulation component, 140
quadrature phase-shift keying, 144

offset, 146
quadrature-amplitude modulation, 150, 172
quantization, 3
quasi-stationary approximation, 445

radio, 4
raised-cosine spectrum, 42, 55
rake receiver, 425, 451
random process, 26

circular, 27, 257

complex, 26
covariance-stationary, 26
cyclostationary, 52
stationary, 26, 52

random variable
gaussian, 24

range equation, 402
rate, 374, 404
ratio

log-likelihood, 221
rayleigh density function, 189, 237, 436
rayleigh fading channel, 427, 447
real modulation component, 140
received word, 9
receiver, 1, 7
reciprocal polynomial, 293
rectangular pulse, 18, 27
Reed–Jain theorem, 434
Reed–Solomon code, 354, 369, 395, 397, 474
reference frequency, 133
region

decision, 78, 206
Voronoi, 206

repetition code, 461
replica sequence

local, 273
representation

complex baseband, 139
passband, 139

ricean density function, 190, 196, 237

saddle point
jammer, 454

sample
early-gate, 265
late-gate, 265

sampling theorem, 409
satellite transponder, 450
Schlafli lattice, 332
Schwarz inequality, 62, 64, 165
self-noise, 442
senseword, 9, 352

hard, 384
soft, 9

separation principle, 3
sequence

Barker, 291, 474
signature, 467
synchronization, 291
training, 121, 274

sequence demodulation, 104
error bound, 107

sequence distance, 101
Shannon capacity, 346, 409
shift property, 14
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shift register
feedback, 376, 378
feedforward, 376

sideband, 135
signal

analytic, 133
frequency-domain, 12
time-domain, 12

signal constellation, 36, 77, 252, 317, 332
complex, 145, 148
eight-ary PSK, 345
four-ary, 36
four-ary PSK, 78, 79
four-dimensional, 332, 341
QAM, 148, 252, 419
QPSK, 145
real, 35, 36
two-dimensional, 148, 317

signal exploiter, 453
signal impairment, 417
signal space, 164
signaling waveform, 49

amplitude-shift keying, 37
antipodal, 33, 43
binary FSK, 49, 470
binary orthogonal, 48
biorthogonal, 51, 54
code-shift keying, 50
continuous-phase, 308
differential PSK, 57
frequency-shift keying, 49, 50
Manchester, 55
M-ary multilevel, 77
M-ary orthogonal, 49, 470
minimum-shift keying, 153
multilevel, 36, 44, 77
nonreturn-to-zero, 35
on–off keying, 35
orthogonal, 47
partial-response, 299, 348
phase-modulated, 308
phase-shift keying, 33
pulse-amplitude, 37
pulse-position, 50

signature sequence, 467, 476
signature verification, 453
simplex pulse alphabet, 49, 51, 54, 167, 475

passband, 159
probability of error, 84

sinc function, 19
sinc pulse, 19, 40
single-sideband, 6
single-sideband waveform, 171
smooth nonlinearity, 444
soft senseword, 9, 393
soft-decision decoder, 371
softlimiter, 444, 448

source codestream, 8
spectral bit rate density, 346, 410, 463
spectrum, 12

amplitude, 12
passband waveform, 132
power, 12

spoofer, 453
spread spectrum, 291, 455, 461, 470

direct sequence, 467
frequency-hopping, 465, 469

spreading sequence, 467
square lattice, 331
stationary baseband noise, 59
stationary noise, 59
stationary random process, 26
statistic, 221

decision, 69, 72
sufficient, 221

stochastic gradient, 125
sublattice, 332
sufficient statistic, 221, 224, 229, 248, 288,

303, 473
superposition principle, 31
support, 12
symbol, 404
symbol error rate, 58
symbol splitting, 234, 458
symbol synchronization, 252, 276
symbol-spaced equalization, 125
synchronization

block, 252, 284
carrier, 252, 265
symbol, 252, 276

synchronization default, 286
synchronization error, 286
synchronization marker, 285
synchronization pulse, 291
syndrome, 353
systematic, 381
systematic encoder, 355, 376, 377

convolutional code, 377, 382
systematic form, 323, 351
systematic generator matrix

block code, 352
convolutional code, 381
trellis code, 323, 324

telegraphy, 4
telephone, 4
telephone channel, 54, 168, 344
telephone line modem, 54
telephone network, 10
telephony, 2
television, 3, 4
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theorem
convolution, 16
delay, 14
energy, 15
modulation, 14
Nyquist sampling, 408
Parseval, 16
Reed–Jain, 434
Van Vleck–Middleton, 439

thermal noise, 402
threshold, 59
time slot, 11
time-division multiaccess signaling, 11
time-domain signal, 12
timewidth, 12, 164, 167, 291
timing jitter, 252, 283
timing recovery

bandedge, 297
Toeplitz matrix, 368
training sequence, 121, 274
transfer function, 31
transform

Fourier, 12
Hilbert, 133
inverse Fourier, 13

transmitter, 1, 7
transponder, 450
tree code, 374
trellis, 46

labeled, 47
trellis code, 325, 340, 374

differential, 337
four-dimensional, 341
two-dimensional, 341

trellis-coded modulation signaling, 318
triangle inequality, 165, 174
triangular pulse, 22
trigonometric identity, 134, 135
turbo code, 246
turbo equalization, 393
two-dimensional trellis code, 341
two-way algorithm, 245

Ungerboeck code, 318
union bound, 81, 111, 113

extended, 114
up-conversion, 142
upper sideband, 135

Van Vleck–Middleton theorem, 439, 445
variance

gaussian, 24
verification, 453

signature, 453
vestigial-sideband, 6
virtual channel, 10
Viterbi algorithm, 103, 229, 300, 308, 315
voltage-controlled oscillator, 259
volume, 331

lattice cell, 331
Voronoi region, 206, 331
voting system, 477

waveform
amplitude-shift keying, 37
antipodal signaling, 33
binary orthogonal, 48
complex baseband, 139
continuous-phase, 299, 308, 313
frequency hopping, 470
M-ary orthogonal, 49
minimum-shift keying, 153, 308
multilevel, 36
nonreturn-to-zero, 35
on–off keying, 35
partial-response, 299
passband, 131, 183
phase-modulated, 308
phase-shift keying, 33
pulse-amplitude, 37
single-sideband, 171
trellis-coded, 299

waveform channel, 31, 131, 408
weight, 114
white gaussian noise, 409
white noise, 64, 72
whitened matched filter, 64
whitening filter, 222
width

full, 401
half, 401

write equalization, 119

zero-forcing equalization, 119
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