


Wiathematical Analysis of Random Noise
By S. 0. RICE

INTRODUCTION

HIS paper deals with the mathematical analysis of noise obtained by

passing random noise through physical devices.  The random noise
considered is that which arises from shot effect in vacunm tubes or from
thermal agitation of electrons in resistors,  Our main interest is in the sta-
tistical properties of such noise and we leave to one side many physical
results of which Nyquist’s law may be given as an example.’

About half of the work given here is helieved to be new, the bulk of the
new results appearing in Parts {11 and IV, In order to provide a suitable
introduction to these results and also o bring out their relation to the work
of others, this paper is written as an exposition of the subject indicated in
the title.

When a broad band of random noisc is applied to some physical device,
such as an clectrical network, the statistical properties of the output are
often of interest.  For example, when the noise is due to shot effect, its
mean and standard deviations are given by Campbell’s theorem (Part )
when the physical device is linear,  Additional information of this sort
is given by the (auto) correlation function which is a rough measure of the
depetdence of values of the output separated by a fixed time interval.

‘The paper consists of four main parts.  ‘The first part is concerned with
shot effect, The shot effect is important not only in its own right but
also hecanse it is a typical source of noise.  ‘The Fourier series representa-
tion of a noise current, which is used extensively in the following parts, may
he obtained from the relatively simple concepts inherent in the shot effect.

The secomd part is devoted principally to the fundamental result that the
power spectrum of 4 noise current is the Fourier transform of its correlation
function.  This result is used again and again in Parts T and TV,

A rather thorough discussion of the statisties of random noise currents
is given in Part T Probability distnbutions associted with the maxina
of the current and the maxima of its envelope are developed. Formulas
for the expected number of zeros and maxima jer second are given, and a
start is made towards obtaining the probability distnbution of the zeros,

When a naise voltage or a noise voltage plus a signal 1s applied to a non-
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linear device, such as a square-law or lincar rectifier, the output will also
contain noise.  The methods which are available for computing the amount
of neise and its spectral distribution are discussed in Part TV,
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SuMMARY oF RESULTS

Before proceeding to the main body of the paper, we shall state some of
the principal results. It is hoped that this summary will give the casual
reader an over-all view of the material covered and at the same time guide
the reader who is interested in obtaining some particular item of informa-
tion to those portions of the paper which may possibly contain it.

Part T -Shot Effect

Shot effect noise results from the superposition of a great number of
disturbances which occur at random. A large class of noise generators
produce noise in this way.

Suppose that the arrival of an clectron at the anode of the vacuum tube
at time ¢ = 0 produces an effect F(¢) at some point in the output circuit.
If the output circuit is such that the effects of the various electrons add
linearly, the total effect at time £ due to all the electrons is

I(t) = J:E_w F(¢ — &) (1.2-1)

where the &*" electron arrives at ¢ and the serics is assumed to converge.
Although the terminology suggests that I(¢) is a current, and it will be
spoken of as a noise current, it may be any quantity expressible in the form
(1.2-1).

1. Campbell’s theorem: The average value of I(f) is

L 4o
n=»[ roa (1.2-2)
and the mean square value of the fluctuation about this average is

+00

ave, [1(¢) — I()) = » Fi (1) de (1.2-3)
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where v is the average nuraber of electrons arriving per second at the anode,
In this expression the electrons ure suppnsed to arrive independently and at
random. ve”"" dt is the probability that the length of the interval between
two successive arrivals lics between ¢ and £ -} df.

2. Genvralization of Camplell’s theorem. Campbell’s theorem FIves
information about the average value and the standard deviation of the
probability distribution of 7{f). A generalization of the theorem gives
information about the third and higher order moments.  Let

10 =3 ake - ) (1.5-1)

where F(t) and #; are of the same naturc as thesge in (1.2-1) and ---a1,
az, -+ ax, --+ are independent randem variables all having the same
distribution. Then the %'" semi-invariant of the probability density P(I)
of I = I(t)is

A = va" [F(OT 4 (1.5-2)

- <]

The semi-invariants are defined as the ccefficients in the expansion of the
characteristic function f(z):

log /() = 2 :‘7! ()" (1.5-3)

where

f(u) = ave. &' = P(I)é'"™ dI
The moments may be computed frcm the A’s.
3. As » — o the probability density P(I) of the shot effect current ap-
proaches a normal Jaw. The way it is approached is given by

[
P(I) ~ ¢ o (2) — ‘fq ¥ (%)

+[’i‘4,—_ o) + M “”(x)]+

(1.6-3)

where the A's are given by (1.5-2) and

— :i 1 dn .
o = Ay x = L,__‘, !"3(,‘) — = —x1/2
/4

v 27 da® ¢

1/2
2

and the orders of
respectively. A

Since the A’s are of the order of v, ¢ is of the order of v

— —4 —-B 2 -7 —1/% -1 - 342 -3,
' not, Mo and Ago ' are v By v ¥ and v



possible use of this result is to determine whether a noise due to random in-
dependent events occuring at the sate of » per second may be regarded as
“random noise” in the sense of this work.

4. When I(2), as given by (1.5 -1), is analyzed as a Fourier scries over an
interval of length T a set of Fourier coefficients is obtained, By taking
many different intervals, all of length 7', many sets of coefficients are
obtained. If » is sufficiently large these coeflicients tend to be distributed
normally and independently. A discussion of this is given in section 1.7.

Part II—Power Spectra and Correlation Functions

1. Suppose we have a curve, such as an oscillogram of a neise current,
which extends from ¢ = QO to 2 = oo, Let this curve be denoted by I(2).
The correlation function of I(¢) is ¢(7) which is defined as

¥ = Limit f IOIE + ) dt (2.14)

where the limit is assumed to exist. This function is closely connected
with another function, the power spectrum, w(f), of I(f). I{t) may be
regarded as composed of many sinusoidal components. If I(f) were a
noise current and if it were to flow through a resistance of one ohm the
average power dissipated by those components whose frequencies lie be-
tween f and f + df would be w() df.

The relation between w(f) and ¢(7) is

w(f) = 4 ]:n ¥(7) cos 2xfrdr (2.1-5)
We) = [ () cos 2afr df (2.1-6)

When () has no d.c. or periodic components,
w(f) = Limit 2 lﬂﬁl (2.1~-3)

T—om

where
T
S() = f I0e" ar.
0

The correlation function for
I(t) = A + C cos 2nfet — o)
is
2

¥(r) = 4 + 2 cos 2mfor (2.2-3)

These results are discussed in sections 2.1 to 2.4 inclusive.



2. So far we have supposed I(?) to be some definite function for which a
curve may be drawn.  Now consider 7(f) to be given by a mathematical
expression into which, besides £, a number of parameters enter.  w(f) and
Y(7) are now obtained by averaging the integrals over the possible values
of the paramcters.  This is discussed in section 2.5,

3. The correlation function for the shot effect current of (1.2-1) is

4w teo 2
yir) = v F(OF( 4 ) dt + [v F(1) dt] (2.6-2)
‘The distributed portion of the power spectrum is
wi(f) = 2 |s(N) |
where
+e
s(f) = F(e ™7 dy (2.6-5)

The complete power spectrum has in addition to w(f) an impulse func-
tion representing the d.c. component 1(2).

In the formulas above for the shot effect it was assumed that the expected
number, », of electrons per second did not vary with time. A casc in which
v does vary with time is briefly discussed near the end of Section 2.6.

4. Random telegraph signal.  ILet I(f) be equal to either @ or —a so that
it is of the form of a flat top wave, and let the lengths of the tops and bot-
toms be distributed independently and exponentially. The correlation
function and power spectrum of I are

’I’(f) — aﬂe-i'nlvl (2.7_4)
2a?
wlf) = iay = (2.7-5)

where u is the expected number of changes of sign per second.

Another type of random telegraph signal may be formed as follows: Divide
the time scale into intervals of equal length 4. In an interval selected at
random the value of I(?) is independent of the value in the other intervals
and is equally likely to be }-a or —a. The correlation function of I{¢) is

zero for |+ > hand is
2 - ITJ)
a (1 W

for 0 < | 7| < kand the power spectrum is

wlf) = 20 ‘f*fgr‘},jf")z (2.7-9)



5. There are two representations of a random noise current which are
especially useful. The first one is

N
I() == 2, (@n €08 wal -} by sin wat) (2.8-1)
Auml
where a, and b, are independent random variables which are distributed
normally about zero with the standard deviation v/w(f,)Af and where

wa = 20fn, fu = nAf
The second one is

I(f) = i Ca €08 (wol — ¢n) (2.8-6)

nw=]

where ¢, is a random phasc angle distributed uniformly over the range
(0, 2x) and

cn = [2w(f)Af 3

At an appropriate point in the analysis N and Af are made to approach
infinity and zero, respectively, in such a wnanner that the entire frequency
band is covered by the summations (which then become integrations).

6. The normal distribution in several variables and the central limit
theorem are discussed in sections 2.9 and 2.10.

Part III-Statistical Properties of Noise Current

1. The noise current is distributed normally. This has already been
discussed in section 1.6 for the shot-effect. It is discussed again in section
3.1 using the concepts introduced in Part II, and the assumption, used
throughout Part 111, that the average value of the noise current 7(¢) is zero.
The probability that I'(?) lies between Iand I 4 dI' is

—5; =€ (3.1-3)

where yq is the value of the correlation function, y(r), of I{t) at 7 = 0

Yo = $(0) = fo w(f) df, (3.1-2)

w(f) being the power spectrum of I(¢). o is the mean square value of
L 1/2

I(t),i.e., the r.ms. value of T(2) is ¢y ".
The characteristic function (ch. {.) of this distribution is
sur(4) 'Pﬂ 2

ave, € = exp — o (3.1-6)
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2. The probability that 7(¢) lies between Iy and Iy =+ d7, and I(¢ 4 7)
lics hetween Fyand f3 - dF; when £is chosen at random is

v dlidly [uw? ~ tals + N1,
o 2¥5 — ¥r)

where ¢, is the correlation function (7)) of I{f):

[y — ¢7] ] (3.2-4)
o(r) = f w(f) cos 2ufr df (3.2-3)
B
The ch. f. for this distzibution is
ave, ¢TI mp[_flzg G + o) — %m’] (3.2-7)
3. The expected number of zeros per second of I(f) is
=] . 12
i I“ W'(O)T’z ,)IV.L. 1 w(f) df_,
LT S T T
[ [ e df_'

assuming convergence of the integrals. The primes denote differentiation
with respect to 7:

¥(1) =

d‘Z
d72 ¢ (7)'

For an ideal band-pass filter whose pass band extends from f; to f, the ex-
pected number of zeros per second is

P
2[3fo =7 (3.3-12)
When f; is zero this becomes 1.155 f and when f, is very ncarly equal to
fo it approaches fp + fa.

4. The problem of determining the distribution function for the length
of the interval between two successive zeros of I(¢) scems to be quite diffi-
cult. In scction 3.4 some related results are given which lead, in scme
circumstances, to approximations to the distribution. For example, for
an ideal narrow band-pass filter the probability that the distance between
two successive zcros lies between 7 and 7 <+ dr is approximately

dr  _a_
2 1+ a'(r —- )"



where

e

fv and f, being the upper and lower cut-off frequencics.

5. Tn cection 3.5 several multiple integrals which occur in the work of
Part Il are discusced.

6. The distribution of the maxima of I{f) is discussed in section 3.6.  The
expected number of maxima per sccond is

1 [ gloe L f‘f"(f) df
SRR WY

1,2

(3.6-6)

For a band-pass filter the expected number of maxima per second is

3 /o ]:]ua )
[S —p (3.6-7)

For a low-pass filter where fo = 0 this number is 0.775 fs .
The expected number of maxima per second lying above the line 7(¢) = I,
is approximately, when I, is large,

PRLELRY 3[ttie expected number of zeros of I per sccond]  (3.6-11)

where ¥y is the mean square value of I(¢).

For a low-pass filter the probability that a maximum chosen at random
from the universe of maxima lies between I and I - dI is approximately,
when 1 is large,

‘{5 eV .Z‘,l-._' (3.6-9)
where
_I,
y = L

7. When we pass noisc through a relatively narrow band-pass filter one
of the most noticeable featurcs of an cscillogram of the output current is
its fluctuating envelope. In sections 3.7 and 3.8 scme statistical properties
of this envelope, denoted by R or K{r), are derived.

The probability that the envelope lics between Rand R + dRis

LS

i ¢ 1M dR (3.7-10)



where Yo is the mean square value of 7(f). ‘The probability that R(f) lies
between Ry and Ry -|- AR, and at the same time R -1 7) lies between
Ry and Rs + dR, when ¢ is chosen at random is obtained by multiplying
(3.7 13) by dR, dR;. Tor an ideal band-pass filter, the expected number
of maxima of the envelope in one second is

GA110(fs —~ fa) (3.8-15)

When R is large, say y > 2.5 where
K

y = JAT” q,(',m = r.n.u, value of I(l)s

the probability that a maximum of the envelope, selected at random from
the universe of such maxima, lies between Kand R 4 dR is approximately

1.13(° — 1) v? d;%
vo

A curve for the corresponding probability density is shown for the range
0 <y < 4. Curves which compare the distribution function of the maxima
of R with other distribution functions of the same type are also given.

8. In section 3.9 some information is given regarding the statistical
behavior of the random variable:

u+r7

E = ') de (3.9-1)
1
where ¢, is chosen at random and I(¢) is a noise current with the power
spectrum w(f) and the corrclation function ¢(r). The average value
my of E is TYe and its standard deviation g5 is given by (3.9-9). For a
relatively narrow band-pass filter

ar l

mr vT(fb - j a)
when T(fs — fo) > 1. This follows from equation (3.9-10). An ex-
pression which is believed to approximate the distribution of E is given by
(3.9-20).

9. In section 3.10 the distribution of a noise current plus one or more
sinusoidal currents is discussed. For example, if I consists of two sine waves
plus noise:

I = Pcos pt+ Qcos ¢ + Iy, (3.10-20)

where p and ¢ are incommensurable and the r.m.s. value of the noise cur-
rent Inis ¥s'", the probability density of the envelope R is

R f rJo(Re)Jo(Pr) Jo(Qr)e ¥ dr (3.10-21)

where Jo( ) is a Bessel function.



Curves showing the probability density and distribution function of X,
when (= 0, for various ratios of P/r.mes. Iy are given,

10. In section 3.11 it is pointed out that the representations (2.8 1)
and (2.8 6) of the noise current as the sum of a great number of sinusoidal
components ar? not the only ones which may be used in deriving the results
given in the preceding sections of Part III.  ‘The shot effect repaesentation

a 33
I(¢) )= ; F(t - t)

studied in Part I may also be used.

Part TV—Noise Through Non-Linear Devices

1. Suppose that the power spectrum of the voltage V applicd to the
square-liw device

! =aV’ (4.1-1)
is confined to a relatively narrow band. The total low-frequency output
current I,¢ may be expressed as the sum

Lie= Ioc+ Ity (4.1-2)

where I4, is the d.c. component and I¢, is the variable component. When
none of the low-frequency band is eliminated (by audio frequency filters)

I = qgj (4.1-6)
where Ris the envelope of V. If V is of the form
V= Vs Pcos pt + Q cos ¢, (4.1-4)

where Vy is a noise voltage whose mean square value is ¥, then

2
Ido=a(¢o+‘;+%)

"9 2
Ity = o [\03 + Py + Q' + ’%Q-] (4.1~16)
2. If instead of a square-law device we bave a linear rectifier,
0 V<O
I = {aV, V>0 (4.2-1)

the total low-frequency output is

Teg = —- (4.2-2)
7
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When V is a siue wave plus noise, Vi -4 P cos pt,

PARE
[(1, = (1(9) |I’i|(‘-"5; 1; “.’l') (42—3)
2w
'S 02
Lit = 5 (P + N) (4.2-0)
where (9 is a hypergeometric function and
I*  Ave. sine wave power
== R 4.2- 4
! ¢ Ave. hoisc poawer ( )
When « is large
—_ ?
2 a Yo 1

I1f V consists of two sine waves plus noise, 74 consists of a hypergecmetric
function of two variables. The equations running frem (4.2-9) to (4.2-15)
are concerned with this case. About the only simple equation is

— 2
I’ = % 200 + P* + () (4.2- 14)

3. The expressions (4.1-6) and (4.2--2) for I,¢in terms of the envelope
R of ¥, namely

a ak
-—  and  ==-,
T

are special cases of a more general result
It = A(R) = ?!1:;.[ F(iu)Jo(uR) du. (4.3-11)
¢

In this expression Jo(uR) is a Bessel function. The path of integration C
and the function F(ix) are chosen so that the relation between I and V may
be expressed as

I = ﬂ-l-»f F(in)e'™ du. (4A-1)
2x Je

A table giving F(iu) and C for a number of common non-lincar devices is
shown in Appendix 4A.
If this relation is used to study the biased linear rectifier.

[ o, V<B

F'=\v-B v>un
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for the care in which s Vi -+ P ees pt, we find

B,r, B
Lo~ 4 4
de 2 F x 2zl

I e (&
L Iy~
s - I”

(4.3-17)

0

when P 3> | B, I > o where ¥ is the mean square value of Viy .

4. When 17 is confined to a relatively narrow band and there are no
audio-frequency filters, the probability density and all the associated sta-
tistical properties of ¢ may be obtained by expressing ¢ as a function
of the envelope R of 17 and then using the probability density of R.  When
Vis Ve 4 P oes pt + () cos gt this probability density is given by the in-
tegral, (3.10 21) (which is the integral containing three Bessel functions
stated in the above summary of Part 111).  When V consists of three sine
waves plus noise there are four Jo’s in the integrand, and so on. Expres-
sions for R» when R has the above distribution are given by equations
(3.10 25) and (3.10-27).

When audio-frequency fiiters remove part of the iow-frequency band the
statistical preperties, except the mean square value, of the resulting cur-
rent are hard tocompute, Insection 4.3 it is shown that as the output band
is chosen narrower and narrower, the statistical properties of the output
current approach those of a random noise current.

5. The scctions in Part IV from 4.4 onward are concerned with the
problem: Given a non-lincar device and an input voltage consisting of noise
alone or of a signal plus noise. What is the power spectrum of the output?
A survey of the methods available for the solution of this problem is given
in section 4.4.

6. When a noisc voltage Vy with the power spectrum w(f) is applied to
the square-law dcvice

I = aV? (4.1-1)

the power spectrum of the output current I is, when f » 0,
400
Wiy = o [ wl@ulf ~ 2) de (4.5-5)

where w(—x) is defined to equal w(x). The power spectrum of I when V
is either P cos pf -+ Vwor
O + kcos pt) cos gt + Vy

is considered in the portion of section 4.5 containing equations (4.5-10) to
(4.5-17).

12



7. A method discovered independently by Van Vieck and Noxth shows
that the correlation function ¥(+) of the output current for an unbiased
lincar rectifier is

) ]
OB RAN S [ ~1; ;;*I] (4.7-6)

where the input voltage is Vy . The correlation function y() of Vy is
denoted by ¢, and the mean square value of Vayisyg. The power spectrum
W{(f) of I may be obtained from

W) =4 f W(r) cos 2afr dr (4.6-1)

0
by expanding the hypergcometric function and integrating termwise using
Ga(f) = l ¥r o8 2xfr dr. (4C-1)

Appendix 4C 15 devoted to the probiem of evaluating the integral for Ga{f).

8. Another method of obtaining the correlation function () of I, termerl
the “characteristic function method,” is explained in section 4.8. It is
illustrated in section 4.9 where formulas for ¥(7) and W(f) are developed
when the voltage P cos p¢ + Vy is applied to a general non-linear device.

9. Several miscellaneous resulis are given in section 4.10. The char-
acteristic function method is used to obtain the correlation function for a
square-law device. The general formulas of section 4.9 are applied to the
case of a »'" law rectifier when the input noise spectrum has a normal law
distribution. Some remarks are also made concerning the audio-frequency
output of a linear rectifier when the input voltage V is

Q(1 + rcos pt)cos gt + Vy.

10. A discussion of the hypergeometric function 1/7,(a; ¢; x), which often
occurs in problems concerning a sine wave plus noise, is given in
Appendix 4B.

PART I
TIIE SHOT EFFECT

The shot effect in vacuum tubes is a typical example of noise. It is due
to fluctuations in the intensity of the stream of electrons flowing from the
cathode to the anode. Here we analyze a simplified form of the shot effect.

12



1.1 Tope Paovaniry or Fxacrry K ErECTRONS ARMIVING AT 1111
Anopr N Ty T

The fluctuations in the clectron stream are supposed to be random.  We
shall treat this randomness as follows.  We count the number of electrons
flowing in a long interval of time T measured in seconds.  Suppose there
are Ky. Repeating this counting process for many intervals all of length
T gives a sct of numbers Kz, Ky -+ Ky where M is the total number of
intervals. ‘The average number v, of clectrons per second is defined as

i Kv 4 Koo o0 4 K :

v = Lim S0 b B (i.i-1)
where we assume that this limit exists. As M is increased with T being
held fixed some of the A’s will have the same value. In fact, as M increases
the number of K's having any particular value will tend to increase. This
of course is based on the assumption that the clectron stream is a steady
flow upon which random fluctuations are superposed. The probability of
getting K electrons in a given trialis defined as

H(K) = Lim Yumber of trials giving exactly K electrons ;| ,,
M~ M

Of course p(K) also depends upon 7. We assume that the random-
ness of the electron stream is such than the probability that an electron
will arrive at the anode in the interval (f, ¢ < Af) is »At where At is
such that »Af << 1, and that this probability is independent of what has
happened before time ¢ or will happen after time ¢ + At,

"This assumption is sufficient to determine the expression for p(K) which is

-— ("’T)l,r —»T

p(K) = KU ¢
This is the “law of small probabilities” given by Poisson. One method
of derivation sometimes used can be readily illustrated for the case K = 0.

(1.1-3)

Thus, divide the interval, (0, T) into M intervals each of length At = ;li

At is taken so small that vAz is much less than unity. (This is the “small
probability” that an clectron will arrive in the interval Af). The prob-
ability that an electron will not arrive in the first sub-interval is (1 — »Af).
The probability that one will not arrive in either the first or the second
sub-interval is (1 — »Af)°. "I'he probability that an clectron will rot arrive
in any of the M intervals is (1 — »af)¥, Replacing M by T/At and letting
At — 0 gives

P(O) = e‘-w?'
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‘The expressions for p(1), p(2), - - p(K) may be derived in a somewhat
similar fashion.

1.2 STATEMENT O €AMPBELL'S THEOREM
Supposc that the arrival of an electron at the anode at time ¢ = O produces
an effect F() at some point in the output circuit.  If the output circuit
is such that the effects of the various electrons add hinearly, the total effect

at time 2 due to all the clectrons is
+on

I(t) = >, F(t — &) (1.2-1)

kes - o

where the £'" electron arrives at £, and the series is assumed to converge.
2 .
Camphbell's theorem” states that the average value of I{f) is

1w
I =v F(t) dt (1.2-2)
and the mean squarc value of the fluctuation about this average is
e ae e m . r+“°
2 2
I =1 = v | P (1.2-3)

where » is the average number of electrons arriving per second.

The statement of the theorem is not precise until we define what we mean
by “average”. From the form of the equations the reader might be tempted
to think of a time average; e.g. the value

Lim . f 10 ar (1.2-4)
0

7o 1
However, in the proof of the theorem the average is generally taken over
a great many intervals of length 7 with ¢ held constant.  The process is
somewhat similar to that employed in (1.1) and in order to make it clear
we take the case of I(¢) for illustration. We observe I(?) fcr many, say M,
intervals each of length 7° where T is large in comparison with the interval
over which the effect F(¢) of the arrival of a single electron is appreciable.
Let oJ(¢') be the value of I(¢), ¢’ seconds after the heginning of the »'" in-
terval. ¢’ is equal to ¢ plus a constant depending upon the beginning time
of the interval. We put the subscript in front because we wish to reserve
the usual place for another subscript later on.  ‘The value of I(¢') is then
defined as
HE) = Limit ) G0 + () + -+ WI@) 1.255)
and this limit is assumed to exist. The mean square value of the fluctua-
tion of I(¢’) is defined in much the same way.

t Proc. Camb. Phil. Soc. 15 (1909), 117--136, 310-328.  Our proof is similar to one given
by J. M. Whittaker, Proc. Camb. Phil. Sac. 33 (1937), 451-458.
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Actually, as the equations (3.2-2) and (1.2 3) of Campbelt’s theorem
cshow, these averapges and all the similar averages encountered lafer turn
cut to be independent of the time.  When this is tiue and when the M in-
tervals in (1.2-5) are taken consecutively the time average (1.2 4) and the
average (1.2-5) beceme the same,  To show this we multiply both gides of
{1.2-5) by d¢’ and integrate from 0 to 7

l ﬁ!‘ T
1) = Lamit MT..-.};‘xfo =1(F) ot
(1.2-0)

l T
= Limit MT-L I{t) dt

M ~+c0

and this is the same as the time average (1.2-4) if the latter limit cxists.

1.3 Proor or CamMpBELL'S THEOREM

Consider the case in which exactly K electrons arrive at the anode in an
interval of length 7°. Refore the interval starts, we think of these R elec-
irons as fated to arrive in the interval (0, 7°) hut any particular electron is
just as likely to arrive at one time as any other time, We shall number
these fated electrons frem one to K for purposes of identification but it is to
be emphasized that the numbering has nothing to do with the order of ar-
rival. ‘Thus, if #; be the time of arrival of electron number £, the probability
that #; lies in the interval (¢, ¢ -+ dt) is dt/T.

We take T to be very large compared with the range of values of ¢ for
which F(¢) is appreciably different from zero. In physical applications
such a range usually exists and we shall call it A even theugh it is not very
definite. Then, when cxactly A electrons arrive in the interval (0, T) the

effect is approximately
K
Ix(t) = kz F(t — 1) (1.3-1)
=1

the degree of approximation being very good over all of the interval except
within A of the end points.

Suppose we examine a large number M of intervals of length T. The
number having exactly K arrivals will be, to a first approximation M p(K)
where p(K) is given by (1.1--3). For a fixed value of £ and for cach interval
having K arrivals, Ig(¢) will have a definite value.  As M —» o | the average
value of the Fg(t)'s, obtained by averaging over the intervals, is

- T dt Tdly & .
I:(0) = f Tl f f]ft Z F{t — 1)
o 0 k=1

£ g (1.3-2)
=3 [ Ee -
i=1do 1
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and if A << ¢ < T - A, we have effectively
o X '
1w = [ o (1.3-3)

If we now average 7(t) over all of the M intervals instead of only over
those having K arrivals, we get, as M -— o

1) = Z PRI (2)
~ K (PI) {oe o
"‘Z;T Kt ° ,[_,.””"’

40
= p _[ F(t) dt (1.3-4)
W

and this proves the first part of the thecorem. We have used this rather
claborate proof to prove the relatively simple (1.3-4) in order to illustrate a
method which may be used to prove more complicated results.  Of course,
(1.3 4 could be established by noting that the integral is the average value
of the effect produced by one arrival, the average being taken over onc
second, and that » is the average number of arrivals per second.

In order to prove the second part, (1.2-3) of Campbell’s theorem we first
compute [*(f) and usc

U — 10) = PE) ~ 21010 + 16)°
= Py — 1)} (1.3-5)
From the definition (1.3-1) of Ix(¢),

Q) = )_, Z F(t — )F( — 1)

k=] mual]

Averaging this over all values of £, ¢y, - - - {5 with ¢ held fixed as in (1.3 2),
K T
I dh dlg
It = f f F(¢ — )F(@ — 1,
x(®) ;:m_ﬂ | P 0FU = t)
The multiple integral has two different values.  If 2 = m its value is

f i - tk) ds

and if 2  mits value is

T
f F(t — %) flﬁ‘ f F(t — t,) U
0 T

17



Counting up the number of tenns in the double sum shows that there are I
of them baving the fast value and A7 - A having the sccom! vadue.  Hence,
WA <t <71 - Awehave

1 » - = tw 2
1) - ;(‘ f 10 dt "(’_‘TB ”[ f F(t)dt]

Averaging over all the intervals instead of only those having K arrivals
ives

2@ -3 ) 1)

K0

Jo
= w [ F()y de -+ (1)
(]
where the summmaiion with respect to K is performed as in (1.3 4), and after
summation the value (1.3 1) for /() is vsed. Comparison with (1.3-5)

establishes the second pact of Campbell’s theorem.

14 ‘I'ne Dustrinution ox I{Y)

When certain conditions are satisfied the proportion of time which I{¢)
spends in the range 7, T -+ df is P(I)dI where, as v —» o, the probahility
density P(I) approaches

1
01\/2‘;1 ¢

where T is the average of 7(£) miven by (1.2 2) and the square of the standard
deviation oy, fe. the variance of I(¢), is given by (1.2-3). This normal
distribution is the one which would be expected by virtue of the “central
limit theorem™ in probability.  This states that, under suitable conditions,
the distribution of the sum of a large nummber of vandom variables tends
toward a normal distribution whose variance is the sum of the variances
of the individual varables.  Similarly the average of the normal distribu-
tion 15 the sum of the averages of the individual variables.

So far, we have heen speaking of the limiting form of the probability
density P(7). It s possible 1o write down an explicit eapression for P(1),
windh, however, is quite involved. From this expression the limiting form
may be obtained. We now obtain this expression.  In line with the dis-
cussion given of Campbell’s theorem, we seek the probability density P(1)
of the values of 7(2) oliserved at £ seconds from the beginning of cach of a
lnrge mumnber, M, of intervals, cach of length 7',

- ni2ad (1.4-1)
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Probability that 7u) lies inovamge (1, 1 4 dF)
= Y (Probability of exactly & arrival) X

A0
(Probabihity that if there are exactly
A arivals, F,0) hes w (I, F H- 1)),
Denoting the last probability in the summation by P, (7)J7, using notation
introduced carlier, and cancelling out the factor o gives

"Iy = gu PK) Pa(]) (1.4-2)

We shall compute Px(7) by the method of “characteristic functions™® from
the definition

Iﬁ([) =- i I"(t - tk) (1.3"1)

of Ix(?). 'The method will be used in its simplesi form: the probability that
the sum

RTTRS oI 0 SRR S %
of A independent random variables lies between X and X 4 dX is

L.y

}o0 .
dX —1— f ¢ " T (average value of ¢'*") dxu (1.4-3)
21 b kend

The average vaiuc of ¢, i.e., the characteristic function of the distribution
of %, is obtained by averaging over the values of 2.  Aithough this is the
simplest form of the method it is also the least general in that the integral
does not converge for some important cascs. The distribution which gives
a probability of § that x, = --1and } that 2z = +1is an example of such a
case. However, we may still use (1.4 -3) formally in such cases by employ-
ing the relation

fw
f_ e du = 278(a) (1.4-3)

[ ]

where 8(e) is zero except at @ = 0 where it is infinite and its integral from
a = —eloa = +eis unity where e > 0.

When we identify x; with F(f — {;) we sec that the average value of
irgu .
18

T
—l—f exp linli(t — )] dtx
T J

® The essentials of this method are due to Laplace. A few remarks on its history are
given by E. C. Molina, Bull. Awer. Math. Soc., 36 (1930), pp. 369-392. An account of
the method may be found in any one of several texts un probability theory. We mention
“Random Variables and Probability Distributions,” by M. Cramér, Camb. Tract in
Math. and Math. Phys. No. 36 (1937), Chap. V. Also “Introduction to Mathematical
Probability,” by J. V. Uspensky, McGraw-Hill (1937), pages 240, 264, and 271-278.
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All of the K characteristic functions are the same and hence, from (1.4 3),

PNl s
1 4w ) 1 T K
dl —. [ e ' (wf exp lind(t -- T)]dr) du
2r Jow T J

Although in deriving this relation we have taken K > 0, it also holds for
K = 0 (provided we use (1.4-4)).  In this case Py/T) = §(I), because I = 0
when no electrons arrive.

Inserting our expression for Px(I) and the expression (1.1-3) for p(K)
in (1.4-2) and performing the summation gives

o
Py = '.f c.\p(—-ilu T
27f -0

N
+4- vj exp linl (1 — r)]dr)du (1.4-5)
o
The first exponential may he cimplified comewhat,  Ueing

T
v'l'-——u[ dr
0

permits us to write
T r
—vT + vf exp [iul(t — 7)) dr = vf (exp [iul(t — 1)} ~ 1) dr
0 0
Suppose that A < ¢ < T — A where A is the range discussed in connection

with equation (1.3-1). Taking |1 — 7)| = Ofor|?2 — r] > A then
enables us to write the last expression as

o
v [ [ — 1] at (1.4-6)
Placing this in (1.4 §) yiekds the required expression for P(I):

| o }m
ra) = 2117-]. exp (-—ilu -+ uf [efurte — I]f]!)a'u (1.4-7)

An idea of the conditions under which the normal law (1.4-1) is ap-
proached may be ohtained from (1.4-7) by expanding (1.4-6) in powers of
u and determining when the terms involving #® and higher powers of
may be neglected. ‘This is taken up for a slightly more general form of
current in section 1.6,



1.5 Ex1EnsION oF CAMPBELL'S ThEOREM

In section 1.2 we have stated Campbell’s theorem.  Tlere we shall pive
anextension of it. In place of the expression (1.2 1) for the [(¢) of the shot
effect we shall deal with the current

tw

I(9) = D, aF(t — 1) (1.5-1)
kca—n

where F(2) is the same sort of function as before and where - - ay, a2, - -
ai , - -+ arc independent random variables all having the same distribution.
It is assumed that all of the moments g cxist, and that the events occur at
random

The extension states that the #th semi-invariant of the probability density
P(I) of I, where [ is given hy (1.5-1), is

An = rg" f M[I-‘(t)]" dt (1.5-2)

where v is the expected number of events per second.  The semi-invariants
of a distribution are defined as the coeflicients in the expansion

N

An,.
log, (ave. ™) = 3 ;;; ()" + o(u™) (1.5-3)
fi—=1
i.e. as the coeflicients in the expansion of the logarithm of the characteristic
function. The XA’s are related to the moments of the distribution.  ‘Thus if

my, Mg, - -+ denote the first, second --- moments about zero we have

N
ave. ¢’* =1+ .m_; (F)" 4 o(2™)

nel ,z
By combining this relation with the one defining the A's it may he shown that

I_ = m = A
2= my = A+ Aoy
P o= Iy = )\a + 2?\2"1[ + Mmg

It follows that A, = T and Az = ave. (7 — 1)°. Hence (1.5 2) yickls the
original statement of Campbell’s theorem when we set 1 equal to one and
two and also take all the a’s to be unity.

The extension follows almost at once irom the generalization of expression

(1.4 7} for the probability density (). By proceeding as in section 1.4

and identifying ap with ap /(¢ -- £;) we see that
VT hU 1 Im T
ave. ¢ © = 7 y(a) a‘af exp liual(t — L)) de,
® L]
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where g(a) is the probability density function for the a’s. 1t furns out that
the probability density 7°(Z) of [ as defined by (1.5 1) s

$i0 400
ry - ‘1 [ exp ( il -| uf g(a) du
Zﬂ’ Ly Hsd — )

f l(jlm!’“) — 1] dt) du (1.5A4)
The logariihm of the charactenistic function of P(1) is, from (1.5 4),

+= 4w
v-[ g(a) ria[ e — 1) ot

© . » + %0 <+ 00
-3 (:1:1) [ a@dae [ Fw i
fNeal ] ©

Comparison with the series (1.5-3) defining the semi-invariants gives the.
extension of Camphell’s theorem stated by (1.5 2).

Other extensions of Campbell’s theorem may be made. For example,
supnose in the cxprossion (1.5 1) for 7{) that &y, &3, - -- &y, - - - while still
random variables, are no longer necessarily distributed according to the
laws assumed above. Suppose now that the probability density p(x) is
given where x is the interval between two successive events:

=+ x (1.5-5)
b=b+x=4+n+mn
and so on.  For the case treated above
Px) = v (1.5-6)

We assume that the expected number of events per sccond is still v,
Also we take the spedial, but important, case for which

() =0, 1<0 (1.5-7)
I = e ™, t > 0.

For a very long interval extending from ¢ = ¢ tot = T -+ {, inside of which

there arc exactly A events we have, if £ is not near the ends of the interval,

1) = auf't — ) + aal'lt — 1, ~ x)) + -+

: ;ﬁfl'l:(: :l Y S -‘K)
= @l () + @F(t' — x) 4 - + gy l’(tT — xy = o0 — xg)
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) = @) & aF = w) A - de N n e = xk)
1 2RV — x1) 4 - A 2aan B UV xn = xp)
A4 23l — )P — A — x9) o b
where ¢ = ¢ 1. Jf we integrate I°{1) over the entire interval 0 < ¢ < T
and drop the primes we get approximately

,
fo Ig(l)dt v (u‘f + o ak e (0)

+ 2ai@p(x) + 2aas0(ny + 2) -0 4 2a0k00(s F -0 4 xk)
+ 2asas(xn) ¢ - A -+ 2flkarcntp(-"'K)

where
w0
dﬂ:[ FIVE(@ — x) dx
0
vnr e Aierida Vool i laa Lose PGS RIS PRI LA I LEPU S, —
‘-‘v"lu.u Yo d:vndc. 'uu{}; :ul'l(:a hy Taud [y mu’u:l lt\ An £t h(, L 1 g,

r 2 2
Kot - davn 6y = vate(o)

’d

K
%—.[6102 (%) + a2 a3 () + -+ - + ax arp1e{xx)] = g AVCIABE @1 iy ¢lx2)

= vciaj; ¢(2)p(x) da

K —
—11-.[01 gl + x0) + -] == "T'”l ave. ar Gys (e + x4a)

= wizj; dxlj; dx p(x1) p(xs) (s + x3)
Consequently

, 1 7
I*(f) = Lim -»»f 12(1) dil
T h

T—*o0

= yalp(0) + 2vad’ [./:“ p(x)p(x) dx

+ju. dxlj; dxap(x)p(a)e(a 4+ &) + -~ —J

For our special exponential form (1.5 7) for F(1),



and the multiple integrals occurring in the expression for 13(¢) may be writfen
m terms of powers of

q = L px)e ™ dx (1.5-8)
Thus
2al2() = va? 4 2d% T
i --q
and since
- — +m Py
I(t) = va F(t) dt = vafe
we have
"\ 2
P — 1nt = va? -+ (Ka\ |- o 1.5 9
YT T 2a T Na/ Ll — ) l] (139

Equations (1.5 8) and (1.5 9) give us an extension of Campbell's theorem
subject to the restrictions discussed in connection with equations (1.5-5)
and (1.5-7). Other generalizations have heen made® but we shall leave the
subject here. The reader may find it interesting to verify that (1.5-9)
gives the correct answer when p(x) is given by (1.5 6), and also to investi-
gate the case when the events are spaced equally.

1.6 Arrroacn ofF DISTRIBUTION OF I 10 A NorwmaL Law

In section 1.5 we saw that the probability density P(7) of the noise current
I may he expressed formally as

P + -2‘; [ cxp[—«'ru + :(iu)"xn/r:!] de  (1.6-1)

where A, is the ath semi-invariant given by (1.5-2). By sctting

x=- =T (1.6-2)

1Sce E. N. Rowland, I'roc. Camb. Phil. Sec. 32 (1936}, 580-597. He extends the
theorem to the case where there are two funclions instead of a single one, which we here
denote by I{t). According {o a review in the Zentralblatt fir Math,, 19, p. 224, Khint-
chine in the Bull. Acad. Sci. URSS, sir. Math. Nr. 3 (1938), 313-322, has continued and
made precise the eadier work of Rowland.
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expanding

e\p L (31)" N, /o
nad
A% 4 POWEE SCFICSs 1N o, integrating termwise using
e
1

? 2
2 (fua)" exp [——iua.\' - “20 ](Iu = (=) ™ (x),

i d" .
5l}(")(-r -~ z¥f¢

- ‘\/21rd\.

- N . - . : 2.
and finally coilecting terms according to their order in powers of v ™7, gives

PU) ~ ot o (x) — Ao f';‘(a)(x)+[)\ao“5 @ () +Ma - (ai(ﬂ]_{_ .

(1.6-3)

The first term is 0(»~ %), the second term is 0 "), and the term within
brackets is 00" ¥%). This is Edgeworth’s series.®  The first term gives the
normal distribution and the remaining terms show how this distribution is
approached as » — =

1.7 Tuv Fouricr CompronNeENTS OF I(2)

In some analytical work noise current is represented as

1) = “" + Z (a,. cos ™ L b, s 2’;") (1.7-1)

nel

where at a suitable place in the work T and A are allowed to become infinite.
The coeflicients @, and b, , 1 € 2 < N, are regarded as independent random
variables distributed about zero according to a normal law.

It appears that the association of (1.7-1) with a sequence of disturbances
occurring at random goes hack many years.  Rayleigh® and Gouy suggested
that black-body radiation and white light might both he regarded as se-
quences of irregularly distributed impulses.

Finstein’ and von Laue have discussed the normal distribution of the
coefficients in (1.7- 1) when it is used to represent hlack-body radiation, this
radiation being the resultant produced by a great many independent os-

& See, for example, }:}) 86-87, in “Random Variables and Probahility Distributions”
by H. Cramér, Cambridge Tract No. 36 (1937).

s Phil. !lng Ser. §, \'ul 27 (1889) pp. 460 169,

7 A. Einstein and L. Ilupf Ann. d. Physik 33 (1910) pp. 1095 1115,

M. V. Laue, Ann. d. Physik 47 (1915) pp. 833 878.
A, Finstein, Ann. d. Physik 47 (115) pp. B79 KRS

M. V. L'\ue, Ann_d. Physik 48 (1915) pp. 668-680.
I am indebted to Prof. Goudsmit for these references.



cillators. Some arpument arose as to whether the coeflicents in (1.7 1)
were statistically independent or not. 1t was finally decided that they
are independent,

The shot effect current has been represented in this way by .‘i('hnttky.ﬂ
‘The Fourier serics representation has heen discussed by H. Nycuist” and
also by Goudsmit and Weiss.  Remarks made Ly A, Schuster™ are equiv-
alent to the statement that @, and 4, are distributed normally.

In view of this wealth of information on the subject 1t may appear super-
fhwous to say anything about it. However, for the sake of completeness,
we shall outline the thoughts which lead to (1.7-1).

In line with our usual approach to the shot effect, we suppose that exactly
K electrons arrive during the interval (0, 7°), so that the noise current for
the interval is

I:() = 2 F(t — &) (1.7-2)

Rem )

The coctlicients in the Fourier series expansion of 7x(t) over the interval
(0, T arc aax and b,z where

)
. f A “w[ b;"]a,
2 e Z'n'n
- I. I'(l) exp —1 (t + ’L)
X
= Rn e--lw Z _|"ok (1.7‘-3)
In this expression
2ty
O = fI’_*

(1.7-4)
(X
R = Co = i8Sy = 2 [ Foe T a

In the earlier sections the arrival times £y, £z, -+ - tx were regarded as K
independent random variable each distributed uniformly over the interval
(0, T). Hence the 6,'s may be regarded as random variables distributed
uniformly over the interval O to 2r.

Incidentally, it will be noted that in (1.7-3) there occurs the sum of A
randomly oriented unit vectors. When A becomes very large, as it does

*Aun. d. Physik, 57 (1918) p. 541- 367,

¥ Unpublished Memorandum, “Fluctuations in Vacuum Tube Noise and the Like,"”
March 17, 1932,

1 Investigation of Ifidden Periodicities, Terrestrial Magnetism, 3 (1898), pp. 1341,
Sec especially propesitions § and 2 on page 26 of Schuster’s paper.
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when » - > o it is known that the real and traginary parts of this sum are
random variables, which tend to become independent and nonaally dis-
tributed about zero.  This suggests the manner in which the normal dis-
tribution of the coeflicients arises.  Averaging over the 0i's in (1.7 3) gives
when # > 0

(inR — 6!1&’ = 0 (17 5)
Some further algebra gives

“aTC S ’\- o
Uog == b;R = K:’l
2 (1.7-6)

8ux ok = Gux QGmx = bagbnx = 0
where # = m and »#, m > 0.
So far, we have been considering the case of exactly A arrivals in our
interval of length 7. Now we pass to the general case of any number of
arrivals by making use of formulas analogous to

a’ = Z;p(K)ﬁ’,.; (1.7-7)
Am
as has been done in section 1.3. Thus, for n > 0,
dp = by, =0
& =="] R =d (1.7-8)

a. b, = 8,8, = bbb, =0, n#m

In the second linc we have used ¢, to denote the standard deviation of a,
and b,. We may put the expression for o in 2 somewhat different form
by writing

1

fo = ;= naf,  of = (1.7-9)

where f, is the frequency of the nth component. Using (1.7-4),

4o

oh = Af

]
F(e ™"~ di (1.7-10)
Thus, o is proportional to »/T.
The probability density function P(a1, --- ax, by, - - - bx) for the 2N co-
eflicients, a1, --- aw, by, - -+ by may be derived in much the same fashion
as was the probability density of the noise current in section 1.4. Here N
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is arbitrary but fixed. The expression analogous to (1.4 5) is the 2N fold
integral

+ea -+ v

Play, » -, by) = (2m)*" duy - -« doy (1.7-11)

exp [—i{ar2s 4- - -+ + byey) — v 4 vTE]

where
2

r N
L= df exp Li 3 (02 Ca F 128, cos 20 + (1 Co ~ 12 S4) sin uﬂ]
nel

2w Jo
(1.7-12)

in which C, — 1S, is defined as the Fourier transform (1.7-4) of F{¢).

The next step is to show that (1.7--11) approaches a normal law in 2N di-
mensions as v — «.  This appears to be quite involved. It will be noted
that the integrand in the integral defining E is composed of N factors of the
form
exp lipa cos (0 — ¥,)]

= Jo(pn) + 2i cos (10 — ) Ji(pn) — 2 cos (210 — 2)Jo(pn) + - -~

where
ph = (i + NCh + 82 = T ol + o).

As v becomes large, it turns out that the integral (1.7--11) for the prob-
ability density obtains most of its contributions from small values of # and .
By substituting the product of the Bessel function series in the integral for
E and integrating we find

E=1l Jops) + 4+ B+C

N1

where A4 is the sum of products such as
— 2% cos (41“5 - \"k — 4/{)]1(pk)‘71(p()_/|(p“ () times N — 3 JO’S

inwhich <k <land2 < k+ 1< N, Similarly Bis the sum of products
of the form

— 21 cos (4’21: — ZIPk)fl(pzk).’z(pk) tnes N =2 Ju'S
\

O consists of terms which give fourth and higher powers in w and o, There
are roughly N*/1 terms of form 4 and V2 terms of form B.
Expanding the Bessel functions, neglecting all powers above the third and
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proceeding as in section 1.4, will give us the normal distribution plus the first
correction term. Tt is rather a messy affair.  Anidea of how it looks may
be obtained by taking the special ¢case in which #(¢) is an even function ef ¢
and neglecting terms of type B. ‘Then

LA («3+yd)2
-p(al’ "'af\lsbl: bN) = (l "* 7’) II - g (17“12)
fieo | T
where
n_ b,
xn D e ’ y" |- —
On an

9 = (2oT) 7 Z;, [vese(asae — vye) + 2y eyveyel  (1.7-13)
k.

and the summation extends over 2 < k -+ I < N with 2 < [.

It is seen that if T and N are held constant, the correction term 9 ap-
proaches zero as » becomes very large. A very rough idea of the magnitude
of » may be obtained by assuming that unity is a representative value of the
«’s and y’s. Turther assuming that there are N? terms in the summation
each one of which may be positive or negative suggests that magnitude of
the sum is of the order of N. Hence we might expect to find that 5 is of
the order of N(2sT)™"".

YART II
POWER SPECTRA AND CORRELATION FUNCTIONS

2.0 INTRODUCTION

A theory for analyzing functions of time, ¢, which do not die down and
which remain finite as ¢ approaches infinity has gradually heen developed
over the last sixty years. A few words of its history together with an ex-
tensive bibliography are given by N. Wiener in his paper on “Generalized
Harwmonic Analysis”."! 6. Gouy, Lord Rayleigh and A. Schuster were led
to study this problem in their investigations of such things as white light
and noise. Schuster invented the “periodogram’ method of analysis which
has as its object the discovery of any periodicitics hidden in a continuous
curve representing meteorological or economic data.

N Acta Math., Vol. 55, pp. 117-258 (1930). See also “Ilacmonic Analysis of Irregular
Motion™ Jour. Matk. and Phys. § (1926) pp. 99-189.

18 The periodogram was first introduced by Schuster in reference 10 cited in Scction
1.7. He later modified its definition in the Trans. Cambh. Phil. Soc. 18 (1900), pp. 107-
135, and still later redefined it in ““The P'eriodogram and its Optical Analogy,” Proc. Roy.
Soc., London, Ser. A, 77 (1906) pp. 136-140.  In its tinal form the periodogram is cquiva-

lent to dw(f), where w(f) is the power spectrum defined in Section 2.1, plotted as a func-
tion of the period T = (2«f) 1.
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“The correlation function, which turns cut to be a very useful tosl, appar-
ently was introduced by G L Tavlor.”  Recent!y it has heen used by quite
a few writers' T in the mathematical theory of turbulence.

In section 2.1 the power spectrum and correlation funetion of a specific
function, such as ane given by a curve extending to ¢ == oo are defined by
equations (2.1 3) and (2.1 4) respectively. That they are related by the
Fourier inverston formulae (2.1 5) and (2.1 0) is merely stated; the dis-
cussion of the method of preof being delayed until cections 2.3 and 24, In
section 2.3 @ discussion based on Fourier series is given and in section 2.4 a
parallel treatment starting with Parceval’s integral theorem is set forth.
The results as given in section 2.1 have to be supplemented when the func-
tion being analyzed contains a d.c. or periodic components.  This is taken
up in section 2.2

‘The first four sectivns deal with the analysis of a specific function of ¢£.
However, most of the applications are made to functions which bechave as
though they are more or less random in character. In the mathematical
analysis this randomness is introduced by assuming the function of ¢ to be
also a function of suitable parameters, and then letting these parameters be
random variables,  ‘This question s taken up in section 2.5.  In section 2.6
the results of 2.5 are applicd to determine the average power spectrum and
the average corrclation function of the shot effect current.  The same thing
is done in 2.7 for a flat top wave, the tops (and bottoms) being of random
length. The case in which the intervals are of equal length but the sign
of the wave is random is also discussed in 2.7. The reprcsentation of the
noise current as a trigonometrical series with random variable coeflicients
is taken up in 2.8.  The last two sections 2.9 and 2.10 are devoted to prob-
ability theory. ‘The normal law and the central limit theorem, respectively,
are discussed.

2.1 Somr Resurts oF GENERALIZED HARMONIC ANALYSIS

We shall first state the results which we need, and then show that they are
plausible by methods which are heuristic rather than rigorous. Suppose
that 7(¢) is one of the functions mentioned above. We may think of it as
Leing specified by a curve extending from? = —w tot = o, I{!) may
be regarded as composed of a great number of sinusoidal components whose
frequencies range from 0 to 4. It docs not necessarily have to be a noise
current, but if we think of it as such, then, in flowing through a resistz.ice of

one ohm it will dissipate a certain average amount of power, say p watts,
18 Diffusion by Continuous Movements, Proc. Lond. Math. Soc., Ser. 2, 20, pp. 196~
212 (1920).

4 See the text “Modern Developments in Flnid Dynamics' edited by S. Goldstein,
Qxford (1938).
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‘That portion of parising frem the components having frequencies between
fand f |- df will be denoted hy w( f)df, and consequently

p = _L w(f)df (2.1-1)

Since w(f) is the spectrum of the average power we shall call it the “power
spectrum’ of 7{#). 1t has the dimensions of energy and on this account 1s
frequently called the “energy-frequency spectram” of J(£). A mathematical
formulation of this discussion leads to a clear cut definition of (f).

Let &) be a function of £, which is zero outside the interval 0 <0 ¢ < 7T and
is equal to J(0) inside the interval,  [ts spectrum S(f) is given by

S(f) = fo I(e ™" dy (2.1-2)

The spectrum of the power, w(f), is defined as

w(f) = Limit 2 S;;f) |

T-

(2.1-3)

where we consider only values of £ > 0 and assume that this lHmit exists.
This is substantially the definition of w(f) given by J. R. Carson’ and is
uscful when 7(2) has no periodic terms and no die, component.  In the
latter cace (2.1 3) must either be supplemented by additional definitions or
elze a somewhat different methad of approach used.  These questions will
be discussed in section 2.2.

The correlation function Y(7) of I(t) is defined by the limit

¥(r) = Limit I j; IO + 1) dt (2.1-4)

which is assumed to exist.  ¥(7) is closely related to the correlation coefli-
cients used in statistical theory to measure the correlation of two random
variables. In the present case the value of 7(t) at time ¢ is one variable and
its value at a different time ¢ 4- 7 is the other variable.

The spectrum of the power w(f) and the correlation function ¢(7) are
related by the equations

w(f) = 4./‘; ¢(7) cos 2afr dr (2.1-5)

y(r) = j;' w(f) cos 2afr df (2.1-6)

18 ““The Statistical Fnergy-Frequency Spectrum of Random Disturbances,” B.S. 7.7,
Vol. 10, pp. 374-381 (1931).
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.



1t is seen that ¢(#) is an even function of = and that
V(0) = p (2.1-7)
When cither ¢(7) or w(f) is known the other may be obtained provided the
corresponding integral converges.
2.2 Powrr Srrcrtrum FOR D.C. AND Prrionic COMPONENTS

As mentioned in section 2.1, when I{?) has a d.c. or a periodic com-
penent the limit in the definition (2.1-3) for (/) does not exist for f equal
to zero or to the frequency of the periodic component. Perhaps the most
satisfactory method of overcoming this difficulty, from the mathematical
point of view, is to deal with the integral of the power spectrum.

lf w(g) dg (2.2-1)

instead of with w(f) itself.
The definition (2.1-4) for ¥(7) still holds. If, for example,
I#) = A + Ccos (2nfet - ¢) (2.2-2)
¥(7) as given by (2.1-4) is

]
v(@) = A* 4+ (-:2 cos 2xfor (2.2-3)

The inversion formulas (2.1-5) and (2.1-6) give
! o .
[ weyag =2 [ gt 227 gr
0 T Jo T

L] s
o(r) = fo cos Zsfrd[ fo w(3) dg]

18 This is done by Wiener ! loc. cit., and by G. W. Kenrick, “The Analysis of Irregular
Motions with Applications to the Energy Frejuency Spectrum of Stetic and of Telegraph
Signals,” Phil. mg., Ser. 7, Vol. 7, pp. 176-196 {Jan. 1929). Kenrick appears to be one
of the first to apply, to noise problems, the correlatian functisn method of computing the
power spectrum (one of his problems is discussed in Sec. 2.7).  He bases his work on re-
sults due to Wiener. Khintchine, in “Korrelatinonstheorie der stationaren stochastischen
Prozesse,” Math. Annalen, 109 (1934), pp. 604-615, proves the following theorem: A
necessary and sufficient condition that a function R(s) may be the correlation function of
a continuous, stationary, stochastic process is that R(f) may be expressed as

(2.2-4)

+-0
R{l) = ‘[ cos L dF(x)

where F{x) is a certain distribution function. ‘This expression for R(1) is essentially the
second of equations (2.2-4). Khintchine's work has bzzn extenlel by H. Cramer, “On
the theory of stationary random processes,” 4nn. of Muth., Ser. 2, Vol. 41 (194)), pp.
215-230. However, Khintchine and Cramér appear to be interested prinurily in ques-
tions of existence, representation, etc., and d not streas the concept of the pawer spectrum.
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where the last integral is to be reparded as o Stieltjes” integral. When the
expression (2.2 3) for y(#) is placed in the first formulaof {22 1) we et
A? when 0 <2 f < [y

s
[ ?('({.’) dg o AE -+ (é ' . f ~> fu (2.2°5)

When this expression is ueed in the second formula of (2.2 B, the tnerements
of the differential are seen to be A% at f = Oand (°/2at f = fo.  The re-
sulting expression for ¢(7) agrees with the onpzinal one.

Here we desire to uge a less rigorous, hut more convenient, method of
dealing with periodic components. By examining the integral of se(f) as
given by (2.2--5) we are led to write

o8 |
w(f) = 24°6f) + 5 8(f — fo)- (2.2-6)
where (1) is an even unit impulse function so that if e 2> 0
[awar = [ (s ax -3 (22 7)
0 .

and 8(x) = 0 except at x = 0, where it is infinite.  This enables us to use
the simpler inversion formuias of section 2.1, The sccond of these, (2.1 6),
is immediately scen to give the correct expression for (7). The first one,
(2.1-3), gives the correct expression for w(f) provided we interpret the in-
tegrals as follows:

fn cos 2zfr dr = }5(f)
! (2.2-8)

j; cos 2xfor co8 2nfrdr = L8(f — fo)

It is not hard to show that these are in agreement with the fundamental
interpretation

+w 400

[ e = [ e dl = 8(f) (2.2 9)
] ]

which in1ts turn follows from a formal application of the Fourier integral

formula and

+w ] +m .
[ s(Ne " df =[ 3(f)e “tdf =1 (2.2-10)

@

We must remember that fo > Oand f > 0 in (2.2 8) so that §(f + fo) = 0
for f > 0.



The definition (2.1-3) for w(f) pives the continnous part of the power
spectium. In order to get the part due to the d.c. and periodic com-
ponents, which is excmplified by the expression (2.2 6) for w(f) mvolving
the & functions, we must supplement (2.1-3) by adding terms of the type

2 ’ . 2
24%8(f) + g i(f — fo) = [Limit d 51(3) l] 6(f)
Tow
. (2.2-11)
+ [I.imit 2 S(o} | ] 5f — fo)
T-ven 1‘2
The correctness of this expression may be verified by calculating S(f) for
the I{t) of thissection given by (2.2 2), and actually carrying out the limiting
process.

2.3 DiscussioN OF RESULTS OF SECTION ONE—IOURIER SERIES

The fact that the spectrum of power w(f) and the correlation function
¥(7) are related by Fourier inversion formulas is closely connected with
Parseval’s theorems for Fourier series and integrals.  In this section we shall
not use Parseval’s theorems explicitly.  We start with Fourier’s series and
use the concept of each component dissipating its share of energy inde-
pendently of the behavior of the other components.

Let that portion of I'(t) which lies in the interval 0 £ ¢ < T be expanded
in the Fourier scries

_ @ - _ 2nmt . 2t _
Iy = + ,.; (a..ws- o T busin ~T~) (2.3-1)

where

kN
w

2 f T 2unt
e, = T h I(t) cos I di
(2.3-2)

_ ZIT . 2mnl
b, = 7 h I(t) sin T di

Then for the interval —7 <t < T — 71,

4=+ (a,. cns 2”"(‘;” D 4 b sin 5™ (‘T.+ ’)) (2.3-3)

Multiplying the series for 7{f) and I'{¢t 4+ 7) together and integrating with
respect 10 £ gives, after some redud tion,

T
;-, f IO + 7) dt
(1]
(2.3-4)

2 ] “
= 0o + Z ! (@’ + &%) cos 2w r+ 0 (LIA)
‘1( neal T 7
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where the last terin represents correction tering which must be added he-
cause the serics (2.3 3) does not represent J{# -+ #) intheinterval (7°-- +,7T)
when 7 2> 0, orin the intexrval (0, — 7) if 7 < 0,

1f 7(t) were a current and if it were to flow through one ohm for the in-
terval (0, T), each component would dissipate a certain average amount
of power., ‘The average power dissipated by the component of frequency
fo = n/T cycles per second would be, from the Feurier series and elementary
principles,

2 (a“ +4 b%) watts, n # 0
(2.3-5)

ao

T watts, n =0

The band width associated with the nth component is the difference in
frequency between the # 4 1 th and nth components:

n+1 ” 1
Jorr = fa = T T 7 ‘;,’-CPS

Hence if the average power in the band f, f + df is defined as w(f)df, the
average power in the band fa4a — fu is

W)U = 1) = w (%) &
and, from (2.3-5), this is given by

() =@+, n 0

w(()) =

(2.3-6)
4 ?
When the coefficients in (2.3-4) are replaced by their expressions in terms

of w(f) we get

-‘T j; TIOI0 + D dt + 0 (I-;

Z: W (ﬁ) Co8 ?-1’!?
neb T

“ n) 21rnr a’rz

e e

(2.3-7)

i
S~

Y\1) €

w(f) cos 2=fr df

fl
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where we have assumed T so large and w(f) of such & nature that the surama.-
tion may be replaced by integration.

If I remains finite, then as 1" —> « with 7 held fixed, the correction term
on the left becomes negligibly small and we have, upon using the definitions
(2.1-4) for the correlation function ¥(7), the second of the fundernental
inversion formulas (2.1- 6). ‘The first inversion formuia may be obtained
from this at once by using Fouricr's double integral for w(f).

Incidentally, the relation (2.3-6) between w{f) and the coeflicients a, and
b is in agrecment with the definition (2.1-3) for w(f) as a limit involving
| SN | ?  From the expressions (2.3-2) for @, and b,, the spectrum S{fn)
given by (2.1-2) is

S = % (@, — ib,)

Then, from (2.1-3) w(f,) is given by the limit, as T — o, of

2 st = 22 + )

—--(a..+b)

and this is the expression for (T) given by (2.3-6).

2.4 DiscussioN OF RESULTS OF SECTION ONE--PARSEVAL'S THEOREM

The use of Parseval’s theorem'” enables us to derive tke results of section
2.1 more directly than the method of the preceding section, This theorem
states that

+w +oo

R()F(f) df = Gi(1)G(—1) at (2.4-1)

where F1, G, and F3, G are Fourier mates related by
+

F() = G()e " de

o (24-2)
G(t) = ‘[d’ FU) {izf1t df

It may be proved in a formal manner by replacing the Fy on the left of
(2.4-1) by its expression as an integral involving G,(¢). Interchanging the

17 E. C. Titchmarsh, Introduction to the Theory of Fourier Integrals, Oxford (1937).



order of integration and using the second of (2.4 2) to replace I by & gives
the right hand side.

We now set Gi(2) and Ga(f) cqual to zero except for intervals of length 717
These intervals and the corresponding values of Gy and g are

Git) = I{1), 0«<t<T (2.1-3)
Got) ==t + 1), 7--1T <t <1

From (2.4 3) it follows that Fi(f) is the spectrum S{f) of 7{i) given by equa-
tion (2.1--2).  Since 1(2) is real it follows from the first of equations (2.4 -2)
that

S(—=f) = S*), (2.4-4)

where the star denotes conjugate compiex, and hence that | S(f) | *is an
even function of f,
The first of equations (2.4 2) also gives

Fi(f) = f'-'r I{(~t -} r)e "'t

— fr I(t)el'?l](l") d! (2.4‘5)
0
= S*(fle "
When these (’s and F's are placed in (2.4-1) we obtain
+o0 T—v
[isoiesry = [ o na e

where we have made use of the fact that (72(--£) is zero except in the inter-
val —7 <t < T — 7 and have assumed 7 > 0. 7 < 0 the limits of
integration on the right would be —7 and 7"

Since | S(f) |*is an even function of f we may write (2.4 6) as

1 [T r Z218(N P
T-’; TOI( + 7)dt + ”(TT-) = j; | Tf) | cos 2nfrdf (2.4-7)

If we now define the correlation function ¢(7) as the imat, as T-» o« of the
left hand side and define w(f) as the function

. g 2
w(f) - Limit 2 IS;‘{H , f>=0 (2.1 3)

T—>m

we obtain the second, (2.1 01, of the fundamental inversion formulas.  As
before, the first may he obtained {from Fourler’s integral theorem.
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In order to ohtain the interpretation of w(f)df as the average power dis-
sipated in one ohm by those components of I(¢) which lie in the band f,
[t df,weset 7 = 0in (2.4 7):

7 *
Limit & f P = [ wi)d (2.4 8)
T+ T 0 0

‘The expression on the left is certainly the total average power which would
be dissipated in one ohm and the right hand side represents a summation
over all frequencies extending from 0 to «. It is natural thercfore to in-
terpret ww(f)df as the power due to the componentsin f, f + df.

The preceding sections have dealt with the power spectrum w(f) and corre-
lation function ¢(7) of a very general type of function. It will be noted
that a knowledge of w(f) does not enable us to determine the original func-
tion. In obtaining w(f), as may be seen from the definition (2.1-3) or from
(2.3-6), the information carried by the phase angles of the various compo-
nents of 1(t) has been dropped out. In fact, as we may see from the Fourier
series representation (2.3-1) of I(¢) and from (2.3-6), it is possible to obtain
an infinite number of different functions all of which have the same w(f),
and hence the same (7). All we have to do is to assign different sets of
values to the phase angles of the various components, thereby keeping
ay + bl constant.

2.5 HarMmoNIC ANALYSIS FOR Ranpom FuncTIONS

In many applications of the theory discussed in the foregoing sections
I(?) is a function of I which has a certain amount of randomness associated
with it. For example 7(!) may be a curve representing the price of wheat
over a long period of years, a component of air velocity behind a grid placed
in a wind tunnel, or, of primary interest here, a noisc current.

In some mathematical work this randemness is introduced by considering
I{t) to involve a number of parameters, and then taking the parameters to
be random variables. Thus, in the shot effect the arrival times ¢y 13, - -- £x
of the clectrons were taken to be the parameters and each was assumed to be
uniformly distributed over an interval (0, T).

For any particular set of values of the parameters, I(f) has a definite power
spectrum w(f) and correlation function ¢(z). However, now the principal
interest is not in these particular functions, but in functions which give the
average values of w(f) and ¥(r) for fixed f and ». These functions are oh-
tained by averaging w(f) and ¥(7) over the ranges of the parameters, using,
of course, the distribution functions of the parameters.

By averaging both sides of the appropriate equations in sections 2.1 and
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2.2 it is seen that our fundamental inversion formnlae (2.1--5) and (2.1- 6)
are unchanged. Thus,

w(f) = 4 j;mi(r) cos 2afr dr (2.5-1)

¥(r) = j;m w(f) cos 2afr df (2.5-2)

where the bars indicate averages taken over the parameters with for 7held

constant.
The definitions of @ and ¢ appearing in these equations are likewise ob-

tained from (2.1-3) and (2.1-4)

a(f) = Limit 2_1-?;[)_“ (2.5-3)
and
¥(7) = lelt 7 f IOI( + 1) dt (25-4)

‘T'he values of ¢ and r are held fixed while averaging over the parameters.
In (2.5-3) Sf) is regarded as a function of the parameters obtained from

I(t) by
S(f) = f ' I(0e ! dr (2.1-2)

Similar expressions may be obtained for the average power spectrum for
d.c. and periodic components. All we need to do is to average the ex-
pression (2.2--11)

Sometimes the average value of the product I{(t)I({¢ + r) in the definition
(2.5 4) of ¥(r) is independent of the time 7. ‘This enables us to perform
the integration at once and obtain

v(r) = IWOI¢ + 7) (2.5-5)

This introduces a considerable simplification and it ap:ears that the simplest
method of computing @'f) for an J{f) of this sort is first to cempute ¥(7), and
then use the inversion formula (2.5-1).

2.6 First Exanprre—THe Suor LIUFrrcT

We first compute the average on the right of (2.5-5). By using the
method of averaging emj loyed many times in part I, we have

I+ 7) = RE; P(K) Tx(DI&(t + 1) (2.6-1)
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where p(K) is the probability of exactly K clectrons arriving in the inter-
vai (0, T),

. (ﬂ) _
PK) = Kl e (1.1-3)
and
Ic(t) = D F(t —~ t) (1.3-1)
kel

Multiplying I'x(¢) and Ix(! 4 1) together and averaging t, f2, -- - Ix
over their ranges gives

LWL+ = 3 Z ‘”‘

k=1l m=1

f dtx F(t — t)F(+ v — 1)

This is similar to the expression for 1",’;.(1) which wits used in section 1.3 to
prove Campbell’s theorem and may be treated in much the same way.
‘Thus, if £ and { + 7 lic between A and T — A, the expression above becomes

[ b(:)p(z+f)dz+"“‘] ”U_ 1'(:):1:]2

When this is placed in (2.6 1) and the summation performed we obtain
an expression independent of T, Consequently we may use (2.5-5) and get

¥(r) = » [:ﬂ FOF@ + 7) dt -+ I()° (2.6-2)

where we have used the expression for the average current
() = » [:0 F(1) at (1.3-4)
In order to compute ®(f) frem $(7) it is convenient to make use of the
fact that y(7) is atways an even function of 7 and hence (2.5 1) may also

be written as
+®o

w(f) = 2 V() cos 2nfr dr (2.6-3)
Then

40 t =
w(f) = 2uf dt F(t) f dr F(t + 1) cos 2nfr

w0

+m
2.2 [ IU)? cos 2rnfr dr
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1™ L)
= 2y 1{“:’1‘ PPart of [ d! F(l)(’- fvifi f dt’ F(t')(‘h'“'

o )
+2a@ [ e

= 20|s(f)|* + 20(t)8(F) (2.6-4)

In going from the first equation to the second we have writtent’ = ¢ 4+
and have considered cos 2afr to he the real part of the corresponding ex-
ponential.  In going from the second equation to the third we have set

4o
() = [ F(0)e ™ di (2.6-5)
and have used
+
[ e dt = (/) (2.2-9)

‘The term in @(f) involving 8(f) represents the average power which would
be dissipated by the d.c. component of I{t) in flowing through one ohm.
It is in agreement with the concept that the average power in the band
0 < f <e e>0but verv small, is

f “w(f) dt = 2@ f " 8(f) df
(1] 0

= I{)°

The expression (2.6-4) for () may also he abtained from the definition
(2.5-3) for w(f)plus the additional term due 1o the d.c. component ob-
tained by averaging the expressions (2.2-11). We leave this as an exercise
for the reader. Ife will find it interesting to study the steps in Carson’s"
paper leading up to equation (8). Carson’s R(w) is related to our @(f) by

w(f) = 2nR{w)

(2.6-6)

and his f(iw) is equal to our s(f).
Integrating both sides of (2.6 4) with respect to f from O to « and using

g =f @(f) df
0
pives the result

p-T = 2uj; |s(f) V df (2.6-7)

1 Loc. cit.
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‘This say be obtained immediately from Campbell’s theorem by applying
Parseval’s theorem.

As an example of the use of these formulas we derive the power spectrum
of the voltage across aresistance X when a current consisting of a great num-
ber of very short pulses per second flows through R, Let F{¢ — &) be the
voltage produced by the pulse occurring at time /. Then

F(t) = Re(t)

where ¢(f) is the current in the pulse,  We confine our interest to relatively
low frequencies such that we may make the approximation
4o

s(f) = Ro()e ™ dt

-~

1=
= R[ Wi = Ry

where ¢ is the charge carried through the resistance by one pulse. From
(2.6 4) it follows that for these low frequencies the continuous portion of
the power spectrum for the voltage is constant and equal to

w(f) = WwRq' = 2IR% (2.6-8)

where T = v is the average current flowing through R, This result is often
uscd in connection with the shot effect in diodes.

In the study of the shot effect it was assumed that the probability of an
event (clectron arriving at the anode) happening in d¢ was vd? where v is the
expected number of events per second.  This probability is independent of
the time /.  Sometimes we wish to introduce dependency on time."® Asan
cxample, consider a long interval extending from 0 to 7. Let the prob-
ability of an event happening in ¢, ¢ + d¢ be Kp(t)dt where K is the average
number of events during T and p(2) is a given function of ¢ such that

j;T p() dt =1

lor the shot effect p(¢) — 1/T.

What is the probability that exactly K events happen in I?  As in the
case of the shot effect, section 1.1, we may divide (0, T') into ¥ intervals
cach of length Atso that ¥At = T The probability of no event happening

in the fitst At s
1 — Kp (%f) At

¥ A careful discussion of this subject is given by Hurwitz and Kac in “Statistical
Analysis of Certain Types of Random Functions.” I understand that this paper will
soon appear in the Annals of Math. Statistics.
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The product of N such probabilities is, as N - e ) AL 2 ()]

C.\]l[ I-\'ff plo) di l < et
. Y :

‘This is the probability that exactly O events happen in 7. To the <iime way
we are led to the expression

.
- € (2.6-9)
Al

for the probahility that exactly X events happen in 77
When we consider many intervals (0, 77) we obtain many values of A and
also many values of I measured £ seconeds from the hepinning of each interval.
These values of T define the distribution of 7 at time £, By proceeding asin

section 1.4 we find that the probability density of T'is

{00 r .
P, = 51- f du cxp[-—iul 4 I\'[ Pl (e ) dx]
M J.-om 0
The corresponding average and variance is

I=K j{;r pYF(t - x) dx

1 -17=K fo PV — %) dx (2 6-10)

If S(f) is given by (2.1 2) and s(f) by (2.6 §) (assuming the duration of
IF(¢) short in comparison with 7°) the average value of | S(f) [> may be ob-
tained by putting (1.3 1) in (2.1 2) to get

Sk(f) = s(f) 21_: g N

- . . ¥ .

Expressing Sk(f) Sx(f), where the star denetes conjugate complex, as a
double sum and averaging over the £'s, using p(), and then averaging over
the A's gives

PSP = Kis() i?[l + Ri fo pla)e™ ™ dx!] (2.6-11)

This may be used te cempute the pewer spectrum frem (2.5 3) provided
p(x) is not peniodic. If p(x) is periodic then the method of section 2.2
should be used at the harmonic fiequencies.  If the fluctuations of #(1) arc
slow in comparison with the fluctuations of 7{¢) the second term within the
brackets of (2.6 11) may generally be neglected since there arve no values of
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f which make both it and s(f) large at the same time.  On the other hane,
if both p(?) and M) fluctuate at about the same rate this term must be
considered.

2.7 Srconp Examrrr  Rannoa TELEGRAPH SiGNALS

Let 7(2) be equal to cither @ or —a so that it is of the form of a flat top
wave.  Let the intervals between changes of sign, i.e. the lengths of the
tops and bottoms, he distributed exponentially.  We are led to this dis-
tribution by assuming that, if on the average there are p changes of sign per
second, the probability of a change of sign in f, ¢ - df is pdf and is independ-
ent of what happens outside the interval ¢, ¢ 4 d¢.  From the same sort of
reasoning as employed in section 1.1 for the shot cffect we sec that the

probability of obtaining exactly A changes of sign in the interval (0, T) is

(uD)* _ur
K) =" ¢ ¢*
We consider the average value of the product I'{())I(¢ 4+ 7). This product
.2, , . . 2. . .
is a” if the two I's are of the same sign and is —a” if they are of oppuosite sign.
In the first case there are an even number, including zero, of changes of sign
in the interval (¢, ¢ 4+ 7), andd in the second case there are an odd number of
changes of sign.  Thus

Average valuc of I()I(¢ 4 7) (2.7-2)

(2.7-1)

= d X p—r«;imbility of an even number of
changes of sign inf, ¢ + 7

— a® X probability of an odd number of
changes of signin¢, ¢t + 7

The length of the interval under considerationis { £ + 7 — 1 | = | 7 | seconds.
Since, by assumption, the probability of a chiange of sign in an clementary
interval of length At is independent of what happens outside that interval,
it follows that the same is true of any interval irrespective of when it starts.
Hence the probabilities in (2.7 -2} are independent of £ and may be obtained
from (2.7 1) by setting T = | 7| . Then (2.7-2) becomes, assuming 7 > ()
fur the moment,

TWI¢ + 1) = ap0) + p(2) + p(4) + -]
= &lp() + 2(3) + $(5) + -]

T R O (L L
“e [1 o ]
2 --2pr

= ae (2.7-3)

1 Kenrick, cited in Section 2 2.

‘
Il
v
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L'rom (2.5-5), this gives the correlation funciion for F(¢)
B(3) = ate™ (2.7-4)

The correspending power spectrum is, from (2.5-1),

w(f) = 4d* j‘"’ ¢ ™" cos 2afr dr
(2.7-5)

Correlation functions and power spectra of this type occur quite fre-
quently.” In particular, they are of use in the study of turbulence in hydro-
dynamics. We may also obtain them from our shot effect expressions if we
disregard the d.c. component. All we have to do is tc assume that the
effect F(t) of an electron arriving at the anode at time £ = 0 i3 zero for
t < 0, and that F(?) decays exponentially with time after jumping to its
maximum value at £ = 0. ‘This may be verified by substituting the value

F(!) = 2a 1/'5 e 1>0 (2.7-6)

for F(t) in the expressions (2.6-2) and (2.64) (after using 2.6-5) for the
correlation function and energy spectrum of the shot effect.

The power spectrum of the current flowing through an inductance and a
resistance in series in response to a very wide band thermal noise voltage is
also of the form (2.7-5).

Incidentally, this gives us an example of two quite different I{¢)’s, one a
flat top wave and the other a shot cffect current, which have the same corre-
lation functions and power spectra, aside from the d.c. component.

There is another type of random telegraph signal which is interesting to
analyze. The time scale is divided into intervals of equal length 2. In an
interval selected at random the value of I{¢) is independent of the values in
the other intervals, and is equally likely to be 4-a or —a. 'We could con-
struct such a wave by flipping a penny. If heads turned up we would set
It) = ain 0 < ¢t < h. If tails were obtained we would set I{¢) = —a in
this interval. Flipping again would give either 4-a or —a for the second
interval 2 < ¢ < 2k, and so on. This gives us one wave. A great many
waves may be constructed in this way and we denote averages over these
waves, with ¢ held constant, by bars.

We ask for the average value of I{¢)I(¢ 4+ 7), assuming = > 0. Tirst
we note that if 7 > /& the currents correspond to different intervals for ali
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values of £, Since the values in these intervals are independent we have
i 4+ +) = lg) g 4+ +) =0
for all values of ¢ when 7 > &
To obtain the average when r < A we consider ¢ to lic in the first interval
0 << ¢ < h Since all the intervals are the came frem a statistical point

of view we loge no generality in doing thes. If ¢ - 7 < e, t < h - 7,
both currents lie in the first interval and

G + o) = a
If £ > h — 7 the current I{({ + 7) corresponds to the second interval and
hence the average value is zero.
We now return to (2.5-4). The integral there cxtends from 0 to 7.
When 7 > £, the integrand is zero and hence

¥(1) =0, +>h (2.7-7)

When 7 < k, our investigation of the interval 0 < ¢ < & enables us to write
down the portion of the integral extending from 0 to k:
A

h h—r
1; IOI¢ 4 1) dt = j; adt+ | 0dt
h—7
2
=a(h — 7)
Over the interval of integration (0, T) we have T/k such intervals each
contributing the same amount. Hence, from (2.5-4),

- . ..aT
V() = Limit 75 ¢ = 1)
(2.7-8)
=a’(1—-z), 0<s<h
h
The power spectrum of this type of telegraph wave is thus
A
@(f) = 4d° fo (1 - ;) cos 2rfrdr
(2.7-9)

a sin nfh\*
2 (_}]ﬁ‘“

This is seen to have the same general behavior as #(f) for the first type
of telegraph signal given by (2.7-5), when we relate the average number,
u, of changes of sign per second to the interval length A by uk = 1.
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2.8 RUEPRESENTATION 0F NOISE (CURRENT

Tn section 1.8 the Fourier series representation of the shot effect current
was discussed.  This supgpests the representation®

N
I(t) == 2 (@ oS wat + b, sin wal) (2.8-1)
L
where
W = 2fa,  fo = nbf (2.8-2)

aa and by are taken to be independent random variables which are distributed
normally about zero with the standard deviation Vaw(f.)Af. w(f) is the
power spectrum of the noise current, i.c., w(f) df is the average power which
would be dissipated by those components of 7(t) which lie in the frequency
range f, f -+ df if they were to low through a resistance of one chm.

The expression for the standard deviation of ¢, and b, is obtained when
we notice that Af is the width of the frequency band associated with the nth
component. Ience w(fu)Af is the average energy which would be dissi-
pated if the current

ap COS Wl + ba SN wal

were to flow through a resistance of one ohm, this average heing taken over
all possible values of g, and b, . Thus

w(fa)Af = a; cos’wal + '2a,;6,. Cos wal Sinwal 4+ ‘bf,‘ sin‘w,d = a3, == bf. (2.8-3)

The last two steps follow from the independence of @, and b, and the identity
of their distributions. 1t will be observed that w( /), as used with the repre-
sentation (2.8 -1), is the same sort of average as was denoted in section 2.5
by @(f). However, w(f) is often given to us in order to specify the spectrum
of a given noise.

For example, suppose we are interested in the output of a certain filter
when a source of thermal noise is applied to the input. Let A(f) be the
absclute value of the ratio of the output current to the input current when a
steady sinusoidal voltage of frequency fis applied to the input. Then

w(f) = cA'(f) (2.8-4)

* As mentioned in section 1.7 this sort of representation was used hy Finstein and
Hopf for radiation. Shottky {1918} used (2.8-1), apparently without explicitly taking
the coeflicients to be normally distributed.  Nyquist {1932} derived the normal distribu-
tion from the shot effect.
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If 7 is the average power dissipated in one oln by I(2),

T o)
W Limit & [ P@de = [ w(f)df
T-rm 1 0 0
(2.8-5)

o[ Ay

which is an cquation 1o determine ¢ when B and A(f) are known,

In using the representation (2.8 1) tonvestigate the statistical properties
of 1(¢) we first find the corresponding statistical properties of the summation
on the right when the a’s and d’s are regarded as random variables distrib-
uted as mentioned above and £ is regarded as fixedd,  In peneral, the time
¢ disappears in this procedure just as it did in (2.8-3). We thenlet N — o«
and Af — 0 so that the summations may be replaced by integrations.  Ii-
nally, the frequency range is extended to cover ali frequencies from 0 to oo,

"The usual way of looking at the representation (2.8 1) is to suppose that
we have an oscillogram of I(¢) extending from¢ = Oto¢ = . This oscil-
logram may be cut up into strips of length 7. A Fourier analysis of I({¢)
for each strip will give a set of coeflicients. These coefhcients will vary
from strip to strip.  Our representation (TAf = 1) assumes that this varia-
tion is governed by a normal distribution. Qur process for finding sta-
tistical properties by regarding the a’s and b’s as random variables while ¢
is kept fixed corresponds to examining the noisc current at a great many
instants. Corresponding to each strip there is an instant, and this instant
occurs at ¢ (this is the 4 in (2.8-1)) seconds from the beginning of the strip.
This is somewhat like examining the noise current at a great number of
instants selected at random.

Although (2.8-1) is the representation which is suggested by the shot
effect and similar phenomena, it is not the only representation, nor is it
always the most convenient. Another representation which leads to the
same results when the limits are taken is'

I(t) = 3 o €08 (nl — @) (2.8-6)

]

where @1, ¢a, - - - ¢n are angles distributed at random over the range (0, 2x)
and

o = Qw(fDAN",  wn = 2nfa,  fa = nbf (2.8-7)

19 This representation has often been used by W. R. Bennett in unpublished memoranda
written in the 1930's.
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Tn this representation I(?) is regarded as the sum of & number of sinusoidal
components with fixed amyplitudes but randem phase angles.

That the two different vepresentations (2.8 1) and (2.8 6) of I(f) lead
to the same statistical properties ie a consequence of the fact that they are
always used in such a way that the “central limit theorem®”’ may be used
in both cases.

This theorem states that under certain general conditions, the distribu-
tion of the sum of NV randem vectors approaches a normal Jaw (it may be
normal in several dimensions**) as N— . In fact from this theorem it
appears that a representation such as

N
I() = D, (@, cos wat + b, sin w,?) (2.8-6)
nwl

where a, and &, are independent random variables which take only the values
+ [u-(f,,)Af]”Z, the probability of cach value being §, will lead in the limit
to the same statistical propertices of 7(2) as do (2.8 1) and (2.8- 6).

29 Tne NORMAL DISTRIBUTION IN SEVERAL VARIABLES2

Consider a random vector » in A dimensions.  ‘The distribution of this
vector may be specified by stating the distribution of the A components,
Xy, X2, -+ Xg, of r. 7 is said to be normally distributed when the prob-
ability density function of the x's is of the form

(2")--1?1'2' M Imll? exp l_éx'M" xl (29'1)

where the exponent is a quadratic form in the 2's.  The square matrix M
is composed of the sccond moments of the x's,

miy ui2 *tc HIR
M= . . (2.9-2)

Mg e BEK

where the second moments are defined by

mmoo= AN, M2 = A%, cte. (2.9-3)
| M | represents the determinant of M and 1 is the row matrix
R AT IR N (2.9-4)

x is the column matrix obtained by transposing x'.

* See section 2,10,

** See section 2.9,

2011 Cramér, “Random Variables and Prababifity Distributions.” Chap. X., Cambridge
Tract No. 36 (1937).
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The exponent in the expression (2.9 1) for the probability density may
be written out by using
- oo M
M =3 s, (2.9-5)
ral gald I M I
where M,, is the cofactor of pu,, in M.

Sometimes there are lincar relations between the 2’s so that the random
vector r is restricted to a space of less than K dimensions.  In this case the
appropriate form for the density function may be obtained by considering
a sequence of K-dimensional distribuiions which approach the one being
investigated.

If r, and r; are two normally distributed random vectors their sum sy 4 ry
is also normally distributed. It follows that the sum of any number of
normally distributed random vectors is normally distributed.

The characteristic function of the normal distribution is
X K

ave, ¢ttt tiRTE oy [_% 22 #r.zrz-] (2.9-6)

tml geat
2.10 CentrAL L1t THEOREM

The central limit theorem in probability states that the distribution of the
sum of N independent random vectors 5y 4~ r2 4 - - + sy approaches a
normal law as N — o when the distributions of 7y , 7y, - - - 7y satisfy certain
general conditions.”

As an example we take the case in which 7y, 1y, - - - are two-dimensional
vectors™, the components of 7, being x,and ¥, . Without loss of generality
we assume that

Fn=0, Fa=0.
The components of the resultant vector are
Xentoat -+

Y=wm+wut -+

and, since r;, ro, - - - are independent vectors, the second moments of the
resultant are

(2.10-1

wa=X'= ol af+ooee b ak
um = Y? = )'i+}'§+ . +y:, (2.10-2)
= XY = 2y |-agye 4 - +E

i

! Incidentally, von Laue (see references in scction 1.7) used this theorem in discussing
the normal distribution of the coeflicients in a Fourier series used to represent black-body
radiation. He ascribed it to Markofl.

" This case is discussed by ]. V. Uspensky, “Introduction ts Mathematical Probabil-
ity”, McGraw-Hill "(1937) Chap. XV,

Tt
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Apparently there are several types of conditions which are safficient to
ensure that the distribution of the resultant approaches a normal law. - One
L o 21
suflicient condition is that

N
-8f2 o
a2 (w0
nes|
N (2.10-3)
~3/2 N i
uze z.lllyﬂ =0
The central limit theorem tells us that the distribution of the random
vector (X, V) approaches a normal law as N --» . "The second moments
of this distribution are given by (2.1€ -2).  When we know the second mo-
ments of a normal distribution we may write down the probability density
function at once. Thus from section 2.9

M = [#u un] J‘[—l — lM | 1[ M22 -le]
M1z H2 ’ et 15 Hn
lMi = Mnpnr — #fz
= [X, V]
M= | M| (e X? ~ aXY + un ¥7)
The probability density is therefore
(Mu#zz - Mﬁz) o — B2 Xg = Hn Vz +- 2p1a Xy .
SR T - CX] B o (2.10-3)
m 2pnp — pi2)

Incidentally, the second moments are related to the standard deviations
oy, o3 of X, ¥V and to the correlation coeflicient 7 of X and ¥ by

pu = af, pn = o3, iz = TOW0? (2.10-4)
and the probability density takes the standard form
1
(1 - 72) 1/2 _ 1 .’12 - X¥v¥ ] yg)
- 2nor00 P 201 — 7°) \oi 2r o107 2 o5 (2.10-5)

2 This is used by Uspensky, loc. cit.  Another condition analogous to the Lindeberg
condition is given by Cramer* loc. cit.



PART 111
STATISTICAL PROPERTIES OF RANDOM NOISE CURRENTS
A0 INvirobprciioN

In this section we use the representiticns of tiie noise currents jdven in
section 2K (o derive some statistical properties of 7(7). The first six sec-
tions ane concerned with the prohability distnbution of 7(6) and of its zeros
and maxima.  Sections 3.7 and 3.8 are concerned with the statistical prop-
crties of the envelope of 70, Fluctations of integrals involving 77(¢)
are discussed in section 390 The probability distribution of a sine wave
plus a noise carrent s given i 310 and v 311 an alternative method of
deriving the results of Part T s mentioned. Prof, Uhlenbeck has pointed
out that much of the material in thas Part s closely connected with the
theory of Markoff processes. Also S, Chandrasekhar has written a review
of a class of physical problems which is related; ina general way, to the
present subject ™

vy v . 23
J.1 Ty Devaminerton or e Nowsy CURRBENT

In scction 1.1 it has been shown that the distribution of 1 shot effect
current approaches i normal law as the expected number of events per
sccond, v, increases without limit.

Inline with the spinit of this Part, Part 111, we shall use the representation

1) = 3 (@ cos wal 1 by sin ) (2.8-1)
ne=l

to show that I(£) s distributed according to a normal law.  ‘This is obtained
at once when the procedure outlined in section 2.8 is followed.  Since o,
and b, are distributed normally, so are g, cos wat and b, sin w.d when £ is
regarded as fixed.  7(?) is thus the sum of 2V independent normal variates
and consequently is itself distributed normally.,

= Btochaste Prldems in Physics and Astronomy, Reos of -Mad. Phys., Vol 13, pp,
189 (1013). .

% An iuteresting discussion of this suliject by Vo 1 Landon and K. X, Norton is given
it the TR Proc., 30 (Sept 1980 pp. 425 429,



The average value of I{2) as given by (2.8 1} 1s zero since é, - by = 0:
() - 0 (3.1 1)

The mean square value of 7(1) is

N
13t = Z (112., cos” wal -1- b sin® wal)

el
N

= 2, w(f)af (3.1-2)

neal
- [ ) = 0 = v

In writing down (3.1 -2) we have made use of the fact that all the a’'sand s
are independent and consequently the average of any cross product is zero.
We have also made usc of

&d = B = w(fAf,  fa = nbf,  w. = 2ufs

which were given in 2.8 (7)) is the correlation function of 7(2) and is
related to w(f) hy

Y = W(r) = fn w(f) cos 2nfr df (2.1-6)

as is explained in section 2,10 In this part we shall write the argument of
¥(7) as a subscript in order to save space.

Since we know that I{2) is normal and since we also know that its averapge
18 zero and its mean square value is o . we miy write down its probability
aensity function at once. ‘Thus, the probability of F(1) being in the
ravnge I, T 4 dlis

A v (3.1-3)

V 2mjo

‘This s the probability of inding the current between T and 7 4 o ava
time selected at random.  Another way of saying the same thing is to state
that (3.1--3) is the traction of time the current spends in the range £, 7 - 1.
In many cases it 18 more convenient to use the representation (2.8 o)

1) = L €. COS (nl —~ ), € - 2w( [0S (2.56)

na1
in which ¢1, -+ - ¢n are independent random phase angles. In order to

deduce the normal distribution fram this representation we tirst ohserve

v
L
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that (2.8-0) expresses (1) as the swm of a Jarge number of independent ran-
dom variables

I{t) = xy - w2+ -+ 2w

T = €q CO5 (Wl = ©a)

and hence that as V-« J(£) becomes distributed according to a normal
law.  In order to make the limiting process definite we first choose N and

Af such _that NAf — F where
j w(f) df < ef w(f)df
o

F

where e is some arbitrarily chosen small positive quantity. We now let
N — o and Af = 0 in such a way that NAf remains equal to #. ‘Then

i

—— — - . N _ .
A=+ 0+ - + ay 21: 2u( fa)Af €0S? (o — @n)

(3.1-1)

= Yul(ff = [ wf)df
1 0

B=af oo Taf = 3 @uaa) " s G = e

<aen” [ wr g

where the bars denote averages with respect to the ¢'s, ¢ being held constant.
1f we assume that the integrals are proper, the ratio BA™* 5 0as N — o,
and consequently the central limit theorem® may be used if w(f) = 0 for
f > F. Since we may make F as large as we please by choosing e small
enough, we may cover as large a frequency range as we wish.  For this
reason we write o2 in place of F,

Now that the central limit theorem has told us that the distribution of
I(t), as given by (2.8-6), approaches a normal law, there remains only the
problem of finding the average and the standard deviation:

N
I = ; € €08 (Wl — @n) =0

(s o o (ot — @) (3.1-5)

-3
- fo w(f) df = a

* Section 2.10.



This gives the probability density (3.1-3). 1lence the two representations

lead Lo the same result in this case.  Evidently, they will continue to lead

to identical results as long as the central limit theorem may be used.  In the

future use of the representation (2.8 6) we shall merely assume that the

central Jimit theorem may be applied to show that a normal distribution

is approached.  We shall omit the work corresponding to equations (3.1- 4),
The characteristic function for the distribution of I(f) is

ave, 70 = exp — f,i‘ 2’ (3.1-6)

&

32 Tur DistriBution OF I (¢) AND T (¢ + 1)

We require the two dimensional distribution in which the first variable
is the noise current 7{f) and the second variable is its value 7{¢ 4 7) at some
later time 7. It turns out that this distribution is normal®, as we might
expect from the analogy with section 3.1, The second moments of this
distribution are

= 1@ =vo= [ w(n)df

un = vo

— (3.2-1)
pa = I{(OI(t + 7)
= Yy

The expression for uyg is in line with our definition (2.1-1) for the correla-
tion function:

Vo = P(r) = Limit . L IO + 1) dt (2.1-4)

T—w

In order to get the distribution from the representation (2.8-6) we write

N
I = I({t) = 2 cn €08 (wnt — @)
1

i

I It + 1) == Z €n CO8 (Wnl — o -1~ WaT)
1

® [t seems that the first person to obtain this distribution in connection with noise was
H. Thiede, Flec. Nachr. Tek. 14 (1936, 84 95,

ot
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From the central mit theoremn for two dimensions it follows that Iy and 15
are distributed normally.  Asin (3.1)

Lo N )
pu = I3 = L o} o [ w(f) df — Jn
1

~

wp = I = I~ o (3.1-2)
N

pir = NIy == Q. o ave. {0os (wal — @) €05 (Wal ~ oo + waT))
1

Now the quaniity within the parentlicsis is
2 I .
COS° (Wal — @n) COS WaT — €COS (wWaf — @n) SIN (Waf == @n) SIN W,T

and when we take the average with respect to ¢, the second term drops
out, giving

N ~.]
prr = 2 €53 cos wa T — £ w(f) cos 2zfrdf = ¢,  (3.2-3)
1

where we have used w, = 2af,, and the relation (2.1- 6) between w(f) and (7).
The probability density function for I, and I, may be stated.  From the
discussion of the normal law in 2.9t is

2 21—-12 2 2
[_{lq_)__“‘ 4’1]»:— €xp [__wOIl - 'I’Olz + 24’71_1__1’_3] (3_2__4)

2n 245 — ¥2)
Ior a band pass filter whose range extends from f, to fs we have
Io
Ve = wy cos 2xfr df
Ja
= w, SIN wp7 — SIN Wa 7 (3.2-5)
27t
Wo .
= —sin 77(fo — fa) cos w1(fo + fo)
‘pﬂ = wﬁ(ﬁ) — fa)
where wpo is the constant value of w(f) in the pass band and
wy = 2mfp (3.2-6)
wa = 2nfy

According to our formula (3.2-4), 7, and Iy are independent when g,
is zero. For the r’s which make ¢, zero, a knowledge of 1, does not add to
our knowledge of 7. For example, suppose we have a narrow filter.  Then

Y. = 0 when + = [2(fy + fo)] 1
Ve is nearly — o when r = [fb +f“]~1
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For the first value of 7, all we know is that Ty is distributed about zevo with

I2 = Wy, For the second value of # Iy is likely to he near - Ty, ‘This is
in line with the idea that the noise current through a parrow filter behaves
like a sine wave of frequency 3{fy - fa) (and, incidentally, whase amplitude
fluctuates with an irregular frequency of the order of 3(fs — fa)).  The fust
value of r corresponds to a quarter-period of such a wave and the second
value to a half-period. By drawing a sine wave and looking at points sepa-
rated by quarter and half periods, the reader will see how the ideas agree.
The characteristic function for the distribution of I, and 7y is

ave, eI = oy [ﬂ%? W + ) — gb,m] (3.2-7)

The three dimensional distribution in which
I, = I(¢t)
I = I(t + =)
Iy = It 4+ 1+ 72)

where 7, and 7, are given and ¢ is chosen at random is, as we might expect,
normal in three dimensions. The moments, from which the distribution
may be obtained by the method of Section 2.9, are

Bu = pp = ps = Yo
M3 = ¥y,

sz = Yy,

ps = Y(r + 12} = Yeyte,

The characteristic function for I, Iz, I3 is

I
ave. eh;er'n etisgly

] (3.2-8)

0 2
= exp[""—% (Z‘i! + Z; + 23) — pi2Z12 — ppsZaZz — D12
3.3

3.3 1xpEcTED NUMBER OF ZFROS PFR SECOND
We shall use the following result, Let y be given by
y=Fla,,02, - au ;x), (3.3-1)

and let the a’s be random variables. For a given set of a’s, this equation
gives a curve of y versus x.  Since the @’s are random variahles we shall call
this curve a random curve. Let us sclect a short interval x, ny + dx,
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and then deaw a batch of ¢’s. The probability that the curve obtained by
putting these @’s in (3.3 1) will have a zevoin 2, 2 - dyis

oo
dx [ Lo ] PO, 9; %) dy (3.3-2)

w)

and the expected number of zeros in the interval (a1, x3) is

D) tw
[ax [ 15190, 555 (3.3-3)

In these expressions p(£, n; &) is the probability density function for the
vanabics
£ = F(al’ e aN;x)
IF (3.34)
T o
Since the a’s are random variables so are £ and 9, and their distribution
will contain x as a parameter. This is indicated by the notation p(%, n; ).
These results may bhe proved in much the same manner as are similar
results for the distribution of the maxima of a random curve.  This method
of proof suffers from the restriction that the ’s are required to be bounded.®
Results equivalent to (3.3 2) and (3.3-3) have been obtained independentiy
by M. Kac.® Iis method of proof has the advantage of not requiring the
a’s to be bounded.
Ilere we shall sketch the derivation of a closely related result: The prob-
ability that y will pass through zero in x, x; 4 dx with positive slope is

dx fo np(©, n; =) dn (3.3-5)

We choose dx so small that the portions of all but a negligible fraction
of the possible random curves lying in the strip (x;, 21 4 dx) may be re-
garded as straight lines.  If v = £at x;and passes through zero for xy < & <

x1 + dx,its intercepton y = 0is x, — ﬁ where 5 is the slope. Thus £ and g
must be of opposite sign and

x;<x;—§-<x;+dx

8 S. 0. Rice, Anmer. Jour. Math. Vol. 61, pp. 400-416 (1939). However, L. A. MacColl
has pointed out to me that a set of sufficient conditions for (3.3-5) to hold is: (a) p(E, v; x)
is continuvus with respect to (¢, n) throughout the Iy plane; and (b) that the integral

j; plan, v, 21) dn

converges uniformly with respect to a in some interval —a; < 6 < ez, where 6, and a,
?re‘}pu)sitive. These conditions are satisfied in all the applications we shall make use of
3.3-5).

B M. Kac, Bull. Amer. Math. Sec. Vol. 49, pp. 314-320 (1943).
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According to the statement of our problem, we are interested only in positive
values of y, and we therefore write our inequality as

cegds < E <O

For a given random curve i.e. for a given set of a’s £ and 5 have the values
given by

£ Fla, *+- ax; 1)

b= QE
1 ('}x Ty

If these values of £ and » satisfy our inequality, the curve goes through zero
in 2, 11 + dx. The probability of this happening is”

[an[  depmad = [ 0~ (~ndlp. w2 dy

where we have made use of the fact that dx is so very small that ¢ is effec-
tively zero. The last expression is the same as (3.3 -5).

In the same way it may be shown that the probability of y passing through
zero in 11 , ©1 4+ dx with a negative slope is

0
~dz [ p(0, 7; =) dn (3.3-6)

Expression (3.3 -2} is obtained hy adding (3.3-5) and (3.3-6).
We are now ready to apply our formulas. We let ¢, I{2) and ¢, play the
roles of x, y, and a. , respectively, and use

N
I(t) = Z €, CO8 (wnt - ¢'n), C%u = Zw(f)Af (2.8“6)
=l
27 MacColl has remarked that the step from the double integral on the left hand side

of this equation to the final result (3.3--5) may be made as follows:
It is easily scen that the probability density we arve secking is

- g - o
- — d , ;1
l_d(Ax)_I; "-Lm P& n; %) dE:Lz_D

Proceeding formally, without regard to conditions validating the analytical operations
(for such conditions sce the footnote on page 52), we have

d (-} 0 -
— dn _[ pE, » 2) dE = f np(—nAzx, w; z) dn
dAx -/l; nAzx 0

and hence the required probability denaity is

f 29(0, n; z) dn
0
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The fust step is (o find the probability density funetion of the two random
vanables

N
£ DL e cos (tontt — ¢a)
ne= ]

. (3.3-7)
w o= T o0 2 Cawn SN (0ay — @n)

el

where the prime denotes differentintion wath respect £ From section 2,10
TR LR 7

FS
. A P o
oy ‘i)"' = }_, €y iy, 51N (L',u l! - 'P")
ne]

= "}::1 (271’/,.)970(/,.)&}'

vart [ St df gy

pzr ¢ En = —L '??-- wn 05 (w1 -~ @a) SIN (wnh — ¢n)
LY
=0
The expression for pyp avises from (2.1 6) by differentiation.  In this expres-
sion Yy denotes the sccond derivative of ¢(r) with respect to T al 7 = 4
Vi) = ‘—4ﬂ'2f Frw(f) cos 2xfr df (3.3-8)
o

Henee the probability density is
[-dovw | " £, ]
1) = S € —_ 3.3-9
PlE ;) " P 5 + 20 ( )
where g is negative. It will he observed that the expression on the right
is independent of £, Hence the probability of having a zero in ¢y | ¢ 4 de,
o IR 12
I —vode ] ty dt ll'"(o)]
u | et gy - ) ) 3.3-10
dr | L] 2w € - o(0) ( )
which follows from (3.3 3), is independent of £.
The expected number of zeros per second, which may be obtained from

(3.3-3) by integrating (3.3 10) over an interval of one second, is
® 12
2
” 11 £ fwlf) df
A R Rt I
' f w(f) df

T
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For an ideal band pass filter whose pass band extends from f, to fi the
expected number of zeros per second s

k] 371172
2 [; ;" - /"J (3312
IS 7 fa

When £, is zero this becomes 1,155 fy, and when £, 15 very nearly equal to
fo it approaches fy - fo .
In a recent paper M. Kac™ has given a result which, after a slight gene-

rihization, Jeads to
o I
e AP 21 [_5,, “"’l’ﬁ] dt (3.‘ 13)
i u

for the probability that the noise current will pass through the value 7
with pasitive slope during the interval ¢, ¢ 4+ dt. 'The expected number of
such passages per second is

e e [3 the expected number of zeros per second] (3.3-14)

‘The expression (3.3-13) may also be derived from analogue of (3.3 5)
obtained by replacing the zero in p(0, 9; x,) by ».
In some cases the intepgral

v = —dn® f,. Fwlf) df

does not converge.

An example occurs when we apply a broad band noise voltage to a re-
sistance and condenser in scries.  The power spectrum of the voltage across
the condenser is of the form '

w(f) = 5= (3.3-15)

Although ¢4 is infinite, yo is finite and equal to #/2a. A straightforward
substitution in our formula (3.3-11) gives infinity as the expected number
of zeros per second.

Some light is thrown on this breakdown of our fermula when we consider
a noise current consisting of two hands of noise.  One band is confined to
relatively low frequencies, and its power spectrum will be cenoted by
wi(f). The other band is very narrow and is centered at the relatively high
frequency f: . The complete power spectrum of our noise is then

w(f) = w(f) + A’(f — f.)

8 On the Distribution of Values of Trigorometric Sums with Linearly Independent
Frequencies, Amer. Jour. Math., Vol. LXV, pp 609 615, (1943).
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where the unit impulse function §is used to represent the very narrow band.
'The power spectrum of the narrow band is approxtmately the same as that
of the wave .44/2 cos 2afyt.

The integrals occurring in our formula are

[ o= [ wina + a

=W+ 4°
[ wnra = [ st o+ 4%

= U -+ A%;
We suppose that A and f, are such that

w>» A4

U KA.
Then our formula (3.3 -11) gives us the expected number of zeros

Afs
We may give a qualitative explanation of this formula if we regard our

noise current as composed of a small component

I, = 24 cos 2xfy

due to the narrow band superposed on a large, slowly varying component
due to the lower band. Since the r.m.s. value of the second component is
W' we may assign it a representative frequency fi and write it approxi-
mately as

nL = (2W)" cos 2afy

The zcros of the noise current are clustered around the zeros of the second
wave. Near such a zero

I = +02W)'"2xf A

where Al is the distance from the zero. The oscillations of I; produce zeros
when | I, | is less than the amplitude of I; or when

A > W'2af | At
and the interval over which zeros are produced is given by

-us
24t = aw
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The nuinber of zeres is this multiplied by 3fs. Since there are 2fy such
intervals per recond the number of zeros per second is

i AW,

This differs from the result given by our formula by a factor of 2/x.
This discrepancy is due to our representing the two bands by the sine waves
Ig and Ig;

From this example we obtain the picture that when the integral for ¢
converges corresnonding to 4 — 0, while at the same time the integral for
Vo diverges, corresponding to f; — <o in such a way that Af; — «, the
naise current behaves something like a continuous function which hes no
derivative. It seems thiat for physical systems the integrals will always
converge since parasitic effects will have the effect of making w(f) tend to
zero rapidly enough. The frequency which represents the region where
this occurs is of the order of the frequency of the microscopic wiggles.

So far we have heen considering the formulas of this section in the most
favorable light possible. There wre experiments which indicate the possi-
bility of the formulas breaking down in some cases. Prof. Uhlenbeck has
pointed out that if a very broad band fluctuation current be forced™ to flow
through a circuit consisting of a condenser, C, in parallel with a series com-
bination of inductance, L, and resistance, R, equation (3.3-11) says that the
expected number of zeros per second of the current, I, flowing through R

(and L) is independent of R, It is simply %(LC)"”. The differential

equation for I is the same as that which governs the Brownian motion of a
mirror suspended in a gas®, the gas pressure playing the role of R. Curves
are available for this motion and it is seen that their character depends
greatly upon the pressure®. Unfortunately, it is difficult to tell from the
curves whether the expected number of zeros is independent of the pressure.
The differences between the curves for various pressures indicates that there
may be some dependence®.

3.4 THE DISTRIBUTION OF ZEROS

The problem of determining the distribution function for the distance
between two successive zeros seems to be quite difficult and apparently

® For exnmrle, by putting the circuit in series with o diode.

% This problem in Brownian motion is discussed by G. E. Ublenbeck and S. Goudsrait,
Phys., Rev., 34 (1929), 145-151,

8 K, Kappler, Annalen d. Phys., 11 (1931) 233-256.

® Since this was written M. Kac and H. Hurwitz have studied the problem of the ex-
pected number of zeros using yuite a different method of approach which employs the
“shot-effect”’ representation (Sec. 3.11). Their reaults confirm the correctness of (3.3-11)
when the integrals converge. When the integrals diverge the average number of clec-
trons, per sec. producing the shot effcct must be considered.
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nobody has as yet given a satisfactory solution. Here we shall give some
results which are related to the general problem and which give an idea of
the form of the distribution for the region of small spacings between the

zeros.

We shall show (in the work starting with equation (3.4- 12)) that the
probability of the noise current, 7, passing through zero in the interval
T, r 4~ dr with a negative slope, when it is known that 7 passes through zero
at r = 0 with a positive slope, i3

dr wn 2 My 2 2,—38/2 -1
o g I Wo —¢r) [l + Hcot " (—1ID] (3.4-1)
where My and Mg are the cofactors of upm = —\l«’,’ and uyg = —-d/:' in the
matrix

4’0 0 V/r 4’;

M = 0: —¢?I _"/:I _dl'
wv _V'/r _‘I’o 0 (34—2)
4" —4’7 0 \1’0 ’

I = Mu[M3 — Mg ™",

We choose 0 < cot™ (=) < =, the value = being taken at 7 = 0, and the
value 7/2 being approached as r — «. It should be remembered that we
are writing the arguments of the correlation functions as subscripts, e.g.,
—\(/:’ is rcally

—g"() = da’ fa Fwlf) cos 2xfr df (3.3-8)

As 1 becomes larger and larger the behavior of I at r 18 influenced less
and less by the fact that it goes through zero with a positive slope at » = 0,
Hence (3.4-1) should approach the probability that, for any interval of
length dr chosen at random, I will go through zero with a negative slope.
Because of symmetry, this is half the probability that it will go through
zero. Thus (3.4-1) should approach, from (3.3-10),

dr h:l/:,']”g
A (3.4-3)
as v — o, It actually does this since M approaches a diagonal matrix

and both Mz and H approach zero with Myy/H — Mz — ——¢§¢'g. For a
low pass filter cutting off at f, (3.4-3) is

drfp3 ™ (3.44)

The hehavior of (3.4 1) as r — 0 1is quite a bit more difficult to work out.
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Mgy and Mg go to zero as 2 OML, - Mias +° and consequentty £/ goes
to infinity as 7 '. The final result is that (3.4 1) approaches

4y g m
ar” [‘0"""’ Yo ] (3.4-5)
8 —dove -

. . 3 . . N .
as r— 0, assuming ¢ exists,  Tlere the superscript (4) indicates the fourth

derivative at 7 = @,
v = 16n [ fw(f) df (34-6)
Yo
For a low pass filter cutting off at f (3.4 5) 1s
dr 3’;) (27f)* (3.4-7)

When (3.4-1) is applied to a low pass filter, it turns out that instead of 7
the variable

¢ = 2ufer, de = 2ufy dr (3.4-8)

is more convenient to handle. Thus, if we write (3.4 1) as ply) dp, it fol-
lows from (3.4-4) and (3.4-7) that

ple) — ia‘i/j = 0919 as ¢p— o
(3.4-9)
ple) — ;% as ¢ - w

plp) has been computed and plotted on Fig. 1 as a function of ¢ for the
range 0 to 9. From the curve and the theory it is evident that beyond
9 p(p) oscillates about 0.0919 with ever decreasing amplitude.

We may take p(p) dp to be the probability that [ goes through zero in
¢, v + dp, when it is known that I goes through zero at ¢ = 0 with a slope
opposite 1o that at ¢.  p(p) dp exceeds the probability that I goes through
zero at ¢ = 0and in ¢, ¢ + de with no zeros in between.  This is because
p(p) de includes all curves of the latter class and in addition those which
may have an even number of zeros hetween 0 and ¢, I'rom this it follows
that the curve giving the probability density of the intervals between zeros
must be underneath the curve of p(p).

A partial check on the curve for p(g) may be obtained by comparing it
with a probability density function obtained experimentally by M. E.
Campbell for the intervals between 754 successive zeros.  He passed thermal
noise through a band pass filter, the lower cutoff being around 200 cps and
the upper cutoff being around 3000 cps.  The upper cutofl was rather grad-
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ua! and it is difficult 1o assign a representative value.  The crosses on figure
1 are obtained from his data when we assume that his filter behaves like a
low pass filter with a cutoff at fy = 2850, this choice being made in order
to make the maximum of his curve coincide with that of ple).

It is seen that some of the crosses lie above p(p).  This is probably due
to the fact that the actual filter differs somewhat from the assumed low pass
filter.

On Fig. 1 therc is also plotted a function closely related to (3.4-1). Tt
is the low pass filter form of the following: The probability of I passing

[T ""T'—"“"'—_}" YT YT T T '““!'“v ’! -
|

i
4
0.20 - “ .- /‘t\
\ I
\/ Ay T e

0.5 — -

Y ° \

—.0019

N a,
~ 4
° | L
0.0 -t R I T e o R
° EXPERIMENTAL POINTS
¢ [pedrrs ° ,
okl 4

o] 2 a L} 8 10 2 14

Fig. 1 -Distribution of intervals between zeros—low-pass filter
1A is probability of a zero in Ap when a zero is at origin.
yele is probability of a zero in Ap when a zero is at onigin and slopes at zeros are of
opposite signs.
vy = ple), fo = fiiter cutofl, = time hetween zerus.

through zero in 7, 1 + dr when it is known that T passes through zero at
r=10Iis

‘E L V3 MZ‘ 2 2\—2/2 —1
. [_W;'] [H ] (Wo — ¢¥2) "1 + H tan™' H] (3.4-10)
where the notation is the same as in (3.4-1) and — 12r < tanP H < %

This curve should always lie above p(p) and the small difference between
the curves out 10 ¢ = 4 indicates that [the true distribution of zeros is given
closely by p(e) out to this point.

When (3.4-1) is applied to a relatively narrow band pass filter or some
similar device we may make some approximations and obtain an expression
somewhat simpler than (3.4-1). As a guide we consider our usual ideal
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band pass filter whose range extends from f, to fy . ‘The conelation function
is given by (3.2-5).

]

Ve % sin wr(fs — fa) cos w7 (fo + fa)

(3.2-5)
vo = wol(fo — fa)

From physical considerations we know that in a narrow hlter most of the
distances hetween zeros will be nearly equal to

1

B fb + fa
i.e., nearly equal to the distance between the zeros of a sine wave having
the mid-band frequency. We therefore expect (3.4-1) to have a peak very
close to r, .  We also expect peaks at 37;, 57y etc. but we shall not consider
these., We wish to examine the behavior of (3.4-1) near .

It turns out that Moy is nearly equal to Ma so that /1 is large and (3.4-1)
becomes approximately

dr [_L%T ]”’ _ Ma
2 L—vod lyo — ¢
where 7 1s near »;.

In order to see that My is nearly equal to M we use the expressions
My = —gd' (05 — ¢3) — dodr’
M = ¥, (b5 — ¥3) + b
My + Ma = (bo — ¥)[(o + ¥} — ¥0) — ¥2')
= (Yo — ¥:)[B + (]
My — Mz = (b0 4 ¥ — ¥)(~ ¥ — d0) — ¢7']
= (Yo + ¥u)[— B + C]
B = Yo, — ¥
= ~yobo + b, ~ P
From (3.2-5) it is scen that ¢, may be written as

Ve = AcosBr, B =u(fo+ fo)

71

where 87, = w and A is a function of 7 which varies slowly in comparison
with cos 8r. We see that near r,, ¢, 18 nearly equal to —yo . Likewise
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¥+ hovers around zero and vr is nearly equal to —vo. Differentiating with
respect to r gives

v, = A’ cos 87 — ABsin fBr
¥y = (4" — AF") cos Br — 24’8 sin Br
Yo = Ao — AP, Yo = Ay

. ' " . . N
where Ao and Ay are ihe vaiues of A and its second derivative at 7 equal
to zero. These lead io

B = (AoA” — AAyg) cos Br — 2A40A’Bsin Br
C = (AA" — A") cos® Br — AgAq + (43 — A)E

We wish to show that C 4+ B and ¢ — B are of the same order of magni-
tude. If we can do this, it follows that Mg — Mgy is much smaller than
My + Masince o — ¥, is approximately 2y, while ¥ + ¥ is quite small.
Consequently we will have shown that Mayis nearly equal to M .

So far we have made no approximations. We now express the slowly
varying function A4 as a power series in 7. Since Yo and Yo must be zero
for the type of functions we consider, it follows that

4

2
Ao+ 2 40 + -

A = 1Ay + --

2
A7 = A+ 5 A0 + -

where we neglect all powers higher than the second. Multiplication and
squaring gives

A* — A = 7oAy
AA” — A" = Acdo + 'i; (oA — 407)
= Aod¢ + F
Ao A” — Ady = i(AoAé” -4y =F

Since, for small 7, 4 and A” are nearly equal to 4, and 4, respectively
we see that the difference on the left is small relative to Ao 4y, i.e.,

| F| << | AoA? |
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Our expression for B and C become approximately
B = F cos fr — 24, B sin fr
C = Fcos’ Br — Aody sin® gr — Ao Ao’
When 7 is ncar 7, , Br 1s a}')})mximatcly w. HencebhothC + Band C — B

are approximately — Ao .47 and are of the same order of magnitude. Con-
sequently M and My are both nearly equal and

My = yolC + B}

2 L, 3
= ""Avo‘Jr

When this expression for My is used our approximation to (3.4-1) gives
us ¢ result: If the correlation function is of the form

Yr = A cos 71

where A is a slowly varying function of 7, the probability that the distance
hetween two successive zeros lies between r and 7 4 dr is approximately

de 8
2 (1 4 a*(r — 7y)3¥p?

where a is positive and

9 A0ﬁ2 ™
a = g, Ty — -
—A‘lu T1 ﬂ

For our ideal band pass filter with the pass band f, — f,,

2 o+ 1) 1
a = 3 ST ey = [
V3T Ay A
and the average value of [ — 7, [is ¢™'. Thus
avelr —ml_ 1 _  f—fo _ 1 bandwidth
1 e A3 (s + fa) 24/3 mid-frequency

When the correlation function cannot be put in the form assumed above
but still behaves like « sinusoidal wave with slowly varying amplitude we
may use our first approximation to (3.4-1). Thus, the probability that the
distance between two successive zeros lies between 7 and r + dr is approxi-
mately

_bar

s — i
when 7 lies near 7, where 7, i1s the smallest value of » which makes .,
approximately equal to —yo. This probability is supposed to approach
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zero rapidly as 7 departs from 7, , and b is chosen so that the integral over
the effective region around 7y is unity.

It seems to be especially difficult 1o get an expression for the distribution
of zcros for large spacing. One method, suggested by Prof. Goudsmit, is
to amend the conditions leading to (3.4--1) by adding conditions that I be
positive at equally spaced points along the time axis between 0 and 7.
This leads to integrals which are hard to evaluate. For one point between
0 and 7 the integral is of the form (3.5-7).

Another method of approach is to use the method of “in and exclusion”
of zeros between 0 and r. Consider the class of curves of I having a zero
atr = 0. Then, in theory, our methods will allow us to compute the func-
tions po(7), p(r, 7), pu(r, s, 7), associated with this class where

po(7) d7 is probability of curve having zero in dr

pilr, 1) dr dr is probability of curve having zeros in dr and dr

pa(r, s, 7) dr dr ds is probability of curve having zeros in dr, dr, and ds
In fact po(7) dr is expression (3.4-10). The method of in and exclusion
then leads to an expression for Po(7) d7, the probability of having a zero
at0and a zeroin 7, 7 + dr but none between O and r. Itis

Py(7) = polr) — % j; p(r, 7)dr 4 -2-1—' .,; L pa(r, s, 1) drds
' ’ (3.4-11)

—%j;"[ivh(r,s,t,r)drdsdt-{-._.

Here again we run into difficult integrals. Incidentally, (3.4-11) may be
checked for events occurring independently at random. Thus if » dr is
the probability of an event happening in dr, then, if » is a constant and the
events are independent, we have po, p1, P2, --- given by v, v, v’, cee
From (3.4-11) we obtain the known result Po(7) = ve '

We shall now derive (3.4-1). The work is based upon a generalization of
(3.3-5): If y is a random curve described by (3.3-1), the probability that y
will pass through zero in x;, 21 + dv with a positive slope and through

zcro in xa , %2 |- dx; with a negative slope is
+eo 0
—~dndn[ dn [ dmnnp© 50, m, @ (34-12)

where p(f, m, 11 ; &, 2, 1) is the probability density function for the
four random variables

&t = F(ai, s, <+ ,0n; %)
oF .
= [a;]”‘, = 1, 2.
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The x; and a3 play the role of parameters in (3.4 -12). This result may be
established in much the same way as (3.3-5).

When we identify ¥ with one of our representations, (2.8-1) or (2.8-6),
of the noise current 7(¢) it is seep that p is normal in four dimensions. We
may obtain the sccond moments directly from this representation, as has
been done in the equations just beiow (3.3-7). ‘The same results may be
obtained from the definition of ¥(7), and for the sake of variety we chnose
this second method. We set a3 = &, 23 = 4 + 7. Then

-g =—E_g = I'()) = Vo
b= IOIC+ 1) =y, (3.4-13)

—_— oI al | T , )
mm (‘a?).(a—;).+, = Limit 7 f, I'(t + )I'(t) a¢

where primes denote differentiation with respect to the arguments. Inte-
grating by parts:

.£ I'e+ n)dI@) = (I'¢ + NI — j; I"(¢ + 7)I() dt

We assume that I and its derivative remains finite so that the integrated
portion vanishes, when divided by T, in the limit. Since

2
e+ =210+ 1)
ar?
we have
— o’ "
nm = —5;,\{1(7) = —¥.
Setting 7 = 0 gives
2 _ a3 ”
m=n = —
in agreement with the value of py obtained from (3.3-7). In the same
way

— e LT 0

Elﬂa—l;ﬂ_l:l;ti.‘/; 1(‘+r)1(l)dl=5;¢('r)
= ¥r

T Y L

fm = Limit - L IOIC + 1) de

R (-)1—{]; I+ I dt
= —y,
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where we have integrated by parts in getting £q, . Setting 7 = 0 and using
5!/:, == () gives
;‘fl—"?l = g;l—i == 0

In order to obtain the matrix M of the second moments u,, in a form
fairly symmetrical about its center we choose the 1, 2, 3, 4 order of our
variables to be &, m, 1, £2. From equations (3.4-13) etc. it is seen that
this choice leads to the expression (3.4--2) for M.

When we put & and & equal to zero, we obtain for the probability density
function m (3.4-12) the expression

lM l-l,'2 2 9
e exp | =i (Mzgf]l + 2Mamn + Maun:)

Because of the symmetry of M, M is equal to Ms3. When, in the integral
(3.4-12) we make the change of variable

Al!2 111 M” 1/t
"=[2|MI] e Y= —[ZIMI] "

dx dx; { M P2 j' ° +de f © dy ye~ ™'V R a5y
0 0

we obtain

= Man
The double integral may be evaluated by (3.5-4). Let

o = cos™" (- g_”) = cot™ (=H), H = Myp[M% — ML™"

where H is the same as that given in (3.4-2). Our expression now becomes

dx: d M pe _
%ﬁ:“ + H cot™ (—H)]

From a property of determinants
MMy — Myn = |[M|(o — ¥7)
Using this to eliminate | M | and dividing by

dx, [—%’]""
r Vo

which, from (3.3-10), is the probability of going through zeroin x; , 1y + da;
with positive slope, gives the probability of going through zero in dxy with
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negative slope when it is known that I goes through zero at a; with positive
slope:

dx, [ ,,'k!’,, ]II?lM2 M2 lln 2 2\ --8/2 by

— ’ m — Myl (Yo — ¥) 1+ H oot (—H))

2x =¥ .
This is the same as (3.4-1).

The expression (3.4-10) is the same as the probability of I going through
zero in dr when it is known that I goes through zero at the origin with posi-
tive slope. This second probability may be obtained from (3.4-1) by add-
ing the probability that I goes through dr with positive slope when it is
known to go through zere with positive slope. Thus we must add the ex-
pression containing the integral in which the integration ir both n; and ne
run from 0 to . In terms of x and y this integral is

xdxf d ,e'-t’—v'—ﬁ(llulllnhu
[ xas [ ars

This is equivalent to a change in the sign of Mx» and hence of H. Aiter
this addition we must consider

14+ Hceot™ (—H)+1— Hcot™ Il
=2+ H[cot™ (=H) — cot™ H]
=2+ Hlx — 2 cot™ H]
= 2[1 + H tan™' H]
and this leads to (3.4-10).

3.5 MuLTiPLE INTEGRALS
We wish to evaluate integrals of the form

J = j; dxs £ drye "i 2T (3.5-1)

Our method of procedure is to first reduce the exponent to the sum of
squares by a suiiable linear change of variable and then change to polar
coordinates. This method appears to work also for triple integrals of the
same sort, but when it is applied to a four-fold integral, the last integration
apparently cannot be put in closed form.

The reduction of the exponent to the sum of squares is based upon the
transformation: If*

xn=mhyn+ hDuy: + tDuys + -+ + hDnavn
Xz = 0 ! k.’Dd}'? _[_ T + han.'lyn (35"2)

---------------------------------------------

% =0 + 0 + £t +0 +hnDn.n)’n

* T. Fort, Am. Math. Monthly, 43 (1936), pp. 477-481. See also Scott and Mathews,
Theory of Determinants, Cambridge (1904), Prob. 63, p. 276.
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where 19y = 1, Dy = ay, Dy, = Dy, and 1), 18 the cofactor of a,, (or
of a,, because they are equal) in 1), :

an a1z -+ e
~1/2
D, = jo1s an ’ he = [D'-ID'] ! )

all’ PR a"

then, if none of the D,’s is zero,

Zl:ar.xrx, =yi+y+ -+
From (3.5-2); the Jacobian 8(xy, -+ 2.)/8{(y1, -~ ya) is equal to D72
Applying our transformation to the exponcent:
=y — aD7'"y
m=0 + Di'n
Dy=1-24

Since a3 runs from 0 to = so must ;. The expression for x); shows that y,
runs from @ D7'®v; to . The integral is therefore

— =2 ® ® —vi—-v}

We now change to polar coordinates:

y1 = pcos@
) dy,dy; = pdpdb
ys = psin g
ya20gives0 <0< =
y > aD7"?y, gives cot § > aD7"?

 end obtain

cot™!} ab;"r2 Y
J = D;l/?l dﬂ[ pe"'ﬂ' dp
— _%D;lfﬂ cOt-—-l (GD;"?)

where the arc-cotangent lies between 0 and . This may be written in the
simpler form

J =31 — )™ cos™ a = 3o csc p

where
a = cos o,

it being understood that 0 €< ¢ < =.
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Other integrais may be obhained by differentiation. Thus from

f dx'L‘ d}' 8—2?_314221;0099 — %W €sc ¢ (3.5_3)
0

we obtain

.[ d""'l dyay e VT = b (1 — poote)  (3.5-4)
By using the same transforrmation we may obtain

£ dx l dy ye =Vt o ‘:’ 1~1|- (3.5-5)

Of course, we may expand part of the exponential in a power series and
integrate termwise but this leads to a series which has to be summed in each
particular case:

[ dx f dyx"yne VIt
Z( 2!0)' (n +;+1)P(@_+2r+_i)

If we take —1 < R(m) < —4, —1 < R{m) < —4§, the series may be
summed when a = 1. The result stated just betow equation (3.8-9) is ob-
tained by continuing m and n analytically.

The same methods will work when the limits are &= . We obtain, when
m and s are integers,

[delﬂ dy xlyhc"‘l y‘-hvenlc
] ]

0, 7 -+ m odd
r (m + » + 1) (35-6)
=\ (VT e

1_"_’; -m. 1-owse —-zcos ‘P), n + m even

F{ —n, —m;
{

The hypergeometric function may also be written as




By transformations of this we are led to the following expression for the
integral
0, n -+ m odd,

m+ 1 #4+1
r B r 2 n m 1
AN L F (—._ -2 < cos sp) , 1, »n both even,

_A_(Sin p)nml T 2 1] 2 ’ 2 ¥

()
~2 2 2/ cos q,p(l_«f_’z' L83 s ¢),

(sin @)+ 2

m, n odd

As was mentioned earlier, the method used to evaluate the double inte-
grals may also be applied to similar triple integrals. Here we state two
results obtained in this way.

L dxl dyf dzexp [~ — 3 — &' — 2cxy — 2b2x — 2ayz]
0

tf=7"
=E[—D‘;] @+ 8+ v — =)

[ dxl dyl dz ysexp [—x' — 9' — £ — 2cxy — 2b2x — 2ay2]

._-.';;)’:[1+;‘;:"¢_BD—::¢(‘I+B+T_T)] (3.5-7)
»

where g and ¥ are obtained by cyclic permutation of a, b, ¢ from

—_ COS-I a — cb _ Sin—l[ D, ]"'
= d — A1 — By a =1 =&
- ot &2 be
= o D:Iﬂ
where a, 8, v all lie in the range 0, » and where
1 ¢ &
Di=lc 1 al=14+2abc—a> -0 -4

b a 1

For reference we state the integrals which arise from the definition of the
normal distribution given in section (2.9)

[:ﬂ dx, -~ _[:o dx, exp [-—)f:, an::rx.] = [l%n']m

: (3.5-8)

+u +o0 = 'ﬂ ”’A
Y B =
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where the quadratic form is positive definite and |« | is its determinant.
A ais the cofactor of 2, . Incidentally, these may be regarded as special
cases of

+o 4w n
dxy - -~ [ dx,f (Z TpyXp X \ F (L bfxr)
1
2 n—1"11/2 t oo @« ]
= — [.’ ] f dx[ dyy™ Pf(a® + 4
— oo «0

lal

(3.5-9)

which is a generalization of a result given by Schiomilch.*

3.6 DISTRIBUTION OF¥ MAXIMA OF Noisk CURRENT

Here we shall use a result similar to thosc used in sections 3.3and 3.4. Let
y be a random curve given by (3.3-1),

= }"(dl MR ¢ 7 x). (%3‘ 1)

If suitable conditions are satisfied, the probability that y has a maximum in
the rectangle (x,, x; + dxy, y1, 1 + dy), do and dyv, being of the same
order of magnitude, is

¢
—dsdy [, 0,05 dg (3.6-1)

and the expected number of maxima of yina £ & < bis obtained by in-
tegrating this expression over the range — = < v < x, a0 < 1, < b.
(&, 7, ) is the probability density function for the random variables

£ = F(al, ,G.v;xl)

dr
= (ax )t-zl (3.6-2)

aFF
£ = (a)

* Hoheren Analysis, Braunschweig (1879}, Vol. 2, p. 494, equ. (29).

2 fm. Jour Math. Vol. 61 (1939) 409-416. A similar |)ru||ltm has been studied by
F. L. Dodd, The Length of the Cycltes Which Result From the Graduation of Chance
Elements, Ann. Math. Stat.. Vol. 10 (1939) 254-264. He gives a number of references
to the literature dealing with the fluctuations of time scries.
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In our application of this result we replace x and y by ¢ and I as before.
Then

N
E:I:ZCnCOS(w.‘_¢ﬂ)
1

n=1r

‘. - I”
where the primes denote differentiation with respect to£. According to the
central liniit theviem the distiibution of §, #, § approaches a normai law,
The second moments defining this law may be obtained either from the

above definitions of £, #, , or may be obtained from the correlation function
as was done in the work following equation (3.4-13).

.-E—":lllo, ’7—2=—v’:3’o E_fl='0

TIin T (N . .1 T 7 ”
® = TOI"G) = Limit - 'L' eI d

T

Limit & [I(T) — I"(0)] = 0

T e 2T
_— 1 T
i = Limit & £ 101" dt
T -0 T
I ¢ B
= Limit 5 =W

T
# = Limit L l (1”@ de
it T

T
— Limit 1 [ W10 db
T—0 T 0

=y

where the superscript (4) represents the fourth derivative., The matrix M

of the moments is thus
v 0 Yo
M = 0 "‘\(/o 0

Vo 0 o'
The determinant | M | and the cofactors of interest are
| M| = —yo@olt® — ¥?) (3.6-3)

my

My = —yodd?, Mu =0 My = —joio
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The probability density function in (3.6-1) is

pI,0,8) = (22)™* | M |7 exp
(3.6-4)
[ T Mul? + Myui® + 2M131§')]

and when this is put in (3.6-1) and the integration with respect to { per-
formed we get

-t)—m 12,5 10002 bl
cHd't | M |
(3.6-5)

+aat () (1 + o i)

for the probability of a maximum occurring in the rectangle dI' df. As is
mentioned just below expression (3.6-1), the expected number of maxima
in the interval #; , {3 may be obtained by integrating (3.6-1) from ¢, to #;
after replacing x by ¢,and I from — » to 4w after replacing yby I. When
we use (1.6-4) it is easier to integrate with respect to I first. The expected
number is then

[ a5 Lrow] =i (ee - 2]

(‘) [£))
_ an _h—hl
= - <A A

Hence the expected number of maxima per second is

- 12 ,
[ o ] I S df

¥ [ run s
For a band pass filter, the expected number of maxima per second is

BH]M | (3.6-7)

where f3 and f, are the cut-off frequencies. Putting f. = 0 so as to get a
low pass filter,

(3.6-6)

3 3
h [3]] = 7750 (3.6-8)
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From (3.6 8) and (3.6 5) we may obtain the probability density function
for the maxima in the case of a low pass filter. Thus the probability that
a maximum selected at random from the universe of maxima will lic in
I,T 4+ dlis

lII_ o 2 . guﬂlu Sﬂ' i uﬁ['_! 1 + f 5 12 (3 6—9)
I | e +- > ye erl y g .

where

I
y \/%
I - T T T A R
|
ﬁ ! § = QUIPUT MNOISE CURRAENT
. . S 04 - ¢ » mn AMS VALUE OF | -
! . y'r_—_..-x—.
i Vv,
R Loed/ . y
I { ;
H : I : .
i N s o
i ' P, (¥) !. ; | ! :
! : i | :
1 b of ) N
i i i ' !
nrAEENERE
i ; N L. 1 L I 4 —
-7 - 0 y t 2 2 L]

Fig. 2—Distribution of maxima of nois¢ current. Noise through ideal low-pass filter.

()

‘\/‘; dI = probability that a maximum of [ selected at random lies between Tand I 441
0
When y i large and pogitive (3.6-9) is given asymptotically by
al 5 _
— _\/ 38 I'Jg
Vi 3
If we write (3.6-9) as p,(y) dy, the probability density p:(y) of ¥y may be

plotted as a function of y. This plot is shown in Fig. 2. "The distribution
function P(In.x < yV/ i) defined by

vy
P(Imnx < y\/\(’_ﬁ) = [w Pl(y)'d)'

and which gives the probability that a maximum selected at random is
less than a specified yA/yp = I, is one of the four curves plotted in Fig. 4.

If I is large and positive we may obtain an approximation from (3.6-5).
We observe that

0
My Yo

e = e > —
| M| dows! ~ ¥ o
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so that when I is large and positive
Mgt 132
e ¥ ! & e Vo

Also, in these drcumstances the 1 -+ erf is nearly equal to two.  Thus re-
taining only the impartant terms and using the definitions of the M’s gives

the approximation to (3.6--5):

. " l[2 2
gfrft[ %0] et (3.6-10)

From this it follows that the expected number of maxima per second lyving
. . . 83 .
above the line I = I, is approximately”™ when Iy is large,

1 - e 1T I
1 [ _Wu] R
2= Yo (3.6-11)

= ¢ T 3[{the expected number of zeros of I per second)

It is interesting to note that the approximation (3.6-11) for the expected
number of maxima above I, is the same as the exact expression (3.3--14) for
the expected number of times I will pass through I; with positive slope.

3.7 RrsvLts ox THE ENvELOPE OF THE NOISE CURRENT

The noise current flowing in the output of a relatively narrow band pass
filter has the character of a sine wave of, roughly, the midband frequency
whose amplitude fluctuates irregularly, the rapidity of fluctuation being
of the order of the band width. Here we study the fluctuations of the
envelope of such a wave.

First we define the envelope. Let fn be a representative midband fre-
quency. Then if

Om = 2ufm (3.7-1)

the noise current may be represented, see (2.8-6), by

T =D, €008 (wnt — wnl — @ + wmt)
nel

(3.7-2)
= J,C08 wnl — I, 81N wm!
where the components 7. and I, are
N
I, = E Cn CO8 (Wnl — wni — ©n)
Nes ]
(3.7-3)

N
I = 2 € 8in (wnl — wal — @n)

ne]

3 This expression agrees with an estimate made hy V. . Landon, Proe [ R F.. 29
(1941), 50-55.  He discusscs the number of crests exceeding four times the r.m.s. value
of 1. This corresponds to I = 164, .
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The envelape, R, is a function of ¢ dcfined by
R=iL-+ 1" (3.7-4)

It follows from the central limit theorem and the definitions (3.7-3) of I,
and I, that these are two normally distributed randem variables. They are
independent since [I, == 0. They both have the same standar deviation,
namely the square root of

E=E=7=£wmq=% (3.7-5)
Consequently, the probability that the point (I,, I,) lies within the ele-
mentary rectangle dI dJ, is
al, dI, [n+ﬂ
2mfo 0

In much of the following work it is convenient to introduce another ran-
dom variable @ where

(3.7-6)

I." Rcos @

3.7-7
I, = Rsin 8 ( )

Since I.and I, are random variables so are R and 8. The differentials are
related by

dI dI, = RdédR (3.7-8)

and the distribution function for R and 8 is obtainable from (3.7-6) when
the change of variables is made:

d0 R dR c_.ni’un

* Ve (3.7-9)

Since this may be expressed as a product of terms involving R only and ¢
only, R and @ are independent random variables, & beipg uniformly dis-
tributed over the range 0 to 2x and R having the probahility density™

R 2t (3.7-10)
o

Expression (3.7-10) gives the probability density for the value of the en-
velope. Like the normal law for the instantaneous value of I, it depends
only upon the average total power

bo=[winy

4 See V. D. Landon and K. A. Norton, I.R E. Prec., 30 (1942), 425-429.
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We now study the correlation beiween R at time ¢ and its value at some
later time £ - 7. let the subscripts 1 and 2 refer to the times tand ¢ + 7,
respectively. Then from (3.7--3) and the central limit theorem it follows
that the four random variables I, , 1,1, I, I.2 have a four dimensional
normal distribution. This distribution is determined by the second mo-

ments
Ifn = IZ) = 132 = Ifz = \l/o = un
Ialy =1Isla =0

. 1,
IclId = I.llﬁ = ‘2' L‘l Cn COS (wn'r - wmf)

- [’ w(f) cos 20(f — fuyrdf = wy 7D

N
Iy1,3 = —Tc;iﬂ = ;’ Zx c’.. Sin (wa? — Wm7)

—»L w(f) sin 2x(f — fu)rdf = pu

The moment matrix for the variables in the order I, , Iy, T2, [ais

4’0 0 M3 M1
0 "’o —Hie pH13
M=
s —pu Vo O
FHT] i3 0 'f’n

and from this it follows that the cofactars of the determinant | M | are
My = Mp = My = Mu= %l — pis — u1)
= yod, A =¥ = s — mis
My= Mu=20
M= Mu= —upd
My= —My = —puud
M| =4

(3.7-12)

The probability density of the four random variables is therefore

1 1
G P~ g Wi + I+ I3 + 1)

= 2un(h Iy + L1I) — 2umd L s — L 13)]
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where we have written Iy, Iy, Is, Tofor Iy , In, I, Io. We now make
the transformation

I1= R,cnsB; Is = RQCOSO';
Ig = R! sin 91 I¢ = R2 sin 0-1

and average the resulting probability density over 6, and 6, in order to get
the probability that Ry and Rz lic in dR, and dR; . Itis

2 v
R, Eid_%‘_({g’ f an, j df, exp
4n 4 o 0

1 .
=34 {Wo R} + Yo R3 — 2ums Ry Rz cos (6 — 0,) — 2u14 Ry R, sin (6; — 6,)]

Since the integrand is a periodic function of 8; we may integrate from
8 = 6, to 0, = 6, + 27 instead of from O to 2r. This integration gives the
Bessel function, Iy, of the first kind with imaginary argument. The result-
ing probability density for Ry and R, is

. R
R‘}* 10(1%1-3 [l + uz.l”’) exp — 5”;} (Ri+ R)  (3.7-13)

where, from (3.7-12),
A= Yi— s — ue
pis and py are given by (3.7-11).  Of course, R, and R; are always positive.
For an ideal band pass filter with cut-offs at f, and fy we set

f-':'j}'iz_'—'f-! w(f) =w for fa<f<ph

and obtain

Yo = wo(fo — fo)

n ) B
M1y = wo co8 2n(f — fa)r df = 20 z(fo — fo)r
fa T

/b

B = ; w.)Sin 211’(!"],.)1’(”'-‘-"0

a

The Jo term in (3.7-13), which furnishes the correlation between R, and R.,
bccomes

sin x
I Rl R? X
) -
Yo { — sin? x
x?
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where v 15 #{fs — fo)r. When xis a muitiple of x, Ry and R, are independent
random variables. When x is zero Ry and Ry are cqual. Hence we may
say, roughly, that the period of fluctuation of Ris the time it takes x to in-
crease frem 0 to w or (fy — fo)'.  This is related to the result given in the
next section, namely that the expected number of maxima of the envelope
is .641 (fs — fo) per second.

3.8 Maxmma or¥ R

Here we wish to study the distribution of the maxima of R* Our work
i< based upen the exprescian, of. (3.6-1),

0 -
—dR dt [ (R, 0, R")R" dR" (3.8-1)

for the probability that a maximum of R falls within thc elementary rec-
tangle dR dt.  p(R, R, R”) is the probability Jdensity for the three dimen-
sional distribution of R, R/, R” where the primes denote differentiation with
respect to L.

We shall determine p(R, R, R") from the probability density of I., I, ,
1) Y I. , I , which we shall denote by x,, x3, -+ - % . The interchange
of Il and I L is suggested by the later work. It is convenient to introduce

the notation
b= @0 [ w(NU —fu df

b = o

where f is the mid-band frequency, i.e., the frequency chosen in the defini-
tion of the envelope R. b, is seen to be analogous to the derivatives of
Y(r) at r = 0.

YFrom the definitions (3.7-3) of I. and I, we obtain the second moments

M=l =Yo=b

(3.8-2)

I

-"':: = If = by
— -— N
xy = I} = ; w(f) AT ([ — [2)° = by
:: = ;? = b,
3'3 = I:’z =}
-Tg = I:'z = by

* Incidentaiiy, most of the analysis of this section was originally developed in a study
of the stability of repeaters in a loaded telephone transmission line. The envelope, R,
was associated with the “returned current” produced by reflections from line irregularities.
However, the study fell short of its object and the only results which seemed worth sal-
vaging at the time were given in reference® cited in Section 3.3.

85



mm = 1.1, = 1

zaws = L1, = —b

wx = LI = —)_:,: w(f)ofdn’(fa
xaxs = LI = =b,

mm =01 = —b

All of the other second monments are zero.

= —— r o n
xyxe = 1,1,

N

bs

2o w(f)A 2w fu — fn) = by

'—fm)2 = _b'Z

The moment matrix M is thus

b & —-b O 0 0
b by —b 0 0 0
| b =k b0 0 0
0 0 ) be —‘bg —'h I
0 0 0 ~b b b
0 0 0 —=b b B
The adjoint matrix is
~ Bo B, —B, 0 0 0 ]
B, By =By, 0 0 0
—By —B, Bs 0 0 0
0 0 0 By —B, —DBy
0 0 0 -B Bax B,
0 0 0 —B; B, By _
By =  (b:b — b3)B Bu = (bbs — b7)B
By, = — (bbe — byby)B By = — (boby — b1b9)B
By= (b5 — b3)B Bi = (bob; — b1)B (3.8-3)

B = bobobs -+ 2 bybabs
— b3 — bobs — beb}
|M|= B

where B is the determinant of the third order matrices in the upper left and
lower right corners of M.

As in the earlier work, the distribution of x;, -
dimensions. ‘The exponentis — [2 | M |]™' times

Bo(ai + x3) + 2Bi(x1x; — x4xs) — 2Ba(a1x; + xexe)
+ Bu(xa + 15)  — 2By(%xs — ze7)
+ By(xs + xp)

-, ¢ 18 normal in six

(3.8-4)
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In line with the earlier work we set
¥y =JF,= Rcos r2g=1,= Rsin g

xy = I, = R'sin § + R cos 60’

g = I. = R cos @ — Rsin 6¢’

xg= 1., = R" cos § — 2R’ sin 69’
— R cos 89" — R sin 60"

xe = I, = K" sin§ + 2K cos W'
— Rsin 89" + R cos 66"

The angle @ varies from 0 to 2x and 8" and 6" vary from — o to 4. By
forming the Jacobian it may be shown that

dx1 dxy - - dxs = R*dR dR’' dR" db d§’ do"
Also, the quantities in (3.8-4) are
2+ =FK 2% + xxs = RR"” — R¢?
1% — T2 = R 2 + 2t = R? + R*0"
2,2 — %32 = RR"® — 2R"*¢' — R'R¢" — R'¢"
7y + 73 = R — 2RR"9" + 4R"0" + 4RR'¢'0"
+ R'¢* + R*¢'"

The expression for p(R, 0, R”) is obtained when we set these values of the
z's in (3.8-4) and integrate the resulting probability density over the ranges
of 8, ¢, 6":

(R, 0, R") = sz jo " o [:,, de’ [:” B (3.8-5)

exp — 535 B R + IB, R0 — 2B,(RR” — B9
+ BaR'0" — 2B, R¥(R" — RO")
+ B‘s(R"2 - 2RR”9" + Rao" -+ Rgﬂ"z)]

The integrations with respect to # and 6’ may be performed at once leaving
P(R, 0, R"") expressed as a single integral which, unfortunately, appears to
be difficult to handle. For this reason we assume that w(f) is symmetrical
about the mid-bard frequency fm. From (3.8-2), & and b are zero and
from (3.8-3), B, and B, are zero.
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With this assumption (3.8-5) yiclds
4o

p(R, 0, R") = R'(2x) " B'" 46’ (3.8-6)

ob

o —ilf’[B“R ' + R(1Bn + 2BRO" — 2B:R”) + B(R" — R9")']

The probability that a maximum occurs in the elementary rectangle dR
dt is, from (3.8-1), p(¢, R) dR dt where

PR = — [: »(R, 0, R")R" dR" (3.8-7)
We put (3.8-6) in this expression and make the following change of variables.
x = \g:”B Ro6", y = j;”B "
g = — Vng. R = \/"2%‘ R (3.8-8)
e [3- 8]

aﬂ = .gg 2,2‘ = .b_g__b‘
2 R
where we have used the expressions for the B’s obtained by setting b, and
b to zero in (3.8-3). Thus

p(t, R). b:b’ (B’)m i y dy L V2 gy (3.8-9)

exp [—a’s® + 2bzx + 25y — (= + Y]

As was to be expected, this expression shows that p(¢, R) is independent of ¢.
A series for p(¢, R) may be obtained by expanding exp 2z(y 4+ bx) and
then integrating termwise. We use

L dy'[ dxxuyve—(ﬁy)‘ . Ve Ty + D+ 1)

...2u+'r+3 I‘(’—;+7+3)
2

which may be evaluated by setting

x=p"cos’p, y=p'sin"yp
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The double integral in (3.8~0) becomes

R (Zz) n!b" Pm + HT'(n — m + 2)
1/2 f.z.;; o m! (n — m)! 2 1‘7n 7)
24
@ n —alsl
== 2---.)’2 Z - € . 7 An
nead "
P(é*i)
where Ap = 1 and
X
=y W@ . T w1, 0<n (38-10)
me=0 H
An~(m 4+ DA =57 = ’2’ (1 — 8%,  nlarge

The term corresponding tom = O in (3.8 -1() is n + 1.
We thus obtain

(1, R) = .‘—_o_'_‘..’ (B2~ 2" A
’ 4bods /7 neo l‘(” " Z) "
2 4 (3.8-11)
e—a‘l! bl.'z

( 2 _ 1)!.[283]2 E 3 An"7~
N
(3 +3)

We are interested in the expected number, &V, of maxima per second.
From the similar work for I, it follows that A is the coefficient of df when
(3.8-1) is integrated with respect to Rfrom 0 to ., Thus from (3.8-7) and

R = /2B, b;*ds = (260 B)'*87%* dz
= [2b(a® — 1)]"* dz

4\/1r I3

we find
N = f p(t, R) dR
0

_ 2 12 w r (? '+‘ §)
- (a 1) (Trb(‘) 2 4 An (3.8-12)

GayiE e
I'{ - .
(2 + 4)

Equations (3.8-11) and (3.8-12) have been derived on the assumption
that w(f) is symmetrical about f.., i.e. the band pass filter attenuation is
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symmetsical about the mid-band frequency. We now go a step further and
assume an ideal band pass filter:

w(f) =w fa<f<S
w(f) =0 otherwise (3.8-13)
2Un = fa+ fo
Putting these in (3.8-2) we obtain zere for b and by and also
b = wn(fo ~ fo) = do

2
b.==1§£° AL

]

4
bt !*SE"? o = fa)6
¢ =3 (3.8-14)
b =43 ~6) =1

R = [2b(a® — 1]z = [§¢]"'s

1/3 /2 3
(;”-’—) = [g—] =1, o5t = §§

n A, ” An
01 4 6.775
1 23 5 8.333
2 3.135 6 9.9002

3 5.238 7 11.4736
Aa ~ 1.5811 » 4+ 3953

From (3.8-12) we find that the expected number of maxima per second
of the envelope is

N = 64110 (fo ~ f.) (3.8-15)

assuming an ideal band pass filter.
The distribution of the maxima of R for an ideal band pass filter may be
obtained by placing the results of (3.8-14) in (3.8-11). This gives

dR @ 4 oM
f’(ta R) dR = ”2 (f? f) /( z)

= g" A
'EI‘(”+Z)
2 ' 4
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It is convenient to define y as the ratio

R R 112
y=_ o= = (D)
rms. I(6) ¢y
where R is understood to correspond to a maximum of the envelope. Since
the value of R corresponding to a maximum of the cnvelope selected at
random is a random variable, v is also a random vanable. Its probability

density is pg(y), where

nly) dy = . P& R AR
PRTEY = 0.64110(J> — fo)

P r(y) has been computed and is plotted as a function of y in Fig. 3.

IR IV P

ENVELOPE OF OQUTPUT
NOISE CURRENT

= RMS38 NOIS[E CURRENT

o.4— ————]

[+] o5 10 ts 20 y 3 30 3s 40

Fig. 3—Distribution of maxima of envelope of noise current. Noise through ideal band-
pass flter,

i—;% dR = probability that a maximum of R selected at random lies between R and
R + dR.

The distribution function P(Rmax < y4/{s) defined by

P(Roex < 3VT) = [ pa(3) dy

and which gives the probability that a maximum of the envelope selected
at random is less than a specified value y4/y, = R, is plotted in Fig. 4 to-
gether with other curves of the same nature.
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When y is large, say greater than 2.5,

i
6,2 _'1)6“#”9

() ~ a0 VY
o
6 -~y

P(Rm<y\/%)~1—:@ﬁ-6ye
‘0-99[—_;
L7
Z///' /
—_.{
7y

N

. ’/‘//
o

a0

100 » PROBABILITY

: -
2 J / ] f I == NOIBE CURRENT - LOW PASS FILTER

/ l ’ R uww NOISE CURRENT ENVELOPL -

‘ 7 BAND PASE FILTER
osl - ] Il Vo= Ams Noise cummenT
/A

K '-3 -2 -1 0 y [ 2 3 4 s

Fig. 4—Distribution of maxima
A = P(I < yV/¥s) = probability of I being less than y+/¥, . Similasly C = P(R <

Vo).
B = P(I max < y\/ ) = probability of random magimum of I being less than y\/ﬁ .
Similarly D = P(R max < yV/vx).
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The asymptotic expression for pr(v) may be obtained from the integral
(3.8-9) for p(¢, R). Indeed, replacing the variables of integration x, y in
(3.8 9) by

=

y = x4y,

integrating a portion of the 3y integral by parts, and assuming b < 1
(a® > 1, by Schwarz’s inequality, so that 5 < 1 always) leads to

b: ‘p"R’I'_’y’m (Rﬂ )
P& B ~ (fw) v \g 7!
when R is large.

If, instead of an ideal band pass filter, we assume that w{f) is given by

1 ~(f~fm) ¥ 20?
w(f) = /77 ¢ , S>> 0o (3.8-16)

we find that
b) == 1
Ih = 41’!’202

b = 162 36
at=3,b=0
Av=(n+1)
Some rough work indicates that the sum of the series in (3.8-12) is near
3.97. This gives the expected number of maxima of the envelope as
N = 2.52¢ (3.8-17)

per second.
The pass band is determined by ¢. It appears difficult to compare this
with an ideal band pass filter. If we use the fact that the filter given by

w(f) = wo cxp[—r (Jffb:{;:)z]

passes the same average amount of power as does an ideal band pass filter
whose pass band is fo — f,, we have

fb - fa = U\/-Z-T;
and the expression for N becomes 1.006 (fp — f.).

3.9 ENErRcY FLuctuaTtionN

Some information regarding the statistical behavior of the random vari-
able

H+7
E = f I%(t) dt (3.9~1)
t
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where I{¢) is a noise current and ¢, i8 chosen at random, has been given in a
recent articie.”” Here we study this behavior from a somewhat different
point of view.

If we agree to use the representations (2.8-1) or (2.8-6) we may write, as
in the paper, the random variable E as

I3
E = [ ') at (3.9-2)
r/g
where the randomness on the right is due either to the a,’s and b,’s if (2.8-1)

is used or to the ¢.'s if (2.8-0) 1s uscd.
The average value of E is m, where, from (3.1-2),

Ti2 - Ti2
E=ms = 11!(:)«1:: 8¢(0)d:== To
T/ T/
- (3.9-3)
=T _L w(f) df
The second moment of £ is
_ T/2 i3
E = [ dt dt; I3(8,) 2 (ty) (3.9-4)
/3 /2

If, for the time being, we set {; equal tof; 4+ 7, it is seen from section 3.2
that we have an expression for the probability density of I{t)) and 7(#; 4 7)
and hence we may obtain the required average:

3t _ 1 A e 1 73
I]IQ = m d[| d[gl]’z €exp

1 9-5
('—274—, (%13 + 4’0’; - 2'[’:!119)) (3 9-3)
A=y —¥, h=It), L=It+7 =I#)
The integral may be evaluated by (3.5-6) when we set
2 2
I =4 =, I, = A4 —
(3.9-6)

Vr = —yo COS ¢
A =yosin g

& “Filtered Thermal Noise—Fluctuation of Energy as a Function of Interval Length”,
Jour. Acous. Soc. Am., 14 (1943), 216-227.
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Thus
I3 = Ya(d + 2 cos’ o)

= yo -+ -
Incidentally, this gives an expression for the correlation function of I*(f).
Replacing r by its value of £, — ¢ and returning to (3.9-4),

_ T2 T2
E‘g = Ti\l’g + 2 ‘[ dh dtzlllg(‘g - tl) (3.9 8)
TI2 P!

(3.9-7)

T/
When we introduce oy, the standard deviation of E, and use
2 = 3
or = [ — my

we obtain

—_ Ti2 T2
or = (E — E)’ = 2[ dh dh il — t)
T/ T/2

= 4 j; ' (T — W (x) dx

where the gecond line may be obtained from the first either by changing the
variables of integration, as in (3.9-27), or by the method used below in
dealing with 3. Iam indebted to Prof. Kac for pointing out the advantage
obtained by reducing the double integral to a single integral. It should be
noted that the limits of integration — T/2, T/2 in the double integral may
be replaced by 0, T by making the change of variable ¢ = ¢ — T/2 for hoth
ty and ls.
When we use

Wr) = fo " w(f) cos 2ufr df (2.1-6)

we obtain the result stated in the paper, namely,

o = _[ w(fy) dfy j; w(f) dfs [Sinr;Zf(,ﬁ-{-l-fg{:)T (3.9-9)

+ 5in2 ﬂ'(fl - fglz‘]
=?(h ~ fo)?
If this formula is applied to a relatively narrow band-pass filter and if

T(fs — fo) > > 1 the contribution of the f; + /> term may be neglected and
we have the approximation

Ih $-0 . 2
- d [ af, S _mh = T
agr ‘o Wo fl - Wo fz Wz(fl —"fg)z
=wi T(fp — fa)

= Wo iy

(3.9-10)



where, from (3.9-3)
mr = woT(fo — fo) (3.9-11)

The third moment /3 may be computed 1in the same way.  However, in
this case it pays to introduce the characteristic function for the distribution
of I{t;), I{ty), I(ts’. Since this distribution is normal its characteristic
function 1s

Average exp iz ]y + 12,12 + 12y 1)

I. - o » . .
= exp -[”2~“' (21 + 22 + 22) + ¥ — b)zz (3.9-12)

+ Yty — W)z + Yl — 12)2233]

From the definition of the characteristic function 1t follows that

25 2 25 .
in

212121

= ¢ + (¥ + ¥a + va3)
+ 8o ¥ ¥s2

where we have written g for ¢(t; — 4), etc.  When (3.9-13) is multiplicd
by dty di, dts | the variables integrated from 0 to 7', and the above double
integral expression for o5 used, we find

) T T T
([ — f‘)3 = 2'22£ (Illj; dlg ‘/o.(”sd/u \[/.;11&33.

1'{131§ = —coeff. of ch. {.

(3.9-13)

Denoting the triple integral on the right by J and differentiating,

dJ 4 T .
= fo di, fo byt — bW — (T — &)
T “aT
= SL dx'L dyy(x — yig (e (y)

-6 jo dx jo dyp (x — YW (P ()

In going from the lirst line to the second ¢, and £, were replaced by T — x and
T — y.respectively.  In going from the second o the third use was made of
the relations symbolized by

T T r x T T
f(u-{ dvz[ fl.t'fdy+f dxf dy
Q - 0 0 0 T
T r T v
=f d.\;fdy—}—f dyf dr
0 0 0 1}
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and of the fact that the mtegrand is symmetrical in x and v, Integrating
dJ/dT with respect to T from 0 to Ty, using the formula

forl ar ]:f(x) dx = ]07‘; (Ty - x)f(x) dx,

noting that J is zero when T is zero, and dropping the subscript on Ty finally
gives

T z
FE B = 8 [ dr [ dy(T — w@wON(E— ).
(1) 0

E* may be treated in a similar way. It is found that

e —— T T T T
(E - ) — 3(E — )= 312" j; dt fo dt, fn dt; fo s Ve Vs

which may be reduced to the sum of two triple integrals. It is interesting
to note that the expression on the left is the fourth semi-invariant of the
random variable E and gives us a measure of the peakedness of the dis-
tribution (kurtosis). Likewise, the second and third moments about the
mean are the second and third semi-invariants of E. This suggests that
possibly the higher semi-invariants may also he expressed as similar multiple
integrals.

So far, in this section, we have been speaking of the statistical constants
of E. The determination of an exact expression for the probability density
of E, in which T occurs as a parameter, seems to be quite difficult.

When T is very small E is approximately I’(¢)T. ‘The probability that
E lies in dE is the probability that the current lies in —1, —I —dI plus the
probability that the current liesin I, I + dI:

21! I?

E
sl . —_ T = A - -
N2l exp 2o (2o ET)" " exp o T dE  (3.9-14)

where E is positive,

E 1z l . 12
I = (T) , A= L (ET)E

and T is assumed to be so small that () does not change appreciably during
an interval of length 7.

When T is very large we may divide it into a number of intervals, say 5,
each of length 7/n. Let E, be the contribution of the ¢ th interval. The
energy E for the entire interval is then

E=E+E+- - +F

If the sub-intervals are large enough the E,’s are substantially independent
random variables. If in addition 7 is large envugh E is distributed nor-
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mally, approximately. Hence when T is very large the probability that E
lies in 41 is

dr (K — mr)?
or \/w- exp — x (3.9-15)
where
my =T .l; w(f) df
(3.9-16)

ok = T£ w'(f) df

the second relation being obtained by letting T — o« in (3.9-9). The
analogy with Campbell’s theorem, section 1.2, is evident. When we deal
with a band pass filter we may use (3.9-10) and (3.9-11).

Consider a relatively narrow band pass filter such that we may finda T
for which Tfa > > 2x but T(fy — f,) << .64. Thus several cycles of fre-
quency f,are contained in T but, from (3.8-15), the envelope does not change
appreciably during this interval. Thus throughout this interval I(¢) may
be considered to be a sine wave of amplitude R. The corresponding value
of E is approximately

RR
E = T—Z—
where the distribution of the envelope R is given by (3.7-10). From this
it follows that the probability of Elying indEis

exp — — = —e
%T P %T me
when E is small but not too small.

When we look at (3.9-14) and (3.9-17) we observe that they are of the
form

(3.9-17)

- an+l En—-
I'in 4+ 1)
Moreover, the normal law (3.9-15), may be obtained from this by letting »
become large. This suggests that an approximate expression for the dis-

tribution of E is given by (3.9-18) when ¢ and 7 are selected so as to give
the values of mr and o1 obtained from (3.9-3) and (3.9-9). This gives

¢ ** dE (3.9-18)

a="7, mn41= ’-"-1 (3.9-19)
or 0’7-
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and if we drop the subscript 7" and substitute the value of ¢ in (3.9-18) we
get

o’ o? o

(mh‘)"

ot mEF mh m’

_ — d\l - = - — 1 3.9-20
T(n + 1) e"”( ) ( ) i 3:9720)

An idea of how this distribution behaves may be obtained from the
following table:

n o T(fh— fa) o Y10 P t—‘P "‘_-l‘
0 0 .29 693 1.39 413 2.00
i 1.45 .96 1.68 X0 .372 1.60
2 2.4 1.73 2.67 3.94 647 1.47
3 3.4 2.54 3.67 5.12 (92 1.39
5 5.4 4.22 5.67 7.42 744 1.31
10 10.5 8.63 10.67 13.02 .ROB 1.22
24 25 21.47 2467 2817 850 1.14
48 50 44 .1 4%.7 53.3 905 1.10

where n is the exponent in (3.9-20). The column T'(f, — f.) holds only for a
narrow band pass filter and was obtained by reading the curve v, in g, 1
of the above mentioned paper. The figures in this column are not very
accurate. The next three columns give the points which divide the dis-
tribution into four intervals of equal probability:

mE% Al oy > hd
Xop = g2 E 5 = energy exceeded 739%¢ of time

mE o .
Xgo = - 2 E 0 = encrgy exceeded 509, of time

mE .
Tae = = E 3 = encrgy exceeded 257, of time

The values in these columns were obtained from ’earson’s talile of the in-
complete gamma function. The last two columns show how the distribu-
tion clusters around the average value as the normal law is approached.
For the larger values of # we expected the normal law (3.9-15) to be
approached. Since, for this law the 25, 50, and 75 per cent points are at
m — .675¢, m,and m 4+ .075¢ we have to a fust approximation
2

im = ’% =+ 1) = T(fo — fo)

X.gp = :;(m — 6756)-= x50 — 675V x4

xm = *w + 6715v/xn
This agrees with the table.

(3.9-21)



Thiede® has studied the mean square value of the fluctuations of the
integral

t
A(t) = [ (e ™" dr (3.9-22)

The reading of a hot wire ammeter through which a current 7 1s passing is
proportional to .{(f). ais a constant of the meter.  Here we study 4{¢) by

1t
o]

!
)
t
!
| H
i
i
;
I

- - ! T Ty L T A - T

29 ] S I |
!

I

PRUBABILITY DENSITY
{3.9-20) 15 assumeD

L i
v 2 s a s 8
T{f, .}

1_
}_
-

Fig. 5*-Filtered thermal noise- -spread of energy  fluctuation

OtrT
E = f 13(t) dt, ¢, random, I is noise current.
n
n=Fuw/Ewn.vi= Enflwn.
Jo — fo = band width of filter.
first obtaining its correlation function. This method of approach enables
us to extend Thiede’s results
The distributed portion of the power spectrum of A4(¢) is given by (3.9-
30). When the power spectrum w(f} of I(¢) is zero except over the band
Ja < J < fo where it is wy , the power spectrum of A(2) is

ol ~fo = 1) 1 0 <f<fofo

and is zero from fy — faup to 2f, . The spectrum from 2f; to 2fy is not zero,
and may be obtained from (3.9 34). The mean square fluctuation of .1(¢)
is given, in the general case, by (3.9 28) and (3.9-32). Tor the band pass
case, when (fy — fa)/a is large,

- AW — 4 _ [ a ]u:
T /'i Z(Ib - fa)

8 Flee. Nachr. Tek , 13 (19306), 8493, This is an excelient article.
* Note added in proof.  The value of xz at O should be 415 instead of 403,
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We start by setting 7 = £ — » which transforms the integral for A(t) into
Al) = f I’'(t — wye ™ du (3.0-23)
0

In order to obtain the correlation function ¥(7) for .1(¢) we multiply .1(¢)
by .1(¢ 4+ 7) and average over all the possible currents

¥(r) = ANAUL + 1)
= f ¢ duf ¢ “dvave. I' — It + 1 ~ 1)
0 o

Just as in (3.9-4) the average in the integrand is the correlation function of
Iﬂ(t), the argumentbemg? + 7 — v~ 4+ u=7+nu—10v. From(3.9 7)
it is seen that this is

Vo + NP+ u— 1)

where ¢{7) is the correlation function of 7(#). Hence
2 ) -
¥(r) = !p_:, + 2[ duf dve ™ " Yr+u—-1 (3.9-24)
o 0 (4]

From the integral (3.9-23) for .1(?) it is secn that the average value of
A4(Q) is

i=L_¥ (3.9-25)
a
where we have used
w=v©O = [ wd=F
o

Using this result again, only this time applying it to 1), gives

Aty = ¥(0)

© © 3.9-26
= A + 2]; duj; dv € ™ " u — v) ( )

The double integrals may be transformed by means of the change of
variable # + v = x, 4 — v = y. Then (3.9-24) becomes

vy =4+ [ar [t [ay [ as]emvit 4 n
(3.9-27)

=141 f eV + 3) + ¥ ~ )ldy
aJdy
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When we make use of the fact that (3} is an even funetion of y we see, from
(3.9-26), that the mean square fluctuation of A{) is

4@ — AF = A%@) — 4° = i ' L SV dy  (3.9-28)

WV (7) may be expressed in terms of integrals involving the power spectrum
w(f) of I(f). The work starts with (3.9 24) and is much the same as in
going from (3.9-8) to (3.9-9). The result is

W) = 4+ [ an [ doiivesn

[ cos 21(]1 +fa)f o8 21!'_(_[1 ":l:)‘l“‘_
@+ 2x(fi + )P ' @+ [2x(fLi — )P

It is convenient to define w(—f) for negative frequencies to be equal to
w(f). The integration with respect to f; may then be taken from —« to
+ o and we get

vy = A+ [ o [ dputiet %R E A a9)

The power spectrum W(f) of A(t) may be obtained by integrating ¥(7):
W(f) = 4 _[ ¥(r) cos 2afr dr

Let us concern ourselves with the fluctuating portion 4(t) — A of A(1).
Its power spectrum W(f) is

W.f) =4 _[ - (¥(r) — A") cos 2ufr dr
The integration is simplified by using Fourier’s integral formula in the form
j; ) 47 [:Q dfy F(f3) cos 2x(u — fo)r = §F(u)
We get

l A
WAP) = o2 gt [ Ul + 1) + w(fdu(=1 + f) o

1 +
= s [ vy - pa,

The simplicity of this result suggests that a simpler derivation may be
found. If we attempt to use the result

17}(]} = Limit 2‘ -S(f) I2

imit £122 (2.5-3)
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where S(f) is given by (2.1-2) we find that we need the result

2 T T ] . .
- l dty f dls TN PONE ()

RS ) -~ Y=

Limit
(3.9-31)

+om
— [ wtruts - pdf

where f > 0 and I{t) is a noisc current with w(f) as its power spectrum.
This may be proved by using (3.9-7) and

8 [o V(r) cos 2xfr dr = [:n w(x)w(f — x) dx

which is given by equation (4C-6) in Appendix 4C.
An expression for the mean square fluctuation of A(¢) in terms of w(f) may
be obtained by setting 7 equal to zero in (3.9-29)

(4() — 4 = ¥ — 4
o 4 oo w w (3.9_32)
l dfx.[ dfs = (flz) (f9) )
® a + 45 (fi — fo)
The same result may be obtained by integrating W.(f), (3.9-30), from 0
to

s

-y i
f. & + dnif? _Lo dfiw(fi)w(f — f;) (3.9-33)

Although this differs in appearance from (3.9-32) it may be transformed
into that expression by making use of w(—f) = w(f).

Suppose that I(¢) is the current through an ideal band pass fiter so that
w(f) is zero except in the band f, < f < fy whereitiswo. Then, if 3f, > fi,

= “;‘? A (3.9-34)
- Wil —fa—f) O<L<f<fo—fa
_[w w(x)w(f — x) dr = wp(f — 2f.) e < S+ /e
wo(2fs — f) fo+f. S f <2

and is zero outside these ranges. The power spectrum W (f} may be ob-
tained immediately from (3.9-30) by dividing these values by o’ + 4x'f’.
From (3.9-33)

o . So—Sa
(AL A = 2100_[0 of + dn2f?

s [ (F = 20 . (Y (2 — f)
+ fm dxanpdte ] e T e
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If an exact answer is desired the integrations may be performed. When we
assume that fy — f, << fy 4+ fo we may obtain approximations for the last
two integrals.

(4 — D' = wz[ﬁ;ff' tan™ 27 = S

1 a’+4r(j,, f.,Y" (fi — fa) ]
W T L

Furthermore, if 2r(fs — fu)/ais large we have

AD) — A = wi o T fa
2a

and the relative r.m.s. fluctuation is

() = A) « 1
r.m.s, of [ A ] [Z(fb fa) ]

This result may also be obtained from (3.9-10) and (3.9--11) by assuming
a so small that the integral for 4(2) may be broken into a great many in-
tegrals each extending over an interval T. aT is assumed so small that
“ is substantially constant over each interval.

3.10 DistriBuTion OF NoISE P’Lus SINE WAVE
Suppose we have a steady sinusoidal current
I, = I,() = P cos (wpt — ¢5) (3.10-1)

We pick times ¢, , #;, - - - at random and note the corresponding values of
the current. How are these values distributed? Picking the times at ran-
dom in (3.10-1) is the same, statistically, as holding ¢ constant and picking
the phase angles ¢, at random from the range 0 to 2». If I, be regarded as
a random variable defined by the random variable ¢,, its characteristic
function 1s

. l 2w
ave. eulp = [ enr- cus (wpi—p) do
2

(3.10-2)
= J(Pz2)
and its probability density is
to i _ y3y-12
51; e Jo(P2) dz = ;(P! L) | I,| <P (3.10-3)
= 0 | I, > P

In this case it is simpler to obtain the probability density directly from
(3.10-1) instead of from the characteristic function.
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Now suppose that we have a noise current Iy plus a sine wave. By com-
bining our representation (2.8 -6) for Iy with the idea of ¢, being random
mentioned above we are led to the representation

W =1=1I,+1Iy

v
= Pcos (wyl — ¢p) + 2. €n 08 (il — @),  (3.10-4)
1

&= 2w(f)Af
where ¢, and ¢, « - - @y are independent random angles.

If we note I at the random times £, , f; - - - how are the observed values
distributed? Since f, and Iy may be regarded as independent random
variables and since the characteristic function for the sum of two such vari-
ables 1s the product of their characteristic functions we have from (3.1-6)
and (3.10-2)

i e s
srlipTing

ave. e'*’ = ave. e
= Jy(I’g) e.\'p( —;——)

which gives the characteristic function of 7. The probability density of 7

(3.10=5)

is™
-!__ e c"‘lf {ﬂut".i'.’)‘] (Pz) d" — l lre (1 - coe ‘l‘/'.'y'«o d0 (3 10—6)
2 w© 0 “ 1r‘\/21r\l«0 '

In the same way the two-dimensional probability density of (I, I),
where Iy, = I(¢) is a sine wave plus noise (3.104) and I, = T{f 4+ 1) is its
value at a constant interval 7 later, may be shown to be

(Wo — ¥ " [ [_ ~ bie). ] _
. ]o a0 exp| =y (3.10-7)

where
B(8) = l(I, — Pcos 8)’ + (I, — P cos (8 + w,7))¥]

- NI} = Pcos®)(I; — Pcos (8 + wp7))
The characteristic function for 7y and I, is

ave. €Y = Jo(PA/1 X 7 + 2uv cos wpt)

3.10-8
XGXP[—%’(“W-J) —\quv] ( )

% A different derivation of this expression is given by W. R. Bennett, Jonr. Acous. Soc.
Amer., Vol. 15, p. 165 (Jan. 1944); B.S.T.J., Vol. 23, p. 97 (Jan. 1944).
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Sometimes the distribution of the envelope of
I = Pcos pt + In (3.10-9)

is of interest. Here we have replaced w, by p and have set ¢, to zero. By
the envelope we mean R(¢) given hy

R =R ={P+I1)+1 (3.10-10)
where I, is the component of Iy “in phase” with cos p¢ and I, is the com-
ponent “‘in phase” with sin pt:

I, = 2 cocos [(wa = p)t — ¢ul
I. = 2 casin [(wa — P — pal
In = I.cos pt — I, sin pt
L=L=I=
Since I, and I, are distributed normally about zero with a variance of
vo, the probability densities of the variables

x=P+I¢

y=1.
‘are
-2 _ (x b P)a
(2w} €xp ——-2'%-—
3

—1/2 - 2
(2mfo)” " € e

respectively. Setting
x = Rcosé
¥y = Rsin g
and using these distributions shows that the probability of a point (z, y)
lying in the ring R, R 4+ dR 1s
RdR (™ o [—Z‘% (R® + P* — 2RP cos a)] d

2mo
__ RdR R + P”] (
= exp[ 2% -1 v (3.10-11)

where Igis the Bessel function with imaginary argument.

o) n

Iz) = E 3

net 2% ninl
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and is a tabulated function.  Thus (3.10 11) gives the probahility density
of the envelope K.

‘The average vatue of R" may be obtained by multiplying (3.10 -11) hy R~
and integrating from 0 to » . Fxpansion of the Bessel function and term-
wise integration gives

Tn — ni2p 7 ~rtyg g fH . ]’j)
R (2¢0) 1(2+1)€ 11‘1(2+1,1,2%

oy iz N . n P
= (N/o) ”l (2 + 1) I ("2 3 1 “‘2%) (3.10-12)

where Fy is & hypergeometric function.®  In going from the first line to
the second we have used Kummer's first transformation of this function.
A special case is
R = P+ 2 (3.10-13)
When only noise is present, P = 0 and
R (2" )!I".' 1—1(1) (wo“-)llg
= (1] A —1 - —
! 2 (3.10-14)
k= 240

Before going further with (3.10--11) it is convenient to make the following
change of notation

R dR P
V=, GU= g, 6= (3.10~15)
(] 0 (1)

“g" is the ratio (sine wave amplitude)/(r.m.s. noise current).
Instead of the random variable R we now have the random variable 2 whose
probability density is

a

2 2
p(¥) = vexp [—v : j; --] Io(av) (3.10-16)

Curves of p(v) versus vare plotted in Fig. 6 for the values 0, 1, 2,3, 5 of a.
Curves showing the probability that v is less than a stated amount, i.e., dis-
tribution curves for v, are given in Fig. 7. These curves were obtained by
integrating p(v) numerically. The following useful expression for this
probability has been given by W. R. Bennett in some unpublished work.

_[ p(u) du = exp [—'31'—:12-—9-?] f: (:J-;)’l I.(av) (3.10-17)

n=l

 Curves of this function are given in “Tables of Functions”, Jahnke and Emde (1938),
p- 275, and some of its properties are stated in Appendix 4C.
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This is obtained by integration by parts using
f 1" Io1(au) du = u" I.(au)/a

When ar >> 1 but 1 << a — v, Bennett has shown that (3.10-17)

leads to
v 1/2 1 . )2

[ owan = (2:?») a =P ["("v“ 2 ]
' R (3.10-18)

et -4 )

8av(e — v)*
el U Saiseer U St SN T
R
aus [,
0.5k o .

o
L

<
Lt

Q2

PROBABILITY DENSITY Piv)

— -
0 [l 2 3 v 4 5 : s 8

Fig. 6—Probability density of envelope Rof I(¢) = P cos pt + Iy

This formula may also be obtained by putting the asymptotic expansion
(3.10-19) for p(v) in (3.10-17), integrating by parts twice, and neglecting
higher order terms.

When av hecomes large we may replace Io(av) by its asymptotic expres-
sion. The expression for p(v) is then

1 v H2 (v — a)‘.!
p(v) ~ (1 + -g@) (21-0) exp[--~ 5 _] (3.10-19)

Thus when either a becomes large or ¢ is far out on the tail of the probability
density curve, the distribution behaves like a normal law. In terms of the
original quantities, the normal law has an average of Pand a standard devia-
tion of yo'*. This standard deviation is the same as the standard deviation
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of the instantaneous values of Iyv. When av>> 1 and a 3> |v — ¢ | we may
expand the cocfficient of the exponentiai term in (3.10-19) in powers of

-4
©
»
4
¥
e e
i
.
4

90.5

P! IR S

BAk - e R

P

L]

»
o
t
— e e ey

100 % PRSBABILITY THAT “FokT
3

0.3

O,ar-- .

O - w -

0.0% )

% .
v—-a
Fig. 7—Distrilution function of envelope R of /(1) = P cos pt -+ Iy

0.

!
i
4
!
)
-3 o

(v — a)/a. Integrating this expansion termwise gives, when terms of magni-
tude less than ¢”° are neglected,

v—4a

i 1 1
L i) du = §+ Zetrf V2
1 t—a 14 (@—a?] (v — a)*
T layVin [’ T vt s ]‘”‘"[ 2 ]
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When I consists of two sine waves plus noise
I'=Pcospt+Qsingt+ Iy, (3.10-20)

where the radian frequencies p and g are incommensurable, the probability
density of the envelope R is

R fo rJo(ROJo(Pr) Jo(Or)e ™o d (3.10-21)

where yo is Tx. When ( is zero the integral may be evaluated to give
(3.10--11).  When both P and @ are zero the probability density for R
when only noise is present is obtained. If there are three sine waves instead
of two then another Bessel function must be placed in the integrand, and
so on. Lo deflne R it is convenient to think of the noise as being confined
to a relatively narrow band and the frequencies of the sine waves lying
within, or close to, this band. As in equations (3.7--2) to (3.7-4), we refer
ail terms to a representative mid-band frequency f.. = wn/27 by using
equations of the type

cos pt = cos [(p — wm)l + wai]
= 05 (P — wm)l COS Wn! ~— SiN (P — Wm)E SiN W,
In this way wc obtain
V= A cos wmd — Bsinwn! = Rcos (wmf + 8) (3.10-22)
where 4 and B are relatively slowly varying functions of ¢ given by
A= Pcos(p ~ wm)l + Qcos (g — wn)t
+ Zﬂj Ca €08 (waf =~ Wb — @u)

. . (3.10~23)
B = Psin (p — wm)l + Qsin (g — wa)!
+ 2 64 Sin (wnl — wmf — @a)
and
R=4"+B, R>0
(3.10-24)

As might be expected, (3.10-21) is closely associated with the problem
of random flights and may be obtained from Kluyver’s result” by assuming

¥ (. N. Watson, “Theory of Bessel Functions” (Cambridge, 1922}, p. 420.

-
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the noise to correspond to a very large number of very small random dis-

placements.
Another way of deriving (3.10-21) is to assume (p — wa¥, {7 — wnlt,
¢1, ¢2, -+~ are independent random angles. The characteristic function

of 4, Bis
ave. %48 o U PN/ F ) To(QV it ) Welniuteen
The probability density of 4, B is

l ] +00 4 ‘
(_2__) .[ du dv e'-inA—- v8 ave. 8fu¢|+fu.8
w L

When the change of variables
A= Rcos@ n = rcosg
B = Rsin@ v =rsing

is made the integration with respect to ¢ may be performed. The double
integral becomes

2—1“_' -li; rJo(Pr)Jo(Qr)Jol Rf)e“""ﬁmf’ dr
This leads directly to (3.10-21) when we observe that d.AdB = RdJRd6.
Incidentally, if

I =0Q(1 4 kcos pt) cos gt + Iy

in which p << ¢, similar considerations show that the probability density
of Ris

Y] g o
‘215; do ‘L rJo{ R JdQr(1 + k cos a)]e” /> gy

when wn, is taken to be ¢. The integration with respect to » may be per-
formed. This relation is closely connected with (3.10-11).

Returning now to the case in which 7 is the sum of t'vo sine waves plus
noise, we may show from (3.10-21) and

- ) 2'i+ll-| (1 + t‘)
L R™ Jo(Ry) dR = 2

2 n
r{-=
’ ( 2)
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that the average value of R* is, when =2 < re (#) < — |,

Zn rl (1 + 2)
R = j £ P To(Qr)e o dr

g (—~§)
(*’f)km (—x)(—»"  (3.10-25)
= )T ( + l)gmgo ElhUm ml

u) (v ~
- Rl g + ‘
o )E T 0

It appears very probable tha t this result could be extended, by analytic
continuation, to positive integesr values of 7. We have used the notation

(a)o = 1, (@ =ala+1) - (a+ & — 1)
» (_)2 (3.10-26)
r =, ’ y = .
2 2
and have denoted the Legendre polynomial by Pi(z).  The series converge
forall values of P, ,and yyand terminate when a2 isan even positive integer.
When x or y, or both, are largge in comparison with unity we may use the

integral for B* to obtain the asymptotic expansion, assuming (¢ < P so
that v < r,

Er(e =" p_".4.% -
~ P 3 k! . 21‘1(13 5ok 2,1,3) (3.10-27)

When #is an even positive intesger this serics terminates and gives the same
expression as (3.10-25). Whe 15 is an odd integer the ./ may be expressed
in terms of the complete ellipetic functions E and A of modulus y'*¢™/*;

21-‘1(--.}-, —3;1 ;-1’) =42 (1 - ?’)K
x s T x
11.1.2) 22 &
QFI(Q’%,I,.’I) WK
The higher terms may be com puted from

a(l — )’ Fa+ a4+ 1;1;8) = (2a — 1)(1 + z)oFi(n, a: ;2
W (1 —a)Fi(a—1,a~1:1;2) (3.10-29)

(3.10-28)
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which is a special case of
ably + D1 — 3 aFi(a + 1,5+ 1;¢;5) = AoFla, b; ¢ 5)
—(y = 1) — a)(c — B ol'y(a — 1,0 — 1;¢;3)  (3.10-30)
where y.= ¢ — a — b and
A=~y + 1=y —Dc— b —1)+ (v + Dalc — a = 1)]

Although this expression does not show it, .4 is really symmetrical in o
and 5.\ symmetrical form mav be obtained by using the expression ob-
tained by putting s = 0 in (3.10-30).

3.11  Snor LErrect REPRESENTATION

In most of the work in this part the representations (2.8--1) or (2.8-6)
have been used as a starting point.  Here we point out that the shot effect
represcntation used in Part Dmay abo be used as a starting point.

For example, suppose we wish to find the two dimensional distribution of
T(¢) and 7{t -+ 7= discussed in Section 3.2, This is a special case of the distri-
bution of the two variables

i

40
Y Ft —u)

]

]
G -t

ke =0p

I(¢)
(3.11-1)

if

J{t)

where we now assume

1 o0

F( dt = f G() dt = 0 (311 2),

o0 pal ]

+%

in order that the average values of 7 and J may be zero. In fact, to get
I 4 =) from J(1 we set ({¢) equal to F(t + ).

The distribution of 7 and J may be obtained in much the same manner
as was the distribution of I alone in section 1.4. The characteristic func-
tion of the distribution is

.f(u, 1') = ave, eiuI-HvJ _

e : (3.11-3)
exp v -[ lecuﬂllﬂvﬁ(ﬂ _ 1] dt

o0

I

where v is the expected number of events (electron arrivals in the shot effect)
per second. The probability density of 7 and J is
1 4

4+
du f do e " f(u, v) (3.11-1)

-;772 o
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- The semi-invariants A, are given by the generating function

k
log f(w, ) = 2 ™" (iw)™(in)" + ol(iw)*, (i)"]
m,aml WLIA.
and are
+wo

A = ¥ F(OG™(t) dt (3.11-5)

Asv— x the distribution of I and J approaches a two dimensional normal
law. The approximation to this normal law may be obtained in much the
same manner as in section 1.6. From our assumption (3.11-2) it follows
that Ay and Agy are zero.  From the relation between the second moments
and semi-invariants A we have

oo

i = Az + Nio = » F(t) dt
+o
gz = Ay + Apdo = v F()G(e) dt (3.11-6)
o« R 9
paz = Aoz + Aoy = » Go(e) dt

where the notation in the subscripts of the w’s differs from that of the N’s,
the change being made to bring it in line with sections 2.9 and 2.10 so that
we may write down the normal distribution at once.

The formulas (3.11-6) are closely related to Rowland’s generalization of
Campbell’s theorem mentioned just below equation (1.5-9),
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NOISE THROUGH NON-LINEAR DEVICES

4.0 IN1RODUCTION

We shall consider two problems which concern noise passing through
detectors or other non-linear devices. The first deals with the statistical
properties of the output of a non-linear device, that is, with its average
value, its fluctuation about this average and so on. The second problem
may be stated more definitely: Given a non-linear device and an input
consisting of noise alone, or of noisc plus a signal. What is the power
spectrum of the output?

"There does not seem io be much pubiished materiai on the first probiem.
However, from conversation with other people, T have learned that it has
been studied independently by several investigators.  ‘The same is probably
true of the second problem although here the published material is somewhat
more plentiful.  This makes it difficult to assign credit where credit is due.
Much of the material given here had its origin in discussions with {riends,
especially with W. R. Bennett, J. II. Van Vleck, and David Middleton.
Help was ohtained from the recent paper” by Bennett, and also from the
manuscript of 1 forthcoming paper by Middleton.*

4.1 Low FRrREQUENCY QuUTPUT OF A SQUARE Law Devick
Let the output current 7 of the device be refated to the input voltage 1" by

I = aV? (4.1-1)

where a is a constant. When the power spectrum of ¥ is confined to a
relatively narrow band, the power spectrum of 7 consists of two portions.
One portion clusters around twice the mid-band frequency of V' and the
other around zero frequency, We are interested in the low frequency
portion. The current corresponding to this portion will be denoted by
I, and is the current which woyld flow if a low pass filter were inserted
in the output to remove the upper portion of the spectrum. Itis convenient
to divide 7. into two components:

T = Iio+ Ity (4-1'—2)

3 ILoc. cit. (Section 3.10).

% Cruft Laboratory and the Research Laboratory of Physics, Harvard University,
Cambridge, Mass. In the following sections references to Bennett’s paper and Middle-
ton’s manuscript are made by simply giving the authors’ names.
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where the subscripts stand for “total low” frequency, “direct current.”
and “low frequency,” respectively. We have
Lic = average Ig = Tt {4.1-3)

Mcan Square Ity = average (T4 — 1a.)° = Ite — i

Probably the simplest methad of obtaining T4, is to square the given ex-
pression for 1" and pick out the terms independent of time. Thus if

V=Pcos pt + Qcosqt + Ty (4.1-4)

we have
. /P2 Qg ".") _ -
Idc = a\? + i “I" I/N (41"3)

Ity may also be obtained by picking out the low frequency terms.  How-
ever, here we wish to use the square law device, and the linear rectifier in the
next section, to illustrate a general method of dealing with the statistical
properties of the output of a non-lincar device when the input voltage is
restricted to a relatively narrow hand,

If none of the low frequency spectrum is removed by filters,

2
I = a ‘?2 (4.1-6)
where R is the envelope of 17, The probubility density and the statistical
properties of I';¢ may be derived from this relation when the distribution
function ¢f R is known." Before discussing these properties we shall
establish (4.1-6).

Equation (4.1--6) is a special case of @ more general result established

in Section 4.3. However, its truth may be scen by taking the example

Vo= Poeos o4+ Qeos gt + 1y (4.1—4)

where f, = p/2r and f, = ¢/ 2x lic within, or close to, the band of the noise
voltage 'y .
By using formulas of the type

cos pl = cos [(p — wn)l + wall
(4.1-7)

= €08 (P — W)t COS Wt — SIN (P — wm)l SIN Wl

4 \When part of the luw-fregueney spectrum is removed, the problem becomes much
more diflicult. 7, may be obtained as above, but to get I}_,. it is necessary to first deter-

mine the power spectrum of I (Scction 4.5) and then integrate over the appropriate pot-
tion of it.  Concerning the distribution of I'¢; . our present knowledge teils us only that it
lies betvween the one given by 4.1-6) and the normal law which it approaches when only
a narrow portion of the low irequeacy spectrum is passed by the audio frequency filter
{Section 4.3).
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we may refer all terms to the mid-band frequency fm = ww/2r, as is done
in equations (3.7-2) to (3.7 4).
In this wayv we obtain

1" = . cos wnd — Bsinwad = Kcos (wal + 0), (4.1 -8)
where 1 and B are relatively slowly varving functions of ¢ given by

A=Pcos(p — wnt + Qcos (g — wudt + Z Cn COS (ot — Wl — vn),
B = Psin(p — wad + (2sin (g — wdt + 2 ¢ Sin (Wl — wml = )

and
RR=14"4+ K R>0

tan 0 = B/ A,

(4.1-9)

This definition of R has also been given in equations (3.10 22, 23, 24),
The envelope of Vis R and the output current is

1
2

Since R is a slowly varying function of time, so is R%.  The power spectrum
of R is confined to frequencies much lower than 2f,, and consequently the
power spectrum of K cos (2wad -+ 26) is clustered around 2f,, . Thus the
only term in I contributing to the low frequency output is aR® 2 which is
what we wished to show,

We now return to the statistical properties of I,z First, consider the
case in which Y consists of noise only, 1" = 'y, so that the probability
density of the envelope R is

I = ok’ [; + . cos (2wmt + 20)] {1.1-10)

1\' ~R2 2‘,0
b (3-7- 10
Yo ° )

where
Yo = [rms VP = V5 (4.1-11)
IHence

I

[w asz 8-32“‘0 (IR — Izc
0

FE R L xR
I(f - Il( Ida 4”&0 (4-1*12)

f

7,2
= o'y
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Second, consider the case in which
Vo= Fy -+ P cos pt (4.1~13)

where /27 lies near the noise band of ¥y . ‘The probability density of the
envelope R is

R _[_R+ p’] (RP)
“expl - 01 : 3.10-11
¥o pL W 1°\vo (3.10-11)
From this and equations (3.10-12), (3.10 13), we find
o P
Ipe = ‘_’.’g\. = afo - "‘; . (4.1-14)

»

——

2 4
fe= ko= o 29+ 2P+ |

Ly = Pt = B = o'l + Plo (2.1-15)

In (1.1-14) o is the mean square value of Vy and P?/2 is the mean
square value of the signal. These two cquations show that I, and the
rms value of Iy are independent of the distribution of the noise power
spectrumin Vy as long as the input 17 is confined to a relatively narrow band.
In other words, although this distribution does affect the power spectrum
of the output, it does not affect the d.c. and rms I'yy when Yo and P are given.
That the same is also true for a large class of non-linear devices was first
‘pointed out by Middleton (see end of Section 4.9),

When the voltage is®

V="Vy+ Pcospt+ Qcos g, (4.1-4)

p # ¢, we obtain from equation (3.10-25)

2
Lo =2F =a(wo+’—2’~+9-z)

N

-

Iztz(.z_a
A"

(4.1-16)

R
_— P2 2
Iy = aﬁ[ o+ P'yo 4+ Qo + TZQ-
# These resuits are special cases, obtained by assuming no audio frequency filter, of
formulas given by F. C. Williams, Jour. Inst. of E. E., 80 {1937), 218-226. Williams also
discusses the response of a linear rectifier to (4.1-4) when P3» Q + Vy. An account

of Williams' work is given by E. B. Moullin, “Spontaneous Fluctuations of Voltage,”
Oxford (1938), Chap. 7.
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4.2 Low FreQurscy OutruT oF A LINEAR Rrcrirmrw

In the case of the linear rectifier

0, <0
1 = (4.2-1)
al’, "> 0

the low frequency output current, assuming no audio frequency filter, is

Itf B (4.2‘2)
v .

This formula, like its analogue (4.1 6) for the square law device, assumes
that the applied signal and noise lie within a relatively narrow band. Tt
may be used te compute the probability density and statistical properties
of I ¢ when the corresponding information regarding the envelope R of the
applied voltage is known.

The truth of (4.2-2) may he seen by considering the output 7. Tt con-
sists of the positive halves of the oscillations of aV. The envelope of I is
the same as that of aV’. IHowever, the area under the loops of I is only about
1/ of the area under aR, this being the ratio of the area under a loop of
sin x to the area of a rectangle of unit height and length 2x. From the
low frequency point of view these loops of 7 merge into a current which
varies as aR/xw.

When V is a sine wave plus ncise,

V = Vs + P cos pt (4.1-13)

the average value of 7 is®

_ 142
Tyge == 2R = a(—-‘l—“—)) oy (—%; 1; --f-z-)

T 2x 2
o\ . v . (4.2-3)
= __(_I ~x/2 -~ v
(32) L+ o) + 1)
where Io, I, are Bessel functions of imaginary argument and
= P _ ave. sine wave power (4.2-0)
2% ave. noise power

© This result was discovered independently by several investigators, among whom we
may mention W. R. Rennett and D. O. North.  The latter has applied it to noise measure-
ment work. He has found thgt the diode detector, when adapted to noise metering, is a
great improvement over the thermocouple, and has used noise meters of this type satis-
factorily since 1940. See D. O. North, “The Modification of Noise by Certain Non-
Linear Devices”, Paper read before L.R.E., Jan. 28, 1944,
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Yo being the average vulue of 1'% Equation (4.2 -3) follows from the
formulas (3.10-12) and (4B 9). When v js lurge the asymptotic expansion
(4B-3) of the /) gives

al ., , Vo 4/3_ "y s
Fae *[1 + 0+ ] (4.2-5)

Similarly, the mean square value of /¢ is
(!2 (!2
It = = R =", (I + ) (4.2-6)
n e
and the mean square value of the low frequency current ¢y, excluding the
d.c., is given by
Ity = It — Iae

When x is large we have

o u'z i V"g ! a'-f r 1
I} ~ L% ~up &;§¢o|-1 = 4 ] (4.2-7)
and when & = 0, '
Iy = %(2 ~ ’—’) (4.2-8)
™ 2

Curves for T4, are given in Figures 1, 2 and 3 of Bennett’s paper. He

also gives curves, in Fig. 4, showing I}, versus x. These show that the
effect of the higher order modulation terms is smalt when {¢ is computed
by adding low frequency modulation products.

When 1" consists of two sine waves plus noise,

V="Vy+ Pcos pt + Q cos ¢, (4.1-4)

the average value of Iy is, from (3. 1()~25), a sort of double ,F, function:

/12 o
L= 2k= ("")’ 35 e

ém; k) meaQ k!k!m' 3'
2 . (=), ‘4 (4.2-9)
=l ¥ Tk
““(z«) & b 09 ”( = )
where
P 0? .
Xo= .o y = Pi(z) = Legendre polynomial (4.2-10)

20 P
If x is large and v < x, we have from (3.10 27) the asymptotic expression

-1 —
.N_P):( 1l ‘)‘21?1(.1:—;,1:—%};1;2-“_) (4.2-11)

k) lz'x"
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The oF; may he c\prcs.sul in terms of the complete elliptic functions F and
K of modulus +"5 "% Thus

m(—;, —4; 1;3’) =tp- 2—(1 --y) K,
X ™ T X

(2.10-28)

and the higher terms may be computed from the recurrence relation
(3.10-29), The firsi term, k& = 0, in (+.2--11) gives Ty when the noise is
absent,®

The mean square value of T, is

2 2
Fe=%R ="+ P+ ¢ (4.2-14)
1|" ™

From this expression and our expression for 74, the rms value of the low
frequency current, /¢y, excluding the d.c., may be computed.  For example,
when the noise is small,

e az o o y 2
+ 2%(1 - 21"1("%s i H 1;2) A)]
rx) T

The term independent of Yo gives the mean square low frequency current
in the absence of noise.  As () goes Lo zero (4.2 15) approaches the leading
term in (4.2-7), as it should. When P = ( our formula breaks down and
it appears that we need the asymptotic behavior of*®

VoY 5> (=12B),
Ta. -a(Z'II') Z Y

(4.2-15)

In view of the questionable nature of the derivation given in Section 3.10
of equations (4.2- 9) and (4.2--11) it was thought that 2 numerical check on
their equivalence would be worth while.  Accordingly, the values » = 1,

= 3 were used in the sccond series of (4.2-9), It was found that the
largest term (about 130) in the summation occurred at £ = 11. Inall, 24
terms were taken., The result obtained was

V&: = 2.5502

2o

4 See W. R. Bennett, B.S.T.7, Vol. 12 (1933), 228-243,
¥ This may be done h\ the method given by W. 8. Ford, Asymptotic Developments,
Univ. of Mich. Press (1936), Chap. VL
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For the same values of x and y the asymptotic series (4.2-11) gave
240 + 0171 4+ 075 4+ 0.52 +

If we stop just before the smallest term we get 2.57 for the sum. If we
include the smallest term we get 2.65. This agreement indicates that
(4.2-11) is actually the asymptotic expansion of (4.2-9).

When the voltage is of the form

Vo= 0O(1 4 kcos pt)cos gt + Vx

we may use

S iy a2 ny 1 [*
R = (20) r(1+-2-)§;fo

1F1[ g, —y(1 4+ k cos 8) ]

(4.2-16)

where R is the envelope with respect to the frequency ¢/2x and y is given
by (4.2--10). The integral may be evaluated by writing /1 as a power
serics and integrating termwise using the result

2r
_1;[ (1 4 & cos 8){ cos m8 do
0
(4.2-17)

( C).,. m—4{ m—£41
= S R Jl[-wz-», = Eim k:l

where m is a non-negative integer, ¢ any number,
(@)m = ala +- 1) - («a+ m — 1), (a)o = 1, and 0 = 1

The integral may also be cevaluated in terms of the associated Legendre

function,
By applying the methods of Section 3.10 to (4.2--16) we are led to

R = Q“’(l + ’;) + 2%
) (4.2-18)
R~ TR0 pe s

om0 SI

where the asymptotic series holds when vis very large and & is not too close
to unity. These expressions give

Iy~ (o’; + g2 ~ (1 — BV + ) (+.2-19)

122



The reader might be tempted to associate the coefhcient of Yo in (4.2 19)
with the continuous portion of the output power spectrum, However, this
would not be correct. It appears that the principal contribution of the
continuous portion of the power spectrum to I3y is o’Yo/x", just as in (4.2-7)
when % is zero. The difference between this and the corresponding term
in (4.2--19) seems to arise from the fact that the amplitude of the recovered
signal is not exactly «Qk/m but is modified by the presence of the noise.
This general type of behavior might be expected on physical grounds since
changing P, say doubling it, in (4.2-7) does not appreciably affect the I,
in (4.2-7) (which is due entirely to the continuous portion of the nuise
spectrum). The modulating wave may be regarded as slowly making
changes of this sort in P,

4.3 SoME STATISTICAL PROPERTIES OF THE QUTPUT OF A GENERAL
Non-LINEAR Drvice

Our general problem is this: Given a non-linear device whose output [ is
rclated to its input V' by the relation

=21 [ Flue™ au (4A-1)
T J¢
which is discussed in Appendix 4A.  Let the input 1 contain noise in addi-
tion to the signal. Choose some frequency band in the output for study.
What are the statistical properties of the current flowing in this band?

It seems to be difficult to handle this general problem. However, it
appears that the two following results are true,

1. As the output band is chosen narrower and narrower the statistical
properties of the corresponding current approach those of the random noise
current discussed in Part III {(provided no signal harmonic lies within the
band). In particular, the instantaneous current values are distributed
normally.

2. When the input 17 is confined to a relatively narrow band the power
spectrum of the output 7 is clustered around the 0** (d.c.), 1st, 2nd, ctc.
harmonics of the midband frequency of 1. The low frequency output in-

cluding thed.c.is
L = AdR) = 5- [ Pliu)JouR) du (4.3-11)

where R is the envelope of V',
The envelope of the #th harmonic of the output, when n > 0, is

AR) = ,1? f F(iu)J(4R) du (4.3-1)
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The mathematical statement is

I = 2 A.(R) cos (nrwnt + n) (.3-9)

nesf)
where fm = wm/(27) is the representative mid-band frequency of V and 8
is a relatively slowly varying phase angle. The results of Sections 4.1

and 4.2 are special cases of this.
Middleton’s result that the noise power in each of the output bands (in

—

the entire band corresponding to a given harmonic) depends only on Vy =
Yo and not on the spectrum of Vw , where Vy is the noise voltage component
of V, may also be obtained from (4.3-9). We note that the total power
in the #*" band depends only on the mean square value of its envelope
Aa(R), and that the probability density of the envelope R of the input in-
volves 'y only through .

The argument we shall use in discussing the first result is not very satis-
factory. Itrunsasfollows. The output current I may be divided into two
parts. One consists of sinusoidal terms due to the signal. The other con-
sists of noise. \We shall be concerned only with the latter which we shall
call Iy . The correlation between two values of 7y separated by an interval
of time approaches zero as the interval becomes large. Let 7 be an interval
long enough to ensure that the two values of Iy are substantially
independent. Choose an interval of time T long enough to contain many
intervals of length . Expand Iy as a Fourier series over this interval.

We have

__ @ = 2xnt . 2wnt
Iy = 2 + ?__:l[a,. cos T + b, sin Tm]

s (4.3-2)
0 = iby = 7 .[, eFIT L) db

Let the band chosen for study be fo — g to fo 4+ gand let

T (fo— g) = N, T (fo + g) == Nq (43""3)

where %, and #, are integers. The number of components in the band is
(ng — my). We suppose B8 is such that this is small in comparison with T'/'7.
The output of the band is

ng *

Iv = 2, [a,. cos 2;311 <+ b, sin gf;!‘] (4.3-4)

R A g
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where

2 rT f2alalT) gt hefot
@, — th, = ",j e sate MO TN di
T h
(4.3-5)
_m —}; Hy o - ", j iy — fl + (= fuT)
We choose the band so narrow that
g~ KT/r or Br<1 4.3 6)

This enables us to write approximately

ry ) o) T
. i3 (R foirr <& - 23 f ol
a, — ib, = z € ¢ T ¢ I\ (1) di
remi (r- t)yr

ri = T/7, T being chosen to make rp an integer.  Suppose we do this for
a large number of intervals of length 7. Then I'y(¢) will differ from interval
to interval,  The set of integrals for r = 1 gives us an array of vilues which
we regard as defining the distribution of a complex random variable, say
vy . Similarly the set of integrals for » = 2 defines the distribution of a
second random variable vz, and so on to x,, . Because we have chosen 7
so large that Tv(d) in any one integral is practically independent of its values
in the other integrals we may say that ap, vz, -+ ¥, are independent,

We have

Lt
. —s2s((n/T)—~folrr
arq - lbnl = Z ¢ ¢ Xy

foua]

T

Z e 2l b1/ Ty fohir

r=}

G4l = ibnﬁ.; = Xy

» (3
Ty

E e-—l‘.‘t((ﬂzl'!) ~folry

reml

an. — th,, =

2 ng Xr
and if ng — mp K7y oas was assumed in (13 6), we may apply the central
limit theorem to show that g, ba,, du 1. -+ - da,, b, tend Lo hecome in-
dependent and normally distributed about zero as we let the band width
g—0and T — = (and hence ry-» =) in such a wav as to keep #2 — m
fixed. In this work we make use of the fact that Tv(f) is such that the real
and imaginary parts of xq, xe, -« - a,all have the same average and standard
deviation.  [tis convenicnt to assume fol  is an integer.

Thus as the band width 8 approaches zero the band output Jy given by
(1.3-4) may be represented in the same way, namely as (2.8 13, as was the
random noise current studied in Part 1. Hence Jy tends to have the
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same properties as the random noise current studied there. For example,
the distribution of Jx tends towards a normai law. In our discussion we
had to assume that gr < 1. If the voltage V' applied to the non-lincar
device is confined 1o @ relatively narrow frequency band, say fo — fa, it
appears that the interval = (chosen above so that I(t) and I{¢t + 7) are sub-
stantially independent) may be taken to be of the order of 1/(fs — fa).
In this case Jy tends to behave like a random noise current if 8/(fo — fo) is
much smaller than unity,

We now turn our attention to the second statement made at the begin-
ning of this section. Let the applied voltage be confined to a relatively
narrow band so that it may be represented by equation (4.1-8) of Section
4.1,

V = Rcos (wnt + 6, R >0, (4.1-8)

where fm = wm/(2r) i3 some representative frequency within the band
and R and 8 are functions of time which varv slowly in comparison with
cos wmf. We call R the envelope of V',

From equation (4A 1)

1] = }__f I;(z-“)eiuﬂ con (wyl+6 du (4.3__7)
2r ¢
We expand the integrand by means of

o0
e‘z CO8P = 2 €y i“ Co8s nPJp(x) (4&. 8)
om0

where ¢ is 1 and e, is 2 when # > 0 and J,(x) is a Bessel function.
Thus

I= i Aa(R) cos (nwmi + nb) (4.3-9)

n=(

where

AR = eu 2 [ Fliu)Ju(uR) i (4.3-10)

Since R is a relatively slowly varying function of time we expect the
same to be true of 4,.(R), at least for moderately small values of #. Thus
from (4.3-9) we see that the power spectrum of I will consist of a suc-
cession of bands, the #*" band heing clustered around the frequency #f,.
If we eliminate all of the bands except the #»** by means of a filter we
see that the output will have the envelope 4.(R) when # = 1. Taking
n to be zero, shows that the low frequency output is simply

Ao(R) = ;;r j; F(iu)Jo(uR) du (4.3-11)
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Taking # to be one shows that the band around f, is given by

R
The statistical properties of the low frequency cutput and of the en-
velopes of the output bands may be obtained from those of R. For ex-
ample, the vrobability density of A.(R) is of the form

?(R) %ﬁé@ (4.3-13)

where g(R) is the probability density of R. In this expression R is con-
sidered as a function of A, .

It should be noted that we have been assuming that all of the band
surrounding the harmonic frequency #f,, is taken. When we take only a
portion of it, presumably the statistical properties will tend to approach
those of a random noise current in accordance with the first statement made
at the beginning of this section.

When we apply (4.3-11) to the square law device we have

2

F (iﬂ) = (ma

2 {0+) Ja(uR
Ao(R) = '—'2—5‘[ ~9%.-—) du

When we apply (4.3-11) to the linear rectifier:
F(iu) = — =

+wm

AyR) = - .!o(iiR) du = ?....Ri

2r Lo 43 g

where the path of integration passes under the origin. These two results
agree with those obtained in Section 4.1 and 4.2 from simple considerations,
As a final example we find the low frequency output of a biased linear
rectifier in terms of the envelope R of the applied voltage. From the tablc
of F(fu) given in Appendix 4A we see that F(iu) corresponding to

I=0, V<B
I=V—-B, V>B
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is
—-{u B

. ;
F(in) = —r

Consequently, the low frequency output is
4o
AR) = =L [ (R du
27 b

where the path of integration is indented downwards at the origin. When
B > R the value of the integral is zero since then the path of integration
may be closed in the lower half plane by an infinite semi-circle This value
also follows at once from the physics of the problem. When —R < B < R
we may integrate by parts and get

Ao(R) = }31.' [ e BI@R) + RI@RW du
= —g + ;r j; {B sin uBJo(uR) 4 R cos uBJ,(uR)}u™" du
} (4.3-14)

_ B ,B N S R —
=5+ -arcsing +- VR~ B
B . R t 11 B

This hypergeometric function turns up again in equation (1.7-6). Also
in the range — R < B < R,

(_1,49 -1 {1 — B!
dR 7 R?

When B is negative and R < — B, the path of integration may be closed
by an infinite semicircle in the upper half plane and the value of the integral
is proportional to the residue of the pole at the origin:

Ao(R) = 2ui ("5!;;) (—iB)

= - B

Thus, to summarize, the low frequency output for our linear rectifier is,
for B > 0, (R is always positive)
Ao(R) =0, R<B

I (4.3-15
Ao(R)=—-g-}—garcsing-f-l\/R“-B?, B <R )
2 1r R ™
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and for B < 0 it is

Ao(R) = |B], R < |B]
f’ ]n ] . .B 1 i o 7 o , {4,3':]’!)
AdAo(R) = +l- ,]+Iv )iarcsml ,'+ N\ RE—-, L7 R
2 T R T
where the are sines lie between 0 and 720 1a(R) and its nrst derivative
with respect to R are continuous.
From (4.3--15), the d.c. nutput current is, for B > 0,

I = f _B + B arc sin B + ! \/j?-"-;'lif] PR IR (13-15)
u 2 ™ R =

where p(R) is the probability density of the envelope of the input 17 e.g.,
P(R) 13 of the form (3.7--10) for naoise alone, and of the form (310 11 for
noise plus a sine wave. Similarly, the rms value of the low frequency
current Tgp, excluding d.c., may be computed from

-l_;.! = T'{f - ]3c
where, if B > 0,
_— B 2
I = f [—B + B arc sin B + : VR — BQ] Pp(R)dR (4.3-10)
R 2 T R v

If V' consists of a sine wave of amplitude 2 plus noise 17, sa it may be
represented as (4.1 13), and if P >> rms 'y, the distribution of R is
approximately normal.  If, in addition, P — B> rms I'v > 0, (1.3-15),
(4.3-16), and (3.10-19) lead to the approximations

fom =Bt Baresin B Ly
2 = r = 2a\ P — B2
- B P Ftd -
~ -2 + = + 7 o p (4.3-17)
—_ 1)3 — Rﬂ
2
I(] —*:,2—};2” %

The second expression for Iy, assumes P >> B. When B = (), these re-
duce to the first terms of (4.2-5) and (4.2-7). By using a different
method Middleton has obtained a more precise form of this result.

Incidentally, for a given applied voltage, 7y.(+) for a positive bins | B |
is related to Tao{ —) for a negative bias — | B | by

lao(—) = | B| + la(+) (4.3-18)

Also rms. To(+) is equal to r.ms. Ip(—). Equation (4.3 -18) follows
from a physical argument based on the areas underneath a curve of I for
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the two cases.  Both of the above relations follow from formulas given by
Middieton when 17 is the sum of a sine wave plus noise.  They may also be
derived from (4.3-15) and (4.3-16).

4.4 Ovurrur POWER SPECTRUM

The remainder of Part 1V will be concerned with methods of solving the
following problem: Given a non-linear device and an input voltage con-
sisting of noise alone or of a signal plus noise.  'What is the power spectrum
of the output?

In some ways the answer to this problem gives us less information than
the methods discussed in the first three sections. For example, beyond
giving the rms value, it tells us very little about the probability density of
the current corresponding to a given frequency band of the output. On
the other hand, this rms value may be found (by integrating the power
spectrum) for any band we choose to study. The methods described earlier
depended on the input being confined to a relatively narrow band and gave
information regarding only the entire band corresponding to a given har-
monic (Oth, 1st, 2nd, etc.) of the input. There was no way to study the
output when part of a band was eliminated by filters except by obtaining
the power spectrum of some function of the envelope.

At present there appear to be two general methods available for the
determination of the output power spectrum each with its own advantages
and disadvantages. First there is the direct method which has been used
by W. R. Bennett*, ¥'. C. Williams**, J. R. Ragazzini'® and others. The
noise is represented as the sum of a finite number of sinusoidal components.
The typical modulation product is computed and the output power spectrum
is obtained by ¢onsidering the density and amplitude of these products.
The chief advantage of this method lies in its close relation to the known
theory of modulation in non-linear circuits. Generally, the lower order
modulation products are the only ones which contribute significantly to the
output power and when they are known, the problem is well along towards
solution. The main disadvantage is the labor of counting the modulation
products falling in a given interval. However, Bennett has developed a
method for doing this.*

The fundamental idea of the second method is to obtain the correlation
function for the output current. From this the output power spectrum may
be obtained by Fourier’s transform. The correlation function method and
its variations are of more recent origin than the direct method. They have

* Cited in Section 4.0. Also much of thig writer's work on interference in broad band
communication systems may be carried over to noise theery without any change in the
methods used.

#* Cited in Section 4.1.

4 Proc. I.R.E. Vol. 30, pp. 277-288 (June 1942), “The Effect of Fluctuation Voltages

on the Linear Detector.”
' B.S.T.J., Vol. 19 (1940}, pp. 587-610, Appendix B.
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been discovered independently and at about the same time, by several
workers, In a paper rcad before the LRLE., Jan, 28, 1944, D. (). North
described resulis obtdined hy using the correlation. function. J. H. Van
Vieck and 1. Middleton have been using the two variations of the method
which we shall describe in Sections 4.7 and 4.8, since early in 1943. A
primitive form of the method of Section 4.8 had been used by A. D. Fowler
and the writer in some unpublished material written in 1942, Recently,
I have learned that a method similar to the one used by Fowler and myself
had already been used by Kurt Friinz in 1941.%

The correlation function method avoids the problem of counting the
modulation products. However, in some cases it becomes rather unwieldy.
Probably it is best to have both methods in mind when investigating any
particular problem. The direct method will be illustrated by applying it
to the square law detector. Two approaches to the correlation function
method will then be described and applied to examples.

4.5 Noise THrOUGH SQUARE LAw-DEVICE

Probably the most direct method of obtaining the power spectrum W(f)
of I, where

I = al? (4.1-1)
V bLeing a noise voltage, is to square the expression
' Y
V=Vy= 21: Co €08 (Wl — @) (2.8-6)

in which ¢l is 2uw( Ja)Af, Wi = 2nfn, fu = mAfand gy ,¢2, ++ ¢ ¢yare random
phase angles.

Considerable simplification of the algebra results when we replace the
representation (2.8-6) by

Vu = % Z; A e (4.5-1)

Here we have added a term ¢o/2 s0 as to not have any gaps in the summation
and have introduced the definitions

Com = Cm
Pem = TO;m (4.5"2)
a = 2rAf

* “Dje Ubertragung ven Rauschspannung Gber den linearen Gleichrichter,” Hockfr.
1. Elektroakuyst., June 1941. Other articles by Friinz are (I am indebted to Dr. North
for the following references) “Beitrage zur Berechnung des Verhaltnisses von Signal
spannung zu Rauschspannung am Ausgang von Empfingern”, E.N.T., 17, 215, 1940 and
19, 283, 1942, “Die Amplituden von Gerduschspannungen”, E.N.T., 19, 166, 1942.
The May 1944 (p. 237), issue of the Wireless Engineer contains an abstract of “The In-
tluence of Carrier Waves on the Noise on the Far Side of Amplitude-Limiters and Linear
Rectifiers” by Friinz and Vellat, E.N.T., Vol. 20, pp. 183-189 (Aug, 1943). .
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Squaring (4.5-1) gives the double series’

4w 4w

2 1(m+n)af—-a¢ 1
Z Z CmCan € e

-— -

Z Z Chon € edaf-ﬂvn-..-wa

F—rw )= Q)

Suppose we wish to consider the companent of V% of frequency fi = kAf.
It is seen to be
+o0

Ay cos (wil — ) = Chmn €n COS (RAt = 210 — @) (1.5-3)

2 nen—o0
The power spectrum I°(f1 of I at frequency fi is o' times the coeflicient of
Afin the mean square value of (4.5-3) where the average is taken over the
¢’s. Thus

2 . i

W (f}.)ﬂf = ‘-“ z E Cri—n Cp Ctowm Cny

- o
X ave. cos (kal — @;.n — @n) CO8 (kal —~ Qi_m — &)

where the summations extend over m and s, Let # be fixed and consider
those values of m which give an average different from zero.  We see that
m = nandm = k — uare two such values. The only other possibilities
arem = —pand m = —k + », but these lead to terms containing {except
when n or & equal zero) three different angles, ¢n . ¢r-n, and ¢ryn which
average to zero.  Using the fact that the average of cosine squared is one-
half and that for a given n there are 1wo such terms, we get

2+n

WA = X ciacn

Nes—g0

= (!zAf Z‘ w(fo — fow(f.)Af

new—ob

(4.4-5)

where in the last step we have used

Jien = (k = n)Af = fi — fa
and have implied, from ¢, = ¢,, that

w(fon) = w{—ndf) = w(—/f)

is equal to w(f,).
Thus, from (4.3-4), we get for the power spectrum of /
Wi = o [ wlehuts — 5 ds (4.5-5)
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with the understanding that f is not zero and
w(—x) = wlx). (1.5-6)

The result which is obtained by using (2.8-6), involving the cosines and
only positive values of m, is

J o
W) = o fo 2@w(f — 2) dx + 20° fo welf + ) dx  ($.5-7)

This contains only positive values of frequency. (4.5--5) and (4.5-7) are
equivalent and may readily be transformed into each other.

The first integral in (4.5-7) arises from second order modulation products
of the sum type and the second integral from products of the difference
type. This may be seen by writing the current as

[ -]
I=aV' =a }: Z CmCn CO8 {Wmt — @) €08 (w,? — ¢.)

Ml gl

g Z; Z;‘: Cin C,,‘COS I(Wm - wu)t - ©Om + 'Pn] (‘1-5-8)
+ ¢0s [(wm + wa)t + ¢m + ¢al}

The power in the range fi , fi + Afis the power due to modulation products
of the difference type, wi e — wt, plus the power due to the modulation
products of the sum type, wi. ¢ 4+ wr . In the first type £ runs from 1 to x
and in the second type fruns from 1 to 2 — 1.

Consider the difference type first, and for the moment take both & and /¢
to be fised. The twosetsm = b+, n = Landm = {,n = k + {are the
only values of m and n in (1.5-8) leading to wiyt — w¢. The two corre-
sponding terms in (4.5 8) are equal because cos {—x) is equal to cus x.  The
average power contributed by these two terms is

2
(‘; Cinl cg) X {Average of (2 cos {{wieet — wO)t — ost + ofl)?)
(4.5-9)

= J(acss <o)’

The power contributed to f; , fi. + Af by the difference modulation products
is obtained by summing ¢ from 1 to e«

iJ:2— (E ceitcy = 2a° g w(ferhe(f)(Af )

—224f [ w(i + Nl &

This leads to the second term in (4.5-7).
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Now consider the modulation products of the sum type. The terms of
this type in (4.5-8) which give rise to the frequency we are those for which
m -+ nisequalto k. Let nbelthenm = &k — 1. The phase of this term
is random with respect to all the other terms except the one given by # =
k — 1, m = 1 which has the same phase.” The average power contributed

by these two terms in (4.5--8) ig, as in (1.5-9),
Haciei )

This disposes of two terms for which m + nis equal to 2. Taking % to be 2
and going through the same process gives two more.  Thus, assuming for
the moment that & is an odd number, the power contributed to the interval

fi s Ja + Of by the sum modulation products is
th=1)/2 k=1 X
1 2 1 2 2
3 & (e’ = g 2 (ataan)' = olsf | w(fwlfe — /) df

and this leads to the second term in (4.5-7).
When the voltage 1" applied to the square law device is the sum of a noise

voitage Vy and a sine wave:
V = P cos pt + Vu, (4.1-13)
we have
V2= Plcos’ pt 4 2PVycos pt + V5 (4.5-10)
From the two equations

c:oss"pa!m-!-i-1

315 cos 2pi

ave, Vi = ;cf.%—-»j; w(f) df

we see that 1, or V", has a d¢c component of

“_;f +a £ w(f) df (4.5-11)
which agrees with (4.1-14), and a sinusoidal component
q—? cos 2p¢ (4.5-12)

The continuous power spectrum W (/) of the remaining portion of I may
be computed from

2PVy cos pt + V.
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Using the representation (2.8-6) we see
M
2PVycos pt = P zi: CmlCOS (Wt + Pt — ¢m) + 08 (Wal — Pt — om)]

For the moment, we take p = 2xrAf. The terms pertaining to frequency
fa = nAf are those for which

wm + P = 2afn | — 2| = 2afa
mtr =n |m—r] =n
m=1n—1r m=yrn
where only positive values of m are to be taken: X » > r, then misn — 7
orr+n Ifn <r thenmisy — norr -+ n Ineither case the values

of mare |# — r|and » + r. The terms of frequency f, in 2PVy cos p?
are therefore

PChI...r' €Oo8 (Zﬁ'fg‘t - ¢|n._r|) + PC"+r COos (ZTfnt - (P,H..')
and the mean square value of this expression, the average being taken over
the ¢'s, is
P

'2" (c?u—-rl + 52n+r) = P' Af [W(f ln—-—rl) + w(fn+r)]

== P’Af[w(lf.. —fo ) + w(fs + 1)l

where f, denvees p/2r.
By combining this with the expression (4.5-5) which arises from Vi
we see that the continuous portion W(f) of the power spectrum of 7 is

WAf) = o' Pluw(f = ;) + wlf + /)]

. [ (4.5-13)
+ a _[ w(x)w(f — x)dx
o0
where w(—f) has the same value as w(f).

Equation (4.5-13) has been used to compute W.(f) as shown in Fig. 8.
The input noise is assumed to be uniform over & band of width 8 centered at
f», cf. Filter ¢, Appendix C. By noting the area under the low frequency
portion of the spectrum we find

8
[ Wi & = o un(P* + g
Since the mean square value of the input Vy is ¢ == S, it is seen that

_ this equation agrees with the expression (4.1-15) for the mean square value
of It;, the low frequency current, excluding the d.c. If audio frequency
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filters cut out part of the spectrum, W(f) may be integrated over the re-
maining portion to give the mean square value of the corresponding output
current. This idea is mentioned in the footnote pertaining to equation
'(4.1-6). '
If V consists of Vi plus two sinusoidal voltages of incommensurable fre-
quencies, say
V=~Pcosp+ Qcosgl+ Vs,

CONTINUOUS PORTION OF OQUTPUT SPECTRUM OF SQUARE LAW DEVICE

INPUT = P COS 2Tifpt + NOISE

OUTPUT DC.2 al{PY2e Bv,)

LET B wi=cC

2¢C

——-0
!

INPUT SPECTRUM M\
Y PR LTI orak i “
N T I
l i / N \ﬂ

' ! f H 2F
)] p P . 2f,-p r af,+p

|

FREQUENCY
Fig. 8

the continuous portion W(f) of the power spectrum of I may be shown to be
(4.5-13) plus the additional terms

oQw(f — fo) + w(f + fo) (4.5-14)

where f, denotes q/2r.
When the voltage applied to the square law device (4.1-1) is"

V() = Q1 + kcospt)ycos gt + Vi
*Qcosqt+%5c08(p+q)l+%’fcos(ﬁ—q)t+ Va

the resulting current contains the dc component

20 (1 + % 4 a _£ wl(f) df (4.5-16)

# A complete discussion of this problem is given by L. A. MacColl in a manuscript
being prepared for publication.
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The sinusoidal terms of I are obtained by squaring

Q(1 + % cos pt) cos ¢t

and multiplying by . The remaining portion of I has a continuous power
spectrum given by

WAf) = o't [w(f — 1)+ w1

+ = f = f) R+ g+ £
2 ) (4.5-17)
+ % w(f —fo + 10+ Zw(f +fp = fc)]

+d '[M w(x)w(f — x) dx

where f, denotes p/2z and f, denotes g/2x.

4.6 Two CorreLATION Fuxcrion METHODS

As mentioned in Section 4.4 these methods for: determining the output
power spectrum are based on finding the correlation function ¥(7) for the
output current, ¥rom this the power spectrum, W(/f), of the output cur-
rent may be obtained from (2.1-5), rewritten as

W) = 4 [ ¥(r) cos 2ufr dr (4.6-1)

It will be recalled that W(f)Af may be regarded as the average power which
would be dissipated by those components of 7 in the band f, f 4+ Afif I were
to flow through a resistance of one ohm.

The input of the non-linear device is taken to be a voltage V(#). It may,
for example, consist of a noise voltage Vx(t) plus sinusoidal components.
The output is taken to be a current I(f). The non-linear device is specified
by a relation between V(¢) and I(¢). In this work I(f) at time £ is assumed
to be completely determined by the value of V(¢£) at time ¢£.

Two methods of obtaining ¥(r) will be described.

(a) Integrating the two-dimensional probability density of 1°(¢) and
V(t 4+ 7) over the values allowed by the non-linear device. This
method, which is especially direct when applied to noise alone through
rectifiers, was discovered independently by Van Vieck and North.

(b) Introducing and using the characteristic function, which for the sake
of brevity will be abbreviated to ch. {., of the two-dimensional prob-
ability distribution of V(¢) and V{¢ + 7).
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4.7 LmneAR DETECTION OF NOISE—THE VAN VIECK-NORTH METHOD

The method due to Van Vleck and North will be illustrated by using it
to determine the output power spectrum of a linear detector when the input
consists of noise alone.

The linear detector is specified by

V() <0
o) = {V(t), V@) > o,

which may be cbtained from (4.2-1) by setting « equal te one, and the input
voltage is

(4.7-1)

Vi) = V) (4.7-2)

where Vy(¢) is a noise voltage whose correlation function is ¢(7) and whose
* power spectrum is w(f).

The correlation function ¥(7) is the average value of 7(¢£)I(¢t + 7). This
is the same as the average value of the function

ViV, when both Vi, Va4 > 0
F(Va, V) {0, all other V’s,

where we have set

(4.7-3)

Vl = V(‘)

Vea= V(i + 7)

The two-dimensional distribution of V, and V3 is given by (3.24), and
from this it follows that the average value of any function F(V,, Vy) is

:”dv, [:" av,s % ex p[ 5Ti) VoVi + Vi - 2\°fV1Va)]
(4.7-4)
where
IM| =y —¢r.

For the linear rectifier case, where F(V; » Va) is given by (4.7-3), the
integral is

erm-‘,;;.[ dV:l dVy Vi Vy exp ['—é—lm @ Vi + YoV — Nrylvi)]

“)

=5 ([w VI + 9, cos™ [
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where we have used (3.5-4) to evaluate the integral. The arc cosine is
taken to be between 0 and 7. We therefore have for the correlation func-
tion of I(2),

W(r) = “2% (w/tz) — \Pi]”z + ¢ cos™! [;:h]) (4.7-5)

The power spectrum H(f) may be obtained from this by use of (4.6- 1),
For this purpose it is convenient to write (4.7-5) in terms of a hypergeo-
metric function. By expanding and comparing terms it is secn that

2
“ﬂﬁﬁ+ﬁFﬂ¢—aaﬁ)

4  2r 2
\ Yo (4.7-6)
= ff + f‘l -+ Ve + terms involving ¢1, ¢¢, etc,
4 " 27 dmd P

As will be discussed more fully in Section 4.8, a constant term Ainy(n)
indicates a direct current component of I(¢) of . amperes. Thus I(2) has
a dc component cqual to

¢0 1/2 1
[.2_;] =V X rms value of V() (4.7-7)

This agrees with (4.2 -3) when the P of that equation is set equal to zcro.
Integrals of the form

Go(f) = j; ¥, cos 2xfr dr

which result when (4.7-6) is put in (4.6-1) and integrated termwisc are
discussed in Appendix 4C. From the results given there it is scen that if
we neglect i and higher powers we obtain an approximation for the con-
tinuous portion W(f) of W(f):

- Gi(f)
Wc(f) - G.l(j) + WO

1 1
_ wif) + i3 -[m w(x)w(f — x) dx

where w(—f) is defined as w(f).

When Vy(t) is uniform over a relatively narrow band extending from
fa Lo foso that w(f) is equal to we in this band and is zero outside it, we may
use the results for Filter ¢ of Appendix 4C. The fo and B8 given there are
related to f, and f, by

fo=h=5,  p=t+?

(4.7-8)
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and the value of wy taken there is the same as here and is Yo/8. The vaiue
of Ga(f) given there leads to the approximation, for low frequencies:

wip = L5 (- 4)

- Iw‘f%(,‘ " h -f'fa)

when0 < f < fo — fa,and to Wo(f) = O forfo — fo < f < fa. By setting
P equal to zero in the curve given in ¥ig. 8 for V' (f) corresponding to the
square law detector, we see that the low frequency portion of the power
spectrum is triangular in shape and is zero at f = g. Thus, looking at
(4.7-9), we see that to a first approximation the shape of the output power
spectrum is the same for a linear detector as for a square law detector when
the input consists of a relatively narrow band of noise.

An approximate rms value of the low frequency output current may be
obtained by integrating (4.7-9)

(4.7-9)

—— S1—fa
1y = W.(f) df
‘wo( wo(fo — fo) _ %o
T 8r 8r

1
rms low freq. current = \/8—# X rms applied voltage (4.7-10}

It is seen that this is half of the direct current. It must be kept in mind
that (4.7-10) is an approximation because we have neglected ¥ and higher
powers. The true value may be obtained from (4.2-8). It is seen that the
coefficient (8r)™""* = 0.200 should be replaced by

1 r\'*
- (2 - ~) = (.209
T 2 -

W () for other types of band pass filters may be obtained by using the
corresponding G’s given in appendix 4C. Tt turns out that (4.7-10) holds
for all three types of filters. This is a special case of Middleton's theorem,
mentioned several times before, that the total power in any modulation
product (it will be shown later in Section 4.9 that the termy, in(4.7-6)
corresponds to the ™ order modulation products) depends only on the
total input power of the applied noise, not on its spectral distribution.

4.8 THE CuARACTERISTIC FUNCTION METHOD

As mentioned in the preceding parts, cspecially in connection with equa-
tion (1.4-3), the ch. . of a random variable x is the average value of exp
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{#x). This is a function of #. The ch. f. of two randem variables x and
v is the average value of exp (tux - 4vy) and is a function of # and v. The
ch. f. which we shall use here is the ch. f. of the two random variables 1°(2)
and 1'(t 4+ ) where 1'(?) is the voltage applied to the non-linear device, and
the randomness is introduced by ? being selected at random, 7 remaining
fixed. We may write this characteristic function as

T
g, v, 1) = Limit—li L exp linV(t) + V(e + Dldt (4.8-1)

T—x

If V() contains a noise voltage Vy(t), as it always does in this section, and
if we use the representation (2.8-1) or (2.8-6) a large number of random
parameters (a.'s and b,'s or ¢.’s) will appear in (4.8-1). In accordance
with our use of such representations we may average over these parameters
without changing the value of (4.8-1) and may thereby simplify the integra-
tion. .

For example suppose

Vi) = Vi) + V() (4.8-2)

where V(2 is some regular voltage which may, e.g., consist of one or more
sine waves. Substituting this in (4.8-1) and using the result (3.2-7) that
the ch. f. of Valt) and Vy(t 4 7) is

gx(n, v, 7Y = ave. exp [iuVy(t) + ioVy(t + 7)].

4.8-3
= exp[—%’ (W + ¥ — np,uv] ( )

Y. = Y{(7) being the correlation function of Fy(?), we obtain for the ch. f.
of V() and V{1 + 1),
glu, v, 1) = exp [--‘—’_-’;9 (' + ") — \l«,m)J

T
X Limit ld'/n\ exp [inV (&) + ioV.(t + )] dt (4.8-4)

T~ 1-
= .’s’-\'(us vy 7) En(“, v, T)

In the last line we have used g,(#, 7, 7) to denote the limit in the line above:

T
g.(#, 9, 7) = Limit ;_ f exp linVu(t) + ioValt + 1 dt (4.8-5)
0

T—o

The principal reason we use the ch. f. is because quite a few non-lincar
devices may be described by the integral

I = 1 f FGin)e'"™ du (4A-1)
2r Je
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where the function F(iu) and the path of integration € are chosen to fit the
device. Examples of such devices are given in Appendix 4A. The corre-
lation function ¥{7) of I(¢) is given by

1T
¥(r) = Limit 7 fo IOIC + 7) dt

-tad

T
= Limit »l f d[f F(iu)e‘“"[‘) duf F(iv)eivv(ﬁf) dv
4‘1{21‘ 0 o o

T —e00

- a%;z fc Fi) du fc F(iv) dv (4.8~6)

T
Limit %, j; exp [suV(t) + iV (¢ 4- 7)) de

s

- 1‘;2 fc F(in) du fe F(iv)g(u, v, 7) do

This is the fundamental formula of the ch. f. method.
When V(¢) is the sum of a noise voltage and a regular voltage, as in
(4.8-2), (4.8-6) becomes

= ,_1_ f iu)eolPut g -\ —(¥y/2)0?
YO = g ] R0 e (8-

e g (u, v, 7) dy

where g,(#, v, 7) is the ch. {. of V,(¢) and V(¢ + 7) given by (4.8-5). This
is a definite expression for ¥(7). All that follows is devoted to the evalua-
tion of this integral and to the evaluation of

W) = 4 _[ ¥(r) cos 2nfrdr (4.6-1)

for the power spectrum of I.

Quite often I(¢) will contain dc¢ and periodic components, It seems con-
venient to deal with these separately since they correspond to terms in
¥(r) which cause the integral (4.6-1) for W(f) to diverge. In fact, from
Section 2.2 it follows that a correlation function of the form

2
A 4+ % cos 2nfor (2.2-3)

corresponds to a current

A 4+ C cos (2xfet — ¢) (2.2-2)
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where the phase angle ¢ cannot be determined from (2.2-3) since it dees not
affect the average power.

Consider the correlation function for V() = V,{) + Vu() given by
(4.8-2). Itis

. 1T / T
Eﬂ%{ivmm¢+ﬂa+ivmwm+ﬂm

r . (4.8-8)
+ ‘L. V() Vet + )y dt + '£ Va)Vu(t + 7) dt]

Since V.(i) and V() are unrelated the contributions of the second and
third integrals vanish leaving us with the result

Correlation function of V() = Correlation function of V(1) ($.8-9)

<+ Correlation function of ¥'x(f).

Now as 7 — @ the correlation function of Vy{¢) becomes zero while that of
V(t) becomes of the type (2.2--3) given above. Hence the correlation func-
tion of the regular voltage V,(¢) may be obtained from V' (¢) by letting r — oo
and picking out the non-vanishing terms. Although we have been speaking
of V{¢), the same results hold for I(¢) and this process may be used to pick
out thosc parts of ¥(7) which correspond to the dc and periodic components
of I(t). Thus, if we look at (4.8-7) we sce thatas r — o,y — 0, while the
g (u, v, v) corresponding to 1,{t) given by (4.8-5) remains unchanged in
general magnitude. This last statement may be hard to see, but examina-
tion of the cases discussed later show that it is true, at least for these cases.
Thus the portion of ¥(r) corresponding+to the d¢ and periodic components
of I(¢) is, setting ¢, = Oin (4.8-7), :

V(1) = 1 F(iw)e™ " du | Flin)e " "g,(u, v, r) dv  (4.8-10)
41"2 ' . (o .

where the subscript o indicates that ¥,(7) is that part of ¥{7) which does
not vanish as r — @,
We may write (4.8-9), when applied to I(?), as

W(r) = Yo (r) + ¥7) (4.8-11)

where W.(7) is the correlation function of the “continuous’ portion of the
power spectrum of I(f).

Incidentally, the separation of ¥(7) into the two parts shown in (4.8-11)
may be avoided if one is willing to use the 8(f) functions in order to interpret
the integral in (4.6-1) as explained in Section 2.2, This method gives the
proper dc and sinusoidal components even though (4.6-1) does not con-
verge (because of the presence of the terms leading to ¥,(7)).
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4.9 Noise PLus SINE WAVE APPLIED TO NoN-LINEAR DEVICE

In order to illustrate the characteristic function meethod described in
Section 4.8 we shall consider the case of 2 non-linear device specified by

=1 f Flin)e'”™ du (4A-1)
Z'H' -

when 17 consists of a noise voltage plus a sine wave:
V({t) = P cos pi + Vi(t) . (4.1-13)

As usual, Vx{f) has the power spectrum w(f) and the correlation function
v(7). () is often written as ¢, for the sake of shortness. Comparing
(4.1-13) with (4.8-2) gives

Vo(t) = P cos pt (4.9-1)
Qur first task is to compute the ch, f. g,(u, , r) for the pair of random

variables 15,{¢} and V,{# 4 7). We do this by using the integral (4.8-5):

go(n, v, ) = Limit ; 7 f exp [iul cos pt + P cos p(t + r)] dt

T
= Jo(PV'u? +  + 2uv cos pr)
where Jois a Bessel function.  The integration is performed by writing
ncos pt + vcos p ¢+ 7) = (w4 vcos pr) cos pt — ¢ sin prsin Pt
= 4/1? + v + 2uy cos pr ces (pt -+ phase angle)

(4.9-2)

and using the integral
n = L [
2x Jo

The correlation function for (4.1-13) has also been given in Section 3.10.
The correlation function ¥(r) for I{¢) may now be obtained by substi-
tuting the above expressions in (£.8-7)

¥(r) = 1., f du F(iu)e™ o/ f dy F(in)e™ Vo'D**
e ‘ (4.9-3)

eV Jo(PVuE + ¥ + 2uv cos pr).

V..(7), the correlation function for the d.c. and periodic components of 7,
may, according to (4.8-10), be obtained from this by setting ¢, gqual to zero.

When we have a particular non-linear device in mind the approp:iate
F(in) may often be obtained from Appendix 44. For example, F(in) for a
linear rectifier is —# . Inserting this value in (4.9-3) gives a definite
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double integral for ¥(7). If there were some easy way to evaluate thisin-
tegral then everything would be fine.  Unfortunately, no simple method of
evaluation has vet been found. However, one method is available which is
closely related to the direct methaod used by Bennett. It is hased on the
expansion

e, v, 1) = Jo(PV'u? 4+ o + 2uv cos pr)
= 2:., en( = )" To{ P) T o( Pr) cos npr (4.9-4)
=1 e =2 for n > 1
This expansion enables us to write the troublesome terms in (4.9-3) as

£ Jo( P+/12 + ¥* 4+ 2uv cos pr)

{4.9-5)
= Zo LZD (—)"** ¢, cos npr w" w) - Tn(Pw) T (Pr) -
The virtue of this double sum is that it simplifies the integration, Thus,

putting it in (4.9-3) and setting

nlhb
Mok = - f F(iw)u® T (Pu)e PP 3y (4.9-6)
gives
¥(r) = 2‘1) ,‘E,, — Wil en COS BPT (4.9-7)
A =

The correlation function W.(7) for the dc and periodic components of I
are obtained by letting v — oo where ¢ — 0. Only the terms for which
%k = 0 remain:

Vul7) = 2 eahho COS Bpr (4.9-8)
nes(
Comparing this with the known fact that the correlation function of
A + C cos (2uf — o) (2.2-2)
is
A+ %’cos 2nfor (2.2-3)

and remembering that e is one while e, is two for # > 1 shows that

Amplitude of dc component of I = Iy
5 (4.9-9)

Amplitude of % component of I = 2k,

145



Incidentally, these expressions for the amplitudes follow almost at once from
the direct method of solution. This will be shown in connection with equa-
tion (4.9-17).

Sinee the correlation function ¥.(r) for the continuous portion W(f) of
the power spectrum for I is given by

Vo(r) = ¥(r) — V(1) (4.8-11)
we also have
¥ir) = 2 3 4 hhhen cos npr (4.9-10)
net k1 k|

When this is substituted in
Wf) =4 fo Y(r) cos 2afr dr (4.9-11)

we obtain

Wdf) = i g % Hos [Gh (f - g-g) + G (f + g)] (4.9-12)

nw()

where

G(f) = -[’ ¥e cos 2nfr dr (4.9-13)

is the function studied in Appendix 4C. Gi(f) is an even function of f. The
double series (4.9-12) for W, looks rather formidable. However, when we
are interested in a particular portion of the frequency spectrum often only
a few terms of the series are needed.

It has been mentioned above that the direct method of obtaining the out-
put power spectrum is closely related to the equations just derived. We
now study this relation.

We start with the following result from modulation theory”: Let the

voltage
V = Pocosag+ Picosx; + -+ + Pycos awn
(4.9-14)
= pud, kh=0,1,--- N,

where the p,’s are incommensurable, be applied to the device (4A-1). The
output current is

I=Y -+ % $4nym
& B Mt (4.9-15)

. emﬂ COS MpXp COS M1%; -~ CO8 My Xy

& Bennett and Rice, “Note on Methods of Computing Modulation Products,” Phil.
Mag. 8.1, V. 18, pp. 422-424, Sept. 1934, and Bennett’s paper cited in Section 4.0.
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where g = 1 and e, = 2for m > 1. When the product of the cosines is
expressed as a sum of cosines of the angles mg xo = my 2y -+ - myaw, it is
seen thai the coefficient of the typical term is Am;...my , €xcept when all
the m’s are zero in which case it is 3.15...0. Thus

J4w...0 = dc component of [

| Amg-..my | = amplitude of component of frequency (4.9-16)
211}-|mgp., e omy Py kv e My pa )
For all values of the m's,
Apgimy = i: fc F(iu) fIﬂ.I,,.,(Pru) due

M =mo+m+ - + my
Following Bennett’s procedure, we identify V as given by (4.9-14), with
V= Pcospt + Vy (4.1-13)

by setting Py = P, pg = p, and representing the nmse voltage Vu by the sum
of the remaining terms. Since this makes Py, Py all very small, Laplace’s
process indicates that in (4.9-17) we may put

(4.9-17)

3
Elo(Pru) exp — — (Pl + P3) (4.9-18)

) ]
-~ a-ﬁou 2

We have used the fact that Yo is the mean square value of V. It follows
from these equations that

dc component of I = .2-1; f F(it) Jo( P1)e 0™ gy

Component of frequcncy 2 f F(in)J . (Pu)e'"" R du

These results are identical with those of (4.9-9).

The equations just derived show that A, is to be associated with the »
harmonic of p. In much the same way it may be shown that ne is to be
associated with the modulation products atising from the #*® harmonic of
p and % of the elementary sinusoidal components representing Vy. We
consider only combinations of the form p, & p; =+ p;, taking & = 3 for ex-
ample, and neglect terms of the form 3p; and Zpl + pa. The former type
is much more numerous there being about N° of them while there are only
about N and N*, respectively, of the latter type.

th
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We again take £ = 3 and consider m; , mp, m; to be one, and mq, « - - my
to be zero, corresponding to the modulation product 2p & p; & pg £ ps.
By making the same sort of approximations as Bennett does we find

n+3
Ar1,1,1,0,00000 = ; P' P’ Pa[ FGu)T o(Pre)d oMV g

— PrPa Py
4

When any other modulation product of the form np £+ p. £+ p,, + Py, is
considered we get a similar expression in which PPyP; is replaced by
P, P, P, . This may be done for any value of 2. 'The result indicates
that Bz, and consequently also the (w, k)‘h terms in the double series
(4.9-10) and (4.9-12) for ¥(r) and W.(f), are to be associated with the
modulation products of order (n, k), the z referring to the signal and the %
to the noise components.

We now may state a theorem due to Middleton regarding the total power
in the modulation products of a given order. For a given non-linear device
(i.e. F(3u) is given), the total power which would be dissipated by all of the
modulation products which are of order (n, k) if I were to flow through a
resistance of one ohm is

Vaa(0) = ﬂ‘l”’.(.q)_]. = ‘2.[,?%,]!:’_’?:? (4.9-19)

}‘nl

The important feature of this expression is that it depends only on the r.m.s.
value of Vy and on F(iu). It depends not at all upon the spectral dis-
tribution of the noise power in the input.

'The proof of (4.9-19) is based en the relation

Tui(0) = .[ " Walf) df

between the total power dissipated by all the (», k) order products and the
corresponding correlation function obtained from (4.9-7).

This theorem has been used by Middieton to show that when the input
is confined to a relatively narrow frequency band, so that the output spec-
trum consists of bands, the power in each band depends only on V3 and not
on the spectrum of Vx.

4.10 Mi:scELLANEOUS REsurrs OBTAINED BY CORRELATION FUNCTION
MreTHOD

In this section a number of results which may be obtained from the theory
given in the sections following 4.6 are given.
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When the input to the square law device

I=al" (4.1-1)
consists of noise only, so that V' = ¥y, the correlation fuaction for [ &
¥(r) = o'lYo + 2 ¢l (4.10-1)

where , is the correlation function of V. This may be compared with
equation (3.9-7). When V is general,

¥(r) = ave. I(OI{t + +)
= ave. o’ VIOV + 1)

. . (in)* (i)* | . .
a' X Coefficient of '—-2|) ( 5y I power scries expansion

(4.10-2)

i

of ch, f.of V(8), V( + 1)

where we have used a known property of the characteristic function. An
expression for the ch. 1., denoted by g(u, ©, 7), is given by (4.8-4). For
example, when ¥ consists of a sine wave plus noise, (4.1 -13), the ch. f. is
vbtainable from (1.9-3). Hence,

2 2
¥(r) = Coeff. of * ; in expansion of

o’ Jo(PA/ 1 + 2 + 2uv cos pr)

X exp [—-%9 (1° -} o) — xbfuv] (4.10-3)

> 2 »
= o [(;— + :I/o) + }8 cos 2pr + 2Py, cos pr + 2&3]
The first two terms give the de and second harmonic.  ‘The last twn terms
may be used to compute W(f) as given by (4.5-13).

Expressions (4.10--1) and (4.10-3) are special cases of results obtained by
Middleton who has studied the general theory of the quadratic rectifier by
using the Van Vieck-Narth method, described in Section 4.7,

As an example to which the theory of Section 4.9 may he applied we con-
sider the sine wave plus noise, (4.1-13), to be applicd to the »-law rectifier

IF =40 1" < Q

’ 1.10-4
I=1" V>0 ( )

From the table in Appendix 4.4 it is scen that

Flin) = T'lv + D)™ " !
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and that the path of integration C runs along the real axis from — o to «
with a downward indentatiun at the origin. The integral (4.9-6) for kn
becomes

sn+k—r-1

h,,,, = ?.. I P(P + 1) “"""J"(P”)e—(%lmu? du
211' ¢

(r—-8)/2
('%0) 0@+ 1)

zr(z"k;"+”)n!

P
2%

where the integration has been performed by expanding J.(Pu) in powers
of u and using

) (k_f%iii’; "+ 1; --x) (4.10-5)

x =

g ’ — » e - o
f e ™ du = ie ™ a * sin AxT(Q)
L'

.Y
= ‘52_ (1 — Moy (4.10-6)
. A
T @'l — A)

it being understood that arg % = 0 on the positive portion of C.
From (4.9-9), the dc component of [ is

»ig
by = —1 ) "’) ( 43¢ --x) (4.10-7)

(1)

which reduces to the expression (4.2-3) when » = 1 for the lincar rectifier
(aside from the factor «).

When the input (sine wave plus noise) is confined to a relatively narrow
band, and when we are interested in the low frequency output, consideration
of the modulation products suggests that we consider the differcnce products
from the products of order (0, 0), (0, 2), (0, 4), --- (1, 1), (1, 3), --- (2, 0),
(2, 2), - - - etc. where the typical product is of order (n, k). The orders
(0, 0) and (2, 0) give the dc and second harmonic and hence are not con-
sidered in the computation of I/.(f). Of the remaining terms, either (0, 2)
or (1, 1) gives the greatest contribution to the series (4.9--12) and (4.9-10)
for W.(f)and ¥.(r). The remaining terms contribute less and less as »# and
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B

% increase. The low frequency portion of the continuous portion of the
output power spectrum is then, from (4.9-12),

Wf) = f k2 Ga(f) + kat(f) + -

2 BAGS — 19 + Guf + o) + ;! RdG ~ f)  (4.10-8)

+ Gs(f + fo)l + hzs[G:(f 2fo) + Ga(f + 2f}l + - -

From Table 2 of Appendix 4C we may pick out the low frequency portions of
the G’s. It must be remembered that Ga(x) is an even function of x and
that 0 < f<K fo.

As an example we take the input noise Vy to have the same w(f) and
¥(7) as Filter a, the normal law filter, of Appendix 4C, so that

3 .
—(f—fo)2/2¢%
w e €
0 oV 2x

and assume that the sine wave signal is at the middle of the band, giving
¢ = 2xfo. Thus, from (4.10-8), for low frequencies and the normal law
distribution of the input noise power,

¢ c_,!,g,l

Wo(f) = 1o ‘/— hasyie -—!‘ll-‘ 640\/_

+ - v— Eigoe™ " 4 4;-—\175—; Bayte %" (4.10-9)

g —f3i4e?
+ Wha 1o + o
Although we have been speaking of the »-law rectiﬁer, equation (4.10-9)
gives the low frequency portion of W(f), corresponding to a normal law
noise power, for any non-linear device provided the proper A..'s are inserted.
When we set » equal to one in the expression (4.10-5) for k. we may ob-
tain the results given by Bennett. Middleton has studied the output of a
biased linear rectifier, when the input consists of a sine wave plus noise, and
also the special case of the unbiased linear rectifier. He has computed the
output for a wide range of the ratios P*/¢u, B'/\o where B is the bias. In
order to cover the entire range he had to derive two series for the corre-
sponding kni's, each series being suitable for its particular portion of the
range.
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A special case of (4.10-9) occurs when noise alone is applied to a linear
rectifier. The low frequency portion of the output power spectrum is

Wo(f) = %‘?é g:_%_)_'g_(':'j)m 1 g~ 4me?

mim!  g/dmn
Yo oL, e LS
= = 4.10-10
2z te + 64+/2 ¢ ( )
1 ._.Jl,m,l ]
T 256v/3° +

where we have used (4.7-6) and Table 2 of Appendix 4C.
The correlation function of

V.= Pcos pt + Q cos ¢,
where p and ¢ are incommensurable, is .
Jo(FV 12 + 0 + 2uv cos pr) X Jo(QV' 42 + o* + 2uv cos g7)
From equations (4.9-16) and (4.9-17) it is seen immediately that

how = al;,f F(iu)Jof Ps)Jo(Qu)e™ "M% dy (4.10-11)
[+

is the d.c. component of I when the applied voltage is
Pcospt+Qcos gt + Vy. 4.14)

J. R. Ragazzini has obtained an approximate expression for the output
power spectrum when the voltage

V=V.+ Vu
Ve = Q(1 + r cos pt)cos gt

is impressed on a linear rectifier.* 1In terms of our notation his expression
for the continuous portion of the power spectrum is (for low frequencies)

1 Wo(f) given by equation
7 = e
W) = e v < [(4.5-17) for square law device | (410-13)

The o is put in the denominator to cancel the o” in the expression (4.5-17).
We take the linear rectifier to be

0, V<0
I = {V, o <V (4.1C-14)

and replace the index of modulation, &, in (4.5-17) by r.

(4.10-12)

“ Equation (12), “The Effect of Fluctuation Voltages on the Linear Detector,” Proc.
I.R.E, V. 30, pp. 277-288 (June 1942).
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Ragazzini’s formula is quite accurate when the index of modulation r is
small, especially when y = @%/(2y0) is large. To show this we putr = 0
in (4.10-13) and obtain

! [Q’W(fq — 1) + Gty + f)

WD = T

. (4.10-15)
+ L w(Ew(f — 2) d:c]

where f, = ¢/(2x). This is to he compared with the low frequency por-
tion of W.(f) obtained by specializing (4.10-8) to obtain the output power
spectrum of a linear rectifier when the input consists of a sine wave plus
noise. Thez leading terms in (4.10-8) give

We(f) = h?][u’(fq - f) 4+ w(f, +f)]

(4.10-16)
+ haa

1 4+

i w(x)w(f — %) dx
The values of the s appropriate to a linear rectifier are obtained by set-

ting v = 1in (4.10-§) and noticing that Q now plays the role of P,

1 [y\'*
hy = 3 (%) 1Fi(d; 2; —w)

ha = 2xdo) " Fi(3; 1; —9)
y = Q*/(2dn)

Incidentally, the first approximation to the output of a linear rectifier
given by (4.10-16) is interesting in its own right. Fig. 9 shows the low fre-
quency portion of W.(f) as computed from (4.10-16) when the input noise
is uniformly distributed over a narrow frequency band of width g, f; being
the mid-band frequency. kj and kg may be obtained from the curves
shown in Fig. 10. In these figures P and x replace Q and y of (4.10-17) in
order to keep the notation the same as in Fig. 8 for the square law device.
These curves may also be obtained from equations (33) to (43) of Bennett’s

(4.10-17)

paper.
The following values are useful for our comparison.
When x = 0 When « is large
hy =0 hy = 1/w (4.10-18)

hoy = 2™ hea = 1/(xQ).

The values for large x are obtained from the asymptotic expansion (4B — 3)
given in Appendix 4B.
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LLOW FREQUENCY OUTPUT OF LINEAR RECTIFIER
APPROXIMATION - SECOND ORDER PRGDUCTS ONLY

INPUT= vz Pcos anfpt + NOISX
OUTPUT=I= {3: ::g}
K‘]"" OUTPUT DC.= Pth P% hﬂ!
2 gw,' ), wht
w.§) _ LET C=hy, ol (Phgg, (.E_‘P__qr)
I
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Fig. 10-—~Coefficlents for linear detector output shown on Fig. 9

Pllﬂ = V..;. gFg(*; I; '-"L’) hu L ;1/.;.. ;F](i; 2; --s)
w L4

We make the first comparison between (4.10~15) and (4.10-16) by letting
Q ~> o, It is seen that both reduce to

W) = ;lifw([, - + wlf, + Nl (4.10-19)
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which shows that the agreement is perfect in this case. Next we let Q = 0.
The two expressions then give
+e0

W) = ;1%1;\170 . w(x)w(f — x) dx

L]

where A = r for Ragazzini’s formula and 4 = 4 for (4.10-16). Thus the
agreement is still quite good. The limiting value for (4.10-16) may also
be obtained from (4.7-8).

Even if the index of modulation r is not negligibly small it may be shown
that when Q — « W,(f) still approaches the value given by (4.10-19).
Ragazzini’s formula gives a somewhat larger answer because it includes the
additional terms, shown in (4.5-17), which contain 4*/4, but this difference
does not appear to be serious.  If the Q° + 2y in the denominator of (4,10~
13) be replaced by ¢* 4+ 30°k* + 2 the agreement is improved.

APPENDTX 4A

TABLE OF NON-LINEAR DEVICES SPECIFIED BY INTEGRALS

Quite a number of non-linear devices may be specified by integrals of the
form

— 1 2N VU -
=5 j; F(iu)e'"® du (4A-1)

where the function F(iu) and the path of integration (’ are chosen to fit the
device.* The table gives examples of such devices. Some important cases
cannot be simply represented in this form. An example is the limiter

I = —aD, V< -D
I=aV, -DLV<D
I = aD, D<V (4A-2)
which may be represented as
I= ?fl sin VusinDugi;
s %
J (4A-3)
= —aD + ~—,f '’ sin Du ——?
tJo U
where C runs from — o« to 4+ « and is indented downward at the origin.
This is not of the form assumed in the theory of Part IV. However it

appears that it would not be difficult to extend the theory in the particular
case of the limiter.

$ Reference 50 cited is Section 4.9.
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Non-Linear Devices Specified by Inlegrals
I = 1 f F(iu)e™ du
x Jo

I F{éu) c Type of Device
I = aVn, ninteger a nT o Positive Loop nth power device
Tu)sh around u = 0
ITo ol ~B)s,n anl . Positive Loop #th power device
integer {Suyn+i 8 around 4 = 0 wg.g bias

I=0, V<0 a a Renl 4 axis from | Linear rectifier
I=aV, 0<V Guf = @ ~ w to + o withl cut-off at

downward in- V=0

dentation  at

% =0
I=0 V<B al’(v + 1) _,, “ rth power recti-
1= oV — By, ~Guypa o fier with bias
¥Y>5
» any positive number|
I=0 V<o tu “ Linear rectifier
IwaV, 0<V <D ol — el plus limiter
ImaD, D<V (s}
I,= 0, V<o " “
1= V), V>0 F(p) = f e Pel) di

(]
APPENDIX 4B

THE Foncrion Fi(e; ¢; x)

In problems concerning a sine wave plus noise the hypergeometric func-
tion

) =14 gD 1)
;F;(B,C, 8) =1 +£l!+ C(€+ 1) 2!‘!‘ (4B 1)

arises. Here we state some of its properties which are of use in the theory
of Part IV. Curves of Fy(a; c; 3) are given for g = — 4, - 3.5-..,3.5,
40andc = — 1.5, — .5, 4 5,1, 15,2, 3,4 in the 1938 edition, page 275,
of “Tables of Functions”, by Jahnke and Emde. A list of properties of the .
function and other references are aiso given. In addition to these refer-
ences we mention E. T. Copson, “Functions of 2 Complex Variable” (Ox-
ford, 1935), page 260.
If ¢ is not a negative integer or zero

Fi(e; ¢; 8) = "\Filc — a; ¢c; — 3). (4B-2)
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When R (zg) > 0 we have the asymptotic expansions
I'(c)e’ [ 4 (1 = a)(c — a)

1Fila; ¢; 8) ~

f"(Tz"“' 112
41— 0C=ac—ac-at]), ]
2159 )
() ol +a — o) (48-9)
1WFife; ¢; ~3) ~ o = a)z“[l + - iis ™
a(a+1)(l+a-C)(2+a-c,
e +o ]

Many of the hypergeometric functions encountered may be expressed in
terms of Bessel functions of the first kind for imaginary argument. The
connection may be made by means of the relation®

Fy (,, + % ;20 4 1 z) = 2"1'(v + Dz 77"l (2) (4B-4)

together with the recurrence relations

Fas Fo. Fo, b F
1. e (a — ¢) c— 2¢ — 2
2. ac (c — a)z — ¢f{a 4 3)
3. a ) S c—a—1
4, - —3 c
5. a—c c— 1 1—ag~3
6. c—a)s <clc— 1) (1 — ¢ ~ g)

For example, the first recurrence relation is obtained from line 1 as follows
aF(a + L;¢;8) 4+ (a — )F(a — 1;¢; %)
4+ (¢ — 20 — 2)F(a;c;z)= 0 (4B-3)

These six relations between the contiguous F; functions are analogous to
the 15 relations, given by Gauss, between the contiguous oF, hypergeometric
functions and may be derived from these by using

WFi(a; ¢c; 8) = lelt gF,(a b; ¢; b) (4B-6)

A recurrence relation involving two 1Fy’s of the type (4B~4) may be ob-
tained by replacing a by a + 1 in the relation given by row four of the tabie

81 G. N. Watson, “Theory of Bessel Functions” (Cambridge, 1922), p. 191,
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and then eliminating 1Fi(a + 1; ¢; z) from this relation and the one obtained
from row 3 of the table. There results

(a; c;2) = Fileye — 1328) + ——n— Fla + 1;¢ 4 138  (4B-7) -

( — <)

Setting » equal to zero and one in (4B—4) and 4 equal to }, ¢ equal to 2 in

(4B-7) gives
1y (%, 1; z) = MK (%)
Wy (;,3 z) 427%"? I, (f) (4B-8)
(352 8) = e [,()._,()]

Starting with these relations the relations in the table enable us to find
an expression for 1F(n + }; m; 2) where n# and m are integers. A number
of these arc given in Bennett’s paper. In particular, using (4B-2),

,F,( 1, ;-—)me"’[(t +z)1.,,()+z1,()] (4B-9)

ATPENDIX 4C

THE POWER SPECTRUM CORRESPONDING TO Uy
Quite often we encounter the integral

Ga(f) = .[’ [¥(#I" cos 2xfr dr (4C-1)

where ¢(7) is the correlation function corresponding to the power spectrum
w(f). From the fundamental relation between w(f) and ¢(r} given by
(2.1-3),

G =D (4C-2)

The expression for the spectrum of the product of two functions enables us
to write G.(f) in terms of w(f). We shall use the following form of this
expression: Let F,(f) be the spectrum of the function ¢.(7) so that

erlr) = ,[:” F'(negﬁh df, r=1,2

+c0
FAf) = f_ 3} (e &t
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Then

+e0 _ 4w

[ on) (e dr = Fi(x)Fs(f — x)dx  (4C-3)
- o0

i.e., the spectrum of the product ¢i(r)es(r) is the integral on the right.

If oy(7) and @o(7) are real even functions of 7, (4C-3) may be written as

+o0

‘L.uo ¢e1{T) pa(7) cos 2xfr dr = % Fyx)Fo(f — x)dx (4C-4)

o0

In order to obtain Ga(f) we set ¢1(7) and ¢a(7) equal to ¢(7). We may
then use (4C-4) since ¥(r) is an even real function of 7.  When ¢,(7) is an
even real function of » we see, from the Fouricr integral for F.(f), that F,(f)
must be an even real function of f. We therefore set

2F,(f) = w(f), r=1,2
and define w( f) for negative f by
w(— f) = w(f) (4C-5)
Equation (4C-4) then gives

+-00

Gof) = é [ w(x)w(f — x) dx

0

= % of ;v(x)w(f - x)dx (4C-6)

-+ i [n w(x)w(f + x) dx

where in the second equation only positive values of the argument of w(f)

appear.
In order to get Gy(f) we set ¢n(7) equal to ¢(7), 2Fi(f) equal tow(f), and

@1(7) equal t8 y*(r). Then

Fo(f) = 2 [’ ea(7) cos 2xfr dr

= 2G3(f)
and from (4C-4) we obtain
{
GU) =3 [ w@Gs — 2 ds
| 4Cc-n

+0
= [ w s L, wyw(f — 3) dy
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Equation (4C-7) suggests that we may write the expression for Gy(f) as
Gif) =5 [ wGs - = as (4C-8)
This is seen to be true from (4C-2) and (4C-6). 1In fact it appears that
6nf) =3 [ty — 2uste) ds (ac-9)
might be used for a step by step computation of G,(f).
We now consider Ga(f) for the case of relatively narrow band pass filters.

As examples we take filters whose characteristics give the following w(f)’s
and ¥(7)’s

‘TABLE 1
Filter w(f) for f > 0 vir)
a ;32;; c—-(f—!o)’lb’ Yo ,—"2(1")' cos 2xfor
b Yoo 1 voe~ "l cos 2xfyr

x al 4 (f — fa
w(f) = wy = Yo/8 for

C fn—g‘:f(ﬁ)""‘g Wos‘l!‘*:ngOSfonr

%fAr

w(f) = 0 elsewhere

We shall refer to these filters as Filter a, Filter b, and Filter c, respectively.
All have fo as the mid-frequency of the pass band. The constants have
been chosen so that they all pass the same average power when a wide band
voltage is applied:

Yo = j; ) w(f) df = mean square value of I{{) or V(¢)

and it is assumed that fo 2> o, fo > a, fo >> B s0 that the pass bands are
relatively narrow.

Expressions for Ga(f) corresponding to several values of » are given in
Table 2. When n = 1, Gi(f) is simply w(f)/4. Gs(f) is obtained by set-
ting # = 2 in the definition (4C-1) for G.(f), squaring the ¥(r)’s of Table 1,
and using '

cos’ 2xfor = % + 3 cos dxfor
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‘The expression for Ga(f) given in Table 2 corresponding to Filter ¢ is
exact. The expressions for Filters a and b give good approximations around
f = Oand f = 2f; where Gy f) is large. However, they are not exact because
terms involving f + 2fo have been omitted. It is seen that all three Go’s
behave in the same manner.  Each has a peak symmetrical about 2fo whose
width is twice that of the original w(f), is almost zero hetween 0 and 2,
and rises tn 3 peak at 0 whose height is twice that at 2.

Gs(f) is obtained by cubing the ¢(7) given in Table 1 and using

cos® 2nfor = § cos Zmfor -+ & cos 6nfor.

From the way in which the cosine terms combine with cos 2xf7 in (4C-1) we
see that Gy(f), for our relatively narrow band pass filters, has peaks at fp
and 3f,, the fust peak being three times as high as the second. The ex-
pressions given for Gs(f) and Gi(f) are approximate in the same sense as are
those for Go(f). It will be observed that the coefficients within the brackets,
for Filters a and b, are the binomial coefficients for the value of # concerned.
Thus for # = 2, they are 2and 1, for # = 3 they are 3and 1,and for 2 = 4
they are 6, 4, and 1.

The higher G(f)’s for Filters a and b may be computed in the same way.
The integrals to be used are

o0 ( s —!’I?ﬂ‘ﬂ’
—~2n(rer)
e 2 dr = —
l cos 2xfr dr o) ime
[ ] _ 1 o
Insar B e e e e
L € cos 2xfr dr Ir wad £ i

In many of our examples we are interested only in the values Gu(f) for
f near zero, i.e., only in that peak which is at zero. It is seen that G.(f)
has such a peak only when % is even, this peak arising from the constant
term in the expansion
(2%)(2k — 1)

l L4
cos*z = =) [cns 2kx 4 2k cos 2(k — Dx + Ty Cos 2(k — 2)x

(2! cos 2x + ______(2&)!]

too Tt TG F D p
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