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Advanced 1/0

Introduction

This chapter covers numerous topics and functions that we lump under the term
“advanced 1/0.” This includes nonblocking 1/0O, record locking, System V streams,
I/0 multiplexing (the select and pol1 functions), the readv and writev functions,
and memory mapped I/O (mmap). We need to cover these topics before describing
interprocess communication in Chapters 14 and 15, and many of the examples in later

chapters.

Nonblocking /O

In Section 10.5 we said that the system calls are divided into two categories: the “slow”
ones, and all the others. The slow system calls are those that can block forever:

reads from files that can block the caller forever, if data isn’t present (pipes, ter-
minal devices, and network devices),

writes to these same files that can block forever, if the data can’t be accepted
immediately,

opens of files block until some condition occurs (such as an open of a terminal
device that waits until an attached modem answers the phone, or an open of a
FIFO for writing-only when no other process has the FIFO open for reading),

reads and writes of files that have mandatory record locking enabled,
certain ioctl operations,
some of the interprocess communication functions (Chapter 14).
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We also said that system calls related to disk I/0 are not considered slow, even though
the read or write of a disk file can block the caller temporarily.

Nonblocking 1/0O lets us issue an 1/O operation, such as an open, read, or write,
and not have it block forever. If the operation cannot be completed, return is made
immediately with an error noting that the operation would have blocked.

There are two ways to specify nonblocking I/O for a given descriptor.

1. If we call open to get the descriptor, we can specify the O_NONBLOCK flag
(Section 3.3).

2. For a descriptor that is already open, we call fcnt1 to turn on the O_NONBLOCK
file status flag (Section 3.13). Program 3.5 shows a function that we can call to
turn on any of the file status flags for a descriptor.

Earlier versions of System V used the flag 0O NDELAY to specify the nonblocking mode. These
versions of System V returned a value of 0 from the read function if there wasn’t any data to
be read. Since this use of a return value of 0 overlapped with the normal Unix convention of 0
meaning the end of file, POSIX.1 chose to provide a nonblocking flag with a different name
and different semantics. Indeed, with these older versions of System V we don’t know when
we get a return of 0 from read whether the call would have blocked, or if the end of file was
encountered. We'll see that POSIX.1 requires that read return —1 with errno set to EAGAIN if
there is no data to read from a nonblocking descriptor. SVR4 supports both the older
O_NDELAY and the POSIX.1 O_NONBLOCK, but in this text we'll only use the POSIX.1 feature,
The older O_NDELAY is for backward compatibility and should not be used in new applica-
tions.

4.3BSD provided the FNDELAY flag for fentl, and its semantics were slightly different.
Instead of just affecting the file status flags for the descriptor, the flags for either the terminal
device or the socket were also changed to be nonblocking, affecting all users of the terminal or
socket, not just the users sharing the same file table entry (4.3BSD nonblocking 1/0 only
worked on terminals and sockets). Also, 4.3BSD returned EWOULDBLOCK if an operation on a
nonblocking descriptor could not complete without blocking. 4.3+BSD provides the POSIX.1
O_NONBLOCK flag, but the semantics are similar to those for FNDELAY under 4.3BSD. A com-
mon use for nonblocking I/0 is for dealing with a terminal device or a network connection,
and these devices are normally used by one process at a time. This means that the change in
the BSD semantics normally doesn’t affect us. The different error return, EWOULDBLOCK,
instead of the POSIX.1 EAGAIN, continues to be a portability difference that we must deal with.
4.3+BSD also supports FIFOs, and nonblocking I/0 works with FIFOs too.

Example

Let's look at an example of nonblocking I/0. Program 12.1 reads up to 100,000 bytes
from the standard input and attempts to write it to the standard output. The standard
output is first set nonblocking. The output is in a loop, with the results of each write
being printed on the standard error. The function clr_f£1 is similar to the function
set_f1 that we showed in Program 3.5. This new function just clears one or more of
the flag bits.



Nonblocking 1I/0O 365

#include <sys/types.h>

#include <errno.h>
#include <fcntl.h>
#include "ourhdr.h"

char buf [100000];

int

main (void)

{
int ntowrite, nwrite;
char *ptr;

ntowrite = read(STDIN_FILENO, buf, sizeof (buf));
fprintf (stderr, "read %d bytes\n", ntowrite) ;

set_f1 (STDOUT_FILENO, O_NONBLOCK) ; /* set nonblocking */

for (ptr = buf; ntowrite > 0; ) {
errno = 0;
nwrite = write(STDOUT_FILENO, ptr, ntowrite) ;
fprintf{stderr, "nwrite = %d, errno = %d\n", nwrite, errnoc);
if (nwrite > 0) {
ptr += nwrite;
ntowrite —= nwrite;

}

clr £1(STDOUT_FILENO, O_NONBLOCK); /* clear nonblocking */
exit (0);

Program 12.1 Large nonblocking write.

If the standard output is a regular file, we expect the write to be executed once.

$ 1s -1 /etc/termcap print file size
—-rw-rw—-r—— 1 rcot 133439 Oct 11 1990 /etc/termcap

$ a.out < /etc/termcap > temp.file try a regular file first
read 100000 bytes

nwrite = 100000, errno = 0 a single write

$ 1s -1 temp.file verify size of output file

—rw-rw-r—— 1 stevens 100000 Nev 21 16:27 temp.file

But if the standard output is a terminal, we expect the write to return a partial count
sometimes and an error at other times. This is what we see.
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$ a.out < /etc/termcap 2>stderr.ocut output to terminal

lots of output to terminal ...
$ cat stderr.out
read 100000 bytes
nwrite = 8192, errno =
nwrite = 8192, errno =
nwrite = -1, errno = 11 211 of these errors

nwrite = 4096, errno = 0
nwrite = -1, errno = 11 658 of these errors

nwrite = 4096, errno = 0

nwrite = -1, errno = 11 604 of these errors
;w;iée = 4096, errnc = 0
nwrite = -1, errno = 11 1047 of these errors
1:1w;:ii:-.e = -1, errno = 11 1046 of these errors
;w;iée = 4096, errno = 0

and soon ...

On this system the errno of 11 is EAGAIN. The terminal driver on this system always
accepted 4096 or 8192 bytes at a time. On another system the first three writes
returned 2005, 1822, and 1811, followed by 96 errors, followed by a write of 1846, and
so on. How much data is accepted on each wri te is system dependent.

The behavior of this program under SVR4 is completely different from the
preceding—when the output was to the terminal only a single write was needed to
output the entire input file. Apparently the nonblocking mode makes no difference! A
bigger input file was created and the program’s buffer was increased. This behavior of
the program (one write for the entire file) continued until the size of the input file was
about 700,000 bytes. At that point every write returned the error EAGAIN. (The input
file was never output to the terminal—the program just generated a continual stream of
error messages.)

What's going on here is that the terminal driver in SVR4 is connected to the pro-
gram through the stream I/O system. (We describe streams in detail in Section 12.4.)
The streams system has its own buffers and is capable of accepting more data at a time
from the program. The SVR4 behavior also depends on the type of terminal—hard-
wired terminal, console device, or a pseudo terminal. 8]

In this example the program issues thousands of write calls, when only around 20
are required to output the data. The rest just return an error. This type of loop, called
polling, is a waste of CPU time on a multiuser system. In Section 12.5 we’ll see that I/0
multiplexing with a nonblocking descriptor is a more efficient way to do this.

We'll encounter nonblocking 1/0 in Chapter 17 when we output to a terminal de-
vice (a PostScript printer) and want to make certain we don’t block on awrite.
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123 Record Locking

What happens when two people edit the same file at the same time? In most Unix sys-
tems the final state of the file corresponds to the last process that wrote the file. There
are applications, however, such as a database system, when a process needs to be cer-
tain that it alone is writing to a file. To provide this capability for processes that need it,
newer Unix systems provide record locking. (We develop a database library in
Chapter 16 that uses record locking.)

Record locking is the term normally used to describe the ability of a process to pre-
vent other processes from modifying a region of a file, while the first process is reading
or modifying that portion of the file. Under Unix the adjective “record” is a misnomer,
since the Unix kernel does not have a notion of records in a file. A better term is “range
locking,” since it is a range of a file (possibly the entire file) that is locked.

History
Figure 12.1 shows the different forms of record locking provided by various Unix sys-
tems.
System Advisory | Mandatory | fentl | lockf | flock
POSIX.1 . .
XPG3 . .
SVR2 [ »
SVR3, SVR4 . . .
4.38SD .
4.3BSD Reno . .

Figure 12.1 Forms of record locking supported by various Unix systems.

We describe the difference between advisory locking and mandatory locking later in
this section. As shown in this figure, POSIX.1 selected the System V style of record lock-
ing, which is based on the fentl function. This style is also supported by the latest
version of 4.3BSD Reno.

Earlier Berkeley releases supported only the BSD flock function. This function
locks only entire files, not regions of a file. But the POSIX.1 fcntl function can lock
any region of a file, from the entire file down to a single byte within the file.

In this text we describe only the POSIX.1 fcntl locking. The System V lockf
function is just an interface to the fcnt1 function.

Record locking was originally added to Version 7 in 1980 by John Bass. The system call entry
into the kernel was a function named locking. This function provided mandatory record
locking and propagated through many vendor’s versions of System III. Xenix systems picked
up this function, and SVR4 still supports it in its Xenix compatibility library.

SVR2 was the first release of System V to support the fcnt1 style of record locking, in 1984.
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fcntl Record Locking
Let’s repeat the prototype for the fcnt 1 function from Section 3.13.

#include <sys/types.h>

#include <unistd.h>

#include <fcntl.h>

int fentl(int filedes, int cmd, ... /* struct flock *flockptr */ ) ;

Returns: depends on cmd if OK (see below), =1 on error

For record locking cmd is F_GETLK, F_SETLK, or F_SETLKW. The third argument
(which we’ll call flockptr) is a pointer to an £1ock structure.

struct flock {

short 1 type; /* F_RDLCK, F_WRLCK, or F_UNLCK */
off t 1 start; /* offset in bytes, relative to 1 whence */
short 1_whence; /* SEEK_SET, SEEK CUR, or SEEK_END */

off £t 1 _len; /* length, in bytes; 0 means lock toc EOF */
pid_t 1 pid; /* returned with F _GETLK */
i
This structure describes

the type of lock desired: F_RDLCK (a shared read lock), F_WRLCK (an exclusive
write lock), or F_UNLCK (unlocking a region),

the starting byte offset of the region being locked or unlocked (1_start and
1_whence), and

the size of the region (1_1len).

There are numerous rules about the specification of the region to be locked or unlocked.

The two elements that specify the starting offset of the region are similar to the
last two arguments of the 1seek function (Section 3.6). Indeed, the 1_whence
member is specified as SEEK_SET, SEEK_CUR, or SEEK_END.

Locks can start and extend beyond the current end of file, but cannot start or
extend before the beginning of the file.

If the 1_len is 0, it means that the lock extends to the largest possible offset of
the file. This allows us to lock a region starting anywhere in the file, up through
and including any data that is appended to the file. (We don't have to try to
guess how many bytes might be appended to the file.)

To lock the entire file, we set 1_start and 1_whence to point to the beginning
of the file, and specify a length (1_1en) of 0. (There are several ways to specify
the beginning of the file, but most applications specify 1_start as 0 and
1 _whence as SEEK_SET.)
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We mentioned two types of locks: a shared read lock (1_type of I RDLCK) and an
exclusive write lock (L_WRLCK). The basic rule is that any number of processes can
have a shared read lock on a given byte, but only one process can have an exclusive
write lock on a given byte. Furthermore, if there are one or more read locks on a byte,
there can’t be any write locks on that byte, and if there is an exclusive write lock on a
byte, there can’t be any read locks on that byte. We show this compatibility rule in

Figure 12.2.
request for
| read lock | write lock
| no locks ; OK OK
ion Hv has “oneormore | OK denied
TEBIon CUrTEnty 198 | read locks
one write denied denied |
lock . |

Figure 122 Compatibility between different lock types.

To obtain a read lock the descriptor must be open for reading, and to obtain a write lock
the descriptor must be open for writing.
We can now describe the three different commands for the fent 1 function.

F_GETLK  Determine if the lock described by flockptr is blocked by some other lock.
If a lock exists that would prevent ours from being created, the informa-
tion on that existing lock overwrites the information pointed to by flockptr.
If no lock exists that would prevent ours from being created, the structure
pointed to by flockptr is left unchanged except for the 1_type member,
which is set to F_UNLCK.

F_SETLK  Set the lock described by flockptr. If we are trying to obtain a read lock
(1_type of F_RDLCK) or a write lock (1_type of F_ WRLCK) and the com-
patibility rule prevents the system from giving us the lock (Figure 12.2),
fent1 returns immediately with errno set to either EACCES or EAGAIN.

SVR2 returned EACCES, but the manual page warned that in the future EAGAIN
would be returned. SVR4 continues this tradition (returning EACCES with the same
warning about the future). 4.3+BSD returns EAGAIN. POSIX.1 allows either error to
be returned.

This command is also used to clear the lock described by flockptr (1_type
of F_UNLCK).

F_SETLKW This command is a blocking version of F_SETLK. (The W in the command
name means “wait.”) If the requested read lock or write lock cannot be
granted because another process currently has some part of the requested
region locked, the calling process is put to sleep. This sleep is interrupted
if a signal is caught.
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Be aware that testing for a lock with F_GETLK and then trying to obtain that lock with
F_SETLK or F_SETLKW is not an atomic operation. We have no guarantee that between
the two fcnt1 calls some other process won’t come in and obtain the same lock. If we
don’t want to block while waiting for a lock to become available to us, we must handle
the possible error returns from F_SETLK.

When setting or releasing a lock on a file, the system combines or splits adjacent
areas as required. For example, if we set a read lock on bytes 0 through 99 and then set
a write lock on bytes 0 through 49, we then have two locked regions: bytes 0 through 49
(write locked) and bytes 50 through 99 (read locked). Similarly, if we lock bytes 100
through 199 and then unlock byte 150, the kernel still maintains the locks on bytes 100
through 149, and bytes 151 through 199.

Example—Requesting and Releasing A Lock

To save ourselves from having to allocate an £1lock structure and fill in all the elements
each time, the function lock_reg in Program 12.2 handles all these details.

#include <sys/types.h>
#include <fcntl.h>
finclude "ourhdr .h"
int

lock_reg(int fd, int cmd, int type, off_t offset, int whence, off t len)
{
struct flock lock:

lock.l type = type; /* F_RDLCK, F_WRLCK, F_UNLCK */
lock.l_start = offset; /* byte offset, relative to 1 whence */
lock.l_whence = whence; /* SEEK_SET, SEEK CUR, SEEK END */
lock.l len = len; /* #bytes (0 means to EQF) */

return( fcntl (fd, comd, &lock) ):

Program 12.2 Function to lock or unlock a region of a file.

Since most locking calls are to lock or unlock a region (the command F_GETLK is rarely
used) we normally use one of the following five macros, which are defined in
ourhdr.h (Appendix B).

#define read lock(fd, offset, whence, len) \

lock_reg(fd, F_SETLK, F_RDLCK, offset, whence, len)
ffdefine readw lock(fd, offset, whence, len) \

lock_reg(fd, F_SETLKW, F_RDLCK, offset, whence, len)
fdefine write_ lock(fd, offset, whence, len) \

lock_reqg(fd, F_SETLK, F_WRLCK, offset, whence, len)
#define writew_lock(fd, offset, whence, len) \

lock_reg(fd, F_SETLKW, F_WRLCK, offset, whence, len)
#define un_ lock(fd, offset, whence, len) \

lock_reg(fd, F_SETLK, F_UNLCK, offset, whence, len)
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We have purposely defined the first three arguments to these macros in the same order
as the 1seek function. O

Example—Testing for A Lock

Program 12.3 defines the function lock_test that we’ll use to test for a lock.

#include <sys/types.h>
#include <fentl.h>
#include "gurhdr.h"
pid t
lock_test (int fd, int type, off t offset, int whence, off t len)
{
struct flock lock;
lock.l _type = type; /* F_RDLCK or F_WRLCK */

lock.l start = offset; /* byte offset, “relative to 1 whence */
lock.l whence = whence; /* SEEK_SET, SEEK_CUR, SEEK_END */
lock.l_len = len; /* #bytes (0 means to EOF) */

if (fentl(fd, F_GETLK, &lock) < 0)
erry sys("fcntl error™);

if (lock.l_type == F_UNLCK)
return (0) ; /* false, region is not locked by another proc */
return(lock.l pid); /* true, return pid of lock owner */

Program 12.3 Function to test for a locking condition.

If a lock exists that would block the request specified by the arguments, this function
returns the process ID of the process holding the lock. Otherwise the function returns 0
(false). We normally call this function from the following two macros (defined in
ourhdr.h).

#define is_readlock (fd, offset, whence, len) \
lock_test (fd, F _RDLCK, offset, whence, len)
#define is writelock(fd, offset, whence, len) \
lock_test (fd, F_WRLCK, offset, whence, len) ]

Example—Deadlock

Deadlock occurs when two processes are each waiting for a resource that the other has
locked. The potential for deadlock exists if a process that controls a locked region is put
to sleep when it tries to lock another region that is controlled by a different process.
Program 12.4 shows an example of deadlock. The child locks byte 0 and the parent
locks byte 1. Then each tries to lock the other’s already locked byte. We use the par-
ent—child synchronization routines from Section 8.8 (TELL_xxx and WAIT xxx) so that
each process can wait for the other to obtain its lock. Running Program 12. 4 gives us
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#include <sys/types.h>
#include <sys/stat.h>
#include <fentl.h>
#include "ourhdr.h"

static void lockabyte (const char *, int, off t);

int

main (void)

{

}

int fd;
pid_t  pid;

/* Create a file and write two bytes to it */
if ( (fd = creat("templock", FILE MCDE)) < 0)

err sys("creat error");
if (write(fd, "ab", 2) != 2)

err sys("write errcr");

TELL_WAIT();
if ( (pid = fork()) < 0)
err sys("fork error");

else if (pid == 0) { /* child */
lockabyte ("child", fd, 0};
TELL PARENT (getppid()) ;
WAIT PARENT () ;
lockabyte ("child", £d4, 1);

} else { /* parent */
lockabyte ("parent™, £d, 1):
TELL CHILD(pid);
WAIT CHILD();
lockabyte ("parent™, f£d, 0);
}
exit (0);

static void
lockabyte (const char *name, int fd, off t offset)

{

if (writew_lock(fd, offset, SEEK SET, 1) < 0)
err sys("%s: writew lock error", name);

printf("%s: got the lock, byte %d\n", name, offset):

Program 12.4 Example of deadlock detection.
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$ a.out

child: got the lock, byte 0

parent: got the lock, byte 1

child: fcntl error: Deadlock situation detected/avoided
parent: got the lock, byte C

When a deadlock is detected, the kernel has to choose one process to receive the error
return. In this example the child was chosen, but this is an implementation detail.
When this program was run on another system, half the time the child received the
error and half the time the parent received the error. 0

Implied Inheritance and Release of Locks

There are three rules that govern the automatic inheritance and release of record locks.

1.

Locks are associated with a process and a file. This has two implications. The
first is obvious: when a process terminates all its locks are released. The second
is far from obvious: whenever a descriptor is closed, any locks on the file refer-
enced by that descriptor for that process are released. This means that if we do
the following four steps

fdl = open{pathname, ...};
read_lock(fdl, ...):;

fdz = dup(fdl);

close (£d42) ;

after the close (fd2) the lock that was obtained on f£dl is released. The same
thing would happen if we replaced the dup with open, as in

fdl = open(pathname, ...}:
read lock(fdl, ...}:

fd2 = open(pathname, ...)
close(fd2) ;

to open the same file on another descriptor.

Locks are never inherited by the child across a fork. This means that if a pro-
cess obtains a lock and then calls fork, the child is considered “another pro-
cess” with regard to the lock that was obtained by the parent. The child has to
call f£cntl to obtain its own locks on any descriptors that were inherited across
the fork. This makes sense, because locks are meant to prevent multiple pro-
cesses from writing to the same file at the same time. If the child inherited locks
across a fork, both the parent and child could write to the same file at the same
time.

3. Locks may be inherited by a new program across an exec.

We have to say may here because POSIX.1 doesn’t require this. Under SVR4 and 4.3+BSD,
however, locks are inherited across an exec.
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4.3+BSD Implementation

Let’s take a brief look at the data structures used in the 4.3+BSD implementation. This
should help clarify rule 1, that locks are associated with a process and a file.
Consider a process that executes the following statements (ignoring error returns):

fdl = open(pathname, ...);
write_lock(fdl, 0, SEEK_SET, 1);
if (fork() > 0) { /* parent */
£fdZ2 = dup(fdl);
fd3 = open(pathname, ...);
pause();
} else {

read lock(fdl, 1, SEEK SET, 1): /* child read locks byte 1 */
pause () ;

/* parent write locks byte 0 */

}

Figure 12.3 shows the resulting data structures after both the parent and child have

paused.
parent process table entr
file table
j file status flags
fd flags pir current file offset
fd1:
' v-node ptr  —
gg _____-\-\"“‘t v-node table
. v-node
information
file status flags _ inode
information
current file offset _____”__1 - = 4
: current file size
child process table entry vnodepr |~ | Swrentilesze |
linked list of locks
fd
fdl: Lo P struct flock struct flock
ffggf : link ——» link
' flags, etc. flags, etc.
tr starting offset starting offset
length length
process 1D process ID

Figure 12.3 The 4.3+BSD data structures for record locking.

We’ve shown the data structures that result from the open, fork, and dup earlier (Fig-

ures 3.4 and 8.1). What is new are the flock structures that are linked together from
the i-node structure. Notice that each flock structure describes one locked region
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(defined by an offset and length) for a given process. We show two of these structures,
one for the parent’s call to write_lock and one for the child’s call to read lock.
Each structure contains the corresponding process ID.

In the parent, closing any one of £d1, £d2, or £d3 causes the parent’s lock to be
released. When any one of these three descriptors is closed, the kernel goes through the
linked list of locks for the corresponding i-node, and releases the locks held by the call-
ing process. The kernel can’t tell (and doesn’t care) which descriptor of the three the
parent’s lock was obtained on.

Example

Advisory locks can be used by a daemon to assure that only one copy of the daemon is
running. When started, many daemons write their process ID to a file. This process ID
can be used when it is time to shut down the system. The way to prevent multiple
copies of the daemon from running is to have the daemon obtain a lock on its process
ID file when it starts. If it holds the lock for as long as it runs, no more copies of itself
will be started. Program 12.5 implements this technique.

We specifically truncate the file in case the file previously contained a process ID
that was longer than the current process ID. If the previous contents of the file were
12345\n and the new process ID was 654, we want the file to contain just the four bytes
654\n, and not 654\n5\n. Note that we call ftruncate after we get the lock—we
cannot specify O_TRUNC in the call to open, because that could empty the file even
though it was locked by another copy of the daemon. (We could use O_TRUNC if we
were using mandatory locking, instead of advisory locking. We discuss mandatory
locking later in this section.)

In this example we also set the close-on-exec flag for the descriptor. This is because
daemons often fork and exec other processes, and there is no need for this file to
remain open in another process. O

Example

Use caution when locking or unlocking relative to the end of file. Most implementa-
tions convert an 1_whence value of SEEK_CUR or SEEK_END into an absolute file off-
set, using 1 _start and the file’s current position or current length. Often, however, we
need to specify a lock relative to the files current position or current length, because we
can’t call 1seek to obtain the current file offset, since we don’t have a lock on the file.
(There’s a chance another process could change the file’s length between the call to
1seek and the lock call.)

Program 12.6 writes a large file, one byte at a time. Each time around the loop it
locks from the current end of file through any future end of file (the final argument, the
length of 0), and writes one byte. It then unlocks from the current end of file through
any future end of file, and writes another byte. If the system kept track of locks using
the notation (“from the current end of file through any future end of file”) this should
work. But if the system converts this notation into absolute file offsets, we could have a
problem. Running this program under SVR4 shows that we do have a problem.
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#include <sys/types.h>

#include <sys/stat.h>
#include <errno.h>

#include <fentl.h>

#include "ourhdr.h"

#define PIDFILE "daemon.pid"
int

main (void)

{
int fd, wval;
char buf[10];

if ( (fd = open(PIDFILE, O_WRONLY | O_CREAT, FILE MODE)) < 0)
err sys("open error");

/* try and set a write lock on the entire file */
if (write lock(fd, 0, SEEK SET, 0} < 0) {
if (errno == EACCES || errno == EAGAIN)

exit (0) ; /* gracefully exit, daemon is already running */
else

err sys("write_lock error");

/* truncate to zero length, now that we have the lock */
if (ftruncate(fd, 0) < 0)

err_sys("ftruncate error");

/* and write our process ID */
sprintf (buf, "%d\n", getpid());
if (write(fd, buf, strlen(buf)) != strlen (buf))
err sys("write error");

/* set close-on-exec flag for descriptor */
if ( (val = fentl (fd, F_GETFD, 0)) < ()
err sys("fcntl F_GETFD error"):
val |= FD_CLOEXEC;
if (fentl(fd, F_SETFD, val) < 0)
err sys("fentl F_SETFD error");

/* leave file open until we terminate: lock will be held */
/* do whatever .., */

exit (0);

Program 12.5 Daemon start-up code to prevent multiple copies of itself from running,

N ———— |
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#include <sys/types.h>

#include <sys/stat.h>
#include <fecntl.h>
#include "ourhdr.h"
int
main (void)
{

int i, f£d;

if ( (fd = open("temp.lock", O _RDWR | O_CREAT | O_TRUNC,
FILE MODE)) < 0)

err sys("open error");

for (i = Q0; i < 1000000; i++) { /* try to write 2 Mbytes */
/* lock from current EOF to EOF */
if (writew_lock(fd, 0, SEEK_END, 0) < 0)
err_sys ("writew lock error");

if (write(fd, &fd, 1) != 1)
err_sys("write error");

if (un_lock(fd, ©, SEEK_END, 0) < 0)
err_sys("un_lock error”):

if (write(fd, &fd, 1) !'= 1)
err_sys("write error"):
}
exit (0) ;

Program 12,6 Program displaying problems with locking relative to end of file.

$ a.out

writew lock error: No record locks available

$ 1s -1 temp.lock

—rw—r——r—— 1 stevens other 592 Nov 1 04:41 temp.lock

(The error ENOLCK is returned by the kernel. It indicates that the kernel’s lock table is
full) It is instructive to see what the system is doing. Figure 12.4 shows the state of the
file after the first call to writew_lock and the first call to write.

locked
l-—-—— -
first

byte

Figure 12.4 State of file after first writew_lock and first write.
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We show the locked region extending past the byte that we wrote, since we specified
“through any future end of file” in the call to writew lock.

We then call un_lock. This unlocks from the current end of file through any future
end of file, which moves the right end of the arrow in Figurg 12.4 back to the end of the
first byte. We then write the second byte to the file. Figure 12.5 shows the state of the
file after calling un_lock and the write that follows.

| locked

first | second
byte . byte

Figure 12.5 State of file after un_lock and second write.

After going through the for loop one more time, we have written four bytes to the file.
Figure 12.6 shows the state of the file and its locks.

locked locked
niiii B AR

first | second | third fourth
byte byte byte byte

Figure 12.6 State of file and locks after second time through for loop.

What happens when we run Program 12.6 is that this form of file (every other byte
locked) continues until the kernel runs out of lock structures for the process. When this
happens, fcnt1 returns an error of ENOLCK.

Since we know how many bytes we are writing to the file each time, we can correct
this problem by replacing the second argument to un_lock (the 1_start specifier)
with the negative of the number of bytes (-1 in this case). This causes each lock to be
removed by un_lock.

This problem actually occurred to the author when developing the db writedat and
_db writeidx functions in Section 16.7. A slightly different way around the problem is
shown there. g

Advisory versus Mandatory Locking

Consider a library of database access routines. If all the functions in the library handle
record locking in a consistent way, then we say that any set of processes that are using
these functions to access a database are cooperating processes. It is feasible for these
database access functions to use advisory locking if these functions are the only ones
being used to access the database. But advisory locking doesn’t prevent some other
process that has write permission for the database file from writing whatever it wants to
the database file. This rogue process would be an uncooperating process since it’s not
using the accepted method (the library of database functions) to access the database.
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Mandatory locking causes the kernel to check every cpen, read, and write to ver-
ify that the calling process isn’t violating a lock on the file being accessed. Mandatory
locking is sometimes called enforcement-mode locking.

We saw in Figure 12.1 that SVR4 provides mandatory record locking. It is not part of POSIX.1.

Mandatory locking is enabled for a particular file by turning on the set-group-ID bit
and turning off the group-execute bit. (Recall Program 4.4.) Since the set-group-ID bit
makes no sense when the group-execute bit is off, the designers of SVR3 chose this way
to specify that the locking for a file is to be mandatory locking and not advisory locking.
(Many people consider this multiplexing of the set-group-ID bit to be a hack.)

What happens to a process that tries to read or write a file that has mandatory
locking enabled and the specified part of the file is currently read or write locked by
another process? The answer depends on the type of operation (read or write), the
type of lock held by the other process (read lock or write lock), and whether the descrip-
tor for the read or write is nonblocking. Figure 12.7 shows the eight possibilities.

Blocking descriptor, Nonblocking descriptor,
tries to tries to
read ‘write read write
read lock exists on region OK blocks OK EAGAIN
write lock exists on region blocks blocks EAGATN EAGAIN

Figure 12.7 Effect of mandatory locking on reads and writes by other processes.

In addition to the read and write functions in Figure 12.7, the open function can also
be affected by mandatory record locks held by another process. Normally, cpen suc-
ceeds, even if the file being opened has outstanding mandatory record locks. The next
read or write follows the rules listed in Figure 12.7. But if the file being opened has
outstanding mandatory record locks (either read locks or write locks); and if the flags in
the call to open specify either O_TRUNC, or O_CREAT, then open returns an error of
EAGAIN immediately, regardless whether O NONBLOCK is specified. (Generating the
open error for O TRUNC makes sense, because the file cannot be truncated if it is read
locked or write locked by another process. Generating the error for O_CREAT, however,
makes little sense, since this flag says to create the file only if it doesn't already exist, but
it has to exist to be record locked by another process.)

This handling of locking conflicts with open can lead to surprising results. While
developing the exercises in this section a test program was run that opened a file (whose
mode specified mandatory locking), established a read lock on an entire file, then went
to sleep for a while. (Recall from Figure 12.7 that a read lock should prevent writing to
the file by other processes.) During this sleep period the following behavior was seen in
other “normal” Unix programs.

¢ The same file could be edited with the ed editor, and the results written back to
disk! The mandatory record locking had no effect at all. Using the system call
trace feature provide by some versions of Unix it was seen that ed wrote the
new contents to a temporary file, removed the original file, then renamed the



Advanced 1/0

temporary file to be the original file. The mandatory record locking has no effect
on the unlink function, which allowed this to happen.

Under SVR4 the system call trace of a process is obtained by the truss(1) command.
4.3+BSD uses the ktrace(1) and kdump(1) commands.

The vi editor was never able to edit the file. It could read the file’s contents, but
whenever we tried to write new data to the file, EAGAIN was returned. If we
tried to append new data to the file, the write blocked. This behavior from vi
is what we expect.

Using the KornShell's > and >> operators to overwrite or append to the file
resulted in the error “cannot create.”

Using the same two operators with the Bourne shell resulted in an error for >,
but the >> operator just blocked until the mandatory lock was removed, and
then proceeded. (The difference in the handling of the append operator is
because the KornShell opens the file with O CREAT and O APPEND, and we
mentioned above that specifying O_CREAT generates an error. The Bourne shell,
however, doesn’t specify O CREAT if the file already exists, so the open succeeds
but the next write blocks.)

The bottom line with this exercise is to be wary of mandatory record locking. As seen
with the ed example, it can be circumvented.

Mandatory record locking can also be used by a malicious user to hold a read lock

on a file that is publicly readable. This can prevent anyone from writing to the file. (Of
course, the file has to have mandatory record locking enabled for this to occur, which
may require the user be able to change the permission bits of the file.) Consider a
database file that is world readable and has mandatory record locking enabled. If a
malicious user were to hold a read lock on the entire file, the file could not be written to
by other processes.

Example

Program 12.7 determines whether mandatory locking is supported by a system.

#include <sys/types.h>

#include <sys/stat.h>
#include <sys/wait.h>
#include <errno.h>
#include <fecntl.h>
#include "ourhdr.h"
int

main (void)

{

int fd;
pid_t pid;
char buff[5];

struct stat statbuf;
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if ( (fd = open("templock"™, O _RDWR | O CREART | O_TRUNC,
FILE MODE)) < 0)
err sys("open error");
if (write(fd, "abcdef", &) != 6)
err_sys ("write error");

/* turn on set-group-ID and turn off group-execute */

if (fstat(fd, &statbuf) < 0)

err sys("fstat error");

if (fchmod(fd, (statbuf.st mode & ~S_IXGRP) | S_ISGID) < 0)

err_sys("fchmod error");

TELL_WAIT();
if ( (pid = fork()) < 0) {

err_sys ("fork error");

} else if (pid > 0) { /* parent */

/* write lock entire file */
if (write_lock(fd, 0, SEEK_SET, 0) < 0)
err_sys ("write_lock error");
TELL_CHILD(pid):;

if (waitpid(pid, NULL, 0) < 0)
err_sys("waitpid error");

} else { /* child */

}

WAIT PARENT(); /* wait for parent to set lock */
set_fl(fd, O NONBLOCK) :

/* first let’s see what error we get if region is locked */
if (read_lock(fd, 0, SEEK_SET, 0) != -1) /* no wait */
err_sys("child: read lock succeeded"):
printf ("read_lock of already-locked region returns $d\n", errno);

/* now try to read the mandatory locked file */
if (lseek(fd, 0, SEEK_SET) == -1)
err_sys("lseek error");
if (read(fd, buff, 2) < 0)
err_ret ("read failed (mandatory locking works)"):
else
printf("read OK (no mandatory locking), buff = %2.2s\n", buff):

exit (0) ;

Program 12.7 Determine whether mandatory locking is supported.

This program creates a file and enables mandatory locking for the file. It then splits into
a parent and child, with the parent obtaining a write lock on the entire file. The child
first sets its descriptor nonblocking and then attempts to obtain a read lock on the file,
expecting to get an error. This lets us see if the system returns EACCES or EAGAIN.
Next the child rewinds the file and tries to read from the file. If mandatory locking is
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provided, the read should return EACCES or EAGAIN (since the descriptor is non-
blocking). Otherwise the read returns the data that it read. Running this program
under SVR4 (which supports mandatory locking) gives us

$ a.out
read_lock of already-locked region returns 13
read failed (mandatory locking works): No more processes

If we look at either the system’s headers or the intro(2) manual page, we see that an

errno of 13 corresponds to EACCES. We can also see from this example that the errno

returned by the read (EAGRIN) has the nondescriptive message “No more processes”

associated with it. Normally this error comes from fork when we are out of processes,
Under 4.3+BSD we get

$ a.out
read lock of already-locked region returns 35
read OK (no mandatory locking), buff = ab

Here an errno of 35 corresponds to EAGAIN. Mandatory locking is not supported. 0

Example

Let’s return to the first question of this section: what happens when two people edit the
same file at the same time? The normal Unix text editors do not employ record locking,
s0 the answer is still that the final result of the file corresponds to the last process that
wrote the file. (The 4.3+BSD vi editor does have a compile-time option to enable run-
time advisory record locking, but this option is not enabled by default.) Even if we
were to put advisory locking into one editor, say vi, it still doesn’t prevent users from
using another editor that doesn't employ advisory record locking.

If the system provides mandatory record locking, we could modify our favorite edi-
tor to use it (if we have the sources). Not having the source code to the editor, we might
try the following. We write our own program that is a front-end to vi. This program
immediately calls fork and the parent just waits for the child to complete. The child
opens the file specified on the command line, enables mandatory locking, obtains a
write lock on the entire file, and then execs vi. While vi is running, the file is write
locked, so other users can’t modify it. When vi terminates, the parent’s wait returns,
and our front-end terminates. Assumed in this example is that locks are inherited
across an exec, which we said earlier is the case for SVR4 (the only system we’ve
described that provides mandatory locking).

A small front-end program of this type can be written, but it doesn’t work. The
problem is that most editors (vi and ed, at least) read their input file and then close it.
A lock is released on a file whenever a descriptor that references that file is closed. This
means that when the editor closes the file after reading its contents, the lock is gone.
There is no way to prevent this in the front-end program. 0

We use record locking in Chapter 16 in our database library to provide concurrent
access to multiple processes. In this chapter we also provide some timing measure-
ments to see what effect record locking has on a process.




124 Streams

Streams are provided by System V as a general way to interface communication drivers
into the kernel. We need to discuss streams to understand (a) the terminal interface in
System V, (b) the use of the poll function for I/O multiplexing (Section 12.5.2), (c) the
implementation of stream pipes and named stream pipes (Sections 15.2 and 15.5).

Streams were developed by Dennis Ritchie [Ritchie 1984] as a way of cleaning up the tradi-
tional character 1/O system (clists) and to accommodate networking protocols. It was later
added to SVR3. Complete support for streams (i.e., a streams-based terminal I/O system) was
provided with SVR4. The SVR4 implementation is described in [AT&T 1990d]. SVR4 calls the
feature STREAMS. We'll just use the all lowercase name.

Be careful not to confuse this usage of the word streams with our previous usage of it in the
standard 1/0 library (Section 5.2).

A stream provides a full-duplex path between a user process and a device driver.
There is no need for a stream to talk to an actual hardware device—streams can also be
used with pseudo device drivers. Figure 12.8 shows the basic picture for what is called
a simple stream.
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Figure 12.8 A Simple stream.

Beneath the stream head we can push processing modules onto the stream. This is
done using an ioctl. Figure 12.9 shows a stream with a single processing module. We
also show the connection between these boxes with two arrows, to stress the full-duplex
nature of streams.

Any number of processing modules can be pushed onto a stream. We use the term
push, because each new module goes beneath the stream head, pushing any previously
pushed modules down. (This is similar to a last-in, first-out stack.) In Figure 12.9 we
have labeled the downstream and upstream sides of the stream. Data that we write to a
stream head is sent downstream. Data read by the device driver is sent upstream.
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Figure 129 A stream with a processing module.

Streams modules are similar to device drivers in that they execute as part of the ker-
nel, and they are normally link edited into the kernel when the kernel is built. Most sys-
tems don’t allow us to take arbitrary streams modules that have not been link edited
into the kernel and try to push them onto a stream.

Figure 11.2 shows the normal picture of a streams-based terminal system. In this
figure what we’ve labeled “read and write functions” is the stream head, and the box
labeled “terminal line discipline” is a streams processing module. The actual name of
this processing module is usually 1dterm. (The manual pages for the various streams
modules are found in Section 7 of [AT&T 1990d] and Section 7 of [AT&T 19911.)

We access a stream with the functions from Chapter 3: open, close, read, write,
and ioctl. Additionally, three new functions were added to the SVR3 kernel to sup-
port streams (getmsg, putmsg, and pol1), and another two were added with SVR4 to
handle messages with different priority bands within a stream (getpmsg and
putpmsg). We describe these five new functions later in this section. The pathname that
we open for a stream normally lives beneath the /dev directory. Just looking at the de-
vice name using 1s -1, we can’t tell if the device is a streams device or not. All streams
devices are character special files.

Although some streams documentation implies that we can write processing mod-
ules and push them willy-nilly onto a stream, the writing of these modules requires the
same skills and care as writing a device driver. It is generally specialized applications
or functions that push and pop streams modules.

Before streams, terminals were handled with the existing clist mechanism. (Section 10.3.1 of
Bach [1986] and Section 9.6 of Leffler et al. [1989] describe clists in SVR2 and 4.3BSD, respec-
tively.) Adding other character-based devices to the kernel usually involved writing a device
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driver and putting everything into the driver. Access to the new device was typically through
the raw device, meaning every user read or write ended up directly in the device driver.
The streams mechanism cleans up this way of interaction, allowing the data to flow between
the stream head and the driver in streams messages and allowing any number of intermediate
processing modules to operate on the data.

Streams Messages

All input and output under streams is based on messages. The stream head and user
process exchange messages using read, write, ioctl, getmsg, getpmsg, putmsg,
and putpmsg. Messages are also passed up and down a stream between the stream
head, the processing modules, and the device driver.

Between the user process and the stream head a message consists of (a) a message
type, (b) optional control information, and (c) optional data. We show in Figure 12.10
how the different message types are generated by the various arguments to write,
putmsg, and putpmsg. The control information and data are specified by strbuf
structures.

struct strbuf
int maxlen; /* size of buffer */
int len: /* number of bytes currently in buffer */
char *buf; /* pointer to buffer */

}i

When we send a message with putmsg or putpmsg, len specifies the number of bytes
of data in the buffer. When we receive a message with getmsg or getpmsg, maxlen
specifies the size of the buffer (so the kernel won’t overflow the buffer) and len is set by
the kernel to the amount of data stored in the buffer. We’ll see that a zero-length mes-
sage is OK, and a 1en of —1 can specify that there is no control or data.

Why do we need to pass both control information and data? Providing both allows
us to implement service interfaces between a user process and a stream. Olander,
McGrath, and Israel [1986] describe the original implementation of service interfaces in
System V. Chapter 5 of AT&T [1990d] describes service interfaces in detail, along with a
simple example. Probably the best-known service interface is the System V Transport
Layer Interface (TLI), described in Chapter 7 of Stevens [1990], which provides an inter-
face to the networking system.

Another example of control information is sending a connectionless network mes-
sage (a datagram). To send the message we need to specify the contents of the message
(the data) and the destination address for the message (the control information). If we
couldn’t send control and data together, some ad hoc scheme would be required. For
example, we could specify the address using an ioctl, followed by a write of the
data. Another technique would be to require that the address occupy the first N bytes
of the data that is written using write. Separating the control information from the
data, and providing functions that handle both (putmsg and getmsg) is a cleaner way
to handle this.

There are about 25 different types of messages, but only a few of these are used
between the user process and the stream head. The rest are passed up and down a
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stream within the kernel. (These are of interest to people writing streams-processing
modules, but can safely be ignored by people writing user-level code.) We'll encounter
only three of these message types with the functions we use (read, write, getnsg,
getpmsg, putmsg, and putpmsqg):

¢ M_DATA (user data for 1/0),
* M_PROTO (protocol control information), and
* M_PCPROTO (high-priority protocol control information).

Every message on a stream has a queueing priority:

* high-priority messages (highest priority)
¢ priority band messages
* ordinary messages (lowest priority)

Ordinary messages are priority band messages with a band of 0. Priority band mes-
sages have a band of 1-255, with a higher band specifying a higher priority.

Each streams module has two input queues. One receives messages from the mod-
ule above (messages moving downstream from the stream head toward the driver), and
one receives messages from the module below (messages moving upstream from the
driver toward the stream head). The messages on an input queue are arranged by pri-
ority. We show in Figure 12.10 how the different arguments to write, putmsg, and
putpmsg cause these different priority messages to be generated.

There are other types of messages that we don’t consider. For example, if the
stream head receives an M_SIG message from below, it generates a signal. This is how a
terminal line discipline module sends the terminal-generated signals to the foreground
process group associated with a controlling terminal.

putmsg and putpmsg Functions

A streams message (control information or data, or both) is written to a stream using
either putmsg or putpmsg. The difference in these two functions is that the latter
allows us to specify a priority band for the message.

#include <stropts.h>

int putmsg(int filedes, const struct strbuf *ctipir,
const struct strbuf *dataptr, int flag);

int putpmsg (int filedes, const struct strbuf *ctiptr,
const struct strbuf *dataptr, int band, int flag);

Both return: 0 if OK, =1 on error

We can also write to a stream, and that is equivalent to a putmsg without any control
information and with a flag of 0.
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These two functions can generate the three different priorities of messages: ordi-
nary, priority band, and high-priority. Figure 12.10 details the different combinations of
the arguments to these two functions that generate the different types of messages.

Function | Control? Data? band flag Message type generated
write N/A yes N/A N/A M_DATA (ordinary)
putmsg no no N/A 0 no message sent, returns 0
putmsg no yes N/A 0 M_DATA (ordinary)
putmsg yes yesorno | N/A 0 M_PROTO (ordinary)
putmsg yes yesorno | N/A RS _HIPRI | M_PCPROTO (high-priority)
putmsg no yes or no N/A RS _HIPRI | error, EINVAL

putpmsg | yesorno | yesorno | 0-255 0 error, EINVAL

putpmsg no no | 0-255 | MSG_BAND | no message sent, returns(
putpmsg no yes 0 MSG_BAND | M_DATA (ordinary)
putpmsg no yes 1-255 MSG_BAND | M_DATA (priority band)
putpmsg yes yes or no 0 MSG_BAND | M_PROTO (ordinary)
putpmsg yes yesorno | 1-255 MSG_BAND | M_PROTO (priority band)
putpmsg yes yes or no 0 MSG_HIPRI | M_PCPROTO (high-priority)
putpmsg no yes or no 0 MSG_HIFRI | error, EINVAL

putpmsg | yesorno | yesorno | nonzero | MSG_HIPRI | error, EINVAL

Figure 12.10 Type of streams message generated for write, putmsg, and putpmsg.

The notation “N/A” means not applicable. In this figure a “no” for the control portion
of the message corresponds to either a null ctlptr argument, or ctiptr—>len being —1. A
“yes” for the control portion corresponds to ctlptr being nonnull and ctlpir—>len being
greater than or equal to 0. The data portion of the message is handled equivalently
(using dataptr instead of ctlptr).

Streams ioct1l Operations

We mentioned in Section 3.14 that the ioctl function is the catchall for anything that
can’'t be done with the other I/O functions. The streams system continues this tradition.

Under SVR4 there are 29 different operations that can be performed on a stream
using ioctl. These operations are documented in the streamio(7) manual page (part
of [AT&T 1990d]) and the header <stropts.h> must be included in C code that uses
any of these operations. The second argument for ioct 1, request, specifies which of the
29 operations to perform. All the requests begin with T_. The third argument depends
on the request. Sometimes the third argument is an integer value and sometimes it’s a
pointer to an integer or a structure.

Example—isastream Function
We sometimes need to determine if a descriptor refers to a stream or not. This is similar

to calling the isatty function to determine if a descriptor refers to a terminal device
(Section 11.9). SVR4 provides the isast ream function.
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int isastream(int filedes) ;

Returns: 1 (true) if streams device, 0 (false) otherwise

(For some reason, the designers of SVR4 forgot to put the prototype for this function in
a header, so we can’t show an #include for this function.)

Like isatty, this is usually a trivial function that just tries an ioct1 that is valid
only on a streams device. Program 12.8 is one possible implementation of this function.
We use the I_CANPUT ioctl, which checks if the band specified by the third argument
(0 in the example) is writable. If the ioctl succeeds, the stream is not changed.

#include <stropts.h>
#include <unistd.h>

int
isastream(int £d)
{
return(ioctl (fd, I_CANPUT, 0) !'= -1);
}

Program 12.8 Check if descriptor is a streams device.

We can use Program 12.9 to test this function.

#include <sys/types.h>

#include <sys/fcntl.h>
#include "ourhdr.h"
int

main(int argec, char *argvl[]})
{
int i, f£d:

for (i = 1; 1 < arge; i++) {
printf("%s: ", argv[i]):
if ( (fd = open(argv[i], O RDONLY)) < 0) {
err ret("%s: can’t open", argv([i]);
continue;

}

if (isastream(fd) == 0)
err_ret("%s: not a stream", argvl[il);
else
err msg("%s: streams device", argv[i]):
}
exit (0) ;

Program 12.9 Test the i sastream function.
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Running this program shows the various errors returned by the ioct1 function.

$ a.out /dev/tty /dev/vidadm /dev/null /etc/motd
/dev/tty: /dev/tty: streams device

/dev/vidadm: /dev/vidadm: not a stream: Invalid argument
/dev/null: /dev/null: not a stream: No such device
/etc/motd: /etc/motd: not a stream: Not a typewriter

/dev/tty is a streams device, as we expect under SVR4. /dev/vidadm is not a
streams device, but it is a character special file that supports other ioctl requests.
These devices return EINVAL when the ioctl request is unknown. /dev/null is a
character special file that does not support any ioctl operations, so the error ENODEV
is returned. Finally, /etc/motd is a regular file, not a character special file, so the clas-
sic error ENOTTY is returned. We never receive the error we might expect: ENOSTR
(“Device is not a stream’).

“Not a typewriter” is a historical artifact because the Unix kernel returns ENOTTY whenever an
ioctl is attempted on a descriptor that doesn’t refer to a character special device. 0

Example

If the ioct1 request is I_LIST, the system returns the names of all the modules on the
stream—the ones that have been pushed onto the stream, including the topmost driver.
(We say topmost because in the case of a multiplexing driver there may be more than
one driver. Chapter 10 of AT&T [1990d] discusses multiplexing drivers in detail.) The
third argument must be a pointer to a stx_1list structure.

struct str_list {
int sl_nmods; /* number of entries in array */
struct str mlist *sl modlist; /* ptr to first element of array */
}:

We have to set s1_modlist to point to the first element of an array of str mlist
structures, and set s1_nmods to the number of entries in the array.

struct str_mlist {
char 1 name[FMNAMESZ+1]; /* null terminated module name */
b

The constant FMNAMESZ is defined in the header <sys/conf.h> and is often 8. The
extrabytein 1_name is for the terminating null byte.

If the third argument to the ioctl is 0, the count of the number of modules is
returned (as the value of ioct1) instead of the module names. We’ll use this to deter-
mine the number of modules and then allocate the required number of str mlist
structures.

Program 12.10 illustrates the I_LIST operation. Since the returned list of names
doesn’t differentiate between the modules and the driver, when we print the module
names we know that the final entry in the list is the driver at the bottom of the stream.

If we run Program 12.10 from both a network login and a console login, to see
which streams modules are pushed onto the controlling terminal, we get the following:
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#include <sys/conf.h>
#include <sys/types.h>
#include <fentl.h>

#include <stropts.h>
#include "ourhdr.h"
int

main(int argc, char *argv[])

{
int fd, i, nmods;
struct str_ list list;

if (argc !'= 2)
err_quit ("usage: a.out <pathname>");

if ( (fd = open(argv[l], O RDONLY)) < 0)
err_sys("can't open %s", argv[1l]);

if (isastream(fd) == 0)
err_quit ("%s is not a stream", argv[1]);

/* fetch number of modules */
if ( (nmeds = ioctl(fd, I_LIST, (void *) 0)) < 0)
err_sys("I_LIST error for nmods");
printf ("#modules = %d\n", nmods);

/* allocate storage for all the module names */
list.sl_modlist = calloc(nmods, sizeof(struct str_mlist));
if (list.sl _modlist == NULL)

err_sys("calloc error");
list.sl nmods = nmods;

/* and fetch the module names */
if (ioctl(fd, I_LIST, &list) < 0)
err_sys("I_LIST error for list");

/* print the module names */
for (i = 1; i <= nmods; i++)
printf(" %s: %s\n", (1 == nmods) ? "driver" : "module",
list.sl_modlist++);

exit (0);
}
Program 12,10 List the names of the modules on a stream.
$ who
stevens console Sep 25 06:12
stevens pts001 Oct 12 07:12

$ a.out /dev/pts001

#modules = 4
module: ttcompat
module: ldterm
module: ptem
driver: pts



$ a.out /dev/conscle
#modules = 5
module: ttcompat
module: ldterm
module: ansi
module: char
driver: cmux

The top two streams modules are the same for both cases (tt compat and 1dterm), but
the remaining modules and the topmost driver differ. We'll return to the pseudo-
terminal case (the network login) in Chapter 19. D

write to Streams Devices

In Figure 12.10 we said that a write to a streams device generates an M_DATA mes-
sage. While this is generally true, there are some additional details to consider. First,
with a stream the topmost processing module specifies the minimum and maximum
packet sizes that can be sent downstream. (We are unable to query the module for these
values.) If we write more than the maximum, the stream head normally breaks the
data into packets of the maximum size, with one final packet that can be smaller than
the maximum.

The next thing to consider is what happens if we write zero bytes to a stream.
Unless the stream refers to a pipe or FIFO, a zero-length message is sent downstream.
With a pipe or FIFO, the default is to ignore the zero-length write, for compatibility
with previous versions. We can change this default for pipes and FIFOs using an
ioctl to set the write mode for the stream.

Write Mode

There are two ioctls that fetch and set the “write mode” for a stream. Setting request
to I_GWROPT requires that the third argument be a pointer to an integer, and the current
write mode for the stream is returned in that integer. If request is I SWROPT then the
third argument is an integer whose value becomes the new write mode for the stream.
As with the file descriptor flags and the file status flags (Section 3.13) we should always
fetch the current write mode value and modify it, rather than setting the write mode to
some absolute value (possibly turning off some other bits that were enabled).
Currently only two write mode values are defined.

SNDZERO A zero-length write to a pipe or FIFO will cause a zero-length mes-
sage to be sent downstream. By default this zero-length write sends
no message.

SNDPIPE Causes SIGPIPE to be sent to the calling process that calls either write
or putmsg after an error has occurred on a stream.

A stream also has a read mode, and we’ll look at it after describing the getmsg and
getpmsg functions.
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getmsg and getpmsg Functions

Streams messages are read from a stream head using read, getmsg, or get pmsg.

#include <stropts.h>

int getmsg(int filedes, struct strbuf =*ctiptr,
struct strbuf *dataptr, int *flagptr) ;

int getpmsg(int filedes, struct strbuf *ctlptr,
struct strbuf *dataptr, int *bandptr, int *flagpir);

Both return: nonnegative value if OK, -1 on error

Note that flagptr and bandpir are pointers to integers. The integer pointed to by these
two pointers must be set before the call to specify the type of message desired, and the
integer is also set on return to the type of message that was read.

If the integer pointed to by flagptr is 0, getmsg returns the next message on the
stream head’s read queue. If the next message is a high-priority message, on return the
integer pointed to by flagpir is set to RS _HIPRI. If we want to receive only high-
priority messages, we must set the integer pointed to by flagptr to RS_HIPRI before
calling getmsg.

A different set of constants are used by getpmsg. It can also use bandptr to specify
a particular priority band.

These two functions have many conditions that dictate what type of message is
returned to the caller, based on (a) the values pointed to by flagptr and bandptr, (b) what
types of messages are on the stream’s queue, (¢) whether we specify a nonnull datapir
and ctlptr, and (d) the values of ctiptr—>maxlen and dataptr—>maxlen. We won’t need all
these details for our use of getmsg. Refer to the getmsg(2) manual page for all the
gory details.

Read Mode

We also need to consider what happens if we read from a streams device. There are
two potential problems: (1) what happens to the record boundaries associated with the
messages on a stream, and (2) what happens if we call read and the next message on
the stream has control information? The default handling for condition 1 is called byte-
stream mode. In this mode a read takes data from the stream until the requested num-
ber of bytes has been read or until there is no more data. The message boundaries asso-
ciated with the streams messages are ignored in this mode. The default handling for
condition 2 causes the read to return an error if there is a control message at the front of
the queue. We can change either of these defaults.

Using ioctl, if we set request to I_GRDOPT the third argument is a pointer to an
integer, and the current read mode for the stream is returned in that integer. A request of
I_SRDOPT takes the integer value of the third argument and sets the read mode to that
value. The read mode is specified by one of the following three constants.
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RNORM

RMSGN

RMSGD

Normal, byte-stream mode, as described previously. This is the
default.

Message nondiscard mode. A read takes data from a stream until it
reads the requested number of bytes or until a message boundary is
encountered. If the read uses a partial message, the rest of the data
in the message is left on the stream for a subsequent read.

Message discard mode. This is like the nondiscard mode, but if a
partial message is used, the remainder of the message is discarded.

Three additional constants can be specified in the read mode to set the behavior of read
when it encounters messages containing protocol information on a stream.

RPROTNORM
RPROTDAT

RPROTDIS

Example

Protocol-normal mode: read returns an error of EBADMSG. This is
the default.

Protocol-data mode: read returns the control portion as data to the
caller.

Protocol-discard mode: read discards the control information but
returns any data in the message.

Program 12.11 is Program 3.3 recoded to use getmsg instead of read. If we run this
program under SVR4, where both pipes and terminals are implemented using streams,
we get the following output.

$ echo hello, world | a.out requires pipes to be implemented using streams
flag = 0, ctl.len = -1, dat.len = 13

hello, world

flag = 0, ctl.len

S a.out

0, dat.len = 0 indicates a streams hangup
requiires terminals to be implemented using streams

this is line 1

flag = 0, ctl.len

-1, dat.len = 15

this is line 1

and line 2

flag = 0, ctl.len

and line 2
"D

flag = 0, ctl.len = -1, dat.len

-1, dat.len 11

type our terminal EOF character
0 tty end of file is not the same as a hangup

$ a.out < fetc/motd
getmsg error: Not a stream device

When the pipe is closed (when echo terminates) it appears to Program 12.11 as a
streams hangup—Dboth the control length and the data length are set to 0. (We discuss
pipes in Section 14.2.) With a terminal, however, typing the end of file character only
causes the data length to be returned as 0. This terminal end of file is not the same as a
streams hangup. As expected, when we redirect standard input to be a nonstreams de-
vice, an error is returned by getmsg. O
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#include <stropts.h>
#include "ourhdr.h"
#define BUFFSIZE 8192
int
main (void)
{
int n, flag;
char ctlbuf [BUFFSIZE], datbuf[BUFFSIZE];
struct strbuf ctl, dat;
ctl.buf = ctlbuf;
ctl.maxlen = BUFFSIZE;
dat .buf = datbuf;
dat .maxlen = BUFFSIZE;
for ( : ;) {
flag = 0; /* return any message */
if ( (n = getmsg(STDIN FILENO, &ctl, &dat, &flag)) < 0)
err sys("getmsg error");
fprintf (stderr, "flag = %d, ctl.len = %d, dat.len = %d\n",
flag, ctl.len, dat.len):
if (dat.len == 0)
exit (0);
else if (dat.len > 0)
if (write(STDOUT_FILENQO, dat.buf, dat.len) != dat.len)
err sys("write error");
}
}
Program 1211 Copy standard input to standard output using getmsq.
12.5 /O Multiplexing

When we read from one descriptor and write to another, we can use blocking I/0 in a
loop such as

while ( (n = read (STDIN_FILENO, buf, BUFSIZ)) > 0)
if (write (STDOUT_FILENO, buf, n) != n)
err_sys("write error");

We see this form of blocking I/O over and over again. What if we have to read from
two descriptors? In this case we can’t do a blocking read on either descriptor, as data
may appear on one descriptor while we're blocked in a read on the other. A different
technique is required to handle this case.

Let’s skip ahead and look at the modem dialer in Chapter 18. In this program we
read from the terminal (standard input) and write to the modem, and we read from the
modem and write to the terminal (standard output). Figure 12.11 shows a picture of
this.
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» . »
user .al: a modem dialer lelephone line
terminal /g process g N

Figure 12.11 Overview of modem dialer program.

The process has two inputs and two outputs. We can’t do a blocking read on either of
the inputs, as we never know which input will have data for us.

One way to handle this particular problem is to divide the process in two pleces
(using fork) with each half handling one direction of data. We show this in

Figure 12.12.
modem dialer
(
userata parent) \—\\ .
terminal @ telephone line
(child)

Figure 12.12 Modem dialer using two processes.

If we use two processes we can let each process do a blocking read. But this leads to a
problem when the operation terminates. If an end of file is received by the child (the
modem is hung up by the other end of the phone line) then the child terminates and the
parent is notified by the SIGCHLD signal. But if the parent terminates (the user enters
an end of file at the terminal) then the parent has to tell the child to stop. We can use a
signal for this (SIGUSR1, for example) but it does complicate the program somewhat.

We could use nonblocking I/0 in a single process. To do this we set both descrip-
tors nonblocking, and issue a read on the first descriptor. If data is present, we read it
and process it. If there is no data to read, the call returns immediately. We then do the
same thing with the second descriptor. After this we wait for some amount of time (a
few seconds perhaps), then try to read from the first descriptor again. This type of loop
is called polling. The problem is that it is a waste of CPU time. Most of the time there
won’t be data to read, so we waste the time performing the read system calls. We also
have to guess how long to wait each time around the loop. Although polling works on
any system that supports nonblocking 1/0, it should be avoided on a multitasking sys-
tem.

Another technique is called asynchronous I/O. To do this we tell the kernel to notify
us with a signal when a descriptor is ready for I/O. There are two problems with this.
First, not all systems support this feature (it is not yet part of POSIX, but may be in the
future). SVR4 provides the SIGPOLL signal for this technique, but this signal works
only if the descriptor refers to a streams device. 4.3+BSD has a similar signal, SIGIO,
but it has similar limitations—it works only on descriptors that refer to terminal devices
or networks. The second problem with this technique is that there is only one of these
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signals per process (SIGPOLL or SIGIO). If we enable this signal for two descriptors (in
the example we’ve been talking about, reading from two descriptors) the occurrence of
the signal doesn’t tell us which descriptor is ready. To determine which descriptor is
ready, we still need to set each nonblocking and try them in sequence. We describe
asynchronous 1/0O briefly in Section 12.6.

A better technique is to use I/O multiplexing. To do this we build a list of the
descriptors that we are interested in (usually more than one descriptor) and call a func-
tion that doesn’t return until one of the descriptors is ready for I/O. On return from the
function we are told which descriptors are ready for 1/0.

I/O multiplexing is not yet part of POSIX. The select function is provided by both SVR4
and 4.3+BSD to do 1/O multiplexing. The poll function is provided only by SVR4. SVR4
actually implements select using poll.

I/O multiplexing was provided with the select function in 42BSD. This function has
always worked with any descriptor, although its main use has been for terminal I/0 and net-
work I/O. SVR3 added the poll function when streams were added. Until SVR4, however,
poll only worked with streams devices. SVR4 supports pol1 on any descriptor.

Interruptibility of select and poll

When the automatic restarting of interrupted system calls was introduced with
4.2BSD (Section 10.5), the select function was never restarted. This characteristic con-
tinues with 4.3+BSD (and most systems derived from earlier BSD systems) even if the
SA_RESTART option is specified. But under SVR4, if SA RESTART is specified, even
select and poll are automatically restarted. To prevent this from catching us when
we port software to SVR4, we'll always use the signal_intr function (Program 10.13)
if the signal could interrupt a call to select or poll.

12.5.1 select Function

The select function lets us do I/O multiplexing under both SVR4 and 4.3+BSD. The
arguments we pass to select tell the kernel

Which descriptors we're interested in.

2. What conditions we’re interested in for each descriptor. (Do we want to read
from a given descriptor? Do we want to write to a given descriptor? Are we
interested in an exception condition for a given descriptor?)

3. How long we want to wait. (We can wait forever, wait a fixed amount of time,
or not wait at all.)

On the return from select the kernel tells us

1. The total count of the number of descriptors that are ready.

2. Which descriptors are ready for each of the three conditions (read, write, or
exception condition).
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With this return information we can call the appropriate I/0O function (usually read or
write)and know that the function won’t block.

#include <sys/types.h> /* fd_set data type */
#include <sys/time.h> /* struct timeval */
#include <unistd.h> /* function prototype might be here */

int select (int maxfdpl, fd_set *readfds, fd set *writefds, fd set *exceptfds,
struct timeval *fupfr);

Returns: count of ready descriptors, 0 on timeout, -1 on error

Let’s look at the last argument first. This specifies how long we want to wait.

struct timeval {

-long tv_sec; /* seconds */

long tv_usec; /* and microseconds */
b

There are three conditions.
tuptr == NULL

Wait forever. This infinite wait can be interrupted if we catch a signal. Return
is made when one of the specified descriptors is ready or when a signal is
caught. If a signal is caught, select returns —1 with errno set to EINTR.

toptr—>tv_sec == 0 && toptr—>tv_usec ==

Don’t wait at all. All the specified descriptors are tested and return is made
immediately. This is a way to poll the system to find out the status of multiple
descriptors, without blocking in the select function.

toptr—>tv sec '= 0 || toptr—>tv_usec '= 0

Wait the specified number of seconds and microseconds. Return is made when
one of the specified descriptors is ready or when the time-out value expires. If
the timeout expires before any of the descriptors is ready, the return value is 0.
(If the system doesn’t provide microsecond resolution, the toptr—>tv_usec value
is rounded up to the nearest supported value.) As with the first condition, this
wait can also be interrupted by a caught signal.

The middle three arguments, readfds, writefds, and exceptfds, are pointers to descriptor
sets. These three sets specify which descriptors we’re interested in and for which condi-
tions (readable, writable, or an exception condition). A descriptor set is stored in an
fd_set data type. This data type is chosen by the implementation so that it can hold
one bit for each possible descriptor. We can consider it just a big array of bits, as shown
in Figure 12.13.

The only thing we can do with the £d_set data type is (a) allocate a variable of this
type, (b) assign a variable of this type to another variable of the same type, or (c) use
one of the following four macros on a variable of this type:
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fd0 fd1 fd2
readfds — | 0 0 0

[.«——— one bit per possible descriptor ——}

writefds —-»= | 0 0 0

|J@—— fd set datatype ——=]

exceptfds —w= | 0 0 0

Figure 12.13 Specifying the read, write, and exception descriptors for select.

FD_ZERO(fd_set *fdset); /* clear all bits in fdset */
FD_SET(int fd, fd_set *fdset); /* turn on bit for fd in fdset */
FD_CLR{int fd, fd_set *fdset): /* turn off bit for fd in fdset */
FD_ISSET(int fd, fd_set *fdset); /* test bit for fd in fdset */

After declaring a descriptor set, as in

fd_set rset;
int fd;

we must zero the set using FD_ZERO.
FD_ZERO (&rset) ;

We then set bits in the set for each descriptor that we’re interested in:

FD_SET(fd, &rset);
FD_SET (STDIN_FILENO, &rset) ;

On return from select we can test whether a given bit in the set is still on using
FD _ISSET:

if (FD_ISSET(fd, &rset)) {

}

Any (or all) of the middle three arguments to select (the pointers to the descriptor
sets) can be null pointers, if we're not interested in that condition. If all three pointers
are NULL, then we have a higher precision timer than provided by sleep. (Recall from
Section 10.19 that s1eep waits for an integral number of seconds. With select we can
wait for intervals less than 1 second; the actual resolution depending on the system’s
clock.) Exercise 12.6 shows such a function.

The first argument to select, maxfdpl, stands for “max fd plus 1.” We calculate
the highest descriptor that we’re interested in, in any of the three descriptor sets, add 1,
and that’s the first argument. We could just set the first argument to FD_SETSIZE, a
constant in <sys/types .h> that specifies the maximum number of descriptors (often
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256 or 1024), but this value is too large for most applications. Indeed, most applications
probably use between 3 and 10 descriptors. (There are applications that need many
more descriptors, but these aren’t the typical Unix program.) By specifying the highest
descriptor that we're interested in, the kernel can avoid going through hundreds of
unused bits in the three descriptor sets, looking for bits that are turned on.

As an example, if we write

fd set readset, writeset;

FD_ZERO (&readset) ;
FD_ZERO (&writeset);

FD_SET (0, &readset):
FD_SET(3, &readset);
FD SET(l, &writeset);
FD_SET (2, &writeset):

select (4, &readset, &writeset, NULL, NULL);

then Figure 12.14 shows what the two descriptor sets look like.

fdo fd1 ) fd2
readset: 1 I 0 0
writeset: 0 171

B N B

fd 3

- I

—=none of these bits are looked at

0_

maxfdpl = 4

Figure 12.14 Example descriptor sets for select.

The reason we have to add 1 to the maximum descriptor number is because descriptors
start at 0, and the first argument is really a count of the number of descriptors to check

(starting with descriptor 0).

There are three possible return values from select.

1. A return value of —1 means an error occurred. This can happen, for example, if
a signal is caught before any of the specified descriptors are ready.

2. A return value of 0 means no descriptors are ready. This happens if the time
limit expires before any of the descriptors are ready.

3. A positive return value specifies the number of descriptors that are ready. In
this case the only bits left on in the three descriptor sets are the bits correspond-
ing to the descriptors that are ready.

Be careful not to check the descriptor sets on return unless the return value is greater than 0.
The return state of the descriptor sets is implementation dependent if either a signal is caught
or the timer expires. Indeed, if the timer expires 4.3+BSD doesn’t change the descriptor sets
while SVR4 clears the descriptor sets.
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There is another discrepancy between the SVR4 and BSD implementations of select. BSD
systems have always returned the sum of the number of ready descriptors in each set. If the
same descriptor is ready in two sets (say the read set and the write set), that descriptor is
counted twice. SVR4 unfortunately changes this and if the same descriptor is ready in multi-
ple sets, that descriptor is counted only once. This again shows the problems we'll encounter
until functions such as select are standardized by POSIX.

We now need to be more specific about what “ready” means.

1. A descriptor in the read set (readfds) is considered ready if a read from that
descriptor won’t block.

2. A descriptor in the write set (writefds) is considered ready if a write to that
descriptor won't block.

3. A descriptor in the exception set (exceptfds) is considered ready if there is an
exception condition pending on that descriptor. Currently an exception condi-
tion corresponds to (a) the arrival of out-of-band data on a network connection,
or (b) certain conditions occurring on a pseudo terminal that has been placed
into packet mode. (Section 15.10 of Stevens [1990] describes this latter condi-
tion.)

It is important to realize that whether a descriptor is blocking or not doesn’t affect
whether select blocks or not. That is, if we have a nonblocking descriptor that we
want to read from and we call select with a time-out value of 5 seconds, select will
block for up to 5 seconds. Similarly, if we specify an infinite timeout, select blocks
until data is ready for the descriptor, or until a signal is caught.

If we encounter the end of file on a descriptor, that descriptor is considered readable
by select. We then call read and it returns 0, the normal Unix way to signify end of
file. (Many people incorrectly assume select indicates an exception condition on a
descriptor when the end of file is reached.)

12.5.2 pol1l Function

The SVR4 poll function is similar to select, but the programmer interface is differ-
ent. As we'll see, poll is tied to the streams system, although in SVR4 we are able to
use it with any descriptor.

#include <stropts.h>
#include <poll.h>

int poll(struct pollfd fdarray[], unsigned long nfds, int timeout) ;

Returns: count of ready descriptors, 0 on timeout, —1 on error

Instead of building a set of descriptors for each condition (readability, writability, and
exception condition), as we did with select, with poll we build an array of poll£fd
structures, with each array element specifying a descriptor number and the conditions
that we're interested in for that descriptor.
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struct pollfd {(

int £d; /* file descriptor to check, or <0 to ignore */
short events; /* events of interest on fd */
short revents; /* events that occurred on fd */

Joh

The number of elements in the fdarray array is specified by nfds.

For some unknown reason, SVR3 specified the number of elements in the array as an
unsigned long, which seems excessive. In the SVR4 manual [AT&T 1990d], the prototype
for pol1 shows the data type of the second argument as size t. (Recall the primitive system
data types, Figure 2.8)) But the actual prototype in the <poll.h> header still shows the sec-
ond argument as an unsigned long.

The SVID for SVR4 [AT&T 19891 shows the first argument to poll as struct pollfd fdar-
ray[1, while the SVR4 manual page [AT&T 1990d] shows this argument as struct pollfd
*fdarray. In the C language both declarations are equivalent. We use the first declaration to
reiterate that fdarray points to an array of structures and not a pointer to a single structure.

We have to set the event s member of each array element to one or more of the val-
ues in Figure 12.15. This is how we tell the kernel what events we're interested in for
that descriptor. On return the revents member is set by the kernel, specifying which
events have occurred for that descriptor. (Notice that pol1 doesn’t change the events
member—this differs from select, which modifies its arguments to indicate what is

ready.)
Inputte | Result from I
e evgll'llt s? | revents? 2 dios sl

POLLIN . . Data other than high priority can be read without blocking.

POLLRDNORM . . Normal data (priority band 0) can be read without blocking.

POLLRDBAND . . Data from a nonzero priority band can be read without
blocking.

POLLPRI . . High-priority data can be read without blocking.

POLLOUT . . Normal data can be written without blocking.

POLLWRNCRM . ] Same as POLLOUT.

POLLWRBAND . . Data for a nonzero priority band can be written without
blocking,.

POLLERR . An error has occurred.

POLLHUP . A hangup has occurred.

POLLNVAL . The descriptor does not reference an open file.

Figure 12.15 The events and revents flags for pol1l.

The first four rows of Figure 12.15 test for readability, the next three test for writability,
and the final three are for exception conditions.

The last three rows in Figure 12.15 are set by the kernel on return. These three val-
ues are returned in revents when the condition occurs, even if they weren't specified
in the event s field.

When a descriptor is hung up (POLLHUP) we can no longer write to the descriptor.
There may, however, still be data to be read from the descriptor.



Advanced /0

12.6

The final argument to pol1l specifies how long we want to wait. As with select,
there are three different cases.

timeout == INFTIM

Wait forever. The constant INFTIM is defined in <stropts.h>, and its valueis
usually —1. Return is made when one of the specified descriptors is ready or
when a signal is caught. If a signal is caught, pol1 returns —1 with errno set
to EINTR.

timeout ==

Don’t wait. All the specified descriptors are tested and return is made immedi-
ately. This is a way to poll the system to find out the status of multiple descrip-
tors, without blocking in the call to poll.

timeout > 0

Wait timeout milliseconds. Return is made when one of the specified descrip-
tors is ready or when the timeout expires. If the timeout expires before any of the
descriptors is ready, the return value is 0. (If your system doesn’t provide mil-
lisecond resolution, timeout is rounded up to the nearest supported value.)

It is important to realize the difference between an end of file and a hangup. If
we're entering data from the terminal and type the end of file character, POLLIN is
turned on so we can read the end of file indication (the read returns 0). POLLEUP is
not turned on in revents. If we're reading from a modem and the telephone line is
hung up, we'll receive the POLLHUP notification.

As with select, whether a descriptor is blocking or not doesn’t affect whether
poll blocks or not.

Asynchronous /O

Using select and poll, as described in the previous section, is a synchronous form of
notification. The system doesn’t tell us anything until we ask (by calling either select
or poll). As we saw in Chapter 10, signals provide an asynchronous form of notifica-
tion that something has happened. Both SVR4 and 4.3+BSD provide asynchronous I/0,
using a signal (SIGPOLL in SVR4, and SIGIO in 4.3+BSD) to notify the process that
something of interest has happened on a descriptor.

We saw that select and poll work with any descriptors under SVR4. Under 4BSD select
has always worked with any descriptor. But with asynchronous I/0, we now encounter
restrictions. Under SVR4 asynchronous I/0 works only with streams devices. Under 43+BSD
asynchronous 1/0 works only with terminals and networks.

One limitation of asynchronous I/0, as supported by both SVR4 and 4.3+BSD, is
that there is only one signal per process. If we enable more than one descriptor for
asynchronous 1/0, when the signal is delivered we cannot tell which descriptor the sig-
nal corresponds to.
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12.6.1 System V Release 4

Asynchronous I/0 in SVR4 is part of the streams system. It works only with streams
devices. The SVR4 asynchronous 1/0O signal is SIGPOLL.

To enable asynchronous 1/O for a streams device we have to call ioct 1 with a sec-
ond argument (request) of I_SETSIG. The third argument is an integer value formed
from one or more of the constants in Figure 12.16. These constants are defined in
<stropts.h>.

Constant Description
S_INPUT A message other than a high-priority message has arrived.
S_RDNORM | An ordinary message has arrived.
S_RDBAND | A message with a nonzero priority band has arrived.
S_BANDURG | If this constant is specified with S_RDBAND, the SIGURG signal is generated
instead of SIGPOLL when a nonzero priority band message has arrived.
S_HIPRI A high-priority message has arrived.
S_OUTPUT The write queue is no longer full.
§ WRNORM Same as §_OUTPUT.
S_WRBAND We can send a nonzero priority band message.
5§ MSG A streams signal message that contains the SIGPOLL signal has arrived.
S_ERROR | AnM_ERROR message has arrived.
§_HANGUP I AnM_HANGUP message has arrived.

Figure 12.16 Conditions for generating SIGPOLL signal.

In Figure 12.16, whenever we say “has arrived” we mean “has arrived at the stream
head’s read queue.”

In addition to calling ioctl to specify the conditions that should generate the
SIGPOLL signal, we also have to establish a signal handler for this signal. Recall from
Figure 10.1 that the default action for SIGPOLL is to terminate the process, so we should
establish the signal handler before calling ioct1.

12.6.2 4.3+BSD

Asynchronous 1/0 in 4.3+BSD is a combination of two different signals: SIGIO and
SIGURG. The former is the general asynchronous I/O signal and the latter is used only
to notify the process that out-of-band data has arrived on a network connection.

To receive the SIGIO signal we need to perform three steps.

1. Establish a signal handler for the signal, by calling either signal or
sigaction.

2. Set the process ID or process group ID to receive the signal for the descriptor, by
calling fcntl with a command of F_SETOWN (Section 3.13).

3. Enable asynchronous I/O on the descriptor by calling fcnt1 with a command
of F_SETFL to set the 0_ASYNC file status flag (Figure 3.5).
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Step 3 can be performed only on descriptors that refer to terminals or networks, which
is a fundamental limitation of the 4.3+BSD asynchronous I/O facility.

For the SIGURG signal we need only perform steps 1 and 2. This signal is generated
only for descriptors that refer to network connections that support out-of-band data.

readv and writev Functions

The readv and writev functions let us read into and write from multiple noncontigu-
ous buffers in a single function call. These are called scatter read and gather write.

#include <sys/types.h>
#include <sys/uio.h>

ssize_t readv(int filedes, const struct iovec iov[], int iovcnt) ;

ssize_t writev (int filedes, const struct iovec iov[], int iovent);

Both return: number of bytes read or written, —1 on error

The second argument to both functions is a pointer to an array of iovec structures:

struct iovec {
void  *iov_base; /* starting address of buffer */
size_t iov_len; /* size of buffer */

}i

The number of elements in the iov array is specified by iovcnt.
These two functions originated in 4.2BSD. They are now in SVR4 also.

The prototypes for these two functions, and the iovec structure that they both use, exemplify
the continuing differences that appear in functions that have not been standardized by either
POSIX.1 or XPG3. If we compare the definitions in the SVR4 Programmer’s Manual [AT&T
1990el, the SVID for SVR4 [AT&T 1989], and both the SVR4 and 4.3+BSD <sys/uio.h> head-
ers, all are different! Part of the problem is that the SVID and the SVR4 Programmer’s Manual
correspond to the 1988 POSIX.1 standard, not the 1990 version. The prototype and structure
definition that we show above correspond to the POSIX.1 definitions for read and write: the
buffer addresses are void *, the buffer lengths are size_t, and the return value is ssize t.

Note that we have specified the second argument to readv as const. This corresponds to the
4.3+BSD function prototype, but the SVR4 manuals omit this qualifier. The qualifier is valid
with readv, since the members of the iovec structure are not modified—only the memory
locations pointed to by the iov_base members are modified by the function.

4.3BSD and SVRA4 limit fovcnt to 16. 4.3+BSD defines the constant UIO_MAXIOV, which is cur-
rently 1024. The SVID claims the constant I0V_MAX provides the System V limit, but it's not
defined in any of the SVR4 headers.

Figure 12.17 shows a picture relating the arguments to these two functions and the
iovec structure. writev gathers the output data from the buffers in order: ioo[0],
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iov[0].1iov_base ——r‘ buffer0 \
jov[0] . iov_len len0 jt———— lenl) ——]
iov[1] .iov_base -
- = buffer1 |
iov{l].iov_len lenl
fa— lenl —
iov[iovcnt-11 . iov_base =—-J| bufferl
iov [iovcnt=1] . icv_len lenl ft—————— lenl —

Figure 12.17 The iovec structure for readv and writev.

iov[1], through iovfiovent-1]. writev returns the total number of bytes output, which
should normally equal the sum of all the buffer lengths.

readv scatters the data into the buffers in order. readv always fills one buffer
before proceeding to the next. readv returns the total number of bytes that were read.
A count of 0 is returned if there is no more data and the end of file is encountered.

Example

In Section 16.7, in the function _db writeidx, we need to write two buffers consecu-
tively to a file. The second buffer to output is an argument passed by the caller, and the
first buffer is one we create, containing the length of the second buffer and a file offset of
other information in the file. There are three ways we can do this.

1. Call write twice, once for each buffer.

2. Allocate a buffer of our own that is large enough to contain both buffers, and
copy both into the new buffer. We then call write once for this new buffer.

3. Call writev to output both buffers.

The solution we use in Section 16.7 is to use writev, but it’s instructive to compare it to
the other two solutions.
Figure 12.18 shows the results from the three different methods just described.

SPARC 80386
Operation User | System | Clock User | System | Clock
twowrites 0.2 7.2 17.2 0.5 13.1 13.7
buffer copy, then one write 0.5 4.4 17.2 0.7 73 8.1
one writev 0.3 46 171 0.3 7.8 82

Figure 1218 Timing results comparing writev and other techniques.
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The test program that we measured output a 100-byte header followed by 200 bytes of
data. This was done 10,000 times, generating a 3-million-byte file. Three versions of the
program were written, and three times were measured for each program: the user CPU
time, the system CPU time, and the clock time. All three times are in seconds.

As we expect, the system time almost doubles when we call write twice, compared
to calling write once or writev once. This correlates with the results in Figure 3.1.

Next, note that the sum of the CPU times (user plus system) is almost constant
whether we do a buffer copy followed by a single write or a single writev. The dif-
ference is whether we pay for the CPU time executing in user space (the buffer copy) or
in system space (the writev). This sum is 4.9 seconds for the SPARC and about 8.0 sec-
onds for the 80386.

There is one final point to note from Figure 12.18, which is unrelated to our discus-
sion of readv and writev. The clock time for the SPARC system used for this test is
dominated by the disk speed (the clock time is double the CPU time, and the tests were
run on an otherwise idle system) while the clock time for the 80386 is dominated by the
CPU speed (the clock time almost equals the CPU time). o

In summary, we should always use readv and writev, instead of multiple reads
and writes. The timing results show that a buffer copy followed by a single write
often takes the same amount of CPU time as a single writev, but usually it is more
complicated to allocate the storage for a temporary buffer and do the copy, compared to
calling writev once.

readn and writen Functions

Some devices, notably terminals, networks, and any SVR4 streams devices, have the fol-
lowing two properties.

1. A read operation may return less than asked for, even though we have not
encountered the end of file. This is not an error, and we should just continue
reading from the device.

2. A write operation can also return less than we specified. This may be caused
by flow control constraints by downstream modules, for example. Again, it's
not an error, and we should continue writing the remainder of the data. (Nor
mally this short return from a write only occurs with a nonblocking descriptor
or if a signal is caught.)

We'll never see this happen when reading or writing a disk file.

In Chapter 18 we'll be writing to a stream pipe (which is based on SVR4 streams or
BSD Unix domain sockets) and need to take these characteristics into consideration. We
can use the following two functions to read or write N bytes of data, letting these
functions handle a possible return value that’s less than requested. These two functions

just call read or write as many times as required to read or write the entire N bytes of
data.




Memory Mapped 1/0 407

12.9

#include "ourhdr.h"
ssize_t readn(int filedes, void *buff, size_t nbytes);

ssize_t writen(int filedes, void *buff, size_t nbytes) ;

Both return: number of bytes read or written, —1 on error

We call writen anytime we’re writing to one of the device types that we mentioned,
but we call readn only when we know ahead of time that we will be receiving a certain
number of bytes. (Often we issue a read to one of these devices and take whatever is
returned.)

Program 12.12 is an implementation of writen that we use in later examples.
Program 12.13 is an implementation of readn.

Memory Mapped 1/O

Memory mapped I/O lets us map a file on disk into a buffer in memory so that, when
we fetch bytes from the buffer, the corresponding bytes of the file are read. Similarly,
when we store data in the buffer, the corresponding bytes are automatically written to
the file. This lets us perform I/O without using read or write.

To use this feature we have to tell the kernel to map a given file to a region in mem-
ory. This is done by the mmap function.

#include <sys/types.h>
#include <sys/mman.h>

caddr_t mmap (caddr_t addr, size_ t len, int prot, int flag,
int filedes, off_t off);

Returns: starting address of mapped region if OK, ~1 on error

Memory mapped I/O has been in use with virtual memory systems for many years. 4.1BSD
(1981) provided a different form of memory mapped I/O with its vread and vwrite func-
tions. These two functions were then removed in 4.2BSD and were intended to be replaced
with the mmap function. The mmap function, however, was not included with 4.2BSD (for rea-
sons described in Section 2.5 of Leffler et al. [1989]). Gingell, Moran, and Shannon [1987]
describe an implementation of mmap. The mmap function is now supported by both SVR4 and
4.3+BSD.

The data type caddr_t is often defined as char *. The addr argument lets us spec-
ify the starting address of where we want the mapped region to start. We normally set
this to 0 to allow the system to choose the starting address. The return value of this
function is the starting address of the mapped area.

filedes is the file descriptor specifying the file that is to be mapped. We have to open
this file before we can map it into the address space. len is the number of bytes to map,
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#include "ourhdr.h"

ssize t /* Write "n" bytes to a descriptor. */
writen(int fd, const void *vptr, size t n)
{

size t nleft, nwritten;

const char ‘*ptr;

ptr = vptr; /* can’t do pointer arithmetic on void* */
nleft = n;
while (nleft > 0) {
if ( (nwritten = write(fd, ptr, nleft)) <= 0)
return(nwritten): /* error */

nleft -= nwritten;
ptr += nwritten;

}

returni(n);

Program 1212 The writen function.

#include "ourhdr.h"

ssize_t /* Read "n" bytes from a descriptor. */
readn(int fd, void *vptr, size t n)
{

size t nleft, nread;

char *ptr;

ptr = vptr;
nleft = n;
while (nleft > 0) {
if ( (nread = read(fd, ptr, nleft)) < 0)

return (nread) ; /* error, return < 0 */
else if (nread == ()

break; /* EOF */
nleft —= nread;

ptr  += nread;

}
return(n - nleft); /* return >= 0 */

Program 1213 The readn function.
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and off is the starting offset in the file of the bytes to map. (There are some restrictions
on the value of off, described later.)
Before looking at the remaining arguments, let’s see what's going on here.

Figure 12.19 shows a memory mapped file. (Recall the memory layout of a typical pro-
cess, Figure 7.3.)

high address

len memory mapped v
portion of file

startaddr—XLoe —— L _ _ _ _ _ _ —

uninitialized data
(bss)

initialized data

memory mapped
low address text — - portion of file
Eﬁ'

Figure 1219 Example of a memory mapped file.

'

In this figure, “start addr” is the return value from mmap. We have shown the mapped
memory being somewhere between the heap and the stack: this is an implementation
detail and may differ from one implementation to the next.

The prot argument specifies the protection of the mapped region.

prot Description -
PROT_READ | region can be read
PROT_WRITE | region can be written
PROT_EXEC region can be executed
PROT_NONE region cannot be accessed (not in 4.3+BSD)

Figure 12.20 Protection of memory mapped region.

The protection specified for a region has to match the open mode of the file. For exam-
ple, we can’t specify PROT_WRITE if the file was opened read-only.
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The flag argument affects various attributes of the mapped region.

MAP_ FIXED The return value must equal addr. Use of this flag is discouraged,
as it hinders portability.

If this flag is not specified, and addr is nonzero, then the kernel
uses addr as a hint of where to place the mapped region.

Maximum portability is obtained by specifying addr as 0.
MAP_SHARED  This flag describes the disposition of store operations into the

mapped region by this process. This flag specifies that store oper-

ations modify the mapped file—that is, as store operation is

equivalent to a write to the file. Either this flag or the next
(MAP_PRIVATE) must be specified.

MAP_PRIVATE This flag says that store operations into the mapped region causea
copy of the mapped file to be created. All successive references to
the mapped region then reference the copy. (One use of this flag is
for a debugger that maps the text portion of a program file but
allows the user to modify the instructions. Any modifications
affect the copy, not the original program file.)

4.3+BSD has additional MAP_xxx flag values, which are specific to that implementation.
Check the 4.3+BSD mmap(2) manual page for details.

The value of off and the value of addr (if MAP_FIXED is specified) are normally
required to be multiples of the system’s virtual memory page size. Under SVR4 this
value can be obtained from the sysconf function (Section 2.5.4) with an argument of
SC_PAGESIZE. Under 4.3+BSD the page size is defined by the constant NBPG in the
header <sys/param.h>. Since off and addr are often specified as 0, this requirement is
not a problem.

Since the starting offset of the mapped file is tied to the system’s virtual memory
page size, what happens if the length of the mapped region isn’t a multiple of the page
size? Assume the file size is 12 bytes and the system’s page size is 512 bytes. In this
case the system normally provides a mapped region of 512 bytes and the final 500 bytes
of this region are set to 0. We can modify the final 500 bytes, but any changes we make
to them are not reflected in the file.

Two signals are normally used with mapped regions. SIGSEGV is the signal nor-
mally used to indicate that we have tried to access memory that is not available to us. It
can also be generated if we try to store into a mapped region that we specified to mmap
as read-only. The SIGBUS signal can be generated if we access a portion of the mapped
region that does not make sense at the time of the access. For example, assume we map
a file using the file’s size, but before we reference the mapped region the file's size is
truncated by some other process. If we then try to access the memory mapped region
corresponding to the end portion of the file that was truncated, we'll receive SIGBUS.

A memory mapped region is inherited by a child across a fork (since it's part of the
parent’s address space), but for the same reason is not inherited by the new program
across an exec.
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A memory mapped region is automatically unmapped when the process termi-
nates, or by calling munmap directly. Closing the file descriptor filedes does not unmap
the region.

#include <sys/types.h>
#include <sys/mman.h>

int munmap{(caddr_t addr, size t len);

Returns: 0 if OK, -1 on error

munmap does not affect the object that was mapped—that is, the call to munmap does
not cause the contents of the mapped region to be written to the disk file. The updating
of the disk file for a MAP _SHARED region happens automatically by the kernel’s virtual
memory algorithm as we store into the memory mapped region.

Some systems provide an msync function that is similar to £sync (Section 4.24), but works on
memory mapped regions.

Example

Program 12.14 copies a file (similar to the cp(1) command) using memory mapped 1/0.
We first open both files and then call £stat to obtain the size of the input file. We need
this size for the call to mmap for the input file, plus we need to set the size of the output
file. We call 1seek and then write one byte to set the size of the output file. If we
don’t set the output file’s size, the call to mmap for the output file is OK, but the first ref-
erence to the associated memory region generates SIGBUS. We might be tempted to use
ftruncate to set the size of the output file, but not all systems extend the size of a file
with this function. (See Section 4.13.)

~ We then call mmap for each file, to map the file into memory, and finally call memcpy
to copy from the input buffer to the output buffer. As the bytes of data are fetched from
the input buffer (src), the input file is automatically read by the kernel; and as the data
is stored in the output buffer (dst), the data is automatically written to the output file.

Let’s compare this memory mapped file copy to a copy that is done by calling read

and write (with a buffer size of 8192). Figure 12.21 shows the results.

SPARC 80386
Operation User | System | Clock User | System | Clock
read/write 0.0 26 11.0 0.0 53 11.2
mmap/memcpy 09 1.7 37 0.3 27 5.7

Figure 12.21 Timing results comparing read/write versus mmap/memcpy.

The times are given in seconds and the size of the file being copied was almost 3 million
bytes.
For the SPARC the total CPU time (user +system) is the same for both types of
copies: 2.6 seconds. (This is similar to what we found for writev in Figure 12.18.) For
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#include <sys/types.h>

#include <sys/stat.h>

#include <sys/mman.h> /* mmap() */
#include <fentl.h>

#include "ourhdr.h"

#ifndef MAP FILE /* 4.3+4BSD defines this & requires it to mmap files *
#define MAP FILE 0 /* to compile under systems other than 4.3+BSD #/
#endif

int

main(int argc, char *argv[])

{
int fdin, fdout;
char *src, *dst;
struct stat statbuf;

if (argc !'= 3)
err_quit ("usage: a.out <fromfile> <tofile>");

if ( (fdin = open(argv[1], O_RDONLY)) < 0)
err_sys("can’t open %s for reading", argv([1l]);

if ( (fdout = open(argv([2]. O_RDWR | O_CREAT | O _TRUNC,
FILE MODE)) < 0)
err sys("can’t creat %s for writing", argv[1]);

if (fstat (fdin, &statbuf) < 0) /* need size of input file */
err sys("fstat error");

/* set size of output file */
if (lseek(fdout, statbuf.st size - 1, SEEK_SET) == -1)
err sys("lseek error");
if (write(fdout, "™, 1) 1= 1)
err_sys{"write error");

if ( (src = mmap(0, statbuf.st size, FROT_READ,
MAP_FILE | MAP_SHARED, fdin, 0)) == (caddr t) -1)
err_sys("mmap error for input");

if ( (dst = mmap (0, statbuf.st_size, PROT READ | PROT_WRITE,
MAP_FILE | MAP_SHARED, fdout, 0)) == (caddr t) -1)
err_sys("mmap error for output");

memcpy (dst, src, statbuf.st size); /* does the file copy */
exit (0):

Program 12.14 Copy a file using memory mapped 1/0.
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the 386 the total CPU time is almost halved when we use mmap and memcpy.

When we use mmap, the reason that the system time decreases for both the SPARC
and the 386 is because the kernel is doing 1/0 directly to and from the mapped memory
buffers. When we call read and write, the kernel has to copy the data between our
buffers and its buffers and then do 1/O from its buffers.

The final point to note is that the clock time is at least halved when we use mmap
and memcpy. ]

Memory mapped 1/0O is faster, when copying one regular file to another. There are
limitations. We can’t use it to copy between certain devices (such as a network device
or a terminal device), and we have to be careful if the size of the underlying file could
change after we map it. Nevertheless, there are some applications that can benefit from
memory mapped 1/0, as it can often simplify the algorithms since we manipulate mem-
ory instead of reading and writing a file. One example that can benefit from memory
mapped [/0 is the manipulation of a frame buffer device that references a bit-mapped
display.

PKl?;eger, Stumm, and Unrau [1992] describe an alternative to the standard I/O
library (Chapter 5) that uses memory mapped 1/0.

We return to memory mapped I/O in Section 14.9, showing an example of how it
can be used under both SVR4 and 4.3+BSD to provide shared memory between related
processes.

12.10 Summary

In this chapter we’ve described numerous advanced I/0 functions, most of which are
used in the examples in later chapters:

¢ nonblocking I/O—issuing an [/O operation without letting it block (we’ll need
this for the PostScript printer driver in Chapter 17);

» record locking (which we'll look at in more detail through an actual example,
the database library in Chapter 16);

e System V streams (which we'll need in Chapter 15 to understand SVR4 stream
pipes, passing file descriptors, and SVR4 client-server connections);

e 1/O multiplexing—the select and poll functions (we’ll use these in many of
the later examples);

¢ the readv and writev functions (also used in many of the later examples);
* memory mapped I/O (mmap).
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Exercises

121

12.2

12.3

124

12.6

12.7

12.8

129

Remove the second call to write in the for loop in Program 12.6. What happens and
why?

Take a look at your system’s <sys/types.h> header and examine the implementation of
select and the four FD__macros.

The <sys/types.h> header usually has a built-in limit on the maximum number of
descriptors that the fd_set data type can handle. Assume we need to increase this to han-
dle up to 2048 descriptors. How can we do this?

Compare the different functions provided for signal sets (Section 10.11) and the fd_set
descriptor sets. Also compare the implementation of the two on your system.

How many different types of information does getmsg return?

Implement the function sleep us that is similar to sleep, but waits for a specified num-
ber of microseconds. Use either select or poll. Compare this function to the BSD
usleep function.

Can you implement the functions TELL WAIT, TELL_PARENT, TELL_CHILD,
WAIT _PARENT, and WAIT CHILD from Program 10.17 using advisory record locking
instead of signals? If so, code and test your implementation.

Determine the capacity of a pipe using either select or poll. Compare this value with
the value of PIPE_BUF from Chapter 2.

Run Program 12.14 to copy a file and determine whether the last-access time for the input
file is updated.

12.10 In Program 12.14 close the input file after calling mmap to verify that closing the descriptor

does not invalidate the memory mapped 1/0.



13.1

13.2

13

Daemon Processes

Introduction

Daemons are processes that live for a long time. They are often started when the system
is bootstrapped and terminate only when the system is shutdown. We say they run in
the background, because they don’t have a controlling terminal. Unix systems have
numerous daemons that perform day-to-day activities.

In this chapter we look at the process structure of daemons, and how to write a dae-
mon. Since a daemon does not have a controlling terminal, we need to see how a dae-
mon can report error conditions when something goes wrong.

Daemon Characteristics

Let’s look at some common system daemons and how they relate to the concepts of pro-
cess groups, controlling terminals, and sessions that we described in Chapter 9. The
ps(1) command prints the status of various processes in the system. There are a multi-
tude of options—consult your system’s manual for all the details. We'll execute

Ps —axj

under 4.3+BSD or SunOS to see the information we need for this discussion. The -a
option shows the status of processes owned by others, and -x shows processes that
don't have a controlling terminal. The —j option displays the job-related information:
the session ID, process group ID, controlling terminal, and terminal process group ID.
Under SVR4 a similar command is ps —efjc. (On some Unix systems that conform to
the Department of Defense security guidelines, we are not able to use ps to look at any
processes other than our own.) The output from ps looks like

415
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FPID PID PGID SID TT TPGID UID COMMAND
0 0 0 0 2 -1 C swapper
0 1 0 0 -1 0 /sbin/init -
0] 2 0 c? -1 0 pagedaemon
1 80 80 8O 2 -1 0 syslogd
1 88 88 88 ? -1 0 /usr/lib/sendmail -bd -glh
1 105 37 37 2 -1 0 update
1 108 108 108 2 -1 0 cron
1 114 114 114 2 ~1 0 inetd
1 117 117 117 2 -1 0 J/fusr/lib/lpd

We have removed a few columns that don’t interest us, such as the accumulated CPU
time. The columns headings, in order, are the parent process ID, process ID, process
group ID, session ID, terminal name, terminal process group ID (the foreground process
group associated with the controlling terminal), user ID, and actual command string.

The system that these ps commands were run on (SunOS) supports the notion of a session ID,
which we mentioned with the setsid function in Section 95. Tt is Just the process ID of the
session leader. A 4.3+BSD system, however, will print the address of the session structure
corresponding to the process group that the process belongs to (Section 9.11).

Processes 0, 1, and 2 are the ones described in Section 8.2. These three are special
and exist for the entire lifetime of the system. They have no parent process ID, no pro-
cess group ID, and no session ID. The syslogd daemon is available to any program to
log system messages for an operator. The messages may be printed on an actual con-
sole device and also written to a file. (We describe the syslog facility in Section 13.4.2.)
sendmail is the standard mailer daemon. update is a program that flushes the ker-
nel’s buffer cache to disk at regular intervals (usually every 30 seconds). To do this it
just calls the sync(2) function every 30 seconds. (We described sync in Section 4.24.)
The cron daemon executes commands at specified dates and times. Numerous system
administration tasks are handled by having programs executed regularly by cron. We
talked about the inetd daemon in Section 9.3. It listens on the system’s network inter-
faces for incoming requests for various network servers. The final daemon, 1pd, han-
dles print requests on the system.

Notice that all the daemons run with superuser privilege (a user ID of 0). None of
the daemons has a controlling terminal—the terminal name is set to a question mark
and the terminal foreground process group is —1. The lack of a controlling terminal is
probably the result of the daemon having called setsid. All the daemons other than
update are process group leaders and session leaders and are the only processes in
their process group and session. update is the only process in its process group (37)
and session (37), but the process group leader (which was probably also the session
leader) has already exited. Finally, note that the parent of all these daemons is the init

process.
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13.3 Coding Rules

There are some basic rules to coding a daemon, to prevent unwanted interactions from
happening. We state these rules and then show a function, daemon_init, that imple-
ments them.

e

The first thing to do is call fork and have the parent exit. This does several
things. First, if the daemon was started as a simple shell command, having the
parent terminate makes the shell think that the command is done. Second, the
child inherits the process group ID of the parent but gets a new process ID, so
we're guaranteed that the child is not a process group leader. This is a prerequi-
site for the call to set sid that is done next.

Call setsid to create a new session. The three steps listed in Section 9.5 occur.
The process (1) becomes a session leader of a new session, (2) becomes the pro-
cess group leader of a new process group, and (3) has no controlling terminal.

Under SVR4, some people recommend calling fork again at this point and having the
parent terminate. The second child continues as the daemon. This guarantees that the
daemon is not a session leader, which prevents it from acquiring a controlling terminal
under the SVR4 rules (Section 9.6). Alternately, to avoid acquiring a controlling terminal
be sure to specify O_NOCTTY whenever opening a terminal device.

Change the current working directory to the root directory. The current work-
ing directory inherited from the parent could be on a mounted filesystem. Since
daemons normally exist until the system is rebooted, if the daemon stays on a
mounted filesystem, that filesystem cannot be unmounted.

Alternately, some daemons might change the current working directory to some
specific location, where they will do all their work. For example, line printer
spooling daemons often change to their spool directory.

Set the file mode creation mask to 0. The file mode creation mask that’s inher-
ited could be set to deny certain permissions. If the daemon process is going to
create files, it may want to set specific permissions. For example, if it specifi-
cally creates files with group-read and group-write enabled, a file mode creation
mask that turns off either of these permissions would undo its efforts.

Unneeded file descriptors should be closed. This prevents the daemon from
holding open any descriptors that it may have inherited from its parent (which
could be a shell or some other process). Exactly which descriptors to close,
however, depends on the daemon, so we don’t show this step in our example. It
can use our open max function (Program 2.3) to determine the highest descrip-
tor and close all descriptors up to that value.
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13.4

Program 13.1 is a function that can be called from a program that wants to initialize
itself as a daemon.

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
$include "ourhdr .h"

int
daemon_init (void)

{
pid_t pid;

if ( (pid = fork()) < 0)
return(-1);
else if (pid '= 0)

exit (0); /* parent goes bye-bye */
/* child continues */
setsid(); /* become session leader */
chdir("/"); /* change working directory */
umask (0) ; /* clear our file mode creation mask */

return(0) ;

Program 13.1 Initialize a daemon process.

If the daemon_init function is called from a main program that then goes to sleep, we
can check the status of the daemon with the ps command:

$ a.out
$ ps —axj
PPID PID PGID SID TT TPGID UID COMMAND
1 735 735 735 ? -1 224 a.out
We can see that our daemon has been initialized correctly. o

Error Logging

One problem a daemon has is how to handle error messages. It can’t just write to stan-
dard error, since it shouldn’t have a controlling terminal. We don’t want all the dae-
mons writing to the console device, since on many workstations the console device runs
a windowing system. We also don’t want each daemon writing its own error messages
into a separate file. It would be a headache for anyone administering the system to
keep up with which daemon writes to which log file and to check these files on a regu-
lar basis. A central daemon error logging facility is required.
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The BSD syslog facility was developed at Berkeley and used widely in 4.2BSD. Most systems
derived from 4.xBSD support syslog. We describe this facility in Section 13.4.2.

There has never been a central daemon logging facility in System V. SVR4 supports the BSD-
style syslog facility, and the inetd daemon under SVR4 uses syslog. The basis for syslog
in SVR4 1s the /dev/log streams device driver, which we describe in the next section.

13.4.1 SVR4 Streams log Driver

SVR4 provides a streams device driver, documented in 1og(7) in [AT&T 1990d], with an
interface for streams error logging, streams event tracing, and console logging.

Figure 13.1 details the overall structure of this facility.

/var/adm/streams/error.mm—dd

files, console,
or e-mail
stdout T
strerr strace syslogd
error trace console user user
logger logger logger process process
getmsg getmsg getmsg putmsg write
R T e

/dev/1log /dev/log /dev/log /dev/log /dev/conslog

Each 1og message can be destined for one of three loggers: the error logger, the trace

log streams
device driver

strlog()

streams module

or driver

Figure 13.1 The SVR4 log facility.

logger, or the console logger.

We show three ways to generate 1og messages and three ways to read them.

* Generating 10g messages.

1. Routines within the kernel can call strlog to generate log messages. This is
normally used by streams modules and streams device drivers for either
error messages or trace messages. (Trace messages are often used in the
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debugging of new streams modules or drivers.) We won’t consider this type
of message generation, since we're not interested in the coding of kernel rou-
tines.

2. A user process (such as a daemon) can putmsg to /dev/log. This message
can be sent to any of the three loggers.

3. A user process (such as a daemon) can write to /dev/conslog. This mes-
sage is sent only to the console logger.

* Reading 1og messages.

4. The normal error logger is strerr(1M). It appends these messages to a file
in the directory /var/adm/streams. The file’s name is error.mm-dd,
where mm is the month and dd is the day of the month. This program is
itself a daemon, and it normally runs in the background, appending the log
messages to the file.

5. The normal trace logger is strace(IM). It can selectively write a specified
set of trace messages to its standard output.

6. The standard console logger is syslogd, a BSD-derived program that we
describe in the next section. This program is a daemon that reads a configu-
ration file and writes log messages to specified files or the console device or
sends e-mail to certain users.

Not mentioned in this list, but a possibility, is for a user process to replace any of the
standard system-supplied daemons: we can supply our own error logger, trace logger,
or console logger.

Each 1og message has information in addition to the message itself. For example,
the messages that are sent upstream by the log driver contain information about who
generated the message (if it was generated by a streams module within the kernel), a
level, a priority, some flags, and the time the message was generated. Refer to the
1og(7) manual page for all the details. If we're generating a 1og message using
putmsg, we can also set some of these fields. If we're calling write to send a message
to the console logger (through /dev/conslog), we can send only a message string.

Another possibility, not shown in Figure 13.1, is for a SVR4 daemon to call the BSD
syslog(3) function. Doing this sends the message to the console logger, similar to a
putmsg to /dev/1log. With syslog, we can set the priority field of the message. We
describe this function in the next section.

If the appropriate type of logger isn’t running when a log message of that type is
generated, the 1og driver just throws away the message.

Unfortunately, in SVR4 the use of this log facility is haphazard. A few daemons use it, but
most system-supplied daemons are hardcoded to write directly to the console,

The syslog(3) function and syslogd(1M) daemon are documented in the BSD Compatibility
Library [AT&T 1990c], but they are not in this library—they are in the standard C library,
available to all user processes (daemons).
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13.4.2 4.3+BSD syslog Facility

The BSD syslog facility has been widely used since 4.2BSD. Most daemons use this
facility. Figure 13.2 details its organization.

files, console,

or e-mail

user
pr. syslogd

syslog

= e e e e S N — — — — >~ =~ =—— A

! Y !

1 |
UDP "

'l /dev/log port 514 /dev/klog |

: Unix domain Internet domain ] |

I datagram socket datagram socket log |

I 1

: kernel :

: routines :

kernel \

TCP/IP network

Figure 13.2 The 4.3+BSD syslog facility.
There are three ways to generate log messages:

1. Kernel routines can call the 1og function. These messages can be read by any
user process that opens and reads the /dev/klog device. We won’t describe
this function any further, since we're not interested in writing kernel routines.

2. Most user processes (daemons) call the sys1log(3) function to generate log mes-
sages. We describe its calling sequence later. This causes the message to be sent
to the Unix domain datagram socket /dev/log.

3. A user process on this host, or on some other host that is connected to this host
by a TCP/IP network, can send log messages to UDP port 514. Note that the
syslog function never generates these UDP datagrams—they require explicit
network programming by the process generating the log message.

Refer to Stevens [1990] for details on Unix domain sockets and UDP sockets.

Normally the syslogd daemon reads all three forms of log messages. This dae-
mon reads a configuration file on start-up, usually /etc/syslog.conf, that deter-
mines where different classes of messages are to be sent. For example, urgent messages
can be sent to the system administrator via e-mail and printed on the console, while
warnings may be logged to a file.
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Our interface to this facility is through the sys1og function.

#include <syslog.h>
void openlog(char *ident, int option, int facility) ;

veid syslog(int priority, char *format, ...);:

void closelog (void) ;

Calling openlog is optional. If it's not called, the first time syslog is called, openlog
is called automatically. Calling closelog is also optional—it just closes the descriptor
that was being used to communicate with the syslogd daemon.

Calling openlog lets us specify an ident that is added to each log message. This is
normally the name of the program (e.g., cron, inetd, etc.). Figure 13.3 describes the
four possible options.

The facility argument for openlog is taken from Figure 13.4. The reason for the
facility argument is to let the configuration file specify that messages from different facil-
ities are to be handled differently. If we don’t call openlog, or we call it with a facility
of 0, we can still specify the facility as part of the priority argument to syslog.

We call syslog to generate a log message. The priority argument is a combination
of the facility shown in {syslog_facility} and a level, shown in Figure 13.5. These levels
are ordered by priority, from highest to lowest.

The format argument, and any remaining arguments, are passed to the vsprintf
function for formatting. Any occurrence of the two characters %m in the format are first
replaced with the error message string (strerror) corresponding to the value of
errno.

The 1ogger(1) program is also provided by both SVR4 and 4.3+BSD as a way to
send log messages to the syslog facility. Optional arguments to this program can
specify the facility, level, and ident. It is intended for a shell script running noninterac-
tively that needs to generate log messages.

A form of the 1ogger command is being standardized by POSIX.2.

Example

In our PostScript printer daemon in Chapter 17 we will encounter the sequence

openlog ("lprps", LOG_PID, LOG_LPR);
syslog (LOG_ERR, "open error for %s: %m", filename);

The first call sets the ident string to the program name, specifies that the process ID
should always be printed, and sets the default facility to the line printer system. The
actual call to syslog specifies an error condition and a message string. If we had not
called openlog, the second call could have been

syslog (LOG_ERR | LOG_LPR, "open error for %s: %m", filename);

Here we specify the priority argument as a combination of a level and a facility. D
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option Description

LOG_CONS If the log message can’t be sent to syslogd via the Unix domain datagram, the
message is written to the console instead.

Open the Unix domain datagram socket to the syslogd daemon
immediately—don’t wait until the first message is logged. Normally the
socket is not opened until the first message is logged.

Write the log message to standard error in addition to sending it to syslogd.
This option is supported only by the 4.3BSD Reno releases and later.

Log the process ID with each message. This is intended for daemons that fork a
child process to handle different requests (as compared to daemons such as

LOG_NDELAY

LOG_PERROR

LOG_PID

syslogd that never call fork).

Figure 13.3 The option argument for openlog.

facility

Description

LOG_AUTH
LOG_CRON
LOG_DAEMON
LOG_KERN
LOG_LOCALO
LOG_LOCAL1
LOG_LOCAL2
LOG_LOCAL3
LOG_LOCALA4
LOG_LOCALS
LOG_LOCAL6
LOG_LOCAL7
LOG_LER
LOG_MAIL
LOG_NEWS
LOG_SYSLOG
LOG_USER
LOG_UUCP

authorization programs: login, su, getty, ...
cronand at

system daemons: ftpd, routed, ...
messages generated by the kernel

reserved for local use

reserved for local use

reserved for local use

reserved for local use

reserved for local use

reserved for local use

reserved for local use

reserved for local use

line printer system: 1pd, 1pc, ...

the mail system

the Usenet network news system

the syslogd daemon itself

messages from other user processes (default)
the UUCP system

Figure 13.4 The facilify argument for openlog.

level

Description

LOG_EMERG
LOG_ALERT
LOG_CRIT
LOG_ERR
LOG_WARNING
LOG_NOTICE
LOG_INFO

LOG_DEBUG

emergency (system is unusable) (highest priority)
condition that must be fixed immediately

critical condition {e.g., hard device error)

error condition

warning condition

normal, but significant condition

informational message

debug message (lowest priority)

Figure 13.5 The syslog levels (ordered).
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13.5

13.6

Client—-Server Model

A common use for a daemon process is as a server process. Indeed, in Figure 13.2 we
can call the syslogd process a server that has messages sent to it by user processes
(clients) using a Unix domain datagram socket.

In general a server is a process that waits for a client to contact it, requesting some
type of service. In Figure 13.2 the service being provided by the syslogd server is the
logging of an error message.

In Figure 13.2 the communication between the client and server is one-way. The
client just sends its service request to the server—the server sends nothing back to the
client. In the following chapters on interprocess communication we'll see numerous
examples where there is a two-way communication between the client and server. The
client sends a request to the server, and the server sends a reply back to the client.

Summary

Daemon processes are running all the time on most Unix systems. To initialize our own
process that is to run as a daemon takes some care and an understanding of the process
relationships that we described in Chapter 9. In this chapter we developed a function
that can be called by a daemon process to initialize itself correctly.

We also discussed the ways a daemon can log error messages, since a daemon nor-
mally doesn’t have a controlling terminal. Under SVR4 the streams 1og driver is avail-
able, and under 4.3+BSD the syslog facility is provided. Since the BSD syslog
facility is also provided by SVR4, in later chapters when we need to log error messages
from a daemon, we’ll call the syslog function. We'll encounter this in Chapter 17 with
our PostScript printer daemon.

Exercises

13.1 As we might guess from Figure 13.2, when the syslog facility is initialized, either by call-
ing openlog directly or on the first call to syslog, the special device file for the Unix
domain datagram socket, /dev/1og, has to be opened. What happens if the user process
(the daemon) calls chroot before calling cpenlog?

13.2 List all the daemons active on your system and identify the function of each one.

13.3 Write a program that calls the daemon_init function in Program 13.1. After calling this
function, call get 1login (Section 8.14) to see if the process has a login name now that it has
become a daemon. Print the login name to file descriptor 3 and redirect this descriptor toa
temporary file when the program is run with the notation 3>/tmp/namel (Bourne shell or
KornShell).

Now rerun the program closing descriptors 0, 1, and 2 after the call to daemon_init, but
before the call to get login. Does this make any difference?



13.4 Write an SVR4 daemon that establishes itself as a console logger. Refer to 1og(7) in [AT&T
1990d] for the details. Each time a message is received, print the relevant information. Also
write a test program that sends console log messages to /dev/1og to test the daemon.

13.5 Modify Program 13.1 as we mentioned in rule 2 of Section 13.3 by doing a second fork so
that it can never acquire a controlling terminal under SVR4. Test your function to verify
that it is no longer a session leader.
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14.1 Introduction

In Chapter 8 we described the process control primitives and saw how to invoke multi-
ple processes. But the only way for these processes to exchange information is by pass-
ing open files across a fork or an exec, or through the filesystem. We'll now describe
other techniques for processes to communicate with each other—IPC or interprocess
communication.

Unix IPC has been, and continues to be, a hodgepodge of different approaches, few
of which are portable across all Unix implementations. Figure 14.1 summarizes the dif-
ferent forms of IPC that are supported by different implementations.

IPC type POSIX.1| XPG3 V7 SVR2 | SVR3.2 | SVR4 || 4.3BSD [4.3+BSD

pipes (half duplex) = . . .
FIFOs (named pipes) . . .
stream pipes (full duplex)
named stream pipes
message queues
semaphores

shared memory

sockets

streams .

L] L]

-
L]
-

* ® 9 & 8| ® @

" 8| 8 0 9 8 B |0

Figure 14.1 Summary of Unix IPC.

As this figure shows, about the only form of IPC that we can count on, regardless of the
Unix implementation, is half-duplex pipes. The first seven forms of IPC in this figure
are usually restricted to IPC between processes on the same host. The final two rows,

427
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14.2

sockets and streams, are the only two that are generally supported for IPC between pro-
cesses on different hosts. (See Stevens [1990] for details on networked IPC.) Although
the three forms of IPC in the middle of this figure (message queues, semaphores, and
shared memory) are shown as being supported only by System V, in most vendor-
supported Unix systems that are derived from Berkeley Unix (such as SunOS and
Ultrix), support has been added by the vendors for these three forms of IPC.

Work is underway in different POSIX groups on IPC, but the final outcome is far from clear. It
appears that nothing final will come from POSIX regarding IPC until 1994 or later.

We have divided the discussion of IPC into two chapters. In this chapter we exam-
ine classical IPC: pipes, FIFOs, message queues, semaphores, and shared memory. In
the next chapter we take a look at some advanced features of IPC, supported by both
SVR4 and 4.3+BSD: stream pipes, named stream pipes, and some of the things we can
do with these more advanced forms of IPC.

Pipes

Pipes are the oldest form of Unix IPC and are provided by all Unix systems. They have
two limitations:

1. They are half-duplex. Data flows only in one direction.

2. They can be used only between processes that have a common ancestor. Nor-
mally a pipe is created by a process, that process calls fork, and the pipe is
used between the parent and child.

We'll see that stream pipes (Section 15.2) get around the first limitation, and FIFOs
(Section 14.5) and named stream pipes (Section 15.5) get around the second limitation.
Despite these limitations, half-duplex pipes are still the most commonly used form of
IPC.

A pipe is created by calling the pipe function.

#include <unistd.h>

int pipe (int filedes[2]) ;

Returns: 0 if OK, ~1 on error

Two file descriptors are returned through the filedes argument: filedes[0] is open for read-
ing and filedes[1] is open for writing. The output of filedes[1] is the input for filedes[0].

There are two ways to picture a pipe, as shown in Figure 14.2. The left half of the
figure shows the two ends of the pipe connected in a single process. The right half of
the figure reiterates the fact that the data in the pipe flows through the kernel.

Under SVR4 a pipe is full duplex. Both descriptors can be written to and read from. The
arrows in Figure 14.2 would have heads on both ends. We call these full-duplex pipes “stream
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USer process USEr pProcess
or
£4[0] fd[1] £4d[0] fd[1]
‘\__._/

kernel

Figure 14.2 Two ways to view a Unix pipe.

pipes” and discuss them in detail in the next chapter. Since POSIX.1 only provides half-duplex
pipes, for portability we'll assume the pipe function creates a one-way pipe.

The fstat function (Section 4.2) returns a file type of FIFO for the file descriptor of
either end of a pipe. We can test for a pipe with the S_TSFIFO macro.

POSIX.1 states that the st _size member of the stat structure is undefined for pipes. But
when the fstat function is applied to the file descriptor for the read end of the pipe, many
systems store in st_size the number of bytes available for reading in the pipe. This is, how-
ever, nonportable.

A pipe in a single process is next to useless. Normally the process that calls pipe
then calls fork, creating an IPC channel from the parent to the child or vice versa.
Figure 14.3 shows this scenario.

parent child

fork

fd[0] fd[1l] f£d[0] £4[1]
L pipe :}{

kernel

Figure 14.3 Half-duplex pipe after a fork.

What happens after the fork depends on which direction of data flow we want. For a
pipe from the parent to the child, the parent closes the read end of the pipe (fd[01]) and
the child closes the write end (£d[1]). Figure 14.4 shows the resulting arrangement of
descriptors.
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parent child

£d (1] £d(0)

T
A\

kernel

Figure 14.4 Pipe from parent to child.

For a pipe from the child to the parent, the parent closes £d[1] and the child closes
£d4[0].
When one end of a pipe is closed, the following rules apply:

1. If we read from a pipe whose write end has been closed, after all the data has
been read, read returns 0 to indicate an end of file. (Technically we should say
that this end of file is not generated until there are no more writers for the pipe.
It’s possible to duplicate a pipe descriptor so that multiple processes have the
pipe open for writing. Normally, however, there is a single reader and a single
writer for a pipe. When we get to FIFOs in the next section, we’ll see that often
there are multiple writers for a single FIFO.)

2. If we write to a pipe whose read end has been closed, the signal SIGPIPE is
generated. If we either ignore the signal or catch it and return from the signal
handler, write returns an error with errno set to EPIPE.

When we're writing to a pipe (or FIFO), the constant PIPE_BUF specifies the ker-
nel’s pipe buffer size. A write of PIPE_BUF bytes or less will not be interleaved with
the writes from other processes to the same pipe (or FIFO). But if multiple processes
are writing to a pipe (or FIFO), and we write more than PIPE BUF bytes, the data
might be interleaved with the data from the other writers.

Example

Program 14.1 shows the code to create a pipe from the parent to the child, and send data
down the pipe. O

In the previous example we called read and write directly on the pipe descrip-
tors. What is more interesting is to duplicate the pipe descriptors onto standard input
or standard output. Often the child then execs some other program and that program
can either read from its standard input (the pipe that we created) or write to its standard
output (the pipe).
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#include "ourhdr.h"

int
main (void)
{
int n,; fd[2] H
pid t pid;
char line [MAXLINE];

if (pipe(fd} < 0)
err sys("pipe error");

if ( (pid = fork(})) < 0}
err_sys("fork error");

else if (pid > 0) { /* parent */
close (£d[0]);
write(fd[1l], "hellec world\n", 12);

} else { /* child */
close (£d4[1]);
n = read(fd[0], line, MAXLINE);
write (STDOUT_FILENO, line, n);
}

exit (0);

Program 14.1 Send data from parent to child over a pipe.

Example

Consider a program that wants to display some output that it has created, one page ata
time. Rather than reinvent the pagination done by several Unix utilities, we want to
invoke the user’s favorite pager. To avoid writing all the data to a temporary file, and
calling system to display that file, we want to pipe the output directly to the pager. To
do this we create a pipe, fork a child process, set up the child’s standard input to be the
read end of the pipe, and exec the user’s pager program. Program 14.2 shows how to
do this. (This example takes a command-line argument to specify the name of a file to

display. Often a program of this type would already have the data to display to the ter-
minal in memory.)

#include <sys/wait.h>
#include "ourhdr.h"

#define DEF_PAGER  "/usr/bin/more" /* default pager program */

int
main{int argc, char *argv[])
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int n, £d4d[2]:

pid t pid;

char line[MAXLINE], *pager, *argv0;
FILE *fp;

if (argc != 2)
err_quit ("usage: a.out <pathname>");
if ( (fp = fopen(argv[l], "r")) == NULL)
err sys("can’t open %s", argv[1l]):

if (pipe(fd) < 0)
err sys("pipe error”™);

if ( (pid = fork()) < 0)
err sys("fork error"):;
else if (pid > 0) { /* parent */
close (£d4[0]1); /* close read end */
/* parent copies argv[l] to pipe */
while (fgets(line, MAXLINE, fp) != NULL) ({
n = strlen(line);
if (write(fd[1l], line, n) != n)
err sys("write error to pipe");
}
if (ferror(fp))
err_sys("fgets error”);

close (£d[1]); /* close write end of pipe for reader */
if (waitpid(pid, NULL, 0) < 0)
err sys("waitpid error"):

exit (0);
} else { /* child */
close (fd[1]); /* close write end */
if (£4[0] !'= STDIN_FILENO) {
if (dup2(fd[0], STDIN_FILENO) I= STDIN_FILENO}

err sys("dup2 error to stdin”);
close (£4[01); /* don’t need this after dup2 */

/* get arguments for execl() */
if ( (pager = getenv("PAGER")) == NULL)
pager = DEF_PAGER;
if ( (argv0 = strrchripager, '/")) !'= NULL)
argv0++; /* step past rightmost slash */
else
argv0 = pager; /* no slash in pager */

if (execl(pager, argv0, (char *) 0) < 0)
err_sys("execl error for %s", pager):

Program 14.2 Copy file to pager program.



Before calling fork we create a pipe. After the fork the parent closes its read end
and the child closes its write end. The child then calls dup2 to have its standard input
be the read end of the pipe. When the pager program is executed, its standard input
will be the read end of the pipe.

When we duplicate a descriptor onto another (£d[0] onto standard input in the
child), we have to be careful that the descriptor doesn’t already have the desired value.
If the descriptor already had the desired value and we called dup2 and close, the sin-
gle copy of the descriptor would be closed. (Recall the operation of dup2 from
Section 3.12 when its two arguments are equal.) In this program, if standard input had
not been opened by the shell, the fopen at the beginning of the program should have
used descriptor 0, the lowest unused descriptor, so £d[0] should never equal standard
input. Nevertheless, whenever we call dup2 and close to duplicate a descriptor onto
another, as a defensive programming measure we’ll always compare the descriptors
first.

Note how we try to use the environment variable PAGER to obtain the name of the
user’s pager program. If this doesn’t work, we use a default. This is a common usage
of environment variables. O

Example

Recall the five functions TELL WAIT, TELL PARENT, TELL CHILD, WAIT PARENT,
and WAIT CHILD from Section 8.8. In Program 10.17 we showed an implementation
using signals. Program 14.3 shows an implementation using pipes.

We create two pipes before the fork, as shown in Figure 14.5.

parent child
pEA1 (1] P’ = p£A1[0]
pEA2[0] |- : pfd2(1]

Figure 14.5 Using two pipes for parent-child synchronization.

The parent writes the character “p” across the top pipe when TELL CHILD is called,
and the child writes the character “c” across the bottom pipe when TELL PARENT is
called. The corresponding WAIT xxx functions do a blocking read for the single char-
acter.

Note that each pipe has an extra reader, which doesn’t matter. That is, in addition
to the child reading from p£d1 [0], the parent also has this end of the top pipe open for
reading. This doesn’t affect us since the parent doesn’t try to read from this pipe. 0
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#include "ourhdr.h"
static int pfdi(2], pfd2([2];

void
TELL_WAIT ()
{
if (pipe(pfdl) < 0 || pipe(pfd2) < 0)
err_sys("pipe error");

}

void
TELL_PARENT (pid_t pid)
{
if (write(pfd2[1], "c¢", 1) I= 1)
err_sys("write error"™);

}

void
WAIT PARENT (void)
{

char c;

if (read(pfdl([0], &c, 1) I!= 1)
err_sys("read errcr"):
if (c !'='p")
err_qguit ("WAIT PARENT: incorrect data");
}

void
TELL CHILD{pid t pid)
{
if (write(pfdl[1], "p", 1) != 1)
err sys("write error");

}

void
WAIT CHILD(void)
{

char c;

if (read(pfd2[0], &c, 1)} '= 1)
err_sys("read error"});

if (c != 'c’)
err_quit ("WAIT CHILD: incorrect data"):;

Program 14.3 Routines to let a parent and child synchronize.
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143 popen and pclose Functions

Since a common operation is to create a pipe to another process, to either read its output
or send it input, the standard [/O library has historically provided the popen and
pclose functions. These two functions handle all the dirty work that we’ve been doing
ourselves: the creation of a pipe, the fork of a child, closing the unused ends of the

pipe, execing a shell to execute the command, and waiting for the command to termi-
nate.

#include <stdio.h>
FILE *popen{const char *cmdstring, const char *type);

Returns: file pointer if OK, NULL on error

int pclose(FILE *fp);

Returns: termination status of crmdstring, or —1 on error

The function popen does a fork and exec to execute the cmdstring, and returns a stan-
dard 1/0O file pointer. If type is "r", the file pointer is connected to the standard output
of cmdstring (Figure 14.6).

parent cmdstring (child)

£ [t stdout

Figure 14.6 Result of fp = popen (command, "r").

If type is "w", the file pointer is connected to the standard input of cmdstring
(Figure 14.7).

parent cmdstring (child)

fp = stcdin

Figure 14.7 Resultof fp = popen (command, “w").

One way to remember the final argument to popen is to remember that like fopen, the
returned file pointer is readable if type is "r", or writable if type is "w".

The pclose function closes the standard 1/0 stream, waits for the command to ter-
minate, and returns the termination status of the shell. (The termination status is what
we described in Section 8.6. This is what the system function (Section 8.12) also
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returns.) If the shell cannot be executed, the termination status returned by pclose is
as if the shell had executed exit (127).
The cmdstring is executed by the Bourne shell as in

sh ~c cmdstring

This means that the shell expands any of its special characters in cmdstring. This allows
us to say, for example,

fp = popen("ls *_c", "r");
or
fp = popen("cmd 2>&1", "r");
popen and pclose are not specified by POSIX.1, since they interact with a shell, which is cov-

ered by POSIX2. Our description of these functions corresponds to Draft 11.2 of POSIX2.

There are some differences between the proposed POSIX.2 specification and prior implementa-
tions.

#include <sys/wait.h>
#include "ourhdr.h"

#define PAGER "${PAGER: -more}" /* environment variable, or default */

int
main(int argc, char *argv[])
{
char line [MAXLINE] ;
FILE *fpin, *fpout;

if (argc '= 2)
err quit ("usage: a.out <pathname>");
if ( (fpin = fopen(argv([l], "r")) == NULL)
err_sys("can’t open %s", argv[l]):

if ( (fpout = popen(PAGER, "w")) == NULL)
err sys("popen error");

/* copy argv[l] to pager */
while (fgets(line, MAXLINE, fpin) != NULL) ({
if (fputs(line, fpout) == EOF)
err_sys("fputs error to pipe"):;
}
if (ferror (fpin))
err sys("fgets error");
if (pclose(fpout) == -1)
err sys{("pclose error"):
exit (0);

Program 14.4 Copy file to pager program using popen.
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Example

Let’s redo Program 14.2 using popen. This is shown in Program 14.4. Using popen
reduces the amount of code we have to write.

The shell command $ {PAGER:-more} says to use the value of the shell variable
PAGER if it is defined and nonnull, otherwise use the string more. O

Example—popen Function

Program 14.5 shows our version of popen and pclose. Although the core of popen is
similar to the code we've used earlier in this chapter, there are many details that we
need to take care of. First, each time popen is called we have to remember the process
ID of the child that we create and either its file descriptor or FILE pointer. We choose to
save the child’s process ID in the array childpid, which we index by the file descrip-
tor. This way, when pclose is called with the FILE pointer as its argument, we call the
standard I/0O function £ileno to get the file descriptor, and then have the child process
ID for the call to waitpid. Since it's possible for a given process to call popen more
than once, we dynamically allocate the childpid array (the first time popen is called),
with room for as many children as there are file descriptors.

Calling pipe, fork, and then duplicating the appropriate descriptors for each pro-
cess is similar to what we’ve done earlier in this chapter.

POSIX.2 requires that popen close any streams in the child that are still open from
previous calls to popen. To do this we go through the childpid array in the child,
closing any descriptors that are still open.

What happens if the caller of pclose has established a signal handler for
SIGCHLD? waitpid would return an error of EINTR. Since the caller is allowed to
catch this signal (or any other signal that might interrupt the call to waitpid) we just
call waitpid again if it is interrupted by a caught signal.

Earlier versions of pclose returned an error of EINTR if a signal interrupted the wait.

Earlier versions of pclose blocked or ignored the signals SIGINT, SIGQUIT, and SIGHUP
during the wait. This is not allowed by POSIX.2. o

#include <sys/wait .h>
#include <errno.h>
#include <fentl.h>
#include "ourhdr.h"

static pid t *childpid = NULL;
/* ptr to array allocated at run-time */
static int maxfd; /* from our open_max(), Program 2.3 */

#define SHELL "/bin/sh"

FILE *
popen (const char *cmdstring, const char *type}
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int i, pfd[2];
pid t  pid;
FILE *fp;

/* only allow "r" or "w" */
if ((type[0] != ‘r’ && type[0] '= 'w’) || typell] != 0) {
errnc = EINVAL; /* required by POSIX.2 */
return (NULL) ;
}

if (childpid == NULL) { /* first time through */
/* allocate zeroed out array for child pids */
maxfd = open max();
if ( (childpid = calloc(maxfd, sizeof(pid_t))) == NULL)
return (NULL) ;
}

if (pipe(pfd) < 0) |
return (NULL) ; /* errno set by pipe() */

if ( (pid = fork{(}) < 0)
return (NULL) ; /* errno set by fork() */
else if (pid == 0) { /* child */
if (*type == 'r') {
close (pfd[0]);
if (pfd[1] != STDOUT_FILENO) ({
dup2 (p£d(1], STDOUT_FILENO);
close (pfd[1]):
}
} else {
close (pfdil]):
if (pfd[0] != STDIN_FILENO) {
dup?2 (pfd[0], STDIN_FILENO) ;
close (p£d(0]):
}
}
/* close all descriptors in childpid[] */
for (i = 0; i < maxfd; i++)
if (childpid([i] > 0) |
close(i)}; |

execl (SHELL, "sh", "-c", cmdstring, (char *) 0); |
_exit(127);
}
/* parent */
if (*type == 'r’") {
close (pfd[1]);
if ( (fp = fdopen{pfd{0], type)) == NULL)
return (NULL) ;
} else {
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close (pfd(0]);
if ( (fp = fdopen(pfd[l], type)) == NULL)
return (NULL) ;
}
childpid[fileno(fp)] = pid; /* remember child pid for this fd */
return (fp) ;
}
int
pclose (FILE *fp)
{
int fd, stat;
pid t pid;

if (childpid == NULL)
return(-1); /* popen() has never been called */

fd = fileno(fp):
if ( (pid = childpid[fd]) == 0)
return(-1); /* fp wasn’t opened by popen() */

childpid[fd] = 0;:
if (fclose(fp) == EOF)
return(-1);

while (waitpid(pid, &stat, 0) < 0)
if (errno != EINTR)
return(-1); /* error other than EINTR from waitpid() */

return (stat) ; /* return child’s termination status */

Program 14.5 The popen and pclose functions.

Example

Consider an application that writes a prompt to standard output and reads a line from
standard input. With popen we can intersperse a program between the application and
its input, to transform the input. Figure 14.8 shows the arrangement of processes.

parent filter program

P Popen piPe Smﬂﬂf
stdout stdin

Figure 14.8 Transforming input using popen.
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#include <ctype.h>
#include "ourhdr.h"

int
main (void)
{

int C;

while ( (c = getchar()) '= EOF) ({
if (isupper(c))
c = tolower (c);
if (putchar(c) == EOF)
err sys ("output error");
if (c == "\n")
fflush(stdout);
}

exit (0);
}
Program 14.6 Filter to convert uppercase characters to lowercase.
#include <sys/wait_.h>
#include "ourhdr.h"

int

main {(void)

{
char line [MAXLINE] ;
FILE *fpin;

if ( (fpin = popen("myuclc", "r")) == NULL)
err_ sys("popen error");

for (; ;) {
fputs ("prompt> ", stdout):
fflush(stdout) ;

if (fgets(line, MAXLINE, fpin) == NULL) /* read from pipe */
break;
if (fputs(line, stdout) == EOF)

err_sys("fputs error to pipe");
}
if (pclose(fpin) == -1)
err_sys("pclose error");
putchar (‘\n’):
exit (0);

Program 14.7 Invoke uppercase/lowercase filter to read commands.
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14.4

The transformation could be pathname expansion, for example, or providing a history
mechanism (remembering previously entered commands). (This example comes from
the Rationale for popen in the POSIX.2 draft.)

Program 14.6 shows a simple filter to demonstrate this operation. It just copies
standard input to standard output, converting any uppercase character to lowercase.
The reason we're careful to ££1ush standard output after writing a newline is dis-
cussed in the next section when we talk about coprocesses.

We compile this filter into the executable file myuclc, which we then invoke from
Program 14.7 using popen.

We need to call £f1ush after writing the prompt because the standard output is
normally line buffered, and the prompt does not contain a newline. O

Coprocesses

A Unix filter is a program that reads from standard input and writes to standard output.
Filters are normally connected linearly in shell pipelines. A filter becomes a coprocess
when the same program generates its input and reads its output.

The KornShell provides coprocesses [Bolsky and Korn 1989]. The Bourne shell and
C shell don’t provide a way to connect processes together as coprocesses. A coprocess
normally runs in the background from a shell and its standard input and standard out-
put are connected to another program using a pipe. Although the shell syntax required
to initiate a coprocess and connect its input and output to other processes is quite con-
torted (see pp. 65-66 of Bolsky and Korn [1989] for all the details), coprocesses are also
useful from a C program.

Whereas popen gives us a one-way pipe to the standard input or from the standard
output of another process, with a coprocess we have two one-way pipes to the other
process—one to its standard input and one from its standard output. We want to write
to its standard input, let it operate on the data, then read from its standard output.

Example

Let's look at coprocesses with an example. The process creates two pipes: one is the
standard input of the coprocess and the other is the standard output of the coprocess.
Figure 14.9 shows this arrangement.

parent child (coprocess)
£d1 (1) pipel »! stdin
fd2[0] (= : stdout
pipe2

Figure 149 Driving a coprocess by writing its standard input and reading its standard output.
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Program 14.8 is a simple coprocess that reads two numbers from its standard input,
computes their sum, and writes the sum to its standard output.

#include "ourhdr.h"

int

main (void)

{
int n, intl, int2;
char line [MAXLINE] ;

while ( (n = read(STDIN FILENO, line, MAXLINE)) > 0) {
line[n] = 0; /* null terminate */
if (sscanf(line, "%d%d", &intl, &int2) == 2) {
sprintf(line, "%d\n", intl + int2);
n = strlen(line);
if (write(STDOUT FILENO, line, n) != n)
err_sys("write error");
} else {
if (write(STDOUT FILENO, "invalid args\n", 13) != 13)
err sys("write error");
}

}
exit (0) ;

Program 14.8 Simple filter to add two numbers.

We compile this program and leave the executable in the file add2.
Program 14.9 invokes the add2 coprocess, after reading two numbers from its stan-
dard input. The value from the coprocess is written to its standard output.

#include <signal.h>

#include "ourhdr.h"

static void sig pipe(int); /* our signal handler */
int

main (void)

{
int n, f£dil[2}], fd2[2];
pid_t pid;
char line [MAXLINE];

if (signal (SIGPIPE, sig pipe) == SIG_ERR)
err_sys("signal error");

if (pipe(fdl) < 0 || pipe(fd2) < 0)
err sys("pipe error");

if ( (pid = fork()) < 0)
err_sys("fork error");




else if (pid > 0) { /* parent */
close(£d1{01);
close(£d2[1]);
while (fgets(line, MAXLINE, stdin) != NULL) {
n = strlen(line);
if (write(fdl[1l], line, n) !'= n)
err_sys("write error to pipe");
if { (n = read(fd2[0], line, MAXLINE)) < 0)
err_sys("read error from pipe");
if (n == 0) {
err msg("child closed pipe");
break;
}
line[n] = 0; /* null terminate */
if (fputs(line, stdout) == EOF)
err sys("fputs error");
}
if (ferror(stdin))
err_sys("fgets error on stdin");
exit (0);

} else { /* child */
close(fdl[1]);
close (£d2[0]);
if (£d1[0] != STDIN_FILENO) ({
if (dupZ (£d1[0], STDIN_FILENO) != STDIN FILENO)
err sys("dup2 error to stdin"):;
close (£41[01) ;
}
if (fd2[1] != STDOUT_FILENO) ({
if (dup2(fd2[1], STDOUT FILENO) != STDOUT_ FILENO)
err_sys ("dup2 error to stdout”);
close (fd2[1]):
}
if (execl("./add2"™, "add2", (char *) 0) < 0)
err sys("execl error");

}

static void

sig pipe(int signo)

{
printf ("SIGPIPE caught\n");
exit (1);

Program 149 Program to drive the addz2 filter.

Here we create two pipes, with the parent and child closing the ends they don’t need.
We have to use two pipes: one for the standard input of the coprocess, and one for its
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standard output. The child then calls dup2 to move the pipe descriptors onto its stan-
dard input and standard output, before calling exec1.

If we compile and run Program 14.9, it works as expected. Furthermore, if we ki1l
the add2 coprocess while Program 14.9 is waiting for our input, and then enter two
numbers, when the program writes to the pipe that has no reader, the signal handler is
invoked. (See Exercise 14.4.)

In Program 15.1 we provide another version of this example using a single full-
duplex pipe instead of two half-duplex pipes. O

Example

In the coprocess add2 (Program 14.8) we purposely used Unix I/O: read and write.
What happens if we rewrite this coprocess to use standard 1/0? Program 14.10 shows
the new version.

#include "ourhdr.h"

int
main(void)
{
int intl, int2;
char line[MAXLINE] ;
while (fgets(line, MAXLINE, stdin) != NULL) {
if (sscanf(line, "%d%d", &intl, &int2) == 2) {
if (printf("%d\n", intl + int2) == EOF)
err sys("printf error");
} else {
if (printf("invalid args\n") == EOF)
err sys("printf error");
}
}
exit (0);

Program 14.10 Filter to add two numbers, using standard I/0.

If we invoke this new coprocess from Program 14.9 it no longer works. The problem is
the default standard I/O buffering. When Program 14.10 is invoked, the first £gets on
the standard input causes the standard I/0 library to allocate a buffer and choose the
type of buffering. Since the standard input is a pipe, isatty is false, and the standard
I/0 library defaults to fully buffered. The same thing happens with the standard out-
put. While add2 is blocked reading from its standard input, Program 14.9 is blocked
reading from the pipe. We have a deadlock.

Here we have control over the coprocess that's being execed. We can change
Program 14.10 by adding the following four lines before the while loop is entered.

if (setvbuf(stdin, NULL, _IOLBF, 0) !'= 0)
err sys("setvbuf erroxr");
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if (setvbuf (stdout, NULL, _IOLBF, 0) != 0)
err_sys ("setvbuf error");

This causes the fget s to return when a line is available, and it causes printf to do an
fflush when a newline is output. Making these explicit calls to setvbuf fixes
Program 14.10.

If we aren’t able to modify the program that we're piping the output into, other
techniques are required. For example, if we use awk(1) as a coprocess from our pro-
gram (instead of the add2 program), the following won't work:

#! /bin/awk -f
{ print $1 + $2 }

The reason this won’t work is again the standard I/0 buffering. But in this case we can-
not change the way awk works (unless we have the source code for it). We are unable to
modify the executable of awk in any way to change the way the standard 1/0 buffering
is handled.

The solution for this general problem is to make the coprocess being invoked (awk
in this case) think that its standard input and standard output are connected to a termi-
nal. That causes the standard I/O routines in the coprocess to line buffer these two I/0
streams, similar to what we did with the explicit calls to setvbuf previously. We use
pseudo terminals to do this in Chapter 19. D

FIFOs

FIFOs are sometimes called named pipes. Pipes can be used only between related pro-
cesses when a common ancestor has created the pipe. With FIFOs, however, unrelated
processes can exchange data.

We saw in Chapter 4 that a FIFO is a type of file. One of the codings of the
st_mode member of the stat structure (Section 4.2) indicates that a file is a FIFO. We
can test for this with the S_ TSFIFO macro.

Creating a FIFO is similar to creating a file. Indeed, the pathname for a FIFO exists in
the filesystem.

#include <sys/types.h>
#include <sys/stat.h>

int mkfifo(const char *pathname, mode_t mntode) ;

Returns: 0 if OK, -1 on error

The specification of the mode argument for the mkfifo function is the same as for the
open function (Section 3.3). The rules for the user and group ownership of the new
FIFO are the same as we described in Section 4.6.

Once we have created a FIFO using mkfifo, we open it using open. Indeed, the
normal file I/O functions (close, read, write, unlink, etc.) all work with FIFOs.
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The mkfifo function is an invention of POSIX.1. SVR3, for example, used the mknod(2) sys-
tem call to create a FIFO. In SVR4 mkfifo just calls mknod to create the FIFO.

POSIX.2 has proposed a mkfifo(1) command. Both SVR4 and 4.3+BSD currently support this
command. This allows a FIFO to be created using a shell command, and then accessed with
the normal shell I/0 redirection.

When we open a FIFO, the nonblocking flag (O NONBLOCK) affects what happens.

1. In the normal case (0_NONBLOCK not specified), an open for read-only blocks
until some other process opens the FIFO for writing. Similarly, an open for
write-only blocks until some other process opens the FIFO for reading.

2. IfO_NONBLOCK is specified, an open for read-only returns immediately. But an
open for write-only returns an error with an errno of ENXIO if no process has
the FIFO open for reading,.

Like a pipe, if we write to a FIFO that no process has open for reading, the signal
SIGPIPE is generated. When the last writer for a FIFO closes the FIFO, an end of file is
generated for the reader of the FIFO.

It is common to have multiple writers for a given FIFO. This means we have to
worry about atomic writes if we don’t want the writes from multiple processes to be
interleaved. As with pipes, the constant PIPE_BUF specifies the maximum amount of
data that can be written atomically to a FIFO.

There are two uses for FIFOs.

1. FIFOs are used by shell commands to pass data from one shell pipeline to
another, without creating intermediate temporary files.

2. FIFOs are used in a client-server application to pass data between the clients
and server.

We discuss each of these with an example.
Example—Using FIFOs to Duplicate Output Streams

FIFOs can be used to duplicate an output stream in a series of shell commands. This
prevents writing the data to an intermediate disk file (similar to using pipes to avoid
intermediate disk files). But while pipes can be used only for linear connections
between processes, since a FIFO has a name, it can be used for nonlinear connections.

Consider a procedure that needs to process a filtered input stream twice.
Figure 14.10 shows this arrangement.

With a FIFO and the Unix program tee(1) we can accomplish this procedure with-
out using a temporary file. (The tee program copies its standard input to both its stan-
dard output and to the file named on its command line.)

mkfifo fifol
prog3 < fifol &
progl < infile | tee fifol | prog2



prog3

input
file ————= progl

prog2

Figure 14.10 Procedure that processes a filtered input stream twice.

We create the FIFO and then start prog3 in the background, reading from the FIFO. We
then start progl and use tee to send its input to both the FIFO and prog2.
Figure 14.11 shows the process arrangement pictorially.

prog3

1r;11-:l=:t — = progl = tee \
prog2

Figure 14.11 Using a FIFO and tee to send a stream to two different processes.

Example—Client-Server Communication Using a FIFO

Another use for FIFOs is to send data between a client and server. If we have a server
that is contacted by numerous clients, each client can write its request to a well-known
FIFO that the server creates. (By “well-known” we mean that the pathname of the FIFO
is known to all the clients that need to contact it.) Figure 14.12 shows this arrangement.
Since there are multiple writers for the FIFO, the requests sent by the clients to the
server need to be less than PIPE_BUF bytes in size. This prevents any interleaving of
the client writes.

The problem in using FIFOs for this type of client-server communication is how to
send replies back from the server to each client. A single FIFO can't be used, as the
dients would never know when to read their response, versus responses for other
dlients. One solution is for each client to send its process ID with the request. The
server then creates a unique FIFO for each client, using a pathname based on the client’s
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Figure 14.12 Clients sending requests to a server using a FIFO.

process ID. For example, the server can create a FIFO with the name
/tmp/servl.XXXXX, where XXXXX is replaced with the client's process ID.
Figure 14.13 shows this arrangement.

Server

client-specific
FIFO

read replies

Figure 14.13 Client-server communication using FIFOs.

This arrangement works, although it is impossible for the server to tell if a client
crashes. This causes the client-specific FIFOs to be left in the filesystem. The server also
must catch SIGPIPE, since it's possible for a client to send a request and terminate
before reading the response, leaving the client-specific FIFO with one writer (the server)
and no reader.
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With the arrangement shown in Figure 14.13, if the server opens its well-known
FIFO read-only (since it only reads from it) each time the number of clients goes from 1
to 0 the server will read an end of file on the FIFO. To prevent the server having to
handle this case, a common trick is just to have the server open its well-known FIFO for
read-write. (See Exercise 14.10.) O

System V IPC

There are many similarities between the three types of IPC that we call System V
IPC—message queues, semaphores, and shared memory. In this section we cover these
similar features, before looking at the specific functions for each of the three IPC types
in the following sections.

These three types of IPC originated in the 1970s in an internal version of Unix called “Colum-
bus Unix.” These IPC features were later added to System V.

14.6.1 Identifiers and Keys

Each IPC structure (message queue, semaphore, or shared memory segment) in the ker-
nel is referred to by a nonnegative integer identifier. To send or fetch a message to or
from a message queue, for example, all we need know is the identifier for the queue.
Unlike file descriptors, IPC identifiers are not small integers. Indeed, when a given IPC
structure is created and then removed, the identifier associated with that structure con-
tinually increases until it reaches the maximum positive value for an integer, and then
wraps around to 0. (This value that is remembered even after an IPC structure is
deleted, and incremented each time the structure is used, is called the “slot usage
sequence number.” It is in the ipc_perm structure, which we show in the next section.)

Whenever an IPC structure is being created (by calling msgget, semget, or
shmget), a key must be specified. The data type of this key is the primitive system data
type key t, which is often defined as a long integer in the header <sys/types.h>.
This key is converted into an identifier by the kernel.

There are various ways for a client and server to rendezvous at the same IPC struc--
ture.

1. The server can create a new IPC structure by specifying a key of IPC_PRIVATE
and store the returned identifier somewhere (such as a file) for the client to
obtain. The key IPC_PRIVATE guarantees that the server creates a brand new
IPC structure. The disadvantage to this technique is that filesystem operations
are required for the server to write the integer identifier to a file, and then for
the clients to retrieve this identifier later.

The IPC_PRIVATE key is also used in a parent—child relationship. The parent
creates a new IPC structure specifying IPC_PRIVATE and the resulting identi-
fier is then available to the child after the fork. The child can pass the identifier
to a new program as an argument to one of the exec functions.



Interprocess Communication

2. The client and server can agree on a key by defining the key in a common
header, for example. The server then creates a new IPC structure specifying this
key. The problem with this approach is that it’s possible for the key to already
be associated with an IPC structure, in which case the get function (msgget,
semget, or shmget) returns an error. The server must handle this error, delet-
ing the existing IPC structure, and try to create it again.

3. The client and server can agree on a pathname and project ID (the project ID is
just a character value between 0 and 255) and call the function ftok to convert
these two values into a key. (The function ftok is described in the stdipc(3)
manual page.) This key is then used in step 2. The only service provided by
ftok is a way of generating a key from a pathname and project ID. Since the
client and server typically share at least one header, an easier technique is to
avoid using ftok and just store the well-known key in this header, avoiding yet
another function.

The three get functions (msgget, semget, and shmget) all have two similar argu-

ments: a key and an integer flag. A new IPC structure is created (normally by-a server) if
either

1. keyis IPC_PRIVATE, or

2. key is not currently associated with an IPC structure of the particular type and
the IPC_CREAT bit of flag is specified.

To reference an existing queue (normally done by a dlient), key must equal the key that
was specified when the queue was created and IPC_CREAT must not be specified.

Note that it’s never possible to specify IPC_PRIVATE to reference an existing
queue, since this special key value always creates a new queue. To reference an existing
queue that was created with a key of IPC_PRIVATE we must know the associated iden-
tifier, and then use that identifier in the other IPC calls (such as msgsnd and msqrcv),
bypassing the get function.

If we want to create a new IPC structure, making sure that we don’t reference an
existing one with the same identifier, we must specify a flag with both the ITPC_CREAT
and IPC_EXCL bits set. Doing this causes an error return of EEXIST if the IPC structure
already exists. (This is similar to an cpen that specifies the O_CREAT and O EXCL
flags.)

14.6.2 Permission Structure

System V IPC associates an ipc_perm structure with each IPC structure. This structure
defines the permissions and owner.

struct ipc perm {
uid t wuid; /* owner’'s effective user id */
gid_ t gid; /* owner’s effective group id */
uid t cuid; /* creator’s effective user id */
gid t cgid; /* creator’s effective group id */
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mode t mode; /* access modes */
ulong seq; /* slot usage sequence number */
key t key:; [/* key */

bi

All the fields other than seq are initialized when the IPC structure is created. At a later
time we can modify the uid, gid, and mode fields, by calling msgctl, semctl, or
shmctl. To change these values the calling process must either be the creator of the
IPC structure, or it must be the superuser. Changing these fields is similar to calling
chown or chmod for a file.

The values in the mode field are similar to the values we saw in Figure 4.4, but there
is nothing corresponding to execute permission for any of the IPC structures. Also,
whereas message queues and shared memory use the terms read and write, semaphores
use the terms read and alter. Figure 14.14 specifies the six permissions for each form of
IPC.

s M hare
Permission essage Semaphore e
queue memory
user-read MSG R SEM_R SHM_R
user-write (alter) MSG_W SEM A SHM W
group-read MSG R »>> 3 | SEMR >> 3 | SHM R >> 3
group-write (alter) | MSG_ W >> 3 | SEM A >> 3 | SHM W >> 3
other-read MSG R > 6 | SEM R >> 6 | SHM R >> 6
other-write (alter) | MSG W >> 6 | SEM A >> 6 | SHM W >> 6

Figure 1414 System V IPC permissions.

14.6.3 Configuration Limits

All three forms of System V IPC have built-in limits that we may encounter. Most of
these can be changed by reconfiguring the kernel. We describe the limits when we
describe each of the three forms of IPC.

Under SVR4 these wvalues, and their minimum and maximum values, are in the file
Jetc/conf/cf.d/mtune.

14.6.4 Advantages and Disadvantages

A fundamental problem with System V IPC is that the IPC structures are systemwide
and do not have a reference count. For example, if we create a message queue, place
some messages on the queue, and then terminate, the message queue and its contents
are not deleted. They remain in the system until specifically read or deleted: by some
process calling msgrcv or msgctl, by someone executing the ipcrm(1) command, or
by the system being rebooted. Compare this with a pipe, which is completely removed
when the last process to reference it terminates. With a FIFO, although the name stays
in the filesystem until explicitly removed, any data left in a FIFO is removed when the
last process to reference the FIFO terminates.
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Another problem with System V IPC is that these IPC structures are not known by
names in the filesystem. We can’t access them and modify their properties with the
functions we described in Chapters 3 and 4. Almost a dozen brand new system calls
were added to the kernel to support them (msgget, semop, shmat, etc.). We can’t see
them with an 1s command, we can’t remove them with the rm command, and we can't
change their permissions with the chmod command. Instead, brand new commands,
ipcs(1) and ipcrm(1), were added.

Since these forms of IPC don’t use file descriptors, we can’t use the multiplexed /0
functions with them: select and poll. This makes it harder to use more than one of
these IPC structures at a time, or to use any of these IPC structures with file or device
[7O. For example, we can’t have a server wait for a message to be placed on one of two
message queues without some form of busy-wait loop.

An overview of an actual transaction processing system built using System V IPC is
given in Andrade, Carges, and Kovach [1989]. They claim that the name space used by
System V IPC (the identifiers) is an advantage, and not a problem as we said earlier,
because using identifiers allows a process to send a message to a message queue with
just a single function call (msgsnd), while other forms of IPC normally require an open,
write, and close. This argument is false. Somehow the clients still have to obtain the
identifier for the server’s queue, to avoid using a key and calling msgget. The identi-
fier assigned to a particular queue depends on how many other message queues exist
when the queue is created and how many times the table in the kernel assigned to the
new queue has been used since the kernel was bootstrapped. This is a dynamic value
that can’t be guessed or stored in a header. As we mentioned in Section 14.6.1, mini-
mally the server has to write the identifier assigned to a queue to a file for the clients to
read.

Other advantages listed by these authors for message queues are that they’re (a)
reliable, (b) flow controlled, (c) record oriented, and (d) can be processed in other than
first-in, first-out order. As we saw in Section 12.4, streams also possess all these proper-
ties, although an open is required before sending data to a stream, and a close is
required when we're finished. Figure 14.15 compares some of the features of these dif-
ferent forms of IPC.

IPC type connectionless? | reliable? | flow control? | records? “f;;f;‘ymzf
message queues no yes yes yes yes
streams no yes yes yes yes
Unix stream socket no yes yes no no
Unix datagram socket yes yes no yes no
FIFOs no yes yes no no

Figure 14.15 Comparison of features of different forms of IPC.

(We describe Unix stream and datagram sockets briefly in Chapter 15.) By connection-
less we mean the ability to send a message without having to call some form of an open



Message Queues 453

14.7

function first. As described previously, we don’t consider message queues connection-
less, since some technique is required to obtain the identifier for a queue. Since all these
forms of IPC are restricted to a single host, all are reliable. When the messages are sent
across a network, the possibility of messages being lost becomes a concern. Flow con-
trol means that the sender is put to sleep if there is a shortage of system resources
(buffers) or if the receiver can’t accept any more messages. When the flow control con-
dition subsides, the sender should automatically be awakened.

One feature that we don’t show in Figure 14.15 is whether the IPC facility can auto-
matically create a unique connection to a server for each client. We'll see in Chapter 15
that streams and Unix stream sockets provide this capability.

The next three sections describe each of the three forms of System V IPC in detail.

Message Queues

Message queues are a linked list of messages stored within the kernel and identified by
a message queue identifier. We'll call the message queue just a “queue” and its identi-
fier just a “queue ID.” A new queue is created, or an existing queue is opened by
msgget. New messages are added to the end of a queue by msgsnd. Every message
has a positive long integer type field, a nonnegative length, and the actual data bytes
(corresponding to the length), all of which are specified to msgsnd when the message is
added to a queue. Messages are fetched from a queue by msgrcv. We don’t have to
fetch the messages in a first-in, first-out order. Instead, we can fetch messages based on
their type field.

Each queue has the following msqid_ds structure associated with it. This structure
defines the current status of the queue.

struct msqgid ds {
struct ipc perm msg perm; /* see Section 14.6.2 */
struct msg *msg _first; /* ptr to first message on queue */
struct msg *msg last; /* ptr to last message on queue */

ulong msg_cbytes; /* current # bytes on queue */
ulong msg_gnum; /* # of messages on queue */
ulong msg_gbytes; /* max # of bytes on queue */
pid t msg lspid; /* pid of last msgsnd() */
pid t msg_lrpid; /* pid of last msgrcv() */
time t msg_stime; /* last-msgsnd() time */

time t msg rtime; /* last-msgrcv() time */
time_t msg_ctime; /* last-change time */

|

The two pointers, msg_first and msg_last are worthless to a user process, as these
point to where the corresponding messages are stored within the kernel. The remaining
members of the structure are self-defining.

Figure 14.16 lists the system limits (Section 14.6.3) that affect message queues.
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_— Typical
Name Description Value
MSGMAX | The size in bytes of the largest message we can send. 2048
MSGMNE | The maximum size in bytes of a particular queue (i.e., the sum of all 4096
the messages on the queue).
MSGMNI | The maximum number of messages queues, systemwide. 50
MSGTQL | The maximum number of messages, systemwide. 40

Figure 14.16 System limits that affect message queues.

The first function normally called is msgget to either open an existing queue or cre-
ate a new queue.

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int msgget(key t key, int flag);

Returns: message queue ID if OK, -1 on error

In Section 14.6.1 we described the rules for converting the key into an identifier and dis-
cussed whether a new queue is created or an existing queue is referenced. When a new
queue is created the following members of the msqid_ds structure are initialized.

* The ipc_perm structure is initialized as described in Section 14.6.2. The mode
member of this structure is set to the corresponding permission bits of flag.
These permissions are specified with the constants from Figure 14.14.

¢ msg_qnum, msg_lspid, msg_lrpid, msg_stime, and msg_rtime are all set
to 0.

* msg_ctime is set to the current time.
* msg_gbytes is set to the system limit.

On success, msgget returns the nonnegative queue ID. This value is then used with the
other three message queue functions.

The msgctl function performs various operations on a queue. It, and the related
functions for semaphores and shared memory (semctl and shmctl) are the
ioctl-like functions for System V IPC (i.e., the garbage-can functions).

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int msgctl(int msqid, int comd, struct msqid ds *buf);

Returns: 0 if OK, -1 on error
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The cmd argument specifies the command to be performed, on the queue specified by
msgqid.

IPC_STAT Fetch themsqid_ds structure for this queue, storing it in the structure
pointed to by buf.

IPC_SET  Set the following four fields from the structure pointed to by buf in the
structure  associated  with  this queue: msg_perm.uid,
msg perm.gid, msg_perm.mode, and msg_gbytes. This com-
mand can be executed only by a process whose effective user ID
equals msg_perm.cuid or msg_perm.uid, or by a process with
superuser privileges. Only the superuser can increase the value of
msg_qgbytes.

IPC_RMID Remove the message queue from the system and any data still on the
queue. This removal is immediate. Any other process still using the
message queue will get an error of EIDRM on its next attempted opera-
tion on the queue. This command can be executed only by a process
whose effective user ID equals msg perm.cuid or msg_perm.uid,
or by a process with superuser privileges.

We'll see that these three commands (IPC_STAT, IPC_SET, and IPC_RMID) are also
provided for semaphores and shared memory.
Data is placed onto a message queue by calling msgsnd.

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int msgsnd(int msgid, const void *ptr, size_t nbytes, int flag);

Returns: 0 if OK, -1 on error

As we mentioned earlier, each message is composed of a positive long integer type field,
a nonnegative length (nbytes), and the actual data bytes (corresponding to the length).
Messages are always placed at the end of the queue.

ptr points to a long integer that contains the positive integer message type, and it is
immediately followed by the message data. (There is no message data if nbytes is 0.) If
the largest message we send is 512 bytes, we can define the following structure

struct mymesg {

long mtype; /* positive message type */

char mtext[512]; /* message data, of length nbytes */
}i

The ptr argument is then a pointer to a mymesg structure. The message type can be
used by the receiver to fetch messages in an order other than first-in, first-out.

A flag value of IPC_NOWAIT can be specified. This is similar to the nonblocking
1/0O flag for file I/O (Section 12.2). If the message queue is full (either the total number
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of messages on the queue equals the system limit, or the total number of bytes on the
queue equals the system limit), specifying TPC_NOWAIT causes msgsnd to return
immediately with an error of EAGAIN. If IPC_NOWAIT is not specified, we are blocked
until (a) there is room for the message, (b) the queue is removed from the system, or (c)
a signal is caught and the signal handler returns. In the second case an error of EIDRM
is returned (“identifier removed”), and in the last case the error returned is EINTR.

Notice how ungracefully the removal of a message queue is handled. Since a refer-
ence count is not maintained with each message queue (as there is for open files), the
removal of a queue just generates errors on the next queue operation by processes still
using the queue. Semaphores handle this removal in the same fashion. Removing a file
doesn’t delete the file’s contents until the last process using the file closes it.

Messages are retrieved from a queue by msgrcv.

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int msgrcv(int msqid, void *ptr, size_ t nbytes, long type, int flag);

Returns: size of data portion of message if OK, —1 on error

As with msgsnd, the ptr argument points to a long integer (where the message type of
the returned message is stored) followed by a data buffer for the actual message data.
nbytes specifies the size of the data buffer. If the returned message is larger than nbytes,
the message is truncated if the MSG_NOERROR bit in flag is set. (In this case, no notifica-
tion is given us that the message was truncated.) If the message is too big and this flag
value is not specified, an error of E2BIG is returned instead (and the message stays on
the queue).
The type argument lets us specify which message we want.

type == 0 The first message on the queue is returned.

type > 0 The first message on the queue whose message type equals type is
returned.

type < 0 The first message on the queue whose message type is the lowest value
less than or equal to the absolute value of type is returned.

A nonzero type is used to read the messages in an order other than first-in, first-out. For
example, the type could be a priority value if the application assigns priorities to the
messages. Another use of this field is to contain the process ID of the client if a single
message queue is being used by multiple clients and a single server.

We can specify a flag value of IPC_NOWAIT to make the operation nonblocking
This causes msgrcv to return an error of ENOMSG if a message of the specified type is
not available. If TPC_NOWAIT is not specified, we are blocked until (a) a message of the

ified type is available, (b) the queue is removed from the system (an error of EIDRM

is returned), or () a signal is caught and the signal handler returns (an error of EINTR is
returned).
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Example—Tiining Comparison of Message Queues versus Stream Pipes

14.8

If we need a bidirectional flow of data between a client and server, we can use either
message queues or stream pipes. (We cover stream pipes in Section 15.2. They are simi-
lar to pipes but full duplex.)

Figure 14.17 shows a timing comparison of these two techniques, on two different
systems. The test consisted of a program that created the IPC channel, called fork, and
then sent 20 megabytes of data from the parent to the child. The data was sent using
10,000 calls to msgsnd, with a message length of 2,000 bytes, for the message queue,
and 10,000 calls to write, with a length of 2,000 bytes, for the stream pipe. The times
are all in seconds.

SPARC, Sun054.1.1 80386, SVR4
Operation User | System | Clock User | System | Clock
message queue 0.8 10.7 11.6 07 19.6 20.1
stream pipe 03 10.6 11.0 0.5 214 219

Figure 14.17 Timing comparison of message queues and stream pipes.

On the SPARC, stream pipes are implemented using Unix domain sockets. Under SVR4
the pipe function provides stream pipes (using streams, as we described in
Section 12.4).

What these numbers show us is that message queues, originally implemented to
provide higher-than-normal speed IPC, are no longer any faster than other forms of
IPC. (When message queues were implemented, the only other form of IPC available
was half-duplex pipes.) When we consider the problems in using message queues
(Section 14.6.4), we come to the conclusion that we shouldn’t use them for new applica-
tions. O

Semaphores

A semaphore isn’t really a form of IPC similar to the others that we’ve described (pipes,
FIFOs, and message queues). A semaphore is a counter used to provide access to a
shared data object for multiple processes. To obtain a shared resource a process needs
to do the following:

1. Test the semaphore that controls the resource.

2. If the value of the semaphore is positive the process can use the resource. The
process decrements the semaphore value by 1, indicating that it has used one
unit of the resource.

3. If the value of the semaphore is 0, the process goes to sleep until the semaphore
value is greater than 0. When the process wakes up it returns to step 1.
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When a process is done with a shared resource that is controlled by a semaphore, the
semaphore value is incremented by 1. If any other processes are asleep, waiting for the
semaphore, they are awakened.

To implement semaphores correctly, the test of a semaphore’s value and the decre-
menting of this value must be an atomic operation. For this reason, semaphores are
normally implemented inside the kernel.

A common form of semaphore is called a binary semaphore. It controls a single
resource and its value is initialized to 1. In general, however, a semaphore can be ini-
tialized to any positive value, with the value indicating how many of units of the shared
resource are available for sharing.

System V semaphores are, unfortunately, more complicated than this. Three fea-
tures contribute to this unnecessary complication.

1. A semaphore is not just a single nonnegative value. Instead we have to definea
semaphore as a set of one or more semaphore values. When we create a
semaphore we specify the number of values in the set.

2. The creation of a semaphore (semget) is independent of its initialization
(semctl). This is a fatal flaw, since we cannot atomically create a new
semaphore set and initialize all the values in the set.

3. Since all forms of System V IPC remain in existence even when no process is
using them, we have to worry about a program that terminates without releas-
ing the semaphores it has been allocated. The “undo” feature that we describe
later is supposed to handle this.

The kernel maintains a semid_ds structure for each semaphore.

struct semid ds {
struct ipc perm sem perm; /* see Section 14.6.2 */
struct sem *sem base; /* ptr to first semaphore in set */

ushort sem _nsems; /* # of semaphores in set */
time t sem_otime; /* last-semop() time */
time t sem_ctime; /* last-change time */

}:

The sem_base pointer is worthless to a user process, since it points to memory in the
kernel. What it points to is an array of sem structures, containing sem nsems elements,
one element in the array for each semaphore value in the set.

struct sem {
ushort semval; /* semaphore value, always >= 0 */
pid_t sempid; /* pid for last operation */
ushort semncnt; /* # processes awaiting semval > currval */
ushort semzcnt; /* # processes awaiting semval = 0 */
}i

Figure 14.18 lists the system limits (Section 14.6.3) that affect semaphore sets.
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Name Description T‘Y,,ali’]‘tf:'
SEMVMX | The maximum value of any semaphore. 32,767
SEMAEM | The maximum value of any semaphore’s adjust-on-exit value. 16,384
SEMMNI | The maximum number of semaphore sets, systemwide. 10
SEMMNS | The maximum number of semaphores, systemwide. 60
SEMMSL | The maximum number of semaphores per semaphore set. 25
SEMMNU | The maximum number of undo structures, systemwide. 30
SEMUME | The maximum number of undo entries per undo structures. 10
SEMOPN | The maximum number of operations per semcp call. 10

Figure 14.18 System limits that affect semaphores.

The first function to call is semget to obtain a semaphore ID.

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

int semget (key_t key, int nsems, int flag);

Returns: semaphore ID if OK, ~1 on error

In Section 14.6.1 we described the rules for converting the key into an identifier and dis-
cussed whether a new set is created or an existing set is referenced. When a new set is
created the following members of the semid_ds structure are initialized.

* The ipc_perm structure is initialized as described in Section 14.6.2. The mode
member of this structure is set to the corresponding permission bits of flag.
These permissions are specified with the constants from Figure 14.14.

* sem otime issettoO.
* sem_ctime isset to the current time.
* sem nsems is set to nsems.

nsems is the number of semaphores in the set. If a new set is being created (typically
in the server) we must specify nsems. If we are referencing an existing set (a client) we
can specify nsems as 0.

The semct 1 function is the catchall for various semaphore operations.

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

int semctl (int semid, int Semmum, int c¢md, union semun arg) ;

Returns: (see following)
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Notice that the final argument is the actual union, not a pointer to the union.

union semun {

int

val; /* for SETVAL */

struct semid ds *buf; /* for IPC_STAT and IPC_SET */

ushort
}r

*array; /* for GETALL and SETALL */

The cmd argument specifies one of the following 10 commands to be performed, on
the set specified by semid. The five commands that refer to one particular semaphore
value use semnum to specify one member of the set. The value of semnum is between 0
and nsems—1, inclusive.

IPC_STAT

IPC_SET

IPC_RMID

GETVAL
SETVAL

GETPID
GETNCNT
GETZCNT
GETALL

SETALL

Fetch the semid_ds structure for this set, storing it in the structure
pointed to by arg.buf.

Set the following three fields from the structure pointed to by arg.buf
in the structure associated with this set: sem perm.uid,
sem_perm.gid, and sem perm.mode. This command can be exe-
cuted only by a process whose effective user ID equals
sem_perm.cuid or sem_perm.uid, or by a process with superuser
privileges.

Remove the semaphore set from the system. This removal is immedi-
ate. Any other process still using the semaphore will get an error of
EIDRM on its next attempted operation on the semaphore. This com-
mand can be executed only by a process whose effective user ID
equals sem_perm.cuid or sem perm.uid, or by a process with
superuser privileges.

Return the value of semval for the member semnum.

Set the value of semval for the member semnum. The value is speci-
fied by arg.val.

Return the value of sempid for the member semnum.
Return the value of semnent for the member semnum.
Return the value of semzcent for the member semnum.

Fetch all the semaphore values in the set. These values are stored in
the array pointed to by arg.array.

Set all the semaphore values in the set to the values pointed to by
arg.array.

For all the GET commands other than GETALL, the function returns the corresponding
value. For the remaining commands, the return value is 0.
The function semop atomically performs an array of operations on a semaphore set.
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#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/sem.h>

int semop{int semid, struct sembuf semoparray[], size t nops);

Returns: 0 if OK, —1 on error

semoparray is a pointer to an array of semaphore operations.

struct sembuf ({
ushort sem_num; /* member # in set (0, 1, ..., nsems-1) */
short sem_op; /* operation (negative, 0, or positive) */
short sem flg; /* IPC _NOWAIT, SEM UNDO */

}i

nops specifies the number of operations (elements) in the array.

The operation on each member of the set is specified by the corresponding sem_op

value. This value can be negative, 0, or positive. (In the following discussion we refer
to the “undo” flag for a semaphore. This flag corresponds to the SEM_UNDO bit in the
corresponding sem_f1lg member.)

1. The easiest case is when sem_op is positive. This corresponds to the returning
of resources by the process. The value of sem_op is added to the semaphore’s
value. If the undo flag is specified, sem op is also subtracted from the
semaphore’s adjustment value for this process.

2. If sem op is negative this means we want to obtain resources that the
semaphore controls.

If the semaphore’s value is greater than or equal to the absolute value of
sem_op (the resources are available), the absolute value of sem_op is subtracted
from the semaphore’s value. This guarantees that the resulting value for the
semaphore is greater than or equal to 0. If the undo flag is specified, the abso-
lute value of sem_op is also added to the semaphore’s adjustment value for this
process.

If the semaphore’s value is less than the absolute value of sem_op (the resources
are not available):

a. if IPC_NOWAIT is specified, return is made with an error of EAGAIN;

b. if IPC_NOWAIT is not specified, the semncnt value for this semaphore is
incremented (since we're about to go to sleep) and the calling process is sus-
pended until one of the following occurs.

i. The semaphore’s value becomes greater than or equal to the absolute
value of sem_op (i.e., some other process has released some resources).
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The value of semncnt for this semaphore is decremented (since we're
done waiting) and the absolute value of sem_op is subtracted from the
semaphore’s value. If the undo flag is specified, the absolute value of
sem_op is also added to the semaphore’s adjustment value for this pro-
cess.

ii. The semaphore is removed from the system. In this case the function
returns an error of ERMID.

ili. A signal is caught by the process and the signal handler returns. In this
case the value of semncnt for this semaphore is decremented (since
we’re no longer waiting) and the function returns an error of EINTR.

3. If sem_op is 0 this means we want to wait until the semaphore’s value becomes
0.

If the semaphore’s value is currently 0, the function returns immediately.

If the semaphore’s value is nonzero:
a. if IPC_NOWAIT is specified, return is made with an error of EAGAIN;

b. if TPC_NOWAIT is not specified, the semzcnt value for this semaphore is
incremented (since we're about to go to sleep) and the calling process is sus-
pended until one of the following occurs.

i. The semaphore’s value becomes 0. The value of semzcnt for this
semaphore is decremented (since we’re done waiting).

ii. The semaphore is removed from the system. In this case the function
returns an error of ERMID.

iii. A signal is caught by the process and the signal handler returns. In this
case the value of semzcnt for this semaphore is decremented (since
we're no longer waiting) and the function returns an error of EINTR.

The atomicity of semop is because it either does all the operations in the array or it does
none of them.

Semaphore Adjustment on exit

As we mentioned earlier, it is a problem if a process terminates while it has resources
allocated through a semaphore. Whenever we specify the SEM UNDO flag for a
semaphore operation, and we allocate resources (a sem_op value less than 0), the kernel
remembers how many resources we allocated from that particular semaphore (the abso-
lute value of sem_op). When the process terminates, either voluntary or involuntary,
the kernel checks to see if the process has any outstanding semaphore adjustments and,
if so, applies the adjustment to the corresponding semaphore.

If we set the value of a semaphore using semctl, with either the SETVAL or
SETALL commands, the adjustment value for that semaphore in all processes is set to (.
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Example—Timing Comparison of Semaphores versus Record Locking

14.9

If we are sharing a single resource among multiple processes, we can use either a
semaphore or record locking. It’s interesting to compare the timing differences between
the two techniques.

With a semaphore we create a semaphore set consisting of a single member and ini-
tialize the semaphore’s value to 1. To allocate the resource we call semop with a
sem_op of -1, and to release the resource we perform a sem_op of +1. We also specify
SEM_UNDO with each operation, to handle the case of a process that terminates without
releasing its resource.

With record locking we create an empty file and use the first byte of the file (which
need not exist) as the lock byte. To allocate the resource we obtain a write lock on the
byte, and to release it we unlock the byte. The properties of record locking guarantee
that any process that terminates while holding a lock, has the lock automatically
released by the kernel.

Figure 14.19 shows the time required to perform these two locking techniques on
two different systems. In each case the resource was allocated and then released 10,000
times. This was done simultaneously by three different processes. The times in
Figure 14.19 are the totals in seconds for all three processes.

SPARC, S5un0S54.1.1 80386, SVR4
Operation User | System | Clock User | System | Clock
semaphores with undo 09 13.9 15.0 0.5 13.1 13.7
advisory record locking 1.1 15.2 16.5 2.1 20.6 22.9

Figure 14.19 Timing comparison of semaphore locking and record locking.

On the SPARC, there is about a 10% penalty in the system time for record locking com-
pared of semaphore locking. On the 80386 this penalty increases to about 50%.

Even though record locking is slightly slower than semaphore locking, if we're lock-
ing a single resource (such as a shared memory segment) and don’t need all the fancy
features of Systém V semaphores, record locking is preferred. The reasons are (a) it is
much simpler to use, and (b) the system takes care of any lingering locks when a pro-
cess terminates. O

Shared Memory

Shared memory allows two or more processes to share a given region of memory. This
is the fastest form of IPC because the data does not need to be copied between the client
and server. The only trick in using shared memory is synchronizing access to a given
region among multiple processes. If the server is placing data into a shared memory
region, the client shouldn’t try to access the data until the server is done. Often
semaphores are used to synchronize shared memory access. (But as we saw at the end
of the previous section, record locking can also be used.)
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The kernel maintains the following structure for each shared memory segment.

struct shmid _ds {
struct ipc perm shm perm; /* see Section 14.6.2 */
struct ancn_map *shm amp; /* pointer in kernel #*/

int shm_segsz; /* size of segment in bytes */

ushort shm lkent; /* number of times segment is being locked */
pid t shm_1lpid; /* pid of last shmop() */

pid t  shm_cpid; /* pid of creator */

ulong  shm nattch; /* number of current attaches */
ulong  shm cnattch; /* used only for shminfo */
time t shm atime; /* last-attach time */
time t shm dtime; /* last-detach time */
time_t shm ctime; /* last-change time */

}i

Figure 14.20 lists the system limits (Section 14.6.3) that affect shared memory.

Name Description Tgplcal
alue

SHMMAX | The maximum size in bytes of a shared memory segment. 131,072
SHMMIN | The minimum size in bytes of a shared memory segment. 1

SHMMNI | The maximum number of shared memory segments, systemwide. 100

SHMSEG | The maximum number of shared memory segments, per process. 6

Figure 14.20 System limits that affect shared memory.

The first function called is usually shmget, to obtain a shared memory identifier.

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

int shmget (key_t key, int size, int flag):

Returns: shared memory ID if OK, -1 on error

In Section 14.6.1 we described the rules for converting the key into an identifier and
whether a new segment is created or an existing segment is referenced. When a new
segment is created the following members of the shmid_ds structure are initialized.

¢ The ipc_perm structure is initialized as described in Section 14.6.2. The mode
member of this structure is set to the corresponding permission bits of flag.
These permissions are specified with the constants from Figure 14.14.

* shm lpid, shm_nattach, shm_atime, and shm dtime are all set to 0.

* shm_ctime is set to the current time.

size is the minimum size of the shared memory segment. If a new segment is being
created (typically in the server) we must specify its size. If we are referencing an exist-
ing segment (a client) we can specify size as 0.
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The shmct 1 function is the catchall for various shared memory operations.

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

int shmctl(int shmid, int cmd, struct shmid_ds *buf);

Returns: 0 if OK, —1 on error

The cmd argument specifies one of the following five commands to be performed,
on the segment specified by shmid.

IPC_STAT

IPC_SET

IPC_RMID

SHM_LOCK

SHM_UNLOCK

Fetch the shmid ds structure for this segment, storing it in the
structure pointed to by buf.

Set the following three fields from the structure pointed to by buf in
the structure associated with this segment: shm perm.uid,
shm_perm.gid, and shm_perm.mode. This command can be exe-
cuted only by a process whose effective user ID equals
shm_perm.cuid or shm_perm.uid, or by a process with super-
user privileges.

Remove the shared memory segment set from the system. Since an
attachment count is maintained for shared memory segments (the
shm_nattch field in the shmid_ds structure) the segment is not
actually removed until the last process using the segment termi-
nates or detaches it. Regardless whether the segment is still in use
or not, the segment’s identifier is immediately removed so that
shmat can no longer attach the segment. This command can be
executed only by a process whose effective user ID equals
shm_perm.cuid or shm_perm.uid, or by a process with super-
user privileges.

Lock the shared memory segment in memory. This command can
be executed only by the superuser.

Unlock the shared memory segment. This command can be exe-
cuted only by the superuser.

Once a shared memory segment has been created, a process attaches it to its address
space by calling shmat.

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

void *shmat (int shmid, void *addr, int flag) ;

Returns: pointer to shared memory segment if OK, -1 on error
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The address in the calling process at which the segment is attached depends on the addr
argument and whether the SHM_RND bit is specified in flag.

1. If addr is O, the segment is attached at the first available address selected by the
kernel. This is the recommended technique.

2. 1If addr is nonzero and SHM_RND is not specified, the segment is attached at the
address given by addr.

3. If addr is nonzero and SHM_RND is specified, the segment is attached at the
address given by (addr — (addr modulus SHMLBA)). The SHM RND command
stands for “round.” SHMLBA stands for “low boundary address multiple” and is
always a power of 2. What the arithmetic does is round the address down to the
next multiple of SHMLBA.

Unless we plan to run the application on only a single type of hardware (which is
highly unlikely today), we should not specify the address where the segment is to be
attached. Instead we should specify an addr of 0 and let the system choose the address.

If the SHM_RDONLY bit is specified in flag, the segment is attached read-only. Other-
wise the segment is attached read-write.

The value returned by shmat is the actual address that the segment is attached at,
or —1 if an error occurred.

When we're done with a shared memory segment we call shmdt to detach it. Note
that this does not remove the identifier and its associated data structure from the sys-
tem. The identifier remains in existence until some process (often a server) specifically
removes it by calling shmet 1 with a command of TPC_RMID.

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

int shmdt (void *addr) ;:

Returns: 0 if OK, —1 on error

The addr argument is the value that was returned by a previous call to shmat.

Example

Where a kernel places shared memory segments that are attached with an address of0
is highly system dependent. Program 14.11 prints some information on where one par-
ticular system places different types of data. Running this program on one particular
system gives us the following output:

$ a.out

array[] from 18f48 to 22b88

stack around f7fffb2c

malloced from 24c28 to 3d2c8

shared memory attached from £77d0000 to f77e86a0



#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>
#include "ourhdr.h"

#define ARRAY SIZE 40000
#define MALLOC_SIZE 100000
#define SHM SIZE 100000
#define SHM MODE (SEM R | SHM W) /* user read/write */

char array [RRRAY SIZE]; /* uninitialized data = bss */

int
main(wvoid)
{
int shmid;
char *ptr, *shmptr;

printf ("array[] from %x to %x\n", &array([0], &array[ARRAY SIZE]);
printf ("stack arcund %x\n", &shmid);

if ( (ptr = malloc (MALLOC SIZE)) == NULL)
err_sys("malloc errocr");
printf("malloced from %x to %x\n", ptr, ptr+MALLOC_SIZE);

if ( (shmid = shmget (IPC_PRIVATE, SHM SIZE, SHM MODE)) < 0)
err_sys ("shmget error"):;

if ( (shmptr = shmat (shmid, 0, 0)) == {wvoid *) -1)
err_sys("shmat error");

printf ("shared memory attached from %x to %x\n",

shmptr, shmptr+SHM SIZE);

if (shmctl (shmid, IPC RMID, 0) < 0)

err_sys ("shmctl error"):;

exit (0);

Program 14.11 Print where different types of data are stored.

Figure 14.21 shows a picture of this, similar to what we said was a typical memory lay-
out in Figure 7.3. Notice that the shared memory segment is placed well below the
stack. In fact, there is about eight megabytes of unused address space between the
shared memory segment and the stack. O

ple—Memory Mapping of /dev/zero

Shared memory can be used between unrelated processes. But if the processes are
related, SVR4 provides a different technique.
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high address command-line arguments
and environment variables

stack re—— OXEf7EEffb2c

-t—— Oxf77e86a0

shared memory shared memory of 100,000 bytes
-—— 0xf7740000 2 by
~+—— 0x0003d2¢c8
heap malloc of 100,000 bytes
g—— 0x00024c28
uninitialized data
-4—— 0x00022L88
(bss) 0x00013f48}array“ of 40,000 bytes
initialized data
text

low address

Figure 14.21 Memory layout on one particular system.

The device /dev/zero is an infinite source of 0 bytes when read. This device also
accepts any data that is written to it, ignoring the data. Our interest in this device for
IPC arises from its special properties when it is memory mapped.

* An unnamed memory region is created whose size is the second argument to
mmap, rounded up to the nearest page size on the system.

* The memory region is initialized to 0.

* Multiple processes can share this region if a common ancestor specifies the
MAP_SHARED flag to mmap.

Program 14.12 is an example that uses this special device. It opens the /dev/zero de-
vice and calls mmap specifying a size of a long integer. Notice that once the region is
mapped, we can close the device. The process then creates a child. Since
MAP_SHARED was specified in the call to mmap, writes to the memory mapped region by
one process are seen by the other process. (If we had specified MAP PRIVATE instead,
this example wouldn’t work.)

The parent and child then alternate running, incrementing a long integer in the
shared memory mapped region, using the synchronization functions from Section 88.
The memory mapped region is initialized to 0 by mmap. The parent increments it to I,
then the child increments it to 2, then the parent increments it to 3, and so on. Notice
that we have to use parentheses when we increment the value of the long integer in the
update function, since we are incrementing the value and not the pointer.
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#include <sys/types.h>
#include <sys/mman.h>
#include <fecntl.h>
#include "ourhdr.h"

#define NLOOPS 1000
#define SIZE sizeof (long) /* size of shared memory area */

static int update(lcong *);

int
main ()
{
int fd, i, counter;
pid t  pid;
caddr_t area:
if ( (fd = open("/dev/zero", O_RDWR)) < 0)
err_sys("open error");
if ( (area = mmap(0, SIZE, PROT_READ | PROT WRITE,
MAP SHARED, fd, 0)) == (caddr_t) -1)
err sys("mmap error");
close (£d) ; /* can close /dev/zero now that it’s mapped */
TELL WAIT():
if ( (pid = fork()) < 0) {
err _sys("fork error");
} else if (pid > 0) { /* parent */
for (i = 0; 1 < NLOOPS; i += 2} {
if ( (counter = update((long *) area)) != 1)
err_quit ("parent: expected %d, got %d", i, counter);
TELL_CHILD (pid);
WAIT CHILD():
}
} else { /* child */
for (i = 1; 1 < NLOOPS + 1; i += 2) {
WAIT PARENT();
if ( (counter = update((long *) area)) != i)
err quit ("child: expected %d, got %d", i, counter);
TELL PARENT (getppid()):
}
)
exit (0);
}
static int

update (long *ptr)
{
return( (*ptr)++ ); /* return value before increment */

}

Program 14.12 IPC between parent and child using memory mapped /O of /dev/zero.
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The advantage of using /dev/zero in the manner that we've shown is that an
actual file need not exist before we call mmap to create the mapped region. Mapping
/dev/zero automatically creates a mapped region of the specified size. The disadvan-
tage in this technique is that it works only between related processes. If shared memory
is required between unrelated processes, the shmxXX functions must be used. u)

Example—Anonymous Memory Mapping

4.3+BSD provides a facility similar to the /dev/zero feature, called anonymous mem-
ory mapping. To use this feature we specify the MAP_ANON flag to mmap and specify the
file descriptor as —1. The resulting region is anonymous (since it's not associated witha
pathname through a file descriptor) and creates a memory region that can be shared
with descendant processes.

To modify Program 14.12 to use this feature under 4.3+BSD we make two changes:
(a) remove the open of /dev/zero, and (b) change the call to mmap to the following

if ( (area = mmap(0, SIZE, PROT_READ | PROT WRITE,

MAP _ANON | MAP_SHARED, -1, 0)) == (caddr_t) -1)
In this call we specify the MAP_ANON flag, and set the file descriptor to —1. The rest of
Program 14.12 is unchanged. O

14.10 Client-Server Properties

Let’s detail some of the properties of clients and servers that are affected by the different
types of IPC used between them.

The simplest type of relationship is to have the client fork and exec the desired
server. Two one-way pipes can be created before the fork to allow data to be trans-
ferred in both directions. Figure 14.9 is an example of this. The server that is execed
can be a set-user-ID program, giving it special privileges. Also, it can determine the real
identity of the client by looking at its real user ID. (Recall from Section 8.9 that the real
user ID and real group ID don’t change across an exec.)

With this arrangement we can build an “open server.” (We show an implementa-
tion of this client-server in Section 15.4.) It opens files for the client, instead of client
calling the open function. This way additional permission checking can be added,
above and beyond the normal Unix user/group/other permissions. We assume that the
server 1s a set-user-ID program, giving it additional permissions (root permission, per-
haps). The server uses the real user ID of the client to determine whether to give it
access to the requested file or not. This way we can build a server that allows certain
users permissions that they don’t normally have.

In this example, since the server is a child of the parent, all it can do is pass back the
contents of the file to the parent. While this works fine for regular files, it can’t be used
for special device files, for example. What we would like to be able to do is have the
server open the requested file and pass back the file descriptor. While a parent can pass
a child an open descriptor, a child cannot pass a descriptor back to the parent (unless
special programming techniques are used, which we cover in the next chapter).
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The next type of server we showed in Figure 14.13. The server is a daemon process
that is contacted using some form of IPC by all clients. We can’t use pipes for this type
of dient-server. A form of named IPC is required, such as FIFOs or message queues.
With FIFOs we saw that an individual per-client FIFO is also required, if the server is to
send data back to the client. If the client-server application sends data only from the
client to the server, a single well-known FIFO suffices. (The System V line printer
spooler uses this form of client-server. The dlient is the 1p(1) command and the server
is the 1psched process. A single FIFO is used since the flow of data is only from the
client to the server. Nothing is sent back to the client.)

Multiple possibilities exist with message queues.

1. A single queue can be used between the server and all the clients, using the type
field of each message to indicate who the message is for. For example, the
clients can send their requests with a type field of 1. Included in the request
must be the client’s process ID. The server then sends the response with the
type field set to the client’s process ID. The server receives only the messages

| with a type field of 1 (the fourth argument for msgrcv), and the clients receive
only the messages with a type field equal to their process IDs.

‘ 2. Alternately, an individual message queue can be used for each client. Before
sending the first request to a server, each client creates its own message queue
with a key of IPC_PRIVATE. The server also has its own queue, with a key or

‘ identifier known to all clients. The client sends its first request to the server’s
well-known queue, and this request must contain the message queue ID of the
client’s queue. The server sends its first response to the client’s queue, and all
future requests and responses are exchanged on this queue.

One problem with this technique is that each client-specific queue usually has
only a single message on it—a request for the server or a response for a client.

| This seems wasteful of a limited systemwide resource (a message queue) and a
FIFO can be used instead. Another problem is that the server has to read mes-
sages from multiple queues. Neither select or poll work with message
queues.

Either of these two techniques using message queues can be implemented using
shared memory segments and a synchronization method (a semaphore or record lock-
ing). The problem with shared memory is that only a single “message” can be in a
shared memory segment at a time—similar to a message queue with a limit of one mes-
sage per queue. For this reason shared memory IPC normally uses one shared memory
segment per client.
| The problem with this type of client-server relationship (the client and the server
being unrelated processes) is for the server to identify the client accurately. Unless the
server is performing a nonprivileged operation, it is essential that the server know who
the client is. This is required, for example, if the server is a set-user-ID program.
Although all these forms of IPC go through the kernel, there is no facility provided by
them to have the kernel identify the sender.
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14.11

With message queues, if a single queue is used between the client and server (so
that only a single message is on the queue at a time, for example), the msg_1spid of the
queue contains the process ID of the other process. But when writing the server, we
want the effective user ID of the dient, not its process ID. There is no portable way to
obtain the effective user ID, given the process ID. (Naturally the kernel maintains both
values in the process table entry, but other than rummaging around through the kernel's
memory, we can’t obtain one, given the other.)

We'll use the following technique in Section 15.5.2 to allow the server to identify the
client. The same technique can be used with either FIFOs, message queues,
semaphores, or shared memory. For the following description, assume FIFOs are being
used, as in Figure 14.13. The client must create its own FIFO and set the file access per-
missions of the FIFO so that only user-read and user-write are on. We assume the
server has superuser privileges (or else it probably wouldn’t care about the client’s true
identity), so the server can still read and write to this FIFO. When the server receives
the client’s first request on the server’s well-known FIFO (which must contain the iden-
tity of the client-specific FIFO) the server calls either stat or fstat on the client
specific FIFO. The assumption made by the server is that the effective user ID of the
client is the owner of the FIFO (the st_uid field of the stat structure). The server ver-
ifies that only the user-read and user-write permissions are enabled. As another check
the server should also look at the three times associated with the FIFO (the st_atime,
st_mtime, and st_ctime fields of the stat structure) to verify that they are recent
(no older than 15 or 30 seconds, for example). If a malicious client can create a FIFO
with someone else as the owner and set the file’s permission bits to user-read and user-
write only, then there are other fundamental security problems in the system.

To use this technique with System V IPC, recall that the ipc_perm structure associ-
ated with each message queue, semaphore, and shared memory segment identifies the
creator of the IPC structure (the cuid and cgid fields). As with the FIFO example, the
server should require the client to create the IPC structure and have the client set the
access permissions to user-read and user-write only. The times associated with the IPC
structure should also be verified by the server to be recent (since these IPC structures
hang around until explicitly deleted).

We'll see in Section 15.5.1 that a far better way of doing this authentication is for the
kernel to provide the effective user ID and effective group ID of the client. This is done
by SVR4 when file descriptors are passed between processes.

Summary

We've detailed numerous forms of interprocess communication: pipes, named pipes
(FIFOs), and the three forms of IPC commonly called System V IPC—message queues,
semaphores, and shared memory. Semaphores are really a synchronization primitive,
not true IPC, and are often used to synchronize access to a shared resource, such as a
shared memory segment. With pipes we looked at the implementation of the popen
function, at coprocesses, and the pitfalls that can be encountered with the standard I/0
library’s buffering.
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After comparing the timing of message queues versus stream pipes, and
semaphores versus record locking, we can make the following recommendations: learn
pipes and FIFOs, since there are numerous applications where these two basic tech-
niques can still be used effectively. Avoid using message queues and semaphores in any
new applications. Stream pipes and record locking should be considered instead, as
they integrate with the rest of the Unix kernel far better. Shared memory still has its
use, although the mmap function (Section 12.9) may assume some of its capabilities in
future releases.

In the next chapter we look at some advanced forms of IPC that are provided with
newer systems, such as SVR4 and 4.3+BSD.

Exercises

14.1 In Program 14.2, at the end of the parent code, remove the close right before the waitpid.
Explain what happens.

14.2 In Program 14.2, at the end of the parent code, remove the waitpid. Explain what hap-
pens.

14.3 What happens if the argument to popen is a nonexistent command? Write a small program
to test this.

144 In Program 14.9 remove the signal handler, execute the program and then terminate the
child. After entering a line of input, how can you tell that the parent was terminated by
SIGPIPE?

14.5 In Program 14.9 use the standard 1/O library for reading and writing the pipes instead of
read and write.

14.6 The Rationale for POSIX.1 gives as one of the reasons for adding the waitpid function the
fact that most pre-POSIX.1 systems can’t handle the following:

if ( (fp = popen("/bin/true", "r")) == NULL)
if ( (rc = system("sleep 100")) == -1)

if (pclose(fp) == -1)

What happens in this code if waitpid isn’t available, and wait is used instead?

14.7 Explain how select and poll handle an input descriptor that is a pipe, when the pipe is
closed by the writer. Write two small test programs, one using select and one using poll
to determine the answer.

Redo this exercise looking at an output descriptor that is a pipe, when the read end is
closed.

14.8 What happens if the cmdstring executed by popen with a fype of "r" writes to its standard
error?

149 Since popen invokes a shell to execute its cmdstring argument, what happens when
cmdstring terminates? (Hint: draw all the processes involved.)
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14.10 POSIX.1 specifically states that opening a FIFO for read-write is undefined. While most
Unix systems allow this, show another method for opening a FIFO for both reading and
writing, without blocking.

14.11 Unless a file contains sensitive or confidential data, allowing other users to read the file
causes no harm. (It is usually considered antisocial, however, to go snooping around in
other’s files.) But what happens if a malicious process reads a message from a message
queue that is being used by a server and several clients? What information does the mali-
cious process need to know to read the message queue?

14.12 Write a program that does the following. Execute a loop five times: create a message queue,
print the queue identifier, delete the message queue. Then execute the next loop five times:
create a message queue with a key of IPC_PRIVATE, and place a message on the queue.
After the program terminates look at the message queues using ipcs(1). Explain what is
happening with the queue identifiers.

14.13 Describe how to build a linked list of data objects in a shared memory segment. What
would you store as the list pointers?

14.14 Draw a time line of Program 14.12 showing the value of the variable i in both the parent
and child, the value of the long integer in the shared memory region, and the value
returned by the update function. Assume the child runs first after the fork.

14.15 Redo Program 14.12 using the shmXXX functions from Section 14.9 instead of the shared
memory mapped region.

14.16 Redo Program 14.12 using the System V semaphore functions from Section 14.8 to alternate
between the parent and child.

14.17 Redo Program 14.12 using advisory record locking to alternate between the parent and
child.

14.18 Explain how the file descriptor argument for mmap can be used with 4.3+BSD anonymous
memory mapping to allow unrelated processes to share memory.
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Introduction

In the previous chapter we looked at the classical methods of IPC provided by various
Unix systems: pipes, FIFOs, message queues, semaphores, and shared memory. In this
chapter we look at some advanced forms of IPC and what we can do with them: stream
pipes and named stream pipes. With these two forms of IPC we can pass open file
descriptors between processes, and clients can rendezvous with a daemon server with
the system providing a unique IPC channel per client. These advanced forms of IPC
were provided with 4.2BSD and SVR3.2, but have not been widely documented or used.
Many of the ideas in this chapter come from the paper by Presotto and Ritchie [1990].

Stream Pipes

A stream pipe is just a bidirectional (full-duplex) pipe. To obtain bidirectional data flow
between a parent and child, only a single stream pipe is required. Figure 15.1 shows the
two ways to view a stream pipe. The only difference between this picture and
Figure 14.2 is that the arrows have heads on both ends, since the stream pipe is full
duplex.

Example

Let's redo the coprocess example, Program 14.9, with a single stream pipe.
Program 15.1 is the new main function. The add2 coprocess is the same (Program 14.8).
We call a new function, s_pipe, to create a single stream pipe. (We show versions of
this function for SVR4 and 4.3+BSD in the following sections.)

475
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User process user process

or

£fd[0] fd[1] fd[0] £d4[1]
kernel
Figure 151 Two ways to view a stream pipe.
#include <signal.h>
#include "ourhdr.h"
static void sig pipe(int); /* our signal handler */

int
main (void)
{

int n, £d{2];
pid t  pid;
char line [MAXLINE] ;

if (signal (SIGPIPE, sig _pipe) == SIG_ERR)
err_sys("signal error"):;

if (s_pipe(fd) < 0) /* only need a single stream pipe */
err_sys("pipe error"):

if ( (pid = fork()) < 0)
err sys("fork error™);
else if (pid > 0) { /* parent */
close (£d4[11);
while (fgets(line, MAXLINE, stdin) != NULL) {
n = strlen(line);
if (write(£d4[0], line, n) != n)
err sys("write error to pipe");
if ( (n = read(£d[0], line, MAXLINE)) < 0)
err_sys("read error from pipe");
if {(n == 0) {
err msg("child closed pipe™);
break;
}
line[n] = 0; /* null terminate */
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if (fputs(line, stdout) == EOF)
err_sys("fputs error");
}
if (ferror(stdin))
err_sys("fgets error on stdin");
exit (0);

} else { /* child */
close(£d[0]);
if (£d[l1l] != STDIN_FILENO) {
if (dup2(fd[l], STDIN FILENO) !'= STDIN_FILENO)
err_sys("dup2 error to stdin");
}
if (fd[l] != STDOUT FILENO) {
if (dup2(fd[l], STDOUT FILENO) != STDOUT_FILENO)
err_sys("dup2 error to stdout"};
}
if (execl("./add2", "add2", NULL) < 0)
err_sys("execl error”™);

}

static wvoid

sig_pipe(int signo)

{
printf ("SIGPIPE caught\n");
exit (1);

Program 15.1 Program to drive the add2 filter, using a stream pipe.

The parent uses only £d[0] and the child uses only fd[1]. Since each end of the
stream pipe is full duplex, the parent reads and writes £d{0] and the child duplicates
fd[1] to both standard input and standard output. Figure 15.2 shows the resulting
descriptors.

parent child (coprocess)
stdin

£310] | /: f£d[1]
\stdout

Figure 15.2 Arrangement of descriptors for coprocess.

We define the function s_pipe to be similar to the standard pipe function. It takes
the same argument as pipe, but the returned descriptors are open for reading and writ-

Ing.
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Example—s_pipe Function Under SVR4

Program 15.2 shows the SVR4 version of the s _pipe function. It just calls the standard
pipe function, which creates a full-duplex pipe.

#include "ourhdr.h"

int
s_pipe(int £d[2]) /* two file descriptors returned in fd[0] & fd[1l] */
{
return( pipe(fd) );
}

Program 152 SVR4 version of the s_pi pe function.

Stream pipes can also be created under earlier versions of System V, but it takes more work.
See Section 7.9 of Stevens [1990] for the details involved under SVR3.2.

Figure 15.3 shows what a pipe looks like under SVR4. It is just two stream heads
that are connected to each other.

USer process
£4[0] fd[1]
i
| e Bl 1
1 Y y 1
I 1
I stream head stream head I
[ 1 kernel
I 1 I i 1
I I
I / - I
Lo ________ I

Figure 15.3 Arrangement of a pipe under SVR4.

Since a pipe is a streams device, we can push processing modules onto either end of the
pipe. InSection 15.5.1 we'll do this to provide a named stream that can be mounted. O

Example—s_pipe Function Under 4.3+BSD

Program 15.3 shows the BSD version of the s_pipe function. This function works
under 4.2BSD and any later versions. It creates a pair of connected Unix domain stream
sockets.

Normal pipes have been implemented in this fashion since 4.2BSD. But when pipe is called,
the write end of the first descriptor and the read end of the second descriptor are both closed.
To get a full-duplex pipe we must call socketpair directly. 0
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15.3

#include <sys/types.h>
#include <sys/socket .h>
#include "ourhdr.h"

int
s pipe(int £d[2]) /* two file descriptors returned in fd[0] & fd[1] */

{
return( socketpair (AF_UNIX, SOCK_STREAM, 0, £d} )}’

}

Program 15.3 BSD version of the s_pi pe function.

Passing File Descriptors

The ability to pass an open file descriptor between processes is powerful. It can lead to
different ways of designing client-server applications. It allows one process (typically a
server) to do everything that is required to open a file (involving details such as transla-
tion of a network name to a network address, dialing a modem, negotiating locks for
the file, etc.) and just pass back to the calling process a descriptor that can be used with
all the I/O functions. All the details involved in opening the file or device are transpar-
ent to the client.

4.2BSD supported the passing of open descriptors, but there were some bugs in the implemen-
tation. 4.3BSD fixed these bugs. SVR3.2 and above also support the passing of open descrip-
tors.

We must be more specific about what we mean by “passing an open file descriptor”
from one process to another. Recall Figure 3.3 where we showed two processes that
have opened the same file. Although they share the same v-node table, each process
has its own file table entry.

When we pass an open file descriptor from one process to another, we want the
passing process and the receiving process to also share the same file table entry.
Figure 15.4 shows the desired arrangement. Technically, we are really passing a pointer
to an open file table entry from one process to another. This pointer is assigned the first
available descriptor in the receiving process. (Saying that we are passing an open
descriptor mistakenly gives the impression that the descriptor number in the receiving
process is the same as in the sending process, which usually isn’t true.) Having two
processes share an open file table is exactly what happens after a fork (recall
Figure 8.1).

What normally happens when a descriptor is passed from one process to another is
that the sending process, after passing the descriptor, then closes the descriptor. Closing
the descriptor by the sender doesn't really close the file or device, since the descriptor is
still considered open by the receiving process (even if the receiver hasn’t specifically
received the descriptor yet).
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process table entry
fd flags ptr
fd0:
43 __ file table
file status flags
t current file offset v-node table
vnodeptr ———— v-node
information
i-node
process table entry __-____t;m:_-
fd flags ptr current file size
£f40:
fd1
fd2
fd 3
fd 4:

Figure15.4 Passing an open file from the top process to the bottom process,

We define the following three functions that we use in this chapter (and in
Chapter 18) to send and receive file descriptors. Later in this section we’ll show the
actual code for these three functions, for both SVR4 and 4.3+BSD.

#include "ourhdr.h"
int send_fd(int spipefd, int filedes) ;
int send_err(int spipefd, int status, const char *errmsg) ;
Both return: 0 if OK, —1 on error

int recv_fd(int spipefd, ssize t (*userfunc) (int, const void *, size_t));

Returns: file descriptor if OK, <0 on error

When a process (normally a server) wants to pass a descriptor to another process it calls
either send_£d or send_err. The process waiting to receive the descriptor (the client)
calls recv_fd.

send_fd sends the descriptor filedes across the stream pipe spipefd. send err

sends the errmsg across the stream pipe spipefd, followed by the status byte. The value of
status must be in the range -1 through -255.
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recv_fd is called by the dlient to receive a descriptor. If all is OK (the sender called
send_£d), the nonnegative descriptor is returned as the value of the function. Other-
wise the value returned is the status that was sent by send_err (a negative value in the
range -1 through —255). Additionally, if an error message was sent by the server, the
client’s userfunc is called to process the message. The first argument to userfunc is the
constant STDERR_FILENO, followed by a pointer to the error message and its length.
Often the client specifies the normal Unix write function as the userfunc.

We implement our own protocol that is used by these three functions. To send a
descriptor, send_fd sends two bytes of 0, followed by the actual descriptor. To send an
error, send_err sends the errmsg, followed by a byte of 0, followed by the absolute
value of the status byte (1-255). recv_£fd just reads everything on the stream pipe until
it encounters a null byte. Any characters read up to this point are passed to the caller’s
userfunc. The next byte read by recv_£fd is the status byte. If the status byte is 0, a
descriptor was passed, otherwise there is no descriptor to receive.

The function send_err just calls the send_fd function, after writing the error
message to the stream pipe. This is shown in Program 15.4.

#include "ourhdr.h"

/* Used when we had planned to send an fd using send fd(),
* but encountered an error instead. We send the error back
* using the send_fd()/recv_fd() protocol. */

int

send err(int clifd, int errcode, const char *msg)
{

int n;
if ( (n = strlen{(msg)) > 0)
if (writen{clifd, msg, n) !'= n) /* send the error message */
return{-1);

if (errcode >= 0)
errcode = -1; /* must be negative */

if (send_fd(clifd, errcode) < 0)
return(-1);

return(0) ;

Program 154 The send err function.

The following three sections look at the actual implementation of the two functions
send_fd and recv_£d under SVR4, 4.3BSD, and 4.3+BSD.

15.3.1 System V Release 4

Under SVR4 file descriptors are exchanged on a stream pipe using two ioctl com-
mands: I_SENDFD and I_RECVFD. To send a descriptor we just set the third argument
for ioct1 to the actual descriptor. This is shown in Program 15.5.
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#include <sys/types.h>
#include <stropts.h>
#include "ourhdr.h"

/* Pass a file descriptor to another process.

* If fd<0, then -fd is sent back instead as the error status. */
int
send fd(int clifd, int £d)

{
char buf[2]; /* send_£d() /recv_fd() 2-byte protocol */

buf[0] = 0; /* null byte flag to recv_fd() */
if (fd < 0) {
buf[l1l] = -fd; /* nonzero status means error */
if (buf[l] == 0)

buf(1l] = 1; /* -256, etc. would screw up protocol */
} else {

buf[l] = 0: /* zero status means COK */
}

if (write(clifd, buf, 2) != 2)
return (-1) ;

if (fd >= 0)
if (ioctl{clifd, I_SENDFD, fd) < 0)
return(-1);
return (0) ;

Program 15.5 The send_fd function for SVR4.

When we receive a descriptor the third argument for ioctl is a pointer to a
strrecvfd structure.

struct strrecvfd |{

int fd; /* new descriptor */
uid t uid: /* effective user ID of sender */
gid t gid; /* effective group ID of sender */

char £ill[8];
}:

recv_fd just reads the stream pipe until the first byte of the two-byte protocol (the null
byte) is received. When we issue the ioctl of I_RECVFD the next message at the
stream’s read head must be a descriptor from a I_SENDFD, or we get an error. This is
shown in Program 15.6.

#include <sys/types.h>
#include <stropts.h>
#include "ourhdr.h"

/* Receive a file descriptor from another process (a server).
* In addition, any data received from the server is passed
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* to (*userfunc) (STDERR FILENO, buf, nbytes). We have a
* 2-byte protocol for receiving the fd from send fd(). */
int
recv_fd(int servfd, ssize_t (*userfunc) (int, const void *, size t))

{

int newfd, nread, flag, status;
char *ptr, buf[MAXLINE];

struct strbuf dat:

struct strrecvid recvid;

status = -1;

for (7 i ) {

dat.buf = buf;

dat .maxlen = MAXLINE;

flag = 0;

if (getmsg{servfd, NULL, &dat, &flag) < 0)
err_sys("getmsg error");

nread = dat.len;

if (nread == 0) {
err_ret ("connection closed by server™);
return{(-1);

/* See if this is the final data with null & status.
Null must be next to last byte of buffer, status
byte is last byte. Zero status means there must
be a file descriptor to receive. */

for (ptr = buf; ptr < &bufnread]; ) {
if (*ptr++ == 0) {
if (ptr != &buf[nread-1])
err dump("message format error");
status = *ptr & 255;
if (status == 0) {
if (ioctl(servfd, I_RECVFD, &recvfd) < 0)
return(-1) ;
newfd = recvfd.fd; /* new descriptor */
} else
newfd = —status;
nread -= 2;
}
}
if (nread > 0)

if ((*userfunc) (STDERR_FILENC, buf, nread) != nread)

return{-1);

if (status >= 0) /* final data has arrived */
return(newfd); /* descriptor, or -status */

Program 15.6 The recv_fd function for SVR4.
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15.3.2 4.3BSD

Unfortunately, we have to provide different implementations for 4.3BSD (and vendor’s
systems built on 4.3BSD, such as SunOS and Ultrix), and later versions starting with
4.3BSD Reno.

To exchange file descriptors we call the sendmsg(2) and recvmsg(2) functions.
Both functions take a pointer to a msghdr structure that contains all the information on
what to send or receive. This structure is defined in the <sys/socket . h> header and
under 4.3BSD it looks like

struct msghdr {

caddr_t msg_name; /* optional address */

int msg namelen; /* size of address */

struct iovec *msg iov; /* scatter/gather array */

int msg_iovlen; /* # elements in msg_iov array */
caddr_t msg_accrights; /* access rights sent/received */
int msg_accrightslen; /* size of access rights buffer */

1;

The first two elements are normally used for sending datagrams on a network connec-
tion, where the destination address can be specified with each datagram. The next two
elements allow us to specify an array of buffers (scatter read or gather write) as we
described for the readv and writev functions (Section 12.7). The final two elements
deal with the passing or receiving of access rights. The only access rights currently
defined are file descriptors. Access rights can be passed only across a Unix domain
socket (ie., what we use as stream pipes under 4.3BSD). To send or receive a file
descriptor we set msg_accrights to point to the integer descriptor and
msg_accrightslen to be the length of the descriptor (i.e., the size of an integer). A
descriptor is passed or received only if this length is nonzero.
Program 15.7 is the send_£d function for 4.3BSD.

#include <sys/types.h>

#include <sys/socket.h> /* struct msghdr */
#include <sys/uio.h> /* struct iovec */
#include <errno.h>
#include <stddef.h>
#include "ourhdr.h"

/* Pass a file descriptor to another process.
* If £d<0, then -fd is sent back instead as the error status. */

int
send fd(int clifd, int fd)
{

struct iovec iov[1l];
struct msghdr msqg;
char buf(2]; /* send fd()/recv fd() 2-byte protocol */

(iov[0] .iov_base = buf;
iov[0] .iov len = 2;
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msg.msg_iov = iov;

msg.msg_liovlen = 1;

msg.msg_name = NULL;

msg.msg_namelen = 0;

if (fd < 0) |
msg.msg_accrights = NULL;
msg.msg_accrightslen = 0;
buf[l] = -fd; /* nonzero status means error */

if (buf([l] == 0)
buf[l] = 1; /* -256, etc. would screw up protocol */

} else {
msg.msg_accrights = (caddr_t) &fd; /* addr of descriptor */
msg.msg_accrightslen = sizeof(int): /* pass 1 descriptor */
buf[l] = 0; /* zero status means OK */

}

buf[0] = O; /* null byte flag to recv_fd() */

if (sendmsg(clifd, &msg, 0) != 2)
return(-1);

return(0):

Program 15.7 The send_fd function for 4.3BSD.

In the sendmsg call we send both the two bytes of protocol data (the null and the status
byte) and the descriptor.

To receive a file descriptor we read from the stream pipe until we read the null byte
that precedes the final status byte. Everything up to this null byte is an error message
from the sender. This is shown in Program 15.8.

#include <sys/types.h>

#include <gys/socket.h> /* struct msghdr */
#include <sys/uio.h> /* struct iovec */
#include <stddef.h>
#include "ourhdr.h"

/* Receive a file descriptor from another process (a server).
* In addition, any data received from the server is passed
* to (*userfunc) (STDERR FILENO, buf, nbytes). We have a
* 2-byte protocol for receiving the fd from send_ fd(). */

int

recv_fd(int servfd, ssize_t (*userfunc) (int, const void *, size_t))
{

int newfd, nread, status;
char *ptr, buf[MAXLINE];
struct iovec iov([1l];

struct msghdr msg;
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status = -1;

for (; ;) {
iov([0].iov_base = buf; |
iov[0] .iov_len = sizeof (buf);

msg.msg_iov = iov;
msg.msg_iovlen = 1;
msg.msg_name = NULL;

msg.msg_namelen = 0;
msg.msg_accrights = (caddr_t) &newfd;/* addr of descriptor */
msg.msg_accrightslen = sizeof(int); /* receive 1 descriptor */

if ( (nread = recvmsg(servfd, &msg, 0)) < 0)
err sys("recvmsg error");

else if (nread == 0) {
err ret ("connection closed by server");
return(-1);

/* See if this is the final data with null & status.
Null must be next to last byte of buffer, status
byte is last byte. Zero status means there must
be a file descriptor to receive. */

for (ptr = buf; ptr < sbuf(nread]; ) {
if (*ptr++ == Q) {

if (ptr !'= &buf[nread-1])
err dump("message format error");

status = *ptr & 255;

if (status == 0) {
if (msg.msg_accrightslen '= sizeof (int))

err_dump("status = 0 but no fd");

/* newfd = the new descriptor */

} else
newfd = —-status;
nread -= 2;

}
}
if (nread > 0)
if ((*userfunc) (STDERR_FILENO, buf, nread) '= nread)
return(-1):

if (status >= 0) /* final data has arrived */
return({newfd); /* descriptor, or -status */

Program 15.8 The recv_£d function for 4.3BSD.

Notice that we are always prepared to receive a descriptor (we set msg_accrights
and msg_accrightslen before each call to recvmsg), but only if
msg_accrightslen is nonzero on return did we receive a descriptor.
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15.3.3 4.3+BSD

Starting with 4.3BSD Reno the definition of the msghdr structure changed. The final
two elements, which were called “access rights” in previous releases, became “ancillary
data.” Also, a new member, msg_flags, was added to end of the structure.

struct msghdr {

caddr_t msg_name; /* optional address */

int msg_namelen; /* size of address */

struct iovec *msg_iov; /* scatter/gather array */

int msg_iovlen; /* # elements in msg iov array */
caddr_t msqg_control; /* ancillary data */

u_int msg_controllen; /* size of ancillary data */

int msqg_flags; /* flags on received message */

i
The msg_control field now points to a cmsghdr (control message header) structure.

struct cmsghdr {
u_int cmsg len; /* data byte count, including header */
int cmsg_level; /* originating protocol */
int cmsg_type; /* protocol-specific type */
/* followed by the actual control message data */

}:

To send a file descriptor we set cmsg_len to the size of the cmsghdr structure, plus the
size of an integer (the descriptor). cmsg_level is set to SOL_SOCKET, and cmsg_type
is set to SCM_RIGHTS, to indicate that we are passing access rights. (“SCM” stands for
“socket-level control message.”) The actual descriptor is stored right after the
cmsg_type field, using the macro CMSG_DATA to obtain the pointer to this integer.
Program 15.9 shows the send_ f£d function for 4.3BSD Reno.

#include <sys/types.h>

#include <sys/socket.h> /* struct msghdr */
#include <sys/uio.h> /* struct iovec */
#include <errno.h>

#include <stddef.h>

#include "ourhdr.h"

static struct cmsghdr *cmptr = NULL; /* buffer is malloc’ed first time */
#define CONTROLLEN (sizeof (struct cmsghdr) + sizeof(int))
/* size of control buffer to send/recv one file descriptor */

/* Pass a file descriptor to another process.
* If fd<0, then -fd is sent back instead as the error status. */

int
send fd(int clifd, int £d)
{

struct iovec iov([1];
struct msghdr msg;
char buf(2); /* send_fd()/recv_fd() 2-byte protocol */
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iov[0] .iov_base = buf;

iov(0].iov_len = 2;
msg.msg_iov = iov;
msg.msg_iovlen = 1;
msg.msg_name = NULL;
msg.msg_namelen = 0;
if (fd < 0) {
msg.msg_control = NULL;
msg.msg_controllen = 0;
buf[l] = -fd; /* nonzero status means error */

if (buf[l] == 0)
buf[l] = 1; /* -256, etc. would screw up protocol */
} else {
if (cmptr == NULL && (cmptr = malloc (CONTROLLEN)) == NULL)
return{-1) ;
cmptr->cmsg_level = SOL_SOCKET;
cmptr->cmsg_type = SCM RIGHTS;

cmptr->cmsg_len = CONTROLLEN;
msg.msg_control = {(caddr_t) cmptr;
msg.msg_controllen = CONTROLLEN;
*(int *)CMSG DATA (cmptr) = fd; /* the fd to pass */
buf[1] = 0; /* zero status means OK */
}
buf[0] = 0O; /* null byte flag to recv fd() */

if (sendmsg(clifd, &msg, 0) != 2)
return (-1);
return(0);

Program 15.9 The send_fd function for 4.3BSD Reno.

To receive a descriptor (Program 15.10) we allocate enough room for a cmsghdr
structure and a descriptor, set msg_control to point to the allocated area, and call
recvmsg.

#include <sys/types.h>

#include <sys/socket.h> /* struct msghdr */
#include <sys/uio.h> /* struct iovec */
#include <stddef.h>

#include "ourhdr.h"

static struct cmsghdr *cmptr = NULL; /* malloc’ed first time */
#define CONTROLLEN (sizeof (struct cmsghdr) + sizeof (int))
/* size of control buffer to send/recv one file descriptor */

/* Receive a file descriptor from another process (a server).

* In addition, any data received from the server is passed

* to (*userfunc) (STDERR_FILENO, buf, nbytes). We have a

* 2-byte protocol for receiving the fd from send fd(). */
int
recv_fd(int servfd, ssize t (*userfunc) (int, const void *, size _t))
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int newfd, nread, status;
char *ptr, buf[MAXLINE];
struct iovec iov[1]:

struct msghdr msg;

status = -1;

for ( : ;) {

iov[0] .iov_base buf;

iov[0] .iov_len = sizeof (buf):

msg.msg_iov = lov;

msg.msg_iovlen = 1;

msg.msg_name = NULL;

msg.msg_namelen = 0;

if (cmptr == NULL && {cmptr = malloc (CONTROLLEN)) == NULL)
return(-1);

msg.msg_control

msg.msg_controllen

(caddr_t) cmptr:;
CONTROLLEN;

if ( (nread = recvmsg(servfd, &msg, 0)) < 0)
err sys("recvmsg error");

else if (nread == 0) {
err_ret ("connection closed by server");
return(-1);

/* See if this is the final data with null & status.
Null must be next to last byte of buffer, status
byte is last byte. Zero status means there must
be a file descriptor to receive. */

for (ptr = buf; ptr < &buf[nread]; ) {
if (*ptr++ == 0) {
if (ptr != &buf[nread-1])
err dump("message format error");
status = *ptr & 255;
if (status == 0) {
if (msg.msg _controllen != CONTROLLEN)
err dump("status = 0 but no fd");
newfd = *(int *)CMSG_DATA(cmptr); /* new descriptor */
} else
newfd = —-status;
nread -= 2;
}
}
if (nread > 0)

if ((*userfunc) (STDERR_FILENO, buf, nread) != nread)
return(-1);
if (status >= 0) /* final data has arrived */

return(newfd); /* descriptor, or -status */

Program 15.10 The recv_fd function for 4.3BSD Reno.
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15.4 An Open Server, Version 1

Using file descriptor passing, we now develop an open server: an executable program
that is execed by a process to open one or more files. But instead of the server sending
the file back to the calling process, it sends back an open file descriptor instead. This
lets the server work with any type of file (such as a modem line or a network connec-
tion) and not just regular files. It also means that a minimum of information is
exchanged using [PC—the filename and open mode from the dlient to the server, and
the returned descriptor from the server to the client. The contents of the file are not
exchanged using IPC.

There are several advantages in designing the server to be a separate executable
program (either one that is execed by the client, as we develop in this section, or a dae-
mon server, which we develop in Section 15.6).

1. The server can easily be contacted by any client, similar to a library function.
We are not hardcoding a particular service into the application, but designing a
general facility that others can reuse.

2. If we need to change the server, only a single program is affected. Conversely,
updating a library function can require that all programs that call the function
be updated (i.e., relinked with the link editor). Shared libraries can simplify this
updating (Section 7.7).

3. The server can be a set-user-ID program, providing it additional permissions
that the client does not have. Notice that a library function (or shared library
function) can’t provide this capability.

The client process creates a stream pipe, and then calls fork and exec to invoke
the server. The dient sends requests across the stream pipe, and the server sends back
responses across the pipe. We define the following application protocol between the
client and server.

1. The client sends a request of the form
open <pathname> <openmode>\0

across the stream pipe to the server. The <openmode> is the numeric value, in
decimal, of the second argument to the open function. This request string is ter-
minated by a null byte.

2. The server sends back an open descriptor or an error by calling either send_fd
or send_err.

This is an example of a process sending an open descriptor to its parent. In Section 156
we’ll modify this example to use a single daemon server, where the server sends a
descriptor to a completely unrelated process.

We first have the header, open.h (Program 15.11), which includes the standard sys-
tem headers and defines the function prototypes.
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#include <sys/types.h>

#include <errno.h>
#include "ourhdr.h"
#define CL_OPEN "open" /* client’s request for server */

/* our function prototypes */
int csopen (char *, int);

Program 15.11 The open .h header.

The main function (Program 15.12) is a loop that reads a pathname from standard
input and copies the file to standard output. It calls the function csopen to contact the
open server, and return an open descriptor.

#include "open.h"
#include <fcntl.h>

#define BUFFSIZE 8192

int
main(int argc, char *argv[])
{
int n, fd;
char buf [BUFFSIZE], line[MAXLINE];

/* read filename to cat from stdin */
while (fgets({line, MAXLINE, stdin) !'= NULL) {
line[strlen(line) — 1] = 0; /* replace newline with null */

/* open the file */
if ( (fd = csopen(line, O_RDONLY)) < 0)
continue; /* csopen() prints error from server */

/* and cat to stdout */

while ( (n = read(fd, buf, BUFFSIZE)) > 0)

if (write (STDOUT_FILENO, buf, n) !'= n)
err_sys("write error”):

if (n < Q)
er:_sys("read error");

close (£fd) ;

}

exit (0);

Program 15.12 The main function.

The function csopen (Program 15.13) does the fork and exec of the server, after
creating the stream pipe.
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#include "open.h"
#include <sys/uio.h> /* struct iovec */

/* open the file by sending the "name" and "oflag" to the
* connection server and reading a file descriptor back. */

int
csopen (char *name, int oflag)
{

pid t pid;

int len;

char buf[10];

struct iovec iov([3]:

static int fd[z2] = { -1, -1 };

if (£d[0] < 0) { /* fork/exec our open server first time */

if (s_pipe(fd) < 0)
err sys("s_pipe error");
if ( (pid = fork()) < 0)
err_sys ("fork error");
else if (pid == 0) { /* child */
close (£d4[0]) ;
if (£d4d[1] !'= STDIN FILENO) {
if (dup2(£d4[1], STDIN _FILENO) != STDIN_FILENO)
err_sys("dup2 error to stdin");
}
if (£4[1] !'= STDOUT_FILENO) {
if (dup2(fd[1], STDOUT FILENO) != STDOUT FILENO)
err_sys("dup2 error to stdout");
}
if (execl("./opend", "opend”, NULL) < 0)
err_sys("execl error");
}
close (fd[1]); /* parent */
}

sprintf (buf, " %d", oflag); /* oflag to ascii */
iov[0].iov_base = CL_OPEN " ";
iov[0].iov_len = strlen(CL_OPEN) + 1;
iov[1l].iov_base name;
iov([l].iov_len = strlen(name);
iov[2].iov_base = buf;
iov[2].iov_len strlen(buf) + 1; /* +1 for null at end of buf #*/
len = iov[0].iov_len + iov[l].iov_len + iov[2].iov_len;
if (writev(fd[0], &iov([0], 3) !'= len)
err sys("writev error");

/* read descriptor, returned errors handled by write() */
return( recv_fd(fd[0], write) ):

Program 15.13 The csopen function.
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The child closes one end of the pipe, and the parent closes the other. The child also
duplicates its end of the pipe onto its standard input and standard output, for the server
that it execs. (Another option would have been to pass the ASCII representation of the
descriptor £d[1] as an argument to the server.)

The parent sends the request to the server containing the pathname and open mode.
Finally the parent calls recv_fd to return either the descriptor or an error. If an error is
returned by the server, write is called to output the message to standard error.

Now let’s look at the open server. It is the program opend that is execed by the
client in Program 15.13. First we have the opend.h header (Program 15.14) that
includes the system headers and declares the global variables and function prototypes.

#include <sys/types.h>

#include <errno.h>
#include "ourhdr.h"
#define CL_OPEN "open" /* client’s request for server */

/* declare global variables */
extern char errmsg[]; /* error message string to return to client */
extern int oflag; /* open() flag: O xxx ... */
extern char *pathname; /* of file to open() for client */

/* function prototypes */
int cli_args(int, char *¥*);
void reguest (char *, int, int);

Program 15.14 The opend. h header.

#include "opend.h"

/* define global variables */
char errmsg [MAXLINE] ;
int oflag;

char *pathname;
int

main (void)

{

int nread;
char buf [MAXLINE] ;

for (; ;) | /* read arg buffer from client, process request */
if ( (nread = read(STDIN_FILENO, buf, MAXLINE)) < 0)
err_sys("read error on stream pipe");
else if (nread == 0)
break: /* client has closed the stream pipe */

request (buf, nread, STDIN_FILENO);

}
exit (0):

Program 15.15 The main function.
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The main function (Program 15.15) reads the requests from the client on the stream
pipe (its standard input) and calls the function request.

The function request in Program 15.16 does all the work. It calls the function
buf_args to break up the client’s request into a standard argv-style argument list and
calls the function c1i_args to process the dient’s arguments. If all is OK, open is
called to open the file, and then send_fd sends the descriptor back to the dlient across
the stream pipe (its standard output). If an error is encountered, send_err is called fo
send back an error message, using the client—server protocol that we described earlier.

#include "opend.h"
#include <fcntl.h>

void
request (char *buf, int nread, int fd)
{

int newfd;

if (buf[nread-1]1 '= 0) {
sprintf(errmsg, "request not null terminated: %*.*s\n",
nread, nread, buf);
send_err (STDOUT FILENO, -1, errmsq);
return;

/* parse the arguments, set options */
if (buf args(buf, cli_args) < 0) {
send_err (STDOUT _FILENO, -1, errmsg);
return;

}

if ( (newfd = open(pathname, oflag)) < 0) {
sprintf (errmsg, "can't open %s: %s\n",
pathname, strerror (errno));
send err (STDOUT FILENO, -1, errmsg);
return;

/* send the descriptor */
if (send fd(STDOUT FILENO, newfd) < Q)
err sys("send_fd error");
close (newfd) ; /* we’'re done with descriptor */

Program 15.16 The request function.

The client’s request is a null terminated string of white-space separated arguments.
The function buf_args in Program 15.17 breaks this string into a standard argv-style
argument list and calls a user function to process the arguments. We'll use this function
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later in this chapter and again in Chapter 18. We use the ANSI C function strtok to
tokenize the string into separate arguments.

#include "ourhdr.h"

#define MAXARGC 50 /* max number of arguments in buf */
#define WHITE " \t\n" /* white space for tokenizing arguments */
/* buf[] contains white-space separated arguments. We convert it

int

* % % % %

to an argv[] style array of pointers, and call the user’s
function (*optfunc) () to process the argv([] array.

We return -1 to the caller if there’s a problem parsing buf,
else we return whatever optfunc() returns. WNote that user’s
buf([] array is modified (nulls placed after each token). */

buf args{(char *buf, int (*optfunc) (int, char #*¥*))

{

char *ptr, *argv[MAXARGC]:

int argc;
if (strtok(buf, WHITE) == NULL) /* an argv[0] is required */
return(-1);

argv[argc = 0] = buf;

while ( (ptr = strtok(NULL, WHITE)) != NULL) {
if (++argc >= MAXARGC-1) /* -1 for room for NULL at end */
return(-1);
argv[argc] = ptr;
1
argv [++argc] = NULL;

return( (*optfunc) (argc, argv) }:;
/* Since argv[] pointers point into the user’s buf[],
user’s function can just copy the pointers, even
though argv([] array will disappear on return. */

Program 15.17 The buf_args function.

The server’s function that is called by buf_args is cli_args (Program 15.18). It
verifies that the client sent the right number of arguments and stores the pathname and
open mode into global variables.

This completes the open server that is invoked by a fork and exec from the client.
A single stream pipe is created before the fork and used to communicate between the
client and server. With this arrangement we have one server per client.
After looking at client-server connections in the next section, we'll redo the open
server in Section 15.6 to use a single daemon server that is contacted by all clients.
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#include "opend.h"
/* This function is called by buf args(), which is called by
* request (). buf args() has broken up the client’s buffer
* into an argv[] style array, which we now process. */
int
cli_args(int argc, char **argv)
{
if (argc != 3 || strcmp(argv[0], CL OPEN) != 0) {
strcpy (errmsg, "usage: <pathname> <oflag>\n");
return(-1});
}
pathname = argv[1l]; /* save ptr to pathname to open */
oflag = atoi(argv[2]);
return{(0);
}
Program 15.18 The cli_args function.
15.5 Client-Server Connection Functions

Stream pipes are useful for IPC between related processes, such as a parent and child.
The open server in the previous section was able to pass file descriptors from a child to
a parent using an unnamed stream pipe. But when we’re dealing with unrelated pro-
cesses (such as a server that is a daemon), a named stream pipe is required.

We can take an unnamed stream pipe (from the s pipe function) and attach a
pathname in the filesystem to either end. A daemon server would create just one end of
a stream pipe and attach a name to that end. This way unrelated clients can rendezvous
with the daemon, sending messages to the server’s end of the pipe. This is similar to
what we showed in Figure 14.12, where we used a well-known FIFQO for the clients to
send their requests to.

An even better approach is to use a technique whereby the server creates one end of
a stream pipe with a well-known name, and clients connect to that end. Additionally,
each time a new client connects to the server’s named stream pipe, a brand new stream
pipe is created between the client and server. This way the server is notified each timea
new client connects to the server, and when any client terminates. Both SVR4 and
4.3+BSD support this form of IPC. In this section we develop three functions that can
be used by a client-server to establish these per-client connections.

#include "ourhdr.h"

int serv_listen(const char *mname);

Returns: file descriptor to listen on if OK, <0 on error
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First a server has to announce its willingness to listen for client connections on a
well-known name (some pathname in the filesystem) by calling serv_listen. name is
the well-known name of the server. Clients will use this name when they want to con-
nect to the server. The return value is the file descriptor for the server’s end of the
named stream pipe.

Once a server has called serv_listen, it calls serv_accept to wait for a client
connection to arrive.

#include "ourhdr.h"

int serv_accept (int listenfd, uid _t *uidptr);

Returns: new file descriptor if OK, <0 on error

listenfd is a descriptor from serv_listen. This function doesn’t return until a client
connects to the server’s well-known name. When the client does connect to the server, a
brand new stream pipe is automatically created, and the new descriptor is returned as
the value of the function. Additionally, the effective user ID of the client is stored
through the pointer uidptr.

A client just calls c1i _conn to connect to a server.

#include "ourhdr.h"

int cli_conn(const char *name) ;

Returns: file descriptor if OK, <0 on error

The name specified by the client must be the same name that was advertised by the
server’s call to serv_listen. The returned descriptor refers to a stream pipe that is
connected to the server.

Using these three functions we can write server daemons that can manage any
number of clients. The only limit is the number of descriptors available to a single pro-
cess, since the server requires one descriptor for each client connection. Since these
functions deal with normal file descriptors, the server can multiplex 1/0 requests
among all its clients using either select or poll. Finally, since the client—server con-
nections are all stream pipes, open descriptors can be passed across the connections.

In the next two sections we’ll look at the implementations of these three functions
under SVR4 and 4.3+BSD. Then in Section 15.6 we’ll redo the open server from
Section 15.4 using a single daemon server that uses these three functions. We’ll also use
these three functions in Chapter 18 when we develop a general connection server.

15.5.1 System V Release 4

SVR4 provides mounted streams and a streams processing module named connild that
we can use to provide a named stream pipe with unique connections for the server.

Mounted streams and the connld module were developed by Presotto and Ritchie [1990] for
the Research Unix system. They were then picked up by SVR4.
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First the server creates an unnamed stream pipe and pushes the streams processing
module connld on one end. Figure 15.5 shows the resulting picture.

USET process
£d[0] £d[1]

[}
r——==9q-—~—~~~=—=—=—=—71r-—=—-- a
I ] I
I I
I stream head stream head I
I I
I L I
I I
I I kerniel
i I
i connld I
1 I
1 '] I
A | . :
Lo o ol _ e __ 1

Figure 15.5 SVR4 pipe after pushing connld module onto one end.

We then attach a pathname to the end of the pipe that has the connld pushed onto it
SVR4 provides the fattach function to do this. Any process that opens this pathname
(such as a client) is referring to the named end of the pipe.

Program 15.19 shows the dozen lines of code required to implement the
serv_listen function.

When another process calls open for the named end of the pipe (the end with
connld pushed onto it), the following occurs:

1. A mnew pipe is created.

2. One descriptor for the new pipe is passed back to the client as the return value
from open.

3. The other descriptor is passed to the server on the other end of the named pipe
(i.e., the end that does not have connld pushed onto it). The server receives
this new descriptor using an ioct1 of I_RECVFD.

Assume that the well-known name that the server fattaches to its pipe is
/tmp/servl. Figure 15.6 shows the resulting picture, after the client’s call

fd = open("/tmp/servl", O_RDWR);

has returned. The pipe between the client and server is created by the open, since the
pathname being opened is really a named stream that has connld pushed onto it. The
file descriptor in the client (£d) is returned by the open. The new file descriptor in the
server (c1ifd1) is received by the server using an ioctl of I_RECVFED on the descrip-
tor £d[0]. Once the server has pushed connld onto fd[1] “and attached a name to
£d[1], it never specifically uses fd[1] again.
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#include <sys/types.h>
#include <sys/stat.h>
#include <stropts.h>
#include "ourhdr.h"

#define FIFO_MODE (S_IRUSR|S_IWUSR|S_IRGRP|S_IWGRP|S_IROTHI|S_IWOTH)
/* user rw, group rw, others rw */

int /* returns fd if all OK, <0 on error */
serv_listen(const char *name)
{

int tempfd, £d[2], len;

/* create a file: mount point for fattach() */
unlink (name) ;
if ( (tempfd = creat (name, FIFO MODE)) < 0)
return(-1);
if (close (tempfd) < 0)
return(-2);

if (pipe(fd) < 0)
return(-3);
/* push connld & fattach() on £d[1] */
if (ioctl(£fd[1], I_PUSH, "connld") < 0)
return(—4);
if (fattach(fd[1], name) < 0)
return (=5} ;

return(£d4[0]); /* £d4[0] is where client connections arrive */

Program 1519 The serv_listen function for SVR4.
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Figure 15.6 Client—server connection on a named stream pipe.
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The server waits for a client connection to arrive by calling the serv_accept func-

tion shown in Program 15.20.
#include <sys/types.h>
#include <sys/stat.h>
#include <stropts.h>
#include "ourhdr.h"

/* Wait for a client connection to arrive, and accept it.
* We also obtain the client’s user ID. */

int /* returns new fd if all OK, -1 on error */
serv_accept (int listenfd, uid t *uidptr)
{

struct strrecvfd recvfd;

if (ioctl (listenfd, I RECVFD, &recvfd) < 0)
return (-1); /* could be EINTR if signal caught */

if (uidptr !'= NULL)
*uidptr = recvfd.uid; /* effective uid of caller */

return(recvfd.fd); /* return the new descriptor */

Program 15.20 The serv_accept function for SVR4.

In Figure 15.6 the first argument to sexv_accept would be the descriptor £4[0] and

the return value from serv_accept would be the descriptor c11 fd1.

The client initiates the connection to the server by calling the c1i_conn function in

Program 15.21.

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include "ourhdr.h"

/* Create a client endpoint and connect to a server. i/

int /* returns fd if all OK, <0 on error */
cli_ceonn(const char *name)
{

int fd;

/* open the mounted stream */
if ( (fd = open(name, O_RDWR)) < 0)
return(-1);
if (isastream(fd) == 0)
return (-2) ;

return (fd) ;

Program 15.21 The c1i_conn function for SVR4.
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We double-check that the returned descriptor refers to a streams device, in case the
server has not been started but the pathname still existed in the filesystem. (Under
SVR4 there appears to be little reason to call cli_conn instead of just calling open
directly. In the next section we'll see that the cli_conn function is more complicated
under BSD systems.)

15.5.2 4.3+BSD

Under 4.3+BSD we have a different set of operations required to connect a client and
server using Unix domain sockets. We won't go through all the details of the socket,
bind, listen, accept, and connect functions that we use, since most of the details
are for using these functions with other networking protocols. Refer to Chapter 6 of
Stevens [1990] for these details.

Since SVR4 also supports Unix domain sockets, the code shown in this section also works

under SVR4.
Program 15.22 shows the serv_listen function. It is the first function called by
the server.
#include <sys/types.h>
#include <sys/socket .h>
#include <sys/un.h>
#include "ourhdr.h"

/* Create a server endpecint of a connection. */

int /* returns fd if all OK, <0 on error */
serv_listen(const char *name)
{

int fd, len;

struct sockaddr un unix_addr;

/* create a Unix domain stream socket */
if ( (fd = socket (AF_UNIX, SOCK STREAM, 0)) < 0)
return (-1);

unlink (name) ; /* in case it already exists */

/* £ill in socket address structure */

memset (&unix_addr, 0, sizeof(unix addr));

unix addr.sun_family = AF_UNIX;

strepy (unix_addr.sun_path, name);
#ifdef SCM RIGHTS /* 4.3BSD Renc and later */

len = sizeof(unix addr.sun len) + sizeof (unix addr.sun family) +

strlen(unix_addr.sun path) + 1;

unix addr.sun len = len;
#else /* vanilla 4.3BSD */

len = strlen(unix addr.sun_path) + sizeof(unix addr.sun_ family);
#endif
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/* bind the name to the descriptor */
if (bind(fd, (struct sockaddr *) &unix addr, len) < 0)
return(-2);

if (listen(fd, 5) < 0) /* tell kernel we're a server */
return(-3);

return (£d) ;

Program 1522 The serv_listen function for 4.3+BSD.

First a single Unix domain socket is created by socket. We then fill in a sockaddr_un
structure with the well-known pathname to be assigned to the socket. This structure is
the argument to bind. We then call listen to tell the kernel that we’ll be a server
awaiting connections from clients. (The second argument to listen, 5, is the maxi-
mum number of outstanding connection requests that the kernel will queue for this
descriptor. Most implementations silently enforce an upper limit of 5 for this value.)

The client initiates the connection to the server by calling the c1i_conn function
(Program 15.23).

#include <sys/types.h>

#include <sys/socket .h>
#include <sys/stat.h>
#include <sys/un.h>
#include "ourhdr.h"

/* Create a client endpoint and connect to a server. */

#define CLI_PATH "/var/tmp/" /* +5 for pid = 14 chars */
#define CLI_PERM S_IRWXU /* rwx for user only */
int /* returns fd if all OK, <0 on error */

cli_conn(const char *name)

{
int fd, len;
struct sockaddr_un unix_addr;

/* create a Unix domain stream socket */
if ( (fd = socket (AF_UNIX, SOCK_STREAM, 0)) < 0)
return(-1);

/* £fill socket address structure w/our address */

memset (&unix_addr, 0, sizeof (unix addr)):

unix addr.sun_ family = AF_ UNIX;

sprintf (unix_addr.sun_path, "%s%05d", CLI_PATH, getpid());
#ifdef SCM RIGHTS /* 4.3BSD Reno and later */

len = sizeof(unix_addr.sun_len) + sizeof (unix_addr.sun_ family) +

strlen(unix_addr.sun path) + 1;

unix_addr.sun_len = len;
#else /* vanilla 4.3BSD */

len = strlen(unix_addr.sun_path) + sizeof (unix_addr.sun_family);
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if (len != 16)
err_quit("length '= 16"); /* hack */
#endif

unlink (unix_addr.sun_path); /* in case it already exists */
if (bind(fd, (struct sockaddr *) &unix addr, len) < 0)
return(-2);
if (chmod(unix_addr.sun_path, CLI_PERM) < 0)
return (—-3);

/* £ill socket address structure w/server’s addr */
memset (&unix addr, 0, sizeof (unix addr));
unix_addr.sun_family = AF_UNIX;
strepy (unix_addr.sun_path, name);
#ifdef SCM_RIGHTS /* 4.3BSD Reno and later */
len = sizeof (unix_addr.sun_len) + sizeof (unix_addr.sun_family) +
strlen(unix_addr.sun_path) + 1;
unix_addr.sun_len = len;

#else /* vanilla 4.3BSD */
len = strlen(unix addr.sun_path) + sizeof (unix_addr.sun family):
#endif

if (connect(fd, (struct sockaddr *) &unix addr, len) < 0)
return{-4);

return (£d) ;

Program 1523 The c1i_conn function for 4.3+BSD.

We call socket to create the client’s end of a Unix domain socket. We then fill in a
sockaddr_un structure with a client-specific name. The last five characters of the
pathname are the process ID of the client. (We also verify that the size of this structure
is exactly 14 characters to avoid some bugs in earlier implementations of Unix domain
sockets.) unlink is called, just in case the pathname already exists. We call bind to
assign a name to the client’s socket, and this creates the pathname in the filesystem, and
the file type is a socket. chmod is called to turn off all permissions other than user-read,
user-write, and user-execute. In serv_accept, the server checks these permissions

and the user ID of the socket to verify the client’s identity.

We then have to fill in another sockaddr_un structure, this time with the well-
known pathname of the server. Finally the connect function initiates the connection

with the server.

The creation of a unique connection for each client is handled in the serv_accept

function (Program 15.24) by the accept function.

#include <sys/types.h>

#include <sys/socket.h>
#include <sys/stat.h>
#include <sys/un.h>

#include <stddef.h>
#include <time.h>
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#include "ourhdr.h"
#define STALE 30 /* client’s name can’t be older than this (sec) */

/* Wait for a client connection to arrive, and accept it.
* We also obtain the client’s user ID from the pathname
* that it must bind before calling us. */

int /* returns new fd if all OK, <0 on error */
serv_accept (int listenfd, uid_t *uidptr)
{

int clifd, len;
time t staletime;
struct sockaddr_un unix_addr;
struct stat statbuf;

len = sizeof (unix addr);
if ( (clifd = accept (listenfd, (struct sockaddr *) &unix_addr, &len))
return(-1); /* often errno=EINTR, if signal caught */

/* obtain the client’s uid from its calling address */
#ifdef SCM RIGHTS /* 4.3BSD Reno and later */

len -= sizeof (unix_addr.sun_len) - sizeof(unix_addr.sun_family);
#else /* vanilla 4.3BSD */

len -= sizeof (unix_addr.sun family); /* len of pathname */
#endif

unix addr.sun _path[len] = 0; /* null terminate */

if (stat(unix_addr.sun_path, &statbuf) < 0)
return(-2);
#ifdef S_ISSOCK /* not defined for SVR4 */
if (5_ISSOCK(statbuf.st_mode) == 0)

return (-3) ; /* not a socket */
#endif
if ((statbuf.st_mode & (S_IRWXG | S_IRWXO)) ||
(statbuf.st_mode & S_IRWXU) != S_IRWXU)
return(-4); /* is not rwx—————— */

staletime = time (NULL) - STALE;
if (statbuf.st atime < staletime ||
statbuf.st_ctime < staletime ||
statbuf.st mtime < staletime)
return (-5); /* i-node is too old */

if (uidptr != NULL)
*uidptr = statbuf.st_uid; /* return uid of caller */

unlink(unix_addr.sun_path); /* we're done with pathname now */

return({clifd):

Program 15.24 The serv_accept function for 4.3+BSD.
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15.6

The server blocks in the call to accept, waiting for a client to call c1i_conn. When
accept returns, its return value is a brand new descriptor that is connected to the
client. (This is somewhat similar to what the connld module does under SVR4.) Addi-
tionally, the pathname that the client assigned to its socket (the name that contained the
client’s process ID) is also returned by accept, through the second argument (the
pointer to the sockaddr_un structure). We null terminate this pathname and call
stat. This lets us verify that the pathname is indeed a socket, and that the permissions
allow only user-read, user-write, and user-execute. We also verify that the three times
associated with the socket are no older than 30 seconds. (The time function returns the
current time and date in seconds past the Unix Epoch.) If all these checks are OK, we
assume that the identity of the client (its effective user ID) is the owner of the socket.
While this check isn’t perfect, it’s the best we can do with current systems. (It would be
better if the kernel returned the effective user ID to accept as the SVR4 I_RECVFD
does.)

Figure 15.7 shows a picture of the connection, after the call to cli_conn has
returned, assuming the server’s well-known name is /tmp/servl. Compare this with
Figure 15.6.
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Figure 15.7 Client-server connection on a Unix domain socket.
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In Section 15.4 we developed an open server that was invoked by a fork and exec by
the client. It demonstrated how we can pass file descriptors from a child to a parent. In
this section we develop an open server as a daemon process. One server handles all
clients. We expect this design to be more efficient, since a fork and exec are avoided,
We still use a stream pipe between the client and server and demonstrate passing file
descriptors between unrelated processes. We'll use the three functions serv_listen,
serv_accept, and cli_conn from the previous section. This server also demon-
strates how a single server can handle multiple clients, using both the select and
poll functions from Section 12.5.
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The client is similar to the client from Section 15.4. Indeed, the file main. c is iden-
tical (Program 15.12). We add the following line to the open . h header (Program 15.11)

#define CS_OPEN "/home/stevens/open® /* server’s well-known name */

The file open . c does change from Program 15.13, since we now call c1i_conn, instead
of doing the fork and exec. This is shown in Program 15.25.

#include "open.h"
#include <sys/uio.h> /* struct iovec */

/* Open the file by sending the "name" and "oflag" to the
* connection server and reading a file descriptor back. */

int
csopen (char *name, int oflag)
{

int len;

char buf([10];

struct icvec iov[3];

static int csfd = -1;

if (csfd < 0) { /* open connection to conn server */

if ( (esfd = cli_conn(CS_OPEN)) < 0)
err sys("cli_conn error");

}

sprintf (buf, " %d", oflag); /* oflag to ascii */
iov[0].iov_base = CL_OPEN " *;

iov([0].iov_len = strlen(CL OPEN) + 1;
iov[1l].iov_base = name;

iov[1l].iov_len strlen (name) ;

iov[2].iov_base = buf;

iov[2] .iov_len strlen (buf) + 1;

/* null at end of buf always sent */
len = iov[0].iov_len + iov[l].iov_len + iov[2].iov_len;
if (writev(csfd, &iov([0], 3) '= len)

err sys("writev error");

/* read back descriptor */
/* returned errors handled by write() */
return( recv_fd(csfd, write) );

Program 15.25 The csopen function.

The protocol from the client to the server remains the same.

Let’s look at the server. The header opend . h (Program 15.26) includes the standard
headers, declares the global variables and the function prototypes.

Since this server handles all clients, it must maintain the state of each client connec-
tion. This is done with the client array defined in the opend.h header
Program 15.27 defines three functions that manipulate this array.



An Open Server, Version 2 507

#include <sys/types.h>

#include <errno.h>
#include "ourhdr.h"
#define CS OPEN "/home/stevens/opend” /* well-known name */
#define CL_OPEN "open" /* client’s request for server */
/* declare global variables */
extern int debug:; /* nonzero if interactive (not daemon) */
extern char errmsg[l; /* error message string to return to client */
extern int  oflag; /* open flag: O_xxx ... */
extern char *pathname; /* of file to open for client */
typedef struct { /* one Client struct per connected client */
int fd; /* fd, or -1 if available */
uid t uid;
} Client;
extern Client *client; /* ptr to malloc’ed array */
extern int client size; /* # entries in client([] array */

/* (both manipulated by client_XXX() functions) */

/* function prototypes */

int cli_args(int, char **);

int client_add(int, uid_t);

void client_del (int);

void loop (void);

void request (char *, int, int, uid t);

Program 15.26 The opend.h header.

#include "opend.h"
#define NALLOC 10 /* #Client structs to alloc/realloc for */
static void
client_alloc (void) /* alloc more entries in the client[] array */
{

int i;

if (client == NULL)

client = malloc (NALLOC * sizeof (Client)):
else

client = realloc(client, (client_size + NALLOC) * sizeof (Client));
if (client == NULL)

err_sys("can't alloc for client array");

/* have to initialize the new entries */
for (i = client_size; i < client size + NALLOC; i++)
client[i].fd = -1; /* fd of -1 means entry available */

client size += NALLOC;
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/* Called by loop() when connection request from a new client arrives */

int
client_add(int fd, uid t uid)
{

int i;
if (client == NULL) /* first time we’re called */
client_alloc();
again:
for (i = 0; i < client size; i++) {
if (client[i].fd == -1) { /* find an available entry */
client[i].fd = fd;
client[i] .uid = uid;
return(i); /* return index in client([] array */
}
}

/* client array full, time to realloc for more */
client_alloc();
goto again; /* and search again (will work this time) */
}

/* Called by loop() when we’re done with a client */

void
client del(int fd)
{
int i;
for (i = 0; i < client_size:; i++) {
if (client[i].fd == fd) {
client[i].fd = -1;
return;
}

}
log_quit ("can’t find client entry for fd %d", fd):

Program 15.27 Functions to manipulate client array.

The first time client_add is called, it calls client_alloc, which calls malloc to
allocate space for 10 entries in the array. After these 10 entries are all in use, a later call
to client_add causes realloc to allocate additional space. By dynamically allocat-
ing space this way, we have not limited the size of the client array at compile time to
some value that we guessed and put into a header.

These functions call the 1og_ functions (Appendix B) if an error occurs, since we
assume that the server is a daemon.

The main function (Program 15.28) defines the global variables, processes the
command-line options, and calls the function 1oop. If we invoke the server with the -d
option, it runs interactively instead of as a daemon. This is used when testing the
server.
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#include "opend.h"

#include <syslog.h>
/* define glcbal variables */
int debug;
char errmsg [MAXLINE] ;
int oflag;
char *pathname;
Client *client = NULL;
int client_size;
int

main (int argc, char *argvl[])

{

int c;

log open ("open.serv", LOG_PID, LOG_USER);

opterr = 0; /* don’t want getopt() writing to stderr */
while ( (c = getopt(arge, argv, "d")) '= ECF) ({
switch (c) {
case 'd’: /* debug */
debug = 1;
break;
case "?':

err_quit ("unrecognized option: -%c", optopt) ;
}
}

if (debug == 0)
daemon_init ();

loop )+ /* never returns */

Program 15.28 Themain function.

The function loop is the server’s infinite loop. We'll show two versions of this
function. Program 15.29 shows one that uses select (and works under both 4.3+BSD

and SVR4), then we show one that uses pol1l (for SVR4).

#include "opend.h"
#include <gys/time.h>
void
loop (void)
{
int i, n, maxfd, maxi, listenfd, clifd, nread;

char buf [MAXLINE] ;
uid t  uid;
fd _set rset, allset;
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FD_ZERO(&allset); |

/* obtain fd to listen for client requests on */
if ( (listenfd = serv_listen(CS_OPEN)) < 0)
log_sys("serv_listen error"):
FD_SET(listenfd, &allset);
maxfd = listenfd;
maxi = -1;

for (; ;) |
rset = allset; /* rset gets modified each time around */
if ( (n = select (maxfd + 1, &rset, NULL, NULL, NULL)) < 0)
log_sys ("select error");

if (FD_ISSET(listenfd, &rset)) {
/* accept new client request */
if ( (clifd = serv_accept (listenfd, &uid)) < 0)
log_sys("serv_accept error: %d”, clifd):;
i = client_add(clifd, uid);
FD_SET(clifd, &allset);
if (clifd > maxfd)
maxfd = clifd; /* max fd for select() */
if (i > maxi)

maxi = i; /* max index in client[] array */
log _msg{"new connection: uid %d, fd %d", uid, clifd);
continue;

for (i = 0; 1 <= maxi; i++) { /* go through client([] array */
if ( (clifd = client[i].fd) < 0)
continue;
if (FD_ISSET(clifd, &rset)) {
/* read argument buffer from client */
if ( (nread = read(clifd, buf, MAXLINE)) < 0)
log_sys("read error on fd %d", clifd);
else if (nread == 0) {
log_msg("closed: uid %d, fd %d4",
client[i] .uid, clifd);
client_del(clifd); /* client has closed conn */
FD_CLR(clifd, &allset);
close(clifd);
} else /* process client’s rquest */
request (buf, nread, clifd, client([i].uid);

Program 15.29 The loop function using select.
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This function calls serv_listen to create the server’s endpoint for the client connec-
tions. The remainder of the function is a loop that starts with a call to select. Two
conditions can be true after select returns.

1. The descriptor 1istenfd can be ready for reading, which means a new client
has called c1i_conn. To handle this we call serv_accept and then update
the client array and associated bookkeeping information for the new client.
(We keep track of the highest descriptor number, for the first argument to
select. We also keep track of the highest index in the client array that’s in
use.)

2. An existing client’s connection can be ready for reading. This means one of two
things: (a) the client has terminated, or (b) the client has sent a new request.

We find out about a client termination by read returning 0 (end of file). If read
returns greater than 0, there is a new request to process. We call request to
handle the new client request.

We keep track of which descriptors are currently in use in the allset descriptor
set. As new clients connect to the server, the appropriate bit is turned on in this descrip-
tor set. The appropriate bit is turned off when the client terminates.

We always know when a client terminates, whether the termination is voluntary or
not, since all the client’s descriptors (including the connection to the server) are auto-
matically closed by the kernel. This differs from the System V IPC mechanisms.

The 1oop function that uses the pol1 function is shown in Program 15.30.

#include "opend.h"
#include <poll.h>
#include <stropts.h>
void

loop (void)
{

int i, n, maxi, listenfd, clifd, nread:
char buf [MAXLINE] ;
uid t uid;

struct pollfd *pollfd;

if ( (pollfd = malloc(open_max () * sizeof(struct pollfd)))} == NULL)
err sys("malloc error");

/* obtain fd to listen for client requests on */
if ( (listenfd = serv_listen(CS_OPEN))} < 0)
log_sys("serv_listen error");
client_add(listenfd, 0); /* we use [0] for listenfd */
pollfd([0]).fd = listenfd;
pellfd([0] .events = POLLIN;:
maxi = 0;
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1

for ( ; ;) |
if ( (n = poll(pollfd, maxi + 1, INFTIM)) < 0)
log_sys("select error");

if (pollfd(0].revents & POLLIN) {
/* accept new client request */
if ( (clifd = serv_accept (listenfd, &uid)) < 0)
log_sys("serv_accept error: %d”, clifd);
i = client_add(clifd, uid):
pollfd[i] .fd = clifd;
pollfd[i] .events = POLLIN;
if (i > maxi)
maxi = i;
log_msg("new connection: uid %d, fd %d", uid, clifd);

for (i = 1; i <= maxi; i++) {
if ( (clifd = client([i].fd) < 0)
continue;
if (pollfd[i].revents & POLLHUP)
goto hungup;
else if (pollfd[i].revents & POLLIN) {
/* read argument buffer from client */
if ( (nread = read(clifd, buf, MAXLINE)) < 0)
log sys("read error on fd %d", clifd);
else if (nread == 0) {
hungup:
log msg("closed: uid %d, f£d %d",
client [i].uid, clifd);
client del(clifd); /* client has closed conn */
pollfd(i].fd = -1;
close(clifd);
} else /* process client’s rquest */
request (buf, nread, clifd, client[i].uid):

Program 15.30 The loop function using pol1l.

To allow for as many clients as there are open descriptors, we dynamically allocate
space for the array of pollfd structures. (The function open_max was shown in

Program 2.3.)

We use the zeroth entry of the client array for the 1istenfd descriptor. That
way a client’s index in the client array is the same index that we use in the pollfd
array. The arrival of a new client connection is indicated by a POLLIN on the 1istenfd

descriptor. As before, we call serv_accept to accept the connection.

For an existing client we have to handle two different events from po11: a client ter-
mination is indicated by POLLHUP and a new request from an existing client is indicated
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by POLLIN. Recall from Exercise 14.7 that the hangup message can arrive at the stream
head while there is still data to be read from the stream. With a pipe we want to read all
the data before processing the hangup. But with this server, when we receive the
hangup from the client, we can close the connection (the stream) to the client, effec-
tively throwing away any data still on the stream. This is because there is no reason to
process any requests still on the stream, since we can’t send any responses back.

As with the select version of this function, new requests from a client are handled
by calling the request function (Program 15.31). This function is similar to the earlier
version (Program 15.16). It calls the same function buf_args (Program 15.17) that calls
cli_args (Program 15.18).

#include "opend.h"
#include <fentl.h>
void

request (char *buf, int nread, int clifd, uid t uid)
{
int newfd;

if (buf[nread-1] !'= 0) {
sprintf (errmsg, "request from uid %d not null terminated: %*.*s\n",
uid, nread, nread, buf);
send err(clifd, -1, errmsg);
return;

}
log_msg("request: %s, from uid %d", buf, uid);

/* parse the arguments, set options */
if (buf_args(buf, cli_args) < 0) {
send_err(clifd, -1, errmsg);
log msg(errmsg);
return;

}

if ( (newfd = open(pathname, oflag)) < 0) {
sprintf (errmsg, "can’t open %s: %s\n",
pathname, strerror (errno)});
send err(clifd, -1, errmsgqg};
log_msg(errmsqg);
return;

/* send the descriptor */
if (send fd(clifd, newfd) < 0)
log sys("send_fd error”);
log msg("sent fd %d over fd %d for %s", newfd, clifd, pathname);
close (newfd) ; /* we’re done with descriptor */

Program 15.31 The request function.

This completes the open server, using a single daemon to handle all the client requests.
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15.7 Summary

The key points in this chapter are the ability to pass file descriptors between processes
and the ability of a server to accept unique connections from clients. We’ve seen how to
do this under SVR4 and 4.3+BSD. These advanced IPC capabilities are provided by
most current Unix systems. We'll use the functions that we developed in this chapter in
Chapter 18 with our modem dialer.

We presented two versions of an open server. One version was invoked directly by
the client, using fork and exec. The second was a daemon server that handled all
client requests. Both versions used the file descriptor passing and receiving functions
from Section 15.3. The final version also used the client-server connection functions
from Section 15.5 and the I/O multiplexing functions from Section 12.5.

Exercises

15.1 Recode Program 15.1 to use the standard 1/0 library instead of read and write on the
stream pipe.

15.2 Write the following program using the file descriptor passing functions from this chapter |
and the parent—child synchronization routines from Section 8.8. The program calls fork,
the child opens an existing file and passes the open descriptor to the parent. The child then
positions the file using 1seek and notifies the parent. The parent reads the file’s current
offset and prints it for verification. If the file was passed from the child to the parent as we
described, the parent and child should be sharing the same file table entry, so each time the
child changes the file’s current offset, that change should affect the parent’s descriptor also.
Have the child position the file to a different offset and notify the parent again.

153 In Programs 15.14 and 15.15 we differentiated between declaring and defining the global
variables. What is the difference?

154 Recode the buf args function (Program 15.17), removing the compile-time limit on the
size of the argv array. Use dynamic memory allocation.

15.5 Describe ways to optimize the function loop in Program 15.29 and Program 15.30. Imple-
ment your optimizations.
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A Database Library

Introduction

During the early 1980s Unix was considered a hostile environment for running a multi-
user database system. (See Stonebraker [1981] and Weinberger [1982]) Earlier systems,
such as Version 7, did indeed present large obstacles, since they did not provide any
form of IPC (other than half-duplex pipes) and did not provide any form of record lock-
ing. Recent Unix systems, such as SVR4 and 4.3+BSD, provide a suitable environment
for running a reliable, multiuser database system. Numerous commercial firms have
offered these types of systems for years.

In this chapter we develop a simple, multiuser database library. It is a library of C
functions that any program can call to fetch and store records in a database. This library
of C functions is usually only one part of a complete database system. We do not
develop the other pieces, such as a query language, leaving these items to the many
textbooks on database systems. Our interest is the interface to Unix required by a
database library and how that interface relates to the topics that we’ve already covered
(such as record locking, in Section 12.3).

History

One popular library of database functions in Unix has been the dbm(3) library. This
library was developed by Ken Thompson and uses a dynamic hashing scheme. It was
originally provided with Version 7, appears in all Berkeley releases, and is also provided
in the Berkeley compatibility library in SVR4. Seltzer and Yigit [1991] provide a
detailed history of the dynamic hashing algorithm used by the dbm library, and other
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implementations of this library. Unfortunately, a basic limitation of all these implemen-
tations is that none allows concurrent updating of the database by multiple processes.
They provide no type of concurrency controls (such as record locking).

4.3+BSD provides a new db(3) library that supports three different forms of access:
(2) record oriented, (b) hashing, and (c) a B-tree. Again, no form of concurrency is pro-
vided. (This fact is plainly stated in the BUGS section of the db(3) manual page)
Recent work by Seltzer and Olson [1992], however, indicates that a future release of this
library will provide concurrency features similar to most commercial database systems.

Most commercial database libraries do provide the concurrency controls required
for multiple processes to update a database simultaneously. These systems typically
use advisory record locking, as we described in Section 12.3. These commercial systems
usually implement their database using B+ trees [Comer 1979].

The Library

Let’s first describe the C interface to the database library, then in the next section
describe the actual implementation.

When we open a database we are returned a pointer to a DB structure. This is simi-
lar to fopen returning a pointer to a FILE structure (Section 5.2) and opendir return-
ing a pointer to a DIR structure (Section 4.21). We'll pass this pointer to the remaining
database functions.

#include "db.h"
DB *db_open (const char *pathname, int oflag, int mode) ;

Returns: pointer to DB structure if OK, NULL on error

void db_close (DB *db);

If db_open is successful, two files are created: pathname.idx is the index file and
pathname.dat is the data file. The oflag argument is used as the second argument to open
(Section 3.3) to specify how the files are to be opened (read-only, read-write, create file if
it doesn’t exist, etc.). mode is used as the third argument to open (the file access permis-
sions) if the database files are created.

We call db_close when we're done with a database. It closes the index file and
data file, and releases any memory that it allocated for internal buffers.

When we store a new record in the database we have to specify the key for the
record and the data associated with the key. If the database contained personnel
records, the key could be the employee ID and the data could be the employee’s name,
address, telephone number, date of hire, and the like. Our implementation requires that
the key for each record be unique. (We can’t have two different employee records with
the same employee ID, for example.)
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#include "db.h"

int db_store (DB *db, const char *key, const char *data, int flag);

Returns: 0 if OK, nonzero on error (see following)

key and data are null-terminated character strings. The only restriction on these two
strings is that neither can contain null bytes. They may contain, for example, newlines.
flag is either DB_INSERT (to insert a new record) or DB_REPLACE (to replace an
existing record). These two constants are defined in the db.h header. If we specify
DB_REPLACE and the record does not exist, the return value is —1. If we specify
DB_INSERT and the record already exists, the return value is 1.
We can fetch any record from the database by just specifying its key.

#include "db.h"

char *db_fetch(DB *db, const char *key):

Returns: pointer to data if OK, NULL if record not found

The return value is a pointer to the data that was stored with the key, if the record is
found.
We can also delete a record from the database by specifying its key.

#include "db.h"

int db delete (DB *db, const char *key);

Returns: 0 if OK, —1 if record not found

In addition to fetching a record by specifying its key, we can also go through the
entire database, reading each record in turn. To do this we first call db_rewind to
rewind the database to the first record, and then call db_nextrec to read each sequen-
tial record.

#include "db.h"
void db_rewind (DB *db):

char *db_nextrec (DB *db, char *key);

Returns: pointer to data if OK, NULL on end of file

If key is a nonnull pointer, db_nextrec stores the key starting at that location.
There is no order to the records returned by db_nextrec. All we're guaranteed is
that we’ll read each record in the database once. If we store three records with keys of
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A, B, and C, in that order, we have no idea in which order db_nextrec will return the
three records. It might return B, then A, then C, or some other (apparently random) or-
der. The actual order depends on the implementation of the database.

These seven functions provide the interface to the database library. We now
describe the actual implementation that we have chosen.

Implementation Overview

Most database access libraries use two files to store the information: an index file and a
data file. The index file contains the actual index value (the key) and a pointer to the
corresponding data record in the data file. Numerous techniques can be used to orga-
nize the index file so that it can be searched quickly and efficiently for any key—hash-
ing and B+ trees are popular. We have chosen to use a fixed-size hash table with
chaining for the index file. We mentioned in the description of db_open that we create
two files—one with a suffix of . idx and a suffix of .dat for the other.

We store the key and index as null-terminated character strings—they cannot con-
tain arbitrary binary data. Some database systems store numerical data in a binary for-
mat (one, two, or four bytes for an integer, for example) to save storage space. This
complicates the functions and requires more work to make the database files portable
between different systems. For example, if we have two systems on a network that use
different formats for storing binary integers, we need to handle this if want both sys-
tems to access the database. (It is not at all uncommon today to have systems with dif-
ferent architectures sharing files on a network.) Storing all the records, both keys and
data, as character strings simplifies everything. It does require additional disk space,
but that is becoming less of a concern with the advances in disk technology.

db_store allows only one record to have a given key. Some database systems
allow multiple records to have the same key, and then provide a way to access all the
records associated with a given key. Additionally, we have only a single index file,
meaning each data record can have only a single key. Some database systems allow
each record to have multiple keys, and often use one index file per key. Each time a
new record is inserted or deleted, each index file has to be updated accordingly. (An
example of a file with multiple indexes is an employee file. We could have one index
whose key is the employee ID and another whose key is the employee’s Social Security
number. Having an index whose key is the employee name could be a problem, as
names need not be unique.)

Figure 16.1 shows a general picture of the database implementation. The index file
consists of three portions: the free list pointer, the hash table, and the index records. All
the fields in Figure 16.1 called ptr are just file offsets stored as an ASCII number.

To find a record in the database, given its key, db_fetch calculates the hash value
of the key, which leads to one hash chain in the hash table. (The chain ptr field could be
0, indicating an empty chain.) We then follow this hash chain, which is a linked list of
all the index records with this hash value. When we encounter a chain ptr value of 0,
we’ve hit the end of the hash chain.

Let’s look at an actual database file. Program 16.1 creates a new database and
writes three records to it. Since we store all the fields in the database as ASCII
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Figure 16.1 Arrangement of index file and data file.

characters, we can look at the actual index file and data file using any of the standard
Unix tools.

$ 1s -1 db4.*
-rw-r--r—— 1 stevens 28 Oct 30 06:42 db4d.dat
-rw-r——-r—— 1 stevens 72 Oct 30 06:42 db4.idx
S cat db4.idx

0 53 35 0

0 10Alpha:0:6

0 1l0beta:6:14

17 1lgamma:20:8

5 cat db4.dat
datal
Data for beta
record3
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#include "db.h"

int

main(void)

t |
DB *db;

if ( (db = db open("db4", O RDWR | O _CREAT | O_TRUNC,
FILE MODE)) == NULL)
err_sys("db_open error");

if (db_store(db, "Alpha", "datal", DB_INSERT) != () |
err_quit ("db_store error for alpha");

if (db_store(db, "beta", "Data for beta", DB_INSERT) != 0)
err _quit ("db_store error for beta"):

if (db_store(db, "gamma", "record3", DB_INSERT) != 0)
err _quit ("db_store error for gamma");

db close(db);
exit (0);

Program 16.1 Create a database and write three records to it.

To keep this example small, we have set the size of each ptr field to four ASCII charac-

ters, and the number of hash chains is three. Since each pfr is a file offset, a four

character field limits the total size of the index file and data file to 10,000 bytes. When

we do some performance measurements of the database system in Section 16.8, we set |

the size of each ptr field to six characters (allowing file sizes up to 1 million bytes), and -

the number of hash chains to over 100.
The first line in the index file

0 53 35 0

is the free list pointer (0, the free list is empty), and the three hash chain pointers: 53, 35,
and 0. The next line

0 10Alpha:0:6

shows the format of each index record. The first field (0) is the four-character chain
pointer. This record is the end of its hash chain. The next field (10) is the four-character
idx len, the length of the remainder of this index record. We read each index record
using two reads: one to read the two fixed-size fields (the chain ptr and idx len), then
another to read the remaining (variable-length) portion. The remaining three fields, key,
dat off, and dat len, are delimited by a separator character (a colon in this case). We need
the separator character since each of these three fields is variable length. The separator
character can’t appear in the key. Finally, a newline terminates the index record. The
newline isn’t required, since idx len contains the length of the record. We store the new-
line to separate each index record so we can use the normal Unix tools, such as cat and
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more with the index file. The key is the value that we specified when we wrote the
record to the database. The data offset (0) and data length (6) refer to the data file. We
can see that the data record does start at offset 0 in the data file, and has a length of six
bytes. (As with the index file, we automatically append a newline to each data record,
so we can use the normal Unix tools with the file. This newline at the end is not
returned to the called by db_fetch.)

If we follow the three hash chains in this example, we see that the first record on the
first hash chain is at offset 53 (gamma). The next record on this chain is at offset 17
(alpha), and this is the last record on the chain. The first record on the second hash
chain is at offset 35 (beta), and it's the last record on the chain. The third hash chain is
empty.

Notice that the order of the keys in the index file and the order of their correspond-
ing records in the data file is the same as the order of the calls to db_store in
Program 16.1. Since the O_TRUNC flag was specified for db_open, the index file and
data file were both truncated and the database initialized from scratch. In this case
db_store just appends the new index records and data records to the end of the corre-
sponding file. We'll see later that db_store can also reuse portions of these two files
that correspond to deleted records.

The choice of a fixed-size hash table for the index is a compromise. It allows fast
access as long as each hash chain isn’t too long. We want to be able to search for any
key quickly, but we don’t want to complicate the data structures by using either a B-tree
or dynamic extensible hashing. Dynamic extensible hashing has the advantage that any
data record can be located with only two disk accesses (see Seltzer and Yigit [1991] for
details). B-trees have the advantage of traversing the database in key order (something
that we can’t do with the db_nextrec function, using a hash table.)

Centralized or Decentralized?

Given multiple processes accessing the same database, there are two ways we can
implement the functions.

1. Centralized. Have a single process that is the database manager and have it be
the only process that accesses the database. The functions contact this central
process using some form of IPC.

2. Decentralized. Have each function apply the required concurrency controls
(locking) and then issue its own I/O function calls.

Database systems have been built using each of these techniques. The trend in Unix
systems, however, is the decentralized approach. Given adequate locking routines, the
decentralized implementation is usually faster, because IPC is avoided. Figure 16.2
depicts the operation of the centralized approach.

We purposely show the IPC going through the kernel, as most forms of message
passing under Unix operate this way. (Shared memory, as described in Section 14.9,
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Figure 16.2 Centralized approach for database access.

avoids this copying of the data.) We see with the centralized approach that a record is
read by the central process and then passed to the requesting process using IPC. This is
a disadvantage of this design. Note that the centralized database manager is the only
process that does 1/0 with the database files.

The centralized approach has the advantage that customer tuning of its operation
may be possible. For example, we might be able to assign different priorities to differ-
ent processes through the centralized process. This could affect the scheduling of 1/0
operations by the centralized process. With the decentralized approach this is harder to
do. We are usually at the mercy of the kernel’s disk 1/0 scheduling policy and locking
policy (i.e., if three processes are waiting for a lock to become available, which process
gets the lock next?).

The decentralized approach is shown in Figure 16.3. This is the design that we'll
implement in this chapter. The user processes that call the functions in the database
library to perform I/O are considered cooperating processes, since they use record lock-
ing to provide concurrent access.

Concurrency

We purposely chose a two-file implementation (an index file and a data file) because
that’s how most systems are implemented. It requires us to handle the locking interac-
tions of both files. But there are numerous ways to handle the locking of these two files,
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Figure 16.3 Decentralized approach for database access.

Coarse Locking

The simplest form of locking is to use one of the two files as a lock for the entire
database and to require the caller to obtain this lock before operating on the database.
We call this coarse locking. For example, we can say that the process with a read lock on
byte 0 of the index file has read access to the entire database. A process with a write
lock on byte 0 of the index file has write access to the entire database. We can use the
normal Unix record locking semantics to allow any number of readers at one time, but
only one writer at a time. (Recall Figure 12.2) The functions db fetch and
db_nextrec require a read lock, and db_delete, db_store, and db _open all
require a write lock. (The reason db_open requires a write lock is that if the file is being
created it has to write the empty free list and hash chains at the front of the index file.)

The problem with coarse locking is that it doesn’t allow the maximum amount of
concurrency. If a process is adding a record to one hash chain, another process should
be able to read a record on a different hash chain.

Fine Locking

We enhance coarse locking to allow more concurrency and call this fine locking. We first
require a reader or writer to obtain a read lock or a write lock on the hash chain for a
given record. We allow any number of readers at one time on any hash chain, but only
a single writer on a hash chain. Next, a writer that needs to access the free list (either
db_delete or db_store) must obtain a write lock on the free list. Finally, whenever
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db_store appends a new record to the end of either the index file or the data file, it has
to obtain a write lock on that portion of the file.

We expect fine locking to provide more concurrency than coarse locking. In
Section 16.8 we’ll show some actual measurements. In Section 16.7 we show the source
code to our implementation of fine locking and discuss the details of implementing
locking. (Coarse locking is just a simplification of the locking that we show.)

In the source code we call read, readv, write, and writev directly. We do not
use the standard I/O library. While it is possible to use record locking with the stan-
dard 1/0 library, it requires careful handling of buffering. We don’t want an fgets, for
example, to return data that was read into a standard 1/O buffer 10 minutes agpo, if the
data was modified by another process 5 minutes ago.

Our discussion of concurrency is predicated on the simple needs of the database
library. Commercial systems often have additional requirements. See Chapter 3 of Date
[1982] for additional details on concurrency.

Source Code

We start with the db. h header in Program 16.2. This header is included by all the func-
tions and by any user process that calls the library.

#include <sys/types.h>
#include <sys/stat.h> /* open() & db open() mode */

#include <fentl.h> /* open() & db_open() flags */
#include <stddef.h> /* NULL */
#include "ourhdr.h"
/* flags for db_store() */
#define DB_INSERT 1 /* insert new record only */
#define DB_REPLACE 2 /* replace existing record */
/* magic numbers */
#define IDXLEN_SZ 4 /* #ascii chars for length of index record */
#define IDXLEN_ MIN 6 /* key, sep, start, sep, length, newline */
#define IDXLEN MAX 1024 /* arbitrary */
#define SEP U /* separator character in index record */
#define DATLEN MIN 2 /* data byte, newline */

#define DATLEN MAX 1024 /* arbitrary */

/* following definitions are for hash chains and free list chain
in index file */
#define PTR_SZ 6 /* size of ptr field in hash chain */
#define PTR MAX 999999 /* max offset (file size) = 10**PTR_SZ - 1 #/
#define NHASH DEF 137 /* default hash table size */
#define FREE_OFF 0 /* offset of ptr to free list in index file
#define HASH OFF PTR SZ /* offset of hash table in index file */

typedef struct ( /* our internal structure */
int idxfd; /* fd for index file */
int datfd; /* fd for data file */
int oflag; /* flags for open()/db open(): O xxx */
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char *idxbuf;/* malloc’ed buffer for index record */
char *datbuf;/* malloc’ed buffer for data record*/
char *name; /* name db was opened under */
off t idxoff; /* offset in index file of index record */
/* actual key is at (idxoff + PTR_SZ + IDXLEN Sz) */
size_t idxlen;/* length of index record */
/* excludes IDXLEN SZ bytes at front of index record */
/* includes newline at end of index record */
off t datoff; /* offset in data file of data record */
size_t datlen;/* length of data record */
/* includes newline at end */
off t ptrval; /* contents of chain ptr in index record */
off_t ptroff; /* cffset of chain ptr that points to this index record */
off t chainoff;/* offset of hash chain for this index record */
off t hashoff;/* offset in index file of hash table */
int  nhash; /* current hash table size */
long cnt_delok; /* delete OK */
long cnt_delerr; /* delete error */
long cnt_fetchok;/* fetch OK */
long cnt_fetcherr;/* fetch error */
long cnt_nextrec;/* nextrec */
long cnt_storl; /* store: DB_INSERT, no empty, appended */
long cnt_stor2; /* store: DB_INSERT, found empty, reused */
long cnt_stor3; /* store: DB_REPLACE, diff data len, appended */
long cnt_stor4; /* store: DB_REPLACE, same data len, overwrote */
long cnt_storerr;/* store error */
) DB;

typedef unsigned long hash_t; /* hash values */

/* user-callable functions */

DB *db_open (const char *, int, int);
void db _close(DB *);
char *db fetch(DB *, const char *);
int db_store(DB *, ceonst char *, const char *, int):
int db delete (DB *, const®*char *);
void db rewind(DB *);
char *db_nextrec (DB *, char *);
void db_stats (DB *);
/* internal functions */
DB * _db _alloc(int);
int _db _checkfree (DB *);
int _db _dodelete (DB *);
int _db_emptykey(char *);
int _db_find(DB *, const char *, int);
int _db findfree(DB *, int, int);
int _db_free (DB *);

hash t _db hash(DB *, const char *);
char *_db nextkey (DB *);

char *_db readdat (DB *);

off t _db_readidx (DB *, off t);
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off_t _db readptr(DB *, off t);

void _db writedat (DB *, const char *, off t, int);

void _db writeidx (DB *, const char *, off t, int, off t);
void _db_writeptr (DB *, off t, off t);

Program 16.2 The db.h header.

Here we define the fundamental limits of the implementation. These can be changed if
desired, to support bigger databases. Some of the values that we have defined as con-
stants could also be made variable, with some added complexity in the implementation.
For example, we set the size of the hash table to 137 entries. A better technique would
be to let the caller specify this as an argument to db_open, based on the expected size
of the database. We would then have to store this size at the beginning of the index file.

The DB structure is where we keep all the information for each open database. The
DB * pointer that is returned by db_open and used by all the other functions is justa
pointer to one of these structures.

We have chosen to name all the user-callable functions starting with db_ and all the
internal functions start with _db_.

In Program 16.3 we show db_open. It opens the index file and data file, initializing
the index file if necessary. It calls _db_alloc to allocate a DB structure and initializes
it.

#include "db.h"
/* Open or create a database. Same arguments as open(). */

DB *
db_open (const char *pathname, int oflag, int mode)
{

DB *db;
int i, len;
char asciiptr(PTR _SZ + 1],

hash[(NHASH_DEF + 1) * PTR_SZ + 2];
/* +2 for newline and null */
struct stat statbuff;

/* Allocate a DB structure, and the buffers it needs */
len = strlen (pathname) ;
if ( (db = _db alloc(len)) == NULL)

err dump("_db alloc error for DB");

db->oflag = oflag; /* save a copy of the open flags */

/* Open index file */

strcpy (db—>name, pathname) ;

strcat (db—>name, ".idx");

if ( (db—>idxfd = open(db->name, oflag, mode)) < 0) {
_db_free(db);
return (NULL) ;
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| /* Open data file */

strcpy (db->name + len, ".dat");
if ( (db->datfd = open(db->name, oflag, mode)) < 0) {
_db free(db):

return (NULL) ;

/* If the database was created, we have to initialize it */
if ((oflag & (O_CREAT | O_TRUNC)) == (O_CREAT | O_TRUNC)) {
/* Write lock the entire file so that we can stat
the file, check its size, and initialize it,
as an atomic operation. */
if (writew_lock (db->idxfd, 0, SEEK SET, 0) < 0)
err dump("writew_lock error");

if (fstat (db->idxfd, &statbuff) < 0)
err_sys("fstat error"):
if (statbuff.st_size == 0) {

/* We have to build a list of (NHASH DEF + 1) chain
ptrs with a value of 0. The +1 is for the free
list pointer that precedes the hash table. */

sprintf (asciiptr, "$*d", PTR_SZ, 0);

hash[0] = 0;

for (i = 0; i < (NHASH_DEF + 1); i++)
strcat (hash, asciiptr);

strcat (hash, "\n");

i = strlen(hash);
if (write(db->idxfd, hash, i) != i)
err_dump ("write error initializing index file");
}
if (un_lock (db->idxfd, 0, SEEK_SET, 0) < 0)
err_dump ("un_lock error");
}
db->nhash = NHASH DEF;/* hash table size */
db->hashoff = HASH OFF; /* offset in index file of hash table */
/* free list ptr always at FREE_OFF */
db_rewind (db) ;

return(db) ;

Program 16.3 The db_open function.

We encounter locking if the database is being created. Consider two processes trying to
create the same database at about the same time. Assume the first process calls fstat
and is blocked by the kernel after fstat returns. The second process calls db_open,
finds the length of the index file is 0, and initializes the free list and hash chain. The sec-
ond process continues executing and writes one record to the database. At this point
the second process is blocked and the first process continues executing right after the
call to £stat. The first process finds the size of the index file to be 0 (since fstat was
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called before the second process initialized the index file) so the first process m1t1al1zes
the free list and hash chain, wiping out the record that the second process stored in the |
database. The way to prevent this is to use locking. We use the functions readw _lock,
writew lock, and un_lock from Section 12.3.

The function _db_alloc in Program 16.4 is called by db_open to allocate sl:orage
for the DB structure, an index buffer, and a data buffer.

$include "dh.h"

|
/* Allocate & initialize a DB structure, and all the buffers it needs *ﬁ

DB *

_db_alloc(int namelen)

{ 1
DB *db;

/* Use calloc, to init structure to zero */ |
if ( (db = calloc(l, sizeof (DB))) == NULL)
err dump(“"calloc error for DB");

db->idxfd = db->datfd = -1; /* descriptors */

/* BAllocate room for the name.
+5 for ".idx" or ".dat" plus null at end. */

if ( (db—>name = malloc(namelen + 5)) == NULL)
err dump ("malloc error for name");

/* Rllocate an index buffer and a data buffer.
+2 for newline and null at end. */

if ( (db->idxbuf = mallOC(IDKLEN_NAX + 2)) == NULL)
err dump("malloc error for index buffer");
if ( (db->datbuf = malloc(DATLEN_HAX + 2)) == NULL)

err_dump("malloc error for data buffer"):

return (db) ;

Program 164 The db allcc function.

The size of the index buffer and data buffer are defined in the db.h header. An
enhancement to the database library would be to allow these buffers to expand as
required. We could keep track of the size of these two buffers and call realloc when
ever we find we need a bigger buffer.

These dynamically allocated buffers are released, and the open files closed,
_db_free (Program 16.5). This function is called by db_open if an error occurs whi
opening the index file or data filee _db free is also called by db cles
(Program 16.6).

db_fetch (Program 16.7) reads a record, given its key. It calls _db find to
the database for the index record and, if found, calls _db _readdat to > read the
sponding data record.
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#include "db.h"

/* Free up a DB structure, and all the malloc’ed buffers it
* may point to. BAlso close the file descriptors if still open. */
int
_db free(DB *db)
{
if (db—>idxfd >= 0 && close(db—->idxfd) < 0)
err dump ("index close error");
if (db—>datfd >= 0 && close(db->datfd) < 0)
err_dump ("data close error");
db->idxfd = db->datfd = -1;

if (db->idxbuf != NULL)
free (db->idxbuf) ;

if (db->datbuf != NULL)
free (db—>datbuf) ;

if (db->name != NULL)
free (db—>name) ;

free (db);

return (0) ;

Program 16.5 The db_free function.

#include "db.h"

void
db_close (DB *db)
{
_db_free(db); /* closes fds, free buffers & struct */
}

Program 16.6 The db_close function.

#include "db.h"

/* Fetch a specified record.
* We return a pointer to the null-terminated data. */

char *
db_fetch (DB *db, const char *key)
{

char *ptr;

if (_db_find(db, key, 0) < 0) {
ptr = NULL; /* error, record not found */
db—>cnt_fetcherr++;

} else {

ptr = db readdat(db); /* return pointer to data */
db—>cnt_fetchok++;
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/* Unlock the hash chain that _db_find() locked */
if (un_lock(db—>idxfd, db->chainoff, SEEK SET, 1) < 0)
err_dump{"un_lock error”);
return (ptr);

Program 16.7 The db_fetch function.

Program 16.8 shows _db_find, the function that traverses a hash chain. It’s called

by all the functions that look up a record given a key: db_fetch, db_delete, and
db_store.

#include "db.h"

/* Find the specified record.

* Called by db_delete(), db_fetch(), and db_store(). */
int
_db find(DB *db, const char *key, int writelock)

{
off t offset, nextoffset:

/* Calculate hash value for this key, then calculate byte
offset of corresponding chain ptr in hash table.
This is where our search starts. */

/* calc offset in hash table for this key */
db->chainoff = (_db hash(db, key) * PTR_SZ) + db->hashoff;
db—>ptroff = db->chainoff;

/* Here’s where we lock this hash chain. 1It’s the
caller’s responsibility to unlock it when done.
Note we lock and unlock only the first byte. */
if (writelock) ({
if (writew_lock (db->idxfd, db->chainoff, SEEK SET, 1) < 0)
err_dump ("writew lock error");
} else {
if (readw_lock (db—>idxfd, db->chainoff, SEEK_SET, 1) < 0)
err dump ("readw_lock error");

/* Get the offset in the index file of first record
on the hash chain (can be 0) */
offset = _db_readptr(db, db—>ptroff);

while (offset !'= 0) {
nextoffset = _db readidx(db, offset);

if (strcmp(db->idxbuf, key) == 0)
break:; /* found a match */
db->ptroff = offset; /* offset of this (unequal) record */

of fset = nextoffset; /* next one to compare */
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if (offset == Q)
return{(-1) ; /* error, record not found */

/* We have a match. We're guaranteed that db->ptroff contains
the offset of the chain ptr that points to this matching
index record. _db_dodelete() uses this fact. (The chain
ptr that points to this matching record could be in an
index record or in the hash table.) */

return(0);

Program 168 The db find function.

The last argument to _db_find specifies if we want a read lock (0) or a write lock (1).
We saw that db_fetch requires a read lock, while db delete and db store both
require a write lock. _db_find waits for the given lock before going through the hash
chain.

The while loop in _db_find is where we go through each index record on the
hash chain, comparing keys. The function _db readidx is called to read each index
record.

Note the final comment in _db find. As we make our way through the hash
chain, we keep track of the previous index record that points to the current index
record. We'll use this when we delete a record, since we have to modify the chain
pointer of the previous record when we delete the current record.

Let's start with the easy functions that are called by db find first. _db hash
(Program 16.9) calculates the hash value for a given key. It just multiplies each ASCII
character times its 1-based index and divides the result by the number of hash table
entries. The remainder from this division is the hash value for this key.

#include "db.h"
/* Calculate the hash value for a key. */

hash_t
_db hash{(DB *db, const char *key)
{

hash t hval;
const char *ptr;
char c;
int i;
hval = 0;
for (ptr = key, 1 = 1; c = *ptr++; i++)
hval 4= ¢ * i; /* ascii char times its l-based index */

return(hval % db->nhash):

Program 16.9 The _db_hash function.
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The next function called by _db_find is _db_readptr (Program 16.10). It read
any one of three different chain pointers: (1) the pointer at the beginning of the ind
file that points to the first index record on the free list, (2) the pointers in the hash tab
that point to the first index record on each hash chain, and (3) the pointers that are
stored at the beginning of each index record (whether the index record is part of a hash
chain or on the free list). No locking is done by this function—that is up to the caller.

#include "db.h"

/* Read a chain ptr field from anywhere in the index file:
* the free list peinter, a hash table chain ptr, or an
* index record chain ptr. */

off t

_db_readptr (DB *db, off_ t offset)
(

char asciiptr[PTR SZ + 1];

if (lseek(db->idxfd, offset, SEEK_SET) == ~1)
err_dump ("lseek error to ptr field");

if (read(db—>idxfd, asciiptr, PTR_SZ) != PTR_SZ)

err dump ("read error of ptr field");

asciiptr[PTR_SZ] = 0; /* null terminate */
return (atol{asciiptr)):;

Program 16.10 The _db_readptr function.

The while loopin _db_find calls _db_readidx to read each index record. This
is a larger function (Program 16.11) that reads the index record and divides it into the
appropriate fields.

#include "db.h"
#include <sys/uio.h> /* struct iovec */

/* Read the next index record. We start at the specified offset in
the index file. We read the index record into db->idxbuf and
replace the separators with null bytes. If all is OK we set
db->datoff and db->datlen to the offset and length of the
corresponding data record in the data file. =*/

off t
_db readidx (DB *db, off t offset)
{

* % 4 #*

int i;

char *ptrl, *ptr2;

char asciiptr[PTR SZ + 1], asciilen[IDXLEN Sz + 1];
struct iovec iov[2];

/* Position index file and record the offset. db nextrec()
calls us with offset==0, meaning read from current offset.
We still need to call lseek() to record the current offset. =
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if ( (db->idxoff = lseek(db—>idxfd, offset,
offset == 0 ? SEEK_CUR : SEEK_SET)) == -1)
err dump{"lseek error");

/* Read the ascii chain ptr and the ascii length at
the front of the index record. This tells us the
remaining size of the index record. */

iov[0].iov_base = asciiptr;
iov[0].iov_len = PTR SZ;
iov[l] .iov_base = asciilen;
iov[l].iov_len = IDXLEN SZ;

if ( (i = readv(db->idxfd, &iov[0], 2)) != PTR_SZ + IDXLEN SZ) {
if (1 == 0 && offset == 0)
return(-1) ; /* EOF for db_nextrec() */

err dump {"readv error of index record");

}

asciiptr[PTR_SZ] = 0; /* null terminate */

db->ptrval = atol(asciiptr); /* offset of next key in chain */
/* this is our return value; always >= 0 */

asciilen[IDXLEN SZ] = 0; /* null terminate */

if ( (db—>idxlen = atoi(asciilen)) < IDXLEN MIN ||

db->idxlen > IDXLEN_MAX)
err dump{"invalid length"):;

/* Now read the actual index record. We read it into the key
buffer that we malloced when we opened the database. */
if ( (i = read(db—>idxfd, db->idxbuf, db->idxlen)) != db->idxlen)
err_dump {"read error of indexc record");

if (db->idxbuf[db->idxlen-1] !'= ‘\n*)
err_dump ("missing newline"); /* sanity checks */
db->idxbuf [db->idxlen-1] = 0; /* replace newline with null */

/* Find the separators in the index record */
if ( (ptrl = strchr(db->idxbuf, SEP)) == NULL)
err_dump ("missing first separator");
*ptri++ = 0; /* replace SEP with null */

if ( (ptr2 = strchr(ptrl, SEP)) == NULL)
err_dump ("missing second separator");
*ptr2++ = 0; /* replace SEP with null */

if (strchr(ptr2, SEP) != NULL)
err dump ("too many separators");

/* Get the starting offset and length of the data record */
if { {(db—>dateoff = atol(ptrl)) < 0)
err dump ("starting offset < 0"):
if ( (db->datlen = atol(ptr2)) <= 0 || db->datlen > DATLEN_ MAX)
err dump("invalid length");
return (db—>ptrval) ; /* return offset of next key in chain */

Program 16.11 The _db readidx function.
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We call readv to read the two fixed-length fields at the beginning of the index record:
the chain pointer to the next index record and the size of the variable-length index
record that follows. Once these two fields are read, the variable-length index record is
read, and the three remaining fields are separated: the key, the offset of the correspond-
ing data record, and the length of the data record. Note that the data record is not read.
That is left to the caller. In db_fetch, for example, we don’t read the data record until
_db_find has read the index record that matches the key that we’re looking for.

We now return to db_fetch. If _db_find locates the index record with the

matching key, we call _db_readdat to read the corresponding data record. Thisisa
simple function (Program 16.12).

#include "db.h"

/* Read the current data record into the data buffer.
* Return a pointer to the null-terminated data buffer. */

char *
_db_readdat (DB *db)
{
if (lseek{db->datfd, db->datoff, SEEK_SET) == -1)
err_dump("lseek error");

if (read(db->datfd, db->datbuf, db->datlen) != db->datlen)
err dump(“"read error");

if (db->datbuf[db->datlen - 1] != "\n’) /* sanity check */
err dump("missing newline");

db—>datbuf [db->datlen - 1] = 0;: /* replace newline with null */

return (db—->datbuf) ; /* return pointer to data record */

Program 16.12 The _db_readdat function.

We started at db_fetch and have finally read both the index record and corre-
sponding data record. Note that the only locking that has been done has been the read
lock applied by _db_find. Since we have the hash chain read locked, we're guaran-
teed that no other process is proceeding down the same hash chain modifying anything,

Now let's examine the db_delete function (Program 16.13). It starts the same as
db_fetch, calling _db_find to locate the record. But this time the final argument to
_db_findis 1, indicating that we need the hash chain write locked.

db_delete calls _db_dodelete (Program 16.14) to do all the work. (We'll see
later that db_store also calls _db_dodelete.) Most of the function just updates two
linked lists, the free list and the hash chain for this key.

When a record is deleted we set its key and data record to blanks. This fact is
by db nextrec, which we’ll examine later in this section.

_db_dodelete write locks the free list. This is to prevent two processes that
deleting records at the same time, on two different hash chains, from interfering wi
each other. Since we'll add the deleted record to the free list, which changes the freeli
pointer, only one process at a time can be doing this.
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#include "db.h"

/* Delete the specified record */
int

db delete(DB *db, const char *key)
{

int rc;

if (_db find{(db, key, 1) == 0) |
rc = _db_dodelete(db); /* record found */
db—>cnt_delok++;

} else {
rc = -1; /* not found */
db->cnt_delerr++;

}

if (un_lock (db->idxfd, db->chainoff, SEEK_ SET, 1) < 0)
err_dump ("un_lock error");
return(rc) :

Program 16.13 The db_delete function.

#include "db.h"

/* Delete the current record specified by the DB structure.
* This function is called by db _delete() and db _store(),
* after the record has been located by _db find(). */

int
_db dodelete(DE *db)
{
int i;
char *ptr;
off_t freeptr, saveptr;

/* Set data buffer to all blanks */

for (ptr = db—>datbuf, i = 0; i1 < db->datlen - 1; i++)
*ptr++ = 7 7 ;

*ptr = 0; /* null terminate for _db writedat() */

/* Set key to blanks */
ptr = db—>idxbuf;
while (*ptr)

*Ptl‘."++ = l’.

/* We have to lock the free list */
if (writew_lock (db->idxfd, FREE OFF, SEEK SET, 1) < 0)
err dump ("writew lock error");
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/* Write the data record with all blanks */
_db_writedat(db, db—>datbuf, db->datoff, SEEK_SET];

/* Read the free list pointer. Its value becomes the
chain ptr field of the deleted index record. This means
the deleted record becomes the head of the free list. */

freeptr = _db_readptr(db, FREE_OFF) ;

/* Save the contents of index record chain ptr,
before it’s rewritten by _db writeidx(). */
saveptr = db->ptrval;

/* Rewrite the index record. This also rewrites the length
of the index record, the data offset, and the data length,
nene of which has changed, but that’s OK. */

_db writeidx(db, db~>idxbuf, db->idxoff, SEEK_SET, freeptr);

/* Write the new free list pointer */
_db _writeptr (db, FREE OFF, db->idxoff);

/* Rewrite the chain ptr that pointed to this record
being deleted. Recall that _db_find() sets db—>ptroff
to point to this chain ptr. We set this chain ptr
to the contents of the deleted record’s chain ptr,
saveptr, which can be either zero or nonzero. */

_db_writeptr(db, db->ptroff, saveptr);

if (un_lock(db->idxfd, FREE_OFF, SEEK_SET, 1) < 0)
err _dump("un_lock error");

return(0);

Program 16.14 The _db_dodelete function.

_db_dodelete writes the all-blank data record by calling db writedat
(Program 16.15). Notice that the data file is not locked by _db writedat. Since
db_delete has write locked the hash chain for this record, we know that no other pro-
cess is reading or writing this particular data record. When we cover db_store laterin
this section, we’ll encounter the case where _db_writedat is appending to the data
file and has to lock it.

_db_writedat calls writev to write the data record and newline. We can't
assume that the caller’s buffer has room at the end for us to append the newline to it
Recall Section 12.7, where we determined that a single writev is faster than two
writes.

Then _db_dodelete rewrites the index record, after changing the chain pointer in
the index record to point to the first record on the free list. (If the free list was empty,
this new chain pointer is 0.) The free list pointer is then rewritten, to point to the index
record that we just wrote (the deleted record). This means that the free list is handled
on a first-in, first-out basis—deleted records are added to the front of the free hist.
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#include "db.h"
#include <sys/uio.h> /* struct iovec */

/* Write a data record. Called by _db dodelete() (to write
the record with blanks) and db_store(). */

void
_db writedat (DB *db, const char *data, off t offset, int whence)
{

struct iovec iov[2];

static char newline = '\n’;

/* If we're appending, we have to lock before doing the lseek()
and write() to make the two an atomic operation. If we’rxe
overwriting an existing record, we don’'t have to lock. */

if (whence == SEEK END) /* we're appending, lock entire file */
if (writew_lock (db->datfd, 0, SEEK_SET, 0) < 0)
err_dump ("writew_lock error");

if ( (db-—>datoff = lseek(db->datfd, offset, whence)) == -=1)
err_dump("lseek error");
db->datlen = strlen(data) + 1; /* datlen includes newline */

iov[0].iov_base (char *) data;
iov[Q].iov_len = db->datlen - 1;

iov[l].iov_base = &newline;
iov[l].iov_len = 1;
if (writev{db->datfd, &iov[0], 2) '= db->datlen)

err_dump{"writev error of data record");

if (whence == SEEK_END)
if (un_lock{(db->datfd, 0, SEEK_SET, 0) < 0)
err_dump{"un_lock error");

Program 16.15 The _db_writedat function.

Notice that we don’t have a separate free list for the index file and data file. When
the record is deleted, the index record is added to the free list, and this index record
points to the deleted data record. There are better ways to handle record deletion, in
exchange for added code complexity.

Program 16.16 shows _db_writeidx, the function called by _db_dodelete to
write an index record. As with _db_writedat, this function deals with locking only
when a new index record is being appended to the index file. When _db_dodelete
calls this function, we're rewriting an existing index record. We know in this case that
the caller has write locked the hash chain, so no additional locking is required.
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#include "db.h"
#include <sys/uio.h> /* struct iovec */

/*
*
*

%

Write an index record.

_db_writedat() is called before this function, to set the fields
datoff and datlen in the DB structure, which we need to write
the index record. */

void
_db writeidx (DB *db, const char *key,

{

off t offset, int whence, off t ptrval)

struct iovec iov[2];
char asciiptrlen[PTR SZ + IDXLEN SZ +1];
int len;

if ( (db—>ptrval = ptrval) < 0 || ptrval > PTR_MAX)
err_quit ("invalid ptr: %d", ptrval);

sprintf (db—>idxbuf, "%s%c%d%c%d\n",
key, SEP, db->datoff, SEP, db->datlen);
if ( (len = strlen(db—>idxbuf)) < IDXLEN MIN || len > IDXLEN MAX)
err_dump("invalid length");
sprintf (asciiptrlen, "$*d%*d", PTR_SZ, ptrval, IDXLEN SZ, len);

/* 1f we’'re appending, we have to lock before doing the lseek(}
and write() to make the two an atomic operation. If we're
overwriting an existing record, we don’t have to lock. */

if (whence == SEEK_END) /* we're appending */

if (writew_lock (db->idxfd, ( (db—>nhash+1) *PTR_SZ) +1,

SEEK_SET, 0) < 0)
err_dump ("writew_lock error");

/* Position the index file and record the offset */
if ( (db->idxoff = lseek (db->idxfd, offset, whence)) == -1)
err_dump("lseek error");

iov[0].iov_base = asciiptrlen;

iov[0].iov_len PTR_SZ + IDXLEN_SZ;

iov[1l] .iov_base = db->idxbuf;

iov[1l].iov_len = len;

if (writev(db->idxfd, &iov[0], 2) != PTR_SZ + IDXLEN_SZ + len)
err_dump ("writev error of index record"):

if (whence == SEEK_END)
if (un_lock (db->idxfd, ((db->nhash+1)*PTR SZ)+1, SEEK SET, 0) <
err_dump ("un_lock error");

Program 16.16 The _db writeidx function.
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The final function that _db_dodelete callsis _db_writeptr (Program 16.17). It
is called twice—once to rewrite the free list pointer r and once to rewrite the hash chain
pointer (that pointed to the deleted record).

#include "db.h"

/* Write a chain ptr field somewhere in the index file:
* the free list, the hash table, or in an index record. */

void
_db_writeptr (DB *db, off_t offset, off t ptrval)
{

char asciiptr[PTR_SZ + 1]

if (ptrval < 0 || ptrval > PTR_MAX)
err _quit ("invalid ptr: %d", ptrval);
sprintf(asciiptr, "%*d", PTR_SZ, ptrval):

if (lseek{db->idxfd, offset, SEEK SET) == -1)
err dump ("lseek error tc ptr field"):

if (write(db—>idxfd, asciiptr, PTR _SZ) != PTR SZ)
err_dump ("write error of ptr field");

Program 16.17 The db writeptr function.

In Program 16.18 we cover the largest of the database functions, db_store. It
starts by calling db_find to see if the record already exists. It is OK if the record
already exists and DB_REPLACE is specified or if the record doesn’t exist and
DB_INSERT is specified. If we're replacing an existing record, that implies that the keys
are identical but the data records probably differ.

Note that the final argument to _db find specifies that the hash chain must be
write locked, as we will probably be modifying this hash chain.

If we are inserting a new record into the database, we call _db findfree
(Program 16.19) to search the free list for a deleted record with the same size key and
the same size data.

The while loop in _db findfree goes through the free list, looking for a record
with a matching key size and matching data size. In this simple implementation we
reuse a deleted record only if the key length and data length equal the lengths for the
new record being inserted. There are a variety of better ways to reuse this deleted
space, in exchange for added complexity.

_db_findfree needs to write lock the free list to avoid interfering with any other
processes using the free list. Once the record has been removed from the free list, the
write lock can be released. Recall that _db_dodelete also modified the free list.
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#include "db.h"

/* Store a record in the database.
* Return 0 if OK, 1 if record exists and DE INSERT specified,
* -1 if record doesn’t exist and DB_REPLACE specified. */

int
db_store (DB *db, const char *key, const char *data, int flag)
{

int rc, keylen, datlen;

off t ptrval;

keylen = strlen(key):
datlen = strlen(data) + 1; /* +1 for newline at end */
if (datlen < DATLEN MIN || datlen > DATLEN MAX)

err dump ("invalid data length");

/* _db find() calculates which hash table this new record
goes into (db->chainoff), regardless whether it already
exists or not. The calls to _db writeptr() below
change the hash table entry for this chain to point to
the new record. This means the new record is added to
the front of the hash chain. */

if (_db_find(db, key, 1) < 0) { /* record not found */
if (flag & DB_REPLACE) {
rc = -1;
db->cnt_storerr++;
goto doreturn; /* error, record does not exist */

/* _db_find() locked the hash chain for us; read the
chain ptr to the first index record on hash chain */
ptrval = _db readptr(db, db->chainoff);

if (_db_findfree(db, keylen, datlen) < 0) {
/* An empty record of the correct size was not found.
We have to append the new reccrd to the ends of
the index and data files */
_db_writedat (db, data, 0, SEEK END);
_db_writeidx(db, key, 0, SEEK_END, ptrval);
/* db->idxoff was set by _db_writeidx(). The new
record goes to the front of the hash chain. */
_db writeptr(db, db->chainoff, db->idxoff);:
db->cnt_storl++;
} else {
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/* We can reuse an empty record.
_db_findfree() removed the record from the free
list and set both db->datoff and db->idxoff. */
_db_writedat (db, data, db->datoff, SEEK SET)}:;
_db writeidx(db, key, db—>idxoff, SEEK SET, ptrval);
/* reused record goes to the front of the hash chain. */
_db writeptr(db, db->chainoff, db->idxoff);
db—>cnt_stor2++;

}
} else { /* record found */
if (flag & DB_INSERT) {
rc = 1;
db->cnt_storerr++;
goto doreturn; /* error, record already in db */

/* We are replacing an existing record. We know the new
key equals the existing key, but we need to check if
the data records are the same size. */

if (datlen !'= db->datlen) {
_db dodelete(db); /* delete the existing record */

/* Reread the chain ptr in the hash table
(it may change with the deletion). */
ptrval = _db readptr(db, db->chainoff);

/* append new index and data records to end of files */
_db_writedat (db, data, 0, SEEK_END);
_db writeidx(db, key, 0, SEEK_END, ptrval):;

/* new record goes to the front of the hash chain. */
_db_writeptr (db, db->chainoff, db->idxoff);
db->cnt_stor3++;

} else {
/* same size data, just replace data record */
_db writedat (db, data, db—>datoff, SEEK_SET);
db—>cnt_stord++;
1
}
rc = 0; /* OK */
doreturn: /* unlock the hash chain that _db find() locked */
if (un_lock(db->idxfd, db->chainoff, SEEK SET, 1) < 0)
err _dump("un_lock error");
return(rc) ;

Program 16.18 The db_store function.
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#include "db.h"

/* Try to find a free index record and accompanying data record
* of the correct sizes. We're only called by db_store(). */

int
_db_findfree (DB *db, int keylen, int datlen)
{

int re;

off t  offset, nextoffset, saveoffset;

/* Lock the free list */
if (writew_lock (db->idxfd, FREE_OFF, SEEK_SET, 1) < 0)
err dump("writew_lock error");

/* Read the free list pointer */
saveoffset = FREE_OFF;
offset = _db_readptr(db, saveoffset):

while (offset != 0) {
nextcffset = _db_readidx(db, offset);
if (strlen(db->idxbuf) == keylen && db->datlen == datlen)
break; /* found a match */

saveoffset = offset;
offset = nextoffset;
}

if (offset == 0)
rc = -1; /* nc match found */
else {
/* Found a free record with matching sizes.

The index record was read in by _db readidx()} above,
which sets db—>ptrval. Also, saveoffset points to
the chain ptr that pecinted to this empty record on
the free list. We set this chain ptr to db->ptrval,
which removes the empty record from the free list. */

_db_writeptr(db, saveoffset, db->ptrval);
rc = 0;

/* Notice alsc that _db_readidx() set both db->idxoff
and db->datoff. This is used by the caller, db_store(),
to write the new index record and data record. */
1
/* Unlock the free list */
if (un_lock(db->idxfd, FREE_OFF, SEEK SET, 1) < 0)
err dump("un_lock error");
return(rc);

Program 16.19 The _db_findfree function.
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Returning to db_store, after the call to _db_find, the code divides into four cases.

1. A new record is being inserted and an empty record with the correct sizes was
not found by _db_findfree. This means we have to append the new record
to the ends of the index file and data file. The new record is added to the front
of the hash chain by calling_db writeptr.

2. A new record is being added and an empty record with the correct sizes was
found by _db_findfree. The empty record is removed from the free list by
_db_findfree, and the new data record and index record are rewritten. The
new record is added to the front of the hash chain by calling _db writeptr.

3. An existing record is being replaced and the length of the new data record dif-
fers from the length of the existing data record. We call db dodelete to
delete the existing record and then append the new record to the ends of the
index file and data file. (There are other ways to handle this case. We could try
to find a deleted record that has the correct data size.) The new record is added
to the front of the hash chain by calling _db _writeptr.

4. An existing record is being replaced and the length of the new data record
equals the length of the existing data record. This is the easiest case—we just
rewrite the data record.

We need to describe the locking when new index records or data records are
appended to the end of the file. (Recall the problems we encountered in Program 12.6
with locking relative to the end of file) In cases 1 and 3, db store calls both
_db writeidxand _db_writedat with a third argument of 0 and a fourth argument
of SEEK_END. This fourth argument is the flag to these two functions that the new
record is being appended to the file. The technique used by db writeidx is to write
lock the index file, from the end of the hash chain to the end of file. This won’t interfere
with any other readers or writers of the database (since they will lock a hash chain) but
it does prevent other callers of db_store from trying to append at the same time. The
technique used by _db_writedat is to write lock the entire data file. Again, this won’t
interfere with other readers or writers of the database (since they don’t even try to lock
the data file), but it does prevent other callers of db_store from trying to append to
the data file at the same time. (See Exercise 16.3.)

We complete the tour of the source code with db_nextrec and db_rewind, the
functions used to read all the records in the database. The normal use of these functions
is in a loop of the form

db_rewind (db) ;

while ( (ptr = db_nextrec(db, key)) != NULL) ({
/* process record */

}

As we warned earlier, there is no order to the returned records—they are not in key or-
der.
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The technique for db_rewind (Program 16.20) is to position the index file to the
first index record (immediately following the hash table).

#include "db.h"

/* Rewind the index file for db_nextrec().
* Automatically called by db open().
* Must be called before first db_nextrec().
*/

void
db rewind (DB *db)
{
off t  offset;

offset = (db->nhash + 1) * PTR_SZ; /* +1 for free list ptr */
/* We're just setting the file offset for this process
to the start of the index records; no need to lock.

+1 below for newline at end of hash table. */

if ( (db—>idxoff = lseek(db->idxfd, offset+l, SEEK SET)) == -1)
err_ dump ("lseek error™);

Program 16.20 The db_rewind function.

Once db_rewind has positioned the index file, db_nextrec just sequentially
reads all the index records. As we see in Program 16.21, db_nextrec does not use the
hash chains. Since db_nextrec reads all the deleted records along with the records on
a hash chain, it has to check if a record has been deleted (its key is all blank) and ignore
these deleted records.

If the database is being modified while db_nextrec is called from a loop, the
records returned by db_nextrec are just a snapshot of a changing database at some
point in ime. db_nextrec always returns a “correct” record when it is called; that is,
it won’t return a record that was deleted. But it is possible for a record returned by
db_nextrec to be deleted immediately after db_nextrec returns. Similarly, if a
deleted record is reused right after db_nextrec skips over the deleted record, we
won't see that new record unless we rewind the database and go through it again. Ifit's
important to obtain an accurate “frozen” snapshot of the database using db nextrec,
there must be no insertions or deletions going on at the same time.

Look at the locking employed by db_nextrec. We're not going through any hash
chain, and we can’t determine the hash chain that a record belongs on. Therefore, it is
possible for an index record to be in the process of being deleted when db_nextrec s
reading the record. To prevent this, db_nextrec read locks the free list, to avoid any
interactions with _db_dodelete and _db_findfree.
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#include "db.h"
/* Return the next sequential record.

* We just step our way through the index file, ignoring deleted
records. db_rewind() must be called before this is function
* is called the first time.

'

char *
db nextrec (DB *db, char *key)
{

¥

char c, *ptr;

/* We read lock the free list so that we don’‘t read
a record in the middle of its being deleted. */
if (readw_lock(db->idxfd, FREE_OFF, SEEK_SET, 1) < 0)
err_dump ("readw_lock error");

do {
/* read next sequential index record */
if (_db_readidx(db, 0) < 0) {
ptr = NULL; /* end of index file, EOF */
goto doreturn;
}
/* check if key is all blank (empty record) */
ptr = db—>idxbuf;
while ( (c = *ptr++) '= 0 && c == "")
H /* skip until null byte or nonblank */
} while (c == 0); /* loop until a nonblank key is found */

if (key !'= NULL)
strcpy (key, db—>idxbuf):; /* return key */
ptr = _db_readdat(db); /* return pointer to data buffer */

db->cnt_nextrec++;
doreturn:
if (un_lock (db->idxfd, FREE_OFF, SEEK_SET, 1) < 0)
err dump("un_lock error");

return (ptr) ;

Program 16.21 The db_nextrec function.
Performance

To test the database library and to obtain some timing measurements, a test program
was written. This program takes two command-line arguments: the number of children
to create and the number of database records (nrec) for each child to write to the
database. The program then creates an empty database (by calling db_open), forks
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the number of child processes, and waits for all the children to terminate. Each child
performs the following steps:
* Write nrec records to the database.
* Read the nrec records back by key value.
* Perform the following loop nrec x 5 times.
* Read a random record.
* Every 37 times through the loop, delete a random record.

* Every 11 times through the loop, insert a new record and read the record
back.

* Every 17 times through the loop, replace a random record with a new record,
Every other one of these replacements is a record with the same size data and
the alternate is a record with a lIonger data portion.

* Delete all the records that this child wrote. Every time a record is deleted, 10
random records are looked up.

The actual number of operations performed on the database is counted by the cnt_xxx
variables in the DB structure, which were incremented in the functions. The number of
operations differs from one child to the next, since the random number generator used
to select records is initialized in each child to the child’s process 1D. A typical count of
the operations performed in each child, when nrec is 500, is shown in Figure 16.4.

Operation [ Count |
db_store, DB_INSERT, no empty record, appended 675
db_store, DB_INSERT, empty record reused 170
db_store, DB_REPLACE, different data length, appended 100
db_store, DB_REPLACE, equal data length 100
db_store, record not found 20
db_fetch, record found 8300
db_fetch, record not found 750
db_delete, record found 840
db_delete, record not found 100

Figure 16.4 Typical count of operations performed by each child when nrec is 500.

We performed about 10 times more fetches than stores or deletions, which is probably
typical of many database applications.

Each child is doing these operations (fetching, storing, and deleting), only with the
records that the child wrote. All the concurrency controls are being exercised because
all the children are operating on the same database (albeit different records in the same
database). The total number of records in the database increases in proportion to the
number of children. (With one child, nrec records are originally written to the database.
With two children, nrec x 2 records are originally written, and so on.)

To test the concurrency provided by coarse locking versus fine locking and to com-
pare the three different types of locking (no locking, advisory locking, and mandatory
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locking), we ran three versions of the test program. The first version used the source
code shown in Section 16.7, which we've called fine locking. The second version
changed the locking calls to implement coarse locking, as described in Section 16.6. The
third version had all locking calls removed, so we could measure the overhead involved
in locking. We can run the first and second versions (fine locking and coarse locking)
using either advisory or mandatory locking, by changing the permission bits on the
database files. (In all the tests reported in this section, we measured the times for
mandatory locking using only the implementation of fine locking.)
All the timing tests in this sections were done on an 80386 system running SVR4.

Single-Process Results

Figure 16.5 shows the results when only a single child process ran, with an nrec of 500,

100, and 2000.
. Advisory locking |r -Mandalury locking
No locking - i | L
Coarse locking [ Fine locking Fine locking
nrec || User | Sys | Clock | User | Sys | Clock || User | Sys | Clock il User | Sys | Clock
500 15 | e | s | 16 | 78 | 94| 15 | 7 | 4| 16 | 92 [ 109]
1000 61 340 402 | 63 | 360 425 63 366 430 || 71 ¢ 412 488
2000 | 157 | 906 | 1068 || 158 \ 936 | 10% | 158 | 934 | 1007 || 159 | 1081 | 1253

Figure 16.5 Single child, varying nrec, different locking techniques.

The last 12 columns give the corresponding times in seconds. In all cases the user CPU
time plus the system CPU time approximately equals the clock time. This set of tests
was CPU limited and not disk limited.

The middle six columns (advisory locking, coarse and fine) are almost equal for
each row. This makes sense—for a single process there is no difference between coarse
locking and fine locking.

Comparing no locking versus advisory locking, we see that adding the locking calls
adds between 3% and 15% to the system CPU time. Even though the locks are never
used (since only a single process is running), the system call overhead in the calls to
fcntl adds time. Also note that the user CPU time is about the same for all four ver-
sions of locking. Since the user code is almost equivalent (except for the number of calls
to fcnt 1) this makes sense.

The final point to note from Figure 16.5 is that mandatory locking adds about 15%
to the system CPU time, compared to advisory locking. Since the number of locking
calls are the same for advisory fine locking and mandatory fine locking, the additional
system call overhead must be in the reads and writes.

The final test that was run was to try the no-locking program with multiple chil-
dren. The results, as expected, were random errors. Normally, records that were added
to the database couldn’t be found, and the test program aborted. Every time the test
program was run, different errors occurred. This is a classic race condition—having
multiple processes updating the same file without using any form of locking.
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Multiple-Process Results

The next set of measurements looks mainly at the differences between coarse locking
and fine locking. As we said earlier, intuitively we expect fine locking to provide addi-
tional concurrency, since there is less time that portions of the database are locked from
other processes. Figure 16.6 shows the results, for an nrec of 500, varying the number of
children from 1 to 12.

Advisory locking Mandatory locking
Coarse locking Fine locking A Fine locking A
#Proc|| User | Sys | Clock || User | Sys | Clock | Clock || User | Sys | Clock |Percent

1 16 79 96 16 83 99 3 16 % 112 | 16
2 42 230 273 43 237 281 8 43 271 35 | 14
3 79 454 536 81 464 547 n 78 545 626 18
4 128 753 884 132 757 892 8 123 888 | 1015 17
5 185 | 123 | 1315 | 19 | 1173 | 1376 61 (| 189 | 1366 | 1560 16
6 || 262 | 1601 | 1870 || 270 | 1611 | 1888 18 || 264 | 1931 | 2205 20
7 351 | 2164 | 2526 || 354 | 2174 | 2537 11 || 341 | 2527 | 2877 | 16
8 || 451 | 2801 | 3264 | 454 | 2766 | 3230 -34 || 438 | 3298 | 3750 19
9 565 | 3513 | 4092 569 3483 | 4067 -25 48 4148 | 4712 19
10 684 4293 | 5000 688 4215 | 4925 =75 658 5048 | 5732 20
11 || 812 | 5151 | 5987 || 811 | 5043 | 5876 | —111 || 797 | 6198 | 7020 23
12 || 958 | 6075 | 7058 || 960 | 5992 | 6980 | -78 || 937 | 7298 | 8265 22

Figure 16.6 Comparison of different locking techniques, nrec = 500.

All the user, system, and clock times are in seconds. All these times are the total for the
parent and all its children. There are many items to consider from this data.

The eighth column, labeled “A clock,” is the difference in seconds between the clock
times from advisory-coarse locking to advisory-fine locking. This is the measurement of
how much concurrency we obtain by going from coarse locking to fine locking. On the
system used for these tests, coarse locking is faster, until we have more than seven pro-
cesses. Even after seven processes, the decrease in clock time using fine locking isn't
that great (around 1%), which makes us wonder if the additional code required to
implement fine locking is worth the effort.

We would like the clock time to decrease, from coarse to fine locking, as it eventu-
ally does, but we expect the system time to remain higher for fine locking, for any num-
ber of processes. The reason we expect this is because with fine locking we are issuing
more fentl calls than with coarse locking. If we total the number of fcnt1 calls in
Figure 16.4 for coarse locking and fine locking, we have an average of 22,110 for coarse
locking and 25,680 for fine locking. (To get these numbers, realize that each of the oper-
ations in Figure 16.4 requires two calls to fcnt1 for coarse locking, and the first three
calls to db_store along with record deletion (record found) each requires four calls to
fentl for fine locking.) We expect this increase of 16% in the number of calls to fentl
to result in an increased system time for fine locking. Therefore the slight decrease in
system time for fine locking, when the number of processes exceeds seven, is puzzling.

The final column, labeled “A percent,” is the percentage increase in the system CPU
time from advisory-fine locking to mandatory-fine locking. These percentages verify
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what we saw in Figure 16.5, that mandatory locking adds around 15-20% to the system
time.

Since the user code for all these tests is almost identical (there are some additional
fentl calls for both advisory-fine and mandatory-fine locking), we expect the user
CPU times to be the same across any row. But the user CPU times always increase
1-3% from advisory-coarse locking to advisory-fine locking. The user CPU times
always decrease 1-3% from advisory-fine locking to mandatory-fine locking. There is
no apparent explanation for these differences.

The values in the first row of Figure 16.6 are similar to those for an nrec of 500 in
Figure 16.5. We expect this.

Figure 16.7 is a graph of the data from Figure 16.6, for advisory fine locking. We
plot the clock time as the number of processes goes from one to nine. (We don’t plot the
values for 10, 11, and 12, to avoid expanding the graph in the vertical direction.) We
also plot the user CPU time divided by the number of processes and the system CPU
time divided by the number of processes.

4000 — 400
3500 —|
3000 — 300
system CPU /#proc
sys CPU/#proc,
2500 user CPU /#proc
clock time (seconds)
(seconds) 2000 200
1500 —
1000 — — 100
500 —
e A N B R I B R R
1 2 3 4 5 6 7 8 9
#processes

Figure 16.7 Values from Figure 16.6 for advisory-fine locking.

Note that both CPU times, divided by the number of processes, are linear, but the plot
of the clock time is nonlinear. If we sum the user CPU time and system CPU time from
Figure 16.6 and compare it to the clock time for a given row, the difference between the
two increases as the number of processes increases. The probable reason is the added
amount of CPU time used by the operating system as the number of processes
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increases. This operating system overhead would show up as an increased clock time,
but shouldn’t affect the CPU times of the individual processes.

The reason the user CPU time increases with the number of processes is because
there are more records in the database. Each hash chain is getting longer, so it takes the
_db_find function longer, on the average, to find a record.

Summary

This chapter has taken a long look at the design and implementation of a database
library. Although we’ve kept the library small and simple, for presentation purposes, it
contains the record locking required to allow concurrent access by multiple processes.

We've also looked at the performance of this library, with various number of pro-
cesses, using four different types of locking: no locking, advisory locking (fine and
coarse), and mandatory locking. We saw that advisory locking adds about 10% to the
clock time over no locking, and mandatory locking adds another 10% over advisory
locking.

Exercises

16.1 The locking in _db_dodelete is somewhat conservative. For example, we could allow
more concurrency by not write locking the free list until we really need to; that is, the call to
writew_lock could be moved between the calls to _db writedat and _db_readptr.
What happens if we do this?

16.2 If db_nextrec did not read lock the free list and a record that it was reading was also in
the process of being deleted, describe how db_nextrec could return the correct key but an
all-blank (hence incorrect) data record. (Hint: look at_db_dodelete.)

16.3 After the discussion of db_store we described the locking performed by _db_writeids
and _db_writedat. We said that this locking didn’t interfere with other readers and writ
ers except those making calls to db_store. Is this true if mandatory locking is being used?

164 How would you integrate the £sync function into this database library?

16.5 Create a new database and write some number of records to the database. Write a program
that calls db_nextrec to read each record in the database and call _db_hash to calculate
the hash value for each record. Print a histogram of the number of records on each hash
chain. Is the hashing function in Program 16.9 adequate?

16.6 Modify the database functions so that the number of hash chains in the index file can be
specified when the database is created.

16.7 If your systems support a network filesystem, such as Sun’s Network File System (NFS) or
AT&T's Remote File Sharing (RFS), compare the performance of the database functions
when the database is (a) on the same host as the test program and (b) on a different host.
Does the record locking provided by the database library still work?
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17.2

4

Communicating with a
PostScript Printer

Introduction

We now develop a program that can communicate with a PostScript printer. PostScript
printers are popular today and normally communicate with a host using an RS-232
serial interface. This gives us a chance to use some of the terminal I/O functions from
Chapter 11. Also, communication with a PostScript printer is full duplex, meaning that
as we send data to the printer we also have to be prepared to read status information
from the printer. This gives us a chance to use the 1/O multiplexing functions from
Section 12.5: select and poll. The program that we develop is based on the 1prps
program written by James Clark. This program and others, making up the 1prps pack-
age, was posted to the comp.sources.misc Usenet news group, Volume 21 (July
1991).

PostScript Communication Dynamics

The first thing to realize about printing on a PostScript printer is that we don’t send a
file to the printer to be printed—we send a PostScript program to the printer for it to
execute. There is normally a PostScript interpreter within the printer that executes the
program, generating one or more pages of printed output. If the PostScript program
contains errors, the printer (actually the PostScript interpreter) returns an error message
and may or may not generate any output.

The following PostScript program causes the familiar string to be printed on a page.
(We won’t describe PostScript programming in this text, see Adobe Systems [1985 and
1986] for these details. Our interest is in communicating with a PostScript printer.)

551
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and output page to output device
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If we change the word set font to ssetfont in the PostScript program and send it to
the printer, nothing is printed. Instead we get the following messages back from the
printer

%%[ Error: undefined; OffendingCommand: ssetfont 1%%

%%[ Flushing: rest of job (to end-of-file) will be ignored ]%%

These error messages, which can arrive from the printer at any time, are what compli-
cate the handling of a PostScript printer. We can’t just send the entire PostScript pro-
gram to the printer and forget about it—we must handle these potential error messages
intelligently. (Throughout this chapter we'll usually say “printer” when technically we
mean the PostScript interpreter.)

PostScript printers are usually attached to a host computer using an RS-232 serial
connection. This looks to the host like a terminal connection. Everything that we said
about terminal I/0 in Chapter 11 applies here. (There are other ways to connect Post-
Script printers to a host: network interfaces are becoming popular. The predominant
interface these days is a serial connection.) Figure 17.2 shows the typical arrangement.
A PostScript program can generate two forms of output—output on the printed page
from the showpage operator and output to its standard output (the serial link to the
host in this case) from the print operator.

The PostScript interpreter sends and receives seven-bit ASCII characters. A Post-
Script program consists entirely of printable ASCII characters. Some of the nonprinting
ASCII characters have special meaning, as listed in Figure 17.1.

Octal
value

Control-C | 003 | Interrupt. Causes the PostScript interrupt operator to be executed. Normally
this terminates the PostScript program being interpreted.

Contrel-D | 004 | End of file.

Line feed 012 | End of line, the PostScript newline character. If a return and line feed are
received in sequence, only a single newline character is passed to the
interpreter.

Return 015 | End of line. Translated to the PostScript newline character.

Control-Q | 021 | Start output (XON flow control).

Control-5 | 023 | Stop output (XOFF flow control).

Control-T | 024 | Status query. The PostScript interpreter responds with a one-line status message.

Character Description

Figure 17.1 Special characters sent from computer to PostScript interpreter.

The PostScript end-of-file character (Control-D) is used to synchronize the printer
with the host. We send a PostScript program to the printer and then send an EOF to the
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Figure 17.2 Communicating with a PostScript printer using a serial connection.

printer. When the printer has finished executing the PostScript program, it sends an
EOF back.

While the interpreter is executing a PostScript program we can send it an interrupt

(Control-C). This normally causes the program being executed by the printer to termi-
nate.

The status query message (Control-T) causes a one-line status message to be

returned by the printer. All messages received from the printer have the following for-
mat:

83 [ key: val 1%%

Any number of key: val pairs can appear in a message, separated by semicolons. Recall
the messages returned in the earlier example:

£%[ Error: undefined; OffendingCommand: ssetfont ]%%
%% [ Flushing: rest of job (to end-of-file) will be ignored ]%%

The status messages have the form

%£%[ status: idle ]%%

Other status indications, besides idle (no job in progress), are busy (executing a Post-
Script program), waiting (waiting for more of the PostScript program to execute),
printing (paper in motion), initializing, and printing test page.
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17.3

We now consider the messages that are spontaneously generated by the PostScript
interpreter. We've already seen the message

%%l Error: error; OffendingCommand: operator %%

About 25 different errors can occur. Common errors are dict stackunderflow,
invalidaccess, typecheck, and undefined. The operator is the PostScript operator
that generated the error.

A printer error is indicated by a message of the form

%%[ PrinterError: regason ]%%

where reason is often Out Of Paper, Cover Open,or Miscellaneous Error.
After an error has occurred, the PostScript interpreter often sends a second message

%%[ Flushing: rest of job (to end-of-file) will be ignored ]%%

To handle these messages we have to parse the message string, looking only at the
characters within a pair of the special sequences %[ and ]1%%. A PostScript program
can also generate output from the PostScript print operator. This output should be
sent to the user who sent the program to the printer—it is not output that our printing
program should try to interpret.

Figure 17.3 lists the special characters that are sent by the PostScript interpreter to
the host computer.

Character | val: uei Description

ControlD | 004 | End of file,
Line feed 012 | Newline. When a newline is written to the interpreter’s standard output, it is
, translated to a return followed by a line feed.

Control-Q | 021 | Start output (XON flow control).
Control-S | 023 | Stop output (XOFF flow control).

Figure 17.3 Special characters sent from PostScript interpreter to computer.

Printer Spooling

The program that we develop in this chapter sends a PostScript program to a PostScript
printer in either stand-alone mode or through the BSD line printer spooling system.
Normal usage is within a spooling system, but it is useful to provide a stand-alone
(debug) mode, for testing.

SVR4 also provides a spooling system, albeit more complicated than the BSD sys-
tem. Details of this spooling system can be found in all the manual pages that begin
with 1p in Section 1 of AT&T [1991]. Chapter 13 of Stevens [1990] provides details on
the BSD spooling system and the pre-SVR4 System V spooling system. Our interest in
this chapter is not in these spooling systems per se, but in communicating with a Post-
Script printer.
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In the BSD spooling system we print a file with a command of the form

lpr -pps main.c

This sends the file main. ¢ to the printer whose name is ps. If we didn’t specify —pps
the output would be sent to either the printer specified by the PRINTER environment
variable or to the default printer 1p. The printer is looked up in the file
/etc/printcap. Figure 17.4 shows an entry for our PostScript printer.

lpips:\
:br#19200:1p=/dev/ttyb:\
:sf:sh:rw:\
:fc#0000374:£34#0000003: xc#0:xs#0040040:\
:af=/var/adm/psacct:1lf=/var/adm/pslog:sd=/var/spocl/pslpd:\
:if=/usr/local/lib/psif:

Figure 174 The printcap entry for the PostScript printer.

The first line gives the name of this entry as either ps or 1p. The br value specifies the
baud rate as 19200. 1p specifies the pathname of the special device file for the printer.
s £ says to suppress form feeds, and sh says to suppress printing a burst page header at
the beginning of each job. rw specifies that the device is to be opened for reading and
writing. This is required for a PostScript printer, as described in Section 17.2.

The next four fields specify bits to turn off and turn on in the old BSD-style sgtty
structure. (We describe these here because most BSD systems that use this form of
printcap file support this older style of setting terminal parameters. In the source
code later in this chapter we’ll see how to set all the terminal parameters with the
POSIX.1 functions from Chapter 11.) First the £c mask clears the following bits in the
sg_flags element: EVENP and ODDP (turns off parity checking and generation), RAW
(turns off raw mode), CRMOD (turns off CR/LF mapping on input and output), ECHO
(turns off echo), and LCASE (turns off uppercase/lowercase mapping on input and out-
put). Then the £s mask turns on the following bits: CBRERK (one character-at-a-time
input), and TANDEM (host generates Control-S, Control-Q flow control). Next, the xc
value clears bits in the local mode word. In this example the value of 0 does nothing,.
Finally, the xs value sets bits in the local mode word: LDECCTQ (only Control-QQ restarts
output that was stopped by a Control-5), and LLITOUT (suppress output translations).

The af and 1f£ strings specify the accounting file and log file, respectively. sd spec-
ifies the spooling directory, and i £ specifies the input filter.

The input filter is invoked for every file to be printed. It is invoked as

filter —-n loginname -h hostname acctfile

There are several optional arguments that can also appear, which can be safely ignored
for a PostScript printer. The file to be printed is on the standard input, and the printer
device (from the 1p entry in the printcap file) is open on the standard output. The
standard input can be a pipe.

With a PostScript printer, the input filter should look at the first two bytes of the
input file and determine if the file is an ASCII text file or a PostScript program. The
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174

normal convention is that the two-character sequence %! at the beginning of a file desig-
nates a PostScript program. If the file is a PostScript program, the lprps program
(detailed later in this chapter) can send it to the printer. But if the file is an ASCII text
file, a program is required to convert this into a PostScript program that prints the text
file.

The filter psif, mentioned in the printcap file, is supplied with the 1prps pack-
age. The program textps in this package converts an ASCII text file into a PostScript
program that prints the file. Figure 17.5 outlines all these programs.

printcap file

llpd system

psif filter

a

lprps "$@" textps | lprps "$@"

Figure 17.5 Overview of 1prps system.

There is another program not shown in this figure, psrev, that reverses the pages of
output generated by a PostScript program. This can be used if the PostScript printer
generates its output face up instead of face down.

Having covered all these preliminaries, we can now look at the design and source
code of the 1prps program.

Source Code

Let’s start with an overview of the functions called by main and how they interact with
the printer. Figure 17.6 details this interaction. The second column, labeled “Int?”,
specifies if the function is interruptible with a SIGINT signal. The third column speci-
fies the time-out value (in seconds) set by the function. Notice that when we're sending
the user’s PostScript program to the printer, there is no time out. This is because a Post-
Script program can take any amount of time to execute. The reference to “our Post
Script program” for the get_page function refers to the small PostScript program in
Program 17.9 that fetches the current page counter.

Program 17.1 lists the header 1prps.h. It is included by all the source files. This
header includes the system headers that most files require, defines some constants, and
declares the global variables and function prototypes for the global functions.
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Function Int? | Timeout? Send to printer Receive from printer
get_status | no 5 Control-T
%£%[ status: idle ]%%
get_page no 30 our PostScript program
%% [ pagecount: n|%%
EOF
EQF
send file yes none user’s PostScript program
EOF
EOF
get_page no 30 our PostScript program
%%[ pagecount: nl%%
EOF
EOF

Figure 17.6 Functions called by main.

#include <sys/types.h>

#include <sys/time.h>

#include <errno.h>

#include <signal.h>

#include <syslog.h> /* since we’'re a daemon */

#include "ourhdr.h"

#define EXIT SUCCESS 0 /* defined by BSD spooling system */

#define EXIT REPRINT 1
fidefine EXIT THROW AWAY 2

f#define DEF DEVICE
fidefine DEF_BAUD

"/dev/ttyb" /* defaults for debug mode */
B19200

/* modify following as appropriate */

#define MAILCMD "mail -s \"printer job\" %s@%s < %s"

#define OBSIZE
#idefine IBSIZE
#define MBSIZE

1024 /* output buffer */
1024 /* input buffer */
1024 /* message buffer */

/* declare global variables */
extern char *loginname:;
extern char *hostname;
extern char *acct file;

extern char eofc; /* PS end-of-file (004) */

extern int debug; /* true if interactive (not a daemon) */
extern int in_job; /* true if sending user’s PS job to printer */
extern int psfd; /* file descriptor for PostScript printer */

extern int
extern int

start_page; /* starting page# */
end_page; /* ending page# */
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extern volatile sig_atomic_t intr flag; /* set if SIGINT is caught *
extern volatile sig_atomic_t alrm_flag; /* set if SIGALRM goes off *
extern enum status { /* printer status */

INVALID, UNKNOWN, IDLE, BUSY, WAITING
} status;

/* global function prototypes */

void do_acct (void) ; /* acct.c */
void clear_alrm(void); /* alarm.c */
void handle_alrm(void);

void set_alrm(unsigned int);

void get_status(void); /* getstatus.c */
void init_input (int); /* input.c */
void proc_input_char (int) ;

void proc_some_input (void);

void proc_upto_eof(int);

void clear_intr(void); /* interrupt.c */
void handle intr(void);

void set_intr (void);

void close mailfp(void); /* mail.c */

void mail char (int);

void mail line(const char *, const char *);

void msg_init (void); /* message.c */
void msg_char {(int) ;

void proc_msg(void) ;

void out_char (int); /* output.c */
void get_page{int *); /* pagecount.c */
void send file(void); /* sendfile.c */
void block_write (const char *, int); /* tty.c */

void tty_flush(void);
void set_block (void);
void set_nonblock (void) ;
void tty_open(void):

Program 17.1 The 1prps.h header.

The file vars. c (Program 17.2) defines the global variables.

Execution starts at the main function, shown in Program 17.3. The main function
calls the 1og_open function (shown in Appendix B) since this program normally runs
as a daemon. We cannot write error messages to the standard error—instead we use
the syslog facility described in Section 13.4.2.
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#inc

char
char
char
char

int
int
int
int
int

vola
vola

lude "lprps.h"
*loginname;
*hostname;
*acct_file;
eofc = 7\004’; /* Control-D = PostScript EOF */
psfd = STDOUT_FILENO;
start_page = -1;
end_page = ~-1;
debug;
in_job;
tile sig _atomic_t  intr_flag;

tile sig_atomic_t alrm flag;

enum status status = INVALID;

Program 17.2 Declare the global variables.

#include "lprps.h"

stat

int

ic void usage (void);

main(int argc, char *argv[])

{

int c;
log_open("lprps", LOG_PID, LOG_LPR);

opterr = 0; /* don’'t want getopt() writing to stderr */
while ( (c = getopt(argc, argv, "cdh:i:l:n:x:y:w:")) != EOF) ({
switch (c) {

case 'c': /* control chars to be passed */
case 'x': /* horizontal page size */

case 'y': /* vertical page size */

case ‘w': /* width */

case '1': /* length */

case "i’': /* indent */

break; /* not interested in these */

case ’‘d’: /* debug (interactive) */
debug = 1;
break;

case ‘n’: /* login name of user */
loginname = optarg;
break;

case 'h': /* host name of user */

hostname = optarg:;
break;
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|
|
|

case '?';:
log msg("unrecognized option: -%c", optopt);
usage () ;

}
if (hostname == NULL || loginname == NULL)

usage () ; /* require both hostname and loginname */
if (optind < argc)

acct_file = argv[optind]; /* remaining arg = acct file */
if (debug)

tty open();
if (atexit(close mailfp) < 0) /* register func for exit() */

log_sys{"main: atexit erxoxr");
get_status();
get page (&start_page);
send file(); /* copies stdin to printer */
get page (&end page);
do_acct();

exit (EXIT SUCCESS);
}

static void

usage (void)

{
log_msg("lprps: invalid arguments");
exit(EXIT_mHROH_AWAY};

Program 17.3 The main function.

The command-line arguments are then processed, many of which can be ignored for
a PostScript printer. We use the —d flag to indicate that the program is being run inter-
actively, not as a daemon. If this flag is set, we need to initialize the terminal mode
(tty_open). We describe the function close_mailfp, which we establish as an exit
handler, later.

We then call the functions that we mentioned in Figure 17.6: fetch the printer status
to assure it is ready (get _status), get the printer’s starting page count (get_page),
send the file (the PostScript program) to the printer (send_£ile), get the printer’s end-
ing page count (get_page), write an accounting record (do_acct), and terminate.

The file acct .c defines the function do_acct (Program 17.4). It is called at the
end of main to write an accounting record. The name of the accounting file is taken
from the printcap entry (Figure 17.4) and passed as the final command-line argument.
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#include "lprps.h"

/* Write the number of pages, hostname, and loginname to the

* accounting file. This function is called by main() at the end
* 1f all was OK, by printer flushing(), and by handle intr() if
* an interrupt is received. */

void
do_acct (void)
{
FILE *fp;

if (end_page > start_page &&
acct_file != NULL &&
(fp = fopen(acct file, ™a")) != NULL) {
fprintf (fp, "%7.2f %s:%s\n",
(double) (end page - start page),
hostname, loginname) ;
if (fclose(fp) == EOF)
log_sys("do_acct: fclose error");

Program 17.4 The do_acct function.

Historically all BSD print filters write the number of pages output to the accounting file
with the $7.2f printf format. This allows raster devices to report output in feet (and
fractions thereof), instead of pages.

The next file, tty. ¢ (Program 17.5), contains all the terminal I/O functions. These
call the functions we described in Chapter 3 (fcntl, write, and open), and the
POSIX.1 terminal functions from Chapter 11 (tcflush, tcgetattr, tcsetattr,
cfsetispeed, and cfsetospeed). There are times when we don’t care if a write
blocks, and we’ll call block write for these cases. But if we don’t want to block, we
call set _nonblock and then call read or write ourself. Since a PostScript printer is a
full-duplex device, we don’t want to block on a write if there is a chance that the
printer might want to send data to us (such as an error message). If the printer sends us
an error message while we’re blocked trying to send it data, we can encounter a dead-
lock.

The kernel normally buffers terminal input and output, so if an error condition is
encountered we call tty flush to flush both the input and output queue.

The function tty_open is called from main if we’re running interactively (not as a
daemon). We need to set the terminal mode to noncanonical, set the baud rates, and set
any other terminal flags. Be aware that these settings are not the same for all PostScript
printers. Check your printer manuals for its settings. (The number of bits of data,
seven-bit or eight-bit, the number of start and stop bits, and the parity, are most likely to
change between printers.)
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#include "lprps.h"
#include <fentl.h>

#include <termios.h>
static int block_flag = 1; /* default is blocking I/0 */
void
set_block (void) /* turn off nonblocking flag */
{ /* called only by block write() below */
int val;

if (block_flag == 0) {
if ( (val = fentl(psfd, F_GETFL, 0)) < 0)
log_sys("set_block: fentl F_GETFL error”);
val &= ~O_NONBLOCK;
if (fcntl(psfd, F_SETFL, val) < 0)
log_sys("set_block: fcntl F_SETFL error"):

block flag = 1;

}

void
set_nonblock(void) /* set descriptor nonblocking */

{
int val;

if (block_flag) {
if ( (val = fcntl(psfd, F_GETFL, 0)) < 0)
log_sys("set_nonblock: fcntl F_GETFL error"):
val |= O_NONBLOCK:
if (fentl (psfd, F_SETFL, val) < 0)
log_sys("set_nonblock: fcntl F_SETFL error");

block_flag = 0;

}

void
block_write(const char *buf, int n)
{
set_block():
if (write(psfd, buf, n) != n)
log sys{"block write: write error");
}

void
tty flush(void) /* flush (empty) tty input and output queues */
{
if (tcflush({psfd, TCIOFLUSE) < 0)
log_sys("tty_flush: tcflush error"):
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void
tty_open(void)
{
struct termios term;

if ( (psfd = open(DEF_DEVICE, O _RDWR)) < 0)
log_sys("tty_open: open error");

if (tcgetattr(psfd, &term) < 0) /* fetch attributes */
log_sys("tty open: tcgetattr error");
term.c_cflag = CS8 | /* 8-bit data */
CREAD | /* enable receiver */
CLOCAL; /* ignore modem status lines */
/* no parity, 1 stop bit */
term.c_oflag &= ~OPOST: /* turn off post processing */
term.c_iflag = IXON | IXOFF | /* Xon/Xoff flow control */
IGNBRK | /* ignore breaks */
ISTRIP | /* strip input to 7 bits */
IGNCR; /* ignore received CR */
term.c_lflag = 0; /* everything off in local flag:

disables canonical mode, disables
signal generation, disables echo */
term.c_cc[VMIN] /* 1 byte at a time, no timer */
term.c_cc{VTIME]
cfsetispeed(&term, DEF BAUD);
cfsetospeed (&term, DEF_BAUD) ;
if (tcsetattr(psfd, TCSANOW, &term) < 0) /* set attributes */

log_sys("tty_open: tcsetattr error");

1;
0;

Program 17.5 Terminal functions.

The program handles two signals: SIGINT and SIGALRM. Handling SIGINT is a
requirement for any filter invoked by the BSD spooling system. This signal is sent to the
filter if the printer job is removed by the 1prm(1) command. We use SIGALRM for set-
ting time outs. Both signals are handled in a similar fashion: we provide a set XXX
function to establish the signal handler, and a clear_XxXx function to disable the signal
handler. If the signal is delivered to the process the signal handler just sets a global flag,
intr_flag and alrm_flag, and returns. It is up to the rest of the program to test
these flags at the appropriate times, to see if the signal has been caught. One obvious
time is after an I/O function returns an error of EINTR. The program then calls either
handle_intr or handle_alrm to handle the condition. We call the signal intr
function (Program 10.13) so that either signal interrupts a slow system call.
Program 17.6 shows the file interrupt . c that handles STGINT.

When an interrupt occurs we have to send the PostScript interrupt character
(Control-C) to the printer, followed by an EOF. This normally causes the PostScript
interpreter to abort the program that it's interpreting. We then wait for an FOF back
from the printer. (We describe the function proc_upto_eof later) We finish up by
reading the ending page count, writing an accounting record, and terminating.
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#include "lprps.h"

static void
sig_int (int signo) /* SIGINT handler */
{

intr_flag = 1;

return;

}

/* This function is called after SIGINT has been delivered,
* and the main loop has recognized it. (It not called as
* a signal handler, set_intr() above is the handler.) */

void
handle intx(void)
{

char c;

intr flag = 0;

clear_intx(): /* turn signal off */

set_alrm(30); /* 30 second timeout to interrupt printer */
tty flush(); /* discard any queued output */

c = '\003";

block_write(&c, 1); /* Contrel-C interrupts the PS job */
block_write (&eofc, 1); /* followed by EQF */

proc_upto_eof(1); /* read & ignore up through EOF */

clear_alrm();

get_page (&end page);
do_acct();
exit (EXIT SUCCESS); /* success since user lprm’ed the job */
}
void
set_intr(void) /* enable signal handler */
{
if (signal_intr(SIGINT, sig_int) == SIG_ERR)

log_sys("set_intr: signal_intr error");
}

void
clear_intr(void) /* ignore signal */
{
if (signal (SIGINT, SIG_IGN) == SIG_ERR)
log_sys("clear_intr: signal error™);

Program 17.6 The interrupt. c file to handle interrupt signals.
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Figure 17.6 noted which functions set time outs. We set a time out only when we
request the printer status (get status), when we read the printer’s page count
(get_page), or when we're interrupting the printer (handle_intr). If a time out does
occur, we just log an error, wait for a while, and terminate. Program 17.7 shows the file
alarm.c.

#include "lprps.h"

static void

sig_alrm(int signo) /* SIGALRM handler */
{

alrm flag = 1;

return;

}
void
handle_alrm(void)

{
log _ret ("printer not responding");
sleep(60); /* it will take at least this long to warm up */

exit (EXIT REPRINT) ;
}

void /* Establish the signal handler and set the alarm. */
set_alrm(unsigned int nsec)

{
alrm flag = 0;

if (signal_intr(SIGALRM, sig_alrm) == SIG_ERR)
log sys("set_alrm: signal intr error");
alarm(nsec) ;
}
void

clear alrm(void)
{
alarm(0):
if (signal (SIGALRM, SIG_IGN) == SIG_ERR)
log_sys("clear_alrm: signal error");
alrm flag = 0;

Program 17.7 The alarm. c file to handle time outs.

Program 17.8 shows the function get_status, which we called from main. It
fetches the status by sending a Control-T to the printer. The printer should respond
with a one-line message. The message that we're looking for is

%$%[ status: idle ]1%%

which means the printer is ready for a new job. This message is read and processed by
proc_some_input, which we look at later.
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#include "lprps.h"

/* Called by main() before printing job.

* We send a Control-T to the printer to fetch its status.

* If we timeout before reading the printer’s status, something
* is wrong. */

void
get_status(void)
{

char c;

set_alrm(5); /* 5 second timeout to fetch status */
tty flush();

c = "\024’;

block_write(&c, 1); /* send Control-T to printer */

init_input (0);
while (status == INVALID)
proc_some_input(); /* wait for something back */

switch (status) {

case IDLE: /* this is what we’re looking for ... */
clear_alrm();
return;

case WAITING: /* printer thinks it’s in the middle of a job */
block write(&eofc, 1); /* send EOF to printer */
sleep(5);
exit (EXIT REPRINT) ;

case BUSY:

case UNKNOWN:
sleep(195);
exit (EXIT REPRINT);

Program 17.8 The get_status function.

If we receive the message
%% [ status: waiting ]%%

it means the printer is waiting for us to send it more data for a job that it is currentl
printing. This means something funny happened to the previous job. To clear this
we send the printer an EOF, then terminate.

PostScript printers maintain a page counter. It is incremented each time a pagei
printed and is maintained even when the power is turned off. To read this coun
requires us to send the printer a PostScript program. The file pagecount.
(Program 17.9) contains this small PostScript program (about a dozen PostScript o
tors) and the function get _page that sends this program to the printer.
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#include "lprps.h"

/* PostScript program to fetch the printer’s pagecount.
* Notice that the string returned by the printer:

c %% [ pagecount: N ]%%

* will be parsed by proc_msg(). */

static char pagecount_string[] =
"(%%[ pagecount: ) print " /* print writes to current output file */
"statusdict begin pagecount end " /* push pagecount onto stack */

"20 string " /* creates a string of length 20 */
"cvs " /* convert to string */

"print " /* write to current output file */
*( 1%%) print "

"flush\n"; /* flush current output file */

/* Read the starting or ending pagecount from the printer.
* The argument is either &start_page or &end_page. */

void
get_page (int *ptrcount)
{
set_alrm(30); /* 30 second timeout to read pagecount */

tty_flush();
block_write(pagecount_string, sizeof(pagecount_string) - 1);
/* send query to printer */
init_input (0);
*ptrcount = -1;
while (*ptrcount < 0)
proc_some_input():; /* read results from printer */

block write(&eofc, 1); /* send EOF to printer */
proc_upto_eof (0); /* wait for EOF from printer */

clear_alrm();

Program 17.9 The pagecount. c file—fetch the printer’s page count.

The array pagecount_string contains the small PostScript program. Although we
could fetch the page count and print it using just

statusdict begin pagecount end = flush
we purposely format the output to look like a status message returned by the printer:
%% [ pagecount: N ]1%%

By doing this the function proc_some_input handles the message similar to any
printer status message.

The function send file in Program 17.10 is called by main to send the user’s
PostScript program to the printer.
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#include "lprps.h"
void
send file(void) /* called by main() to copy stdin to printer */
{
int c;
init_input(1);
set_intrx(); /* we catch SIGINT */
while ( {(c = getchar()) !'= EOF) /* main loop of program */
out_char(c): /* output each character */
out_char (EOF) ; /* output final buffer */

block_write(&eofc, 1); /* send EOF to printer */
proc_upto_eof (0); /* wait for printer to send EOF back */

Program 17.10 The send_file function.

This function is just a while loop that reads from the standard input (getchar) and
calls the function out_char to output each character to the printer. When the end of
file is encountered on the standard input, an EOF is sent to the printer (indicating the
end of job), and we wait for an end of file back from the printer (proc_upto_eof).

Recall from Figure 17.2 that the output from the PostScript interpreter on the serial
port can be either printer status messages or output from the PostScript print operator.
It is possible for what we think of as a “file to be printed” to generate no printed pages
at all! This file can be a PostScript program that executes and sends its results back to
the host computer. PostScript is not a language that many want to program in. Never-
theless, there are times when we want to send a PostScript program to the printer and
have all its output sent back to the host, not printed on a page. One example is a Post-
Script program to fetch the page count every day, to track printer usage.

%!

statusdict begin pagecount end =

We want any output returned to the host by the PostScript interpreter, which is not a
status message, to be sent as e-mail to the user. The file mail.c, shown in
Program 17.11, handles this.

#include "lprps.h"

static FILE *mailfp;
static char temp_file[L tmpnam];
static void open mailfp(void);

/* Called by proc_input_char() when it encounters characters
* that are not message characters. We have to send these
* characters back to the user. */

void

mail char(int c)

{
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static int done_intro = 0;

if (in_job && (done_intro |] ¢ != *\n’)) {
open_mailfp():
if (done_intro == 0) ({
fputs ("Your PostScript printer job "
"produced the following output:\n", mailfp);
done_intro = 1;
}
putc{c, mailfp);

}

/* Called by proc_msg() when an "Error" or "OffendingCommand"” key
* is returned by the PostScript interpreter. Send the key and
* val to the user. */
void
mail_line (const char *msg, const char *val)
{
if (in_job) {
open mailfp();
fprintf (mailfp, msg, val);

}

/* Create and open a temporary mail file, if not already open.
* Called by mail_char() and mail_line() above. */

static void
open_mailfp(void)
{
if (mailfp == NULL) {
if ( (mailfp = fopen(tmpnam(temp file), "w")) == NULL)
log_sys("open mailfp: fopen errox");

}

/* Close the temporary mail file and send it to the user.
* Registered to be called on exit() by atexit() in main(). */
void
close_mailfp (void)
{

char command[1024] ;

if (mailfp != NULL) {
if (fclose{mailfp) == EOF)
log_sys("close_mailfp: fclose error");
sprintf (command, MAILCMD, loginname, hostname, temp file):
system (command) ;
unlink (temp file);

Program 17.11 Themail.c file.
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The functionmail_char is called each time a character is returned by the printer to
host, if the character is not part of a status message. (Later in this section we look at
function proc_input_char that calls mail_char.) The variable in_job is set
while the function send_fi le is sending a file to the printer. It is not set at other ti
such as when we're fetching the printer’s status or the printer’s page count. The
tionmail_line is called to write a line to the mail file.

The first time the function open_mailfp is called, it creates a temporary file,
opens it. The function close_mailfp is set by main as an exit handler, to be
whenever exit is called. If the temporary mail file was created, it is closed and
to the user.

If we send the one-line PostScript program

%!
statusdict begin pagecount end =

to fetch the printer’s page count, the mail message returned to us is

Your PostScript printer job produced the following output:
11185

The file output . ¢ (Program 17.12) contains the function out_char that was
by send_file to output each character to the printer.

#include "lprps.h"

static char outbuf[OBSIZE];
static int outcnt = OBSIZE; /* #bytes remaining */
static char *outptr = outbuf;

static void out buf (void);

/* Output a single character.
* Called by main loop in send file(). */

void
out_char (int ¢)
{
if (c == EQF) {

out_buf () ; /* flag that we’re all done */
return;
}
if (outcnt <= 0)
out_buf () ; /* buffer is full, write it first */
*outptr++ = c; /* just store in buffer */

outcnt——;

/* Output the buffer that out_char() has been storing into.
We have our own output function, so that we never block on a write
to the printer. Each time we output our buffer to the printer,
we also see if the printer has something to send us. If so,
we call proc_input char() to process each character. */

* % * ¥
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static void

out_buf(void)

{
char *wptr, *rptr, ibuf[IBSIZE];
int went, nread, nwritten;
fd_set rfds, wfds;

FD_ZERO (&wfds) ;
FD ZERO (&rfds);

set_nonblock () ; /* don’t want the write() to block */
wptr = outbuf; /* ptr to first char to output */
went = outptr - wptr; /* #bytes to output */

while (wcnt > 0) {
FD_SET(psfd, &wfds);
FD_SET (psfdq, &rfds) ;
if (intr_flag)
handle intr();
while (select(psfd + 1, &rfds, &wfds, NULL, NULL) < 0) {
if (errno == EINTR) ({
if (intr_ flag)

handle_intr(); /* no return */
} else
log_sys("out_buf: select error");
}
if (FD_ISSET(psfd, &rfds)) { /* printer is readable */
if ( (nread = read(psfd, ibuf, IBSIZE)) < 0)
log_sys ("out_buf: read error");
rptr = ibuf;
while (——nread >= 0)
proc_input_char (*rptr++);
}
if (FD_ISSET(psfd, &wfds)) { /* printer is writeable */
if ( (nwritten = write(psfd, wptr, wcnt)) < 0)
log_sys ("out_buf: write error");
went —= nwritten;
wptr += nwritten;
}
}
outptr = outbuf; /* reset buffer pointer and count */

outcnt = OBSIZE:

Program 17.12 The cutput. c file.

When the argument to out_char is EOF, that’s a signal that the end of the input has
been reached, and the final output buffer should be sent to the printer.

The function out_char places each character in the output buffer, calling out_buf
when the buffer is full. We have to be careful writing out_buf: in addition to sending
output to the printer, the printer can be sending us data also. To avoid blocking on a
write, we must set the descriptor nonblocking. (Recall the example, Program 12.1.)
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We use the select function to multiplex the two I/O directions: input and output. We
set the same descriptor in the read set and the write set. There is also a chance that the |
select can be interrupted by a caught signal (SIGINT), so we have to check for this on
any error return.

If we receive asynchronous input from the printer, we call proc_input_charto
process each character. This input could be either a status message from the printeror
output to be mailed to the user.

When we write to the printer we have to handle the case of the write returninga ]
count less than the requested amount. Again, recall the example in Program 12.1, where
we saw that a terminal device can accept any amount of data on each write. |

The file input . ¢, shown in Program 17.13, defines the functions that handle all the
input from the printer. This can be either printer status messages or output for the user.

#include "lprps.h"

static int eof count; |

static int ignore input; i

static enum parse_state { /* state of parsing input from printer */
NORMAL,

HAD ONE_PERCENT,

HAD TWO_ PERCENT,

IN MESSAGE,

HAD RIGHT BRACKET,

HAD_RIGHT BRACKET AND PERCENT
} parse_state;

/* Initialize our input machine. */

void

init_input (int job)

{
in_job = job; /* only true when send file() calls us */
parse_ state = NORMAL;
ignore input = 0;

}

/* Read from the printer until we encounter an EOF.
* Whether or not the input is processed depends on "ignore". */

void
proc_upto_eof (int ignore)
{

int ec;

ignore_ input = ignore;
ec = eof_count; /* proc_input_char() increments eof_ count */
while (ec == eof_ count)

proc_some_input();

}

/* Wait for some data then read it.
* Call proc_input_char() for every character read. */
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void
proc_some_input (void)
{
char ibuf [IBSIZE];
char *ptr;
int nread;
fd set rfds;

FD_ZERO (&rfds) ;
FD_SET (psfd, &rfds):;
set_nonblock () ;
if (intr_flag)
handle_intr():
if (alrm flag)
handle_alrm();
while (select(psfd + 1, &rfds, NULL, NULL, NULL) < 0) f{
if (errno == EINTR) { -
if (alrm_flag)

handle_alrm() : /* doesn’t return */
else if (intr_flag)
handle_intr(); /* doesn’t return */

} else
log_sys ("proc_scme_input: select error");
}
if ( (nread = read(psfd, ibuf, IBSIZE)) < 0)
log_sys("proc_some_input: read error");
else if (nread == 0)
log_sys ("proc_some_input: read returned 0");

ptr = ibuf;
while (--nread >= 0)
proc_input_char (*ptr++); /* process each character */
}

/* Called by proc some_input () above after some input has been read.
* Also called by out_buf() whenever asynchronous input appears. */

void
proc_input_char(int c)

{

if (c == '\004") {

eof count++; /* just count the EQOFs */

return;
} else if (ignore_input)

return; /* ignore everything except EOFs */
switch (parse_state) ({ /* parse the input */

case NORMAL:
if (c == "%")
parse_state = HAD ONE PERCENT;
else
mail_char(c);
break;
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case HAD ONE_PERCENT:

if (c == ’%")
parse_state = HAD_TWO_PERCENT;

else {
mail_char(’%’); mail_char(c);
parse_state = NORMAL;

}

break;

case HAD TWO_PERCENT:
if (¢ == "[") {

msg_init(); /* message starting; init buffer */
parse_state = IN MESSAGE;
} else {

mail char(’%’); mail_char(’%’); mail_char(c);
parse_state = NORMAL;

}

break:

case IN_MESSAGE:
if (c=="]")
parse_state = HAD_ RIGHT BRACKET;
else
msg_char(c);
break;

case HAD RIGHT_ BRACKET:
if (c == '%")
parse_state = HAD_RIGHT BRACKET AND PERCENT;
else {
msg_char(’]’); msg_char(c);
parse_state = IN_MESSAGE;
}
break;

case HAD RIGHT_BRACKET AND_ PERCENT:
if (c == "%7) {
parse_state = NORMAL;
proc_msg(); /* we have a message; process it */
} else {
msg_char("]1'); msg_char(’'%’); msg_char(c};
parse_state = IN MESSAGE:
}
break;

default:

abort ();
)

Program 17.13 The input . c file—read and process input from the printer.
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The function proc_upto_eof is called whenever we are waiting for an EOF from the
printer.

The function proc_some_input reads from the serial port. Note that we call
select to determine when the descriptor is readable. This is because select is nor-
mally interrupted by a caught signal—it is not automatically restarted. Since the
select can be interrupted by either SIGALRM or SIGINT, we don’t want it restarted.
Recall the discussion of select normally being interrupted in Section 12.5. Also recall
from Section 10.5 that we can set SA_RESTART to specify that I/O functions should be
automatically restarted when a certain signal occurs, but there is not always a comple-
mentary flag that lets us specify that I/O functions should not be restarted. If we don't
set SA_RESTART then we are at the mercy of the system default, which could be to re-
start interrupted 1/0 function calls automatically. When input does arrive from the
printer we read it in a nonblocking mode, taking whatever the printer has ready for us.
The function proc_input_char is called to process each character.

The dirty work of processing the messages that the printer can send us is handled
by proc_input_char. We have to look at every character and remember what state
we're in. The variable parse_state keeps track of the state. All the characters after
the sequence %%[ are stored in the message buffer by calling msg_char. When we
encounter the ending 1%% we call proc_msg to process the message. Any characters
other than the beginning %% [, the ending ] %, and the message in between are assumed
to be the user’s output and are mailed back to the user (by calling mail_char).

We now look at the functions that process the message that was accumulated by the
input functions above. Program 17.14 shows the file message. c.

The function msg_init is called after the sequence %% [ has been seen, and it just
initializes the buffer counter. msg_char is then called for every character of the mes-
sage.

The function proc_msg breaks up the message into separate key: val pairs, and
looks at each key. The ANSI C function strtok is called to break the message into
tokens, each key: val token separated by a semicolon.

A message of the form

%%[ Flushing: rest of job (to end-cf-file) will be ignored ]%%

causes the function printer_flushing to be called. It flushes the terminal buffers,
sends an EOF to the printer, and waits for an EOF back from the printer.
If a message of the form

%%[ PrinterError: reason ]%%

is received, log_msg is called to log the error. Other errors with a key of Error are
mailed back to the user. These usually indicate an error in the PostScript program.

If a status message is returned, denoted with a key of status, it is probably because
the function get_status sent the printer a status request (Control-T). We look at the
val and set the variable status accordingly.
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#include "lprps.h"
#include <ctype.h>

static char msgbuf [MBSIZE];
static int msgent;
static void printer flushing(void);

/* Called by proc_input_char() after it’s seen the "%%[" that
* starts a message. */

void
msg_init (void)
{
msgent = 0; /* count of chars in message buffer */
}

/* Bll characters received from the printer between the starting
* %% and the terminating ]%% are placed into the message buffer
* by proc_some_input (). This message will be examined by
* proc_msg() below. */

void

msg_char (int c)

{

if (c != "\0’ && msgcnt < MBSIZE - 1)
msgbuf [msgent++] = c;

}

/* This function is called by proc_input_char() only after the final
* percent in a "%%[ <message> ]%%" has been seen. It parses the
* <message>, which consists of cone or more "key: val" pairs.
* If there are multiple pairs, "val" can end in a semicolon. */
void
proc_msg (void)
{

char *ptr, *key, *val;
int n;
msgbuf [msgent] = 0; /* null terminate message */

for (ptr = strtok(msgbuf, ";"); ptr != NULL;
ptr = strtok (NULL, ";")) {
while (isspace(*ptr))
ptr++; /* skip leading spaces in key */
key = ptr;

if ( (ptr = strchr(ptr, ":’)) == NULL)
continue; /* missing colon, something wrong, ignore */

*ptr++ = *\0’; /* null terminate key (overwrite colon) */
while (isspace(*ptr))

ptr++; /* skip leading spaces in val */
val = ptr;

/* remove trailing spaces in val */
ptr = strchr(val, "\0’);
while (ptr > val && isspace(ptr[-11))
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——ptr;
*ptr = "\0";
if (strcmp(key, "Flushing") == 0) {
printer_flushing(); /* never returns */
} else if (strcmp(key, "PrinterError") == 0) {

log_msg("proc_msg: printer error: %s", val);

} else if (strcmp(key, "Error") == 0) {
mail_line("Your PostScript printer job "
"produced the error ‘%s’.\n", val);

} else if (strcmp(key, "status") == 0) {
if (strcmp(val, "idle") == ()
status = IDLE;
else if (strcmp(val, "busy") == 0)
status = BUSY;
else if (strcmp(val, "waiting") == 0)
status = WAITING;
else
status = UNKNOWN; /* "printing"™, "PrinterError",
"initializing", or "printing test page". */

} else if (strcmp(key, "OffendingCommand”) == 0) {
mail line("The offending command was ‘%s’.\n", val);

} else if (stremp(key, "pagecount") == 0) {
if (sscanf(val, "%d", &n) == 1 && n >= 0) {
if (start_page < 0)
start_page = n;
else
end page = n;

}

/* Called only by proc_msg() when the "Flushing" message
* is received from the printer. We exit. */

static void
printer flushing(veid)
{
clear_intr(); /* don’t catch SIGINT */

tty flush();: /* empty tty input and output queues */
block write(&eofc, 1); /* send an EOF to the printer */

proc_upto_eof (1) /* this call won’t be recursive,
since we specify to ignore input */
get_page (&end_page) ;
do_acct ();
exit (EXIT_SUCCESS) :

Program 17.14 The message .c file, process messages returned from the printer.
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17.5

A key of Of fendingCommand usually appears with other key: val pairs, as in
%% [ Error: stackunderflow; OffendingCommand: pop ]%%

We add another line to the mail message that is sent back to the user.

Finally, a key of pagecount is generated by the PostScript program in the
get_page function (Program 17.9). We call sscanf to convert val to binary, and set
either the starting or ending page count variable. The while loop in the function
get_page is waiting for this variable to become nonnegative.

Summary

This chapter has examined in detail a complete program—one that sends a PostScript
program to a PostScript printer over an RS-232 serial connection. It has given us a
chance to see lots of functions that we described in earlier chapters used in a real pro-
gram: I/O multiplexing, nonblocking 1/O, terminal 1/0, and signals.

Exercises

17.1 We said that the file to be printed by 1prps is on its standard input and could be a pipe.
How would you write the psif program (Figure 17.5) to handle this condition, since psif
has to look at the first two bytes of the file?

17.2 Implement the psif filter, handling the case outlined in the previous exercise.

17.3 Read Section 12.5 of Adobe Systems [1988] about the handling of font requests in a Post-
Script program. Modify the 1prps program in this chapter to handle font requests.
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A Modem Dialer

Introduction

Programs that deal with modems have always had a hard time coping with the wide
variety of modems that are available. On most Unix systems there are two programs
that handle modems. The first is a remote login program that lets us dial some other
computer, log in, and use that system. In the System V world this program is called cu,
while Berkeley systems calls it tip. Both programs do similar things, and both have
knowledge of many different types of modems. The other program that uses a modem
is uucico, part of the UUCP package. The problem is that knowledge that a modem is
being used is often built into these programs, and if we want to write some other pro-
gram that needs a modem, we have to perform many of the same tasks. Also, if we
want to change these programs to use some form of cc-l'nmunication instead of a modem
(such as a network connection), major changes are often

In this chapter we develop a separate program that handles all the details of modem
handling. This lets us isolate all these details into a single program, instead of having it
spread through multiple programs. (This program was motivated by the connection
server described in Presotto and Ritchie [1990].) To use this program we have to be able
to invoke it and have it pass back a file descriptor, as we described in Section 15.3. We
then use this program in developing a remote login program (similar to cu and tip).

History

The cu(1) command (which stands for “call Unix”) appeared in Version 7. But it han-
dled only one particular ACU (automatic call unit). Bill Shannon at Berkeley modified
cu, and it appeared in 4.2BSD as the tip(1) program. The biggest change was the use
of a text file (/etc/remote) to contain all the information for various systems (phone
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number, preferred dialer, baud rate, parity, flow control, etc.). This version of tip sup-
ported about six different call units and modems, but to add support for some other
type of modem required source code changes.

Along with cu and tip, the UUCP system also accessed modems and automatic
call units. UUCP managed locks on different modems, so that multiple instances of
UUCP could be running at the same time. The tip and cu programs had to honor the
UUCP locking protocol, to avoid interfering with UUCP. On the BSD systems UUCP
developed its own set of dialer functions. These functions were link edited into the
UUCP executable, which meant the addition of a new modem type required source
code changes.

SVR2 provided a dial(3) function that attempted to isolate the unique features of
modem dialing into a single library function. It was used by cu, but not by UUCP. This
function was in the standard C library, so it was available to any program.

The Honey DanBer UUCP system [Redman 19891 took the modem commands out
of the C source files and put them into a Dialers file. This allowed the addition of
new modem types without having to modify the source code. But the functions used by
cu and UUCP to access the Dialers file were not generally available. This means that
without redeveloping all the code to process the dialing information in the Dialers
file, programs other than cu and UUCP couldn’t use this file.

Throughout all these versions of cu, tip, and UUCP, locking was required to
assure only a single program accessed a single device at a time. Since all these pro-
grams worked across many different systems, earlier versions of which provided no
record locking, a rudimentary form of file locking was used. This could lead to lock
files being left around after a program crashed, and ad hoc techniques were developed
to handle this. (We can’t use record locking on special device files, so record locking by
itself isn’t the final solution.)

Program Design
Let’s detail the features that we want the modem dialer to have.

1. It must be possible to add new modem types without requiring source code
changes.

To obtain this feature, we’ll use the Honey DanBer Dialers file. We'll put all
the code that uses this file to dial the modem into a daemon server, so any pro-
gram can access it using the client-server functions from Section 15.5.

2. Some form of locking must be used so that the abnormal termination of a pro-
gram holding a lock automatically releases the lock. Ad hoc techniques, such as
those still used by most versions of cu and UUCP, should finally be discarded,
since better methods exist.

We'll let the server daemon handle all the device locking. Since the
client-server functions from Section 15.5 automatically notify the server whena
client terminates, the daemon can release any locks that the process had.
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3. New programs must be able to use all the features that we develop. A new pro-
gram that deals with a modem should not have to reinvent the wheel. Dialing
any type of modem should be as simple as a function call.

For this feature, we’ll let the central server daemon do all the dialing, passing
back a file descriptor.

4. Client programs, such as cu and tip, shouldn’t need special privileges. They
should not be set-user-1D programs.

We'll give the special privileges to the server daemon, allowing its clients to run
without any special privileges.

Obviously we can’t change the existing cu, tip, and UUCP programs, but we should
make it easier for others to build on this work. Also, we should take the best features of
the existing Unix dialing programs.

Figure 18.1 shows the arrangement of the client and server.

Systems, .
Devices, and il-- server - 3) dial modem » mode L
Dialers files

(1) request = call (4) reply = file
remote system descriptor
\

Figure 18,1 Overview of client and server.

The steps involved in establishing communications with a remote system are as follows:

0. The server is started.

1. The client is started and opens a connection to the server, using the c1i_conn
function (Section 15.5). The client sends a request for the server to call the
remote system.

2. The server reads the Systems, Devices, and Dialers files to determine how
to call the remote system. (We describe these files in the next section.) If a
modem is being used, the Dialers file contains all the modem-specific com-
mands to dial the modem.

3. The server opens the modem device and dials the modem. This can take a
while (typically around 15-30 seconds). The server handles all locking of this
device, to avoid interfering with other users of this device.

4. If the dialing was successful, the server passes back the open file descriptor for
the modem device to the client. Our functions from Section 15.3 send and
receive the descriptor.
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5. The client communicates directly with the remote system. The server is not
involved in this communication—the client reads and writes the file descrip-
tor returned in step 4.

The communication between the client and server (steps 1 and 4) is across a stream
pipe. When the client is finished communicating with the remote system it closes this
stream pipe (normally just by terminating). The server notices this close and releases
the lock on the modem device.

Data Files

In this section we describe the three files used by the Honey DanBer UUCP system:
Systems, Devices, and Dialers. There are many fields in these files that are used by
the UUCP system. We don’t describe these additional fields (or the UUCP system) in
detail. Refer to Redman [1989] for additional details.

Figure 18.2 shows the six fields in the Systems file. We show the fields in a colum-
nar format.

name | time | type cass | phone login |

hostl | Any | ACU | 19200 | 5551234 | (not used)
hostl | Any | ACU 9600 5552345 | (not used) |

hostl | Any ACU 2400 5556789 | (notused)
modem | Any | modem | 19200 - {not used)
used)

laser | Any | laser | 19200 - | (not

Figure 18.2 The Systemns file.

The name is the name of the remote system. We use this in commands of the form cu
host1, for example. Note that we can have multiple entries for the same remote sys-
tem. These entries are tried in order. The entries named modem and laser are for con-
necting directly to a modem and a laser printer. We don’t need to dial a modem to
connect to these devices, but we still need to open the appropriate terminal line, and
handle the appropriate locks.

time specifies the time-of-day and days of the week to call this host. This is a UUCP
field. The type field specifies which entry in the Devices file is to be used for this name.
The class field is really the line speed to be used (baud rate). phone specifies the phone
number for entries with a fype of ACU. For other entries the phone field is just a
hyphen. The final field, login, is the remainder of the line. It is a series of strings used
by UUCP to log in to the remote system. We don’t need this field.

The Devices file contains information on the modems and directly connected
hosts. Figure 18.3 shows the five fields in this file. The type field matches an entry in the
Systems file with an entry in the Devices file. The class field must also match the cor-
responding field in the Systems file. It normally specifies the line speed.

The actual name of a device is obtained by prefixing the line field with /dev/. In
this example the actual devices are /dev/cua0, /dev/ttya, and /dev/ttyb. The
next field, line2, is not used.
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type line | line2 class dialer
ACU cual = 19200 | tbfast
RCU cual - 9600 tb9600
ACU cual - 2400 tb2400
ACU cual - 1200 | tb1200 |
modem | ttya - 19200 | direct
laser | ttyb - 19200 | direct

Figure 18.3 The Devices file.

The final field, dialer, matches the corresponding entry in the Dialers file. For the
directly connected entries this field is direct.

Figure 18.4 shows the format of the Dialers file. This is the file that contains all
the modem-specific dialing commands.

[ dialer | sub | ' handshake

tb9600 | =W-, | "" \dA\pA\pPA\pTQ0S2=255812=255550=6558=2568=255\r\c
OK\r \EATDT\T\r\c CONNECT\s9600 \r\c ""

tbfast | =W-, | "" \dA\pA\pA\pTQOS2=255512=255550=255558=2568=2555110=15111=30\r\c |
OK\r \EATDT\T\r\c CONNECT\sFAST

Figure 18.4 TheDialers file.

We show only two entries for this file—we don’t show the entries for tb1200 and
tb2400 that were referenced in the Devices file. The handshake field is contained on a
single line. We have broken it into two lines to fit on the page.

The dialer field is used to locate the matching entry from the Devices file. The sub
field specifies substitutions to be performed for an equals sign and a minus sign that
appear in a phone number. In the two entries in Figure 18.4 this field says to substitute
a W for an equals sign, and a comma for a minus sign. This allows the phone numbers
in the Systems file to contain an equals sign (meaning “wait for dialtone”) and a minus
sign (meaning “pause”). The translation of these two characters to whatever each par-
ticular modem requires is specified by the Dialers file.

The final field, handshake, contains the actual dialing instructions. It is a sequence of
blank-separated strings called expect-send strings. We expect (i.e., read until we
match) the first string and then send (i.e., write) the next string. Let's look at the
tbfast entry as an example. This entry is for a Telebit Trailblazer modem in its PEP
mode (packetized ensemble protocol).

1. The first expect string is empty, meaning “expect nothing.” We always success-
fully match this empty string.

2. We send the next string. Special send sequences are specified with the backslash
character. \d causes a delay for 2 seconds. We then send an A. We pause for
one-half second (\p), send another A, pause, send another A, and pause again.
We then send the remaining characters in the string, starting with T. These
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commands all set parameters in the modem. The \r sends a carriage return and
the final \ c says not to write the normal newline at the end of the send string,

3. We read from the modem until we receive the string OK\r. (Again, the
sequence \r means a carriage return.)

4. The next send string begins with \E. This enables echo checking: each time we
send a character to the modem, we read back until the character is echoed. We
then send the four characters ATDT. The next special character, \T, causes the
phone number to be substituted. This is followed by a carriage return and the
normal newline at the end of the send string is not sent.

5. The final expect string waits for CONNECT FAST to be returned by the modem.
(The sequence \s means a single space.)

When this final expect string is received, the dialing is complete. (There are many more
special sequences that can appear in the handshake string that we don’t cover.)
Let’s summarize the actions that we have to perform with these three files.

1. Using the name of the remote system, find the first entry in the Systems file
with the same name. '

2. Find the matching entry in the Devices file with a type and class that match the
corresponding entries in the Systems file entry.

3. Find the entry in the Dialers file that matches the dialer field in the Devices
file.
4. Dial the modem.

There are two reasons why this can fail: (1) the device corresponding to the line field in
the Devices file is already is use by someone else or (2) the dialing is unsuccessful
(e.g., the phone on the remote system is busy, or the remote system is down and is not
answering the phone). The second case is often detected by a time out occurring when
we're reading from the modem, trying to match an expect string (see Exercise 18.10). In
either case, we want to go back to step 1 and search for the next entry for the same
remote system. As we saw in Figure 18.2, a given host can have multiple entries, each
with a different phone number (and each phone number could correspond to a different
device).

There are other files in the Honey DanBer system that we don’t use in the example
in this chapter. The file Dialcodes specifies dialcode abbreviations for phone numbers
in the Systems file. The file Sysfiles allows the specification of alternate copies of
the three files Systems, Devices, and Dialers.

18.5 Server Design

We'll start with a description of the server. Two factors affect the design of the server:

1. Dialing can take a while (15-30 seconds), so the server has to fork a child pro-
cess to do the actual dialing.
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2. The daemon server (the parent) has to be the one process that manages all the

locks.
Figure 18.5 shows the arrangement of the processes.
parent child
Systems, fork diali
Devices,and — = Server SETVEr | 1aling = modem
) w/lock table _ commands
Dialers files exit status

Figure 18.5 Arrangement of processes in modem dialer.

The steps performed by the server are the following:

1.

The parent receives the request from the client at the server’s well-known name.
As we described in Section 15.5, this creates a unique stream pipe between the
client and server. This parent process has to handle multiple clients at the same
time, like the open server in Section 15.6.

Based on the name of the remote system that the client wants to contact, the par-
ent goes through the Systems file and Devices file, to find a match. The par-
ent also keeps a lock table of which devices are currently in use, so it can skip
those entries in the Devices file that are in use.

If a match is found, a child is forked to do the actual dialing. (The parent can
handle other clients at this point.) If successful the child sends the file descrip-
tor for the modem back to the client on the client-specific stream pipe (which got
duplicated across the fork) and calls exit (0). If an error occurs (phone line
busy, no answer, etc.) the child calls exit (1).

The parent is notified of the child termination by SIGCHLD and fetches its termi-
nation status (waitpid).

If the child was successful there is nothing more for the parent to do. The lock
must be held until the client is finished with the modem device. The client-
specific stream pipe between the client and parent is left open. This way, when
the client does terminate, the parent is notified, and the parent releases the lock.

If the child was not successful, the parent picks up in the Systems file where it
left off for this client and tries to find another match. If another entry is found
for the remote system, the parent goes back to step 3 and forks a new child to
do the actual dialing. If no more entries exist for the remote system, the parent
calls send_err (Program 15.4) and closes the client-specific stream pipe.
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Having a unique connection to each client allows the child to send debug output backto
the client, if desired. Often the client wants to see the progress of the actual dialing,

problems occur. Even though the dialing is being done by the child of an unrelated

server, the unique connection allows the child to send output directly back to its client.

Server Source Code

We have 17 source files that constitute the server. Figure 18.6 details the files containing
the various functions and specifies which are used by the parent and child. Figure 18.7

overviews the calling of the various functions.

Source file Parent/Child Functions
childdial.c C child_dial
cliargs.c r cli args
client.c F client alloc, client_add, client_del, client_sigchld
ctlstr.c C ctl_str
debug.c C | DEBUG, DEBUG_NONL
devfile.c P dev_next, dev_rew, dev_find
dialfile.c C dial next, dial rew, dial find
expectstr.c C expect_str, exp read, sig_alrm
lock.e P find_line, lock_set, lock_rel, is_locked
loop.c P loop, cli_done, child dcne
main.ec P main
request.c r request
sendstr.c & send_str
sigchld.c P sig _chld
sysfile.c r sys_next, sys_rew, sys_posn
ttydial.c C tty dial
ttyopen.c C tty open
Figure 18.6 Source files for server.
main
loop
—— request £ork # child_dial
dial find
sig_chld *
tty open
Sr ‘
GC% tty dial

send_fd, exit(0) or
writen, exit(l)

Figure 18.7 Overview of function calling in server.
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Program 18.1 shows the calld.h header, which is included by all the source files.
It includes the standard system headers, defines some basic constants, and declares the

global variables.

#include <sys/types.h>

#include <errno.h>

#include <signal.h>

#include "ourhdr.h"

#define CS_CALL "/home/stevens/calld" /* well-known name */

#define CL_CALL "call"
#define MAXSYSNAME 256
#define MAXSPEEDSTR 256

#define NALLOC 10 /* #structs to alloc/realloc for */
/* Client structs {client.c), Lock structs (lock.c) */
#define WHITE " \t\n" /* for separating tokens */
#define SYSTEMS ", /Systems" /* my own copies for now */
#define DEVICES "*./Devices"
#define DIALERS "./Dialers"
/* declare global variables */

extern int clifd;
extern int debug; /* nonzero if interactive (not daemon) */
extern int Debug; /* nonzero for dialing debug output */
extern char errmsg[]; /* error message string to return to client */
extern char *speed; /* speed (actually "class") to use */
extern char *gysname; /* name of system to call */
extern uid_t uid; /* client’s uid */
extern volatile sig atomic t chld flag; /* when SIGCHLD occurs */
extern enum parity { NONE, EVEN, ODD } parity; /* specified by client */
typedef struct { /* one Client struct per connected client */

int fd; /* £fd, or -1 if available */

pid_t pid; /* child pid while dialing */

uid t uid; /* client’s user ID */

int childdone; /* nonzero when SIGCHLD from dialing child recvd:

1 means exit (0), 2 means exit(l) */

long sysftell; /* next line to read in Systems file */

long foundone; /* true if we find a matching sysfile entry */

int  Debug: /* option from client */

enum parity parity; /* option from client */

char speed[MAXSPEEDSTR]; /* option from client */

char sysname[MAXSYSNAME];/* option from client */
} Client;
extern Client *client; /* ptr to malloc’ed array of Client structs */
extern int client_size;/* # entries in client[] array */

/* (both manipulated by client XXX() functions) */

typedef struct { /* everything for one entry in Systems file */

char *name; /* system name */

char *time; /* (e.g., "Any") time to call (ignored) */
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char *type; /* (e.g., "ACU") or system name if direct connect */
char *class; /* (e.g., "9600") speed */

char *phone; /* phone number or "-" if direct connect */

char *login; /* uucp login chat (ignored) */

} Systems;

typedef struct ({ /* everything for one entry in Devices file */
char *type; /* (e.g., "ACU") matched by type in Systems */
char *line; /* (e.g., "cuaO") without preceding "/dev/" */
char *line2; /* (ignored) */
char *class; /* matched by class in Systems */
char *dialer; /* name of dialer in Dialers */

} Devices;

typedef struct { /* everything for one entry in Dialers file */
char *dialer; /* matched by dialer in Devices */
char *sub; /* phone number substitution string (ignored) */
char *expsend; /* expect/send chat */

} Dialers;

extern Systems systems; /* filled in by sys next() */

extern Devices devices: /* filled in by dev_next() */

extern Dialers dialers; /* filled in by dial next () */

/* our function prototypes */

void child dial (Client *); /* childdial.c */
int cli_args(int, char **); /* cliargs.c */
int client_add(int, uid_t); /* client.c */
void client del{int);

void client_sigchld(pid t, int);

void loop (void) ; /* loop.c */
char *ctl_str(char); /* ctlstr.c */
int dev_find(Devices *, const Systems *); /* devfile.c */
int dev_next (Devices *);

void dev_rew(void);

int dial_find(Dialers *, const Devices *); /* dialfile.c */
int dial next (Dialers *);

void dial rew(void);

int expect_str(int, char *); /* expectstr.c */
int request (Client *); /* request.c */
int send str(int, char *, char *, int); /* sendstr.c */
void sig chld{int): /* sigchld.c */
long sys_next (Systems *); /* sysfile.c */

void sys_posn(long);
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void sys_rew(void) ;
int tty open(char *, char *, enum parity, int}); /* ttyopen.c */
int tty dial(int, char *, char *, char *, char *); /* ttydial.c */
pid t is_locked(char *): /* lock.c */
void lock_set (char *, pid t});
void lock_rel (pid t);
void DEBUG{char *, ...): /* debug.c */
void DEBUG_NONL (char *, ...);

Program 18.1 The calld.h header.

We define a Client structure that contains all the information for each client. This is
an expansion of the similar structure in Program 15.26. In the time between forking a
child to dial for a client and that child terminating, we can handle any number of other
clients. This structure contains all the information that we need to try to find another
Systenms file entry for that client, and try dialing again.

We also define one structure for all the information for a single entry in the
Systems, Devices, and Dialers files.

Program 18.2 shows the main function for the server. Since this program is nor-
mally run as a daemon server, we provide a —d command line option that lets us run the

program interactively.
#include "calld.h"
#include <syslog.h>
/* define global variables */
int clifd;
int debug; /* daemon’s command line flag */
int Debug; /* Debug controlled by client, not cmd line */
char errmsg [MAXLINE] ;
char *speed;
char *sysname;
uid t uid;
Client *client = NULL;
int client_size;
Systems systems;
Devices devices;
Dialers dialers;

volatile sig_atomic_t chld_flag;
enum parity parity = NONE;

int
main(int argc, char *argv(])

{
int C;

log_open("calld"”, LOG PID, LOG_USER);
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opterr = 0; /* don't want getopt() writing to stderr */
while ( (c = getopt(argc, argv, "d")) != EOF) {
switch (c) {
case ‘d’: /* debug */
debug = 1;
break;

case ‘?':
log_quit ("unrecognized option: -%c", optopt):
}
}

if (debug == 0)
daemon_init () :

loop(); /* never returns */

Program 18.2 Themain function.

When the -d option is set, all the calls to the 1og_ XXX functions (Appendix B) are sent
to standard error. Otherwise they are logged using syslog.

The function loop is the main loop of the server (Program 18.3). It multiplexes the

various descriptors with the select function.

#include "ecalld.h"
#include <sys/time.h>
#include <errno.h>

static void cli done (int);
static void child _done(int);

static fd_set  allset; /* one bit per client conn, plus one for listenfi

/* modified by loop() and cli_done() */

void

loop (void)

{
int i, n, maxfd, maxi, listenfd, nread;
char buf [MAXLINE] ;

Client *cliptr;
uid t uid;
fd set  rset;

if (signal_intr(SIGCHLD, sig_chld) == SIG_ERR)
log_sys("signal error"™);

/* obtain descriptor to listen for client requests on */
if { (listenfd = serv_listen(CS_CALL)) < 0)
log_sys("serv_listen error");

FD_ZERO(&allset);
FD SET(listenfd, &allset):;
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maxfd = listenfd;
maxi = -1;

for (; ;) {
if (chld flag)
child done (maxi) ;
rset = allset; /* rset gets modified each time around */
if ( (n = select (maxfd + 1, &rset, NULL, NULL, NULL)) < 0) {
if (errno == EINTR) {
/* caught SIGCHLD, find entry with childdone set */
child done (maxi);
continue; /* issue the select again */
} else
log_sys("select error");
}

if (FD_ISSET(listenfd, &rset)) {
/* accept new client request */
if ( (clifd = serv_accept(listenfd, &uid)) < 0)
log_sys("serv_accept error: %d", clifd);

i = client_add(clifd, uid);
FD_SET(clifd, &allset);
if (clifd > maxfd)
maxfd = clifd; /* max fd for select() */
if (i > maxi)

maxi = i; /* max index in client[] array */
log msg("new connection: uid %d, fd %d", uid, clifd);
continue;

/* Go through client[] array.
Read any client data that has arrived. */

for (cliptr = &client[0]; cliptr <= &client[maxi]; cliptr++) {
if ( (clifd = cliptr->fd) < 0)
continue;
if (FD_ISSET(clifd, &rset)) {
/* read argument buffer from client */
if ( (nread = read(clifd, buf, MAXLINE)) < 0)
log sys("read error on fd %d", clifd):

else if (nread == 0) {
/* The client has terminated or closed the stream
pipe. Now we can release its device lock. */

log msg("closed: uid %d, fd %d4",
cliptr->uid, clifd);

lock rel (cliptr->pid);

cli_done(clifd);

continue;
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/* Data has arrived from the client. Process the
client’s request. */

if (buf[nread-1] '= 0) {
log quit ("request from uid %d not null terminated:"
" g%, *g", uid, nread, nread, buf);
cli_done(clifd):
continue;
}
log msg("starting: %s, from uid %d", buf, uid);

/* Parse the arguments, set options. Since
we may need to try calling again for this
client, save options in client[] array. */

if (buf_ args(buf, cli_args) < Q)
log_quit ("command line error: %s", buf);
cliptr->Debug = Debug;
cliptr->parity = parity;
strepy (cliptr->sysname, sysname);
strcpy (cliptr->speed, (speed == NULL) ? "" : speed);
cliptr->childdone = 0;
cliptr->sysftell = 0;
cliptr->foundone = 0;

if (request (cliptr) < 0) {
/* system not found, or unable to connect */
if (send err(cliptr->fd, -1, errmsg) < 0)
log_sys("send err error");
cli_done(clifd);
continue;
}
/* At this point request () has forked a child that is
trying to dial the remote system. We’ll find
out the child’s status when it terminates. */

}

/* Go through the client[] array locking for clients whose dialing
children have terminated. This function is called by loop{) when
chld flag (the flag set by the SIGCHLD handler) is nonzero. */

static void
child done (int maxi)
{

Client *cliptr;

again:
chld flag = 0; /* to check when done with loop for more SIGCHLDs */
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for (cliptr = &client[0]; cliptr <= g&client[maxil; cliptr++) {
if ( (clifd = cliptr—>fd) < 0)
continue;
if (cliptr->childdone) {
log msg("child done: pid %d, status %d",
cliptr->pid, cliptr->childdone-1):

/* If the child was successful (exit(0)), just clear
the flag. When the client terminates, we’ll read
the EOF on the stream pipe above and release
the device lock. */

if (cliptr->childdone == 1) { /* child did exit(0) */
cliptr->childdone = 0;
continue;

}

/* Unsuccessful: child did exit (1). Release the device
lock and try again from where we left off. */

cliptr->childdone = 0;
lock_rel (cliptr->pid); /* unlock the device entry */
if (request (cliptr) < 0) {
/* still unable, time to give up */
if (send_err(cliptr->fd, -1, errmsg) < 0)
log_sys("send err error");
cli_done(clifd);
continue;
}
/* request() has forked another child for this client */
}
}
if (chld flag) /* additional SIGCHLDs have been caught */
goto again; /* need to check all childdone flags again */

1
/* Clean up when we're done with a client. */

static void
cli done(int clifd)

{
client del (clifd); /* delete entry in client[] array */
FD_CLR(clifd, &allset); /* turn off bit in select() set */
close (clifd); /* close our end of stream pipe */

Program 18.3 The loop.c file.

This function initializes the client array and establishes a signal handler for STGCHLD.
We call signal_intr instead of signal so that any slow system call is interrupted
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when our signal handler returns. The loop function then calls serv listen (Pro-
grams 15.19 and 15.22). The rest of the function is an infinite loop based on the select
function, that tests for the following two conditions:

1. If a new client connection arrives, we call serv_accept (Programs 1520
and 15.24). The function client_add creates an entry in the client array for
the new client.

2. We then go through the client array, to see if (a) any client has terminated, or
(b} any client requests have arrived.

When a client terminates (whether voluntarily or not) its client-specific stream
pipe to the server is closed, and we read an end of file from our end of the pipe.
At this point we can release any device locks that the client owned and release
the entry in the client array.

When a request arrives from a client, we set things up and call request. (We
showed the function buf_args in Program 15.17.) If the name of the remote
system is valid and if an available device entry is located, request forksa
child process and returns.

One external event that can happen at any time in this function is the termination of a
child. If we're blocked in the select function, it returns an error of EINTR. Since the
signal can also happen at other points in the 1oop function, we test the flag chld_flag
each time through the loop before calling select. If the signal has occurred, we call
the function child done to process the termination.

This function goes through the client array, examining the childdone flag for
each valid entry. If the child was successful, there’s nothing else to do at this point. But
if the child terminated with an exit status of 1, we call request to try to find another
Systems file entry for this client.

Program 18.4 shows the function cli_args that is called by buf args in the loop
function, when a client request arrives. It processes the command-line arguments from
the client. Note that this function sets global variables based on the command-line
arguments, which loop then copies into the appropriate entry in the client array,
since these options affect only a single client’s request.

Program 18.5 shows the file client.c, which defines the functions that manipu-
late the client array. The only difference between Program 18.5 and Program 15.27 is
that we now have to look up an entry based on the process ID (the function
client_sigchld).

Program 18.6 is the file 1lock.c. These functions manage the lock array for the
parent. As with the client functions, we call realloc to allocate space dynamically
for the 1ock array, to avoid compile time limits.

EN———
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#include "calld.h"

/* This function is called by buf_args(), which is called by loop().
* buf args() has broken up the client’s buffer into an argv([] style
* array, which is now processed. */

int
cli_args(int argc, char **argv)
{
int (=
if (argc < 2 || strecmp(argv[0], CL_CALL) != 0) {
strcpy (errmsg, "usage: call <options> <hostname>");
return(-1);
}
Debug = 0; /* option defaults */
parity = NONE;
speed = NULL;
opterr = 0; /* don’t want getopt() writing to stderr */
optind = 1; /* since we call getopt() multiple times */
while ( (c = getopt(argc, argv, "des:o")) != EOF) {
switch (c) {

case 'd’':
Debug = 1; /* client wants DEBUG() output */
break;

case 'e': /* even parity */
parity = EVEN;
break;

case 'o0’: /* odd parity */
parity = ODD;
break;

case 'sg’: /* speed */
speed = optarg;
break;

case "7?7:
sprintf (errmsg, "unrecognized option: =-%c\n", optopt);
return(-1);
1
}
if (optind < argc)
sysname = argv[optind]; /* name of host to call */
else {
sprintf(errmsg, "missing <hostname> to call\n");
return (~-1);
}

return{0);

Program 184 The cli_args function.
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#include "calld.h"
static wvoid
client_alloc(void) /* alloc more entries in the client[] array */

{
int i;

if (client == NULL)

client = malloc(NALLOC * sizeof (Client));
else

client = realloc(client, (client_size + NALLOC) * sizeof (Client))
if {(client == NULL)

err sys("can't alloc for client array"):

/* have to initialize the new entries */
for (i = client_size; i < client_size + NALLOC; i++)
client[i].fd = -1; /* fd of -1 means entry available */

client size += NALLOC;
}

/* Called by loop() when connection request from a new client arrives */
int
client_add(int fd, uid t uid)

{
int i;

if (client == NULL) /* first time we’'re called */
client_alloc();
again:
for (i = 0; i < client_size; i++) {
if (client[i].fd == -1) { /* find an available entry */
client[i] .fd = £d4;
client[i] .uid = uid;
return(i); /* return index in client[] array */

}

/* client array full, time to realloc for more */
client_alloc();

goto again; /* and search again (will work this time) #*/
}

/* Called by loop() when we’re done with a client */

void
client_del(int £d)
{

int i;

for (1 = 0; i < client_size; i++) {
if (client[i].fd == £d) {
client[i].fd = -1;
return;
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1
}
log_quit ("can’t find client entry for fd %d", fd):

}

/* Find the client entry corresponding to a process ID.
* This function is called by the sig_chld() signal
* handler only after a child has terminated. */

void
client_sigchld(pid t pid, int stat)

{
int i;

for (i = 0; i < client_size; i++) {
if (client[i].pid == pid) {
client[i] .childdone = stat; /* child’s exit () status +1 */
return;
}

}
log quit("can’t find client entry for pid %d", pid);

Program 18.5 The client .c file.

#include "calld.h"

typedef struct ({
char *line; /* points to malloc()ed area */
/* we lock by line (device name) */
pid t pid; /* but unlock by process 1D */
/* pid of 0 means available */

} Lock:

static Lock *lock = NULL; /* the malloc’ed/realloc’ed array */
static int  lock_size; /* #entries in lock[] */

static int nlocks; /* #entries currently used in lock[] */

/* Find the entry in lock[] for the specified device (line).

* If we don't find it, create a new entry at the end of the

* lock[] array for the new device. This is how all the possible
* devices get added to the lock[] array over time. */

static Lock *
find line(char *1line)
{

int i;

Lock *1ptr;

for (i = 0; i < nlocks; i++) {
if (strcmp(line, lock[i].line) == 0)
return(&lock([i]): /* found entry for device */
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}

/* Entry not found. This device has never been locked before.
Add a new entry to lock[] array. */

if (nlocks >= lock_size) { /* lock[] array is full */
if (lock == NULL) /* first time through */
lock = malloc(NALLOC * sizeof (Lock)):;
else
lock = realloc(lock, (lock_size + NALLOC) * sizeof (Lock));
if (lock == NULL)
err sys("can't alloc for lock array");

lock_size += NALLOC;
}

lptr = &lock[nlocks++];

if ( {(lptr->line = malloc(strlen(line) + 1)) == NULL)
log sys("calloc error");
strcpy (lptr->line, line); /* copy caller’s line name */

lptr->pid = 0;
return(lptr) ;

void
lock_set (char *line, pid t pid)

{

}

Lock *1ptr;

log _msg("locking %s for pid %d", line, pid):
lptr = find line(line):
lptr->pid = pid;

void
lock_rel (pid_t pid)

{

}

Lock *lptr;

for (lptr = &lock[0]; lptr < &lock[nlocks]; lptr++) {
if (lptr->pid == pid) {
log_msg("unlocking %s for pid %d", lptr—->line, pid);
lptr->pid = 0;
return;
}

1
log_msg("can’t find lock for pid = %d", pid);

pid t
is_locked(char *line)

{
}

return( find line(line)->pid ); /* nonzero pid means locked */

Program 18.6 Functions for managing client device locks.
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Each entry in the lock array is associated with a single line (the second field in the
Devices file). Since these locking functions don’t know all the different line values in
this data file, new entries in the lock array are created whenever a new lire is locked
the first time. The function find line handles this.

The next three source files handle the three data files: Systems, Devices, and
Dialers. Each file has a XXX_next function that reads the next line of the file and
breaks it up into fields. The ANSI C function strtok is called to break the lines into
fields. Program 18.7 handles the Systems file.

#include "calld.h"

static FILE *fpsys = NULL;
static int syslineno; /* for error messages */
static char sysline[MAXLINE];
/* can’t be automatic; sys_next() returns pointers into here */

/* Read and break apart a line in the Systems file. */

long /* return >0 if OK, -1 on EOF */
sys next (Systems *sysptr) /* structure is filled in with pointers */
{
if (fpsys == NULL) {
if ( (fpsys = fopen(SYSTEMS, "r")) == NULL)
log_sys("can’t open %s", SYSTEMS);
syslineno = 0;
}

again:
if (fgets(sysline, MAXLINE, fpsys) == NULL)
return(-1); /* EOF */
syslinenc++;

if ( (sysptr->name = strtok(sysline, WHITE)) == NULL) {
if (sysline[0] == "\n")
goto again; /* ignore empty line */
log _quit ("missing ‘name’ in Systems file, line %d", syslineno):
}
if (sysptr->name[0] == "#')
goto again; /* ignore comment line */

if ( (sysptr—->time = strtok(NULL, WHITE)) == NULL)
log_quit{("missing ‘time’ in Systems file, line %d", syslineno);:

if ( (sysptr->type = strtok(NULL, WHITE)) == NULL)
log_quit ("missing ‘type’ in Systems file, line %d", syslineno);

if ( (sysptr->class = strtok (NULL, WHITE)) == NULL)
lcg_quit ("missing ‘class’ in Systems file, line %d", syslineno);

if ( (sysptr->phone = strtok (NULL, WHITE)) == NULL)
log_quit ("missing ‘phone’ in Systems file, line %d", syslineno);

if ( (sysptr->login = strtok (NULL, "\n")) == NULL)
log_quit ("missing ‘login’ in Systems file, line %d", syslineno);
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return(ftell (fpsys)); /* return the position in Systems file */
}

void
sys_rew(void)
{
if (fpsys != NULL)
rewind(fpsys);
syslineno = 0;
}

void
sys_posn(long posn) /* position Systems file */
{
if (posn == 0)
sys_rew(};
else if (fseek(fpsys, posn, SEEK_SET) !'= 0)
log_sys("fseek error");

Program 18,7 Functions to read Systems file.

The function sys_next is called by request to read the next entry in the file.

We have to remember our position in this file for each client (the sysftell mem-
ber of the Client structure). This is so that if a child fails to dial the remote system, we
can pick up where we left off in the Systems file (for that client), to try to find another

entry for the remote system. The position is obtained by calling the standard I/O func-
tion ftell and reset using fseek.

Program 18.8 contains the functions for reading the Devices file.
#include "calld.h"

static FILE *fpdev = NULL;
static int devlineno; /* for error messages */
static char devline[MAXLINE];
/* can’t be automatic; dev_next () returns pointers into here */

/* Read and break apart a line in the Devices file. */

int
dev_next (Devices *devptr) /* pointers in structure are filled in */
{
if (fpdev == NULL) {
if ( (fpdev = fopen(DEVICES, "r")) == NULL)
log_sys("can’'t open %s", DEVICES);
devlineno = 0;
}
again:
if (fgets(devline, MAXLINE, fpdev) == NULL)
return(-1); /* EQF */

devlineno++;
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if ( (devptr—>type = strtok(devline, WHITE)) == NULL) ({
if (devline[0] == '\n’")
goto again; /* ignore empty line */
log_quit ("missing ‘type’ in Devices file, line %d", devlineno);

if (devptr->type[0] == "#')
goto again; /* ignore comment line */

if ( (devptr—>line = strtok(NULL, WHITE)) == NULL)
log_quit("missing ‘line’ in Devices file, line %d", devlineno);

if ( (devptr->lineZ = strtok(NULL, WHITE)) == NULL)
log_quit ("missing ‘line2’ in Devices file, line %d", devlineno);

if ( (devptr—->class = strtok(NULL, WHITE)) == NULL)
log_quit ("missing ‘class’ in Devices file, line %d", devlineno);

if ( (devptr->dialer = strtok (NULL, WHITE)) == NULL)
log quit ("missing ‘dialer’ in Devices file, line %d", devlineno);

return (0) ;

}

void
dev_rew(void)
{
if (fpdev != NULL)
rewind(fpdev);
devlineno = 0;

}
/* Find a match of type and class */

int
dev_find(Devices *devptr, const Systems *sysptr)
{
dev_rew();
while (dev_next (devptr) >= 0) {
if (strcmp(sysptr->type, devptr->type) == 0 &&
strcmp (sysptr->class, devptr->class) == 0)
return(0) ; /* found a device match */
}
sprintf (errmsg, "device ‘%s’/‘%s’ not found\n",
sysptr->type, sysptr->class);
return(-1) ;

Program 18.8 Functions for reading Devices file.

We'll see that the request function calls dev_find to locate an entry with type and
class fields that match an entry in the Systems file.
Program 18.9 contains the functions for reading the Dialers file.
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#include "calld.h"

static FILE *fpdial = NULL;
static int diallineno; /* for error messages */
static char dialline [MAXLINE];
/* can’t be automatic; dial_next() returns pointers into here */

/* Read and break apart a line in the Dialers file. */
int
dial_next(Dialers *dialptr) /* pointers in structure are filled in */
{
if (fpdial == NULL) {
if ( (fpdial = fopen(DIALERS, "r")) == NULL)
log _sys("can’t open %s", DIALERS):;

diallineno = 0;
}

again:
if (fgets(dialline, MAXLINE, fpdial) == NULL)
return(-1); /* EOF */
diallineno++;

if ( (dialptr->dialer = strtok(dialline, WHITE)) == NULL) {
if (dialline[0] == ’'\n’)
goto again; /* ignore empty line */
log_quit ("missing ‘dialer’ in Dialers file, line %d", diallineno);
}
if (dialptr->dialer[0] == "#')
goto again; /* ignore comment line */

if ( (dialptr->sub = strtok(NULL, WHITE))} == NULL)
log_quit("missing ‘sub’ in Dialers file, line %d", diallineno);

if ( (dialptr->expsend = strtok(NULL, "\n")) == NULL)
log _quit ("missing ‘expsend’ in Dialers file, line %d", diallineno);

return (0} ;

}

void
dial rew(void)
{
if (fpdial !'= NULL})
rewind (fpdial) ;
diallineno = 0;

}

/* Find a dialer match */

int

dial_find(Dialers *dialptr, const Devices *devptr)
{
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dial_rew();
while (dial next(dialptr) >= 0) {
if (strcmp(dialptr->dialer, devptr—>dialer} == 0)
return (0) ; /* found a dialer match */
}
sprintf (errmsg, "dialer ‘%s’ not found\n", dialptr->dialer):
return(-1);

Program 18.9 Functions for reading Dialers file.

We'll see that the child dial function calls dial_find to find an entry with a dialer
field that matches a particular device.

Notice from Figure 18.6 that the Systems and Devices files are handled by the
parent, while the Dialers file is handled by the child. This was one of the design
goals—the parent finds a matching device that is not locked and forks a child to do the
actual dialing,

We look at the request function in Program 18.10. It was called by the 1oop func-
tion to try to locate an unlocked device for the specified remote host. To do this it goes
through the Systems file, then the Devices file. If a match is found, a child is forked.
We allow the client to specify a speed, in addition to the name of the remote system.
For example, with the Systems file in Figure 18.2, the client’s request can look like

call -s 9600 hostl

which causes us to ignore the other two entries for host1 in Figure 18.2.

Notice that we can’t record the device lock using 1ock_set until we know the pro-
cess ID of the child (i.e., after the fork), but we have to test whether the device is
locked before the fork. Since we don’t want the child starting until we have set the
lock, we use the TELL_WAIT functions (Program 10.17) to synchronize the parent and
child. Also note that although the test is_locked and the actual setting of the lock by
set_lock are two separate operations (ie., not a single atomic operation) we do not
have a race condition. This is because request is called only by the single parent
server daemon—it is not called by multiple processes.

If request returns 0, a child was forked to start the dial, otherwise it returns ~1 to
indicate that either the name of the remote system wasn’t valid or all the possible
devices for the remote system were locked.

#include "calld.h"

int /* return 0 if OK, -1 on error */
request (Client *cliptr)
{

pid t pid;

errmsg[0] = 0;
/* position where this client left off last (or rewind) */
sys_posn{cliptr->sysftell);
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while ( (cliptr->sysftell = sys_next (&systems)) >= 0) |{
if (strcmp(cliptr->sysname, systems.name) == 0) {
/* system match */
/* if client specified a speed, it must match too *f
if (cliptr->speed[0] != 0 &&
strcmp (cliptr->speed, systems.class) != 0)
continue; /* speeds don’t match */

DEBUG("trying sys: %s, %s, %s, %s", systems.name,
systems.type, systems.class, systems.phone) ;
cliptr—>foundone++;

if (dev_find(&devices, &systems) < 0)
break;

DEBUG("trying dev: %s, %s, %s, %s", devices.type,

devices.line, devices.class, devices.dialer);

if ( (pid = is locked(devices.line)) != 0) {

sprintf (errmsg, "device ‘%s’ already locked by pid %d\n",
devices.line, pid);

continue; /* look for another entry in Systems file */

/* We've found a device that’s not locked.
fork() a child to to the actual dialing. */
TELL WAIT();
if ( (cliptr->pid = fork()) < 0)
log_sys("fork error");
else if (cliptr->pid == 0) { /* child */
WAIT PARENT(); /* let parent set lock */
child_dial (cliptr); /* never returns */
}
/* parent */
lock_set (devices.line, cliptr->pid);
/* let child resume, now that lock is set */
TELL_CHILD (cliptr->pid) ;
return(0); /* we've started a child */
}
}
/* reached EOF on Systems file */
if (cliptr->foundone == ()
sprintf(errmsg, "system ‘$s’ not found\n", cliptr->sysname) ;
else if (errmsg(0] == 0)
sprintf (errmsg, "unable to connect to system ‘%s’\n",
cliptr—->sysname) ;
return(-1); /* also, cliptr->sysftell is -1 */

Program 18.10 The request function.

The last of the parent-specific functions is sig chld, the signal handler for
SIGCHLD signal. This is shown in Program 18.11.
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#include "calld.h"
#include <sys/wait.h>

/* SIGCHLD handler, invoked when a child terminates. */

void
sig_chld(int signo)
{

int stat, errno_save;
pid t pid:
errnc_save = €rrno; /* log _msg() might change errno */

chld flag = 1;
if ( (pid = waitpid(-1, &stat, 0)) <= 0)
log sys("waitpid error");

if (WIFEXITED (stat) != 0)
/* set client’s childdone status for loop() */
Client_pigchld(pid, WEXITSTATUS (stat)+1);
else
log msg("child %d terminated abnormally: %04x", pid, stat);

errno = errno_save;
return; /* probably interrupts accept() in serv_accept () */

Program 18.11 The sig_chld signal handler.

When a child terminates we must record its termination status and process ID in the
appropriate entry in the client array. We call the function client_ sigchld
(Program 18.5) to do this.

Note that we are violating one of our earlier rules from Chapter 10—a signal han-
dler should only set a global variable and nothing else. Here we call waitpid and the
function client sigchld (Program 18.5). This latter function is signal safe. All it
does is record information in an entry in the client array—it doesn’t create or delete
entries (which would be nonreentrant) and it doesn’t call any system functions.

waitpid is defined by POSIX.1 to be signal safe (Figure 10.3). If we didn’t call
waitpid from the signal handler, the parent would have to call it when the flag
chld_flag was nonzero. But since numerous children can terminate before the main
loop gets a chance to look at chld flag, we would either need to increment
chld flag each time a child terminated (so the main loop would know how many
times to call waitpid) or call waitpid in a loop, with the WNOHANG flag (Figure 8.3).
The simplest solution is to call waitpid from the signal handler, and record the infor-
mation in the client array.

We now proceed to the functions that are called by the child as part of its attempt to
dial the remote system. Everything starts for the child after the fork when request
calls child_dial (Program 18.12).
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#include "calld.h"

/* The child does the actual dialing and sends the fd back to

* the client. This function can’t return to caller, must exit.

* If successful, exit(0), else exit(1).

* The child uses the following global variables, which are just
* in the copy of the data space from the parent:

* cliptr->fd (to send DEBUG() output and fd back te client),
* cliptr->Debug (for all DEBUG() output}), childptr->parity,
* systems, devices, dialers. */

void
child dial(Client *cliptr)

{
int fd, n;

Debug = cliptr->Debug;
DEBUG("child, pid %d", getpid()):

if (strcmp(devices.dialer, "direct") == () { /* direct tty line */
fd = tty open(systems.class, devices.line, cliptr->parity, 0);

if (fd < 0)
goto die;
} else { /* else assume dialing is needed */
if (dial find(&dialers, &devices) < 0)
goto die;
fd = tty_open(systems.class, devices.line, cliptr->parity, 1);
if (fd < 0)
goto die;

if (tty_dial(fd, systems.phone, dialers.dialer,
dialers.sub, dialers.expsend) < 0)
goto die;
}

DEBUG ("done") ;
/* send the open descriptor to client */
if (send_fd(cliptr->fd, £fd) < 0)
log_sys("send fd error");
exit (0); /* parent will see this */
die:
/* The child can’t call send err() as that would send the final
2-byte protocol to the client. We just send our error message

back to the client. If the parent finally gives up, it’1l1
call send err(). */

n = strlen(errmsg) ;

if (writen(cliptr->fd, errmsg, n) != n) /* send error to client */
log_sys("send err error”);
exit (1); /* parent will see this, release lock, and try again */

Program 18.12 The child_dial function.
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If the device being used is directly connected, just the function tty_open is called to
open the terminal device and set all the appropriate terminal parameters. But if the de-
vice is a modem, three functions are called: dial_find (to locate the appropriate entry
in the Dialers file), tty open, and tty_dial (to do the actual dialing).

If child dial is successful, it returns the file descriptor to the client by calling
send_£d (Programs 15.5 and 15.9) and calls exit (0). Otherwise it sends an error
message back to the client across the stream pipe and calls exit (1). The client-specific
stream pipe is duplicated across the fork, so the child can send either the descriptor or
error message directly back to the client.

#include  "calld.h"
#include <stdarg.h>

/* Note that all debug output goes back to the client. */
void
DEBUG (char *fmt, ...) /* debug output, newline at end */

{
va_list args;

char line [MAXLINE];

int n;

if (Debug == 0)
return;

va_start (args, fmt):;
vsprintf(line, fmt, args};
strcat (line, "\n");
va_end(args) ;

n = strlen(line);
if (writen(clifd, line, n) != n)
log_sys("writen erroxr"};

}

void
DEBUG_NONL(char *fmt, ...) /* debug output, NO newline at end */
{

va_list args;

char line [MAXLINE];

int n;
if (Debug == 0)
return;

va_start (args, fmt);
vsprintf(line, fmt, args):
va_end({args);

n = strlen(line);
if (writen(clifd, line, n) != n)
log_sys("writen error”);

Program 18.13 Debugging functions.
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The client can send a -d option in its command to the server, and this sets the client-
specific variable Debug. This flag is used in Program 18.13 by the two functions DEBUG
and DEBUG_NONL to send debugging information back to the client. This information is
useful when dialing problems are encountered for a particular system. These two func-
tions are called predominantly by the child, although the parent also called them from
the request function (Program 18.10).

Program 18.14 shows the tty open function. It is called for both modem devices
and direct connect devices, to open the terminal and set its modes. The class field of the
Systems and Devices file specified the line speed, and the client can specify the par-
ity.

#include "calld.h"

#include <fentl.h>
#include <termios.h>

/* Open the terminal line */

int
tty open(char *class, char *1line, enum parity parity, int modem)
{

int fd, baud;

char devname [100] ;

struct termios term;

/* first open the device */
strcpy (devname, "/dev/");
strcat (devname, line);
if ( (fd = open(devname, O RDWR | O NONBLOCK)) < 0) {
sprintf(errmsg, “can’t open %s: %s\n",
devname, strerror (errno));
return(-1);
}
if (isatty(fd) == 0) {
sprintf(errmsg, "%s is not a tty\n", devname);
return(-1);

/* fetch then set modem’s terminal status */
if (tcgetattr(fd, &term) < 0)
log_sys("tcgetattr error");

if (parity == NONE)
term.c_cflag = CS8;
else if (parity == EVEN)
term.c_cflag = CS7 | PARENB;
else if (parity == ODD)
term.c_cflag = CS7 | PARENB | PARODD;
else
log_quit ("unknown parity"):
term.c_cflag |= CREAD | /* enable receiver */
HUPCL; /* lower modem lines on last close */
/* 1 stop bit (since CSTOPB off) */
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if (modem == 0)

term.c_cflag |[= CLOCAL; /* ignore modem status lines */

term.c_oflag = 0; /* turn off all output processing */
term.c_iflag = IXON | IXOFF | /* Xon/Xoff flow control (default) */
IGNBRK | /* ignore breaks */
ISTRIP | /* strip input to 7 bits */
IGNPAR; /* ignore input parity errors */
term.c_1flag = 0; /* everything off in local flag:
disables canonical mode, disables
signal generation, disables echo */
term.c_cc[VMIN] = 1; /* 1 byte at a time, no timer */

term.c_cc[VTIME] = 0; /* (See Figure 18.10) */

if (strcmp(class, "38400") == 0) baud = B38400;
else if (strcmp(class, ™"19200") == 0) baud = B19200;
else if (strcmp(class, "9600") == 0) baud = B%600;
else if (strcmp(class, "4800") == 0) baud = B4800;
else if (strcmp(class, "2400") == 0) baud = B2400;
else if (strcmp(class, "1800") == 0) baud = B1800;
else if (strcmp(class, "1200") == 0) baud = B1200;
else if (strcmp(class, "600") == Q) baud = B600;
else if (strcmp(class, "300") == 0) baud = B300;
else if (strcmp(class, "200") == 0) baud = B200;
else if (strcmp(class, "150") == 0) baud = B150;
else if (strcmp(class, "134") == 0) baud = B134;
else if (strcmp(class, "110") == 0) baud = B110;
else if (strcmp(class, "75") == () baud = B75;
else if (strcmp(class, "50") == 0) baud = B50;
else {

sprintf (errmsg, "invalid baud rate: %s\n", class);

return(-1);
}
cfsetispeed(&term, baud);
cfsetospeed (&term, baud);
if (tcsetattr(fd, TCSRNOW, &term) < 0) /* set attributes */

log_sys("tcsetattr error");

DEBUG("tty open");
clr_£1(fd, O NONBLOCK);
return(fd) ;

/* turn off nonblocking */

Program 18.14 The tty_open function.

We open the terminal device with the nonblocking flag, as sometimes the open of a ter-
minal connected to a modem doesn’t return until the modem'’s carrier is present. Since
we are dialing out and not dialing in, we don’t want to wait. At the end of the function
we call the clr_f1 function to clear the nonblocking mode. The only difference
between a modem and a direct connect line in the tty open function is for a direct
connect line we set the CLOCAL bit.
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The details of dialing a modem takes place in the tty dial function

(Program 18.15). This function is only called for modem lines, not for direct connect
lines.

#include "calld.h"

int
tty_dial(int fd, char *phone, char *dialer, char *sub, char *expsend)
{

char *ptr;

ptr = strtok(expsend, WHITE); /* first expect string */
for (; ;) {
DEBUG_NONL ("expect = %s\nread: ", ptr);
if (expect_str(fd, ptr) < 0)
return(-1) ;

if ( (ptr = strtok(NULL, WHITE)) == NULL)

return(0) ; /* at the end of the expect/send */
DEBUG_NONL("send = %s\nwrite: ", ptr);
if (send_str(fd, ptr, phone, 0) < 0)

return(-1);

if ( (ptr = strtok(NULL, WHITE)) == NULL)
return(0); /* at the end of the expect/send */

Program 18.15 The tty_dial function.

The function just calls one function to handle the expect string and another to handle
the send string. We are done when there are no more send or expect strings. (Note that
we do not handle the sub string from Figure 18.4.)

Program 18.16 shows the function send_st r that outputs the send strings. To keep
the size of this example manageable, we have not implemented every special escape
sequence—we have implemented enough to use the program with the Dialers files

shown in Figure 18.4.
#include "calld.h"
int

send_str(int fd, char *ptr, char *phone, int echocheck)
{
char ¢, tempc;

/* go though send string, converting escape sequences on the fly */
while ( (c = *ptr++) != 0) {
if (c == "\\") {
if (*ptr == 0) {
sprintf (errmsg, "backslash at end of send string\n");
return(-1);
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c = *ptr++; /* char following backslash */

switch (c) {
case ‘c’: /* no CR, if at end of string */
if (*ptr == 0)
goto returnok:;
continue; /* ignore if not at end of string */

case ’'d’: /* 2 second delay */
DEBUG_NONL ("<delay>") ;
sleep(2);
continue;

case 'p’: /* 0.25 second pause */

DEBUG_NONL ("<pause>") ;
sleep_us (250000); /* Exercise 12.6 */
continue;

case 'e’:
DEBUG_NONL ("<echo check off>");
echocheck = 0;
continue;

case "E’:
DEBUG_NONL ("<echo check on>"};
echocheck = 1;

continue;

case 'T': /* output phone number */
send_str (fd, phone, phone, echocheck); /* recursive */
continue;

case 'r’:

c = '\r’;
break;
case "s’
c = '

break;

- e

/* room for lots more case statements ... */

default:
sprintf ("errmsg, unknown send escape char: \\%s\n",
ctl_str(c));
return(-1);

)

DEBUG_NONL ("%s", ctl stri(c));
if (write(fd, &c, 1) != 1)
log_sys("write error");
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if (echocheck) { /* wait for char to be echoed */
do {
if (read(fd, &tempc, 1) !'= 1)
log_sys("read error");
DEBUG_NONL (" {%$s5}", ctl_str(tempc));
} while (tempc !'= c¢);
}

}
c = '\r’; /* if no \c at end of string, CR written at end */

DEBUG_NONL("%s", ctl_str(c));
if (write(fd, &c¢, 1) != 1)
log_sys("write error");
returnok:
DEBUG("") ;
return(0) ;

Program 18.16 The send_str function.

send_str calls the function ¢t1_str to convert ASCII control characters into a
printable version. Program 18.17 shows the ct1_str function.

#include "calld.h"

/* Make a printable string of the character "c¢", which may be a
* control character. Works only with ASCII. */

char *
ctl str(char c)

{

static char tempstr[6]; /* biggest is "\177" + null */
c &= 255;
if (¢ == 0)
return ("\\0") ; /* really shouldn’t see a null */

else if (c < 040)
sprintf(tempstr, ""%¢", ¢ + ‘A’ - 1);
else if (c == 0177)
return ("DEL") ;
else 1f (c > 0177)
sprintf (tempstr, "\\%03o0", c¢);
else
sprintf (tempstr, "%c", c);
return (tempstr) ;

Program 18.17 The ctl_str function.

The hardest part of dialing the modem is recognizing the expect strings.
Program 18.18 shows the function expect_str that does this. (As with the send
strings, we have implemented only a subset of all the possible features provided by the
Dialers file.)
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#include "calld.h"

#define EXPALRM 45 /* alarm time to read expect string */
static int expalarm = EXPRLRM;

static void sig_alrm(int);

static volatile sig atomic t caught_alrm;

static size_t exp_read(int, char *):

int

/* return 0 if got it, -1 if not */

expect_str(int fd, char *ptr)

{

char expstr [MAXLINE], inbuf[MAXLINE];
char ¢, *src, *dst, *inptr, *cmpptr:
int i, matchlen;

if (stremp(ptr, "\"\"") == 0)

goto returnok; /* special case of "" (expect nothing) */

/* copy expect string, converting escape sequences */

for (src = ptr, dst = expstr; (c = *src++) !'= 0; ) {
if (c == "\\') {
if (*src == 0) {

sprintf (errmsg, "invalid expect string: %s\n", ptr);

return(-1);
}

c = *src++; /* char following backslash */
switch (c) {
case 'r’': c = "\r'; break:
case 's'": c ="' *; break;

/* room for lots more case statements ... */
default:

sprintf (errmsg, "unknown expect escape char: \\%s\n",
ctl_str(c));

return(-1);
}
}
*dst++ = c;
}
*dst = 0;
matchlen = strlen{expstr);

if (signal (SIGALRM, sig alrm) == SIG_ERR)
log quit ("signal error");

caught_alrm = 0;

alarm(expalarm);

do {
if (exp _read(fd, &c) < 0)
returni(-1);

} while (c != expstr([0]); /* skip until first chars equal */
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cmpptr = inptr = inbuf;

*inptr = ¢;

for (i = 1; 1 < matchlen; i++) { /* read matchlen chars */
inptr++;

if (exp_read(fd, inptr) < 0)
return(-1);
}

for ( ; ;) | /* keep reading until we have a match */
if (strncmp(cmpptr, expstr, matchlen) == 0)
break; /* have a match */
inptr++;

if (exp_read(fd, inptr) < 0)
return(-1);
cmpptr++;
}
returnok:
alarm(0) ;
DEBUG ("\nexpect: got it™);
return(0) ;
}

size t /* read one byte, handle timeout errors & DEBUG */
exp_read(int £d, char *buf)
{
if (caught_alrm) { /* test flag before blocking in read */
DEBUG ("\nread timeout");
return(-1);
}
if (read(fd, buf, 1) == 1) {
DEBUG_NONL ("%$s"™, ctl_str(*buf));
return(l):
}
if (errno == EINTR && caught_alrm) {
DEBUG ("\nread timeout");
return(-1);
}
log sys("read error"):
}

static void
sig_alrm(int signo)
{
caught_alrm = 1;
return;

Program 18.18 Functions to read and recognize expect strings.

We first copy the expect string, converting the special characters. Our matching tech
nique is to read characters from the modem until the character matches the
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18.7

character of the expect string. We then read enough characters to equal the number of
characters in the expect string. From that point we continually read characters from the
modem into the buffer, comparing them against the expect string, until we have a match
or until the alarm goes off. (There are better algorithms for string matching—ours was
chosen to simplify the coding. The number of characters returned by the modem that
are compared to the expect string is usually on the order of 50, and the size of the expect
string is often around 10-20 characters.)

Note that we have to set an alarm each time we try to match an expect string, as the
alarm is the only way we can determine that we didn’t receive what we were waiting
for.

This completes the server daemon. All it does is open a terminal device and dial a
modem. What happens with the terminal device after it is opened depends on the
client. We'll now examine a client that provides an interface similar to cu and tip,
allowing us to dial a remote system and log in.

Client Design

The interface between the client and server is only about a dozen lines of code. The
client formats a command line, sends it to the server, and receives back either a file
descriptor or an error indication. The rest of the client design depends on what the
client wants to do with the returned descriptor. In this section we'll outline the design
of the call client that works like the familiar cu and tip programs. It allows us to call
a remote system and log in to it. The remote system need not be a Unix system—we
can use it to communicate with any system or device that’s connected to the host with
an R5-232 serial connection.

Terminal Line Disciplines

In Figures 12.11 and 12.12 we gave an overview of the modem dialer. Figure 1838 is an
expansion of Figure 12.11, recognizing the fact that there are two line disciplines
between the user and the modem and assuming that we're using the program to dial
into a remote Unix host. (Recall from the output of Program 12.10 that for a streams-
based terminal system, Figure 18.8 is a simplification. There may be multiple streams
modules making up the line discipline and multiple modules making up the terminal
device driver. We also don’t explicitly show the stream head.)

The two dashed boxes in Figure 18.8 above the modem on the local system were es-
tablished by the server’s tty open function (Program 18.14). That function set the
dashed terminal line discipline module to noncanonical (i.e., raw) mode. The modem
on the local system was dialed by the server’s tty_dial function (Program 18.15). The
two arrows between the dashed terminal line discipline box and the call process cor-
respond to the descriptor returned by the server. (We show the single descriptor as two
arrows, to reiterate the fact that it’s a full-duplex descriptor.)

The line discipline box beneath the shell on the remote system is set by the login
process on that system to be in the canonical mode. After we have dialed the remote
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Figure 18.8 Overview of modem dialer process to log in to remote Unix host.

system we want the special terminal input characters (end of file, erase line, etc. from
Section 11.3) recognized by the line discipline module on the remote host. That means
we have to set the mode of the line discipline module above the terminal (standard
input, standard output, and standard error of the call process) to noncanonical mode.

One Process or Two?

In Figure 18.8 we show the call process as a single process. Doing so requires support
for an I/O multiplexing function such as select or poll, since two descriptors are
being read from and two descriptors are being written to. We could also design the
client as two processes, a parent and a child, as we showed in Figure 12.12. Figure 189
shows only these two processes and the line disciplines beneath them. Historically, cu
and tip have always been two processes, as in Figure 18.9. This is because early Unix

systems didn’t support an I/O multiplexing function.

We choose to use a single process for the following two reasons.

1. Having two processes complicates the termination of the client. If we terminate
the connection by entering ~ . (a tilde followed by a period) at the beginning of
a line, the child recognizes this and terminates. The parent then has to catch the
SIGCHLD signal so that the parent can terminate too.

If the connection is terminated by the remote system or if the line is dropped,
the parent will detect this by reading an end of file from the modem descriptor.
The parent then has to notify the child, so that the child can also terminate.
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call call
parent child

linediscipline | 1 line discipline 1
{noncanonical) :_(nﬂn:anmcal)_:

Figure 189 The call client as two processes.

Using a single process obviates the need for one process notifying the other
when it terminates.

2. We are going to implement a file transfer function in the client, similar to the put
and take commands of cu and tip. We enter these commands on the standard
input, on a line that begins with a tilde (the default escape character). These
commands are recognized by the child if two processes are being used
(Figure 18.9). But the file that’s received by the client, in the case of a take com-
mand, comes across the modem descriptor, which is being read by the parent.
This means, to implement the take command, the child has to notify the parent
so that the parent stops reading from the modem. The parent is probably
blocked in a read on this descriptor, so a signal is required to interrupt the par-
ent’'s read. When the child is done, another notification is required to tell the
parent to resume reading from the modem. While possible, this scenario
quickly becomes messy.

A single process simplifies the entire client. By using a single process, however, we lose
the ability to job-control stop just the child. The BSD tip program supports this fea-
ture. It allows us to stop the child while the parent continues running. This means all
the terminal input is directed back to our shell instead of the child, letting us work on
the local system, but we’ll still see any output generated by the remote system. This is
handy if we start a long running job on the remote system and want to see any output
that it generates, while working on the local system.
We now look at the source code to implement the client.

Client Source Code :

The client is smaller than the server, since the client doesn’t handle all the details of con-
necting the remote system—the server from Section 18.6 handles this. About one-half
of the client is to handle commands such as take and put.

Program 18.19 shows the call.h header that is included by all the source files.
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#inc
#inc
#inc
#inc
#inc

#def
#def

lude <sys/types.h>

lude <sys/time.h>

lude <errno.h>

lude <termios.h>

lude "ourhdr.h"

ine CS_CALL "/home/stevens/calld" /* well-known server name */
ine CL_CALL "call" /* command for server */

/* declare glocbal variables */

extern char escapec; /* tilde for local commands */
extern char *src; /* for take and put commands */
extern char *dst; /* for take and put commands */

int
int
void
int
void
void
int

/* function prototypes */
call (const char *);
doescape (int) ;
loop(int);
prompt_read(char *, int (%) (int, char **));
put (int) ;
take(int) ;
take put_args(int, char *¥);

Program 18.19 The call.h header.

The command for the server and the server’s well-known name have to correspond to
the values in Program 18.1.
Program 18.20 shows the main function.

#inc

char
char
char

stat
int
main

{

lude "call.h™

/* define global variables */
escapec = ' 7',
*src;
*dst;

ic void usage(char *);

(int argc, char *argv[])

int c, remfd, debug;

char args [MAXLINE];

args[0] = 0; /* build arg list for conn server here */
opterr = 0; /* don't want getopt () writing to stderr */

while ( (c = getopt(argc, argv, "des:o")) != EOF) {
switch (c) {
case 'd’: /* debug */
debug = 1;
strcat (args, "-d4 ");
break;
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case 'e': /* even parity */
strcat (args, "-e "):
break;

case 'o’': /* odd parity */
strcat (args, "-o "):
break;

case 's’': /* speed */
strcat (args, "-s ");
strcat (args, optarg):
strcat (args, " ");
break;

case "?':

usage ("unrecognized option");
}
}
if (optind < argc)
streat (args, argv[optind]); /* name of host to call */
else
usage ("missing <hostname> to call"):;

if ( (remfd = call(args)) < 0) /* place the call */
exit(1l); /* call() prints reason for failure */
printf ("Connected\n") ;

if (tty_raw(STDIN FILENO) < 0) /* user’s tty to raw mode */
err sys("tty raw error");

if (atexit(tty_atexit) < 0) /* reset user’s tty on exit */
err sys("atexit error");

loop (remfd) ; /* and do it */

printf ("Disconnected\n\xr");
exit (0);
}

static void
usage (char *msq)
{
err quit("%s\nusage: call -d -e —o —-s<speed> <hostname>", msg);
}

Program 18.20 The main function.

[t processes the command-line arguments, saving them in the array args, which is sent
to the server. The function call contacts the server and returns the file descriptor to
the remote system.

The line discipline module above the terminal (Figure 18.8) is set to noncanonical
mode using the tty raw function (Program 11.10). To reset the terminal when we're
done we establish the function tty_atexit as an exit handler.
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The function loop is then called to copy everything that we enter to the modem
and everything from the modem to the terminal.

The call function in Program 18.21 contacts the server to obtain a file descriptor
for the modem. As we said earlier, it takes only a dozen lines of code to contact the
server to obtain the descriptor.

#include "call.h"
#include <sys/uio.h> /* struct iovec */

/* Place the call by sending the "args" to the calling server,
* and reading a file descriptor back. */

int

call (const char *args)

{
int csfd, len;
struct iovec iov([2]:

/* create connection to conn server */
if ( (csfd = cli_conn(CS _CALL)) < 0)
err sys("cli_conn error");

iov[0].iov_base
iov[0].iov_len strlen(CL_CALL) + 1;
iov[l].iov_base (char *) args;
iov[l].iov_len = strlen(args) + 1;
/* null at end of args always sent */
len = iov[0].iov_len + iov[1].iov_len;
if (writev(csfd, &iov[0], 2) != len)
err_sys("writev error");

CL_CALL " ";

/* read back descriptor */
/* returned errors handled by write() */
return{ recv_fd(csfd, write) };

Program 18.21 The call function.

The function loop handles the I/O multiplexing between the two input
and the two output streams. We can use either poll or select, depending what
local system provides. Program 18.22 shows an implementation using po11.

#include "call.h"
#include <poll.h>
#include <stropts.h>

/* Copy everything from stdin to "remfd",
* and everything from "remfd" to stdout. */

#define BUFFSIZE 512

void
loop(int remfd)
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int bol, n, nread;
char c, buff[BUFFSIZE]:
struct pollfd fds(2]:

setbuf (stdout, NULL); /* set stdout unbuffered */
/* (for printfs in take()} and put() */
fds[0] .fd = STDIN_FILENO; /* user’'s terminal input */
fds[C] .events = POLLIN;
fds[1l].fd = remfd: /* input from remote (modem) */
fds[1l] .events = POLLIN;

for (; ;) {
if (poll(fds, 2, INFTIM) <= 0)
err sys("poll error"):;

if (fds[0].revents & POLLIN) { /* data to read on stdin */
if (read(STDIN FILENO, &c, 1} !'= 1)
err_sys ("read error from stdin");

if (c == escapec && bol) {
if ( (n = doescape(remfd)) < 0)
break; /* user wants to terminate */
else if (n == ()
continue; /* escape seq has been processed */

/* else, char following escape was not special,
so it’s returned and echoed below */
C = ny
}
if (¢ == '\r’ || c == '\n’)
bol = 1;
else
bol = 0;

if (write (remfd, &c, 1) '= 1)
err_sys("write error");
1
if (fds[0].revents & POLLHUP)
break; /* stdin hangup -> done */

if (fds[l].revents & POLLIN) { /* data to read from remote */
if { (nread = read(remfd, buff, BUFFSIZE)) <= 0)
break; /* error or EOF, terminate */

if (writen(STDOUT _FILENO, buff, nread) != nread)
err_sys("writen error to stdout”);

}
if (fds(l]).revents & POLLHUP)
break; /* modem hangup -> done */

Program 18.22 The loop function using the poll function.



A Modem Dialer

The basic loop of this function just waits for data to appear from either the terminal or
the modem. When data is read from the terminal, it's just copied to the modem and
vice versa. The only complication is to recognize the escape character (the tilde) as the
first character of a line.

Note that we read one character at a time from the terminal (standard input), but
up to one buffer at a time from the modem. One reason for the single character at a
time from the terminal is because we have to look at every character to know when a
new line begins, to recognize the special commands. Although this character-at-a-time
I/0 is expensive in terms of CPU time (recall Figure 3.1), there is usually far less input
from the terminal than from the remote system. (In remote login sessions using this
program measured by the author, there are around 100 characters output by the remote
host for every character input.)

When the escape character is seen, doescape is called to process the command
(Program 18.23). We support only five commands. Simple commands are handled
directly in this function, while the more complicated take and put commands are han-
dled by separate functions (take and put).

* A period terminates the client. For some devices, such as a laser printer, this is
the only way to terminate the client. When we’'re logged into a remote system,
such as in Figure 18.8, logging out from that system usually causes the remote
modem to drop the phone line, causing a hangup to be received on the modem
descriptor by the Loop function.

* If the system supports job control we recognize the job-control suspend charac-
ter and suspend the client. Note that it is simpler for us to recognize this charac-
ter directly and stop ourselves than to have the line discipline recognize the
character and generate the SIGSTOP signal (compare with Program 10.22). We
have to reset the terminal mode before stopping ourselves, and reset it when
we’re continued.

* A pound sign generates a BREAK on the modem descriptor. We use the
POSIX.1 tesendbreak function to do this (Section 11.8). The BREAK condition
often causes the remote system’s getty or ttymon program to switch line
speeds (Section 9.2).

* The take and put commands require separate functions to be called. The way to
distinguish between the two commands is to remember that the command
describes what the client is doing on the local system: taking a file from the
remote system or putting a file to the remote system.

Program 18.24 shows the code required to handle the take command. The function
take first calls prompt_ read (which we show in Program 18.25) to echo ~ [take). i
response to the "t command. The prompt_read function then reads a line of i
from the terminal, containing the source pathname (the file on the remote host) and
destination pathname (the file on the local host). The results are stored in the glo
variables src and dst.
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#include "call.h"
#include <signal.h>

/* Called when first character of a line is the escape character
(tilde). Read the next character and process. Return -1

if next character is "terminate" charcter, 0 if next character
is valid command character (that’s been processed), or next
character itself (if the next character is not special). */

* * * *

int
doescape (int remfd)
{

char c;

if (read(STDIN FILENO, &c, 1) != 1) /* next input char */
err_sys("read error from stdin"):

if (c == escapec) /* two in a row -> process as one */
return (escapec);

else if (c == ".") { /* terminate */
write(STDOUT_FILENO, "= . An\z", 4);
return({-1);

#ifdef VSUSP
} else if (c == tty_termios()->c_cc[VSUSP]) { /* suspend client */

tty reset (STDIN_FILENO); /* restore tty mode */
kill (getpid(), SIGTSTP): /* suspend ourself */
tty raw(STDIN_FILENO); /* and reset tty to raw */

return(0) ;
#endif

} else if (c == '§’) { [/* generate break */
tcsendbreak (remfd, 0):;
return(0);

} else if (c == 't’) { /* take a file from remote host */
take (remfd) ;
return(0) ;

} else if (c == ’'p’) { /* put a file to remote host */
put (remfd) ;
return(0) ;

}

return (c) ; /* not a special character */

Program 18.23 The escape function.
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#include "eall.h"

#define CTRLA 001 /* eof designator for take */
static int rem_read(int);

static char rem_buf [MAXLINE];

static char *rem ptr;

static int rem _cnt = 0;

/* Copy a file from remote to local. */

void
take(int remfd)

{

int n, linecnt:
char ¢, cmd[MAXLINE];
FILE *fpout;

if (prompt_read("  [take] ", take put_args) < 0) {

printf("usage: [take] <sourcefile> <destfile>\n\r");

return;

/* open local output file */
if ( (fpout = fopen(dst, "w")) == NULL} {
err ret("can’t open %s for writing"”, dst);
pute('\r’, stderr):;
fflush (stderr);
return;

/* send cat/echo command to remote host */
sprintf (cmd, "cat %s: echo %c\r", src, CTRLA);
n = strlen(cmd);
if (write{remfd, cmd, n) != n)
err_sys("write error");

/* read echo of cat/echo command line from remote host */

rem_cnt = 0; /* initialize rem read{) */
for (; : ) {
if ( (c = rem_read(remfd}) == 0}
return; /* line has dropped */
if (c == ‘\n")
break; /* end of echo line */

/* read file from remote host */
linecnt = 0;
for {( : ;) |
if ( {(c = rem_read(remfd)) == 0)
break; /* line has dropped */
if {(c == CTRLA)
break; /* all done */
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if (e == "\r'")
continue; /* ignore returns */
if {c == '\n'’) /* but newlines are written to file */

printf ("\r%d", ++linecnt);
if (putc(ec, fpout) == EOF)

break; /* output error */

}

if (ferror(fpout) || fclose(fpout) == EOF) |{
err msg("output error to local file"):
putc(’\r’, stderr);
fflush (stderr);

}

c = '\n";

write (remfd, &c, 1);
}

/* Read from remote. Read up to MAXLINE, but parcel out one
* character at a time. */

int
rem read(int remfd)
{
if (rem cnt <= 0) ({
if ( (rem_cnt = read(remfd, rem buf, MAXLINE)) < 0)
err_sys({"read error");
else if (rem cnt == 0)
return(0) ;
rem ptr = rem_ buf;
}
rem_cnt--;
return(*rem ptr++ & 0177);

Program 18.24 Processing the take command.

After the take function opens the local file for writing it sends the following com-
mand to the remote host:

cat sourcefile ; echo "A

This causes the remote host to execute the cat command, followed by an echo of the
ASCIl Control-A character. We look for this Control-A in all the characters that are
returned by the remote host, and when we encounter it, we know the file transfer is
complete. Note that we also have to read back the echo of the command line that we
send to the remote host. Only after that echo do we start receiving the output of the
cat command.

While we’re reading the remote file we look for newline characters and count the
lines returned. We display these at the left margin, overwriting each line number with
the next (since we terminate the line in the print £ with a carriage return only and not
a newline). This provides a visual display on the terminal of the progress of the file
transfer and a final line count at the end.
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This source file also contains the function rem_read, which is called to read each
character from the remote host. We read up to one buffer at a time, but return only one
character at a time to the caller.

Originally the take command was written to read one character at a time, similar to
what cu and tip have historically done. Ten years ago, when 1200 baud modems were
considered fast, this was OK. But with today’s much faster modems, delivering charac-
ters to the terminal device driver at 9600 baud and above, characters get lost, even on
the faster CPUs found today. The author encountered this with both cu and tip, using
a Telebit T2500 modem in PEP mode, even when both the local host and remote host
use flow control. When transferring a large text file (about 75,000 bytes) about half the
time characters were lost, requiring the transfer to be done again.

The solution was just to code the rem_read function to read up to a buffer at a
time. Doing this reduced the system CPU time by a factor of three (from 16 seconds to 5
seconds, to transfer the 75,000 byte file) and provided a reliable transfer every time. A
counter was temporarily added to the rem_read function, to see how many bytes were
returned by each call to read. Figure 18.10 shows the results.

#bytes Count | #bytes Count | #bytes Count |#bytes Count |

1 1 28 2 39 1 55 1
13 1 29 1 40 1 56 9
16 1 32 1 46 1 57 751
17 1 33 1 48 2 58 530
22 1 34 1 51 2 59 2
24 1 35 1 52 2 114 1
25 4 37 1 53 1 115 1
26 3 38 1 54 1 194 1

Figure 18.10 Number of bytes returned by read during file transfer.

Only once was a single byte returned; 99% of the time either 57 or 58 bytes were
returned by read. Making this small change reduced the number of reads from more
than 75,000 to 1,329.

Note that the number of bytes returned by read in Figure 18.10 occurred even
though the line discipline module for the modem had its MIN set to 1 and TIME set to 0
by the tty_open function (Program 18.14). This is case B from Section 11.11. This reit-
erates the fact that MIN is only a minimum. If we ask for more than the minimum, and
the bytes are ready to be read, they're returned. We are not restricted to character-at-a-
time input when we set MIN to 1.

Program 1825 shows the two ancillary functions take put args and
prompt read. The latter is called from both the take and put functions, with the for-
mer as an argument (that is then called by the buf_args function, Program 15.17).

#include "call.h"

/* Process the argv-style arguments for take or put commands. */

int
take put_args(int argc, char **argv)
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)

if (argc == 1) {
src = dst = argv[0]:
return(0);

} else if (argc == 2) {
src = argv[0];
dst = argv[l];
return(0);

}

return (-1) ;

static char cmdargs[MAXLINE];

/* can’t be automatic; src/dst point into here */

/* Read a line from the user. Call our buf args() function to

int

* break it into an argv-style array, and call userfunc() to
* process the arguments. */

prompt_read (char *prompt, int (*userfunc) (int, char *%*))

{

int n;
char c, *ptr;
tty reset (STDIN_ FILENO) ; /* allow user’s editing chars */

n = strlen(prompt);
if (write(STDOUT FILENO, prompt, n) !'= n)
err_sys("write error");

ptr = cmdargs;
for ( ; 7 ) |
if ( (n = read(STDIN FILENO, &c, 1)) < 0)
err sys("read error");
else if (n == 0)
break;
if (c == '\n’)
break;
if (ptr < &cmdargs[MAXLINE-2])
*ptr++ = c;
}
*ptr = 0; /* null terminate */

tty raw(STDIN_FILENO); /* reset tty mode to raw */

return( buf_args(cmdargs, userfunc) ):
/* return whatever userfunc() returns */

Program 18.25 The take_put_args and prompt_read functions.
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The function prompt_ read reads a line of input from the terminal, and then calls
buf_args to split the line into a standard argument list that is processed by
take_put_args. Note that the terminal is reset to canonical mode to read the argu-
ments, allowing the use of the standard editing characters while entering the line.

file to the remote host.

The final client function is put, shown in Program 18.26. It is called to copy a local

#include "call.h"
/* Copy a file from local to remote. */

void
put (int remfd)

{

int i, n, linecnt;
char c, comd[MAXLINE];
FILE *fpin;

if (prompt_read (" [put] ", take_put_args) < 0} {
printf ("usage: [put] <sourcefile> <destfile>\n\r");
return;

/* open local input file */
if ( (fpin = fopen(src, "r")) == NULL) {
err_ret ("can’'t open %s for reading", src);
putc ('\r’, stderr):;
fflush({stderr);
return;

/* send stty/cat/stty command to remote host */
sprintf(cmd, "stty -echo; cat >%s; stty echo\r", dst);
n = strlen(cmd) ;

if (write(remfd, cmd, n) !'= n)

err_sys("write error");
tedrain (remfd) ; /* wait for our output to be sent */
sleep(4); /* and let stty take effect */

/* send file to remote host */
linecnt = 0;
for ( ; ;) {
if ( (i = getc(fpin)) == EOF)

break; /* all done */
c = 1i;
if (write(remfd, &c, 1) !'= 1)
break; /* line has probably dropped */
if (¢ == '\n’) /* but newlines are written to file */

printf("\r%d", ++linecnt);
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/* send EOF to remote, to terminate cat */
c = tty _termios()->c_cc[VEQCF];
write(remfd, &c, 1};

tcdrain (remfd) ; /* wait for our output to be sent */
sleep(2);

tcflush(remfd, TCIQOFLUSH); /* flush echo of stty/cat/stty */
c="'\n’;

write(remfd, &c, 1);

if (ferror(fpin)) {
err msg("read error of local file");
putc(’\r’, stderr):
fflush(stderr);

}
fclose(fpin);

Program 18.26 The put function.

As with the take command, we send a command string to the remote system. This time
the command is

stty -echo; cat > destfile; stty echo

We have to turn echo off, otherwise the entire file would also be sent back to us. To ter-
minate the cat command we send the end-of-file character (often Control-D). This
requires that the same end-of-file character be used on both the local system and the
remote system. Additionally, the file cannot contain the ERASE or KILL characters in
use on the remote system.

Summary

In this chapter we've looked at two different programs: a daemon server that dials a
modem and a remote login program that uses the server to contact a remote system
that’s connected through a terminal port. The server can be used by other programs
that need to contact remote systems or hardware devices connected through asyn-
chronous terminal ports.

The design of the server was similar to the open server in Section 15.6 and required
the use of stream pipes, unique per-client connections to the server, and the passing of
file descriptors. These advanced IPC features allow us to build client-server applica-
tions with many desirable features, as described in Section 18.3.

The client is similar to the cu and tip programs provided by many Unix systems,
but in our example we didn’t have to worry about dialing a modem, interfering with
UUCP lock files, setting the characteristics of the modem’s line discipline module, and
the like. The server handles all these details. It let us concentrate on the real issues of
the client, such as providing a reliable file transfer mechanism.
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Exercises

18.1
18.2
18.3

184

18.5

18.6

18.7

188
18.9

How can we avoid step 0 (starting the server by hand) in Section 18.3?
What happens if we don’t set optind to 1 in Program 18.4?

What happens if someone edits the Systems file between the time request
(Program 18.10) forks a child and the time the child terminates with a status of 1?

In Section 7.8 we said to be careful any time we use pointers into a region that gets
realloced, since the region can move around in memory on each call to realloc. Why
can we use the pointer cliptr in Program 18.3 when the client array is manipulated by
realloc?

What happens if either of the pathname arguments to the take and put commands containa
semicolon?

Modify the server to read its three data files once when it starts, storing them in memory, If
the files are modified, how should the server handle this?

In Program 18.21 why do we cast the argument args when filling in the structure for
writev?

Implement Program 18.22 using select instead of pol1.

How can you verify that the file being sent with the put command does not contain charac-
ters that will be interpreted by the line discipline on the remote system?

18.10 The faster the dialing function recognizes that a dial has failed, the faster it can proceed to

the next possible entry in the Systems file. For example, if we can determine that the
remote phone is busy and terminate before the timer in expect_str expires, we can save
15 or 20 seconds. To handle these types of errors, the 4.3BSD UUCP expect-send strings
allow an expect string of ABORT, followed by a string that if matched, aborts the current
dial. For example, right before the final expect string CONNECT\SFAST in Figure 184 we
would like to add

LABORT BUSY
Implement this feature.
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Pseudo Terminals

Introduction

In Chapter 9 we saw that terminal logins come in through a terminal device, automati-
cally providing terminal semantics. There is a terminal line discipline (Figure 11.2)
between the terminal and the programs that we run, so we can set the terminal’s special
characters (backspace, line erase, interrupt, etc.) and the like. When a login arrives on a
network connection, however, a terminal line discipline is not automatically provided
between the incoming network connection and the login shell. Figure 9.5 showed that a
pseudo-terminal device driver is used to provide terminal semantics.

In addition to network logins, pseudo terminals have other uses that we explore in
this chapter. We start by providing functions to create pseudo terminals under SVR4
and 4.3+BSD and then use these functions to write a program that we call pty. We'll
show various uses of this program: making a transcript of all the character input and
output on the terminal (the BSD script program) and running coprocesses to avoid
the buffering problems we encountered in Program 14.10.

Overview

The term pseudo terminal implies that it looks like a terminal to an application program,
but it’s not a real terminal. Figure 19.1 shows the typical arrangement of the processes
involved when a pseudo terminal is being used. The key points in this figure are the
following,.

1. Normally a process opens the pseudo-terminal master and then calls fork. The
child establishes a new session, opens the corresponding pseudo-terminal slave,
duplicates it to be standard input, standard output, and standard error, and then
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Figure 19.1 Typical arrangement of processes using a pseudo terminal.

calls exec. The pseudo-terminal slave becomes the controlling terminal for the
child process.

2. It appears to the user process above the slave that its standard input, standard
output, and standard error are a terminal device. It can issue all the terminal
1/0 functions from Chapter 11 on these descriptors. But since there is not an
actual terminal device beneath the slave, functions that don’t make sense
(change the baud rate, send a break character, set odd parity, etc.) are just
ignored.

3. Anything written to the master appears as input to the slave and vice versa.
Indeed all the input to the slave comes from the user process above the pseudo-
terminal master. This looks like a stream pipe (Figure 15.3) but with the termi-
nal line discipline module above the slave we have additional capabilities overa
plain pipe.

Figure 19.1 shows what a pseudo terminal looks like on a BSD system. In Section 19.3.2
we show how to open these devices.

Under SVR4 a pseudo terminal is built using the streams system (Section 124).
Figure 19.2 details the arrangement of the pseudo-terminal streams modules und
SVR4. The two streams modules that are shown as dashed boxes are optional. N
that the three streams modules above the slave are the same as the output
Program 12.10 for a network login. In Section 19.3.1 we show how to build this arr.
ment of streams modules.
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Figure 19.2 Arrangement of pseudo terminals under SVR4.

From this point on we’ll simplify the figures by not showing the “read and write
functions” from Figure 19.1 or the “stream head” from Figure 19.2. We'll also use the
abbreviation “pty” for pseudo terminal and lump all the streams modules above the
slave pty in Figure 19.2 into a box called “terminal line discipline” as in Figure 19.1.

We'll now examine some of the typical uses of pseudo terminals.

Network Login Servers

Pseudo terminals are built into servers that provide network logins. The typical exam-
ples are the telnetd and rlogind servers. Chapter 15 of Stevens [1990] details the
steps involved in the rlogin service. Once the login shell is running on the remote
host we have the arrangement shown in Figure 19.3. A similar arrangement is used by
the telnetd server.

We show two calls to exec between the rlogind server and the login shell,
because the 1ogin program is usually between the two to validate the user.
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Figure 19.3 Arrangement of processes for rlogind server.

A key point in this figure is that the process driving the pty master is normally read-
ing and writing another I/O stream at the same time. In this example the other 1/0
stream is the TCP/IP protocol box. This implies that the process must be using some
form of 1/0O multiplexing (Section 12.5), such as select or poll or must be divided
into two processes. Recall the discussion of one process versus two in Section 18.7.

script Program

The script(1) program that is supplied with SVR4 and 4.3+BSD makes a copy in a file
of everything that is input and output during a terminal session. It does this by placing
itself between the terminal and a new invocation of our login shell. Figure 19.4 details
the interactions involved in the script program. Here we specifically show that the
script program is normally run from a login shell, which then waits for script fo
terminate.

While script is running, everything output by the terminal line discipline above
the pty slave is copied to the script file (usually called typescript). Since our
keystrokes are normally echoed by that line discipline module, the script file also con-
tains our input. The script file won't contain any passwords that we enter, howevey,
since passwords aren’t echoed.

All the examples in this text that consist of running a program and displaying its output were
generated with the script program. This avoids typographical errors that could occur when

copying program output by hand.

After developing the general pty program in Section 19.5 we'll see that a trivial
shell script turns it into a version of the script program.
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Figure 19.4 The script program.

expect Program

Pseudo terminals can be used to drive interactive programs in noninteractive modes.
Numerous programs are hardwired to require a terminal to run. The call process in
Section 18.7 is an example. It assumes that standard input is a terminal and sets it to
raw mode when it starts up (Program 18.20). This program cannot be run from a shell
script to automatically dial a remote system, log in, fetch some information, and log out.

Rather than modify all the interactive programs to support a batch mode of opera-
tion, a better solution is to provide a way to drive any interactive program from a script.
The expect program [Libes 1990; 1991] provides a way to do this. It uses pseudo ter-
minals to run other programs, similar to the pty program in Section 19.5. But expect
also provides a programming language to examine the output of the program being run
to make decisions about what to send the program as input. When an interactive pro-
gram is being run from a script, we can't just copy everything from the script to the pro-
gram and vice versa. Instead we have to send the program some input, look at its
output, and decide what to send it next.

Running Coprocesses

In the coprocess example in Program 14.10 we couldn’t invoke a coprocess that used the
standard 1/0 library for its input and output, because when we talked to the coprocess
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across a pipe, the standard 1/0 library fully buffered the standard input and standard
output, leading to a deadlock. If the coprocess is a compiled program for which we
don’t have the source code, we can’t add fflush statements to solve this problem.
Figure 14.9 showed a process driving a coprocess. What we need to do is place a
pseudo terminal between the two processes, as shown in Figure 19.5.

cOprocess
___,_pipel ——————— stdin
driving pseudo
program | _ oot terminal [ | iout

Figure 19.5 Driving a coprocess using a pseudo terminal.

Now the standard input and standard output of the coprocess look like a terminal de-
vice, so the standard 1/0 library will set these two streams to be line buffered.

There are two different ways for the parent to obtain a pseudo terminal between
itself and the coprocess. (The parent in this case could be either Program 14.9, which
used two pipes to communicate with the coprocess, or Program 15.1, which used a sin-
gle stream pipe.) One way is for the parent to call the pty_fork function directly
(Section 19.4), instead of calling fork. Another is to exec the pty program
(Section 19.5) with the coprocess as its argument. We'Il look at these two solutions after

showing the pty program.

Watching the Output of Long Running Programs

19.3

If we have a program that runs for a long time we can easily run it in the background
using any of the standard shells. But if we redirect its standard output to a file, and if it
doesn’t generate much output, we can’t easily monitor its progress because the standard
I/0 library will fully buffer its standard output. All that we'll see are blocks of output
written by the standard I/0 library to the output file, possibly in chunks as large as
8192 bytes.

If we have the source code we can insert calls to £f1ush. Alternatively, we can run
the program under the pty program, making its standard 1/0 library think that its
standard output is a terminal. Figure 19.6 shows this arrangement, where we have
called the slow output program slowout. The fork/exec arrow from the login shell
to the pty process is shown as a dashed arrow to reiterate that the pty process is run-
ning as a background job.

Opening Pseudo-Terminal Devices
Opening a pseudo-terminal device differs between SVR4 and 4.3+BSD. We provide

functions that handle all the details: ptym open to open the next available pty
device and ptys_open to open the corresponding slave device.
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Figure 19.6 Running a slow output program using a pseudo terminal.

#include "ourhdr.h"
int ptym open(char *pts_name) ;

Returns: file descriptor of pty master if OK, -1 on error
int ptys_open(int fdm, char *pts_name) ;

Returns: file descriptor of pty slave if OK, —1 on error

Normally we don't call these two functions directly—the function pty_fork
(Section 19.4) calls them and also forks a child process.

ptym open determines the next available pty master and opens the device. The
caller must allocate an array to hold the name of either the master or slave, and if the
call succeeds the name of the corresponding slave is returned through pts_name. This
name and the file descriptor returned by ptym_open are then passed to ptys open,
which opens the slave device.



The reason for providing two functions to open the two devices will become
ous when we show the pty_fork function. Normally a process calls ptym_open
open the master and obtain the name of the slave. The process then forks and
child calls ptys_open to open the slave after calling set sid to establish a new sessi
This is how the slave becomes the controlling terminal for the child.

19.3.1 System V Release 4

All the details of the streams implementation of pseudo terminals under SVR4 are
ered in Chapter 12 of AT&T [1990d]. Three functions are also described
grantpt(3), unlockpt(3), and pt sname(3).

The pty master device is /dev/ptmx. It is a streams clone device. This means
when we open the clone device, its open routine automatically determines the
unused pty master device and opens that unused device. (We'll see in the next
that under Berkeley systems we have to find the first unused pty master ourselves.)

#include <sys/types.h>
#include <sys/stat.h>
#include <errno.h>

#include <fentl.h>
#include <stropts.h>
#include "ourhdr.h"

extern char *ptsname(int); /* prototype not in any system header */
int
ptym_open (char *pts name)
{
char *ptr;
int fdm;

strcpy (pts_name, "/dev/ptmx"); /* in case open fails */
if ( (fdm = open (pts_name, O _RDWR)) < 0)
return(-1):

if (grantpt(£dm) < 0) { /* grant access to slave */
close (fdm) ;
return(-2);

}

if (unlockpt(fdm) < 0) { /* clear slave’'s lock flag */

close (fdm) ;
return(-3);
}
if ( (ptr = ptsname(fdm)) == NULL) { /* get slave’s name */
close (fdm) ;
return(-4);
}

strcpy (pts_name, ptr); /* return name of slave */
return (fdm) ; /* return fd of master */
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int
ptys_open(int fdm, char *pts_name)
{

int fds;

/* following should allocate controlling terminal */
if ( (fds = open(pts_name, O RDWR)) < 0) {
close (£dm) ;
return(-5);
}
if (ioctl(fds, I_PUSH, "ptem") < 0) {
close (fdm) ;
close(fds);
return(-6);
}
if (ioctl(fds, I_PUSH, "ldterm") < 0) {
close (f£dm) ;
close(fds);
return(-7);
}
if (ioctl(fds, I_PUSH, "ttcompat") < 0) ({
close (fdm) ;
close (fds) ;
return (-8);
}

return (fds) ;

Program 19.1 Pseudo-terminal open functions for SVR4.

We first open the clone device /dev/ptmx and obtain the file descriptor for the pty
master. Opening this master device automatically locks out the corresponding slave de-
vice.

We then call grantpt to change permissions of the slave device. It does the follow-
ing: (a) changes the ownership of the slave to the effective user ID, (b) changes the
group ownership to the group tty, and (c) changes the permissions to allow only user-
read, user-write, and group-write. The reason for setting the group ownership to tty
and enabling group-write permission is that the programs wall(l) and write(1) are
set-group-ID to the group tty. Calling the grantpt function executes the program
/usr/1lib/pt_chmod. This program is set-user-ID to root so that it can modify the
ownership and permissions of the slave.

The function unlockpt is called to clear an internal lock on the slave device. We
have to do this before we can open the slave. Additionally we must call ptsname to
obtain the name of the slave device. This name is of the form /dev/pts/NNN.

The next function in the file is ptys_open, which does the actual open of the slave
device. Under SVR4, if the caller is a session leader that does not already have a con-
trolling terminal, this open allocates the pty slave as the controlling terminal. If we
didn’t want this to happen, we could specify the 0_NOCTTY flag for open.
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After opening the slave device we push three streams modules onto the slaves
stream. ptem stands for “pseudo-terminal emulation module” and 1dterm is the
minal line discipline module. Together these two modules act like a real terminal.
ttcompat provides compatibility for older V7, 4BSD, and Xenix ioctl calls. It's an
optional module but since it's automatically pushed for console logins and netweork
logins (see the output from Program 12.10), we push it onto the slave’s stream.

The result of calling these two functions is a file descriptor for the master and a file
descriptor for the slave.

19.3.2 4.3+BSD

Under 4.3+BSD we have to determine the first available pty master device ourself. To
do this we start at /dev/ptyp0 and keep trying until we successfully open a pty mas-
ter or until we run out of devices. We can get two different errors from open: EI0
means that the device is already in use, while ENOENT means that the device doesn't
exist. In the latter case we can terminate the search as all pseudo terminals are in use.
Once we are able to open a pty master, say /dev/ptyMN, the name of the correspond-
ing slave is /dev/ttyMN.

The function ptys_open in Program 19.2 opens the slave device. We call chown
and chmod but realize that these two functions won’t work unless the calling process
has superuser permissions. If it is important that the ownership and protection be
changed, these two function calls need to placed into a set-user-ID root executable, simi-
lar to the SVR4 grantpt function.

The open of the slave pty under 4.3+BSD does not have the side effect of allocating
the device as the controlling terminal. We'll see in the next section how to allocate the
controlling terminal under 4.3+BSD.

This function tries 16 different groups of 16 pty master devices: /dev/ptyp0 through
/dev/ptyTf. The actual number of pty devices available depends on two factors: (a) the
number configured into the kernel, and (b) the number of special device files that have been
created in the /dev directory. The number available to any program is the lesser of (a) or (b).
Also, even if the lesser of (a) or (b) is greater than 64, many existing BSD applications
(telnetd, rlogind, etc) search in the first for loop in Program 19.2 only through "pgrs".

#include <sys/types.h>
#include <sys/stat.h>
#include <errno.h>
#include <fentl.h>
#include <grp.h>
#include "ourhdr.h"
int
ptym_copen{(char *pts name)
{

int fdm;

char *ptrl, *ptr2;

strcpy (pts_name, "/dev/ptyXY");
/* array index: 0123456789 (for references in following code) */
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for (ptrl = "pqgrstuvwxyzPQRST"; *ptrl != 0; ptrl++) {
pts_name[B8] = *ptrl;
for (ptr2 = "012345678%abcdef"; *ptr2 != 0; ptr2++) {
pts name[9] = *ptr2;

/* try to open master */
if ( (fdm = open(pts_name, O_RDWR)) < 0) {

if (errno == ENOENT) /* different from EIO */
return(-1); /* out of pty devices */
else
continue; /* try next pty device */

}

pts_name([5] = 't’; /* change "pty" to "tty" */
return (£dm) ; /* got it, return fd of master */
}
}
return(-1); /* out of pty devices */
)
int
ptys_open(int fdm, char *pts_name)
{
struct group *grptr;
int gid, fds;

if ( (grptr = getgrnam("tty")) != NULL)
gid = grptr->gr_gid;
else
gid = -1; /* group tty is not in the group file */

/* following two functions don’t work unless we’re root */
chown (pts_name, getuid(), gid);
chmed (pts_name, S_IRUSR | S_IWUSR | S_IWGRP);

if ( (fds = open(pts_name, O_RDWR)) < 0) {
close (fdm) ;
return(-1);

}

return (fds) ;

Program 19.2 Pseudo-terminal open functions for 4.3+BSD.

194 pty fork Function

We now use the two functions from the previous section, ptym_open and ptys_open,
to write a new function that we call pty_fork. This new function combines the open-
ing of the master and slave with a call to fork, establishing the child as a session leader
with a controlling terminal.
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#include <sys/types.h>

#include <termios.h>

#include <sys/ioctl.h> /* 4.3+BSD defines struct winsize here *f
#include "ourhdr.h"

pid t pty fork(int *pirfdm, char *slave name,
const struct termios *slave termios,
const struct winsize *slave_winsize) ;

Returns: 0 in child, process ID of child in parent, -1 on error

The file descriptor of the pty master is returned through the ptrfdm pointer.

If slave_name is nonnull, the name of the slave device is stored at that location.
caller has to allocate the storage pointed to by this argument.

If the pointer slave_termios is nonnull, the referenced structure initializes the termi
nal line discipline of the slave. If this pointer is null, the system initializes the slave
termios structure to an implementation-defined initial state. Similarly, if
slave_winsize pointer is nonnull, the referenced structure initializes the slave’s windo
size. If this pointer is null, the winsize structure is normally initialized to 0.

Program 19.3 shows the code for this function. This function works under
SVR4 and 4.3+BSD), calling the appropriate ptym open and ptys_open functions.

After opening the pty master, fork is called. As we mentioned before, we want
wait to call ptys open until in the child, and after calling setsid to establish a
session. When it calls setsid the child is not a process group leader (why?) so
three steps listed in Section 9.5 occur: (a) a new session is created with the child as
session leader, (b) a new process group is created for the child, and (c) the child has
controlling terminal. Under SVR4 the slave becomes the controlling terminal of thi
new session when ptys_open is called. Under 4.3+BSD we have to call ioct 1 with
argument of TIOCSCTTY to allocate the controlling terminal. The two stru
termios and winsize are then initialized in the child. Finally the slave file descri
is duplicated onto standard input, standard output, and standard error in the child
This means that whatever process the caller execs from the child will have these
descriptors connected to the slave pty (its controlling terminal).

After the call to fork the parent just returns the pty master descriptor and returns
In the next section we use the pty_fork function in the pty program.

#include <sys/types.h>

#include <termios.h>

#ifndef TIOCGWINSZ

#include <sys/ioctl.h> /* 4.3+BSD requires this too */
¥endif

#include "ourhdr.h"

pid _t

pty_fork(int *ptrfdm, char *slave_name,
const struct termios *slave termios,
const struct winsize *slave winsize)
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int fdm, fds;
pid_t pig;
char pts_name[20];

if ( (fdm = ptym_open(pts_name)) < 0)
err_sys("can’t open master pty: %s", pts_name) ;

if (slave_name != NULL)
strepy (slave_name, pts_name) ; /* return name of slave */

if ( (pid = fork()) < 0)
return(-1);

else if (pid == 0) { /% child */
if (setsid() < 0)
err_ sys("setsid error");

/* SVR4 acquires controlling terminal on cpen() */
if ( (fds = ptys_open(fdm, pts_name)) < 0)
err_sys("can’'t open slave pty"):
close (fdm) ; /* all done with master in child */

#if defined (TIOCSCTTY) && !defined (CIBAUD)
/* 4.3+BSD way to acquire controlling terminal */
/* 'CIBAUD to avoid doing this under SunOS */
if (ioctl(fds, TIOCSCTTY, (char *) 0) < 0)
err_sys("TIOCSCTTY error");
#endif
/* set slave’'s termios and window size */
if (slave_termios != NULL) {
if (tcsetattr(fds, TCSANOW, slave termios) < 0)
err sys("tcsetattr error on slave pty™):

if (slave winsize !'= NULL) {
if (ioctl(fds, TIOCSWINSZ, slave winsize) < Q)
err_sys ("TIOCSWINSZ error on slave pty");

/* slave beccmes stdin/stdout/stderr of child */
if (dup2(fds, STDIN FILENO) != STDIN FILENO)
err_sys("dup2 error to stdin");
if (dup2(fds, STDOUT FILENO) != STDOUT FILENO)
err sys("dup2 error to stdout™);
if (dup2(fds, STDERR FILENO) != STDERR_FILENO)
err_sys("dup2 error to stderr");
if (fds > STDERR_FILENO)
close (fds) ;

return (0) ; /* child returns 0 just like fork() */
} else { /* parent */

*ptrfdm = fdm; /* return fd of master */

return(pid) ; /* parent returns pid of child */

Program 19.3 The pty fork function.



19.5 pty Program

The goal in writing the pty program is to be able to type
pty prog argl arg2

instead of
pProg argl arg2

When we use pty to execute another program, that program is executed in a session
its own, connected to a pseudo terminal.

Let’s look at the source code for the pty program. The first file (Program 19.4)
tains the main function. It calls the pty_fork function from the previous section.

#include <sys/types.h>

#include <termios.h>

#ifndef TIOCGWINSZ

#include <sys/ioctl.h> /* 4.3+BSD requires this too */

#endif

#include "ourhdr.h"

static void set_noecho(int); /* at the end of this file */
void do_driver(char *); /* in the file driver.c */
void loop(int, int); /* in the file loop.c */

int

main(int argc, char *argvi(])
{

int fdm, ¢, ignoreecf, interactive, noecho, verbose:
pid_t pid;
char *driver, slave name([20];

struct termios orig_termios;
struct winsize size;

interactive =
ignoreeof = 0;
noecho = (Q;
verbose = 0;
driver = NULL;

isatty (STDIN FILENO) ;

opterr = 0; /* don’t want getopt() writing to stderr */
while ( (c = getopt(argc, argv, "d:einv")) != EOF) ({
switch (e¢) {
case 'd’: /* driver for stdin/stdout */
driver = optarg;
break;
case 'e': /* noecho for slave pty’s line discipline */
noecho = 1;
break;
case "i’: /* ignore EOF on standard input */

ignoreeof = 1;
break:
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case 'n’: /* not interactive */
interactive = 0;
break:

case 'v': /* verbose */
verbose = 1;
break;

case "?':
err quit ("unrecognized option: -%c¢", optopt):
}
}
if (optind >= argc)
err quit("usage: pty [ —-d driver —einv ] program [ arg ... 1"):

if (interactive) { /* fetch current termios and window size */
if (tcgetattr (STDIN FILENO, &orig termios) < 0)
err_sys("tcgetattr error on stdin");
if (icctl(STDIN_FILENO, TIOCGWINSZ, (char *) &size) < 0)
err sys("TIOCGWINSZ error");
pid = pty_fork (&fdm, slave name, &orig termios, &size);

} else

pid = pty fork(&fdm, slave name, NULL, NULL);
if (pid < 0)

err_sys("fork error");
else if (pid == 0) { /* child */

if (noecho)
set_noecho (STDIN_FILENO) ; /* stdin is slave pty */

if (execvplargvioptind], &argvioptind]) < 0)
err_sys("can't execute: %s", argv[eoptind]);

}

if (verbose) |
fprintf (stderr, "slave name = %s\n", slave_name) ;
if (driver !'= NULL)
fprintf (stderr, "driver = %s\n", driver);

}

if (interactive && driver == NULL) {
if (tty_raw(STDIN FILENO) < 0) /* user’s tty to raw mode */
err_sys("tty raw error");
if (atexit (tty_atexit) < 0) /* reset user’s tty on exit */
err_sys("atexit error"):

}

if (driver)
do_driver (driver); /* changes our stdin/stdout */

loop (fdm, ignoreeof); /* copies stdin -> ptym, ptym —-> stdout */
exit (0);



static void
set_noecho(int fd) /* turn off echo (for slave pty) */
{

struct termios stermios;

if (tcgetattr(fd, &stermios) < 0)
err sys{"tcgetattr error");

stermios.c_lflag &= ~(ECHO | ECHOE | ECHOK | ECHONL);
stermios.c_oflag &= ~ (ONLCR) ;
/* also turn off NL to CR/NL mapping on output */

if (tcsetattr(fd, TCSANOW, &stermios) < 0)
err_sys("tcsetattr error");

Program 19.4 Themain function for the pty program.

We'll look at the various command-line options when we examine different uses
pty program in the next section.

Before calling pty fork we fetch the current values for the termios
winsize structures, passing these as arguments to pty_fork. This way the pty
assumes the same initial state as the current terminal.

After returning from pty_fork the child optionally turns off echoing for the
pty and then calls execvp to execute the program specified on the command line.
remaining command-line arguments are passed as arguments to this program.

The parent optionally sets the user’s terminal to raw mode setting an exit hand
reset the terminal state when exit is called. We describe the do_driver i
the next section.

The function loop (Program 19.5) is then called by the parent. It just copies
thing received from the standard input to the pty master and everything from th
master to standard output. We have the same decision as we had in Section 18.7
process or two? For variety we have coded it in two processes this time, althougha
gle process using either select or poll would also work.

#include <sys/types.h>
#include <signal.h>
#include "ourhdr.h"

#define BUFFSIZE 512

static void sig_term(int);
static volatile sig_atomic t sigcaught; /* set by signal handler

void
loop (int ptym, int ignoreecf)
{

pid t child;

int nread;

char buff [BUFFSIZE];
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if ( (child = fork()) < 0) {
err_sys("fork error");

} else if (child == 0) { /* child copies stdin to ptym */
for (; ;) {
if ( (nread = read (STDIN FILENO, buff, BUFFSIZE)) < 0)
err_sys("read error from stdin");
else if (nread == 0)
break; /* EOF on stdin means we’re done */

if (writen(ptym, buff, nread) '= nread)
err_sys("writen error to master pty"):;

/* We always terminate when we encounter an EOF on stdin,
but we only notify the parent if ignoreeof is 0. */

if (ignoreeof == 0)
kill (getppid{), SIGTERM) : /* notify parent */
exit (0); /* and terminate; child can’t return */

/* parent copies ptym to stdout */
if (signal_intr (SIGTERM, sig term) == SIG_ERR)
err_sys("signal_intr error for SIGTERM"):

for (7 ;) |
if ( (nread = read(ptym, buff, BUFFSIZE)) <= 0)
break; /* signal caught, error, or EOF */

if (writen(STDOUT_FILENO, buff, nread) !'= nread)
err sys("writen error to stdout");

}

/* There are three ways to get here: sig _term() below caught the
* SIGTERM from the child, we read an EOF on the pty master (which
* means we have to signal the child to stop), or an error. */

if (sigcaught == 0) /* tell child if it didn’'t send us the signal */
kill (child, SIGTERM);
return; /* parent returns to caller */

}

/* The child sends us a SIGTERM when it receives an EOF on
* the pty slave or encounters a read() error. */

static void
sig_term(int signo)
{
sigcaught = 1; /* just set flag and return */
return; /* probably interrupts read() of ptym */

Program 19.5 The loop function.
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Note that, with two processes, when one terminates it has to notify the other. We
the SIGTERM signal for this notification.

19.6 Using the pty Program

We'll now look at various examples with the pty program, seeing the need for the vari-
ous command-line options.
If our shell is the KornShell we can execute

pty ksh

and get a brand new invocation of the shell, running under a pseudo terminal.
If the file ttyname is the program we showed in Program 11.7, then we can run the
pty program as follows:

$ who

stevens console Feb & 10:43

stevens ttyp0 Feb 6 15:00

stevens ttypl Feb 6 15:00

stevens ttyp2 Feb 6 15:00

stevens ttyp3 Feb 6 15:48

stevens ttyp4 Feb 7 14:28 ttyp4 is the highest pty currently in use
$ pty ttyname run Program 11.7 from pty

fd 0: /dev/ttyp5 ttyp5 is the next available pty

fd 1: /dev/ttyp5
fa 2: /dev/ttyp5

utmp File

In Section 6.7 we described the utmp file that records all users currently logged into
Unix system. The questlon is whether a user running a program on a pseudo terminal
is considered logged in or not. In the case of remote logins, telnetd and rlogind,
obviously an entry should be made in the utmp file for the user logged in on the pseudo
terminal. There is little agreement, however, whether users running a shell on a pseud
terminal, from a window system or from a program such as script, should ha
entries made in the utmp file. Some systems record these and some don’t. If a system
doesn’t record these in the utmp file, the who(1) program normally won’t show the cor-
responding pseudo terminals as being used.

Unless the utmp file has other-write permission enabled, random programs that
pseudo terminals won’t be able to write to this file. Some systems, however, deliver
utmp file with all write permissions enabled.

Job-Control Interaction

If we run a job-control shell under pty it works normally. For example,
pty ksh
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runs the KornShell under pty. We can run programs under this new shell and use job
control just as our login shell. But if we run an interactive program other than a job-
control shell under pty, as in

pty cat

everything is fine until we type our job-control suspend character. At that point under
SVR4 and 4.3+BSD the job-control character is echoed as ~Z and is ignored. Under
SunOS 4.1.2 the cat process terminates, the pty process terminates, and we’re back to
our original shell.

To understand what’s going on here we need to examine all the processes involved,
their process groups, and sessions. Figure 19.7 shows the arrangement when pty cat

is running,.

- __ __ Sesson _Sesson
|—__.P[°‘_’_“i51‘°31’_ ————— o PresEp _._I [ _process group : |
| : login : : pty pty : || : cat : |

L e e 4 L™ __ [ L L _h__
L S T O
i L
terminal terminal
line discipline line discipline
l A 1
L L
o] [ rmaner | [ sy
t * A
Y .
user at a
terminal

Figure 19.7 Process groups and sessions for pty cat.

When we type the suspend character (Control-Z) it is recognized by the line discipline
module beneath the cat process, since pty puts the terminal (beneath the pty parent)
into a raw mode. But the kernel won't stop the cat process because it belongs to an
orphaned process group (Section 9.10). The parent of cat is the pty parent, and it
belongs to another session.

Different systems handle this condition differently. POSIX.1 just says that the
SIGTSTP signal can’t be delivered to the process. Earlier Berkeley-derived systems
deliver STGKILL instead, which the process can’t even catch. This is what we see under
SunOS 4.1.2. (The POSIX.1 Rationale suggests SIGHUP as a better alternative, since the
process can at least catch it.) Enabling process accounting and looking at the termina-
tion status of the cat process with Program 8.17 shows that it is indeed terminated by a
SIGKILL signal.



Under SVR4 and 4.3+BSD we use a modification to Program 10.22 to see what's
going on. The modification has the signal handler for SIGTSTP print when the signal s
caught and print again when the SIGCONT signal is sent and the process resumes.
Doing this shows that SIGTSTP is caught by the process but when the process tries t
send that signal to itself using kill (to really suspend itself), the kernel immediatel
sends SIGCONT to resume the process. The kernel will not let the process be job-control
stopped. This handling of the signal by SVR4 and 4.3+BSD is less drastic than sending
SIGKILL.

When we use pty to run a job-control shell, the jobs invoked by this new shell are
never members of an orphaned process group because the job-control shell alwa
belongs to the same session. In that case the Control-Z that we type is sent to the pro-
cess invoked by the shell, not to the shell itself.

The only way to avoid this inability of the process invoked by pty to handle job
control signals is to add yet another command-line flag to pty telling it to recognize the
job control suspend character itself (in the pty child) instead of letting the character get
all the way through to the other line discipline.

Watching the Output of Long Running Programs

Another example of job-control interaction with the pty program is with the examplein
Figure 19.6. If we run the program that generates output slowly as

pty slowocut > file.ocut &

the pty process is stopped immediately when the child tries to read from its standar
input (the terminal). This is because the job is a background job and gets job-contrd
stopped when it tries to access the terminal. If we redirect standard input so that pt
doesn’t try to read from the terminal, as in

pty slowout < /dev/null > file.out &

then the pty program stops immediately because it reads an end of file on its standz
input and terminates. The solution for this problem is the —i option, which says
ignore an end of file on the standard input:

pty —-i slowout < /dev/null > file.out &

This flag causes the pty child in Program 19.5 to terminate when the end of file i
encountered, but the child doesn’t tell the parent to terminate. Instead the parent co
tinues copying the pty slave output to standard output (the file £ile.out in the exar
ple).

script Program

Using the pty program we can implement the BSD script(1) program as the follo
ing shell script.

#!/bin/sh
pty "${SEELL:-/bin/sh}" | tee typescript
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Once we run this shell script we can execute the ps command to see all the process rela-
tionships. Figure 19.8 details these relationships.

typescript
file
login - pty /E:Y\
shell sh - tee —— parent—'* child ksh ps
) A
Y 1
line line
disc. disc.
I [ 4
Y |
Pty pty
ty master slave

L ]

Figure 19.8 Arrangement of process for script shell script.

In this example we assume that the SHELL variable is the KornShell (probably
/bin/ksh). As we mentioned earlier, script only copies what is output by the new
shell (and any processes that it invokes) but since the line discipline module above the
pty slave normally has echo enabled, most of what we type also gets written to the
typescript file.

Running Coprocesses

In Program 14.9 we couldn’t have the coprocess use the standard I/O functions because
they set the standard input and standard output fully buffered, since the two descrip-
tors do not refer to a terminal. If we run the coprocess under pty by replacing the line

if (execl("./add2", "add2", (char *) 0) < 0)
with
if {execl("./pty", "pty", "-e", "add2", (char *) 0) < 0)

the program now works, even if the coprocess uses standard 1/0.

Figure 19.9 shows the arrangement of processes when we run the coprocess with a
pseudo terminal as its input and output. The box labeled “driving program” is
Program 14.9 with the execl changed as described previously. This figure is an expan-
sion of Figure 19.5 showing all the process connections and data flow.
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/forb—e’m\
. T dd2
driving program fork | pty - P a

exec | parent | fork | child (coprocess)
] ] 4
- P2
v pipel /
terminal terminal
line discipline line discipline
bl T
— 1
device driver pty master Pty slave

L Y

Figure 19.9 Running a coprocess with a pseudo terminal as its input and output.

This example shows the need for the ~e (no echo) option for the pty program. pty
is not running interactively because its standard input is not connected to a terminal. In
Program 19.4 the interactive flag defaults to false since the call to isatty returns
false. This means that the line discipline above the actual terminal remains in a canoni-
cal mode with echo enabled. By specifying the —e option we turn off echo in the line
discipline module above the pty slave. If we don’t do this, everything we type is
echoed twice—by both line discipline modules.

We also have the —e option turn off the ONLCR flag in the termios structure to pre-
vent all the output from the coprocess from being terminated with a carriage return and
a newline.

Testing this example on different systems showed another problem that we alluded
to in Section 12.8 when we described the readn and writen functions. The amount of
data returned by a read, when the descriptor refers to something other than an ordi-
nary disk file, can differ between implementations. This coprocess example using pty
gave unexpected results that were tracked down to the read function on the pipe in
Program 14.9 returning less than a line. The solution was to not use Program 14.9 but to
use the version of this program from Exercise 14.5 that was modified to use the stan-
dard 1/0 library, with the standard 1/O streams for the both pipes set to line buffering.
By doing this the fgets function does as many reads as required to obtain a complete
line. The while loop in Program 14.9 assumes that each line sent to the coprocess
causes one line to be returned.
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Driving Interactive Programs Noninteractively

Although it’s tempting to think that pty can run any coprocess, even a coprocess that is
interactive, it doesn’t work. The problem is that pty just copies everything on its stan-
dard input to the pty and everything from the pty to its standard output. It never looks
at what it sends or what it gets back.

As an example, we can run the call client from Section 18.7 under pty talking
directly to the modem.

pty call t2500

Doing this provides no benefit over just typing call t2500, but we would like to run
the call program from a script, perhaps to fetch the contents of the modem’s internal
registers. If the file t2500 . cmd contains the two lines

aatn?

-

the first line prints all the modem'’s registers and the second line terminates the call
program. But if we run this script as

pty -1 < t2500.cmd call t2500

the output isn't what we want. What happens is that the contents of the file
t2500.cmd are sent to the modem before it has a chance to say that it’s ready. When
we run the call program interactively we wait for the modem to say Connected, but
the pty program doesn’t know to do this. This is why it takes a more sophisticated pro-
gram than pty, such as expect, to drive an interactive program from a script file.

Even running pty from Program 14.9 as we showed earlier doesn’t help, because
Program 14.9 assumes that each line that it writes to the pipe generates exactly one line
on the other pipe. With an interactive program one line of input may generate many
lines of output. Furthermore Program 14.9 always sent a line to the coprocess before
reading from it. In the case of the preceding modem example, we want to read from the
coprocess (the call program) to receive the line Connected before sending it any-
thing.

There are a few ways to proceed from here to be able to drive an interactive pro-
gram from a script. We could add a command language and interpreter to pty, but a
reasonable command language would probably be 10 times larger than the pty pro-
gram. Another option is to take a command language and use the pty fork function
to invoke interactive programs. This is what the expect program does.

We'll take a different path and just provide an option (~d) to allow pty to be con-
nected to a driver process for its input and output. The standard output of the driver is
pty’s standard input and vice versa. This is similar to a coprocess, but on “the other
side” of pty. The resulting arrangement of processes is almost identical to Figure 19.9
but in the current scenario pty does the fork and exec of the driver process. Also
we'll use a single stream pipe between pty and the driver process, instead of two half-

duplex pipes.
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Program 19.6 shows the source for the do_driver function that is called by
main function of pty (Program 19.4) when the —d option is specified.

#include <sys/types.h>
#include <signal.h>
#include "ourhdr.h"

void
do _driver(char *driver)
{

pid t child;

int pipe[2];

/* create a stream pipe to communicate with the driver */
if (s_pipe(pipe) < 0)
err_sys("can't create stream pipe");

if ( (child = fork()) < 0)
err sys("fork error");

else if (child == 0) { /* child */
close (pipell]);

/* stdin for driver */
if (dup2(pipe([0], STDIN_FILENO) != STDIN FILENO)
err sys("dup2 error to stdin");

/* stdout for driver */
if (dup2(pipe[0], STDOUT_FILENO) != STDOUT _FILENO)
err_sys("dup2 error to stdout"™);
close (pipe[0]);

/* leave stderr for driver alone */

execlp(driver, driver, {(char *) 0);
err sys("execlp error for: %s", driver);

}
close (pipe[0]): /* parent */

if (dup2(pipe(1], STDIN_FILENO) != STDIN FILENO)
err_sys("dup2 error to stdin");

if (dup2(pipe[l], STDOUT_FILENO) != STDOUT_FILENO)
err_sys("dup2 error to stdout");
close (pipe([l]);

/* Parent returns, but with stdin and stdout connected
to the driver. */

Program 19.6 The do_driver function for the pty program.
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| 19.7

By writing our own driver program that is invoked by pty we can drive interactive pro-
grams in any way desired. Even though the driver process has its standard input and
standard output connected to pty, it can still interact with the user by reading and writ-
ing /dev/tty. This solution still isn’t as general as the expect program, but it pro-
vides a useful option to pty for less than 50 lines of code.

Advanced Features

Pseudo terminals have some additional capabilities that we briefly mention here. These
are further documented in AT&T [1990d] and the 4.3+BSD pty(4) manual page.

Packet Mode

Packet mode lets the pty master learn of state changes in the pty slave. Under SVR4 this
mode is enabled by pushing the streams module pckt onto the pty master side. We
showed this optional module in Figure 19.2. Under 4.3+BSD this mode is enabled with
an ioctl of TIOCPKT.

The details of packet mode differ between SVR4 and 4.3+BSD. Under SVR4 the pro-
cess reading the pty master has to call getmsg to fetch the messages from the stream
head, because the pckt module converts certain events into non-data streams mes-
sages. With 4.3+BSD each read from the pty master returns a status byte followed by
optional data.

Regardless of the implementation details, the purpose of packet mode is to inform
the process reading the pty master when the following events occur at the line disci-
pline module above the pty slave: when the read queue is flushed, when the write
queue is flushed, whenever output is stopped (e.g., Control-S), whenever output is
restarted, whenever XON/XOFF flow control is enabled after being disabled, and
whenever XON/XOFF flow control is disabled after being enabled. These events are
used, for example, by the rlogin client and rlogind server.

Remote Mode

A pty master can set the pty slave into remote mode by issuing an ioctl of
TIOCREMOTE. Although both SVR4 and 4.3+BSD use the same command to enable and
disable this feature, under SVR4 the third argument to ioct1l is an integer while with
4.3+BSD it is a pointer to an integer.

When the pty master sets this mode it is telling the pty slave’s line discipline mod-
ule not to perform any processing of the data that it receives from the pty master,
regardless of the canonical /noncanonical flag in the slave’s termios structure. Remote
mode is intended for an application such as a window manager that does its own line
editing.
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Window Size Changes

The process above the pty master can issue the ioctl of TIOCSWINSZ to set the win-
dow size of the slave. If the new size differs from the current size, a SIGWINCH signal is
sent to the foreground process group of the pty slave.

Signal Generation

19.8

The process reading and writing the pty master can send signals to the process group of
the pty slave. Under SVR4 this is done with an ioctl of TIOCSIGNAL with the third
argument being the actual signal number. With 4.3+BSD the ioctl is TIOCSIG and the
third argument is a pointer to the integer signal number.

Summary

We started this chapter by examining the code required to open a pseudo terminal
under both SVR4 and 4.3+BSD. We then used this code to provide the generic
pty_£fork function that can be used by many different applications. We used this func-
tion as the basis for a small program (pty), which we then used to explore many of the
properties of pseudo terminals.

Pseudo terminals are used daily on most Unix systems to provide network logins.
We’ve examined other uses for pseudo terminals, from the script program to driving
interactive programs from a batch script.

Exercises

19.1 When we remotely log in to a BSD system using either telnet or rlogin, the ownership
of the pty slave and its permissions are set, as we described in Section 19.3.2, How does this
happen?

19.2 Modify the 4.3+BSD function ptys_open to invoke a set-user-ID program to change the
ownership and protection of the pty slave device (similar to what the SVR4 grantpt func-
tion does). .

19.3 Use the pty program to determine the values used by your system to initialize a slave pty’s
termios structure and winsize structure.

19.4 Recode the loop function (Program 19.5) as a single process using either select or poll.

19.5 In the child process after pty fork returns, standard input, standard output, and standard
error are all open for read-write. Can you change standard input to be read-only and the
other two to be write-only?

19.6 In Figure 19.7 identify which process groups are foreground and which are background,
and identify the session leaders.

19.7 In Figure 19.7 in what order do the processes terminate when we type our end-of-file
acter? Verify this with process accounting, if possible.
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19.8 The script(1) program normally adds a line to the beginning of the output file with the
starting time, and another line at the end of the output file with the ending time. Add these
features to the simple shell script that we showed.

19.9 Explain why the contents of the file data are output to the terminal in the following exam-
ple, when the program ttyname only generates output and never reads its input.

$ cat data a file with two lines

hello,

world

$ pty —-i < data ttyname -1 says ignote eof on stdin

hello, where did these two lines come from?
world

fd 0: /dev/ttyp5 we expect these three lines from ttyname

fd 1: /dev/ttyp5
fd 2: /dev/ttyp5

19.10 Write a program that calls pty fork and have the child exec another program that you
must write. The new program that the child execs must catch SIGTERM and SIGWINCH.
When it catches a signal it should print that it did, and for the latter signal it should also
print the terminal’s window size. Then have the parent process send the SIGTERM signal to
the process group of the pty slave with the ioct1 we described in Section 19.7. Read back
from the slave to verify that the signal was caught. Follow this with the parent setting the
window size of the pty slave and read back the slave’s output again. Have the parent exit
and determine if the slave process also terminates, and if so, how does it terminate?
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Function Prototypes

This appendix contains the function prototypes for the standard Unix, POSIX, and
ANSI C functions described in the text. Often we want to see just the arguments to a
function (“which argument is the file pointer for fgets?”) or just the return value
(“does sprint £ return a pointer or a count?”).

These prototypes also show which headers need to be included to obtain the defini-
tions of any special constants, and to obtain the ANSI C function prototype to help
detect any compile-time errors.

The page number reference with each prototype gives the page containing the
actual prototype for the function. That page should be consulted for additional infor-
mation on the function.

void _exit (int skalus);
<unistd.h> p- 162
This function never returns

void abort (void) ;
<stdlib.h> p- 309
This function never returns

int access (const char *pathname, int mode) ;
<unistd.h> p- 82
mode: R_OK, W_OK, X OK, F_OK
Returns: 0if OK, -1 on error

unsigned

int alarm{unsigned int seconds) ;
<unistd.h> Pp- 285
Returns: 0 or #seconds until previously set alarm

659



char *asctime (const struct tm *fmpfr) ;
<time.h> p- 157
Returns: pointer to null terminated string

int atexit (void {(*func) (void));
<stdlib.h> p- 163
Returns: 0 if OK, nonzero on error

void *calloc({size t nobj, size t size):
<stdlib.h> p-170
Returns: nonnull pointer if OK, NULL on error

speed t cfgetispeed(const struct termios *fermplr);
<termios.h> p. 343
Returns: baud rate value

speed_t cfgetospeed{const struct termios *fermptr);
<termios.h> p-343
Returns: baud rate value

int cfsetispeed (struct termios *fermplr, speed t speed);
<termios.h> p- 343
Returns: 0 if OK, -1 on error

int cfsetospeed (struct termios *fermptr, speed t speed);
<termios.h> Pp- 343
Returns: 0 if OK, -1 on error

int chdir (const char *pathname) ;
<unistd.h> p-112
Returns: 0 if OK, -1 on error

int chmod (const char *pathname, mode_t mode) ;
<sys/types.h> p- 85

<sys/stat.h>
mode: S_IS[UG)ID, §_ISVTX, S_I[RWX] (USR|GRP|OTH)
Returns: 0 if OK, -1 on error

int chown (const char *pathname, uid_t owner, gid_t group);
<sys/types.h> p- 89
<unistd.h>
Returns: 0 if OK, -1 on error

void clearerr (FILE *fp);
<stdio.h> p- 129

int close(int filedes) ;
<unistd.h> p-51
Returns: 0 if OK, =1 on error

int closedir (DIR *dp);
<sys/types.h> p. 107
<dirent.h>
Returns: 0 if OK, —1 on error

void closelog (void) ;
<syslog.h> p. 422
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int creat (const char *pathname, mode t mode) ;
<sys/types.h> p.- 50
<sys/stat.h>
<fentl.h>
mode: S_IS[UGIID, S_ISVTX, S_I[RWX] (USR|GRP|OTH)
Returns: file descriptor opened for write-only if OK, —1 on error

char *ctermid (char *pkr);
<stdio.h> p- 345
Returns: pathname of controlling terminal

char *ctime (const time_t *calptr);
<time.h> p. 157
Returns: pointer to null terminated string

int cdup (int filedes) ;
<unistd.h> p-61
Returns: new file descriptor if OK, —1 on error
int dup2 (int filedes, int filedes2) ;
<unistd.h> p- 61
Returns: new file descriptor if OK, —1 on error
void endgrent (void) ;
<sys/types.h> p. 150
<grp.h>
void endpwent (void) ;
<sys/types.h> p. 147
<pwd.h>
int execl (const char *pathname, const char *argl, ... /* (char *) 0 */ );
<unistd.h> p- 207
Returns: -1 on error, no return on success
int execle (const char *pathname, const char *argd, ... /* (char *) 0,
char *const envpll */ );
<unistd.h> p- 207
Returns: —1 on error, no return on success
int execlp (const char *filename, const char *argl, ... /* (char *) 0 */ );
<unistd.h> p- 207
Returns: —1 on error, no return on success
int execv (const char *pathname, char *const argv[]);
<unistd.h> p- 207
Returns: —1 on error, no return on success
int execve (const char *pathname, char *const argu[], char *const envp[]):
<unistd.h> p- 207
Returns: —1 on error, no return on success
int execvp (const char *filename, char *const argu[]);
<unistd.h> p- 207

Returns: —1 on error, no return on success
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void

int

int

int

int

int

FILE

int

int

int

int

int

exit (int status) ;
<stdlib.h> p- 162
This function never returns

fchdir(int filedes) ;
<unistd.h> p- 112
Returns: 0 if OK, -1 on error

fchmod (int filedes, mode t mode) ;
<sys/types.h> p-85
<sys/stat.h>
mode: S_IS[UGIID, S_ISVTX, S_I[RWX) (USR|GRP|OTH)
Returns: 0 if OK, -1 on error

fchown (int filedes, uid_t owner, gid t group);
<sys/types.h> p- 89
<unistd.h>
Returns: 0 if OK, -1 on error

fclose (FILE *fp):
<stdio.h> p- 127
Returns: 0 if OK, EOF on error

fentl (int filedes, int cmd, ... /* int arg */ );
<sys/types.h> p-63
<unistd.h>
<fentl.h>

¢md: F_DUPFD, F_GETFD, F_SETFD, F_GETFL, F_SETFL
Returns: depends on ¢md if OK, -1 on error

*fdopen (int filedes, const char *fype);
<stdio.h> p. 125
‘y‘pf: “r“' "wﬂ' “ai'.r “r+ﬂ' hw_',l!’ Na+ﬂ’
Returns: file pointer if OK, NULL on error

feof (FILE *fp);
<stdio.h> p-129
Returns: nonzero {true) if end of file on stream, 0 (false) otherwise

ferror (FILE *fp);
<stdio.h> p- 129
Returns: nonzero (true) if error on stream, 0 (false) otherwise

£flush (FILE *fp);
<stdio.h> p- 125
Returns: 0 if OK, EOF on error

fgetc (FILE *fp);
<stdio.h> p-128
Returns: next character if OK, EOF on end of file or error

fgetpos (FILE *fp, fpos_t *pos);
<stdio.h> p- 136
Returns: 0 if OK, nonzero on error
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char *fgets (char *buf, int n, FILE *fp);
<stdio.h> p- 130
Returns: buf if OK, NULL on end of file or error

int fileno (FILE *fp);
<stdio.h> p-138
Returns: file descriptor associated with the stream

FILE *fopen (const char *pathname, const char *ype);
<stdio.h> p.125
rym: "r.'r 'lw1l' Na"' "r+“’ ||w+“' Na+.|'
Returns: file pointer if OK, NULL on error

pid t fork (void) ;
<sys/types.h> p- 188
<unistd.h>
Returns: 0 in child, process ID of child in parent, -1 on error

long fpathconf (int filedes, int name) ;
<unistd.h> p-35
name: _PC_CHOWN_RESTRICTED, _PC_LINK _MAX, _PC_MAX CANON,
_PC_MAX INPUT, _PC_NAME MAX, _PC_NO_TRUNC,
_PC_PATH_MAX, _PC_PIPE BUF, _PC_VDISABLE
Returns: corresponding value if OK, -1 on error

int fprintf(FILE *fp, const char *format, ...);

<stdio.h> p- 136

Returns: #characters output if OK, negative value if output error
int fputc(int ¢, FILE *fp);

<stdio.h> p. 130

Returns: ¢ if OK, EOF on error
int fputs(const char *str, FILE *fp);

<stdioc.h> p- 131

Returns: nonnegative value if OK, EOF on error

size_t fread(void *plr, size t size, size_t tobj, FILE *p);
<stdio.h> p- 134
Returns: number of objects read

void free (void *pir);
<stdlib.h> p-170

FILE *freopen (const char *pathmame, const char *type, FILE *fp);
<stdio.h> p-125
type: "x", "w", "a", "r+", "wi", "ai®,
Returns: file pointer if OK, NULL on error

int fscanf (FILE *fp, const char *format, ...):

<stdio.h> p-137

Returns: #input items assigned, EOF if input error or EOF before any conversion
int fseek (FILE *fp, long offset, int whence);

<stdio.h> p- 135

whence: SEEK_SET, SEEK_CUR, SEEK_END
Returns: 0 if OK, nonzero on error
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int

int

int

long

int

size_t

int

int

char

gid t

char

uid t

gid t

fsetpos (FILE *fp, const fpos t *pos);
<stdio.h> p- 136
Returns: 0 if OK, nonzero on error

fstat (int filedes, struct stat *buf);
<sys/types.h> P-73
<sys/stat.h>
Returns: 0 if OK, -1 on error

fsync (int filedes) ;
<unistd.h> p-116
Returns: 0 if OK, -1 on error

ftell (FILE *fp);
<stdio.h> p-135
Returns: current file position indicator if OK, —1L on error

ftruncate (int filedes, off_t length) ;
<sys/types.h> p-92
<unistd.h>
Returns: 0 if OK, —1 on error

fwrite (const void *pir, size t size, size t nobj, FILE *fp);
<stdio.h> p. 134
Returns: number of objects written

getc(FILE *fp);
<stdio.h> p- 128
Returns: next character if OK, EOF on end of file or error

getchar (void) ;
<stdio.h> p-128
Returns: next character if OK, EOF on end of file or error

*getcwd (char *buf, size_t size);
<unistd.h> p- 113
Returns: buf if OK, NULL on error

getegid(void);
<sys/types.h> p. 188
<unistd.h>
Returns: effective group ID of calling process

*getenv (const char *name) ;
<stdlib.h> p-172
Returns: pointer to value associated with name, NULL if not found

geteuid (void);
<sys/types.h> p- 188
<unistd.h>
Returns: effective user ID of calling process

getgid (void) ;
<sys/types.h> p- 188
<unistd.h>
Returns: real group ID of calling process
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struct
group

struct
group

struct
group

int

int

char

int

pid_t

pid_t

int

pid_t

*getgrent (void) ;
<sys/types.h> p- 150
<grp.h>
Returns: pointer if OK, NULL on error or end of file

*getgrgid(gid_t gid):
<sys/types.h> p. 150
<grp.h>
Returns: pointer if OK, NULL on error

*getgrnam(const char *name);
<sys/types.h> p- 150
<grp.h>
Returns: pointer if OK, NULL on error

getgroups (int gidsetsize, gid t grouplist[]);
<sys/types.h> p- 151
<unistd.h>
Returns: number of supplementary group IDs if OK, -1 on error

gethostname (char *name, int namelen) ;
<unistd.h> p- 154
Returns: 0 if OK, -1 on error

*getlogin (void) ;
<unistd.h> p- 232
Returns: pointer to string giving login name if OK, NULL on error

getmsg (int filedes, struct strbuf *clptr, struct strbuf *dataplr, int *flagptr) ;
<stropts.h> p- 392
*flagptr: 0, RS_HIPRI
Returns: nonnegative value if OK, -1 on error

getpgrp (void) ;
<sys/types.h> p- 243
<unistd.h>
Returns: process group ID of calling process

getpid(void);
<sys/types.h> p- 188
<unistd.h>
Returns: process ID of calling process

getpmsg (int filedes, struct strbuf *ctlptr, struct strbuf *dataptr, int *bandptr,
int *flagptr) ;
<stropts.h> p-392
*flagptr: 0, MSG_HIPRI, MSG_BAND, MSG_ANY
Returns: nonnegative value if OK, —1 on error

getppid(void) ;
<sys/types.h> p- 188
<unistd.h>
Returns: parent process ID of calling process
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struct
passwd

struct
passwd

struct
passwd

int

char

uid_t

struct

int

int

int

int

*getpwent (void) ;
<sys/types.h> p- 147
<pwd.h>
Returns: pointer if OK, NULL on error or end of file

*getpwnam(const char *name);
<sys/types.h> p- 147
<pwd.h>
Returns: pointer if OK, NULL on error

*getpwuid (uid_t wid) ;
<sys/types.h> p. 147
<pwd.h>
Returns: pointer if OK, NULL on error

getrlimit (int resource, struct rlimit *ripir);
<sys/time.h> p- 180
<sys/resource.h>
Returns: 0 if OK, nonzero on error

*gets (char *buf);
<stdio.h> p- 130
Returns: buf if OK, NULL on end of file or error

getuid(void);
<sys/types.h> p. 188
<unistd.h>
Returns: real user ID of calling process

*gmtime (const time t *calptr);
<time.h> p- 156
Returns: pointer to broken-down time

initgroups (const char *username, gid t basegid) ;
<sys/types.h> p- 151
<unistd.h>
Returns: 0if OK, -1 on error

ioctl(int filedes, int request, ...);
<unistd.h> /* SVR4 */ p- 68
<sys/ioctl.h> /* 4, 3+BSD */
Returns: -1 on error, something else if OK

isastream(int filedes) ; p- 388
Returns: 1 (true) if streams device, 0 (false) otherwise

isatty (int filedes) ;
<unistd.h> p- 346
Returns: 1 (true) if terminal device, 0 (false) otherwise
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int kill (pid_t pid, int signo);
<sys/types.h> p- 284
<signal.h>
Returns: 0 if OK, —1 on error

int lchown(const char *pathname, uid_t owner, gid t group);
<sys/types.h> p- 89
<unistd.h>
Returns: 0 if OK, —1 on error

int link (const char *existingpath, const char *newpath) ;
<unistd.h> p-95
Returns: 0 if OK, =1 on error

struct

tm *localtime (const time_t *ailpir);
<time.h> p.- 156
Returns: pointer to broken-down time

void longjmp (jmp_buf env, int wval);

<set jmp.h> p-176
This function never returns

off_t 1seek (int filedes, off t offsef, int whence);
<sys/types.h> p-51
<unistd.h>
whence: SEEK_SET, SEEK_CUR, SEEK_END
Returns: new file offset if OK, -1 on error

int lstat (const char *pathname, struct stat *buf);
<sys/types.h> p-73
<sys/stat.h>
Returns: 0 if OK, -1 on error

void *malloc (size t size);
<stdlib.h> p- 170
Returns: nonnull pointer if OK, NULL on error

int mkdir (const char *pathname, mode_t mode) ;
<sys/types.h> p- 106

<sys/stat.h>
mode : S_IS[UG]ID, S_ISVTX, S_I[RWX] (USR|GRF|OTH)
Returns: 0 if OK, -1 on error

int mkfifo (const char *pathname, mode_t mode) ;
<sys/types.h> p- 445
<sys/stat.h>
mode: S_IS[UG)ID, S_ISVTX, S_II[RWX] (USR|GRP|OTH)
Returns: 0 if OK, -1 on error

time_t  mktime (struct tm *impir);
<time.h> p- 157
Returns: calendar time if OK, -1 on error
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caddr_t mmap(caddr t addr, size t len, int prot, int flag, int filedes, off_t off);
<sys/types.h> p. 407
<sys/mman.h>
prot: PROT READ, PROT _WRITE, PROT_EXEC, PROT '_NONE
flag: MAP_FIXED, MAP '_SHARED, MAP PRIVATE
Returns: starting address of mapped region if OK, -1 on error

int msgctl (int msgid, int emd, struct msqgid_ds *buf) ;
<sys/types.h> p- 454
<sys/ipc.h>

<sys/msg.h>
¢md: IPC_STAT, IPC_SET, IPC_RMID
Returns: 0 if OK, -1 on error

int msgget (key t key, int flag);
<sys/types.h> p- 454
<sys/ipc.h>
<sys/msg.h>
flag: 0, IPC_CREAT, IPC EXCL
Returns: message queve ID if OK, ~1 on error

int msgrev (int msqid, void *plr, size_t nbytes, long type, int flag) ;
<sys/types.h> P 456
<sys/ipc.h>
<sys/msg.h>
flag: 0, IPC_NOWAIT, MSG_NOERROR
Returns: size of data portion of message if OK, -1 on error

int msgsnd(int msgid, const void *plr, size_t mbyles, int flag);
<sys/types.h> p-455
<sys/ipc.h>

<sys/msg.h>
flag: 0, IPC_NOWAIT
Returns: 0 if OK, -1 on error

int munmap (caddr_t addr, size t len);
<sys/types.h> p- 411
<sys/mman.h>
Returns: 0 if OK, -1 on error

int open (const char *pathname, int oflag, ... /* , mode_t mode */ );
<sys/types.h> p-48
<sys/stat.h>
<fcntl.h>

oflag: O_RDONLY, O_WRONLY, O RDWR;
O_APPEND, O_CREAT, O_EXCL, O_TRUNC,
O_NOCTTY, O_NONBLOCK, O_SYNC
mode: S_IS[UGIID, S_ISVTX, S_I[RwWx] (USR|GRP|OTH)
Returns: file descriptor if OK, -1 on error

DIR *opendir (const char *pathname) ;
<sys/types.h> p- 107
<dirernt.h>
Returns: pointer if OK, NULL on error
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void

long

int

int

void

int

int

FILE

int

void

int

int

int

openlog (char *ident, int option, int facility) ;
<syslog.h> p- 422
option: LOG_CONS, LOG_NDELAY, LOG_PERROR, LOG_PID
facility: LOG_AUTE, LOG_CRON, LOG_DAEMON, LOG_KERN,
LOG_LOCAL[0-7], LOG_LPR, LOG MAIL, LOG NEWS,
LOG_SYSLOG, LOG_USER, LOG_UUCP

pathconf (const char *pathname, int name) :
<unistd.h> p-35
name: _PC_CHOWN RESTRICTED, _PC_LINK MAX, _PC_MAX_CANON,
_PC_MAX_INPUT, _PC NAME_MAX, _PC_NO_TRUNC,
_PC_PATH MAX, _PC PIPE BUF, _PC_VDISABLE
Returns: corresponding value if OK, —1 on error

pause (void) ;
<unistd.h> p- 285
Returns: ~1 with errno set to EINTR

pclose (FILE *fp);
<stdio.h> p-435
Returns: termination status of cmdstring, or —1 on error

perxror (const char *msg);

<stdio.h> p-15
pipe (int filedes[2]} ;
<unistd.h> p. 428

Returns: 0 if OK, -1 on error

poll (struct pollfd fdarray[], unsigned long nfds, int timeout) ;
<stropts.h> p- 400
<poll.h>
Returns: count of ready descriptors, 0 on timeout, ~1 on error

*popen (const char *cmdstring, const char *type);
<stdio.h> p-435
tyw . " rn . “W"
Returns: file pointer if OK, NULL on error

printf (const char *format, ...);
<stdio.h> p- 136
Returns: # characters output if OK, negative value if output error

psignal (int signo, const char *msg);
<signal.h> p-322

putc(int ¢, FILE *fp);
<stdio.h> p- 130
Returns: ¢ if OK, ECF on error

putchar (int ¢);
<stdioc.h> p- 130
Returns: ¢ if OK, EOF on error

putenv (const char *sbr):
<stdlib.h> p-173
Returns: 0 if OK, nonzero on error
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int putmag (int filedes, const struct strbuf *ctlptr, const struct strbuf *dakaplr,
int flag);
<stropts.h> p- 386

flag: 0, RS_HIPRI
Returns: 0 if OK, -1 on error

int putpmsg (int filedes, const struct strbuf *ctplr, const struct strbuf *dataptr,
int band, int flag) ;
<stropts.h> p- 386

flag: 0, MSG_HIPRI, MSG_BAND
Returns: 0 if OK, -1 on error

int puts (const char *sir);
<stdio.h> p- 131
Returns: nonnegative value if OK, EOF on error
int raise (int signo) ;
<sys/types.h> p- 284
<signal.h>

Returns: 0 if OK, -1 on error

ssize t read(int filedes, void *buff, size t nbytes);
<unistd.h> p-54
Returns: #bytes read if OK, 0 if end of file, -1 on error

struct

dirent ‘*readdir(DIR *dp);
<sys/types.h> p- 107
<dirent.h>
Returns: pointer if OK, NULL on error

int readlink (const char *pathname, char *buf, int bufsize) ;

<unistd.h> p- 102
Returns: #bytes read if OK, —1 on error

ssize t readv(int filedes, const struct iovec iov[], int iovcnt) ;
<sys/types.h> p- 404
<sys/uio.h>
Returns: fibytes read if OK, -1 on error

void *realloc (void *plr, size_ t newsize) ;
<stdlib.h> p-170
Returns: nonnull pointer if OK, NULL on error
int remove (const char *pathname) ;
<stdio.h> p- 98
Returns: 0 if OK, -1 on error
int rename (const char *oldname, const char *newname) :
<stdic.h> p. 98

Returns: 0 if OK, —1 on error

void rewind (FILE *fp);
<stdio.h> p. 135
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void rewinddir (DIR *dp);
<sys/types.h> p- 107
<dirent.h>

int rmdir (const char *pathname) ;
<unistd.h> p- 107
Returns: 0 if OK, -1 on error

int scanf (const char *format, ...):
<stdio.h> p- 137
Returns: #input items assigned, EOF if input error or EOF before any conversion

int select (int maxfdpl, fd_set *readfds, f£d_set *writefds, £d_set *exceptfds,
struct timeval *tupir);
<sys/types.h> p- 397
<sys/time.h>
<unistd.h>
Returns: count of ready descriptors, 0 on timeout, —1 on error
FD_ZERO({fd set *fdset):
FD_SET (int filedes, fd_set *fdsef);
FD_CLR{int filedes, fd_set *fdset);
FD_ISSET (int filedes, f£d_set *fdset);

int semctl (int semid, int semmum, int comd, union semun arg) ;
<sys/types.h> p- 459
<sys/ipc.h>
<sys/sem.h>
emd: IPC_STAT, IPC_SET, IPC_RMID, GETPID, GETNCNT, GETZCNT,
GETVAL, SETVAL, GETALL, SETALL
Returns: (depends on command)

int semget (key_t key, int nsems, int flag);
<sys/types.h> p-459
<sys/ipec.h>
<sys/sem.h>
flag: 0, IPC_CREAT, IPC_EXCL
Returns: semaphore ID if OK, -1 on error

int semop (int semid, struct sembuf semoparray[], size_t nops);
<sys/types.h> p- 461
<sys/ipc.h>
<sys/sem.h>
Returns: 0 if OK, -1 on error

veid setbuf (FILE *fp, char *buf);
<stdio.h> p. 124

int setegid(gid_t gid);
<sys/types.h> p-216
<unistd.h>
Returns: 0 if OK, -1 on error

int setenv (const char *name, const char *uvalue, int rewrite) ;
<stdlib.h> p-173

Returns: 0 if OK, nonzero on error
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int

int

veoid

int

int

int

void

int

int

int

pid t

int

seteuid(uid t wid);
<sys/types.h> p- 216
<unistd.h>
Returns: 0if OK, -1 on error

setgid(gid_t gid);
<sys/types.h> p. 213
<unistd.h>
Returns: 0 if OK, -1 on error

satgrent (void) ;

<sys/types.h> p- 150
<grp.h>

setgroups (int ngroups, const gid_t grouplist[]);
<sys/types.h> p- 151
<unistd.h>

Returns: 0 if OK, -1 on error

setjmp (jmp_ buf env);
<setjmp.h> p-176

Returns: 0 if called directly, nonzero if returning from a call to Longjmp

setpgid (pid_t pid, pid t pgid):
<sys/types.h> p. 244
<unistd.h>
Returns: 0 if OK, -1 on error

setpwent (void) ;

<sys/types.h> p- 147
<pwd.h>

setregid(gid_t rgid, gid t egid);
<sys/types.h> p- 215
<unistd.h>

Returns: 0 if OK, -1 on error

setreuid(uid_t ruid, uid_t ewid);
<sys/types.h> p- 215
<unistd.h>
Returns: 0 if OK, —1 on error

setrlimit (int resource, const struct rlimit *riptr) ;
<sys/time.h> p. 180
<sys/resource.h>
Returns: 0 if OK, nonzero on error

setsid(void);
<sys/types.h> p- 245
<unistd.h>
Returns: process group ID if OK, -1 on error

setuid(uid_t wid) ;
<sys/types.h> p-213
<unistd.h>
Returns: 0 if OK, -1 on error
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int setvbuf (FILE *fp, char *buf, int mode, size t size);
<stdio.h> p- 124
mode: _IOFBF, _IOLBF, _IONBF
Returns: 0if OK, nonzero on error

void *shmat (int shmid, void *addr, int flag):
<sys/types.h> p- 465
<sys/ipc.h>
<sys/shm.h>
flag: 0, SHM RND, SHM RDONLY
Returns: pointer to shared memory segment if OK, -1 on error

int shmetl {int shmid, int omd, struct shmid_ds *buf);
<sys/types.h> p- 465
<sys/ipc.h>
<sys/shm.h>

c¢md: IPC_STAT, IPC_SET, IPC_RMID,
SHM_LOCK, SHM_ UNLOCK
Returns: 0 if OK, -1 on error

int shmdt (void *addr) ;
<sys/types.h> p- 466
<sys/ipc.h>
<sys/shm.h>
Returns: 0 if OK, -1 on error

int shmget (key_t key, int size, int flag);
<sys/types.h> p- 464
<sys/ipc.h>
<sys/shm.h>
flag: 0, IPC_CREAT, IPC_EXCL
Returns: shared memory ID if OK, —1 on error

int sigaction (int signo, const struct sigaction *acf, struct sigaction *oact);
<signal.h> p- 296
Returns: 0 if OK, —1 on error

int sigaddset (sigset_t *sef, int signo):
<signal.h> p-291
Returns: 0 if OK, -1 on error

int sigdelset (sigset_t *sel, int signo);
<signal.h> p- 291
Returns: 0 if OK, -1 on error

int sigemptyset (sigset_t *set);
<signal.h> Pp-291
Returns: ( if OK, -1 on error

int sigfillset (sigset_t *sel);
<signal.h> p-291
Returns: 0if OK, -1 on error

int sigismember (const sigset_t *sef, int signo);
<signal.h> p-291

Returns: 1 if true, 0 if false
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void

void {

int

int

int

int

unsigned
int

int

int

int

char

size t

int

void

siglongjmp (sigjmp_buf env, int wval);

<setjmp.h> p- 300
This function never returns

*signal (int signo, void (*func) (int))) (int);
<signal.h> p- 270

Returns: previous disposition of signal, SIG_ERR on error

sigpending (sigset_t *sef);
<signal.h> p- 293
Returns: 0 1f OK, -1 on error

sigprocmask (int how, const sigset_t *sef, sigset t *osel);
<signal.h> p-293
how: SIG BLOCK, SIG_UNBLOCK, SIG_SETMASK
Returns: 0 if OK, -1 on error

sigsetjmp (sigjmp_buf env, int savemask) ;
<set jmp.h> p- 300
Returns: 0 if called directly, nonzero if returning from a call to siglongimp

sigsuspend (const sigset_t *sigmask);
<signal.h> p- 303
Returns: —1 with errno set to EINTR

sleep(unsigned int seconds) ;
<unistd.h> p. 317
Returns: 0 or number of unslept seconds

sprintf (char *buf, const char *format, ...);
<stdioc.h> p- 136
Returns: #characters stored in array

sscanf (const char *buf, const char *format, ...);
<stdio.h> p- 137
Returns: #input items assigned, EOF if input error or EOF before any conversion

stat (const char *pathname, struct stat *buf);
<sys/types.h> p-73
<sys/stat.h>
Returns: 0 if OK, —1 on error

*strarror(int errnum);
<string.h> p-14

Returns: pointer to message string

strftime (char *buf, size_t maxsize, const char *format, const struct tm *impir)
<time.h> p- 157
Returns: #characters stored in array if room, else 0

symlink (const char *actualpath, const char *sympath);
<unistd.h> p- 102
Returns: 0 if OK, -1 on error

synec (void) ;
<unistd.h> p- 116
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long sysconf (int name) ;
<unistd.h> p-35
name: _SC_ ARG MAX, _SC_CHILD_MAX, _SC_CLK TCK,
_SC_NGROUPS_MAX, _SC_OPEN MAX, _SC PASS_MAX,
_SC_STREAM MAX, _SC_TZNAME MAX, _SC_JOB_CONTROL,
_SC_SAVED_IDS, _SC_VERSION, _SC_XOPEN_VERSION
Returns: corresponding value if OK, -1 on error

void syslog({int priority, char *format, ...):
<syslog.h> p- 422

int system(const char *cmdstring) ;
<stdlib.h> p-222
Returns: termination status of shell

int tedrain(int filedes) ;
<termios.h> p- 344
Returns: 0 if OK, -1 on error

int tcflow(int filedes, int action);
<termios.h> p- 344
action: TCOOFF, TCOON, TCIOFF, TCION
Returns: 0if OK, -1 on error

int teflush (int filedes, int queue) ;
<termios.h> p- 344
gueue: TCIFLUSH, TCOFLUSH, TCIOFLUSH
Returns: 0 if OK, -1 on error

int tcgetattr (int filedes, struct termios *lermpir):
<termios.h> p- 336
Returns: 0if OK, -1 on error

pid_t tcgetpgrp (int filedes) ;
<sys/types.h> p. 248
<unistd.h>
Returns: process group ID of foreground process group if OK, -1 on error

int tcsendbreak (int filedes, int duration) ;
<termios.h> p- 344
Returns: 0if OK, -1 on error

int tcsetattr (int filedes, int opf, const struct termios *fermpir);
<termios.h> p- 336

Dpf : TCSANOW, TCSADRAIN, TCSAFLUSH
Returns: 0 if OK, -1 on error

int tesetpgrp (int filedes, pid_t pgrpid) ;
<sys/types.h> Pp- 248
<unistd.h>
Returns: 0 if OK, -1 on error

char *tempnam(const char *directory, const char *prefix);
<stdio.h> p- 141
Returns: pointer to unique pathname
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time t

time (time t *calptr);
<time.h> p- 155
Returns: value of time if OK, -1 on error

clock_t times(struct tms *buf);

FILE

char

int

char

int

int

int

void

int

int

<sys/times.h> p- 232
Returns: elapsed wall clock time in clock ticks if OK, -1 on error

*tmpfile (void);
<stdio.h> p- 140
Returns: file pointer if OK, NULL on error

*tmpnam (char *ptr);
<stdio.h> p- 140
Returns: pointer to unique pathname

truncate (const char *pathname, off_t length);
<sys/types.h> p. 92
<unistd.h>
Returns: 0if OK, -1 on error

*ttyname (int filedes) ;
<unistd.h> p- 346
Returns: pointer to pathname of terminal, NULL on error

umask (mode_t cmask) :
<sys/types.h> p- 84
<sys/stat.h>
Returns: previous file mode creation mask

uname (struct utsname *name) ;
<sys/utsname.h> p- 154
Returns: nonnegative value if OK, -1 on error

ungetc (int ¢, FILE *fp);
<stdio.h> p- 129
Returns: ¢ if OK, EOF on error

unlink (const char *pathname) :
<unistd.h> p- %6
Returns: 0 if OK, -1 on error

unsetenv(const char *name) ;

<stdlib.h> p-173

utime (const char *pathname, const struct utimbuf *times) ;
<sys/types.h> p- 103
<utime.h>

Returns: 0 if OK, -1 on error

viprintf (FILE *fp, const char *format, va_list arg);
<stdarg.h> p- 137
<stdio.h>
Returns: #characters output if OK, negative value if output error
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int vprintf {const char *format, va_list arg):

<stdarg.h> p- 137

<stdio.h>

Returns: #characters output if OK, negative value if output error
int vsprintf (char *buf, const char *format, va_list arg);

<stdarg.h> p- 137

<stdio.h>

Returns: #characters stored in array

pid t  wait(int *statloc) ;
<sys/types.h> p-197
<sys/wait.h>
Returns: process ID if OK, 0, or -1 on error

pid_t wait3(int #*statloc, int oplions, struct rusage *rusage);
<sys/types.h> p- 203
<sys/wait.h>
<sys/time.h>
<sys/resource.h>
options: 0, WNOHANG, WUNTRACED
Returns: process ID if OK, 0, or -1 on error

pid t waitd (pid_t pid, int *statloc, int options, struct rusage *rusage);
<sys/types.h> p- 203
<sys/wait .h>
<sys/time.h>
<sys/resource.h>
options: 0, WNOHANG, WUNTRACED
Returns: process ID if OK, 0, or -1 on error

pid t waitpid(pid t pid, int *statloc, int options) :
<sys/types.h> p. 197
<sys/wait.h>
options: 0, WNOHANG, WUNTRACED
Returns: process ID if OK, 0, or -1 on error

ssize t write(int filedes, const void *buff, size_t nbytes);
<unistd.h> p-55
Returns: #bytes written if OK, -1 on error

ssize_t writev(int filedes, const struct iovec wov[], int iovent);
<sys/types.h> p- 404
<sys/uio.h>
Returns: #bytes written if OK, -1 on error
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Appendix B

Miscellaneous Source Code

Our Header File

Most programs in the text include the header ourhdr.h, shown in Program B.1. It
defines constants (such as MAXLINE) and prototypes for our own functions.

Since most programs need to include the following headers: <stdio.h>,
<stdlib.h> (for the exit function prototype), and <unistd.h> (for all the standard
Unix function prototypes), our header automatically includes these system headers,
along with <string.h>. This also reduces the size of all the program listings in the
text.

/* Cur own header, to be included *after* all standard system headers */

#ifndef _ ourhdr h
#define _ ourhdr h

#include <sys/types.h> /* required for some of our prototypes */
#include <stdio.h> /* for convenience */

#include <stdlib.h> /* for convenience */

#include <string.h> /* for convenience */

#include <unistd.h> /* for convenience */

#define MAXLINE 4096 /* max line length */

#define FILE_MODE (S_IRUSR | S_IWUSR | S IRGRP | S_IROTH)

/* default file access permissions for new files */
#define DIR_MODE (FILE MODE | S5 _IXUSR | S_IXGRP | S_IXOTH)

/* default permissions for new directories */

typedef void Sigfunc (int); /* for signal handlers */
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/* 4.3BSD Reno <signal.h> doesn’t define SIG ERR */
#if defined(SIG_IGN) && 'defined(SIG_ERR)

#define SIG_ERR ((Sigfunc *)-1)
#endif
#define min(a,b) ((@a) < (b) 7 (a) : (b))
#define max(a,b) ((a) > (b) 2 (a) : (b))
/* prototypes for our own functions */

char *path alloc(int *); /* Program 2.2 */
int open_max (void) ; /* Program 2.3 */
void clr fl(int, int): /* Program 3.5 */
void set_fl(int, int); /* Program 3.5 */
void pPr_exit(int); /* Program 8.3 =/
void pr_mask(const char *); /* Program 10.10 */
Sigfunc *signal_intr(int, Sigfunc *);/* Program 10.13 */
int tty_cbreak(int); /* Program 11.10 */
int tty raw(int); /* Program 11,10 */
int tty_reset (int); /* Program 11.10 */
void tty atexit (void); /* Program 11.10 */
#ifdef ECHO /* only if <termios.h> has been included */
struct termios *tty termios(void); /* Program 11.10 */
#endif
void sleep_us (unsigned int); /* Exercise 12.6 */
ssize t readn(int, void *, size_t);/* Program 12.13 */
ssize_t writen(int, const void *, size_t);/* Program 12.12 */
int daemeon_init (void) ; /* Program 13.1 */
int s_pipe(int *); /* Programs 15.2 and 15.3 */
int recv_fd(int, ssize_t (*func) (int, const void *, size t));

/* Programs 15.6 and 15.8 =*/
int send fd(int, int); /* Programs 15.5 and 15.7 */
int send_err(int, int, const char *);/* Program 15.4 */
int serv_listen(const char *); /* Programs 15.19 and 15.22 */
int serv_accept (int, uid t *); /* Programs 15.20 and 15.24 */
int cli_conn(const char *); /* Programs 15.21 and 15.23 */
int buf args(char *, int (*func) (int, char **));

/* Program 15.17 */
int ptym_open(char *); /* Programs 19.1 and 19.2 */
int ptys_cpen(int, char *): /* Programs 19.1 and 19.2 */
#ifdef TIOCGWINSZ
pid t pty fork(int *, char *, const struct termios *,

const struct winsize *); /* Program 19.3 */

#endif
int lock_reg(int, int, int, off t, int, off t);

/*

Program 12.2 =*/

#define read lock(fd, offset, whence, len) \
lock_reg(fd, F _SETLK, F_RDLCK, offset, whence, len)

#define readw_lock (fd, offset, whence,

len) \
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lock_reg(fd, F_SETLKW, F_RDLCK, offset, whence, len)
#define write_lock (fd, offset, whence, len) \

lock_reg(fd, F_SETLK, F_WRLCK, offset, whence, len)
#define writew_lock(fd, offset, whence, len) \

lock_reg(fd, F_SETLKW, F_WRLCK, offset, whence, len)
#define un_lock (fd, offset, whence, len) \

lock_reg(fd, F_SETLK, F_UNLCK, offset, whence, len)

pid t lock_test(int, int, off t, int, off t);
/* Program 12.3 */

#define is readlock(fd, offset, whence, len) \
lock_test (fd, F_RDLCK, offset, whence, len)

#define is_writelock(fd, offset, whence, len) \
lock_test (fd, F_WRLCK, offset, whence, len)

void err_dump(const char *, ...); /* Rppendix B */
void err_msg(const char *, ...);

void err_quit (const char *, ...);

void err_ret (const char *, ...);

void err_sys(const char *, ...);

void log_msg(const char *, ...); /* Bppendix B */
void log_open(const char *, int, int):;

void log_quit(const char *, ...):

void log _ret(const char *, ...):

void log_sys(const char *, ...);

void TELL _WAIT (void) ; /* parent/child from Section 8.8 */

void  TELL PARENT(pid_t);
void  TELL_CHILD(pid_t);
void  WAIT_ PARENT (void) :
void  WAIT_CHILD(void):;

#endif /* _ ourhdr h */

Program B.1 Our header ourhdr.h.

The reason we include our header after all the normal system headers is to fix up any
system differences (such as the missing SIG_ERR from 4.3BSD Reno) and to define
some of our prototypes, needed only if certain headers have been included. Some ANSI
C compilers complain if they encounter references to structures in prototypes, when the
structure has not been defined.

Standard Error Routines

We have two sets of error functions that are used in most of the examples throughout
the text to handle error conditions. One set begins with exrr_ and outputs an error mes-
sage to standard error. The other set begins with log_ and is for daemon processes
(Chapter 13) that probably have no controlling terminal.
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The reason for our own error functions is to let us write our error handling with a
single line of C code, as in

if (error condition)
err_dump (printf format with any number of arguments) ;

instead of

if (error condition) |
char buff[200];
sprintf (buff, printfformat with any number of arguments) ;
perror (buff) ;
abort () ;
}

Our error functions use the variable-length argument list facility from ANSI C. See
Section 7.3 of Kernighan and Ritchie [1988] for additional details. Be aware that this
ANGSI C facility differs from the varargs facility provided by earlier systems (such as
SVR3 and 4.3BSD). The names of the macros are the same, but the arguments to some
of the macros have changed.

Figure B.1 details the differences between the various error functions.

Function | strerror({errno) ? | Terminate ?
err ret yes return;
err sys yes exit (1);
err dump yes abort ()
err _msg no return;
err_quit no exit (1) ;
log_ret yes return;
log_sys yes exit(2);
log_msg no return;
log_quit no exit(2);

Figure B.1 Our standard error functions.

Program B.2 shows the error functions that output to standard error.

#include <errno.h> /* for definition of errno */
#include <stdarg.h> /* BNSI C header file */
#include "ourhdr.h"

static void err doit(int, const char *, va_list);
char *pname = NULL; /* caller can set this from argv[0] */

/* Nonfatal error related to a system call.
* Print a message and return. */

void
err ret (const char *fmt, ...)

{

va_list ap;
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va_start (ap, fmt);
err doit(l, fmt, ap):;
va_end(ap);
return;

}

/* Fatal error related to a system call.
* Print a message and terminate. */

void
err sys(const char *fmt, ...)
{

va list ap;

va_start(ap, fmt);
err doit(l, fmt, ap):
va_end (ap) ;
exit (1) ;

}

/* Fatal error related to a system call.
* Print a message, dump core, and terminate. */

void
err_dump (const char *fmt, ...)
{

va_list ap;

va_start (ap, fmt):
err_doit(l, fmt, ap):;
va_end(ap);
abort () ; /* dump core and terminate */
exit (1) ; /* shouldn’t get here */
}

/* Nonfatal error unrelated to a system call.
* Print a message and return. */

void
err_msg(const char *fmt, ...)
{

va_list ap;

va_start (ap, fmt);
err deit (0, fmt, ap);
va_end(ap) ;
return;

}

/* Fatal error unrelated to a system call.
* Print a message and terminate. */

void
err_quit (const char *fmt, ...)
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va_list ap;

va_start (ap, fmt);
err_doit (0, fmt, ap);
va_end(ap);
exit (1);

}

/* Print a message and return to caller.
* Caller specifies "errnoflag". */

static void
err_doit(int errnoflag, const char *fmt, va_list ap)
{

int errno_save;

char buf [MAXLINE] ;

errno_save = errno; /* value caller might want printed */
vsprintf (buf, fmt, ap):;
if (errnoflag)

sprintf (buf+strlen(buf), ": %s", strerror(errno_save));
strcat (buf, "\n");

fflush(stdout) ; /* in case stdout and stderr are the same */
fputs (buf, stderr);

fflush (NULL) ; /* flushes all stdio output streams */
return;

Program B.2 Error functions that output to standard error.

Program B.3 shows the 1log_XXX error functions. These require the caller to define
the variable debug and set it nonzero if the process is not running as a daemon. In this
case the error messages are sent to standard error. If the debug flag is 0, the syslog
facility (Section 13.4.2) is used.

/* Errcr rcutines for programs that can run as a daemon. */

#include <errno.h> /* for definition of errno */
#include <stdarg.h> /* ANSI C header file */
#include <syslog.h>

#include "ourhdr.h"

static veid log deit(int, int, const char *, va_list ap):

extern int debug; /* caller must define and set this:
nonzero if interactive, zero if daemon */

/* Initialize syslog(), if running as daemon. */
void

log_open(const char *ident, int option, int facility)
{
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if (debug == 0)
openlog (ident, option, facility):
}

/* Nonfatal error related to a system call.
* Print a message with the system’s errno value and return. */

void
log ret{(const char *fmt, ...)
{

va_list ap;

va_start (ap, fmt);

log_doit (1, LOG_ERR, fmt, ap):
va_end (ap) ;

return;

}

/* Fatal error related to a system call.
* Print a message and terminate. */

void
log_sys{const char *fmt, ...)

{
va_list ap;

va_start (ap, fmt);
log_doit (1, LOG_ERR, fmt, ap):;
va_endlap);
exit (2);
}

/* Nonfatal error unrelated to a system call.
* Print a message and return. */

void
locg msg(const char *fmt, ...)

{
va_list ap;

va_start (ap, fmt):

log_doit (0, LOG_ERR, fmt, ap):
va_end(ap) ;

return;

}

/* Fatal error unrelated to a system call.
* Print a message and terminate. */

void
log_quit (const char *fmt, ...)
{

va_list ap;
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va_start (ap, fmt);
log_doit (0, LOG_ERR, fmt, ap):
va_end(ap) ;
exit (2);
}

/* Print a message and return to caller.
* Caller specifies "errnoflag" and "priority™. */

static void
log_doit (int errnoflag, int priority, const char *fmt, va_list ap)
{

int errno_save;

char buf [MAXLINE] ;

errnc_save = €rrno; /* value caller might want printed */
vsprintf (buf, fmt, ap):;
if (errnoflag)
sprintf {buf+strlen(buf), ": %s", strerror (errno_save)):;
strcat (buf, "\n"):
if (debug) {
fflush (stdout) ;
fputs (buf, stderr):
fflush(stderr) ;
} else
syslog (pricrity, buf);
return;

Program B.3 Error functions for daemons.
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Chapter 1

11  For this exercise we use the following two arguments for the 1s(1) command: -i
prints the i-node number of the file or directory (we say more about i-nodes in
Section 4.14), and —d which outputs information about a directory, instead of
information on all the files in the directory.

Execute the following

$ 1s -1di /fetc/. [fetc/.. ~1i says print i-node number
3077 drwxr-sr-x 7 bin 2048 Rug 5 20:12 /etc/./
2 drwxr-xr-x 13 root 512 Rug 5 20:11 /etc/../
$1s -1di /. /.. both . and . . have i-node number 2
2 drwxr-xr-x 13 root 512 Bug 5 20:11 /./
2 drwxr-xr-x 13 roct 512 Aug 5 20:11 /../

12 Unix is a multiprogramming or multitasking system. Other processes were run-
ning at the time this program was run.

1.3 Since the ptr argument to perror is a pointer, perror could modify the string
that ptr points to. The qualifier const, however, says that perror does not mod-
ify what the pointer points to. The error number argument to strerror, how-
ever, is an integer, and since C passes all arguments by value, the strerror
function couldn’t modify this value even if it wanted to. (If the handling of func-
tion arguments in C is not clear, you should review Section 5.2 of Kernighan and
Ritchie [1988].)

687
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14 It is possible for the calls to £flush, fprint£, and vprintf to modify errne.
If they did modify its value and we didn’t save it, the error message finally
printed would be incorrect.

This specific problem has shown up in many historical programs that didn’t save
errno as we have done. The classic error message often printed was “Not a type-
writer.” In Section 5.4 we'll see that the standard I/0O library changes the buffer-
ing of some standard I/O streams, based on whether the stream refers to a
terminal device or not. The function isatty (Section 11.9) is usually called to
determine if the stream refers to a terminal device. If the stream doesn’t refer toa
terminal device, errno can be set to ENOTTY, causing this error. Program C.1

shows this feature.
#include <stdio.h>
/ *

* The following prints errnc=25 (ENOTTY) under 4.3BSD and SVR2,
* when stdout is redirected to a file.

* Under SVR4 and 4.3+BSD it works OK.

*/

int

main{)

{
int fd:
extern int errno;

if ( (fd = open("/no/such/file", 0)) < 0) {
printf ("open error: "):
printf ("errno = %d\n", errno);

}

exit (0) ;

Program C.1 Show errno interaction with printf.

Running this program we have

$ grep BSD /etc/motd

4.3 BSD UNIX #29: Thu Mar 29 11:14:13 MST 1990

$ a.out

open error: errnoc = 2  works correctly because stdout is a terminal device
$ a.out > temp.foo

$ cat temp.foo

open error: errnc = 25 wrong

15 During the year 2038. (Actually, a more important date is January 1, 2000, when
many computer programs across the world could break.)

1.6 Approximately 248 days.
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Chapter 2

21

Chapter 3

31

33

34

The following technique is used by 4.3+BSD. The primitive data types that can
appear in multiple headers are defined with an uppercase name in the header
<machine/ansi.h>. Forexample,

#ifndef ANSI H
#define ANST H_

#define _CLOCK T  unsigned long
#idefine SIZE T  unsigned int

#endif /* ANSI H */

In each of the six headers that can define the size_t primitive system data type,
we have the sequence

#ifdef _SIZE T

typedef SIZE T  size t;
#undef _SIZE T

#endif

This way the actual t ypedef is only executed once.

All disk I/O goes through the kernel’s block buffers (also called the kernel’s buff-
er cache). The exception to this is I/O on a raw disk device, which we aren’t con-
sidering. Chapter 3 of Bach [1986] describes the operation of this buffer cache.
Since the data that we read or write is buffered by the kernel, the term
“unbuffered 1/O” refers to the fact that there is no automatic buffering in the user
process with these two functions. Each read or write invokes a single system
call.

Each call to open gives us a new file table entry. But since both opens reference
the same file, both file table entries point to the same v-node table entry. The call
to dup references the existing file table entry. We show this in Figure C.1. An
F_SETFD on fd1 affects only the file descriptor flags for £d1. Butan F_SETFL on
£d1 affects the file table entry that both £d1 and £d2 point to.

If £d is 1, then the dup2 (£fd, 1) returns 1 without closing descriptor 1. (Remem-
ber our discussion of this in Section 3.12.) After the three calls to dup2 all three
descriptors point to the same file table entry. Nothing needs to be closed.

If £d is 3, however, after the three calls to dup2 there are four descriptors pointing
to the same file table entry. In this case we need to close descriptor 3.
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3.5

3.6

Chapter 4

4.1

4.2

process table entry file table

& file status flags

fd flags ptr current file offset v-node table
. v-node ptr <+ % v-node

fdi1: information
fd3:

e i-node
file status flags information

current file offset current file size

v-node ptr

Figure C.1 Result of dup and open.

Since the shells process their command line from left to right, the command

a.out > outfile 2>&l1

first sets standard output to outfile and then dups standard output onto
descriptor 2 (standard error). The result is that standard output and standard
error are set to the same file. Descriptors 1 and 2 both point to the same file table
entry. With

a.out 2>gl > outfile

however, the dup is executed first, causing descriptor 2 to be the terminal (assum-
ing the command is run interactively). Then standard output is redirected to the
file outfile. The result is that descriptor 1 points to the file table entry for
out file and descriptor 2 points to the file table entry for the terminal.

You can still 1seek and read anywhere in the file, but a write automatically
resets the file offset to the end of file before the data is actually written. This
makes it impossible to write anywhere other than at the end of file.

If stat is called, it always tries to follow a symbolic link (Figure 4.10), so the pro-
gram will never print a file type of “symbolic link.” For the example shown in the
text, where /bin is a symbolic link to /usr/bin, stat reports that /binisa
directory, not a symbolic link. If the symbolic link points to a nonexistent file,
stat returns an error.

The following lines can be added to ourhdr . h.

#if defined(S_IFLNK) && 'defined (S_ISLNK)
#define S_ISLNK(mode) (((mode) & S _IFMT) == S_IFLNK)
#endif

This is an example of how our own header can mask certain system differences.
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4.3 All permissions are turned off.

$ umask 777

$ date > temp.foo

$ 1s -1 temp.foo

—————————— 1 stevens 29 Jan 14 06:39 temp.foo

4.4 The following shows what happens when user-read permission is turned off.
$ date > foo

$ chmod u-r foo turn off user-read permission
$ 1s -1 foo verify the file’s permissions
—w-rw—r— 1 stevens 29 Jul 31 09:00 foo

$ cat foo and try to read it

cat: foo: Permission denied

4.5 If we try to create a file that already exists, using either open or creat, the file's
access permission bits are not changed. We can verify this by running

Program 4.3.
$ rm foo bar delete the files in case they already exist
$ date > foo create them with some data
$ date > bar
$ chmod a-r foo bar turn off all read permissions
$ 1s -1 foo bar verify their permissions
—w——w——— 1 stevens 29 Jul 31 10:47 bar
——w-——w——= 1 stevens 29 Jul 31 10:47 foo
$ a.out run Program 4.3
$ 1s -1 foo bar check permissions and sizes
——w—w———— 1 stevens 0 Jul 31 10:47 bar
—w—w——- 1 stevens 0 Jul 31 10:47 foo

Notice that the permissions didn’t change but the files were truncated.

4.6 The size of a directory should never be 0 since there should always be entries for
dot and dot-dot. The size of a symbolic link is the number of characters in the
pathname contained in the symbolic link, and this pathname must always contain
at least one character.

4.8 The kernel has a default setting for the file access permission bits when it creates a
new core file. In this example it was rw-r—-—r--. This default value may or
may not be modified by the umask value. The shell also has a default setting for
the file access permission bits when it creates a new file for redirection. In this
example it was rw—-rw-rw— and this value is always modified by our current
umask. In this example our umask was (2.

49 We can't use du because it requires either the name of the file, as in
du tempfile
or a directory name, as in
du .
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410

4.11

413

4.14

4.15

4.16

But when the unlink function returns, the directory entry for tempfile is gone.
The du . command just shown would not account for the space still taken by
tempfile. We have to use the df command in this example, to see the actual
amount of free space on the filesystem.

If the link being removed is not the last link to the file, the file is not removed. In
this case the changed-status time of the file is updated. But if the link being
removed is the last link to the file, it makes no sense to update this time, because
all the information about the file (the i-node) is removed with the file.

We recursively call our function dopath after opening a directory with opendir.
Assuming that opendir uses a single file descriptor this means that each time we
descend one level we use another descriptor. (We assume the descriptor isn't
closed until we're finished with a directory and call closedir.) This limits the
depth of the filesystem tree that we can traverse to the maximum number of
descriptors for the process. Notice that the SVR4 function £tw allows the caller to
specify the number of descriptors to use, implying that this implementation can
close and reuse descriptors.

The chroot function is used by the Internet File Transfer Program (FTP) to aid in
security. Users without accounts on a system (termed “anonymous FTP”) are
placed in a separate directory and a chroot is done to that directory. This pre-
vents the user from accessing any file outside this new root directory.

chroot can also be used to build a copy of a filesystem hierarchy at a new loca-
tion and then modify this new copy without changing the original filesystem.
This could be used, for example, to test the installation of new software packages.

chroot can be executed only by the superuser, and once you change the root of a
process, it (and all its descendants) can never get back to the original root.

First call stat to fetch the three times for the file, then call utime to set the
desired value. The value that we don't want to change in the call to utime
should be the corresponding value from stat.

finger(1) calls stat on the mailbox. The last-modification time is the time that
mail was last received, and the last-access time is when the mail was last read.

Both cpio and tar store only the modification time (st _mt ime) on the archive,
The access time isn’t stored because its value corresponds to the time the archive
was created, since the file has to be read to be archived. The -a option to cpio
has it reset the access time of each input file after the file has been read. This way
the creation of the archive doesn’t change the access time. (Resetting the access
time, however, does modify the changed-status time.) The changed-status time
isn’t stored on the archive because we can’t set this value on extraction even if it
was archived. (The utime function can change only the access time and the mod-
ification time.)

When the archive is read back (extracted), tar, by default, restores the modifica-
tion time to the value on the archive. The m option to tar tells it to not restore the
modification time from the archive—instead the modification time is set to the
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4.17

4.18

4.19

Chapter 5

5.2

5.3

time of extraction. In all cases with tar, the access time after extraction will be
the time of extraction.

On the other hand, cpio sets the access time and the modification time to the
time of extraction. By default it doesn’t try to set the modification time to the
value on the archive. The -m option to cpio has it set both the access time and
the modification time to the value that was archived.

Some versions of £file(1) call utime to reset the file’s access time, trying to undo
the fact that read updates the access time. Doing this, however, updates the
changed-status time.

The kernel has no inherent limit on the depth of a directory tree. But many com-
mands will fail on pathnames that exceed PATH_MAX. Program C.2 creates a
directory tree that is 100 levels deep, with each level being a 45-character name.
We are able to create this structure and obtain the absolute pathname of the direc-
tory at the 100th level using getcwd. (We have to call realloc numerous times
to obtain a buffer that is large enough.) Running this program gives us

$ a.out
getcwd failed, size = 1025: Result too large
getcwd failed, size = 1125: Result too large
.- 33 more lines
getcwd failed, size = 4525: Result too large
length = 4613
the 4613-byte pathname is printed here

We are not able to archive this directory, however, using either tar or cpio. Both
complain of a filename that is too long. (With cpio it is the £ind(1) program that
complains.) The command rm ~r also fails because of the long pathname. (How
can you delete the directory tree?)

The /dev directory has all write permissions turned off to prevent a normal user
from removing the filenames in the directory. This means the unlink fails.

fgets reads up through and including the next newline or until the buffer is full
(leaving room, of course, for the terminating null). Also, fputs writes everything
in the buffer until it hits a null byte—it doesn’t care if there is a newline in the
buffer or not. So, if MAXLINE is too small, both functions still work, they’re just
called more often than they would be if the buffer were larger.

If either of these functions removed or added the newline (as gets and puts do)
then we would have to assure that our buffer was big enough for the largest line.

The function call
printf("");

returns 0 since no characters are output.
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#include <sys/types.h>

#include <sys/stat.h>
#include <fcntl.h>
#include "ourhdr.h"
#define DEPTH 100 /* directory depth */
#define MYHOME "/home/stevens"
#define NAME "alonglonglonglonglonglonglonglonglonglongname"
int
main (void)
{
int i, size;
char *path;

if (chdir(MYHOME) < 0)
err sys("chdir error");

for (i = 0; i < DEPTH; i++) {
if (mkdir(NAME, DIR_MODE) < 0)
err sys("mkdir failed, i = %d", i);
if (chdir (NAME) < 0)
err sys("chdir failed, i = %d", 1i);
}
if (creat("afile", FILE MODE) < 0)
err sys("creat error");

;*
* The deep directory is created, with a file at the leaf.

* Now let’s try and obtain its pathname.
*/

path = path _alloc(&size):
for ( ; 7 ) {
if (getcwd(path, size) != NULL)
break;
else |
err_ret ("getcwd failed, size = %d", size);
size += 100;
if ( (path = realloc(path, size)) == NULL)
err_sys("realloc error™);

}
}
printf ("length = %d\n%s\n", strlen(path), path);

exit (0);

Program C.2 Create a deep directory tree.
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5.4

5.5

5.6

5.7

Chapter 6

6.1

6.2

6.4

This is a common error with the standard 1/O library. The return value from
getc (and hence getchar) is an integer, not a character. Since EOF is often
defined to be —1, if the system uses signed characters, the code normally works.
But if the system uses unsigned characters, after the EOF returned by getchar is
stored as an unsigned character, it no longer equals —1, so the loop never termi-
nates.

A S-character prefix, a 4-character per-process unique identifier, and a 5-character
per-system unique identifier (the process ID) equals 14 characters, the traditional
Unix limit on a filename.

Call f£sync after each call to fflush. The argument to £sync is obtained with
the fileno function. Calling fsync without calling f££1ush might do nothing, if
all the data were still be in memory buffers.

Standard input and standard output are both line buffered when the programs are
run interactively. When fgets is called, standard output is automatically
flushed.

Under SVR4 the functions to access the shadow password file are documented in
the getspent(3) manual page. To compare an encrypted password we can’t use
the value returned in the pw_passwd field by the functions described in
Section 6.2, since that field is not the encrypted password. Instead we need to find
the user’s entry in the shadow file and use the field in the shadow file that con-
tains the encrypted password.

With 4.3+BSD the shadowing of the password file is done automatically. When
the passwd structure is returned by either getpwnam or getpwuid, the field
pw_passwd is filled in with the encrypted password only if the caller’s effective
user ID is 0.

Under SVR4 Program C.3 prints the encrypted password. Unless this program is
run with superuser permissions, the call to getspnam fails with an error of
EACCES. Under 4.3+BSD Program C.4 prints the encrypted password, if the pro-
gram is run with superuser permissions. Otherwise the value returned in
pw_passwd is an asterisk.

Program C.5 prints the date in a format similar to date. Running this program
gives us

$ echo $TZ author’s default
MST7

$ a.out

Wed Jan 15 06:48:57 MST 1992

$ TZ=ESTSEDT a.out U.S. East Coast
Wed Jan 15 08:49:06 EST 1992

$ TZ=JST-9 a.out Japan

Wed Jan 15 22:49:12 JST 1992
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#include <sys/types.h>
#include <shadow.h>
#include "ourhdr.h"
int
main (void) /* SVR4 wversion */
{
struct spwd *ptr;
if ( (ptr = getspnam("stevens")) == NULL)
err_sys("getspnam error");
printf("sp pwdp = %s\n",
ptr->sp_pwdp == NULL || ptr->sp pwdp[0] == 0 ?
"({null)" : ptr->sp_pwdp);
exit (0);
}
Program C.3 Print encrypted password under SVR4
#include <sys/types.h>
finclude <pwd.h>
f#include "ourhdr.h"
int
main (void) /* 4,3+BSD version */
{
struct passwd *ptr;
if ( (ptr = getpwnam("stevens")) == NULL)
err sys("getpwnam error™);
printf ("pw_passwd = %s\n",
ptr->pw_passwd == NULL || ptr->pw_passwd[0] == 0 ?
"(null)" : ptr->pw_passwd);
exit (0):
}
Program C4 Print encrypted password under 4.3+BSD
Chapter 7
7.1 It appears that the return value from printf (the number of characters output)
becomes the return value of main. Not all systems exhibit this property.
7.2 When the program is run interactively, standard output is usually line buffered, so

the actual output occurs when each newline is output. If standard output were
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7.3

7.4

73>

7.6

7.7

7.8

7.9

#include <time.h>
#include "ourhdr.h"
int
main(void)
{
time t caltime;
struct tm *tm;
char line [MAXLINE];
if ( (caltime = time(NULL)) == -1)
err sys("time error");
if ( (tm = localtime (&caltime)) == NULL)

err_sys("localtime error");

if (strftime(line, MAXLINE, "%a %b %d %X %Z %Y\n", tm) == 0)
err_sys("strftime error");
fputs (line, stdout);

exit (0);

Program C.5 Print the time and date in a format similar to date(1).

directed to a file, however, it would probably be fully buffered, and the actual out-
put wouldn’t occur until the standard 1/0O cleanup is performed.

On most Unix systems there is no way to do this. Copies of argc and argv are
not kept in global variables like environ.

This provides a way to terminate the process when it tries to dereference a null
pointer, a common C programming error.

The definitions are:

typedef void Exitfunc(void) ;
int atexit (Exitfunc *func) ;

calloc initializes the memory that it allocates to all zero bits. ANSI C does not
guarantee that this is the same as either a floating point 0 or a null pointer.

The heap and stack aren’t allocated until a program is executed by one of the
exec functions (described in Section 8.9).

The executable file (a . out) contains symbol table information that can be helpful
in debugging a core file. To remove this information the strip(1) command is
used. Executing this command on the two a. out files reduces their size to 98304
and 16384.

When shared libraries are not used, a large portion of the executable file is occu-
pied by the standard 1/0 library.
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7.10 The code is incorrect since it references the automatic integer val through a

Chapter 8

8.1

pointer after the automatic variable is no longer in existence. Automatic variables
declared after the left brace that starts a compound statement disappear after the
matching right brace.

Replace the call to print £ with the lines

i = printf("pid = %d, glob = %d, var = %d\n",
getpid(), glob, var);

sprintf (buf, "%d\n", i):

write (STDOUT _FILENO, buf, strlen(buf));

You need to define the variables i and buf also.

This assumes the standard 1/O stream stdout is closed when the child calls
exit, not the file descriptor STDOUT FILENO. Some versions of the standard
I/O library close the file descriptor associated with standard output, which would
cause the write to standard output to also fail. In this case, dup standard output
to another descriptor and use this new descriptor for the write.

Consider Program C.6. When vfork is called, the parent’s stack pointer points to
the stack frame for the £1 function that calls vfork. Figure C.2 shows this.

top of stack
stack frame
formain
stack frame
direction of | I focit2
stack growth v

Figure C.2 Stack frames when vfork is called.

viork causes the child to execute first and the child returns from £1. The child
then calls £2 and its stack frame overwrites the previous stack frame for £1. The
child then zeroes out the automatic variable buf, setting 1000 bytes of the stack
frame to 0. The child returns from £2, and then calls _exit, but the contents of
the stack beneath the stack frame for main have been changed. The parent then
resumes after the call to vfork and does a return from £1. The return informa-
tion is often stored in the stack frame, and that information has probably been
modified by the child. What happens with this example, after the parent resumes,
depends on many implementation features of your Unix system (where in the
stack frame the return information is stored, what information in the stack frame
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8.3

#include <sys/types.h>
#include "ourhdr.h"

static void fl1l(void), £2(void):

int

main (void)

{
£1();
£20);
_exit (0):

}

static void
£1 (void)
{
pid_t pid;

if ( (pid = vfork()) < 0)
err sys("vfork error"):;
/* child and parent both return */
}

static void

£2 (void)

{
char buf [1000]; /* automatic variables */
int SLF

for (i = 0; i < sizeof(buf): it++)
buf[i] = O;

Program C.6 Incorrect use of vfork.

is wiped out when the automatic variables are modified, and so on). The normal
result is a core file, but your results may differ.

In Program 8.7 we have the parent output first. When the parent is done the child
writes its output, but we let the parent terminate. Whether the parent terminates
or whether the child finishes its output first depends on the kernel’s scheduling of
the two processes (another race condition). When the parent terminates, the shell
starts up the next program and this next program can interfere with the output
from the previous child.

We can prevent this from happening by not letting the parent terminate until the
child has also finished its output. Replace the code following the fork with the
following:
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8.5

8.6

else if (pid == 0) {
WAIT PARENT(); /* parent goes first */
charatatime ("output from child\n");
TELL_PARENT (getppid())}; /* tell parent we’re done */

} else {
charatatime ("output from parent\n");
TELL_CHILD (pid) ; /* tell child we’'re done */
WAIT CHILD(); /* wait for child to finish */

}

We won’t see this happen if we let the child go first, since the shell doesn’t start
the next program until the parent terminates.

The same value (/home/stevens/bin/testinterp) is printed for argv([2].
The reason is that execlp ends up calling execve with the same pathname as
when we call execl directly. Recall Figure 8.6.

A function is not provided to return the saved set-user-ID. Instead, we must save
the effective user ID when the process is started.

Program C.7 creates a zombie.

#include "ourhdr.h"
int
main (void)

{
pid t pid;

if ( (pid = fork()) < 0)
err sys("fork error");

else if (pid == 0) /* child */
exit (0) ;

/* parent */
sleep(4);

system("ps") ;

exit (0);

Program C.7 Create a zombie and look at it's status with ps.

Zombies are usually designated by ps(1) with a status of “Z”.

$ a.out

PID TT STAT TIME COMMAND

5940 p3 s 0:00 a.out

5941 p3 7 0:00 <defunct> the zombie
5942 p3 § 0:00 sh -c ps

5943 p3 R 0:00 ps
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9.1

Chapter 10
10.1

10.2

10.3

init is the process that learns when a terminal user logs out, because init is the
parent of the login shell and receives the STGCHLD signal when the login shell ter-
minates.

For a network login, however, init is not involved. Instead the login entries in
the utmp and wtmp files, and their corresponding logout entries are usually writ-
ten by the process that handles the login and detects the logout (telnetd in our
example).

The program terminates the first time we send it a signal. This is because the
pause function returns whenever a signal is caught.

Program C.8 implements the raise function.

#include <sys/types.h>
#include <signal.h>
#include <unistd.h>
int

raise(int signo)
{

return{ kill({getpid(), signo) }):
}

Program C.8 Implementation of raise function.

Figure C.3 shows the stack frames.

processing processing after
SIGINT SIGALRM longjmp
stack frame stack frame stack frame stack frame
for main formain formain formain
stack frame stack frame longjmp
for sig_int for sig_int 97
stack frame |
for sig_alrm

Figure C.3 Stack frames before and after longjmp.

The longjmp from sig alrm back to main effectively aborts the call
sig_int.
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10.4

10.5

10.7

10.8

We again have a race condition, this time between the first call to alarm and the
call to set jmp. If the process is blocked by the kernel between these two function
calls, the alarm will go off, the signal handler is called, and 1ongjmp is called.
But since set jmp was never called, the buffer env_alrm is not set. The opera-
tion of longjmp is undefined if its jump buffer has not been initialized by
set jmp. :

See “Implementing Software Timers” by Don Libes (C Users Journal, Vol. 8, no. 11,
Nov. 1990) for an example.

If we just called _exit the termination status of the process would not show that
it was terminated by the SIGABRT signal.

If the signal was sent by a process owned by some other user, the process has to
be set-user-ID to either root or to the owner of the receiving process or the kill
won't work. Therefore, the real user ID provides more information to the receiver
of the signal.

10.10 On one system used by the author the value for the number of seconds increased

by one about every 60-90 minutes. This skew is because each call to sleep
schedules an event for a time in the future, but we’re not awakened exactly when
that event occurs (because of CPU scheduling). Plus there is a finite amount of
time required for our process to start running and call s1eep again.

A program such as the BSD cron has to fetch the current time every minute. It
also has to set its first sleep period so that it wakes up at the beginning of the next
minute. (Convert the current time to the local time and look at the tm_sec
value.) Every minute, it sets the next sleep period so that it'll wake up at the next
minute. Most of the calls will probably be sleep(60), with an occasional
sleep (59) to resynchronize with the next minute. But if at some point the pro-
cess takes a long time executing commands or if the system gets heavily loaded
and scheduling delays hold up the process, the sleep value can be much less than
60.

10.11 Under SVR4 the signal handler for SIGXFSZ is never called. But write returns a

count of 24 as soon as the file's size reaches 1024 bytes.

Under 4.3+BSD the signal handler is called after the file’s size has reached 1500
bytes. The write returns —1 with errno set to EFBIG (“File too big").

SunOS 4.1.2 is similar to SVR4, but the signal handler is called.

In summary, it appears that System V returns a short count (without any error) as
soon as the file reaches the soft limit, while BSD returns an error (without writing
any data) when it determines the limit has been passed.

10.12 The results depend on the implementation of the standard 1/0 library—how the

fwrite function handles an interrupted write.
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Chapter 11
111

11.2

11.3

11.4

Chapter 12

121

12.2

Note that you have to terminate the reset command with a linefeed character,
not a return, since the terminal is in noncanonical mode.

It builds a table for each of the 128 characters and sets the high-order bit (the par-
ity bit) according to the user’s specification. It then uses eight-bit I/0, handling
the parity generation itself.

Under SVR4 execute stty —a with standard input redirected to the terminal run-
ning vi. This shows that vi sets MIN to 1 and TIME to 1. The reads wait for at
least one character to be typed, but after that character is entered, read waits only
one-tenth of a second for additional characters before returning.

Under SVR4 the extended general terminal interface is used. This is documented
in the termiox(7) manual page in AT&T [1991]. Under 43+BSD the flags
CCTS_OFLOW and CRTS_IFLOW in the c_cflag field are used (Figure 11.3).

The program works fine (it doesn’t get the ENOLCK error). The first time through
the loop we call writew_lock, write, and un_lock. The call to un_lock
releases the lock from the current end of file through any future end of file, as
before, leaving just the first byte locked. We then go through the loop again, but
this time the call to writew lock causes this new lock that we’ve specified to be
merged with the existing lock on the first byte. Figure C.4 shows the state of the
file after the second time through the loop.

t.._locki_ 4
e | oy

Figure C.4 State of record lock after second time through loop.

Each time through the loop we extend this single lock by an additional byte.
Since the kernel merges each lock with the existing lock, only a single lock is
maintained by the kernel, and it never runs out of lock structures.

Both SVR4 and 4.3+BSD define the £d_set data type to be a structure that con-
tains a single member: an array of long integers. One bit in this array corresponds
to each descriptor. The four FD_ macros then manipulate this array of longs, turn-
ing specific bits on and off and testing specific bits.

One reason that the data type is defined to be a structure containing an array and
not just an array is to allow variables of type fd_set to be assigned to one
another with the C assignment statement.
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123

12.4

12.5

12.6

12.7

12.8

12.9

Chapter 13

13.1

SVR4 and 4.3+BSD allow us to define the constant FD_SETSIZE before including
the header <sys/types.h>. For example, we can write

#define FD_SETSIZE 2048
#include <sys/types.h>

to define the £d_set data type to accommodate 2048 descriptors.
The following table lists the functions that do similar things.

FD_ZERO sigemptyset
FD_SET sigaddset
FD_CLR sigdelset
FD_ISSET sigismember

There is not an FD_xxx function that corresponds to sigfillset. With signal
sets the pointer to the set is always the first argument and the signal number is the
second argument. With descriptor sets the descriptor number is the first argu-
ment and the pointer to the set is the next argument.

Up to five different types of information are returned by getmsg: the data itself,
the length of the data, the control information, the length of the control informa-
tion, and the flags.

Program C.9 shows an implementation using select. As the BSD usleep(3)
manual page states, usleep utilizes the setitimer interval timer and performs
eight system calls each time it's called. It correctly interacts with other timers set
by the calling process, and it is not interrupted if a signal is caught.

Program C.10 shows an implementation using po11.

No. What we would like to do is have TELL WAIT create a temporary file and
use one byte for the parent’s lock and one byte for the child’s lock. WAIT CHILD
would have the parent wait to obtain a lock on the child’s byte, and
TELL_PARENT would have the child release the lock on the child’s byte. The
problem, however, is that calling fork releases all the locks in the child, so the
child cant start off with any locks of its own.

A solution using select is shown in Program C.11. The same technique can be
used with poll.

Under SVR4 and SunOS 4.1.1 the values calculated using both select and poll
equal the values from Figure 2.6. Under 4.3+BSD the value calculated using
select is 3073.

Under SVR4, 4.3+BSD, and SunOS 4.1.2 Program 12.14 does update the last-access
time for the input file.

If the process calls chroot it will not be able to open /dev/log. The solution is
for the daemon to call openlog with an option of LOG_NDELAY, before calling
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13.3

#include <sys/types.h>

#include <sys/time.h>
#include <stddef.h>
#include "ourhdr.h"
void

sleep_us(unsigned int nusecs)
{

struct timeval tval;

tval.tv_sec = nusecs / 1000000;
tval.tv_usec = nusecs % 1000000;
select (0, NULL, NULL, NULL, &tval);

Program C.9 Implementation of sleep_us using select.

#include <sys/types.h>
#include <poll.h>
#include <stropts.h>
#include “"ourhdr.h"

void
sleep us(unsigned int nusecs)
{
struct pollfd dummy ;
int timeout;

if ( (timecut = nusecs / 1000) <= 0)
timeout = 1;
poll (&dummy, 0, timeout);

Program C.10 Implementaticn of sleep_us using poll.

chroot. This opens the special device file (the Unix domain datagram socket),
yielding a descriptor that is still valid, even after a call to chroot. This scenario
is encountered in daemons such as t ftpd (the Trivial File Transfer Daemon) that
specifically call chroot for security reasons, but still need to call syslog to log
error conditions.

Program C.12 shows a solution. The results depend on the implementation and
whether we close file descriptors 0, 1, and 2. The reason closing the descriptors
affects the outcome is that when the program is started they are connected to the
controlling terminal. Closing the three descriptors after calling daemon_init
means getlogin won't have a controlling terminal, so it won’t be able to look in
the utmp file for our login entry.
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#include <sys/types.h>

#include <sys/time.h>
#include “"ourhdr.h"
int

main (void)

{
int i, n, f£d[2];
fd_set writeset;
struct timeval tv;

if (pipe(fd) < 0)
err sys("pipe error");
FD_ZEROC (&writeset);

for (n = 0; ; n++) { /* write 1 byte at a time until pipe is full *
FD SET(fd[1], &writeset):
tv.tv_sec = tv.tv_usec = 0;: /* don’t wait at all */
if ( (1 = select(fd[1]+1, NULL, &writeset, NULL, &tv)) < 0)
err_sys ("select error");
else if (i == 0)
break;
if (write(fd[1], "a", 1) != 1)
err_sys("write error");
}
printf ("pipe capacity = %d\n", n);

exit (0);
1
Program C.11 Calculation of pipe capacity using select.
#include "ourhdr.h"
int
main(void)

{
char *ptr, buff[MAXLINE];

daemon_init ();

close(0);
close (1) ;
close(2);

ptr = getlogin{();
sprintf (buff, "login name: %s\n",
(ptr == NULL) ? " (empty)"™ : ptr);
write (3, buff, strlen(buff));
exit (0);

Program C.12 Call daemon_init and then obtain login name.
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Chapter 14

14.1

14.2

14.3

144

14.5

Under 4.3+BSD, however, the login name is maintained in the process table and
copied across a fork. This means the process can always get the login name,
unless the parent didn’t have a login name (such as init when the system is
bootstrapped).

If the write end of the pipe is never closed, the reader never sees an end of file.
The pager program blocks forever reading from its standard input.

The parent terminates right after writing the last line to the pipe. The read end of
the pipe is automatically closed when the parent terminates. But the parent is
probably running ahead of the child by one pipe bulffer, since the child (the pager
program) is waiting for us to look at a page of output. If we're running a shell
such as the KornShell with interactive command-line editing enabled, the shell
probably changes the terminal mode when our parent terminates and the shell
prints a prompt. This undoubtably interferes with the pager program, which has
also modified the terminal mode. (Most pager programs set the terminal to non-
canonical mode when awaiting input to proceed to the next page.)

popen returns a file pointer, because the shell is executed. But the shell can’t exe-
cute the nonexistent command so it prints

sh: a.out: not found

on the standard error and terminates with an exit status of 1. pclose returns this
exit status of 1.

When the parent terminates, look at its termination status with the shell. For the
Bourne shell and KornShell the command is echo $?. The number printed is 128
plus the signal number.

First add the declaration
FILE *fpin, *fpout;

Then use fdopen to associate the pipe descriptors with a standard 1/0O stream
and set the streams to be line buffered. Do this before the while loop that reads
from standard input:

if ( (fpin = fdopen(fd2[0], "r")) == NULL)
err_sys("fdopen error"):

if ( (fpout = fdopen(fdi[1l], "w")) == NULL)
err_sys("fdopen error");

if (setvbuf(fpin, NULL, _IOLBF, 0) < ()
err_sys("setvbuf error");

if (setvbuf (fpout, NULL, _IOLBF, 0) < 0)
err_sys("setvbuf error");

The write and read in the while loop are replaced with



708

Appendix C

14.6

14.7

14.8

14.9

if (fputs(line, fpout) == EQF)
err_sys{"fputs error to pipe"):

if (fgets(line, MAXLINE, fpin) == NULL) {
err msg("child closed pipe"):
break:;

}

The system function calls wait and the first child to terminate is the child gener-
ated by popen. Since that's not the child that system created, it calls wait again,
and blocks until the sleep is done. system then returns. When pclose calls
wait, an error is returned since there are no more children to wait for. pclose
returns an error.

select indicates that the descriptor is readable. When we call read, after all the
data has been read, it returns 0 to indicate the end of file. But with poll (assum-
ing the pipe is a streams device), the POLLHUP event is returned, and this event
may be returned while there is still data to be read. Once we have read all the
data, however, read returns 0 to indicate the end of file. After all the data has
been read, the POLLIN event is not returned, even though we need to issue a
read to receive the end of file notification (the return of 0).

With an output descriptor that refers to a pipe that has been closed by the reader,
select indicates that the descriptor is writable. But when we call write the
SIGPIPE signal is generated. If we either ignore this signal or return from its sig-
nal handler, write returns an error of EPIPE. With pol1, however, if the pipe is
a streams device, pol1 returns with an indication of POLLHUP for the descriptor.

Anything written by the child to standard error appears wherever the parent’s
standard error would appear. To send standard error back to the parent, include
the shell redirection 2>&1 in the crmdstring.

popen forks a child, and the child execs the Bourne shell. The shell in turn calls
fork, and the child of the shell execs the command string. When cmdstring ter-
minates, the shell is waiting for this to happen. The shell then exits, which is
what the waitpid in pclose is waiting for.

14.10 The trick is to open the FIFO twice—once for reading and once for writing. We

never use the descriptor that is opened for writing, but leaving that descriptor
open prevents and end of file from being generated when the number of clients
goes from 1 to 0. Opening the FIFO twice requires some care, as a nonblocking
open is required. We have to do a nonblocking, read-only open first, followed by
a blocking open for write-only. (If we tried a nonblocking open for write-only
first, it would return an error) We then turn off nonblocking for the read descrip-
tor. Program C.13 shows the code for this.

14.11 Randomly reading a message from an active queue would interfere with the

client-server protocol, as either a client request or a server’s response would be
lost. To read the queue, all the process needs to know is the identifier for the
queue, and for the queue to allow world-read.
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#include <sys/types.h>
#include <sys/stat.h>
#include <fentl.h>
#include "ourhdr.h"”

#define FIFO "temp.fifo"

int
main (void)

{
int fdread, fdwrite;

unlink (FIFQO) ;
if (mkfifo(FIFO, FILE MODE) < 0)
err_sys("mkfifo error"):

if ( (fdread = open(FIFO, O RDONLY | O_NONBLOCK)) < 0)
err_sys("open error for reading");

if ( (fdwrite = open(FIF0O, O WRONLY)) < 0)
err_sys ("open error for writing™);

clr_fl(fdread, O NONBLOCK):

exit (0);

Program C.13 Opening a FIFO for reading and writing, without blocking.

14.13 We never store actual addresses in a shared memory segment, since it's possible
for the server and all the clients to attach the segment at different addresses.
Instead, when a linked list is built in a shared memory segment, the list pointers
should be stored as offsets to other objects in the shared memory segment. These
offsets are formed by subtracting the start of the shared memory segment from
the actual address of the object.

14.14 Figure C.5 shows the relevant events.

Chapter 15

15.3 A declaration specifies the attributes (such as the data type) of a set of identifiers.
If the declaration also causes storage to be allocated, it is called a definition.

In the opend.h header we declare the three global variables with the extern
storage class. These declarations do not cause storage to be allocated for the vari-
ables. In the main.c file we define the three global variables. Sometimes we'll
also initialize a global variable when we define it, but typically we let the C
default apply.
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Parent i | Child i | Shared value update | C nt
setto | setto |  setto returns omme
. 0 | initialized by mmap |
1 child runs first, then is blocked
0 parent runs

15.5

Chapter 16

16.1

16.2

16.3

0 then parent is blocked

2 child resumes
1
3 then child is blocked
2 parent resumes
3
2 then parent is blocked
4 |
3
5 i then child is blocked
4 _ _ | parent resumes

Figure C.5 Alternation between parent and child in Program 14.12.

Both select and poll return the number of ready descriptors as the value of the
function. The loop that goes through the client array can terminate when the
number of ready descriptors have been processed.

Our conservative locking in _db dodelete is to avoid race conditions with
db_nextrec. If the call to _db_writedat were not protected with a write lock,
it would be possible to erase the data record while db_nextrec was reading that
data record: db_nextrec would read an index record, determine it was not all
blank, and then read the data record, which could be erased by _db_dodelete
between the calls to _db_readidxand _db_readdat indb _nextrec.

Assume db_nextrec calls _db_readidx, which reads the key into the index
buffer for the process. This process is then stopped by the kernel and another pro-
cess runs. This other process calls db_delete, and the record being read by the
other process is deleted. Both its key and data are rewritten in the two files as all
blanks. The first process resumes and calls _db_readdat (from db_nextrec)
and reads the all-blank data record. The read lock by db_nextrec allows it to do
the read of the index record, followed by the read of the data record, as an atomic
operation (with regard to other cooperating processes using the same database).

With mandatory locking other readers and writers are affected. Other reads and
writes are blocked by the kernel until the locks placed by _db_writeidx and
_db_writedat are removed.
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Chapter 17

171

Chapter 18

18.2

18.3

18.4

18.5

18.6

18.9

Chapter 19

19.1

psif has to read the first two bytes of the file and compare them to %!. If the file
is seekable, it can then rewind the file and exec either 1prps or textps. If the
file is not seekable, it has to put the two bytes that it read back onto the standard
input. One way to do this is to create a pipe and fork a child. The parent then
sets its standard input to be the pipe and execs either textps or lprps. The
child writes the two bytes that it read to the pipe, followed by the rest of the file to
be printed.

Normally getopt is called to process only a single argument list. The global vari-
able opt ind is initialized to 1 in the initialized data segment of the getopt func-
tion. But in our server we call getopt to process multiple argument lists—one
argument list per client, so we have to reinitialize opt ind before the first call to
getopt for each client.

We maintain the file offset of the Systems file in the Client structure. If the file
is modified after we've saved this offset, but before it's used the next time, there’s
a good chance that the saved offset does not reference the line that it previously
pointed to. While our server could detect if this file has been modified (how?), we
have no way of repositioning the file offset to where it used to point to. Our only
recourse if the file is modified is not to try dialing again for any client whose in-
progress dial doesn’t work.

The only time the client array can be moved around by realloc is when
client_add is called, which is only after the select, not in the loop in which
weuse cliptr.,

The commands sent to the remote system will be messed up. A check could be
added to take_put_args to test for this.

A common technique is to require the person who modifies any of the files to tell
the server, to let the server reread the files. The SIGHUP signal is often used for
this.

You could execute the stty command on the remote system and parse its output,
but given the wide differences in the output of this command across different
Unix systems, this solution would be hard to implement.

Both servers, telnetd and rlogind, run with superuser privileges, so their calls
to chown and chmod succeed.
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19.3

19.5

19.6

19.7

19.8

19.9

Execute
Pty —n stty -a

to prevent the slave’s termios structure and winsize structure from being ini-
tialized.

Unfortunately the F_SETFL command of fcnt1 doesn’t allow the read-write sta-
tus to be changed.

There are three process groups: (1) the login shell, (2) the pty parent and child,
and (3) the cat process. The first two process groups constitute a session with the
login shell as the session leader. The second session contains just the cat process.
The first process group (the login shell) is a background process group and the
other two are foreground process groups.

First cat terminates when it receives the end of file from its line discipline. This
causes the pty slave to terminate, which causes the pty master to terminate. This
in turn generates an end of file for the pty parent that’s reading from the pty mas-
ter. The parent sends SIGTERM to the child so the child terminates next. (The
child doesn’t catch this signal.) Finally the parent calls exit (0) at the end of the
main function.

The relevant output from Program 8.17 is

cat e = 270, chars = 274, stat = 0:
pty e = 262, chars = 40, stat = 15: F X
Pty e = 288, chars = 188, stat = 0:

This can be done with the shell’s echo command and the date(1) command, all
in a subshell.

#!/bin/sh
( echo "Script started on " "date’;
pty "${SHELL:-/bin/sh}":
echo "Script done on " “date’ ) | tee typescript

The line discipline above the pty slave has echo enabled so whatever pty reads on
its standard input and writes to the pty master gets echoed by default. This echo-
ing is done by the line discipline module above the slave even though the pro-
gram (t tyname) never reads the data.



Bibliography

Adobe Systems Inc. 1985. PostScript Language Tutorial and Cookbook. Addison-Wesley, Reading,
Mass.

The “blue book.”
Adobe Systems Inc. 1986. PostScript Language Reference Manual. Addison-Wesley, Reading, Mass.

The “red book.” Appendix D of the 1985 version of this book contained detailed information
on communication across a serial line with a PostScript printer. This information was removed
from the 1986 version.

Adobe Systems Inc. 1988. PostScript Language Program Design. Addison-Wesley, Reading, Mass.

The “green book.” Chapter 12 contains information on writing a print spooler for a PostScript
printer.
Aho, A. V,, Kernighan, B. W., and Weinberger, P. J. 1988. The AWK Programming Language. Addi-
son-Wesley, Reading, Mass.

A complete book on the awk programming language. The version of awk described in this
book is sometimes called “nawk” (for new awk).

Andrade, J. M., Carges, M. T., and Kovach, K. R. 1989. “Building a Transaction Processing Sys-
tem on UNIX Systems,” Proceedings of the 1989 USENIX Transaction Processing Workshop,
pp- 13-22 (May), Pittsburgh, Pa.

A description of the AT&T Tuxedo Transaction Processing System.

ANSI. 1989. “American National Standard for Information Systems—Programming Language
C,” X3.159-1989, ANSI (Dec.).

The official standard for the C language and the standard libraries.

This standard can be ordered from Global Engineering Documents at +1 800 854 7179 or +1 714
261 1455.

Arnold, J. Q. 1986. “Shared Libraries on UNIX System V,” Proceedings of the 1986 Summer
USENIX Conference, pp. 395-404, Atlanta, Ga.

Describes the implementation of shared libraries in SVR3.

713



714

Bibliography

AT&T. 1989. System V Interface Definition, Third Edition. Addison-Wesley, Reading, Mass.
This is a four-volume set that specifies the source code interface and run-time behavior of
System V. The third edition corresponds to SVR4. A fifth volume was published in 1991 con-
taining updated versions of commands and functions from volumes 1-4.
AT&T. 1990a. UNIX Research System Programmer’s Manual, Tenth Edition, Volume 1. Saunders Col-
lege Publishing, Fort Worth, Tex.
The version of the Unix Programmer’s Manual for the 10th Edition of Research Unix (V10). This
volume contains the traditional Unix manual pages (Sections 1-9).
AT&T. 1990b. UNIX Research System Papers, Tenth Edition, Volume II. Saunders College Publish-
ing, Fort Worth, Tex.
Volume Il for the 10th Edition of Research Unix (V10) contains 40 papers describing various
aspects of the system.
AT&T. 1990c. UNIX System V Release 4 BSD/XENIX Compatability Guide. Prentice-Hall, Engle-
wood Cliffs, N.J.
Contains manual pages describing the compatibility library.
AT&T. 1990d. UNIX System V Release 4 Programmer’s Guide: STREAMS. Prentice-Hall, Engle-
wood Cliffs, N.J.
Describes the STREAMS system in SVR4.

AT&T. 1990e. UNIX System V/386 Release 4 Programimer’s Reference Manual. Prentice-Hall, Engle-
wood Cliffs, N.J.
This is the programmer’s reference manual for the SVR4 implementation for the Intel 80386
processor. It contains Sections 1 (commands), 2 (system calls), 3 (subroutines), 4 (file formats),
and 5 (miscellaneous facilities).
AT&T. 1991. UNIX System V/386 Release 4 System Administrator’s Reference Manual. Prentice-Hall,
Englewood Cliffs, N.J.
This is the system administrator’s reference manual for the SVR4 implementation for the Intel
80386 processor. It contains Sections 1 (commands), 4 (file formats), 5 (miscellaneous facilities),
and 7 (special files).

Bach, M.]J. 1986. The Design of the UNIX Operating System. Prentice-Hall, Englewood Cliffs, NJ.

A book on the details of the design and implementation of the Unix operating system.
Although actual Unix source code is not provided in this text (since it is proprietary to AT&T)
many of the algorithms and data structures used by the Unix kernel are presented and dis-
cussed. This book describes SVR2.

Bolsky, M. I, and Korn, D. G. 1989. The KornShell Command and Programming Language. Prentice-
Hall, Englewood Cliffs, N.J.

Chen, D., Barkley, R. E., and Lee, T. P. 1990. “Insuring Improved VM Performance: Some No-
Fault Policies,” Proceedings of the 1990 Winter USENIX Conference, pp. 11-22, Washington,
D.C.
Describes changes made to the virtual memory implementation of SVR4 to improve its perfor-
mance, especially for fork and exec.
Comer, D. E. 1979. “The Ubiquitous B-Tree,” ACM Computing Surveys, vol. 11, no. 2, pp- 121-137
(June).

Date, C.J. 1982. An Introduction to Database Systems, Volume II. Addison-Wesley, Reading, Mass.



Bibliography 715

Fowler, G. S., Korn, D. G., and Vo, K. P. 1989. “An Efficient File Hierarchy Walker,” Proceedings of
the 1989 Summer USENIX Conference, pp. 173188, Baltimore, Md.

Describes a new library function to traverse a filesystem hierarchy.

Garfinkel, S., and Spafford, G. 1991. Practical UNIX Security. O'Reilly & Associates, Sebastopol,
Calif.

A detailed book on Unix security.

Gingell, R. A., Lee, M., Dang, X. T., and Weeks, M. S. 1987. “Shared Libraries in SunOS,” Proceed-
ings of the 1987 Summer USENIX Conference, pp- 131-145, Phoenix, Ariz.

Gingell, R. A, Moran, J. P, and Shannon, W. A. 1987. “Virtual Memory Architecture in SunOS,”
Proceedings of the 1987 Summer USENIX Conference, pp. 81-94, Phoenix, Ariz.
Describes the initial implementation of the mmap function and related issues in the virtual mem-
ory design.
Goodheart, B. 1991. UNIX Curses Explained. Prentice-Hall, Englewood Cliffs, N.J.
A complete reference on terminfo and the curses library.
Hume, A. G. 1988. “A Tale of Two Greps,” Softw. Pract. and Exper., vol. 18, no. 11, pp. 1063—1072.

IEEE. 1990. “Information Technology—Portable Operating System Interface (POSIX) Part 1: Sys-
tem Application Program Interface (API) [C Language],” 1003.1~1990, IEEE (Dec.).

This is the first of the POSIX standards, and it defines the C language systems interface stan-
dard, based on the Unix operating system. It is often called POSIX.1.

This standard can be ordered directly from the IEEE: +1 800 678 IEEE, or +1 908 981 1393.

Kernighan, B. W,, and Pike, R. 1984. The UNIX Programming Environment. Prentice-Hall, Engle-
wood Cliffs, N.J.

A general reference for additional details on Unix programming. This book covers numerous
Unix commands and utilities, such as grep, sed, awk, and the Bourne shell.

Kernighan, B. W., and Ritchie, D. M. 1988. The C Programming Language, Second Edition. Prentice-
Hall, Englewood Cliffs, N.J.

A book on the ANSI standard version of the C programming language. Appendix B contains a
description of the libraries defined by the ANSI standard.

Kleiman, S. R. 1986. “Vnodes: An Architecture for Multiple File System Types in Sun Unix,” Pro-
ceedings of the 1986 Summer USENIX Conference, pp. 238-247, Atlanta, Ga.

A description of the original v-node implementation.

Korn, D. G., and Vo, K. P. 1991. “SFIO: Safe/Fast String/File 10,” Proceedings of the 1991 Summer
USENIX Conference, pp. 235—255, Nashville, Tenn.

A description of an alternative to the standard 1/0O library.

Krieger, O., Stumm, M., and Unrau, R. 1992. “Exploiting the Advantages of Mapped Files for
Stream 1/0,” Proceedings of the 1992 Winter USENIX Conference, pp. 27—42, San Francisco,
Calif.

An alternative to the standard 1/0O library based on mapped files.

Leffler, S. J., McKusick, M. K., Karels, M. J., and Quarterman, J. S. 1989. The Design and Implemen-
tation of the 4.3BSD UNIX Operating System. Addison-Wesley, Reading, Mass.

An entire book on the £.3BSD Unix system. This book describes the Tahoe release of 4.3BSD.



716

Bibliography

Libes, D. 1990. “expect: Curing Those Uncontrollable Fits of Interaction,” Proceedings of the 1990
Summer USENIX Conference, pp. 183—192, Anaheim, Calif.

A description of the expect program and its implementation.
Libes, D. 1991. “expect: Scripts for Controlling Interactive Processes,” Computing Systems, vol. 4,
no. 2, pp. 99-125 (Spring).
This paper presents numerous expect scripts.

Morris, R., and Thompson, K. 1979. “UNIX Password Security,” Communications ACM, vol. 22,
no. 11, pp. 594-597 (Nov.).

A description of the history of the design of the Unix password scheme.

Nemeth, E., Snyder, G., and Seebass, S. 1989. UNIX Systern Administration Handbook. Prentice-
Hall, Englewood Cliffs, N.J.
A book with many details on administering a Unix system.
Olander, D. J,, McGrath, G. J., and Israel, R. K. 1986. “A Framework for Networking in
System V,” Proceedings of the 1986 Summer USENIX Conference, pp. 38—45, Atlanta, Ga.

This paper describes the original implementation of service interfaces, streams, and TLI for
System V.

Plauger, P.J. 1992. The Standard C Library. Prentice-Hall, Englewood Cliffs, N.J.
A complete book on the ANSI C library. It contains a complete C implementation of the library.

Presotto, D. L., and Ritchie, D. M. 1990. “Interprocess Communication in the Ninth Edition
UNIX System,” Seftw. Pract. and Exper., vol. 20, no. S1, pp. S1/3-51/17 (June).

This paper describes the IPC facilities provided by the Ninth Edition of Unix, developed at the
Information Sciences Research Division of AT&T Bell Laboratories. The features are built on the
stream input-output system and include full-duplex pipes, the ability to pass file descriptors
between processes, and unique client connections to servers. A copy of this paper also appears
in AT&T [1990b).

Redman, B. E. 1989. “UUCP UNIX-to-UNIX Copy,” in UNIX Networking, eds. S. G. Kochan and
P. H. Wood, pp. 5-48. Howard W. Sams and Company, Indianapolis, Ind.

This chapter contains additional details on Honey DanBer UUCP. It also contains a detailed his-
tory of the UUCP programs.

Ritchie, D. M. 1984. “A Stream Input-Output System,” AT&T Bell Laboratories Technical Journal,
vol. 63, no. 8, pp. 1897-1910 (Oct.).

The original paper on Streams.

Seltzer, M., and Olson, M. 1992. “LIBTP: Portable, Modular Transactions for UNIX,” Proceedings
of the 1992 Winter USENIX Conference, pp. 925, San Francisco, Calif.

A modification of the db(3) library from 4.3+BSD that implements transactions.

Seltzer, M., and Yigit, O. 1991. “A New Hashing Package for UNIX,” Proceedings of the 1991 Win-
ter USENIX Conference, pp. 173—184, Dallas, Tex.
A description of the dbm(3) library and various implementations of it, and a newer hashing
package. -
Stevens, W. R. 1990. UNIX Network Programming. Prentice-Hall, Englewood Cliffs, N.J.
A detailed book on network programming under Unix.

Stonebraker, M. R. 1981. “Operating System Support for Database Management,” Communica-
tions ACM, vol. 24, no. 7, pp. 412—418 (July).

. |



Bibliography 717

Strang, J., Mui, L., and O'Reilly, T. 1991. termcap & terminfo, Third Edition. O'Reilly & Associates,
Sebastopol, Calif.

A book on termcap and terminfo.
Thompson, K. 1978. *“UNIX Implementation,” Bell Syst. Technical Journal, vol.57, no.6,
pp- 1931-1946 (July-Aug.).
Describes some of the implementation details of Version 7.
Weinberger, P. J. 1982. “Making UNIX Operating Systems Safe for Databases,” Bell Syst. Technical
Journal, vol. 61, no. 9, pp. 2407-2422 (Nov.).
Describes some problems in implementing databases in early Unix systems.
Williams, T. 1989. “Session Management in System V Release 4,” Proceedings of the 1989 Winter
USENIX Conference, pp- 365—375, San Diego, Calif.
Describes the session architecture implemented in SVR4, which is part of POSIX.1. This
includes process groups, job control, and controlling terminals. Also describes the security con-
cerns of existing approaches.
X/Open. 1989. X/Open Portability Guide. Prentice-Hall, Englewood Cliffs, N.J.
This is a set of seven volumes covering the following areas: commands and utilities (Vol. 1), sys-

tem interfaces and headers (Vol. 2), supplementary definitions (Vol. 3), programming languages
(Vol. 4), data management (Vol. 5), window management (Vol. 6), networking services (Vol. 7).



Index

The function subentries labeled “definition of” point to where the function prototype
appears and, when applicable, to the source code for the function. Functions defined in
the text that are used in later examples, such as the set £1 function in Program 3.5, are
included in this index. The definitions of external functions that are part of the larger
examples (Chapters 15-19) are also included in this index, to help in going through
these larger examples. Also, significant functions and constants that occur in any of the
examples in the text, such as select and poll, are also included in this index. Trivial
functions that occur in almost every example, such as close and exit, are not refer-

enced when they occur in examples.

#1, see interpreter files

., see current directory

. ., see parent directory

386BSD, xvii, 30

4.3BSD, xvii, 29, 715
Reno, xvii, 29, 58, 367, 423, 484, 487
Tahoe, xvii, 29,715

4.3+BSD, xvii, 29-30

44BSD, xvii, 29

abort function, 162, 195, 231, 263, 266—268, 278,
299, 309-310, 323
definition of, 309, 311
absolute pathname, 3, 6, 35, 41, 113, 119, 217, 693
accept function, 501, 503—-505

access function, 82-83, 100, 103, 278
definition of, 82
accounting
login, 153
process, 226-231
acct function, 226
acct structure, 226
acctcom program, 226
accton program, 226, 229
ACOMPAT constant, 227
ACORE constant, 227, 230
adjustment on exit, semaphore, 462-463
Adobe Systems, 551, 578, 713
advisory record locking, 378
AFORK constant, 227, 230
AF_UNIX constant, 479, 501-502
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Index

Aho, A. V., 219,713
alarm function, 263,266, 278—279, 282, 285-290,
317,319, 323-324, 702
definition of, 285
alloca function, 171
ALTWERASE constant, 329, 335, 337
American National Standards Institute, see ANSI
Andrade, J. M., 452,713
ANSI (American National Standards Institute),
25-26,713
ANSI C, xvi—xvii, 12-13, 25-26,713
ansi streams module, 391
ARG_MAX constant, 32, 36, 39, 41, 209
arguments, command-line, 165-166
Amold J. Q., 169, 713
asctime function, 157, 159
definition of, 157
<assert.h> header, 27
ASU constant, 227, 230
asynchronous 1/0, 395, 402—404
at program, 423
atexit function, 163—165, 185, 195, 560, 619, 645,
697
definition of, 163
atomic operation, 33, 36, 45, 49, 60-61, 63, 96, 126,
303, 309, 370, 446, 458, 460, 462, 603, 710
ATE&T, 4,29, 143, 158, 283, 336, 383—385, 387, 401,
404, 419-420, 425, 554, 638, 655, 703, 714
automatic variables, 167, 176, 178—179, 185
awk program, 219,221, 445,715
BXSIG constant, 227, 230

BOD constant, 344

B110 constant, 344, 609

B1Z200 constant, 344, 609

B134 constant, 344, 609

B150 constant, 344, 609

B1B800 constant, 344, 609

B19200 constant, 344, 609

B2Z00 constant, 344, 609

BZ400 constant, 344, 609

B300 constant, 344, 609

B38400 constant, 344, 609

B4800 constant, 344, 609

B50 constant, 344, 609

B600 constant, 344, 609

B75 constant, 344, 609

B9600 constant, 344, 609

Bach, M. J., xviii, 91, 95, 116, 189, 384, 689, 714

background process group, 246, 249, 251, 253, 255,
258, 269, 313, 319, 712

Barkley, R. E., 714

Bass, J., 367

baud rate, terminal I/0O, 343—344, 555, 582

Berkeley Software Distribution, see BSD

bibliography, alphabetical, 713-717

bind function, 501-503

block special file, 75, 115-116

block_write function, 561

definition of, 562

Bolslcy, M.1., 441,714

Bostic, K., xviii

Bourne, S.R., 2

Bourne shell, 2, 44, 71, 143, 172, 182, 240, 249, 252,
316, 351, 380, 424, 436, 441, 707708, 715

BREAK character, 330, 335, 337-338, 340, 342, 345,
356, 622

BRKINT constant, 329, 337-338, 340, 355-356

broadcast signals, 284

BSO constant, 338

BS1 constant, 338

BSD (Berkeley Software Distribution), 29

BSD Networking Release 1.0, xvii, 29

BSD Networking Release 2.0, xvii, 29-30

BSD/386, xvii

BSDLY constant, 329, 336, 338, 341

bss segment, 167

buf_args function, 494—495, 513-514, 592, 594,
626—-628

definition of, 495

buffer cache, 116

buffering, standard 1/0, 122-125, 189, 195, 222,
310, 444—-445, 524, 636

BUFSIZ constant, 41,124

C, ANSI, xvi—xvii, 12-13, 25-26, 713

Cshell, 2, 44, 182, 240, 249, 254, 351, 441

cache, buffer, 116

caddr_t data type, 45,407

calendar time, 19, 23, 45, 103, 155—-157, 221, 227

call function, 619-620
definition of, 620

call program, 615-616, 635, 653

calld.h header, 587

call.h header, 617

calloc function, 169-170, 185, 390, 438, 528, 697
definition of, 170

canonical mode, terminal 1/0, 349-352

Carges, M. T,, 452,713

cat program, 69,91, 101, 250, 253, 520, 625, 629,

649, 712

CBRERK constant, 555

cbreak terminal mode, 326, 354, 356, 360, 555

cc program, 5, 44, 161, 169
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cc_t data type, 328
CCTS_OFLOW constant, 329, 338, 703
cd program, 112
cfgetispeed function, 278, 330, 343
definition of, 343
cfgetospeed function, 278, 330, 343
definition of, 343
cfsetispeed function, 278, 330, 343, 561, 563,
609
definition of, 343
cfsetospeed function, 278, 330, 343, 561, 563,
609
definition of, 343
char streams module, 391
character special file, 75, 115116, 347, 384, 389
CHAR_BIT constant, 32,41
CHAR_MAX constant, 31-32, 41
CHAR MIN constant, 31-32, 41
chdir function, 6,100, 112-114, 118, 182, 239, 278,
418, 694
definition of, 112
Chen, D., 714
child dial function, 603, 605, 607
definition of, 606
CHILD_ MAX constant, 32, 36, 39, 41,193
chmod function, 85-88, 100, 104, 278, 451, 503,
640-641, 711
definition of, 85
chmod program, 79, 452
chown function, 36, 89-90, 99-100, 104, 239, 278,
451, 640-641, 711
definition of, 89
chroot function, 119, 278, 424, 692, 704—705
CIGNORE constant, 329, 338
Clark, J.J., xviii, 551
clear_alrm function, definition of, 565
clearenv function, 173
clearerr function, 129
definition of, 129
clear_intr function, definition of, 564
cli_args function, 494-495, 513, 594
definition of, 496, 595
cli_conn function, 497, 500-502, 505-506, 511,
581, 620
definition of, 497, 500, 502
client_add function, 508, 594, 711
definition of, 508, 596
client_alloc function, 508
definition of, 507
client_del function, definition of, 508, 596
client—server
connection functions, 496-505

model, 424, 470472
client_sigchld function, 594, 605
definition of, 597
CLK_TCK constant, 19, 33, 46, 231
CLOCAL constant, 267, 329, 338, 563, 609
clock function, 45-46
clock tick, 19, 36, 39, 41, 45—46, 227, 232-233
CLOCKS_PER_SEC constant, 45—46
clock_t data type, 19, 45-46, 233
clone device, streams, 638
close function, 7,43, 47, 50-51, 56, 6263, 97,
102, 278, 373, 384, 414, 433, 445, 452, 468, 473,
513
definition of, 51
closedir function, 4-5, 107-111, 348, 692
definition of, 107
closelog function, 422
definition of, 422
close_mailfp function, 560, 570
definition of, 569
clr_f1 function, 66, 364-365, 609, 709
clri program, 101
CMSG_DATA function, 487-489
cmsghdr structure, 487488
cmux streams module, 391
Comer, D. E., 516,714
command-line arguments, 165-166
comp_t data type, 45
connect function, 501, 503
connection functions, client-server, 496-505
connld streams module, 497-498, 505
controlling
process, 246, 267
terminal, 49, 192, 210, 227, 243, 245-248, 250,
252-253, 255, 258, 260-261, 267, 269270,
319, 333, 337, 342, 345, 351, 386, 389, 415-418,
424 632, 638—642, 681, 705, 717
cooked terminal mode, 326
cooperating processes, 378,522,710
Coordinated Universal Time, see UTC
coprocesses, 441-445, 635, 651
copy-on-write, 189
core file, 91, 103, 231, 265, 269, 279, 310, 334, 352,
691, 697, 699
cp program, 118,411
cpio program, 104, 119, 692-693
<cpio.h> header, 27
CR terminal character, 331-333, 352
CRO constant, 338
CR1 constant, 338
CR2 constant, 338
CR3 constant, 338
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CRDLY constant, 329, 336, 338, 341
CREAD constant, 329, 338, 563, 608
creat function, 47, 50,61, 69, 81, 84, 97, 100, 104,
127, 278, 691
definition of, 50
creation mask, file mode, 83-84, 106, 118, 192, 210,
417
CRMOD constant, 555
cron program, 324, 416, 422-423, 702
CRTS_IFLOW constant, 329, 338, 703
crypt function, 239, 247, 254
crypt program, 247, 349
CS5 constant, 336338
CS6 constant, 336-338
Cs87 constant, 336—338, 608
Cs8 constant, 336-338, 355—356, 563, 608
.cshre file, 240
CSIZE constant, 329, 336-338, 355
csopen function, 491
definition of, 492, 506
CSTOPE constant, 329, 338
ctermid function, 345, 351
definition of, 345-346
ctime function, 155, 157-159
definition of, 157
ctl str function, 612
definition of, 612
<ctype.h> header, 27
cu program, 214, 579-581, 615-617, 626, 629
curses library, 360,715
cuserid function, 232

daemon, 415-425
coding, 417-418
error logging, 418-424
daemon_init function, 417-418, 424, 509, 590,
705-706
definition of, 418
Dang, X.T., 169, 715
data segment
initialized, 167
uninitialized, 167
data types, primitive system, 13, 4445
database library, 515-550
coarse locking, 523
concurrency, 522-524
fine locking, 523
implementation, 518-521
performance, 545-550
source code, 524—544
database transactions, 716
Date, C.]., 524,714

date functions, time and, 155-159
date program, 157, 159, 316, 695, 712
db library, 516, 716
DB structure, 516, 526, 528, 546
_db_alloc function, 526, 528
definition of, 528
db_close function, 516, 528
definition of, 516, 529
db_delete function, 517, 523, 530-531, 534, 536,
710
definition of, 517, 535
_db_dodelete function, 534, 536-537, 539,
543-544, 550, 710
definition of, 535
db_fetch function, 517-518, 521, 523, 528,
530-531, 534
definition of, 517, 529
_db_find function, 528, 530-532, 534, 539, 543,
550
definition of, 530
_db_findfree function, 539, 543-544
definition of, 542
_db_free function, 528
definition of, 529
db.h header, 517, 524, 528
_db_hash function, 531, 550
definition of, 531
DE_INSERT constant, 517, 539
dbm library, 515, 716
db_nextrec function, 517-518, 521, 523, 534,
543-544, 550, 710
definition of, 517, 545
db_open function, 516, 518, 521, 523, 526-528, 545
definition of, 516, 526
_db_readdat function, 528, 534, 710
definition of, 534
_db readidx function, 531-532, 710
definition of, 532
_db_readptr function, 532, 550
definition of, 532
DB_REPLACE constant, 517, 539
db_rewind function, 517, 543—-544
definition of, 517, 544
db_store function, 517-518, 521, 523-524,
530-531, 534, 536, 539, 543, 548, 550
definition of, 517, 540
_db_writedat function, 378, 536—537, 543, 550,
710
definition of, 537
_db writeidx function, 378, 405, 537, 543, 550,
710
definition of, 538
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_db_writeptr function, 539, 543
definition of, 539
dcheck program, 101
dd program, 231
deadlock, 194, 371, 444, 561, 636
record locking, 371
DEBUG function, 608
definition of, 607
DEBUG_NONL function, 608
definition of, 607
delayed write, 116
descriptor set, 397, 399, 414, 704
/dev/conslog device, 420
/dev/£d device, 69, 119
/dev/£d/0 device, 69
/dev/fd/1 device, 69,119
/dev/fd/2 device, 69
dev_find function, 601
definition of, 601
device number
major, 44-45, 114-115, 347
minor, 44-45, 114-115, 347
device, streams clone, 638
Devices file, 581-585, 589, 599-600, 603, 608
/dev/klog device, 421
/dev/kmem device, 53
/dev/log device, 419-421, 424-425, 704
dev_next function, definition of, 600
/dev/null device, 56, 67, 253, 389
/dev/ptmx device, 638-639
/dev/pty device, 640
dev_rew function, definition of, 601
/dev/stderr device, 69
/dev/stdin device, 69
/dev/stdout device, 69
dev_t data type, 45, 114
/dev/tty device, 38, 247, 253254, 261, 345-346,
351, 389, 655
/dev/vidadm device, 389
/dev/zero device, 468—470
df program, 118, 692
dial function, 580
Dialcodes file, 584
Dialers file, 580-584, 589, 599, 601, 603, 607, 610,
612
dial_find function, 603, 607
definition of, 602
dial next function, definition of, 602
dial_rew function, definition of, 602
DIR structure, 5, 108, 236, 516
directories
files and, 3-6

reading, 107-111
directory, 3
file, 75
home, 1, 6,112, 172, 239, 242
ownership, 81
parent, 3, B8, 103, 106
root, 3, 6,23,116, 119, 192, 210, 236, 692
working, 6,12, 35,41, 94, 112-113, 146, 192, 210,
265, 417
dirent structure, 4-6, 108, 110, 348
<dirent.h> header, 27, 108
DISCARD terminal character, 331, 333, 339
<disklabel.h> header, 68
do_acct function, 560
definition of, 561
do_driver function, 646,654
definition of, 654
doescape function, 622
definition of, 623
dot, see current directory
dot-dot, see parent directory
DSUSP terminal character, 331, 333, 340
du program, 91, 118, 691-692
Duff, T, 69
dup function, 43, 47, 56, 60—63, 125, 138, 190, 278,
373—-374, 689-690, 698
definition of, 61
dup? function, 49, 61-63, 70, 125, 278, 433, 444,
689
definition of, 61

E2BIG error, 456

EACCES error, 14-15, 369, 376, 381-382, 695

EAGAIN error, 364, 366, 369, 376, 379382, 456,
461-462

EBADF error, 43, 279

EBADMSG error, 393

ECHILD error, 280,297

ECHO constant, 329, 338—339, 350, 354355, 555,
646

echo program, 165

ECHOCTL constant, 329, 338

ECHOE constant, 329, 338—-339, 350, 646

ECHOK constant, 329, 339, 350, 646

ECHOKE constant, 329, 339

ECHONL constant, 329, 339, 350, 646

ECHOPRT constant, 329, 339

ed program, 312, 314, 379380, 382

EEXIST error, 450

EFBIG error, 702

effective

group ID, 77-78, 80-82, 88, 90, 117, 151, 188,

192,213, 216, 451, 472, 482
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user ID, 77-78, 80-82, 85, 90, 104, 117, 188, 192,
210, 213-216, 232, 238, 240, 284, 324, 451, 455,
460, 465, 472, 482, 497, 505, 639, 695, 700
efficiency
1/0, 55-56
standard 1/0, 131-133
EIDRM error, 455-456, 460
EINTR error, 222-223, 275, 285, 303, 315, 397, 402,
437, 439, 456, 462, 563, 571, 573, 591, 594
EINVAL error, 35,292, 387, 389, 438
EIO error, 258, 269-270, 640
Ellis, M., xviii
ELQOP error, 99
ENAMETOOLONG error, 49-50
endgrent function, 150-151
definition of, 150
endpwent function, 147-148
definition of, 147
ENODEV error, 389
ENOCENT error, 15, 640-641
ENOLCK error, 377378, 703
ENOMSG error, 456
ENOSTR error, 389
ENOSYS error, 244
ENOTTY error, 336, 344, 389, 688
environ variable, 166-167, 172, 174, 208, 697
environment list, 166—167, 192, 209, 238-239
environment variable, 172-174
HOME, 39,172,239
IFS, 226
LANG, 34,172
LC_ALL, 172
LC_COLLATE, 172
LC_CTYPE, 172
LC_MONETARY, 172
LC_NUMERIC, 172
LC_TIME, 172
LOGNAME, 39,172,232, 239
MAILPATH, 172
NLSPATH, 172
PAGER, 433,437
PATH, 80,172, 208-210, 217, 219, 222, 239--240
PRINTER, 555
SHELL, 239, 651
TERM, 172, 238, 240
TMPDIR, 141-143
TZ, 155, 158—-159, 172, 695
USER, 172,239
ENXIO error, 446
EOF constant, 9, 128-129, 571, 695
EOF terminal character, 331, 333, 338—339, 349, 352
EOL terminal character, 331-333, 339, 349, 352

EOL2 terminal character, 331-333, 339, 349, 352
EPEEM error, 213
EPIPE error, 52, 430, 708
Epoch, 19, 21, 103, 153, 155, 505
ERANGE error, 41
ERASE terminal character, 331, 333, 336-339,
351-352
ERMID error, 462
err_dump function, 310, 682
definition of, 683
err_msg function, 682
definition of, 683
errno variable, 14-15, 23, 35-37, 41, 52, 63, 99,
213, 222, 244, 258, 264, 269270, 275,
279-280, 285, 292, 297, 303, 336, 344, 364, 366,
369, 382, 397, 402, 422, 430, 446, 682, 688, 702
<errno.h> header, 14, 27
error
handling, 14-15
logging, daemon, 418-424
routines, standard, 681-686
err_quit function, 6, 682
definition of, 683
err_ret function, 682
definition of, 682
err_sys function, 6,23, 682
definition of, 683
ESRCH error, 285
/etc/conf/cf.d/mtune file, 181,451
/etc/group file, 17, 145,153
/ete/hosts file, 153
/etc/master.passwd file, 149
/ete/motd device, 389
/ete/networks file, 152-153
/etc/passwd file, 1, 78, 112, 145-146, 148-149,
153
/etc/protocols file, 152-153
/ete/xc file, 155, 241
/etc/remote file, 579
/etc/services file, 152~-153
/etec/shadow file, 78, 149
/ete/syslog.conf file, 421
/etc/termcap file, 360
fetc/ttys file, 238
EVENP constant, 555
EWOULDBLOCK error, 364
exec function, 9-11, 22, 33, 36, 64, 80, 100,
103-104, 161, 164-165, 169, 184, 189,
193194, 207-218, 221-222, 224-227, 231,
235--236, 238-239, 241-242, 244, 273, 316,
373, 375, 382, 410, 427, 430~-431, 435, 444, 449,
470, 490—491, 493, 495, 505-506, 514,
632-633, 636, 642, 653, 657, 697, 708, 711, 714
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execl function, 207-209, 218, 222223, 228-229,
231, 236, 239, 314-315, 432, 438, 443—444,
477, 492, 651, 700
definition of, 207
execle function, 207-209, 211-212, 238, 278
definition of, 207
execlp function, 10-12, 18, 207-212, 221-222,
236, 654, 700
definition of, 207
execv function, 207-209
definition of, 207
execve function, 207-210, 278, 700
definition of, 207
execvp function, 207-210, 645-646
definition of, 207
exercises, solutions to, 687-712
_exit function, 162,164, 195-198, 222, 235, 278,
309-310, 323, 698, 702
definition of, 162
exit function, 6,127, 132, 162-164, 184, 190,
193-198, 203, 207, 222, 227, 231, 235, 239, 278,
299, 309, 354, 417, 436, 570, 585, 594, 607, 646,
657, 679, 698, 708, 712
definition of, 162
exit handler, 163
expect program, 635, 653, 655, 716
expect_str function, 612,630
definition of, 613
exp_read function, definition of, 614

fattach function, 498—499
fchdir function, 112
definition of, 112
fchmod function, 85-88, 99, 104, 381
definition of, 85
fchown function, 89-90, 104
definition of, B9
fclose function, 125-127, 162, 164, 309-310
definition of, 127
fentl function, 47, 60, 62-67, 70, 92, 125, 138,
210, 278, 364, 367—371, 373, 376, 378, 403,
547-549, 561-562, 712
definition of, 63
<fentl.h> header, 27, 48
FD_CLOEXEC constant, 64, 210, 376
FD_CLR function, 510, 593, 704
FD_ISSET function, 398, 510, 571, 591, 704
fdopern function, 125-127, 707
definition of, 125
fd_set data type, 45,397, 414, 703-704
FD_SET function, 510, 571, 573, 590-591, 704, 706
FD_SETSIZE constant, 398, 704

F_DUPFD constant, 63—65
FD_ZERO function, 398, 510, 571, 573, 590, 704, 706
feature test macro, 44, 65
feof function, 129,134
definition of, 129
ferror function, 129, 134
definition of, 129
FFO0 constant, 339
FF1 constant, 339
FFDLY constant, 329, 336, 339, 341
fflush function, 122, 125-126, 144, 351, 441, 445,
636, 688, 695
definition of, 125
F_FREESP constant, 92
fgete function, 128, 132-133
definition of, 128
F_GETFED constant, 63-65, 376
F_GETFL constant, 63—66, 562
F_GETLK constant, 63, 368-371
F_GETOWN constant, 63—65
fgetpos function, 135-136
definition of, 136
fgets function, 8, 10, 128, 130-131, 133134,
143-144, 444445, 524, 652, 659, 693, 695, 708
definition of, 130
FIFQs, 75,427, 445—449
file
access permissions, 7881, 117-118
block special, 75, 115-116
character special, 75, 115-116, 347, 384, 389
descriptor passing, 479490
descriptors, 69, 47-48
directory, 75
group, 149150
holes, 53-54, 91
mode creation mask, 83—84, 106, 118, 192, 210,
417
offset, 51-53, 57, 59-60, 62, 191-192, 375, 405,
518, 520, 690, 711
ownership, 81
pointer, 122
regular, 74
sharing, 56—60, 190
size, 90-91
special device, 114-116
times, 102-103, 414
truncation, 91-92
types, 74-77
file program, 119, 693
FILE structure, 108, 121-122, 129, 138, 195, 437,
516
filename, 3
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truncation, 49-50
fileno function, 138, 350, 437, 439, 695
definition of, 138
files and directories, 3-6
filesystem, 3,92-95
S5, 39, 50, 92-93, 99
UFS, 39, 50,92-93,99
find program, 103, 111, 693
find line function, 599
finger program, 119, 146147, 692
FIPS, 28, 39, 50, 78, B1, 89, 151, 172, 213, 232, 248,
331
<float .h> header, 27,31
flock function, 367
flock structure, 368, 370-371, 374
FLUSHO constant, 329, 333, 339
FMNAMESZ constant, 389
FNDELAY constant, 364
F_OK constant, 82
fopen function, 4,121, 125-127, 433, 435, 516
definition of, 125
FOPEN_MAX constant, 31, 36, 41
foreground process group, 246-252, 255, 260,
267-270, 313, 319, 333—335, 337, 341, 358,
386, 416, 656, 712
foreground process group ID, 248, 252, 330
fork function, 10-11, 22, 60, 188-196, 201,
203-204, 207, 215, 221-222, 224-227,231,
235, 238-239, 241, 244-245, 253, 256, 261,
274, 278, 315-316, 323, 373-375, 382, 395,
410, 417, 423, 425, 427429, 431, 433, 435, 437,
449, 457, 470, 474, 479, 490-491, 495,
505-506, 514, 545, 584-585, 589, 594, 603,
605, 607, 630-631, 636—638, 641642, 653,
699, 704, 707-708, 711, 714
definition of, 188
Fowler, G.S., 111,715
fpathconf function, 31, 33-39, 41, 89, 108,
331-332
definition of, 35
FPE_FLTDIV constant, 322
FPE_INTDIV constant, 322
FPE_INTDIV_TRAP constant, 322
fpos_t data type, 45,135
fprintf function, 136, 688
definition of, 136
fputc function, 123,130, 132-133
definition of, 130
fputs function, 123, 128, 130-131, 133, 143-144,
693, 708
definition of, 131
F_RDLCK constant, 368-371

fread function, 128, 133-135, 226
definition of, 134

free function, 142-143, 170-171, 278
definition of, 170

freopen function, 125-127
definition of, 125

fscanf function, 137
definition of, 137

fsck program, 101

fseek function, 126, 135-136, 600
definition of, 135

F_SETFD constant, 63—64, 66, 70, 376, 689

F_SETFL constant, 63—64, 66, 70, 403, 562, 689,
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F_SETLK constant, 63, 368-370

F_SETLKW constant, 63, 368—370

F_SETOWN constant, 63, 65,403

fsetpos function, 126, 135-136
definition of, 136

fstat function, 3, 73-74, 99, 278, 348, 381,

411-412, 429, 472, 527

definition of, 73

fsync function, 116—117, 144, 411, 550, 695
definition of, 116

ftell function, 135-136, 600
definition of, 135

ftok function, 450

ftpd program, 423

ftruncate function, 91-92, 104, 375—376, 411
definition of, 92

fts function, 111

ftw function, 100-101, 107111, 118, 692

<ftw.h> header, 27

function prototypes, 12, 659-677

functions, system calls versus, 20-22

F_UNLCK constant, 368-371

fwrite function, 128, 133--135, 324, 702
definition of, 134

F_WRLCK constant, 368—371

Garfinkel, S., 149, 208, 247, 715

gather write, 404, 484

generic pointer, 13, 55, 170

GETALL constant, 460

getc function, 9, 128-129, 131, 133, 138, 351, 695
definition of, 128

getchar function, 128, 568, 695
definition of, 128

getcwd function, 41, 112-114, 119, 170, 693-694
definition of, 113

getdtablesize function, 44

getegid function, 188, 278
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definition of, 188

getenv function, 167, 172-173
definition of, 172

geteuid function, 188,214-215, 278
definition of, 188

getgid function, 16, 188, 278
definition of, 188

getgrent function, 150-151
definition of, 150

getgrgid function, 150
definition of, 150

getgrnam function, 150, 641
definition of, 150

getgroups function, 151,278
definition of, 151

gethostname function, 154-155
definition of, 154

getlogin function, 231-232, 424, 705-706
definition of, 232

getmsg function, 384—386, 391394, 414, 483, 655,

704

definition of, 392

GETNCNT constant, 460

getopt funchion, 509, 559, 590, 595, 618, 644, 711

get_page function, 556, 560, 565-566, 578
definition of, 567

getpass function, 239, 247, 349, 351-352
definition of, 350

getpgrp function, 243,278
definition of, 243

GETPID constant, 460

getpid function, 10,12-13, 188, 278
definition of, 188

getpmsg function, 384—386, 391-392
definition of, 392

getppid function, 188189, 278
definition of, 188

getpwent function, 147-148
definition of, 147

getpwnam function, 145-148, 152, 232, 239,

278-280, 695-696

definition of, 147-148

getpwuid function, 145-148, 152, 231-232, 695
definition of, 147

getrlimit function, 44,180, 183
definition of, 180

getrusage function, 203, 233

gets function, 130-131, 693
definition of, 130

getsid function, 246

getspnam function, 695

get_status function, 560, 565, 575

definition of, 566
gettimeofday function, 155
getty program, 197, 238-241, 423, 622
gettytab file, 238
getuid function, 16, 188, 214, 231-232, 278
definition of, 188
GETVAL constant, 460
GETZCNT constant, 460
GID, see group ID
gid t datatype, 45
Gingell, R. A., 169, 407, 715
Gitlin, J. E., xviii
gmtime function, 156—157, 159
definition of, 156
Godsi), J. M., xviii
Goodheart, B., 360, 715
goto, nonlocal, 174-180, 299303
Grandi, 5., xviii
grantpt function, 638640, 656
grep program, 20, 143, 163, 235, 715
group file, 149150
group ID, 16,213-216
effective, 77-78, B0—82, 88, 90, 117, 151, 188,
192, 213, 216, 451, 472, 482
real, 77-78, 82, 150, 188, 192, 210, 213, 227, 470
supplementary, 17, 33, 77-78, 80, 88, 90,
150-152, 192, 210, 216
group structure, 149, 641
<grp.h> header, 27, 149, 153

hack, 252, 379, 503

handle alrm function, 563
definition of, 565

handle_intr function, 563,565
definition of, 564

headers, standard, 27

heap, 168

Hein, T. R., xviii

Hogue, J. E., xviii

holes, file, 53—54, 91

home directory, 1,6, 112, 172, 239, 242

HOME environment variable, 39, 172, 239

Honeyman, P, xwviii

hostname program, 155

Hume, A. G., 143,715

HUPCL constant, 329, 339, 608

ICANON constant, 329, 331, 333—335, 338—-339, 342,
352, 354-355

I_CANPUT constant, 388

ICRNL constant, 329, 333, 339340, 349, 355-356
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identifiers
IPC, 449-450
process, 187-188
IECHO constant, 339
IEEE (Institute for Electrical and Electronic
Engineers), 26, 158, 715
IEXTEN constant, 329, 331, 333-335, 340, 355-356
IFS environment variable, 226
IGNBRK constant, 329, 337--338, 340, 563, 609
IGNCR constant, 329, 333, 339340, 349, 563
IGNPAR constant, 329, 340, 342, 609
I_GRDOPT constant, 392
I_GWROPT constant, 391
I_LIST constant, 389-390
IMAXBEL constant, 329, 340
implementations, Unix, 28
inetd program, 241,243, 416, 419, 422
INFTIM constant, 402, 512, 621
init program, 153, 187-188, 196—197, 203,
238-241, 243, 256, 258, 261, 268-269, 284,
320, 416, 701, 707
initgroups function, 151-152, 239
definition of, 151
initialized data segment, 167
init_input function, definition of, 572
inittab file, 269
INLCR constant, 329, 340
i-node, 45, 57-59, 74, 87, 92--95, 99, 102-104,
107-108, 112, 115-116, 147, 261, 347, 374, 687,
692
ino t datatype, 45,94
INPCK constant, 329, 340, 342, 355-356
Institute for Electrical and Electronic Engineers, see
IEEE
International Standards Organization, see ISO
Internet worm, 130
interpreter file, 217-221, 236
interprocess communication, see IPC
interrupted system calls, 39, 275-277, 289-290,
297-299, 309, 396, 575
INT MAX constant, 32,41
INT_MIN constant, 32,41
INTR terminal character, 331, 334, 340, 351
I/O
asynchronous, 395, 402-404
efficiency, 55-56
library, standard, 8, 121-144
memory mapped, 407-413
multiplexing, 394—402
nonblocking, 363-366
terminal, 325-361
unbuffered, 7, 47-71

ioctl function, 47, 67-68, 70, 246, 270, 276, 328,
358-359, 363, 383385, 387392, 403, 454,
481-483, 498500, 639—640, 642643, 645,
655-657

definition of, 68

<ioctl.h> header, 68

_IOFPBF constant, 124

__IOLBF constant, 124, 138-139

_IONBF constant, 124, 138-139

iovec structure, 404, 484485, 487, 489, 492, 506,
532, 537-538, 620

IOV_MAX constant, 404

IPC (interprocess communication), 427-514

identifiers, 449450
key, 449-450, 454, 459, 464
System V, 449-453

IPC_CREAT constant, 450

IPC_EXCL constant, 450

IPC_NOWAIT constant, 455-456, 461-462

ipc_perm structure, 449-450, 454, 459, 464, 472

IPC_PRIVATE constant, 449-450, 471, 474

ipcrm program, 451-452

IPC_RMID constant, 455, 460, 465—466

ipcs program, 452,474

IPC_SET constant, 455, 460, 465

IPC_STAT constant, 455,460, 465

I_PUSH constant, 499, 639

I_RECVFD constant, 481483, 498, 500, 505

isastream function, 387-388, 390, 500

definition of, 388

isatty function, 332, 346—349, 359, 387-388, 444,

608, 644, 652, 688
definition of, 346

1_SENDFD constant, 481—482

1_SETSIG constant, 403

ISIG constant, 329, 331, 333—-335, 340, 355356

is_locked function, 603

definition of, 598

IS0 (International Standards Organization), xvii,
25-26

Israel, R. K., 385, 716

I_SRDOPT constant, 392

is_readlock function, 371

ISTRIP constant, 329, 340, 342, 355-356, 563, 609

is_writelock function, 371

I_SWROPT constant, 391

IUCLC constant, 329, 340

IXANY constant, 329, 340

IXOFF constant, 329, 334335, 340, 563, 609

IXON constant, 329, 334-335, 341, 355356, 563,
609
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job control, 248-252
shell, 244, 248, 254, 256, 273, 302, 319-320, 648,
650
signals, 319-320
Jolitz, W. E,, 30
Joy, W.N., 2,58
jsh program, 249

Karels, M. J., 28-29, 91, 95, 189, 193, 195, 384, 407,
715

kdump program, 119, 380

Kernighan, B. W., xviii, 26, 126, 133, 137-138, 171,
219, 682, 687, 713, 715

key, IPC, 449-450, 454, 459, 464

key_t data type, 449

kill function, 17, 228, 256-257, 264, 273, 278,
282-285, 307-308, 310311, 320-323, 332,
351, 623, 647, 650, 701-702

definition of, 284

kill program, 264-265, 269,273, 444

KILL terminal character, 331, 334, 339, 351-352

Kleiman, S. R., 58, 715

Korn, D. G., 2, 111, 143, 441, 714-715

KornShell, 2, 44, 66, 71, 143, 172, 182, 240, 249, 254,
351, 380, 424, 441, 648649, 651, 707, 714

Kovach, K. R, 452,713

Krieger, O., 143, 413, 715

ktrace program, 119, 380

LANG environment variable, 34,172
<langinfo.h> header, 27
last program, 153
layers, shell, 248
LC_ALL environment variable, 172
LCASE constant, 555
LC_COLLATE environment variable, 172
LC_CTYPE environment variable, 172
lchown function, 89-90, 100, 104
definition of, 89
LC_MONETARY environment variable, 172
LC_NUMERIC environment variable, 172
L_ctermid constant, 345
LC_TIME environment variable, 172
1d program, 169
LDECCTQ constant, 555
ldterm streams module, 384, 391, 640
leakage, memory, 171
Lee, M., 169,715
TP, 714
Leffler, S. J., 28-29, 91, 95, 189, 193, 195, 384, 407,
715

Lesk, M. E., 121
Libes, D., 635, 702, 716
limit program, 44, 182
limits, 30—-44
C, 31-32
POSIX, 32-34
resource, 180—-184, 192, 210, 270, 324
run-time indeterminate, 4144
summary, 40—41
XPG3, 34
<limits.h> header, 27,31, 33-34, 41
Linderman, J. P, xviii
line control, terminal [/0, 344-345
line disciplines, terminal, 615
link count, 36, 45, 94-96, 107
link function, 61, 94-101, 104, 278
definition of, 95
link, symbolic, 26, 74-75, 89-90, 94, 96—101, 108,
114, 118, 152, 690—691
LINK_MAX constant, 32,36, 39,41, 94
lint program, 163
listen function, 501-502
LLITOUT constant, 555
1n program, 94
LNEXT terminal character, 331, 334
<locale.h> header, 27
localtime function, 155-159, 221, 697
definition of, 156
lockf function, 367

database library, coarse, 523
database library, fine, 523
locking function, 367
lock_reg function, 370
definition of, 370
lock_rel function, definition of, 558
lock_set function, 603
definition of, 598
lock_test function, 371
definition of, 371
log function, 421
log streams driver, 420, 424
LOG_ALERT constant, 423
LOG_AUTH constant, 423
LOG_CONS constant, 423
LOG_CRIT constant, 423
LOG_CRON constant, 423
LOG_DAEMON constant, 423
LOG_DEBUG constant, 423
LOG_EMERG constant, 423
LOG_ERR constant, 423, 685-686
logger program, 422
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login accounting, 153
.login file, 240
login name, 1,17, 112, 147, 153, 172, 231-232, 241,
424,707
root, 16
login program, 147, 149, 152153, 209, 213, 232,
238242, 252, 349, 423, 633
LOG_INFQ constant, 423
logins
network, 241-243
terminal, 237-241
LOG_KERN constant, 423
LOG_LOCALO constant, 423
LOG_LOCAL1 constant, 423
LOG_LOCARLZ2 constant, 423
LOG_LOCAL3 constant, 423
LOG_LOCAL4 constant, 423
LOG_LOCALS constant, 423
LOG_LOCAL6 constant, 423
LOG LOCAL7 constant, 423
LOG_LPR constant, 423,559
LOG MAIL constant, 423
log_msg function, 575, 682
definition of, 685
LOGNAME environment variable, 39, 172, 232, 239
LOG_NDELAY constant, 423, 704
LOG_NEWS constant, 423
LOG_NOTICE constant, 423
log_open function, 558
definition of, 684
LOG_PERROR constant, 423
LOG_PID constant, 423, 509, 559, 589
log_quit function, 682
definition of, 685
log_ret function, 682
definition of, 685
log_sys function, 682
definition of, 685
LOG_SYSLOG constant, 423
LOG_USER constant, 423, 509, 589
LOG_WARNING constant, 423
longjmp function, 161,174, 176—179, 184,
278-279, 287-288, 290, 299301, 309, 323,
701-702
definition of, 176
_longjmp function, 299,302
LONG_MARX constant, 32, 41
LONG_MIN constant, 32, 41
loop function, 508-509, 511, 514, 590, 594, 603,
620, 622, 646, 656
definition of, 509, 511, 590, 620, 646
1p program, 471, 554

lpc program, 423
1pd program, 416,423
lpr program, 555
lprm program, 563
lprps program, 551, 556, 578, 711
lprps.h header, 556
lpsched program, 471
L_RDLCK constant, 369
1s program, 4-5, 7, 12, 87, 91, 101, 103, 108, 111,
116, 118, 145, 147, 452, 687
1seek function, 7, 45, 47, 51-54, 5961, 68, 71,
126, 135, 278, 368, 371, 375, 411, 514, 690
definition of, 51
lstat function, 73-74, 76—77, 100-101, 110, 115,
118-119
definition of, 73
L_tmpnam constant, 140-141, 568
Lucchina, P, xviii
L_WRLCK constant, 369

<machine/ansi.h> header, 689
macro, feature test, 44, 65
mail_char function, 570, 575
definition of, 568
mail line function, 570
definition of, 569
MAILPATH environment variable, 172
main function, 5,127, 133, 161-164, 167, 176178,
185, 195-196, 207, 235, 279, 301, 303, 418, 475,
491, 494, 508, 556, 558, 560—561, 565, 567, 570,
589, 618, 644, 654, 696, 698, 701, 712
major device number, 44-45, 114—115, 347
major function, 114-115
make program, 249
mallinfo function, 171
malloc function, 13,21-22, 41-42, 113,122,
142-143, 169171, 174, 278, 467, 488-489,
507-508, 511, 528, 596, 598
definition of, 170
mallopt function, 171
mandatory record locking, 378
MAP_ANON constant, 470
MAP_FIXED constant, 410
MAP_PRIVATE constant, 410, 468
MAP_SHARED constant, 410411, 468469
<math.h> header, 27
MARX CANON constant, 32, 36, 39, 41, 327
MAXHOSTNAMELEN constant, 154-155
MAX INPUT constant, 32, 36, 39, 41, 327
MAXPATHLEN constant, 41
MB_LEN_MAX constant, 32,41
McGrath, G. ., 385,716
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Mcllroy, M. D., xviii

McKusick, M. K., xviii, 286—29, 91, 95, 189, 193, 195,
384, 407, 715

M _DATA streams message type, 386387, 391

MDMBUF constant, 329, 341

memccpy function, 133

memcpy function, 411, 413

memory
allocation, 169-171
layout, 167-168
leakage, 171
mapped I/0, 407-413
M ERROR constant, 403
message queues, 427, 453—457
versus stream pipes timing, 457
M _HANGUP constant, 403
MIN terminal value, 339, 353, 356, 361, 626, 703
minor device number, 44-45, 114-115, 347
minor function, 114-115
mkdir function, 81, 100, 103-104, 106—-107, 278,
694
definition of, 106
mkdir program, 106
mkfifo function, 100, 103104, 278, 445—446, 709
definition of, 445
mkfifo program, 446
mknod function, 100, 106, 446
mktime function, 155, 157-158
definition of, 157
mmap function, 143, 182, 363, 407, 409414,
468-470, 473-474, 715
definition of, 407
modem dialer, 579-630
client design, 615-617
client source code, 617-629
data files, 582-584
program design, 580-562
server design, 584586
server source code, 586—615
mode_t data type, 45
Moran, J. P, 407, 715
more program, 437,521
Morris, R., 146,716
mount program, 81, 116
M_PCPROTO streams message type, 386387
M_PROTO streams message type, 386—-387
MSG_BAND constant, 387
msg_char function, 575
definition of, 576
msgetl function, 451, 454
definition of, 454
msgget function, 449-450, 452—-454

definition of, 454
msghdr structure, 484—485, 487, 489
MSG_HIPRI constant, 387
msg_init function, 575
definition of, 576
MSGMAX constant, 454
MSGMNE constant, 454
MSGMNI constant, 454
MSG_NOERROR constant, 456
MSG_R constant, 451
msgrev function, 450451, 453, 456, 471
definition of, 456
megsnd function, 450, 452-453, 455-457
definition of, 455
MSGTQL constant, 454
MSG_W constant, 451
M SIG constant, 386
msgid ds structure, 453-455
msync function, 411
<mtio.h> header, 68
Mui, L., 360, 717
multiplexing, I/0, 394—402
munmap function, 411
definition of, 411
mv program, 94
myftw function, 109, 118

named stream pipes, 427

NAME MAX constant, 32, 36, 39, 41, 4950, 108

Nataros, S., xviii

nawk program, 219

NBPG constant, 410

NCCS constant, 328

Nemeth, E., xviii, 716

<netdb.h> header, 153

Network File System, Sun Microsystems, see NFS

network logins, 241-243

newgrp program, 150

_NFILE constant, 43

NFS (Network File System, Sun Microsystems),
550

nftw function, 108

NGROUPS_MAX constant, 32, 36, 39, 41, 151

NL terminal character, 331-332, 334, 339, 349, 352

NLO constant, 341

NL1 constant, 341

NL_ARGMAX constant, 34,41

NLDLY constant, 329, 336, 341

nlink_t datatype, 45, 94

NL_LANGMAX constant, 34, 41

NL_MSGMAX constant, 34, 41

NL_NMAX constant, 34, 41
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NL SETMAX constant, 34, 41
NLSPATH environment variable, 172
NL_ TEXTMAX constant, 34, 41
<nl_types.h> header, 27

nobody login name, 146

NOFILE constant, 43

NOFLSH constant, 329, 341
NOKERNINFO constant, 329, 335, 341
nonblocking I/0, 363-366
noncanonical mode, terminal I/0, 352-358
nonlocal goto, 174180, 299-303
null signal, 264, 284

NZERO constant, 34, 41

O_ACCMODE constant, 64—65
O_APPEND constant, 49,51, 55, 59-61, 64—65, 126,
380
O_ASYNC constant, 64, 403
ocawk program, 219
O_CREAT constant, 49-50, 61, 69, 104, 379-380,
450
OCRNL constant, 329, 341
od program, 54
ODDP constant, 555
O EXCL constant, 49, 61, 450
OFDEL constant, 329, 337, 341
off_t datatype, 45, 52-53
OFILL constant, 329, 337, 341
Olander, D.]., 385,716
COLCUC constant, 329, 341
Olson, M., 516, 716
O_NDELAY constant, 30, 49, 364
ONLCR constant, 329, 341, 646, 652
ONLRET constant, 329, 341
ONOCR constant, 329, 341
O_NOCTTY constant, 49,246, 417, 639
ONCEOT constant, 329, 341
O_NONBLOCK constant, 30, 49, 64—-65, 364—365,
379, 381, 446, 562, 608-609, 709
open function, 7, 14, 47-50, 55, 58, 60-61, 64, 69,
71, 80—84, 91, 97, 99-102, 104-105, 125-127,
236, 238, 246—-247, 278, 338, 364, 373375,
379-380, 384, 409, 421, 445—-446, 449450,
452, 470, 474, 490, 494, 498, 501, 514, 516, 561,
581, 609, 637640, 689, 691, 708
definition of, 48
opend.h header, 493, 506, 709
copendir function, 4-5, 100, 107-111, 210, 236,
348, 516, 692
definition of, 107
openlog function, 422, 424, 704
definition of, 422

open_mailfp function, 570
OPEN_MAX constant, 32, 34, 36, 39, 41, 43—44, 48
open_max function, 417, 438, 511-512
definition of, 43
OPOST constant, 329, 341, 355-356, 358, 563
O_RDONLY constant, 48, 64, 80
O_RDWR constant, 48, 64, 80
O'Reilly, T., 360, 717
orphaned process group, 256—258, 649—-650
O_SYNC constant, 49, 64-65, 67, 117
O_TRUNC constant, 49-50, B0, 91, 104-105, 126,
375, 379, 521
ourhdr .h header, 5, B, 118, 204, 271, 370-371,
679—-681, 690
out_buf function, 571
out_char function, 568, 570-571
definition of, 570
ownership
directory, 81
file, 81
O_WRONLY constant, 48, 64, B0
OXTABS constant, 329, 341

packet mode, pseudo terminal, 655
pagedaemon process, 188
PAGER envircnment variable, 433, 437
PARENB constant, 329, 340-342, 355356, 608
parent
directory, 3, 88, 103, 106
process ID, 188, 192, 196, 201, 203, 210, 239-240,
258, 416
parity, terminal 1/0O, 340
PARMRK constant, 329, 338, 340, 342
PARODD constant, 329, 340, 342, 361, 608
Partridge, C., xviii
PASS MAX constant, 34, 36, 41
passwd program, 78, 149
passwd structure, 145, 147-148, 280, 695-696
password
file, 145148
shadow, 148-149, 159, 695
PATH environment variable, 80, 172, 208-210, 217,
219, 222, 239-240
path_alloc function, 109, 114, 694
definition of, 42
pathconf function, 31,33-39, 41-42, 89, 100,
278, 331
definition of, 35
PATH_MAX constant, 32, 36, 39, 41, 50, 119, 693
pathname, 3
absolute, 3, 6, 35, 41, 113, 119, 217, 693
relative, 3, 6,35-36, 41, 112
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truncation, 49-50
pause function, 272, 275-276, 278, 285-290, 303,
309, 319, 701
definition of, 285
_PC_CHOWN_RESTRICTED constant, 35-37, 41
pckt streams module, 655
_PC_LINK MAX constant, 35-36, 41
pclose function, 224, 435-441, 707708
definition of, 435, 439
_PC_MAX_CANON constant, 35-36, 41
“PC_MAX_INPUT constant, 35-36, 41
_PC_NAME MAX constant, 35-36, 41
_PC_NO_TRUNC constant, 35-37,41
_PC_PATH MAX constant, 35-36, 41-42
_PC_PIPE_BUF constant, 35-36, 41
_PC_VDISABLE constant, 35-37, 41,332
PENDIN constant, 329,342
permissions, file access, 78-81, 117-118
perror function, 15, 23, 322, 687
definition of, 15
pgrp structure, 260-261
PID, see process ID
pid_t data type, 12-13, 45,243
Pike, R., 715
pipe function, 103-104, 125, 278, 428-429,
431-432, 434, 437-438, 442, 457, 477478,
499, 706
definition of, 428
PIPE BUF constant, 32, 36, 39,41, 414, 430,
446—-447
pipes, 427-433
named stream, 427
stream, 427, 475-478
Plauger, P J., 26,138, 271, 716
pointer, generic, 13, 55, 170
poll function, 268,277, 290, 363, 383384, 396,
400-402, 413—414, 452, 471, 473, 497, 505,
509, 511-512, 551, 616, 620—621, 630, 634, 646,
656, 704-705, 708, 710
definition of, 400
POLLERR constant, 401
pollfd structure, 400-401, 511-512, 621, 705
<poll.h> header, 401
POLLHEUP constant, 401-402, 512, 621, 708
POLLIN constant, 401-402, 511-513, 621, 708
polling, 204, 366, 395
POLLNVAL constant, 401
POLLOUT constant, 401
POLLPRI constant, 401
POLLRDBAND constant, 401
POLLRDNORM constant, 401
POLLWRBAND constant, 401

POLLWRNORM constant, 401
popen function, 22,201, 207, 224, 435-441,
472-473, 707-708
definition of, 435, 437
Portable Operating System Environment for
Computer Environments, [EEE, see POSIX
POSIX (Portable Operating System Environment
for Computer Environments, IEEE), xvii,
26-27,29
POSIX.1, xvii, 26, 715
POSIX.2, 219, 221-222, 310, 313-314, 343, 422,
436437, 446
_POSIX RRG_MAX constant, 33, 41
_POSIX_CHILD MAX constant, 33,41
_POSTX_CHOWN RESTRICTED constant, 33,36,
39, 41, 89-90
_POSIX_JOB_CONTROL constant, 32, 36, 39,41,
244, 248
_POSTIX_ LINK MAX constant, 33,41
_POSIX_MAX CANON constant, 33,41
_POSTX_MAX INPUT constant, 33,41
_POSIX_NAME_MAX constant, 33,41
_POSIX_NGROUPS_MAX constant, 33,41
_POSIX_NO_TRUNC constant, 33,36, 39,41, 50
_POSIX_OPEN MAX constant, 33,41
_POSIX_PATH MAX constant, 33,41
_POSIX_PIPE_BUF constant, 33,41
_POSIX_SAVED_IDS constant, 32, 36, 39,41, 78,
213,284
_POSIX_SOURCE constant, 44, 65
_POSIX_SSIZE MAX constant, 33,41
_POSIX_STREAM MAX constant, 33,41
_POSIX_TZNAME_MAX constant, 33,41
_POSIX_VDISABLE constant, 33,36, 39,41,
331-332
_POSIX_VERSION constant, 32,36, 39,41, 154
PostScript printer driver, 551-578
source code, 556-578
PPID, see parent process ID
Presotto, D. L., xviii, 475,497, 579, 716
pr_exit function, 198, 200, 223-225, 234, 316
definition of, 199
primitive system data types, 13, 44-45
printcap file, 555-556, 560
printer driver
PostScript, 551-578
source code, PostScript, 556—-578
PRINTER environment variable, 555
printer spooling, 554-556
printer flushing function, 575
print f function, 8,20, 34,127, 136-137, 144, 157,
185, 189-190, 195, 235, 258, 294, 445, 561, 625,
696, 698
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definition of, 136
pr_mask function, 300-301, 304
definition of, 294
proc structure, 260-261
process, 9
accounting, 226-231
control, 10, 187-236
ID, 9, 188, 210
ID, parent, 188, 192, 196, 201, 203, 210, 239-240,
258, 416
identifiers, 187—-188
relationships, 237-261
system, 187, 284
termination, 162-164
time, 19, 23, 45,232-235
process group, 243-244
background, 246, 249, 251, 253, 255, 258, 269,
313, 319, 712
foreground, 246-252, 255, 260, 267-270, 313,
319, 333-335, 337, 341, 358, 386, 416, 656, 712
ID, 192,210
ID, foreground, 248, 252, 330
ID, terminal, 252-253, 415-416
leader, 243-245, 255, 261, 416-417, 642
lifetime, 243
orphaned, 256—258, 649—650
processes, cooperating, 378,522, 710
proc_input_char function, 570, 572, 575
definition of, 573
proc_msqg function, 575
definition of, 576
proc_some_input function, 565,567, 575
definition of, 573
proc_upto_eof function, 563, 568, 575
definition of, 572
.profile file, 240
program, 9
prompt_read function, 622, 626, 628
definition of, 627
PROT_EXEC constant, 409
PROT_NONE constant, 409
prototypes, function, 12, 659-677
PROT_READ constant, 409, 469
PROT_WRITE constant, 409, 469
ps program, 196, 236, 252, 255, 415-416, 418, 651,
700
pseudo terminal, 631-657
packet mode, 655
remote mode, 655
signal generation, 656
window size, 656
psif program, 556, 578, 711

psignal function, 322
definition of, 322

psrev program, 556

ptem streams module, 391, 640

P_tmpdir constant, 141, 143

ptrdiff t datatype, 45

pts streams module, 391

ptsname function, 638—-639

Pty program, 258, 631, 634-636, 642, 644—656, 712

pty_fork function, 636—638, 641-646, 653,

656—657

definition of, 642

ptym_open function, 636—638, 641-643
definition of, 637-638, 640

Ptys_open function, 636—643, 656
definition of, 637, 639, 641

put function, 622, 626, 628
definition of, 628

putc function, 9, 130-131, 133
definition of, 130

putchar function, 130
definition of, 130

putenv function, 167, 173, 208
definition of, 173

putmsg function, 384-386, 391, 420
definition of, 386

putpmsg function, 384-386
definition of, 386

puts function, 130-131, 693
definition of, 131

<pwd.h> header, 27, 145, 153

Quarterman, . S., 28-29, 91, 95, 189, 193, 195, 384,
407,715
QUIT terminal character, 331, 334, 340, 351

race conditions, 203-207, 286, 547, 699, 702

Rago, S. A., xviii

raise function, 283-285, 323, 701

definition of, 284, 701

RAW constant, 555

raw terminal mode, 326, 354, 356, 360, 555, 615,
635, 646, 649

read function, 7-8,12-13, 19, 39, 45, 47, 54-55,
68, 70-71, 90-91, 102, 104, 122, 132-133, 143,
258, 276, 278—279, 289, 309, 326, 351, 353, 356,
364, 379, 381-382, 384386, 392-395, 397,
400, 402, 404, 406407, 411, 413, 421, 430, 433,
444-445, 449, 473, 511, 514, 520, 524, 547, 561,
575, 582-584, 617, 622, 626, 652, 655,
689-690, 693, 703, 707-708, 710
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definition of, 54
read, scatter, 404, 484
readdir Function, 4-5, 107-111, 348
definition of, 107
reading directories, 107-111
readlink function, 100, 102
definition of, 102
read_lock function, 370, 375, 381
readn function, 406—408, 652
definition of, 407-408
readv function, 276, 363, 404—406, 413, 484, 524,
533-534
definition of, 404
readw_lock function, 370, 528, 530, 545
real
group ID, 77-78, 82, 150, 188, 192, 210, 213, 227,
470
user ID, 33, 36, 77-78, 82, 182, 188, 192-193,
210, 213-216, 227, 232, 238, 240, 284, 322, 324,
470, 702
realloc function, 41, 143, 169-170, 174, 507508,
528, 594, 796, 598, 630, 693—694, 711
definition of, 170
record locking, 367—-382
advisory, 378
deadlock, 371
mandatory, 378
timing, semaphore locking versus, 463
recv_fd function, 480—482, 492-493, 506, 620
definition of, 480, 483, 485, 488
recvmsg function, 484, 486, 488489
Redman, B. E., 580,582, 716
reentrant functions, 278-279
<regex.h> header, 27
register variables, 178
regular file, 74
relative pathname, 3, 6, 35-36, 41, 112
reliable signals, 282-283
Remote File Sharing, AT&T, see RFS
remote mode, pseudo terminal, 655
remove function, 95-100, 104
definition of, 98
rem_read function, 626
definition of, 625
rename function, 95-100, 104, 278
definition of, 98
REPRINT terminal character, 331, 334, 339, 342,
352
request function, 494, 511, 513, 594, 600-601,
603, 605, 608, 630
definition of, 494, 513, 603
reset program, 361, 703

resource limits, 180-184, 192, 210, 270, 324
restarted system calls, 276—277, 289-290, 297-298,
349, 396, 575

rewind function, 126, 135-136
definition of, 135

rewinddir function, 107-111
definition of, 107

RFS (Remote File Sharing, AT&T), 550

Ritchie, D. M., 26, 121, 126, 133, 137138, 171, 383,

475,497, 579, 682, 687, 715-716

RLIM_INFINITY constant, 181

rlimit structure, 181

RLIMIT CORE constant, 181, 265

RLIMIT_CPU constant, 181

RLIMIT DATA constant, 181

RLIMIT FSIZE constant, 181,324

RLIMIT MEMLOCK constant, 181

RLIMIT NOFILE constant, 181-182

RLIMIT NPROC constant, 182

RLIMIT OFILE constant, 182

RLIMIT RSS constant, 182

RLIMIT STACK constant, 182

RLIMIT_VMEM constant, 182

rlim_t datatype, 45,181

rlogin program, 633, 655-656

rlogind program, 633, 640, 648, 655, 711

rm program, 452, 693

rmdir function, 98-99, 103-104, 106-107, 278
definition of, 107

RMSGD constant, 393

RMSGN constant, 393

RNORM constant, 393

R_OK constant, 82-83

root
directory, 3, 6,23, 116, 119, 192, 210, 236, 692
login name, 16

routed program, 423

RPROTDAT constant, 393

RPROTDIS constant, 393

RPROTNORM constant, 393

RS-232, 237, 269, 328, 361, 551-552, 615

RS_HIPRI constant, 387, 392

runacct program, 226

S5 filesystem, 39, 50, 92-93,99

sa program, 226

sac program, 241, 243

Sacksen, J., xviii

SAF (Service Access Facility), 240
SA_INTERRUPT constant, 298—299
Salus, P H., xviii

SA_NOCLDSTOP constant, 297
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SA_NOCLDWAIT constant, 281, 297
SA_NODEFER constant, 297—298
SR _ONSTACK constant, 297
SA RESETHAND constant, 297-298
SA RESTART constant, 277, 297—298, 396, 575
SA_SIGINFC constant, 283,297, 322
saved
set-group-ID, 36, 77-78
set-user-1D, 36, 77-78, 213216, 236, 240, 284,
700
S_EANDURG constant, 403
sbrk function, 21-22, 171
scanf function, 34, 127,137
definition of, 137
_SC_RRG_MAX constant, 36, 41
scatter read, 404, 484
_SC_CHILD MAX constant, 36, 41, 182
_SC_CLK_TCK constant, 36, 41, 233-234
SCHAR_MAX constant, 31-32, 41
SCHAR MIN constant, 31-32, 41
_SC_JOB_CONTROL constant, 36—37, 41
SCM_RIGHTS constant, 487-488, 501-502, 504
_SC_NGROUPS_MAX constant, 36, 41
_SC_OPEN_MAX constant, 36,41, 43, 181
SC_PRGESIZE constant, 410
_SC_PASS_MAX constant, 36, 41
script program, 631, 634, 648, 650-651, 656—657
_SC_SAVED_IDS constant, 36—37,41, 78
_SC_STRERM MAX constant, 36, 41
_SC_TZNAME MAX constant, 36, 41
_SC_VERSION constant, 36—37, 41
_SC_XOPEN_VERSION constant, 36—37, 41
<search.h> header, 27
sed program, 715
Seebass, 5., 716
seek function, 52
SEEK_CUR constant, 51-52, 136, 368, 375
SEEK_END constant, 51-52, 136, 368, 375, 543
SEEK_SET constant, 51-52, 136, 368
select function, 277, 290, 308-309, 363, 396—402,
413—414, 452, 471, 473, 497, 505, 509-511, 513,
551, 571-573, 575, 590-591, 594, 616, 620,
630, 634, 646, 656, 704-706, 708, 710-711
definition of, 397
Seltzer, M., 515-516, 521, 716
sem structure, 458
SEM A constant, 451
SEMAEM constant, 459
semaphore, 427, 457-463
adjustment on exit, 462463
locking versus record locking timing, 463
sembuf structure, 461

semctl funchion, 451, 454, 458—459, 462
definition of, 459

semget function, 449450, 458—-459

definition of, 459
semid ds structure, 458—460
SEMMNI constant, 459
SEMMNS constant, 459
SEMMNU constant, 459
SEMMSL constant, 459
semop function, 452, 459-463
definition of, 461
SEMOPN constant, 459
SEM_R constant, 451
SEMUME constant, 459
semun union, 460
SEM UNDO constant, 461-463
SEMVMX constant, 459
send err function, 480481, 490, 494, 513, 585,
592-593
definition of, 480-481
send fd function, 480481, 484, 487, 490, 494,
513, 606—607
definition of, 480, 482, 484, 487
send_file function, 560, 567, 570
definition of, 568
sendmail program, 416
sendmsg function, 484-485, 488
send_str function, 610, 612
definition of, 610
S_ERROR constant, 403
serv_accept function, 497, 500, 503, 505,
510-512, 591, 594
definition of, 497, 500, 504
Service Access Facility, see SAF
serv_listen function, 496-498, 501, 505,
510-511, 590, 594
definition of, 496, 499, 501
session, 244-246
ID, 192, 210, 246, 260, 415416
leader, 245-246, 260, 267, 416-417, 639,
641-642, 656, 712
session structure, 259-260, 267, 416
set
descriptor, 397,399, 414, 704
signal, 283,291-292, 414, 704
SETALL constant, 460, 462
set_alrm function, definition of, 565
set_block function, definition of, 562
setbuf function, 124, 127, 144, 205-206, 350, 621
definition of, 124
setegid function, 216
definition of, 216




Index

737

setenv function, 173, 208
definition of, 173
seteuid function, 216
definition of, 216
set_fl function, 66,364-365, 381
definition of, 66
setgid function, 213, 216, 239-240, 278
definition of, 213
setgrent function, 150-151
definition of, 150
set-group-ID, 7778, 81-82, 86-88, 90, 106, 117,
192, 210, 265, 379, 639
saved, 36, 77-78
setgroups function, 151
definition of, 151
sethostname function, 155
set_intr function, definition of, 564
setitimer function, 266, 268, 270, 317, 323, 704
set jmp function, 161, 174, 176-179, 184, 286287,
290, 299-300, 323, 702
definition of, 176
_setjmp function, 299, 302—-303
<set jmp.h> header, 27
set_lock function, 603
set_nonblock function, 561
definition of, 562
setpgid function, 244, 278
definition of, 244
setpwent function, 147-148
definition of, 147
setregid function, 215-216
definition of, 215
setreuid function, 215-216
definition of, 215
setrlimit function, 44, 180, 324
definition of, 180
setsid function, 244246, 259260, 278, 416418,
638, 642-643
definition of, 245
settimeofday function, 155
setuid function, 78, 213-216, 239-240, 278
definition of, 213
set-user-1D, 77-78, 82—-83, 86, 88, 90, 106, 117, 149,
192, 210, 213-214, 216, 224, 265, 470—471,
490, 581, 639-640, 656, 702
saved, 36,7778, 213-216, 236, 240, 284, 700
SETVAL constant, 460, 462
setvbuf function, 124, 127, 144, 180, 445, 707
definition of, 124
SGID, see set-group-ID
sgtty structure, 555
shadow passwords, 148—149, 159, 695

S_HANGUP constant, 403
Shannon, W. A., 407,579,715
shared
libraries, 169, 185, 697, 713
memory, 427, 463-470
sharing, file, 56—60, 190
shell, see Bourne shell, C shell, KornShell
SHELL environment variable, 239, 651
shell, job-control, 244, 248, 254, 256, 273, 302,
319-320, 648, 650
shell layers, 248
shells, 2
S_HIPRI constant, 403
shmat function, 452, 465—467
definition of, 465
shmetl function, 451, 454, 465-467
definition of, 465
shmdt function, 466
definition of, 466
shmget function, 449-450, 464, 467
definition of, 464
shmid ds structure, 464—465
SHMLBA constant, 466
SHM _LOCK constant, 465
SHMMAX constant, 464
SHMMIN constant, 464
SHMMNI constant, 464
SHM R constant, 451
SHM RDONLY constant, 466
SHM RND constant, 466
SHMSEG constant, 464
SHM W constant, 451
SHRT MAX constant, 32, 41
SHRT_MIN constant, 32, 41
S_IFLNK constant, 94,118
S_IFMT constant, 77
SIGABRT signal, 195, 199-200, 231, 263, 266268,
309, 311, 323, 702
sigaction function, 46, 271, 274, 277278, 281,
283, 296—299, 311, 314315, 318, 322, 403
definition of, 296
sigaction structure, 296, 298-299, 311, 314, 318
sigaddset function, 278, 291-292, 295, 304,
306307, 314, 318, 321, 350, 704
definition of, 291-292
SIGALRM signal, 263-264, 266, 277, 279280,
285-287, 289-290, 294, 298, 300, 302,
308-309, 317-319, 563, 565, 575, 613
sigaltstack function, 297
sig_atomic t datatype, 45,301, 305
SIG_BLOCK constant, 293, 295, 304, 306—-307, 314,
318, 350
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sigblock function, 277
SIGBUS signal, 266, 410-411
sig_chld function, 604
definition of, 605
SIGCHLD signal, 197, 240, 265-267, 279, 281, 297,
310, 312—-313, 319, 395, 437, 585, 590, 593, 604,
616, 701
semantics, 279-281
SIGCLD signal, 267, 279-283
SIGCONT signal, 250,258, 266-267, 284, 319-320,
650
sigdelset function, 278, 291-292, 311, 318, 704
definition of, 291-292
SIG DFL constant, 271, 280, 297, 310,320
sigemptyset function, 278, 291, 295, 298-299,
304, 306307, 314, 318, 321, 350, 704
definition of, 291
SIGEMT signal, 266-267
SIG_ERR constant, 681
sigfillset function, 278, 291-292, 311, 704
definition of, 291
SIGFPE signal, 17, 199-200, 266—267, 322
sighold function, 277
SIGHUP signal, 256~258, 266-267, 437, 649, 711
SIG_IGN constant, 271, 280, 297, 320
sigignore function, 277
SIGILL signal, 266-267, 310
SIGINFO signal, 266, 268, 334, 341
siginfo structure, 322
STGINT signal, 18,249, 264, 266, 268—269,
287-288, 294, 303306, 308-310, 312-316,
332, 334, 337, 340-341, 350-351, 357, 437,
556, 563-564, 572, 575
SIGIO signal, 64-65, 266, 268, 395—396, 402403
SIGIOT signal, 266, 268, 310
sigismember function, 278, 291-292, 294—295,
704
definition of, 291-292
SIGKILL signal, 228, 231, 264, 266, 268, 271,
649-650
siglongjmp function, 179, 279, 299-303, 309
definition of, 300
signal function, 18, 46, 257, 270-274, 277-282,
286290, 295296, 298—300, 304, 307, 312,
321, 357, 359, 403, 442, 476, 564-565, 593, 613
definition of, 270, 298
signal mask, 283
signal set, 283, 291-292, 414, 704
<signal.h> header, 27, 199, 264, 272, 291-292
signal_intr function, 277,299, 308, 324, 396,
563—565, 590, 593, 647
definition of, 299

signals, 17-19, 263-324
blocking, 283
broadcast, 284
delivery, 283
generation, 282
generation, pseudo terminal, 656
job-control, 319-320
null, 264, 284
pending, 283
queueing, 283, 296
reliable, 282-283
unreliable, 274-275
sigpause function, 277
sigpending function, 277-278, 283, 293—296
definition of, 293
SIGPIPE signal, 264, 266, 268, 391, 430, 442-443,
446, 448, 473, 476—477, 708
SIGPOLL signal, 266, 268, 395—-396, 402—-403
sigprocmask function, 277-278, 283, 287,
291-295, 304, 306—308, 311, 314-315, 318,
321, 350
definition of, 293
SIGPROF signal, 266, 268
SIGPWR signal, 266, 268
SIGQUIT signal, 249, 266, 269, 294-295, 306, 310,
314-316, 334, 341, 351, 357, 437
sigrelse function, 277
SIGSEGV signal, 264, 266, 269, 279, 283, 410
sigset function, 277,279,281
sigsetjmp function, 179, 279, 299-303
definition of, 300
SIG_SETMASK constant, 293-295, 304, 306-308,
311, 314315, 318, 350
sigsetmask function, 277
sigset_t data type, 45,283,291
SIGSTOP signal, 264, 266,269, 271, 319, 622
SIGSUSP signal, 341
sigsuspend function, 277-278, 287, 303—-309, 318
definition of, 303
SIGSYS signal, 266, 269
SIGTERM signal, 265-266, 269, 273, 357, 647-648,
657, 712
SIGTRAP signal, 266, 269
SIGTSTP signal, 249, 256-257, 266, 269, 319-321,
333, 335, 350-351, 623, 649650
SIGTTIN signal, 250, 253, 258, 266, 269270,
319-320
SIGTTOU signal, 251, 266, 269270, 319-320, 342
SIG_UNBLOCK constant, 293-294, 321
SIGURG signal, 64-65, 264, 266, 268, 270, 403—404
SIGUSR1 signal, 266, 270, 272, 294, 300, 302303,
305, 307—-308, 395
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SIGUSRZ signal, 266,270, 272, 305, 307

sigvec function, 277

SIGVTALRM signal, 266, 270

SIGWINCH signal, 260, 266, 270, 358-359, 656-657

SIGXCPU signal, 181, 266, 270

SIGXFSZ signal, 181, 266, 270, 324, 702

S_INPUT constant, 403

S_IRGRP constant, 79, 86, 118, 127

S_IRCTH constant, 79, 86, 118, 127

S_TRUSR constant, 79, 84, 86, 118, 127

S_IRWXG constant, 86

S_TRWXO constant, 86

S_IRWXU constant, 86

S_ISBLK function, 75-76, 115

S_ISCHR function, 75-76, 115, 348

S_ISDIR function, 75-77,110

S_ISFIFO function, 75-76, 429, 445

S_ISGID constant, 78, 86, 118

S_ISLNK function, 75-76, 118, 690

S_ISREG function, 75-76

S_ISSOCK function, 75-76, 504

S_ISUID constant, 78, 86, 118

S_ISVTX constant, 86-88, 118

S_IWGRP constant, 79, 86, 118, 127

S_IWOTH constant, 79, 86, 118, 127

S_IWUSR constant, 79, 84, 86, 118, 127

S_IXGRP constant, 79, 86, 118

S_IXOTH constant, 79, 86, 118

S_IXUSR constant, 79, 86, 118

size, file, 90-91

size program, 168-169, 185

size_t datatype, 13,4546, 55, 401, 404, 689

sleep function, 194, 201, 203-204, 231, 278,

286-288, 316319, 323-324, 398, 414, 702, 708

definition of, 317-318

sleep_us function, 414, 611
definition of, 705

S_MSG constant, 403

SNDFIPE constant, 391

SNDZERO constant, 391

Snyder, G., 716

sockaddr_un structure, 501-505

socket function, 501-503

socketpair function, 478-479

sockets, 75,427

SOCK_STREAM constant, 479, 501-502

SOL_SOCKET constant, 487488

solutions to exercises, 687712

source code, availability, xvi

S_CUTPUT constant, 403

Spafford, G., 149, 208, 247, 715

special device file, 114-116

s_pipe function, 475-478, 492, 496, 654
definition of, 478-479
spooling, printer, 554556
sprintf function, 136—137, 659
definition of, 136
spwd structure, 696
S_RDBAND constant, 403
S_RDNORM constant, 403
sscanf function, 137,578
definition of, 137
SSIZE_MAX constant, 32,41, 55
ssize_t dalatype, 13,33, 45, 55, 404
stack, 167, 176
standard error, 7, 122
standard error routines, 681-686
standard input, 7, 122
standard 1/0O
alternatives, 143
buffering, 122-125, 189, 195, 222, 310, 444-445,
524, 636
efficiency, 131-133
implementation, 138-140
library, 8, 121-144
streams, 121-122
versus unbuffered I/O, timing, 132
standard output, 7,122
standards, 2528
conflicts, 45—-46
START terminal character, 331-332, 334-335, 338,
340-341, 344
stat function, 3, 6,50, 73-74, 77-78, B6—87,
100~101, 103, 105, 108, 118, 278, 348, 472,
504505, 690, 692
definition of, 73
stat structure, 73-75, 78, 90, 94, 118, 124, 139,
347, 429, 445, 472
STATUS terminal character, 331, 334, 339, 341, 352
<stdarg.h> header, 27, 137
___STDC__ constant, 44
<stddef.h> header, 27
stderr constant, 122
STDERR_FILENO constant, 48, 122, 481
stdin constant, 9,122
STDIN_FILENO constant, 8, 48, 55,122
<stdio.h> header, 8-9,27, 31-32, 43, 122, 124,
128, 138, 140141, 345, 679
<stdlib.h> header, 27, 170, 679
stdout constant, 9, 122, 698
STDOUT_FILENO constant, B, 48, 55, 122, 698
Stevens, D. A., xviil
Stevens, E. M., xviii
Stevens, S. H., xviii
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Stevens, W. R., 135, 241, 385, 400, 421, 428, 478, 501,
554, 633, 716
Stevens, W. R., xviii
sticky bit, 86—88, 96, 117
stime function, 155
Stonebraker, M. R., 515, 716
STOP terminal character, 331-332, 334335, 338,
340-341, 344
strace program, 420
Strang, J., 360, 717
strbuf structure, 385,394, 483
stream pipes, 427, 475—478
named, 427
timing, message queues versus, 457
STREAM MAX constant, 31-32, 36, 41
streams, 383-394, 427,716
clone device, 638
ioctl operations, 387
messages, 385
read mode, 392
standard I/0, 121-122
write mode, 391
streams module
ansi, 391
char, 391
cmux, 391
connld, 497—-498, 505
ldterm, 384, 391, 640
pckt, 655
ptem, 391, 640
pts, 391
ttcompat, 391, 640
strerr program, 420
strerror function, 14-15, 23, 422, 682, 687
definition of, 14
strftime function, 155, 157-159, 221, 697
definition of, 157
<string.h> header, 27, 679
strip program, 697
strlen function, 10
str_list structure, 389-390
strlog function, 419
str_mlist structure, 389-390
<stropts.h> header, 387, 402—-403
strrecvfd structure, 482483, 500
strtok function, 495,575, 599
stty function, 629
stty program, 250, 342-343, 351, 361, 703, 711
Stumm, M., 143, 413, 715
su program, 423
SUID, see set-user-ID
SunOS, xvii, 29, 39, 119, 169, 277, 299, 428, 457, 463,
484, 649, 702, 704

superuser, 16
supplementary group ID, 17, 33, 77-78, 80, 88, 90,
150-152, 192, 210, 216
SUSP terminal character, 331, 333, 335, 340, 351
SVID (System V Interface Definition), 29, 714
SVR3.0, xvii
SVR3.1, xvii
SVR3.2, xvii, 479
SVR4, xvii, 29
swapper process, 187
S_WRBAND constant, 403
S_WRNORM constant, 403
symbolic link, 26, 74-75, 89-90, 94, 98—101, 108,
114, 118, 152, 690-691
symlink function, 102
definition of, 102
sync function, 116-117, 416
definition of, 116
sync program, 116
synchronous write, 49, 67
<sys/acct .h> header, 226
sysconf function, 19,31, 33-39, 41, 43—44, 46, 78,
181-182, 233—234, 278, 410
definition of, 35
<sys/conf.h> header, 389
Sysfiles file, 584
sysftell function, 600
<sys/ipc.h> header, 27
syslog function, 416, 419-422, 424, 558, 590, 684,
705
definition of, 422
syslogd program, 416, 420-424
<sys/msg.h> header, 27
sys_next function, 600
definition of, 599
<sys/param.h> header, 41, 43, 154, 410
sys_posn function, definition of, 600
sys_rew function, definition of, 600
<sys/sem.h> header, 27
<sys/shm.h> header, 27
sys_siglist variable, 320,322
<sys/socket .h> header, 484
<sys/stat .h> header, 27, 77, 118
<sys/sysmacros.h> header, 115
system calls, 20
interrupted, 39, 275-277, 289-290, 297-299,
309, 396, 575
restarted, 276277, 289290, 297298, 349, 396,
575
tracing, 119, 380
versus functions, 20-22
system function, 22, 106, 187, 207, 221-226,
234-236, 294, 310-316, 323, 431, 435, 569,
700, 708
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definition of, 222-223, 314
return value, 315
system identification, 154-155
system process, 187, 284
System V Interface Definition, see SVID
System V IPC, 449-453
Systems file, 581-585, 589, 594, 599601, 603,
608, 630, 711
<sys/times.h> header, 27
<sys/types.h> header, 13,27, 45, 398, 414, 449,
704
<sys/uio.h> header, 404
<sys/utsname.h> header, 27
<sys/wait.h> header, 27, 198

TABO constant, 342
TAB1 constant, 342
TAB2 constant, 342
TAE3 constant, 341-342
TABDLY constant, 329, 336, 341-342
take function, 622, 625626
definition of, 624
take_put_args function, 626, 628, 711
definition of, 626
TANDEM constant, 555
Tankus, E., xviii
tar program, 104, 106, 111, 119, 692-693
<tar.h> header, 27
tedrain function, 270, 278, 330, 344345,
628-629
definition of, 344
tcflag_t data type, 328
tcflow function, 270, 278, 330, 344
definition of, 344
tcflush function, 122, 270, 278, 327, 330,
344-345, be1-562, 629
definition of, 344
tcgetattr function, 278, 328, 330, 332, 335-337,
342, 344, 346, 350, 354, 561, 563, 608, 645—646
definition of, 336
tcgetpgrp function, 247-248, 278, 328, 330
definition of, 248
TCIFLUSH constant, 345
TCIOQFF constant, 344
TCIOFLUSH constant, 345,562, 629
TCION constant, 344
TCOFLUSH constant, 345
TCOOFF constant, 344
TCOON constant, 344
TCSRADRAIN constant, 336
TCSAFLUSH constant, 332,336, 350, 354—355
TCSANOW constant, 336—337, 563, 609, 643, 646

tcsendbreak function, 270, 278, 330, 344-345,
622-623
definition of, 344
tcsetattr function, 270, 278, 327-328, 330, 332,
335-337, 342, 344, 350, 354—355, 561, 563,
609, 643, 646
definition of, 336
tesetpgrp function, 247-248, 250, 252, 270, 278,
328, 330
definition of, 248
tee program, 446-447
tell function, 52
TELL_CHILD function, 204,206, 305, 372, 381, 414,
433, 469, 604
definition of, 308, 434
TELL_PARENT function, 204, 305, 372, 414, 433,
469,704
definition of, 307, 434
TELL WAIT function, 204, 206, 305, 372, 381, 414,
433, 469, 603—-604, 704
definition of, 307, 434
telnet program, 656
telnetd program, 241, 633, 640, 648,701, 711
tempnam function, 141-144
definition of, 141
TERM environment variable, 172, 238, 240
termcap, 360,717
terminal
baud rate, 343—344, 555, 582
canonical mode, 349-352
controlling, 49, 192, 210, 227, 243, 245-248, 250,
252-253, 255, 258, 260261, 267, 269270,
319, 333, 337, 342, 345, 351, 386, 389, 415-418,
424, 632, 638—642, 681, 705, 717
identification, 345-349
170, 325-361
line control, 344-345
line disciplines, 615
logins, 237-241
mode, cbreak, 326, 354, 356, 360, 555
mode, cooked, 326
mode, raw, 326, 354, 356, 360, 555, 615, 635, 646,
649
noncanonical mode, 352-358
options, 336—342
parity, 340
process group 1D, 252253, 415-416
special input characters, 331-335
window size, 260, 270, 358—360, 642, 656—657
termination, process, 162-164
terminfo, 360,715,717
termio structure, 328
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<termio.h> header, 328
termios structure, 260, 328, 330-332, 335-337,
344, 346, 350, 352355, 563, 608, 642, 644, 646,
652, 655656, 712
<termios.h> header, 27, 68, 328
text segment, 167
textps program, 556, 711
tftpd program, 705
Thompson, K., 58, 146, 515, 716-717
tick, clock, 19, 36, 39, 41, 45—46, 227, 232-233
time
and date functions, 155—159
calendar, 19, 23, 45, 103, 155-157, 221, 227
process, 19, 23, 45, 232-235
values, 19-20
time function, 155, 159, 221, 278, 301, 504-505,
697
definition of, 155
time program, 20
TIME terminal value, 339, 353, 356, 361, 626, 703
<time.h> header, 27, 45
times, file, 102-103, 414
times function, 36, 45—46, 232-234, 278
definition of, 232
time_t datatype, 19,45, 155, 157
timeval structure, 397, 705-706
timing
message queues versus stream pipes, 457
read buffer sizes, 57
read/write versus mmap, 411
semaphore locking versus record locking, 463
standard I/O versus unbuffered [/0, 132
synchronous writes, 67
writev versus other techniques, 405
TICCGWINSZ constant, 358-359, 645
TIOCPKT constant, 655
TIOCREMOTE constant, 655
TIOCSCTTY constant, 246, 642643
TIOCSIG constant, 656
TIOCSIGNAL constant, 656
TICCSWINSZ constant, 358, 643, 656
tip program, 214-216, 361, 579-581, 615617,
626, 629
TLI (Transport Layer Interface, System V), 716
tm structure, 156, 697
TMPDIR environment variable, 141-143
tmpfile function, 140-143, 310
definition of, 140
TMP_MAX constant, 32, 41, 140
tmpnam function, 32, 140-143, 187, 569
definition of, 140
tms structure, 232-234

Torek, C., 138

TOSTOF constant, 329, 342

touch program, 104

trace program, 119

tracing system calls, 119, 380

transactions, database, 716

Transport Layer Interface, System V, see TLI

truncate function, 91-92, 100, 104
definition of, 92

truncation
file, 91-92
filename, 49-50
pathname, 49-50

truss program, 119, 380

ttcompat streams module, 391, 640

tty structure, 260

tty atexit function, 354, 619, 645
definition of, 355

tty cbreak function, 354,357
definition of, 354

tty_dial function, 607,610,615
definition of, 610

tty_ flush function, 561
definition of, 562

ttymon program, 240-241, 622

ttyname function, 114, 232, 346—347, 349
definition of, 346,348

tty open function, 560-561, 607-609, 615, 626
definition of, 563, 608

tty raw function, 354, 357, 361, 619, 623, 627, 645
definition of, 354

tty reset function, 354, 357, 623, 627
definition of, 355

tty termios function, 354, 623, 629
definition of, 355

typescript file, 634, 651

TZ environment variable, 155, 158-159, 172, 695

TZNAME MAX constant, 32, 36, 41

UCHAR_MAX constant, 31-32, 41

UFS filesystem, 39, 50, 92-93, 99

UID, see user ID

uid t datatype, 45

UINT_MAX constant, 32, 41

UIC MAXIOV constant, 404

ulimit program, 44, 182

<ulimit .h> header, 27

ULONG MAX constant, 32,41

Ultrix, 428,484

umask function, 83-86, 182, 278, 418
definition of, 84
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umask program, 84, 118
uname function, 154, 159, 278
definition of, 154
uname program, 154, 159
unbuffered 1/0, 7, 47-71
unbuffered 1/0 timing, standard I/O versus, 132
ungete function, 129
definition of, 129
uninitialized data segment, 167
<unistd.h> header, 8,12-13,27, 37, 48, 55, 89,
679
Unix implementations, 28
Unix-to-Unix Copy, see UUCP
unlink function, 94-101, 104, 118, 140, 278, 310,
380, 445, 499, 501, 503-504, 569, 692—-693, 709
definition of, 96
un_lock function, 370, 377-378, 527528, 530,
535-538, 541-542, 545, 703
unlockpt function, 638-639
Unrau, R., 143,413,715
unreliable signals, 274-275
unsetenv function, 173
definition of, 173
update program, 116, 416
USER environment variable, 172, 239
user ID, 16, 213-216
effective, 77—78, 80—82, 85, 90, 104, 117, 188,
192, 210, 213-216, 232, 238, 240, 284, 324, 451,
455, 460, 465, 472, 482, 497, 505, 639, 695, 700
real, 33, 36, 77-78, 82, 182, 188, 192-193, 210,
213-216, 227, 232, 238, 240, 284, 322, 324, 470,
702
USHRT MAX constant, 32, 41
usleep function, 414, 704
Jusr/adm/acct file, 226
fusr/lib/pt_chmod program, 639
UTC (Coordinated Universal Time), 19, 155,
157158
utimbuf structure, 103, 105
utime function, 103-106, 119, 278, 692-693
definition of, 103
<utime.h> header, 27
utmp file, 153,232, 261, 648, 701, 705
utmp structure, 153
utsname structure, 154, 159
uucico program, 579
UUCP (Unix-to-Unix Copy), 154, 214, 580, 630, 716

/var/adm/pacct file, 226
/var/adm/streams/error file, 420
<varargs.h> header, 137

variables

automatic, 167, 176, 178—179, 185
register, 178
volatile, 178, 287, 301
/var/log/wtmp file, 153
/var/run/utmp file, 153
VDISCARD constant, 331
VDSUSP constant, 331
VEOF constant, 331-332, 354
VEOL constant, 331, 354
VEOLZ2 constant, 331
VERASE constant, 331
vfork function, 193195, 235, 698
<vfork.h> header, 193
viprintf function, 137
definition of, 137
vi program, 267, 319, 326, 358, 360—361, 380, 382,
703

VINTR constant, 331-332

VKILL constant, 331

VLNEXT constant, 331

VMIN constant, 353-355, 563, 609

v-node, 57-60, 261, 479, 689, 715

vnode structure, 260-261

Vo, K. P, 111, 143,715

volatile variables, 178, 287, 301

vprintf function, 137, 688
definition of, 137

VQUIT constant, 331

vread function, 407

VREPRINT constant, 331

vsprintf function, 137, 422
definition of, 137

VSTART constant, 331

VSTATUS constant, 331

VSTOP constant, 331

VSUSP constant, 331

VTO constant, 342

VT1 constant, 342

VTDLY constant, 329, 336, 341-342

VTIME constant, 353—355, 563, 609

VWERASE constant, 331

vwrite function, 407

wait function, 22, 191, 196204, 207, 212, 221, 224,
233, 235, 250, 267, 276, 278—281, 297, 316, 382,
435, 437,473, 708
definition of, 197
Wait, J. W, xviii
wait3 function, 202-203
definition of, 203
waitd function, 202-203
definition of, 203
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WAIT CHILD function, 204, 305, 372, 414, 433, 469,
704
definition of, 308, 434
WAIT_PARENT function, 204, 206, 305, 372, 381,
414, 433, 469, 604
definition of, 307, 434
waitpid function, 10-11, 196203, 222, 224, 235,
237, 244, 250, 265, 276, 278, 437, 473, 585, 605,
708
definition of, 197
wall program, 639
we program, 91
wchar t datatype, 45
WCONTINUED constant, 201
WCOREDUMP function, 198-199
Weeks, M. 5., 169, 715
Weinberger, I. ., 58,219, 515, 713, 717
WERASE terminal character, 331, 335, 337, 339, 352
WEXITSTATUS function, 198—199, 605
who program, 153, 648
WIFEXITED function, 198-199, 605
WIFSIGNALED function, 198-199
WIFSTOPPED function, 198-200
Williams, T., 259, 717
Wilson, G. A., xviii
window size
pseudo terminal, 656
terminal, 260, 270, 358360, 642, 656657
winsize structure, 260, 358-359, 642, 644, 646,
656, 712
WNOHANG constant, 200, 605
WNOWAIT constant, 201
W_OK constant, 82
Wolff, R., xviii
Wolff, 5., xviii
working directory, 6, 12, 35, 41, 94, 112-113, 146,
192, 210, 265, 417
worm, Internet, 130
Wright, G. R., xviii
write
delayed, 116
gather, 404, 484
synchronous, 49, 67
write function, 7-8, 12-13, 19-20, 39, 45, 47, 49,
53-55, 59-61, 6768, 70, 104, 116—117,
122-123, 133, 139, 143, 189, 194, 205, 276, 278,
324, 326, 364-366, 377-380, 384—386, 391,
397, 400, 404—407, 410-411, 413-414, 420,
430, 444-447, 452, 457, 473, 481, 493, 514, 524,
536, 547, 561, 571-572, 582-583, 689-690,
698, 702-703, 707-708, 710
definition of, 55

write program, 639
write_lock function, 370, 375-376, 381

writen function, 406—408, 481, 606—607, 621, 647,
652
definition of, 407-408
writev function, 276, 363, 404-406, 411, 413, 484,
492, 506, 524, 536538, 620, 630
definition of, 404
writew_lock function, 370, 372, 377-378,
527-528, 530, 535, 537-538, 542, 550, 703
WSTOPSIG function, 198—199
WIERMSIG function, 198-199
wtmp file, 153,261, 701
WUNTRACED constant, 200-201

XCASE constant, 329, 342

Xenix, 4,29, 367, 640

X_OK constant, 82

X/Open, 28,717

X/Open Portability Guide, Issue 3, see XPG3

_XOPEN_SOURCE constant, 44

_XOPEN_VERSION constant, 36, 41 _

XPG3 (X/Open Portability Guide, Issue 3), xvii,
28-29, 34, 717

XTABS constant, 341-342

Yigit, O., 515,521, 716

zombie, 196-197, 201, 236, 280-281, 297, 700
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