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Preface

ABOUT THE BOOK

Automated Planning is the area of Artificial Intelligence that deals with problems
in which we are interested in finding a sequence of steps (actions) to apply to the world
in order to achieve a set of predefined objectives (goals) starting from a given initial
state. In the past, planning has been successfully applied in numerous areas including
robotics, space exploration, transportation logistics, marketing and finance, assem-
bling parts, crisis management, etc.

The history of Automated Planning goes back to the early 1960s with the General
Problem Solver (GPS) being the first automated planner reported in literature. Since
then, it has been an active research field with a large number of institutes and research-
ers working on the area. Traditionally, planning has been seen as an extension of
problem solving and it has been attacked using adaptations of the classical search
algorithms. The methods utilized by systems in the “classical” planning era (until mid-
1990s), include state-space or plan-space search, hierarchical decomposition, heuristic
and various other techniques developed ad-hoc.

The classical approaches in Automated Planning presented over the past years
were assessed on toy-problems, such as the ones used in the International Planning
Competitions, that simulate real world situations but with too many assumptions and
simplifications. In order to deal with real world problems, a planner must be able to
reason about time and resources, support more expressive knowledge representations,
plan in dynamic environments, evolve using past experience, co-operate with other
planners, etc. Although the above issues are crucial for the future of Automated Plan-
ning, they have been recently introduced to the planning community as active research
directions. However, most of them are also the subject of researchers in other Al areas,
such as Constraint Programming, Knowledge Systems, Machine Learning, Intelligent
Agents and others, and therefore the ideal way is to utilize the effort already put into
them.

This edited volume, Intelligent Techniques for Planning, consists of 10 chapters
bringing together a number of modern approaches in the area of Automated Planning.
These approaches combine methods from classical planning, such as the construction
of graphs and the use of domain-independent heuristics, with techniques from other
areas of Artificial Intelligence. The book presents in detail a number of state-of-the-art
planning systems that utilize Constraint Satisfaction Techniques in order to deal with
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time and resources, Machine Learning in order to utilize experience drawn from past
runs, methods from Knowledge Representation and Reasoning for more expressive
representation of knowledge, and ideas from other areas, such as Intelligent Agents.
Apart from the thorough analysis and implementation details, each chapter of the book
also provides extensive background information about its subject and presents and
comments on similar approaches done in the past.

INTENDED AUDIENCE

Intelligent Techniques for Planning is an ideal source of knowledge for individu-

als who want to enhance their knowledge on issues relating to Automated Planning and
Artificial Intelligence. More specifically, the book is intended for:

(@)

(b)

©

(d)

Automated planning researchers, since it contains state-of-the-art approaches in
building efficient planning systems. These approaches are presented in detail,
providing information about the techniques and methodologies followed and are
accompanied by thorough discussion of the current trends and future directions.
Researchers in other areas of Artificial Intelligence and Informatics, as it can
assist them in finding ideas and ways for applying the results of their work in
other areas related to their interests. Apart from the research innovations in the
area of planning, the book presents issues related to other areas that remain open
and worth further investigation. There are aspects of planning that present many
similarities with certain aspects of other areas and, therefore, there are techniques
that can be directly applied in planning systems. However, in most cases, in order
to apply a technique or a methodology in a new and possible peculiar domain,
you need customized solutions that source from fresh techniques or major modi-
fication of existing ones. For example, in order to learn from past executions of a
planning system, one can apply classical techniques from Machine Learning,
such as classification rules. However there are also learning techniques that have
been especially developed for planning (e.g., Explanation Based Learning).
Postgraduate students and teachers in general courses such as Artificial Intelli-
gence and in courses closely related to planning and scheduling, as a reference
book. The chapters of the book were carefully selected to cover the most impor-
tant applications of Al techniques in Intelligent Planning. The authors of each
chapter are experts in the specific subject and are highly appreciated in the aca-
demic community. Concerning the content of the book, each chapter contains
extensive introductory material and a comparative survey with similar past ap-
proaches. Therefore, the reader will be informed about general issues concerned
with planning, other fields in Artificial Intelligence and approaches that combine
the outcome of the research in these areas.

Practitioners, since Automated Planning is a “key enabling technology for intel-
ligent systems that increases the autonomy, flexibility and robustness for a wide
variety of application systems. These include web-based information and e-
commerce systems, autonomous virtual and physical agents, and systems for the
design and monitoring of production, management, and business processes”
(European Network of Excellence in Al Planning, http://www.planet-noe.org).
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() The general community who is interested in Artificial Intelligence and more spe-
cifically in Automated Planning. The general Computer Science community will
also benefit from Intelligent Techniques for Planning, since the topics covered by
the book are active research fields with a quite promising future that are based on
the basic principles of Informatics.

ORGANIZATION OF THE BOOK

The Intelligent Techniques for Planning is divided into four major sections:

° Section I: Planning and Knowledge Representation and Reasoning
° Section II: Planning and Machine Learning

° Section III: Planning and Agents

° Section I[V: Planning and Constraint Satisfaction

Section I deals with the issues concerned with the representation of planning
problems in order to allow richer encodings and enhance the performance of planning
systems. This section is further divided into two chapters:

Chapter 1, contributed by Thomas Eiter, Wolfgang Faber, Gerald Pfeifer and Axel
Polleres, introduces planning and knowledge representation in the declarative action
language K. Rooted in the area of Knowledge Representation & Reasoning, action
languages like K allow the formalization of complex planning problems involving non-
determinism and incomplete knowledge in a very flexible manner. By giving an overview
of existing planning languages and comparing these against their language, the chap-
ter aims on further promoting the applicability and usefulness of high-level action
languages in the area of planning. As opposed to previously existing languages for
modeling actions and change, K adopts a logic programming view where fluents repre-
senting the epistemic state of an agent might be true, false or undefined in each state.
The chapter also shows that this view of knowledge states can be fruitfully applied to
several well-known planning domains from the literature as well as novel planning
domains. Remarkably, K often allows one to model problems more concisely than previ-
ous action languages. All the examples given can be tested in an available implementa-
tion, the DLVK planning system.

Chapter 2 by Max Garagnani describes a model and an underlying theoretical
framework for hybrid planning. Modern planning domain-description languages are
based on sentential representations. Sentential formalisms produce problem encodings
that often require the system to carry out an unnecessary amount of trivial deductions,
preventing it from concentrating the computational effort on the actual search for a
plan and causing a loss in performance. This chapter illustrates how techniques from
the area of knowledge representation and reasoning can be adopted to develop more
efficient domain-description languages. In particular, experimental evidence suggests
that the adoption of analogical representations can lead to significant improvements
in planning performance. Although often more efficient, however, analogical represen-
tations are generally less expressive than sentential ones. This chapter proposes a
framework for planning with hybrid representations, in which sentential and analogical
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descriptions can be integrated and used interchangeably, thereby overcoming the limi-
tations and exploiting the advantages of both paradigms.

Section II describes the application of Machine Learning to Planning in order to
build planning systems that learn from experience. The section contains two chapters:

Chapter 3, by Dimitris Vrakas, Grigorios Tsoumakas, Nick Bassiliades and Ioannis
Vlahavas, is concerned with the enhancement of planning systems with Machine Learn-
ing techniques in order to automatically configure their planning parameters according
to the morphology of the problem in hand. It presents two different adaptive systems
that set the planning parameters of a highly adjustable planner based on measurable
characteristics of the problem instance. The planners have acquired their knowledge
from a large data set produced by results from experiments on many problems from
various domains. The first planner is a rule-based system that employs propositional
rule learning to induce knowledge that suggests effective configuration of planning
parameters based on the problem’s characteristics. The second planner employs in-
stance-based learning in order to find problems with similar structure and adopt the
planner configuration that has proved in the past to be effective on these problems.
The validity of the two adaptive systems is assessed through experimental results that
demonstrate the boost in performance in problems of both known and unknown do-
mains. Comparative experimental results for the two planning systems are presented
along with a discussion of their advantages and disadvantages.

Chapter 4, by José Luis Ambite, Craig A. Knoblock and Steven Minton, describes
Planning by Rewriting (PbR), a paradigm for efficient high-quality planning that ex-
ploits declarative plan rewriting rules and efficient local search techniques to transform
an easy-to-generate, but possibly sub-optimal, initial plan into a high-quality plan. In
addition to addressing planning efficiency and plan quality, PbR offers a new anytime
planning algorithm. The plan rewriting rules can be either specified by a domain expert
or automatically learned. The chapter describes a learning approach based on compar-
ing initial and optimal plans that produces rules competitive with manually specified
ones. PbR is fully implemented and has been applied to several existing domains. The
experimental results show that the PbR approach provides significant savings in plan-
ning effort while generating high-quality plans.

Section III presents the combination of Planning with Intelligent Agents and
contains three chapters:

Chapter 5, by Nikos Avradinis, Themis Panayiotopoulos and Ruth Aylett, dis-
cusses the application of intelligent planning techniques on virtual agent environ-
ments as a mechanism to control and generate plausible virtual agent behaviour. The
authors argue that the real world-like nature of intelligent virtual environments (IVEs)
presents issues that cannot be tackled with a classic, off-line planner, where planning
takes place beforehand and execution is performed later based on a set of precompiled
instructions. What IVEs call for is continuous planning, a generative system that will
work in parallel with execution, constantly re-evaluating world knowledge and adjust-
ing plans according to new data. The authors argue further on the importance of incor-
porating the modelling of the agents’ physical, mental and emotional states as an inher-
ent feature in a continuous planning system targeted towards IVE’s, necessary to
achieve plausibility in the produced plans and, consequently, in agent behaviour.

Chapter 6, by Jeroen Valk, Mathijs de Weerdt and Cees Witteveen, presents
techniques for coordination in multi-agent planning systems. Multi-agent planning
comprises planning in an environment with multiple autonomous actors. Techniques



for multi-agent planning differ from conventional planning in that planning activities
are distributed and the planning autonomy of the agents must be respected. The chap-
ter focuses upon approaches to coordinate the multi-agent planning process. While
usually coordination is intertwined with the planning process, a number of separate
phases are distinguished in the planning process to get a clear view on the different
role(s) of coordination. In particular, the pre-planning coordination phase and post-
planning coordination phase are discussed. In the pre-planning part, coordination is
viewed as the process of managing (sub) task dependencies, and a method that en-
sures complete planning autonomy by introducing additional (intra-agent) dependen-
cies is discussed. The post-planning part shows how agents can improve their plans
through the exchange of resources. Finally, the chapter presents a plan merging algo-
rithm that uses these resources to reduce the costs of independently developed plans,
which runs in polynomial time.

Chapter 7, by Catherine C. Marinagi, Themis Panayiotopoulos and Constantine
D. Spyropoulos, provides an overview of complementary research in the active re-
search areas: Al planning technology and intelligent agents technology. It has been
widely acknowledged that modern intelligent agent approaches should combine meth-
odologies, techniques and architectures from many areas of Computer Science, Cogni-
tive Science, Operation Research, Cybernetics, etc. Al planning is an essential function
of intelligence that is necessary in intelligent agent applications. This chapter presents
the current state-of-the-art in the field of intelligent agents, focusing on the role of A7
planning techniques. In particular, this chapter sketches a typical classification of
agents, agent theories and architectures from an Al planning perspective, it briefly
introduces the reader to the basic issues of Al planning, and it presents different Al
planning methodologies implemented in intelligent agent applications. The authors aim
at stimulating research interest towards the integration of A/ planning with intelligent
agents.

Section IV discusses ways for encoding planning problems as constraint satis-
faction ones and presents planning approaches that are based upon techniques for
solving CSPs. There are three chapters in this section:

Chapter 8, by Amedeo Cesta, Simone Fratini, and Angelo Oddi, proposes a plan-
ning framework, which relies on a formalization of the problem as a Constraint Satisfac-
tion Problem (CSP) and defines an algorithmic template in which the integration of
planning and scheduling is a fundamental feature. In addition, the paper describes the
current implementation of a constraint-based planner called OMP that is grounded on
these ideas and shows the role that constraints have in this planner, both at domain
description level and as a guide for problem solving. A detailed analysis of related work
complements the discussion of various aspects of this research.

Chapter 9, by Martha E. Pollack and Ioannis Tsamardinos, addresses the ques-
tion of how to automatically dispatch a plan encoded as an STP (Simple Temporal
Problem), that is, how to determine when to perform its constituent actions so as to
ensure that all of its temporal constraints are satisfied. After reviewing the theory of
STPs and their use in encoding plans, the chapter presents detailed descriptions of the
algorithms that have been developed to date in the literature on STP dispatch. It distin-
guishes between off-line and online dispatch, and presents both basic algorithms for
dispatch and techniques for improving their efficiency in time-critical situations.

Chapter 10, written by Roman Bartak, introduces constraint satisfaction technol-
ogy with emphasis on its applications in planning and scheduling. It gives a brief



survey of constraint satisfaction in general, including a description of mainstream
solving techniques, that is, constraint propagation combined with search. Then it fo-
cuses on specific time and resource constraints and on search techniques and heuris-
tics useful in planning and scheduling. Finally, the basic approaches to constraint
modelling for planning and scheduling problems are presented.

CONCLUSIONS

The concept of the book is the application of techniques from various research
areas, such as Constraint Programming and Machine Learning, in a different area, namely
Automated Planning. The purpose of this form of cooperation is to utilize the outcomes
of several research fields in order to solve open problems of planning or to extend
planning systems to cover a broader area of problems. Apart from the solutions pre-
sented in the book there may be other solutions as well with even better results and
therefore the book presents many opportunities for researchers from different back-
grounds to co-operate.

Intelligent Techniques for Planning has a dual role; apart from the scientific
impact of the book, it also aims to provide the user with knowledge about the principles
of Artificial Intelligence and about innovative methodologies that utilize the effort
spent by researchers in various different fields in order to build effective planning
systems. All the authors are highly appreciated researchers and teachers and they have
worked really hard in writing the chapters of this book. We hope that Intelligent Tech-
niques for Planning will fulfill the expectations of the readers.

Ioannis Vlahavas
Dimitris Vrakas
Thessaloniki, Greece
April 2004
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Chapterl

Declarative Planning and
Knowledge Representation
in an Action Language

Thomas Eiter, Technische Universitat Wien, Austria
Wolfgang Faber, Technische Universitat Wien, Austria
Gerald Pfeifer, Technische Universitat Wien, Austria

Axel Polleres, Leopold-Franzens-Universitat Innsbruck, Austria

ABSTRACT

This chapter introduces planning and knowledge representation in the declarative
action language K. Rooted in the area of Knowledge Representation & Reasoning,
action languages like K allow the formalization of complex planning problems
involving non-determinism and incomplete knowledge in a very flexible manner. By
giving an overview of existing planning languages and comparing these against our
language, we aim on further promoting the applicability and usefulness of high-level
action languages in the area of planning. As opposed to previously existing languages
for modeling actions and change, K adopts a logic programming view where fluents
representing the epistemic state of an agent might be true, false or undefined in each
state. We will show that this view of knowledge states can be fruitfully applied to several
well-known planning domains from the literature as well as novel planning domains.
Remarkably, K often allows to model problems more concisely than previous action
languages. All the examples given can be tested in an available implementation, the
DLVX planning system.

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.
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INTRODUCTION

While most existing planning systems rely on “classical” planning languages like
STRIPS (Fikes & Nilsson, 1971) and PDDL (Ghallabetal., 1998; Fox & Long, 2003), the
last few years have seen the development of action languages which provide expressive
and flexible tools for describing the relation between fluents and actions. Action
languages have received considerable attention in the Knowledge Representation &
Reasoning community and their formal properties (complexity, etc.) have been studied
in depth. Less effort has been spent on how to use the constructs offered by these
languages for problem solving.

In this chapter, we tackle this shortcoming and elaborate on knowledge represen-
tation & reasoning with action languages, which are significantly different from the strict
operator-based frameworks of STRIPS and PDDL.

To that end, we present the planning language K (Eiter, Faber, Leone, Pfeifer &
Polleres, 2004) viaits realization in the DLVK planning system (Eiter, Faber, Leone, Pfeifer
& Polleres, 2003a), available at http://www.dbai.tuwien.ac.at/proj/dlv/K/. We discuss
knowledge representation issues and provide both general guidelines for encoding
action domains and detailed examples for illustration.

The language K significantly stands out from other action languages in that it offers
proven concepts from logic programming to represent knowledge about the action
domain. This includes the distinction between negation as failure (or default negation)
and strong negation. In K, it is possible to reason about states of knowledge, in which
afluent might be true, false orunknown, and states of the world, in which a fluent is either
true or false. In this way, we can deal with uncertainty in the planning world at a qualitative
level, in which default and plausibility principles might come into play when reasoning
about the current or next state of the world, the effects of actions, etcetera. This allows
different approaches to planning, including traditional planning (with information and
knowledge treated in a classical way) and planning with default assumptions or forget-
ting.

STATES, TRANSITIONS, AND PLANS

Intuitively, a planning problem consists of the following task: given an initial
state, several actions, their preconditions and effects, find a sequence of actions (viz.
a plan) to achieve a state in which a particular goal holds. In the following, we will
describe and discuss these concepts in more detail.

Fluents and States

Fluents represent basic properties of the world, which can change over time. They
are comparable to first-order predicates or propositional assertions. States are collec-
tions (usually sets) of fluents, each of which is associated with a truth-value.

We distinguish between so called world states and knowledge states: The current
state of the world, with respect to a set of fluents /' = {f1 fn }, canbe defined as a function
s . F— {true, false}, that is, a set of literals which contains either for —f for any fe F.
From an agent’s point of view, states can also be seen as partial functions s’, that is,
consistent sets of fluent literals, where for a particular fluent fe F neither f nor —f may

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.
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hold. The state s’ then only consists of the subset of s which is known; it is a state of
knowledge.

Note that this view of the epistemic state of an agent differs from other approaches
where incomplete knowledge states are defined as the set of all possible worlds an agent
mightbein (Son & Baral, 2001; Bonet & Geftner, 2000; Bertoli, Cimatti, Pistore & Traverso,
2001). Such sets of (compatible) world states are often referred to as belief states.
Knowledge states as described here can, to some extent, be viewed as assigning a value
only to those fluents having the same value in all states of a corresponding belief state.
When working with knowledge states, one usually does not consider any relationship
to world states, though.

Both knowledge states and belief states can (to a certain degree) be modeled in the
language K discussed in this text.

We remark that the terminology concerning knowledge and belief states is not
always consistent in the literature. For example, Son & Baral use the term “states of
knowledge” when they describe a set of reachable worlds in a Kripke structure (Son &
Baral, 2001). This amounts to what we call “belief states” in our terminology. An in-depth
discussion of the terms “knowledge” and “belief *“ can be found in Hintikka (1962).

A useful generalization is to allow not only Boolean fluents, but also multi-valued
fluents (Giunchiglia, Lee, Lifschitz & Turner, 2001), which take a certain value of a specific
(finite) domain in each state. A state can then be seen as a set of functions which assign
to each fluent f a value of its domain D 5 Boolean fluents having the domain {true, false}.
Such a multi-valued fluent fwith finite domain D = {d R dn} canbereadily “emulated”
by a set of Boolean fluentsf,, ..., f, plus constraints which prohibit concurrent truth of
two distinctf,, fdj.

Actions, Transitions, and Plans

Actions represent dynamic momenta of the world, and their execution can change
the state of the world (or knowledge). Transitions are atomic changes, represented by
aprevious state, a set of actions, and a resulting state. Implicitly, such a definition incurs
the simplifying but commonly used abstraction that all actions have unique duration and
the assumption that all effects materialize in the successor state (i.e., a discrete notion
of time is employed). Given these assumptions, a p/an is a sequence of n sets of actions,
which is backed by trajectories (sequences of n+1 states), such that interleaving these
states and the sets of actions yields a chaining of transitions and the last state in the
trajectory satisfies the goal.

In order to define the semantics of such transitions, the dynamic properties of
fluents and actions are to be represented using an appropriate formalism. Key issues for
such a formalism are how it deals with:

. effects of actions,

i executability of actions (known as qualification problem),

i indirect effects, or interdependencies of fluents (the so-called ramification prob-
lem),

° the fact that usually fluents remain unchanged in a transition [known as the frame

problem (McCarthy & Hayes, 1969; Russel & Norvig, 1995)]
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4 Eiter, Faber, Pfeifer, & Polleres

Aswewill see on the example of language K, action languages provide an expressive
means to deal with these issues.

ACTION LANGUAGE A AND DESCENDANTS

In the planning community, the development of formal languages is driven by a
focus on special-purpose algorithms and systems, where ease of structural analysis of
the problem description at hand is a main issue. On the other hand, expressive languages
for formalizing actions and change in a more general context have emerged from the field
of knowledge representation.

One of the first of these languages was A (Gelfond & Lifschitz, 1993) which
essentially represents the propositional fragment of Pednault’s ADL (Pednault, 1989)
formalism, but offers a more “natural” logic-based language with constructs for the
formalization of actions and change rather than a formal description of operators.

A has been extended in various ways, both syntactically and semantically, for
example by constructs allowing to express ramifications, sensing actions, explicit inertia,
action costs, and more. In the sequel, we will describe the most important features of the
language A and some important extensions thereof. In particular, we will focus on the
language K (in a separate section), which we will use in the remainder of the chapter.

Action Language A

From the viewpoint of expressiveness, A (Gelfond & Lifschitz, 1993) essentially
represents the propositional fragment of Pednault’s ADL, thatis, STRIPS enriched with
conditional effects. Effects and preconditions are expressed by causation rules:

ocauses/if F

where o is an action name, / is a fluent literal, and F'is a conjunction of fluent literals. An
action description D consists of a set of such propositions.

It should be noted that Gelfond & Lifschitz (1993) and Gelfond & Lifschitz (1998)
provide differing semantics for A. The semantics of Gelfond & Lifschitz (1998) are as
follows: States are boolean valuations of fluents. Let E(4, s) be the set of effects of action
A wrt. the state s, i.e. all / of causation rules for 4 s.t. F'is satisfied in s. Then <s,4,s5 ">
is a valid transition if E(4,s) = s’ < E(4,s) U s. Intuitively, the successor state s’ must
contain all action effects and can contain fluent values of s (and no other fluent values),
that is, s ” contains all values of s which are not overridden by action effects. For each
pair (s, A) there is at most one s .

Example 1. Executability and effects of moving block b to block a in the well-known
Blocks World example could be described in A as follows:

move, , causes fif blocked..

ba
move, , causes —fif blocked..
move, , causes fif blocked,.
ba

move, , causes —fif blocked,.
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Declarative Planning and Knowledge Representation 5

move, . causes on, .
move, , causes —blocked ifon, .

A does not provide any means for representing executability in an explicit way, but
one can model the fact that for a state s, in which some condition holds, and an action
Ano consistent s’ exists such that <s,4,s > is a valid transition, rendering action A non-
executable in such a state s. In the example above, the first four rules encode a non-
executability condition for move, by enforcing inconsistency on the auxiliary fluent f.
The last two rules encode an unconditional and a conditional action effect, respectively.

Extensions of A

Language AR

A further step in the development of action languages was the language AR
(Giunchiglia, Kartha & Lifschitz, 1997), which extends A by allowing to model indirect
effects by introducing constraints:

always F.

where F is a propositional formula. Valid states are those for which all constraints are
satisfied. AR also allows for arbitrary propositional fluent formulae C and F in causal
rules of the form:

acauses CifF.
and is capable of modeling nondeterministic actions by statements:
a possibly changes /if F.

In addition, AR also allows for multi-valued fluents and non-inertial fluents.

The semantics relies on the principle of “minimal change:” Let Res  (4,s) denote the
set of states in which C holds for any causation rule for 4 s.t. Fholds ins. Then, <s,4,s ">
is a valid transition if the changes in s '€ Res, (4,s) are subset-minimal with respect to
inertial fluents and nondeterministic action effects. It is important to note that always
constraints do not give causal explanations and therefore not all indirect effects can be
modeled (see Example 2).

Language B
The language B (Gelfond & Lifschitz, 1998) extends the language A by so-called
“static laws”:

[ifF.

where [ is a fluent literal and F is a conjunction of fluent literals. As opposed to always
in AR the semantics of static laws can give causal explanations.
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6 Eiter, Faber, Pfeifer, & Polleres

The semantics of B is based on the principle of “minimal change” and causality. It
incurs the operator Cn (s), which is defined on a set of static laws Z and a set of literals
s, producing the smallest set of literals that contains s and satisfies Z. Then, <s,4,s >
isavalidtransitionif s’ = Cn (E(4,s) U (s Ns’)),i.e. s "is stable when action effects £(4,s)
and unchanged fluents s N s ” are minimally extended to satisfy the static laws.

As an example, consider a simplified version of Lin’s Suitcase (Lin, 1995):

Example 2. Assume we have a spring-loaded suitcase with two latches. Unlocking a latch
turns its position to “up,” and as an indirect effect the suitcase opens as soon as
both latches are up. This can be modeled by the following B action description:

unlock, causes up,.
unlock, causes up .

open ifup, up,.

Consider an initial state s = {up,, 7up,, 7open} and action a = {unlock,}. For
s"={up, up, open}wehave Cn, (E(A,s) U (sNs')) =Cn,({up,} L {up,}) = {up, up,
open} =s', and hence <s,a,s"> is a valid transition in B. It can be verified that s is the
only valid successor state for s and a.

When we would replace the final static law by the AR constraint:

always up, A up, = open.
we obtain Res, (a,s) ={s' s", s""}, where s"" = {—|up1, up,, open} and s"" = {—|up1, up,
—open} (i.e. Res, (a,s) contains all valid states in which up, holds). The changed fluents
(with respect to s) for s" are {open, up,}, for s" {open, up , up,}, and for s {up , up,},
so by subset-minimality <s,a,s> and <s,a,s""> are valid transitions. Ins"", —up, lacks
acausal explanation (Why did it change its value with respect to s?), and hence <s,a,s"">
is intuitively not expected to be a valid transition. Note that both s"and s""' satisfy the
criterion for “minimal change,” but in the semantics of AR causal explanations among

fluents are not considered.

Language A,

An extension of the action languages AR and A to formalize sensing actions was
proposed by Son and Baral with language A, (Son & Baral, 2001). A provides
propositions of the form a determines f, which intuitively states that after executing action
a, the value of fluent fis known. This concept of knowledge differs from what we referred
to as knowledge states in the introduction and which we will further discuss in the
following.

Action Language C

The most recent and evolved languages in this line of action languages are the
languages C (Giunchiglia & Lifschitz, 1998) and its extension C+ (Giunchiglia, Lee,
Lifschitz, McCain & Turner, 2004). C is similar to B in that it distinguishes between static
and dynamic laws. It is in some ways more expressive than B and AR, though, strictly
speaking, not a superset of either.
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Declarative Planning and Knowledge Representation 7

C action descriptions consist of a set of causation laws ¢ of the form:

caused Fif G after H. (1)

where the after-part is optional: ¢ is called static if it has no after-part and dynamic
otherwise. These rules are more flexible than the previous approaches in that Fand G are
arbitrary propositional formulae over fluent literals and H is a propositional formula over
fluent and action literals. Furthermore, constraints and qualifications can be expressed
via F' = f A —f, which is written as:

caused L if G after H.

These rules encode inconsistency similar to constraints in logic programming.

An action description D consists of static and dynamic causation laws. Its seman-
tics are given by the following definition of causally explained transitions:

A transition <s,a,s"> is causally explained according to D if its resulting state s'is
the only interpretation that satisfies all rules caused in this transition, where a formula
Fis caused if it is:

i the head of a static law (1) from D such that s’ |= G or
i the head of a dynamic law (1) from D such thats’ |= Gands va |=H

Note that this allows for nondeterministic actions and valid transitions <s,a,s",
<s,a,s'> with s"#s". The definition of causally explained transitions is closely related
to causal theories as defined by McCain and Turner (1997) and the underlying concept
of causal explanation (Lifschitz, 1997).

Remarkably, inertia (i.e., that a fluent remains unchanged unless explicitly stated
otherwise) has to be explicitly encoded in C; frame axioms are not implicit like in the
previously discussed approaches. However, they can be conveniently expressed by the
following macro:

inertial F. < caused Fif F after F.

A further macro that allows for modeling qualifications of actions is:
nonexecutable 4 if G. < caused L after4 A G.

C and K (which will be presented below) share several distinct features such as

concurrent actions, the intuitive modeling of state constraints, action qualifications,
inertia, non-determinism of actions, and incomplete initial knowledge.

Action Language C+

A recent extension of C called C+ allows for multi-valued, additive fluents, which
canbeused to encode resources, and allows for a more compact representation of several
practical problems (Giunchigliaetal.,2001,2004).
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8 Eiter, Faber, Pfeifer, & Polleres

ACTION LANGUAGE K

We next give an overview of the language K as implemented in the DLVX planning
system. Details and the formal definition of the semantics of K can be found in Eiter et
al. (2004). Since we will use K throughout the rest of this chapter, we consider an example
from the well-known Blocks World domain in detail.

The distinguishing feature of the language K with respect to the action languages
considered so far is the notion of incomplete states and the ability to reason about this
incompleteness. In particular, a state may either contain a fluentf, its strong negation
-f, or it may say nothing about /. Causal rules may contain default negated fluent literals
not f, which hold if either -fholds or nothing is said about f'in the respective state. This
is often referred to as negation as failure.

A K planning problem is apair P = <PD, g> of aplanning domain PD (informally,
the world of discourse) and a query ¢, which specifies the goal. A planning problem is
represented as a combination of background knowledge I1, provided as a function-free
logic program (possibly with negation) admitting exactly one answer set, and a program
of'the following general form:

fluents: F,
actions: 4,
always: C,
initially: 7
goal: q

=

where the first four sections consist of statements, described below, each of which is
terminated by “.”. Together with the background knowledge I'l, they specify a K planning
domain of the form PD = <II, <D, R>>, where the declarations D are given by F’ > and
A, and the rules R by C, and /,.

The statements in /'  and 4, consist of fluent and action declarations, respectively.
They type the fluents and actions with respect to the (static) background predicates and
have the form:

p(X, ..., X)requirest, ... ¢t )

where p is a fluent or action predicate of arity n > 0, and the ¢, are classical literals (i.e.,
an atom o or its strong negation -o.), over the predicates from the background knowledge,
such that every variable X, occursin¢, ..., ¢ (as common, upper case letters denote
variables). Only instances of fluents and actions which are “supported” by some ground
instance of a declaration, where the requires part is true, need to be considered.

The always-section specifies the dynamics of the planning domain in terms of
causation rules of the form:

caused fifb, ..., b, noth,, ..
aftera,...,a  nota,

., hotb,
Ly, NOta 3)
where fis either a classical literal over a fluent or false (representing inconsistency), the
bs are classical literals over fluents and background predicates, and the asare positive

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.



Declarative Planning and Knowledge Representation 9

action atoms or classical literals over fluents and background predicates. Informally, a
rule of the form (3) states that f is true in the new state reached by (simultaneously)
executing some actions, provided that the condition of the after part is true with respect
to the old state and the actions executed on it, and the condition of the if part is true in
the new state.

Both the if- and after-parts are optional. Specifically, both can be omitted together
with the caused-keyword to represent facts.

The always-section also contains executability conditions for actions:

executable aifb , ..., b, noth ., noth, 4

k+1 "
where a is an action atom and bl, bl are classical literals over fluents and background
predicates. They state that a (well-typed) action is eligible for execution in a state, if
b1, bk are known to hold while bM, bl are not known to hold in that state.

The initially-section specifies conditions that hold in any initial state (which is not
unique in general). They have the form of causation rules, as described above, without
the after part.

The goal-section, finally, specifies the goal to be reached, and has the form:

gy &g, notg ., .., notg ?(Q) 5)

where g, ..., g, are ground fluent literals, n 2 m 2 0, and i 2 0 is the number of steps in
which the plan must reach the goal.

Allrulesin/,and C, have to satisfy the safety requirement for default negated type
literals (i.e., literals corresponding to predicates from the background knowledge): each
variable occurring in a default negated type literal has to occur in at least one positive
type literal or dynamic literal. Note that this safety restriction does not apply to action
and fluent literals whose variables are already safe due to their respective declarations.

Example 3 (Blocks World). Let us consider the Blocks World, one of the best-known
scenarios in Al Planning. Here, the goal is to build stacks of blocks, which are
located on a table. The planning problem consists of an initial configuration of
blocks and a (probably partly specified) goal configuration. The only action is
moving a block x to a location /, that is, onto the table or on top of another block
which is clear, and we allow parallel moves. Figure I shows a simple instance.

Figure 1. Blocks World instance

initial: goal:

o]
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10 Eiter, Faber, Pfeifer, & Polleres

Figure 2. K encoding for the Blocks World domain PD, |

fluents: on(B,L) requires block(B), location(L).
blocked(B) requires block(B).
moved(B) requires block(B).
actions: move(B,L) requires block(B), location(L).
always: caused blocked(B) if on(B1,B).
executable move(B,L) if B<>L.
nonexecutable move(B,L) if blocked(B).
nonexecutable move(B,L) if blocked(L).
nonexecutable move(B,B1) if move(B1,L).
nonexecutable move(B,L) if move(B1,L), B<>B1, block(L).
nonexecutable move(B, L) if move(B, L1), L <> L1.
caused on(B, L) after move(B, L).
caused moved(B) after move(B, L).

caused on(B, L) if not moved(B) after on(B, L).

AKencoding PD,  forthisdomainisshown in Figure 2. This encoding guarantees
serializability, which means that parallel actions are non-interfering and could be
executed in any sequential order; each parallel plan can be arbitrarily “unfolded” to a
sequential plan.

We use three fluents: on(B,L) states that block B resides at location L, fluent
blocked(B) indicates that the capacity of a block B to hold further blocks is exhausted, and
fluent moved(B) holds directly after B was moved. There is a single action move(B,L), which
represents moving ablock B to some location L (and implicitly removes it from its previous
location). Finally, we add background knowledge which defines the six blocks and the
table as a location:

block(1). block(2). block(3). block(4). block(5). block(6).
location(table).
location(B) :- block(B).

The configurations of blocks shown in Figure I are expressed by extending Pd, ,

the program in Figure 2, as follows, yielding P,
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initially: on(1,2). on(2,table). on(3,4). on(4,table). on(5,6). on(6,table).
goal: on(1,3), on(3,table), on(2,4), on(4,table), on(6,5), on(5,table) ? (1)

Here, / is a non-negative integer representing the plan length. Note that only
positive knowledge is stated for on and blocked; this is because our modeling assumes
that fluents are interpreted under the closed world assumption (CWA) (Reiter, 1978). If
some fluent does not hold, we assume that it is false. Note that CWA is not a feature in
the syntax or semantics of K; it is just a modeling assumption in this example.

The values of the fluent blocked in the initial state are not specified explicitly; rather
they are obtained from a general rule that applies to any state, and thus is part of the
always-section: the first rule there says that a block B (but not the table) is blocked if
another block is on it. Observe that the fluent moved can never hold in the initial state.

Next we specify when an action move(B,L) is executable. This is achieved by a
combination of executable and non-executable statements defining defaults and excep-
tions, respectively. A move is executable, if the positive executability condition holds and
all negative executability conditions fail. In our case, a block can be moved to any location
exceptonto itself, with several exceptions: (i) blocks which are blocked cannot be moved;
(ii) a block can not be moved to a blocked block; (iii) a block can not be moved on top of
another block which is moved at the same time; (iv) two different blocks can not be moved
to the same block at once; and (v) a block can not be moved to two different locations
at once.

The effects of a move action are defined by two dynamic rules. The first states that
amoved block is on the target location after the move, and the second states that moved(B)
holds directly after a block B has been moved.

The lastrule is an explicit frame axiom for on. It states that blocks that have not been
moved remain where they were before. Such frame axioms are not included for blocked and
moved, because blocked follows as a ramification from on, and moved is supposed to hold
only right after a respective move action occurred.

The semantics of a K planning domain PD is defined in terms of legal states and state
transitions. Informally, a state is any consistent set of ground fluent literals that respect
the typing information. Itis a legal initial state, if it satisfies all rules in the initially-section
and the rules in the always-section with empty after part if causal rules are read as logic
programming rules under the answer set semantics (Gelfond & Lifschitz, 1991). A state
transition is a triple <s,4,s > where s and s’ are states and A is a set of legal action
instances in PD , that is, action instances that respect the typing information. A transition
is legal if the action set A is executable with respect to s; that is, each action a in A is
the head of a clause (4) whose body is true, and s’ satisfies all causal rules (3) from the
always-section whose after part is true with respect to s and 4.

An optimistic plan for a goal g, ..., g ,notg ., .., notg ?(i) isasequence

of action sets <4, .. Al.>, i=0, such that a corresponding sequence T = <<s, AI,
5>, <s, A2, §,>, ., <8, Ai, §>> of legal state transitions exists that leads from a legal
initial state s,toastates, which establishes the goal, that is, {gl, gm} Cs, and {gmﬂ,
..., &,y Ns,=Q. Tis called trajectory, and an optimistic plan of length 7 is a solution to
the planning problem P = <PD, ¢>, where g has the form (5).

Example 4 Blocks World (continued). If we instantiate the plan length 1 by 2 in P
we get a plan which involves six move actions:

bwli(l)?
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12 Eiter, Faber, Pfeifer, & Polleres

P,=<{move(l,table), move(3,table), move(5,table)}, {move(1,3), move(2,4), move(6,5)}>

By unfolding these steps, this plan gives rise to similar plans of length /=3, ..., 6.
For /=3, we can also find the following plan comprising only five actions:

P =<{move(3,table)}, {move(1,3), move(5,table)}, {move(2,4), move(6,5)}>

KNOWLEDGE REPRESENTATION

We will now consider different aspects of knowledge representation in K and the
DLV¥ planning system. First, we discuss some particular constructs, which facilitate
expressing some commonly occurring concepts. Subsequently, we focus on the handling
of incomplete knowledge and non-determinism, differentiating various scenarios and
suggesting techniques for modeling these by providing examples. We then briefly cover
an extension of K, which allows one to express action costs and compute optimal plans,
and conclude by giving some basic principles for knowledge representation in K as well
as an overview of features and pitfalls.

Basic Features

Letusrecall how the dynamic behavior was specified in the Blocks World program
of Figure 2. The basic structures are causal rules and executability statements.

. Direct Action Effects. Animportantuse of causal rules is the specification of direct
action effects. If action a has the effect that a fluent f holds, this can be expressed
by caused f after a.

. Qualification Problem. The constructs executable and nonexecutable are used to
express and solve the qualification problem, that is, the problem of determining
whether an action is executable in a particular state. By default an action does not
qualify for execution. One can grant this qualification by specifying executable
clauses (which can be as general as stating that the action is always executable).
Dually, these qualifications can be narrowed down by specifying nonexecutable
conditions. In our example, move is the only action. It is first made executable for
all cases where its first and second arguments differ, and, subsequently, cases are
excluded by using nonexecutable statements. Thus, K offers a flexible means for
dealing with the qualification problem by offering constructs for specifying
executability conditions and exceptions to them. Using K, one can also create more
complex hierarchies of exceptions by using auxiliary fluents and negation as failure,
though no first-class syntactic constructs for doing so are provided in the
language.

i Ramification Problem. Let us now turn to the ramification problem, that is, the
problem that some fluents may depend on other fluents rather than being directly
affected by actions; sometimes this is also referred to as indirect effects. In K,
indirect effects are also dealt with by causal rules: Ifa fluent f causes another fluent
g, this is expressed by caused g if f., where the use of if indicates simultaneity. In
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Figure 2, the fluent blocked depends directly on the fluent on and indirectly on the
effects of the action move.

. Frame Problem. The handling of the frame problem, that is, the fact that fluents
usually do not change their value, unless there is a direct or indirect cause for a
change, leaves room for improvement. Indeed, in the program of Figure 2, we
declare a fluent moved, which indicates whether a block was just moved. Addition-
ally, there is a causal law using this fluent which states that the fluent on should
remain unchanged for fluents not affected by a move action. While not incorrect,
this representation is not easily extensible. In particular, for each pair of actions and
fluents at least one such statement should be included to describe unaffectedness
conditions (Shanahan, 1997), whereas in general, one would rather like to express
default assumption on fluents.

K directly supports inertia, that is, the assumption that a fluent remains unchanged
by default. Unlike in other languages, inertia is not implicitly assumed on all fluents;
rather a fluent, say f, has to be declared inertial by inertial f.

What we have left open so far is how to express exceptions to the inertial default.
To this end we consider the concept of strong negation, which we have briefly
mentioned, but not used in an example so far. Concerning an inertial fluent f, the
exception to its inertia is its strong negation -f. (Intuitively, strong negation-f says
that we explicitly know that f does not hold, whereas not f states that we do not know
that f holds and thus can implicitly assume that it does not.) Using this, inertial f can
alternatively be written as caused fif not-f after f. Indeed, inertial f is implemented as
such a macro in DLV¥. Contrast this with the respective macro in the language C,
which is caused fif f after f. While in K, f is assumed to hold in lack of any contrary
information, C takes the view that f explains itself after it was true in the previous
stage.

Note that in K, inertia may also be defined on a truly negated fluent -f by the
statement inertial -f, to which f acts as exception.

Coming back to the Blocks World domain, we can modify the program of Figure
2 by eliminating the fluent moved, replacing the pseudo-inertial rule by an inertial
statement, and explicitly stating that a block is no longer on a particular location
ifitwas just moved away. The resulting program PD, ,isdepicted in Figure 3. The
planning problem P obtained by replacing PD, /by PD, inP, . has the
same plansas P, , .

° Negation and Closed World Assumption. We point out that the only negative
information in this encoding is the exception for the inertia of on. Indeed, the
encoding focuses on the relevant information. Any state reachable by a legal
transition only consists of positive fluents on(B,L) and blocked(L), describing a
“relevant clipping” of knowledge. We do not care which blocks are currently
unblocked or where a block is not located, and indeed K does not require to
completely specify truth values for all fluents, as in this example the fluents are
interpreted under a closed world assumption (CWA), meaning that fluents which
are not explicitly caused are considered false. Note that the CWA is a modeling
decision (like a programming technique), and indeed the next sections will show
examples where the CWA is not applicable. Also note that one could “reify” the
CWA by including the rule:

bw2(1)°

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.



14 Eiter, Faber, Pfeifer, & Polleres

Figure 3. Alternative DLVX program for the Blocks World domain PD, ,

fluents: on(B,L) requires block(B), location(L).
blocked(B) requires block(B).

actions: move(B,L) requires block(B), location(L).

always: caused blocked(B) if on(B1,B).
executable move(B,L) if B<>L.
nonexecutable move(B,L) if blocked(B).
nonexecutable move(B,L) if blocked(L).
nonexecutable move(B,B1) if move(B1,L).
nonexecutable move(B,L) if move(B1,L), B <> B1, block(L).
nonexecutable move(B,L) if move(B,L1), L <> L1.
caused on(B,L) after move(B,L).
caused -on(B,L1) after move(B,L), on(B,L1), L <> L1.

inertial on(B,L).

caused -on(X,Y) if noton(X,Y).

Doing so eliminates the computational benefits of CWA, however.

Planning with Incomplete Knowledge

Let us now focus on domains with inherent non-determinism and incomplete
knowledge. In this context incomplete knowledge is a lack of knowledge in the problem
specification rather than incompleteness resulting from model abstraction, focusing
onto the relevant part of the specification. For example, in the Blocks World domain we
did notrepresent some knowledge which was irrelevant for the problem at hand, resulting
inincomplete states; the planning domain was sufficiently specified, though, and did not
admitnon-determinism.

The forms of incompleteness we will consider now are of a more fundamental nature,
asrelevant knowledge is missing, usually resulting in non-determinism. In particular, we
will consider three main sources of non-determinism:

1. incomplete initial states;
2. non-deterministic actions;
3. non-deterministic evolutions.

We will exemplify each of them in some domain encoding below. Source 1 deals with
scenarios where some aspects of the initial state are unknown. This entails a compara-
tively light form of non-determinism, since it is confined to a single point in time. The
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Square domain will serve as an example for such a setting. Source 2 refers to actions with
multiple alternative outcomes, where the knowledge about action effects is incomplete.
This form of non-determinism potentially affects all points in time. In the Paint example
we will tackle such a problem. Finally, for Source 3 the environment itself can change non-
deterministically. Affected fluents may change values without actions causing this
change, meaning that there are dynamics that are not under the agent’s control. The Ring
domain comprises such evolutions. Summarizing, these three sources are uncertainties
on the initial state, the action effects, and the world evolution, respectively. Since those
uncertainties are not associated with probabilities and thus are not quantified in our
framework, we refer to them as qualitative uncertainties. Indeed, this is a common
setting, as probabilities are often hard to obtain or are simply unknown.

In the context of non-deterministic planning problems, optimistic plans can estab-
lish the goal in some non-deterministic evolutions, while so-called secure or conformant
plans (Goldman & Boddy, 1996; Smith & Weld, 1998) establish the goal for al/ possible
evolutions, that is, the plan is executable from every initial state and eventually
establishes the goal in any possible evolution. K and the DLV¥ system allow one to
specify such domains, as demonstrated below, and support conformant plan generation.
For details we refer to Eiter et al. (2004).

Square

The Square domain is about self-location of a robot, which moves in a wall-bounded
nxn grid. The robot can move in four directions (up, down, left, right) and its initial position
isunknown. Moving towards a wall has no effect, and the robot stays in its position. The
problem of finding a conformant plan for reaching the corner position (0,0) is referred to
as SQUARE(n) in the literature (Bonet & Geffner, 2000; Parr & Russel, 1995). SQUARE(4)
with one of the possible initial states — the robot is at position (2, 1) — is illustrated in
Figure 4.

Figure 4. SOUARE(4)
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16 Eiter, Faber, Pfeifer, & Polleres

A K encoding for this problem is as follows:

fluents: atX(P) requires index(P). atY(P) requires index(P). anywhere.
actions: up. down. left. right.
always: executable up. executable right.
executable left. executable down.
nonexecutable up if down.
nonexecutable left if right.
inertial atX(X). inertial atY(Y).
caused atY(Y) after atY (Y1), next(Y,Y1), up.
caused atY(Y1) after atY(Y), next(Y,Y1), down.
caused atX(X) after atX(X1), next(X,X1), left.
caused atX(X1) after atX(X), next(X,X1), right.
caused -atX(X) if atX(X1), X1 <> X after atX(X).
caused -atY(Y) if atY(Y1), Y1 <> Y after atY(Y).
initially: total atX(X). total atY(Y).
forbidden atX(X), atX(X1), X <> X1.
forbidden atY(Y), atY(Y1), Y <> Y1.
caused anywhere if atX(X), atY(Y).
forbidden not anywhere.
goal:  atX(0), atY(0)?(n)

where quwe consists of facts:
index(0).... index(n-1). and next(0,1). ... next(n-2, n-1).

Fluents atX and atY represent the current position of the robot in the grid and are
inertial. Another fluent, anywhere, is used to ensure the validity of the initial state. Four
actions move one step up, down, left or right, respectively. They are concurrently
executable, giving the possibility to move diagonally in one step. Just concurrent
execution of {up, down} and {left, right} is not admitted. The effects of the respective move
actions are changes in the horizontal or vertical coordinates and an invalidation of the
previous horizontal or vertical coordinates, overriding inertia.

For the initial state, we use new language constructs: total f. is a macro representing
the two causal rules caused fif not—f. and caused -fif notf.. It gives rise to non-determinism
in that both states containing f and -f, respectively, are considered. In the example, total
atX(X). and total atY(Y). gives rise to 2" possible initial states, corresponding to all possible
assignments of {atX(i), -atX(i)} and {atY (i), -atY(i)} for 0 <i<n. These statements thus create
many illegal states, for example, one containing atX(0), ..., atX(n-1), atY(0), ..., atY(n-1), and
one containing -atX(0), ..., -atX(n-1), -atY(0), ..., -atY(n-1).

We therefore also use the macro forbidden, which renders states where the specified
condition holds illegal. In our example, we express that atX and atY hold for at most one
horizontal and vertical position, respectively. The fluent anywhere is used to avoid states
in which only -atX or only -atY holds, respectively, in that the case where anywhere is not
caused is forbidden. These conditions narrow the number of legal initial states down to
the actual n? possible initial positions.
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Declarative Planning and Knowledge Representation 17

For the problem depicted in Figure 4, the following optimistic plan works ifthe initial
position of the robot is as in Figure 4 (or anywhere closer to the upper left), but not if
the initial position of the robot is further down or right, so it is not secure:

P =<{left, up}, {left}>
The following, on the other hand, is a three-step secure plan for SQUARE(4):
P2=<{left, up}, {left, up}, {left, up}>

Note that in this domain the only source of uncertainty is the initial state. All actions
are always executable and effects are deterministic. The actions do not “gain” any
knowledge, so a representation exploiting knowledge states is not beneficial. Since the
exact initial position is not known, knowledge of the position at each step is necessary
in order to determine the action effects. Encoding all possible initial world states seems
to be the only option for representing this problem.

Paint

Consider the following scenario: A house is to be painted. Several colors for
painting are available, and several painters, for example, joe and jack. Assume joe suffers
from a red-green color-blindness known as “Daltonism.” When we tell him to paint the
house red, we do not know whether it will be red or green when he is done. Therefore,
we have incomplete knowledge about the action effect, resulting in a nondeterministic
action effect. However, even in this case some facts are known, for example, that the
house is definitely not blue.

° Basic Encoding. Letus first consider a simple planning problem in which the house
is initially colored blue and we want it colored green after one time unit. In the
background knowledge we define predicates c(x) for colors X, painter(p) for persons
p to paint, and a predicate conf(cl,c2,p) if painter p confuses the colors c1 and €2;
the latter is symmetric on colors. Furthermore, we use a predicate confusedBy(p,c)
for painters p which confuse a color ¢; this is conveniently expressed by a logic
programming rule representing projections.

c(blue). c(red). c(green).
painter(joe). painter(jack).
conf(red,green,joe).
conf(C1,C2,A) :-conf(C2,C1,A).
confusedBy(C,A) :-conf(C,C1,A).

Anencoding Pme.mof the Paintdomain is shown in Figure 5. We only use one fluent,
col, which describes the color of the house, and one action paint, expressing that a
painter is asked to paint the house in a particular color. We declare this action to be
unconditionally executable, and the macro noConcurrency forces actions to be
executed sequentially.

We next define action effects. If the painter does not confuse the color he is asked
to paint with, the action has the deterministic effect of the house being in the
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18 Eiter, Faber, Pfeifer, & Polleres

requested color. If, however, the painter is asked to paint the house in a color he might
confuse with another color, we model a nondeterministic effect.

Thisis achieved in way that is reminiscent of the causal rules making up the total macro
presented in the previous section. A pair of causal rules caused fif not g. and caused
gifnotf. gives rise to two alternative successor states, one containing f and one containing
g.In our example, f and g are the fluents col(C1) and col(C2) where C1 and C2 are the
confusable colors. We want these alternative states to occur exactly after a suitable
action is performed, so we add after paint(C1,A) to each of the rules.

Finally, col is declared inertial. Concerning exceptions to inertia, the situation is
different than in the Blocks World or Square domains, because of the nondeterministic
action effect. The rule:

caused -col(C1) after paint(C2,A), col(C1), C1 <> C2.
would be incorrect if conf(C1,C2,A) holds. We could use the rule:
caused -col(C1) if col(C2), C1 <> C2 after col(C1).

expressing that -col(C1) holds if the color of the house has really changed. Alterna-
tively, as in Figure 5, we can state that col should be true for only one color, explicitly
deriving -col for all other colors. In that case, negative inertia for -col can be safely
ignored.

It should be noted that the knowledge states reachable from the initial state in PD .
are in one-to-one correspondence with the actual world states.

For this planning problem, the following three optimistic plans exist:

nt

Figure 5. An encoding of the painting domain (PDpam)

fluents: col(C) requires ¢(C).

actions: paint(C,A) requires c(C), painter(A).

always: executable paint(C,A).
noConcurrency.
caused col(C) after paint(C,A), not confusedBy(C,A).
caused col(C1) if not col(C2), conf(C1,C2,A) after paint(C1,A).
caused col(C2) if not col(C1), conf(C1,C2,A) after paint(C1,A).
inertial col(C).
caused -col(C1) if col(C), C <> C1.

initially: col(blue).

goal: col(green)? (1)
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P,=<{paint(green,joe)}>
P,=<{paint(red,joe)}>
P,=<{paint(green jack)}>

The color-blind painter joe can be told to paint red or green, and we can hope that
he will choose green, but he might also choose red. On the other hand, jack, who
is not color-blind, will paint the house green for sure, and therefore only the latter
plan P, is secure.

i Forgetting. In some cases we can avoid non-determinism by employing a
knowledge state view. In the Paint domain, non-determinism arises from the fact
that the exact color of the house after a paint action is not known in some cases,
and two possible world states need to be considered non-deterministically.
However, the language K also allows for aknowledge-oriented representation. We
modify the domain by modeling only definitely known information and omit the two
rules responsible for the nondeterministic choice in PD, .- We thus no longer
cause the house to be of some color after a color-blind painter has been asked to
paint the house in a color he might confuse. However, we still need to block inertia,
or the house would retain its color. One way to achieve this is to encode the
negative information about the house color, which is known even if no positive
information is available. In the particular example, we know that the house will not
have a color that the painter does not confuse with the asked-for color. For example,
we know -col(blue) after paint(green,joe), and this can be expressed by the general
causal rule:

caused -col(C) after paint(C1,A), conf(C1,C2,A), col(C), C<>C1, C<>C2.

Note that executing paint(green,joe) in the modified domain, PD, ... encodes
forgetting parts of the knowledge about col, and that the knowledge states
reachable from the initial state no longer correspond one-to-one with the actual
world states. By applying forgetting techniques, we have managed to transform the
nondeterministic domain PD, . toa deterministic one. Indeed, the only secure plan
when using PD, .. is the single optimistic plan (which is also trivially secure) when
using PD tpaine- 1LOUT experience, problems formulated by such knowledge-oriented
encodings are usually much easier to solve [see also benchmarks in Eiter et al.
(2003a)], butitis probably not always possible to find a deterministic knowledge-
oriented encoding for a nondeterministic domain, by complexity results presented
in Eiteretal. (2003a).

Forgetting cannot be emulated directly by formalisms which adopt a world state
view. There, leaving fluents open necessarily amounts to a disjunction over all
possible world states [as argued in Lin & Reiter (1994)], whereas we can explicitly
distinguish between such a totalization and a true forgetting approach.

° Conditional Inertia. The encoding PD ipaint has a minor problem, though: it will not
work correctly if the painter confuses all available colors, because inertia is not
overridden by the added rule in this case. Indeed, if we remove c(blue) from the
background knowledge of the example above, and the house is already green in the
initial state, that is, initially: col(blue). is replaced by initially: col(green)., we get the
following (optimistic and secure) plans:
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20 Eiter, Faber, Pfeifer, & Polleres

P =<{paint(green,joe)}>
P, = <{paint(red,joe)}>

P _=<{paint(green,jack)}>
Pd: <>

of which P and P, are wrong, as they do not necessarily establish the goal.

As already mentioned, the reason for this fault is that no exception to inertia is
provided when paint(green,joe) or paint(red,joe) are executed, and so col(green)
continues to hold, even if it should not. The inertia macro requires negative
knowledge about the inertial fluent to be derived. In situations as the one above,
however, there is no cause for such a negative knowledge.

One approach to solve such a scenario is to create an additional way for providing
exceptions to inertia, by adding explicit conditions under which inertia applies. We
refer to this conceptas conditional inertia. In K, we simply extend the inertial macro
by allowing if and after conditions, just as for standard causal rules.

In the Paint domain, we modify PD,_ .. by introducing a new auxiliary fluent
unknowncolor, which explicitly represents the fact that the color of the house is not
known. This fluent holds after a painter has been asked to paint with a color he
confuses and inertia is not applied in that case. The modified domain PD_ .. is
given in Figure 6. The planning problem involving PD_ .. correctly yields only
P and P, as (optimistic and secure) plans.

It turns out that conditional inertia is a versatile concept, which can be used to
encode many domains involving non-deterministic action effects by a determinis-
tic knowledge oriented encoding.

Figure 6. A conditional inertia encoding of the painting domain (PD,,...

fluents: unknowncolor. col(C) requires ¢(C).
actions: paint(C, A) requires ¢(C), painter(A).
always: executable paint(C,A).
noConcurrency.
caused col(C) after paint(C,A), not confusedBy(C,A).
caused unknowncolor after paint(C,A), confusedBy(C,A).
caused -col(C) after paint(C1,A), conf(C1,C2,A), col(C), C <> C1, C <> C2.
inertial col(C) if not unknowncolor.
caused -col(C1) if col(C), C <> CL1.
initially: col(blue).

goal: col(green)? (1)
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Figure 7. RING(8)
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Imagine arobot moving inaring of n rooms, which are all connected. There are two
actions fwd and back to move to the previous and next room, respectively. Each room has
a window and the robot can close and lock any window, where locking is only possible
if the window is closed. The goal is to lock all windows. However, gusts of wind (which
are obviously not under the control of the robot) may change the state of a window from
being closed to being open and vice versa. The robot therefore cannot be sure that a
window remains closed after he has closed it. In the initial situation the position of the
robot is unknown and all windows are open. This domain has been described in Cimatti
& Roveri (1999) and is referred to as RING(n). Figure 7 shows an instance with eight
rooms.

The background knowledge models the room layout:

next(rl,r2). ... next(r7,r8). next(r8,rl).
room(R) :- next(R,R1).

Letus first consider what kind of knowledge is crucial in this domain. The robot does
not have knowledge about its position, but it also has no means of gaining knowledge
in this respect (a similar situation as in the Square domain). Concerning the closed-state
of a window, the robot knows that a window is closed immediately after having closed
it. The robot also knows that a closed window stays closed after being locked, but
nothing else is known about the closed-state of a window.

According to this analysis, we present an encoding in Figure 8, which uses a world
view for position and a knowledge view for closed. We use fluents closed and locked to
encode whether the window in a room is closed or locked, respectively. The robot’s
position is expressed using position. Fluent unlocked should hold whenever some windows
are not locked, and anywhere is an auxiliary fluent used for determining legal initial states.

The actions fwd and back represent forward and backward moves by the robot, close
and lock are robot actions for closing and locking the window in the current room.
Executability of fwd, back, and close is always given, while for lock the window at the current
position must be closed. unlocked holds whenever some window is not known to be locked.
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22 Eiter, Faber, Pfeifer, & Polleres

The actions close and lock cause the window at the current position to be closed and locked,
respectively, immediately after the respective action, and fwd and back cause the
respective position changes.

Fluents locked and position are inertial. The exception for position inertia occurs
whenever the robot moves to another position, while for locked no exception can occur.
The fluent closed is not inertial until the respective window is locked, accounting for the
lack and gain of knowledge we have discussed above by means of forgetting via
conditional inertia.

Finally, the initial state is described. As discussed, a knowledge approach is not
feasible for positional information, so we use the nondeterministic macro total together
with appropriate restricting rules to form all initial states containing exactly one instance
of position, similar to the Square encoding. We also represent the knowledge about all
windows being open initially. Finally, the goal is reached whenever unlocked does not
hold after / steps.

The secure plans of this domain for RING(2) and plan-length 5 are:

pP.= <{close}, {lock}, {fwd}, {close}, {lock}>
P = <{close}, {lock}, {back}, {close}, {lock}>

and for RING(n) and plan-length 3n-/ two analogous plans exist.
It is possible to easily switch from a knowledge view to a world view on closed by
adding a causal rule:

total closed(R).

to the always-section, creating non-determinism for each step in which some closed state
is not known.

Action Costs

In Eiter, Faber, Leone, Pfeifer and Polleres (2003b) we have defined an extension of
the language K called K¢, which allows assigning costs to actions. For instance, in K¢
one can assign a cost of 1 (representing, e.g., energy resources consumed by the action)
to each move action by modifying the declaration of move in PD, , of Figure 3 to read:

actions: move(B, L) requires block(B), location(L) costs 1.

The plans for a K¢ planning problem are defined as those plans that minimize the
sum of the respective costs of all actions in the plan. For the Blocks World planning
problem from above and plan length 3, we obtain two plans with five actions, but none
of the plans with six actions considered originally.

P =<{move(3,table)}, {move(1,3), move(5,table)}, {move(2,4), move(6,5)}>
P, = <{move(3,table), move(5,table)}, {move(1,3)}, {move(2,4), move(6,5)}>

Cost statements may contain integer arithmetic supported by the underlying DLV
system. They may also contain the designated constant time, allowing for dynamic cost
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Figure 8. Ring domain (PD”-,,g)

fluents: closed(R) requires room(R).
locked(R) requires room(R).
position(R) requires room(R).
unlocked. anywhere.
actions: fwd. back. close. lock.
always: executable fwd. executable back. executable close.
executable lock if position(R), closed(R).
caused unlocked if not locked(W).
caused closed(R) after close, position(R).
caused locked(R) after lock, position(R).
caused position(R1) after fwd, position(R), next(R,R1).
caused position(R1) after back, position(R), next(R1,R).
inertial locked(R). inertial position(R).
inertial closed(R) if locked(R).
caused -position(R) after fwd, position(R).
caused -position(R) after back, position(R).
noConcurrency.
initially: total position(R).
forbidden position(R), position(R1), R <> R1.
caused anywhere if position(R).
forbidden not anywhere.
caused -closed(R).

goal:  not unlocked? (1)

assignment: time will evaluate to the time-step in which the particular action instance
occurs. This provides a flexible framework for performing qualitative optimization
planning.

Using this machinery, it is possible to solve several generic problems (Eiter et al.,
2003b): finding (o) plans with minimal cost for a given number of steps (cheapest plan),
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(B) plans with minimal time steps (shortest plan), (y) plans which are the shortest among
the cheapest, and (8) plans which are the cheapest among the shortest.

One might think that assigning costs to fluents in a similar manner would be useful
aswell. However, this would trigger semantic issues, since plans may have more than one
supporting trajectory, that is, sequences of states serving as a witness for the viability
of the plan. These different trajectories could then have different fluent costs assigned,
and one would have to apply some sort of aggregation (maximum, arithmetic mean...).

Features and Pitfalls

After having presented multiple aspects of knowledge representation in K by means
of several examples, we now summarize and discuss the features (and pitfalls) of
encoding domains in this language in more detail.

Knowledge States

We have seen that default negation and the concepts of K provide a flexible tool
for knowledge representation in the field of planning, but using negation as failure also
involves some subtleties via the full freedom of normal logic programs to describe state
constraints. In analogy to the term “Planning as Satisfiability” (coined by Kautz &
Selman) our approach may well be conceived as “Planning as Answer Set Programming”
or even “Answer Set Programming as Planning” to some extent.

Kand K¢provide more than classical action languages where transitions are defined
between completely defined world states or sets of such states (i.e., belief states). In fact,
the knowledge state view implicit to the semantics of K requires the user to know about
basic principles of logic programming and especially how to deal with non-monotonic
(default) negation.

In this context we can state two major modeling principles:

Representation Principle 1: Exploit Closed World Assumption.
Representation Principle 2: Forget unnecessary information rather than keep
complete state information.

Both of these principles should also be viewed in the light of “elaboration
tolerance” in the sense of McCarthy (1999). Flexible frameworks such as K leave much
ofthe responsibility of how far domain- and problem-specific knowledge is exploited up
to the user.

Knowledge state encodings somehow relieve the user from encoding every pos-
sible constraint on legal states of a particular domain by simply leaving “irrelevant”
information open. We have discussed the applicability of the knowledge state view
versus the world state view and the concept of forgetting about fluents with illustrative
examples in the Paint and Ring domains.

In order to design planning domains in K, one has to be aware of the inherent non-
monotonicity of the knowledge state view. Informally, a transition <s,4,s > in K can be
viewed as a transition between (answer sets of) normal logic programs where causation
rules of the form

causedfifb,, ..., b, noth

.,notb, aftera,..,a nota .. nota.
m m n

k+1 " +I
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form a logic program II .consisting of all rules r:

f=b, ..., b,noth ., noth,.

K+
such that {a, .., a } e sudand{a ... a} " (swA)=D. Il then has all legal
successor states for s and A4 as its answer sets.

Another example shows the strength of this logic programming view in planning:
modeling transitive closure in K is more concise and, in our opinion, more natural than
in similar formalisms.

Transitive Closure

Expressing transitive closure in language K is straightforward because of its logic
programming-based semantics. Let us assume there is a fluent on(B,L) which represents
whether a block B resides on location L in the Blocks World.

Now, we want to define causation rules for a fluent above(B,L) which states that
block B resides somewhere above location L. This can be modeled by static rules as
follows:

caused above(B,L) if on(B,L).
caused above(B,L) if on(B,B1), above(B1,L).

In K these two rules sufficiently describe the values of fluent above, while in the
action language C we would need to explicitly add negative information on above.

“Hidden” Default Negation in Macros

As we have already seen in the previous examples, default negation (not) allows a
great degree of freedom and flexibility in the encoding of planning domains. However,
default negation and non-determinism might sometimes not be obvious when dealing
with K macros. For instance, inertial statements can interfere with other rules using default
negation. Consider for instance the rules:

caused -fif notf.
inertialf.

in a state s = {f}, with the empty action set 4 = . Here, there are two legal transitions
<s,4,{f}>and <s,4, {-f}>.

Indeed, both statements encode default reasoning, and after a state containing f
these defaults are in conflict. Since no further priority information is available, this gives
rise to two alternatives. Priorities can be added in different ways; a simple method to
prefer the alternative in which -fis selected follows Lukaszewicz (1990). We introduce a
fluent -f, add a rule:

caused -f_ ifnotf.
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and replace the original inertial rule with conditional inertia
inertial fif not -f .

More sophisticated incorporation of priorities and preferences in general is a
subject for further research. In particular, it might be possible to employ defeasible logic
(Antoniou, Billington, Governatori, & Maher, 2001) or logic programs with preferences
(Brewka & Eiter, 1999) for representing such concepts.

COMPARISON TO STRIPS, ADL, AND PDDL

In this section, we briefly compare K to STRIPS, ADL, and PDDL; a detailed
comparison of K to many action languages can be found in Eiter et al. (2004) and Polleres
(2003).

As for STRIPS (Fikes & Nilsson, 1971), itis not hard to see that this formalism can
be embedded into K, as discussed in Eiter et al. (2004). The same is possible for ADL
(Pednault, 1989), since an extension by conditional effects is straightforward. We remind
that propositional ADL has the same expressiveness as action language A.

PDDL (Ghallabetal., 1998) emerged as a de-facto standard modeling language for
classical planning, fostered by the variety of planning tools and algorithms that have
been developed in the last decade. PDDL significantly differs from STRIPS and ADL; it
stands for a modular family of languages rather than a single language, defined by so-
called requirements. Any planning system accepting PDDL might or might not implement
these requirements. STRIPS and ADL amount to particular fragments of PDDL, which as
discussed are expressible in K.

PDDL version 1.2 comprises a number of requirements including value ranges
comparable to typing in K, domain axioms, disjunctive preconditions of actions, and
quantified preconditions, which can be emulated in K like further ones. Evaluation of
arithmetic expressions in PDDL can, to some extent, also be emulated in K within the
restrictions of DLV¥ integer arithmetic.

Noticeable for the concern of K are the PDDL requirements :open-world and :true-
negation, by which the user can flexibly decide whether CW A should be applied or not
for a particular fluent. These requirements can be easily realized in K, given the logic
programming flavored semantics of K and the totalization construct.

However, other requirements, such as compound tasks, which are definable with
:action-expansions in PDDL, are beyond the scope of K. The techniques of Dix etal. (2002)
to encode Hierarchical Task Network (HTN) Planning in Answer Set Programs might
serve as a starting point for providing similar capabilities.

Actions are first-class citizens in PDDL and syntactically tightly coupled with their
preconditions and effects. Here, preconditions can be modeled as formulae over fluents
and effects can be modeled as conjunctions of fluent literals. Note that disjunctive effects
are prohibited since in its basic form, PDDL does not deal with nondeterminism. For
instance, the move action of Example 3 could be written as a PDDL operator as follows:

(:actionmove
(:parameters ?b - block ?from ?to - loc)
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(:preconditions (and (not (blocked ?b))
(not (blocked ?to))
(on ?b ?from)
(not (= from? t0?))))
(:effect  (and (not (blocked ?from))
(on ?b ?to)
(when (not (= ?to table))
(blocked ?t0)))))

This description, however, does not contain information about constraints on
parallel move actions. An important note here is that the majority of PDDL planners only
deal with sequential planning and do not consider parallel actions. Since operator
preconditions are not allowed to include action predicates, constraints on parallel
actions can not be expressed directly, as with the (non)executable statements in K. Still,
some PDDL based planners deal with parallel actions by automatically determining pairs
of “mutex” actions: they automatically detect actions with interfering preconditions/
effects and do not allow these to occur in parallel. In a formalism like PDDL, with only
conjunctive effects, these “mutex” action pairs can easily be determined. For instance,
the Graphplan (Blum & Furst, 1997) algorithm and its descendants make use of this to
compute parallel plans for PDDL domain descriptions.

However, mutex detection is not enough for the example above. In order to state
under which conditions parallel moves are allowed, one would need to add state
constraints which prohibit states where one block has two locations at once. Such state
constraints can be expressed in PDDL using the :safety-constraints and :domain-axioms
requirements. Prohibiting that a block resides at two different locations at once can be
formulated as follows:

(:safety forall(?b - block ?11 212 - loc)
(or (=711 ?12)
(not (and (on ?b ?I1) (on ?b ?11)))))

Our K formulation to avoid such states, by directly forbidding respective actions
to occur in parallel, is somewhat orthogonal to this. However, K also allows for expressing
domain axioms and constraints as in PDDL by the use of static causation rules and the
forbidden statement.

Action languages like K offer a more flexible description of transitions than the
operator-based framework of PDDL. On the other hand, automatic determination of mutex
pairs can in K perhaps not be as easily achieved as in the Graphplan algorithm. We
consider the more flexible handling of concurrent actions in K as a language feature.

PDDL hasevolved toversion2.1 (Fox & Long, 2003) recently, which adds additional
levels introducing, for instance, durative actions, continuous and/or conditional effects,
etcetera. This is currently not expressible in K (or K¢) in a straightforward way.
Interestingly, the requirements :open-world and :true-negation from version 1.2 have been
dropped; this may be explained by the lack of broad support by current planning systems
adhering to PDDL. Incomplete knowledge and non-determinism hence are not addressed
inthis version of PDDL. Thus, for declarative planning in such settings, one has currently
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to resort to other formalisms and systems, such as K and DLVX. Noticeably, this
shortcoming of PDDL has been realized and steps towards extensions for incomplete
initial state specifications and non-determinism have been made in the last “Workshop
on PDDL” held at the “International Conference on Automated Planning and Scheduling
(ICAPS’03).” For instance, the language NPDDL (Bertoli et al., 2003) accepted by the
MBP planner (Bertoli et al., 2001) includes such extensions.

Froma general modeling perspective, we feel that action languages like K are more
versatile for describing actions and transitions than PDDL; they allow expressing
relationships among actions and fluents in a rule based language with natural reading,
rather than in an operator-centric syntax. However, one has to bear the different
objectives of these languages in mind. PDDL originally has been designed as a domain
specification language for the International Planning Competition (IPC) based on ADL,
and is conceived as a generic language representing the features of various special-
purpose planners. Extensions to it are made very cautiously to maintain a widely accepted
standard. Furthermore, the strict setting of an operator-based PDDL syntax is advanta-
geous for a structural analysis of planning domains, and provides a better handle for
optimizations and tailoring search heuristics, which is more of a concern for PDDL-based
systems than natural problem representation.

SUMMARY AND PERSPECTIVES

In this chapter, we have considered a logic-based approach to planning based on
action languages, which have been developed in the area of Knowledge Representation
and Reasoning. Various such languages have been proposed in the literature, offering
different capabilities and expressiveness. Compared to familiar planning formalisms like
STRIPS or PDDL, which have an operator-centric view, action languages take a broader
perspective in describing the planning world in terms of a theory, in which action
execution and fluent values can be more flexibly interrelated than in an action-precon-
dition-effect setting. At the same time, action languages have a clear formal semantics
with a logical underpinning, which is supportive to considering reasoning tasks on
actions theories and also provides a basis for implementations by exploiting efficient
reductions to solvers for related logic formalisms.

Advanced action languages, such as C or K, allow one to deal with features like non-
determinism, qualifications, ramifications, concurrent action execution, and incomplete
information about states. The language K in particular, which we have discussed in more
detail, is semantically based on logic programming and provides constructs from there,
such as negation by default, which allow for a flexible and natural modeling of incomplete
information and non-determinism in planning domains. Exploiting these constructs,
frame axioms, non-deterministic action effects, and other concepts can be modeled
easily. By defining suitable macros for such concepts, one can allow for a more natural-
language like intuitive description of planning domains.

As a distinguishing feature with respect to similar languages, K supports a
knowledge state view of state descriptions, where the values of fluents also might be
unknown, rather than a classical world view, where each fluent must either be true or false.
This view can be fruitfully exploited to handle indeterminism and non-determinism in

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.



Declarative Planning and Knowledge Representation 29

planning domains. In particular, we have identified three main sources of these, all of
which are beyond the modeling capabilities of classical planning languages: incomplete
initial knowledge, non-deterministic action effects, and non-deterministic evolutions of
the environment by uncontrollable, exogenous events.

We have exemplified the modeling of all these forms of non-determinism in K by
illustrative examples. As shown by them, we may achieve a beneficial modeling of the
domain of discourse by adopting the knowledge state view, where only a relevant
“clipping” of the world is modeled. As discussed, conditional formulations of frame
axioms can be used in our language to model “forgetting” about particular fluent values.

A fully operational implementation of K, the DLV¥ system, is available at

http://www.dbai.tuwien.ac.at/proj/div/K/

along with the examples in this text and many more, some of which are rather intricate and
show further capabilities of the language, for example, computing optimal plans. The
reader is encouraged to browse them and to experiment with the system, setting up also
new domains.

As shown by the results on using action languages as a host for solving planning
problems so far, this is an interesting direction towards semantically rich and expressive
formalisms for declarative planning. With the advent of solvers like DLV (Eiter etal., 2000)
or SMODELS (Niemeld & Simons, 1997), to which these formalisms can be mapped in the
spirit of satisfiability planning (Kautz & Selman, 1992), implementations have become
available (Eiter et al., 2003a; Ferraris & Giunchiglia, 2000; McCain, 1999) which make
experimentation and practical problem solving possible. The strength of these systems
is at this time their modeling power rather than efficiency and scalability; improvements
on these issues remain subject for future research. Nevertheless, DLVX performs surpris-
ingly well already in its current implementation. Compared with other planning systems
tailored for conformant planning, DLV* outperforms several of them as shown in Eiter et
al. (2003a) and Cimatti, Roveri and Bertoli (2003), particularly when using knowledge state
encodings.

For future development of planning systems based on action languages, we see
different perspectives. On the computational side, the current systems do not employ
sophisticated, goal-oriented heuristics for pruning the search space. Rather, the search
is guided by built-in heuristics of the underlying logic solvers, which are geared towards
problem solving in general and thus do not always work best on the particular input to
which planning problems are mapped. Hence, there is high potential for improvements.
Itremains to research more efficient mappings of action languages to logic solvers, which
employ for the purpose of planning suitable heuristics to control the search at the level
of the mapping, in reconciliation with the heuristics employed by the underlying logic
solver. The experimentation with different heuristics for answer set solvers like DLV and
SMODELS is still under research, and input from planning applications may guide the
development of heuristics beneficial in practice.

Another perspective is further extension of action languages and resultant plan-
ning frameworks to increase expressivity. While DLVK implements secure plans (Eiter et
al., 2003a; Polleres, 2003), it currently does not support sensing actions and conditional
plans. Sensing actions may be emulated to some extent by a suitable encoding of the

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.



30 Eiter, Faber, Pfeifer, & Polleres

action domain, but availability as first class citizens in the language would be desirable.
Conditional plans allow for respecting any contingency by branching on conditions over
the current state (Warren, 1976; Peot & Smith, 1992), and thus are more general than
secure plans. However, their size can be exponential in general, and thus their generation
isprovably intractable. Feasible restrictions must be identified in order to apply our logic-
programming approach to this kind of planning; Son et al. (2001, 2004) present some
results in this direction. An extension in a different dimension, towards a very general
formalism for planning with uncertainty, is by probabilistic knowledge, such that both
qualitative and quantitative uncertainty can be orthogonally combined within one
language; (Eiter & Lukasiewicz, 2003) presents an approach for C, which can be readily
adapted to K.

A further interesting perspective for planning via action languages emerges from
their rooting in Knowledge Representation and Reasoning, which by their logic-based
underpinnings are amenable to problems studied in this area, such as Diagnosis, Belief
Revision, or Knowledge Base Update. Methods that have been developed for accom-
plishing these tasks may be applied in order to reason about plan failures and for
developing suitable recovery strategies, see also Giacomo, Reiter and Soutchanski
(1998). Dix etal. (2003) is an initial step of using DLV¥ to this end in an execution monitoring
framework. An agent might be situated in a dynamic environment, in which changes
happen which are not reflected appropriately in the domain theory. Here, methods and
techniques from belief revision and knowledge base update might be applied in order to
revise the action theory of the planning domain. The logic-based setting of action
languages eases this, while this would be much more involved for traditional planning
approaches.

Finally, since most action languages have been conceived for reasoning about
actions and change in general, implementations may allow for expressing a broader range
of problems beyond traditional planning, like the CCALC system (McCain, 1999)
implementing C . Also DLV¥ can, by the nature of its implementation, be adapted to accept
more general than traditional planning goals (e.g., that in addition to the goal, certain
conditions never hold along an execution). This holds potential for providing planning
systems that can easily handle extended goals whereas classical planning systems
cannot.

ACKNOWLEDGMENTS

This work was supported by FWF (Austrian Science Funds) under the projects
P14781,P16536-N04, and Z29-INF and the European Commission under projects IST-
2001-37004 WASP and IST-2001-33570 COLOGNET.

REFERENCES

Antoniou, G., Billington, D., Governatori, G., & Maher, M. J. (2001). Representation
results for defeasible logic. ACM Transactions on Computational Logic, 2(2),255-
287.

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.



Declarative Planning and Knowledge Representation 31

Bertoli, P., Cimatti, A., Lago, U.D., & Pistore, M. (2003, June 9-13). Extending PDDL to
nondeterminism, limited sensing and iterative conditional plans. In Proceedings of’
ICAPS 03 Workshop on PDDL. Trento, Italy.

Bertoli, P., Cimatti, A., Pistore, M., & Traverso, P. (2001, August). MBP: A model based
planner. In A. Cimatti, H. Geffner, E. Giunchiglia & J. Rintanen (Eds.), IJCAI-01
Workshop on Planning under Uncertainty and Incomplete Information.

Blum, A. L., & Furst, M. L. (1997). Fast planning through planning graph analysis.
Artificial Intelligence, 90, 281-300.

Bonet, B., & Geffner, H. (2000, April 14-17). Planning with incomplete information as
heuristic search in belief space. In S. Chien, S. Kambhampati & C. A. Knoblock
(Eds.), Proceedings of the Fifth International Conference on Artificial Intelli-
gence Planning and Scheduling (AIPS’00) (pp. 52-61). Breckenridge, Colorado,
USA.

Brewka, G., & Eiter, T. (1999). Preferred answer sets for extended logic programs.
Artificial Intelligence, 109(1-2),297-356.

Cimatti, A., & Roveri, M. (1999, September 8-10). Conformant planning via model
checking. In S. Biundo & M. Fox (Eds.), Proceedings of the Fifth European
Conference on Planning (ECP’99) (Vol. 1809, pp. 21-34). Durham, UK.

Cimatti, A., Roveri, M., & Bertoli, P. (2003). Conformant planning via symbolic model
checking and heuristic search. Artificial Intelligence. (Accepted for publication.)

Dix, J., Eiter, T., Fink, M., Polleres, A., & Zhang, Y. (2003, September 15-18). Monitoring
agents using declarative planning. In Proceedings of the 26" German Conference
on Artificial Intelligence (KI2003) (pp. 646-660). Berlin: Springer.

Dix, J.,Kuter, U., & Nau, D. (2002, February). HTN planning in answer set programming
[Tech.Rep. No. CS-TR-4332 (UMIACS-TR-2002-14)]. College Park, MD: Dept. of
CS, University of Maryland.

Eiter, T.,Faber, W., Leone, N., & Pfeifer, G. (2000). Declarative problem-solving using the
DLV system. In J. Minker (Ed.), Logic-Based Artificial Intelligence (pp. 79-103).
Dordrecht: Kluwer Academic Publishers.

Eiter, T., Faber, W., Leone, N., Pfeifer, G., & Polleres, A. (2003a, March). A logic
programming approach to knowledge-state planning, IT1: The DLVK System. Arti-
ficial Intelligence, 144(12), 157-211.

Eiter, T., Faber, W., Leone, N., Pfeifer, G., & Polleres, A. (2003b). Answer set planning
under action costs. Journal of Artificial Intelligence Research, 19, 25-71.

Eiter, T.,Faber, W.,Leone, N., Pfeifer, G., & Polleres, A. (2004, April). A logic programming
approach to knowledge-state planning: Semantics and complexity. ACM Transac-
tions on Computational Logic, 5(2).

Eiter, T., & Lukasiewicz, T. (2003). Probabilistic reasoning about actions in nonmonotonic
causal theories. In C. Meek & U. Kjaerulff (Eds.), Proceedings of the Nineteenth
Conference on Uncertainty in Artificial Intelligence (UAI-2003) (pp. 192-199).
August 7-10, 2003, Acapulco, Mexico. San Francisco, CA: Morgan Kaufmann
Publishers.

Ferraris, P., & Giunchiglia, E. (2000). Planning as satisfiability in nondeterministic
domains. In Proceedings of the 17th National Conference on Artificial Intelli-
gence (AAAI’00) (pp. 748-753). July 30,2000-August 3,2000, Austin, Texas, USA.
Cambridge, MA: AAAI Press/The MIT Press.

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.



32 Eiter, Faber, Pfeifer, & Polleres

Fikes,R.E., & Nilsson, N.J.(1971). STRIPS: A new approach to the application of theorem
proving to problem solving. Artificial Intelligence, 2(3-4), 189-208.

Fox, M., & Long, D. (2003, April). PDDL 2.1: An extension to PDDL for expressing
temporal planning domains. Retrieved from the WWW: http://www.dur.ac.uk/
d.p.long/pddi2.ps.gz

Gelfond, M., & Lifschitz, V. (1991). Classical negation in logic programs and disjunctive
databases. New Generation Computing, 9, 365-385.

Gelfond, M., & Lifschitz, V. (1993). Representing action and change by logic programs.
Journal of Logic Programming, 17,301-321.

Gelfond, M., & Lifschitz, V. (1998). Action languages. Electronic Transactions on
Artificial Intelligence, 2(3-4),193-210.

Ghallab, M., Howe, A., Knoblock, C., McDermott, D.,Ram, A., Veloso, M., Weld, D., &
Wilkins, D. (1998, October). PDDL: The planning domain definition language
(Tech.Rep.). Yale Center for Computational Vision and Control. Retrieved from the
WWW: http://'www.cs.yale.edu/pub/mcdermott/software/pddl.tar.gz

Giacomo, G. D., Reiter, R., & Soutchanski, M. (1998). Execution monitoring ofhigh-level
robot plans. In A. G. Cohn, L. Schubert & S. C. Shapiro (Eds.), Proceedings of the
Sixth International Conference on Principles of Knowledge Representation and
Reasoning (KR 98) (pp. 453-464). San Mateo, CA: Morgan Kaufmann Publishers.

Giunchiglia, E., Kartha, G.N., & Lifschitz, V. (1997). Representing action: Indeterminacy
and ramifications. Artificial Intelligence, 95,409-443.

Giunchiglia, E., Lee, J., Lifschitz, V., McCain, N., & Turner, H. (2004). Nonmonotonic
causal theories. Artificial Intelligence, 153(1-2), 49-104.

Giunchiglia, E., Lee, J., Lifschitz, V., & Turner, H. (2001). Causal laws and multi-valued
fluents. In Working Notes of the Fourth Workshop on Nonmonotonic Reasoning,
Action and Change.

Giunchiglia, E., & Lifschitz, V. (1998). An action language based on causal explanation:
Preliminary report. In Proceedings of the 15th National Conference on Artificial
Intelligence (AAAI °98) (pp. 623-630).

Goldman, R., & Boddy, M. (1996). Expressive planning and explicit knowledge. In
Proceedings of the Third International Conference on Artificial Intelligence
Planning Systems AIPS-96 (pp. 110-117). Menlo Park, CA: AAAI Press.

Hintikka, J. (1962). Knowledge and belief. Ithaca, NY: Cornell University Press.

Kautz, H., & Selman, B. (1992). Planning as satisfiability. In Proceedings of the 10th
European Conference on Artificial Intelligence (ECAI "92) (pp. 359-363).

Lifschitz, V. (1997). On the logic of causal explanation. Artificial Intelligence, 96,451-
465.

Lin, F. (1995). Embracing causality in specifying the indirect effects of actions. In C. S.
Mellish (Ed.), Proceedings of the 14th International Joint Conference on Artifi-
cial Intelligence (IJCAI '95) (pp- 1985-1993). San Mateo, CA: Morgan Kaufmann
Publishers.

Lin, F., & Reiter, R. (1994). Forget it! In R. Greiner & D. Subramanian (Eds.), Working
Notes, AAAI Fall Symposium on Relevance (pp. 154-159). Menlo Park, CA:
American Association for Artificial Intelligence.

Lukaszewicz, W. (1990). Non-monotonic reasoning, Formalization of commonsense
reasoning. Chichester, UK: Ellis Horwood Limited.

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.



Declarative Planning and Knowledge Representation 33

McCain, N. (1999). The causal calculator homepage. Retrieved from the WWW: http:/
/www.cs.utexas.edu/users/tag/cc/

McCain, N., & Turner, H. (1997). Causal theories of actions and change. In Proceedings
of the 15th National Conference on Artificial Intelligence (AAAI-97) (pp. 460-
465).

McCarthy, J. (1990). Formalization of common sense, papers by John McCarthy (V.
Lifschitz, ed.). Norwood, NJ: Ablex.

McCarthy, J. (1999). Elaboration tolerance. Retrieved from the WWW: http://www-
formal.stanford.edu/jmc/elaboration.html

McCarthy, J., & Hayes, P. J. (1969). Some philosophical problems from the standpoint
of Artificial Intelligence. In B. Meltzer & D. Michie (Eds.), Machine Intelligence
4 (pp. 463-502). Edinburgh: Edinburgh University Press.

Niemeld, I., & Simons, P. (1997, July). Smodels: An implementation of the stable model
and well-founded semantics for normal logic programs. InJ. Dix, U. Furbach & A.
Nerode (Eds.), Proceedings of the Fourth International Conference on Logic
Programming and Nonmonotonic Reasoning (LPNMR’97) (Vol. 1265, pp. 420-
429). Dagstuhl, Germany: Springer Verlag.

Parr, R., & Russel, S. (1995). Approximating optimal policies for partially observable
stochastic domains. In C. S. Mellish (Ed.), Proceedings of the 14th International
Joint Conference on Artificial Intelligence (IJCAI ’95) (pp. 1088-1094). Toronto,
Canada: Morgan Kaufmann Publishers.

Pednault, E. P. D. (1989, May). Exploring the middle ground between STRIPS and the
situation calculus. In Proceedings of the First International Conference on
Principles of Knowledge Representation and Reasoning (KR’89) (pp- 324-332).
Toronto, Canada: Morgan Kaufmann Publishers.

Peot,M. A., & Smith, D. E. (1992). Conditional nonlinear planning. In Proceedings of the
First International Conference on Artificial Intelligence Planning Systems (pp.
189-197). Menlo Park, CA: AAAI Press.

Polleres, A.(2003). Advances in answer set planning (Doctoral dissertation). Institut fiir
Informationssysteme, Technische Universitit Wien, Wien, Osterreich.

Reiter, R. (1978). On closed world data bases. In H. Gallaire & J. Minker (Eds.), Logic and
Data Bases (pp. 55-76). New York: Plenum Press.

Russel, S.J., & Norvig, P. (1995). Artificial intelligence, A modern approach. Englewood
Cliffs, NJ: Prentice-Hall.

Shanahan, M. (1997). Solving the frame problem: A mathematical investigation of the
common sense law of inertia. Cambridge, MA: MIT Press.

Smith, D. E., & Weld, D. S. (1998, July). Conformant Graphplan. In Proceedings of the
Fifteenth National Conference on Artificial Intelligence (AAAI’98) (pp- 889-896).
Cambridge, MA: AAAI Press/The MIT Press.

Son, T. C., & Baral, C. (2001). Formalizing sensing actions: A transition function based
approach. Artificial Intelligence, 125(12), 1991.

Son, T.C.,Baral, C., & Mcllraith, S. (2001, September 17-19). Planning with different forms
of domain-dependent control knowledge: An answer set programming approach.
InT.Eiter, W. Faber, & M. Truszczynski (Eds.), Proceedings of the Sixth Interna-
tional Conference on Logic Programming and Nonmonotonic Reasoning
(LPNMR’01) (pp-226-239), Vienna, Austria, September2001. Springer Verlag.

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.



34 Eiter, Faber, Pfeifer, & Polleres

Son, T. C., Tu, P. H., & Baral, C. (2004, January). Planning with sensing actions and
incomplete information using logic programming. In V. Lifschitz & I. Niemela (Eds.),
Proceedings of the Seventh International Conference on Logic Programming and
Nonmonotonic Reasoning (LPNMR-7) (pp. 261-274). Fort Lauderdale, Florida,
USA: Springer.

Warren, D. H. D. (1976, July 12-14). Generating conditional plans and programs. In
Proceedings of the Summer Conference on Artificial Intelligence and Simulation
of Behaviour (pp. 344-354). Edinburgh, UK.

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.



A Framework for Hybrid and Analogical Planning 35

Chapter Il

A Framework for Hybrid
and Analogical Planning

Max Garagnani, The Open University, UK

ABSTRACT

This chapter describes a model and an underlying theoretical framework for hybrid
planning. Modern planning domain description languages are based on sentential
representations. Sentential formalisms produce problem encodings that often lead the
system to carry out large amounts of superfluous operations, causing a loss in
performance. This chapter illustrates how techniques from the area of knowledge
representation and reasoning (in particular, analogical representations) can be
adopted to develop more efficient domain description languages. Although often more
efficient, analogical representations are generally less expressive than sentential
ones. A framework for planning with hybrid representations is thus proposed, in which
sentential and analogical descriptions can be integrated and used interchangeably,
thereby overcoming the limitations and exploiting the advantages of both paradigms.

INTRODUCTION

“Planning” is the process of deciding which course of action to undertake in order
to achieve a future state of affairs (goal) that does not hold in the present situation.
Planning our daily activities, a trip, a political campaign or a military operation are just
afew ofthe countless examples. We take a planning domain to be an abstract, simplified
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description of the world, consisting of a set of possible world stafes and a set of possible
actions for transforming a state into another one. A planning problem (or planning
instance) is specified by providing a planning domain, an initial state and a goal. Solving
aplanning problem requires finding a sequence of actions (plan) that will (or is expected
to) transform the initial state into one in which the given goal is achieved.

Clearly, an automatic system for the solution of planning problems must be able to
internally represent states, actions and goals. In particular, in order to build an automated
planning system, one must provide at least the following elements: (1) a syntax for
representing world states, goals and actions; (2) a general algorithm © for calculating the
state description s’ = o(s) resulting from applying any action description o to any given
state description s; and (3) a general algorithm I' for deciding whether any goal
description G holds (or is satisfied) in a given state description. Given these elements,
an automatic system can use algorithm © to interpret any of the action descriptions and
apply them so as to transform the initial state representation into new ones, while
algorithm I" can be used to determine whether the assigned goal has been achieved.

In view of the above considerations, the representation adopted by an automated
planner for modelling world states, goals and actions appears to be of crucial importance
in determining the effectiveness and efficiency of the planning process. Although in the
last decade the field of knowledge representation and reasoning has witnessed the birth
of several new formalisms [among others, qualitative reasoning (Forbus, 1995; Forbus,
Nielsen, & Faltings, 1987, 1991), semantic networks (Lehmann, 1992; Sowa, 1984), and
diagrammatic representations (Glasgow, Narayanan & Chandrasekaran, 1995; Kulpa,
1994)], planning research has generally failed to assimilate and exploit such develop-
ments. In particular, the modelling languages for reasoning about action have remained,
since their origins, purely sentential (i.e., textual, or based on predicate and propositional
logic) (McCarthy & Hayes, 1969; Fikes & Nilsson, 1971; Pednault, 1989; McDermott,
Knoblock, Veloso, Weld & Wilkins, 1998). Even the mostrecent version of PDDL, the de
facto standard planning domain description language (Fox & Long, 2003) requires the
domain modeller to describe all aspects of a problem (including spatial and topological
relations) using only sets of propositions.

The rest of this introductory section argues that, although very expressive and
flexible, sentential languages are often inefficient' for describing and solving even simple
planning problems. In particular, sentential planning representations tend to produce
inefficient encodings of domains that involve the movement of a number of distinct
objects subject to even simple spatial constraints. The remainder of the chapter is divided
into two main parts: the first one, consisting of two sections, introduces analogical
planning representations and illustrates, first with an example and then through the
analysis of an actual implementation, how such formalisms can help overcome some of
the shortcomings of sentential descriptions. The second part, entirely contained in one
section, proposes a framework for hybrid planning, in which sentential and analogical
descriptions are integrated. These two parts are linked by an intermediate section
(“Characterising Analogical Models™) that provides some background on analogical
formalisms and compares them to sentential ones. The two final sections discuss related
work, advantages and limitations of the analogical and hybrid approach.
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Planning with Sentential Representations:
A Simple Example

In order to introduce sentential representations, let us begin with a simple example,
based on a variation of the classical Blocks-World (BW) planning domain. The BW
domain consists of a robot arm able to pick up and put down blocks that lie on a table.
In the classical version of the domain, the blocks are all identical. In the example
considered, blocks can have different weights, and a block can only be picked up from
the top of a stack if the stack contains at least another block that is heavier than the one
being removed. The possible actions of this domain are stack and unstack: Stack(x,y)
consists of picking up a block x (of any weight) from the table and stacking it onto another
block y; Unstack(x,y) picks up a block x currently lying on another block y and puts it
on the table (subject to the stack containing a block heavier than x). Figures I(a) and
1(b) depict, respectively, the initial state and goal for an example of BW planning problem
(the weights of the blocks are left unspecified). The goal describes the arrangement of
blocks A and C, but does not specify the final position of B or D, although it does require
that one ofthem be positioned between A and C. Also notice that, unlike the original BW,
this version allows the formulation of problems for which no plan solution exists.

Most modern planning systems would describe this domain using a sentential
formalism not too different from the original STRIPS (Fikes & Nilsson, 1971). Insuch a
model, the current world state is represented as a set of ground atoms (atomic logical
formula) of the form p(x , ...x,), where p is a predicate with k arguments. Anatom 4 is said
to hold in a state s if and only if A€ s. A negative atom —4 holds in s if and only if 4 does
notholdins. A literal is an expression of the form 4 or —A4, where 4 is an atom. For example,
consider a language with predicates On(x,y), Heavier(x,y) and Clear(x), where x, y vary on
the constant symbols {A, B, C, D, Table}, representing the corresponding objects of the
domain. The initial state of Figure 1(a) can be described by the following set of ground
atoms:

s, = 10n(A, Table), Clear(A), On(B, Table), On(D, B), On(C, D), Clear(C),
Heavier(A, B), Heavier(B, C), Heavier(C, D) }

Figure 1. Simple Blocks-world problem: (a) initial state; (b) goal
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In this example, blocks A,B,C and D are in order of decreasing weight. Notice that
the two ground atoms Heavier(A,C), Heavier(B,D) have not been included, although they
should hold in s, in virtue of the transitivity property. This property can be imposed on
the relation Heavier through the addition of the following domain axiom to the descrip-
tion (in which all the free variables are implicitly universally quantified):

®) Heavier(x, y) A Heavier(y, z) — Heavier(x, z)

Axiom (p,) avoids having to explicitly include in s  all the instances of Heavier that
hold in the initial state, which would be unwieldy for large numbers of blocks. However,
as discussed below, the introduction of domain axioms in the domain description should
not be taken too lightly, as it can have a negative impact on planning performance.
Incidentally, domain axioms are also useful for describing the actions and the goal G,
[Figure 1(b)]:

G, = {On(A, Table), Above(C, A, 2), Clear(C)}

The “derived” predicate Above(x,y,n) denotes that block x is the n-th block above
v, and is defined in terms of the “basic” predicate On(x,y) through the following domain

axioms (where ne X, the set of natural numbers, and variables x,y and z represent distinct
blocks):

(o) Oon(x, y) — Above(x, y, 1)
(o) On(x, y) A Above(y, z, n) — Above(x, z, n+1)

In view of the presence of domain axioms, the previous definition of “hold” needs
to be extended: an atom A4 /holds in a state s if and only if either A€ s, or 4 can be derived
from domain axioms whose premises (left-hand side) hold in s [for a more precise and
formal definition of the semantics of domain axioms in planning, see Thiébeaux, Hoffmann
& Nebel (2003)].

The possible actions of the domain are described by parameterised operators P=E,
consisting of preconditions P and effects E. These are sets of parameterised literals. For
example, Stack(x,y) and Unstack(x,y) would typically be encoded as follows:?

Stack(x,y) % Picks up block x from the table and puts it onto blocky (x#y)
Parameters: x,y — Block

Preconditions: {On(x, Table), Clear(x), Clear(y)}

Effects: {On(x, y),—On(x, Table), Clear(y) }

Unstack(x,y) % Picks up x from y and puts it on the table

Parameters: x,y — Block

Preconditions: {On(x,y), Clear(x), Above(x, z, n), Heavier(z, x) }

Effects: {=0n(x,y), Clear(y), On(x, Table)}

All the variables in the preconditions are implicitly existentially quantified; the type
‘Block’ consists of the set of symbols {A,B,C,D}. The semantics of these operators
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(Lifschitz, 1990) is as follows: for an operator to be applicable to a state s, all its
preconditions must hold in s. When an operator is applied to a state s, all the positive
atoms of the effects are added to s, and all the negative atoms of the effects are deleted
from s. For example, the action Stack(A,C) is applicable in state s, and its application
would produce the following state s,:

s, = {0n(B, Table), On(D, B), On(C, D), On(A, C), Clear(A),
Heavier(A, B), Heavier(B, C), Heavier(C, D) }

Notice that the set of instances of ‘Heavier’ that hold in the initial state remains
constant throughout the solution of the problem. This is a consequence of the fact that
no instance of the predicate is ever affected — directly or indirectly — by the operators;
this property of the domain can be automatically detected and exploited by modern
planners to restrict the search to the parts of the problem that can actually change,
avoiding unnecessary calculations.

Unfortunately, unlike ‘Heavier,” the instances of ‘Above,” although not appearing in
any of the operator effects, do change as an indirect consequence of changes in the ‘On’
relation. In particular, any movement of the blocks causes the set of ground instances
of ‘Above’ currently holding in the state to change. For example, consider the instances
of ‘Above’ that hold in state s, (Figure I (a)), derived using axioms (,),(a.,) as follows:

(1.1) On(D,B) — Above(D, B, 1) (from (ax,))
(1.2) On(C,D) — Above(C, D, 1) (from (ax,))
(1.3) On(C,D) A Above(D, B, 1) — Above(C, B, 2) (o) +(1.1)

After the application of Stack(A,C), the instances of Above holding in state s must
be recomputed as follows:

(1.4) On(A,C) — Above(A, C, 1) (o)
(1.5) On(C,D) — Above(C, D, 1) (o)
(1.6) On(D,B) — Above(D, B, 1) (o)
(1.7) On(A,C) A Above(C, D,1) — Above(A, D, 2) (o)+(1.5)
(1.8) On(C,D) A Above(D, B,1) — Above(C, B, 2) (o)+(1.6)
(1.9) On(A,C) A Above(C, B, 2) — Above(C, A, 3) (0o)+(1.8)

This is a first indication that the introduction of domain axioms in the problem may
lead to significant amounts of additional computation. This is argued in more detail
below.

Inefficiencies of Planning with Domain Axioms

Letus consider how a forward state-space planner would solve a problem in the BW
domain described earlier. The truth of the derived predicate Above(x,y,n) can be deduced
from the current state at any point of the planning process using (a,),(c.,). However,
whenever any instance of the ‘On’ predicate changes, it is necessary for the planner to
re-calculate the ‘Above’ relation, as the truth of some of its instances will have been
affected by the change. The number of steps necessary to derive all the instances of the
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relation for a tower of m blocks is equal to (m(m-1))/2. Hence, in a BW domain with m
blocks, the calculation potentially requires O(m?) extra steps after each move. In general,
if the relation to be deduced contains £ — instead of only 2 — arguments varying on a
set of m objects (constant symbols) of the domain, the number of steps required is O(m*).
While in some simple cases (like this one) the number of deductions can be reduced by
recalculating only those instances strictly affected by the action (Pednault, 1989;
Davidson & Garagnani, 2002), a forward-search algorithm able to deal with any arbitrary
set of domain axioms may have to carry out, in the worst case, a number of steps
exponential in the size of the domain description (if the arity of the axioms is a measure
of this size), or polynomial in the number of objects (if the arity is a constant), after each
operator application and for each relation affected (Thié¢beaux et al., 2003).

A backward-search algorithm would incur in similar (or even worse) problems. For
clarity and generality of the analysis, let us rename predicates Above(x,y,n) and On(x,y)
as D(x,y,n) and B(x,y), for “derived” and “basic,” respectively. The two axioms then
become:

®) B(x,y) = D(x, y,1) (%)
B, B(x, ¥) AD(y, z, n) > D(x, z, n+1) (x#y£z#x)

Allthe occurrences of the two predicates in the operators, initial, and goal-state are
similarly renamed. Now, consider, for example, the problem of establishing (achieving)
the preconditions of the Unstack operator. Suppose that the term D(x,y,n) is picked first,
and that its variable # is still unbound. Since all the operators contain, in their effects,
only basic predicates, the only way to discover how this term can be achieved consists
of transforming it into an equivalent expression containing only B(x,y) terms. If n is
unbound, a direct transformation is not possible, as n could be any positive integer.
However, a sufficiently sophisticated planning system might be able to recognise that,
ifthe problem contains only a finite number of blocks, the range of n is finite. For example,
in presence of only four blocks, the planner should be able to apply domain axioms (j8,),
(B,) to transform the expression D(x,y,n) into the following equivalent disjunction of
conjunctive terms:

(2.0) B(x,y) v (B(x,w) AB(w,»)) v (B(x,v) AB(v,w) AB(w,»))

Unfortunately, even assuming that this is possible, the introduction of disjunctive
expressions like (2.0) would lead to a significant increase in the branching factor of a
backward search, having negative effects on the performance. Notice that while this
simple example causes the branching factor to grow “only” by a factor m-1 (where m is
the total number of blocks), domains containing more and/or more complex axioms [e.g.,
involving multiple linear or non-linear recursions (Han, 1989)] would require rather
complex transformations of the derived predicates and lead to much higher branching
factor increases. Finally, notice that even simple domains like BW can involve several
complex axioms. For example, Cook & Liu (2003) provide an axiomatization of BW using
seven different recursive axioms only to describe the ‘on’ relation (which they call
Above), and demonstrate that every decision procedure for the resulting theory must take
at least exponential time.
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Domain Axioms and the Ramification Problem

The problem of domain axioms in planning appears to be closely related to the so-
called ramification problem (Georgeff, 1987) in automated reasoning. Pollock (1998)
accurately describes this problem as one that arises from the observation that,

“[...] inrealistically complex environments, we cannot formulate axioms that completely
specify the effects of actions or events. /...] in the real world, all actions have infinitely
many ramifications stretching into the indefinite future. This is a problem for reasoning
about change deductively /...]” (p. 536)

Using one of Pollock’s examples, among the effects of striking a match we should
include such things as “displacing air around the match, marginally depleting the ozone
layer, raising the temperature of the earth’s atmosphere, marginally illuminating Alpha
Centauri, [...], etc.” (p. 537). Naturally, a planning domain description is not expected to
model a/l such complex ramifications of events and actions: planning involves reasoning
abouta simplified version of the real world. However, even very simple, toy-like domains
such as BW can already involve several complex domain axioms (Cook & Liu, 2003). If
the target domain considered is a real application, the model is likely to contain tens of
axioms and very large numbers of objects [e.g., see the “PSR” domain in (Bonet &
Thiébeaux,2003)].

In order to address the problem of planning in presence of domain axioms, some
researchers (e.g., Gazen & Knoblock, 1997; Davidson & Garagnani, 2002; Thiébeaux et
al., 2003) have developed pre-processing techniques for automatically transforming a
planning problem into an equivalent one that does not contain axioms, and which can
be solved using simple and efficient planning algorithms. Unfortunately, recent theoreti-
cal results demonstrate that any attempt to compile away an arbitrary set of domain
axioms leads, in general, to equivalent planning problems having exponentially longer
plans (in the number of objects and arity of the axioms) (Thiébeaux etal.,2003). According
to such results, if the maximum arity of all the predicates of the language is a constant,
the growth in plan length is only polynomial. However, from a practical point of view, even
apolynomial blow-up of the plan-solution length forces a planning algorithm to carry out
asignificantly larger amount of search to discover such plan. Indeed, even for simple BW
problems, experimental evidence (Davidson & Garagnani, 2002) shows that the planning
performance on pre-processed problems depends much on the specific domain axioms,
pre-processing technique and algorithm adopted, and is often worse than that obtained
with planners that are able to solve the original problem directly (Thié¢beaux etal.,2003).

An alternative planning paradigm, which would appear particularly suited for
dealing with domain axioms, is that of planning as satisfiability, or “SAT-based”
planning (Ernst, Millstein & Weld, 1997; Kautz & Selman, 1992, 1999). A SAT-based
planning system transforms a planning problem description into a propositional logic
formula, which, if satisfied, implies the existence of a plan solution.? The use of additional
domain axioms in such a framework is quite natural, as axioms are treated simply as
propositional logic formulae. However, as Wilkins and des Jardins (2001) observed,
“additional knowledge encoded as axioms may increase the size of the problem and make
the problem even harder to solve” (p. 109). This is confirmed by experimental evidence
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(Davidson & Garagnani, 2002), indicating that whether the addition of domain axioms
helps or hurts may depend on the particular combination of axioms, problem and planning
algorithm (Kautz & Selman, 1998).

In summary, the presence of domain axioms, closely related to the ramification
problem, appears to be inevitable in sentential descriptions of realistically-complex
domains, and to represent the potential cause for severe decreases in planning perfor-
mance. The next section illustrates how analogical models can, in many cases, completely
eliminate this problem, by making domain axioms implicit in the representation of the
world.

INTRODUCING ANALOGICAL PLANNING

Planning in realistic domains is closely related to the problem of common-sense
reasoning (McCarthy, 1958). In this context, several researchers have argued for the need
of formalisms that allow a more direct (or “vivid”) representation than traditional
sentential descriptions (e.g., Halpern & Vardi, 1991; Levesque, 1986; Khardon, 1996). In
particular, analogical and diagrammatic representations have long been of interest to the
knowledge representation community (Amarel, 1968; Sloman, 1975; Hayes, 1985) [see
Kulpa (1994) for areview, and Glasgow et al. (1995) for a representative collection]. In
order to clarify the main ideas behind such descriptions, we begin with an example of
diagrammatic* planning domain description. A more general discussion on the properties
of analogical models and on how they differ from sentential ones is given later on, in the
fourth section of this chapter.

SetGraphs in a Nutshell

Consider a representation in which a state is a directed graph where the vertices
are (possibly labelled) sets of symbols. This type of representation will be called
setGraph. Figure 2(a) is an example of a setGraph encoding a BW state with three blocks
and one table, represented by symbols ‘A’, ‘B’, ‘C’, ‘Table’, respectively. The vertices
of the graph are depicted as ovals. The edges of the graph (bold arcs) represent ‘on’
relations between spatial locations: ifa vertex containing x is linked to a vertex containing
v, then On(x,y) holds in the current state.

Assume that all the symbols of the graph can be moved from one vertex (set) to any
other through the application of analogical operators, which specify the set of legal
transformations of a setGraph. Figure 2(b) depicts the graphical representation of an
analogical operator, P=FE. The operator preconditions P describe a specific arrangement
of symbols in a part (sub-graph) of the current state; the effects £ describe the
arrangement of these symbols in the same sub-graph after the application of the operator.
Intuitively, an operator P=F is applicable to a state (setGraph) s if and only if each of
the graphs contained in P can “overlap” with (be mapped to) a sub-graph of s having the
same “structure,” so that each variable corresponds to a distinct symbol, each vertex to
a vertex, each edge to an edge, and: (1) if a variable is contained in a set (vertex), the
corresponding symbol is contained in the corresponding set; (2) if an edge links two
vertices, the corresponding edge links the corresponding sets; and (3) if a set is empty,
the corresponding image is empty. Only if all of these conditions hold, we will say that
the precondition setGraphs are satisfied in s.
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Figure 2. An analogicald model of BW: (a) state representation;, (b) Move(x,y,z)
operator (where xe {4, B, C} and y, ze {A, B, C, Table})
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Variables can be of specific types, subsets of the universe of symbols. For example,
variable x of the Move(x,y,z) operator has type Block={A, B, C}, while y, ze Object={A,
B, C, Table}. Thus, this operator encodes the movement of a block x from its current
location to a new one, originally empty, situated “on top” of a vertex containing another
block (or the table) y. Notice that the operator is applicable only if block x has an empty
vertex on top of it (i.e., if x is clear).

The application of an operator to a state s causes the symbols in s to be re-arranged
according to the situation described in the effects £. The Move(x,y,z) operator can be
applied to the state of Figure 2(a) in several different ways. For example, one possible
binding of the variables is {x/C, y/Table, z/A}. The application of Move(x,y,z) with this
binding would unstack block C from A and put it onthe table [i.e., inset V, of Figure 2(a)].

This simple graph-based notation can encode any “classic” BW problem. Notice
that the representation is not limited to just forward state-space search planning: once
the semantics of action, state and goal representation are identified, the representation
can be used to find a plan using any search algorithm, for example, reasoning backward
from the goal to the initial state using state-space search, or plan-space search tech-
niques. The example below illustrates how a partial order, causal-link planning algorithm
(McAllester & Rosenblitt, 1991; Penberthy & Weld, 1992) can solve the Sussman
anomaly (Sussman, 1990) using setGraphs descriptions.

Example 2.1. Consider the BW problem in which the initial state / depicted in Figure 2(a)
is required to be transformed into a state in which block A is on B, B is on C, and
C lies on the table (this goal is represented by the setGraph G in the rightmost part
of Figure 3).
At the start of the planning process, goal G is not satisfied in the initial state /, and
is added to in the set of unachieved goals. The algorithm then tries to find a way
to achieve G or some of its parts (sub-graphs) by “matching” the effects of the
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Figure 3. Solving the Sussman anomaly using causal-link diagrammatic planning (see
text for details)
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Move(x,y,z) operator [Figure 2(b)] with the goal. This reveals that the sub-graph
(sub-goal) G, (Figure 3) can be obtained by executing Move(A, B, z,), for some
object z,. The planner then adds this step to the plan, and the preconditions P, —
required to execute it— to the set of unachieved goals. A similar process is repeated
for sub-goals G, and G,, which require the addition of two other steps with
preconditions P,and P_, respectively (notice that the three steps added are initially
unordered). At this point, the graph representing the goal G has been entirely
“covered” by the combined effects of three Move(x,y,z) steps, and all of its elements
have been “achieved.”

The planner can then move on to consider the unachieved setGraphs P, P, and P..
Of'these, only the sub-graph G, part of preconditions P, cannot be satisfied in the
initial state /. The algorithm, however, discovers that G, can be established by the
effects of step Move(C, Table, z,) if object z, is bound to block A.°* Hence, the
planner adds the constraint z.=A to the plan (not shown in the figure) and an
ordering constraint between step Move(C, Table, A) and Move(A, B, z|) (repre-
sented in Figure 3 by a dotted arrow). At this point, the algorithm has identified
a set of steps that achieve goal G and whose preconditions are either satisfied in
the initial state or established by another step. However, the planner must also
check for other possible interactions between steps. For example, executing step
Move(B,C,Table) before Move(C,Table,A) would affect the preconditions of the
latter, as block C would no longer be clear. In order to prevent this type of
“clobbering” effects, two further ordering relations have to be added (Figure 3),
leading to the final plan containing three linearly ordered steps, (Move(C,Table,A),
Move(B,C,Table), Move(A,B,Table)).

Notice that the diagrammatic representation of BW can be easily extended to encode
the relations ‘heavier’ and ‘above’ between blocks (refer to the first section of this
chapter). For example, the BW state depicted in Figure 4(a) extends the setGraph
representation with two new types of edges, depicted as thin and dashed arcs.
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Figure 4. A richer diagrammatic model of BW: (a) current state; (b) Unstack(x,y)
operator. Bold, thin and dashed arrows indicate, respectively, ‘on’, ‘above’ and
heavier’ relations (see text for details).
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Athinarc linking a vertex containing symbol x to one containing symbol y indicates
that Above(x,y,n) holds (with n>1); a dashed arrow linking symbol x to symbol y indicates
that Heavier(x,y) holds.® Figure 4(b) depicts the analogical version of the Unstack(x,y)
operator [the Stack(x,y) operator is identical to the Move(x,y,z) operator of Figure 3(b)
with z=Table]. The preconditions P require the existence of a block y such that both
Heavier(y,x) and Above(x,y,n) hold.” The effects E encode the new position of block x, now
located on the table. [Notice that when a symbol is moved, all arrows (edges) connected
to it move with it.]

An interesting property of analogical representations is that they allow the spatial
relations existing between the “mobile” objects of a domain to be represented as static
(orinvariant) elements of the description, whenever the set of possible positions in which
such objects can be (relatively to each other) is finite and predetermined. For example,
it is easy to see that all the edges of the setGraph of Figure 4(a) (including all those
representing weight relations between blocks) are static and would remain unchanged
throughout any plan execution, as they are not affected by any of the possible actions.
This is enabled by the distinction that the chosen analogical encoding makes between
the description of the effects of action on an object’s state or location and the description
of the invariant relations that hold between these objects (or between the spatial
locations that these objects can occupy). This encoding, however, could have been
“emulated” by a sentential representation. For example, if the vertices of the setGraph
of Figure 4(a) were considered as entities of the domain identified by symbols V ,...,V
[Figure 2(a)], then this state could be described as follows:

9

I= {On(v,, V,), On(V,, V,), On(V,, Table), ..., On(V,, Table),
Above(V,, V,), Above(V,, Table),..., Above(V,, Table),

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.



46 Garagnani

Heavier(A,B), Heavier(B,C), Heavier(A,C),
In(C, V), In(A, V,), In(B, V,),
Empty(V,), Empty(V,), Empty(V,), ..., Empty(V,)}

Predicate In(x,y)indicates that symbol x is inside vertex y; Empty(x) indicates that
vertex x contains no symbols; On(x,y), Above(x,y) and Heavier(x,y) denote the correspond-
ing edges between vertices and symbols. In the world state 7, only the instances of the
predicates ‘In’ and ‘Empty’ are subject to change; the rest of the atoms are invariant.
Notice that although obtaining this encoding from Figure 4(a) appears now as a
straightforward task, no planner would have been able to automatically generate state
Ifrom the original, sentential version of BW considered earlier on, in the first section of
this chapter.

It should be noticed that although states, operators and goals have been described
here using a purely diagrammatic notation, the translation of such descriptions into a
formal language is relatively straightforward, as all of their components (graphs and sets)
have a direct mathematical representation® (this is illustrated in the next section). Also
notice that the number of edges in a setGraph used to represent relations (like ‘above’
or ‘heavier’) between the objects of the domain grows only polynomially in the number
of objects; this result could be obtained in a sentential descriptions only by keeping the
arity of the predicates constant.

When compared to sentential descriptions, analogical representations appear, at
first glance, more intuitive, simpler to understand and to manipulate. The use of a model
that reflects the spatial and topological aspects of the real domain suggests that this type
of representations should be more suitable for the application of common sense
reasoning, heuristic extraction and machine learning techniques. For example, an opera-
tor like the one depicted in Figure 2(b) should not be difficult to learn, given appropriate
image-processing techniques. The next section will demonstrate how, even without
exploiting the “static” properties of adomain, analogical models can be significantly more
efficient than sentential ones, particularly in domains involving the movement of objects
subject to spatial constraints.

ANALOGICAL PLANNING: A CASE STUDY

In order to illustrate the viability and efficiency of analogical planning, we describe
an example of an implemented analogical planning domain description. The representa-
tion adopted consists of a simplified version of the setGraph model proposed earlier. In
particular, a state is described as a set of arrays of symbols. The experimental results
obtained with a prototype planner adopting such representation are briefly summarised
and discussed below.

Syntax and Semantics of Array-Based Planning

In order to formalise a planning domain description language, we need to specify
a syntax for describing states and actions (i.e., transformations of legal states into legal
states). A world state is represented here by a set of fixed-length, one- or two-dimensional
arrays. The name, contents and length of a one-dimensional array are described using
the following syntax:
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Ala,|a,l...]a,]

This expression declares an array of n cells of name A and initialises its contents
so that its i-th cell contains symbol a,. The name 4 can be any string of characters; a,,...,
a, aresymbolsin U'=Uu{ _}, where Uis the chosenuniverse of symbols and the special
symbol ¢’ indicates an empty cell (i.e., the absence of any symbol). For example, a BW
domain with three blocks could be described using three one-dimensional arrays of
characters, each one representing a stack; hence, the state represented in Figure 2(a)
could be encoded as follows:

T={SI[TIAIC|_], s2[TIB|_|_], s3[TI_I_I_T}

The symbol T is used to represent a “table-location,” and is introduced only to
simplify the description of the Move action (see below). Bi-dimensional arrays can be
similarly specified.

In order to describe actions, let us introduce a notation for identifying and
manipulating symbols within an array. The expression 4(x,y...z), where x,y...z € U'and
A isastring, is said to be satisfied in a state s if and only if s contains an array with name
(or of type) A such that each one of the symbols x,y...z appears in 4 at least once. The
expression A(x|y| ...|z ) is satisfied in a state s ifand only if A(x,y...z) is satisfied, and x,y...z
are consecutive elements of array 4. In addition, we use (possibly typed) variables to
represent elements of U or array names.

The syntax adopted for analogical action descriptions is analogous to that used for
sentential action description. An array-based operator P=FE consists of preconditions
P and effects E, each containing a set of array expressions. An operator transforms the
arrays identified in the preconditions P into the arrays described in the effects £. For
example, the following represents the Move(x,y,z) operator for the array-based encoding
of BW introduced above:

Move(x,y,z) % Moves block x from object z onto object y
Parameters: x — Block; y, z— Objects

P { stack (z|x|_), stack,(y|_)}

E: { stack (z|_|_), stack,(ylx) }

An operator is applicable to a state s only if all its preconditions are satisfied in s.
Intuitively, this equates to map each array expression to an array of s and each variable
to a symbol of the array such that the arrangement of the symbols “matches” that of the
variables. In this example, the two variables stack,, stack,can be bound to any pair of
distinct array names taken from the set {s1,52,53}. Variable xe Block={A,B,C}, while
v,z€ Objects={A,B,C,T}. The preconditions P are satisfied if two stacks can be found
which contain, respectively, a clear block x lying on an object (another block or a table-
space) z, and aclear object y. The effects £ describe the final arrangement of symbols x, y,z
in the same cells of the two arrays stack , stack, identified by the preconditions P (when
asymbolis moved to an empty cell, the original cell becomes automatically empty). Notice
the similarity between this analogical operator and the one of Figure 2(b): although the
latter is described graphically and the former uses a formal (though not sentential)
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language, their preconditions and effects are semantically equivalent. Indeed, the above
operator can solve any BW problem expressed in the array-based representation
applying precisely the same steps that would be required to solve the same problem in
the setGraph model (e.g., see the Sussman anomaly of Figure 3).

In order to be able to deal with two-dimensional arrays, it is possible to extend this
syntax with additional symbols representing specific spatial relations between pairs of
elements.’ In spite of'its simplicity, this notation reflects some of the main characteristics
of the setGraph representation, and was adopted to develop a working prototype of a
simple array-based planner (ABP) that was tested on a set of planning problems. The
experimental results obtained (reported fully in Garagnani & Ding, 2003) are briefly
summarised below.

Experimental Results of Array-Based Planning

The notation introduced above allows the encoding of a small set of relatively
simple — yet quite widely used — benchmark problems taken from the International
Planning Competitions'® and the planning literature. For the experiments, five (proposi-
tional) planning domains (BW, Eight-puzzle, Miconic, Briefcase and Gripper) were
chosen and translated into equivalent analogical representations. In order to compare
the performance of analogical planning against sentential planning, a second planner
was also implemented, identical in all aspects to ABP except for the representation
adopted. Both planners (implemented in Java) used the same, breadth-first, forward
state-space search algorithm, and were run on the same machine to solve exactly the same
problems. However, while ABP reasoned using an array-based notation, the second,
sentential, planner (SP for short) adopted a classical, propositional (STRIPS-based)
language, with types. Importantly, each of the domains was translated so as to present,
in its analogical version, exactly the same search space as in the propositional version
(i.e., the two state spaces originated for any one problem of the domain have the same
cardinality and the same structure). For each domain, several planning problems were
solved by both ABP and SP. Figure 5 contains the actual domain description of the BW
domain used by ABP in the experiments, and the encoding of the Sussman anomaly
problem instance. The syntax adopted parallels the notation of the current (sentential)
standard planning domain description language, PDDL (Fox & Long 2003) (for acomplete
BNF formalisation of the syntax adopted by ABP, see Garagnani & Ding, 2003).

The results (reported fully in Garagnani & Ding, 2003) demonstrate a clearly superior
performance of ABP on al/ of the five domains, and on al/ of the problem instances.
Tables 1 and 2 contain the time required by the two planners for solving the same
problems in Gripper and BW, respectively. (All the problems are taken from the set of
problemsused in the classical track of the 2000 International Planning Competition.) The
speed-up factor varied from two to as much as 160 times faster (e.g., see problem 4—/ in
Table 1).

Analysis

Why did ABP invariably perform better than SP, given that they both solved the
same problems in the same search space, using the same search algorithm? The answer
lies in the two different representations that the planners adopted. In particular, the main
factor leading to the gain in performance obtained in these experiments appears to be that
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Figure 5. BW domain description and example of problem instance for the ABP
analogical planner

(define (domain Blocksworld)
(:ObjectTypes block table - object)
(:PlaceTypes Stack[object])
(:action PutOn
:parameters (x — block y - object)
:pre (Stack(x|_) Stack(y]_)
:post (Stack(_|_) Stack(y|x)
)
)

(define (problem Sussman)
(:domain Blocksworld)

(:Objects A B C —block T —table)

(:Places s1 s2 s3 — Stack)

(:

init
S[TIAIC|_| ]
s2(TB|_|_| ]
S3T_I_I_I1)
(:goal
Stack(C|BJA) )

Adapted from Garagnani & Ding (2003)

analogical planning can exploit the inherent structure of the domain to speed-up the
operations of state “look-up” (required to establish the applicability of an operator to a
state) and state “update” (carried out as a consequence of the application of an operator).

Forexample, consider the process of checking whether the BW operator Move(x,y,z)
—inwhich ablockxis moved from the top of object z onto another block y —is applicable.
In the sentential representation, the preconditions P could consist of the following set
of literals:

P={0n(x, z), Clear(x), Clear(y), —Equal(x, y)}

Assume that the parameters x,y,z are still unbound, and suppose that the checking
procedure considers the literals of P sequentially, from left to right. The first precondition
is compared with the state: if the atom unifies with one of the atoms in the state, parameters
x and z are assigned a value and the process moves on to consider the second literal of
the list. However, several unifications of the first atom may have to be discarded before
a suitable one is found such that the second atom, Clear(x), is also satisfied in the state.
If suitable values for x and z are eventually found, the process can move on to the third
precondition, Clear(y). If the state contains an atom that unifies with Clear(y) and such
that y#x, the procedure terminates successfully. Otherwise, the algorithm backtracks,
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1

Table 1. Planning time (s.) for Gripper problems (“m—n"=m balls inroom A and n balls

in room B)

-0 2-1 2-1 30 22 3-1 4-0 4-1
SP 00 03 51 31 167 862 1866  (>16 hours)
ABP |00 00 04 1.1 28 13 26 354

Table 2. Planning time (s.) for BW problems with four (4-#), five (5-#) and six (6-#)
blocks

40 4-1 42 50 5-1 52 60 6—1 62
SP 05 15 1.1 70 21 119 144 1047 (>12h)
ABP |02 02 03 19 75 23 35 401 5230

and the process is repeated with the next pair of atoms in the state (i.e., the next pair of
values for x and z) that satisfy the first two preconditions. In general, the set of possible
pairs of such atoms that are present in the state is a subset of the total possible number
of pairs (x,z), that is, it has cardinality O(m?), where m is the number of objects (blocks)
of'the domain. For each pair, a number of instances of Clear(y) will have to be discarded
in order to find one such that yx; this will be in the order of O(m), leading to a total number
of O(m?) steps. Hence, in general, it appears that the number of steps required to check
the preconditions of an operator is in the order of O(m*), where £ is the total number of
parameters that appear in the preconditions."!

Let us now consider what happens in the array-based representation. The precon-
ditions P of the Move(x,y,z) operator, described at the beginning of this section, consist
of'the following:

P = {stack (z|x|_), stack,(y|_)}

Asbefore, suppose that these expressions are considered from left to right. Variable
stack, can be bound to any of the arrays in the state. Once an array has been identified,
it is easy to see that the check for the presence of a sequence (such as ‘z|x| ) of ¢
consecutive elements can be carried out in time O(c m), where m is the length of the array
(i.e.,number of blocks ofthe domain plus one). Ifthis check is not successful, the variable
stack, is assigned to the next possible array in the state, and the process is repeated.
Notice that the number of arrays (stacks) present in the state grows at most linearly with
the number of objects (blocks). The same reasoning can be repeated, of course, for the
second precondition.

Similar differences in the efficiency of the state look-up operations between
sentential and analogical planning representations should also be expected in the
version of BW containing domain axioms. In fact, consider the process of verifying the
applicability of the Unstack(x,y) operator when axioms (a,),(o,) are present. As dis-
cussed in the first section of this chapter, the check for the truth of a ground instance
of the predicate Above(x,y,n) requires, in the sentential case, a number of steps polyno-
mial in the number of blocks. On the other hand, the last section illustrated how a graph-
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based description can encode the BW relations ‘on’ and ‘above’ as labelled edges.
Hence, the problem of deducing whether a block is above another one becomes one of
simply checking the graph for the existence of an edge of the appropriate type between
the two nodes containing the blocks. This check can be carried with a number of steps
at most /inear in the total number of blocks.'?

Now consider the update operations caused by the execution of an action. A
sentential description of the Move action in BW should include, in its effects, the literals
On(x,y),—0n(x,z),—Clear(y). The last effect is a trivial consequence of the action: if block
xisony, then y is not clear. Yet, the sentential model must explicitly include this effect
and consider it during the reasoning process. The use of an axiom such as:

(=3x:0n(x, y)) — Clear(y)

would obviate the explicit use of predicate Clear(x) in the operators, but would not relieve
the planner from still having to carry out many trivial calculations, required to take this
axiom into account during the search process. In contrast, in the analogical model, this
effectis implicitinthe action of moving a symbol to anew node (or cell): what lies beneath
becomes implicitly not clear. The state changes produced by the execution of the
analogical operator of Figure 4(b) (or by the array-based version) consist simply of
transferring symbol x from its original location to its destination. Notice that this
operation can be performed in time linear in the number of objects, whereas in a sentential
model containing domain axioms, updating the ‘above’ relation requires a polynomial
number of steps.

In summary, the speed-up achieved by the adoption of setGraphs derives from their
ability to carry out more efficient state look-ups and updates. There are two main reasons
why these processes are more efficient here than in a sentential representation. The first
one follows from the ability of analogical models to impose a structure on the domain
description so that it reflects the inherent spatial (or semantic) structure of the domain.
Infact, adomain is often composed of several connected sub-structures (e.g.,in BW, the
stacks) presenting an internal structure simpler than the complete state description; once
one of these sub-structures has been identified, a “local” check for the existence of
certain conditions or manipulation of elements within it is much simpler and faster than
carrying out the same operations on random parts of the global state. In short, the
analogical descriptions can be seen as decomposing the domain into sub-parts, which
allow simpler look-up and update operations. The second reason lies in the ability of
analogical models to capture implicitly the basic, trivial — yet pervasive — physical
constraints and properties of adomain and thus relieve the model from having to explicitly
include them as additional formula or axioms, and take them into account during the
reasoning process (see also Myers & Konolige, 1995). For example, in the BW domain,
the constraint specifying that any block having something put on it becomes “not clear”
is implicit in the analogical representation: the domain description does not contain any
explicit formula or element specifying such a constraint.

One question emerging from this study is whether the observed gain in performance
is only limited to the so-called move domains [domains that involve — or which can be
transformed into equivalent ones involving — the movement and manipulation of
objects subject to physical and spatial constraints (Hayes & Simon, 1977; Garagnani,
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2003)], or whether setGraphs, and, more in general, analogical representations can also
be applied successfully to other types of planning problems. In order to address this
question, the next section provides a more general analysis of the characteristics,
advantages and limitations of analogical descriptions with respect to sentential ones.
The conclusions drawn from this analysis will lead to the second part of this chapter, in
which a way to exploit the advantages of both representations within a single framework
is proposed.

CHARACTERISING ANALOGICAL MODELS

The need for formalisms to support common-sense reasoning more efficiently than
the traditional sentential [or Fregean (Kulpa, 1994)] representations has recently lead to
a resurgence of interest in “non-linguistic” descriptions, also referred to as diagram-
matic (Larkin & Simon, 1987), analogical (Sloman, 1975; Dretske, 1981), homomorphic
(Barwise & Etchemendy, 1995), direct (Levesque, 1986) and model-based (Barr &
Feigembaum, 1981; Halpern & Vardi, 1991). Let us analyse the general characteristics of
these representations and the elements that allow discriminating them from sentential
ones.

Analogical vs. Sentential

The feature that most clearly distinguishes analogical models from sentential ones
is the relation existing between the syntax of the formula of the language and the
semantic structure of the represented domain. In analogical representations, the syntax
of the language structures mirrors, for the relevant aspects, the semantics (relations and
properties) of the domain represented (Barr & Feigembaum, 1981, pp. 200-206). In other
words, the world is modelled using descriptions that are structurally similar to the object,
situation or event represented. In contrast, the syntax used for the formule of a sentential
representation has no particular relevance, and its specific structure has no bearing to
the specific structure of the represented domain (Kulpa, 1994). Barwise and Etchemendy
(1995) concisely characterise this difference:

“[...] with homomorphic representations the mapping f between syntactic structure
(that is, the structure of the representation itself) and semantic structure (that is, the
structure of the object, situation or event represented) is highly structure preserving,
whereas the corresponding mapping in the case of linguistic representations is
anything but structure preserving.” (p. 214)

According to Palmer’s (1978) characterisation, the relations between elements of
analogical structures and the corresponding represented relations of the domain have
the same algebraic structure (i.e., they are naturally isomorphic). In addition, unlike in
sentential descriptions, the relevant relations between objects of the domain do not need
to be explicitly declared in the domain model and appear as “pointable” elements of the
description.

In order to clarify the previous definitions, let us compare the array-based analogi-
calrepresentation of BW presented earlier against its sentential version. In the latter, the
relevant relations (‘on top of’, ‘above’) between objects are specified using relational
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instances, which are pointable elements of the state (viz., formule, like On(A,B) and
Above(C,D,1)). In addition, the properties of these relations and their interactions are
imposed on the model by logical expressions — for example, axioms (,),(0.,) — that
extend (or restrict) the legal set of instances of a certain predicate. In contrast, in the
analogical representation the objects and the relevant spatial relationships that exist
between them are not described as sets of relational instances, but modelled using
appropriate data structures (in this case, arrays). The syntax of such data structures
mirrors, for the relevant aspects, the semantics of the domain. In fact, the formule used
to describe a BW state have the following syntax:

name [ arg, |arg,|...|arg ]

This notation clearly reflects the semantics of BW: the first argument of the formula
(arg,) always represents the “table” object; the second, the lowest block of'a stack, lying
on the table; two consecutive symbols arg,, arg, ., indicate that block arg, ,  is on block
arg,, and the rightmost symbol of the formula different from ‘_’ denotes a clear block.
In contrast, the formule used in the sentential representation adopt the following syntax:

predicate(arg,, arg,, ..., arg,)

This syntax has no direct relation with the structure and properties of the BW
domain. The specific structure of this formula (i.e., the number and order of'its arguments)
has no particular connotation, valid for all of the formule of the language. For example,
unlike in the array-based representation, there is no specific role associated to the first
argument of a formula, valid for a/l the predicates of the language. Moreover, consider
the spatial relation ‘above,’ represented in the array model by the relation ‘to the right
of ’, defined on the symbols of the array'’. First of all, this relation is not represented
explicitly, as a pointable element of the state. Secondly, the transitive property of the
relation, imposed on the sentential predicate Above(x,y,n) by axioms (,),(c,), is an
implicit property of the relation ‘to the right of ,” and does not need to be explicitly
imposed on the model, included in the description and accounted for during the
reasoning process. In other words, the transitivity of the relation is an emergent property
of the representation (Koedinger, 1992); to use Palmer’s terms, the relation ‘to the right
of ’ in the array model and the corresponding spatial relation ‘above’ in the real domain
are naturally isomorphic (1978).

Advantages and Limitations of Analogical Models

Myers and Konolige (1995) observed that one of the key features of analogical
representations is their “capacity to implicitly embody constraints that other represen-
tations must make explicit” (p. 275). The analysis of the experimental results obtained with
the array-based planner illustrated how the ability of analogical models to implicitly
encode the basic physical properties and constraints of a domain and to reflect its internal
(topological or semantic) structure can lead to better planning performance, particularly
when a domain can be decomposed (according to its spatial or semantic structure) into
smaller — possibly linearly structured — parts that enable efficient, “localised” condi-
tion-checks and element manipulations. These features significantly reduce the compu-
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tational load involved in state update and look-up operations, which represent a
substantial part of the overall planning and reasoning process. Interestingly, the need
to perform these operations is closely linked to the presence of the well-known frame and
ramification problems.

The problem of ramification of the effects of action (directly associated to the
presence of domain axioms — see the earlier section “Domain Axioms and the Ramifica-
tion Problem”) is just another facet of the frame problem (McCarthy & Hayes, 1969): while
the former is caused by the need to reason about the properties of the world that change
as a consequence of an action, the latter concerns reasoning about the aspects that do
not change. The frame problem is still regarded as presenting a major difficulty for
reasoning about action (Shanahan, 1997). In the analogical formalisms presented earlier,
the frame problem is addressed exactly like in sentential ones, that is, by requiring that
an operator explicitly contains only the changes resulting from the execution of the
represented action, and assuming that all the remaining aspects of the state are left
unchanged (Lifschitz, 1990). Assuming such “default persistence” provides only a
simplistic solution to the frame problem, and requires an operator to specify all the
possible consequences that the execution of the corresponding action has on the state
— in other words, it leads to the ramification problem.

The adoption of analogical representations has a lessening effect on the frame/
ramification problem. Sentential planning languages are generally more flexible and
expressive than analogical ones; however, because of their “unconstrained” nature, they
require all the properties and constraints of the domain — even the most trivial — to be
represented “extrinsecally” (Palmer, 1978) in the domain, that is, to be explicitly imposed
on the model using “pointable” elements (formule, axioms of the language) which have
to be taken into account during the reasoning process. Analogical representations can
make some of such constraints (axioms) implicit in the model; in addition, they may allow
the domain to be decomposed in simple sub-structures that enable localised (as opposed
to global, “ramificated”) state look-ups and updates. This significantly reduces the
number of deduction steps required, and, hence, eases the ramification problem (see also
Lindsay, 1995). In particular, as discussed earlier in the analysis of the experimental
results, the use of sentential description leads, in general, to a polynomial number of
operations required for state look-up and update operations. This can be reduced to just
linear complexity through the adoption of analogical models.

There is a second way in which analogical models may be able to reduce the impact
ofthe frame problem. In sentential planning languages, the assumption that nothing else
changes apart from the effects explicitly specified by the action leads to the formulation
of rather complex conditions for determining when two actions can be executed simul-
taneously [e.g., see the conditions for mutually exclusive actions in PDDL2.1 (Fox &
Long, 2003)]. Indeed, a significantamount of effort is spent by Graphplan (Blum & Furst,
1997) and similar systems to calculate a/l such pairs of “mut-ex” operators. In contrast,
analogical descriptions appear to allow a much simpler check: two operators can be
executed simultaneously if they act upon parts of the analogical model that are disjoint.
This condition is not strictly necessary, butitis sufficient, and it suggests that analogical
descriptions may lead to further speed-ups ifused in conjunction with Graphplan-based
algorithms.
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One of the main problems with purely analogical representations, however, is
finding a sufficiently general model that can represent a// complex aspects of the real
world and still allow efficient descriptions. Due to the implicit, unalterable structure of
the relations that they use, analogical representations are usually criticised for their
limited expressiveness and tendency to be domain (or, at best, “generic-domain”)
specific. For example, the setGraph representation proposed in the first section appears
to be suitable for representing generic move domains, involving the manipulation of
objects in topological or structured spaces. However, can setGraphs also be used to
represent other types of domains, involving, for example, no movement at all? It is not
difficult to show that setGraphs can encode any domain such that the current state can
be described as a finite set of objects O={x ,...,x }, each being in one of a finite number
of possible states.!* The theoretical results presented in the next section show how
setGraphs can be extended so as to become expressively equivalent to a propositional
language. It remains to be seen whether such formalism is generally more efficient than
other, sentential or state-variable based ones (e.g., such as those of Cesta & Oddi, 1996).

Indeed, in spite of its expressiveness, it appears unlikely that even an extended
setGraph formalism would be able to describe all problems more efficiently than any other
sentential representation. A similar objection, however, applies equally well to purely
sentential planning formalisms. In short, it would seem that no single, purely analogical
or purely sentential representation paradigm exists that can be used to describe a/l
possible problems more efficiently than any other: the complexity of real-world applica-
tions requires from a language a “mixture” of different capabilities that analogical or
sentential models alone cannot offer.

Inview of'this, the knowledge representation community has been investigating the
use of heterogeneous (or hybrid) models (Barwise & Etchemendy, 1995, 1998; Myers &
Konolige, 1995; Swoboda & Allwein, 2002), in which different types of representations
are integrated and used by the system to construct threads of proof that cross the
boundaries of sentential and non-sentential paradigms of representation. The advantage
of a hybrid system with respect to a purely sentential or analogical one is that it allows
reasoning about different aspects of the world using the most appropriate (i.e., efficient)
representation for each aspect. The next section describes a framework for hybrid
planning, in which domain descriptions containing qualitative, quantitative, sentential
and analogical features can be integrated and used interchangeably. The analogical
model adopted extends the setGraph formalism introduced before, making it expressively
equivalent to the sentential model of action adopted. The result is a powerful, hetero-
geneous planning representation that combines the strengths and overcomes the
limitations of the two paradigms on which it relies.

A FRAMEWORK FOR HYBRID PLANNING

This section proposes a model for integrating sentential planning representations
with analogical ones into a single heterogeneous formalism. The contents of this section,
largely based on the ideas described in Garagnani (2004), are divided into four parts. In
the first part, the setGraph formalism introduced intuitively in the previous sections is
formulated in more rigorous terms and extended into a more expressive representation
thatallows types and numeric quantities. The second part briefly describes the sentential
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model chosen, based on the current standard planning domain description language,
PDDL2.1 (Fox & Long, 2003). The third part proposes a model for hybrid planning that
integrates the two representations, and illustrates the approach through an example. The
last subsection presents a general theory that allows the identification of the conditions
for the soundness of hybrid planning models.

The Analogical Model: Extending SetGraphs

We begin by extending and recasting in more formal and rigorous terms the setGraph
model proposed earlier. The model is augmented so as to allow (1) types and numeric
values (hence, attributes with infinite domains), and (2) actions involving non-conser-
vative changes (additions and removal of elements to and from a setGraph) and numeric
updates. The extension of setGraphs with numeric quantities can be seen as the first step
towards the “hybridisation” of the model, completed later on by the integration with a
sentential language.

Typed and Numeric SetGraphs

In order to formally define a setGraph, let us introduce the collection construct. A
collection is a data structure identical to a /ist, except that the order of the elements is
unimportant. Equivalently, a collection can be seen as a set in which multiple occurrences
ofthe same element are permitted. Notice that the multiple instances of an element should
be thought of as distinct elements of the structure. For example, C={1,1,0,0,0} denotes
a collection of integers containing two occurrences of the number 1 and three occur-
rences of the number 0. Since the order is unimportant, any permutation of the elements
of C is equivalent to the same collection. Hence, C={1,0,1,0,0}={1,0,0,1,0}=
{1,0,0,0,1}={0,1,0,1,0}=... etc.

The empty collection is denoted as { }. We adopt the notation “xe C” and say that
x is contained in C to indicate that element x appears (occurs) at least once in
collection C.

The definition of a setGraph is based on that of nodeSet, specified recursively as
follows:

Definition 1 (nodeSet, node, place). Let W be a set of strings (language). A nodeSet is
either:

*  astring we W (in which case, a nodeSet is also a node), or

* g finite collection of nodeSets (in which case, a nodeSet is a place).

A node is a string of the language W. A place is a “container” for both nodes and
places. Nodes and places are nodeSets. In short, nodeSets are data structures consisting
of multi-nested sets of strings with multiple occurring elements and no limit on the level
of nesting. For example, consider a language W={Ab} with one string only; each of the
following represents a nodeSet (the notation {x,y,...,z} indicates a place containing
nodeSets x, y, ..., 2):

Ab “.1)
{3 (4.2)
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{Ab, {Ab}, {{Ab}} } (4.3)
{{Ab}, {{ Ab, Ab }}, {{ }.{}}, {Ab}, {{}.{}}, {Ab}} (44)

Formula (4.1) represents a node; (4.2) represents an empty place, and (4.3) a place
containing one node and two places, of which one contains a node and the other one a
place.

Inthe nodeSet notation adopted, places can be associated to labels (strings), which
can then be used to refer to the elements of a nodeSet structure. For example, if p, ¢,
and s are labels, the nodeSet identified by (4.3) could also be specified by the expression
(4.5)below:

piAb, r{Ab}, q{s{Ab}} } (4.5)

Thus, for example, any reference to place ¢ is taken to represent nodeSet { {Ab}}.
Notice that place labels are not required to be distinct (as explained below, this is useful
when types are introduced).'

GivenanodeSet N, ¢ (N) is defined as the collection of all the nodeSets occurring
in N (including N itself). For example, consider a language W={A,B,C}. Let N, be the
nodeSetidentified by expression P {A,P {B},P,{P,{C}}}.Then, (N )={A,B,C,P,P,
P,,P.}, where P = {A, {B}, {{C}} }, P, = {B}, and so on.

Definition 2 (setGraph). A setGraph is a pair {(N,E), where N is a nodeSet and
E={E,, ... E}is a finite set of binary relations E, § (N).

If E contains only one relation £, we write simply (V, E ). For example, let N, be the
nodeSet specified as N ={A,{B},{{C}}}. The pair a=(N,,E ) is a setGraph, where:

E={(C,B), ({B}, {{C} }), ({A.{B},{{C}}}, A) }

The instances of the binary relations £, — pairs of elements of @ (V) — are called
the edges of the setGraph. Notice thatif N had been specified using the labelled notation
N =P {A,P {B},P,{P.{C}}},asintheprevious example, then £, could have been written
alsoas {(C,B), (P,P,), (P, A)}.

SetGraph structures have a direct graphical interpretation. Figure 6(a) contains a
graphical representation of the setGraph a=(N ,E,), where places are depicted as ovals,
nodes as the corresponding strings of the language, and edges as labelled arcs. All (and
only) the nodeSets that are contained in a place appear within the perimeter of the
corresponding oval.

In a setGraph, each relation £, denotes a different fype of edges (represented in
Figure 6(a) as arc labels). Similarly, nodeSets can also be required to be of specific types
(orsorts). Figure 6(b) contains a tree of labels representing an “IS-A” hierarchy of types.
The root of the nodeSet hierarchy is always the type NODESET. The leaves of the tree
are called instances. Each node of the tree identifies a type. Each type ¢ represents the
set of instances of the sub-tree having t asroot (e.g., NODE={A,B,C}). Types NODE and
PLACE are always the only sub-types of NODESET. If a setGraph G is associated to a
type hierarchy (as in Figure 6), G is said to be typed. In a typed setGraph, the instances
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Figure 6. (a) Graphical representation of setGraph o = (N ,E ) ; (b) associated type
hierarchy
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ofthe type NODE form the language W. In what follows, all setGraphs are assumed to be
typed, unless otherwise specified.

The introduction of types allows one to “characterise” and differentiate the
nodeSets of a setGraph. Different types of places (and nodes) may have different
properties and behaviour, which are inherited by all sub-types and instances (see
Example 5.1). In a typed setGraph, the type of a node is unambiguously identified, as
nodes are, instances of the NODE type hierarchy. In order to specify the type of a place,
we adopt the same labelling notation introduced earlier for identifying places: the type
ofaplaceisspecified by associating the place to a label, an instance of PLACE. To avoid
ambiguities, places of the same type can be discriminated using distinct variable names
of the same type.

The use of types (and typed variables) in setGraph descriptions yields generalised
setGraphs. A generalised setGraph is obtained from a setGraph by replacing one of the
nodeSets with one of its super-types (or with a variable of that type). A generalised
setGraph denotes the ser of setGraph descriptions that can be obtained from it by
replacing all types (and variables) with appropriate instances. For example, consider
Figure 6(a). The four places of the setGraph are not associated to any label. Unless
otherwise specified, all places of a setGraph description are assumed to be of type
PLACE. Hence, Figure 6(a) is a generalised setGraph, representing the set of setGraphs
that can be obtained by labelling each place with any of {P,Q,R,S}=PLACE. To use a
textual notation, Figure 6(a) is equivalent, for example, to the parameterised setGraph
description(N,,E ), where:

N,=x{A, y{B},w{ PLACE{C}}}
E,={(CB), (1, w), (x.A)}

and where variables w, x, y, (called the parameters of the setGraph) are of type PLACE.

Notice that in parameterised setGraphs a variable name may appear only once to
identify a node or a place, whereas the same #ype may be used to label different nodes
(or places). Given a type hierarchy, a setGraph description containing only instances of
the hierarchy (i.e., no types or variables) and identifying only one — typed — setGraph
is said to be ground.
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Actions with Numeric and Non-Conservative Effects

In addition to the representation of the (initial) world state (consisting of a ground
setGraph), a planner must also be provided with a specification of how states are changed
by actions. In order to allow specifying operators with numeric preconditions and effects,
the notation for analogical operators adopted earlier needs to be extended. In addition,
the setGraph formalism proposed is limited to actions consisting simply of moving
nodeSets from one place to another; the model is augmented here to allow actions that
add elements to and remove elements from a setGraph, enabling a state to undergo “non-
conservative” changes.

Numeric quantities are represented in setGraphs as numeric nodes. A numeric node
is a string of W of form “n.m” or “n” (possibly preceded by +), or the string “1”. The
symbols n, m denote sequences of digits in {0,1,...,9}. The node “.L” is used to represent
numeric attributes with undefined values. The value of a numeric node (string) is
calculated using a function val:W—R , where R =RuU{L} and R is the set of reals. In
particular, val(w) is the (float or integer) number represented by w if w has form “n.n” or
“n,” L otherwise. The function st7:R — W returns the inverse of val,that is, str = val !
(e.g.,str(-1.75)="-1.75").

The possible setGraph transformations considered here are: (i) addition or removal
ofan element, (i7) movement of anodeSet, and (iii) re-assignment (or update) of anumeric
node. The movement and removal of elements in a setGraph is based on the following
general rules: (1) ifanode is moved (removed), all edges linked to it move (are removed)
with it; (2) if a place is moved (removed), all the elements contained in it and all edges
linked to it move (are removed) with it.'* Any element not moved, removed or updated
is left unaltered. In addition, let xe R | be the value va/(w) of a numeric node w, and let
ne R . The possible updates of anumeric node ware: (a) Assign (x".=n); (b) Increase (x".=
x+n); (c) Decrease (x"=x-n); (d) Scale-up (x"=x*n), and (e) Scale-down (x":=x/n). The
result, x'; is L if one of the operands is L. The application of one of these updates to the
numeric node (string) w causes w to be transformed into the string s¢7(x") (Notice that str(L)
=“1").

Asusual, the domain-specific legal transformations of a state (setGraph) are defined
through a set of parameterised operators. An operator P=FE consists of preconditions
P (specifying the situation required to hold in the state before the action is executed) and
effects £ (describing the situation of the state after). However, preconditions and effects
contain here two separate parts, analogical and numerical. The analogical preconditions
and analogical effects are lists of parameterised setGraphs. The numerical preconditions
consist ofasetof comparisons (<,>,=,#,<,2) between pairs of numerical expressions, '’
while the numerical effects consist of a set of update operations of the kind (a)—(e) listed
earlier.

Example5.1. Considerasimple Ferry domain, consisting of two ports (Port, and Port,),
aferry boat, and a number of cars The ferry can sail between the two ports, carrying
a limited number of cars. The cars can board and debark the ferry at either of the
two ports. The problem is to find a plan (involving the least number of ferry trips
and least number of boarding and debarking operations) that transforms a given
initial state into one in which each car has reached a specific port. The (ground)
setGraph represented in Figure 7(a) encodes an example of initial state for a Ferry
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Figure 7. Ferry domain: (a) initial state setGraph; (b) type hierarchy
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problem with three cars (A,B,C) and a ferry F . Figure 7(b) contains the associated
type hierarchy.

The setGraph representation of Figure 7(a) omits arc labels (all edges are of the
same type). The bi-directional arc between Port and Port, denotes the presence
of two symmetric edges connecting the two locations. The arc linking the ferry
(place F)) to node 1 denotes an edge associating this nodeSet to the number of
nodes (cars) that it contains. In order to allow the representation of numeric
quantities, the language W is extended by adding &  to the type hierarchy as a
subtype of NODE [see Figure 7(b)]. The type & can be thought of as having
instances “07, “17, “2”,..., that is, the infinite set of strings representing all the
natural numbers. The special string “1” is also an instance of X , representing
“undefined” numeric values. Notice that the type hierarchy restricts all places of
type Ferry to contain only elements of type Car (by default, a place would be
allowed to contain any instance of the NODESET type). This property is inherited
by all instances of Ferry (here, only F).

Figure 8 contains the graphical representation of the analogical operator
Board(x,y,z) for the Ferry domain, encoding the boarding of acar yon a ferry z. The
analogical precondition and effect lists of this operator consist of only one
parameterised setGraph. The numerical parts constrain and update, respectively,
the value of the numeric node x. The applicability of the operator (see below) is
subject to y and z being at the same port and to x being less than three. Notice that
the fact that place z in the preconditions P does not contain any element should
not be interpreted as requiring it to be empty (this will follow from Definition 3 and
method (o).

The Debark operator will consist essentially of the “reverse” version of the Board
operator, although x will not need to be constrained, but decreased by 1.

Having generally illustrated the syntax of setGraph operators, let us now specify
their semantics. The semantics of action are specified by providing an algorithmic
definition of the following: (o) a method to check whether an operator is applicable to
a given state s; (B) amethod for calculating the state resulting from the application of an
operator to a state s. These methods (detailed next) make use of the definition of
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Figure 8. Board(x,y,z) operator for the Ferry domain: preconditions P (left) and effects
E (right)

xeN | . X
yeCar zeFerry Port
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satisfaction, specifying the conditions for a parameterised setGraph 7 to “match” a
setGraph G. Intuitively, 7 is satisfied in (or matches) G if and only if there exists a
substitution of all the variables and types of 7' with appropriate instances such that 7 can
be made “coincide” with G (or with a subpart of it).

Definition 3 (Satisfaction). Given a parameterised setGraph T={N,E} (with associated
type hierarchy) and a ground setGraph G, T is satisfied in G if and only if there
exist a substitution 0 of each parameter (variable) of T with an instance of the
appropriate type, and a 1-1 function 6:T—G mapping elements of T to elements
of G, such that, if N, is nodeSet N after the application of substitution 6, the
following conditions are all true:

for all nodes xe N, either x=6(x), or 6(x) is an instance of type x
for all places ye N, 6(y) is an instance of the type of y

for all pairs (x,y) such that x,ye @ (N), if x€y then 6(x)e S(y)

for all edges e=(x,y)e E, G(e) =(6(x), 6(y))

The first two conditions require that each nodeSet of T'is either equal to, or a super-
type of, the corresponding image in G; the third condition requires that any relation of
containment between nodeSets of 7'is reflected by containment between the correspond-
ing images in G; the last condition requires that if two nodeSets are linked by an edge
in 7, the corresponding images is linked by the image of the edge in G.

The definition of satisfaction is used for detailing methods (o) and (), mentioned
earlier:

()  Anoperator P=Eis applicablein a state (setGraph) s iff (1) all the parameterised
setGraphs of P are satisfied in s (using binding ¢ and a single substitution 0
replacing equal variables with equal instances), and (2) if every occurrence of
each numeric variable x in the numeric part of P is replaced with the value
val(c(x)), all the numeric comparisons in P are true;
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®

If operator O is applicable in state s, the result of applying O to s is the new
setGraph obtained from s by (1) carrying out — on the corresponding elements
of s identified through binding 6 — the changes required to transform each of the
setGraphs in the preconditions P into the (respective) setGraph in the effects E,
and (2) for each update operation of E, updating the numeric nodes with the result
of the respective operation.'®

Example 5.2. Consider the Ferry domain of Example 5.1. Given the type hierarchy of

Figure 7 (b), the preconditions P of the Board(x,y,z) operator of Figure § are
satisfied in the setGraph specified by Figure 7(a). In fact, let 6 = (x/1, y/B, z/F ) be
a substitution of parameters with instances of appropriate type (notice that 0 is
legal, as 1e X , Be Car and F eFerry). In addition, let 6 map the nodeSets of the
analogical preconditions of Figure 8 to nodeSets of the setGraph specified in
Figure 7(a) as follows: nodes x,y to nodes 1,B (respectively), the place labelled z
to the place labelled F , edge (z,x) to edge (F,1), and the place labelled Port to the
place labelled Port,. If P,is the setGraph obtained by applying substitution 8 to the
analogical part of preconditions P, then, for all nodes xe P, x=0(x) (this is obvious),
and for all places of P, the images are instances of their respective types (in fact,
consider place ze Ferry: the image is place F,, instance of Ferry; consider place
labelled Port, of type Port: the image is place Port,, an instance of Port). In addition,
itis easy to see that containment between nodeSets of P is reflected by containment
between the corresponding images, and the only edge e=(z,x) in P is such that
6(e)=(F ,1)=(0(2), 6(x)), as required by Definition 3. Finally, in the numeric part of
P, ifthe occurrence of variable x is replaced with value val/(c(x))=1, the comparison
(x<3) is satisfied. Therefore, Board(x,y,z) is applicable to the ground setGraph
depicted in Figure 7(a). The application of the operator would transform the
setGraph into one in which car (node) B is inside the ferry (place F,) and the numeric
node “1” has become “2”, as expected.

Notice that the use of a graphical representation for specifying analogical operators

is due to purely explanatory reasons. Analogical operators can also be specified
textually, using a notation analogous to the one adopted for array-based analogical
planning (see the third section of this chapter). For example, consider the sail action of
the Ferry domain, consisting of the transfer of the ferry (and of its contents) from one
port to the other. The analogical, setGraph operator representing this action could be
specified textually as follows:

Sail (x,y,z) % Moves ferry x from port y to port z
Parameters: x — Ferry; y, z— Port

P Lz i b))

E: SEARNEEIR TR R{CAIY

As mentioned before, specifying empty places in the preconditions (e.g., x,)) is not

equivalent to requiring that such places be empty. Indeed, in order to express the
precondition of “emptiness” of a place, a specific notation (e.g., see Figure 14) should
be adopted.
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The Sentential Domain Description Language

Having reformulated and extended the analogical representation to allow types and
numeric quantities, let us briefly describe the sentential model adopted, which is
expressively equivalent to the setGraph model presented in the previous section (see
Theorem 1).

The sentential representation is based on PDDL2.1 (Fox & Long, 2003). The
semantics of PDDL2.1 builds on and extend the original core of Lifschitz’ STRIPS
semantics (Lifschitz, 1990) to handle durative actions, numeric and conditional effects.
The action description proposed here, however, is a simplified version of PDDL2.1, and
is better thought of as an extension of STRIPS with numbers and functor symbols.

Asin PDDL2.1, the world state description is composed here of two separate parts,
a logical (STRIPS-like) state and a numeric state. While the logical state s is a set of
ground atomic formule (and the truth of an atom p depends on whether pe s), the numeric
state consists of a finite vector of real numbers, containing all the current values of the
possible primitive numeric expressions (PNEs) of the problem. A PNE is a formula
flc,,...,c,), where ce C is a symbol representing an object, and f'is a functor symbol
representing a function f:C"—R (see example below —a more precise definition is given
later on in this section). The truth of a comparison (<, >, =, #, <, >) between two numeric
expressions (containing PNEs and real numbers) in a state s is obtained by replacing each
occurrence of each PNE in the comparison with the corresponding numeric value, taken
from the current vector of s.

According to the above, a sentential operator P=E specifies a transformation of
a state-pair s=(logical, numeric) into anew state-pair s'. In the notation considered here,
the preconditions P contain simply a set of literals and comparisons between pairs of
numeric expressions. The effects £ are a set of literals and update operations of the form
Op(w, expr), where Op is one of the five update operators Assign, Increase, Decrease,
Scale-up and Scale-down used earlier for the setGraph operators, w is a PNE, and expr
is a numeric expression (combining PNEs and/or real numbers with operators +, -, *,/).
As usual, operators are parameterised, that is, the literals in P and E can contain typed
variables.

For example, consider the Board action for the Ferry domain (Example 5.1). This
action, represented in Figure § using setGraphs, could be encoded in the sentential
model as follows:

Board(x,y,z) % Boards car x (currently at port z) onto ferry y (also at port z)
Parameters: x — Car; y — Ferry; z — Port

P {At(x, z), At(y, z), <(tot_cars(y), 3) }

E: {OnBoard(x, y), —At(x, z), Increase(tot_cars(y), 1)}

As from the hierarchy of Figure 7(b), Car={A,B,C}, Ferry={F }, Port={Port,,
Port,}. The symbol tot_cars must be declared in the domain description as functor of one
argument; the numeric value returned by tot_cars(x)is the number of cars currently on
board of ferry x [for a detailed description of the semantics of this language, see Fox &
Long(2003)].
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Notice thatany PDDL2.1 “level 2” (i.e., without durative actions) operator can be
compiled into an equivalent set of ground operators of the above form (Fox & Long, 2003).
In view of'this, we refer to the sentential formalism described above asto PDDL2.1-/ev2 *.

Theorem 1 (Equivalence). Any setGraph encoding of a planning domain can be
transformed into an equivalent sentential (PDDL2.1-lev2*) description, and vice
versa.

Proof. Consider the first part of the theorem. We first show how to transform every
ground setGraph into a sentential state s=(logical, numeric). We then argue that,
within such encoding, any setGraph operator can be transformed into an equivalent
sentential operator.

By definition, a setGraph is a pair (NV,E), where N is anodeSet and E a set of binary
relations on @ (N). Let each nodeSet xe @ (N) of N (including numeric nodes) be
associated to aunique label/ thatidentifies it. The setGraph data structure can then
be entirely described using ‘two predicates, link(e,l,/) and in(/,l ), expressing,
respectively, the presence of edge (x,y)€ e (Where ec E) and that nodeSet x is an
element of y (e.g., see state / in the second section of this chapter). In addition, for
each numeric node x, the label / can be used as 0-placed function and assigned the
value of x through the vector of the numeric part of the sentential state. Given this
encoding, every analogical transformation of a setGraph G into G'can be “simu-
lated” in the sentential representation by adding or removing the appropriate atoms
to/from the current logical state L, so that L' will represent G'. The update of a
numeric node is encoded as the update of the corresponding value in the PNE
vector.

Consider the second part of the theorem. We first show how to transform every
sentential state s=(logical, numeric) into a corresponding setGraph, and then how
any sentential operator can be encoded by an equivalent setGraph operator in this
representation.

Every state s=(L,R) consists of a finite set L of ground atoms p(x ,...x ) and a finite
vector R of numeric values Vi each one representing the value in s of the j-th
primitive numeric expression f{x ,...x ) (where x,€ C, and C'is the set of constant
symbols representing the entities of the domain). Let G be a setGraph containing
the following: (1) three places, labelled Pred, Obj and Funct; (2) anode “c” in Obj
foreach symbol ce C; (3) anode “p” in Pred and a setoflabelled edges {e (p,x)),...
e (p,x,)} foreachatomp(x,,.. .,xn) in L; and (4) anode “f” for each functor syrnbol
S and a set of nodes {x,...x, str(y )} in Funct linked by a set of edges
LX) (5%, (0, str(y ))} for each value Yy in R. Then, the truth of an atom
p(x,,...x ) can be determined by checking if the setGraph ({Pred{p,x,....x }},
e, (p.x ) .e (p, x,)}) is satisfied in G. Moreover, the value of the j- th PNE is
identified by the value to which the variable we R has to be bound for the
parameterised setGraph ({f, x ,..., x_,w},{(./;x ),(x .x,),....(x, ,w)})to be satisfied in
G.For example, Figure 9 depicts the setGraph obtained from a sentential descrip-
tion of the Ferry state of Figure 7(a).

Given the above encoding', every sentential operator can be transformed into an
equivalent setGraph operator as follows: each addition (removal) of an atom
p(x,,...x ) to (from) the logical state L corresponds to the addition (removal) of the
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Figure 9. Theorem 1: setGraph equivalent of a PDDL2.1-lev2* sentential state (Ferry
domain)

-
Funct tot_cars F1/\ 1

Figure 10. Theorem 1. setGraph equivalent of sentential Board(x,y,z) operator (Ferry
domain)
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corresponding node “p” and associated edges to (from) place Pred. Similarly, each
update of a PNE f(x,,...x ) in R is encoded through the update of the numeric node
watthe end of the “chain” (f;x ), (x,, x,), ...,(x, ,w). Forexample, Figure 10 depicts
the parameterised setGraph operator obtained from the sentential version of
Board(x,y,z), presented earlier in this section.?

Notice that the transformation of sentential descriptions into setGraph models is
polynomial, and the size of the result is /inear in the size of the original encoding
(measured by the size of R and arity of the PNEs and predicates).

The Hybrid Planning Representation

The hybrid representation combines, orthogonally and in a straightforward way,
the analogical and sentential models described in the previous sections. In the hybrid
representation, the world state is composed of two distinct parts: an analogical state and
a sentential state. The two components are effectively two independent “sub-states,”
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much like logical and numerical states are in the sentential (PDDL2.1) model. The hybrid
model essentially “glues” together a setGraph state with a propositional state (contain-
ing also a vector of numeric values) and treats them as separate entities for reasoning
about possible state transformation. Hence, hybrid operators (preconditions and ef-
fects) will consist of two distinct parts, each describing a transformation of the respective
sub-state. Notice that any of these parts may be empty (for example, an operator could
have purely analogical preconditions and purely sentential effects). The issue of how to
guarantee that the state changes specified by each sub-part are sound with respect to
the actions that they represent is dealt with in the next section. In this section, we
illustrate with an example how hybrid planning works, and discuss the advantages of
using a hybrid representation as opposed to a purely sentential or purely analogical one.

Example5.3. Consider an extended Ferry domain (see Examples 5.1 and 5.2) containing
several ports, some of which are situated in proximity of petrol stations and
restaurants. The ferry (able to carry a limited number of cars) must take each car to
aspecific port. Some of the cars, however, may need to refuel or stop for food. Cars
can be taken directly to their destination if such port provides the service(s) they
need; otherwise, they must first get to a port that has a petrol station and/or a
restaurant, and then be taken to their destination. The possible actions of the
domain are sail, board and debark (seen before) plus the two actions refuel and
eat, consisting of filling up the car’s tank and having a meal, respectively.

This domain could be entirely represented using the purely analogical or purely
sentential models. We choose to encode the “transportation” aspects (first three
actions) using setGraphs, and the “stationary” state changes (last two actions)
using a sentential description; as discussed below, this choice is expected to lead
to speed-ups in performance.

Figure 11(a) depicts the analogical part [, of a possible initial state for a Ferry
problem with four cars and four ports (the domain could be easily augmented with
multiple ferries). Figure 11(b) contains the type hierarchy for nodes [the PLACE
hierarchy is essentially identical to that of Figure 7(b)].

The sentential part I of the state consists of the following set:

I.= {Needs(A, Food), Needs(A, Petrol), Needs(C, Petrol) }

Inthe initial state, car A needs both petrol and food, while car C only needs to refuel.
In order to represent the number of cars currently on board of a ferry, we use a
functor symbol of one argument, ‘tot_cars’. Accordingly, the cell of the numeric
vector of the (sentential) state corresponding to the PNE tot_cars(F,) is initialised
to the integer 2 (not shown).

The goal requires that each car is transported to a specific location (port), and that
none of the cars is left in need of any of the resources. While the former part of the
goal will be described analogically using a setGraph, the latter is specified
sententially by the set G of propositions G ={— Needs(x, Food), — Needs(x,
Petrol)|x € Car}.?!

Letus now consider the set of operators. The representation of the actions sai/ and
board (or debark) is essentially identical to the analogical operators illustrated in
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Figure 11. (a) Analogical initial state I, for the Ferry domain, (b) associated NODE-
type hierarchy [see also Figure 7(b)]
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Example 5.1 and 5.2 (except that the precondition restricting the applicability of
Boardis expressed here as <(tot_cars(F,), 3); similarly for the numeric effect which
increases such value by 1). The actions refuel and eat are more interesting: they
can be encoded as a single operator Get, containing hybrid preconditions and only
sentential effects:

Get(x,y,z) % Get resource x for car y from the current port z
Parameters: x — Resource; y — Car; z — Port

P (Lzfx}), ()

Pg: {Needs(y, x)}

E: {—Needs(y, x)}

The analogical part of the preconditions P, requires that car y and resource x be
located at the same port z; the sentential part P_ requires that car y be in need of
resource x; the (purely) sentential effects E  remove the literal “Needs(y, x)” from
the (sentential) state.

The main advantage of a hybrid planning system with respect to a purely sentential
or analogical one is that it allows the domain engineer the flexibility to encode each aspect
of'the world using the most efficient representation for that aspect. For example, as shown
by the experimental results, the adoption of an analogical model to describe a move
domain can lead to significant efficiency gains, particularly when it allows decomposing
the domain into smaller parts within which the search and update processes are simpler.
This clearly applies to the above example: the spatial structure of the problem is
decomposed into four parts (the four ports), and the conditions for the local applicability
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and the execution of the boarding, debarking and “get” operators require only a linear
number of steps (in the number of entities).

The ability of the domain modeller to use two different representation paradigms
within a single system allows a second type of decomposition, based on the possibility
ofahybrid operator to contain purely analogical (or purely sentential) preconditions and/
or effects. In fact, suppose that the set of operators contains only two possible types
of operators, namely, purely sentential and purely analogical. The goal and the initial
state are also composed of two parts, analogical and sentential. When trying to achieve
an analogical sub-goal, the algorithm can completely ignore all purely sentential
operators, as they could not possibly achieve the sub-goal considered (and vice versa).
Hence, if the set of operators is divided into two completely independent sets, the
problem can be decomposed into two parts that can be solved independently and then
integrated into a single plan solution.

If the set of operators cannot be divided into two completely independent subsets,
the process of integration of the sub-solutions is not straightforward, and may lead to
non-optimal plans. In the example above, the set of operators can be splitinto two almost
independent parts, one containing purely analogical operators (Board, Debark and
Sail), the other containing only one operator (Gef) with hybrid preconditions and purely
sentential effects. These two sets are not completely independent: since Ge? contains
hybrid preconditions, a solution found for the sentential part of the problem could be
“clobbered” by some of the effects of the analogical plan solution. In this specific case,
one way to avoid this could be to force the purely sentential plan to be identified first,
and then to take the state resulting from its execution as the new initial state. The resulting
problem would be purely analogical, and its solution could be simply “appended” to the
solution of the sentential part. However, this simple method would guarantee correct-
ness, but not optimality.??

Furthermore, the above type of decomposition also allows the use of special-
purpose methods for the efficient solution of the purely analogical, graph-navigation
aspects of the problem, and the use of different search methods for the purely sentential
part. This can lead to further planning performance speed-ups (see also Fox & Long,
2001).

In summary, with respect to purely sentential or purely analogical systems, the
ability of hybrid models to encode different aspects of the world using different
representations enables the domain modeller to choose the simpler and more efficient
description for each aspect; moreover, hybrid descriptions may allow the automatic
decomposition of the problem into two sub-problems, with consequent pruning of the
search space. This also makes possible the application of more efficient, dedicated
methods for the solution of the two sub-problems.

Soundness of Hybrid Planning

The simple juxtaposition of sentential and analogical representations, although
apparently effective, does not guarantee the soundness of the model with respect to the
real domain represented (Lifschitz, 1990). This section addresses this problem. In
particular, it describes a theoretical framework (Definitions 4-7) in which both sentential
and analogical models can be formalised, and identifies the necessary conditions
(Definition 9) for any model within it to be sound with respect to the represented world.
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In particular, the Soundness Theorem presented at the end of this section extends to
analogical and hybrid representation the theory of sound action description (Lifschitz,
1990), currently limited to purely sentential models. Notice that the contents of this
section bear no relation to the practical implementation of the hybrid model; all the
constructs introduced are used purely for the theoretical analysis.

We begin with the formalisation of a language for describing the world. Following
Lifschitz (1990), the world is taken to be, at any instant of time, in a certain state. A state
is identified by a finite set / of entities and finite sets of relations among (and properties
of) entities. A domain constitutes the set S of possible states in which the world can be.
In order to describe a domain, we adopt a formal language £=(P, F, C), where P, F and
C are finite sets of relation, function and constant symbols, respectively. Each relation
and function symbol of P and F can be either numeric or logical, depending on the nature
ofits arguments. Each non-constant symbol of £Lhas a specific arity n, for some integer
n >0, which depends on the symbol. A language £ can be associated to a type hierarchy
that organises all symbols of C into subsets T',...,T, such that (U,_ Nk T) = C. The wff
of such amany-sorted language, atomic logical and numeric formule, are built as follows:

° cis atermiffce C

i f(c,,...,c,)is aprimitive numeric expression (PNE) iff fe Fandc ,...,c, areterms
° h(t,,...,t )is anumeric expression (NE) iffhe Fandt,,...,t are PNEs, NEs or numbers
° p(c,,...,c,) is alogical atom iff pe P and V'ie {1,...n}, c.is a term

° q(t,,...,t ) is anumeric atom iff g€ P and Vie {1,...n}, t is a PNE or a NE

The symbols of Lare given an interpretation in the domain of interest (Chang &
Keisler, 1977; Section 1.3). In particular, the interpretation function g will map each
constant symbol ce C to a distinct entity g(c)=ie I, each m-placed logical function symbol
fe Fto afunction g(f) = f': I — R, and each n-placed logical relation symbol pe P to
arelation g(p) =p'c/". In addition, g also maps each m-placed numeric function symbol
he Fto a(fixed) function g(h): R" — R, and each n-placed numeric relation symbol ge P
to a (fixed) relation onreal numbers g(g) — R". Notice that the value and truth of f'(i , ...7, )
and p'(i , ...i ) may depend on the current state. In what follows we assume that fora given
domain and language £, a fixed interpretation function g is adopted. The function g
allows one to determine, for each state s, which atoms of Lare satisfied in this state and
the value of any PNE and NE:

Definition 4 (Atom-satisfaction). Given a language £=(P,F,C) for a domain S, an atom
p(t,,....t )e Lis satisfied in se Siff, in state s, g(p) 2 (g(2)),....g(t,))-

Let g(¢)=t forany te R.If t=A(¢,...,¢ ), with fe Fand t € C U PNE U NE, then g(¢) is
defined as the value of g(f) in the current state s€ § calculated in (g(,),...,g(¢,)) (written
St )]).

Consider an abstract data structure 22 (such as a tree, a list, a graph, etc.) and a
universe Z/of elements (e.g., characters, booleans, integers, and so forth). Let 2, be a
select set of instances of 2 possibly containing elements of Z7(e.g., trees of booleans,
lists of integers, etc.). Let R =R U{L}, where Ris the set of real numbers. The elements
of R will be called R-values.
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Definition 5 (Model). Given a language £=(P,F,C) and a set D, of data structure
instances with elements in Z4 a model is a pair M=(d,€) where de DH and e:C—U
is a 1-1 total function mapping symbols of C to elements of the universe .

A model is essentially a data structure containing elements taken from a set ZZ The
function € maps the relevant objects (symbols) of the domain to the corresponding
elements of the universe that represent them (which may or may not appear in the model).
The use of an unspecified data structure 22 allows this definition to be used for both
sentential and analogical (setGraph) models, as demonstrated in Examples 5.4 and 5.5.

Definition 6 (Domain representation structure). A domain representation structure
(DRS) for alanguage £=(P,F,C) is atriple{ D, ¥, ®), where D, is a set of instances
of a data structure D with elements in Z/and each y g, e are algorithms
associated to the relation and function symbols i€ P, je F, respectively, such that
V.0, always terminate, and.:

*  foreachn-placedlogical relation symbol pe P, v, D, XU — {True, False}

*  for each m-placed logical function symbol fe F, 0, D, xU"— R,

*  for each n-placed numeric relation symbol ge P, vy, is such that \|fq:(9ﬂ)"
—{True,False}, and\yq(xl, X )= 8(@) (x5, x)) if x,#L forallie {1, ...n}, L
otherwise

*  for each m-placed numeric function symbol he F, ¢,:(R )"=>R , and ¢ (x,
seoX )=Lif g(h)(x,...,x, ) is undefined or if there exists x,such that x, =1,
g(h)(x,,...,x, ) otherwise

Basically, a DRS consists of a data structure and a set of algorithms for checking
it. Each algorithm takes as input a model (a data structure instance) and a set of object
symbols, and (always) returns a value. For example, given n objects c ,...,c,, in order to
establish whether p(c ,...,c,) holds in the current model M, it will be sufficient to apply
the corresponding procedure y, to M, using symbols &(c)),...,&(c )€/ (representing
c,,-..,¢, in M) as input.

Notice that procedures v, and ¢, associated to the numeric (function and relation)
symbols calculate the same truth (or numeric) value of the corresponding relations and
functions, which are fixed for the chosen domain and do not depend on the current state.

Definition 7 (Model representation). Given a language £, a DRS Z=(2D, ¥ ,®) for £
and amodel M=(d,g) in 72 (i.e., such that de 2,), M represents a state s€ S (written
M= ,5) iff, for every logical atom p(t ,...,t ) and PNE f(t ,...,t ) of £, both of the
following conditions hold:

i \Vp(d, &(t,),...,&(t ) =Trueiff p(t,...,t ) is satisfied ins
° q)f(d, &(t,),..., &(t ) =f(t,,...t )|, if f(t,,... 1) is defined in s, L otherwise
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Example 5.4. Consider a BW domain in which blocks have a specific weight; the blocks
and a table are the entities of interest, ‘to be on’ is the relevant relation between
entities, and the weight of a block is the only property of interest. The language:

[1: <P13F15C1>:<{0n92}’ {Welghtr +5 ) * ’/}9 {TsBlaBza B3}>

with types Block={B ,B,, B,} and Table={T} can be adopted to reason abouta BW
domain with three (weighted) blocks. Weight is a 1-placed logical function symbol
with argument in Block, On is a 2-placed logical relation symbol with unrestricted
argument type. ‘>’ is a 2-placed numeric relation symbol, and +, -, * and / are 2-
placed numeric function symbols. The interpretation g of the symbols of £ is
intuitive: Weight denotes the function Block — R returning the weight of a block,
> is the binary relation greater than or equal to defined on R, and +, -, *, / are the
standard arithmetic operations on R. On is mapped to the corresponding spatial
relation between objects (blocks and table).

Let us build, for this domain and language, a sentential domain representation
structure DRS, which replicates the semantic model of PDDL2.1-/ev2*. Accord-
ingly, we represent the state using a data structure 22=(L,R) composed of a set L
oflogical atoms of £, (builtusing the terms of £) and a vector R of three cells (with
valuesinR ). Hence, Z/=C UR .

Procedure y, (d,x,y) takes as input d=(/,r), an instance of 2, and two elements
x,y€ C ,cfand returns Trueifand only if On(x,y)e [. Procedure y_(x,y) takes as input
two R-values and returns True if x is equal to or greater than y, False if x is smaller
than y, L otherwise. Procedure ¢ Weight(d,x) takes as input d=(/,r), an instance of 2,
and an elementxe C c// andreturns the value of [0] if c=B , r{1]if c=B,, r[2] if c=B,,
1 otherwise. The procedures ¢, ¢, ¢,and ¢, take two R-values and return the result
of the corresponding operation applied to the input if such result is a real number,
1 otherwise.

Then, givenamodel M=(d,)=((L,r), €) such thate:C,—Z7 is defined as €(x)=x forall
xe C|, M represents a state s of the domain if and only if / contains all and only the
logical atoms of £, which are satisfied in s, and cells 7[0], 7[1], 7{2] of vector  contain
the values corresponding to the weights of the three blocks of the domain. This
encoding is analogous to the semantics of the corresponding PDDL2.1 represen-
tation of this domain (Fox & Long, 2003).

Notice that in a certain state s one or more of the entities of interest might not exist
at all. For example, in BW one of the actions could have the effect of destroying (or
“consuming”) a block (resource). A model of a BW state in which the i-th block does not
exist should have r[i-1] set to L, so that Weight(x) is evaluated L if the block identified
by x does not exist.

If M represents state s, it should be possible to use procedure y_ to determine
whether any arbitrarily-complex numeric atom of £, is satisfied in s —e.g., whether
2(*(Weight(B,),2.5), Weight(B))) is satisfied. However, Definition 7 only requires that
the procedures calculating the PNEs (here, (])Weight) and the logical atoms return the
“correct” value. Nevertheless, this is sufficient to guarantee that also all NEs and all
possible numeric atoms of £, are calculated correctly, as the last two points of Definition
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6 require that procedures v, (here, y,) and ¢, (here, ¢, ¢, ¢.and ¢ ) return the value of
the corresponding relations and functions on K.

Definition 8 (Planning domain). A planning domain is a pair {S,A4), where S is the set
of possible states in which the world can be, and A, the set of actions, is a finite
set of total functions a:S—S.

An actionis a function a:S—Sthat transforms each state s Sinto a state s=a(s)e S.
We assume that a(s) is always defined although there might be some s€ .S such that a(s)
=5.

Given a planning domain {S,4) (with language £and DRS %), a set of models X (in
72) is said to represent the set of states S (written X =, ') if and only if for each model
Me X there is one (and only one) state s€ § such that M =, s, and for each se § there is
one model M such that M = s.

Given a set of models X representing the set of states S, an action a:S—S can be
modelled as a function A:X—Xtransforming (corresponding) model M into (correspond-
ing) model M":

Definition 9 (Sound action model). Given a domain (S,A4) (with language £ and DRS
72 ) and a set S of models in 72 such that X =, S, a function \:XZ—X is sound with
respect to action a:S—S iff, for each model Me X and state s€ S such that M =, s,
MM) =, a(s).

For a function A to be sound w.r.t. action a, it must map each model M (representing
state s) into the model M'that represents the state obtained from the application of action
atos.?

Given adomain D=(S,4), a pair R=(X,A) is a sound representation of D iff ¥ is a set
of models representing S, and A:{Xl,..., 7»,(} is a set of sound models of the actions
1a,...a}=4.

Theorem 2 (Soundness). Let R=(X,A) be a sound representation of a domain D=(S,A).
Let A=(\,...A,) (with A€ A) be a sequence (plan) of sound action models, and
a=(a,,...a ) (with agA) be the corresponding sequence of actions. If M € X
represents s € S, and the application of h to M produces M =\(M )=\ .....A (M),
then M representsa,, .a, (SO).

Proof. The proofis by induction, and it is analogous to the original version (Lifschitz,
1990) except that the concept of satisfaction, limited to sentential models, is
replaced here with that of model representation (Definition 7), applicable to both
sentential and analogical models.

The basic case (n=1) follows immediately from Definition 9. Assume that the
theorem holds for n=k, and let us see that it holds for n=(k+1). Let M € X represent
s,€S. If n=(k+1), then M =M, =X, .\, .....A (M)). Because of the inductive
hypothesis, 7»,(,0- ..M (M)=M represents state s, = a,.....a,(s,). Since A,.,is sound
with respect to a,,,, by definition of sound action, A ,(M,) =, a,, (s,). In other

words, A, .....A, (M) representsa,_, .....a, (s,).
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Example 5.5. Consider the BW domain of Example 5.4, with the same language £, and
interpretation specified there. Let us define, for this domain and language, an
analogical domain representation structure DRS,. The data structure 22,adopted
to describe the world state is the setGraph. In particular, Figure 12(a) depicts the
encoding used to describe a BW state with three blocks, having weight 2.5, 0.6 and
“unknown” (L). The universe ZZof (node) symbols is identical to 2/ (viz.,24=C UR ).
The associated NODE type-hierarchy is depicted in Figure 12(b) (the PLACE part
contains only instances P ,...P ).

The procedures vy, (d,x,y) and q)Weight(d,x) are encoded using the parameterised
setGraphs G, and GWeigh, depicted in Figures 13(a) and (b), respectively. In
particular, procedure y , (d,x,y) takes as inputan instance d of 22 (ground setGraph),
and two symbols x,ye ZZand returns Trueifand only if the setGraph G, (x,y) (having
the parameters replaced by the corresponding input symbols) is satisfied in d.
Procedure q)ngghr(d,x) takes as input an instance d of 22, and a symbol ce ZZand, if
there is a function ¢ and a variable substitution 6 such that setGraph ngighr(x,w)
is satisfied in d with mapping ¢ and substitution 8 =(x/c, w/val(c(w))), it returns the
value of 6(w). Procedures y, 0, 0, ¢ ,and ¢ are defined as in Example 5.4.
LetX bethe setofmodels (G,g), where €:C,—Z7 is such that (x)=x forall xe C , and
G can be any of the ground setGraphs obtainable from the one specified in Figure
12(a) by moving nodes B, B, and B, from their places to any other of P ,...,P,
(allowing at most one node in one place, and no pair of places u,v connected by an
On(u,v) edge such that u contains a node and v does not). Let A, be the set of
functions A_ :X —X defined by the result of the application of the analogical
operator Move(x,y,z) [Fzgure 2(b)] to the models of Z , for each possible xe Block,
v,ze€ Object (if Move(x,y,z) is not applicable, we deflne 7» ,.(x)=x). Let 4, be the set
of possible actions Move_ . . of the BW domain (con51st1ng of picking up a block
x from the top of an obJecty and putting it onto object z), and let S| be the set of
possible BW states that can be obtained by applying them to a legal initial state
(ifamoveisnotapplicable, it leaves the state unaltered). Then, the pair R =(X , A )

Figure 12. (a) SetGraph model of BW state (weighted blocks),; (b) associated type
hierarchy
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Figure 13. Parameterised setGraphs: (a) G,; (b) G
procedures ¥, and ¢

Weight encoding, respectively,

Weight
xeBlock > W
yeObject x
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is a sound representation of the domain BW=(S, 4 ). In fact, because of the way
inwhich they have been built, the models of S represent the states of . In addition,
every function k €A, is sound with respect to the action Move_ .

Therefore, in V1rtue ofthe Soundness Theorem, the domain descrlptlon (XA )can
be used (in conjunction with the DRS, defined above) to generate sound plans for
the BW domain.

Given the ability of the theory to formalise both sentential (Example 5.4) and
analogical (Example 5.5) models, it is easy to show that it can also formalise hybrid
models. Hybrid models (e.g., Example 5.3) will represent a state as a data structure 22
containing two elements: a sentential state (composed of a set of ground atoms and a
vector of R-values) and an analogical state (a ground setGraph). The domain represen-
tation structure can be defined, for the language considered, using either sententially-
or analogically-based procedures (see Example 5.4 and 4.5, respectively). So can the
action descriptions. We conclude that the conditions identified by Definition 9 can be
considered as conditions for sound sentential, analogical and hybrid models of action;
similarly, the Soundness Theorem can be applied equally well to sentential, analogical
and hybrid planning representations.

RELATED WORK

The work of Glasgow and Malton (1994) on purely analogical, model-based spatial
reasoning is closely related to the ideas adopted in the proposed framework. Glasgow
and Malton (1994) describe a representation for spatial reasoning based on array theory
(More, 1981) in which symbolic arrays depict the entities and relations of the world:

“An array consists of zero or more symbols held at positions along multiple axes, where
rectangular arrangement is the concept of objects having spatial positions relative to
one another in the collection. In order to specify spatial relations, a symbol may occupy
one or more cells of an array.” (p. 7)
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The authors provide semantics for their representation by requiring that, for a world
to be represented by an array, a mapping between symbols in the array and entities in
the world exists that preserves the relative location of entities. In particular, they specify
asetY of fixed, “primitive” boolean array functions for inspecting an array, where each
function is associated to a spatial relation of interest in the world. An n-ary spatial relation
7 is said to be represented in an array .4 by the corresponding function y, when y (s ...,
s Jreturns Trueifand onlyif (s ,...,s )er,(wheres ,...,s are symbols denoting entities).
An array representation is a model for a world if each relation r, is represented by the
corresponding array function . This idea is clearly at the basis of the concept of model
representation adopted here (Definition 7). However, in addition to being used only for
purely analogical models, the set of primitive transformation functions proposed by
Glasgow & Malton for manipulating arrays is fixed and predetermined. By providing a
formalism that allows the domain modeller to specify inspection and transformation
procedures (e.g., Figure 13), the present work generalises and extends that of Glasgow
and Malton’s.

Myers and Konolige (1995) present a hybrid framework for problem solving that
allowed a sentential system (using a first-order logic language) to carry out deductive
reasoning with and about diagrams. In their framework, any analogical representation S
is described by a set of first-order diagram models, constituting all the possible
completions of the partial information provided by S. A diagram model consists of a set
of binary analogical relations AC EXE, and a set of label relations LCEXE, with E, the
set of diagram elements and £, the set of labels. The analogical relations encode the
“structure” of the diagram (the spatial relations between the elements), while the label
relations are used, for example, to assign a type (or any other label) to elements of the
diagram. Myers & Konolige provide a theoretical analysis of the properties (soundness,
equivalence and completeness) of their framework, assuming that, for a given analogical
structure, sound and complete reflection and extraction procedures are given, which
allow, respectively, the monotonic addition of information to and extraction of informa-
tion from diagram models. The extraction procedures are essentially equivalent to the
inspection procedures  used in setGraphs. Reflection procedures, on the contrary, do
nothave a direct equivalent in setGraphs; they allow transforming a set of diagram models
containing structural uncertainty into one that is (strictly) more determined by updating
it with information obtained from the sentential deductive process. Most importantly,
however, Myers and Konolige’s model does not permit existing analogical information
to be “retracted” from the diagram models. This possibility is crucial for enabling
nonmonotonic changes of a diagram, typically associated with the execution of an action,
and, hence, required by a system that must be able to plan. Similar considerations also
apply to works on heterogeneous (hybrid) representations, such as Barwise and
Etchemendy (1998) and Swoboda and Allwein (2002).

The work of Forbus (1995) and colleagues (Forbus etal., 1987, 1991) on qualitative
spatial reasoning is also relevant in this context. Forbus proposes a Metric Diagram/Place
Vocabulary (MD/PV) model of reasoning, in which a “purely qualitative” representation
(PV) is extracted from an underlying metric diagram, containing all the necessary
numerical information required for the task at hand. The PV is then used to support
abstract, qualitative reasoning about motion, while the MD provides the information
required to calculate more precise conditions for detailed predictions. There is a clear
similarity between PV and places in setGraphs. According to Forbus’ (1995) definition
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of “not purely qualitative” {“...representations whose parts contain enough detailed
information to permit calculation[...]” (p. 185)}, setGraphs are not purely qualitative, but
rather hybrid domain descriptions, in which the numeric elements (representing some of
the metric information “extracted” from the MD) are integrated in the qualitative model.
With respect to the MD/PV model, setGraphs offer the advantage of a single, unified
formalism of representation, in which qualitative and quantitative information are
integrated to support both types of reasoning, without requiring the use of an underlying
metric diagram.

SetGraphs are closely related to semantic network representations (Lehmann, 1992).
Forexample, Sowa’s Conceptual Graphs (Sowa, 1984), a formalism expressively equiva-
lent to first-order logic, can be easily encoded using setGraphs. Petri nets (Petri, 1963)
can also be naturally represented using a setGraphs. In fact, assume that the tokens of
a Petri net are described as setGraph nodes. Petri-net places (“passive nodes”) can be
encoded by setGraph places, while transitions (“active nodes”) can be represented as
a specific type of node (let us call it Trans). Figure 14 shows a setGraph operator
encoding the movement of a single token (y) in any Petri net. The simulation of the
parallel movement of several tokens can be represented using similar action schemata.

Notice that in order to represent Petri net dynamics, the setGraph formalism needs
to be extended with a symbol (“&”) that allows explicitly requiring a place to be empty,
and by introducing negative preconditions (all setGraphs in the negative preconditions
must be not satisfiable in a state s for the operator to be applicable in s).

Another example of diagrammatic structure similar to the setGraph is the “higraph”
(Harel, 1988), based on a combination of Euler/Venn diagrams and generalised graphs.
Higraphs can represent subset relations, Cartesian product relations and arbitrary
relational assertions (through labelled arcs), and are amenable to a wide variety of uses.
While most features of higraphs can be replicated in a setGraph by making use of the type
hierarchies, the possibility for a place (roughly equivalent to the concept of “blob” in a
higraph) to overlap only partially with another place is not envisaged in the proposed
definition of setGraph. However, it should not be too difficult to extend the definition to
allow also this feature.

Figure 14. Petri net dynamics encoded by a setGraph action schema (precondition
(—Q) requires all inputs to x to contain at least one token)
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Inthe area of planning, the proposed approach has close links with the work of Long
and Fox (2000) on generic types and on their use in problem decomposition (Fox & Long,
2001). Long and Fox have developed domain analysis techniques that allow the automatic
identification of the different, generic types of objects (e.g., mobiles, portables) of a
planning domain from its purely sentential description. These techniques dovetail nicely
with the present framework. In fact, once the different generic types of objects of a domain
have been isolated, hybrid planning models can be used to encode and solve them using
different representations for different generic types. The work of Long and Fox has also
demonstrated that many domains are isomorphic to and can be treated as “transporta-
tion” or “construction” problems even when this is not apparent from their original
description. Ifthe dynamics ofa domain can be automatically recast in terms of movement
or manipulation of (possibly abstract) objects, hybrid or analogical representations can
be adopted to solve them efficiently (possibly by adopting special-purpose, graph-
traversal algorithms). For example, if activities are represented as mobile objects, and
locations denote synchronisation points or intervals, then the problem of scheduling
a number of tasks over a given time period can be recast as that of assigning to each
“object” (activity) an appropriate “location” (start/end time point), subject to various
numerical constraints (this idea was illustrated earlier by the use of setGraphs for
encoding Petri nets — see Figure 14).

In the attempt to address the inefficiencies caused by the ramification problem that
plague sentential planning languages, such as STRIPS (Fikes & Nillsson, 1971)and ADL
(Pednault, 1989), several researchers (e.g., Lifschitz, 2002; Dimopoulos, Nebel & Koehler,
1997; Erdem & Lifschitz, 1999; Subrahmanian & Zaniolo, 1995; Gelfond & Lifschitz, 1993)
have investigated the possibility of reducing the planning problem to the problem of
finding an answer set (“stable model”) for alogic program. The alleged advantage of this
approach is that the representation of properties of actions is easier than in STRIPS or
ADL, inview ofthe fact that, in logic programs, domain axioms are no different from any
other of the rules of the program. However, although this approach removes the need to
describe the indirect effects of an action in the effects, it still requires the system to
include such axioms explicitly in the description and take them into account during the
reasoning process (see the first section of this chapter). In addition, the adoption of logic
programs appears to be a step backwards in the solution of the frame (and ramification)
problem. In fact, not only must trivial axioms (encoding rules such as “a block cannot be
in two places at the same time”) still be added to the description as explicit, pointable
formula: also frame axioms (e.g., “ablock which is not moved remains where it is”) must
be included [see the “inertia” rule of Figure 3 in Lifschitz (2002, p. 50)]. In contrast,
analogical (or hybrid) representations allow such axioms to become implicit constraints
of'the representation and actually disappear from the description (see the fourth section
of this chapter). Hence, the logic programming approach still raises serious concerns in
terms of scalability. So does the use of SAT-based approaches (briefly introduced in the
first section) in conjunction with “high-level” action languages (Giunchiglia & Lifschitz,
1998) and “tight” logic programs (Erdem & Lifschitz, 2003) to perform answer set
programming without answer set solvers.

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.



78 Garagnani

DISCUSSION

Research in Al and knowledge representation has long since demonstrated that the
type of formalism adopted plays a fundamental role in determining the difficulty of
reasoning and problem solving (e.g., Amarel, 1968; Simon, 1981; Larkin & Simon, 1987).
Several authors have advocated the advantages of diagrammatic representations with
respect to sentential ones (e.g., Koedinger, 1992; Kulpa, 1994; Glasgow etal., 1995) and
the flexibility of heterogeneous models with respect to each of these formalisms alone
(e.g., Barwise & Etchemendy, 1995, 1998; Swoboda & Allwein, 2002). However, the
domain modelling languages developed for action planning have remained, throughout
history, purely sentential (Fikes & Nillsson, 1971; Pednault, 1989; Fox & Long, 2003).

The main contributions of this chapter are a practical proposal and an underlying
theoretical framework for sound, hybrid planning. The model for integration of sentential
and analogical representations consists of the simple juxtaposition of the two formalisms
in state, action and goal descriptions. The conditions for the soundness of such hybrid
models (Definition 9) are based on the concept of model representation, which is
relatively simple to use in practice (see Example 5.5). Importantly, these conditions —
and, indeed, the entire theory described in the “Soundness of Hybrid Planning” section
— are not specific to the sentential or analogical models that have been considered.
Although we have shown how both setGraphs and PDDL2.1-/ev2* formalisms can be
represented within this framework, the model proposed provides a basis for the integra-
tion of any sentential and diagrammatic descriptions that fit its premises. For example,
it should be relatively straightforward to extend the two representations to more
expressive formalisms by introducing additional features such as quantification, condi-
tional effects and negative preconditions (an example of the latter was presented in the
lastsection, Figure 14). The two resulting formalisms would still be able to be integrated
using the hybrid model proposed, even if they were not expressively equivalent.?

A further contribution of this chapter is an analogical planning representation
(Definitions 1-3) based on setGraphs, and a theoretical result demonstrating the equiva-
lence of this formalism to a propositional planning language with functions, variables and
numeric values (Theorem 1).%° Although examples of analogical and hybrid operators
encoded textually were given, respectively, in Examples 5.2 and 5.3, a detailed, specific
syntax for setGraph or hybrid planning languages was not discussed here. A BNF
specification of a syntax for a purely analogical planning description language is
proposed in Garagnani and Ding (2003), but is restricted to an array-based representation
analogous to the one adopted by the ABP planner. While the full setGraph representation
certainly requires a more complex definition, the simplicity of the elements upon which
the model is built — namely, sets and graphs — should make a syntax specification
relatively straightforward.

SetGraphs are simple but expressive data structures that have the ability to
implicitly encode the basic properties and constraints of physical domains and to reflect
their inherent (topological or semantic) structure. Because of these features, they can
lead to more efficient problem encodings, particularly when a domain can be decomposed
into smaller parts that enable a “localised” search and state update operations. In
addition, as discussed in the section “Advantages and Limitations of Analogical
Models”, setGraph (and, in general, analogical) representations help ease the ramifica-
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tion problem by implicitly embodying constraints that sentential representations must
make explicit.

An important issue concerning knowledge representation languages for common-
sense reasoning is that of elaboration tolerance. According to John McCarthy?, a
“formalism is elaboration tolerant to the extent that it is convenient to modify a set of

facts expressed in the formalism to take into account new phenomena.” There are
differentdegrees of elaboration tolerance. For example, the Ferry domain description of
Example 5.3 added new constraints to the description given initially in Example 5.1
(namely, by saying that ports can have petrol stations and restaurants, and that cars can
stop attheir destination only ifthey have acquired such resources). Some formalisations
would require complete rewriting in order to accommodate this elaboration; others (like
natural languages) have the ability to allow the elaboration by an addition to the
previous encoding. SetGraphs present a high degree of elaboration tolerance: in fact, as
demonstrated by Example 5.3, the encoding of the new version of the Ferry domain
subsumes the encoding adopted for the original version; in other words, the additional
requirements lead simply to the old representation to be extended with new entities,
actions and constraints. This example is not just an isolated case: it is easy to see that
the model could be conveniently modified to include multiple ferries, petrol stations with
limited capacity, cars with attributes (e.g., color, size, weight), and so forth.

The above considerations indicate that, in addition to being often more efficient
than sentential encodings, analogical representations can be as expressive and flexible
as formal logic languages; the integration of setGraphs into a hybrid model makes the
planning formalism even more powerful. As discussed after Example 5.3, the main
advantage of a hybrid system with respect to purely sentential or analogical ones is that
it enables the domain modeller to encode each aspect of the world using the most
convenient (read efficient) formalism for that specific aspect. Moreover, describing a
domain using two different paradigms allows the automatic decomposition of the
problem into two separate parts that can be solved independently and re-integrated into
a single plan.

The possibility of separating the analogical part of a domain description from the
sentential one suggests that hybrid representations may also be effective in the
automatic extraction of heuristics. In particular, useful heuristics can often be extracted
by “relaxing” the planning instance at hand (e.g., by ignoring, or abstracting, some of
the details) and solving the simpler problem thus obtained. The solution of the relaxed
problem can then be used to guide the search in the original problem space (e.g., Haslum
& Geffner, 2000; Hoffmann & Nebel, 2001). Ignoring the sentential (or the analogical)
component of a hybrid description yields a relaxed problem, which can be solved more
easily and provide a heuristic for the solution of the original problem.

Interestingly, the learning of heuristics and domain-specific control knowledge
also appears to be facilitated by the adoption of analogical and hybrid descriptions. To
see this, observe that the ability to learn from the solution of different problems in the
same domain depends heavily on the capacity to recognise common “patterns” in
different plan solutions. Consider the complexity of identifying such patterns in se-
quences of sentential state descriptions (for example, determining the existence of two
identical stacks of blocks in different BW states). Analogical representations can be used
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to decompose the structure of the domain into simpler subparts (in BW, the stacks) that
can be compared much more efficiently and effectively.

Asillustrated at the end of the second section of the chapter, analogical (and, hence,
hybrid) descriptions also allow move domains to be recast in ways that allow the spatial
relations of the domain to become a static (or invariant) part of the domain. In addition,
in virtue of their ability to contain multiple occurrence of the same object (including
numeric values), and to describe actions involving non-conservative changes, setGraphs
can easily represent resource production and consumption. Finally, it is worth noticing
that, besides the mentioned advantages in terms of planning performance, hybrid and
analogical representations also allow simpler and more “natural” descriptions, leading
to planning domain encodings that are less error-prone and easier to read and modify.

The framework for hybrid planning representation proposed is still limited in many
ways. For example, some of the important issues that have not been addressed in this
chapter include the representation of time and durative actions, the definition of
conditions for the parallel execution of multiple actions, and the ability to represent
uncertainty and non-deterministic actions. In a sense, the possibility of having
parameterised setGraphs introduces a form of uncertainty in the representation: a
parameterised setGraph represents the set of possible ground setGraphs that can be
obtained by replacing types and variables with appropriate instances in all possible ways
[just like the set of diagram models of Myers & Konolige’s (1995) system constitutes all
the possible completions of a structurally uncertain diagram]. The complete formalisation
of a planning domain representation for hybrid models that allows uncertainty and non-
determinism lies beyond the scope of this work. The introduction of time and non-
instantaneous actions in analogical models would appear to require, at first glance, action
representation methods similar to those developed by Fox and Long (2003) for sentential
languages. However, the introduction of time in conjunction with other features (such
as continuous effects) can significantly complicate the matter, also for analogical models.
Similarly, a precise treatment of the conditions for the parallel execution of analogical
operators in the presence of any of the above issues is likely to require a more complex
criterion than the one suggested in an earlier section (‘“Advantages and Limitations of
Analogical Models”™).

To conclude, this work represents a first step towards the introduction of hybrid
and analogical representations in planning. The aim of this chapter was to provide a
theoretical basis and a concrete proposal directly applicable to implement, more efficient,
hybrid (or analogical) domain-description languages (based on setGraphs or on other,
more advanced, non-sentential structures). Clearly, many issues still remain to be
explored; however, it is the author’s belief that further advances in the flexibility and
range of application of automatic planners will depend, to a large extent, on a closer co-
operation between the planning and knowledge representation and reasoning commu-
nities.
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ENDNOTES

A language is “inefficient” if it produces problem encodings in which the search
for a solution is significantly more difficult than what it would have been if a
different language had been adopted.

The Stack(x,y) operator should be completed with a precondition requiring x#y,
expressed using a predicate Different(x,y) (or —mEqual(x,y)) whose instances should
be listed in the initial state /, for all blocks x,y.

The two main modules of a typical SAT-planner are the compiler and the solver.
The compiler takes a planning problem as input, guesses a plan length and
generates the propositional formula; a symbol table records the correspondence
between the propositional variables and the planning instance. The solver uses
systematic or stochastic methods to find a satisfying assignment, which will then
be translated into a plan (using the symbol table). If the formula is unsatisfiable,
the compiler generates anew encoding using a longer plan length [see Weld (1999)
for a more in-depth description].

In what follows, the terms analogical and diagrammatic are used interchangeably.
The distinction between analogical and sentential representations is clarified later
on in the chapter.

3 Notice that sub-graph G, could also be achieved with Move(B,C, z,) by instantiating
z,= A; however, this would then prevent P, from being satisfied in the initial state
1, requiring the addition of further steps and leading to a longer plan solution.
From the point of view of a practical implementation, introducing different types
of edges in a graph does not represent a problem, as it is equivalent to allowing
labelled edges. In Figure 4, the use of different styles of arcs instead of different
labels denoting types avoids cluttering of the figure.

7 According to Figure 4(a), Above(x,y,n) edges hold only for n>1. However, for this
domain to be entirely equivalent to its sentential version, the ‘above’ relation must
subsume the ‘on’ relation. This can be achieved by adding an extra Above edge
for each On edge (not included to avoid cluttering).

A formal description language does not necessarily mean sentential. For example,
the notation {x,y, ...,z}, indicating a set containing elements x,, ...z, is not sentential.
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11

In particular, given a two-dimensional place 4 and two symbols x, iU, the expres-
sions A(xTy) and A(x—y) were used to indicate, respectively, that x,y appear in the
same column and row of 4; the expression A(x/y) denotes two consecutive symbols
on the same column. All such symbols play in this model the role that edges played
in the graph-based model.

See http://ipc.icaps-conference.org/ (retrieved on August 2, 2004).

An initial instantiation of the parameters of the operators in all possible ways [as
performed by several modern planners adopting planning-graph techniques
(Blum & Furst, 1997)] would produce O(n.m*) ground operators, where m is the
number of objects, n the number of original (parameterised) operators and k is the
number of parameters. The check for applicability of a ground operator to a state
would require O(g p) steps, where g is the number of atoms in the preconditions and
p is the number of propositions in the state. In general, p still grows as O(m"), where
k is the arity of the predicates of the language; however, this can be improved by
imposing an order on the propositions of the state, which allows, for example,
binary searches. Hence, checking for the applicability of one operator instance
would take only O(g.k.logm) steps. On the other hand, the polynomial number of
ground operators would lead to a dramatic increase in the branching factor,
offsetting these benefits.

In general, the computational complexity of the procedure for verifying whether the
preconditions of a setGraph operator are satisfied in a given state (setGraph) is
equivalent to that of checking whether a certain graph is a sub-graph of another
graph. This, in general, cannot be carried out in just a /inear number of steps (in
the number of nodes and edges). Fortunately, the topological structure of the
domain can often be decomposed in several “linear” sub-structures (e.g., the stacks
of BW). Although these substructures may be non-linearly connected, checking
for the existence of specific conditions and manipulating objects within them only
requires a linear number of steps, as illustrated by the examples. It is precisely this
ability to “mimic” the topology of a domain that differentiates analogical models
from sentential ones, and which allows this structuring and decomposition of the
domain to take place.

More precisely, block x is above y if and only if symbol x appears to the right of y
(in the same array).

In fact, for each object x with possible states s, s,,..., s,, let the setGraph
representation contain k corresponding nodes (sets) n,, n,,..., n,. The fact that
objectx is currently in state s,can be represented by the presence of a symbol x in
node n,. The state-transition s,— s of'an object will be described by the movement
of symbol x from node n,to node n, obtained through the application of appropriate
analogical operators.

It should be underlined that the labels are just elements of the notation that has
been adopted here for referring to nodeSet data structures and their contents. In
other words, expressions (4.5) and (4.3) should be considered simply as alternative
descriptions of the same nodeSet data structure.

Movement and removal of elements in the i-th setGraph G, of P are encoded
implicitly by the i-th setGraph G/of E. The different nodeSets of G, and their
(possibly new) positions are identified in G using the same identifiers that those
elements have in G,. However, since addition of elements is permitted, G, mightalso
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contain new nodeSets (associated to labels or values that do not appear in G) or
new edges. Similarly, since removal is permitted, G, might contain nodeSets or
edges that do not appear in G,

A numeric expression is either a real number, a numeric variable appearing in the
analogical part of P, or an expression combining variables and numbers through
operators +,-, *, /.

All the update operations will be calculated using the “old” values of the numeric
nodes, so that, in case of multiple updates, the order of their execution is irrelevant.
The encoding adopted in this proof is not necessarily the most efficient. For
example, compare the encoding of the operator Board(x,y,z) in Figure 10 with the
simpler and more efficient one in Figure §.

For Theorem 1 to be valid, the setGraph planning notation must be extended with
negative preconditions; this is necessary in order to represent the equivalent of
anegative literal in the preconditions of a sentential operator. This can be done by
adding a listIT of setGraphs to the analogical part of the preconditions of a setGraph
operator and by requiring that, for the operator to be applicable in a state s, none
of the setGraphs in IT be satisfiable in s.

These negative goals can be easily transformed into positive ones; for example,
“—Needs(x, y)” could be written as “Has(x, y).”

In fact, in Example 5.3, suppose that the final destination of car A is Port . The
optimal solution of the sentential sub-problem is to take A to Port,; the resulting
analogical problem would then require two other trips to take A from there to its
final destination, resulting in a final plan containing three trips. The optimal plan
for car A, however, would consist of taking it to Port, first in order to refuel, and
then to Port,, where it would get the food and terminate.

According to Definition 9, an action a€ A of adomain is modelled as a function Ae A
that maps models into models. Naturally, in order to be able to make the process
of reasoning about (i.e., simulating) actions fully automatic, one must specify a
general algorithm I that calculates the model A(M) for any given action model Ae A
and any world model Me S. For this to be possible, all functions in A will have to
be (finitely) encoded as action descriptions (i.e., operators) so that they can be
given as input to the procedure I'.

A set of operators containing conditional and quantified effects can be compiled
into an equivalent set containing only ground propositions (or ground setGraphs),
using techniques similar to those of Gazen & Knoblock (1997) (see also Fox & Long,
2003). This is not possible, however, if the parameters of a setGraph operator
contain numeric variables, as their instantiation would generate an infinite number
of ground instances. To overcome this problem, any numeric node of the state
appearing as a parameter in an operator should be replaced with an equivalent
“primitive numeric expression” (e.g., node x in the Board(x,y,z) operator of Figure
8 could be replaced with tot_cars(z)), so that numbers can be manipulated only
through their relationships with the objects of the domain and never appear as
values to action parameters. This is the solution adopted in the sentential part of
the representation, also used by Fox & Long (2003) for PDDL2.1.

Notice that expressive equivalence of two formalisms does not imply equivalent
efficiency:thatis, the fact that an analogical language is as powerful as a sentential
one does not imply that two encodings that they produce for the same problem can
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be solved with the same number of steps. This is true even if the search algorithm
adopted for them is the same. Indeed, this was the set up for the experimental results
considered in the third section (“Analogical Planning: A Case Study”).

See http://www-formal.stanford.edu/jmc/elaboration.html (retrieved August 2,
2004).
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ABSTRACT

This chapter is concerned with the enhancement of planning systems using techniques
from Machine Learning in order to automatically configure their planning parameters
according to the morphology of the problem in hand. It presents two different adaptive
systems that set the planning parameters of a highly adjustable planner based on
measurable characteristics of the problem instance. The planners have acquired their
knowledge from a large data set produced by results from experiments on many
problems from various domains. The first planner is a rule-based system that employs
propositional rule learning to induce knowledge that suggests effective configuration
of planning parameters based on the problem’s characteristics. The second planner
employs instance-based learning in order to find problems with similar structure and
adopt the planner configuration that has proved in the past to be effective on these
problems. The validity of the two adaptive systems is assessed through experimental
results that demonstrate the boost in performance in problems of both known and
unknown domains. Comparative experimental results for the two planning systems are
presented along with a discussion of their advantages and disadvantages.
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INTRODUCTION

Domain independent heuristic planning relies on ingenious techniques, such as
heuristics and search strategies, to improve the execution speed of planning systems and
the quality of their solutions in arbitrary planning problems. However, no single
technique has yet proved to be the best for all kinds of problems. Many modern planning
systems incorporate more than one such optimizing technique in order to capture the
peculiarities of a wider range of problems. However, to achieve the optimum performance
these planners require manual fine-tuning of their run-time parameters.

Few attempts have been made to explain which are the specific dynamics of a
planning problem that favor a specific planning technique and, even more, which is the
best setup for a planning system given the characteristics of the planning problem. This
kind of knowledge would clearly assist the planning community in producing flexible
systems that could automatically adapt themselves to each problem, achieving best
performance.

This chapter focuses on the enhancement of Planning Systems with Machine
Learning techniques in the direction of developing Adaptive Planning Systems that can
configure their planning parameters automatically in order to effectively solve each
different planning problem. More specifically, it presents two different Machine Learn-
ing approaches for Adaptive Planning: (a) Rule learning and (b) Instance-based learning.
Both approaches are described in detail and their performance is assessed through
several experimental results that exhibit different aspects of the learning process. In
addition, the chapter provides an extended overview of past approaches on combining
Machine Learning and Automated Planning, two of the mostimportant areas of Artificial
Intelligence.

The rest of the chapter is organized as follows: The next section reviews related work
on combining learning and planning and discusses the adopted learning techniques.
Then the problem of the automatic configuration of planning systems is analyzed. The
following two sections present the two learning approaches that have been used for the
adaptive systems and present experimental results that compare them and show the gain
in the performance over the initial planner. Finally, the last section discusses several
issues concerning the two learning approaches, concludes the chapter and poses future
research directions.

MACHINE LEARNING FOR
AUTOMATED PLANNING

Machine Learning is the area of Artificial Intelligence concerned with the design
of computer programs that improve at a category of tasks with experience. It is a very
broad field with many learning methodologies and numerous algorithms, which have
been extensively exploited in the past to support planning systems in many ways. Since
itis ausual case for seemingly different planning problems to present similarities in their
structure, it is reasonable enough to believe that planning strategies that have been
successfully applied to some problems in the past will be also effective for similar problems
in the future. Learning can assist planning systems in three ways: (a) to learn domain
knowledge, (b) to learn control knowledge and (c) to learn optimization knowledge.
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Domain knowledge is utilized by planners in pre-processing phases in order to
either modify the description of the problem in a way that it will make it easier for solving
or make the appropriate adjustments to the planner to best attack the problem. Control
knowledge can be utilized during search in order to either solve the problem faster or
produce better plans. For example, the knowledge extracted from past examples can be
used to refine the heuristic functions or create a guide for pruning non-promising
branches. Most work on combining machine learning and planning in the past has
focused on learning control knowledge since it is crucial for planners to have an
informative guide during search. Finally, optimization knowledge is utilized after the
generation of an initial plan, in order to transform it in a new one that optimizes certain
criteria, that is number of steps or usage of resources.

Learning Domain Knowledge

OBSERVER (Wang, 1996) is alearning module built on top of the PRODIGY system
that uses the hints and past knowledge of experts in order to extract and refine the full
description of the operators for anew domain. The description of the operators includes
negative, positive and conditional preconditions and effects. OBSERVER uses a multi-
strategy learning technique that combines learning by observing and refining through
practice (learning by doing). Knoblock (1990) presented another learning module for
PRODIGY, called ALPINE, that learns abstraction hierarchies and thus reduces the
required search. ALPINE classifies the literals of the given planning problem, abstracts
them and performs an analysis on the domain to aid ordering and combination of the
abstractions.

MULTI-TAC (Minton, 1996) is a learning system that automatically fine-tunes itself
in order to synthesize the most appropriate constraint satisfaction program to solve a
problem utilizing a library of heuristics and generic algorithms. The methodology we
followed in this chapter for one of the adaptive systems (HAP, ) presents some
similarities with MULTI-TAC, since both approaches learn models that associate
problem characteristics with the most appropriate setups for their solvers. The learned
model of MULTI-TAC is a number of rules that are extracted using two complementary
methods. The first one is analytic and employs meta-level theories in order to reason
about the constraints, while the second one, which is based on the generate-and-test
schema, extracts all possible rules and uses test problems in order to decide about their
quality.

One of the few past approaches towards the direction of adaptive planning is the
BUS system (Howe & Dahlman, 1993; Howe et al., 1999). BUS runs six state-of-the-art
planners, namely STAN, IPP, SGP, BlackBox, UCPOP and PRODIGY , using around-robin
schema until one of them finds a solution. BUS is adaptive in the sense of dynamically
deciding the ordering of the six planners and the duration of the time slices based on the
values of five problem characteristics and some rules extracted from the statistical
analysis of past runs. The system achieved more stable behaviour than all the individual
planners but it was not as fast as one may have expected.

The authors have worked during the past few years in exploiting Machine Learning
techniques for Adaptive Planning and have developed two systems that are described
in detail later in this chapter. The first system, called HAP . (Vrakas etal.,2003a,2003b),
is capable of automatically fine-tuning its planning parameters based on the morphology
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of the problem in hand. The tuning of HAP .is performed by a rule system, the knowledge
of which has been induced through the application of a classification algorithm over a
large dataset containing performance data of past executions of HAP (Highly Adjustable
Planner). The second system, called HAP (Tsoumakas etal., 2003), adopts a variation
of the £ Nearest Neighbour machine learning algorithm that enables the incremental
enrichment of its knowledge and allows users to specify their level of importance on the
criteria of plan quality and planning speed.

Learning Control Knowledge

The history of learning control knowledge for guiding planning systems, sometimes
called speedup learning, dates back to the early 1970s. The STRIPS planning system was
soon enhanced with the MACROPS learning method (Fikes etal., 1972) that analyzed past
experience from solved problems in order to infer successful combinations of action
sequences (macro-operators) and general conditions for their application. MACROPS
was in fact the seed for a whole new learning methodology, called Explanation-Based
Learning (EBL).

EBL belongs to the family of analytical learning methods that use prior knowledge
and deductive reasoning to enhance the information provided by training examples.
Although EBL encompasses a wide variety of methods, the main underlying principle is
the same: The use of prior knowledge to analyze or explain each training example in order
to infer which example features and constraints are relevant and which irrelevant to the
learning task under consideration. This background knowledge must be correct and
sufficient for EBL to generalize accurately. Planning problems offer such a correct and
complete domain theory that can be readily used as prior knowledge in EBL systems. This
apparently explains the very strong relationship of EBL and planning, as the largest scale
attempts to apply EBL have addressed the problem of learning to control search. An
overview of EBL computer programs and perspectives can be found in Ellman (1989).

The PRODIGY architecture (Carbonell etal., 1991; Velosoetal., 1995) was the main
representative of control-knowledge learning systems. This architecture, supported by
various learning modules, focuses on learning the necessary knowledge (rules) that
guides a planner to decide what action to take next during plan execution. The system
mainly uses EBL to explain fails and successes and generalize the knowledge in control
rules that can be utilized in the future in order to select, reject or prefer choices. Since
the overhead of testing the applicability of rules was quite large (utility problem), the
system also adopted a mixed criterion of usability and cost for each rule in order to discard
some of them and refine the rest. The integration of EBL into PRODIGY is detailed in
Minton (1988).

Borrajo and Veloso (1996) developed HAMLET, another system combining plan-
ning and learning that was built on top of PRODIGY. HAMLET combines EBL and
inductive learning in order to incrementally learn through experience. The main aspects
responsible for the efficiency of the system were: the lazy explanation of successes, the
incremental refinement of acquired knowledge and the lazy learning to override only the
default behavior of the planner.

Another learning approach that has been applied on top of PRODIGY is the STATIC
algorithm (Etzioni, 1993), whichused Partial Evaluation to automatically extract search-
control knowledge from training examples. Partial Evaluation, a kind of program optimi-
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zation method used for PROLOG programs, bares strong resemblance to EBL. A
discussion of their relationship is provided in van Harmelen and Bundy (1988).

DYNA-Q (Sutton, 1990) followed a Reinforcement Learning approach (Sutton &
Barto, 1998). Reinforcement learning is learning what to do — how to map situations to
actions — so as to maximize a numerical reward signal. The learner is not told which
actions to take, as in most forms of machine learning, but instead must discover which
actions yield the mostreward by trying them. DYNA-Q employed the Q-learning method,
in order to accompany each pair of state-action with a reward (Q-value). The rewards
maintained by DYNA-Q are incrementally updated as new problems are faced and are
utilized during search as a means of heuristic function. The main problems faced by this
approach were the very large memory requirements and the amount of experience needed
for solving non-trivial problems.

A more recent approach of learning control knowledge for domain independent
planning was presented by Martin and Geffner (2000). They focus on learning general-
ized policies that serve as heuristic functions, mapping states and goals into actions.
In order to represent their policies they adopt a concept language, which allows the
inference of more accurate models using less training examples. The learning approach
followed in this project was a variation of Rivest’s Decision Lists (1987), which is actually
a generalization of other concept representation techniques, such as decision trees.

EUREKA (Jones & Langley, 1995) adopts a flexible means-ends analysis for
planning and is equipped with a learning module that performs Analogical Reasoning
over stored solutions. The learning approach of Analogical Reasoning is based on the
assumption that if two situations are known to be similar in some respects, it is likely that
they will be similar in others. The standard computational model of reasoning by analogy
defines the source of an analogy to be a problem solution, example, or theory that is
relatively well understood. The target is not completely understood. Analogy constructs
a mapping between corresponding elements of the target and source. Analogical
inferences extend this mapping to new elements of the target domain.

EUREKA actually maintains a long-term semantic network, which stores represen-
tations of past situations along with the operators that led to them. The semantic network
is constantly modified by either adding new experiences or updating the strength of the
existing knowledge. DAEDALUS (Langley & Allen, 1993) is a similar system that uses
a hierarchy of probabilistic concepts in order to summarize its knowledge. The learning
module of DAEDALUS is quite complex and in asense it unifies a large number of learning
techniques including Decision Tree Construction, Rule Induction and EBL.

Another example of utilizing learning techniques for inferring control knowledge for
automated planning systems is the family of planners that employ Case-based reasoning
(Kolodner, 1993). Case-based reasoning (CBR) is an instance-based learning method that
deals with instances that are usually described by rich relational representations. Such
instances are often called cases. In contrast to instance-based methods that perform a
statistical computation of a distance metric based on numerical values, CBR systems
must compute a complex similarity measure. Another distinctive feature of CBR is that
the output for anew case might involve the combination of the output of several retrieved
cases that match the description of the new case. The combination of past outputs might
involve the employment of knowledge-based reasoning due to the rich representation
of cases.
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CBRisactually very related to analogical reasoning. Analogical reasoning provides
the mechanism for mapping the output of an old case to an output for a new case. Cased-
based reasoning was based on analogical reasoning but also provided a complete
framework for dealing with issues like the representation of cases, strategies for
organizing a memory of prior cases, retrieval of prior cases and the use of prior cases for
dealing with new cases.

Two known case-based planning systems are CHEF (Hammond, 1989) and PRIAR
(Kambhampati & Hendler, 1992). CHEF is one of the earliest case-based planners and
used the Szechwan cooking as the application domain. CHEF used memory structures
and indexes in order to store successful plans, failed plans and repairs among with general
conditions allowing it to reuse past experience. PRIAR is a more general case-based
system for plan modification and reuse that uses hierarchical non-linear planning,
allowing abstraction and least-commitment.

Learning Optimization Knowledge

Ambite, Knoblock and Minton (2000) have presented an approach for learning plan
rewriting rules that can be utilized along with local search in order to improve easy-to-
generate low quality plans. In order to learn the rules, they obtain an optimal and a non-
optimal solution for each problem in a training set, transform the solutions into graphs,
and then extract and generalize the differences between each pair of graphs (optimal and
non-optimal) and form rules in a manner similar to EBL.

IMPROVE (Lesh, Martin & Allen, 1998), deals with the improvement of large
probabilistic plans in order to increase their probability of being successfully carried out
by the executor. IMPROVE uses a simulator in order to obtain traces of the execution of
large plans and then feeds these traces to a sequential discovery data mining algorithm
in order to extract patterns that are common in failures but not in successes. Qualitative
reasoning (Kuipers, 1994) is then applied in order to improve the plans.

Summary and Further Reading

Table 1 summarizes the 18 approaches that were presented in this section. It shows
the name of each system, the type of knowledge that was acquired, the way this
knowledge was utilized and the learning techniques that were used for inducing it.
Further information on the topic of Machine Learning for Automated Planning can be
found in the extended survey of Zimmerman and Kambhampati (2003) and also in Gopal
(2000).

THE PLANNING PROBLEM

The rest of the chapter addresses learning domain knowledge for the automatic
configuration of planning systems. The aim of this approach is to build an adaptive
planning system that can automatically fine-tune its parameters based on the morphol-
ogy of the problem in hand. This is a very important feature for planning systems, since
it combines the efficiency of customized solutions with the generality of domain
independent problem solving.
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Table 1. System name, type of knowledge, utilization and learning techniques

System Knowledge Utilization Learning Techniques
OBSERVER Domain Refine problem definition |Learning by Observing, Refining via Practice
MULTI-TAC Domain Configure System Meta-Level Theories, Generate and Test
ALPINE Domain Abstract the problem Domain Analysis, Abstraction
BUS Domain Configure System Statistical Analysis
HAPRc Domain Configure System Classification Rules
HAPnN Domain Configure System kNN
PRODIGY Control Search guide EBL
HAMLET Control Search guide EBL, Rule Learning
STATIC Control Search guide Partial Evaluation
STRIPS Control Macro-operators EBL
Generalized Policies Control Search guide Decision Lists
DYNA-Q Control Heuristic Reinforcement Learning
CHEF Control Canned plans CBR
PRIAR Control Canned plans CBR
EUREKA Control Search guide Analogical Reasoning
DAEDALUS Control Search guide Analogical Reasoning, Conceptual Clustering
Plan Rewriting Optimization _|Reduce plan size EBL
IMPROVE Optimization |Improve plan applicability |Sequential Patterns

There are two main issues for investigation: (a) what sort of customization should
be performed on a domain-independent planner and (b) how can the morphology of a
planning problem be captured and quantified. These are addressed in the remainder of
this section.

The Planning System

The planning system used as a test bed for our research is HAP (Highly Adjustable
Planner), a domain-independent, state-space heuristic planning system, which can be
customized through a number of parameters. HAP is a general planning platform, which
integrates the search modules of the BP planner (Vrakas & Vlahavas, 2001), the heuristics
of AcE (Vrakas & Vlahavas, 2002) and several techniques for speeding up the planning
process. Apart from the selection of the planning direction, which is the most important
feature of HAP, the user can also set the values of six other parameters that mainly affect
the search strategy and the heuristic function. The seven parameters along with their
value sets are outlined in Table 2.

HAP is capable of planning in both directions (progression and regression). The
system is quite symmetric and for each critical part of the planner, for example, calculation
of mutexes, discovery of goal orderings, computation of the heuristic, search strategies
etc., there are implementations for both directions. The search Direction is the first
adjustable parameter of HAP with the following values: (a) 0 (Regression or Backward
chaining) and (b) 1 (Progression or Forward chaining). The planning direction is a very
important factor for the efficiency of a planning system, since the best direction strongly
depends on the morphology of the problem in hand and there is no easy answer which
direction should be preferred.

The HAP system employs the heuristic function of the AcE planner, as well as two
variations. Heuristic functions are implemented for both planning directions during the
pre-planning phase by performing a relaxed search in the direction opposite to the one
used in the search phase. The heuristic function computes estimations for the distances
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Table 2. The value sets for planning parameters

Name Value Set
Direction {0,1}
Heuristic {1,2,3}
Weights (w; and wy) | {0,1,2.3}
Penalty {10,100,500}
Agenda {10,100,1000}
Equal estimation {0,1}

Remove {0,1}

of all grounded actions of the problem. The original heuristic function of the AcE
planning system is defined by the following formula:

1, if prec(4)c I
dist(A) = . .
1+ ZXEMRS_(W(M dist(X), if prec(A) ¢ 1

where A is the action under evaluation, / is the initial state of the problem and MPS(S)
is a function returning a set of actions, with near minimum accumulated cost, achieving
state S. The algorithm of MPS is outlined in Figure 1.

Apart from the original AcE heuristic function described above, HAP embodies two
more fined-grained variations. The general idea behind these variations lies in the fact
that when we select a set of actions in order to achieve the preconditions of an action
A, we also achieve several other facts (denoted as implied(4)), which are not mutually
exclusive with the preconditions of 4. Supposing that this set of actions was chosen in
the plan before 4, then after the application of 4, the facts in implied(4) would exist in

Figure 1. Function MPS(S)

Function MPS(S)
Input: a set of facts S
Output: a set of actions achieving S with near minimum accumulated dist

Set G = @
S=8-8NTI
Repeat
f is the first fact in S

Let act(f) be the set of actions achieving f
for each action A in act(f) do

val(A) = dist(A) / ladd(A) N 8|

Let A' be an action in act(f) that minimizes val
Set G =G U A'
Set S = § - add(A') N S

Until S = @
Return G
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the new state, along with the ones in the add-list of 4. Taking all these into account, we
produce a new list of facts for each action (named enriched add) which is the union of
the add-list and the implied list of this action.

The first variation of the AcE heuristic function uses the enriched instead of the
traditional add-list in the MPS function in the second part of the function that updates
state S. So the command Set S =S—add(A") N Sbecomes Set S=S—enriched add(A")NS.

The second variation pushes the above ideas one step further. The enriched add
list is also used in the first part of the MPS function, which ranks the candidate actions.
So, it additionally alters the command val(4)=dist(A)/|add(A) N S| to val(4)=dist(4)/
lenriched add(A) N S)|.

The user may select the heuristic function to be used by the planner by configuring
the Heuristic parameter. The acceptable values are three: (a) 1 for the AcE heuristic, (b)
2 for the first variation and (c) 3 for the second variation.

Concerning search, HAP adopts a weighted A* strategy with two independent
weights: w, for the estimated cost for reaching the final state and w, for the accumulated
cost of reaching the current state from the starting state (initial or goals depending on
the selected direction). In this work we have used four different assignments for the
variable weights which correspond to different assignments for w, and w: (a) 0 (w, =1,
w,=0),(b) 1 (w,=3,w,=1),(c)2(w,=2,w,=1)and (d) 3 (w,=1,w,=1). By selecting different
value sets for the weights one can emulate a large number of search strategies such as
Best-First-Search (w,=1,w,=0) or Breadth-First-Search (w,=0,w,=1). Itis known that
although certain search strategies perform better in general, the ideal treatment is to
select the strategy which bests suits the morphology of the problem in hand.

The HAP system embodies two fact-ordering techniques (one for the initial state
I and another one for the goals G), which try to find strong orderings in which the facts
(ofeither /or G) should be achieved. In order to find these orderings, the techniques make
extensive use of mutual exclusions between facts, performing a limited search. These
orderings are utilized during normal search phase, in order to identify possible violations.
For each violation contained in a state, the estimated heuristic value of this state is
increased by Penalty, a constantnumber supplied by the user. In this work we have tested
the HAP system with three different values for Penalty: (a) 10, (b) 100 and (c) 500. The
reason for not being very strict with states containing violations of orderings is the fact
that sometimes the only path to the solution is through these states.

The HAP system allows the user to set an upper limit in the number of states in the
planning agenda. This enables the planner to handle very large problems, since the
memory requirements will not grow exponentially with the size of the problem. However,
in order to keep a constant number of states in the agenda, the algorithm prunes branches,
which are less likely to lead to a solution, and thus the algorithm cannot guarantee
completeness. Therefore, it is obvious that the size of the planning agenda significantly
affects the search strategy. For example, if we set Agenda to 1 and w, to 0, the search
algorithm becomes pure Hill-Climbing, while by setting Agenda to larger values, w, to
1 and w, to 1 the search algorithm becomes A*. Generally, by increasing the size of the
agenda we reduce the risk of not finding a solution, while by reducing the size of the
agenda the search algorithm becomes faster and we ensure that the planner will not run
out of memory. In this work we have used three different settings for the size of the
agenda: (a) 10, (b) 100 and (c) 1000.
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Another parameter of HAP is Equal estimation that defines the way in which states
with the same estimated distances are treated. If Equal estimation is set to 0 then when
two states with the same value in the heuristic function exist, the one with the largest
distance from the starting state (number of actions applied so far) is preferred. If
Equal estimation is set to 1, then the search strategy will prefer the state that is closer
to the starting state.

HAP also embodies a technique for simplifying the definition of the current sub-
problem (current state and goals) during the search phase. This technique eliminates
from the definition of the sub-problem all the goals that: a) have already been achieved
in the current state and b) do not interfere with the achievement of the remaining goals.
In order to do this, the technique performs a dependency analysis on the goals of the
problem off-line, before the search process. Although the technique is very useful in
general, the dependency analysis is not complete. In other words, there are cases where
an already achieved sub-goal should be temporarily destroyed in order to continue with
the achievement of the rest of the goals. Therefore, by removing this fact from the current
state the algorithm may risk completeness. The parameter Remove can be used to turn
on (value 1) or off (value 0) this feature of the planning system.

The parameters presented above are specific to the HAP system. However, the
methodology presented in this chapter is general enough and can be applied to other
systems as well. Most of the modern planning systems support or can be modified to
support all or some of the parameterized aspects presented in this section. For example,
there are systems such as the progression planner HSP (Bonet et al., 1997) that were
accompanied by versions working in the opposite directions; HSP-R (Bonet & Geffner,
1999) is a regression planner based on HSP.

Moreover, most of the planning systems presented during the last years can be
customized through their own set of parameters. For example, the GRT planning system
(Refanidis & Vlahavas, 2001) allows the user to customize the search strategy (Best-first
or Hill-climbing) and to select how the goals of the problem are enriched (this affects the
heuristic function). LPG (Gerevini etal.,2003) can be customized through a large number
of planning parameters and could also be augmented using the proposed methodology.
The user may select options such as the heuristic function (there are two available), the
search strategy, the number of restarts, the depth of the search, the way mutexes are
calculated and others. The MIPS system (Edelkamp & Helmert, 2001) also allows some
customization, since it uses a weighted A* search strategy, the weights of which can be
set by the user, in a manner similar to HAP. Furthermore, the user can also set the
optimization level.

Quantifying the Structure of Planning Problems

Selecting a set of numerical attributes that represent the dynamics of problems and
domains is probably the most important task in the process of building an adaptive
planning system. These attributes should be able to group problems with similar
structure and discriminate uneven ones. Moreover, these attributes should clearly
influence specific choices for the values of the available planning parameters. Therefore,
their selection strongly depends on the underlying planning system.

The result of a theoretical analysis on (a) the morphology of problems, (b) the way
this is expressed through the PDDL language and (c) the technology of the HAP planning
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system, was a set of 35 measurable characteristics that are presented in Table 3. In Table
3, h(l) refers to the number of steps needed to reach / (initial state) by regressing the
goals, as estimated by the backward heuristic function. Similarly, #(G) refers to the
number of steps needed to reach the goals by progressing the initial state, estimated by
the forward heuristic function.

Our main concern was to select simple attributes so that their values are easily
calculated and not complex attributes that would cause a large overhead in the total
planning time. Therefore, most of the attributes come directly from the PDDL input files
and their values can be calculated during the standard parsing process. We have also
included a small number of attributes closely related to specific features of the HAP
planning system, such as the heuristics or the fact-ordering techniques. In order to
calculate the values of these attributes, the system must perform a limited search.
However, the overhead is negligible compared to the total planning time.

Table 3. Problem characteristics

Name Description

Al Percentage of dynamic facts in Initial state over total dynamic facts
A2 Percentage of static facts

A3 Percentage of goal facts over total dynamic facts

A4 Ratio between dynamic facts in Initial state and goal facts
A5 Average number of actions per dynamic fact

A6 Average number of facts per predicate

A7 Standard deviation of the number of facts per predicate

A8 Average number of actions per operator

A9 Standard deviation of the number of actions per operator
Al10 Average number of mutexes per fact

All Standard deviation of the number of mutexes per fact

Al2 Average number of actions requiring a fact

Al3 Standard deviation of the number of actions requiring a fact

Al4 Average number of actions adding a fact

AlS Standard deviation of the number of actions adding a fact

Al6 Average number of actions deleting a fact

Al7 Standard deviation of the number of actions deleting a fact

Al8 Average ratio between the number of actions adding a fact and those deleting it

Al19 Average number of facts per object

A20 Average number of actions per object

A21 Average number of objects per object class

A22 Standard deviation of the number of objects per object class

A23 Ratio between the actions requiring an initial fact and those adding a goal (Relaxed branching factors)
A24 Ratio between the branching factors for the two directions

A25 h(I)/h(G) [1st heuristic] - h(I)/h(G) [2nd heuristic]

A26 h()/h(G) [1st heuristic] - h(I)/h(G) [3rd heuristic]

A27 h(I)/h(G) [2nd heuristic] - h(I)/h(G) [3rd heuristic]

A28 Average number of goal orderings per goal

A29 Average number of initial orderings per initial fact

A30 Average distance of actions / h(G) [forward direction]

A31 Average distance of actions / h(I) [backward direction]

A32 a30/a31

A33 Percentage of standard deviation of the distance of actions over the average distance of actions [Forward
direction]

A34 Percentage of standard deviation of the distance of actions over the average distance of actions [Backward
direction]

A35 Heuristics deviation [a33/a34]
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A second concern was the fact that the attributes should be general enough to be
applied to all domains. Furthermore, their values should not largely depend on the size
of the problem; otherwise the knowledge learned from easy problems can not be
efficiently applied to difficult ones. For example, instead of using the number of mutexes
(mutual exclusions between facts) in the problem, which is an attribute that strongly
depends on the size of the problem (larger problems tend to have more mutexes), we divide
it by the total number of dynamic facts (attribute A10) and this attribute (mutex density)
identifies the complexity of the problem without taking into account whether itis a large
problem or not. This is a general solution followed in all situations where a problem
attribute depends nearly linearly on the size of the problem.

The attributes can be classified in three categories: The first category (attributes
AO01-A9, A12-A24) refers to simple and easily measured characteristics of planning
problems that source directly from the input files (PDDL). The second category (at-
tributes A10,A11, A28, A29) consists of more sophisticated features of modern planners,
such as mutexes or orderings (between goals and initial facts). The last category
(attributes A25-A27, A30-A35) contains attributes that can be instantiated only after the
calculation of the heuristic functions and refer to them.

The attributes presented above aim at capturing the morphology of problems
expressed in a quantifiable way. The most interesting aspects of planning problems
according to this attribute set are: (a) the size of the problem, which mainly refers to the
dimensions of the search space, (b) the complexity of the problem, (c) the directionality
of the problem that indicates the most appropriate search direction, and (d) the heuristic
that best suits the problem.

The first two categories, namely the size and the complexity, are general aspects of
planning problems. The directionality is also a general aspect of planning problems that
is additionally of great importance to HAP, due to its bi-directional capabilities. The last
category depends strongly on the HAP planning system, concerning the suitability of
the heuristic functions for the problem in hand. Although the four aspects that the
selection of attributes was based on are not enough to completely represent any given
planning problem, they form a non-trivial set that one can base the setup of the planning
parameters of HAP. sketches the relation between the four problem aspects described
above and the 35 problem attributes adopted by this work.

LEARNING APPROACHES

The aim of the application of learning techniques in planning is to find the hidden
dependencies among the problem characteristics and the planning parameters. More
specifically, we are interested in finding those combinations of problem attributes and
planning parameters that guarantee good performance of the system. One way to do this
is by experimenting with all possible combinations of the values of 35 problem attributes
and the seven planning parameters and then processing the collected data in order to
learn from it. However, this is not tractable since most of the problem attributes have
continuous value ranges and even by discretizing them it would require a tremendous
number of value-combinations. Moreover, it would not be possible to find or create
enough planning problems to cover all the cases (value combinations of attributes).
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Table 4. Relation between problem aspects and attributes

Attribute Size Complexity Directionality Heuristics
Al

A2

A3

A4

A5

A6

A7

A8

A9

A10
All
Al12
Al13
Al4
Al5
Al6
Al7
Al18
A19 .
A20 .
A21
A22
A23
A24
A25
A26
A27
A28 .
A29 .
A30
A31
A32
A33 .
A34 .
A35 .

One solution to the problem presented above is to select a relatively large number
of problems, uniformly distributed in a significant number of domains covering as many
aspects of planning as possible, then experiment with these problems, called training set,
and all the possible setups of the planning system (864 in the case of HAP), record all
the data (problem attributes, planner configuration and the results in terms of planning
time and plan length) and try to learn from that. It is obvious that the selection of problems
for the training set is the second crucial part of the whole process. In order to avoid the
over fitting and the disorientation of the learned model, the training set must be
significantly large and uniformly distributed over a large and representative set of
different domains.

After the collection of the data there are two important stages in the process of
building the adaptive system: (a) selecting and implementing an appropriate learning
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technique in order to extract the model and (b) embedding the model in an integrated
system that will automatically adapt to the problem in hand. Note however, that these
steps cannot be viewed as separate tasks in all learning approaches.

The rest of the section addresses these issues and presents details concerning the
development of two adaptive systems, namely HAP, . and HAP .

Data Preparation

A necessary initial step in most data mining applications is data preparation. In our
case, the data were collected from the execution of HAP using all 864 parameter
configurations on 30 problems from each of the 15 planning domains of Table 5. The
process of collecting the data is sketched in Figure 2. The recorded data for each run
contained the 35 problem attributes presented in the above section, the seven planner
parameters presented, the number of steps in the resulting plan and the required time for
building it.

Inthe case where the planner did not manage to find a solution within the upper time
limit of 60 seconds, a special value (999999) was recorded for both steps and time. This

Figure 2. Preparing the training data

—

Batch of stored L,
problems

\ . Problems,
HAP performances,

parameters

All parameter
configurations ||

Table 5. Domains used for the creation of the learning data

Domain Source
Assembly New domain
Blocks-world (3 operators) Bibliography
Blocks-world (4 operators) AIPS 98, 2000
Driver AIPS 2002
Ferry FF collection
Freecell AIPS 2000, 2002
Gripper AIPS 98
Hanoi Bibliography
Sokoban New domain
Logistics AIPS 98, 2000
Miconic-10 AIPS 2000
Mystery AIPS 98

Tsp FF collection
Windows New domain
Zeno AIPS 2002
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Figure 3. The format of the records

Planning parameters Problem attributes Performance metrics
AL A P N
L pt [ p2 | ... [ p7 | at | a2 [ .. | a35 | steps | time |

led to a dataset of 388.800 (450 problems * 864 configurations) records with 44 fields, the
format of which is presented in Figure 3.

This dataset did not explicitly provide information on the quality of each run.
Therefore, a data pre-processing stage was necessary that would decide about the
performance of each configuration of HAP (for a given problem) based on the two
performance metrics (number of plan steps and the required time for finding it). However,
it is known within the planning community that giving a solution quickly and finding a
short plan are contradicting directives for a planning system. There were two choices in
dealing with this problem: (a) create two different models, one for fast planning and one
for short plans, and then let the user decide which one to use or (b) find a way to combine
these two metrics and produce a single model which uses a trade-off between planning
time and length of plans. We tested both scenarios and noticed that in the first one the
outcome was a planner that would either create short plans after too long a time, or create
awfully large plans quickly. Since none of these cases are acceptable in real-world
situations, we decided to adopt the second scenario.

In order to combine the two metrics we first normalized the plan steps and planning
time according to the following transformation:

i Let S, bethe number of plan steps and 7, be the required time to build it for problem
i (i=1..450) and planner configuration; (j=1..864).

i We first found the shortest plan and minimum planning time for each problem
among the tested planner configurations.

min

S™ =min(s,) T = min(T})
1S, P

i We then normalized the results by dividing the minimum plan length and minimum
planning time of each run with the corresponding problem value. For the cases
where the planner could not find a solution within the time limits, the normalized
values of steps and time were set to zero.

min min

S, T
, ——, S, #999999 ‘ -—, T,;#999999
. s =45, i =4
0, otherwise 0, otherwise
i We finally created a combined metric about plan attribute M, which uses a

weighted sum of the two normalized criteria:
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— % norm S norm
M;=w*S" " +w*T,

Classification Rules

Learning sets of if-then rules is an appealing learning method, due to the easily
understandable representation of rules by humans. There are various approaches to rule
learning, including transforming decision trees to rules and using genetic algorithms to
encode each rule set. We will here briefly describe another approach that is based on the
idea of Sequential Covering that it has been exploited by a number of planning systems.

Sequential covering is a family of algorithms for learning rule sets based on the
strategy of learning one rule, removing the data it covers, then iterating this process
(Mitchell, 1997). The first rule will be learned based on all the available training examples.
We then remove any positive examples covered by this rule and then invoke it again to
learn a second rule based on the remaining training examples. It is called a sequential
covering algorithm because it sequentially learns a set of rules that together cover the
full set of positive examples. The final set of rules can then be sorted so that more accurate
rules will be considered first when a new instance must be classified.

Learning a rule usually involves performing a heuristic search in the space of
potential attribute-value pairs to be added to the current rule. Depending on the strategy
of'this search and the performance measure used for guiding the heuristic search several
variations of sequential covering have been developed.

The CN2 program (Clark & Niblett, 1989) employs a general to specific beam search
through the space of possible rules in search of a rule with high accuracy, though perhaps
incomplete coverage of the data. Beam search is a greedy non-backtracking search
strategy in which the algorithm maintains a list of the k best candidates at each step, rather
than a single best candidate. On each search step, specializations are generated for each
of these k best candidates, and the resulting set is again reduced to the k most promising
members. A measure of entropy is the heuristic guiding the search.

AQ (Michalskietal., 1986) also conducts a general-to-specific beam-search for each
rule, but uses a single positive example to focus this search. In particular, it considers
only those attributes satisfied by the positive example as it searches for progressively
more specific hypotheses. Each time it learns a new rule it selects a new positive example
from those that are not yet covered, to act as a seed to guide the search for this new
disjunct.

IREP (Furnkranz & Widmer, 1994), RIPPER (Cohen, 1995) and SLIPPER (Cohen &
Singer, 1999) are three rule learning systems that are based on the same framework but
use reduced error pruning to prune the antecedents of each discovered rule. IREP was
a first algorithm that employed reduced-error pruning. RIPPER is an enhanced version
of the IREP approach dealing with several limitations of IREP and producing rules of
higher accuracy. SLIPPER extends RIPPER by using confidence-rated boosting and
manages to achieve even better accuracy.

Classifying Executions

In order to learn classification rules from the dataset, a necessary step was to decide
for the two classes (good run or bad run) based on the value of the combined quality
metric M. Therefore, we split the records of the training data into two categories: (a) the
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class of good runs consisting of the records for which M, was larger than a threshold
and (b) the class of bad runs consisting of the remaining records. In order to create these
two sets of records, we calculated the value Qij for each run, which is given by the
following formula:

i

good, M;>c
| bad, M;=c

where c, is the threshold constant controlling the quality of the good runs. For the M,
metric, we used the value of 1 for both w_and w in order to keep the balance between the
two quality criteria.

For example, for ¢ equal to 1.6 the above equation means that, “a plan is good if its
combined steps and time are at most 40% worse (bigger) than the combined minimum
plan steps and time for the same problem.” Since normalized steps and time are combined
with a 1:1 ratio, the above 40% limit could also be interpreted as an average of 20% for
each steps and time. This is a flexible definition that would allow a plan to be characterized
as good even if its steps are, for example, 25% worse than the minimum steps, as long as
its time is at most 15% worse than the minimum time, provided that their combination is
at most 40% worse than the combined minimum steps and time. In the general case the
combined steps and time must be at most (2-¢)*100% worse than the combined minimum
steps and time. After experimenting with various values for ¢ we ended up that 1.6 was
the best value to be adopted for the experiments.

Modeling

The next step was to apply a suitable machine learning algorithm in order to discover
a model of the dependencies between problem characteristics, planner parameters and
good planning performance. A first requirement was the interpretability of the resulting
model, so that the acquired knowledge would be transparent and open to the inquiries
ofaplanning expert. Apart from developing an adaptive planner with good performance
to any given planning problem, we were also interested in studying the resulting model
for interesting new knowledge and justifications for its performance. Therefore, symbolic
learning approaches were at the top of our list.

Mining association rules from the resulting dataset was a first idea, which however
was turned down due to the fact that it would produce too many rules, making it extremely
difficult to produce all the relevant ones. In our previous work (Vrakas et al., 2003a), we
have used the approach of classification based on association rules (Liu, Hsu & Ma,
1998), which induces association rules that only have a specific target attribute on the
right hand side. However, such an approach was proved inappropriate for our current
much more extended dataset.

We therefore turned towards classification rule learning approaches, and specifi-
cally decided to use the SLIPPER rule learning system (Cohen & Singer, 1999) which is
fast, robust, easy to use, and its hypotheses are compact and easy to understand.
SLIPPER generates rule sets by repeatedly boosting a simple, greedy rule learner. This
learner splits the training data, grows a single rule using one subset of the data and then
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prunes the rule using the other subset. The metrics that guide the growing and pruning
of rules is based on the formal analysis of boosting algorithms. The implementation of
SLIPPER that we used handles only two-class classification problems. This suited fine
our two-class problem of “good” and “bad” performance. The output of SLIPPER is a set
of rules predicting one of the classes and a default rule predicting the other one, which
is engaged when no other rule satisfies the example to be classified. We run SLIPPER so
that the rule set predicts the class of “good” performance.

The Rule-Based Planner Tuner

The next step was to embed the learned rules in HAP as a rule-based system that
decides the optimal configuration of planning parameters based on the characteristics
of a given problem. In order to perform this task certain issues had to be addressed:

Should all the rules be included?

The rules that could actually be used for adaptive planning are those that associate,
at the same time, problem characteristics, planning parameters and the quality field. So,
the first step was to filter out the rules that included only problem characteristics as their
antecedents. This process filtered out 21 rules from the initial set of 79 rules. We notice
here that there were no rules including only planning parameters. If such rules existed,
then this would mean that certain parameter values are good regardless of the problem
and that the corresponding parameters should be fixed in the planner.

The remaining 58 rules that model good performance were subsequently trans-
formed so that only the attributes concerning problem characteristics remained as
antecedents and the planning parameters were moved to the right-hand side of the rule
as conclusions, replacing the rule quality attribute. In this way, a rule decides one or more
planning parameters based on one or more problem characteristics.

What Conflict Resolution Strategy Should be Adopted for Firing the Rules?

Each rule was accompanied by a confidence metric, indicating how valid arule is,
that is what percentage of the relevant data in the condition confirms the conclusion-
action of the rule. A 100% confidence indicates that it is absolutely certain that when the
condition is met, then the action should be taken.

The performance of the rule-based system is one concern, but it occupies only a tiny
fragment of the planning procedure, therefore it is not of primary concern. That is why
the conflict resolution strategy used in our rule-based system is based on the total
ordering of rules according to the confidence factor, in descending order. This decision
was based on our primary concern to use the most certain (confident) rules for
configuring the planner, because these rules will most likely lead to a better planning
performance.

Rules are appropriately encoded so that when a rule fires and sets one or more
parameters, then all the other rules that might also set one (or more) of these parameters
to a different setting are “disabled.” In this way, each parameter is set by the most
confident rule (examined first), while the rest of the rules that might affect this parameter
are skipped.

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.



108 Vrakas, Tsoumakas, Bassiliades, & Vlahavas

What Should We do with Parameters Not Affected by the Rule System?

The experiments with the system showed that on average the rule-based system
would affect approximately four planning parameters, leaving at the same time three
parameters unset. According to the knowledge model, if a parameter is left unset, its value
should not affect the performance of the planning system. However, since the model is
not complete, this behaviour could also be interpreted as an inability of the learning
process to extract a rule for the specific case. In order to deal with this problem we
performed a statistical analysis in order to find the best default settings for each
independent parameter.

For dealing with situations where the rule-based system leaves all parameters unset
we calculated the average normalized steps and time for each planner configuration:

S norm T norm
ij ii
i

Su\'g _ ag

/ Zl»T’_Zl

i

and recorded the configuration with the best sum ofthe above metrics, which can be seen
in Table 6.

For dealing with situations where the rule system could only set part of the
parameters, but not all of them, we repeated the above calculations for each planner
parameter individually, in order to find out if there is a relationship between individual
settings and planner performance. Again for each parameter we recorded the value with
the best sum of the average normalized steps and time. These settings are illustrated in
Table 6.

In the future we will explore the possibility to utilize learned rules that predict bad
performance as integrity constraints that guide the selection of the unset planner
parameters in order to avoid inappropriate configurations.

The rule configurable version of HAP, which is outlined in contains two additional
modules, compared to the manually configurable version of the system, that are run in
apre-planning phase. The first module, noted as Problem Analyzer, uses the problem’s
representation, constructed by the Parser, to calculate the values of the 35 problem
characteristics used by the rules. These values are then passed to the Rule System

Table 6. Best combined and individual values of parameters

Name Best Configuration | Best Individual Value
Direction 0 0

Heuristic 1 1

Weights (w; and w;) 2 2

Penalty 10 100

Agenda 100 10
Equal_estimation 1 1

Remove 0 1
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Figure 4. HAP . architecture
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module, which tunes the planning parameters based on the embedded rule base and the
default values for unset parameters. The values of the planning parameters along with
the problem’s representation are then passed to the planning module, in order to solve
the problem.

k Nearest Neighbors

Apart from the rule-based approaches, we also experimented with other learning
methodologies, mainly in order to overcome several limitations of the former. A very
interesting learning approach, which could be easily adapted to our problem, is the k
Nearest Neighbors (kNN) algorithm. According to this approach, when the planner is
faced with a new problem, it identifies the k nearest instances from the set of training
problems, aggregates the performance results for the different planner configurations
and selects the one with the best average performance.

This is the most basic instance-based learning method for numerical examples. The
nearest neighbors of an instance are defined in terms of some distance measure for the
vectors of values of the examples. Considering the following instance x, that is described
by the attributes:

<0¢1 (x).04 (x),....cx, (x)>

where o (x) denotes the value of the instance for the rth attribute. Then the distance d
of two instances x1, x2 can be measured using any suitable L norm:
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L

a (x)-a, (xj)

d(x.3,)= Jz

r=1

For L=1 we get the Manhattan distance, while for L=2 we get the Euclidean distance.

When a new instance requires classification, the k nearest neighbor approach first
retrieves the k nearest instances to this one. Then it selects the classification that most
of these instances propose.

Preparing the Training Data

According to the methodology previously described, the system needs to store two
kinds of information: (a) the values for the 35 attributes for each one of the 450 problems
in the training set in order to identify the k closest problems to a new one and (b) the
performance (steps and time) of each one of the 864 planner configurations for each
problem in order to aggregate the performance of the k problems and then find the best
configuration.

The required data were initially in the flat file produced by the preparation process
described in a previous section. However, they were later organized as a multi-relational
data set, consisting of two primary tables, problems (450 rows) and parameters (864
rows), and a relation table performances (450*864 rows), in order to save storage space
and enhance the search for the k£ nearest neighbors and the retrieval of the corresponding
performances. The tables were implemented as binary files, with the performances table
being sorted on both the problem id and the parameter id.

Online Planning Mode

Given a new planning problem, HAP _ first calculates the values of the problem
characteristics. Then the kNN algorithm is engaged in order to retrieve the ids of the &
nearest problems from the problems file. The number of neighbors, £, is a user-defined
parameter of the planner. In the implementation of ANN we use the Euclidean distance
measure with the normalized values of the problem attributes to calculate the nearest
problem.

Using the retrieved ids and taking advantage of the sorted binary file, HAP
promptly retrieves the performances for all possible configurations in a £*864 two-
dimensional matrix. The next step is to combine these performances in order to suggest
asingle parameter configuration with the optimal performance, based on past experience
ofthe knearest problems. The optimal performance for each problem is calculated using
the M, criterion, where the two weights w_and w, are set by the user.

We can consider the final £*864 2-dimensional matrix as a classifier combination
problem, consisting of & classifiers and 864 classes. We can combine the decisions of
the k classifiers, using the average Bayes rule, which essentially comes down to
averaging the planner scores across the k nearest problems and selecting the decision
with the largest average. Thus, the parameter configurationj (j/=1..864) with the largest
C is the one that is proposed and used.
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Figure 5. Online planning mode
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The whole process for the online planning mode of HAP, is depicted in Figure 5.
Itis worth noting that HAP actually outputs an ordering of all parameter configurations
and not just one parameter configuration. This can be exploited, for example, in order to
output the top ten configurations and let the user decide amongst them. Another useful
aspect of the ordering is that when the first parameter configuration fails to solve the
problem within certain time, then the second best could be tried. Another interesting
alternative in such a case is the change of the weight setting so that time has a bigger
weight. The effect of the weights in the resulting performance is empirically explored in
the experimental results section that follows.

Off-Line Incremental Training Mode

HAP can be trained incrementally with each new planning problem that arises.
Specifically, the planner stores each new examined planning problem, so that it can later
train from it off-line. As in the training data preparation phase, training consists of
running the HAP planner on the batch of newly stored problems using all 864 value
combinations of the seven parameters. For each run, the features of the problem, the
performance of the planner (steps of the resulting plan and required planning time) and
the configuration of parameters are recorded.

The incremental training capability is an important feature of HAP, stemming from
theuse of the ANN algorithm. As the generalization of the algorithm is postponed for the
online phase, learning actually consists of just storing past experience. This is an
incremental process that makes it possible to constantly enhance the performance of the
adaptive planner with the advent of new problems.

EXPERIMENTAL RESULTS

We have conducted four sets of comprehensive experiments in order to evaluate
the potential gain in performance offered by the adaptive way in which the planner
parameters are configured and to compare the two different approaches (rule-based and
kNN). For the experiments presented below we used HAP  with the value of k set to 7.
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All the runs of the planning systems (static and adaptive), including those used in
the statistical analysis and the machine learning process, were performed on a SUN
Enterprise Server 450 with4 ULTRA-2 processors at400 MHz and 2 GB of shared memory.
The operating system of the computer was SUN Solaris 8. For all experiments we counted
CPU clocks and we had an upper limit of 60 sec, beyond which the planner would stop
and report that the problem is not solved.

Adapting to Problems of Known Domains

This experiment aimed at evaluating the generalization of the adaptive planners’
knowledge to new problems from domains that have already been used for learning.
Examining this learning problem from the viewpoint of a machine learner we notice that
itis quite a hard problem. Its multi-relational nature (problem characteristics and planner
parameters) resulted in a large dataset, but the number of available problems (450) was
small, especially compared to the number of problem attributes (35). This gives rise to
two problems with respect to the evaluation of the planners: (a) Since the training data
is limited (450 problems), a proper strategy must be followed for evaluating the planners’
performance, (b) evaluating on already seen examples must definitely be avoided,
because it will lead to rather optimistic results due to overfitting.

For the above reasons we decided to perform ten-fold cross-validation. We have
split the original data into ten cross-validation sets, each one containing 45 problems
(three from each of the 15 domains). Then we repeated the following experiment ten times:
in each run, one of the cross-validation sets was withheld for testing and the nine
remaining were merged into a training set. The training set was used for learning the
models of HAP, . and HAP,  and the test set for measuring their performance. Specifi-
cally, we calculated the sum of the average normalized steps and time. In addition we
calculated the same metric for the best static configuration based on statistical analysis
of the training data (HAP,,.), in order to calculate the gain in performance. Finally, we
calculated the same metric for the best configuration for any given problem (HAP ., ., )
in order to compare with the maximum performance that the planners could achieve if it
had an oracle predicting the best configuration. The results of each run were averaged
and thus a proper estimation was obtained, which is presented in Table 7.

Table 7. Comparative results for adapting to problems of known domains

Fold HAPyc | HAPoracis | HAPyc HAPyN
1 1,45 1,92 1,60 1,74
2 1,63 1,94 1,70 1,73
3 1,52 1,94 1,60 1,70
4 1,60 1,94 1,70 1,75
5 1,62 1,92 1,67 1,73
6 1,66 1,92 1,67 1,76
7 1,48 1,91 1,69 1,72
8 1,47 1,91 1,57 1,74
9 1,33 1,91 1,47 1,59
10 1,43 1,92 1,65 1,73
Average 1,52 1,92 1,63 1,72
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Studying the results of Table 7 we notice that both adaptive versions of HAP
significantly outperformed HAP,, .. The difference in the performance between HAP, .
and HAP,, . was 0.11 onaverage, which can be translated as a 7% average gain combining
both steps and time. HAP  performed even better, scoring on average 0.2 more (13%
gain) than the static version. Moreover, the auto-configurable versions outperformed
the static one in all folds, exhibiting a consistently good performance. This shows that
the learning methodologies we followed were fruitful and resulted in models that
successfully adapt HAP to unknown problems of known domains.

Adapting to Problems of Unknown Domains

The second experiment aimed at evaluating the generalization of the adaptive
planners’ knowledge to problems of new domains that have not been used for learning
before. In a sense this would give an estimation for the behaviour of the planner when
confronted with a previously unknown problem of a new domain.

This is an even harder learning problem considering the fact that there are very few
domains that have been used for learning (15), especially compared again to the 35
problem attributes. To evaluate the performances of HAP_ . and HAP we used leave-
one-(domain)-out cross-validation. We split the original data into 15 cross-validation
sets, each one containing the problems of a different domain. Then we repeated the
following experiment 15 times: In each run, one of the cross-validation sets was withheld
for testing and the 14 rest were merged into a training set. As in the previous experiment,
the training set was used for learning the models and the test set for measuring its
performance.

The results show that all the planners performed worse than the previous experi-
ment. Still HAP, .and HAP, managed to increase the performance over HAP, ., asit can
be seen in Table 8.

Wenoticea 3% average gain of HAP  .and 2% average gain of HAP,  over the static
version in the combined metric. This is a small increase in performance, but it is still a
success considering that there were only 15 domains available for training. The enrich-
ment of data from more domains will definitely increase the accuracy of the models,
resulting in a corresponding increase in the performance of the adaptive systems.

Scalability of the Methodology

The third experiment aimed at showing the ability of the adaptive systems to learn
from easy problems (problems that require little time to be solved) and to use the acquired
knowledge as a guide for difficult problems. It is obvious that such a behavior would be
very useful, since according to the methodology, each problem in the training set must
be attacked with every possible combination of the planner’s parameters and for hard
problems this process may take enormous amounts of time.

In order to test the scalability of the methodology, we have split the initial data set
into two sets: (a) the training set containing the data for the 20 easiest problems from each
domain and (b) the test set containing the 10 hardest problems from each domain. The
metric used for the discrimination between hard and easy problems was the average time
needed by the 864 different planner setups to solve the problem. We then used the
training set in order to learn the models and statistically find the best static configuration
of HAP and tested the two adaptive planners and HAP,, . on the problems of the test set.
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Table 8. Comparative results for adapting to problems of unknown domains

Test Domain | HAPyc [HAPoracLe HAPRe | HAPNN

Assembly]| 1,31 1,89 1,46 1,08
Blocks 1,13 1,98 1,10 1,77
Blocks 3op 1,69 1,99 1,52 1,81
Driver| 1,52 1,92 1,49 1,45
Ferry| 1,03 2,00 1,66 1,41
Freecell 1,43 1,96 1,39 1,70
Gripper| 1,75 1,99 1,62 1,61
Hanoi 1,08 1,87 1,03 1,10]
Logistics| 1,66 1,91 1,69 1,75
Miconic 1,79 1,96 1,71 1,07
Mystery 121 1,97 1,11 0,88
Sokoban| 1,20 1,96 1,57 1,45
Tsp 1,56 1,74 1,56 1,29
Windows 1,30 1,78 1,26 1,55
Zeno 1,26 1,93 1,34 1,35
Average| 1,39 1,92 1,43 1,42

For each problem we have also calculated the performance of HAP |, .. . in order to show

the maximum performance that could have been achieved by the planner.

The results of the experiments, which are presented in Table 9 are quite impressive.
The rule-based version managed to outperform the best static version in 11 out of the
15 domains and its performance was approximately 40% better on average. Similarly
HAP wasbetterin 11 domains too and the average gain was approximately 33%. There
are some very interesting conclusions that can be drawn from the results:

. With the exception of a small number of domains, the static configurations, which
are effective for easy problems, do not perform well for the harder instances of the
same domains.

. There are some domains (e.g., Hanoi) where there must be great differences

between the morphology of easy and hard problems and therefore neither the
statistical nor the learning analyses can effectively scale up.

° Itis clear that some domains present particularities in their structure, and it is quite
difficult to tackle them without any specific knowledge. For example, in Freecell
all the planners and specifically HAP, .and HAP . that were trained from the rest
ofthe domains only, did not perform very well (see Table 8), while the inclusion of
Freecell’s problems in their training set, gave them a boost (see Table 9).

i There are domains where there is a clear trade-off between short plans and little
planning time. For example, the low performance of HAP, , .. . in the Tsp domain
shows that the configurations that result in short plans require a lot of planning
time and the ones that solve the problems quickly produce bad plans.

. The proposed learning paradigms can scale up very well and the main reason for
this is the general nature of the selected problem attributes.
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Table 9. Scalability of the methodology

Test Domain HAPyc [HAPoraciy] HAPRre | HAPnN

Assembly 0,91 1,86 1,64 1,80
Blocks 0,91 1,86] 1,64 1,72
Blocks 3op 1,86 1,98 1,72 1,86
Driver 1,22 1,92 1,72 1,51
Ferry 0,31 2,00, 1,89 1,85
Freecell 1,86 1,96 1,87 1,84
Gripper 1,68 1,99 1,76 1,96
Hanoi 0,45 1,80) 1,19 0,50
Logistics 1,68 1,87 1,80 1,81
Miconic 1,93 1,96 1,93 1,93
Mystery 0,67 1,94 1,73 1,52
Sokoban 0,79 1,92 1,66 1,47
Tsp 1,35 1,54 1,32 1,46
'Windows 1,52 1,65 1,49 1,42
Zeno 0,89 1,91 1,77 1,29
Average 1,20 1,88 1,68 1,60

Ability to Learn a Specific Domain

The fourth experiment aimed at comparing general models, which have been learned
from a variety of domains versus specific models that have been learned from problems
of a specific domain. The reason for such an experiment is to have a clear answer to the
question whether the planning system could be adapted to a target domain by using
problems of solely this domain. The rationale behind this is that a general-purpose
domain independent planner can be used without having to hand code it in order to suit
the specific domain. Furthermore, the experiment can also show how disorienting the
knowledge from other domains can be.

In order to carry out this experiment, we created 15 train sets, each one containing
the 20 easiest problems ofa specific domain and 15 test sets with the 10 hardest instances.
The next step was to learn specific models for each domain, and test them on the hardest
problems of the same domain. For each domain we compared the performance of the
specialized models versus the performance of general models, which have been trained
from the 20 easier problems from all 15 domains (see previous subsection). The results
from the experiment are presented in , where:

i HAP . corresponds to the manually configured version according to the statistical
analysis on the 20 easy problems of each domain,

i specific HAP,.and HAP correspond to the adaptive versions trained only from
the 20 easier problems of each domain,

i general HAP, . and HAP correspond to the adaptive versions trained from the

300 problems (20 easier problems from each one of the 15 domains) and
i HAP corresponds to the ideal configuration.

Oracle
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Table 10. General vs. specialized models

HAPgc HAPNN

Test Domain | HAPyic | HAPoracLe|  specific general specific general

Assembly 1,68 1,86) 1,72] 1,64 1,84 1,80
Blocks 1,68 1,86 1,74 1,64 1,64 1,72
Blocks 3op 1,85 1,98 1,88 1,72 1,89 1,86
Driver 1,68 1,92 1,78 1,72 1,22 1,51
Ferry 1,83 2,00 1,85 1,89 1.85 1,89
Freecell 1,88 1,96 1,85 1,87 1,84 1,84
Gripper 1,66) 1,99 1,78 1,76) 1,96 1,96
Hanoi 1,00] 1,80 1,38 1,19 0,50 0,50
Logistics 1,80 1,87 1,81 1,80 1,81 1,81
Miconic 1,93 1,97 1,93 1,93 1,93 1,93
Mystery 1,65 1,94 1,83 1,73 1,52 1,52
Sokoban 1,61 1,92 1,88 1,66 1,57 1,47
Tsp 1,36] 1,54 1,38 1,32] 1,46 1,46
Windows 1,35 1,65 1,48 1,49 1,46 1,42
Zeno 1,43 1,91 1,80 1,78 1,44 1,29
Average 1,63 1,88 1,74 1,68 1,60 1,60

According to the results presented in Table 10, HAP . outperforms the best static
onein 13 out ofthe 15 domains and on average it is approximately 7% better. This shows
that we can also induce efficient models that perform well in difficult problems ofa given
domain when solely trained on easy problems of this domain. However, this is not the
case for HAP, whose not very good performance indicates that the methodology
requires more training data, especially because there is a large number of attributes.

Comparing the specialized models of HAP . with the general ones, we see that it is
on average 4% better. This shows that in order to adapt to a single domain, it is better
to train the planner exclusively from problems of that domain, although such an approach
would compromise the generality of the adaptive planner. The results also indicate that
on average there is no actual difference between the performance of the general and the
specific versions of HAP_ . To some extent this behavior is reasonable and can be
justified by the fact that most of the nearest neighbors of each problem belong to the same
domain and no matter how many redundant problems are included in the training set, the
algorithm will select the same problems in order to learn the model.

DISCUSSION AND CONCLUSION

This chapter presented our research work in the area of using Machine Learning
techniques in order to infer and utilize domain knowledge in Automated Planning. The
work consisted of two different approaches: The first one utilizes classification rules
learning and a rule-based system and the second one uses a variation of the k-Nearest
Neighbors learning paradigm.
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In the first approach the learned knowledge consists of rules that associate specific
values or value ranges of measurable problem attributes with the best values for one or
more planning parameters, such as the direction of search or the heuristic function. The
knowledge is learned off-line and it is embedded in a rule system, which is utilized by the
planner in a pre-processing phase in order to decide for the best setup of the planner
according to the values of the given problem attributes.

The second approach is also concerned with the automatic configuration of
planning systems in a pre-processing phase, but the learning is performed online. More
specifically, when the system is confronted with a new problem, it identifies the knearest
instances from a database of solved problems and aggregates the planner setups that
resulted in the best solutions according to the criteria imposed by the user.

The model of the first approach is very compact and it consists of a relatively small
number (less than 100) of rules that can be easily implemented in the adaptive system.
Since the size of the model is small it can be easily consulted for every new problem and
the overhead imposed to the total planning time is negligible. However, the inference of
the model is a complicated task that involves many subtasks and requires a significant
amount of processing time. Therefore, the model cannot be easily updated with new
problems. Furthermore, if the user wishes to change the way the solutions are evaluated
(e.g., emphasizing more on plan size) this would require rebuilding the whole model.

On the other hand, the model of the k Nearest Problems approach is inferred online
every time the system is faced with a new problem. The data that are stored in the database
of the system are in raw format and this allows incremental expansion and easy update.
Furthermore, each run is evaluated online and the weights of the performance criteria
(e.g., planning time or plan size) can be set by the user. However, since the system
maintains raw data for all the past runs, it requires a significant amount of disk size, which
increases as new problems are added in the database. Moreover, the overhead imposed
by the processing of data may be significant, especially for large numbers of training
problems.

Therefore, the decision on which method to follow strongly depends on the
application domain. For example, if the planner is used as a consulting software for
creating large plans, for example for logistics companies, then neither the size require-
ments or the few seconds overhead of the k Nearest Problems would be a problem. On
the other hand, if the planner must be implemented as a guiding system on a robot with
limited memory then the rule-based model would be more appropriate.

According to the experimental results, both systems have exhibited promising
performance that is on average better than the performance of any statistically found
static configuration. The speedup improves significantly when the system is tested on
unseen problems of known domains, even when the knowledge was induced by far easier
problems than the tested ones. Such a behavior can prove very useful in customizing
domain independent planners for specific domains using only a small number of easy-
to-solve problems for training, when it cannot be afforded to reprogram the planning
system.

The speedup of our approach compared to the statistically found best configuration
can be attributed to the fact that it treats planner parameters as associations of the
problem characteristics, whereas the statistical analysis tries to associate planner
performance with planner settings, ignoring the problem morphology.
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In the future, we plan to expand the application of Machine Learning to include more
measurable problem characteristics in order to come up with vectors of values that
represent the problems in a unique way and manage to capture all the hidden dynamics.
We also plan to add more configurable parameters of planning, such as parameters for
time and resource handling and enrich the HAP system with other heuristics from state-
of-the-art planning systems. Moreover, it is in our direct plans to apply learning
techniques to other planning systems in order to test the generality of the proposed
methodology.

In addition, we will explore the applicability of different rule-learning algorithms,
such as decision-tree learning that could potentially provide knowledge of better quality.
We will also investigate the use of alternative automatic feature selection techniques that
could prune the vector of input attributes thus giving the learning algorithm the ability
to achieve better results. The interpretability of the resulting model and its analysis by
planning experts will also be a point of greater focus in the future.
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Plan Optimization by
Plan Rewriting
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ABSTRACT

Planning by Rewriting (PbR) is a paradigm for efficient high-quality planning that
exploits declarative plan rewriting rules and efficient local search techniques to
transform an easy-to-generate, but possibly suboptimal, initial plan into a high-
quality plan. In addition to addressing planning efficiency and plan quality, PbR offers
a new anytime planning algorithm. The plan rewriting rules can be either specified by
a domain expert or automatically learned. We describe a learning approach based on
comparing initial and optimal plans that produce rules competitive with manually
specified ones. PbR is fully implemented and has been applied to several existing
domains. The experimental results show that the PbR approach provides significant
savings in planning effort while generating high-quality plans.

INTRODUCTION

Planning is the process of generating a network of actions, a plan that achieves a
desired goal from an initial state of the world. Many problems of practical importance can
be cast as planning problems. Instead of crafting an individual planner to solve each
specific problem, a long line of research has focused on constructing domain-indepen-
dent planning algorithms. Domain-independent planning accepts as input not only
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descriptions of the initial state and the goal for each particular problem instance, but also
a declarative domain specification, that is, the set of actions that transform a state into
a new state. Domain-independent planning makes the development of planning algo-
rithms more efficient, allows for software and domain reuse, and facilitates the principled
extension of the capabilities of the planner. Unfortunately, domain-independent plan-
ning is computationally hard (Bylander, 1994; Erol, Nau & Subrahmanian, 1995). Given
the complexity limitations, most of the previous work on domain-independent planning
has focused on finding any solution plan without careful consideration of plan quality.
Usually very simple cost functions, such as the length of the plan, have been used.
However, for many practical problems plan quality is crucial. In this chapter we present
Planning by Rewriting (PbR), a planning paradigm that addresses both planning effi-
ciency and plan quality while maintaining the benefits of domain independence. The
framework is fully implemented and we present empirical results in several planning
domains.

Two observations guided the present work. The first one is that there are two
sources of complexity in planning:

° Satisfiability: the difficulty of finding any solution to the planning problem
(regardless of the quality of the solution).

° Optimization: the difficulty of finding the optimal solution under a given cost
metric.

Foragiven domain, each of these facets may contribute differently to the complexity
of planning. In particular, there are many domains in which the satisfiability problem is
relatively easy and their complexity is dominated by the optimization problem. For
example, there may be many plans that would solve the problem, so that finding one is
efficient in practice, but the cost of each solution varies greatly, thus finding the optimal
one is computationally hard. We will refer to these domains as optimization domains.
Some optimization domains of great practical interest are query optimization and
manufacturing process planning.'

The second observation is that planning problems have a great deal of structure.
Plans are a type of graph with strong semantics determined by both the general properties
of planning and each particular domain specification. This structure should and can be
exploited to improve the efficiency of the planning process.

Prompted by the previous observations, we developed a novel approach for
efficient planning in optimization domains: Planning by Rewriting (PbR). The framework
works in two phases:

1. Generateaninitial solution plan. Recall that in optimization domains this is efficient.
However, the quality of this initial plan may be far from optimal.

2. [Iteratively rewrite the current solution plan improving its quality using a set of
declarative plan-rewriting rules, until either an acceptable solution is found or a
resource limit is reached.

As motivation, consider the optimization domains of distributed query processing
and manufacturing process planning.? Distributed query processing (Yu & Chang, 1984)
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involves generating a plan that efficiently computes a user query from data that resides
at different nodes in a network. This query plan is composed of data retrieval actions at
diverse information sources and operations on this data (such as those of the relational
algebra: join, selection, etc). Some systems use a general-purpose planner to solve this
problem (Knoblock, 1996). In this domain it is easy to construct an initial plan (any parse
of the query suffices) and then transform it using a gradient-descent search to reduce
its cost. The plan transformations exploit the commutative and associative properties of
the (relational algebra) operators, and facts, such as that when a group of operators can
be executed together at a remote information source it is generally more efficient to do
so. Figure 1 shows some sample transformations. Simple-join-swap transforms two join
trees according to the commutative and associative properties of the join operator.
Remote-join-eval executes a join of two sub-queries at a remote source, if the source is
able to do so.

In manufacturing, the problem is to find an economical plan of machining operations
thatimplement the desired features of a design. In a feature-based approach (Nau, Gupta
& Regli, 1995), it is possible to enumerate the actions involved in building a piece by
analyzing its CAD model. It is more difficult to find an ordering of the operations and the
setups that optimize the machining cost. However, similar to query planning, it is possible
to incrementally transform an (possibly inefficient) initial plan. Often, the order of actions
does not affect the design goal, only the quality of the plan, thus many actions can
commute. Also, it is important to minimize the number of setups because fixing a piece
on a machine is a rather time consuming operation. Interestingly, such grouping of
machining operations on a setup is analogous to evaluating a sub-query at a remote
information source.

As suggested by these examples, there are many problems that combine the
characteristics of traditional planning satisfiability with quality optimization. For these
domains there often exist natural transformations that can be used to efficiently obtain
high-quality plans by iterative rewriting as proposed in PbR. These transformations can
be either specified by a domain expert as declarative plan-rewriting rules or learned
automatically.

There are several advantages to the planning style that PbR introduces. First, PbR
is a declarative domain-independent framework. This facilitates the specification of
planning domains, their evolution, and the principled extension of the planner with new
capabilities. Moreover, the declarative rewriting rule language provides a natural and
convenient mechanism to specify complex plan transformations. Second, PbR accepts
sophisticated quality measures because it operates on complete plans. Most previous

Figure 1. Planning transformations in query

Simple-Join-Swap:

retrieve(Q1, Sourcel) X [retrieve(Q2, Source2) X retrieve(Q3, Source3)] <
retrieve(Q2, Source2) X [retrieve(Q1, Sourcel) M retrieve(Q3, Source3)]
Remote-Join-Eval:

(retrieve(Q1, Source) X retrieve(Q2, Source)) A capability(Source, join)
= retrieve(Q1 X Q2, Source)
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planning approaches either have not addressed quality issues or have very simple
quality measures, such as the number of steps in the plan, because only partial plans are
available during the planning process. In general, a partial plan cannot offer enough
information to evaluate a complex cost metric and/or guide the planning search effec-
tively. Third, PbR can use local search methods that have been remarkably successful
in scaling to large problems (Aarts & Lenstra, 1997). By using local search techniques,
high-quality plans can be efficiently generated. Fourth, the search occurs in the space
of'solution plans, which is generally much smaller than the space of partial plans explored
by planners based on refinement search (Kambhampati, Knoblock & Yang, 1995). Finally,
our framework yields an anytime planning algorithm (Dean & Boddy, 1988). The planner
always has a solution to offer at any point in its computation (modulo the initial plan
generation that needs to be fast). This is a clear advantage over traditional planning
approaches, which must run to completion before producing a solution. Thus, our system
allows the possibility of trading off planning effort and plan quality. For example, in query
planning the quality of a plan is its execution time and it may not make sense to keep
planning if the cost of the current plan is small enough, even if a cheaper one could
be found.

The remainder of the chapter is structured as follows. First, we present the basic
framework of Planning by Rewriting as a domain-independent approach to local search.
Second, we show experimental results comparing the basic PbR framework with other
planners. Third, we present our approach to learning plan rewriting rules from examples.
Fourth, we show empirically that the learned rules are competitive with manually
specified ones. Finally, we discuss related work, future work, and conclusions.

PLANNING BY REWRITING
AS LOCAL SEARCH

We will describe the main issues in Planning by Rewriting as an instantiation of local
search® (Aarts & Lenstra, 1997; Papadimitriou & Steiglitz, 1982):

° Selection of an initial feasible point: In PbR this phase consists of efficiently
generating an initial solution plan.

. Generation of alocal neighborhood: In PbR the neighborhood of a plan is the set
of plans obtained from the application of a set of declarative plan-rewriting rules.

° Cost function to minimize: This is the measure of plan quality that the planner is
optimizing. The plan quality function can range from a simple domain-independent
cost metric, such as the number of steps, to more complex domain-specific ones,
such as the query evaluation cost or the total manufacturing time for a set of parts.

° Selection of the next point: In PbR, this consists of deciding which solution plan
to consider next. This choice determines how the global space will be explored and
has a significant impact on the efficiency of planning. A variety of local search
strategies can be used in PbR, such as steepest descent, simulated annealing,
etcetera. Which search method yields the best results may be domain or problem
specific.
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Figure 2. Sample plan in the Blocks World domain

clear(B) — Causal Link
— —» Ordering Constraint
on(A Table) ----=- Side Effect

Ton(A Table)
1 on( (CA) .7 Tclear(B)
4 UNSTACK(C A) 3 STACK(A B Table)”

7
clear C & C Teok) -~ ’,,:tlin(BlTablg) on(A B)
2 STACK(B C Table) 2>~ lclear( )On B0)
,- on(d Table) clear(C) el / f om

0= 1STACK(CD Table) GOAL

| "~ clear(D)
clear(B) clear(D Ton(C Table)
on(B D)
on(B Table)

5 UNSTACK(B D) ~T.-
Tlon(B D)

clear(A

10 -

Initial State Goal State

clear(B) clear(C)

In the following subsections we expand on these issues. First, we discuss the use
of declarative rewriting rules to generate a local neighborhood of a plan. Second, we
address the selection of the next plan and the associated search techniques for plan
optimization. Third, we discuss the measures of plan quality. Finally, we briefly describe
some approaches for initial plan generation.

Local Neighborhood Generation: Rules and Rewriting

The neighborhood of a solution plan is generated by the application of a set of
declarative plan-rewriting rules. These rules embody the domain-specific knowledge
about what transformations of a solution plan are likely to result in higher-quality
solutions. The application of a given rule may produce one or several rewritten plans or
fail to produce a plan, but the rewritten plans are guaranteed to be valid solutions. First,
we describe PbR plans and the syntax and semantics of the plan-rewriting rules, both by
example with a formal description. Second, we discuss two approaches to rule specifi-
cation. Third, we present a taxonomy of plan-rewriting rules. Finally, we present the
rewriting algorithm.

Plan-Rewriting Rules: Syntax and Semantics

A plan in PbR is represented by a graph, in the spirit of partial-order causal-link
planners (POCL) such as UCPOP (Penberthy & Weld, 1992). In fact, PbR is implemented
on top of Sage (Knoblock, 1996), which is an extension of UCPOP. Figure 2 shows a
sample plan for the simple Blocks World domain of Figure 3.*

A plan-rewriting rule has three components: (1) the antecedent (:if field) specifies
a sub-plan to be matched; (2) the :replace field identifies the sub-plan that is going to be
removed, a subset of steps and links of the antecedent; (3) the :with field specifies the
replacement sub-plan. Figure 4 shows two rewriting rules for the Blocks World domain
introduced in Figure 3. Intuitively, the rule avoid-move-twice says that, whenever pos-
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Figure 3. Blocks World operators

(define (operator STACK) (define (operator UNSTACK)

:parameters (7X ?Y ?Z) :parameters (7X 7Y)

:precondition :precondition

(:and (on ?7X ?Z) (clear 7X) (:and (on ?X ?Y) (clear 7X)
(clear ?Y) (:neq 7Y ?7Z) (:neq ?X ?Y) (:neq 7X Table)
(:neq ?X 7Z) (:neq 7X ?7Y) (:neq ?Y Table))
(:neq ?X Table) (:neq ?Y Table)) reffect

reffect (:and (on ?X Table) (clear 7?Y)

(:and (on 7X ?Y) (:not (on ?X ?Z)) (:not (on 7X ?7Y))))

(clear ?7Z) (:not (clear ?7Y))))

Figure 4. Blocks World rewriting rules

(define-rule :name avoid-move-twice (define-rule :name avoid-undo
:if (:operators :if (:operators

((?n1 (unstack ?bl ?b2)) ((?n1 (unstack ?bl 7b2))
(?7n2 (stack 7bl 7b3 Table))) (?n2 (stack ?bl ?b2 Table)))

:links (?n1 (on ?bl Table) ?n2) rconstraints

:constraints ((possibly-adjacent ?nil 7n2))
((possibly-adjacent ?nl 7n2) :replace (:operators (?nl 7n2))
(:neq 7b2 7b3))) :with NIL))

:replace (:operators (7nl 7n2))
:with (:operators
(?n3 (stack ?bl ?b3 7b2))))

sible, it is better to stack a block on top of another directly, rather than first moving it to
the table. This situation occurs in plans generated by the simple algorithm that first puts
all blocks on the table and then builds the desired towers, such as the plan in Figure 2.
The rule avoid-undo says that the actions of moving a block to the table and back to its
original position cancel each other and both actions can be removed from a plan.

A rule for the manufacturing domain of Minton (1988) is shown in Figure 5. This
domain and additional rewriting rules are described in detail in the experimental sections
below. The rule states that if a plan includes two consecutive punching operations in
order to make holes in two different objects, but another machine, a drill-press, is also
available, the plan quality may be improved by replacing one of the punch operations with
the drill-press. In this domain the plan quality is the makespan (i.e., the parallel time to
manufacture all parts). This rule helps to parallelize the plan and thus improve the plan
quality.

The plan-rewriting rule syntax follows the template shown in Figure 6. Next, we
describe the semantics of the three components of a rule (:if, :replace, and :with fields) in
detail.

The antecedent, the :if field, specifies a sub-plan to be matched against the current
plan. The graph structure of the sub-plan is defined in the :0perators and :links fields. The
:operators field specifies the nodes (operators) of the graph and the :links field specifies
the edges (causal and ordering links). Finally, the :constraints field specifies a set of
constraints that the operators and links must satisfy.
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Figure 5. Manufacturing process planning rewriting rule

(define-rule :name punch-by-drill-press
:if (:operators ((7nl (punch 7ol ?widthl 7orientationl))
(?n2 (punch 702 ?7width2 7orientation2)))
:links (7nl ?n2)
:constraints ((:neq 7ol 702)
(possibly-adjacent ?nl ?n2)))

:replace (:operators (7n1))
:with (:operators (?n3 (drill-press 7ol 7widthl ?orientationi))))

Figure 6. Rewriting Rule template

(define-rule :name <rule-name> <nv> = node variable
:if (:operators ((<nv> <np> {:resourcel}) ...) <np> = node predicate
:links ((<nv> {<1p>|:threat} <nv>) ...) <1lp> = causal link pred
:constraints (<ip> ...)) <ip> = interpreted pred
:replace (:operators (<nv> ...) | = alternative
:links ((<nv> {<1p>|:threat} <nv>) ...)) {} = optional
:with (:operators ((<nv> <np> {:resource}) ...)

:links ((<nv> {<1p>} <nv>) ...)))

The :operators field consists of a list of node variable and node predicate pairs. The
step number of those steps in the plan that match the given node predicate would be
correspondingly bound to the node variable. The node predicate can be interpreted in
two ways: as the step action, or as a resource used by the step. For example, the node
specification (?n2 (stack ?b1 ?b3 Table)) in the antecedent of avoid-move-twice in Figure 4
shows a node predicate that denotes a step action. This node specification will collect
tuples, composed of step number ?n2 and blocks ?b1 and ?h3, obtained by matching steps
whose action is a stack of a block ?b1 that is moved from the Table to the top of another
block ?b3. This node specification applied to the plan in Figure 2 would result in three
matches: (1 C D), (2 B C),and (3 A B), forthe variables (?n2 ?b1 ?b3) respectively. Ifthe
optional keyword :resource is present, the node predicate is interpreted as one of the
resources used by a plan step, as opposed to describing a step action.” An example of
a rule that matches against the resources of an operator is given in Figure 7, where the
node specification (?nl (machine ?x) :resource) will match all steps that use a resource of
type machine and collect pairs of step number ?nl and machine object ?x.

The :links field consists of a list of link specifications. Our language admits link
specifications of three types. The first type is specified as a pair of node variables. For
example, (?n1?n2) in Figure 5. This specification matches any temporal ordering link in
the plan, regardless if it was imposed by a causal link or by the resolution of a threat.

The second type of link specification matches causal links. Causal links are
specified as triples composed of the node variable of the producer step, a link predicate,
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Figure 7. Machine-swap rewriting rule

(define-rule :name machine-swap
:if (:operators ((7nl (machine ?x) :resource)
(7n2 (machine ?x) :resource))
:links ((?nl1 :threat 7n2)))
:replace (:links (?nl 7n2))
:with (:links (7n2 ?n1)))

and the node variable of the consumer step. The semantics of a causal link is that the
producer step asserts in its effects the predicate, which in turn is needed in the
preconditions of the consumer step. For example, the link specification
(?nl (on ?bl Table) ?n2) in Figure 4 matches steps ?nl that put a block ?b1 on the Table
and steps ?n2 that subsequently pick up this block. That link specification applied to the
plan in Figure 2 would result in the matches: (4 C 1) and (5 B 2), for the variables
(?n1 ?b1 ?n2).

The third type of link specification matches ordering links originating from the
resolution of threats (coming either from resource conflicts or from operator conflicts).
These links are selected by using the keyword :threat in the place of a condition. For
example, the machine-swap rule in Figure 7 uses the link specification (?nl :threat 7n2) to
ensure that only steps that are ordered because they are involved in a threat situation
are matched. This helps to identify which are the “critical” steps that do not have any
other reasons (i.e., causal links) to be in such order, and therefore this rule may attempt
toreorder them. This isuseful when the plan quality depends on the degree of parallelism
inthe plan as a different ordering may help to parallelize the plan. Recall that threats can
be solved either by promotion or demotion, so the reverse ordering may also produce a
valid plan, which is often the case when the conflict is among resources as in the rule in
Figure 7.

Interpreted predicates, built-in and user-defined, can be specified in the :constraints
field. These predicates are implemented programmatically as opposed to being obtained
by matching against components from the plan. The built-in predicates currently
implemented are inequality (:neq), comparison (<, <=, >, >=), and arithmetic (+, -, *, /)
predicates. The user can also add arbitrary predicates and their corresponding program-
matic implementations. The interpreted predicates may act as filters on the previous
variables or introduce new variables (and compute new values for them). For example,
the user-defined predicate possibly-adjacent in the rules in Figure 4 ensures that the steps
are consecutive in some linearization of the plan.® For the plan in Figure 2 the extension
ofthe possibly-adjacent predicate is: (0 4), (0 5), (4 5), (5 4),(4 1),(5 1), (1 2),(2 3),and
(3 Goal).

The user can easily add interpreted predicates by including a function definition
that implements the predicate. During rule matching our algorithm passes arguments and
calls such functions when appropriate. The current plan is passed as a default first
argument to the interpreted predicates in order to provide a context for the computation
of the predicate (but it can be ignored). Figure 8 show a skeleton for the (Lisp)
implementation of the possibly-adjacent and less-than interpreted predicates.

The consequent is composed of the :replace and :with fields. The :replace field
specifies the sub-plan that is going to be removed from the plan, which is a subset of the
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Figure 8. Sample implementation of interpreted predicates

(defun possibly-adjacent (plan nodel node2) (defun less-than (plan nl n2)

(not (necessarily-not-adjacent (declare (ignore plan))
nodel (when (and (numberp ni)
node2 (numberp n2))
;; accesses the current plan (if (< n1 n2)
(plan-ordering plan))) ’(nil) ;; true

nil))) ;; false

steps and links identified in the antecedent. If a step is removed, all the links that refer
to the step are also removed. The :with field specifies the replacement sub-plan. As we
will see later, the replacement subplan does not need to be completely specified. For
example, the :with field of the avoid-move-twice rule of Figure 4 only specifies the addition
of a stack step but not how this step is embedded into the plan. The links to the rest of
the plan are automatically computed during the rewriting process.

Plan-Rewriting Rules: Full vs. Partial Specification

PbR gives the user total flexibility in defining rewriting rules. In this section we
describe two approaches to guaranteeing that a rewriting rule specification preserves
plan correctness, that is, produces a valid rewritten plan when applied to a valid plan.

In the full-specification approach the rule specifies a/l steps and links involved in
a rewriting. The rule antecedent identifies all the anchoring points for the operators in
the consequent, so that the embedding of the replacement sub-plan is unambiguous and
results in a valid plan. The burden of proving the rule correct lies upon the user or an
automated rule defining procedure. These kinds of rules are the ones typically used in
graph rewriting systems (Schiirr, 1997).

In the partial-specification approach the rule defines the operators and links that
constitute the gist of the plan transformation, but the rule does not prescribe the precise
embedding of the replacement sub-plan. The burden of producing a valid plan lies upon
the system. PbR takes advantage of the semantics of domain-independent planning to
accept such a relaxed rule specification, fill in the details, and produce a valid rewritten
plan. Moreover, the user is free to specify rules that may not necessarily be able to
compute a rewriting for a plan that matches the antecedent because some necessary
condition was not checked in the antecedent. That is, a partially specified rule may be
over general. This may seem undesirable, but often a rule may cover more useful cases
and be more naturally specified in this form. The rule may only fail for rarely occurring
plans, so that the effort in defining and matching the complete specification may not be
worthwhile. In any case, the plan-rewriting algorithm ensures that the application of a
rewriting rule either generates a valid plan or fails to produce a plan [Theorem 1 in Ambite
& Knoblock (2001)].

As an example of these two approaches to rule specification, consider the avoid-
move-twice-full rule of Figure 9, which is a fully specified version of the avoid-move-twice
rule of Figure 4. The avoid-move-twice-full rule is more complex and less natural to specify
than avoid-move-twice. But, more importantly, avoid-move-twice-full is making more commit-
ments than avoid-move-twice. In particular, avoid-move-twice-full fixes the producer of (clear
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Figure 9. Fully specified rewriting rule

(define-rule :name avoid-move-twice-full
:if (:operators ((7nl (unstack ?bl ?b2))
(?7n2 (stack ?bl 7b3 Table)))
:1inks ((7n4 (clear 7b1l) ?nl1) (7n5 (on ?bl ?b2) 7nl)
(?n1 (clear ?b2) 7n6) (7nl (on 7?bl Table) 7n2)
(?n7 (clear ?bl) 7n2) (?n8 (clear 7b3) 7n2)
(7n2 (on 7bl 7b3) 7n9))
:constraints ((possibly-adjacent ?nl ?n2)
(:neq ?b2 7b3)))
:replace (:operators (?nl 7n2))
:with (:operators ((7n3 (stack ?bl ?b3 ?b2)))
:1links ((7n4 (clear 7bl) ?n3) (7n8 (clear 7b3) ?7n3)
(?n5 (on 7bl ?b2) ?n3) (?n3 (on ?bl 7b3) ?7n9))))

?b1) for ?n3 to be ?n4 when ?n7 is also known to be a valid candidate. In general, there
are several alternative producers for a precondition of the replacement sub-plan, and
consequently many possible embeddings. A different fully specified rule is needed to
capture each embedding. The number of rules grows exponentially as all permutations
ofthe embeddings are enumerated. However, by using the partial-specification approach
we can express a general plan transformation by a single natural rule.

In summary, the main advantage of the full-specification rules is that the rewriting
can be performed more efficiently because the embedding of the consequent is already
specified. The disadvantages are that the number of rules to represent a generic plan
transformation may be very large and the resulting rules quite lengthy; both of these
problems may decrease the performance of the match algorithm. Also, the rule specifi-
cation is error prone if written by the user. Conversely, the main advantage of the partial-
specification rules is that a single rule can represent a complex plan transformation
naturally and concisely. The rule can cover a large number of plan structures even if it
may occasionally fail. Also, the partial specification rules are much easier to specify and
understand by the users of the system. As we have seen, PbR provides a high degree
of flexibility for defining plan-rewriting rules.

A Taxonomy of Plan-Rewriting Rules

In order to guide the user in defining plan-rewriting rules for a domain or to help in
designing algorithms to automatically deduce the rules from the domain specification,
it is helpful to know what kinds of rules are useful. We have identified the following
general types of transformation rules:

i Reorder: These are rules based on algebraic properties of the operators, such as
commutative, associative and distributive laws. For example, the commutative rule
that reorders two operators that need the same resource in Figure 7, or the simple-
join-swap rule in Figure I that combines the commutative and associative proper-
ties of the relational algebra.

i Collapse: These are rules that replace a sub-plan by a smaller sub-plan. For example,
when several operators can be replaced by one, as in the remote-join-eval rule in
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Figure 10. Adding actions can improve quality

(a) Low Quality Plan (b) High Quality Plan

Figure 1. This rule replaces two remote retrievals at the same information source
and a local join by a single remote join operation (when the remote source has the
capability of performing joins). Other examples are the Blocks World rules in
Figure 4 that replace unstack and a stack operators either by an equivalent single
stack operator or the empty plan.

i Expand: These are rules that replace a sub-plan by a bigger sub-plan. Although this
may appear counter-intuitive initially, it is easy to imagine a situation in which an
expensive operator can be replaced by a set of operators that are cheaper as a whole.
Aninteresting case is when some of these operators are already present in the plan
and can be synergistically reused. We did not find this rule type in the domains
analyzed so far, but Backstrom (1994) presents a framework in which adding actions
improves the quality of the plans. His quality metric is the plan execution time,
similarly to the manufacturing domain of our experiments below. Figure 10 shows
an example of a planning domain where adding actions improves quality (from
Béckstrom, 1994). In this example, removing the link between Bm and C1 and
inserting a new action A' shortens significantly the time to execute the plan.

i Parallelize: These are rules that replace a sub-plan with an equivalent alternative
sub-plan that requires fewer ordering constraints. A typical case is when there are
redundant or alternative resources that the operators can use. For example, the rule
punch-by-drill-press in Figure 5. Another example is the rule that Figure 10 sug-
gests that could be seen as a combination of the expand and parallelize types.

Plan-Rewriting Algorithm

The plan-rewriting algorithm is shown in Figure 11. The algorithm takes two inputs:
a valid plan P, and a rewriting rule R=(q,, p,, p,), where g, is the antecedent query, p,
is the replaced sub-plan, and p,_ is the replacement sub-plan. The output is a valid
rewritten plan P'. To disentangle the algorithm from any particular search strategy, we
write it using non-deterministic choice as is customary.

The matching of the antecedent of the rewriting rule (¢, ) determines if the rule is
applicable and identifies the steps and links of interest (line 1). This matching can be seen
as sub-graph isomorphism between the antecedent sub-plan and the current plan (with
the results then filtered by applying the :constraints). However, we take a different
approach. PbR implements rule matching as conjunctive query evaluation. Our implemen-
tation keeps a relational representation of the steps and links in the current plan similar
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Figure 11. Plan-rewriting algorithm

procedure RewritePlan
Input: a valid partial-order plan P
a rewriting rule R = (¢, pr, D), Variables(p,) C Variables(q,)
Output: a valid rewritten partial-order plan P’ (or failure)
1. ¥ := Match(qm, P)
Match the rule antecedent g¢,, (:if field) against P. The result is a
set of substitutions ¥ = {..., 0y, ...} for variables in g,.
2. If ¥ = () then return failure
. Choose a match g; € X
4. p, == oipy
Instantiate the subplan to be removed p, (:replace field)
according to o;.
5. P! := AddFlaws(UsefulEffects(p), P — pt)
Remove the instantiated subplan p!. from the plan P and add the
UsefulEffects of pi. as open conditions.
The resulting plan P? is now incomplete.
6. pé ‘= 0iPc
Instantiate the replacement subplan p. (:with field) according to o;.
7. P!:= AddFlaws(Preconditions(p’) U Fz'ndThreatg(Pf Upl), PiUpl)
Add the instantiated replacement subplan p to P;. Find new threats
and open conditions and add them as flaws. P! is potentially
incomplete, having several flaws that need to be resolved.
8. Choose P' € rPOP(P?)
Complete plan P! using a partial-order causal-link planning algorithm
(restricted to do only step reuse, but no step addition) in order to
resolve threats and open conditions. 7 POP returns failure if no valid
plan can be found. Non-deterministically choose a completion.
9. Return P’

w

to the node and link specifications of the rewriting rules. For example, the database for
the plan in Figure 2 contains one table for the unstack steps with schema (?nl ?b1 ?b2)
and tuples (4 C A) and (5 B D), another table for the causal links involving the clear
condition with schema (?n1 ?n2 ?b) and tuples (0 1 C), (02 B), (02 C), (03 B), (04 C), (0
5B),(43 A)and (5 1 D), and similar tables for the other operator and link types. The match
process consists of interpreting the rule antecedent as a conjunctive query with
interpreted predicates, and executing this query against the relational view of the plan
structures. As arunning example, we will analyze the application of the avoid-move-twice
rule of Figure 4 to the plan in Figure 2. Matching the rule antecedent identifies steps 1
and 4. More precisely, considering the antecedent as a query, the result is the single tuple
(4 C A 1 D) for the variables (?nl ?b1 ?b2 ?n2 ?b3).

After (non-deterministically) choosing a match ¢,to work on (line 3), the algorithm
instantiates the sub-plan specified by the :replace field (p ) according to such match
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(line 4) and removes the instantiated sub-plan p’ from the original plan P (line 5). All the
edges incoming and emanating from nodes of the replaced sub-plan are also removed.
The effects that the replaced plan p’ was achieving for the remainder of the plan (P—p'),
the UsefulEffects of p' , willnow have to be achieved by the replacement sub-plan (or other
steps of P—p’). In order to facilitate this process, the AddFlaws procedure records these
effects as open conditions.” The result is the partial plan 7' (line 5). Continuing with our
example, Figure 12(a) shows the plan resulting from removing steps 1 and 4 from the
plan in Figure 2.

Finally, the algorithm embeds the instantiated replacement sub-plan p' into the
remainder of the original plan (lines 6-9). Ifthe rule is completely specified, the algorithm
simply adds the (already instantiated) replacement sub-plan to the plan, and no further
work isnecessary. Ifthe rule is partially specified, the algorithm computes the embeddings
of the replacement sub-plan into the remainder of the original plan in three stages. First,
the algorithm adds the instantiated steps and links of the replacement plan p’ (line 6) into
the current partial plan P’ (line 7). Figure 12(b) shows the state of our example after p’,
the new stack step (6), has been incorporated into the plan. Note the open conditions
(clear A) and on(C D). Second, the FindThreats procedure computes the possible threats,
both operator threats and resource conflicts, occurring in the P’ U p' partial plan (line 7);
for example, the threat situation on the clear(C) proposition between step 6 and 2 in
Figure 12(b). These threats and the preconditions of the replacement plan p’ are
recorded by AddFlaws resulting in the partial plan P’ . Finally, the algorithm completes
the plan using »POP, a partial-order causal-link planning procedure restricted to only
reuse steps (i.e., no step addition) (line 8). »POP allows us to support our expressive
operator language and to have the flexibility for computing one or all embeddings. If only
one rewriting is needed, rPOP stops at the first valid plan. Otherwise, it continues until
exhausting all alternative ways of satisfying open preconditions and resolving conflicts,
which produces all valid rewritings. In our running example, only one embedding is
possible and the resulting plan is that of Figure 12(c), where the new stack step (6)
produces (clear A) and on(C D), its preconditions are satisfied, and the ordering (6 2)
ensures that the plan is valid.

In Ambite & Knoblock (2001) we show that the plan rewriting algorithm of Figure 11
is sound in the sense that it produces a valid plan if the input is a valid plan, or it outputs
failure if the input plan cannot be rewritten using the given rule. Since each elementary
plan-rewriting step is sound, the sequence of rewritings performed during PbR’s
optimization search is also sound.

We cannot guarantee that PbR’s optimization search is complete in the sense that
the optimal plan would be found. PbR uses local search and it is well known that, in
general, local search cannot be complete. Even if PbR exhaustively explores the space
of planrewritings induced by a given initial plan and a set of rewriting rules, we still cannot
prove that all solution plans will be reached. This is a property of the initial plan generator,
the set of rewriting rules, and the semantics of the planning domain. The rewriting rules
of PbR play asimilarrole as traditional declarative search control where the completeness
of'the search may be traded for efficiency. An open problem is whether using techniques
for inferring invariants in a planning domain (Gerevini & Schubert, 1998; Fox & Long,
1998; Rintanen, 2000) and/or proving convergence of term and graph rewriting systems
(Baader & Nipkow, 1998) could provide conditions for completeness of a plan-rewriting
search in a given planning domain.
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Figure 12. Plan rewriting: Applying rule avoid-move-twice of Figure 4 to plan of
Figure 2
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Figure 13. Local search

Neighborhood Local Optima Local Optima

(a) Basic Iterative Improvement (b) Variable-Depth Search

Selection of Next Plan: Search Strategies

Many local search methods, such as first and best improvement, simulated anneal-
ing (Kirkpatrick, Gelatt & Vecchi, 1983), tabu search (Glover, 1989), or variable-depth
search (Lin & Kernighan, 1973), can be applied straightforwardly to PbR. Figure 13
depicts graphically the behavior of iterative improvement and variable-depth search. In
our experiments below we have used first and best improvement, which have performed
well. Next, we describe some details of the application of these two methods in PbR.

Firstimprovement generates the rewritings incrementally and selects the first plan
of better cost than the current one. In order to implement this method efficiently we can
use atuple-at-a-time evaluation of the rule antecedent, similarly to the behavior of Prolog.
Then, for that rule instantiation, generate one embedding, test the cost of the resulting
plan, and if it is not better that the current plan, repeat. We have the choice of generating
another embedding of the same rule instantiation, generate another instantiation of the
same rule, or generate a match for a different rule.

Best improvement generates the complete set of rewritten plans and selects the
best. This method requires computing all matches and all embeddings for each match.
All the matches can be obtained by evaluating the rule antecedent as a set-at-a-time
database query. In our experience, computing the plan embeddings was usually more
expensive than computing the rule matches.

Plan Quality

In most practical planning domains the quality of the plans is crucial. This is one
of the motivations for the Planning by Rewriting approach. In PbR the user defines the
measure of plan quality most appropriate for the application domain. This quality metric
could range from a simple domain-independent cost metric, such as the number of steps,
to more complex domain-specific ones. For example, in query planning the measure of plan
quality usually is an estimation of the query execution cost based on the size of the
database relations, the data manipulation operations involved in answering a query, and
the costof network transfer. In Ambite and Knoblock (2000), we describe a complex cost
metric based on traditional query estimation techniques (Silberschatz, Korth & Sudarshan,
1997) that PbR uses to optimize query plans. The cost metric may involve actual monetary
costs if some of the information sources require payments. In the job-shop scheduling
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domain some simple cost functions are the makespan, or the sum of the times to finish
each piece. A more sophisticated manufacturing domain may include a variety of
concerns, such as the cost, reliability, and precision of each operator/process, the costs
ofresources and materials used by the operators, the utilization of the machines, etcetera.

A significant advantage of PbR is that the complete plan is available to assess its
quality. In generative planners the complete plan is not available until the search for a
solution is completed, so usually only very simple plan quality metrics, such as the
number of steps, can be used. Moreover, if the plan cost is not additive, a plan refinement
strategy is impractical since it may need to exhaustively explore the search space to find
the optimal plan. An example of non-additive cost function appears in the UNIX planning
domain (Etzioni & Weld, 1994) where a plan to transfer files between two machines may
be cheaper if the files are compressed initially (and uncompressed after arrival). That s,
the plan that includes the compression (and the necessary uncompression) operations
ismore cost effective, but a plan refinement search would not naturally lead to it. By using
complete plans, PbR can accurately assess arbitrary measures of quality.

Initial Plan Generation

PbR relies on an efficient plan generator to produce the initial plan on which to start
the optimization process. Fortunately, the efficiency of planners has increased signifi-
cantly in recent years. Much of these gains come from exploiting heuristics or domain-
dependent search control. However, the quality of the generated plans is often far from
optimal, thus the need for an optimization process like PbR. We briefly review some
approaches to efficiently generate initial plans.

HSP (Bonet & Geftner, 2001) applies heuristic search to classical Al planning. The
domain-independent heuristic function is a relaxed version of the planning problem: it
computes the number of required steps to reach the goal disregarding negated effects
inthe operators. Such metric can be computed efficiently. Despite its simplicity and that
the heuristic is not admissible, it scales surprisingly well for many domains. Because the
plans are generated according to the fixed heuristic function, the planner cannot
incorporate a quality metric.

TLPlan (Bacchus & Kabanza, 2000) is an efficient forward-chaining planner that
uses domain-dependent search control expressed in temporal logic. Because in forward-
chaining the complete state is available, much more refined domain control knowledge
can be specified. The preferred search strategy used by TLPlan is depth-first search, so
although it finds plans efficiently, the plans may be of low quality. Note that because it
is a generative planner that explores partial sequences of steps, it cannot use sophisti-
cated quality measures.

Some systems automatically learn search control for a given planning domain or
even specific problem instances. Minton (1998) shows how to deduce search control
rules by applying explanation-based learning to problem-solving traces. Another ap-
proach to automatically generating search control is by analyzing statically the operators
(Etzioni, 1993) or inferring invariants in the planning domain (Gerevini & Schubert, 1998;
Fox & Long, 1998; Rintanen, 2000). Abstraction provides yet another form of search
control. Knoblock (1994) presents a system that automatically learns abstraction hier-
archies from a planning domain or a particular problem instance in order to speed up
planning.
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By setting the type of search and providing a strong bias by means of the search
control rules, the planner can quickly generate a valid, although possibly suboptimal,
initial plan. For example, in the manufacturing domain of Minton (1988), analyzed in detail
in the experimental section, depth-first search and a goal selection heuristic based on
abstraction hierarchies (Knoblock, 1994) quickly generates a feasible plan, but often the
quality of this plan, which is defined as the time required to manufacture all objects, is
suboptimal.

EMPIRICAL RESULTS

In this section we show the broad applicability of Planning by Rewriting by
analyzing three domains with different characteristics: a process manufacturing domain
(Minton, 1988), a transportation logistics domain, and the Blocks World domain that we
used in the examples throughout the chapter. An analysis of a domain for query planning
in data integration systems appears in Ambite and Knoblock (2000, 2001) and Ambite
(1998).

Manufacturing Process Planning

The task in the manufacturing process planning domain is to find a plan to
manufacture a set of parts. We implemented a PbR translation of the domain specification
of Minton (1988). This domain contains a variety of machines, such as a lathe, punch,
spray painter, welder, etcetera, for a total of ten machining operations. Some of the
operators of the specification appear in Figure 14 [see (Ambite & Knoblock, 2001;
Ambite, 1998) for the full description].

The measure of plan cost is the makespan (or schedule length), the (parallel) time
to manufacture a/l parts. In this domain all of the machining operations are assumed to
take unit time. The machines and the objects (parts) are modeled as resources in order
to enforce that only one part can be placed on a machine at a time and that a machine can
only operate on a single part at a time (except bolt and weld which operate on two parts
simultaneously).

We have already shown some of the types of rewriting rules for this domain in
Figures 5and 7. Figure 15 shows some additional rules that we used in our experiments.
Rules IP-by-SP and roll-by-lathe exchange operators that are equivalent with respect to
achieving some effects. By examining the operator definitions in Figure 14, it can be
readily noticed that both immersion-paint and spray-paint change the value of the painted
predicate. Similarly, roll-by-lathe exchanges roll and lathe operators as they both make parts
cylindrical. To focus the search on the most promising exchanges, these rules only match
operators in the critical path (by means of the interpreted predicate in-critical-path).

The two bottom rules in Figure 15 are more sophisticated. The lathe+SP-by-SP rule
takes care of an undesirable effect of the simple depth-first search used by our initial plan
generator. In this domain, in order to spray paint a part, the part must have a regular shape.
Being cylindrical is a regular shape; therefore the initial planner may decide to make the
part cylindrical by lathing it in order to paint it! However, this may not be necessary as
the part may already have a regular shape (for example, it could be rectangular, which is
also a regular shape). Thus, the lathe+SP-by-SP substitutes the pair spray-paint and lathe
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Figure 14. (Some) operators for manufacturing process planning

(define (operator LATHE)
:parameters (?x)
:resources ((machine LATHE)
(is-object ?x))
:precondition (is-object 7x)
:effect
(:and
(:forall (?color)
(:not (painted ?x ?color)))
(:forall (?shape)
(:when (:neq ?shape CYLINDRICAL)
(:not (shape ?x ?shape))))
(:forall (7?s)
(:when (:neq ?s ROUGH)
(:not (surface-condition ?x 7s))))
(surface-condition ?x ROUGH)
(shape ?x CYLINDRICAL)))

(define (operator DRILL-PRESS)
:parameters (?x ?width ?orientation)
:resources ((machine DRILL-PRESS)

(is-object 7?x))
:precondition
(:and (is-object 7x)
(have-bit ?width)
(is-drillable ?x ?orientation))
:effect
(has-hole ?x ?width ?orientation))

(define (operator IMMERSION-PAINT)
:parameters (?x ?color)

:resources ((machine IMMERSION-PAINTER)

(is-object 7?x))
:precondition
(:and
(is-object ?x)
(have-paint-for-immersion ?color))
:effect (painted ?x ?color))

(define (operator WELD)
:parameters (?x 7y 7new-obj ?ort)
:resources ((machine WELDER)

(is-object 7x)
(is-object ?y))
:precondition
(:and
(is-object ?x) (is-object ?y)

(composite-object 7new-obj Zort ?x ?y)

(can-be-welded ?x ?y Zort))
ceffect
(:and (temperature 7new-obj HOT)
(joined ?x 7y ?ort)
(:not (is-object ?x))
(:not (is-object ?y))))

(define (operator ROLL)
:parameters (?x)
:resources ((machine ROLLER)
(is-object 7x))
:precondition (is-object 7x)
:effect
(:and
(:forall (?color)
(:not (painted ?x ?color)))
(:forall (?shape)
(:when (:neq ?shape CYLINDRICAL)
(:not (shape ?x ?shape))))
(:forall (?temp)
(:when (:neq ?temp HOT)
(:not (temperature ?x 7temp))))
(:forall (7?s)
(:not (surface-condition ?x ?s)))
(:forall (?width ?ort)
(:not (has-hole ?x ?7width Zort)))
(temperature ?x HOT)
(shape ?x CYLINDRICAL)))
(define (operator PUNCH)
:parameters (?x ?width Zort)
:resources ((machine PUNCH)
(is-object ?x))
:precondition
(:and (is-object 7x)
(has-clamp PUNCH)
(is-punchable ?x ?width Zort))
reffect
(:and
(:forall (7s)
(:when (:neq ?s ROUGH)
(:not (surface-condition ?x ?s))))
(surface-condition ?x ROUGH)

(has-hole ?x ?width Zort)))
(define (operator SPRAY-PAINT)

:parameters (?x 7color 7shape)
:resources ((machine SPRAY-PAINTER)
(is-object ?x))
:precondition
(:and (is-object 7x)
(sprayable ?color)
(temperature ?x COLD)
(regular-shape ?shape)
(shape 7x ?shape)
(has-clamp SPRAY-PAINTER))
:effect (painted 7x ?color))
(define (operator BOLT)
:parameters (?x 7y 7new-obj Tort ?7width)
:resources ((machine BOLTER)
(is-object ?x)
(is-object ?y))
:precondition
(:and
(is-object ?x) (is-object ?y)
(composite-object 7new-obj Zort ?x ?y)
(has-hole ?x ?width Zort)
(has-hole ?y ?width Zort)
(bolt-width ?width)
(can-be-bolted 7x ?y Zort))
:effect (:and (:not (is-object ?x))
(:not (is-object ?y))
(joined ?x 7y ?ort)))
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Figure 15. Rewriting rules for manufacturing process planning

(define-rule :name IP-by-SP (define-rule :name roll-by-lathe
:if (:operators :if (:operators ((?nl1 (roll ?x)))
(?7n1 (immersion-paint ?x ?c)) :constraints ((in-critical-path 7n1)))
:constraints :replace (:operators (7nl))
((regular-shapes ?s) :with (:operators (7n2 (lathe 7x))))

(in-critical-path 7n1)))
:replace (:operators (7nl))
:with (:operators

(7n2 (spray-paint 7x ?c ?s))))

(define-rule :name lathe+SP-by-SP (define-rule :name both-providers-diff-bolt

:if (:operators :if (:operators

((7n1 (lathe ?x)) ((7n3 (bolt ?x 7y ?z %o 7wl)))

(?n2 (spray-paint ?x ?c 7s1))) :links

:constraints ((regular-shapes ?s2))) ((?n1 (has-hole ?x 7wl ?0) ?n3)
:replace (:operators (7nl 7n2)) (?7n2 (has-hole ?y 7wl ?0) ?n3)
:with (?n4 (has-hole ?x ?w2 ?0) ?nb)
(:operators (7n6 (has-hole 7y ?w2 7o) ?n7))

((7n3 (spray-paint ?x 7c ?7s2))))) :constraints ((:neq 7wl 7w2)))

:replace (:operators (7nl 7n2 ?n3))
:with (:operators
((?7n8 (bolt ?x 7y 7z %o ?w2)))
:1links
((?n4 (has-hole ?x ?w2 ?0) ?7n8)
(7n6 (has-hole ?y ?7w2 ?0) ?n8))))

by a single spray-paint operation. The supporting regular-shapes interpreted predicate just
enumerates which are the regular shapes. These rules are partially specified and are not
guaranteed to always produce a rewriting. Nevertheless, they are often successful in
producing plans of lower cost.

The both-providers-diff-bolt rule is an example of rules that explore bolting two parts
using bolts of different size if fewer operations may be needed for the plan. We developed
these rules by analyzing differences in the quality of the optimal plans and the rewritten
plans. This rule states that if the parts to be bolted already have compatible holes in them,
it is better to reuse those operators that produced the holes. The initial plan generator
may have drilled (or punched) holes whose only purpose was to bolt the parts. However,
the goal of the problem may already require some holes to be performed on the parts to
be joined. Reusing the available holes produces a more economical plan.

As an illustration of the rewriting process in the manufacturing domain, consider
Figure 16. The plan at the top of the figure is the result of a simple initial plan generator
that solves each part independently and concatenates the corresponding sub-plans.
Although such planis generated efficiently, it is of poor quality. [t requires six time-steps
to manufacture all parts. The figure shows the application of two rewriting rules, machine-
swap and IP-by-SP, that improve the quality of this plan. The operators matched by the
rule antecedent are shown in italics. The operators introduced in the rule consequent
are shown in bold. First, the machine-swap rule reorders the punching operations on parts
A and B. This breaks the long critical path that resulted from the simple concatenation
of their respective sub-plans. The schedule length improves from six to four time-steps.
Still, the three parts A, B, and C use the same painting operation (immersion-paint). As the
immersion-painter can only process one piece at a time, the three operations must be done
serially. Fortunately, in our domain there is another painting operation: spray-paint. The
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Figure 16. Rewriting in the manufacturing domain

Lathe A= IPaint A Red=*> Punch A2 ¥ Punch C 17 |Paint C\Elue
Roll B » |Paint B Red

Reorder Parts on a Machine Cost: 6

Lathe A= |Paint ARed > Punch A2

Punch C 1 — |Paint C Blue Cost: 4
Roll B »  [Paint B Red

L Immersion-Paint => Spray-Paint

Lathe A= IPaint A Red 2* Punch A 2
Punch C 1™ IPaintC Blue | Cost:3
Roll B—* Spray-Paint B Red

IP-by-SP rule takes advantage of this fact and substitutes an immersion-paint operation on
part B by a spray-paint operation. This further parallelizes the plan obtaining a schedule
length of three time-steps, which is the optimal for this plan.

We compare four planners (IPP, Initial, and two configurations of PbR):

i IPP: This is one of the most efficient domain-independent planners (Koehler,
Nebel, Hoffman & Dimopoulos, 1997) of the planning competition held at the Fourth
International Conference on Artificial Intelligence Planning Systems (AIPS-98).
IPP (Koehler et al., 1997) is an optimized re-implementation and extension of
Graphplan (Blum & Furst, 1997). IPP produces shortest parallel plans. For our
manufacturing domain, this is exactly the schedule length, the cost function that
we are optimizing.®

i Initial: The initial plan generator uses a divide-and-conquer heuristic in order to
generate plans as fast as possible. First, it produces sub-plans for each part and
for the joined goals independently. These sub-plans are generated by Sage using
a depth-first search without any regard to plan cost. Then, it concatenates the
subsequences of actions and merges them into a POCL plan.

i PbR: We present results for two configurations of PbR, which we will refer to as
PbR-100and PbR-300. Both configurations use a first improvement gradient search
strategy with random walk on the cost plateaus. The rewriting rules used are those
of Figure 15. For each problem PbR starts its search from the plan generated by
Initial. The two configurations differ only on how many total plateau plans are
allowed. PbR-100 allows considering up to 100 plans that do not improve the cost
without terminating the search. Similarly, PbR-300 allows 300 plateau plans. Note
that the limit is across all plateaus encountered during the search for a problem, not
for each plateau.
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We tested each of the four systems on 200 problems, for machining 10 parts, ranging
from 5 to 50 goals. The goals are distributed randomly over the 10 parts. So, for the 50-
goal problems, there is an average of 5 goals per part. The results are shown in Figure 17.
In these graphs each data point is the average of 20 problems for each given number of
goals. There were 10 provably unsolvable problems. Initial and PbR solved all 200
problems (or proved them unsolvable). IPP solved 65 problems in total: all problems at 5
and 10 goals, 19 at 15 goals, and 6 at 20 goals. IPP could not solve any problem with more
than 20 goals under the 1,000 CPU seconds time limit.

Figure 17(a) shows the average time on the solvable problems for each problem
set for the four planners. Figure 17(b) shows the average schedule length for the
problems solved by each of the planners for the 50-goal range. The fastest planner is
Initial, but it produces plans with a cost of about twice the optimal. IPP produces the
optimal plans, but it cannot solve problems of more than 20 goals. The PbR configurations
scale gracefully with the number of goals, improving considerably the cost of the plans
generated by Initial. The additional exploration of PbR-300 allows it to improve the plans
even further. For the range of problems solved by IPP, PbR-300 matches the optimal cost
of the IPP plans (except in one problem) and the faster PbR-100 also stays very close to
the optimal (less than 2.5% average cost difference).’

Logistics

The task in the logistics domain is to transport several packages from their initial
location to their desired destinations. We used a version of the logistics-strips planning
domain of the AIPS-98 planning competition, which we restricted to using only trucks
but not planes.!° The domain is shown in Figure 18. A package is transported from one
location to another by loading it into a truck, driving the truck to the destination, and
unloading the truck. A truck can load any number of packages. The cost function is the
(parallel) time to deliver all packages (measured as the number of operators in the critical
path of a plan).

Figure 17. Performance: Manufacturing process planning
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Figure 18. Operators for logistics

(define (operator LOAD-TRUCK)
:parameters (?obj ?truck 7loc)
:precondition

(:and (obj 7obj) (truck 7truck)
(location ?loc) (at ?truck ?loc)
(at ?obj ?loc))
:effect (:and (:not (at ?obj 7loc))
(in 7obj 7?truck)))

(define (operator UNLOAD-TRUCK)
:parameters (?obj ?truck ?loc)
:precondition

(:and (obj 7obj) (truck 7truck)
(location 7loc) (at ?truck ?loc)
(in 7obj ?truck))
:effect (:and (:not (in ?obj 7truck))
(at 7obj ?loc)))

(define (operator DRIVE-TRUCK)
:parameters (?truck ?loc-from ?loc-to ?city)
:precondition
(:and (truck ?truck) (location ?7loc-from) (location ?7loc-to) (city ?city)
(at 7truck 7loc-from) (in-city 7loc—from ?city) (in-city 7loc-to 7city))
:effect (:and (:not (at ?truck ?loc-from)) (at ?truck ?loc-to)))

We compare three planners on this domain:

i IPP: IPP produces optimal plans in this domain.

i Initial: The initial plan generator picks a distinguished location and delivers
packages one by one starting and returning to the distinguished location. For
example, assume that truck tl is at the distinguished location 11, and package pl
must be delivered from location 12 to location 13. The plan would be: drive-truck(tl
[112¢c), load-truck(p1t112), drive-truck(t11213 c), unload-truck(p1 t113), drive-truck(t11311c).
The initial plan generator would keep producing these circular trips for the

Figure 19. Logistics rewriting rules

(define-rule :name loop
:if
(:operators
((?n1 (drive-truck ?t ?11 7?12 ?c))
(?7n2 (drive-truck ?t ?12 7?11 ?c)))
:links ((7n1 7n2))
:constraints
((adjacent-in-critical-path ?nl 7n2)))
:replace (:operators (7nl 7n2))
:with NIL)

(define-rule :name load-earlier
:if
(:operators
((?n1 (drive-truck ?t ?11 7?12 ?c))
(?n2 (drive-truck ?t 713 712 ?c))
(?7n3 (load-truck 7p ?t ?12)))
:links ((7n2 7n3))
:constraints
((adjacent-in-critical-path 7n2 7n3)
(before 7nl1 7n2)))
:replace (:operators (7n3))
:with
(:operators
((7n4 (load-truck 7p 7t ?12)))
:1links ((?nl1 ?n4))))

(define-rule :name triangle
:if
(:operators
((?n1 (drive-truck ?t 7?11 7?12 7?c))
(?n2 (drive-truck ?t 7?12 7?13 ?c)))
:links ((7n1 7n2))
:constraints
((adjacent-in-critical-path ?nl 7n2)))
:replace (:operators (7nl 7n2))
:with
(:operators

((?n3 (drive-truck 7t 711 713 ?¢)))))
(define-rule :name unload-later

:if
(:operators
((?n1 (drive-truck ?t 7?11 7?12 7?c))
(?7n2 (unload-truck ?p 7t 712))
(?n3 (drive-truck ?t 7?13 7?12 ?c)))
:links ((7n1 7n2))
:constraints
((adjacent-in-critical-path ?nl 7n2)
(before 7n2 ?n3)))
:replace (:operators (7n2))
:with
(:operators
((?n4 (unload-truck ?p 7t ?12)))
:links ((?n3 ?n4))))
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Figure 20. Performance. Logistics
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remaining packages. Although this algorithm is very efficient it produces plans of
very low quality.

i PbR: PbR starts from the plan produced by Initial and uses the plan rewriting rules
shown in Figure 19 to optimize plan quality. The loop rule states that driving to a
location and returning back immediately after is useless. The fact that the operators
must be adjacent is important because it implies that no intervening load or unload
was performed. In the same vein, the triangle rule states that it is better to drive
directly between two locations than through a third point if no other operation is
performed at such point. The load-earlier rule captures the situation in which a
package is not loaded in the truck the first time that the package’s location is visited.
This occurs when the initial planner was concerned with a trip for another package.
The unload-later rule captures the dual case. PbR applies a firstimprovement search
strategy with only one run (no restarts).

We compared the performance of IPP, Initial, and PbR on a set of logistics problems
involving up to 50 packages. Each problem instance has the same number of packages,
locations, and goals. There was a single truck and a single city. The performance results
are shown in Figure 20. In these graphs each data point is the average of 20 problems
for each given number of packages. All the problems were satisfiable. IPP could only
solve problems up to seven packages (it also solved 10 out of 20 for eight packages,
and one out of 20 for nine packages, but these are not shown in the figure). Figure 20(a)
shows the average planning time. Figure 20(b) shows the average cost for the 50
packagesrange. The results are similar to the previous experiment. Initial is efficient but
highly suboptimal. PbR is able to considerably improve the cost of these plans and
approach the optimal.

Blocks World

We implemented a classical Blocks World domain with the two operators in
Figure 3. This domain has two actions: stack that puts one block on top of another, and,
unstack that places a block on the table to start a new tower. Plan quality in this domain
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is simply the number of steps. Optimal planning in this domain is NP-hard (Gupta & Nau,
1992). However, itis trivial to generate a correct, but suboptimal, plan in linear time using
the naive algorithm: put all blocks on the table and build the desired towers from the
bottom up. We compare three planners on this domain:

. IPP: In this experiment we used the GAM goal ordering heuristic (Koehler &
Hoffmann, 2000) that had been tested in Blocks World problems with good scaling
results.

° Initial: This planner is a programmatic implementation of the naive linear-time
algorithm. This algorithm produces plans of length no worse than twice the optimal.

i PbR: This configuration of PbR starts from the plan produced by Initial and uses
the two plan-rewriting rules shown in Figure 4 to optimize plan quality. PbR applies
a first improvement strategy with only one run (no restarts).

We generated random Blocks World problems scaling the number of blocks. The
problem set consists 0f 350 random problems (25 problems at each of the 3, 6,9, 12, 15,
20,30,40,50,60,70,80,90,and 100 blocks level). The problems may have multiple towers
in the initial state and in the goal state.

Figure 21(a) shows the average planning time of the 25 problems for each block
quantity. IPP cannot solve problems with more than 20 blocks within the time limit of 1,000
CPU seconds. The local search of PbR allows it to scale much better and solve all the
problems.

Figure 21(b) shows the average plan cost as the number of blocks increases. PbR
improves considerably the quality of the initial plans. The optimal quality is only known
for very small problems, where PbR approximates it, but does not achieve it (we ran Sage
for problems of less than nine blocks). For larger plans we do not know the optimal cost.
However, Slaney and Thiébaux (1996) performed an extensive experimental analysis of
Blocks World planning using a domain like ours. In their comparison among different
approximation algorithms they found that our initial plan generator (unstack-stack)
achieves empirically a quality around 1.22 the optimal for the range of problem sizes we

Figure 21. Performance: Blocks World
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have analyzed (Figure 7 in Slaney & Thiébaux, 1996). The value of our average initial plans
divided by 1.22 suggests the quality of the optimal plans. The quality achieved by PbR
is comparable with that value. In fact it is slightly better which may be due to the relatively
small number of problems tested (25 per block size) or to skew in our random problem
generator. Interestingly the plans found by IPP are actually of low quality. This is due
to the fact that IPP produces shortest parallel plans. That means that the plans can be
constructed in the fewest time steps, but IPP may introduce more actions in each time step
than are required.

In summary, the experiments in this and the previous sections show that across a
variety of domains PbR scales to large problems while still producing high quality plans.

LEARNING PLAN REWRITING RULES

Despite the advantages of PbR in terms of scalability, plan quality, and anytime
behavior, the framework we have described so far requires more inputs from the designer
than other planning approaches. In addition to the operator specification, initial state,
and goal that domain-independent planners take as input, PbR also requires an initial plan
generator, a set of plan rewriting rules, and a search strategy (Figure 22(a)). Although
the plan rewriting rules can be conveniently specified in a high-level declarative
language, designing and selecting which rules are the most appropriate requires a
thorough understanding of the properties of the planning domain and requires the most
effort by the designer.

In this section we address this limitation by providing a method for learning the
rewriting rules from examples. The main idea is to solve a set of training problems for the
planning domain using both the initial plan generator and an optimal planner. Then, the
system compares the initial and optimal plan and hypothesizes a rewriting rule that would
transform one into the other. A schematic of the resulting system is shown in Figure 22(b).
Some ideas on automating the other inputs are discussed in the future work section.

Figure 22. Basic PbR (a) and PbR with rewriting rule learning (b)

(Optimal Plan
Generator) Rewriting Rule
Initial Plan Learner
Generator
Initial Plan ~ Rewriting Search Rewriting Search
Generator  Rules Strategy Rules Strategy
Operators ——> Operators ——>
Initial State —— PbR Initial State ——= PbR
Goal State ———= Goal State ———
Evaluation —— Evaluation ——
Function Function
(a) (b)
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Rule Generation

The main assumption of our learning algorithm is that useful rewriting rules are of

relatively small size (measured as the number of nodes and edges in the rule). Ifa domain
requires large rewriting rules, it is probably not a good candidate for a local search,
iterative repair algorithm such as PbR. Previous research also lends support for biases
that favor conciseness (Minton & Underwood, 1994). The rule generation algorithm
follows these steps:

L.

Problem Generation. To start the process, our algorithm needs a set of training
problems for the planning domain. The choice of training problems determines the
rules learned. Ideally, we would like problems drawn from the target problem
distribution that generate plans gradually increasing in size (i.e., number of plan
steps) in order to learn the smallest rewriting rules first. Towards this end we have
explored two heuristics based on a random problem generator that work well in
practice. For some domains the size of the plans can be controlled accurately by
the number of goals. Thus, our system generates sets of problems increasing the
number of goals up to a given goal size. For each goal size the system generates
a number of random problems. We used this heuristic in our experiments. An
alternative strategy is to generate a large number of problems with different goal
sizes, sort the resulting plans by increasing size, and select the first N to be the
training set.

Initial Plan Generation. For each domain, we define an initial plan generator as
described earlier. For example, the plan of Figure 2, which was generated by
putting all blocks on the table and building the desired towers from the bottom up.
Optimal Plan Generation. Our algorithmuses a general-purpose planner perform-
ing a complete search according to the given cost metric to find the optimal plan.
This is feasible only because the training problems are small; otherwise, the search
space of the complete planner would explode. In our implementation we have used
IPP and Sage as the optimal planners. For example, Figure 12(c) shows the optimal
plan for the problem in Figure 2.

Plan Comparison. Both the initial and optimal plans are ground labeled graphs. Our
algorithm performs graph differences between the initial and the optimal plans to
identify nodes and edges present in only one of the plans. Formally, an intersection
graph G,of two graphs G and G, is a maximal sub-graph isomorphism between G,
and G,. If in a graph there are nodes with identical labels, there may be several
intersection graphs. Given a graph intersection G, a graph difference G —G, is the
sub-graph of G, whose nodes and edges are not in G,. In the example of Figures 2
and /2(c), the graph difference between the initial and the optimal plans, Gl.”;Gopt,
is the graph formed by the nodes: unstack(C A) and stack(C D Table); and the edges:
(Oclear(C) 1), (0clear(C)4),(0on(C A)4), (1on(C D) Goal), (4 clear(A) 3), (4 on(C Table)
1), (5c¢lear(D) 1), and (1 2). Similarly, G,,~G,,is formed by the nodes: stack(C D A),
and the edges: (6 clear(A) 3), (5 clear(D) 6), (0 clear(C) 6), (0 on(C A) 6), (6 on(C D) Goal),
and (6 2).

Ground Rule Generation. After the plan comparison, the nodes and edges present
only in the initial plan form the basis for the antecedent of the rule, and those
present only in the optimal plan form the basis for the consequent. In order to
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maximize the applicability of the rule, not all the differences in nodes and edges of
the respective graphs are included. Specifically, ifthere are nodes in the difference,
only the edges internal to those nodes are included in the rule. This amounts to
removing from consideration the edges that link the nodes to the rest of the plan.
In other words, we are generating partially specified rules. In our example, the
antecedent nodes are unstack(C A) (node 4) and stack(C D Table) (node 1). Therefore,
the only internal edge is (4 on(C Table) 1). This edge is included in the rule
antecedent and the other edges are ignored. As the consequent is composed of
only one node, there are no internal edges. Rule bw-1-ground in Figure 23 is the
ground rule proposed from the plans of Figures 2 and 12(c).

Ifthere are only edge (ordering or causal link) differences between the antecedent
and the consequent, a rule including only edge specifications may be overly
general. To provide some context for the application of the rule our algorithm
includes in the antecedent specification those nodes participating in the differing
edges (see rule sc-14 in Figure 27 for an example).

6.  Rule Generalization. Our algorithm generalizes the ground rule conservatively by
replacing constants by variables, except when the schemas of the operators
logically imply a constant in some position of a predicate [similarly to EBL (Minton,
1988)]. Rule bw-1-generalized in Figure 23 is the generalization of rule bw-1-ground,
which was learned from the plans of Figures 2 and 12(c). The constant Table
remains in the bw-1-generalized rule as is it imposed by the effects of unstack (see
Figure 3).

Biasing Toward Small Rules

There may be a large number of differences between an initial and an optimal plan.
These differences are often better understood and explained as a sequence of small
rewritings than as the application of a large monolithic rewriting. Therefore, in order to
converge to a set of small “primitive” rewriting rules, our system applies the algorithm
in Figure 24.

The main ideas behind the algorithm are to identify the smallest rule first and to
simplify the current plans before learning additional rules. First, the algorithm generates
initial and optimal plans for a set of sample problems. Then, it enters a loop that brings
the initial plans increasingly closer to the optimal plans. The crucial steps are 6 and 3.
In step 6 the smallest rewriting rule (r) is chosen first.!! This rule is applied to each of the
current plans. If it improves the quality of some plan, the rule enters the set of learned

Figure 23. Ground vs. generalized rewriting rules

(define-rule :name bw-1-ground (define-rule :name bw-1-generalized
:if (:operators :if (:operators
((?n1 (unstack C A)) ((?n1 (unstack ?7bl ?7b2))
(7n2 (stack C D Table))) (7n2 (stack ?bl ?b3 Table)))
:links (7n1 (on C Table) ?n2)) :links (7n1 (on ?bl Table) 7n2))
:replace (:operators (?nl ?n2)) :replace (:operators (?nl ?7n2))
:with (:operators :with (:operators
(?7n3 (stack C D A)))) (?7n3 (stack ?bl 7b3 ?b2))))
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Figure 24. Bias toward small rules

Converge-to-Small-Rules:
1. Generate a set of sample problems (P), initial plans (I),
and optimal plans (0).
2. Initialize the current plans (C) to the initial plamns (I).
Apply previously learned rules (L) to C (L is initially empty).
Propose rewriting rules (R) for pairs of current initial (C) and
optimal (0) plans (if their cost differ).
If no cost-improving rules, Then Go to 10.
S := Order the rules (R) by size.
Extract the smallest rule (r) from S.
Apply rule r to each current initial plan (in C) repeatedly
until the rule does not produce any quality improvement.
9. If r produced an improvement in some plan,
Then Add r to the set of learned rules (L)
The rewritten plans form the new C.
Go to 3.
Else Go to 7.
10. Return L

B W

0 ~N oo

rules (L). Otherwise, the algorithm tries the next smallest rule in the current generation.
Step 3 applies all previously learned rules to the current initial plans in order to simplify
the plans as much as possible before starting a new generation of rule learning. This helps
in generating new rules that are small and that do not subsume a previously learned rule.
The algorithm terminates when no more cost-improving rules can be found.

EMPIRICAL RESULTS FOR
PBR USING LEARNED RULES

We tested our learning algorithm on the same three domains described before: the
Blocks World domain used along the chapter, the manufacturing process planning
domain of Minton (1988), and our restricted logistics domain.

Blocks World

Our learning algorithm proposed the three rules shown in Figure 25, based on 15
random problems involving 3, 4, and 5 goals (5 problems each). Figure 4 shows the two
manually defined plan rewriting rules for this domain. Rules bw-1 and bw-2 in Figure 25
are essentially the same as rules avoid-move-twice and avoid-undo in Figure 4, respec-
tively. The main difference is the interpreted predicate possibly-adjacent that acts as a filter
to improve the efficiency of the manual rules, but is not critical to the rule efficacy. The
authors thought that the manual rules in Figure 4 were sufficient for all practical
purposes, but our learning algorithm discovered an additional rule (bw-3) that addresses
an optimization not covered by the two manual rules. Sometimes the blocks are in the
desired position in the initial state, but our initial plan generator unstacks all blocks
regardless. Rule bw-3 would remove such unnecessary unstack operators. Note that our
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Figure 25. Learned rewriting rules: Blocks World

(define-rule :name bw-1 ;; avoid-move-twice-learned
:if (:operators ((?nl (unstack ?bl ?b2))
(7n2 (stack ?bl 7b3 Table)))
:links ((7n1 (on ?bl Table) 7n2)))
:replace (:operators (7nl ?n2))
:with (:operators (7n3 (stack ?bl 7b3 7b2))))

(define-rule :name bw-2 ;; avoid-undo-learned
:if (:operators ((?nl (unstack ?bl ?b2))
(?n2 (stack ?bl ?b2 Table)))
:links ((7n1 (on ?bl Table) ?n2)
(?7n1 (clear 7b2) 7n2)))
:replace (:operators ((?nl 7n2)))
:with nil)

(define-rule :name bw-3 ;; useless-unstack-learned
:if (:operators ((7nl (unstack ?bl ?b2))))
:replace (:operators ((?n1)))

:with nil)

rewriting engine always produces valid plans. Therefore, if a plan cannot remain valid
after removing a given unstack, this rule will not produce a rewriting.

We compared the performance of the manual and learned rules on the Blocks World
as the number of blocks increases. We tested four planners: Initial, IPP (with the GAM
heuristic); PbR-Manual, PbR with the manually specified rules of Figure 4; and PbR-
Learned, PbR with the learned rules of Figure 25.

Figure 26(a) shows the average planning time of the 25 problems for each block
quantity. IPP cannot solve problems with more than 20 blocks within a time limit of 1,000
CPU seconds. Both configurations of PbR scale much better than IPP, solving all the
problems. Empirically, the manual rules were more efficient than the learned rules by a
constant factor. The reason is that there are two manual rules versus three learned ones,
and that the manual rules benefit from an additional filtering condition as we discussed
above.

Figure 26(b) shows the average plan cost as the number of blocks increases. PbR
improves considerably the quality of the initial plans. The optimal quality is only known
for very small problems, where PbR approximatesit.'> The learned rules match the quality
of the manual rules [the lines for PbR overlap in Figure 26(b)]. Moreover, in some
problems the learned rules actually produce lower cost plans due to the additional rule
(bw-3) that removes unnecessary unstack operators.

Manufacturing Process Planning

Weran our learning algorithm on 200 random problems involving 2, 3,4, and 5 goals
(50 problems each) on ten objects. The system learned a total of 18 rewriting rules,
including some of the most interesting manual rules defined earlier. For example, the rule
lathe+SP-by-SP, shown in Figure 15, was manually specified after a careful analysis of
the depth-first search used by the initial plan generator. Our learning algorithm discov-
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Figure 26. Performance with learned rules: Blocks World
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ered the corresponding rule sc-8 (Figure 27). The learned rule does not use the regular-
shapes interpreted predicate (which enumerates the regular shapes), but it is just as
general because the free variable ?shape?2 in the rule consequent will capture any valid
constant.

The rules machine-swap in Figure 7 and sc-14 in Figure 27 show a limitation of our
current learning algorithm, namely, that it does not learn over the resource specifications
inthe operators. The manually defined machine-swap rule allows the system to explore the
possible orderings of operations that require the same machine. This rule finds two
consecutive operations on the same machine and swaps their order. Our learning system
produced more specific rules that are versions of this principle, but it did not capture all
possible combinations. Rule sc-14 is one such learned rule. This rule would be subsumed
by the machine-swap, because the punch is a machine resource. This is not a major limitation
of our framework and we plan to extend the basic rule generation mechanism to also learn
over resource specifications.

We compared the performance of the manual and learned rules for the manufactur-
ing process planning domain with the same experimental setting as before. We tested five
planners: Initial; IPP, which produces the optimal plans; PbR-Manual, PbR with the manually
specified rules in Figure 15; PbR-Learned, PbR with the learned rules; and PbR-Mixed,

Figure 27. (Some) learned rewriting rules: Manufacturing

(define-rule :name sc-8
:if (:operators ((7n1 (lathe 7x))
(?n2 (spray-paint ?x 7color Cylindrical))))
:replace (:operators (?nl ?n2))
:with (:operators (7n3 (spray-paint ?x ?color ?shape2))))

(define-rule :name sc-14
:if (:operators ((?nl (punch ?x ?wl 70))
(?n2 (punch 7y 7wl 70)))
:links ((7n1 7n2)))
:replace (:links ((?n1 7n2)))
:with (:links ((?n2 7n1))))
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Figure 28. Performance with learned rules: Manufacturing
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which adds to the learned rules the two manually-specified rules that deal with resources
(the machine-swap rule in Figure 27, and a similar one on objects).

The results are shown in Figure 28. In these graphs each data point is the average
of 20 problems for each given number of goals. There were 10 provably unsolvable
problems. Initial, and thus PbR, solved all the 200 problems (or proved them unsolvable).
IPP only solved 65 problems under the 1,000 CPU seconds time limit: all problems at five
and 10 goals, 19 at 15 goals, and six at 20 goals. Figure 28(a) shows the average
planning time on the solvable problems. Figure 28(b) shows the average schedule
length for the problems solved by the planners for the 50-goal range. The fastest planner
is Initial, but it produces plans with a cost of more that twice the optimal (which is
produced by IPP). The three configurations of PbR scale much better than IPP solving
all problems. The manual rules achieve a quality very close to the optimal (where optimal
cost is known, and scale gracefully thereafter). The learned rules improve significantly
the quality of the initial plans, but they do not reach the optimal quality because many
of the resource swap rules are missing. Finally, when we add the two general resource-
swap rules to the learned rules (PbR-Mixed), the cost achieved approaches that of the
manual rules.

Logistics

Our system learned the rules in Figure 29 from a set of 60 problems with two, four,
and five goals (20 problems each). Rules logs-1 and logs-3 capture the same transforma-
tions as rules loop and triangle, respectively. Rule l0gs-2 chooses a different starting point
for a trip. Rule logs-3 is the most interesting of the learned rules, as it was surprisingly
effective in optimizing the plans. Rule 10gs-3 seems to be an overgeneralization of rule
triangle, but precisely by not requiring that the nodes are adjacent-in-critical-path, it applies
in a greater number of situations.

We compared the performance of the manual and learned rules on a set of logistics
problems involving up to 50 packages. Each problem instance has the same number of
packages, locations, and goals. There was a single truck and a single city. We tested four
planners: Initial, the sequential circular-trip initial plan generator described above; IPP,
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Figure 29. Learned rewriting rules: Logistics

(define-rule :name logs-1
:if (:operators ((7nl (drive-truck ?t 7?11 7?12 7c))
(?7n2 (drive-truck 7t 712 711 %¢))))
:replace (:operators ((?nl 7n2)))
:with NIL)

(define-rule :name logs-2
:if (:operators ((?nl (drive-truck ?t 711 ?12 7c))))
:replace (:operators ((7n2)))
:with (:operators ((7n2 (drive-truck 7t ?13 712 7c)))))

(define-rule :name logs-3
:if (:operators ((7nl (drive-truck ?t 7?11 7?12 7c))
(?7n2 (drive-truck 7t 712 713 7c)))
:links ((?n1 (at 7t 712) 7n2)))
:replace (:operators ((?nl 7n2)))
:with (:operators ((?n3 (drive-truck 7t ?11 713 7c)))))

which produces optimal plans; PbR-Manual, PbR with the manually specified rules in
Figure 19; and PbR-Learned, PbR with the learned rules of Figure 29.

The performance results are shown in Figure 30. In these graphs each data point
isthe average of 20 problems for each given number of packages. All the problems were
satisfiable. IPP could only solve problems up to seven packages (it also solved 10 out
of 20 for eight packages, and one out of 20 for nine packages, but these are not shown
in the figure). Figure 30(a) shows the average planning time. Figure 30(b) shows the
average cost for the 50 packages range. The results are similar to the previous experi-
ments. Initial is efficient but highly suboptimal. PbR is able to considerably improve the
cost of this plan and approach the optimal. Most interestingly, the learned rules in this
domain achieve better quality plans than the manual ones. The reason is the more general
nature of learned logs-1 and logs-3 rules compared to the manual loop and triangle rules.

RELATED WORK

PbR is designed to find a balance among the requirements of planning efficiency,
high quality plans, flexibility, and extensibility. A great amount of work on Al planning
has focused on improving its average-case efficiency given that the general cases are
computationally hard (Bylander, 1994; Erol et al., 1995). Often, this is achieved by
incorporating domain knowledge either manually specified by experts (e.g., Bacchus &
Kabanza, 2000) or automatically learned search control (e.g., Minton, 1988; Etzioni, 1993;
Gerevini & Schubert, 1998; Fox & Long, 1998; Rintanen, 2000). Although all these
approaches do improve the efficiency of planning, they do not specifically address plan
quality, or else they consider only very simple cost metrics (such as the number of steps).
Some systems learn search control that addresses both planning efficiency and plan
quality (Estlin & Mooney, 1997; Borrajo & Veloso, 1997; Pérez, 1996). However, from the
reported experimental results, PbR appears to be more scalable. Moreover, PbR provides
an anytime algorithm while other approaches must run to completion.
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Figure 30. Performance with learned rules: Logistics
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Local search has a long tradition in combinatorial optimization (Aarts & Lenstra,
1997; Papadimitriou & Steiglitz, 1982). Local improvement ideas have found application
in many domains. Some of the general work most relevant to PbR is on constraint
satisfaction (the min-conflicts heuristic: Minton, 1992), satisfiability testing (GSAT:
Selman, Levesque & Mitchell, 1992), and scheduling (Zweben, Daun & Deale, 1994). Our
work is inspired by these approaches but there are several differences. First, PbR
operates on complex graph structures (partial-order plans) as opposed to variable
assignments. Second, our repairs are declaratively specified and may be changed for each
problem domain, as opposed to their fixed, generic repair strategies. Third, PbR accepts
arbitrary measures of quality, not just constraint violations as in min-conflicts, or number
of unsatisfied clauses as GSAT. Finally, PbR searches the space of valid solution plans,
as opposed to the space of variable assignments, which may be internally inconsistent.

PbR builds on ideas from graph rewriting (Schiirr, 1997). The plan-rewriting rules
in PbR are an extension of traditional graph rewriting rules. By taking advantage of the
semantics of planning, PbR introduces partially specified plan-rewriting rules, where the
rules do not need to specify the completely detailed embedding of the consequent as in
pure graph rewriting. Nevertheless, there are several techniques that can transfer from
graph rewriting into Planning by Rewriting, particularly for fully specified rules. Dorr
(1995) defines an abstract machine for graph isomorphism and studies a set of conditions
under which traditional graph rewriting can be performed efficiently. Perhaps a similar
abstract machine for plan rewriting can be defined. The idea of rule programs also appears
in this field and has been implemented in the PROGRES system (Schiirr, 1997).

The work most closely related to our plan-rewriting algorithm is plan merging
(Foulser, Li & Yang, 1992). Foulser et al. provide a formal analysis and algorithms for
exploiting positive interactions within a plan or across a set of plans. However, their work
only considers the case in which a set of operators can be replaced by one operator that
provides the same effects to the rest of the plan and consumes the same or fewer
preconditions. Their focus is on optimal and approximate algorithms for this type of
operator merging. Plan rewriting in PbR can be seen as a generalization of operator
merging where a sub-plan can replace another sub-plan. A difference is that PbR is not
concerned with finding the optimal merge (rewritten plan) in a single pass of an

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.



154 Ambite, Knoblock, & Minton

optimization algorithm as their approach does. In PbR we are interested in generating
possible plan rewritings during each rewriting phase, not the optimal one. The optimi-
zation occurs as the (local) search progresses.

Case-based planning (e.g., Kambhampati, 1992; Veloso, 1994; Nebel & Koehler,
1995; Hanks & Weld, 1995) solves a problem by modifying a previous solution. There are
two phases in case-based planning. The first one identifies a plan from the library that
is most similar to the current problem. In the second phase this previous plan is adapted
to solve the new problem. PbR modifies a solution to the current problem, so there is no
need for aretrieval phase nor the associated similarity metrics. Plan rewriting in PbR can
be seen as a type of adaptation from a solution to a problem to an alternate solution for
the same problem. That is, a plan rewriting rule in PbR identifies a pair of sub-plans (the
replaced and replacement sub-plans) that may be interchangeable.

Planrewriting has been applied to several real-world domains. Autominder (Pollack
et al., 2003) is a comprehensive system to assist the elderly with declining cognitive
functions that is embodied in the nursing robot Pearl (Pineau et al., 2003). The person-
alized cognitive orthotic (PCO) (McCarthy & Pollack, 2002) of Autominder uses plan
rewriting techniques to create reminder plans for elderly patients and to update these
plans in response to environment changes. A PbR-based query planner for data
integration is described in Ambite and Knoblock (2000).

Our approach to learning plan-rewriting rules is closely related to learning search
control. In a sense, our plan rewriting rules can be seen as “a posteriori” search control.
Instead of trying to find search control that would steer the planner during generation
towards the optimal plan and away from fruitless search, our approach is to generate fast
a suboptimal initial plan, and then optimize it, after the fact, by means of the rewriting
rules.

Our rule generalization algorithm has some elements from Explanation-Based
Learning (EBL) (Minton, 1988; Kambhampati, Katukam & Qu, 1996; Estlin & Mooney,
1996), but it compares two complete plans, with the aid of the operator specification, as
opposed to problem-solving traces. Similarly to EBL search control rules, our learned
plan rewriting rules also suffer from the utility problem (Minton, 1988).

Search control can also be learned by analyzing the operator specification without
using any examples (Etzioni, 1993). Similar methods could be applied to PbR. For example,
we could systematically generate rewriting rules thatreplace a set of operators by another
setthatachieves similar effects, then test the rules empirically and select those of highest
utility. Upal (2001) presents techniques to learn rewriting rules by static domain analysis
and by analysis of problem solving traces.

Upal and Elio (2000) compare the performance of search control rules versus plan
rewriting rules (both learned from problem solving traces). In their experiments, search
control rules are more effective than rewriting rules. However, it is unclear whether this
is due to their specific rule learning algorithm or to some intrinsic limitation of plan
rewriting, since they do not report the number or types of the learned rewriting rules, nor
evaluate their utility (cf. Minton, 1988). Thus, the relative merit of learning rewriting rules
versus search control remains an open problem.

In scheduling, several learning techniques have been successfully applied to
obtain search control for iterative repair. Zweben et al. (1992) used an extension of EBL
to learn the utility of the repairs, selecting when to apply a more-informed versus less-
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informed repair. Zhang and Dietterich (1995) used areinforcement learning approach to
selectrepair strategies for the same problem. Both systems learn how to select the repairs
to improve the efficiency of search, but they do not learn the repairs themselves as in our
work.

DISCUSSION AND FUTURE WORK

In this chapter, we have presented Planning by Rewriting, a paradigm for efficient
high-quality planning. PbR adapts graph rewriting and local search techniques to the
semantics of domain-independent partial-order planning. The basic idea of PbR consists
in transforming an easy-to-generate, but possibly suboptimal, initial plan into a high-
quality plan by applying declarative plan rewriting rules in an iterative repair style.

There are several important advantages to the PbR planning approach. First, PbR
isadeclarative domain-independent framework, which brings the benefits of reusability
and extensibility. Second, it addresses sophisticated plan quality measures, while most
work in domain-independent planning has not addressed quality or does itin very simple
ways. Third, PbR is scalable because it uses efficient local search methods. In fact, PbR
provides domain-independent framework for local search. Finally, PbR is an anytime
planning algorithm that allows balancing planning effort and plan quality in order to
maximize the utility of the planning process.

Anopenarea ofresearch is to relax our framework to accept incomplete plans during
the rewriting process. This expands the search space considerably and some of the
benefits of PbR, such as its anytime property, are lost. But for some domains the shortest
path of rewritings from the initial plan to the optimal may pass through incomplete or
inconsistent plans. This idea could be embodied as a planning style that combines the
characteristics of generative planning and Planning by Rewriting. This is reminiscent of
the plan critics approach (Sacerdoti, 1975; Sussman, 1975). The resulting plan-rewriting
rules can be seen as declarative specifications for plan critics. The plan refinements of
both partial order planning (Kambhampati, Knoblock & Yang, 1995) and Hierarchical
Task Network Planning (Erol, Nau & Hendler, 1994) can be easily specified as plan-
rewriting rules.

Planning by Rewriting is also well suited to mixed-initiative planning. In mixed-
initiative planning, the user and the planner interact in defining the plan. For example,
the user can specify which are the available or preferred actions at the moment, change
the quality criteria of interest, etcetera. In fact, some domains can only be approached
through mixed-initiative planning. For example, when the quality metric is very expensive
to evaluate, such as in geometric analysis in manufacturing, the user must guide the
planner towards good quality plans in a way that a small number of plans are generated
and evaluated. Another example is when the plan quality metric is multi-objective or
changes over time. Several characteristics of PbR support mixed-initiative planning.
First, because PbR offers complete plans, the user can easily understand the plan and
perform complex quality assessment. Second, the rewriting rule language is a convenient
mechanism by which the user can propose modifications to the plans. Third, by selecting
which rules to apply or their order of application the user can guide the planner.

We plan to develop a system that can automatically learn the optimal planner
configuration for a given domain and problem distribution in a manner analogous to
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Minton’s Multi-TAC system (Minton, 1996). Such system would perform a search in the
configuration space of the PbR planner proposing different initial plan generators,
candidate sets of rewriting rules, and search methods. By testing each proposed
configuration against a training set of simple problems, the system would hill-climb in
the configuration space in order to achieve the most useful combination of rewriting rules
and search strategy.

The PbR framework achieves a balance between domain knowledge, expressed as
plan-rewriting rules, and general local-search techniques that have proved useful in
many hard combinatorial problems. We expect that these ideas will push the frontier of
solvable problems for many practical domains in which high quality plans and anytime
behavior are needed.
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ENDNOTES

Interestingly, one of the most widely studied planning domains, the Blocks World,
also has this property.

A domain for manufacturing process planning is analyzed in detail below. The
reader may want consult Figure 16 for an example of the rewriting process. The
application of PbR to query planning in mediator systems is described in Ambite
& Knoblock (2000,2001) and Ambite (1998).

Although the space of rewritings can be explored by complete search methods, in
the application domains we have analyzed the search space is very large and our
experience suggests that local search is more appropriate. However, to what extent
complete search methods are useful in a Planning by Rewriting framework remains
an open issue. In this chapter we focus on local search.

To illustrate the basic concepts in PbR, we will use examples from this simple Blocks
World domain. PbR has been applied to “real-world” domains such as query
planning (Ambite & Knoblock, 2001, 2000).

In Sage and PbR, resources are associated to operators, see Knoblock (1996) for
details.

The interpreted predicate possibly-adjacent makes the link expression in the
antecedent of the avoid-move-twice rule in Figure 4 redundant. Unstack puts the
block ?b1 on the table from where it is picked up by the stack operator, thus the
causal link (?n1 (on ?b1 Table) 7n2) is already implied.

POCL planners operate by keeping track and repairing flaws found in a partial plan.
Open conditions, operator threats, and resource threats are collectively called
flaws (Penberthy & Weld, 1992). AddFlaws(F,P) adds the set of flaws F'to the plan
structure P.

Although IPP is a domain-independent planner, we compare it to PbR to test
whether the additional knowledge provided by the plan rewriting rules is useful
both in planning time and in plan quality.

The reason for the difference between PbR and IPP at the 20-goal complexity level
is because the cost results for IPP are only for the six problems that it could solve,
while the results for PbR and Initial are the average of all of the 20 problems, PbR
matches the cost of these six optimal plans produced by IPP

In the logistics domain of AIPS98, the problems of moving packages by plane
among different cities and by truck among different locations in a city are
isomorphic, so we focused on only one of them to better analyze how the rewriting
rules can be learned (Ambite, Knoblock, & Minton, 2000).

The size of a rule is the number of the conditions in both antecedent and
consequent. Ties are broken in favor of the rule with the smallest consequent
We ran Sage for the 3-block and 6-block problems. We used IPP for the purpose
of comparing planning time. However, IPP optimizes a different cost metric,
shortest parallel time-steps, instead of number of plan steps.
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ABSTRACT

This chapter discusses the application of intelligent planning techniques to virtual
agent environments as a mechanism to control and generate plausible virtual agent
behaviour. The authors argue that the real world-like nature of intelligent virtual
environments (IVEs) presents issues that cannot be tackled with a classic, off-line
planner where planning takes place beforehand and execution is performed later,
based on a set of precompiled instructions. What IVEs call for is continuous planning,
a generative system that will work in parallel with execution, constantly re-evaluating
world knowledge and adjusting plans according to new data. The authors argue
further on the importance of incorporating the modelling of the agents’ physical,
mental and emotional states as an inherent feature in a continuous planning system
targeted towards IVEs, necessary to achieve plausibility in the produced plans and,
consequently, in agent behaviour.

INTRODUCTION

Intelligent planning has been widely applied in agent environments as a means to
provide a high-level reasoning mechanism that decides and generates agent behaviour.
The majority of the work produced so far adopts the classic off-line planning paradigm
(first plan thoroughly, then act following plan), based on the assumption that the world
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state remains unchanged throughout the whole planning and acting phase, while also
the agent is supposed to have detailed knowledge of the world state as well as the effects
ofitsactions (Aylett, Coddington & Petley, 2002; Pollack & Horty, 1998; Pollack & Horty,
1999). These assumptions were necessary in order to restrict the complexity of an
otherwise intractable problem, so that investigation into the research area could be
conducted.

Although the off-line planning paradigm is appropriate for a number of applications
where conditions are controllable and the problem domain is fairly limited, there is a wide
range of research and practical fields where it proves inadequate. Real-world domains,
such as multi-agent societies or robotic environments, present continuous change and
the occurrence of events that off-line approaches cannot cope with. Features such as
external events, interaction among multiple entities located in the world or action
execution failures make it impossible for a classical planning algorithm to deal with the
problem.

Requirements such as the above have led the research community over the past few
years to introduce architectures that interleave planning, execution and monitoring in
order to provide for the needs of inherently dynamic domains.

Such a domain is intelligent virtual environments, synthetic worlds inhabited by
graphical agents who have to interact with the environment and demonstrate some sort
of behaviour. Intelligent planning seems a particularly suitable technique to provide
virtual agents with high-level reasoning capabilities, however, because of the special
features virtual environments present, an appropriately designed approach has to be
adopted.

OFF-LINE PLANNING

Traditional Assumptions of the Classical Off-Line

Planning Paradigm

Intelligent planning has been one of the most active areas of Artificial Intelligence
since the early seventies. Research has gone along way forward from the seminal STRIPS
planner of Nilsson and Fikes (Fikes & Nilsson, 1971), resulting in advanced plan graph
analysis approaches like Graphplan and its derivatives (Blum & Furst, 1997; Long & Fox,
1998), or fast heuristic approaches like HSP (Bonet & Geffner, 2001). The primary aim
driving planning research throughout almost the whole of the past three decades was
the quest for optimisation, either in terms of ability to solve complex problems or in
respect to some evaluation factor, usually the number of steps required to reach the goal
state from the given initial state.

Regardless of the technique utilised, the majority of planning systems are discon-
nected from execution, assuming a single planning phase during which a plan is produced
to be later executed by a separate execution system. This classic, batch technique is
known as off-line planning.

There is such a variety of factors affecting a planning process that, in a generic form,
planning problems are considered intractable. The complexity of planning problems had
to be limited in order to allow research attempts to start with a version of the problem that
is easier to tackle. Therefore, various aspects of the planning problem such as time or
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execution were defined away and off-line planning systems were traditionally applied to
limited and controlled domains, specifically designed in accordance with some basic
assumptions (Pollack & Horty, 1998, Aylett, Coddington & Petley, 2002):

. The problem is defined in a detailed way, with all goals being known to the planning
system beforehand and remaining unchanged throughout the whole planning and
execution session

i The planner is omniscient, possessing complete and valid world knowledge

° The world is static, remaining unchanged throughout the whole planning phase

i Changes occurring to the world during the execution phase can only be a result of
the agent’s own actions

i Actions have a definite outcome

i Goals are categorical in respect to their satisfaction; they are either achieved or not

i Actions are instantaneous

As a result, if the planning system succeeds in producing a solution to the given
problem, execution is reasonably assumed to be successful as well, becoming a minor
technicality in the whole process. If the information passed on to the planner is complete
and accurate, nothing is expected to change between planning and execution time and
no unplanned-for events can happen during execution, then there is no chance of failure.

INTELLIGENT VIRTUAL ENVIRONMENTS

The rapid evolution of desktop 3-D technology over the past decade provided end
users with an unprecedented graphic power that enabled the development of applica-
tions incorporating high profile, visually compelling three-dimensional graphics. A
former privilege of the military, the industry and a few lavishly funded academic
institutions possessing high-end graphics supercomputers, Virtual Reality (VR) tech-
nology is now readily available to any owner of a medium range personal computer.

Having become commonplace by the early nineties, Virtual Reality has since
attracted the attention of numerous researchers from the field of Artificial Intelligence,
who identified VR systems as a promising execution platform for traditional as well as
novel Al techniques. A perennial problem of Artificial Intelligence was (and still is) the
lack of arealistic, yet at the same time controllable, execution platform to experiment on.
Mostalgorithms have rarely been tested in realistic situations, and most implementations
either work in carefully selected domains or consist mainly proof-of-concept, toy
examples.

Virtual worlds, being more realistic and adequately complex simulation environ-
ments seem to provide the AI community with an ideal test bed for applications,
especially agent-based techniques and algorithms.

The coupling of Al techniques with VR technology led to the emergence of a new
research area known as Intelligent Virtual Agents (Aylett & Cavazza, 2000), synthetic
embodied agents inhabiting computer-generated worlds called Intelligent Virtual
Environments (Aylett & Luck, 2000).
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Figure 1. Screenshot from an immersive IVE application at the Centre for Virtual
Environments, University of Salford demonstrating the behaviour of animal-like
virtual agents (Delgado-Mata & Aylett, 2003)

Intelligent Virtual Agents are autonomous, graphically embodied agents in an
interactive virtual environment, able to interact intelligently with the environment, other
agents, and human users.

Virtual worlds inhabited by IVA’s should be able to support enhanced interaction
capabilities, as well as provide effective graphical representation means, and are known
as intelligent virtual environments.

The term is quite generic and theoretically encompasses both 2-D and 3-D graphical
representations. However, the use of the word “virtual” hints at 3-D implementations,
which will be the main focus of this discussion.

Today, intelligent virtual environments, (IVEs), are employed in a variety of areas,
mainly relating to simulation, entertainment, and education. Sophisticated simulated
environments concerning open urban spaces, building interiors and streets can signifi-
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cantly aid in application areas such as architectural design, civil engineering, traffic and
crowd control. IVEs have set new standards in computer-based entertainment, through
outstanding examples of computer games involving large, life-like virtual worlds with
imaginative scenarios, active user participation in the plot of an interactive drama, virtual
story-telling, and many other areas where immersion and believability are key factors.

Although different researchers might have different views on what an Intelligent
Virtual Agent exactly is, there are some commonly agreed characteristics (Franklin, 1997).
An Intelligent Virtual Agent should, therefore, demonstrate the following basic charac-
teristics:

. Embodiment
. Situatedness
. Intelligent Behavior

These three characteristics are complemented by another property a virtual envi-
ronment should possess, which is believability (Bates, 1994), a resultant of a number of
factors related to different aspects of a virtual agent, ranging from its visual appearance
to its demonstrated behaviour. Believability affects all aspects of virtual environment
design and development and could briefly be defined as a measure of the degree to which
anIVA and consequently, the virtual environment it is situated in, helps the user maintain
an overall sense of presence (Aylett & Cavazza, 2000).

Embodiment refers to the fact that an IVA should be visually represented in a
graphical way, consistent with its attributes as a conceptual entity. IVAs need not
necessarily be humanoid; they can be mechanical (Prophet, 2001), animal-like (Terzopoulos,
1994) or even fictional entities (Aylett, Horrobin, et al., 1999).

The quality of the graphic model might also vary, from very realistic representa-
tions, as in Kalra et al. (1998), to more rough but easier to manipulate and less resource-
consuming designs. In any case, however, the need for believability instructs that they
should be able to move in a convincing manner; similar to the way an equivalent real-
world creature would move. A highly detailed, realistic humanoid agent walking like a
robot is far from being considered believable, as the mechanical motion undermines the
user’s expectation for a human-like walking style.

Situatedness refers to the requirement for an IVA to be located in a virtual world to
which it is directly connected, usually through a set of sensors and effectors, so that it
can perceive events taking place in the environment and act accordingly. It should be
aware of its surroundings, able to recognize and manipulate objects, along with being
capable to sense the presence of other agents and interact with them. Once again, the
requirement for believability dictates that interaction modes and response from the
environment should be such as it would be expected by the user. Objects have to comply
with physics rules and react as the real-world equivalent would.

Any computer-controlled IVA should incorporate some sort of behavioral control.
Intelligent behavior in virtual environments is a complex issue, comprising several
functions such as communicating, sensing, learning, and reasoning on various levels of
abstraction, which all have to be put together.

Agents should act in a way coherent with stimuli received from the environment,
the domain knowledge it possesses, and its own modelled personality as well as its
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physical and emotional state. For example, a supposedly tired agent demonstrating a
lively behaviour, jumping over fences or running fast would not be believable, as its
actions are inconsistent with its physical state. In a more complicated example, an agent
reacting in a polite and welcoming way to another agent that just delivered him a severe
strike on the head with a bat would look totally awkward.

It is beyond the scope of the present chapter to go into greater detail, however,
detailed descriptions and examples of Intelligent Virtual Agents can be found in
Aylettand Luck (2000), Aylett and Cavazza (2000), and Panayiotopoulos and Avradinis
(2004).

Applying Intelligence in Virtual Environments

These basic requirements of virtual environment applications have led to the
introduction of Artificial Intelligence techniques in order to deal with the problems that
arise. Artificial Intelligence is utilized in various ways in virtual environments, as it can
provide solutions to multiple aspects of VE design and development. For example,
intelligent techniques are applied to control animation (Thalmann & Monzani, 2002),
motion planning or agent navigation in virtual environments (Panayiotopoulos, Zacharis,
Vosinakis & Katsirelos, 1997), while other intelligent techniques, such as Natural
Language Processing (Cavazza, Charles & Mead, 2002), digital speech recognition
processing or speech generation (Rickel, Marsella, Gratch, Hill, Traum & Swartout, 2002),
are being used in virtual environment systems to enhance or facilitate user-computer
interaction.

On the other hand, Artificial Intelligence can provide the tools for behavioural
control of intelligent virtual agents, where diverse approaches are adopted by research-
ers. Atalow level, research works using approaches such as neural networks to control
the behaviour of animal-like graphical agents (Delgado-Mata & Aylett,2003) have been
presented, while at a higher level, the potential of intelligent planning techniques has
been acknowledged as a means to control automatic plot generation in intelligent virtual
environments (Lozano, Cavazza, Mead & Charles, 2002).

The convergence between Artificial Intelligence and virtual reality is going to
become more apparent in the next few years, as both worlds have to benefit from it.
Commercial applications, and especially 3-D computer games, have already started
incorporating mechanisms to control the behaviour of computer-controlled characters
in order to provide a more engaging experience to the user. The Al research community
on the other hand, can find in intelligent virtual environments something missing for a
long time — an adequately complex, yet controlled real-world environment for experimen-
tation with human-level Al algorithms (Laird & vanLent, 2001).

INTELLIGENT PLANNING FOR
REAL-WORLD DOMAINS

A strongly realistic domain, intelligent virtual environments present the Al plan-
ning researcher with issues not usually encountered in traditional planning domains.

VEs are graphical simulations of real-world domains, which makes them susceptible
to the same problems. The particularities of real-world domains in respect to planning
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have been examined in Pollack and Horty (1998) and Aylett, Coddington and Petley (2002)
and are presented next.

To begin with, one cannot assume that domain knowledge is always complete and
accurate. Real-world agents, no matter whether human, robotic or virtual, have definite
limitations on the amount and quality of knowledge they can acquire before initiating
execution. Their sensor range and efficiency either has physical limitations or is
deliberately compromised for the sake of performance. Moreover, knowledge they have
already established or receive from third parties might well be false. The truth of certain
facts necessary for plan completion can only be established in real-time, making it
necessary to start executing a partially formed plan based on incomplete and possibly
inaccurate information that will be later validated.

Letus consider a very common example demonstrating this case. John wants to get
from home to work, which typically involves either a twenty-mile drive through the city
centre or a thirty-five mile drive on the ring road. Based on previous experience, John
selects the shorter route, expecting light traffic in the city centre. While en route, the
hourly traffic report on the radio is broadcast, saying that the streets in the city centre
are congested because of a protest march. So, John estimates that he will be better off
returning to the junction and selecting the alternative route.

Evenifthe agent had full and complete knowledge beforehand, the assumption that
the world state would remain unchanged during the execution phase is equally problem-
atic. Real-world domains are rarely static; usually several major or minor changes occur
that interact with the agent’s plan and disrupt its execution. Apart from being a result of
the agent’s own action, changes in the world state can originate from the environment
itself. An example of such a case would be a sudden rainfall on a sunny day. This event
would affect the plans of an agent with a goal to travel a one-mile distance from home
to work. Having noticed the morning sunshine, the agent decides not to take an umbrella
and walk towards the office instead of driving by car. The sudden rainfall is an unplanned-
for change in the world state that will modify the agent’s plan, causing it to quit walking
and hop on the first passing bus.

Besides environmental changes, another characteristic of real-world domains is the
existence of multiple agents in the world. This co-existence implies that agents can
interact and interfere with one another’s plans through their actions. Ambros-Ingerson
and Steel (1988) have presented an illustrative example of how a classic planning problem
can be affected by the presence of a second agent. In this example, the classic Blocks
World domain has been modified with the presence of a second, non-planning agent, a
baby that intervenes in the execution of a plan to stack the boxes in the defined order by
repositioning one of them. This renders the initially devised plan useless and requires
alterations to be made to remedy the problem.

Actions in realistic situations do not always go as planned. Not all of an agent’s
actions have a definite outcome, neither do they all succeed at once, even if all of their
preconditions hold true. For example, washing a stained piece of cloth in a washing
machine does not guarantee it will be clean after a washing cycle; the action may have
to be repeated in order to achieve the desired result. In such cases, the outcome of the
action has to be evaluated after its execution, which is impossible to perform within an
off-line planning approach. Moreover, failure might well occur in the middle of execution,
which consequently means that a number of possibly irreversible actions have been
successfully executed up to this point.
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Failure in the middle of execution is not necessarily totally negative. Although the
goal is not achieved, the result might be just good enough. In addition, the results of the
partial execution of the plan might be “saved” and be utilized at a later moment, when
conditions are more favourable. However, this implies that the planning agent has to be
able to recognise the useful part of the plan or opportunities that have appeared and take
advantage of them.

In real-world problems one has to take into account that actions do take time to
perform, and this may affect the whole plan of an agent, functioning as a criterion for
action selection. Certain actions may be heavily time-dependent, making sense only if
executed within a specific time window. Therefore, a basic time-management mechanism
has to be incorporated into planning systems designed for real-world domains. One has
tonote, however, that time only needs to be given enough importance. Complex temporal
models and exhaustive temporal planning in advance are far from being the answer. A
detailed and strict temporal plan lacks robustness, as it presents the agent with a difficult
execution task that has a high probability of failure due to unexpected conditions.

Issues for Consideration in Virtual Environment
Applications

One canreasonably argue that some of the above problems can easily be overcome
in virtual environments by designing systems properly so that they are done away with.
After all, as software implementations, virtual agents can be designed in a way that their
sensors are unlimited, or that they gain instant access to all world knowledge. Their
actions can always be successful, and a high enough level of abstraction can be selected
to work with, so that problems occurring at the lower level are not an issue.

Although this might be partially true, and is indeed something commercial VE
application developers take advantage of, specific limitations exist, especially when VEs
are used as research experimentation platforms. Believability, autonomy, realism and
performance issues limit the degree of arbitrary design decisions that can be made.

Forexample, the issue of incomplete and potentially false domain knowledge at the
beginning of the planning process is a strong requirement in planners for virtual
environments because of believability issues. An agent entering a building for the first
time moving around without hesitation or glance to confirm its position is non-plausible,
as it demonstrates knowledge it is not supposed to have. Therefore, gradual acquisition
of knowledge is a must for VE applications and has to pursued rather than avoided.

Importantissues also emerge in relation to potentially executable actions. Complex
actions can be designed so that they are considered as executable by the agent, however,
in order to achieve believability they may well have to be treated as sub-plans and
decomposed into lower-level actions. For example, the “open door” action can be
designed as immediately executable, however, for the sake of believability or due to motor
function design a particular VE might require it to be broken into a sequence like the
following:

(get_key, insert key, unlock door, get key, turn handle, push_door)

The requirement for believability presents the planner with the problem of goal
generation. It is perfectly reasonable for a planning system designed for the aerospace
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domain to stop functioning after it has achieved all the given goals, however, this does
not apply to an autonomous virtual planning agent, as the lack of goals would mean that
the agent would stand still in the virtual environment like a dummy, which is devastating
for believability. Therefore, a mechanism that generates goals or an alternative handling
method of the behaviour of the agent in idle state has to be included.

Things become more complicated with the introduction of features like emotions
in VE applications. As several researchers have argued, emotion in a generic sense is an
essential component of human and sometimes animal intelligence (Damasio, 1994;
LeDoux, 1996; Picard, 1997), as it can affect both action selection and execution, while
also functioning as a driving force behind new goal generation. Therefore, one cannot
afford to neglect emotions when dealing with Intelligent Virtual Agent applications if
believability is to be pursued. An emotion-handling mechanism should be included as
an inextricable component of an IVA-targeted planning and execution mechanism
(Gratch, 2000), in order to be able to recognize and generate affective experiences and
expressions. This integrated emotion handling mechanism should operate continuously,
as pointed out by Izard (1993).

Requirements from a Planner for Virtual Environments

The above features of virtual environments make it clear that traditional planning
approaches, designed with a different kind of application domains in mind, are not
appropriate for virtual environments, as the assumptions stated in the introduction do
not stand. The works of Aylett, Coddington and Petley (2002), Pollack and Horty (1998),
Atkins, Abdelzaher, Shin and Durfee (1999) and desJardins, Durfee, Ortizand Wolverton
(1998) have identified various requirements for planning systems for real-world domains.
Building on their work, we present a set of requirements a planning system designed for
virtual environments should satisfy, in accordance with the generic characteristics of
real-world domains.

. Integrate planning, monitoring and execution as parallel, ongoing processes

. Handle domain uncertainty and operate on partial information

i Decompose the planning problem into smaller subtasks and reason over multiple
levels of abstraction

° Interrupt the planning or execution processes if new information affecting them
appears

. Handle durative actions and incorporate a level of reasoning about time

° Accept new goals coming from the environment or other agents

i Generate new goals on its own

i Demonstrate tolerance in terms of goal satisfaction; partial goal completion should
be acceptable, and sub-goal failure should not terminate the whole planning
process.

° Deal with real-time changes in the environment that might not be a result of the
planning agent’s actions; they might be caused by other agents or the environment
itself.
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i Support indirect execution by delegating actions to other agents in the environ-
ment as well as scheduling action execution.
. Handle parallel action execution in a multi-agent environment

Robotic vs. Virtual Environments

The above requirements for planning for virtual environments could reasonably
seem to someone reminiscent of robotic planning (McDermott, 1992; Beetz,2001; Haigh
& Veloso, 1996). Indeed, robotic domains have a lot in common with virtual environments
and VE-planning is closely relevant to robotic planning, with the difference that robots
are simulated rather than being hardware implementations. Although practical virtual
environment applications, such as computer games, tend towards a centralized plan or
control approach for reasons of efficiency, research oriented agent-centred approaches
are closely similar to autonomous robotic environments.

Key Similarities Between Virtual and Robotic Environments

° Both present the need for real-time agent response to stimuli

° Sensing, planning and execution take place in both domains and it is often
necessary that these tasks are performed concurrently.

° Both environments are highly dynamic

° Multiple agents may inhabit robotic or virtual environments, creating the need for
agent communication and coordination tasks

° There is limited control of external events from the part of the agents

° Agents only maintain imperfect and local information about the environment

. Bothrobotic and graphical agents are embodied, meaning that they have to control
abody in the environment which can also be used for communication and actuation

° Agent actions have a temporal extent, which is non-trivial and can be quite long

for specific actions

Apart from the above similarities, however, virtual environments present some
differences from robotics domains, which can significantly affect the planning problem.
Some of these differences work in favour of virtual environments, while others present
yet more challenges that have to be confronted. These features differentiate virtual
environment planning problems from robotic planning problems in a degree such that
planning for virtual environments qualifies as a new, self-contained category.

Key Differences which make VE Planning Easier than Robotic

Planning

° “Cheating” is possible in VE planning if one wants to restrict the problem,
especially in regard to sensing and communication functions. In contrast to a
camera-equipped robotic agent that has to perform complex image recognition to
decide thatthe objectahead is atable, a graphical agent can acquire this information
using messages or reading the object’s attribute values. Although many could
argue that this is a questionable practice, it is commonplace in practical applica-
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tions like games and is very convenient if one only needs to experiment with the
agents’ high-level reasoning capabilities.

If one wants to restrict the problem in order to make it tractable, agent actions can
be designed so that a successful outcome is guaranteed. Actions like “grab an
object” are usually considered trivial in virtual environments, unlike robotic
domains where complex constraints have to be met to ensure the object is held
firmly and safely at the same time.

The designer has extensive control over the degree of realism. This means that the
degree of physics incorporated in a virtual environment can be limited to what is
judged as absolutely necessary. This way, common problems in robotics experi-
ments such as power loss because of batteries running out or robots falling over
can be avoided.

Implementing sensorimotor functions for a graphical agent is easier than the
equivalent robotic functions. This, in conjunction with the fact that one can work
at a higher level of abstraction allows the implementation of actions, such as
dancing, running, and climbing stairs, which are hard problems for robots.

No safety issues arise in virtual environments, as opposed to robots that may
collide with objects or people, which can be a real problem if one considers large
humanoid robots that may weigh well over 100kg.

Virtual agents can execute a much wider range of actions than robots, as the
majority of the physical limitations do not hold or can be ignored, according to the
level of abstraction one is working with.

Key Differences which make VE-Planning more Difficult than Robotic
Planning

Virtual agents’ extensive action repertoire, apart from the apparent benefits in terms
of believability, has as a negative consequence more complex planning problems
and extensive search spaces which can easily become impossible to handle if too
many actions are allowed to the agent

Given that nothing has any solidity in virtual environments, interaction among
objects and agents can be problematic. Collision detection can be a difficult task,
especially when complex 3-D models are involved.

VE requirements for believability introduce another source of complexity, as it is
not only enough to get the task done, it also has to be performed in a plausible
manner, something especially important when talking about humanoid/animal-like
agents. Robotic agents do have to be plausible too, although the expectations are
much lower.

The higher level of abstraction brings along as a consequence more abstract goal
and action definitions.

Interms of spatial complexity and size, virtual environments are usually much more
complex than the domains used by robotic experiments, which can nullify the
advantage one has because of greater control over physics.

Emotions and motivations behind action selection are currently much more impor-
tant in virtual environment applications than in robots, which can introduce a great
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degree of complexity both in terms of 3-D-modeling and behaviour control.
Emotional robots have already been presented (Breazeal, 2002), but they are still
a long way behind their software counterparts.

° Longevity and persistence of virtual environment applications is much greater than
in robots. This implies that longer plans have to be devised or the agents should
be highly autonomous and accept or generate new goals.

CONTINUOUS PLANNING IN
VIRTUAL ENVIRONMENTS

Continuous Planning Fundamentals

The Al planning community has long acknowledged the fact that the traditional off-
line planning paradigm cannot fit domains, such as the ones described above, and has
not remained idle. Several researchers have been trying to address these problems,
resulting in a significant body of work having appeared since the early nineties.
Techniques such as probabilistic planning, (Blythe, 1998; Kushmerick, Hanks & Weld,
1995), conditional planning (Collins & Pryor, 1995) or decision-theoretic and utility
planning (Boutilier, Dean & Hanks, 1999; Williamson & Hanks, 1994) have been intro-
duced in an attempt to deal with categorical goals, indefinite action outcomes or agent
omniscience.

However, it is evident that a necessary major step towards more efficient handling
ofreal-world domains is an approach that interleaves planning with execution, allowing
the agent to incrementally build its plan and monitor its progress towards achieving its
goals in real-time (Durfee, 1999; Estlin, Rabideau, Mutz & Chien, 1999; Myers, 1999).
Techniques integrating planning with execution as ongoing, closely interacting pro-
cesses were first presented in the late 1980s (Ambros-Ingerson & Steel, 1987) and have
significantly evolved since, defining a new research area within intelligent planning,
which has become known as continuous planning.

Definition

Continuous (or continual, as often referred to in several research papers) planning
could be generically defined as an ongoing process in which planning and execution are
parallel activities, and new goals are possible to be presented to or generated by the agent
at any time, depending on input received by a dynamic, ever-changing environment.

Continuous planning is also often referred to as continual or online planning, in
contrast to traditional, batch or off-line planning. The earlier term IPE, standing for
Interleaved (or Integrated) Planning and Execution is occasionally still being used,
although it mainly refers to sequential planning and execution processes rather than
parallel ones.

A continuous approach implies that the planning agent can adapt to unstable
conditions in the environment, adjusting its plan towards achieving its given goals, and
as being able to generate goals according to newly perceived world states. This
implication distinguishes the concept of continuous planning to approaches such as
plan monitoring and repair, where the planner does not generate new goals and only
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revises its plan if it is bound to fail, without taking into account new conditions that do
not pose threats to the original plan but might actually provide a better alternative to it.

The core difference between off-line and continuous planning is the fact that the
latter is treated as an ongoing, incremental process, rather than being a batch, one-shot
attempt to solve a problem. A classical task-based planning algorithm can be generically
summarized in the following sequence:

begin planning session
acquire currentworld state information
acquire goal state
produce a plan linking current state to goal
state
outputthe plan to the execution module
end planning session

In practice, the last step is often omitted, considered as a trivial task that is bound
to succeed, so the majority of planning systems do not deal with execution at all. In
contrast, a continuous planning algorithm as two processes running in parallel could be
generically described as follows:

process(planner)
while (more goals) or (action to execute)
read execution outcome message
read planner world model
If (execution outcome message) then
if (successful execution) then
remove solved goals
else
mark goals failed,;
update goals
if (executable action) then
send action for execution;
If (goal on stack) then
initiate planning;
endwhile
end process

process (executing agent)
while (agentactive)
sense world state
establish beliefs
send outcome message to planner
update planner world model
read actions for execution
selectaction
execute action
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end while
end process

Although in an abstract form, the algorithm clearly demonstrates the basic differ-
ence between the open loop, single pass off-line approach and the closed loop, multi-
pass continuous approach, schematically shown in the following diagram.

Figure 2. Schematic representation of a batch, single pass offline approach vs. a
parallel, continuous planning approach
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Example Planning Scenario in Intelligent Virtual

Environments

Let us now see how a continuous planning algorithm would cope with a sample
scenario that would be typical in a virtual storytelling application, in contrast to a classic
off-line approach.

The virtual world consists of a street with a subway exit, a grocery store, a bank
ATM and the agent’s home. We assume for the sake of simplicity thata single agent only
resides in the world. We also assume that the agent has a separate belief list from the
universal world state, which implies some of its beliefs might not be valid.

The agent’s plan is created according to its beliefs, which are checked later during
execution time with the world state. Belief validation is performed individually for each
action, meaning that when an action is selected, the preconditions of the action (which
have already been checked with the agent’s beliefs during planning) are now checked
against the world state.

The agent can move around in the world, buy food from the grocery store, eat food
and use the ATM. Therefore, a draft representation of the agent’s action schema is the
following:

The agent’s initial beliefs are that it has money and it is hungry, while its initial
location is at the subway exit. Its goals are to satisfy its hunger and get home. The initial
world state is the same as the agent’s beliefs with the difference that the agent is assumed
not to have money. This means the agent’s initial belief have(money) is invalid.
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Figure 3. Schematic representation of the domain

Subway Exit Grocery Store Bank
ATM

Initial Agent Beliefs:
at(subway)
have(money)

hungry Home

Table 1. Action schema

Action go(X) buy(food) eat(food) use(ATM)
Preconditions at(Y), Y=X At(grocery_store), have(food) at(ATM),
have(money) at(home) not(have(money))
hungry
Effects at(Xx) not(have(money)) not(have(food)), have(money)
have(food) not(hungry)

Using an off-line approach, the produced plan would be the one shown in
Figure 4. Upon execution, Step 1 (go(store)) executes successfully, when the agent tries
to execute the buy(food) action, a failure occurs. This happens because the agent’s
beliefs are inconsistent with the world state — the agent believed it had money, however
it did not. This results in execution failure and termination of the agent’s activity.

A planner interleaving planning with execution would produce the plan in Figure
5. Step 1 would execute fine, as in the off-line example. Atthe second step, when the action
buy(food) is initiated, the inconsistency between agent beliefs and actual world state is
detected. This results in a belief update for the agent. After the beliefs are updated, the
action go(ATM) is selected, in order to remedy the problem and acquire money. After the
agent has collected money from the ATM, the agent visits the store again in order to buy
the food, an action that now succeeds. The final goal is achieved by going home and
eating the food, which satisfies the agent’s hunger.
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Continous Planning for Virtual Environments

its goals and the universal world state

Agent Beliefs Agent Goals World State
at(subway), not(hungry) at(subway),
have(money), at(home) not(have(money)),
hungry hungry

Figure 4. Schematic plan representation for off-line approach
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at(store) at(store) at(home)
have(money) .| have(food) | have(food)
“| not(have(money)) | not(have(money))
buy(food) hungry go(home) hungry
7}
go(store) eat(food)

v
at(subway) at(home)
have(money) not(have(food))
hungry not(have(money))

not(hungry)

Basic Considerations

So, continuous planning appears to be a modification of the generic planning
algorithm such that when a full planning and execution cycle is produced, the resulting
world state and remaining unsatisfied goals are fed back to the system so that the partial
plan created can be refined until the completion of all goals.

While this might be true as a generic, high-level approach, there are still numerous
issues it fails to address. When should the transition between planning and execution
be made? How far should planning be performed before actually executing a partial plan?
What happens if the agent’s goals are fully satisfied? What about external change?
Shouldn’t this affect the agent’s goals? Above all, can this simple loop linking planning
to execution be considered as true continuous planning?

This is indeed an important issue in continuous planning. Merely creating a
planning and execution loop while at the same time maintaining a classical core planning
approach is pointless. The planning process would produce an exhaustive, complete
plan, which, after being executed would leave the agent with no goals to perform,
therefore, why would one need to interleave planning and execution?

This is easily answered when one considers goal generation. Having adopted a
dynamic world approach, it is understandable that during the planning and execution
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Figure 5. Schematic plan representation for continuous approach
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session new information may have arrived that affects some of the agent’s goals,
rendering them infeasible, facilitating them or even producing alternative, more beneficial
options. Therefore, when the planner is invoked again, it will be presented with a new
set of goals to plan and act upon, which makes continuous planning perfectly sensible.
Goal generation is an exciting aspect of continuous planning, as it is a major step towards
achieving autonomy (Luck, D’Inverno & Munroe, 2003), producing unplanned-for
behaviour.

A second feature that has to be considered is planning depth. The planning process
does not have to produce a fully expanded, complete plan that will be fed to the execution
system. Instead, partial planning can and should be performed. By hierarchically
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Figure 6. Coarse vs. fine granularity plans

Coarse granularity

Plan Execute Plan Execute
make coffee make coffee open door open door

Doorbell rings

Fine granularity Doorbell rings
Plan Execute Execute Plan Execute
make coffee water in kettle coffee in cup open door open door
Execute Execute Execute
stir water in cup sugar in cup

decomposing the problem into subtasks (Sacerdoti, 1974; Nau, Muifioz-Avila, Cao, Lotem
& Mitchell,2001), the system can postpone planning and execution of either non-critical
tasks or parts of the plan for which adequate knowledge has not been established. This
way, the planning subsystem can provide the execution subsystem with what is needed,
at the time it is needed. By reducing the extent of the planning horizon (Gunderson &
Martin, 2000), and consequently the distance between planning and execution, domain
knowledge validity is easier to achieve, while another important positive side effect of
decomposing the problem and performing partial planning is a drastic reduction of
complexity and wasted reasoning time.

Another important issue is how execution and planning actually interact. How far
should planning proceed before passing control to execution, and when should execu-
tion be possible to interrupt? These questions raise the issue of granularity in the
continuous planning system’s operation (Aylett, Coddington, Barnes & Ghanea-Hercock,
1997).

Ideally, planning and execution have to be parallel activities, assisted by a moni-
toring system that constantly observes changes in the environment and other agents’
activities and can interrupt either planning or execution at any time to provide new
information. This is particularly true for multi-agent systems, where interactions and
possible changes are much more frequent, although there are domains like virtual
environments where the parallel performance of planning and execution is not always
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Figure 7. Sequential vs. parallel planning and execution

Sequential planning and execution

Plan Execute Plan Execute
make coffee make coffee cook dinner cook dinner

Parallel planning and execution

Plan Execute Execute
make coffee make coffee cook dinner
Plan
cook dinner

desirable. In practice, sequential approaches operating at a fine granularity can be
adequate, provided, however, that monitoring remains a parallel process.

Real-time planning and execution raises another issue of great importance, which
isknowledge acquisition (Knoblock, 1995). Off-line planning systems are relieved from
this task; as the batch nature of the algorithm allows Al practitioners the time to properly
express domain knowledge in a format comprehensible to the planning system. Continu-
ous planning domains cannot afford this luxury. Domain knowledge has to be established
in real-time, either from sensory data, or information received from other agents. This
takes us back to the binding problem (MITECS, 2001), one of the major problems in
robotics, agent theory and cognitive science altogether. Although one might dismiss this
problem as an issue that has to be dealt with by lower-level layers than the planning one
in an agent architecture (and is indeed treated as such in practical implementations),
its importance and the complexity it introduces to an all-around approach of autonomous
agent systems cannot be neglected.

Numerous other issues may emerge in a closer examination of the intricacies of
continuous planning, especially when considered for application in niche, specialised
domains like virtual environments. Defining executable actions, for example, is a major
concern in integrated planning and execution systems and is a task that is often
implementation-specific. Modelling of an agent’s stance towards other agents is another
important issue, as it might affect its own actions in respect to other agents’ plans.

The last statement refers to multi-agent environments, where many agents can
perform actions that alter the world state. This way, it hints at another approach —
distributed planning, that is, planning activity that is distributed to multiple agents,
processes or locations. Planning activity could include either reasoning or execution
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tasks which involve multiple agents in order to achieve objectives. This approach,
generally referred to as Distributed Continuous (Continual) Planning, is described
extensively in (desJardins, Durfee, Ortiz & Wolverton, 1998).

Two main approaches in Distributed Continuous Planning can be distinguished,
mainly in respect to coordination and communication among agents. The first one
assumes individual planning agents that have their own agenda and pursue their own
goals, but can also interact with other agents co-residing in the environment, supporting
or obstructing their plans and communicating among one another. The second approach
presupposes the existence of a high-level, overseeing planning entity that can delegate
tasks to agents and coordinate their actions.

Both approaches have their pros and cons, with the former being closer to the
concept of autonomous agents and better suited to applications where a high degree of
self-assertiveness is allowed, yetimposing a heavy overhead to the computer system due
to the potentially excessive exchange of communication messages necessary for agent
interaction. The latter, better suited to centralised organisation paradigms, drastically
limits the need for message exchange, but also restricts autonomy.

Brief Account of Efforts Toward Continuous Planning

Continuous and distributed continuous planning are not new ideas. Al planning
researchers did have issues like execution in mind since the first steps of research in this
area was made. Even STRIPS, dated back to 1971, was designed to be integrated with an
execution module (Fikes, 1971). However, the necessity to make the planning problem
tractable so that initial investigation could begin led to the introduction of the classical
planning assumptions discussed in previous sections.

Since then, much of the work presented was aimed towards relaxing these strict
assumptions, resulting in approaches like causal-link, partial-order, conditional planning
and others that, although often sub-optimal and outperformed by other systems like
BlackBox (Kautz & Selman, 1998), Graphplan, O-Plan (Tate, Drabble & Dalton, 1996) or
SAT-PLAN (Kautz & Selman, 1992), represented a step towards systems applicable to
real-world domains.

Continuing work towards such systems resulted in the gradual introduction of
several planning systems incorporating some mechanism to monitor and adjust plans
(Ward & McCalla, 1982; Wilkins, 1985), with a more comprehensive example of an
interleaved planning and execution architecture being the influential IPEM system by
Ambros-Ingerson & Steel (Ambros-Ingerson & Steel, 1988), although these works seem
to be focused on remedying plan failure, rather than exploiting new information to create
a more effective plan. Other works related to continuous planning include reactive
systems such as Agre and Chapman’s Pengi (Agre & Chapman, 1987) and Georgeff and
Lansky’s PRS (Georgeff & Lansky, 1987), or works by Penberthy, Weld, Golden and
Etzioni at the University of Washington (Penberthy & Weld, 1994; Golden, Etzioni &
Weld, 1996), Kabanza, Barbeau and St Denis (Kabanza, Barbeau & St Denis, 1997),
Bacchus and Petrick (Petrick & Bacchus, 2002; Bacchus & Petrick, 1998) or Durfee,
Musliner and colleagues (Atkins, Abdelzaher, Shin & Durfee, 2001; Atkins, Durfee &
Shin, 1997; Durfee, Huber, Kurnow & Lee, 1997; Musliner, Kresbach, Pelican, Goldman
& Boddy, 1998; Musliner, Hendler, Agrawala, Durfee, Strosnider & Paul, 1995).
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Contemporary Continuous Planning Systems

Currently there is significant research activity going on in continuous planning and
planning for agent environments. Persistent efforts seem to be taking place in a number
of institutions around the world, with the majority of work coming from the Information
Sciences Institute at the University of Southern California, SRI International, the
University of Pittsburgh and NASA’s Jet Propulsion Laboratory, while one could also
mention Micksch and Seyfang (2000) and Coddington (2002).

Current Research Work

In this section we present some of the most important works related to distributed
continual planning. Some of these works focus on the “distributed” and some of them
focus on the “continual” aspect of the issue. Works are presented grouped in relation
to the research institute where they actually take place.

Information Sciences Institute, University of Southern California

Jonathan Gratch, along with colleagues Stacy Marsella and Randal Hill at the USC
[SThas presented a number of interesting works on planning for complex agent domains.

Ina 1999 paper of theirs, Gratch and Hill (1999) present a multi-agent architecture
applied to military simulations. The architecture is based on Newell and Laird’s SOAR
architecture and uses distributed continuous planning techniques to simulate command
entities controlling operational-level agents in a synthetic battlefield.

The SOAR/CFOR planner is based on the IPEM and XII algorithms (Gratch &
Marsella, 2001) and adopts the principle of hierarchical task decomposition, organising
plans as sequences of tasks, which can be decomposed into subtasks. Each task has a
set of attributes (preconditions, effects, interruption conditions, success probability,
importance, acting/performing entity and a sequence of procedures that should fire
during task execution). The domain model also contains information about task decom-
position, defining decomposition schemata that describe how the task is to be decom-
posed into subtasks. This process is context dependent, so a different decomposition
schema might be selected according to either projected or currently holding conditions.
SOAR/CFOR has two main operation phases, plan generation and plan execution. During
the former, the planner receives a partial plan containing abstract guidelines for mission
completion. This partial plan is refined through task decomposition according to context,
which is also recorded in the plan to allow for later revisions.

During the plan execution phase, the planner builds a world model, which describes
how the planner perceives the current situation. The planner then continuously com-
pares the world model with its current plans, checking stored context validity against the
current world model. The planner’s continuous operation derives from the fact that the
planning and executing agents are different entities, so the planning agent’s world model
is constantly updated by input coming from the executing agents.

Extensive description of the planning algorithm is out of the scope of this survey,
however it is interesting to mention some features relevant to the coordination capabili-
ties of the system. First, the planner maintains multiple plans into memory, representing
the activities of various units at the same time, which allows the planner to examine
interactions between various units’ activities. The planner also has a model of the
decision-making process itself, thus implementing military protocols as meta-plans
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(plans on how to plan). The planner incorporates social modelling capabilities by
recording social stances, that is, inter-agent postures that affect the way the agents
reason about each other.

Preliminary results of experiments with SOAR/CFOR were very encouraging. Gratch
has also conducted research work in the field of synthetic emotional agents, presenting
the Emile behavior model, which was the base for another military simulation, although
no detailed description of the planning algorithm has been published so far. The USC
IST’s works are described in Gratch (2000, 1998), Hill, Gratch and Rosenbloom (2000) and
Marsella and Gratch (2001).

SRI International

A project for developing a continuous planning architecture is currently under
development at SRI International. The project, named CPEF (Continuous Planning and
Execution Framework) is supervised by Karen Myers and is relevant to Gratch’s SOAR/
CFOR architecture. CPEF (Myers, 1998, Myers, 1999) is a continuous planning system
supporting not only indirect, but also direct execution. In direct mode, execution is
undertaken by the planning agent, as opposed to indirect mode, where execution is
performed by special execution entities, while the planning system acts as a reasoning
and monitoring component.

CPEF draws on various earlier systems: SIPE2 (Wilkins, Myers, & Wesley, 1994)
performs HTN planning and plan repair; Georgeff’s PRS is used as a plan executor,
Cypress was used as a starting point for creating the core planning mechanism (Wilkins,
Myers, Lowrance, & Wesley, 1995), while Myers’ Advisable Planner (Myers, 1997)
serves as a mixed-initiative component. The whole system is based on Myers & Wilkins’
Multiagent Planning Architecture (Wilkins & Myers, 1998) to support coordinated
actions.

Activities in the CPEF system are organized along three functional roles: the User,
the Planner, and the Executor. The system is designed in a way that allows the user to
play an active role in the plan development and execution processes. The role of the
Planner refers to various activities such as plan generation, analysis and repair. The
Executor module is responsible for monitoring world state, monitoring plan execution,
and plan modifications in response to new world state.

Parallel work on agent planning at SRI International has been conducted by Marie
desJardins. DesJardins’ work is mainly focused on distributed planning, resulting in an
extension of the SIPE-2 planner called DSIPE (Distributed SIPE) (desJardins & Wolverton,
1999). DSIPE uses a HTN approach and introduces the concept of planning cells. Two
kinds of planning cells exist in DSIPE: a coordinating planning cell unit and lower level
planning cells. The former delegates parts of the planning problem to several instances
of the latter, which in turn perform actual planning work. The coordinating unit then, in
turn, merges plans produced by lower level units to produce an overall plan.

University of Pittsburgh

Martha Pollack and her colleagues have been working on IRMA (Pollack & Horty,
1998), a planning architecture that aims to follow the above-mentioned principles.
IRMA’s key feature is that it tries to establish a balance between commitment to existing
plans and sensitivity to important new options. This is achieved through a filtering
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mechanism, which checks the compatibility of new options with existing plans and also
assesses the importance of anew option to determine whether it should be adopted, even
if it is conflicting with existing plans.

IRMA’s filtering module is complemented by the PMA (Plan Management Agent),
a higher-level module that aims to address the temporal aspect of the planning problem.
The PMA checks temporal and causal consistency of the plan based on user commit-
ments and takes action when needed.

Jet Propulsion Laboratory, CalTech

Work at the Jet Propulsion Lab has been mainly focused on space robot applica-
tions. The most representative sample of work at the JPL is CASPER (Continuous
Activity Scheduling Planning Execution and Replanning), a planning system uses
iterative repair techniques to allow the continuous modification and updating of a plan
according to changing world conditions. CASPER has been applied to autonomous
spacecraft and autonomous rover applications, such as the famous Mars Pathfinder
project.

CASPER, as the majority of continuous planning systems, adopts a hierarchical
approach, and defines a continuous planning cycle that consists of updating a plan with
new goals, updating the world state with newly received data, detecting and resolving
possible conflicts and executing a partial plan, then repeating the cycle until high-level
goal is reached. Work on the CASPER system as well as its applications is described in
Chien, Knight, Stechert, Sherwood and Rabideau (1999) and Estlin, Rabideau, Mutz and
Chien (1999)

Intelligent Planning in Virtual Storytelling

Intelligent planning has already been successfully utilised in virtual environment
applications as a means to generate and control narrative plot in computer-based
storytelling systems. Virtual Storytelling is a relatively new research area falling under
theumbrella of intelligent virtual environments, aiming to investigate the potential of 3-
D graphic environments as an artificial theatrical stage where dynamically generated
stories are presented.

Several systems including a planning component have been presented so far, with
the Interactive Storytelling (Cavazza, Charles & Mead, 2002), Mimesis (Young, 2002) and
Fagade (Mateas & Stern, 2002) projects being among the most well-known ones, whereas
there are also a few other closely related works (Rickel, Marsella, Gratch, Hill, Traum &
Swartout, 2002; Magerko, 2002). The increasing interest in the use of intelligent planning
inthe field of virtual storytelling can easily be justified, as the whole rationale behind the
planning problem is very close to the concept of story generation as the production of
a sequence of interdependent actions (Charles, Lozano, Mead, Bisquerra & Cavazza,
2003).

Two general approaches to applying planning in virtual storytelling applications
can be distinguished. The first is plot-based systems that use a global planner to control
a story with a predefined beginning, middle and ending. Here the planning module
undertakes the role of a “story manager,” similar to that of a dungeon master in role-
playing games (Louchart & Aylett, 2002). The second category is character-based
systems that use planning to control the behaviour of each individual character in the
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environment, without following a predetermined plot, an approach similar to that of a
reality show or a soap opera. However, no matter which approach one assumes, either
the “coordinating” role of the planner in the first one or the “behavioural control” role
of the second, considerations already discussed make a strong case for the need for
continuous planning rather than batch techniques.

MOTIVATION-BASED
CONTINUOUS PLANNING

Sample Scenario

Jeremy settles down at his desk one evening to study for an examination he has to take
in three days’ time. Finding himself a little too restless to concentrate, he decides to
take a walk in the fresh air. His walk takes him past a nearby bookstore, where the
sight of an enticing title draws him to look at a book. Just before getting in the
bookstore, however, he meets his friend Kevin, who invites him to the pub next door for
a beer. When he arrives at the pub, however, he finds that the noise gives him a headache,
and decides to return home without having a beer, to continue with his main goal —
studying for the exam. However, Jeremy now feels too sick to study and his first concern
is to cure his headache, which involves taking some medicine and getting a good rest,
thus postponing studying until the next morning.

This scenario, inspired by real-life situations, features a constant change of goals
and re-evaluation of priorities, mainly triggered by changes in the agent’s condition.
Jeremy has arelatively distant, yet important goal that plays a major role in his decisions.
Operating within a specific time frame, Jeremy has non-explicitly devised a plan and a
schedule in order to achieve his goal, passing the exam. Although within a broad planning
horizon Jeremy’s top-priority goal remains the same, from a narrower point of view his
lower-level goals are much more relaxed and can change order and priorities, as well as
be pushed aside by newly generated goals. The main driving force behind Jeremy’s
choices is changes in his emotional, mental and physical states, however, almost always
under a varying degree of influence by his main goal.

Motivations

Motivated by scenarios like the above and adopting the position of Bates, Gratch,
Picard and other researchers who have argued about the importance of emotions for any
model of intelligence, the authors are currently working towards the direction of a
continuous planning system aware of emotional and physical states, modelled using the
concept of motivations (Aylett, Coddington & Petley, 2002; Coddington, 2002).

In Avradinis, Aylett, and Panayiotopoulos (2003) and Avradinis and Aylett (2003),
motivations are defined as emotional, mental or physical states or long term, high-level
drives that affect a situated agent’s existing goals or generate new ones, and are
themselves affected by the agent’s own actions, other agents’ actions or environmental
conditions.
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Motivations can potentially play an important role in determining an agent’s
actions. Assuming an agent possesses some basic physical, mental and emotional
attributes like hunger, thirst, boredom, sociability, and happiness such that when
maintained within some minimum and maximum limits they define a well-being state, then
one of them exceeds these limits a motivation to restore the attribute to its desired level
is generated. This would trigger the activation of an action supporting the generated
motivation, by functioning towards restoring the affected attribute to its normal level.

For example, Jeremy’s decision to go for a walk could be triggered by an increase
of the weight of the motivation feel bored, caused by the failure of the durative action
study. Jeremy’s spotting the book decreases the weight of the boredom motivation more
than the action take a_walk does, so he decides to buy the book. Before he executes that
action, however, Kevin’s introduction of the have _a beer plan changes the situation —
thehave a beerplan decreases the boredom weight even more, so the action go_to_pub
takes priority and is selected, causing the buy book goal to be dropped.

Support or subversion of motivations can either be aresult of an action specifically
targeted towards this aim, or a side effect of an action having a different primary effect.
For example, the execution of the action eat food directly targets the motivation
satisfy_hunger. An action like buy CD, on the other hand, apart from having the
apparent effect have CD, will also have the side effect of increasing its happiness factor.
Therefore, the motivation fee/ happy is a parameter that could affect the selection of the
action buy CD,and when the action is performed, the motivation is satisfied in a degree.

Motivations can be obviously be affected by the agent’s own actions, for example,
if the agent executes the action s/eep then its restore_energy motivation is supported.
Other agents’ actions can affect one’s motivations, for example, an agent in order to
support its need entertainment motivation may decide to execute the action
turn_on_music, which has the desired result. However, executing this action also has the
side effects of supporting the same motivation of a second agent as well as undermining
the need peace motivation of a third agent, who happen to be in the same room.
Environmental changes could possibly affect a motivation, for example, walking through
adarkalley could undermine an agent’s feel safe motivation, while they can also be time-
dependent. Time passing might increase the agent’s hunger, which would result in an
increased priority of the satisfy hunger motivation.

The authors wish to investigate the potential of the use of motivations as a source
for new goals, where factors like the above will affect the agent’s decisions and create
an unpredictable outcome, mainly dependent on the interactions of the character with
the virtual environment and other agents, rather than following predetermined steps
according to a previously compiled plan or a skeletal scenario.

In a more relaxed approach than the “Jeremy” scenario presented above, a primary
concern of the authors is work towards “aimless” agents, rational agents with trivial
goals. The motivation behind this research direction is the observation that human
behaviour is not always determined by utility, but is often a result of drives such as the
need for pleasure, or the desire to escape boredom.

Implementation Platform

The selected execution and experimentation platform is the popular game
UnrealTournament. A 3-D first person shooter, UnrealTournament has attracted the
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Figure 8. Screenshot from the 3-D environment in development and system architecture
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attention of several research groups worldwide (Young, 2001; Cavazza, 2002) thatuse it
as a visualisation engine to develop their own virtual worlds. UnrealTournament
provides an object-oriented language operating a layer above the game’s 3-D engine
using a virtual machine technology. The language, UnrealScript, allows extensive control
over the behaviour and the appearance of objects located in an Unreal Tournament world,
which, in addition to its capability to link to other languages through a C++ interface
makes it particularly attractive as an experimentation platform for Al techniques and
algorithms.

The reasoning capabilities of the motivated agents are going to be provided by a
system interleaving planning and execution, supporting mental, emotional and physical
states through the use of motivations. The proposed planning algorithm is presented in
adraft form below:

while agentis active
selectgoal fromgoal_listor execute
actionfromaction_list
if goal selected then
if goal primitive then
append goalto actionlist
elseif goal nonprimitive and expandable
expand goal to subgoals
append subgoalsto goal_list
else fail
elseifaction selected
execute action & assess outcome
update motivations & world knowledge
generate new goals and update goal_list
endif
end

The latest version of SHOP (Nau, Mufioz-Avila, Cao, Lotem, & Mitchell, 2001) was
adopted as a base upon which to develop our own system. SHOP, a forward chaining HTN
planner, has proven to be efficient and possess enough expressive power to model
complex domains, while at the same time it is a generative planner, an attribute particularly
suitable for the goal production needs of the system.
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Elements and ideas are also drawn from MACTA-planner (Aylett, Coddington &
Petley, 2002), a non-hierarchical, continuous agent-based planner using motivations as
a key element in its algorithm. Although developed for a robotics domain, MACTA-
planner’s continuous algorithm, its support for motivations as well as its ability to take
into account time make it seem particularly close to the needs of an IVE.

The authors aim is to combine SHOP’s expressive power and hierarchical philoso-
phy with MACTA-planner’s continuous operation and time handling, in order to
produce a HTN-based, continuous generative planning system suitable for producing
goals and selecting actions instigated by motivations.

CONCLUSIONS

In this chapter the increasingly popular continuous planning paradigm was pre-
sented while its application in virtual environments as a method to control intelligent
virtual agent behaviour was discussed. Continuous techniques offer a radical approach
towards planning problems, vitiating most of the traditional assumptions made by the
classical off-line planning paradigm. Targeted towards real-world domains, continuous
planning techniques have to abandon these assumptions, a result of the traditional
application of intelligent planning to limited and controlled domains designed for
research evaluation purposes.

Steps towards this practical approach of intelligent planning have been made long
before, however, it was only recently that continuous planning was established as an
individual research area. This can be partly attributed to the introduction of the intelligent
agent paradigm, which brought significant changes and gave new life to the field of
Artificial Intelligence.

The integration of planning with execution under a unified continuous planning and
execution framework raises issues that had not attracted significant attention by the
research community, such as multi-agent, distributed planning, incremental plan comple-
tion or the implications of action execution. The authors attempted to provide an
introductory discussion of such issues, and presented some of the most important
current continuous planning approaches.

Oriented towards realistic situations, continuous planning seems to fit well with the
needs of another newly emerging research area, intelligent virtual environments. Inhab-
ited with embodied agents, virtual environments require a method to control agent
behaviour in real-time. Continuous planning, sharing many common assumptions with
virtual world domains, seems a promising technique for the achievement of this goal.
Applications of interleaved planning and execution techniques in virtual environments
have already been presented, particularly in the field of interactive storytelling.

The authors’ own research interests lie within this new area and include the
investigation of techniques that can produce emergent agent behaviour not only based
on rational choice, but also affected by factors not usually considered essential
components of intelligence, such as emotions and drives.

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.



Continous Planning for Virtual Environments 189

REFERENCES

Agre, P., & Chapman, D. (1987). PENGI: An implementation of a theory of activity. In
Proceedings of the Sixth National Conference on Artificial Intelligence (AAAI-
87) (pp- 268-272). Seattle, WA. Menlo Park, CA: AAAI Press.

Ambros-Ingerson, J.A., & Steel, S. (1988). Integrating planning, execution and monitor-
ing. In Proceedings of the Seventh National Conference on Artificial Intelligence
(AAAI98) (pp. 83-88). St. Paul, Minnesota. San Mateo, CA: AAAI Press.

Atkins, E., Abdelzaher, T., Shin, K., & Durfee, E. (2001). Planning and resource allocation
for hard real-time, fault-tolerant plan execution. Autonomous Agents and Multi-
Agent Systems Journal, 4(1-2),57-78.

Atkins, E., Durfee, E., & Shin, K. (1997, July). Detecting and reacting to unplanned-for
world states. In Proceedings of the 14th National Conference on Artificial
Intelligence (AAAI97) (pp. 571-577).

Avradinis, N., & Aylett, R.S. (2003). Agents with no aims: Motivation-driven continuous
planning. In Intelligent Virtual Agents (pp.269-273). Berlin: Springer-Verlag

Avradinis, N., Aylett, R.S., & Panayiotopoulos, T. (2003, November 20-21). Using
motivation-driven continuous planning to control the behaviour of virtual agents.
Presented at ICVS 2003. Toulouse, France.

Aylett,R., & Cavazza, M. (2000, August 20-25). Intelligent virtual environments: A state
of the art survey. Eurographics 2000. Interlaken, Switzerland.

Aylett,R., Horrobin, A.,O’Hare, J., Osman, A., & Polshaw, M. (1999). Virtual Teletubbies:
Reapplying robot architecture to virtual agents. In Proceedings of the Third
International Conference on Autonomous Agents (pp 338-339). ACM Press.

Aylett, R., & Luck, M. (2000). Applying artificial intelligence to virtual reality: Intelligent
virtual environments. Applied Artificial Intelligence, 14 (1), 3-32.

Aylett, R.S., Coddington, A.M., & Petley, G.J. (2002, December 14-15). Agent-based
continuous planning. PLANSIG 2000. Milton Keynes, UK.

Bacchus, F., & Petrick, R. (1998). Modeling an agent’s incomplete knowledge during
planning and execution In Proceedings of Principles of Knowledge Representa-
tion and Reasoning (KR-98) (pp. 432-443).

Barnes, D. P., Aylett, R. S., Coddington, A. M., & Ghanea-Hercock, R. (1997, July). A
hybrid approach to supervising multiple co-operant autonomous mobile robots. In
Proceedings of the International Conference on Advanced Robotics (ICAR °97).

Bates, J. (1994). The role of emotions in believable agents. Communications of the ACM,
37(7),122-125.

Beetz, M. (2001). Plan management for robotic agents. Kuenstliche Intelligenz, 2(01), 12-
17.

Blythe, J. (1998). Planning under uncertainty in dynamic domains (Ph.D. Thesis).
Carnegie Mellon University.

Boutilier, C., Dean, T., & Hanks, S. (1999). Decision-theoretic planning: Structural
assumptions and computational leverage. Journal of Artificial Intelligence Re-
search, 11,1-94.

Breazeal, C. (2002). Designing sociable robots. Cambridge, MA: MIT Press.

Cavazza, M., Charles, F., & Mead, S.J. (2002, July/August). Character-Based Interactive
Storytelling. IEEFE Intelligent Systems, 17-24.

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.



190 Avradinis, Panayiotopoulos, & Aylett

Cavazza, M., Charles, F., & Mead, S.J. (2002). Under the influence: Using natural language
in interactive storytelling. International Workshop on Entertainment Computing,
Makubhari, Japan.

Charles, F., Lozano, M., Mead, S.J., Bisquerra, A.F., & Cavazza, M. (2003, March 24-26).
Planning formalisms and authoring in interactive storytelling. 7IDSE03, Darmstadt,
Germany.

Chien, S.,Knight, R., Stechert, A., Sherwood, R., & Rabideau, G. (1999, March). Integrated
planning and execution for autonomous spacecraft. In Proceedings of the IEEE
Aerospace Conference (IAC). Aspen, CO.

Coddington, A. (2002, July 7-9). A continuous planning framework for durative actions.
TIME 02, Manchester, UK.

Collins, G., & Pryor, L. (1995). Planning under uncertainty: Some key issues. In Proceed-
ings of the 14" International Joint Conference on Artificial Intelligence.

Damasio, A. (1994). Descartes’ error. New Y ork: Quill/HarperCollins.

Delgado-Mata, C., & Aylett,R.S. (2003). Emotion signalling in virtual agents. Presented
at Evolvability and Interaction: Evolutionary Substrates of Communication,
Signalling, and Perception in the Dynamic of Social Complexity. Queen Mary
University of London, UK.

desJardins, M., & Wolverton, M. (1999, Winter) Coordinating planning activity and
information flow in a distributed planning system. A/ Magazine, 45-53.

desJardins, M., Durfee, E., Ortiz Jr., C.L., & Wolverton, M. (1998). A survey of research
in distributed, continual planning. 4441 Fall Symposium on Distributed Con-
tinual Planning.

Durfee, E. (1999, Winter). Distributed continual planning forunmanned ground vehicle
teams. Al Magazine, 55-61.

Durfee, E., Huber, M., Kurnow, M., & Lee, J. (1997). TAIPE: Tactical assistants for
interaction planning and execution. In Proceedings of the First International
Conference on Autonomous Agents (pp. 443-450).

Estlin, T., Rabideau, G., Mutz D., & Chien, S. (1999, August). Using continuous planning
techniques to coordinate multiple rovers (IJCAI99). Workshop on Scheduling and
Planning meet Real-time Monitoring in a Dynamic and Uncertain World,
Stockholm, Sweden.

Fikes, R. (1971). Monitored execution of robot plans produced by STRIPS. IFIP Con-
gress,(1),189-194.

Fikes,R.E., & Nilsson, N. (1971). STRIPS: A new approach to the application of theorem
proving to problem solving. Artificial Intelligence, 5(2), 189-208.

Franklin, S. (1997). Autonomous agents as embodied Al. Cybernetics and Systems,
28(6),499-520.

Georgeff, M. P., & Lansky, A. L. (1987). Reactive reasoning and planning. In Proceedings
of the Sixth National Conference on Artificial Intelligence (AAAI-87) (pp. 677-
682). Seattle, WA

Golden, K., Etzioni, O., & Weld, D. (1996, February). Planning with execution and
incomplete information. UW Technical Report TR96-01-09.

Gratch, J. (1998a). Reasoning about multiple plans in dynamic multi-agent environments.
In AAAI Fall Symposium on Distributed Continual Planning. Orlando, FL.
Gratch, J. (1998b). Metaplanning for multiple agents. AIPS98 Workshop on Plan

Execution, PA.

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.



Continous Planning for Virtual Environments 191

Gratch, J. (1999). Why you should buy an emotional planner. In Proceedings of the
Agents’99 Workshop on Emotion-based Agent Architectures (EBAA’99).
Gratch, J. (2000). Emile: Marshalling passions in training and education. In Proceedings
of the Fourth International Conference on Autonomous Agents (pp.325-332). June

2000, Barcelona, Spain.

Gratch, J., & Hill, R. (1999). Continuous planning and collaboration for command and
control in joint synthetic battlespaces. In Proceedings of the Eighth Conference
on Computer Generated Forces and Behavioral Representation. Orlando, FL.

Gratch, J., & Marsella, S. (2001). Tears and fears: Modeling emotions and emotional
behaviors in synthetic agents. In Proceedings of the Fifth International Confer-
ence on Autonomous Agents (pp. 278-285). June 2001, Montreal, Canada.

Haigh, K.Z., & Veloso, M. (1996). Interleaving planning and robot execution for asyn-
chronous user requests. In Planning with Incomplete Information for Robot
Problems: Papers from the 1996 AAAI Spring Symposium. Menlo Park, CA: AAAI
Press.

Hill, R., Gratch, J., & Rosenbloom, P. (2000). Flexible group behavior: Virtual commanders
for synthetic battlespaces. In Proceedings of the Fourth International Confer-
ence on Autonomous Agents June 2000, Barcelona, Spain.

Izard, C. E. (1993). Four systems for emotion activation: Cognitive and noncognitive
Processes. Psychological Review, 100(1), 68-90.

Kabanza, F., Barbeau, M., & St-Denis, R. (1997). Planning control rules for reactive
agents. Artificial Intelligence, 95, 67-113.

Kalra, P., Magnenat-Thalmann, N., Moccozet, L., Sannier, G., Aubel, A., & Thalmann, D.
(1998). Real-time animation of realistic virtual humans. IEEE Computer Graphics
and Applications, 18(5), 42-55.

Kautz, H., & Selman, B. (1998). BLACKBOX: A new approach to the application of
theorem proving to problem solving. In Workshop Planning as Combinatorial
Search (AIPS-98). Pittsburgh, PA.

Kautz, H., & Selman, B. (1992). Planning as satisfiability. In Proceedings of the Tenth
European Conference on Artificial Intelligence (ECAI-92) (pp. 359-363).

Knoblock, C. (1995). Planning, executing, sensing and replanning for information
gathering. In Proceedings of the 14th International Joint Conference on Artificial
Intelligence (IICAT’95) (pp. 1686-1693). San Mateo, CA: Morgan Kaufmann.

Kushmerick, N., Hanks, S., & Weld, D. (1995). An algorithm for probabilistic planning.
Artificial Intelligence, 76,239-286.

Laird,J., & Van Lent, M. (2001, Summer). Human-level AI’s killer application: Interactive
computer games. A/ Magazine, 15-25

LeDoux, J. (1998). The emotional brain. New Y ork: Touchstone/Simon & Schuster.

Louchart, S., & Aylett, R.S. (2002). Narrative theory and emergent interactive narrative.
NILE August 6-9,2000, Edinburgh, UK.

Luck, M., D’Inverno, M., & Munroe, S. (2003) Autonomy: Variable and generative. In H.
Hexmoor, C. Castelfranchi, & R. Falcone (Eds.), Agent autonomy (pp. 9-22). Boston:
Kluwer Academic Press.

Magerko, B. (2002). A proposal for an interactive drama architecture. 4447 Spring
Symposium on Artificial Intelligence and Interactive Entertainment, Stanford,
CA.

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.



192 Avradinis, Panayiotopoulos, & Aylett

Marsella, S., & Gratch, J. (2001). Modeling the interplay of emotions and plans in multi-
agent simulations. In Proceedings of the 23rd Annual Conference of the Cognitive
Science Society Edinburgh, Scotland.

Mateas, M., & Stern, A. (2002) Architecture, authoral idioms and early observations
of the interactive drama facade (Internal Report, CMU-CS-02-198) Pittsburgh, PA:
Carnegie Mellon University.

McDermott, D. (1992, Summer). Robotic planning. A Magazine.

Miksch, S., & Seyfang, A. (2000) Continual planning with time-oriented, skeletal plans.
In Proceedings of the 14th European Conference on Artificial Intelligence (pp.
511-515). Amsterdam: IOS Press.

Musliner, D. J., Hendler, J. A., Agrawala, A. K., Durfee, E. H., Strosnider, J. K., & Paul,
C.J.(1995). The challenges of real-time Al. [EEE Computer, 28 (1).

Musliner, D. J., Krebsbach, K. D., Pelican, M., Goldman, R.P., & Boddy, M. (1998). Issues
in distributed planning for real-time control. A4A4I Fall Symposium on Distributed
Continual Planning.

Myers, K. (1998). Towards a framework for continuous planning and execution. In
Proceedings of the AAAI Fall Symposium on Distributed Continual Planning.

Myers, K. L. (1997). Abductive completion of plan sketches. In Proceedings of the
Fourteenth National Conference on Artificial Intelligence (AAAI-97). Menlo
Park, CA: AAAI Press.

Myers, K. L. (1999). CPEF: A continuous planning and execution framework. A Maga-
zine,20(4).

Nau, D., Muiioz-Avila, H., Cao, Y., Lotem, A., & Mitchell, S. (2001). Total-order planning
with partially ordered subtasks (1IJCAI 2001). August, 2001, Seattle, WA.
Panayiotopoulos, T., & Avradinis N. (2004). Intelligent virtual agents and the Web. In
Y.Zhang, A.Kandel, Y.L. Tsau& Y. Yiyu (eds.), Computational Web Intelligence:
Intelligent Technology for Web Applications, World Scientific. To be published

in2004.

Panayiotopoulos, T., Zacharis, N., & Vosinakis, S. (1999). Intelligent guidance in a virtual
university. In S. Tzafestas (ed.), Advances in intelligent systems: Concepts, tools
and applications (pp. 33-42). Boston: Kluwer Academic Press.

Penberthy, J.S., & Weld, D. (1994). Temporal planning with continuous change. Proceed-
ings of AAAI-94, July, 1994, Seattle, WA.

Petrick, R.P.A., & Bacchus, F. (2002). A knowledge-based approach to planning with
incomplete information and sensing. In Proceedings of AI Planning and Sched-
uling (AIPS-2002).

Picard, R. (1997). Affective computing. Cambridge, MA: MIT Press.

Pollack, M., & Horty, J.F.(1998). There’s more to life than making plans: Plan management
in dynamic, multi-agent environments. A4AI 98 Workshop on Distributed Con-
tinual Planning.

Pollack, M., & Horty, J. F.(1999). There’s more to life than making plans: Plan management
in dynamic, multi-agent environments. A/ Magazine, 20(4), 71-83.

Prophet, J. (2001). TechnoSphere: “Real” time “Artificial” life. Leonardo: The Journal
of the International Society for The Arts, Sciences & Technology, 34(4).

Rickel, J., Marsella, S., Gratch, J., Hill, R., Traum, D., & Swartout, B. (2002, July/August).
Towards a new generation of virtual humans for interactive experiences. /[EEE
Intelligent Systems,32-38.

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.



Continous Planning for Virtual Environments 193

Sacerdoti, E.D. (1974). Planning in a hierarchy of abstraction spaces. Artificial Intelli-
gence, 5, 115-135.

Tate, A, Drabble, B., & Dalton, J. (1996). O-Plan: A knowledge-based planner and its
application to logistics. In A. Tate (Ed.), Advanced planning technology, the
technological achievements of the ARPA/Rome laboratory planning initiative.
Menlo Park, CA: AAAI Press.

Thalmann, D., & Monzani, J.S.(2002). Behavioural animation of virtual humans: What
kind of law and rules? In Proceedings of Computer Animation 2002 (pp. 154-163).
IEEE CS Press.

Ward, B., & McCalla, G. (1982) Error detection and recovery in a dynamic planning
environment (AAAI ’82) August 18-20, 1982, Pittsburgh, PA.

Wilkins, D.E. (1985). Recovering from execution errors in SIPE. Computational Intelli-
gence, 1,33-45.

Wilkins, D.E., & Myers, K.L. (1998). A multiagent planning architecture. In 4441 '98 Fall
Symposium on Distributed Continual Planning (pp. 154-162).

Wilkins, D. E.,Myers, K. L., Lowrance,J. D., & Wesley, L. P. (1995). Planning and reacting
inuncertain and dynamic environments. Journal of Experimental and Theoretical
Al 7(1),197-227.

Wilkins, D. E., Myers,K. L., & Wesley, L. P. (1994). Cypress: Planning and reacting under
uncertainty. In M. H. Burstein (ed.), ARPA/Rome Laboratory Planning and
Scheduling Initiative Workshop Proceedings (pp. 111-120). San Mateo, CA:
Morgan Kaufmann Publishers.

Williamson, M., & Hanks, S. (1994). Optimal planning with a goal-directed utility model.
In Proceedings of the Second International Conference on Artificial Intelligence
Planning Systems (AIPS-98).

Wilson,R.A., & Keil,F.C. (eds.). (2001). The MIT Encyclopedia of the Cognitive Sciences
(MITECS). Cambridge, MA: MIT Press.

Young, R.M. (2001). An overview of the Mimesis Architecture: Integrating intelligent
narrative control into an existing gaming environment. A4A41I Spring Symposium on
Artificial Intelligence and Interactive Entertainment, March 26-28, Stanford, CA.

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.



194 Valk, de Weerdt, & Witteveen

Chapter VI
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with an Application
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ABSTRACT

Multi-agent planning comprises planning in an environment with multiple autonomous
actors. Techniques for multi-agent planning differ from conventional planning in that
planning activities are distributed and the planning autonomy of the agents must be
respected. We focus on approaches to coordinate the multi-agent planning process.
While usually coordination is intertwined with the planning process, we distinguish
a number of separate phases in the planning process to get a clear view on the different
role(s) of coordination. In particular, we discuss the pre-planning coordination phase
and post-planning coordination phase. In the pre-planning part, we view coordination
as the process of managing (sub) task dependencies and we discuss a method that
ensures complete planning autonomy by introducing additional (intra-agent)
dependencies. In the post-planning part, we will show how agents can improve their
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plans through the exchange of resources. We present a plan merging algorithm that
uses these resources to reduce the costs of independently developed plans. This (any-
time) algorithm runs in polynomial time.

INTRODUCTION

Often the actions or elementary tasks in a plan have to be performed by different
actors. Especially if these actors have a common interest, the plan itself is usually
constructed by a single actor. Examples are production planning in factories, arrival and
departure planning on airports, planning for building projects, and the planning of armed
forces. If, however, the actors involved require some degree of (planning) autonomy
themselves, centralized construction of the plan may be not feasible. Here, “autonomy”
refers to the ability to make decisions in an individually rational fashion, such as when
to perform which action. Such autonomous actors are called agents, and such planning
problems are called multi-agent planning problems.

Reading this book, one may wonder why we need to study such multi-agent
planning problems and techniques as a separate topic. Isn’t it true that such problems
are already dealt with in general discussions of planning? The answer to this question
comes in two parts. On the one hand, in real-life problems, we deal with multiple agents
having their own goals, and it is often impractical or undesirable to create the plan for
all agents centrally. These agents may be people or companies simply demanding to plan
their actions themselves, or refusing to make all information necessary for planning
available to someone else. Furthermore, the planning problem itself may be simply too
complex to be solved by one agent, while planning the parts for each agent individually
may be feasible. On the other hand, when agents acting in the same environment create
their plans individually, they still need to coordinate their actions for a number of
reasons. First ofall, coordination is needed to prevent chaos (e.g., collisions, deadlock),
which may easily arise if each agent just acts on itself. Secondly, coordination may be
required because the agents need to meet global constraints, or because there are
dependencies between the actions of the different agents. And even when the agents
can function completely independently, coordination may help to improve the efficiency
of their plans.

Summarizing, in quite a few real-life problems there is a clear need to have each agent
construct its plan more or less independently, but there is also a need to coordinate these
plans. A planning problem that has these key properties is called a multi-agent planning
problem.

In this chapter, we first present a more precise definition of this multi-agent planning
problem. Next, we give an overview of issues that arise when trying to solve such a
problem. Based on this overview we then present a classification of existing research
within multi-agent planning, paying special attention to the role of coordination in the
planning process. In the third and fourth section we discuss two different techniques to
coordinate independently planning agents. Firstly, a distributed algorithm is developed
that derives a (minimal) set of restrictions on the agents’ plans that can be given to them
before they start planning. These restrictions ensure that their plans do not interfere.
Secondly, we address a technique to improve the efficiency of the plans affer they have
been created individually. These two methods are discussed separately and we illustrate
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these methods with a logistics application. Finally, we conclude with a discussion of
further research into multi-agent planning.

MULTI-AGENT PLANNING

In this section, we first give a short overview of how the term “multi-agent planning”
is currently used in the literature, and we derive a general problem definition. Then we
analyze the types of dependencies that may occur in a multi-agent system and discuss
the definition of autonomy in this perspective. In the second part of this section, we
presentaway to evaluate multi-agent planning approaches: first we present some criteria,
and then we sketch a framework where several phases in solving multi-agent planning
problems are distinguished. Finally, we show where existing techniques fit into this
framework.

Multi-Agent Planning Problem

The term “multi-agent planning” has incidentally been used to denote an approach
to a planning problem with complex goals that splits the problem into manageable pieces,
and lets each agent deal with such a sub-problem (Wilkins & Myers, 1998; Ephrati &
Rosenschein, 1993b). In this approach, the solutions to the sub-problems have to be
combined afterwards to achieve a coherent, feasible solution to the original problem. This
idea of using several problem solvers or algorithms to work on one problem (De Souza,
1993) has been applied, for example, to transportation scheduling (Fischer etal., 1995),
in constraint programming (Hentenryck, 1999), and also to combine several planner
agents to be able to reach a solution faster (Kamel & Syed, 1989; Wilkins & Myers, 1998).
This form of multi-agent planning is called p/anning by multiple agents or distributed
planning (Mali & Kambhampati, 1999; Durfee, 1999).

Usually, however, multi-agent planning has been interpreted as the problem of
finding plans for a group of agents, also called centralized multi-agent planning
(Briggs, 1996; Ephrati & Rosenschein, 1993a; Rosenschein, 1982). More specifically, it
was used to describe the problem of coordinating the operations of a set of agents to
achieve the goals of each agent (Georgeff, 1984; Konolige, 1982; Muscettola & Smith,
1989).

The difference between such a centralized planning for a group of agents and
coordinating the agents’ individual plans in planning by agents is that, in the latter
approach, agents can have their own, private goals, and they may not like to publish their
complete plans, since they may even be competitors. In this chapter we study solutions
to the problem where the planning is done both for and by the agents themselves. The
following definition will serve as a working definition of multi-agent planning problems:

Definition. The multi-agent planning problem is the following problem: Given a
description of the initial state, a set of global goals, a set of (at least two) agents,
and for each agent a set of its capabilities and its private goals, find a plan for each
agent that achieves its private goals, such that these plans together are coordi-
nated and the global goals are met as well.
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The main difficulties in solving multi-agent planning problems arise because of the
dependencies between agents. The most common types of interdependencies in multi-
agent systems (see also Malone & Crowston, 1994) are:

*  prerequisite constraints, such as a producer/consumer relation, or a need for
information, interpretation, or motivation,
. the sharing of resources, or other interferences between actions,

° simultaneity constraints, such as synchronization needed to hand something over
to another, or a common goal, and
° task/subtask dependencies, where one agent uses other agents to fulfill its goals.

Note that these forms of dependencies all can be represented as an exchange of
resources where one agent waits until it receives a resource from the other; for example,
because the other agent has produced this resource especially for this purpose (prereq-
uisite, and subtask dependencies), because the other agent does not need the resource
anymore and releases the resource (sharing of resources), or because each of the agents
needs a special synchronization resource from the other agent to ensure that both are
ready at the same time (simultaneity constraints).

Remark. When an agent is (resource-) dependent on another agent, we cannot call it
autonomous (using the strongest definition of autonomy). However, in general, an
agent always is dependent on another at some point. Therefore we use the subtler
notion of the degree of autonomy. This indicates the share of decisions the agent
can make itself without negotiating with other agents. Most multi-agent planning
approaches try to maximize this degree of autonomy by letting each agent create
its own plan (sometimes partially).

Properties of Multi-Agent Planning Techniques

In many applications we need approaches to the multi-agent planning problem that
allow agents to have some degree of autonomy as well as some amount of privacy. In
other words, we need agents that negotiate with each other for resources instead of being
always cooperative (DesJardins et al., 2000). Furthermore, the approach may need to be
robust for cheating or insincere agents. Multi-agent planning approaches can be
evaluated by the way in which they deal with these issues, but also (just as single-agent
planning approaches) by:

i their ability to be used in a dynamic setting (where goals may change),
. the quality of the result (social welfare) vs. the performance of individuals, and
° the time complexity.

Multi-agent planning techniques can be evaluated by looking at these properties.
However, because often-simplifying assumptions are made, these assumptions need to
be discussed in such an evaluation as well.

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.



198 Valk, de Weerdt, & Witteveen

1. The world is deterministic. We assume that we know the result of each action.
Unfortunately, especially in a multi-agent environment, this is not the case,
because, for example, another agent may have changed the world after the
precondition of an action has been established. However, under the assumption
that all agents’ actions are coordinated, this deterministic assumption is quite
acceptable.

2. Thereis afair degree of coherence. Either the agents are designed to work together
or they are rational and have an incentive to do so. In other words, agents will try
to maximize their expected utility (Zlotkin & Rosenschein, 1996).

3. Knowledge about the world is correct and consistent among all agents. In other
words, the (relevant part of the) world is completely observable.

4. Afeasible goal state exists in which all global goals are achieved, and all private
goals are also met (at least to some degree, such as in “make a lot of money”).

5. Learning is not required. In other words, (past) events do not affect the agents
other than a change of the current state.

6. Communication is reliable and (almost) free. All messages come across safely,
and the agents share a common ontology and utility units. Furthermore, there is no
significant cost associated with communication actions.

Most of these assumptions are commonly used, and, fortunately, they are accept-
able in many application domains.

After the definition of the multi-agent planning problem and the discussion of
common assumptions and criteria used to evaluate solutions to the problem, we can
analyze the process of solving such a problem from an algorithmic point of view.

In general, the following phases in solving a multi-agent planning problem can be
distinguished (generalizing the main steps in fask sharing by Durfee, 1999).

1. Refine the global goals or tasks until subtasks remain that can be assigned to
individual agents (global task refinement).

2. Allocate this set of subtasks to the agents (task allocation).

3. Define rules or constraints for the individual agents to prevent them to produce
conflicting plans (coordination before planning).

4. For each agent: make a plan to reach its goals (individual planning).

Coordinate the individual plans of the agents (coordination after planning).

6.  Execute the plans and synthesize the results of the subtasks (plan execution).

W

Not always do all phases of this general multi-agent planning process need to be
included. For example, if there are no common or global goals, there is no need for phase
1 and 2, and possible conflicts can be dealt with on forehand (in phase 3) or afterwards
(in phase 5). Also, some approaches combine different phases. For example, agents can
already coordinate their plans while constructing their plans (combination of phase 4 and
5), or postpone coordination until the execution phase (combination of phase 5 and 6),
as, for example, robots may do when they unexpectedly encounter each other while
following their planned routes.
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Approaches to Multi-Agent Planning

For each of the phases that can be distinguished in a multi-agent planning process,
we describe some of the currently most well-known approaches that can be used to deal
with the issues arising in such a phase.

In the first phase, global task refinement, the global tasks or goals are refined such
that each remaining task can be done by a single agent. Apart from any existing single-
agent planning technique discussed in this book, such as for example, HTN (Erol et al.,
1994), or non-linear planning (Sacerdoti, 1975; Penberthy & Weld, 1992), special purpose
techniques have been developed to create a global multi-agent plan. Such so-called
centralized multi-agent planning approaches in fact use the classical planning framework
to construct and execute multi-agent plans (Pednault, 1987; Katz & Rosenschein, 1989,
1993).

The centralized multi-agent planning methods mentioned before usually also take
care of the assignment of tasks to agents (phase 2, task allocation). There are, however,
many other methods to establish such a task assignment in a more distributed way, giving
the agents a higher degree of autonomy and privacy, for example, via complex task
allocation protocols (Shehory & Kraus, 1998) or auctions and market simulations.

An auction is a way to make sure that a task is assigned to the agent that attaches
the highest value (called private value) to it (Walsh etal., 2000; Wellman etal.,2001). A
Vickrey (1961) auction is an example of an auction protocol that is quite often used. In
a Vickrey auction each agent can make one (closed) bid, and the task is assigned to the
highest bidder for the price of the second-highest bidder. This auction 