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ABOUT THE BOOK
Automated Planning is the area of Artificial Intelligence that deals with problems

in which we are interested in finding a sequence of steps (actions) to apply to the world
in order to achieve a set of predefined objectives (goals) starting from a given initial
state. In the past, planning has been successfully applied in numerous areas including
robotics, space exploration, transportation logistics, marketing and finance, assem-
bling parts, crisis management, etc.

The history of Automated Planning goes back to the early 1960s with the General
Problem Solver (GPS) being the first automated planner reported in literature. Since
then, it has been an active research field with a large number of institutes and research-
ers working on the area. Traditionally, planning has been seen as an extension of
problem solving and it has been attacked using adaptations of the classical search
algorithms. The methods utilized by systems in the “classical” planning era (until mid-
1990s), include state-space or plan-space search, hierarchical decomposition, heuristic
and various other techniques developed ad-hoc.

The classical approaches in Automated Planning presented over the past years
were assessed on toy-problems, such as the ones used in the International Planning
Competitions, that simulate real world situations but with too many assumptions and
simplifications. In order to deal with real world problems, a planner must be able to
reason about time and resources, support more expressive knowledge representations,
plan in dynamic environments, evolve using past experience, co-operate with other
planners, etc. Although the above issues are crucial for the future of Automated Plan-
ning, they have been recently introduced to the planning community as active research
directions. However, most of them are also the subject of researchers in other AI areas,
such as Constraint Programming, Knowledge Systems, Machine Learning, Intelligent
Agents and others, and therefore the ideal way is to utilize the effort already put into
them.

This edited volume, Intelligent Techniques for Planning, consists of 10 chapters
bringing together a number of modern approaches in the area of Automated Planning.
These approaches combine methods from classical planning, such as the construction
of graphs and the use of domain-independent heuristics, with techniques from other
areas of Artificial Intelligence. The book presents in detail a number of state-of-the-art
planning systems that utilize Constraint Satisfaction Techniques in order to deal with
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time and resources, Machine Learning in order to utilize experience drawn from past
runs, methods from Knowledge Representation and Reasoning for more expressive
representation of knowledge, and ideas from other areas, such as Intelligent Agents.
Apart from the thorough analysis and implementation details, each chapter of the book
also provides extensive background information about its subject and presents and
comments on similar approaches done in the past.

INTENDED AUDIENCE
Intelligent Techniques for Planning is an ideal source of knowledge for individu-

als who want to enhance their knowledge on issues relating to Automated Planning and
Artificial Intelligence. More specifically, the book is intended for:

(a) Automated planning researchers, since it contains state-of-the-art approaches in
building efficient planning systems. These approaches are presented in detail,
providing information about the techniques and methodologies followed and are
accompanied by thorough discussion of the current trends and future directions.

(b) Researchers in other areas of Artificial Intelligence and Informatics, as it can
assist them in finding ideas and ways for applying the results of their work in
other areas related to their interests. Apart from the research innovations in the
area of planning, the book presents issues related to other areas that remain open
and worth further investigation. There are aspects of planning that present many
similarities with certain aspects of other areas and, therefore, there are techniques
that can be directly applied in planning systems. However, in most cases, in order
to apply a technique or a methodology in a new and possible peculiar domain,
you need customized solutions that source from fresh techniques or major modi-
fication of existing ones. For example, in order to learn from past executions of a
planning system, one can apply classical techniques from Machine Learning,
such as classification rules. However there are also learning techniques that have
been especially developed for planning (e.g., Explanation Based Learning).

(c) Postgraduate students and teachers in general courses such as Artificial Intelli-
gence and in courses closely related to planning and scheduling, as a reference
book. The chapters of the book were carefully selected to cover the most impor-
tant applications of AI techniques in Intelligent Planning. The authors of each
chapter are experts in the specific subject and are highly appreciated in the aca-
demic community. Concerning the content of the book, each chapter contains
extensive introductory material and a comparative survey with similar past ap-
proaches. Therefore, the reader will be informed about general issues concerned
with planning, other fields in Artificial Intelligence and approaches that combine
the outcome of the research in these areas.

(d) Practitioners, since Automated Planning is a “key enabling technology for intel-
ligent systems that increases the autonomy, flexibility and robustness for a wide
variety of application systems. These include web-based information and e-
commerce systems, autonomous virtual and physical agents, and systems for the
design and monitoring of production, management, and business processes”
(European Network of Excellence in AI Planning, http://www.planet-noe.org).
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(e) The general community who is interested in Artificial Intelligence and more spe-
cifically in Automated Planning. The general Computer Science community will
also benefit from Intelligent Techniques for Planning, since the topics covered by
the book are active research fields with a quite promising future that are based on
the basic principles of Informatics.

ORGANIZATION OF THE BOOK
The Intelligent Techniques for Planning is divided into four major sections:

• Section I: Planning and Knowledge Representation and Reasoning
• Section II: Planning and Machine Learning
• Section III: Planning and Agents
• Section IV: Planning and Constraint Satisfaction

Section I deals with the issues concerned with the representation of planning
problems in order to allow richer encodings and enhance the performance of planning
systems. This section is further divided into two chapters:

Chapter 1, contributed by Thomas Eiter, Wolfgang Faber, Gerald Pfeifer and Axel
Polleres, introduces planning and knowledge representation in the declarative action
language K. Rooted in the area of Knowledge Representation & Reasoning, action
languages like K allow the formalization of complex planning problems involving non-
determinism and incomplete knowledge in a very flexible manner. By giving an overview
of existing planning languages and comparing these against their language, the chap-
ter aims on further promoting the applicability and usefulness of high-level action
languages in the area of planning. As opposed to previously existing languages for
modeling actions and change, K adopts a logic programming view where fluents repre-
senting the epistemic state of an agent might be true, false or undefined in each state.
The chapter also shows that this view of knowledge states can be fruitfully applied to
several well-known planning domains from the literature as well as novel planning
domains. Remarkably, K often allows one to model problems more concisely than previ-
ous action languages. All the examples given can be tested in an available implementa-
tion, the DLVK planning system.

Chapter 2 by Max Garagnani describes a model and an underlying theoretical
framework for hybrid planning. Modern planning domain-description languages are
based on sentential representations. Sentential formalisms produce problem encodings
that often require the system to carry out an unnecessary amount of trivial deductions,
preventing it from concentrating the computational effort on the actual search for a
plan and causing a loss in performance. This chapter illustrates how techniques from
the area of knowledge representation and reasoning can be adopted to develop more
efficient domain-description languages. In particular, experimental evidence suggests
that the adoption of analogical representations can lead to significant improvements
in planning performance. Although often more efficient, however, analogical represen-
tations are generally less expressive than sentential ones. This chapter proposes a
framework for planning with hybrid representations, in which sentential and analogical
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descriptions can be integrated and used interchangeably, thereby overcoming the limi-
tations and exploiting the advantages of both paradigms.

Section II describes the application of Machine Learning to Planning in order to
build planning systems that learn from experience. The section contains two chapters:

Chapter 3, by Dimitris Vrakas, Grigorios Tsoumakas, Nick Bassiliades and Ioannis
Vlahavas, is concerned with the enhancement of planning systems with Machine Learn-
ing techniques in order to automatically configure their planning parameters according
to the morphology of the problem in hand. It presents two different adaptive systems
that set the planning parameters of a highly adjustable planner based on measurable
characteristics of the problem instance. The planners have acquired their knowledge
from a large data set produced by results from experiments on many problems from
various domains. The first planner is a rule-based system that employs propositional
rule learning to induce knowledge that suggests effective configuration of planning
parameters based on the problem’s characteristics. The second planner employs in-
stance-based learning in order to find problems with similar structure and adopt the
planner configuration that has proved in the past to be effective on these problems.
The validity of the two adaptive systems is assessed through experimental results that
demonstrate the boost in performance in problems of both known and unknown do-
mains. Comparative experimental results for the two planning systems are presented
along with a discussion of their advantages and disadvantages.

Chapter 4, by José Luis Ambite, Craig A. Knoblock and Steven Minton, describes
Planning by Rewriting (PbR), a paradigm for efficient high-quality planning that ex-
ploits declarative plan rewriting rules and efficient local search techniques to transform
an easy-to-generate, but possibly sub-optimal, initial plan into a high-quality plan. In
addition to addressing planning efficiency and plan quality, PbR offers a new anytime
planning algorithm. The plan rewriting rules can be either specified by a domain expert
or automatically learned. The chapter describes a learning approach based on compar-
ing initial and optimal plans that produces rules competitive with manually specified
ones. PbR is fully implemented and has been applied to several existing domains. The
experimental results show that the PbR approach provides significant savings in plan-
ning effort while generating high-quality plans.

Section III presents the combination of Planning with Intelligent Agents and
contains three chapters:

Chapter 5, by Nikos Avradinis, Themis Panayiotopoulos and Ruth Aylett, dis-
cusses the application of intelligent planning techniques on virtual agent environ-
ments as a mechanism to control and generate plausible virtual agent behaviour. The
authors argue that the real world-like nature of intelligent virtual environments (IVEs)
presents issues that cannot be tackled with a classic, off-line planner, where planning
takes place beforehand and execution is performed later based on a set of precompiled
instructions. What IVEs call for is continuous planning, a generative system that will
work in parallel with execution, constantly re-evaluating world knowledge and adjust-
ing plans according to new data. The authors argue further on the importance of incor-
porating the modelling of the agents’ physical, mental and emotional states as an inher-
ent feature in a continuous planning system targeted towards IVE’s, necessary to
achieve plausibility in the produced plans and, consequently, in agent behaviour.

Chapter 6, by Jeroen Valk, Mathijs de Weerdt and Cees Witteveen, presents
techniques for coordination in multi-agent planning systems. Multi-agent planning
comprises planning in an environment with multiple autonomous actors. Techniques



for multi-agent planning differ from conventional planning in that planning activities
are distributed and the planning autonomy of the agents must be respected. The chap-
ter focuses upon approaches to coordinate the multi-agent planning process. While
usually coordination is intertwined with the planning process, a number of separate
phases are distinguished in the planning process to get a clear view on the different
role(s) of coordination. In particular, the pre-planning coordination phase and post-
planning coordination phase are discussed. In the pre-planning part, coordination is
viewed as the process of managing (sub) task dependencies, and a method that en-
sures complete planning autonomy by introducing additional (intra-agent) dependen-
cies is discussed. The post-planning part shows how agents can improve their plans
through the exchange of resources. Finally, the chapter presents a plan merging algo-
rithm that uses these resources to reduce the costs of independently developed plans,
which runs in polynomial time.

Chapter 7, by Catherine C. Marinagi, Themis Panayiotopoulos and Constantine
D. Spyropoulos, provides an overview of complementary research in the active re-
search areas: AI planning technology and intelligent agents technology. It has been
widely acknowledged that modern intelligent agent approaches should combine meth-
odologies, techniques and architectures from many areas of Computer Science, Cogni-
tive Science, Operation Research, Cybernetics, etc. AI planning is an essential function
of intelligence that is necessary in intelligent agent applications. This chapter presents
the current state-of-the-art in the field of intelligent agents, focusing on the role of AI
planning techniques. In particular, this chapter sketches a typical classification of
agents, agent theories and architectures from an AI planning perspective, it briefly
introduces the reader to the basic issues of AI planning, and it presents different AI
planning methodologies implemented in intelligent agent applications. The authors aim
at stimulating research interest towards the integration of AI planning with intelligent
agents.

Section IV discusses ways for encoding planning problems as constraint satis-
faction ones and presents planning approaches that are based upon techniques for
solving CSPs. There are three chapters in this section:

Chapter 8, by Amedeo Cesta, Simone Fratini, and Angelo Oddi, proposes a plan-
ning framework, which relies on a formalization of the problem as a Constraint Satisfac-
tion Problem (CSP) and defines an algorithmic template in which the integration of
planning and scheduling is a fundamental feature.  In addition, the paper describes the
current implementation of a constraint-based planner called OMP that is grounded on
these ideas and shows the role that constraints have in this planner, both at domain
description level and as a guide for problem solving.  A detailed analysis of related work
complements the discussion of various aspects of this research.

Chapter 9, by Martha E. Pollack and Ioannis Tsamardinos, addresses the ques-
tion of how to automatically dispatch a plan encoded as an STP (Simple Temporal
Problem), that is, how to determine when to perform its constituent actions so as to
ensure that all of its temporal constraints are satisfied. After reviewing the theory of
STPs and their use in encoding plans, the chapter presents detailed descriptions of the
algorithms that have been developed to date in the literature on STP dispatch. It distin-
guishes between off-line and online dispatch, and presents both basic algorithms for
dispatch and techniques for improving their efficiency in time-critical situations.

Chapter 10, written by Roman Bartak, introduces constraint satisfaction technol-
ogy with emphasis on its applications in planning and scheduling. It gives a brief

ix



survey of constraint satisfaction in general, including a description of mainstream
solving techniques, that is, constraint propagation combined with search. Then it fo-
cuses on specific time and resource constraints and on search techniques and heuris-
tics useful in planning and scheduling. Finally, the basic approaches to constraint
modelling for planning and scheduling problems are presented.

CONCLUSIONS
The concept of the book is the application of techniques from various research

areas, such as Constraint Programming and Machine Learning, in a different area, namely
Automated Planning. The purpose of this form of cooperation is to utilize the outcomes
of several research fields in order to solve open problems of planning or to extend
planning systems to cover a broader area of problems. Apart from the solutions pre-
sented in the book there may be other solutions as well with even better results and
therefore the book presents many opportunities for researchers from different back-
grounds to co-operate.

Intelligent Techniques for Planning has a dual role; apart from the scientific
impact of the book, it also aims to provide the user with knowledge about the principles
of Artificial Intelligence and about innovative methodologies that utilize the effort
spent by researchers in various different fields in order to build effective planning
systems. All the authors are highly appreciated researchers and teachers and they have
worked really hard in writing the chapters of this book. We hope that Intelligent Tech-
niques for Planning will fulfill the expectations of the readers.

Ioannis Vlahavas
Dimitris Vrakas
Thessaloniki, Greece
April 2004
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Chapter I

Declarative Planning and
Knowledge Representation

in an Action Language
Thomas Eiter, Technische Universität Wien, Austria

Wolfgang Faber, Technische Universität Wien, Austria

Gerald Pfeifer, Technische Universität Wien, Austria

Axel Polleres, Leopold-Franzens-Universität Innsbruck, Austria

ABSTRACT
This chapter introduces planning and knowledge representation in the declarative
action language K. Rooted in the area of Knowledge Representation & Reasoning,
action languages like K allow the formalization of complex planning problems
involving non-determinism and incomplete knowledge in a very flexible manner. By
giving an overview of existing planning languages and comparing these against our
language, we aim on further promoting the applicability and usefulness of high-level
action languages in the area of planning. As opposed to previously existing languages
for modeling actions and change, K adopts a logic programming view where fluents
representing the epistemic state of an agent might be true, false or undefined in each
state. We will show that this view of knowledge states can be fruitfully applied to several
well-known planning domains from the literature as well as novel planning domains.
Remarkably, K often allows to model problems more concisely than previous action
languages. All the examples given can be tested in an available implementation, the
DLVK planning system.
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INTRODUCTION
While most existing planning systems rely on “classical” planning languages like

STRIPS (Fikes & Nilsson, 1971) and PDDL (Ghallab et al., 1998; Fox & Long, 2003), the
last few years have seen the development of action languages which provide expressive
and flexible tools for describing the relation between fluents and actions. Action
languages have received considerable attention in the Knowledge Representation &
Reasoning community and their formal properties (complexity, etc.) have been studied
in depth. Less effort has been spent on how to use the constructs offered by these
languages for problem solving.

In this chapter, we tackle this shortcoming and elaborate on knowledge represen-
tation & reasoning with action languages, which are significantly different from the strict
operator-based frameworks of STRIPS and PDDL.

To that end, we present the planning language K (Eiter, Faber, Leone, Pfeifer &
Polleres, 2004) via its realization in the DLVK planning system (Eiter, Faber, Leone, Pfeifer
& Polleres, 2003a), available at http://www.dbai.tuwien.ac.at/proj/dlv/K/. We discuss
knowledge representation issues and provide both general guidelines for encoding
action domains and detailed examples for illustration.

The language K significantly stands out from other action languages in that it offers
proven concepts from logic programming to represent knowledge about the action
domain. This includes the distinction between negation as failure (or default negation)
and strong negation. In K, it is possible to reason about states of knowledge, in which
a fluent might be true, false or unknown, and states of the world, in which a fluent is either
true or false. In this way, we can deal with uncertainty in the planning world at a qualitative
level, in which default and plausibility principles might come into play when reasoning
about the current or next state of the world, the effects of actions, etcetera. This allows
different approaches to planning, including traditional planning (with information and
knowledge treated in a classical way) and planning with default assumptions or forget-
ting.

STATES, TRANSITIONS, AND PLANS
Intuitively, a planning problem consists of the following task: given an initial

state, several actions, their preconditions and effects, find a sequence of actions (viz.
a plan) to achieve a state in which a particular goal holds. In the following, we will
describe and discuss these concepts in more detail.

Fluents and States
Fluents represent basic properties of the world, which can change over time. They

are comparable to first-order predicates or propositional assertions. States are collec-
tions (usually sets) of fluents, each of which is associated with a truth-value.

We distinguish between so called world states and knowledge states: The current
state of the world, with respect to a set of fluents F = {f1, ..., fn}, can be defined as a function
s : F → {true, false}, that is, a set of literals which contains either f or ¬f  for any f∈F .
From an agent’s point of view, states can also be seen as partial functions s’, that is,
consistent sets of fluent literals, where for a particular fluent f∈F neither f  nor ¬f  may
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hold. The state s' then only consists of the subset of s which is known; it is a state of
knowledge.

Note that this view of the epistemic state of an agent differs from other approaches
where incomplete knowledge states are defined as the set of all possible worlds an agent
might be in (Son & Baral, 2001; Bonet & Geffner, 2000; Bertoli, Cimatti, Pistore & Traverso,
2001). Such sets of (compatible) world states are often referred to as belief states.
Knowledge states as described here can, to some extent, be viewed as assigning a value
only to those fluents having the same value in all states of a corresponding belief state.
When working with knowledge states, one usually does not consider any relationship
to world states, though.

Both knowledge states and belief states can (to a certain degree) be modeled in the
language K discussed in this text.

We remark that the terminology concerning knowledge and belief states is not
always consistent in the literature. For example, Son & Baral use the term “states of
knowledge” when they describe a set of reachable worlds in a Kripke structure (Son &
Baral, 2001). This amounts to what we call “belief states” in our terminology. An in-depth
discussion of the terms “knowledge” and “belief “ can be found in Hintikka (1962).

A useful generalization is to allow not only Boolean fluents, but also multi-valued
fluents (Giunchiglia, Lee, Lifschitz & Turner, 2001), which take a certain value of a specific
(finite) domain in each state. A state can then be seen as a set of functions which assign
to each fluent f  a value of its domain Df ; Boolean fluents having the domain {true, false}.
Such a multi-valued fluent f with finite domain Df = {d1, ..., dn} can be readily “emulated”
by a set of Boolean fluents fd1, ..., fdn plus constraints which prohibit concurrent truth of
two distinct fdi, fdj.

Actions, Transitions, and Plans
Actions represent dynamic momenta of the world, and their execution can change

the state of the world (or knowledge). Transitions are atomic changes, represented by
a previous state, a set of actions, and a resulting state. Implicitly, such a definition incurs
the simplifying but commonly used abstraction that all actions have unique duration and
the assumption that all effects materialize in the successor state (i.e., a discrete notion
of time is employed). Given these assumptions, a plan is a sequence of n sets of actions,
which is backed by trajectories (sequences of n+1 states), such that interleaving these
states and the sets of actions yields a chaining of transitions and the last state in the
trajectory satisfies the goal.

In order to define the semantics of such transitions, the dynamic properties of
fluents and actions are to be represented using an appropriate formalism. Key issues for
such a formalism are how it deals with:

• effects of actions,
• executability of actions (known as qualification problem),
• indirect effects, or interdependencies of fluents (the so-called ramification prob-

lem),
• the fact that usually fluents remain unchanged in a transition [known as the frame

problem (McCarthy & Hayes, 1969; Russel & Norvig, 1995)]
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As we will see on the example of language K, action languages provide an expressive
means to deal with these issues.

ACTION LANGUAGE A AND DESCENDANTS
In the planning community, the development of formal languages is driven by a

focus on special-purpose algorithms and systems, where ease of structural analysis of
the problem description at hand is a main issue. On the other hand, expressive languages
for formalizing actions and change in a more general context have emerged from the field
of knowledge representation.

One of the first of these languages was A (Gelfond & Lifschitz, 1993) which
essentially represents the propositional fragment of Pednault’s ADL (Pednault, 1989)
formalism, but offers a more “natural” logic-based language with constructs for the
formalization of actions and change rather than a formal description of operators.

A has been extended in various ways, both syntactically and semantically, for
example by constructs allowing to express ramifications, sensing actions, explicit inertia,
action costs, and more. In the sequel, we will describe the most important features of the
language A and some important extensions thereof. In particular, we will focus on the
language K (in a separate section), which we will use in the remainder of the chapter.

Action Language A
From the viewpoint of expressiveness, A (Gelfond & Lifschitz, 1993) essentially

represents the propositional fragment of Pednault’s ADL, that is, STRIPS enriched with
conditional effects. Effects and preconditions are expressed by causation rules:

α causes l if F

where α is an action name, l is a fluent literal, and F is a conjunction of fluent literals. An
action description D consists of a set of such propositions.

It should be noted that Gelfond & Lifschitz (1993) and Gelfond & Lifschitz (1998)
provide differing semantics for A. The semantics of Gelfond & Lifschitz (1998) are as
follows: States are boolean valuations of fluents. Let E(A, s) be the set of effects of action
A wrt. the state s, i.e. all l of causation rules for A s.t. F is satisfied in s. Then <s,A,s’>
is a valid transition if E(A,s) ⊆ s’ ⊆ E(A,s) ∪ s. Intuitively, the successor state s’ must
contain all action effects and can contain fluent values of s (and no other fluent values),
that is, s’ contains all values of s which are not overridden by action effects. For each
pair (s, A) there is at most one s’.

Example 1.  Executability and effects of moving block b to block a in the well-known
Blocks World example could be described in A as follows:

move
b,a

 causes f if blocked
a
.

move
b,a

 causes ¬f if blocked
a
.

move
b,a

 causes f if blocked
b
.

move
b,a

 causes ¬f if blocked
b
.



Declarative Planning and Knowledge Representation  5

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

move
b,a

 causes on
b,a

.
move

b,a
 causes ¬blocked

c
 if on

b,c
.

A does not provide any means for representing executability in an explicit way, but
one can model the fact that for a state s, in which some condition holds, and an action
A no consistent s’ exists such that <s,A,s’> is a valid transition, rendering action A non-
executable in such a state s. In the example above, the first four rules encode a non-
executability condition for move

b,a
 by enforcing inconsistency on the auxiliary fluent f.

The last two rules encode an unconditional and a conditional action effect, respectively.

Extensions of A

Language AR
A further step in the development of action languages was the language AR

(Giunchiglia, Kartha & Lifschitz, 1997), which extends A by allowing to model indirect
effects by introducing constraints:

always F.

where F is a propositional formula. Valid states are those for which all constraints are
satisfied. AR also allows for arbitrary propositional fluent formulae C and F in causal
rules of the form:

a causes C if F.

and is capable of modeling nondeterministic actions by statements:

a possibly changes l if F.

In addition, AR also allows for multi-valued fluents and non-inertial fluents.
The semantics relies on the principle of “minimal change:” Let Res0 (A,s) denote the

set of states in which C holds for any causation rule for A s.t. F holds in s. Then, <s,A,s’>
is a valid transition if the changes in s’∈Res0 (A,s) are subset-minimal with respect to
inertial fluents and nondeterministic action effects. It is important to note that always
constraints do not give causal explanations and therefore not all indirect effects can be
modeled (see Example 2).

Language B
The language B (Gelfond & Lifschitz, 1998) extends the language A by so-called

“static laws”:

l if F.

where l is a fluent literal and F is a conjunction of fluent literals. As opposed to always
in AR the semantics of static laws can give causal explanations.
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The semantics of B is based on the principle of “minimal change” and causality. It
incurs the operator CnZ(s), which is defined on a set of static laws Z and a set of literals
s, producing the smallest set of literals that contains s and satisfies Z.  Then, <s,A,s’>
is a valid transition if  s’ = CnZ(E(A,s) ∪ (s ∩ s’)), i.e. s’ is stable when action effects E(A,s)
and unchanged fluents s ∩ s’ are minimally extended to satisfy the static laws.

As an example, consider a simplified version of Lin’s Suitcase (Lin, 1995):

Example 2.  Assume we have a spring-loaded suitcase with two latches. Unlocking a latch
turns its position to “up,” and as an indirect effect the suitcase opens as soon as
both latches are up. This can be modeled by the following B action description:

unlock1 causes up1.
unlock2 causes up2.
open if up1, up2.

Consider an initial state s = {up1 , ¬up2 , ¬open} and action a = {unlock2}. For
s'  = {up1, up2, open} we have CnZ (E(A,s) ∪ (s ∩ s')) = CnZ ({up2} ∪ {up1}) = {up1, up2,
open} = s', and hence <s,a,s'>  is a valid transition in B. It can be verified that s is the
only valid successor state for s and a.

When we would replace the final static law by the AR constraint:

always up1 ∧ up2 ⇒ open.

we obtain Res0 (a,s) = {s', s'', s'''}, where s'' = {¬up1, up2, open} and s''' = {¬up1, up2,
¬open} (i.e. Res0 (a,s) contains all valid states in which up2 holds). The changed fluents
(with respect to s) for s' are {open, up2}, for s'' {open, up1, up2}, and for s''' {up1, up2},
so by subset-minimality <s,a,s'> and <s,a,s'''> are valid transitions. In s''',  ¬up1 lacks
a causal explanation (Why did it change its value with respect to s?), and hence <s,a,s'''>
is intuitively not expected to be a valid transition. Note that both s' and s''' satisfy the
criterion for “minimal change,” but in the semantics of AR causal explanations among
fluents are not considered.

Language AK
An extension of the action languages AR and A to formalize sensing actions was

proposed by Son and Baral with language AK (Son & Baral, 2001). AK provides
propositions of the form a determines f , which intuitively states that after executing action
a, the value of fluent f is known. This concept of knowledge differs from what we referred
to as knowledge states in the introduction and which we will further discuss in the
following.

Action Language C
The most recent and evolved languages in this line of action languages are the

languages C (Giunchiglia & Lifschitz, 1998) and its extension C+ (Giunchiglia, Lee,
Lifschitz, McCain & Turner, 2004). C is similar to B in that it distinguishes between static
and dynamic laws. It is in some ways more expressive than B and AR, though, strictly
speaking, not a superset of either.
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C action descriptions consist of a set of causation laws c of the form:

caused F if G after H. (1)

where the after-part is optional: c is called static if it has no after-part and dynamic
otherwise. These rules are more flexible than the previous approaches in that F and G are
arbitrary propositional formulae over fluent literals and H is a propositional formula over
fluent and action literals. Furthermore, constraints and qualifications can be expressed
via F = f ∧ ¬f , which is written as:

caused ⊥ if G after H.

These rules encode inconsistency similar to constraints in logic programming.
An action description D consists of static and dynamic causation laws. Its seman-

tics are given by the following definition of causally explained transitions:
A transition <s,a,s'>  is causally explained according to D if its resulting state s' is

the only interpretation that satisfies all rules caused in this transition, where a formula
F is caused if it is:

• the head of a static law (1) from D such that s’ |= G or
• the head of a dynamic law (1) from D such that s’ |= G and s ∪ a |= H

Note that this allows for nondeterministic actions and valid transitions <s,a,s'>,
<s,a,s''> with s' ≠ s''. The definition of causally explained transitions is closely related
to causal theories as defined by McCain and Turner (1997) and the underlying concept
of causal explanation (Lifschitz, 1997).

Remarkably, inertia (i.e., that a fluent remains unchanged unless explicitly stated
otherwise) has to be explicitly encoded in C; frame axioms are not implicit like in the
previously discussed approaches. However, they can be conveniently expressed by the
following macro:

inertial F.  ⇔ caused F if F after F.

A further macro that allows for modeling qualifications of actions is:

nonexecutable A if G.  ⇔ caused ⊥ after A ∧ G.

C and K (which will be presented below) share several distinct features such as
concurrent actions, the intuitive modeling of state constraints, action qualifications,
inertia, non-determinism of actions, and incomplete initial knowledge.

Action Language C+
A recent extension of C called C+ allows for multi-valued, additive fluents, which

can be used to encode resources, and allows for a more compact representation of several
practical problems (Giunchiglia et al., 2001, 2004).
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ACTION LANGUAGE K
We next give an overview of the language K as implemented in the DLVK planning

system. Details and the formal definition of the semantics of K can be found in Eiter et
al. (2004). Since we will use K throughout the rest of this chapter, we consider an example
from the well-known Blocks World domain in detail.

The distinguishing feature of the language K with respect to the action languages
considered so far is the notion of incomplete states and the ability to reason about this
incompleteness. In particular, a state may either contain a fluent f, its strong negation
-f, or it may say nothing about f. Causal rules may contain default negated fluent literals
not f, which hold if either -f holds or nothing is said about f in the respective state. This
is often referred to as negation as failure.

A K planning problem is a pair P = <PD, q> of a planning domain PD (informally,
the world of discourse) and a query q, which specifies the goal. A planning problem is
represented as a combination of background knowledge Π, provided as a function-free
logic program (possibly with negation) admitting exactly one answer set, and a program
of the following general form:

fluents: FD
actions: AD
always: CR
initially: IR
goal: q

where the first four sections consist of statements, described below, each of which is
terminated by “.”. Together with the background knowledge Π, they specify a K planning
domain of the form PD = <Π, <D, R>>, where the declarations D are given by FD and
AD and the rules R by CR and IR.

The statements in FD and AD consist of fluent and action declarations, respectively.
They type the fluents and actions with respect to the (static) background predicates and
have the form:

p(X1, . . . , Xn) requires t1, . . . , tm (2)

where p is a fluent or action predicate of arity n ≥ 0, and the ti are classical literals (i.e.,
an atom α or its strong negation -α), over the predicates from the background knowledge,
such that every variable Xi occurs in t1, . . . , tm (as common, upper case letters denote
variables). Only instances of fluents and actions which are “supported” by some ground
instance of a declaration, where the requires part is true, need to be considered.

The always-section specifies the dynamics of the planning domain in terms of
causation rules of the form:

caused f if b1, . . . , bk, not bk+1, . . . , not bl
               after a1, . . . , am, not am+1, . . . , not an (3)

where f is either a classical literal over a fluent or false (representing inconsistency), the
bis are classical literals over fluents and background predicates, and the ajs are positive
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action atoms or classical literals over fluents and background predicates. Informally, a
rule of the form (3) states that f is true in the new state reached by (simultaneously)
executing some actions, provided that the condition of the after part is true with respect
to the old state and the actions executed on it, and the condition of the if part is true in
the new state.

Both the if- and after-parts are optional. Specifically, both can be omitted together
with the caused-keyword to represent facts.

The always-section also contains executability conditions for actions:

executable a if b1, ..., bk, not bk+1, ..., not bl. (4)

where a is an action atom and b1, ..., bl are classical literals over fluents and background
predicates. They state that a (well-typed) action is eligible for execution in a state, if
b1, ..., bk are known to hold while bk+1, ..., bl are not known to hold in that state.

The initially-section specifies conditions that hold in any initial state (which is not
unique in general). They have the form of causation rules, as described above, without
the after part.

The goal-section, finally, specifies the goal to be reached, and has the form:

g1, ..., gm, not gm+1, ..., not gn ? (i) (5)

where g1, ..., gn are ground fluent literals, n ≥ m ≥ 0, and i ≥ 0 is the number of steps in
which the plan must reach the goal.

All rules in IR and CR have to satisfy the safety requirement for default negated type
literals (i.e., literals corresponding to predicates from the background knowledge): each
variable occurring in a default negated type literal has to occur in at least one positive
type literal or dynamic literal. Note that this safety restriction does not apply to action
and fluent literals whose variables are already safe due to their respective declarations.

Example 3 (Blocks World).  Let us consider the Blocks World, one of the best-known
scenarios in AI Planning. Here, the goal is to build stacks of blocks, which are
located on a table. The planning problem consists of an initial configuration of
blocks and a (probably partly specified) goal configuration. The only action is
moving a block x to a location l, that is, onto the table or on top of another block
which is clear, and we allow parallel moves. Figure 1 shows a simple instance.

Figure 1.  Blocks World instance

 initial: goal:

c

ab

c

b

a
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A K encoding PDbw1 for this domain is shown in Figure 2. This encoding guarantees
serializability, which means that parallel actions are non-interfering and could be
executed in any sequential order; each parallel plan can be arbitrarily “unfolded” to a
sequential plan.

We use three fluents: on(B,L) states that block B resides at location L, fluent
blocked(B) indicates that the capacity of a block B to hold further blocks is exhausted, and
fluent moved(B) holds directly after B was moved. There is a single action move(B,L), which
represents moving a block B to some location L (and implicitly removes it from its previous
location). Finally, we add background knowledge which defines the six blocks and the
table as a location:

block(1). block(2). block(3). block(4). block(5). block(6).
location(table).
location(B) :- block(B).

The configurations of blocks shown in Figure 1 are expressed by extending Pdbw1,
the program in Figure 2, as follows, yielding Pbw1(l):

Figure 2. K encoding for the Blocks World domain PDbw1

fluents: on(B,L) requires block(B), location(L). 

         blocked(B) requires block(B). 

         moved(B) requires block(B). 

actions: move(B,L) requires block(B), location(L). 

always:  caused blocked(B) if on(B1,B). 

         executable move(B,L) if B<>L. 

         nonexecutable move(B,L) if blocked(B). 

         nonexecutable move(B,L) if blocked(L). 

         nonexecutable move(B,B1) if move(B1,L). 

         nonexecutable move(B,L) if move(B1,L), B<>B1, block(L). 

         nonexecutable move(B, L) if move(B, L1), L <> L1. 

         caused on(B, L) after move(B, L). 

         caused moved(B) after move(B, L). 

         caused on(B, L) if not moved(B) after on(B, L). 
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initially: on(1,2). on(2,table). on(3,4). on(4,table). on(5,6). on(6,table).
goal: on(1,3), on(3,table), on(2,4), on(4,table), on(6,5), on(5,table) ? (l)

Here, l is a non-negative integer representing the plan length. Note that only
positive knowledge is stated for on and blocked; this is because our modeling assumes
that fluents are interpreted under the closed world assumption (CWA) (Reiter, 1978). If
some fluent does not hold, we assume that it is false. Note that CWA is not a feature in
the syntax or semantics of K; it is just a modeling assumption in this example.

The values of the fluent blocked in the initial state are not specified explicitly; rather
they are obtained from a general rule that applies to any state, and thus is part of the
always-section: the first rule there says that a block B (but not the table) is blocked if
another block is on it. Observe that the fluent moved can never hold in the initial state.

Next we specify when an action move(B,L) is executable. This is achieved by a
combination of executable and non-executable statements defining defaults and excep-
tions, respectively. A move is executable, if the positive executability condition holds and
all negative executability conditions fail. In our case, a block can be moved to any location
except onto itself, with several exceptions: (i) blocks which are blocked cannot be moved;
(ii) a block can not be moved to a blocked block; (iii) a block can not be moved on top of
another block which is moved at the same time; (iv) two different blocks can not be moved
to the same block at once; and (v) a block can not be moved to two different locations
at once.

The effects of a move action are defined by two dynamic rules. The first states that
a moved block is on the target location after the move, and the second states that moved(B)
holds directly after a block B has been moved.

The last rule is an explicit frame axiom for on. It states that blocks that have not been
moved remain where they were before. Such frame axioms are not included for blocked and
moved, because blocked follows as a ramification from on, and moved is supposed to hold
only right after a respective move action occurred.

The semantics of a K planning domain PD is defined in terms of legal states and state
transitions. Informally, a state is any consistent set of ground fluent literals that respect
the typing information. It is a legal initial state, if it satisfies all rules in the initially-section
and the rules in the always-section with empty after part if causal rules are read as logic
programming rules under the answer set semantics (Gelfond & Lifschitz, 1991). A state
transition is a triple <s,A,s’> where s and s’ are states and A is a set of legal action
instances in PD , that is, action instances that respect the typing information. A transition
is legal if the action set A is executable with respect to s; that is, each action a in A is
the head of a clause (4) whose body is true, and s’ satisfies all causal rules (3) from the
always-section whose after part is true with respect to s and A.

An optimistic plan for a goal  g1, ..., gm, not gm+1, ..., not gn ? (i)  is a sequence
of action sets <A1, ..., Ai>, i≥0, such that a corresponding sequence T = <<s0, A1,

s1>, <s1, A2, s2> , ..., <si-1, Ai, si>> of legal state transitions exists that leads from a legal
initial state s0 to a state si, which establishes the goal, that is, {g1, ..., gm} ⊆ si and {gm+1,
..., gn} ∩ si = ∅. T is called trajectory, and an optimistic plan of length i is a solution to
the planning problem P = <PD, q>, where q has the form (5).

Example 4 Blocks World (continued).  If we instantiate the plan length l by 2 in Pbw1(l),
we get a plan which involves six move actions:
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P2= <{move(1,table), move(3,table), move(5,table)}, {move(1,3), move(2,4), move(6,5)}>

By unfolding these steps, this plan gives rise to similar plans of length l = 3, . . . , 6.
For l = 3, we can also find the following plan comprising only five actions:

P3= <{move(3,table)}, {move(1,3), move(5,table)}, {move(2,4), move(6,5)}>

KNOWLEDGE REPRESENTATION
We will now consider different aspects of knowledge representation in K and the

DLVK planning system. First, we discuss some particular constructs, which facilitate
expressing some commonly occurring concepts. Subsequently, we focus on the handling
of incomplete knowledge and non-determinism, differentiating various scenarios and
suggesting techniques for modeling these by providing examples. We then briefly cover
an extension of K, which allows one to express action costs and compute optimal plans,
and conclude by giving some basic principles for knowledge representation in K as well
as an overview of features and pitfalls.

Basic Features
Let us recall how the dynamic behavior was specified in the Blocks World program

of Figure 2. The basic structures are causal rules and executability statements.
• Direct Action Effects.  An important use of causal rules is the specification of direct

action effects. If action a has the effect that a fluent f holds, this can be expressed
by caused f after a.

• Qualification Problem.  The constructs executable and nonexecutable are used to
express and solve the qualification problem, that is, the problem of determining
whether an action is executable in a particular state. By default an action does not
qualify for execution. One can grant this qualification by specifying executable
clauses (which can be as general as stating that the action is always executable).
Dually, these qualifications can be narrowed down by specifying nonexecutable
conditions. In our example, move is the only action. It is first made executable for
all cases where its first and second arguments differ, and, subsequently, cases are
excluded by using nonexecutable statements. Thus, K offers a flexible means for
dealing with the qualification problem by offering constructs for specifying
executability conditions and exceptions to them. Using K, one can also create more
complex hierarchies of exceptions by using auxiliary fluents and negation as failure,
though no first-class syntactic constructs for doing so are provided in the
language.

• Ramification Problem.  Let us now turn to the ramification problem, that is, the
problem that some fluents may depend on other fluents rather than being directly
affected by actions; sometimes this is also referred to as indirect effects. In K,
indirect effects are also dealt with by causal rules: If a fluent f causes another fluent
g, this is expressed by caused g if f., where the use of if indicates simultaneity. In
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Figure 2, the fluent blocked depends directly on the fluent on and indirectly on the
effects of the action move.

• Frame Problem.  The handling of the frame problem, that is, the fact that fluents
usually do not change their value, unless there is a direct or indirect cause for a
change, leaves room for improvement. Indeed, in the program of Figure 2, we
declare a fluent moved, which indicates whether a block was just moved. Addition-
ally, there is a causal law using this fluent which states that the fluent on should
remain unchanged for fluents not affected by a move action. While not incorrect,
this representation is not easily extensible. In particular, for each pair of actions and
fluents at least one such statement should be included to describe unaffectedness
conditions (Shanahan, 1997), whereas in general, one would rather like to express
default assumption on fluents.
K directly supports inertia, that is, the assumption that a fluent remains unchanged
by default. Unlike in other languages, inertia is not implicitly assumed on all fluents;
rather a fluent, say f, has to be declared inertial by inertial f.
What we have left open so far is how to express exceptions to the inertial default.
To this end we consider the concept of strong negation, which we have briefly
mentioned, but not used in an example so far. Concerning an inertial fluent f, the
exception to its inertia is its strong negation  -f. (Intuitively, strong negation-f says
that we explicitly know that f does not hold, whereas not f states that we do not know
that f holds and thus can implicitly assume that it does not.) Using this, inertial f can
alternatively be written as caused f if not -f after f. Indeed, inertial f is implemented as
such a macro in DLVK. Contrast this with the respective macro in the language C,
which is caused f if f after f. While in K, f is assumed to hold in lack of any contrary
information, C takes the view that f explains itself after it was true in the previous
stage.
Note that in K, inertia may also be defined on a truly negated fluent -f by the
statement inertial -f, to which f acts as exception.
Coming back to the Blocks World domain, we can modify the program of Figure
2 by eliminating the fluent moved, replacing the pseudo-inertial rule by an inertial
statement, and explicitly stating that a block is no longer on a particular location
if it was just moved away. The resulting program PDbw2 is depicted in Figure 3. The
planning problem Pbw2(l), obtained by replacing PDbw1 by PDbw2 in Pbw1(l), has the
same plans as Pbw1(l).

• Negation and Closed World Assumption.  We point out that the only negative
information in this encoding is the exception for the inertia of on. Indeed, the
encoding focuses on the relevant information. Any state reachable by a legal
transition only consists of positive fluents on(B,L) and blocked(L), describing a
“relevant clipping” of knowledge. We do not care which blocks are currently
unblocked or where a block is not located, and indeed K does not require to
completely specify truth values for all fluents, as in this example the fluents are
interpreted under a closed world assumption (CWA), meaning that fluents which
are not explicitly caused are considered false. Note that the CWA is a modeling
decision (like a programming technique), and indeed the next sections will show
examples where the CWA is not applicable. Also note that one could “reify” the
CWA by including the rule:
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caused -on(X,Y) if not on(X,Y).

Doing so eliminates the computational benefits of CWA, however.

Planning with Incomplete Knowledge
Let us now focus on domains with inherent non-determinism and incomplete

knowledge. In this context incomplete knowledge is a lack of knowledge in the problem
specification rather than incompleteness resulting from model abstraction, focusing
onto the relevant part of the specification. For example, in the Blocks World domain we
did not represent some knowledge which was irrelevant for the problem at hand, resulting
in incomplete states; the planning domain was sufficiently specified, though, and did not
admit non-determinism.

The forms of incompleteness we will consider now are of a more fundamental nature,
as relevant knowledge is missing, usually resulting in non-determinism. In particular, we
will consider three main sources of non-determinism:

1. incomplete initial states;
2. non-deterministic actions;
3. non-deterministic evolutions.

We will exemplify each of them in some domain encoding below. Source 1 deals with
scenarios where some aspects of the initial state are unknown. This entails a compara-
tively light form of non-determinism, since it is confined to a single point in time. The

Figure 3. Alternative DLVK program for the Blocks World domain PDbw2

fluents: on(B,L) requires block(B), location(L). 

         blocked(B) requires block(B). 

actions: move(B,L) requires block(B), location(L). 

always:  caused blocked(B) if on(B1,B). 

         executable move(B,L) if B<>L. 

         nonexecutable move(B,L) if blocked(B). 

         nonexecutable move(B,L) if blocked(L). 

         nonexecutable move(B,B1) if move(B1,L). 

         nonexecutable move(B,L) if move(B1,L), B <> B1, block(L). 

         nonexecutable move(B,L) if move(B,L1), L <> L1. 

         caused on(B,L) after move(B,L). 

         caused -on(B,L1) after move(B,L), on(B,L1), L <> L1. 

         inertial on(B,L). 
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Square domain will serve as an example for such a setting. Source 2 refers to actions with
multiple alternative outcomes, where the knowledge about action effects is incomplete.
This form of non-determinism potentially affects all points in time. In the Paint example
we will tackle such a problem. Finally, for Source 3 the environment itself can change non-
deterministically. Affected fluents may change values without actions causing this
change, meaning that there are dynamics that are not under the agent’s control. The Ring
domain comprises such evolutions. Summarizing, these three sources are uncertainties
on the initial state, the action effects, and the world evolution, respectively. Since those
uncertainties are not associated with probabilities and thus are not quantified in our
framework, we refer to them as qualitative uncertainties. Indeed, this is a common
setting, as probabilities are often hard to obtain or are simply unknown.

In the context of non-deterministic planning problems, optimistic plans can estab-
lish the goal in some non-deterministic evolutions, while so-called secure or conformant
plans (Goldman & Boddy, 1996; Smith & Weld, 1998) establish the goal for all possible
evolutions, that is, the plan is executable from every initial state and eventually
establishes the goal in any possible evolution. K and the DLVK system allow one to
specify such domains, as demonstrated below, and support conformant plan generation.
For details we refer to Eiter et al. (2004).

Square
The Square domain is about self-location of a robot, which moves in a wall-bounded

n×n grid. The robot can move in four directions (up, down, left, right) and its initial position
is unknown. Moving towards a wall has no effect, and the robot stays in its position. The
problem of finding a conformant plan for reaching the corner position (0,0) is referred to
as SQUARE(n) in the literature (Bonet & Geffner, 2000; Parr & Russel, 1995). SQUARE(4)
with one of the possible initial states — the robot is at position (2, 1) — is illustrated in
Figure 4.

Figure 4. SQUARE(4)
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A K encoding for this problem is as follows:

fluents:   atX(P) requires index(P). atY(P) requires index(P). anywhere.
actions:   up. down. left. right.
always:    executable up. executable right.
           executable left. executable down.
           nonexecutable up if down.
           nonexecutable left if right.
           inertial atX(X). inertial atY(Y).
           caused atY(Y) after atY(Y1), next(Y,Y1), up.
           caused atY(Y1) after atY(Y), next(Y,Y1), down.
           caused atX(X) after atX(X1), next(X,X1), left.
           caused atX(X1) after atX(X), next(X,X1), right.
           caused -atX(X) if atX(X1), X1 <> X after atX(X).
           caused -atY(Y) if atY(Y1), Y1 <> Y after atY(Y).
initially: total atX(X). total atY(Y).
           forbidden atX(X), atX(X1), X <> X1.
           forbidden atY(Y), atY(Y1), Y <> Y1.
           caused anywhere if atX(X), atY(Y).
           forbidden not anywhere.
goal:      atX(0), atY(0)?(n)

where Πsquare consists of facts:

index(0).... index(n-1). and next(0,1). ... next(n-2, n-1).

Fluents atX and atY represent the current position of the robot in the grid and are
inertial. Another fluent, anywhere, is used to ensure the validity of the initial state. Four
actions move one step up, down, left or right, respectively. They are concurrently
executable, giving the possibility to move diagonally in one step. Just concurrent
execution of {up, down} and {left, right} is not admitted. The effects of the respective move
actions are changes in the horizontal or vertical coordinates and an invalidation of the
previous horizontal or vertical coordinates, overriding inertia.

For the initial state, we use new language constructs: total f. is a macro representing
the two causal rules caused f if not –f. and caused -f if not f.. It gives rise to non-determinism
in that both states containing f and -f, respectively, are considered. In the example, total
atX(X). and total atY(Y). gives rise to 22n possible initial states, corresponding to all possible
assignments of {atX(i), -atX(i)} and {atY(i), -atY(i)} for 0 ≤ i < n. These statements thus create
many illegal states, for example, one containing atX(0), ..., atX(n-1), atY(0), ..., atY(n-1), and
one containing -atX(0), ..., -atX(n-1), -atY(0), ..., -atY(n-1).

We therefore also use the macro forbidden, which renders states where the specified
condition holds illegal. In our example, we express that atX and atY hold for at most one
horizontal and vertical position, respectively. The fluent anywhere is used to avoid states
in which only -atX or only -atY holds, respectively, in that the case where anywhere is not
caused is forbidden. These conditions narrow the number of legal initial states down to
the actual n2 possible initial positions.
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For the problem depicted in Figure 4, the following optimistic plan works if the initial
position of the robot is as in Figure 4 (or anywhere closer to the upper left), but not if
the initial position of the robot is further down or right, so it is not secure:

P1= <{left, up}, {left}>

The following, on the other hand, is a three-step secure plan for SQUARE(4):

P2= <{left, up}, {left, up}, {left, up}>

Note that in this domain the only source of uncertainty is the initial state. All actions
are always executable and effects are deterministic. The actions do not “gain” any
knowledge, so a representation exploiting knowledge states is not beneficial. Since the
exact initial position is not known, knowledge of the position at each step is necessary
in order to determine the action effects. Encoding all possible initial world states seems
to be the only option for representing this problem.

Paint
Consider the following scenario: A house is to be painted. Several colors for

painting are available, and several painters, for example, joe and jack. Assume joe suffers
from a red-green color-blindness known as “Daltonism.” When we tell him to paint the
house red, we do not know whether it will be red or green when he is done. Therefore,
we have incomplete knowledge about the action effect, resulting in a nondeterministic
action effect. However, even in this case some facts are known, for example, that the
house is definitely not blue.
• Basic Encoding.  Let us first consider a simple planning problem in which the house

is initially colored blue and we want it colored green after one time unit. In the
background knowledge we define predicates c(x) for colors x, painter(p) for persons
p to paint, and a predicate conf(c1,c2,p) if painter p confuses the colors c1 and c2;
the latter is symmetric on colors. Furthermore, we use a predicate confusedBy(p,c)
for painters p which confuse a color c; this is conveniently expressed by a logic
programming rule representing projections.

c(blue). c(red). c(green).
painter(joe). painter(jack).
conf(red,green,joe).
conf(C1,C2,A) :- conf(C2,C1,A).
confusedBy(C,A) :- conf(C,C1,A).

An encoding PDpaint of the Paint domain is shown in Figure 5. We only use one fluent,
col, which describes the color of the house, and one action paint, expressing that a
painter is asked to paint the house in a particular color. We declare this action to be
unconditionally executable, and the macro noConcurrency forces actions to be
executed sequentially.
We next define action effects. If the painter does not confuse the color he is asked
to paint with, the action has the deterministic effect of the house being in the
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requested color. If, however, the painter is asked to paint the house in a color he might
confuse with another color, we model a nondeterministic effect.
This is achieved in way that is reminiscent of the causal rules making up the total macro
presented in the previous section. A pair of causal rules caused f if not g. and caused
g if not f. gives rise to two alternative successor states, one containing f and one containing
g. In our example, f and g are the fluents col(C1) and col(C2) where C1 and C2 are the
confusable colors. We want these alternative states to occur exactly after a suitable
action is performed, so we add after paint(C1,A) to each of the rules.
Finally, col is declared inertial. Concerning exceptions to inertia, the situation is
different than in the Blocks World or Square domains, because of the nondeterministic
action effect. The rule:

caused -col(C1) after paint(C2,A), col(C1), C1 <> C2.

would be incorrect if conf(C1,C2,A) holds. We could use the rule:

caused -col(C1) if col(C2), C1 <> C2 after col(C1).

expressing that -col(C1) holds if the color of the house has really changed. Alterna-
tively, as in Figure 5, we can state that col should be true for only one color, explicitly
deriving -col for all other colors. In that case, negative inertia for -col can be safely
ignored.
It should be noted that the knowledge states reachable from the initial state in PDpaint
are in one-to-one correspondence with the actual world states.
For this planning problem, the following three optimistic plans exist:

Figure 5. An encoding of the painting domain (PDpaint)

fluents: col(C) requires c(C). 

actions: paint(C,A) requires c(C), painter(A). 

always:  executable paint(C,A). 

         noConcurrency. 

         caused col(C) after paint(C,A), not confusedBy(C,A). 

         caused col(C1) if not col(C2), conf(C1,C2,A) after paint(C1,A). 

         caused col(C2) if not col(C1), conf(C1,C2,A) after paint(C1,A). 

         inertial col(C). 

         caused -col(C1) if col(C), C <> C1. 

initially: col(blue). 

goal:    col(green)? (1) 
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P
1
= <{paint(green,joe)}>

P
2
= <{paint(red,joe)}>

P
3
= <{paint(green,jack)}>

The color-blind painter joe can be told to paint red or green, and we can hope that
he will choose green, but he might also choose red. On the other hand, jack, who
is not color-blind, will paint the house green for sure, and therefore only the latter
plan P3 is secure.

• Forgetting.  In some cases we can avoid non-determinism by employing a
knowledge state view. In the Paint domain, non-determinism arises from the fact
that the exact color of the house after a paint action is not known in some cases,
and two possible world states need to be considered non-deterministically.
However, the language K also allows for a knowledge-oriented representation. We
modify the domain by modeling only definitely known information and omit the two
rules responsible for the nondeterministic choice in PDpaint. We thus no longer
cause the house to be of some color after a color-blind painter has been asked to
paint the house in a color he might confuse. However, we still need to block inertia,
or the house would retain its color. One way to achieve this is to encode the
negative information about the house color, which is known even if no positive
information is available. In the particular example, we know that the house will not
have a color that the painter does not confuse with the asked-for color. For example,
we know -col(blue) after paint(green,joe), and this can be expressed by the general
causal rule:

caused -col(C) after paint(C1,A), conf(C1,C2,A), col(C), C <> C1, C <> C2.

Note that executing paint(green,joe) in the modified domain, PDkpaint, encodes
forgetting parts of the knowledge about col, and that the knowledge states
reachable from the initial state no longer correspond one-to-one with the actual
world states. By applying forgetting techniques, we have managed to transform the
nondeterministic domain PDpaint to a deterministic one. Indeed, the only secure plan
when using PDpaint is the single optimistic plan (which is also trivially secure) when
using PDkpaint. In our experience, problems formulated by such knowledge-oriented
encodings are usually much easier to solve [see also benchmarks in Eiter et al.
(2003a)], but it is probably not always possible to find a deterministic knowledge-
oriented encoding for a nondeterministic domain, by complexity results presented
in Eiter et al. (2003a).
Forgetting cannot be emulated directly by formalisms which adopt a world state
view. There, leaving fluents open necessarily amounts to a disjunction over all
possible world states [as argued in Lin & Reiter (1994)], whereas we can explicitly
distinguish between such a totalization and a true forgetting approach.

• Conditional Inertia.  The encoding PDkpaint has a minor problem, though: it will not
work correctly if the painter confuses all available colors, because inertia is not
overridden by the added rule in this case. Indeed, if we remove c(blue) from the
background knowledge of the example above, and the house is already green in the
initial state, that is, initially: col(blue). is replaced by initially: col(green)., we get the
following (optimistic and secure) plans:
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Pa = <{paint(green,joe)}>
Pb = <{paint(red,joe)}>
Pc = <{paint(green,jack)}>
Pd = <∅>

of which Pa and Pb are wrong, as they do not necessarily establish the goal.
As already mentioned, the reason for this fault is that no exception to inertia is
provided when paint(green,joe) or paint(red,joe) are executed, and so col(green)
continues to hold, even if it should not. The inertia macro requires negative
knowledge about the inertial fluent to be derived. In situations as the one above,
however, there is no cause for such a negative knowledge.
One approach to solve such a scenario is to create an additional way for providing
exceptions to inertia, by adding explicit conditions under which inertia applies. We
refer to this concept as conditional inertia. In K, we simply extend the inertial macro
by allowing if and after conditions, just as for standard causal rules.
In the Paint domain, we modify PDkpaint by introducing a new auxiliary fluent
unknowncolor, which explicitly represents the fact that the color of the house is not
known. This fluent holds after a painter has been asked to paint with a color he
confuses and inertia is not applied in that case. The modified domain PDcipaint is
given in Figure 6. The planning problem involving PDcipaint correctly yields only
Pc and Pd as (optimistic and secure) plans.
It turns out that conditional inertia is a versatile concept, which can be used to
encode many domains involving non-deterministic action effects by a determinis-
tic knowledge oriented encoding.

Figure 6. A conditional inertia encoding of the painting domain (PDcipaint)

fluents: unknowncolor. col(C) requires c(C). 

actions: paint(C, A) requires c(C), painter(A). 

always:  executable paint(C,A). 

         noConcurrency. 

         caused col(C) after paint(C,A), not confusedBy(C,A). 

         caused unknowncolor after paint(C,A), confusedBy(C,A). 

         caused -col(C) after paint(C1,A), conf(C1,C2,A), col(C), C <> C1, C <> C2. 

         inertial col(C) if not unknowncolor. 

         caused -col(C1) if col(C), C <> C1. 

initially: col(blue). 

goal:    col(green)? (1) 
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Ring
Imagine a robot moving in a ring of n rooms, which are all connected. There are two

actions fwd and back to move to the previous and next room, respectively. Each room has
a window and the robot can close and lock any window, where locking is only possible
if the window is closed. The goal is to lock all windows. However, gusts of wind (which
are obviously not under the control of the robot) may change the state of a window from
being closed to being open and vice versa. The robot therefore cannot be sure that a
window remains closed after he has closed it. In the initial situation the position of the
robot is unknown and all windows are open. This domain has been described in Cimatti
& Roveri (1999) and is referred to as RING(n). Figure 7 shows an instance with eight
rooms.

The background knowledge models the room layout:

next(r1,r2). ... next(r7,r8). next(r8,r1).
room(R) :- next(R,R1).

Let us first consider what kind of knowledge is crucial in this domain. The robot does
not have knowledge about its position, but it also has no means of gaining knowledge
in this respect (a similar situation as in the Square domain). Concerning the closed-state
of a window, the robot knows that a window is closed immediately after having closed
it. The robot also knows that a closed window stays closed after being locked, but
nothing else is known about the closed-state of a window.

According to this analysis, we present an encoding in Figure 8, which uses a world
view for position and a knowledge view for closed. We use fluents closed and locked to
encode whether the window in a room is closed or locked, respectively. The robot’s
position is expressed using position. Fluent unlocked should hold whenever some windows
are not locked, and anywhere is an auxiliary fluent used for determining legal initial states.

The actions fwd and back represent forward and backward moves by the robot, close
and lock are robot actions for closing and locking the window in the current room.
Executability of fwd, back, and close is always given, while for lock the window at the current
position must be closed. unlocked holds whenever some window is not known to be locked.

Figure 7. RING(8)
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The actions close and lock cause the window at the current position to be closed and locked,
respectively, immediately after the respective action, and fwd and back cause the
respective position changes.

Fluents locked and position are inertial. The exception for position inertia occurs
whenever the robot moves to another position, while for locked no exception can occur.
The fluent closed is not inertial until the respective window is locked, accounting for the
lack and gain of knowledge we have discussed above by means of forgetting via
conditional inertia.

Finally, the initial state is described. As discussed, a knowledge approach is not
feasible for positional information, so we use the nondeterministic macro total together
with appropriate restricting rules to form all initial states containing exactly one instance
of position, similar to the Square encoding. We also represent the knowledge about all
windows being open initially. Finally, the goal is reached whenever unlocked does not
hold after l steps.

The secure plans of this domain for RING(2) and plan-length 5 are:

Pf  = <{close}, {lock}, {fwd}, {close}, {lock}>
Pb= <{close}, {lock}, {back}, {close}, {lock}>

and for RING(n) and plan-length 3n-1 two analogous plans exist.
It is possible to easily switch from a knowledge view to a world view on closed by

adding a causal rule:

total closed(R).

to the always-section, creating non-determinism for each step in which some closed state
is not known.

Action Costs
In Eiter, Faber, Leone, Pfeifer and Polleres (2003b) we have defined an extension of

the language K called Kc, which allows assigning costs to actions. For instance, in Kc

one can assign a cost of 1 (representing, e.g., energy resources consumed by the action)
to each move action by modifying the declaration of move in PDbw2 of Figure 3 to read:

actions: move(B, L) requires block(B), location(L) costs 1.

The plans for a Kc planning problem are defined as those plans that minimize the
sum of the respective costs of all actions in the plan. For the Blocks World planning
problem from above and plan length 3, we obtain two plans with five actions, but none
of the plans with six actions considered originally.

Pa = <{move(3,table)}, {move(1,3), move(5,table)}, {move(2,4), move(6,5)}>
Pb = <{move(3,table), move(5,table)}, {move(1,3)}, {move(2,4), move(6,5)}>

Cost statements may contain integer arithmetic supported by the underlying DLV
system. They may also contain the designated constant time, allowing for dynamic cost
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assignment: time will evaluate to the time-step in which the particular action instance
occurs. This provides a flexible framework for performing qualitative optimization
planning.

Using this machinery, it is possible to solve several generic problems (Eiter et al.,
2003b): finding (α) plans with minimal cost for a given number of steps (cheapest plan),

Figure 8. Ring domain (PDring)

fluents:   closed(R) requires room(R). 

           locked(R) requires room(R). 

           position(R) requires room(R). 

           unlocked. anywhere. 

actions:   fwd. back. close. lock. 

always:    executable fwd. executable back. executable close. 

           executable lock if position(R), closed(R). 

           caused unlocked if not locked(W). 

           caused closed(R) after close, position(R). 

           caused locked(R) after lock, position(R). 

           caused position(R1) after fwd, position(R), next(R,R1). 

           caused position(R1) after back, position(R), next(R1,R). 

           inertial locked(R). inertial position(R). 

           inertial closed(R) if locked(R). 

           caused -position(R) after fwd, position(R). 

           caused -position(R) after back, position(R). 

           noConcurrency. 

initially: total position(R). 

           forbidden position(R), position(R1), R <> R1. 

           caused anywhere if position(R). 

           forbidden not anywhere. 

           caused -closed(R). 

goal:      not unlocked? (l) 
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(β) plans with minimal time steps (shortest plan), (γ) plans which are the shortest among
the cheapest, and (δ) plans which are the cheapest among the shortest.

One might think that assigning costs to fluents in a similar manner would be useful
as well. However, this would trigger semantic issues, since plans may have more than one
supporting trajectory, that is, sequences of states serving as a witness for the viability
of the plan. These different trajectories could then have different fluent costs assigned,
and one would have to apply some sort of aggregation (maximum, arithmetic mean...).

Features and Pitfalls
After having presented multiple aspects of knowledge representation in K by means

of several examples, we now summarize and discuss the features (and pitfalls) of
encoding domains in this language in more detail.

Knowledge States
We have seen that default negation and the concepts of K provide a flexible tool

for knowledge representation in the field of planning, but using negation as failure also
involves some subtleties via the full freedom of normal logic programs to describe state
constraints. In analogy to the term “Planning as Satisfiability” (coined by Kautz &
Selman) our approach may well be conceived as “Planning as Answer Set Programming”
or even “Answer Set Programming as Planning” to some extent.

K and Kc provide more than classical action languages where transitions are defined
between completely defined world states or sets of such states (i.e., belief states). In fact,
the knowledge state view implicit to the semantics of K requires the user to know about
basic principles of logic programming and especially how to deal with non-monotonic
(default) negation.

In this context we can state two major modeling principles:

Representation Principle 1: Exploit Closed World Assumption.
Representation Principle 2: Forget unnecessary information rather than keep

complete state information.

Both of these principles should also be viewed in the light of “elaboration
tolerance” in the sense of McCarthy (1999). Flexible frameworks such as K leave much
of the responsibility of how far domain- and problem-specific knowledge is exploited up
to the user.

Knowledge state encodings somehow relieve the user from encoding every pos-
sible constraint on legal states of a particular domain by simply leaving “irrelevant”
information open. We have discussed the applicability of the knowledge state view
versus the world state view and the concept of forgetting about fluents with illustrative
examples in the Paint and Ring domains.

In order to design planning domains in K, one has to be aware of the inherent non-
monotonicity of the knowledge state view. Informally, a transition <s,A,s’> in K can be
viewed as a transition between (answer sets of) normal logic programs where causation
rules of the form

caused f if b1, ..., bk, not bk+1, ..., not bl  after a1, ..., am, not am+1, ..., not an.
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form a logic program Πs’ consisting of all rules r:

f :- b1, ..., bk, not bk+1, ..., not bl.

such that {a1, ..., am} ∈ s ∪ A and {am+1, ..., an} ∩ (s ∪ A) = ∅.   Πs’ then has all legal
successor states for s and A as its answer sets.

Another example shows the strength of this logic programming view in planning:
modeling transitive closure in K is more concise and, in our opinion, more natural than
in similar formalisms.

Transitive Closure
Expressing transitive closure in language K is straightforward because of its logic

programming-based semantics. Let us assume there is a fluent on(B,L) which represents
whether a block B resides on location L in the Blocks World.

Now, we want to define causation rules for a fluent above(B,L) which states that
block B resides somewhere above location L. This can be modeled by static rules as
follows:

caused above(B,L) if on(B,L).
caused above(B,L) if on(B,B1), above(B1,L).

In K these two rules sufficiently describe the values of fluent above, while in the
action language C we would need to explicitly add negative information on above.

“Hidden” Default Negation in Macros
As we have already seen in the previous examples, default negation (not) allows a

great degree of freedom and flexibility in the encoding of planning domains. However,
default negation and non-determinism might sometimes not be obvious when dealing
with K macros. For instance, inertial statements can interfere with other rules using default
negation. Consider for instance the rules:

caused -f if not f.
inertial f.

in a state s = {f}, with the empty action set A = ∅. Here, there are two legal transitions
<s,A,{f}> and <s,A,{-f}> .

Indeed, both statements encode default reasoning, and after a state containing f
these defaults are in conflict. Since no further priority information is available, this gives
rise to two alternatives. Priorities can be added in different ways; a simple method to
prefer the alternative in which -f is selected follows Lukaszewicz (1990). We introduce a
fluent -f

a
, add a rule:

caused -f
a
 if not f.
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and replace the original inertial rule with conditional inertia

inertial f if not -f
a
.

More sophisticated incorporation of priorities and preferences in general is a
subject for further research. In particular, it might be possible to employ defeasible logic
(Antoniou, Billington, Governatori, & Maher, 2001) or logic programs with preferences
(Brewka & Eiter, 1999) for representing such concepts.

COMPARISON TO STRIPS, ADL, AND PDDL
In this section, we briefly compare K to STRIPS, ADL, and PDDL; a detailed

comparison of K to many action languages can be found in Eiter et al. (2004) and Polleres
(2003).

As for STRIPS (Fikes & Nilsson, 1971), it is not hard to see that this formalism can
be embedded into K, as discussed in Eiter et al. (2004). The same is possible for ADL
(Pednault, 1989), since an extension by conditional effects is straightforward. We remind
that propositional ADL has the same expressiveness as action language A.

PDDL (Ghallab et al., 1998) emerged as a de-facto standard modeling language for
classical planning, fostered by the variety of planning tools and algorithms that have
been developed in the last decade. PDDL significantly differs from STRIPS and ADL; it
stands for a modular family of languages rather than a single language, defined by so-
called requirements. Any planning system accepting PDDL might or might not implement
these requirements. STRIPS and ADL amount to particular fragments of PDDL, which as
discussed are expressible in K.

PDDL version 1.2 comprises a number of requirements including value ranges
comparable to typing in K, domain axioms, disjunctive preconditions of actions, and
quantified preconditions, which can be emulated in K like further ones. Evaluation of
arithmetic expressions in PDDL can, to some extent, also be emulated in K within the
restrictions of DLVK integer arithmetic.

Noticeable for the concern of K are the PDDL requirements :open-world and :true-
negation, by which the user can flexibly decide whether CWA should be applied or not
for a particular fluent. These requirements can be easily realized in K, given the logic
programming flavored semantics of K and the totalization construct.

However, other requirements, such as compound tasks, which are definable with
:action-expansions in  PDDL, are beyond the scope of K. The techniques of Dix et al. (2002)
to encode Hierarchical Task Network (HTN) Planning in Answer Set Programs might
serve as a starting point for providing similar capabilities.

Actions are first-class citizens in PDDL and syntactically tightly coupled with their
preconditions and effects. Here, preconditions can be modeled as formulae over fluents
and effects can be modeled as conjunctions of fluent literals. Note that disjunctive effects
are prohibited since in its basic form, PDDL does not deal with nondeterminism. For
instance, the move action of Example 3 could be written as a PDDL operator as follows:

(:action move
  (:parameters ?b - block ?from ?to - loc)
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  (:preconditions (and (not (blocked ?b))
                       (not (blocked ?to))
                       (on ?b ?from)
                       (not (= from? to?))))
  (:effect        (and (not (blocked ?from))
                       (on ?b ?to)
                       (when (not (= ?to table))
                             (blocked ?to)))))

This description, however, does not contain information about constraints on
parallel move actions. An important note here is that the majority of PDDL planners only
deal with sequential planning and do not consider parallel actions. Since operator
preconditions are not allowed to include action predicates, constraints on parallel
actions can not be expressed directly, as with the (non)executable statements in K. Still,
some PDDL based planners deal with parallel actions by automatically determining pairs
of “mutex” actions: they automatically detect actions with interfering preconditions/
effects and do not allow these to occur in parallel. In a formalism like PDDL, with only
conjunctive effects, these “mutex” action pairs can easily be determined. For instance,
the Graphplan (Blum & Furst, 1997) algorithm and its descendants make use of this to
compute parallel plans for PDDL domain descriptions.

    However, mutex detection is not enough for the example above. In order to state
under which conditions parallel moves are allowed, one would need to add state
constraints which prohibit states where one block has two locations at once. Such state
constraints can be expressed in PDDL using the :safety-constraints and :domain-axioms
requirements. Prohibiting that a block resides at two different locations at once can be
formulated as follows:

(:safety forall(?b - block ?l1 ?l2 - loc)
         (or (= ?l1 ?l2)
         (not (and (on ?b ?l1) (on ?b ?l1)))))

Our K formulation to avoid such states, by directly forbidding respective actions
to occur in parallel, is somewhat orthogonal to this. However, K also allows for expressing
domain axioms and constraints as in PDDL by the use of static causation rules and the
forbidden statement.

Action languages like K offer a more flexible description of transitions than the
operator-based framework of PDDL. On the other hand, automatic determination of mutex
pairs can in K perhaps not be as easily achieved as in the Graphplan algorithm. We
consider the more flexible handling of concurrent actions in K as a language feature.

PDDL has evolved to version 2.1 (Fox & Long, 2003) recently, which adds additional
levels introducing, for instance, durative actions, continuous and/or conditional effects,
etcetera. This is currently not expressible in K (or Kc) in a straightforward way.
Interestingly, the requirements :open-world and :true-negation from version 1.2 have been
dropped; this may be explained by the lack of broad support by current planning systems
adhering to PDDL. Incomplete knowledge and non-determinism hence are not addressed
in this version of PDDL. Thus, for declarative planning in such settings, one has currently
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to resort to other formalisms and systems, such as K and DLVK. Noticeably, this
shortcoming of PDDL has been realized and steps towards extensions for incomplete
initial state specifications and non-determinism have been made in the last “Workshop
on PDDL” held at the “International Conference on Automated Planning and Scheduling
(ICAPS’03).” For instance, the language NPDDL (Bertoli et al., 2003) accepted by the
MBP planner (Bertoli et al., 2001) includes such extensions.

From a general modeling perspective, we feel that action languages like K are more
versatile for describing actions and transitions than PDDL; they allow expressing
relationships among actions and fluents in a rule based language with natural reading,
rather than in an operator-centric syntax. However, one has to bear the different
objectives of these languages in mind. PDDL originally has been designed as a domain
specification language for the International Planning Competition (IPC) based on ADL,
and is conceived as a generic language representing the features of various special-
purpose planners. Extensions to it are made very cautiously to maintain a widely accepted
standard. Furthermore, the strict setting of an operator-based PDDL syntax is advanta-
geous for a structural analysis of planning domains, and provides a better handle for
optimizations and tailoring search heuristics, which is more of a concern for PDDL-based
systems than natural problem representation.

SUMMARY AND PERSPECTIVES
In this chapter, we have considered a logic-based approach to planning based on

action languages, which have been developed in the area of Knowledge Representation
and Reasoning. Various such languages have been proposed in the literature, offering
different capabilities and expressiveness. Compared to familiar planning formalisms like
STRIPS or PDDL, which have an operator-centric view, action languages take a broader
perspective in describing the planning world in terms of a theory, in which action
execution and fluent values can be more flexibly interrelated than in an action-precon-
dition-effect setting. At the same time, action languages have a clear formal semantics
with a logical underpinning, which is supportive to considering reasoning tasks on
actions theories and also provides a basis for implementations by exploiting efficient
reductions to solvers for related logic formalisms.

Advanced action languages, such as C or K, allow one to deal with features like non-
determinism, qualifications, ramifications, concurrent action execution, and incomplete
information about states. The language K in particular, which we have discussed in more
detail, is semantically based on logic programming and provides constructs from there,
such as negation by default, which allow for a flexible and natural modeling of incomplete
information and non-determinism in planning domains. Exploiting these constructs,
frame axioms, non-deterministic action effects, and other concepts can be modeled
easily. By defining suitable macros for such concepts, one can allow for a more natural-
language like intuitive description of planning domains.

As a distinguishing feature with respect to similar languages, K supports a
knowledge state view of state descriptions, where the values of fluents also might be
unknown, rather than a classical world view, where each fluent must either be true or false.
This view can be fruitfully exploited to handle indeterminism and non-determinism in
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planning domains. In particular, we have identified three main sources of these, all of
which are beyond the modeling capabilities of classical planning languages: incomplete
initial knowledge, non-deterministic action effects, and non-deterministic evolutions of
the environment by uncontrollable, exogenous events.

We have exemplified the modeling of all these forms of non-determinism in K by
illustrative examples. As shown by them, we may achieve a beneficial modeling of the
domain of discourse by adopting the knowledge state view, where only a relevant
“clipping” of the world is modeled. As discussed, conditional formulations of frame
axioms can be used in our language to model “forgetting” about particular fluent values.

A fully operational implementation of K, the DLVK system, is available at

http://www.dbai.tuwien.ac.at/proj/dlv/K/

along with the examples in this text and many more, some of which are rather intricate and
show further capabilities of the language, for example, computing optimal plans. The
reader is encouraged to browse them and to experiment with the system, setting up also
new domains.

As shown by the results on using action languages as a host for solving planning
problems so far, this is an interesting direction towards semantically rich and expressive
formalisms for declarative planning. With the advent of solvers like DLV (Eiter et al., 2000)
or SMODELS (Niemelä & Simons, 1997), to which these formalisms can be mapped in the
spirit of satisfiability planning (Kautz & Selman, 1992), implementations have become
available (Eiter et al., 2003a; Ferraris & Giunchiglia, 2000; McCain, 1999) which make
experimentation and practical problem solving possible. The strength of these systems
is at this time their modeling power rather than efficiency and scalability; improvements
on these issues remain subject for future research. Nevertheless, DLVK performs surpris-
ingly well already in its current implementation. Compared with other planning systems
tailored for conformant planning, DLVK outperforms several of them as shown in Eiter et
al. (2003a) and Cimatti, Roveri and Bertoli (2003), particularly when using knowledge state
encodings.

For future development of planning systems based on action languages, we see
different perspectives. On the computational side, the current systems do not employ
sophisticated, goal-oriented heuristics for pruning the search space. Rather, the search
is guided by built-in heuristics of the underlying logic solvers, which are geared towards
problem solving in general and thus do not always work best on the particular input to
which planning problems are mapped. Hence, there is high potential for improvements.
It remains to research more efficient mappings of action languages to logic solvers, which
employ for the purpose of planning suitable heuristics to control the search at the level
of the mapping, in reconciliation with the heuristics employed by the underlying logic
solver. The experimentation with different heuristics for answer set solvers like DLV and
SMODELS is still under research, and input from planning applications may guide the
development of heuristics beneficial in practice.

Another perspective is further extension of action languages and resultant plan-
ning frameworks to increase expressivity. While DLVK implements secure plans (Eiter et
al., 2003a; Polleres, 2003), it currently does not support sensing actions and conditional
plans. Sensing actions may be emulated to some extent by a suitable encoding of the
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action domain, but availability as first class citizens in the language would be desirable.
Conditional plans allow for respecting any contingency by branching on conditions over
the current state (Warren, 1976; Peot & Smith, 1992), and thus are more general than
secure plans. However, their size can be exponential in general, and thus their generation
is provably intractable. Feasible restrictions must be identified in order to apply our logic-
programming approach to this kind of planning; Son et al. (2001, 2004) present some
results in this direction. An extension in a different dimension, towards a very general
formalism for planning with uncertainty, is by probabilistic knowledge, such that both
qualitative and quantitative uncertainty can be orthogonally combined within one
language; (Eiter & Lukasiewicz, 2003) presents an approach for C, which can be readily
adapted to K.

A further interesting perspective for planning via action languages emerges from
their rooting in Knowledge Representation and Reasoning, which by their logic-based
underpinnings are amenable to problems studied in this area, such as Diagnosis, Belief
Revision, or Knowledge Base Update. Methods that have been developed for accom-
plishing these tasks may be applied in order to reason about plan failures and for
developing suitable recovery strategies, see also Giacomo, Reiter and Soutchanski
(1998). Dix et al. (2003) is an initial step of using DLVK to this end in an execution monitoring
framework. An agent might be situated in a dynamic environment, in which changes
happen which are not reflected appropriately in the domain theory. Here, methods and
techniques from belief revision and knowledge base update might be applied in order to
revise the action theory of the planning domain. The logic-based setting of action
languages eases this, while this would be much more involved for traditional planning
approaches.

Finally, since most action languages have been conceived for reasoning about
actions and change in general, implementations may allow for expressing a broader range
of problems beyond traditional planning, like the CCALC system (McCain, 1999)
implementing C . Also DLVK can, by the nature of its implementation, be adapted to accept
more general than traditional planning goals (e.g., that in addition to the goal, certain
conditions never hold along an execution). This holds potential for providing planning
systems that can easily handle extended goals whereas classical planning systems
cannot.
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Chapter II

A Framework for Hybrid
and Analogical Planning

Max Garagnani, The Open University, UK

ABSTRACT
This chapter describes a model and an underlying theoretical framework for hybrid
planning. Modern planning domain description languages are based on sentential
representations. Sentential formalisms produce problem encodings that often lead the
system to carry out large amounts of superfluous operations, causing a loss in
performance. This chapter illustrates how techniques from the area of knowledge
representation and reasoning (in particular, analogical representations) can be
adopted to develop more efficient domain description languages. Although often more
efficient, analogical representations are generally less expressive than sentential
ones. A framework for planning with hybrid representations is thus proposed, in which
sentential and analogical descriptions can be integrated and used interchangeably,
thereby overcoming the limitations and exploiting the advantages of both paradigms.

INTRODUCTION
“Planning” is the process of deciding which course of action to undertake in order

to achieve a future state of affairs (goal) that does not hold in the present situation.
Planning our daily activities, a trip, a political campaign or a military operation are just
a few of the countless examples. We take a planning domain to be an abstract, simplified
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description of the world, consisting of a set of possible world states and a set of possible
actions for transforming a state into another one. A planning problem (or planning
instance) is specified by providing a planning domain, an initial state and a goal. Solving
a planning problem requires finding a sequence of actions (plan) that will (or is expected
to) transform the initial state into one in which the given goal is achieved.

Clearly, an automatic system for the solution of planning problems must be able to
internally represent states, actions and goals. In particular, in order to build an automated
planning system, one must provide at least the following elements: (1) a syntax for
representing world states, goals and actions; (2) a general algorithm Θ for calculating the
state description s' = α(s) resulting from applying any action description α to any given
state description s; and (3) a general algorithm Γ for deciding whether any goal
description G holds (or is satisfied) in a given state description. Given these elements,
an automatic system can use algorithm Θ to interpret any of the action descriptions and
apply them so as to transform the initial state representation into new ones, while
algorithm Γ can be used to determine whether the assigned goal has been achieved.

In view of the above considerations, the representation adopted by an automated
planner for modelling world states, goals and actions appears to be of crucial importance
in determining the effectiveness and efficiency of the planning process. Although in the
last decade the field of knowledge representation and reasoning has witnessed the birth
of several new formalisms [among others, qualitative reasoning (Forbus, 1995; Forbus,
Nielsen, & Faltings, 1987, 1991), semantic networks (Lehmann, 1992; Sowa, 1984), and
diagrammatic representations (Glasgow, Narayanan & Chandrasekaran, 1995; Kulpa,
1994)], planning research has generally failed to assimilate and exploit such develop-
ments. In particular, the modelling languages for reasoning about action have remained,
since their origins, purely sentential (i.e., textual, or based on predicate and propositional
logic) (McCarthy & Hayes, 1969; Fikes & Nilsson, 1971; Pednault, 1989; McDermott,
Knoblock, Veloso, Weld & Wilkins, 1998). Even the most recent version of PDDL, the de
facto standard planning domain description language (Fox & Long, 2003) requires the
domain modeller to describe all aspects of a problem (including spatial and topological
relations) using only sets of propositions.

The rest of this introductory section argues that, although very expressive and
flexible, sentential languages are often inefficient1 for describing and solving even simple
planning problems. In particular, sentential planning representations tend to produce
inefficient encodings of domains that involve the movement of a number of distinct
objects subject to even simple spatial constraints. The remainder of the chapter is divided
into two main parts: the first one, consisting of two sections, introduces analogical
planning representations and illustrates, first with an example and then through the
analysis of an actual implementation, how such formalisms can help overcome some of
the shortcomings of sentential descriptions. The second part, entirely contained in one
section, proposes a framework for hybrid planning, in which sentential and analogical
descriptions are integrated. These two parts are linked by an intermediate section
(“Characterising Analogical Models”) that provides some background on analogical
formalisms and compares them to sentential ones. The two final sections discuss related
work, advantages and limitations of the analogical and hybrid approach.
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Planning with Sentential Representations:
A Simple Example

In order to introduce sentential representations, let us begin with a simple example,
based on a variation of the classical Blocks-World (BW) planning domain. The BW
domain consists of a robot arm able to pick up and put down blocks that lie on a table.
In the classical version of the domain, the blocks are all identical. In the example
considered, blocks can have different weights, and a block can only be picked up from
the top of a stack if the stack contains at least another block that is heavier than the one
being removed. The possible actions of this domain are stack and unstack: Stack(x,y)
consists of picking up a block x (of any weight) from the table and stacking it onto another
block y; Unstack(x,y) picks up a block x currently lying on another block y and puts it
on the table (subject to the stack containing a block heavier than x). Figures 1(a) and
1(b) depict, respectively, the initial state and goal for an example of BW planning problem
(the weights of the blocks are left unspecified). The goal describes the arrangement of
blocks A and C, but does not specify the final position of B or D, although it does require
that one of them be positioned between A and C. Also notice that, unlike the original BW,
this version allows the formulation of problems for which no plan solution exists.

Most modern planning systems would describe this domain using a sentential
formalism not too different from the original STRIPS (Fikes & Nilsson, 1971). In such a
model, the current world state is represented as a set of ground atoms (atomic logical
formulæ) of the form p(x1,…xk), where p is a predicate with k arguments. An atom A is said
to hold in a state s if and only if A∈s. A negative atom ¬A holds in s if and only if A does
not hold in s. A literal is an expression of the form A or ¬A, where A is an atom. For example,
consider a language with predicates On(x,y), Heavier(x,y) and Clear(x), where x, y vary on
the constant symbols {A, B, C, D, Table}, representing the corresponding objects of the
domain. The initial state of Figure 1(a) can be described by the following set of ground
atoms:

s0  = {On(A, Table), Clear(A), On(B, Table), On(D, B), On(C, D), Clear(C),
          Heavier(A, B),  Heavier(B, C), Heavier(C, D) }

 

(a) (b) 

B 

D 

C 

A A 

 

C 

Figure 1. Simple Blocks-world problem: (a) initial state; (b) goal
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In this example, blocks A,B,C and D are in order of decreasing weight. Notice that
the two ground atoms Heavier(A,C), Heavier(B,D) have not been included, although they
should hold in s0 in virtue of the transitivity property. This property can be imposed on
the relation Heavier through the addition of the following domain axiom to the descrip-
tion (in which all the free variables are implicitly universally quantified):

(ρ1) Heavier(x, y) ∧ Heavier(y, z) → Heavier(x, z)

Axiom (ρ1) avoids having to explicitly include in s0 all the instances of Heavier that
hold in the initial state, which would be unwieldy for large numbers of blocks. However,
as discussed below, the introduction of domain axioms in the domain description should
not be taken too lightly, as it can have a negative impact on planning performance.
Incidentally, domain axioms are also useful for describing the actions and the goal G1
[Figure 1(b)]:

G1 = {On(A, Table), Above(C, A, 2), Clear(C)}

The “derived” predicate Above(x,y,n) denotes that block x is the n-th block above
y, and is defined in terms of the “basic” predicate On(x,y) through the following domain
axioms (where n∈ℵ, the set of natural numbers, and variables x,y and z represent distinct
blocks):

(α1) On(x, y) → Above(x, y,1)
(α2) On(x, y) ∧ Above(y, z, n) → Above(x, z, n+1)

In view of the presence of domain axioms, the previous definition of “hold” needs
to be extended: an atom A holds in a state s if and only if either A∈s, or A can be derived
from domain axioms whose premises (left-hand side) hold in s [for a more precise and
formal definition of the semantics of domain axioms in planning, see Thiébeaux, Hoffmann
& Nebel (2003)].

The possible actions of the domain are described by parameterised operators P⇒E,
consisting of preconditions P and effects E. These are sets of parameterised literals. For
example, Stack(x,y) and Unstack(x,y) would typically be encoded as follows:2

Stack(x,y) % Picks up block x from the table and puts it onto block y (x≠y)
Parameters: x,y – Block
Preconditions: {On(x, Table), Clear(x), Clear(y)}
Effects: {On(x, y), ¬On(x, Table), Clear(y) }

Unstack(x,y) % Picks up x from y and puts it on the table
Parameters: x,y – Block
Preconditions: {On(x,y), Clear(x), Above(x, z, n), Heavier(z, x) }
Effects: {¬On(x,y), Clear(y), On(x, Table)}

All the variables in the preconditions are implicitly existentially quantified; the type
‘Block’ consists of the set of symbols {A,B,C,D}. The semantics of these operators
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(Lifschitz, 1990) is as follows: for an operator to be applicable to a state s, all its
preconditions must hold in s. When an operator is applied to a state s, all the positive
atoms of the effects are added to s, and all the negative atoms of the effects are deleted
from s. For example, the action Stack(A,C) is applicable in state s0, and its application
would produce the following state s1:

s1 = {On(B, Table), On(D, B), On(C, D), On(A, C), Clear(A),
         Heavier(A, B), Heavier(B, C), Heavier(C, D) }

Notice that the set of instances of ‘Heavier’ that hold in the initial state remains
constant throughout the solution of the problem. This is a consequence of the fact that
no instance of the predicate is ever affected — directly or indirectly — by the operators;
this property of the domain can be automatically detected and exploited by modern
planners to restrict the search to the parts of the problem that can actually change,
avoiding unnecessary calculations.

Unfortunately, unlike ‘Heavier,’ the instances of ‘Above,’ although not appearing in
any of the operator effects, do change as an indirect consequence of changes in the ‘On’
relation. In particular, any movement of the blocks causes the set of ground instances
of  ‘Above’ currently holding in the state to change. For example, consider the instances
of ‘Above’ that hold in state s0 (Figure 1 (a)), derived using axioms (α1),(α2) as follows:

(1.1) On(D,B) → Above(D, B, 1) (from (α1))
(1.2) On(C,D) → Above(C, D, 1) (from (α1))
(1.3) On(C,D) ∧ Above(D, B, 1) → Above(C, B, 2) (α2) + (1.1)

After the application of Stack(A,C), the instances of Above holding in state s1 must
be recomputed as follows:

(1.4) On(A,C) → Above(A, C, 1) (α1)
(1.5) On(C,D) → Above(C, D, 1) (α1)
(1.6) On(D,B) → Above(D, B, 1) (α1)
(1.7) On(A,C) ∧ Above(C, D,1) → Above(A, D, 2) (α2)+ (1.5)
(1.8) On(C,D) ∧ Above(D, B,1) → Above(C, B, 2) (α2)+ (1.6)
(1.9) On(A,C) ∧ Above(C, B, 2) → Above(C, A, 3) (α2)+ (1.8)

This is a first indication that the introduction of domain axioms in the problem may
lead to significant amounts of additional computation. This is argued in more detail
below.

Inefficiencies of Planning with Domain Axioms
Let us consider how a forward state-space planner would solve a problem in the BW

domain described earlier. The truth of the derived predicate Above(x,y,n) can be deduced
from the current state at any point of the planning process using (α1),(α2). However,
whenever any instance of the ‘On’ predicate changes, it is necessary for the planner to
re-calculate the ‘Above’ relation, as the truth of some of its instances will have been
affected by the change. The number of steps necessary to derive all the instances of the
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relation for a tower of m blocks is equal to (m(m-1))/2. Hence, in a BW domain with m
blocks, the calculation potentially requires O(m2) extra steps after each move. In general,
if the relation to be deduced contains k — instead of only 2 — arguments varying on a
set of m objects (constant symbols) of the domain, the number of steps required is O(mk).
While in some simple cases (like this one) the number of deductions can be reduced by
recalculating only those instances strictly affected by the action (Pednault, 1989;
Davidson & Garagnani, 2002), a forward-search algorithm able to deal with any arbitrary
set of domain axioms may have to carry out, in the worst case, a number of steps
exponential in the size of the domain description (if the arity of the axioms is a measure
of this size), or polynomial in the number of objects (if the arity is a constant), after each
operator application and for each relation affected (Thiébeaux et al., 2003).

A backward-search algorithm would incur in similar (or even worse) problems. For
clarity and generality of the analysis, let us rename predicates Above(x,y,n) and On(x,y)
as D(x,y,n) and B(x,y), for “derived” and “basic,” respectively. The two axioms then
become:

(β1) B(x, y) → D(x, y,1) (x≠y)
(β2) B(x, y) ∧ D(y, z, n) → D(x, z, n+1) (x≠y≠z≠x)

All the occurrences of the two predicates in the operators, initial, and goal-state are
similarly renamed. Now, consider, for example, the problem of establishing (achieving)
the preconditions of the Unstack operator. Suppose that the term D(x,y,n) is picked first,
and that its variable n is still unbound. Since all the operators contain, in their effects,
only basic predicates, the only way to discover how this term can be achieved consists
of transforming it into an equivalent expression containing only B(x,y) terms. If n is
unbound, a direct transformation is not possible, as n could be any positive integer.
However, a sufficiently sophisticated planning system might be able to recognise that,
if the problem contains only a finite number of blocks, the range of n is finite. For example,
in presence of only four blocks, the planner should be able to apply domain axioms (β1),
(β2) to transform the expression D(x,y,n) into the following equivalent disjunction of
conjunctive terms:

(2.0) B(x,y) ∨ (B(x,w) ∧ B(w,y)) ∨ (B(x,v) ∧ B(v,w) ∧ B(w,y))

Unfortunately, even assuming that this is possible, the introduction of disjunctive
expressions like (2.0) would lead to a significant increase in the branching factor of a
backward search, having negative effects on the performance. Notice that while this
simple example causes the branching factor to grow “only” by a factor m-1 (where m is
the total number of blocks), domains containing more and/or more complex axioms [e.g.,
involving multiple linear or non-linear recursions (Han, 1989)] would require rather
complex transformations of the derived predicates and lead to much higher branching
factor increases. Finally, notice that even simple domains like BW can involve several
complex axioms. For example, Cook & Liu (2003) provide an axiomatization of BW using
seven different recursive axioms only to describe the ‘on’ relation (which they call
Above), and demonstrate that every decision procedure for the resulting theory must take
at least exponential time.
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Domain Axioms and the Ramification Problem
The problem of domain axioms in planning appears to be closely related to the so-

called ramification problem (Georgeff, 1987) in automated reasoning. Pollock (1998)
accurately describes this problem as one that arises from the observation that,

“[…] in realistically complex environments, we cannot formulate axioms that completely
specify the effects of actions or events. […] in  the real world, all actions have infinitely
many ramifications stretching into the indefinite future. This is a problem for reasoning
about change deductively […]” (p. 536)

Using one of Pollock’s examples, among the effects of striking a match we should
include such things as “displacing air around the match, marginally depleting the ozone
layer, raising the temperature of the earth’s atmosphere, marginally illuminating Alpha
Centauri, […], etc.” (p. 537). Naturally, a planning domain description is not expected to
model all such complex ramifications of events and actions: planning involves reasoning
about a simplified version of the real world. However, even very simple, toy-like domains
such as BW can already involve several complex domain axioms (Cook & Liu, 2003). If
the target domain considered is a real application, the model is likely to contain tens of
axioms and very large numbers of objects [e.g., see the “PSR” domain in (Bonet &
Thiébeaux, 2003)].

In order to address the problem of planning in presence of domain axioms, some
researchers (e.g., Gazen & Knoblock, 1997; Davidson & Garagnani, 2002; Thiébeaux et
al., 2003) have developed pre-processing techniques for automatically transforming a
planning problem into an equivalent one that does not contain axioms, and which can
be solved using simple and efficient planning algorithms. Unfortunately, recent theoreti-
cal results demonstrate that any attempt to compile away an arbitrary set of domain
axioms leads, in general, to equivalent planning problems having exponentially longer
plans (in the number of objects and arity of the axioms) (Thiébeaux et al., 2003). According
to such results, if the maximum arity of all the predicates of the language is a constant,
the growth in plan length is only polynomial. However, from a practical point of view, even
a polynomial blow-up of the plan-solution length forces a planning algorithm to carry out
a significantly larger amount of search to discover such plan. Indeed, even for simple BW
problems, experimental evidence (Davidson & Garagnani, 2002) shows that the planning
performance on pre-processed problems depends much on the specific domain axioms,
pre-processing technique and algorithm adopted, and is often worse than that obtained
with planners that are able to solve the original problem directly (Thiébeaux et al., 2003).

An alternative planning paradigm, which would appear particularly suited for
dealing with domain axioms, is that of planning as satisfiability, or “SAT-based”
planning (Ernst, Millstein & Weld, 1997; Kautz & Selman, 1992, 1999). A SAT-based
planning system transforms a planning problem description into a propositional logic
formula, which, if satisfied, implies the existence of a plan solution.3 The use of additional
domain axioms in such a framework is quite natural, as axioms are treated simply as
propositional logic formulæ. However, as Wilkins and des Jardins (2001) observed,
“additional knowledge encoded as axioms may increase the size of the problem and make
the problem even harder to solve” (p.  109). This is confirmed by experimental evidence
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(Davidson & Garagnani, 2002), indicating that whether the addition of domain axioms
helps or hurts may depend on the particular combination of axioms, problem and planning
algorithm (Kautz & Selman, 1998).

In summary, the presence of domain axioms, closely related to the ramification
problem, appears to be inevitable in sentential descriptions of realistically-complex
domains, and to represent the potential cause for severe decreases in planning perfor-
mance. The next section illustrates how analogical models can, in many cases, completely
eliminate this problem, by making domain axioms implicit in the representation of the
world.

INTRODUCING ANALOGICAL PLANNING
Planning in realistic domains is closely related to the problem of common-sense

reasoning (McCarthy, 1958). In this context, several researchers have argued for the need
of formalisms that allow a more direct (or “vivid”) representation than traditional
sentential descriptions (e.g., Halpern & Vardi, 1991; Levesque, 1986; Khardon, 1996). In
particular, analogical and diagrammatic representations have long been of interest to the
knowledge representation community (Amarel, 1968; Sloman, 1975; Hayes, 1985) [see
Kulpa (1994) for a review, and Glasgow et al. (1995) for a representative collection]. In
order to clarify the main ideas behind such descriptions, we begin with an example of
diagrammatic4 planning domain description. A more general discussion on the properties
of analogical models and on how they differ from sentential ones is given later on, in the
fourth section of this chapter.

SetGraphs in a Nutshell
Consider a representation in which a state is a directed graph where the vertices

are (possibly labelled) sets of symbols. This type of representation will be called
setGraph. Figure 2(a) is an example of a setGraph encoding a BW state with three blocks
and one table, represented by symbols ‘A’, ‘B’, ‘C’, ‘Table’, respectively. The vertices
of the graph are depicted as ovals. The edges of the graph (bold arcs) represent ‘on’
relations between spatial locations: if a vertex containing x is linked to a vertex containing
y, then On(x,y) holds in the current state.

Assume that all the symbols of the graph can be moved from one vertex (set) to any
other through the application of analogical operators, which specify the set of legal
transformations of a setGraph. Figure 2(b) depicts the graphical representation of an
analogical operator, P⇒E. The operator preconditions P describe a specific arrangement
of symbols in a part (sub-graph) of the current state; the effects E describe the
arrangement of these symbols in the same sub-graph after the application of the operator.
Intuitively, an operator P⇒E is applicable to a state (setGraph) s if and only if each of
the graphs contained in P can “overlap” with (be mapped to) a sub-graph of s having the
same “structure,” so that each variable corresponds to a distinct symbol, each vertex to
a vertex, each edge to an edge, and: (1) if a variable is contained in a set (vertex), the
corresponding symbol is contained in the corresponding set; (2) if an edge links two
vertices, the corresponding edge links the corresponding sets; and (3) if a set is empty,
the corresponding image is empty. Only if all of these conditions hold, we will say that
the precondition setGraphs are satisfied in s.
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Variables can be of specific types, subsets of the universe of symbols. For example,
variable x of the Move(x,y,z) operator has type Block={A, B, C}, while y, z∈Object={A,
B, C, Table}. Thus, this operator encodes the movement of a block x from its current
location to a new one, originally empty, situated “on top” of a vertex containing another
block (or the table) y. Notice that the operator is applicable only if block x has an empty
vertex on top of it (i.e., if x is clear).

The application of an operator to a state s causes the symbols in s to be re-arranged
according to the situation described in the effects E. The Move(x,y,z) operator can be
applied to the state of Figure 2(a) in several different ways. For example, one possible
binding of the variables is {x/C, y/Table, z/A}. The application of Move(x,y,z) with this
binding would unstack block C from A and put it on the table [i.e., in set V9 of Figure 2(a)].

This simple graph-based notation can encode any “classic” BW problem. Notice
that the representation is not limited to just forward state-space search planning: once
the semantics of action, state and goal representation are identified, the representation
can be used to find a plan using any search algorithm, for example, reasoning backward
from the goal to the initial state using state-space search, or plan-space search tech-
niques. The example below illustrates how a partial order, causal-link planning algorithm
(McAllester & Rosenblitt, 1991; Penberthy & Weld, 1992) can solve the Sussman
anomaly (Sussman, 1990) using setGraphs descriptions.

Example 2.1.  Consider the BW problem in which the initial state I depicted in Figure 2(a)
is required to be transformed into a state in which block A is on B, B is on C, and
C lies on the table (this goal is represented by the setGraph G in the rightmost part
of Figure 3).
At the start of the planning process, goal G is not satisfied in the initial state I, and
is added to in the set of unachieved goals. The algorithm then tries to find a way
to achieve G or some of its parts (sub-graphs) by “matching” the effects of the

Figure 2. An analogicald model of BW: (a) state representation; (b) Move(x,y,z)
operator (where x∈{A, B, C} and y, z∈{A, B, C, Table})
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Move(x,y,z) operator [Figure 2(b)] with the goal. This reveals that the sub-graph
(sub-goal) G1 (Figure 3) can be obtained by executing Move(A, B, z1), for some
object z1. The planner then adds this step to the plan, and the preconditions P1 —
required to execute it — to the set of unachieved goals. A similar process is repeated
for sub-goals G2 and G3, which require the addition of two other steps with
preconditions P2 and P3, respectively (notice that the three steps added are initially
unordered). At this point, the graph representing the goal G has been entirely
“covered” by the combined effects of three Move(x,y,z) steps, and all of its elements
have been “achieved.”
The planner can then move on to consider the unachieved setGraphs P1, P2 and P3.
Of these, only the sub-graph G4, part of preconditions P1, cannot be satisfied in the
initial state I. The algorithm, however, discovers that G4 can be established by the
effects of step Move(C, Table, z3) if object z3 is bound to block A.5 Hence, the
planner adds the constraint z3=A to the plan (not shown in the figure) and an
ordering constraint between step Move(C, Table, A) and Move(A, B, z1) (repre-
sented in Figure 3 by a dotted arrow). At this point, the algorithm has identified
a set of steps that achieve goal G and whose preconditions are either satisfied in
the initial state or established by another step. However, the planner must also
check for other possible interactions between steps. For example, executing step
Move(B,C,Table) before Move(C,Table,A) would affect the preconditions of the
latter, as block C would no longer be clear. In order to prevent this type of
“clobbering” effects, two further ordering relations have to be added (Figure 3),
leading to the final plan containing three linearly ordered steps, 〈Move(C,Table,A),
Move(B,C,Table),  Move(A,B,Table)〉.

Notice that the diagrammatic representation of BW can be easily extended to encode
the relations ‘heavier’ and ‘above’ between blocks (refer to the first section of this
chapter). For example, the BW state depicted in Figure 4(a) extends the setGraph
representation with two new types of edges, depicted as thin and dashed arcs.

Figure 3. Solving the Sussman anomaly using causal-link diagrammatic planning (see
text for details)
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A thin arc linking a vertex containing symbol x to one containing symbol y indicates
that Above(x,y,n) holds (with n>1); a dashed arrow linking symbol x to symbol y indicates
that Heavier(x,y) holds.6 Figure 4(b) depicts the analogical version of the Unstack(x,y)
operator [the Stack(x,y) operator is identical to the Move(x,y,z) operator of Figure 3(b)
with z=Table]. The preconditions P require the existence of a block y such that both
Heavier(y,x) and Above(x,y,n) hold.7 The effects E encode the new position of block x, now
located on the table. [Notice that when a symbol is moved, all arrows (edges) connected
to it move with it.]

An interesting property of analogical representations is that they allow the spatial
relations existing between the “mobile” objects of a domain to be represented as static
(or invariant) elements of the description, whenever the set of possible positions in which
such objects can be (relatively to each other) is finite and predetermined. For example,
it is easy to see that all the edges of the setGraph of Figure 4(a) (including all those
representing weight relations between blocks) are static and would remain unchanged
throughout any plan execution, as they are not affected by any of the possible actions.
This is enabled by the distinction that the chosen analogical encoding makes between
the description of the effects of action on an object’s state or location and the description
of the invariant relations that hold between these objects (or between the spatial
locations that these objects can occupy). This encoding, however, could have been
“emulated” by a sentential representation. For example, if the vertices of the setGraph
of Figure 4(a) were considered as entities of the domain identified by symbols V1,…,V9
[Figure 2(a)], then this state could be described as follows:

I = {On(V
1
, V

2
), On(V

2
, V

3
), On(V

3
, Table), …, On(V

9
, Table),

Above(V
1
, V

3
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2
, Table),…,  Above(V

7
, Table),

Figure 4. A richer diagrammatic model of BW: (a) current state; (b) Unstack(x,y)
operator. Bold, thin and dashed arrows indicate, respectively, ‘on’, ‘above’ and
heavier’ relations (see text for details).
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Heavier(A,B), Heavier(B,C), Heavier(A,C),
In(C, V

2
), In(A, V

3
), In(B, V

6
),

Empty(V
1
), Empty(V

4
), Empty(V

5
), …, Empty(V

9
)}

Predicate In(x,y)indicates that symbol x is inside vertex y; Empty(x) indicates that
vertex x contains no symbols; On(x,y), Above(x,y) and Heavier(x,y) denote the correspond-
ing edges between vertices and symbols. In the world state I, only the instances of the
predicates ‘In’ and ‘Empty’ are subject to change; the rest of the atoms are invariant.
Notice that although obtaining this encoding from Figure 4(a) appears now as a
straightforward task, no planner would have been able to automatically generate state
I from the original, sentential version of BW considered earlier on, in the first section of
this chapter.

It should be noticed that although states, operators and goals have been described
here using a purely diagrammatic notation, the translation of such descriptions into a
formal language is relatively straightforward, as all of their components (graphs and sets)
have a direct mathematical representation8 (this is illustrated in the next section). Also
notice that the number of edges in a setGraph used to represent relations (like ‘above’
or ‘heavier’) between the objects of the domain grows only polynomially in the number
of objects; this result could be obtained in a sentential descriptions only by keeping the
arity of the predicates constant.

When compared to sentential descriptions, analogical representations appear, at
first glance, more intuitive, simpler to understand and to manipulate. The use of a model
that reflects the spatial and topological aspects of the real domain suggests that this type
of representations should be more suitable for the application of common sense
reasoning, heuristic extraction and machine learning techniques. For example, an opera-
tor like the one depicted in Figure 2(b) should not be difficult to learn, given appropriate
image-processing techniques. The next section will demonstrate how, even without
exploiting the “static” properties of a domain, analogical models can be significantly more
efficient than sentential ones, particularly in domains involving the movement of objects
subject to spatial constraints.

ANALOGICAL PLANNING: A CASE STUDY
In order to illustrate the viability and efficiency of analogical planning, we describe

an example of an implemented analogical planning domain description. The representa-
tion adopted consists of a simplified version of the setGraph model proposed earlier. In
particular, a state is described as a set of arrays of symbols. The experimental results
obtained with a prototype planner adopting such representation are briefly summarised
and discussed below.

Syntax and Semantics of Array-Based Planning
In order to formalise a planning domain description language, we need to specify

a syntax for describing states and actions (i.e., transformations of legal states into legal
states). A world state is represented here by a set of fixed-length, one- or two-dimensional
arrays. The name, contents and length of a one-dimensional array are described using
the following syntax:
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A [a1 | a2 |…| an ]

This expression declares an array of n cells of name A and initialises its contents
so that its i-th cell contains symbol ai. The name A can be any string of characters; a1,…,
an are symbols in U' = U ∪{ _ }, where U is the chosen universe of symbols and the special
symbol ‘_’ indicates an empty cell (i.e., the absence of any symbol). For example, a BW
domain with three blocks could be described using three one-dimensional arrays of
characters, each one representing a stack; hence, the state represented in Figure 2(a)
could be encoded as follows:

I ={ s1[ T|A|C|_ ],  s2[ T|B|_|_ ],  s3[ T|_|_|_ ] }

The symbol T is used to represent a “table-location,” and is introduced only to
simplify the description of the Move action (see below). Bi-dimensional arrays can be
similarly specified.

In order to describe actions, let us introduce a notation for identifying and
manipulating symbols within an array. The expression A(x,y…z), where x,y…z ∈U' and
A is a string, is said to be satisfied in a state s if and only if s contains an array with name
(or of type) A such that each one of the symbols x,y…z appears in A at least once. The
expression A(x|y| …|z ) is satisfied in a state s if and only if A(x,y…z) is satisfied, and x,y…z
are consecutive elements of array A. In addition, we use (possibly typed) variables to
represent elements of U or array names.

The syntax adopted for analogical action descriptions is analogous to that used for
sentential action description. An array-based operator P⇒E consists of preconditions
P and effects E, each containing a set of array expressions. An operator transforms the
arrays identified in the preconditions P into the arrays described in the effects E. For
example, the following represents the Move(x,y,z) operator for the array-based encoding
of BW introduced above:

Move(x,y,z) % Moves block x from object z onto object y
Parameters: x – Block;  y, z – Objects
P: { stack1( z|x|_ ),  stack2( y|_ ) }
E: { stack1( z|_|_ ),  stack2( y|x ) }

An operator is applicable to a state s only if all its preconditions are satisfied in s.
Intuitively, this equates to map each array expression to an array of s and each variable
to a symbol of the array such that the arrangement of the symbols “matches” that of the
variables. In this example, the two variables stack1, stack2 can be bound to any pair of
distinct array names taken from the set {s1,s2,s3}. Variable x∈Block={A,B,C}, while
y,z∈Objects={A,B,C,T}. The preconditions P are satisfied if two stacks can be found
which contain, respectively, a clear block x lying on an object (another block or a table-
space) z, and a clear object y. The effects E describe the final arrangement of symbols x,y,z
in the same cells of the two arrays stack1, stack2 identified by the preconditions P (when
a symbol is moved to an empty cell, the original cell becomes automatically empty). Notice
the similarity between this analogical operator and the one of Figure 2(b): although the
latter is described graphically and the former uses a formal (though not sentential)
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language, their preconditions and effects are semantically equivalent. Indeed, the above
operator can solve any BW problem expressed in the array-based representation
applying precisely the same steps that would be required to solve the same problem in
the setGraph model (e.g., see the Sussman anomaly of Figure 3).

In order to be able to deal with two-dimensional arrays, it is possible to extend this
syntax with additional symbols representing specific spatial relations between pairs of
elements.9 In spite of its simplicity, this notation reflects some of the main characteristics
of the setGraph representation, and was adopted to develop a working prototype of a
simple array-based planner (ABP) that was tested on a set of planning problems. The
experimental results obtained (reported fully in Garagnani & Ding, 2003) are briefly
summarised below.

Experimental Results of Array-Based Planning
The notation introduced above allows the encoding of a small set of relatively

simple — yet quite widely used — benchmark problems taken from the International
Planning Competitions10 and the planning literature. For the experiments, five (proposi-
tional) planning domains (BW, Eight-puzzle, Miconic, Briefcase and Gripper) were
chosen and translated into equivalent analogical representations. In order to compare
the performance of analogical planning against sentential planning, a second planner
was also implemented, identical in all aspects to ABP except for the representation
adopted. Both planners (implemented in Java) used the same, breadth-first, forward
state-space search algorithm, and were run on the same machine to solve exactly the same
problems. However, while ABP reasoned using an array-based notation, the second,
sentential, planner (SP for short) adopted a classical, propositional (STRIPS-based)
language, with types. Importantly, each of the domains was translated so as to present,
in its analogical version, exactly the same search space as in the propositional version
(i.e., the two state spaces originated for any one problem of the domain have the same
cardinality and the same structure). For each domain, several planning problems were
solved by both ABP and SP. Figure 5 contains the actual domain description of the BW
domain used by ABP in the experiments, and the encoding of the Sussman anomaly
problem instance. The syntax adopted parallels the notation of the current (sentential)
standard planning domain description language, PDDL (Fox & Long 2003) (for a complete
BNF formalisation of the syntax adopted by ABP, see Garagnani & Ding, 2003).

The results (reported fully in Garagnani & Ding, 2003) demonstrate a clearly superior
performance of ABP on all of the five domains, and on all of the problem instances.
Tables 1 and 2 contain the time required by the two planners for solving the same
problems in Gripper and BW, respectively. (All the problems are taken from the set of
problems used in the classical track of the 2000 International Planning Competition.) The
speed-up factor varied from two to as much as 160 times faster (e.g., see problem 4–1 in
Table 1).

Analysis
Why did ABP invariably perform better than SP, given that they both solved the

same problems in the same search space, using the same search algorithm? The answer
lies in the two different representations that the planners adopted. In particular, the main
factor leading to the gain in performance obtained in these experiments appears to be that
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analogical planning can exploit the inherent structure of the domain to speed-up the
operations of state “look-up” (required to establish the applicability of an operator to a
state) and state “update” (carried out as a consequence of the application of an operator).

For example, consider the process of checking whether the BW operator Move(x,y,z)
— in which a block x is moved from the top of object z onto another block y — is applicable.
In the sentential representation, the preconditions P could consist of the following set
of literals:

P = {On(x, z), Clear(x), Clear(y), ¬Equal(x, y)}

Assume that the parameters x,y,z are still unbound, and suppose that the checking
procedure considers the literals of P sequentially, from left to right. The first precondition
is compared with the state: if the atom unifies with one of the atoms in the state, parameters
x and z are assigned a value and the process moves on to consider the second literal of
the list. However, several unifications of the first atom may have to be discarded before
a suitable one is found such that the second atom, Clear(x), is also satisfied in the state.
If suitable values for x and z are eventually found, the process can move on to the third
precondition, Clear(y). If the state contains an atom that unifies with Clear(y) and such
that y≠x, the procedure terminates successfully. Otherwise, the algorithm backtracks,

Figure 5. BW domain description and example of problem instance for the ABP
analogical planner

(define (domain Blocksworld) 
   (:ObjectTypes block table - object) 
   (:PlaceTypes Stack[object]) 
   (:action PutOn 
 :parameters (x – block  y – object) 
 :pre  (Stack(x|_)  Stack(y|_) 
 :post (Stack(_|_)  Stack(y|x) 
   ) 
) 
 
(define (problem Sussman) 
   (:domain Blocksworld) 
   (:Objects A B C – block T – table) 
   (:Places s1 s2 s3 – Stack) 
   (:init    

 s1[T|A|C|_|_] 
   s2[T|B|_|_|_] 
   s3[T|_|_|_|_] ) 
   (:goal  

Stack(C|B|A) ) 
) 

Adapted from Garagnani & Ding (2003)
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and the process is repeated with the next pair of atoms in the state (i.e., the next pair of
values for x and z) that satisfy the first two preconditions. In general, the set of possible
pairs of such atoms that are present in the state is a subset of the total possible number
of pairs (x,z), that is, it has cardinality O(m2), where m is the number of objects (blocks)
of the domain. For each pair, a number of instances of Clear(y) will have to be discarded
in order to find one such that y≠x; this will be in the order of O(m), leading to a total number
of O(m3) steps. Hence, in general, it appears that the number of steps required to check
the preconditions of an operator is in the order of O(mk), where k is the total number of
parameters that appear in the preconditions.11

Let us now consider what happens in the array-based representation. The precon-
ditions P of the Move(x,y,z) operator, described at the beginning of this section, consist
of the following:

P = { stack1( z|x|_ ),  stack2( y|_ ) }

As before, suppose that these expressions are considered from left to right. Variable
stack1 can be bound to any of the arrays in the state. Once an array has been identified,
it is easy to see that the check for the presence of a sequence (such as ‘z|x|_’) of c
consecutive elements can be carried out in time O(c m), where m is the length of the array
(i.e., number of blocks of the domain plus one). If this check is not successful, the variable
stack1 is assigned to the next possible array in the state, and the process is repeated.
Notice that the number of arrays (stacks) present in the state grows at most linearly with
the number of objects (blocks). The same reasoning can be repeated, of course, for the
second precondition.

Similar differences in the efficiency of the state look-up operations between
sentential and analogical planning representations should also be expected in the
version of BW containing domain axioms. In fact, consider the process of verifying the
applicability of the Unstack(x,y) operator when axioms (α1),(α2) are present. As dis-
cussed in the first section of this chapter, the check for the truth of a ground instance
of the predicate Above(x,y,n) requires, in the sentential case, a number of steps polyno-
mial in the number of blocks. On the other hand, the last section illustrated how a graph-

Table 1. Planning time (s.) for Gripper problems (“m–n”= m balls in room A and n balls
in room B)

 1–0 2–1 2–1 3–0 2–2 3–1 4–0 4–1 
SP 0.0 0.3 5.1 31 167 862 1866 (>16 hours) 
ABP 0.0 0.0 0.4 1.1 2.8 13 26 354 

Table 2. Planning time (s.) for BW problems with four (4-#), five (5-#) and six (6-#)
blocks

 4–0 4–1 4–2 5–0 5–1 5–2 6–0 6–1 6–2 
SP 0.5 1.5 1.1 7.0 21 119 144 1047 (>12 h) 
ABP 0.2 0.2 0.3 1.9 7.5 23 35 401 5230 
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based description can encode the BW relations ‘on’ and ‘above’ as labelled edges.
Hence, the problem of deducing whether a block is above another one becomes one of
simply checking the graph for the existence of an edge of the appropriate type between
the two nodes containing the blocks. This check can be carried with a number of steps
at most linear in the total number of blocks.12

Now consider the update operations caused by the execution of an action. A
sentential description of the Move action in BW should include, in its effects, the literals
On(x,y),¬On(x,z),¬Clear(y). The last effect is a trivial consequence of the action: if block
x is on y, then y is not clear. Yet, the sentential model must explicitly include this effect
and consider it during the reasoning process. The use of an axiom such as:

(¬∃x:On(x, y)) → Clear(y)

would obviate the explicit use of predicate Clear(x) in the operators, but would not relieve
the planner from still having to carry out many trivial calculations, required to take this
axiom into account during the search process. In contrast, in the analogical model, this
effect is implicit in the action of moving a symbol to a new node (or cell): what lies beneath
becomes implicitly not clear. The state changes produced by the execution of the
analogical operator of Figure 4(b) (or by the array-based version) consist simply of
transferring symbol x from its original location to its destination. Notice that this
operation can be performed in time linear in the number of objects, whereas in a sentential
model containing domain axioms, updating the ‘above’ relation requires a polynomial
number of steps.

In summary, the speed-up achieved by the adoption of setGraphs derives from their
ability to carry out more efficient state look-ups and updates. There are two main reasons
why these processes are more efficient here than in a sentential representation. The first
one follows from the ability of analogical models to impose a structure on the domain
description so that it reflects the inherent spatial (or semantic) structure of the domain.
In fact, a domain is often composed of several connected sub-structures (e.g., in BW, the
stacks) presenting an internal structure simpler than the complete state description; once
one of these sub-structures has been identified, a “local” check for the existence of
certain conditions or manipulation of elements within it is much simpler and faster than
carrying out the same operations on random parts of the global state. In short, the
analogical descriptions can be seen as decomposing the domain into sub-parts, which
allow simpler look-up and update operations.  The second reason lies in the ability of
analogical models to capture implicitly the basic, trivial — yet pervasive — physical
constraints and properties of a domain and thus relieve the model from having to explicitly
include them as additional formulæ or axioms, and take them into account during the
reasoning process (see also Myers & Konolige, 1995). For example, in the BW domain,
the constraint specifying that any block having something put on it becomes “not clear”
is implicit in the analogical representation: the domain description does not contain any
explicit formula or element specifying such a constraint.

One question emerging from this study is whether the observed gain in performance
is only limited to the so-called move domains [domains that involve — or which can be
transformed into equivalent ones involving — the movement and manipulation of
objects subject to physical and spatial constraints (Hayes & Simon, 1977; Garagnani,
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2003)], or whether setGraphs, and, more in general, analogical representations can also
be applied successfully to other types of planning problems. In order to address this
question, the next section provides a more general analysis of the characteristics,
advantages and limitations of analogical descriptions with respect to sentential ones.
The conclusions drawn from this analysis will lead to the second part of this chapter, in
which a way to exploit the advantages of both representations within a single framework
is proposed.

CHARACTERISING ANALOGICAL MODELS
The need for formalisms to support common-sense reasoning more efficiently than

the traditional sentential [or Fregean (Kulpa, 1994)] representations has recently lead to
a resurgence of interest in “non-linguistic” descriptions, also referred to as diagram-
matic (Larkin & Simon, 1987), analogical (Sloman, 1975; Dretske, 1981), homomorphic
(Barwise & Etchemendy, 1995), direct (Levesque, 1986) and model-based (Barr &
Feigembaum, 1981; Halpern & Vardi, 1991). Let us analyse the general characteristics of
these representations and the elements that allow discriminating them from sentential
ones.

Analogical vs. Sentential
The feature that most clearly distinguishes analogical models from sentential ones

is the relation existing between the syntax of the formulæ of the language and the
semantic structure of the represented domain. In analogical representations, the syntax
of the language structures mirrors, for the relevant aspects, the semantics (relations and
properties) of the domain represented (Barr & Feigembaum, 1981, pp. 200-206). In other
words, the world is modelled using descriptions that are structurally similar to the object,
situation or event represented. In contrast, the syntax used for the formulæ of a sentential
representation has no particular relevance, and its specific structure has no bearing to
the specific structure of the represented domain (Kulpa,  1994). Barwise and Etchemendy
(1995) concisely characterise this difference:

“[…] with homomorphic representations the mapping f between syntactic structure
(that is, the structure of the representation itself) and semantic structure (that is, the
structure of the object, situation or event represented) is highly structure preserving,
whereas the corresponding mapping in the case of linguistic representations is
anything but structure preserving.” (p. 214)

According to Palmer’s (1978) characterisation, the relations between elements of
analogical structures and the corresponding represented relations of the domain have
the same algebraic structure (i.e., they are naturally isomorphic). In addition, unlike in
sentential descriptions, the relevant relations between objects of the domain do not need
to be explicitly declared in the domain model and appear as “pointable” elements of the
description.

In order to clarify the previous definitions, let us compare the array-based analogi-
cal representation of BW presented earlier against its sentential version. In the latter, the
relevant relations (‘on top of’, ‘above’) between objects are specified using relational
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instances, which are pointable elements of the state (viz., formulæ, like On(A,B) and
Above(C,D,1)). In addition, the properties of these relations and their interactions are
imposed on the model by logical expressions — for example, axioms (α1),(α2) — that
extend (or restrict) the legal set of instances of a certain predicate. In contrast, in the
analogical representation the objects and the relevant spatial relationships that exist
between them are not described as sets of relational instances, but modelled using
appropriate data structures (in this case, arrays). The syntax of such data structures
mirrors, for the relevant aspects, the semantics of the domain. In fact, the formulæ used
to describe a BW state have the following syntax:

name [ arg1 | arg2 | … | argn]

This notation clearly reflects the semantics of BW: the first argument of the formula
(arg1) always represents the “table” object; the second, the lowest block of a stack, lying
on the table; two consecutive symbols argk, argk+1 indicate that block argk+1 is on block
argk, and the rightmost symbol of the formula different from ‘_’ denotes a clear block.
In contrast, the formulæ used in the sentential representation adopt the following syntax:

predicate(arg1, arg2, …, argn)

This syntax has no direct relation with the structure and properties of the BW
domain. The specific structure of this formula (i.e., the number and order of its arguments)
has no particular connotation, valid for all of the formulæ of the language. For example,
unlike in the array-based representation, there is no specific role associated to the first
argument of a formula, valid for all the predicates of the language. Moreover, consider
the spatial relation ‘above,’ represented in the array model by the relation ‘to the right
of ’, defined on the symbols of the array13. First of all, this relation is not represented
explicitly, as a pointable element of the state. Secondly, the transitive property of the
relation, imposed on the sentential predicate Above(x,y,n) by axioms (α1),(α2), is an
implicit property of the relation ‘to the right of ,’ and does not need to be explicitly
imposed on the model, included in the description and accounted for during the
reasoning process. In other words, the transitivity of the relation is an emergent property
of the representation (Koedinger, 1992); to use Palmer’s terms, the relation ‘to the right
of ’ in the array model and the corresponding spatial relation ‘above’ in the real domain
are naturally isomorphic (1978).

Advantages and Limitations of Analogical Models
Myers and Konolige (1995) observed that one of the key features of analogical

representations is their “capacity to implicitly embody constraints that other represen-
tations must make explicit” (p. 275). The analysis of the experimental results obtained with
the array-based planner illustrated how the ability of analogical models to implicitly
encode the basic physical properties and constraints of a domain and to reflect its internal
(topological or semantic) structure can lead to better planning performance, particularly
when a domain can be decomposed (according to its spatial or semantic structure) into
smaller — possibly linearly structured — parts that enable efficient, “localised” condi-
tion-checks and element manipulations. These features significantly reduce the compu-
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tational load involved in state update and look-up operations, which represent a
substantial part of the overall planning and reasoning process. Interestingly, the need
to perform these operations is closely linked to the presence of the well-known frame and
ramification problems.

The problem of ramification of the effects of action (directly associated to the
presence of domain axioms — see the earlier section “Domain Axioms and the Ramifica-
tion Problem”) is just another facet of the frame problem (McCarthy & Hayes, 1969): while
the former is caused by the need to reason about the properties of the world that change
as a consequence of an action, the latter concerns reasoning about the aspects that do
not change. The frame problem is still regarded as presenting a major difficulty for
reasoning about action (Shanahan, 1997). In the analogical formalisms presented earlier,
the frame problem is addressed exactly like in sentential ones, that is, by requiring that
an operator explicitly contains only the changes resulting from the execution of the
represented action, and assuming that all the remaining aspects of the state are left
unchanged (Lifschitz, 1990). Assuming such “default persistence” provides only a
simplistic solution to the frame problem, and requires an operator to specify all the
possible consequences that the execution of the corresponding action has on the state
— in other words, it leads to the ramification problem.

The adoption of analogical representations has a lessening effect on the frame/
ramification problem. Sentential planning languages are generally more flexible and
expressive than analogical ones; however, because of their “unconstrained” nature, they
require all the properties and constraints of the domain — even the most trivial — to be
represented “extrinsecally” (Palmer, 1978) in the domain, that is, to be explicitly imposed
on the model using “pointable” elements (formulæ, axioms of the language) which have
to be taken into account during the reasoning process. Analogical representations can
make some of such constraints (axioms) implicit in the model; in addition, they may allow
the domain to be decomposed in simple sub-structures that enable localised (as opposed
to global, “ramificated”) state look-ups and updates. This significantly reduces the
number of deduction steps required, and, hence, eases the ramification problem (see also
Lindsay, 1995). In particular, as discussed earlier in the analysis of the experimental
results, the use of sentential description leads, in general, to a polynomial number of
operations required for state look-up and update operations. This can be reduced to just
linear complexity through the adoption of analogical models.

There is a second way in which analogical models may be able to reduce the impact
of the frame problem. In sentential planning languages, the assumption that nothing else
changes apart from the effects explicitly specified by the action leads to the formulation
of rather complex conditions for determining when two actions can be executed simul-
taneously [e.g., see the conditions for mutually exclusive actions in PDDL2.1 (Fox &
Long, 2003)]. Indeed, a significant amount of effort is spent by Graphplan (Blum & Furst,
1997) and similar systems to calculate all such pairs of “mut-ex” operators. In contrast,
analogical descriptions appear to allow a much simpler check: two operators can be
executed simultaneously if they act upon parts of the analogical model that are disjoint.
This condition is not strictly necessary, but it is sufficient, and it suggests that analogical
descriptions may lead to further speed-ups if used in conjunction with Graphplan-based
algorithms.
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One of the main problems with purely analogical representations, however, is
finding a sufficiently general model that can represent all complex aspects of the real
world and still allow efficient descriptions. Due to the implicit, unalterable structure of
the relations that they use, analogical representations are usually criticised for their
limited expressiveness and tendency to be domain (or, at best, “generic-domain”)
specific. For example, the setGraph representation proposed in the first section appears
to be suitable for representing generic move domains, involving the manipulation of
objects in topological or structured spaces. However, can setGraphs also be used to
represent other types of domains, involving, for example, no movement at all? It is not
difficult to show that setGraphs can encode any domain such that the current state can
be described as a finite set of objects O={x1,…,xm}, each being in one of a finite number
of possible states.14 The theoretical results presented in the next section show how
setGraphs can be extended so as to become expressively equivalent to a propositional
language. It remains to be seen whether such formalism is generally more efficient than
other, sentential or state-variable based ones (e.g., such as those of Cesta & Oddi, 1996).

Indeed, in spite of its expressiveness, it appears unlikely that even an extended
setGraph formalism would be able to describe all problems more efficiently than any other
sentential representation. A similar objection, however, applies equally well to purely
sentential planning formalisms. In short, it would seem that no single, purely analogical
or purely sentential representation paradigm exists that can be used to describe all
possible problems more efficiently than any other: the complexity of real-world applica-
tions requires from a language a “mixture” of different capabilities that analogical or
sentential models alone cannot offer.

In view of this, the knowledge representation community has been investigating the
use of heterogeneous (or hybrid) models (Barwise & Etchemendy, 1995, 1998; Myers &
Konolige, 1995; Swoboda & Allwein, 2002), in which different types of representations
are integrated and used by the system to construct threads of proof that cross the
boundaries of sentential and non-sentential paradigms of representation. The advantage
of a hybrid system with respect to a purely sentential or analogical one is that it allows
reasoning about different aspects of the world using the most appropriate (i.e., efficient)
representation for each aspect. The next section describes a framework for hybrid
planning, in which domain descriptions containing qualitative, quantitative, sentential
and analogical features can be integrated and used interchangeably. The analogical
model adopted extends the setGraph formalism introduced before, making it expressively
equivalent to the sentential model of action adopted. The result is a powerful, hetero-
geneous planning representation that combines the strengths and overcomes the
limitations of the two paradigms on which it relies.

A FRAMEWORK FOR HYBRID PLANNING
This section proposes a model for integrating sentential planning representations

with analogical ones into a single heterogeneous formalism. The contents of this section,
largely based on the ideas described in Garagnani (2004), are divided into four parts. In
the first part, the setGraph formalism introduced intuitively in the previous sections is
formulated in more rigorous terms and extended into a more expressive representation
that allows types and numeric quantities. The second part briefly describes the sentential



56   Garagnani

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

model chosen, based on the current standard planning domain description language,
PDDL2.1 (Fox & Long, 2003). The third part proposes a model for hybrid planning that
integrates the two representations, and illustrates the approach through an example. The
last subsection presents a general theory that allows the identification of the conditions
for the soundness of hybrid planning models.

The Analogical Model: Extending SetGraphs
We begin by extending and recasting in more formal and rigorous terms the setGraph

model proposed earlier. The model is augmented so as to allow (1) types and numeric
values (hence, attributes with infinite domains), and (2) actions involving non-conser-
vative changes (additions and removal of elements to and from a setGraph) and numeric
updates. The extension of setGraphs with numeric quantities can be seen as the first step
towards the “hybridisation” of the model, completed later on by the integration with a
sentential language.

Typed and Numeric SetGraphs
In order to formally define a setGraph, let us introduce the collection construct. A

collection is a data structure identical to a list, except that the order of the elements is
unimportant. Equivalently, a collection can be seen as a set in which multiple occurrences
of the same element are permitted. Notice that the multiple instances of an element should
be thought of as distinct elements of the structure. For example, C={1,1,0,0,0} denotes
a collection of integers containing two occurrences of the number 1 and three occur-
rences of the number 0. Since the order is unimportant, any permutation of the elements
of C is equivalent to the same collection. Hence, C={1,0,1,0,0}={1,0,0,1,0}=
{1,0,0,0,1}={0,1,0,1,0}=… etc.

The empty collection is denoted as { }. We adopt the notation “x∈C” and say that
x is contained in C to indicate that element x appears (occurs) at least once in
collection C.

The definition of a setGraph is based on that of nodeSet, specified recursively as
follows:

Definition 1 (nodeSet, node, place).  Let W be a set of strings (language). A nodeSet is
either:
• a string w∈W (in which case, a nodeSet is also a node), or
• a finite collection of nodeSets (in which case, a nodeSet is a place).

A node is a string of the language W. A place is a “container” for both nodes and
places. Nodes and places are nodeSets. In short, nodeSets are data structures consisting
of multi-nested sets of strings with multiple occurring elements and no limit on the level
of nesting. For example, consider a language W={Ab} with one string only; each of the
following represents a nodeSet (the notation {x,y,…,z} indicates a place containing
nodeSets x, y,…, z):

Ab (4.1)
{ } (4.2)
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{Ab, {Ab}, {{Ab}} } (4.3)
{{Ab}, {{ Ab, Ab }}, {{ },{ }}, {Ab}, {{ },{ }}, {Ab} } (4.4)

Formula (4.1) represents a node; (4.2) represents an empty place, and (4.3) a place
containing one node and two places, of which one contains a node and the other one a
place.

In the nodeSet notation adopted, places can be associated to labels (strings), which
can then be used to refer to the elements of a nodeSet structure. For example, if p, q, r
and s are labels, the nodeSet identified by (4.3) could also be specified by the expression
(4.5) below:

 p{ Ab,  r{Ab}, q{ s{Ab}} } (4.5)

Thus, for example, any reference to place q is taken to represent nodeSet {{Ab}}.
Notice that place labels are not required to be distinct (as explained below, this is useful
when types are introduced).15

Given a nodeSet N, ℘(N) is defined as the collection of all the nodeSets occurring
in N (including N itself). For example, consider a language W={A,B,C}. Let N1 be the
nodeSet identified by expression P0{A, P1{B}, P2{ P3{C}}}. Then, ℘(N1)= {A, B, C, P0, P1,
P2, P3}, where P0 = {A, {B}, {{C}} }, P1 = {B},  and so on.

Definition 2 (setGraph).  A setGraph is a pair 〈N,E〉, where N is a nodeSet and
E={E1,…,Ek} is a finite set of binary relations Ei ℘(N).

If E contains only one relation Ei, we write simply 〈N, Ei〉. For example, let N1 be the
nodeSet specified as N1={A,{B},{{C}}}. The pair α=〈N1,E1〉 is a setGraph, where:

E1={(C, B),  ({B}, {{C}}),  ({A,{B},{{C}}}, A) }

The instances of the binary relations Ei — pairs of elements of ℘(N) — are called
the edges of the setGraph. Notice that if N1 had been specified using the labelled notation
N1=P0{A, P1{B}, P2{P3{C}}}, as in the previous example, then E1 could have been written
also as {(C, B),  (P1, P2),  (P0, A)}.

SetGraph structures have a direct graphical interpretation. Figure 6(a) contains a
graphical representation of the setGraph α=〈N1,E1〉, where places are depicted as ovals,
nodes as the corresponding strings of the language, and edges as labelled arcs. All (and
only) the nodeSets that are contained in a place appear within the perimeter of the
corresponding oval.

In a setGraph, each relation Ei denotes a different type of edges (represented in
Figure 6(a) as arc labels). Similarly, nodeSets can also be required to be of specific types
(or sorts). Figure 6(b) contains a tree of labels representing an “IS-A” hierarchy of types.
The root of the nodeSet hierarchy is always the type NODESET. The leaves of the tree
are called instances. Each node of the tree identifies a type. Each type t represents the
set of instances of the sub-tree having t as root (e.g., NODE={A,B,C}). Types NODE and
PLACE are always the only sub-types of NODESET. If a setGraph G is associated to a
type hierarchy (as in Figure 6), G is said to be typed. In a typed setGraph, the instances
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of the type NODE form the language W. In what follows, all setGraphs are assumed to be
typed, unless otherwise specified.

The introduction of types allows one to “characterise” and differentiate the
nodeSets of a setGraph. Different types of places (and nodes) may have different
properties and behaviour, which are inherited by all sub-types and instances (see
Example 5.1). In a typed setGraph, the type of a node is unambiguously identified, as
nodes are, instances of the NODE type hierarchy. In order to specify the type of a place,
we adopt the same labelling notation introduced earlier for identifying places: the type
of a place is specified by associating the place to a label, an instance of PLACE. To avoid
ambiguities, places of the same type can be discriminated using distinct variable names
of the same type.

The use of types (and typed variables) in setGraph descriptions yields generalised
setGraphs. A generalised setGraph is obtained from a setGraph by replacing one of the
nodeSets with one of its super-types (or with a variable of that type). A generalised
setGraph denotes the set of setGraph descriptions that can be obtained from it by
replacing all types (and variables) with appropriate instances. For example, consider
Figure 6(a). The four places of the setGraph are not associated to any label. Unless
otherwise specified, all places of a setGraph description are assumed to be of type
PLACE. Hence, Figure 6(a) is a generalised setGraph, representing the set of setGraphs
that can be obtained by labelling each place with any of {P,Q,R,S}=PLACE. To use a
textual notation, Figure 6(a) is equivalent, for example, to the parameterised setGraph
description 〈N2,E2〉, where:

N2 = x{A,  y{B}, w{ PLACE{C}}}
E2  = {(C,B), (y, w),  (x,A)}

and where variables w, x, y, (called the parameters of the setGraph) are of type PLACE.
Notice that in parameterised setGraphs a variable name may appear only once to

identify a node or a place, whereas the same type may be used to label different nodes
(or places). Given a type hierarchy, a setGraph description containing only instances of
the hierarchy (i.e., no types or variables) and identifying only one — typed — setGraph
is said to be ground.

Figure 6. (a) Graphical representation of setGraph α = 〈N1,E1〉 ; (b) associated type
hierarchy
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Actions with Numeric and Non-Conservative Effects
In addition to the representation of the (initial) world state (consisting of a ground

setGraph), a planner must also be provided with a specification of how states are changed
by actions. In order to allow specifying operators with numeric preconditions and effects,
the notation for analogical operators adopted earlier needs to be extended. In addition,
the setGraph formalism proposed is limited to actions consisting simply of moving
nodeSets from one place to another; the model is augmented here to allow actions that
add elements to and remove elements from a setGraph, enabling a state to undergo “non-
conservative” changes.

Numeric quantities are represented in setGraphs as numeric nodes. A numeric node
is a string of W of form “n.m” or “n” (possibly preceded by ±), or the string “⊥”. The
symbols n, m denote sequences of digits in {0,1,…,9}. The node “⊥” is used to represent
numeric attributes with undefined values. The value of a numeric node (string) is
calculated using a function val:W→ℜ⊥, where ℜ⊥=ℜ∪{⊥} and ℜ is the set of reals. In
particular, val(w) is the (float or integer) number represented by w if w has form “n.n” or
“n,” ⊥ otherwise. The function str:ℜ⊥→W returns the inverse of val,that is, str = val -1
(e.g., str(-1.75) = “-1.75”).

The possible setGraph transformations considered here are: (i) addition or removal
of an element, (ii) movement of a nodeSet, and (iii) re-assignment (or update) of a numeric
node. The movement and removal of elements in a setGraph is based on the following
general rules: (1) if a node is moved (removed), all edges linked to it move (are removed)
with it; (2) if a place is moved (removed), all the elements contained in it and all edges
linked to it move (are removed) with it.16 Any element not moved, removed or updated
is left unaltered. In addition, let x∈ℜ⊥ be the value val(w) of a numeric node w, and let
n∈ℜ⊥. The possible updates of a numeric node w are: (a) Assign (x':=n); (b) Increase (x':=
x + n); (c) Decrease (x':= x-n); (d) Scale-up (x':= x*n), and (e) Scale-down (x':=x/n). The
result, x', is ⊥ if one of the operands is ⊥. The application of one of these updates to the
numeric node (string) w causes w to be transformed into the string str(x') (Notice that str(⊥)
= “⊥”).

As usual, the domain-specific legal transformations of a state (setGraph) are defined
through a set of parameterised operators. An operator P⇒E consists of preconditions
P (specifying the situation required to hold in the state before the action is executed) and
effects E (describing the situation of the state after). However, preconditions and effects
contain here two separate parts, analogical and numerical. The analogical preconditions
and analogical effects are lists of parameterised setGraphs. The numerical preconditions
consist of a set of comparisons (<, >, =, ≠, ≤, ≥) between pairs of numerical expressions,17

while the numerical effects consist of a set of update operations of the kind (a)–(e) listed
earlier.

Example 5.1.  Consider a simple Ferry domain, consisting of two ports (Port1 and Port2),
a ferry boat, and a number of cars. The ferry can sail between the two ports, carrying
a limited number of cars. The cars can board and debark the ferry at either of the
two ports. The problem is to find a plan (involving the least number of ferry trips
and least number of boarding and debarking operations) that transforms a given
initial state into one in which each car has reached a specific port. The (ground)
setGraph represented in Figure 7(a) encodes an example of initial state for a Ferry
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problem with three cars (A,B,C) and a ferry F1. Figure 7(b) contains the associated
type hierarchy.
The setGraph representation of Figure 7(a) omits arc labels (all edges are of the
same type). The bi-directional arc between Port1 and Port2 denotes the presence
of two symmetric edges connecting the two locations. The arc linking the ferry
(place F1) to node 1 denotes an edge associating this nodeSet to the number of
nodes (cars) that it contains. In order to allow the representation of numeric
quantities, the language W is extended by adding ℵ⊥ to the type hierarchy as a
subtype of NODE [see Figure 7(b)]. The type ℵ⊥ can be thought of as having
instances “0”, “1”, “2”,…, that is, the infinite set of strings representing all the
natural numbers. The special string “⊥” is also an instance of ℵ⊥, representing
“undefined” numeric values. Notice that the type hierarchy restricts all places of
type Ferry to contain only elements of type Car (by default, a place would be
allowed to contain any instance of the NODESET type). This property is inherited
by all instances of Ferry (here, only F1).
Figure 8 contains the graphical representation of the analogical operator
Board(x,y,z) for the Ferry domain, encoding the boarding of a car y on a ferry z. The
analogical precondition and effect lists of this operator consist of only one
parameterised setGraph. The numerical parts constrain and update, respectively,
the value of the numeric node x. The applicability of the operator (see below) is
subject to y and z being at the same port and to x being less than three. Notice that
the fact that place z in the preconditions P does not contain any element should
not be interpreted as requiring it to be empty (this will follow from Definition 3 and
method (α)).
The Debark operator will consist essentially of the “reverse” version of the Board
operator, although x will not need to be constrained, but decreased by 1.

Having generally illustrated the syntax of setGraph operators, let us now specify
their semantics. The semantics of action are specified by providing an algorithmic
definition of the following: (α) a method to check whether an operator is applicable to
a given state s; (β) a method for calculating the state resulting from the application of an
operator to a state s. These methods (detailed next) make use of the definition of

Figure 7. Ferry domain: (a) initial state setGraph; (b) type hierarchy
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satisfaction, specifying the conditions for a parameterised setGraph T to “match” a
setGraph G. Intuitively, T is satisfied in (or matches) G if and only if there exists a
substitution of all the variables and types of T with appropriate instances such that T can
be made “coincide” with G (or with a subpart of it).

Definition 3 (Satisfaction).  Given a parameterised setGraph T={N,E} (with associated
type hierarchy) and a ground setGraph G, T is satisfied in G if and only if there
exist a substitution θ of each parameter (variable) of T with an instance of the
appropriate type, and a 1-1 function σ:T→G mapping elements of T to elements
of G, such that, if Nθ is nodeSet N after the application of substitution θ, the
following conditions are all true:

• for all nodes x∈Nθ , either x=σ(x), or σ(x) is an instance of type x
• for all places y∈Nθ , σ(y) is an instance of the type of y
• for all pairs (x,y) such that x,y∈℘(N), if x∈y then σ(x)∈σ(y)
• for all edges e=(x,y)∈E, σ(e) =(σ(x), σ(y))

The first two conditions require that each nodeSet of T is either equal to, or a super-
type of, the corresponding image in G; the third condition requires that any relation of
containment between nodeSets of T is reflected by containment between the correspond-
ing images in G; the last condition requires that if two nodeSets are linked by an edge
in T, the corresponding images is linked by the image of the edge in G.

The definition of satisfaction is used for detailing methods (α) and (β), mentioned
earlier:

(α) An operator P⇒E is applicable in a state (setGraph) s iff (1) all the parameterised
setGraphs of P are satisfied in s (using binding σ and a single substitution θ
replacing equal variables with equal instances), and (2) if every occurrence of
each numeric variable x in the numeric part of P is replaced with the value
val(σ(x)), all the numeric comparisons in P are true;

Figure 8. Board(x,y,z) operator for the Ferry domain: preconditions P (left) and effects
E (right)
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(β) If operator O is applicable in state s, the result of applying O to s is the new
setGraph obtained from s by (1) carrying out — on the corresponding elements
of s identified through binding σ — the changes required to transform each of the
setGraphs in the preconditions P into the (respective) setGraph in the effects E,
and (2) for each update operation of E, updating the numeric nodes with the result
of the respective operation.18

Example 5.2.  Consider the Ferry domain of Example 5.1. Given the type hierarchy of
Figure 7 (b), the preconditions P of the Board(x,y,z) operator of Figure 8 are
satisfied in the setGraph specified by Figure 7(a). In fact, let θ = (x/1, y/B, z/F1) be
a substitution of parameters with instances of appropriate type (notice that θ is
legal, as 1∈ℵ⊥, B∈Car and F1∈Ferry). In addition, let σ map the nodeSets of the
analogical preconditions of Figure 8 to nodeSets of the setGraph specified in
Figure 7(a) as follows: nodes x,y to nodes 1,B (respectively), the place labelled z
to the place labelled F1, edge (z,x) to edge (F1,1), and the place labelled Port to the
place labelled Port2. If Pθ is the setGraph obtained by applying substitution θ to the
analogical part of preconditions P, then, for all nodes x∈Pθ,  x=σ(x) (this is obvious),
and for all places of Pθ, the images are instances of their respective types (in fact,
consider place z∈Ferry: the image is place F1, instance of Ferry; consider place
labelled Port, of type Port: the image is place Port2, an instance of Port). In addition,
it is easy to see that containment between nodeSets of P is reflected by containment
between the corresponding images, and the only edge e=(z,x) in P is such that
σ(e)=(F1,1)=(σ(z), σ(x)), as required by Definition 3. Finally, in the numeric part of
P, if the occurrence of variable x is replaced with value val(σ(x))=1, the comparison
(x< 3) is satisfied. Therefore, Board(x,y,z) is applicable to the ground setGraph
depicted in Figure 7(a).  The application of the operator would transform the
setGraph into one in which car (node) B is inside the ferry (place F1) and the numeric
node “1” has become “2”, as expected.

Notice that the use of a graphical representation for specifying analogical operators
is due to purely explanatory reasons. Analogical operators can also be specified
textually, using a notation analogous to the one adopted for array-based analogical
planning (see the third section of this chapter). For example, consider the sail action of
the Ferry domain, consisting of the transfer of the ferry (and of its contents) from one
port to the other. The analogical, setGraph operator representing this action could be
specified textually as follows:

Sail (x, y, z) % Moves ferry x from port y to port z
Parameters: x – Ferry;  y, z – Port
P: 〈{ z{x{ }}, y{ }} }, {(z, y)} 〉
E: 〈{ z{ }, y{ x{ }} }, {(z, y)} 〉

As mentioned before, specifying empty places in the preconditions (e.g., x,y) is not
equivalent to requiring that such places be empty. Indeed, in order to express the
precondition of “emptiness” of a place, a specific notation (e.g., see Figure 14) should
be adopted.
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The Sentential Domain Description Language
Having reformulated and extended the analogical representation to allow types and

numeric quantities, let us briefly describe the sentential model adopted, which is
expressively equivalent to the setGraph model presented in the previous section (see
Theorem 1).

The sentential representation is based on PDDL2.1 (Fox & Long, 2003). The
semantics of PDDL2.1 builds on and extend the original core of Lifschitz’ STRIPS
semantics (Lifschitz, 1990) to handle durative actions, numeric and conditional effects.
The action description proposed here, however, is a simplified version of PDDL2.1, and
is better thought of as an extension of STRIPS with numbers and functor symbols.

As in PDDL2.1, the world state description is composed here of two separate parts,
a logical (STRIPS-like) state and a numeric state. While the logical state s is a set of
ground atomic formulæ (and the truth of an atom p depends on whether p∈s), the numeric
state consists of a finite vector of real numbers, containing all the current values of the
possible primitive numeric expressions (PNEs) of the problem. A PNE is a formula
f(c1,…,cn), where ci∈C is a symbol representing an object, and f is a functor symbol
representing a function f:Cn→ℜ (see example below – a more precise definition is given
later on in this section). The truth of a comparison (<, >, =, ≠, ≤, ≥) between two numeric
expressions (containing PNEs and real numbers) in a state s is obtained by replacing each
occurrence of each PNE in the comparison with the corresponding numeric value, taken
from the current vector of s.

According to the above, a sentential operator P⇒E specifies a transformation of
a state-pair s=(logical, numeric) into a new state-pair s'. In the notation considered here,
the preconditions P contain simply a set of literals and comparisons between pairs of
numeric expressions. The effects E are a set of literals and update operations of the form
Op(w, expr), where Op is one of the five update operators Assign, Increase, Decrease,
Scale-up and Scale-down used earlier for the setGraph operators, w is a PNE, and expr
is a numeric expression (combining PNEs and/or real numbers with operators +, -, *, / ).
As usual, operators are parameterised, that is, the literals in P and E can contain typed
variables.

For example, consider the Board action for the Ferry domain (Example 5.1). This
action, represented in Figure 8 using setGraphs, could be encoded in the sentential
model as follows:

Board(x,y,z) % Boards car x (currently at port z) onto ferry y (also at port z)
Parameters: x – Car; y – Ferry; z – Port
P: { At(x, z), At(y, z), <(tot_cars(y), 3) }
E: { OnBoard(x, y), ¬At(x, z), Increase(tot_cars(y), 1)}

As from the hierarchy of Figure 7(b), Car={A,B,C}, Ferry={F1}, Port={Port1,
Port2}. The symbol tot_cars must be declared in the domain description as functor of one
argument; the numeric value returned by tot_cars(x)is the number of cars currently on
board of ferry x [for a detailed description of the semantics of this language, see Fox &
Long (2003)].
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Notice that any PDDL2.1 “level 2” (i.e., without durative actions) operator can be
compiled into an equivalent set of ground operators of the above form (Fox & Long, 2003).
In view of this, we refer to the sentential formalism described above as to PDDL2.1-lev2*.

Theorem 1 (Equivalence).  Any setGraph encoding of a planning domain can be
transformed into an equivalent sentential (PDDL2.1-lev2*) description, and vice
versa.

Proof.  Consider the first part of the theorem. We first show how to transform every
ground setGraph into a sentential state s=(logical, numeric). We then argue that,
within such encoding, any setGraph operator can be transformed into an equivalent
sentential operator.
By definition, a setGraph is a pair 〈N,E〉, where N is a nodeSet and E a set of binary
relations on ℘(N). Let each nodeSet x∈℘(N) of N (including numeric nodes) be
associated to a unique label lx that identifies it. The setGraph data structure can then
be entirely described using two predicates, link(e,lx,ly) and in(lx,ly), expressing,
respectively, the presence of edge (x,y)∈e (where e∈E) and that nodeSet x is an
element of y (e.g., see state I in the second section of this chapter). In addition, for
each numeric node x, the label lx can be used as 0-placed function and assigned the
value of x through the vector of the numeric part of the sentential state. Given this
encoding, every analogical transformation of a setGraph G into G'can be “simu-
lated” in the sentential representation by adding or removing the appropriate atoms
to/from the current logical state L, so that L' will represent G'. The update of a
numeric node is encoded as the update of the corresponding value in the PNE
vector.
Consider the second part of the theorem. We first show how to transform every
sentential state s=(logical, numeric) into a corresponding setGraph, and then how
any sentential operator can be encoded by an equivalent setGraph operator in this
representation.
Every state s=(L,R) consists of a finite set L of ground atoms p(x1,…xn) and a finite
vector R of numeric values yj, each one representing the value in s of the j-th
primitive numeric expression f(x1,…xm) (where xi∈C, and C is the set of constant
symbols representing the entities of the domain). Let G be a setGraph containing
the following: (1) three places, labelled Pred, Obj and Funct; (2) a node “c” in Obj
for each symbol c∈C; (3) a node “p” in Pred and a set of labelled edges {e1(p, x1),…
en(p, xn)} for each atom p(x1,…,xn) in L; and (4) a node “f ” for each functor symbol
f and a set of nodes {x1,…xm, str(yj)} in Funct linked by a set of edges
{(.f,x1),(x1,x2),…,(xm ,str(yj))} for each value yj in R. Then, the truth of an atom
p(x1,…xn) can be determined by checking if the setGraph 〈{Pred{p,x1,…,xn}},
{e1(p,x1),…en(p, xn)}〉 is satisfied in G. Moreover, the value of the j-th PNE is
identified by the value to which the variable w∈ℜ⊥ has to be bound for the
parameterised setGraph 〈{f, x1,…, xn.,w},{(.f,x1),(x1,x2),…,(xm.,w)}〉 to be satisfied in
G. For example, Figure 9 depicts the setGraph obtained from a sentential descrip-
tion of the Ferry state of Figure 7(a).
Given the above encoding19, every sentential operator can be transformed into an
equivalent setGraph operator as follows: each addition (removal) of an atom
p(x1,…xn) to (from) the logical state L corresponds to the addition (removal) of the
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corresponding node “p” and associated edges to (from) place Pred. Similarly, each
update of a PNE f(x1,…xm) in R is encoded through the update of the numeric node
w at the end of the “chain” (f,x1), (x1, x2), …,(xm.,w). For example, Figure 10 depicts
the parameterised setGraph operator obtained from the sentential version of
Board(x,y,z), presented earlier in this section.20

Notice that the transformation of sentential descriptions into setGraph models is
polynomial, and the size of the result is linear in the size of the original encoding
(measured by the size of R and arity of the PNEs and predicates).

The Hybrid Planning Representation
The hybrid representation combines, orthogonally and in a straightforward way,

the analogical and sentential models described in the previous sections. In the hybrid
representation, the world state is composed of two distinct parts: an analogical state and
a sentential state. The two components are effectively two independent “sub-states,”

Figure 9. Theorem 1: setGraph equivalent of a PDDL2.1-lev2* sentential state (Ferry
domain)
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much like logical and numerical states are in the sentential (PDDL2.1) model. The hybrid
model essentially “glues” together a setGraph state with a propositional state (contain-
ing also a vector of numeric values) and treats them as separate entities for reasoning
about possible state transformation. Hence, hybrid operators (preconditions and ef-
fects) will consist of two distinct parts, each describing a transformation of the respective
sub-state. Notice that any of these parts may be empty (for example, an operator could
have purely analogical preconditions and purely sentential effects). The issue of how to
guarantee that the state changes specified by each sub-part are sound with respect to
the actions that they represent is dealt with in the next section. In this section, we
illustrate with an example how hybrid planning works, and discuss the advantages of
using a hybrid representation as opposed to a purely sentential or purely analogical one.

Example 5.3.  Consider an extended Ferry domain (see Examples 5.1 and 5.2) containing
several ports, some of which are situated in proximity of petrol stations and
restaurants. The ferry (able to carry a limited number of cars) must take each car to
a specific port. Some of the cars, however, may need to refuel or stop for food. Cars
can be taken directly to their destination if such port provides the service(s) they
need; otherwise, they must first get to a port that has a petrol station and/or a
restaurant, and then be taken to their destination. The possible actions of the
domain are sail, board and debark (seen before) plus the two actions refuel and
eat, consisting of filling up the car’s tank and having a meal, respectively.
This domain could be entirely represented using the purely analogical or purely
sentential models. We choose to encode the “transportation” aspects (first three
actions) using setGraphs, and the “stationary” state changes (last two actions)
using a sentential description; as discussed below, this choice is expected to lead
to speed-ups in performance.
Figure 11(a) depicts the analogical part IA of a possible initial state for a Ferry
problem with four cars and four ports (the domain could be easily augmented with
multiple ferries). Figure 11(b) contains the type hierarchy for nodes [the PLACE
hierarchy is essentially identical to that of Figure 7(b)].
The sentential part IS of the state consists of the following set:

IS = { Needs(A, Food), Needs(A, Petrol), Needs(C, Petrol) }

In the initial state, car A needs both petrol and food, while car C only needs to refuel.
In order to represent the number of cars currently on board of a ferry, we use a
functor symbol of one argument, ‘tot_cars’. Accordingly, the cell of the numeric
vector of the (sentential) state corresponding to the PNE tot_cars(F1) is initialised
to the integer 2 (not shown).
The goal requires that each car is transported to a specific location (port), and that
none of the cars is left in need of any of the resources. While the former part of the
goal will be described analogically using a setGraph, the latter is specified
sententially by the set GS of propositions GS={¬ Needs(x, Food), ¬ Needs(x,
Petrol)|x ∈ Car}.21

Let us now consider the set of operators. The representation of the actions sail and
board (or debark) is essentially identical to the analogical operators illustrated in



A Framework for Hybrid and Analogical Planning   67

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Example 5.1 and 5.2 (except that the precondition restricting the applicability of
Board is expressed here as <(tot_cars(F1), 3); similarly for the numeric effect which
increases such value by 1). The actions refuel and eat are more interesting: they
can be encoded as a single operator Get, containing hybrid preconditions and only
sentential effects:

Get(x, y, z) % Get resource x for car y from the current port z
Parameters: x – Resource;  y – Car; z – Port
PA: 〈{ z{x, y}}, { }〉
PS: { Needs(y, x)}
ES: { ¬Needs(y, x)}

The analogical part of the preconditions PA requires that car y and resource x be
located at the same port z; the sentential part PS requires that car y be in need of
resource x; the (purely) sentential effects ES remove the literal “Needs(y, x)” from
the (sentential) state.

The main advantage of a hybrid planning system with respect to a purely sentential
or analogical one is that it allows the domain engineer the flexibility to encode each aspect
of the world using the most efficient representation for that aspect. For example, as shown
by the experimental results, the adoption of an analogical model to describe a move
domain can lead to significant efficiency gains, particularly when it allows decomposing
the domain into smaller parts within which the search and update processes are simpler.
This clearly applies to the above example: the spatial structure of the problem is
decomposed into four parts (the four ports), and the conditions for the local applicability

Figure 11. (a) Analogical initial state IA for the Ferry domain; (b) associated  NODE-
type hierarchy [see also Figure 7(b)]
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and the execution of the boarding, debarking and “get” operators require only a linear
number of steps (in the number of entities).

The ability of the domain modeller to use two different representation paradigms
within a single system allows a second type of decomposition, based on the possibility
of a hybrid operator to contain purely analogical (or purely sentential) preconditions and/
or effects. In fact, suppose that the set of operators contains only two possible types
of operators, namely, purely sentential and purely analogical. The goal and the initial
state are also composed of two parts, analogical and sentential. When trying to achieve
an analogical sub-goal, the algorithm can completely ignore all purely sentential
operators, as they could not possibly achieve the sub-goal considered (and vice versa).
Hence, if the set of operators is divided into two completely independent sets, the
problem can be decomposed into two parts that can be solved independently and then
integrated into a single plan solution.

If the set of operators cannot be divided into two completely independent subsets,
the process of integration of the sub-solutions is not straightforward, and may lead to
non-optimal plans. In the example above, the set of operators can be split into two almost
independent parts, one containing purely analogical operators (Board, Debark and
Sail), the other containing only one operator (Get) with hybrid preconditions and purely
sentential effects. These two sets are not completely independent: since Get contains
hybrid preconditions, a solution found for the sentential part of the problem could be
“clobbered” by some of the effects of the analogical plan solution. In this specific case,
one way to avoid this could be to force the purely sentential plan to be identified first,
and then to take the state resulting from its execution as the new initial state. The resulting
problem would be purely analogical, and its solution could be simply “appended” to the
solution of the sentential part. However, this simple method would guarantee correct-
ness, but not optimality.22

Furthermore, the above type of decomposition also allows the use of special-
purpose methods for the efficient solution of the purely analogical, graph-navigation
aspects of the problem, and the use of different search methods for the purely sentential
part. This can lead to further planning performance speed-ups (see also Fox & Long,
2001).

In summary, with respect to purely sentential or purely analogical systems, the
ability of hybrid models to encode different aspects of the world using different
representations enables the domain modeller to choose the simpler and more efficient
description for each aspect; moreover, hybrid descriptions may allow the automatic
decomposition of the problem into two sub-problems, with consequent pruning of the
search space. This also makes possible the application of more efficient, dedicated
methods for the solution of the two sub-problems.

Soundness of Hybrid Planning
The simple juxtaposition of sentential and analogical representations, although

apparently effective, does not guarantee the soundness of the model with respect to the
real domain represented (Lifschitz, 1990). This section addresses this problem. In
particular, it describes a theoretical framework (Definitions 4-7) in which both sentential
and analogical models can be formalised, and identifies the necessary conditions
(Definition 9) for any model within it to be sound with respect to the represented world.
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In particular, the Soundness Theorem presented at the end of this section extends to
analogical and hybrid representation the theory of sound action description (Lifschitz,
1990), currently limited to purely sentential models. Notice that the contents of this
section bear no relation to the practical implementation of the hybrid model; all the
constructs introduced are used purely for the theoretical analysis.

We begin with the formalisation of a language for describing the world. Following
Lifschitz (1990), the world is taken to be, at any instant of time, in a certain state. A state
is identified by a finite set I of entities and finite sets of relations among (and properties
of) entities. A domain constitutes the set S of possible states in which the world can be.
In order to describe a domain, we adopt a formal language � = 〈P, F, C〉, where P, F and
C are finite sets of relation, function and constant symbols, respectively. Each relation
and function symbol of P and F can be either numeric or logical, depending on the nature
of its arguments. Each non-constant symbol of � has a specific arity n, for some integer
n ≥ 0, which depends on the symbol. A language � can be associated to a type hierarchy
that organises all symbols of C into subsets T1,…,Tk such that (∪i∈{1…k}Ti) = C. The wff
of such a many-sorted language, atomic logical and numeric formulæ, are built as follows:

• c is a term iff c∈C
• ƒ(c1,…, cm) is a primitive numeric expression (PNE) iff  ƒ∈F and c1,…,cm are terms
• h(t1, …, tm) is a numeric expression (NE) iff h∈F and t1,…, tm are PNEs, NEs or numbers
• p(c1,…, cn) is a logical atom iff p∈P and ∀ i∈{1,…n}, ci is a term
• q(t1,…, tn) is a numeric atom iff q∈P and ∀i∈{1,…n}, ti is a PNE or a NE

The symbols of � are given an interpretation in the domain of interest (Chang &
Keisler, 1977; Section 1.3). In particular, the interpretation function g will map each
constant symbol c∈C to a distinct entity g(c)=i∈I, each m-placed logical function symbol
ƒ∈F to a function g(ƒ) = ƒ': I m → ℜ, and each n-placed logical relation symbol p∈P to
a relation g(p) =p'⊆In. In addition, g also maps each m-placed numeric function symbol
h∈F to a (fixed) function g(h): ℜm → ℜ, and each n-placed numeric relation symbol q∈P
to a (fixed) relation on real numbers g(q) ⊂ ℜn. Notice that the value and truth of ƒ'(i1,…im)
and  p'(i1,…in) may depend on the current state. In what follows we assume that for a given
domain and language �, a fixed interpretation function g is adopted. The function g
allows one to determine, for each state s, which atoms of � are satisfied in this state and
the value of any PNE and NE:

Definition 4 (Atom-satisfaction).  Given a language �=〈P,F,C〉 for a domain S, an atom
p(t1,…, tn)∈� is satisfied in s∈S iff, in state s, g(p) ⊇ (g(t1),…,g(tn)).

Let g(t)=t for any t∈ℜ. If t=f(t1,…, tm), with f∈F and ti∈C ∪ PNE ∪ NE, then g(t) is
defined as the value of g(f) in the current state s∈S calculated in (g(t1),…,g(tm)) (written
f(t1,…tm) |s ).

Consider an abstract data structure � (such as a tree, a list, a graph, etc.) and a
universe � of elements (e.g., characters, booleans, integers, and so forth). Let  �

�
 be a

select set of instances of � possibly containing elements of � (e.g., trees of booleans,
lists of integers, etc.). Let ℜ⊥= ℜ ∪{⊥}, where ℜ is the set of real numbers. The elements
of ℜ⊥ will be called R-values.
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Definition 5 (Model).  Given a language �=〈P,F,C〉 and a set �
�
 of data structure

instances with elements in �, a model is a pair M=(d,ε) where d∈�
�
  and ε:C→U

is a 1-1 total function mapping symbols of C to elements of the universe �.

A model is essentially a data structure containing elements taken from a set �. The
function ε maps the relevant objects (symbols) of the domain to the corresponding
elements of the universe that represent them (which may or may not appear in the model).
The use of an unspecified data structure � allows this definition to be used for both
sentential and analogical (setGraph) models, as demonstrated in Examples 5.4 and 5.5.

Definition 6 (Domain representation structure).  A domain representation structure
(DRS) for a language �=〈P,F,C〉 is a triple 〈�

��
,Ψ, Φ〉, where �

�
  is a set of instances

of a data structure � with elements in � and each ψi∈Ψ, φj∈Φ are algorithms
associated to the relation and function symbols i∈P, j∈F, respectively, such that
ψi ,φj always terminate, and:

• for each n-placed logical relation symbol p∈P, ψp : ��
  × �  n →{True, False}

• for each m-placed logical function symbol ƒ∈F, φƒ : ��
  × �  m → ℜ⊥

• for each n-placed numeric relation symbol q∈P, ψq is such that ψq:(ℜ⊥)n

→{True,False}, and ψq(x1,…,xn)= g(q)(x1,…, xn) if xi ≠⊥ for all i∈{1,…n}, ⊥
otherwise

• for each m-placed numeric function symbol h∈F, φh:(ℜ⊥)n→ℜ⊥ , and φh(x1
,…,xm)=⊥ if g(h)(x1,…,xm) is undefined or if there exists  xi such that xi =⊥;
g(h)(x1,…,xm) otherwise

Basically, a DRS consists of a data structure and a set of algorithms for checking
it. Each algorithm takes as input a model (a data structure instance) and a set of object
symbols, and (always) returns a value. For example, given n objects c1,…,cn, in order to
establish whether p(c1,…,cn) holds in the current model M, it will be sufficient to apply
the corresponding procedure ψp to M, using symbols ε(c1),…,ε(cn)∈� (representing
c1,…,cn in M) as input.

Notice that procedures ψq and φh associated to the numeric (function and relation)
symbols calculate the same truth (or numeric) value of the corresponding relations and
functions, which are fixed for the chosen domain and do not depend on the current state.

Definition 7 (Model representation).  Given a language �, a DRS � = 〈�
��

,Ψ,Φ〉 for �
and a model M=(d,ε) in � (i.e., such that d∈�

��
), M represents a state s∈S (written

M ≅
�

 s) iff, for every logical atom p(t1,…,tn) and PNE ƒ(t1,…, tm) of �, both of the
following conditions hold:

•  ψp(d, ε(t1),…, ε(tn)) =True iff p(t1,…, tn) is satisfied in s
•  φƒ(d, ε(t1),…, ε(tm)) =ƒ(t1,… tm)|s  if ƒ(t1,… tm) is defined in s, ⊥ otherwise



A Framework for Hybrid and Analogical Planning   71

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Example 5.4.  Consider a BW domain in which blocks have a specific weight; the blocks
and a table are the entities of interest, ‘to be on’ is the relevant relation between
entities, and the weight of a block is the only property of interest. The language:

�1= 〈P1,F1,C1〉 = 〈{On, ≥}, {Weight, +, -, * , /}, {T, B1, B2, B3}〉

with types Block={B1, B2, B3} and Table={T} can be adopted to reason about a BW
domain with three (weighted) blocks. Weight is a 1-placed logical function symbol
with argument in Block, On is a 2-placed logical relation symbol with unrestricted
argument type.  ‘≥’ is a 2-placed numeric relation symbol, and +, -, * and / are 2-
placed numeric function symbols. The interpretation g of the symbols of �1 is
intuitive: Weight denotes the function Block → ℜ returning the weight of a block,
≥ is the binary relation greater than or equal to defined on ℜ, and +, -, *, / are the
standard arithmetic operations on ℜ. On is mapped to the corresponding spatial
relation between objects (blocks and table).
Let us build, for this domain and language, a sentential domain representation
structure DRS1, which replicates the semantic model of PDDL2.1-lev2*. Accord-
ingly, we represent the state using a data structure �1=(L,R) composed of a set L
of logical atoms of �1 (built using the terms of �1) and a vector R of three cells (with
values in ℜ⊥). Hence, �1=C1∪ℜ⊥.
Procedure ψOn(d,x,y) takes as input d=(l,r), an instance of �1, and two elements
x,y∈C1⊂�1 and returns True if and only if On(x,y)∈l. Procedure ψ≥(x,y) takes as input
two R-values and returns True if x is equal to or greater than y, False if x is smaller
than y, ⊥ otherwise. Procedure φWeight(d,x) takes as input d=(l,r), an instance of �1,
and an element x∈C1⊂�1 and returns the value of r[0] if c=B1, r[1] if c=B2, r[2] if c=B3,
⊥ otherwise. The procedures φ+, φ-, φ* and φ/  take two R-values and return the result
of the corresponding operation applied to the input if such result is a real number,
⊥ otherwise.
Then, given a model M=(d,ε)=((l,r), ε) such that ε:C1→�1 is defined as ε(x)=x for all
x∈C1, M represents a state s of the domain if and only if l contains all and only the
logical atoms of �1 which are satisfied in s, and cells r[0], r[1], r[2] of vector r contain
the values corresponding to the weights of the three blocks of the domain. This
encoding is analogous to the semantics of the corresponding PDDL2.1 represen-
tation of this domain (Fox & Long, 2003).

Notice that in a certain state s one or more of the entities of interest might not exist
at all. For example, in BW one of the actions could have the effect of destroying (or
“consuming”) a block (resource). A model of a BW state in which the i-th block does not
exist should have r[i-1] set to ⊥, so that Weight(x) is evaluated ⊥ if the block identified
by x does not exist.

If M represents state s, it should be possible to use procedure ψ≥ to determine
whether any arbitrarily-complex numeric atom of �1 is satisfied in s – e.g., whether
≥( *(Weight(B2),2.5), Weight(B1)) is satisfied. However, Definition 7 only requires that
the procedures calculating the PNEs (here, φWeight) and the logical atoms return the
“correct” value. Nevertheless, this is sufficient to guarantee that also all NEs and all
possible numeric atoms of �1 are calculated correctly, as the last two points of Definition
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6 require that procedures ψq (here, ψ≥) and φh (here, φ+, φ-, φ* and φ/ ) return the value of
the corresponding relations and functions on ℜ.

Definition 8 (Planning domain).  A planning domain is a pair 〈S,A〉, where S is the set
of possible states in which the world can be, and A, the set of actions, is a finite
set of total functions a:S→S.

An action is a function a:S→S that transforms each state s∈S into a state s'= a(s)∈S.
We assume that a(s) is always defined although there might be some s∈S such that a(s)
= s.

Given a planning domain 〈S,A〉 (with language � and DRS �), a set of models Σ (in
�) is said to represent the set of states S (written Σ ≅

�
 S ) if and only if for each model

M∈Σ there is one (and only one) state s∈S such that M ≅
�

 s, and for each s∈S there is
one model M such that M ≅

�
 s.

Given a set of models Σ representing the set of states S, an action a:S→S can be
modelled as a function λ:Σ→Σ transforming (corresponding) model M into (correspond-
ing) model M':

Definition 9 (Sound action model).  Given a domain 〈S,A〉 (with language � and DRS
� ) and a set S of models in ��such that Σ ≅

�
 S, a function λ:Σ→Σ is sound with

respect to action a:S→S  iff, for each model M∈Σ and state s∈S such that M ≅
�

 s,
λ(M) ≅

�
 a(s).

For a function λ to be sound w.r.t. action a, it must map each model M (representing
state s) into the model M' that represents the state obtained from the application of action
a to s.23

Given a domain D=〈S,A〉, a pair R=〈Σ,Λ〉 is a sound representation of D iff Σ is a set
of models representing S, and Λ={λ1,…, λk} is a set of sound models of the actions
{a1,…ak}=A.

Theorem 2 (Soundness).  Let R=〈Σ,Λ〉 be a sound representation of a domain D=〈S,A〉.
Let λ=〈λ1,…λn〉 (with λi∈Λ) be a sequence (plan) of sound action models, and
a=〈a1,…an〉 (with ai∈A) be the corresponding sequence of actions. If M0∈Σ
represents s0∈S, and the application of λ to M0 produces Mn=λ(M0) = λn °…° λ1 (M0),
then Mn represents an °…° a1 (s0).

Proof.  The proof is by induction, and it is analogous to the original version (Lifschitz,
1990) except that the concept of satisfaction, limited to sentential models, is
replaced here with that of model representation (Definition 7), applicable to both
sentential and analogical models.
The basic case (n=1) follows immediately from Definition 9. Assume that the
theorem holds for n=k, and let us see that it holds for n=(k+1). Let M0∈Σ represent
s0∈S. If n=(k+1), then Mn=Mk+1= λk+1 ° λk °…° λ1 (M0). Because of the inductive
hypothesis, λk,°…° λ1(M0)=Mk  represents state sk = ak,°…° a1 (s0). Since λk+1 is sound
with respect to ak+1, by definition of sound action, λk+1(Mk) ≅�

 ak+1(sk). In other
words, λk+1 °…° λ1 (M0) represents ak+1 °…° a1 (s0).
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Example 5.5.  Consider the BW domain of Example 5.4, with the same language �1 and
interpretation specified there. Let us define, for this domain and language, an
analogical domain representation structure DRS2. The data structure �2 adopted
to describe the world state is the setGraph. In particular, Figure 12(a) depicts the
encoding used to describe a BW state with three blocks, having weight 2.5, 0.6 and
“unknown” (⊥). The universe �2 of (node) symbols is identical to �1 (viz., �2=C1∪ℜ⊥).
The associated NODE type-hierarchy is depicted in Figure 12(b) (the PLACE part
contains only instances P1,…P10).
The procedures ψOn(d,x,y) and φWeight(d,x) are encoded using the parameterised
setGraphs GOn and GWeight depicted in Figures 13(a) and (b), respectively. In
particular, procedure ψOn(d,x,y) takes as input an instance d of �2 (ground setGraph),
and two symbols x,y∈�2 and returns True if and only if the setGraph GOn(x,y) (having
the parameters replaced by the corresponding input symbols) is satisfied in d.
Procedure φWeight(d,x) takes as input an instance d of �2 and a symbol c∈�2 and, if
there is a function σ and a variable substitution θ such that setGraph GWeight(x,w)
is satisfied in d with mapping σ and substitution θ =(x/c, w/val(σ(w))), it returns the
value of σ(w). Procedures ψ≥, φ+, φ-, φ * and φ/ are defined as in Example 5.4.
Let Σ1 be the set of models (G,ε), where ε:C1→�2 is such that ε(x)=x for all x∈C1, and
G can be any of the ground setGraphs obtainable from the one specified in Figure
12(a) by moving nodes B1, B2 and B3 from their places to any other of P1,…,P9
(allowing at most one node in one place, and no pair of places u,v connected by an
On(u,v) edge such that u contains a node and v does not). Let Λ1 be the set of
functions λx,y,z:Σ1→Σ1 defined by the result of the application of the analogical
operator Move(x,y,z) [Figure 2(b)] to the models of Σ1, for each possible x∈Block,
y,z∈Object (if Move(x,y,z) is not applicable, we define λx,y,z(x)=x). Let A1 be the set
of possible actions Movex,y,z of the BW domain (consisting of picking up a block
x from the top of an object y and putting it onto object z), and let S1 be the set of
possible BW states that can be obtained by applying them to a legal initial state
(if a move is not applicable, it leaves the state unaltered). Then, the pair R1=〈Σ1, Λ1〉

Figure 12. (a) SetGraph model of BW state (weighted blocks); (b) associated type
hierarchy
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is a sound representation of the domain BW=〈S1, A1〉. In fact, because of the way
in which they have been built, the models of S1 represent the states of Σ1. In addition,
every function λx,y,z∈Λ1 is sound with respect to the action Movex,y,z.
Therefore, in virtue of the Soundness Theorem, the domain description 〈Σ1,Λ1〉 can
be used (in conjunction with the DRS2 defined above) to generate sound plans for
the BW domain.

Given the ability of the theory to formalise both sentential (Example 5.4) and
analogical (Example 5.5) models, it is easy to show that it can also formalise hybrid
models. Hybrid models (e.g., Example 5.3) will represent a state as a data structure �
containing two elements: a sentential state (composed of a set of ground atoms and a
vector of R-values) and an analogical state (a ground setGraph). The domain represen-
tation structure can be defined, for the language considered, using either sententially-
or analogically-based procedures (see Example 5.4 and 4.5, respectively). So can the
action descriptions. We conclude that the conditions identified by Definition 9 can be
considered as conditions for sound sentential, analogical and hybrid models of action;
similarly, the Soundness Theorem can be applied equally well to sentential, analogical
and hybrid planning representations.

RELATED WORK
The work of Glasgow and Malton (1994) on purely analogical, model-based spatial

reasoning is closely related to the ideas adopted in the proposed framework. Glasgow
and Malton (1994) describe a representation for spatial reasoning based on array theory
(More, 1981) in which symbolic arrays depict the entities and relations of the world:

“An array consists of zero or more symbols held at positions along multiple axes, where
rectangular arrangement is the concept of objects having spatial positions relative to
one another in the collection. In order to specify spatial relations, a symbol may occupy
one or more cells of an array.” (p. 7)

Figure 13. Parameterised setGraphs: (a) GOn; (b) GWeight, encoding, respectively,
procedures ψOn and φWeight
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The authors provide semantics for their representation by requiring that, for a world
to be represented by an array, a mapping between symbols in the array and entities in
the world exists that preserves the relative location of entities. In particular, they specify
a set Y of fixed, “primitive” boolean array functions for inspecting an array, where each
function is associated to a spatial relation of interest in the world. An n-ary spatial relation
ri is said to be represented in an array � by the corresponding function ψi when ψi(s1,…,
sn) returns True if and only if (s1,…, sn)∈ri (where s1,…,sn are symbols denoting entities).
An array representation is a model for a world if each relation ri is represented by the
corresponding array function ψi. This idea is clearly at the basis of the concept of model
representation adopted here (Definition 7). However, in addition to being used only for
purely analogical models, the set of primitive transformation functions proposed by
Glasgow & Malton for manipulating arrays is fixed and predetermined. By providing a
formalism that allows the domain modeller to specify inspection and transformation
procedures (e.g., Figure 13), the present work generalises and extends that of Glasgow
and Malton’s.

 Myers and Konolige (1995) present a hybrid framework for problem solving that
allowed a sentential system (using a first-order logic language) to carry out deductive
reasoning with and about diagrams. In their framework, any analogical representation S
is described by a set of first-order diagram models, constituting all the possible
completions of the partial information provided by S. A diagram model consists of a set
of binary analogical relations A⊆ Es×Es and a set of label relations L⊆Es×El, with Es the
set of diagram elements and El the set of labels. The analogical relations encode the
“structure” of the diagram (the spatial relations between the elements), while the label
relations are used, for example, to assign a type (or any other label) to elements of the
diagram. Myers & Konolige provide a theoretical analysis of the properties (soundness,
equivalence and completeness) of their framework, assuming that, for a given analogical
structure, sound and complete reflection and extraction procedures are given, which
allow, respectively, the monotonic addition of information to and extraction of informa-
tion from diagram models. The extraction procedures are essentially equivalent to the
inspection procedures ψ used in setGraphs. Reflection procedures, on the contrary, do
not have a direct equivalent in setGraphs; they allow transforming a set of diagram models
containing structural uncertainty into one that is (strictly) more determined by updating
it with information obtained from the sentential deductive process. Most importantly,
however, Myers and Konolige’s model does not permit existing analogical information
to be “retracted” from the diagram models. This possibility is crucial for enabling
nonmonotonic changes of a diagram, typically associated with the execution of an action,
and, hence, required by a system that must be able to plan. Similar considerations also
apply to works on heterogeneous (hybrid) representations, such as Barwise and
Etchemendy (1998) and Swoboda and Allwein (2002).

The work of Forbus (1995) and colleagues (Forbus et al., 1987, 1991) on qualitative
spatial reasoning is also relevant in this context. Forbus proposes a Metric Diagram/Place
Vocabulary (MD/PV) model of reasoning, in which a “purely qualitative” representation
(PV) is extracted from an underlying metric diagram, containing all the necessary
numerical information required for the task at hand. The PV is then used to support
abstract, qualitative reasoning about motion, while the MD provides the information
required to calculate more precise conditions for detailed predictions. There is a clear
similarity between PV and places in setGraphs. According to Forbus’ (1995) definition
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of “not purely qualitative” {“…representations whose parts contain enough detailed
information to permit calculation […]” (p. 185)}, setGraphs are not purely qualitative, but
rather hybrid domain descriptions, in which the numeric elements (representing some of
the metric information “extracted” from the MD) are integrated in the qualitative model.
With respect to the MD/PV model, setGraphs offer the advantage of a single, unified
formalism of representation, in which qualitative and quantitative information are
integrated to support both types of reasoning, without requiring the use of an underlying
metric diagram.

SetGraphs are closely related to semantic network representations (Lehmann, 1992).
For example, Sowa’s Conceptual Graphs (Sowa, 1984), a formalism expressively equiva-
lent to first-order logic, can be easily encoded using setGraphs. Petri nets (Petri, 1963)
can also be naturally represented using a setGraphs. In fact, assume that the tokens of
a Petri net are described as setGraph nodes. Petri-net places (“passive nodes”) can be
encoded by setGraph places, while transitions (“active nodes”) can be represented as
a specific type of node (let us call it Trans). Figure 14 shows a setGraph operator
encoding the movement of a single token (y) in any Petri net. The simulation of the
parallel movement of several tokens can be represented using similar action schemata.

Notice that in order to represent Petri net dynamics, the setGraph formalism needs
to be extended with a symbol (“∅”) that allows explicitly requiring a place to be empty,
and by introducing negative preconditions (all setGraphs in the negative preconditions
must be not satisfiable in a state s for the operator to be applicable in s).

Another example of diagrammatic structure similar to the setGraph is the “higraph”
(Harel, 1988), based on a combination of Euler/Venn diagrams and generalised graphs.
Higraphs can represent subset relations, Cartesian product relations and arbitrary
relational assertions (through labelled arcs), and are amenable to a wide variety of uses.
While most features of higraphs can be replicated in a setGraph by making use of the type
hierarchies, the possibility for a place (roughly equivalent to the concept of “blob” in a
higraph) to overlap only partially with another place is not envisaged in the proposed
definition of setGraph. However, it should not be too difficult to extend the definition to
allow also this feature.

Figure 14. Petri net dynamics encoded by a setGraph action schema (precondition
(¬Q) requires all inputs to x to contain at least one token)
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In the area of planning, the proposed approach has close links with the work of Long
and Fox (2000) on generic types and on their use in problem decomposition (Fox & Long,
2001). Long and Fox have developed domain analysis techniques that allow the automatic
identification of the different, generic types of objects (e.g., mobiles, portables) of a
planning domain from its purely sentential description. These techniques dovetail nicely
with the present framework. In fact, once the different generic types of objects of a domain
have been isolated, hybrid planning models can be used to encode and solve them using
different representations for different generic types. The work of Long and Fox has also
demonstrated that many domains are isomorphic to and can be treated as “transporta-
tion” or “construction” problems even when this is not apparent from their original
description. If the dynamics of a domain can be automatically recast in terms of movement
or manipulation of (possibly abstract) objects, hybrid or analogical representations can
be adopted to solve them efficiently (possibly by adopting special-purpose, graph-
traversal algorithms). For example, if activities are represented as mobile objects, and
locations denote synchronisation points or intervals, then the problem of scheduling
a number of tasks over a given time period can be recast as that of assigning to each
“object” (activity) an appropriate “location” (start/end time point), subject to various
numerical constraints (this idea was illustrated earlier by the use of setGraphs for
encoding Petri nets — see Figure 14).

In the attempt to address the inefficiencies caused by the ramification problem that
plague sentential planning languages, such as STRIPS (Fikes & Nillsson, 1971) and ADL
(Pednault, 1989), several researchers (e.g., Lifschitz, 2002; Dimopoulos, Nebel & Koehler,
1997; Erdem & Lifschitz, 1999; Subrahmanian & Zaniolo, 1995; Gelfond & Lifschitz, 1993)
have investigated the possibility of reducing the planning problem to the problem of
finding an answer set (“stable model”) for a logic program. The alleged advantage of this
approach is that the representation of properties of actions is easier than in STRIPS or
ADL, in view of the fact that, in logic programs, domain axioms are no different from any
other of the rules of the program. However, although this approach removes the need to
describe the indirect effects of an action in the effects, it still requires the system to
include such axioms explicitly in the description and take them into account during the
reasoning process (see the first section of this chapter). In addition, the adoption of logic
programs appears to be a step backwards in the solution of the frame (and ramification)
problem. In fact, not only must trivial axioms (encoding rules such as “a block cannot be
in two places at the same time”) still be added to the description as explicit, pointable
formulæ: also frame axioms (e.g., “a block which is not moved remains where it is”) must
be included [see the “inertia” rule of Figure 3 in Lifschitz (2002, p. 50)]. In contrast,
analogical (or hybrid) representations allow such axioms to become implicit constraints
of the representation and actually disappear from the description (see the fourth section
of this chapter). Hence, the logic programming approach still raises serious concerns in
terms of scalability. So does the use of SAT-based approaches (briefly introduced in the
first section) in conjunction with “high-level” action languages (Giunchiglia & Lifschitz,
1998) and “tight” logic programs (Erdem & Lifschitz, 2003) to perform answer set
programming without answer set solvers.
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DISCUSSION
Research in AI and knowledge representation has long since demonstrated that the

type of formalism adopted plays a fundamental role in determining the difficulty of
reasoning and problem solving (e.g., Amarel, 1968; Simon, 1981; Larkin & Simon, 1987).
Several authors have advocated the advantages of diagrammatic representations with
respect to sentential ones (e.g., Koedinger, 1992; Kulpa, 1994; Glasgow et al., 1995) and
the flexibility of heterogeneous models with respect to each of these formalisms alone
(e.g., Barwise & Etchemendy, 1995, 1998; Swoboda & Allwein, 2002). However, the
domain modelling languages developed for action planning have remained, throughout
history, purely sentential (Fikes & Nillsson, 1971; Pednault, 1989; Fox & Long, 2003).

The main contributions of this chapter are a practical proposal and an underlying
theoretical framework for sound, hybrid planning. The model for integration of sentential
and analogical representations consists of the simple juxtaposition of the two formalisms
in state, action and goal descriptions. The conditions for the soundness of such hybrid
models (Definition 9) are based on the concept of model representation, which is
relatively simple to use in practice (see Example 5.5). Importantly, these conditions —
and, indeed, the entire theory described in the “Soundness of Hybrid Planning” section
— are not specific to the sentential or analogical models that have been considered.
Although we have shown how both setGraphs and PDDL2.1-lev2* formalisms can be
represented within this framework, the model proposed provides a basis for the integra-
tion of any sentential and diagrammatic descriptions that fit its premises. For example,
it should be relatively straightforward to extend the two representations to more
expressive formalisms by introducing additional features such as quantification, condi-
tional effects and negative preconditions (an example of the latter was presented in the
last section, Figure 14). The two resulting formalisms would still be able to be integrated
using the hybrid model proposed, even if they were not expressively equivalent.24

A further contribution of this chapter is an analogical planning representation
(Definitions 1-3) based on setGraphs, and a theoretical result demonstrating the equiva-
lence of this formalism to a propositional planning language with functions, variables and
numeric values (Theorem 1).25 Although examples of analogical and hybrid operators
encoded textually were given, respectively, in Examples 5.2 and 5.3, a detailed, specific
syntax for setGraph or hybrid planning languages was not discussed here. A BNF
specification of a syntax for a purely analogical planning description language is
proposed in Garagnani and Ding (2003), but is restricted to an array-based representation
analogous to the one adopted by the ABP planner. While the full setGraph representation
certainly requires a more complex definition, the simplicity of the elements upon which
the model is built — namely, sets and graphs — should make a syntax specification
relatively straightforward.

SetGraphs are simple but expressive data structures that have the ability to
implicitly encode the basic properties and constraints of physical domains and to reflect
their inherent (topological or semantic) structure. Because of these features, they can
lead to more efficient problem encodings, particularly when a domain can be decomposed
into smaller parts that enable a “localised” search and state update operations. In
addition, as discussed in the section “Advantages and Limitations of Analogical
Models”, setGraph (and, in general, analogical) representations help ease the ramifica-
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tion problem by implicitly embodying constraints that sentential representations must
make explicit.

An important issue concerning knowledge representation languages for common-
sense reasoning is that of elaboration tolerance. According to John McCarthy26, a
“formalism is elaboration tolerant to the extent that it is convenient to modify a set of
facts expressed in the formalism to take into account new phenomena.” There are
different degrees of elaboration tolerance. For example, the Ferry domain description of
Example 5.3 added new constraints to the description given initially in Example 5.1
(namely, by saying that ports can have petrol stations and restaurants, and that cars can
stop at their destination only if they have acquired such resources). Some formalisations
would require complete rewriting in order to accommodate this elaboration; others (like
natural languages) have the ability to allow the elaboration by an addition to the
previous encoding. SetGraphs present a high degree of elaboration tolerance: in fact, as
demonstrated by Example 5.3, the encoding of the new version of the Ferry domain
subsumes the encoding adopted for the original version; in other words, the additional
requirements lead simply to the old representation to be extended with new entities,
actions and constraints. This example is not just an isolated case: it is easy to see that
the model could be conveniently modified to include multiple ferries, petrol stations with
limited capacity, cars with attributes (e.g., color, size, weight), and so forth.

The above considerations indicate that, in addition to being often more efficient
than sentential encodings, analogical representations can be as expressive and flexible
as formal logic languages; the integration of setGraphs into a hybrid model makes the
planning formalism even more powerful. As discussed after Example 5.3, the main
advantage of a hybrid system with respect to purely sentential or analogical ones is that
it enables the domain modeller to encode each aspect of the world using the most
convenient (read efficient) formalism for that specific aspect. Moreover, describing a
domain using two different paradigms allows the automatic decomposition of the
problem into two separate parts that can be solved independently and re-integrated into
a single plan.

The possibility of separating the analogical part of a domain description from the
sentential one suggests that hybrid representations may also be effective in the
automatic extraction of heuristics. In particular, useful heuristics can often be extracted
by “relaxing” the planning instance at hand (e.g., by ignoring, or abstracting, some of
the details) and solving the simpler problem thus obtained. The solution of the relaxed
problem can then be used to guide the search in the original problem space (e.g., Haslum
& Geffner, 2000; Hoffmann & Nebel, 2001). Ignoring the sentential (or the analogical)
component of a hybrid description yields a relaxed problem, which can be solved more
easily and provide a heuristic for the solution of the original problem.

Interestingly, the learning of heuristics and domain-specific control knowledge
also appears to be facilitated by the adoption of analogical and hybrid descriptions. To
see this, observe that the ability to learn from the solution of different problems in the
same domain depends heavily on the capacity to recognise common “patterns” in
different plan solutions. Consider the complexity of identifying such patterns in se-
quences of sentential state descriptions (for example, determining the existence of two
identical stacks of blocks in different BW states). Analogical representations can be used
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to decompose the structure of the domain into simpler subparts (in BW, the stacks) that
can be compared much more efficiently and effectively.

As illustrated at the end of the second section of the chapter, analogical (and, hence,
hybrid) descriptions also allow move domains to be recast in ways that allow the spatial
relations of the domain to become a static (or invariant) part of the domain. In addition,
in virtue of their ability to contain multiple occurrence of the same object (including
numeric values), and to describe actions involving non-conservative changes, setGraphs
can easily represent resource production and consumption. Finally, it is worth noticing
that, besides the mentioned advantages in terms of planning performance, hybrid and
analogical representations also allow simpler and more “natural” descriptions, leading
to planning domain encodings that are less error-prone and easier to read and modify.

The framework for hybrid planning representation proposed is still limited in many
ways. For example, some of the important issues that have not been addressed in this
chapter include the representation of time and durative actions, the definition of
conditions for the parallel execution of multiple actions, and the ability to represent
uncertainty and non-deterministic actions. In a sense, the possibility of having
parameterised setGraphs introduces a form of uncertainty in the representation: a
parameterised setGraph represents the set of possible ground setGraphs that can be
obtained by replacing types and variables with appropriate instances in all possible ways
[just like the set of diagram models of Myers & Konolige’s (1995) system constitutes all
the possible completions of a structurally uncertain diagram]. The complete formalisation
of a planning domain representation for hybrid models that allows uncertainty and non-
determinism lies beyond the scope of this work. The introduction of time and non-
instantaneous actions in analogical models would appear to require, at first glance, action
representation methods similar to those developed by Fox and Long (2003) for sentential
languages. However, the introduction of time in conjunction with other features (such
as continuous effects) can significantly complicate the matter, also for analogical models.
Similarly, a precise treatment of the conditions for the parallel execution of analogical
operators in the presence of any of the above issues is likely to require a more complex
criterion than the one suggested in an earlier section (“Advantages and Limitations of
Analogical Models”).

To conclude, this work represents a first step towards the introduction of hybrid
and analogical representations in planning. The aim of this chapter was to provide a
theoretical basis and a concrete proposal directly applicable to implement, more efficient,
hybrid (or analogical) domain-description languages (based on setGraphs or on other,
more advanced, non-sentential structures). Clearly, many issues still remain to be
explored; however, it is the author’s belief that further advances in the flexibility and
range of application of automatic planners will depend, to a large extent, on a closer co-
operation between the planning and knowledge representation and reasoning commu-
nities.
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ENDNOTES
1 A language is “inefficient” if it produces problem encodings in which the search

for a solution is significantly more difficult than what it would have been if a
different language had been adopted.

2 The Stack(x,y) operator should be completed with a precondition requiring x≠y,
expressed using a predicate Different(x,y) (or ¬Equal(x,y)) whose instances should
be listed in the initial state I, for all blocks x,y.

3 The two main modules of a typical SAT-planner are the compiler and the solver.
The compiler takes a planning problem as input, guesses a plan length and
generates the propositional formula; a symbol table records the correspondence
between the propositional variables and the planning instance. The solver uses
systematic or stochastic methods to find a satisfying assignment, which will then
be translated into a plan (using the symbol table). If the formula is unsatisfiable,
the compiler generates a new encoding using a longer plan length [see Weld (1999)
for a more in-depth description].

4 In what follows, the terms analogical and diagrammatic are used interchangeably.
The distinction between analogical and sentential representations is clarified later
on in the chapter.

5 Notice that sub-graph G4 could also be achieved with Move(B,C, z2) by instantiating
z2 = A; however, this would then prevent P2 from being satisfied in the initial state
I, requiring the addition of further steps and leading to a longer plan solution.

6 From the point of view of a practical implementation, introducing different types
of edges in a graph does not represent a problem, as it is equivalent to allowing
labelled edges. In Figure 4, the use of different styles of arcs instead of different
labels denoting types avoids cluttering of the figure.

7 According to Figure 4(a), Above(x,y,n) edges hold only for n >1. However, for this
domain to be entirely equivalent to its sentential version, the ‘above’ relation must
subsume the ‘on’ relation. This can be achieved by adding an extra Above edge
for each On edge (not included to avoid cluttering).

8 A formal description language does not necessarily mean sentential. For example,
the notation {x,y,…,z}, indicating a set containing elements x,y,…z, is not sentential.



86   Garagnani

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

9 In particular, given a two-dimensional place A and two symbols x,yÎU, the expres-
sions A(x↑y) and A(x→y) were used to indicate, respectively, that x,y appear in the
same column and row of A; the expression A(x/y) denotes two consecutive symbols
on the same column. All such symbols play in this model the role that edges played
in the graph-based model.

10 See http://ipc.icaps-conference.org/ (retrieved on August 2, 2004).
11 An initial instantiation of the parameters of the operators in all possible ways [as

performed by several modern planners adopting planning-graph techniques
(Blum & Furst, 1997)] would produce O(n.mk) ground operators, where m is the
number of objects, n the number of original (parameterised) operators and k is the
number of parameters. The check for applicability of a ground operator to a state
would require O(g p) steps, where g is the number of atoms in the preconditions and
p is the number of propositions in the state. In general, p still grows as O(mk), where
k is the arity of the predicates of the language; however, this can be improved by
imposing an order on the propositions of the state, which allows, for example,
binary searches. Hence, checking for the applicability of one operator instance
would take only O(g.k.logm) steps. On the other hand, the polynomial number of
ground operators would lead to a dramatic increase in the branching factor,
offsetting these benefits.

12 In general, the computational complexity of the procedure for verifying whether the
preconditions of a setGraph operator are satisfied in a given state (setGraph) is
equivalent to that of checking whether a certain graph is a sub-graph of another
graph. This, in general, cannot be carried out in just a linear number of steps (in
the number of nodes and edges). Fortunately, the topological structure of the
domain can often be decomposed in several “linear” sub-structures (e.g., the stacks
of BW). Although these substructures may be non-linearly connected, checking
for the existence of specific conditions and manipulating objects within them only
requires a linear number of steps, as illustrated by the examples. It is precisely this
ability to “mimic” the topology of a domain that differentiates analogical models
from sentential ones, and which allows this structuring and decomposition of the
domain to take place.

13 More precisely, block x is above y if and only if symbol x appears to the right of y
(in the same array).

14 In fact, for each object x with possible states s1, s2,…, sk, let the setGraph
representation contain k corresponding nodes (sets) n1, n2,…, nk. The fact that
object x is currently in state si can be represented by the presence of a symbol x in
node ni. The state-transition si → sj of an object will be described by the movement
of symbol x from node ni to node nj, obtained through the application of appropriate
analogical operators.

15 It should be underlined that the labels are just elements of the notation that has
been adopted here for referring to nodeSet data structures and their contents. In
other words, expressions (4.5) and (4.3) should be considered simply as alternative
descriptions of the same nodeSet data structure.

16 Movement and removal of elements in the i-th setGraph Gi of P are encoded
implicitly by the i-th setGraph Gi'of E. The different nodeSets of Gi and their
(possibly new) positions are identified in Gi’using the same identifiers that those
elements have in Gi. However, since addition of elements is permitted, Gi’might also
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contain new nodeSets (associated to labels or values that do not appear in Gi) or
new edges. Similarly, since removal is permitted, Gi might contain nodeSets or
edges that do not appear in Gi'.

17 A numeric expression is either a real number, a numeric variable appearing in the
analogical part of P, or an expression combining variables and numbers through
operators +,-, *, /.

18 All the update operations will be calculated using the “old” values of the numeric
nodes, so that, in case of multiple updates, the order of their execution is irrelevant.

19 The encoding adopted in this proof is not necessarily the most efficient. For
example, compare the encoding of the operator Board(x,y,z) in Figure 10 with the
simpler and more efficient one in Figure 8.

20 For Theorem 1 to be valid, the setGraph planning notation must be extended with
negative preconditions; this is necessary in order to represent the equivalent of
a negative literal in the preconditions of a sentential operator. This can be done by
adding a list Π of setGraphs to the analogical part of the preconditions of a setGraph
operator and by requiring that, for the operator to be applicable in a state s, none
of the setGraphs in Π be satisfiable in s.

21 These negative goals can be easily transformed into positive ones; for example,
“¬Needs(x, y)” could be written as “Has(x, y).”

22 In fact, in Example 5.3, suppose that the final destination of car A is Port1. The
optimal solution of the sentential sub-problem is to take A to Port4; the resulting
analogical problem would then require two other trips to take A from there to its
final destination, resulting in a final plan containing three trips. The optimal plan
for car A, however, would consist of taking it to Port3 first in order to refuel, and
then to Port1, where it would get the food and terminate.

23 According to Definition 9, an action a∈A of a domain is modelled as a function λ∈Λ
that maps models into models. Naturally, in order to be able to make the process
of reasoning about (i.e., simulating) actions fully automatic, one must specify a
general algorithm Γ that calculates the model λ(M) for any given action model λ∈Λ
and any world model M∈S. For this to be possible, all functions in Λ will have to
be (finitely) encoded as action descriptions (i.e., operators) so that they can be
given as input to the procedure Γ.

24 A set of operators containing conditional and quantified effects can be compiled
into an equivalent set containing only ground propositions (or ground setGraphs),
using techniques similar to those of Gazen & Knoblock (1997) (see also Fox & Long,
2003). This is not possible, however, if the parameters of a setGraph operator
contain numeric variables, as their instantiation would generate an infinite number
of ground instances. To overcome this problem, any numeric node of the state
appearing as a parameter in an operator should be replaced with an equivalent
“primitive numeric expression” (e.g., node x in the Board(x,y,z) operator of Figure
8 could be replaced with tot_cars(z)), so that numbers can be manipulated only
through their relationships with the objects of the domain and never appear as
values to action parameters. This is the solution adopted in the sentential part of
the representation, also used by Fox & Long (2003) for PDDL2.1.

25 Notice that expressive equivalence of two formalisms does not imply equivalent
efficiency:that is, the fact that an analogical language is as powerful as a sentential
one does not imply that two encodings that they produce for the same problem can
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be solved with the same number of steps. This is true even if the search algorithm
adopted for them is the same. Indeed, this was the set up for the experimental results
considered in the third section (“Analogical Planning: A Case Study”).

26 See http://www-formal.stanford.edu/jmc/elaboration.html (retrieved August 2,
2004).
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ABSTRACT
This chapter is concerned with the enhancement of planning systems using techniques
from Machine Learning in order to automatically configure their planning parameters
according to the morphology of the problem in hand. It presents two different adaptive
systems that set the planning parameters of a highly adjustable planner based on
measurable characteristics of the problem instance. The planners have acquired their
knowledge from a large data set produced by results from experiments on many
problems from various domains. The first planner is a rule-based system that employs
propositional rule learning to induce knowledge that suggests effective configuration
of planning parameters based on the problem’s characteristics. The second planner
employs instance-based learning in order to find problems with similar structure and
adopt the planner configuration that has proved in the past to be effective on these
problems. The validity of the two adaptive systems is assessed through experimental
results that demonstrate the boost in performance in problems of both known and
unknown domains. Comparative experimental results for the two planning systems are
presented along with a discussion of their advantages and disadvantages.
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INTRODUCTION
Domain independent heuristic planning relies on ingenious techniques, such as

heuristics and search strategies, to improve the execution speed of planning systems and
the quality of their solutions in arbitrary planning problems. However, no single
technique has yet proved to be the best for all kinds of problems. Many modern planning
systems incorporate more than one such optimizing technique in order to capture the
peculiarities of a wider range of problems. However, to achieve the optimum performance
these planners require manual fine-tuning of their run-time parameters.

Few attempts have been made to explain which are the specific dynamics of a
planning problem that favor a specific planning technique and, even more, which is the
best setup for a planning system given the characteristics of the planning problem. This
kind of knowledge would clearly assist the planning community in producing flexible
systems that could automatically adapt themselves to each problem, achieving best
performance.

This chapter focuses on the enhancement of Planning Systems with Machine
Learning techniques in the direction of developing Adaptive Planning Systems that can
configure their planning parameters automatically in order to effectively solve each
different planning problem. More specifically, it presents two different Machine Learn-
ing approaches for Adaptive Planning: (a) Rule learning and (b) Instance-based learning.
Both approaches are described in detail and their performance is assessed through
several experimental results that exhibit different aspects of the learning process. In
addition, the chapter provides an extended overview of past approaches on combining
Machine Learning and Automated Planning, two of the most important areas of Artificial
Intelligence.

The rest of the chapter is organized as follows: The next section reviews related work
on combining learning and planning and discusses the adopted learning techniques.
Then the problem of the automatic configuration of planning systems is analyzed. The
following two sections present the two learning approaches that have been used for the
adaptive systems and present experimental results that compare them and show the gain
in the performance over the initial planner. Finally, the last section discusses several
issues concerning the two learning approaches, concludes the chapter and poses future
research directions.

MACHINE LEARNING FOR
AUTOMATED PLANNING

Machine Learning is the area of Artificial Intelligence concerned with the design
of computer programs that improve at a category of tasks with experience. It is a very
broad field with many learning methodologies and numerous algorithms, which have
been extensively exploited in the past to support planning systems in many ways. Since
it is a usual case for seemingly different planning problems to present similarities in their
structure, it is reasonable enough to believe that planning strategies that have been
successfully applied to some problems in the past will be also effective for similar problems
in the future. Learning can assist planning systems in three ways: (a) to learn domain
knowledge, (b) to learn control knowledge and (c) to learn optimization knowledge.
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Domain knowledge is utilized by planners in pre-processing phases in order to
either modify the description of the problem in a way that it will make it easier for solving
or make the appropriate adjustments to the planner to best attack the problem. Control
knowledge can be utilized during search in order to either solve the problem faster or
produce better plans. For example, the knowledge extracted from past examples can be
used to refine the heuristic functions or create a guide for pruning non-promising
branches. Most work on combining machine learning and planning in the past has
focused on learning control knowledge since it is crucial for planners to have an
informative guide during search. Finally, optimization knowledge is utilized after the
generation of an initial plan, in order to transform it in a new one that optimizes certain
criteria, that is number of steps or usage of resources.

Learning Domain Knowledge
OBSERVER (Wang, 1996) is a learning module built on top of the PRODIGY system

that uses the hints and past knowledge of experts in order to extract and refine the full
description of the operators for a new domain. The description of the operators includes
negative, positive and conditional preconditions and effects. OBSERVER uses a multi-
strategy learning technique that combines learning by observing and refining through
practice (learning by doing). Knoblock (1990) presented another learning module for
PRODIGY, called ALPINE, that learns abstraction hierarchies and thus reduces the
required search. ALPINE classifies the literals of the given planning problem, abstracts
them and performs an analysis on the domain to aid ordering and combination of the
abstractions.

MULTI-TAC (Minton, 1996) is a learning system that automatically fine-tunes itself
in order to synthesize the most appropriate constraint satisfaction program to solve a
problem utilizing a library of heuristics and generic algorithms. The methodology we
followed in this chapter for one of the adaptive systems (HAPRC) presents some
similarities with MULTI-TAC, since both approaches learn models that associate
problem characteristics with the most appropriate setups for their solvers. The learned
model of MULTI-TAC is a number of rules that are extracted using two complementary
methods. The first one is analytic and employs meta-level theories in order to reason
about the constraints, while the second one, which is based on the generate-and-test
schema, extracts all possible rules and uses test problems in order to decide about their
quality.

One of the few past approaches towards the direction of adaptive planning is the
BUS system (Howe & Dahlman, 1993; Howe et al., 1999). BUS runs six state-of-the-art
planners, namely STAN, IPP, SGP, BlackBox, UCPOP and PRODIGY, using a round-robin
schema until one of them finds a solution. BUS is adaptive in the sense of dynamically
deciding the ordering of the six planners and the duration of the time slices based on the
values of five problem characteristics and some rules extracted from the statistical
analysis of past runs. The system achieved more stable behaviour than all the individual
planners but it was not as fast as one may have expected.

The authors have worked during the past few years in exploiting Machine Learning
techniques for Adaptive Planning and have developed two systems that are described
in detail later in this chapter. The first system, called HAPRC (Vrakas et al., 2003a, 2003b),
is capable of automatically fine-tuning its planning parameters based on the morphology
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of the problem in hand. The tuning of HAPRC is performed by a rule system, the knowledge
of which has been induced through the application of a classification algorithm over a
large dataset containing performance data of past executions of HAP (Highly Adjustable
Planner). The second system, called HAPNN (Tsoumakas et al., 2003), adopts a variation
of the k Nearest Neighbour machine learning algorithm that enables the incremental
enrichment of its knowledge and allows users to specify their level of importance on the
criteria of plan quality and planning speed.

Learning Control Knowledge
The history of learning control knowledge for guiding planning systems, sometimes

called speedup learning, dates back to the early 1970s. The STRIPS planning system was
soon enhanced with the MACROPS learning method (Fikes et al., 1972) that analyzed past
experience from solved problems in order to infer successful combinations of action
sequences (macro-operators) and general conditions for their application. MACROPS
was in fact the seed for a whole new learning methodology, called Explanation-Based
Learning (EBL).

EBL belongs to the family of analytical learning methods that use prior knowledge
and deductive reasoning to enhance the information provided by training examples.
Although EBL encompasses a wide variety of methods, the main underlying principle is
the same: The use of prior knowledge to analyze or explain each training example in order
to infer which example features and constraints are relevant and which irrelevant to the
learning task under consideration. This background knowledge must be correct and
sufficient for EBL to generalize accurately. Planning problems offer such a correct and
complete domain theory that can be readily used as prior knowledge in EBL systems. This
apparently explains the very strong relationship of EBL and planning, as the largest scale
attempts to apply EBL have addressed the problem of learning to control search. An
overview of EBL computer programs and perspectives can be found in Ellman (1989).

The PRODIGY architecture (Carbonell et al., 1991; Veloso et al., 1995) was the main
representative of control-knowledge learning systems. This architecture, supported by
various learning modules, focuses on learning the necessary knowledge (rules) that
guides a planner to decide what action to take next during plan execution. The system
mainly uses EBL to explain fails and successes and generalize the knowledge in control
rules that can be utilized in the future in order to select, reject or prefer choices. Since
the overhead of testing the applicability of rules was quite large (utility problem), the
system also adopted a mixed criterion of usability and cost for each rule in order to discard
some of them and refine the rest. The integration of EBL into PRODIGY is detailed in
Minton (1988).

Borrajo and Veloso (1996) developed HAMLET, another system combining plan-
ning and learning that was built on top of PRODIGY. HAMLET combines EBL and
inductive learning in order to incrementally learn through experience. The main aspects
responsible for the efficiency of the system were: the lazy explanation of successes, the
incremental refinement of acquired knowledge and the lazy learning to override only the
default behavior of the planner.

Another learning approach that has been applied on top of PRODIGY is the STATIC
algorithm (Etzioni, 1993), which used Partial Evaluation to automatically extract search-
control knowledge from training examples. Partial Evaluation, a kind of program optimi-
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zation method used for PROLOG programs, bares strong resemblance to EBL. A
discussion of their relationship is provided in van Harmelen and Bundy (1988).

DYNA-Q (Sutton, 1990) followed a Reinforcement Learning approach (Sutton &
Barto, 1998). Reinforcement learning is learning what to do — how to map situations to
actions — so as to maximize a numerical reward signal. The learner is not told which
actions to take, as in most forms of machine learning, but instead must discover which
actions yield the most reward by trying them. DYNA-Q employed the Q-learning method,
in order to accompany each pair of state-action with a reward (Q-value). The rewards
maintained by DYNA-Q are incrementally updated as new problems are faced and are
utilized during search as a means of heuristic function. The main problems faced by this
approach were the very large memory requirements and the amount of experience needed
for solving non-trivial problems.

A more recent approach of learning control knowledge for domain independent
planning was presented by Martin and Geffner (2000). They focus on learning general-
ized policies that serve as heuristic functions, mapping states and goals into actions.
In order to represent their policies they adopt a concept language, which allows the
inference of more accurate models using less training examples. The learning approach
followed in this project was a variation of Rivest’s Decision Lists (1987), which is actually
a generalization of other concept representation techniques, such as decision trees.

EUREKA (Jones & Langley, 1995) adopts a flexible means-ends analysis for
planning and is equipped with a learning module that performs Analogical Reasoning
over stored solutions. The learning approach of Analogical Reasoning is based on the
assumption that if two situations are known to be similar in some respects, it is likely that
they will be similar in others. The standard computational model of reasoning by analogy
defines the source of an analogy to be a problem solution, example, or theory that is
relatively well understood. The target is not completely understood. Analogy constructs
a mapping between corresponding elements of the target and source. Analogical
inferences extend this mapping to new elements of the target domain.

EUREKA actually maintains a long-term semantic network, which stores represen-
tations of past situations along with the operators that led to them. The semantic network
is constantly modified by either adding new experiences or updating the strength of the
existing knowledge. DAEDALUS (Langley & Allen, 1993) is a similar system that uses
a hierarchy of probabilistic concepts in order to summarize its knowledge. The learning
module of DAEDALUS is quite complex and in a sense it unifies a large number of learning
techniques including Decision Tree Construction, Rule Induction and EBL.

Another example of utilizing learning techniques for inferring control knowledge for
automated planning systems is the family of planners that employ Case-based reasoning
(Kolodner, 1993). Case-based reasoning (CBR) is an instance-based learning method that
deals with instances that are usually described by rich relational representations. Such
instances are often called cases. In contrast to instance-based methods that perform a
statistical computation of a distance metric based on numerical values, CBR systems
must compute a complex similarity measure. Another distinctive feature of CBR is that
the output for a new case might involve the combination of the output of several retrieved
cases that match the description of the new case. The combination of past outputs might
involve the employment of knowledge-based reasoning due to the rich representation
of cases.
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CBR is actually very related to analogical reasoning. Analogical reasoning provides
the mechanism for mapping the output of an old case to an output for a new case. Cased-
based reasoning was based on analogical reasoning but also provided a complete
framework for dealing with issues like the representation of cases, strategies for
organizing a memory of prior cases, retrieval of prior cases and the use of prior cases for
dealing with new cases.

Two known case-based planning systems are CHEF (Hammond, 1989) and PRIAR
(Kambhampati & Hendler, 1992). CHEF is one of the earliest case-based planners and
used the Szechwan cooking as the application domain. CHEF used memory structures
and indexes in order to store successful plans, failed plans and repairs among with general
conditions allowing it to reuse past experience. PRIAR is a more general case-based
system for plan modification and reuse that uses hierarchical non-linear planning,
allowing abstraction and least-commitment.

Learning Optimization Knowledge
Ambite, Knoblock and Minton (2000) have presented an approach for learning plan

rewriting rules that can be utilized along with local search in order to improve easy-to-
generate low quality plans. In order to learn the rules, they obtain an optimal and a non-
optimal solution for each problem in a training set, transform the solutions into graphs,
and then extract and generalize the differences between each pair of graphs (optimal and
non-optimal) and form rules in a manner similar to EBL.

IMPROVE (Lesh, Martin & Allen, 1998), deals with the improvement of large
probabilistic plans in order to increase their probability of being successfully carried out
by the executor. IMPROVE uses a simulator in order to obtain traces of the execution of
large plans and then feeds these traces to a sequential discovery data mining algorithm
in order to extract patterns that are common in failures but not in successes. Qualitative
reasoning (Kuipers, 1994) is then applied in order to improve the plans.

Summary and Further Reading
Table 1 summarizes the 18 approaches that were presented in this section. It shows

the name of each system, the type of knowledge that was acquired, the way this
knowledge was utilized and the learning techniques that were used for inducing it.
Further information on the topic of Machine Learning for Automated Planning can be
found in the extended survey of Zimmerman and Kambhampati (2003) and also in Gopal
(2000).

THE PLANNING PROBLEM
The rest of the chapter addresses learning domain knowledge for the automatic

configuration of planning systems. The aim of this approach is to build an adaptive
planning system that can automatically fine-tune its parameters based on the morphol-
ogy of the problem in hand. This is a very important feature for planning systems, since
it combines the efficiency of customized solutions with the generality of domain
independent problem solving.
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There are two main issues for investigation: (a) what sort of customization should
be performed on a domain-independent planner and (b) how can the morphology of a
planning problem be captured and quantified. These are addressed in the remainder of
this section.

The Planning System
The planning system used as a test bed for our research is HAP (Highly Adjustable

Planner), a domain-independent, state-space heuristic planning system, which can be
customized through a number of parameters. HAP is a general planning platform, which
integrates the search modules of the BP planner (Vrakas & Vlahavas, 2001), the heuristics
of AcE (Vrakas & Vlahavas, 2002) and several techniques for speeding up the planning
process. Apart from the selection of the planning direction, which is the most important
feature of HAP, the user can also set the values of six other parameters that mainly affect
the search strategy and the heuristic function. The seven parameters along with their
value sets are outlined in Table 2.

HAP is capable of planning in both directions (progression and regression). The
system is quite symmetric and for each critical part of the planner, for example, calculation
of mutexes, discovery of goal orderings, computation of the heuristic, search strategies
etc., there are implementations for both directions. The search Direction is the first
adjustable parameter of HAP with the following values: (a) 0 (Regression or Backward
chaining) and (b) 1 (Progression or Forward chaining). The planning direction is a very
important factor for the efficiency of a planning system, since the best direction strongly
depends on the morphology of the problem in hand and there is no easy answer which
direction should be preferred.

The HAP system employs the heuristic function of the AcE planner, as well as two
variations. Heuristic functions are implemented for both planning directions during the
pre-planning phase by performing a relaxed search in the direction opposite to the one
used in the search phase. The heuristic function computes estimations for the distances

Table 1. System name, type of knowledge, utilization and learning techniques

System Knowledge Utilization Learning Techniques 
OBSERVER Domain Refine  problem definition Learning by Observing, Refining via Practice 
MULTI-TAC Domain Configure System Meta-Level Theories, Generate and Test  
ALPINE Domain Abstract the problem Domain Analysis, Abstraction 
BUS Domain Configure System Statistical Analysis 
HAPRC  Domain Configure System Classification Rules 
HAPNN Domain Configure System kNN 
PRODIGY Control Search guide EBL 
HAMLET Control Search guide EBL, Rule Learning 
STATIC Control Search guide Partial Evaluation 
STRIPS Control Macro-operators EBL 
Generalized Policies  Control Search guide Decision Lists 
DYNA-Q Control Heuristic  Reinforcement Learning 
CHEF Control Canned plans CBR 
PRIAR Control Canned plans CBR 
EUREKA Control Search guide Analogical Reasoning 
DAEDALUS Control Search guide Analogical Reasoning, Conceptual Clustering 
Plan Rewriting Optimization Reduce plan size EBL 
IMPROVE Optimization Improve plan applicability  Sequential Patterns 
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of all grounded actions of the problem. The original heuristic function of the AcE
planning system is defined by the following formula:

( ( ))

1, ( )
( )

1 ( ), ( )
X MPS prec A

if prec A I
dist A

dist X if prec A I
∈

  ⊆
=

+   ⊄


 ∑

where A is the action under evaluation, I is the initial state of the problem and MPS(S)
is a function returning a set of actions, with near minimum accumulated cost, achieving
state S. The algorithm of MPS is outlined in Figure 1.

Apart from the original AcE heuristic function described above, HAP embodies two
more fined-grained variations. The general idea behind these variations lies in the fact
that when we select a set of actions in order to achieve the preconditions of an action
A, we also achieve several other facts (denoted as implied(A)), which are not mutually
exclusive with the preconditions of A. Supposing that this set of actions was chosen in
the plan before A, then after the application of A, the facts in implied(A) would exist in

Table 2. The value sets for planning parameters

Name Value Set 
Direction {0,1} 
Heuristic {1,2,3} 
Weights (w1 and w2) {0,1,2,3} 
Penalty {10,100,500} 
Agenda {10,100,1000} 
Equal_estimation {0,1} 
Remove {0,1} 

Figure 1. Function MPS(S)

 Function MPS(S) 
Input: a set of facts S 
Output: a set of actions achieving S with near minimum accumulated dist 
 

Set G = � 

S = S – S � I 

Repeat 
 f is the first fact in S 
 Let act(f) be the set of actions achieving f 
 for each action A in act(f) do 

  val(A) = dist(A) / �add(A) � S�� 

 
Let A' be an action in act(f) that minimizes val 

Set G = G � A' 

 Set S = S – add(A') � S 

Until S = � 

Return G 
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the new state, along with the ones in the add-list of A. Taking all these into account, we
produce a new list of facts for each action (named enriched_add) which is the union of
the add-list and the implied list of this action.

The first variation of the AcE heuristic function uses the enriched instead of the
traditional add-list in the MPS function in the second part of the function that updates
state S. So the command Set S = S – add(A') ∩ S becomes Set S = S – enriched_add(A')∩S.

The second variation pushes the above ideas one step further. The enriched_add
list is also used in the first part of the MPS function, which ranks the candidate actions.
So, it additionally alters the command val(A)=dist(A)/|add(A) ∩ S| to val(A)=dist(A)/
|enriched_add(A) ∩ S|.

The user may select the heuristic function to be used by the planner by configuring
the Heuristic parameter. The acceptable values are three: (a) 1 for the AcE heuristic, (b)
2 for the first variation and (c) 3 for the second variation.

Concerning search, HAP adopts a weighted A* strategy with two independent
weights: w1 for the estimated cost for reaching the final state and w2 for the accumulated
cost of reaching the current state from the starting state (initial or goals depending on
the selected direction). In this work we have used four different assignments for the
variable weights which correspond to different assignments for w1 and w2: (a) 0 (w1 =1,
w2 =0), (b) 1 (w1 =3, w2 =1), (c) 2 (w1 =2, w2 =1) and (d) 3 (w1 =1, w2 =1). By selecting different
value sets for the weights one can emulate a large number of search strategies such as
Best-First-Search (w1 =1, w2 =0) or Breadth-First-Search (w1 =0, w2 =1). It is known that
although certain search strategies perform better in general, the ideal treatment is to
select the strategy which bests suits the morphology of the problem in hand.

The HAP system embodies two fact-ordering techniques (one for the initial state
I and another one for the goals G), which try to find strong orderings in which the facts
(of either I or G) should be achieved. In order to find these orderings, the techniques make
extensive use of mutual exclusions between facts, performing a limited search. These
orderings are utilized during normal search phase, in order to identify possible violations.
For each violation contained in a state, the estimated heuristic value of this state is
increased by Penalty, a constant number supplied by the user. In this work we have tested
the HAP system with three different values for Penalty: (a) 10, (b) 100 and (c) 500. The
reason for not being very strict with states containing violations of orderings is the fact
that sometimes the only path to the solution is through these states.

The HAP system allows the user to set an upper limit in the number of states in the
planning agenda. This enables the planner to handle very large problems, since the
memory requirements will not grow exponentially with the size of the problem. However,
in order to keep a constant number of states in the agenda, the algorithm prunes branches,
which are less likely to lead to a solution, and thus the algorithm cannot guarantee
completeness. Therefore, it is obvious that the size of the planning agenda significantly
affects the search strategy. For example, if we set Agenda to 1 and w2 to 0, the search
algorithm becomes pure Hill-Climbing, while by setting Agenda to larger values, w1 to
1 and w2 to 1 the search algorithm becomes A*. Generally, by increasing the size of the
agenda we reduce the risk of not finding a solution, while by reducing the size of the
agenda the search algorithm becomes faster and we ensure that the planner will not run
out of memory. In this work we have used three different settings for the size of the
agenda: (a) 10, (b) 100 and (c) 1000.
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Another parameter of HAP is Equal_estimation that defines the way in which states
with the same estimated distances are treated. If Equal_estimation is set to 0 then when
two states with the same value in the heuristic function exist, the one with the largest
distance from the starting state (number of actions applied so far) is preferred. If
Equal_estimation is set to 1, then the search strategy will prefer the state that is closer
to the starting state.

HAP also embodies a technique for simplifying the definition of the current sub-
problem (current state and goals) during the search phase. This technique eliminates
from the definition of the sub-problem all the goals that: a) have already been achieved
in the current state and b) do not interfere with the achievement of the remaining goals.
In order to do this, the technique performs a dependency analysis on the goals of the
problem off-line, before the search process. Although the technique is very useful in
general, the dependency analysis is not complete. In other words, there are cases where
an already achieved sub-goal should be temporarily destroyed in order to continue with
the achievement of the rest of the goals. Therefore, by removing this fact from the current
state the algorithm may risk completeness. The parameter Remove can be used to turn
on (value 1) or off (value 0) this feature of the planning system.

The parameters presented above are specific to the HAP system. However, the
methodology presented in this chapter is general enough and can be applied to other
systems as well. Most of the modern planning systems support or can be modified to
support all or some of the parameterized aspects presented in this section. For example,
there are systems such as the progression planner HSP (Bonet et al., 1997) that were
accompanied by versions working in the opposite directions; HSP-R (Bonet & Geffner,
1999) is a regression planner based on HSP.

Moreover, most of the planning systems presented during the last years can be
customized through their own set of parameters. For example, the GRT planning system
(Refanidis & Vlahavas, 2001) allows the user to customize the search strategy (Best-first
or Hill-climbing) and to select how the goals of the problem are enriched (this affects the
heuristic function). LPG (Gerevini et al., 2003) can be customized through a large number
of planning parameters and could also be augmented using the proposed methodology.
The user may select options such as the heuristic function (there are two available), the
search strategy, the number of restarts, the depth of the search, the way mutexes are
calculated and others. The MIPS system (Edelkamp & Helmert, 2001) also allows some
customization, since it uses a weighted A* search strategy, the weights of which can be
set by the user, in a manner similar to HAP. Furthermore, the user can also set the
optimization level.

Quantifying the Structure of Planning Problems
Selecting a set of numerical attributes that represent the dynamics of problems and

domains is probably the most important task in the process of building an adaptive
planning system. These attributes should be able to group problems with similar
structure and discriminate uneven ones. Moreover, these attributes should clearly
influence specific choices for the values of the available planning parameters. Therefore,
their selection strongly depends on the underlying planning system.

The result of a theoretical analysis on (a) the morphology of problems, (b) the way
this is expressed through the PDDL language and (c) the technology of the HAP planning
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system, was a set of 35 measurable characteristics that are presented in Table 3. In Table
3, h(I) refers to the number of steps needed to reach I (initial state) by regressing the
goals, as estimated by the backward heuristic function. Similarly, h(G) refers to the
number of steps needed to reach the goals by progressing the initial state, estimated by
the forward heuristic function.

Our main concern was to select simple attributes so that their values are easily
calculated and not complex attributes that would cause a large overhead in the total
planning time. Therefore, most of the attributes come directly from the PDDL input files
and their values can be calculated during the standard parsing process. We have also
included a small number of attributes closely related to specific features of the HAP
planning system, such as the heuristics or the fact-ordering techniques. In order to
calculate the values of these attributes, the system must perform a limited search.
However, the overhead is negligible compared to the total planning time.

Table 3. Problem characteristics

Name Description 
A1 Percentage of dynamic facts in Initial state over total dynamic facts 
A2 Percentage of static facts 
A3 Percentage of goal facts over total dynamic facts 
A4 Ratio between dynamic facts in Initial state and goal facts 
A5 Average number of actions per dynamic fact 
A6 Average number of facts per predicate 
A7 Standard deviation of the number of facts per predicate 
A8 Average number of actions per operator 
A9 Standard deviation of the number of actions per operator 
A10 Average number of mutexes per fact 
A11 Standard deviation of the number of mutexes per fact 
A12 Average number of actions requiring a fact 
A13 Standard deviation of the number of actions requiring a fact 
A14 Average number of actions adding a fact 
A15 Standard deviation of the number of actions adding a fact 
A16 Average number of actions deleting a fact 
A17 Standard deviation of the number of actions deleting a fact 
A18 Average ratio between the number of actions adding a fact and those deleting it 
A19 Average number of facts per object 
A20 Average number of actions per object 
A21 Average number of objects per object class 
A22 Standard deviation of the number of objects per object class 
A23 Ratio between the actions requiring an initial fact and those adding a goal (Relaxed branching factors) 
A24 Ratio between the branching factors for the two directions 
A25 h(I)/h(G) [1st heuristic] - h(I)/h(G) [2nd heuristic] 
A26 h(I)/h(G) [1st heuristic] - h(I)/h(G) [3rd heuristic] 
A27 h(I)/h(G) [2nd heuristic] - h(I)/h(G) [3rd heuristic] 
A28 Average number of goal orderings per goal 
A29 Average number of initial orderings per initial fact 
A30 Average distance of actions / h(G) [forward direction] 
A31 Average distance of actions / h(I) [backward direction] 
A32 a30/a31 
A33 Percentage of standard deviation of the distance of actions over the average distance of actions [Forward 

direction] 
A34 Percentage of standard deviation of the distance of actions over the average distance of actions [Backward 

direction] 
A35 Heuristics deviation [a33/a34] 
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A second concern was the fact that the attributes should be general enough to be
applied to all domains. Furthermore, their values should not largely depend on the size
of the problem; otherwise the knowledge learned from easy problems can not be
efficiently applied to difficult ones. For example, instead of using the number of mutexes
(mutual exclusions between facts) in the problem, which is an attribute that strongly
depends on the size of the problem (larger problems tend to have more mutexes), we divide
it by the total number of dynamic facts (attribute A10) and this attribute (mutex density)
identifies the complexity of the problem without taking into account whether it is a large
problem or not. This is a general solution followed in all situations where a problem
attribute depends nearly linearly on the size of the problem.

The attributes can be classified in three categories: The first category (attributes
A01-A9, A12-A24) refers to simple and easily measured characteristics of planning
problems that source directly from the input files (PDDL). The second category (at-
tributes A10, A11, A28, A29) consists of more sophisticated features of modern planners,
such as mutexes or orderings (between goals and initial facts). The last category
(attributes A25-A27, A30-A35) contains attributes that can be instantiated only after the
calculation of the heuristic functions and refer to them.

The attributes presented above aim at capturing the morphology of problems
expressed in a quantifiable way. The most interesting aspects of planning problems
according to this attribute set are: (a) the size of the problem, which mainly refers to the
dimensions of the search space, (b) the complexity of the problem, (c) the directionality
of the problem that indicates the most appropriate search direction, and (d) the heuristic
that best suits the problem.

The first two categories, namely the size and the complexity, are general aspects of
planning problems. The directionality is also a general aspect of planning problems that
is additionally of great importance to HAP, due to its bi-directional capabilities. The last
category depends strongly on the HAP planning system, concerning the suitability of
the heuristic functions for the problem in hand. Although the four aspects that the
selection of attributes was based on are not enough to completely represent any given
planning problem, they form a non-trivial set that one can base the setup of the planning
parameters of HAP.  sketches the relation between the four problem aspects described
above and the 35 problem attributes adopted by this work.

LEARNING APPROACHES
The aim of the application of learning techniques in planning is to find the hidden

dependencies among the problem characteristics and the planning parameters. More
specifically, we are interested in finding those combinations of problem attributes and
planning parameters that guarantee good performance of the system. One way to do this
is by experimenting with all possible combinations of the values of 35 problem attributes
and the seven planning parameters and then processing the collected data in order to
learn from it. However, this is not tractable since most of the problem attributes have
continuous value ranges and even by discretizing them it would require a tremendous
number of value-combinations. Moreover, it would not be possible to find or create
enough planning problems to cover all the cases (value combinations of attributes).
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One solution to the problem presented above is to select a relatively large number
of problems, uniformly distributed in a significant number of domains covering as many
aspects of planning as possible, then experiment with these problems, called training set,
and all the possible setups of the planning system (864 in the case of HAP), record all
the data (problem attributes, planner configuration and the results in terms of planning
time and plan length) and try to learn from that. It is obvious that the selection of problems
for the training set is the second crucial part of the whole process. In order to avoid the
over fitting and the disorientation of the learned model, the training set must be
significantly large and uniformly distributed over a large and representative set of
different domains.

After the collection of the data there are two important stages in the process of
building the adaptive system: (a) selecting and implementing an appropriate learning

Table 4. Relation between problem aspects and attributes

Attribute Size Complexity Directionality Heuristics 
A1 •    
A2 • •   
A3 •    
A4 •  •  
A5 • •   
A6 •    
A7 • •   
A8 •    
A9 • •   
A10  •  • 
A11  •  • 
A12  •   
A13  •   
A14  •   
A15  •   
A16  •   
A17  •   
A18  • •  
A19 • •   
A20 • •   
A21  •   
A22  •   
A23  • •  
A24   •  
A25   • • 
A26   • • 
A27   • • 
A28  • •  
A29  • •  
A30    • 
A31    • 
A32   • • 
A33  • • • 
A34  • • • 
A35  • • • 
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technique in order to extract the model and (b) embedding the model in an integrated
system that will automatically adapt to the problem in hand. Note however, that these
steps cannot be viewed as separate tasks in all learning approaches.

The rest of the section addresses these issues and presents details concerning the
development of two adaptive systems, namely HAPRC and HAPNN.

Data Preparation
A necessary initial step in most data mining applications is data preparation. In our

case, the data were collected from the execution of HAP using all 864 parameter
configurations on 30 problems from each of the 15 planning domains of Table 5. The
process of collecting the data is sketched in Figure 2. The recorded data for each run
contained the 35 problem attributes presented in the above section, the seven planner
parameters presented, the number of steps in the resulting plan and the required time for
building it.

In the case where the planner did not manage to find a solution within the upper time
limit of 60 seconds, a special value (999999) was recorded for both steps and time. This
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Figure 2. Preparing the training data

Table 5. Domains used for the creation of the learning data

Domain Source 
Assembly New domain 
Blocks-world (3 operators) Bibliography  
Blocks-world (4 operators) AIPS 98, 2000 
Driver AIPS 2002 
Ferry FF collection 
Freecell AIPS 2000, 2002 
Gripper AIPS 98 
Hanoi Bibliography 
Sokoban New domain 
Logistics AIPS 98, 2000 
Miconic-10 AIPS 2000 
Mystery AIPS 98 
Tsp FF collection 
Windows New domain 
Zeno AIPS 2002 
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led to a dataset of 388.800 (450 problems * 864 configurations) records with 44 fields, the
format of which is presented in Figure 3.

This dataset did not explicitly provide information on the quality of each run.
Therefore, a data pre-processing stage was necessary that would decide about the
performance of each configuration of HAP (for a given problem) based on the two
performance metrics (number of plan steps and the required time for finding it). However,
it is known within the planning community that giving a solution quickly and finding a
short plan are contradicting directives for a planning system. There were two choices in
dealing with this problem: (a) create two different models, one for fast planning and one
for short plans, and then let the user decide which one to use or (b) find a way to combine
these two metrics and produce a single model which uses a trade-off between planning
time and length of plans. We tested both scenarios and noticed that in the first one the
outcome was a planner that would either create short plans after too long a time, or create
awfully large plans quickly. Since none of these cases are acceptable in real-world
situations, we decided to adopt the second scenario.

In order to combine the two metrics we first normalized the plan steps and planning
time according to the following transformation:

• Let Sij be the number of plan steps and Tij be the required time to build it for problem
i (i=1..450) and planner configuration j (j=1..864).

• We first found the shortest plan and minimum planning time for each problem
among the tested planner configurations.

min min( )i ij
j

SS = , 
min min( )i ij

j
T T=

• We then normalized the results by dividing the minimum plan length and minimum
planning time of each run with the corresponding problem value. For the cases
where the planner could not find a solution within the time limits, the normalized
values of steps and time were set to zero.

•
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• We finally created a combined metric about plan attribute Mij, which uses a
weighted sum of the two normalized criteria:

Figure 3. The format of the records

Planning parameters 
 

Problem attributes 
 

Performance metrics 
 

p1 p2 … p7 a1 a2 … a35 steps time 
 

   



Machine Learning for Adaptive Planning   105

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

* *norm norm
ij s ij t ijM w S w T= +

Classification Rules
Learning sets of if-then rules is an appealing learning method, due to the easily

understandable representation of rules by humans. There are various approaches to rule
learning, including transforming decision trees to rules and using genetic algorithms to
encode each rule set. We will here briefly describe another approach that is based on the
idea of Sequential Covering that it has been exploited by a number of planning systems.

Sequential covering is a family of algorithms for learning rule sets based on the
strategy of learning one rule, removing the data it covers, then iterating this process
(Mitchell, 1997). The first rule will be learned based on all the available training examples.
We then remove any positive examples covered by this rule and then invoke it again to
learn a second rule based on the remaining training examples. It is called a sequential
covering algorithm because it sequentially learns a set of rules that together cover the
full set of positive examples. The final set of rules can then be sorted so that more accurate
rules will be considered first when a new instance must be classified.

Learning a rule usually involves performing a heuristic search in the space of
potential attribute-value pairs to be added to the current rule. Depending on the strategy
of this search and the performance measure used for guiding the heuristic search several
variations of sequential covering have been developed.

The CN2 program (Clark & Niblett, 1989) employs a general to specific beam search
through the space of possible rules in search of a rule with high accuracy, though perhaps
incomplete coverage of the data. Beam search is a greedy non-backtracking search
strategy in which the algorithm maintains a list of the k best candidates at each step, rather
than a single best candidate. On each search step, specializations are generated for each
of these k best candidates, and the resulting set is again reduced to the k most promising
members. A measure of entropy is the heuristic guiding the search.

AQ (Michalski et al., 1986) also conducts a general-to-specific beam-search for each
rule, but uses a single positive example to focus this search. In particular, it considers
only those attributes satisfied by the positive example as it searches for progressively
more specific hypotheses. Each time it learns a new rule it selects a new positive example
from those that are not yet covered, to act as a seed to guide the search for this new
disjunct.

IREP (Furnkranz & Widmer, 1994), RIPPER (Cohen, 1995) and SLIPPER (Cohen &
Singer, 1999) are three rule learning systems that are based on the same framework but
use reduced error pruning to prune the antecedents of each discovered rule. IREP was
a first algorithm that employed reduced-error pruning. RIPPER is an enhanced version
of the IREP approach dealing with several limitations of IREP and producing rules of
higher accuracy. SLIPPER extends RIPPER by using confidence-rated boosting and
manages to achieve even better accuracy.

Classifying Executions
In order to learn classification rules from the dataset, a necessary step was to decide

for the two classes (good run or bad run) based on the value of the combined quality
metric Mij. Therefore, we split the records of the training data into two categories: (a) the
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class of good runs consisting of the records for which Mij was larger than a threshold
and (b) the class of bad runs consisting of the remaining records. In order to create these
two sets of records, we calculated the value Qij for each run, which is given by the
following formula:

,
,

ij
ij

ij

good M c
Q

bad M c
>

=  ≤

where c, is the threshold constant controlling the quality of the good runs. For the Mij
metric, we used the value of 1 for both ws and wt in order to keep the balance between the
two quality criteria.

For example, for c equal to 1.6 the above equation means that, “a plan is good if its
combined steps and time are at most 40% worse (bigger) than the combined minimum
plan steps and time for the same problem.” Since normalized steps and time are combined
with a 1:1 ratio, the above 40% limit could also be interpreted as an average of 20% for
each steps and time. This is a flexible definition that would allow a plan to be characterized
as good even if its steps are, for example, 25% worse than the minimum steps, as long as
its time is at most 15% worse than the minimum time, provided that their combination is
at most 40% worse than the combined minimum steps and time. In the general case the
combined steps and time must be at most (2-c)*100% worse than the combined minimum
steps and time. After experimenting with various values for c we ended up that 1.6 was
the best value to be adopted for the experiments.

Modeling
The next step was to apply a suitable machine learning algorithm in order to discover

a model of the dependencies between problem characteristics, planner parameters and
good planning performance. A first requirement was the interpretability of the resulting
model, so that the acquired knowledge would be transparent and open to the inquiries
of a planning expert. Apart from developing an adaptive planner with good performance
to any given planning problem, we were also interested in studying the resulting model
for interesting new knowledge and justifications for its performance. Therefore, symbolic
learning approaches were at the top of our list.

Mining association rules from the resulting dataset was a first idea, which however
was turned down due to the fact that it would produce too many rules, making it extremely
difficult to produce all the relevant ones. In our previous work (Vrakas et al., 2003a), we
have used the approach of classification based on association rules (Liu, Hsu & Ma,
1998), which induces association rules that only have a specific target attribute on the
right hand side. However, such an approach was proved inappropriate for our current
much more extended dataset.

We therefore turned towards classification rule learning approaches, and specifi-
cally decided to use the SLIPPER rule learning system (Cohen & Singer, 1999) which is
fast, robust, easy to use, and its hypotheses are compact and easy to understand.
SLIPPER generates rule sets by repeatedly boosting a simple, greedy rule learner. This
learner splits the training data, grows a single rule using one subset of the data and then
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prunes the rule using the other subset. The metrics that guide the growing and pruning
of rules is based on the formal analysis of boosting algorithms. The implementation of
SLIPPER that we used handles only two-class classification problems. This suited fine
our two-class problem of “good” and “bad” performance. The output of SLIPPER is a set
of rules predicting one of the classes and a default rule predicting the other one, which
is engaged when no other rule satisfies the example to be classified. We run SLIPPER so
that the rule set predicts the class of “good” performance.

The Rule-Based Planner Tuner
The next step was to embed the learned rules in HAP as a rule-based system that

decides the optimal configuration of planning parameters based on the characteristics
of a given problem. In order to perform this task certain issues had to be addressed:

Should all the rules be included?
The rules that could actually be used for adaptive planning are those that associate,

at the same time, problem characteristics, planning parameters and the quality field. So,
the first step was to filter out the rules that included only problem characteristics as their
antecedents. This process filtered out 21 rules from the initial set of 79 rules. We notice
here that there were no rules including only planning parameters. If such rules existed,
then this would mean that certain parameter values are good regardless of the problem
and that the corresponding parameters should be fixed in the planner.

The remaining 58 rules that model good performance were subsequently trans-
formed so that only the attributes concerning problem characteristics remained as
antecedents and the planning parameters were moved to the right-hand side of the rule
as conclusions, replacing the rule quality attribute. In this way, a rule decides one or more
planning parameters based on one or more problem characteristics.

What Conflict Resolution Strategy Should be Adopted for Firing the Rules?
Each rule was accompanied by a confidence metric, indicating how valid a rule is,

that is what percentage of the relevant data in the condition confirms the conclusion-
action of the rule. A 100% confidence indicates that it is absolutely certain that when the
condition is met, then the action should be taken.

The performance of the rule-based system is one concern, but it occupies only a tiny
fragment of the planning procedure, therefore it is not of primary concern. That is why
the conflict resolution strategy used in our rule-based system is based on the total
ordering of rules according to the confidence factor, in descending order. This decision
was based on our primary concern to use the most certain (confident) rules for
configuring the planner, because these rules will most likely lead to a better planning
performance.

Rules are appropriately encoded so that when a rule fires and sets one or more
parameters, then all the other rules that might also set one (or more) of these parameters
to a different setting are “disabled.” In this way, each parameter is set by the most
confident rule (examined first), while the rest of the rules that might affect this parameter
are skipped.
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What Should We do with Parameters Not Affected by the Rule System?
The experiments with the system showed that on average the rule-based system

would affect approximately four planning parameters, leaving at the same time three
parameters unset. According to the knowledge model, if a parameter is left unset, its value
should not affect the performance of the planning system. However, since the model is
not complete, this behaviour could also be interpreted as an inability of the learning
process to extract a rule for the specific case. In order to deal with this problem we
performed a statistical analysis in order to find the best default settings for each
independent parameter.

For dealing with situations where the rule-based system leaves all parameters unset
we calculated the average normalized steps and time for each planner configuration:
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and recorded the configuration with the best sum of the above metrics, which can be seen
in Table 6.

For dealing with situations where the rule system could only set part of the
parameters, but not all of them, we repeated the above calculations for each planner
parameter individually, in order to find out if there is a relationship between individual
settings and planner performance. Again for each parameter we recorded the value with
the best sum of the average normalized steps and time. These settings are illustrated in
Table 6.

In the future we will explore the possibility to utilize learned rules that predict bad
performance as integrity constraints that guide the selection of the unset planner
parameters in order to avoid inappropriate configurations.

The rule configurable version of HAP, which is outlined in  contains two additional
modules, compared to the manually configurable version of the system, that are run in
a pre-planning phase. The first module, noted as Problem Analyzer, uses the problem’s
representation, constructed by the Parser, to calculate the values of the 35 problem
characteristics used by the rules. These values are then passed to the Rule System

Table 6. Best combined and individual values of parameters

Name Best Configuration Best Individual Value 
Direction 0 0 
Heuristic 1 1 
Weights (w1 and w2) 2 2 
Penalty 10 100 
Agenda 100 10 
Equal_estimation 1 1 
Remove 0 1 
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module, which tunes the planning parameters based on the embedded rule base and the
default values for unset parameters. The values of the planning parameters along with
the problem’s representation are then passed to the planning module, in order to solve
the problem.

k Nearest Neighbors
Apart from the rule-based approaches, we also experimented with other learning

methodologies, mainly in order to overcome several limitations of the former. A very
interesting learning approach, which could be easily adapted to our problem, is the k
Nearest Neighbors (kNN) algorithm. According to this approach, when the planner is
faced with a new problem, it identifies the k nearest instances from the set of training
problems, aggregates the performance results for the different planner configurations
and selects the one with the best average performance.

This is the most basic instance-based learning method for numerical examples. The
nearest neighbors of an instance are defined in terms of some distance measure for the
vectors of values of the examples. Considering the following instance x, that is described
by the attributes:

( ) ( ) ( )1 1, ,..., nx x xα α α

where αr(x) denotes the value of the instance for the rth attribute. Then the distance d
of two instances x1, x2 can be measured using any suitable L norm:

Figure 4. HAPRC architecture
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For L=1 we get the Manhattan distance, while for L=2 we get the Euclidean distance.
When a new instance requires classification, the k nearest neighbor approach first

retrieves the k nearest instances to this one. Then it selects the classification that most
of these instances propose.

Preparing the Training Data
According to the methodology previously described, the system needs to store two

kinds of information: (a) the values for the 35 attributes for each one of the 450 problems
in the training set in order to identify the k closest problems to a new one and (b) the
performance (steps and time) of each one of the 864 planner configurations for each
problem in order to aggregate the performance of the k problems and then find the best
configuration.

The required data were initially in the flat file produced by the preparation process
described in a previous section. However, they were later organized as a multi-relational
data set, consisting of two primary tables, problems (450 rows) and parameters (864
rows), and a relation table performances (450*864 rows), in order to save storage space
and enhance the search for the k nearest neighbors and the retrieval of the corresponding
performances. The tables were implemented as binary files, with the performances table
being sorted on both the problem id and the parameter id.

Online Planning Mode
Given a new planning problem, HAPNN first calculates the values of the problem

characteristics. Then the kNN algorithm is engaged in order to retrieve the ids of the k
nearest problems from the problems file. The number of neighbors, k, is a user-defined
parameter of the planner. In the implementation of kNN we use the Euclidean distance
measure with the normalized values of the problem attributes to calculate the nearest
problem.

Using the retrieved ids and taking advantage of the sorted binary file, HAPNN
promptly retrieves the performances for all possible configurations in a k*864 two-
dimensional matrix. The next step is to combine these performances in order to suggest
a single parameter configuration with the optimal performance, based on past experience
of the k nearest problems. The optimal performance for each problem is calculated using
the Mij criterion, where the two weights ws and wt are set by the user.

We can consider the final k*864 2-dimensional matrix as a classifier combination
problem, consisting of k classifiers and 864 classes. We can combine the decisions of
the k classifiers, using the average Bayes rule, which essentially comes down to
averaging the planner scores across the k nearest problems and selecting the decision
with the largest average. Thus, the parameter configuration j (j=1..864) with the largest
C is the one that is proposed and used.
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The whole process for the online planning mode of HAPNN is depicted in Figure 5.
It is worth noting that HAPNN actually outputs an ordering of all parameter configurations
and not just one parameter configuration. This can be exploited, for example, in order to
output the top ten configurations and let the user decide amongst them. Another useful
aspect of the ordering is that when the first parameter configuration fails to solve the
problem within certain time, then the second best could be tried. Another interesting
alternative in such a case is the change of the weight setting so that time has a bigger
weight. The effect of the weights in the resulting performance is empirically explored in
the experimental results section that follows.

Off-Line Incremental Training Mode
HAPNN can be trained incrementally with each new planning problem that arises.

Specifically, the planner stores each new examined planning problem, so that it can later
train from it off-line. As in the training data preparation phase, training consists of
running the HAP planner on the batch of newly stored problems using all 864 value
combinations of the seven parameters. For each run, the features of the problem, the
performance of the planner (steps of the resulting plan and required planning time) and
the configuration of parameters are recorded.

The incremental training capability is an important feature of HAPNN, stemming from
the use of the kNN algorithm. As the generalization of the algorithm is postponed for the
online phase, learning actually consists of just storing past experience. This is an
incremental process that makes it possible to constantly enhance the performance of the
adaptive planner with the advent of new problems.

EXPERIMENTAL RESULTS
We have conducted four sets of comprehensive experiments in order to evaluate

the potential gain in performance offered by the adaptive way in which the planner
parameters are configured and to compare the two different approaches (rule-based and
kNN). For the experiments presented below we used HAPNN with the value of k set to 7.

Figure 5. Online planning mode
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All the runs of the planning systems (static and adaptive), including those used in
the statistical analysis and the machine learning process, were performed on a SUN
Enterprise Server 450 with 4 ULTRA-2 processors at 400 MHz and 2 GB of shared memory.
The operating system of the computer was SUN Solaris 8. For all experiments we counted
CPU clocks and we had an upper limit of 60 sec, beyond which the planner would stop
and report that the problem is not solved.

Adapting to Problems of Known Domains
This experiment aimed at evaluating the generalization of the adaptive planners’

knowledge to new problems from domains that have already been used for learning.
Examining this learning problem from the viewpoint of a machine learner we notice that
it is quite a hard problem. Its multi-relational nature (problem characteristics and planner
parameters) resulted in a large dataset, but the number of available problems (450) was
small, especially compared to the number of problem attributes (35). This gives rise to
two problems with respect to the evaluation of the planners: (a) Since the training data
is limited (450 problems), a proper strategy must be followed for evaluating the planners’
performance, (b) evaluating on already seen examples must definitely be avoided,
because it will lead to rather optimistic results due to overfitting.

For the above reasons we decided to perform ten-fold cross-validation. We have
split the original data into ten cross-validation sets, each one containing 45 problems
(three from each of the 15 domains). Then we repeated the following experiment ten times:
in each run, one of the cross-validation sets was withheld for testing and the nine
remaining were merged into a training set. The training set was used for learning the
models of HAPRC and HAPNN and the test set for measuring their performance. Specifi-
cally, we calculated the sum of the average normalized steps and time. In addition we
calculated the same metric for the best static configuration based on statistical analysis
of the training data (HAPMC), in order to calculate the gain in performance. Finally, we
calculated the same metric for the best configuration for any given problem (HAPORACLE)
in order to compare with the maximum performance that the planners could achieve if it
had an oracle predicting the best configuration. The results of each run were averaged
and thus a proper estimation was obtained, which is presented in Table 7.

Table 7. Comparative results for adapting to problems of known domains

Fold HAPMC HAPORACLE HAPRC HAPNN 
1 1,45 1,92 1,60 1,74 
2 1,63 1,94 1,70 1,73 
3 1,52 1,94 1,60 1,70 
4 1,60 1,94 1,70 1,75 
5 1,62 1,92 1,67 1,73 
6 1,66 1,92 1,67 1,76 
7 1,48 1,91 1,69 1,72 
8 1,47 1,91 1,57 1,74 
9 1,33 1,91 1,47 1,59 

10 1,43 1,92 1,65 1,73 
 Average 1,52 1,92 1,63 1,72 
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Studying the results of Table 7 we notice that both adaptive versions of HAP
significantly outperformed HAPMC. The difference in the performance between HAPRC
and HAPMC was 0.11 on average, which can be translated as a 7% average gain combining
both steps and time. HAPNN performed even better, scoring on average 0.2 more (13%
gain) than the static version. Moreover, the auto-configurable versions outperformed
the static one in all folds, exhibiting a consistently good performance. This shows that
the learning methodologies we followed were fruitful and resulted in models that
successfully adapt HAP to unknown problems of known domains.

Adapting to Problems of Unknown Domains
The second experiment aimed at evaluating the generalization of the adaptive

planners’ knowledge to problems of new domains that have not been used for learning
before. In a sense this would give an estimation for the behaviour of the planner when
confronted with a previously unknown problem of a new domain.

This is an even harder learning problem considering the fact that there are very few
domains that have been used for learning (15), especially compared again to the 35
problem attributes. To evaluate the performances of HAPRC and HAPNN we used leave-
one-(domain)-out cross-validation. We split the original data into 15 cross-validation
sets, each one containing the problems of a different domain. Then we repeated the
following experiment 15 times: In each run, one of the cross-validation sets was withheld
for testing and the 14 rest were merged into a training set. As in the previous experiment,
the training set was used for learning the models and the test set for measuring its
performance.

The results show that all the planners performed worse than the previous experi-
ment. Still HAPRC and HAPNN managed to increase the performance over HAPMC, as it can
be seen in Table 8.

We notice a 3% average gain of HAPRC and 2% average gain of HAPNN over the static
version in the combined metric. This is a small increase in performance, but it is still a
success considering that there were only 15 domains available for training. The enrich-
ment of data from more domains will definitely increase the accuracy of the models,
resulting in a corresponding increase in the performance of the adaptive systems.

Scalability of the Methodology
The third experiment aimed at showing the ability of the adaptive systems to learn

from easy problems (problems that require little time to be solved) and to use the acquired
knowledge as a guide for difficult problems. It is obvious that such a behavior would be
very useful, since according to the methodology, each problem in the training set must
be attacked with every possible combination of the planner’s parameters and for hard
problems this process may take enormous amounts of time.

In order to test the scalability of the methodology, we have split the initial data set
into two sets: (a) the training set containing the data for the 20 easiest problems from each
domain and (b) the test set containing the 10 hardest problems from each domain. The
metric used for the discrimination between hard and easy problems was the average time
needed by the 864 different planner setups to solve the problem. We then used the
training set in order to learn the models and statistically find the best static configuration
of HAP and tested the two adaptive planners and HAPMC on the problems of the test set.
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For each problem we have also calculated the performance of HAPORACLE in order to show
the maximum performance that could have been achieved by the planner.

The results of the experiments, which are presented in Table 9 are quite impressive.
The rule-based version managed to outperform the best static version in 11 out of the
15 domains and its performance was approximately 40% better on average. Similarly
HAPNN was better in 11 domains too and the average gain was approximately 33%. There
are some very interesting conclusions that can be drawn from the results:

• With the exception of a small number of domains, the static configurations, which
are effective for easy problems, do not perform well for the harder instances of the
same domains.

• There are some domains (e.g., Hanoi) where there must be great differences
between the morphology of easy and hard problems and therefore neither the
statistical nor the learning analyses can effectively scale up.

• It is clear that some domains present particularities in their structure, and it is quite
difficult to tackle them without any specific knowledge. For example, in Freecell
all the planners and specifically HAPRC and HAPMC that were trained from the rest
of the domains only, did not perform very well (see Table 8), while the inclusion of
Freecell’s problems in their training set, gave them a boost (see Table 9).

• There are domains where there is a clear trade-off between short plans and little
planning time. For example, the low performance of HAPORACLE in the Tsp domain
shows that the configurations that result in short plans require a lot of planning
time and the ones that solve the problems quickly produce bad plans.

• The proposed learning paradigms can scale up very well and the main reason for
this is the general nature of the selected problem attributes.

Table 8. Comparative results for adapting to problems of unknown domains

Test Domain HAPMC HAPORACLE HAPRC HAPNN 
Assembly 1,31 1,89 1,46 1,08 

Blocks 1,13 1,98 1,10 1,77 
Blocks_3op 1,69 1,99 1,52 1,81 

Driver 1,52 1,92 1,49 1,45 
Ferry 1,03 2,00 1,66 1,41 

Freecell 1,43 1,96 1,39 1,70 
Gripper 1,75 1,99 1,62 1,61 

Hanoi 1,08 1,87 1,03 1,10 
Logistics 1,66 1,91 1,69 1,75 
Miconic 1,79 1,96 1,71 1,07 
Mystery 1,21 1,97 1,11 0,88 
Sokoban 1,20 1,96 1,57 1,45 

Tsp 1,56 1,74 1,56 1,29 
Windows 1,30 1,78 1,26 1,55 

Zeno 1,26 1,93 1,34 1,35 
Average 1,39 1,92 1,43 1,42 
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Ability to Learn a Specific Domain
The fourth experiment aimed at comparing general models, which have been learned

from a variety of domains versus specific models that have been learned from problems
of a specific domain. The reason for such an experiment is to have a clear answer to the
question whether the planning system could be adapted to a target domain by using
problems of solely this domain. The rationale behind this is that a general-purpose
domain independent planner can be used without having to hand code it in order to suit
the specific domain. Furthermore, the experiment can also show how disorienting the
knowledge from other domains can be.

In order to carry out this experiment, we created 15 train sets, each one containing
the 20 easiest problems of a specific domain and 15 test sets with the 10 hardest instances.
The next step was to learn specific models for each domain, and test them on the hardest
problems of the same domain. For each domain we compared the performance of the
specialized models versus the performance of general models, which have been trained
from the 20 easier problems from all 15 domains (see previous subsection). The results
from the experiment are presented in , where:

• HAPMC corresponds to the manually configured version according to the statistical
analysis on the 20 easy problems of each domain,

• specific HAPRC and HAPNN correspond to the adaptive versions trained only from
the 20 easier problems of each domain,

• general HAPRC and HAPNN correspond to the adaptive versions trained from the
300 problems (20 easier problems from each one of the 15 domains) and

• HAPOracle corresponds to the ideal configuration.

Table 9. Scalability of the methodology

Test Domain HAPMC HAPORACLE HAPRC HAPNN 
Assembly 0,91 1,86 1,64 1,80 
Blocks 0,91 1,86 1,64 1,72 
Blocks_3op 1,86 1,98 1,72 1,86 
Driver 1,22 1,92 1,72 1,51 
Ferry 0,31 2,00 1,89 1,85 
Freecell 1,86 1,96 1,87 1,84 
Gripper 1,68 1,99 1,76 1,96 
Hanoi 0,45 1,80 1,19 0,50 
Logistics 1,68 1,87 1,80 1,81 
Miconic 1,93 1,96 1,93 1,93 
Mystery 0,67 1,94 1,73 1,52 
Sokoban 0,79 1,92 1,66 1,47 
Tsp 1,35 1,54 1,32 1,46 
Windows 1,52 1,65 1,49 1,42 
Zeno 0,89 1,91 1,77 1,29 
Average 1,20 1,88 1,68 1,60 
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According to the results presented in Table 10, HAPRC outperforms the best static
one in 13 out of the 15 domains and on average it is approximately 7% better. This shows
that we can also induce efficient models that perform well in difficult problems of a given
domain when solely trained on easy problems of this domain. However, this is not the
case for HAPNN, whose not very good performance indicates that the methodology
requires more training data, especially because there is a large number of attributes.

Comparing the specialized models of HAPRC with the general ones, we see that it is
on average 4% better. This shows that in order to adapt to a single domain, it is better
to train the planner exclusively from problems of that domain, although such an approach
would compromise the generality of the adaptive planner. The results also indicate that
on average there is no actual difference between the performance of the general and the
specific versions of HAPNN. To some extent this behavior is reasonable and can be
justified by the fact that most of the nearest neighbors of each problem belong to the same
domain and no matter how many redundant problems are included in the training set, the
algorithm will select the same problems in order to learn the model.

DISCUSSION AND CONCLUSION
This chapter presented our research work in the area of using Machine Learning

techniques in order to infer and utilize domain knowledge in Automated Planning. The
work consisted of two different approaches: The first one utilizes classification rules
learning and a rule-based system and the second one uses a variation of the k-Nearest
Neighbors learning paradigm.

Table 10. General vs. specialized models

   HAPRC HAPNN 
Test Domain HAPMC HAPORACLE specific general specific general 
Assembly 1,68 1,86 1,72 1,64 1,84 1,80 
Blocks 1,68 1,86 1,74 1,64 1,64 1,72 
Blocks_3op 1,85 1,98 1,88 1,72 1,89 1,86 
Driver 1,68 1,92 1,78 1,72 1,22 1,51 
Ferry 1,83 2,00 1,85 1,89 1,85 1,85 
Freecell 1,88 1,96 1,85 1,87 1,84 1,84 
Gripper 1,66 1,99 1,78 1,76 1,96 1,96 
Hanoi 1,00 1,80 1,38 1,19 0,50 0,50 
Logistics 1,80 1,87 1,81 1,80 1,81 1,81 
Miconic 1,93 1,97 1,93 1,93 1,93 1,93 
Mystery 1,65 1,94 1,83 1,73 1,52 1,52 
Sokoban 1,61 1,92 1,88 1,66 1,57 1,47 
Tsp 1,36 1,54 1,38 1,32 1,46 1,46 
Windows 1,35 1,65 1,48 1,49 1,46 1,42 
Zeno 1,43 1,91 1,80 1,78 1,44 1,29 
Average 1,63 1,88 1,74 1,68 1,60 1,60 
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In the first approach the learned knowledge consists of rules that associate specific
values or value ranges of measurable problem attributes with the best values for one or
more planning parameters, such as the direction of search or the heuristic function. The
knowledge is learned off-line and it is embedded in a rule system, which is utilized by the
planner in a pre-processing phase in order to decide for the best setup of the planner
according to the values of the given problem attributes.

The second approach is also concerned with the automatic configuration of
planning systems in a pre-processing phase, but the learning is performed online. More
specifically, when the system is confronted with a new problem, it identifies the k nearest
instances from a database of solved problems and aggregates the planner setups that
resulted in the best solutions according to the criteria imposed by the user.

The model of the first approach is very compact and it consists of a relatively small
number (less than 100) of rules that can be easily implemented in the adaptive system.
Since the size of the model is small it can be easily consulted for every new problem and
the overhead imposed to the total planning time is negligible. However, the inference of
the model is a complicated task that involves many subtasks and requires a significant
amount of processing time. Therefore, the model cannot be easily updated with new
problems. Furthermore, if the user wishes to change the way the solutions are evaluated
(e.g., emphasizing more on plan size) this would require rebuilding the whole model.

On the other hand, the model of the k Nearest Problems approach is inferred online
every time the system is faced with a new problem. The data that are stored in the database
of the system are in raw format and this allows incremental expansion and easy update.
Furthermore, each run is evaluated online and the weights of the performance criteria
(e.g., planning time or plan size) can be set by the user. However, since the system
maintains raw data for all the past runs, it requires a significant amount of disk size, which
increases as new problems are added in the database. Moreover, the overhead imposed
by the processing of data may be significant, especially for large numbers of training
problems.

Therefore, the decision on which method to follow strongly depends on the
application domain. For example, if the planner is used as a consulting software for
creating large plans, for example for logistics companies, then neither the size require-
ments or the few seconds overhead of the k Nearest Problems would be a problem. On
the other hand, if the planner must be implemented as a guiding system on a robot with
limited memory then the rule-based model would be more appropriate.

According to the experimental results, both systems have exhibited promising
performance that is on average better than the performance of any statistically found
static configuration. The speedup improves significantly when the system is tested on
unseen problems of known domains, even when the knowledge was induced by far easier
problems than the tested ones. Such a behavior can prove very useful in customizing
domain independent planners for specific domains using only a small number of easy-
to-solve problems for training, when it cannot be afforded to reprogram the planning
system.

The speedup of our approach compared to the statistically found best configuration
can be attributed to the fact that it treats planner parameters as associations of the
problem characteristics, whereas the statistical analysis tries to associate planner
performance with planner settings, ignoring the problem morphology.
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In the future, we plan to expand the application of Machine Learning to include more
measurable problem characteristics in order to come up with vectors of values that
represent the problems in a unique way and manage to capture all the hidden dynamics.
We also plan to add more configurable parameters of planning, such as parameters for
time and resource handling and enrich the HAP system with other heuristics from state-
of-the-art planning systems. Moreover, it is in our direct plans to apply learning
techniques to other planning systems in order to test the generality of the proposed
methodology.

In addition, we will explore the applicability of different rule-learning algorithms,
such as decision-tree learning that could potentially provide knowledge of better quality.
We will also investigate the use of alternative automatic feature selection techniques that
could prune the vector of input attributes thus giving the learning algorithm the ability
to achieve better results. The interpretability of the resulting model and its analysis by
planning experts will also be a point of greater focus in the future.

REFERENCES
Ambite, J. L., Knoblock, C., & Minton, S. (2000). Learning plan rewriting rules. In

Proceedings of the Fifth International Conference on Artificial Intelligence
Planning and Scheduling (pp. 3-12).

Bonet, B., & Geffner, H. (1999). Planning as heuristic search: New results. In Proceedings
of the Fifth European Conference on Planning (pp. 360-372).

Bonet, B., Loerincs, G., & Geffner, H. (1997). A robust and fast action selection mechanism
for planning. In Proceedings of the 14th International Conference of AAAI (pp.
714-719).

Borrajo, D., & Veloso, M. (1996). Lazy incremental learning of control knowledge for
efficiently obtaining quality plans. Artificial Intelligence Review, 10, 1-34.

Carbonell, J., Knoblock, C., & Minton, S. (1991). PRODIGY: An integrated architecture
for planning and learning. In K. VanLehn (Ed.), Architectures for intelligence (pp.
241-278). Hillsdale, NJ: Lawrence Erlbaum Associates.

Carbonell, J. G. (1983). Learning by analogy: Formulating and generalizing plans from
past experience. In R. S. Michalski, J. G. Carbonell & T. M. Mitchell (Eds.), Machine
Learning: An Artificial Intelligence Approach (pp. 137-162). Palo Alto, CA: Tioga
Press.

Cardie, C. (1994). Using decision trees to improve case-based learning. In Proceedings
of the 10th International Conference on Machine Learning (pp. 28-36).

Clark, P., & Niblett, R. (1989). The CN2 induction algorithm. Machine Learning, 3(4), 261-
284.

Cohen, W. (1995). Fast effective rule induction. In Proceedings of the 12th International
Conference on Machine Learning (pp. 115-123).

Cohen, W., & Singer Y. (1999). A simple, fast, and effective rule learner. In Proceedings
of the 16th Conference of AAAI (pp. 335-342).

Edelkamp, S., & Helmert, M. (2001). The model checking integrated planning system. AI-
Magazine, (Fall), 67-71.

Ellman, T. (1989). Explanation-based learning: A survey of programs and perspectives.
Computing Surveys, 21(2), 163-221.



Machine Learning for Adaptive Planning   119

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Etzioni, O. (1993). Acquiring search-control knowledge via static analysis. Artificial
Intelligence, 62(2), 265-301.

Fikes, R., Hart, P., & Nilsson, N. (1972). Learning and executing generalized robot plans.
Artificial Intelligence, 3, 251-288.

Furnkranz, J., & Widmer, G. (1994). Incremental reduced error pruning. In Proceedings
of the 11th International Conference on Machine Learning (pp. 70-77).

Gerevini, A., Saetti, A., & Serina, I. (2003). Planning through stochastic local search and
temporal action graphs. Journal of Artificial Intelligence Research, 20, 239-290.

Gopal, K. (2000). An adaptive planner based on learning of planning performance
(Master Thesis). Office of Graduate Studies, Texas A&M University.

Hammond, K. (1989). Case-based planning: Viewing planning as a memory task. San
Diego, CA: Academic Press.

Harmelen van, F., & Bundy, A. (1988). Explanation-based generalization = partial
evaluation. Artificial Intelligence, 3(4), 251-288.

Hoffmann, J., & Nebel, B. (2001). The FF planning system: Fast plan generation through
heuristic search. Journal of Artificial Intelligence Research, 14, 253-302.

Howe, A., & Dahlman, E. (1993). A critical assessment of benchmark comparison in
planning. Journal of Artificial Intelligence Research, 1, 1-15.

Howe, A., Dahlman, E., Hansen, C., vonMayrhauser, A., & Scheetz, M. (1999). Exploiting
competitive planner performance. In Proceedings of the Fifth European Confer-
ence on Planning (pp. 62-72).

Jones, R., & Langley, P. (1995). Retrieval and learning in analogical problem solving. In
Proceedings of the Seventh Conference of the Cognitive Science Society (pp. 466-
471).

Kambhampati, S., & Hendler, H. (1992). A validation-structure-based theory of plan
modification and reuse. Artificial Intelligence, 55, 193-258.

Knoblock, C. (1990). Learning abstraction hierarchies for problem solving. In Proceed-
ings of the Eighth National Conference on Artificial Intelligence (pp. 923-928).

Kolodner, J. L. (1993). Case-based reasoning. San Mateo, CA: Morgan Kaufmann.
Kuipers, B. (1994). Qualitative reasoning: Modeling and simulation with incomplete

knowledge. Cambridge, MA: MIT Press.
Langley, P., & Allen, J. A. (1993). A unified framework for planning and learning. In S.

Minton (Ed.), Machine learning methods for planning (pp. 317-350). San Mateo,
CA: Morgan Kaufman.

Lesh, N., Martin, N., & Allen, J. (1998). Improving big plans. In Proceedings of the
Fifteenth National Conference on Artificial Intelligence (pp. 860-867).

Liu, B., Hsu, W., & Ma, Y. (1998). Integrating classification and association rule mining.
In Proceedings of the Fourth International Conference on Knowledge Discovery
and Data Mining (Plenary Presentation).

Martin, M., & Geffner, H. (2000). Learning generalized policies in planning using concept
languages. In Proceedings of the Seventh International Conference on Knowl-
edge Representation and Reasoning, (pp. 667-677).

Michalski, R. S., Mozetic, I., Hong, J., & Lavrac, H. (1986). The multi-purpose incremental
learning system AQ15 and its testing application to three medical domains. In
Proceedings of the Fifth National Conference on Artificial Intelligence, (pp.
1041-1045).



120   Vrakas, Tsoumakas, Bassiliades, & Vlahavas

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Minton, S. (1996). Automatically configuring constraint satisfaction programs: A case
study. Constraints, 1(1/2), 7-43.

Minton, S. (1988). Learning search control knowledge: An explanation-based ap-
proach. Boston, MA: Kluwer Academic Publishers.

Mitchell, T. (1977). Machine learning. McGraw-Hill.
Refanidis, I., & Vlahavas, I. (2001). The GRT Planner: Backward heuristic construction

in forward state-space planning. Journal of Artificial Intelligence Research, 15,
115-161.

Rivest, R. (1987). Learning decision lists. Machine Learning, 2(3), 229-246.
Sutton, R. (1990). Integrated architectures for learning, planning and reacting based on

approximating dynamic programming. In Proceedings of the Seventh International
Conference on Machine Learning (pp. 216-224).

Sutton, R. S., & Barto A.G. (1998). Reinforcement learning: An introduction. Cambridge,
MA: MIT Press.

Tsoumakas, G., Vrakas, D., Bassiliades, N., & Vlahavas, I. (2004). Using the k nearest
problems for adaptive multicriteria planning. In Proceedings of the Third Hellenic
Conference on Artificial Intelligence (pp. 132-141).

Veloso, M., Carbonell, J., Perez, A., Borrajo, D., Fink, E., & Blythe, J. (1995). Integrating
planning and learning: The PRODIGY architecture. Journal of Experimental and
Theoretical Artificial Intelligence, 7(1), 81-120.

Vrakas, D., Tsoumakas, G., Bassiliades, N., & Vlahavas, I. (2003a). Learning rules for
adaptive planning. In Proceedings of the 13th International Conference on
Automated Planning and Scheduling (pp. 82-91).

Vrakas, D., Tsoumakas, G., Bassiliades, N., & Vlahavas, I. (2003b). Rule induction for
automatic configuration of planning systems (Technical Report TR-LPIS-142-
03). LPIS Group, Dept. of Informatics, Aristotle University of Thessaloniki, Greece.

Vrakas, D., & Vlahavas, I. (2001). Combining progression and regression in state-space
heuristic planning. In Proceedings of the Sixth European Conference on Planning
(pp. 1-12).

Vrakas, D., & Vlahavas, I. (2002). A heuristic for planning based on action evaluation.
In Proceedings of the 10th International Conference on Artificial Intelligence:
Methodology, Systems and Applications (pp. 61-70).

Wang, X. (1996). A multistrategy learning system for planning operator acquisition. In
Proceedings of the Third International Workshop on Multistrategy Learning (pp.
23-25).

Zimmerman, T., & Kambhampati, S. (2003). Learning-assisted automated planning:
Looking back, taking stock, going forward. AI Magazine, 24(2), 73-96.



Plan Optimization by Plan Rewriting   121

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter IV

Plan Optimization by
Plan Rewriting

José Luis Ambite, University of Southern California, USA

Craig A. Knoblock, University of Southern California, USA

Steven Minton, Fetch Technologies, USA

ABSTRACT
Planning by Rewriting (PbR) is a paradigm for efficient high-quality planning that
exploits declarative plan rewriting rules and efficient local search techniques to
transform an easy-to-generate, but possibly suboptimal, initial plan into a high-
quality plan. In addition to addressing planning efficiency and plan quality, PbR offers
a new anytime planning algorithm. The plan rewriting rules can be either specified by
a domain expert or automatically learned. We describe a learning approach based on
comparing initial and optimal plans that produce rules competitive with manually
specified ones. PbR is fully implemented and has been applied to several existing
domains. The experimental results show that the PbR approach provides significant
savings in planning effort while generating high-quality plans.

INTRODUCTION
Planning is the process of generating a network of actions, a plan that achieves a

desired goal from an initial state of the world. Many problems of practical importance can
be cast as planning problems. Instead of crafting an individual planner to solve each
specific problem, a long line of research has focused on constructing domain-indepen-
dent planning algorithms. Domain-independent planning accepts as input not only
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descriptions of the initial state and the goal for each particular problem instance, but also
a declarative domain specification, that is, the set of actions that transform a state into
a new state. Domain-independent planning makes the development of planning algo-
rithms more efficient, allows for software and domain reuse, and facilitates the principled
extension of the capabilities of the planner. Unfortunately, domain-independent plan-
ning is computationally hard (Bylander, 1994; Erol, Nau & Subrahmanian, 1995). Given
the complexity limitations, most of the previous work on domain-independent planning
has focused on finding any solution plan without careful consideration of plan quality.
Usually very simple cost functions, such as the length of the plan, have been used.
However, for many practical problems plan quality is crucial. In this chapter we present
Planning by Rewriting (PbR), a planning paradigm that addresses both planning effi-
ciency and plan quality while maintaining the benefits of domain independence. The
framework is fully implemented and we present empirical results in several planning
domains.

Two observations guided the present work. The first one is that there are two
sources of complexity in planning:

• Satisfiability: the difficulty of finding any solution to the planning problem
(regardless of the quality of the solution).

• Optimization: the difficulty of finding the optimal solution under a given cost
metric.

For a given domain, each of these facets may contribute differently to the complexity
of planning. In particular, there are many domains in which the satisfiability problem is
relatively easy and their complexity is dominated by the optimization problem. For
example, there may be many plans that would solve the problem, so that finding one is
efficient in practice, but the cost of each solution varies greatly, thus finding the optimal
one is computationally hard. We will refer to these domains as optimization domains.
Some optimization domains of great practical interest are query optimization and
manufacturing process planning.1

The second observation is that planning problems have a great deal of structure.
Plans are a type of graph with strong semantics determined by both the general properties
of planning and each particular domain specification. This structure should and can be
exploited to improve the efficiency of the planning process.

Prompted by the previous observations, we developed a novel approach for
efficient planning in optimization domains: Planning by Rewriting (PbR). The framework
works in two phases:

1. Generate an initial solution plan. Recall that in optimization domains this is efficient.
However, the quality of this initial plan may be far from optimal.

2. Iteratively rewrite the current solution plan improving its quality using a set of
declarative plan-rewriting rules, until either an acceptable solution is found or a
resource limit is reached.

As motivation, consider the optimization domains of distributed query processing
and manufacturing process planning.2 Distributed query processing (Yu & Chang, 1984)
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involves generating a plan that efficiently computes a user query from data that resides
at different nodes in a network. This query plan is composed of data retrieval actions at
diverse information sources and operations on this data (such as those of the relational
algebra: join, selection, etc). Some systems use a general-purpose planner to solve this
problem (Knoblock, 1996). In this domain it is easy to construct an initial plan (any parse
of the query suffices) and then transform it using a gradient-descent search to reduce
its cost. The plan transformations exploit the commutative and associative properties of
the (relational algebra) operators, and facts, such as that when a group of operators can
be executed together at a remote information source it is generally more efficient to do
so. Figure 1 shows some sample transformations. Simple-join-swap transforms two join
trees according to the commutative and associative properties of the join operator.
Remote-join-eval executes a join of two sub-queries at a remote source, if the source is
able to do so.

In manufacturing, the problem is to find an economical plan of machining operations
that implement the desired features of a design. In a feature-based approach (Nau, Gupta
& Regli, 1995), it is possible to enumerate the actions involved in building a piece by
analyzing its CAD model. It is more difficult to find an ordering of the operations and the
setups that optimize the machining cost. However, similar to query planning, it is possible
to incrementally transform an (possibly inefficient) initial plan. Often, the order of actions
does not affect the design goal, only the quality of the plan, thus many actions can
commute. Also, it is important to minimize the number of setups because fixing a piece
on a machine is a rather time consuming operation. Interestingly, such grouping of
machining operations on a setup is analogous to evaluating a sub-query at a remote
information source.

As suggested by these examples, there are many problems that combine the
characteristics of traditional planning satisfiability with quality optimization. For these
domains there often exist natural transformations that can be used to efficiently obtain
high-quality plans by iterative rewriting as proposed in PbR. These transformations can
be either specified by a domain expert as declarative plan-rewriting rules or learned
automatically.

There are several advantages to the planning style that PbR introduces. First, PbR
is a declarative domain-independent framework. This facilitates the specification of
planning domains, their evolution, and the principled extension of the planner with new
capabilities. Moreover, the declarative rewriting rule language provides a natural and
convenient mechanism to specify complex plan transformations. Second, PbR accepts
sophisticated quality measures because it operates on complete plans. Most previous

Figure 1. Planning transformations in query
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planning approaches either have not addressed quality issues or have very simple
quality measures, such as the number of steps in the plan, because only partial plans are
available during the planning process. In general, a partial plan cannot offer enough
information to evaluate a complex cost metric and/or guide the planning search effec-
tively. Third, PbR can use local search methods that have been remarkably successful
in scaling to large problems (Aarts & Lenstra, 1997). By using local search techniques,
high-quality plans can be efficiently generated. Fourth, the search occurs in the space
of solution plans, which is generally much smaller than the space of partial plans explored
by planners based on refinement search (Kambhampati, Knoblock & Yang, 1995). Finally,
our framework yields an anytime planning algorithm (Dean & Boddy, 1988). The planner
always has a solution to offer at any point in its computation (modulo the initial plan
generation that needs to be fast). This is a clear advantage over traditional planning
approaches, which must run to completion before producing a solution. Thus, our system
allows the possibility of trading off planning effort and plan quality. For example, in query
planning the quality of a plan is its execution time and it may not make sense to keep
planning if the cost of the current plan is small enough, even if a cheaper one could
be found.

The remainder of the chapter is structured as follows. First, we present the basic
framework of Planning by Rewriting as a domain-independent approach to local search.
Second, we show experimental results comparing the basic PbR framework with other
planners. Third, we present our approach to learning plan rewriting rules from examples.
Fourth, we show empirically that the learned rules are competitive with manually
specified ones. Finally, we discuss related work, future work, and conclusions.

PLANNING BY REWRITING
AS LOCAL SEARCH

We will describe the main issues in Planning by Rewriting as an instantiation of local
search3 (Aarts & Lenstra, 1997; Papadimitriou & Steiglitz, 1982):

• Selection of an initial feasible point: In PbR this phase consists of efficiently
generating an initial solution plan.

• Generation of a local neighborhood: In PbR the neighborhood of a plan is the set
of plans obtained from the application of a set of declarative plan-rewriting rules.

• Cost function to minimize: This is the measure of plan quality that the planner is
optimizing. The plan quality function can range from a simple domain-independent
cost metric, such as the number of steps, to more complex domain-specific ones,
such as the query evaluation cost or the total manufacturing time for a set of parts.

• Selection of the next point: In PbR, this consists of deciding which solution plan
to consider next. This choice determines how the global space will be explored and
has a significant impact on the efficiency of planning. A variety of local search
strategies can be used in PbR, such as steepest descent, simulated annealing,
etcetera. Which search method yields the best results may be domain or problem
specific.
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In the following subsections we expand on these issues. First, we discuss the use
of declarative rewriting rules to generate a local neighborhood of a plan. Second, we
address the selection of the next plan and the associated search techniques for plan
optimization. Third, we discuss the measures of plan quality. Finally, we briefly describe
some approaches for initial plan generation.

Local Neighborhood Generation: Rules and Rewriting
The neighborhood of a solution plan is generated by the application of a set of

declarative plan-rewriting rules. These rules embody the domain-specific knowledge
about what transformations of a solution plan are likely to result in higher-quality
solutions. The application of a given rule may produce one or several rewritten plans or
fail to produce a plan, but the rewritten plans are guaranteed to be valid solutions. First,
we describe PbR plans and the syntax and semantics of the plan-rewriting rules, both by
example with a formal description. Second, we discuss two approaches to rule specifi-
cation. Third, we present a taxonomy of plan-rewriting rules. Finally, we present the
rewriting algorithm.

Plan-Rewriting Rules: Syntax and Semantics
A plan in PbR is represented by a graph, in the spirit of partial-order causal-link

planners (POCL) such as UCPOP (Penberthy & Weld, 1992). In fact, PbR is implemented
on top of Sage (Knoblock, 1996), which is an extension of UCPOP. Figure 2 shows a
sample plan for the simple Blocks World domain of Figure 3.4

A plan-rewriting rule has three components: (1) the antecedent (:if field) specifies
a sub-plan to be matched; (2) the :replace field identifies the sub-plan that is going to be
removed, a subset of steps and links of the antecedent; (3) the :with field specifies the
replacement sub-plan. Figure 4 shows two rewriting rules for the Blocks World domain
introduced in Figure 3. Intuitively, the rule avoid-move-twice says that, whenever pos-

Figure 2. Sample plan in the Blocks World domain
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sible, it is better to stack a block on top of another directly, rather than first moving it to
the table. This situation occurs in plans generated by the simple algorithm that first puts
all blocks on the table and then builds the desired towers, such as the plan in Figure 2.
The rule avoid-undo says that the actions of moving a block to the table and back to its
original position cancel each other and both actions can be removed from a plan.

A rule for the manufacturing domain of Minton (1988) is shown in Figure 5. This
domain and additional rewriting rules are described in detail in the experimental sections
below. The rule states that if a plan includes two consecutive punching operations in
order to make holes in two different objects, but another machine, a drill-press, is also
available, the plan quality may be improved by replacing one of the punch operations with
the drill-press. In this domain the plan quality is the makespan (i.e., the parallel time to
manufacture all parts). This rule helps to parallelize the plan and thus improve the plan
quality.

The plan-rewriting rule syntax follows the template shown in Figure 6. Next, we
describe the semantics of the three components of a rule (:if, :replace, and :with fields) in
detail.

The antecedent, the :if field, specifies a sub-plan to be matched against the current
plan. The graph structure of the sub-plan is defined in the :operators and :links fields. The
:operators field specifies the nodes (operators) of the graph and the :links field specifies
the edges (causal and ordering links). Finally, the :constraints field specifies a set of
constraints that the operators and links must satisfy.

Figure 3. Blocks World operators
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Figure 4. Blocks World rewriting rules
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The :operators field consists of a list of node variable and node predicate pairs. The
step number of those steps in the plan that match the given node predicate would be
correspondingly bound to the node variable. The node predicate can be interpreted in
two ways: as the step action, or as a resource used by the step. For example, the node
specification (?n2 (stack ?b1 ?b3 Table)) in the antecedent of avoid-move-twice in Figure 4
shows a node predicate that denotes a step action. This node specification will collect
tuples, composed of step number ?n2 and blocks ?b1 and ?b3, obtained by matching steps
whose action is a stack of a block ?b1 that is moved from the Table to the top of another
block ?b3. This node specification applied to the plan in Figure 2 would result in three
matches: (1 C D), (2 B C), and (3 A B), for the variables (?n2 ?b1 ?b3) respectively. If the
optional keyword :resource is present, the node predicate is interpreted as one of the
resources used by a plan step, as opposed to describing a step action.5 An example of
a rule that matches against the resources of an operator is given in Figure 7, where the
node specification (?n1 (machine ?x) :resource) will match all steps that use a resource of
type machine and collect pairs of step number ?n1 and machine object ?x.

The :links field consists of a list of link specifications. Our language admits link
specifications of three types. The first type is specified as a pair of node variables. For
example, (?n1 ?n2) in Figure 5. This specification matches any temporal ordering link in
the plan, regardless if it was imposed by a causal link or by the resolution of a threat.

The second type of link specification matches causal links. Causal links are
specified as triples composed of the node variable of the producer step, a link predicate,

Figure 5. Manufacturing process planning rewriting rule
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Figure 6. Rewriting Rule template
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and the node variable of the consumer step. The semantics of a causal link is that the
producer step asserts in its effects the predicate, which in turn is needed in the
preconditions of the consumer step. For example, the link specification
(?n1 (on ?b1 Table) ?n2) in Figure 4 matches steps ?n1 that put a block ?b1 on the Table
and steps ?n2 that subsequently pick up this block. That link specification applied to the
plan in Figure 2 would result in the matches: (4 C 1) and (5 B 2), for the variables
(?n1 ?b1 ?n2).

The third type of link specification matches ordering links originating from the
resolution of threats (coming either from resource conflicts or from operator conflicts).
These links are selected by using the keyword :threat in the place of a condition. For
example, the machine-swap rule in Figure 7 uses the link specification (?n1 :threat ?n2) to
ensure that only steps that are ordered because they are involved in a threat situation
are matched. This helps to identify which are the “critical” steps that do not have any
other reasons (i.e., causal links) to be in such order, and therefore this rule may attempt
to reorder them. This is useful when the plan quality depends on the degree of parallelism
in the plan as a different ordering may help to parallelize the plan. Recall that threats can
be solved either by promotion or demotion, so the reverse ordering may also produce a
valid plan, which is often the case when the conflict is among resources as in the rule in
Figure 7.

Interpreted predicates, built-in and user-defined, can be specified in the :constraints
field. These predicates are implemented programmatically as opposed to being obtained
by matching against components from the plan. The built-in predicates currently
implemented are inequality (:neq), comparison (<, <=, >, >=), and arithmetic (+, -, *, /)
predicates. The user can also add arbitrary predicates and their corresponding program-
matic implementations. The interpreted predicates may act as filters on the previous
variables or introduce new variables (and compute new values for them). For example,
the user-defined predicate possibly-adjacent in the rules in Figure 4 ensures that the steps
are consecutive in some linearization of the plan.6 For the plan in Figure 2 the extension
of the possibly-adjacent predicate is: (0 4), (0 5), (4 5), (5 4), (4 1), (5 1), (1 2), (2 3), and
(3 Goal).

The user can easily add interpreted predicates by including a function definition
that implements the predicate. During rule matching our algorithm passes arguments and
calls such functions when appropriate. The current plan is passed as a default first
argument to the interpreted predicates in order to provide a context for the computation
of the predicate (but it can be ignored). Figure 8 show a skeleton for the (Lisp)
implementation of the possibly-adjacent and less-than interpreted predicates.

The consequent is composed of the :replace and :with fields. The :replace field
specifies the sub-plan that is going to be removed from the plan, which is a subset of the

Figure 7. Machine-swap rewriting rule
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steps and links identified in the antecedent. If a step is removed, all the links that refer
to the step are also removed. The :with field specifies the replacement sub-plan. As we
will see later, the replacement subplan does not need to be completely specified. For
example, the :with field of the avoid-move-twice rule of Figure 4 only specifies the addition
of a stack step but not how this step is embedded into the plan. The links to the rest of
the plan are automatically computed during the rewriting process.

Plan-Rewriting Rules: Full vs. Partial Specification
PbR gives the user total flexibility in defining rewriting rules. In this section we

describe two approaches to guaranteeing that a rewriting rule specification preserves
plan correctness, that is, produces a valid rewritten plan when applied to a valid plan.

In the full-specification approach the rule specifies all steps and links involved in
a rewriting. The rule antecedent identifies all the anchoring points for the operators in
the consequent, so that the embedding of the replacement sub-plan is unambiguous and
results in a valid plan. The burden of proving the rule correct lies upon the user or an
automated rule defining procedure. These kinds of rules are the ones typically used in
graph rewriting systems (Schürr, 1997).

In the partial-specification approach the rule defines the operators and links that
constitute the gist of the plan transformation, but the rule does not prescribe the precise
embedding of the replacement sub-plan. The burden of producing a valid plan lies upon
the system. PbR takes advantage of the semantics of domain-independent planning to
accept such a relaxed rule specification, fill in the details, and produce a valid rewritten
plan. Moreover, the user is free to specify rules that may not necessarily be able to
compute a rewriting for a plan that matches the antecedent because some necessary
condition was not checked in the antecedent. That is, a partially specified rule may be
over general. This may seem undesirable, but often a rule may cover more useful cases
and be more naturally specified in this form. The rule may only fail for rarely occurring
plans, so that the effort in defining and matching the complete specification may not be
worthwhile. In any case, the plan-rewriting algorithm ensures that the application of a
rewriting rule either generates a valid plan or fails to produce a plan [Theorem 1 in Ambite
& Knoblock (2001)].

As an example of these two approaches to rule specification, consider the avoid-
move-twice-full rule of Figure 9, which is a fully specified version of the avoid-move-twice
rule of Figure 4. The avoid-move-twice-full rule is more complex and less natural to specify
than avoid-move-twice. But, more importantly, avoid-move-twice-full is making more commit-
ments than avoid-move-twice. In particular, avoid-move-twice-full fixes the producer of (clear

Figure 8. Sample implementation of interpreted predicates
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?b1) for ?n3 to be ?n4 when ?n7 is also known to be a valid candidate. In general, there
are several alternative producers for a precondition of the replacement sub-plan, and
consequently many possible embeddings. A different fully specified rule is needed to
capture each embedding. The number of rules grows exponentially as all permutations
of the embeddings are enumerated. However, by using the partial-specification approach
we can express a general plan transformation by a single natural rule.

In summary, the main advantage of the full-specification rules is that the rewriting
can be performed more efficiently because the embedding of the consequent is already
specified. The disadvantages are that the number of rules to represent a generic plan
transformation may be very large and the resulting rules quite lengthy; both of these
problems may decrease the performance of the match algorithm. Also, the rule specifi-
cation is error prone if written by the user. Conversely, the main advantage of the partial-
specification rules is that a single rule can represent a complex plan transformation
naturally and concisely. The rule can cover a large number of plan structures even if it
may occasionally fail. Also, the partial specification rules are much easier to specify and
understand by the users of the system. As we have seen, PbR provides a high degree
of flexibility for defining plan-rewriting rules.

A Taxonomy of Plan-Rewriting Rules
In order to guide the user in defining plan-rewriting rules for a domain or to help in

designing algorithms to automatically deduce the rules from the domain specification,
it is helpful to know what kinds of rules are useful. We have identified the following
general types of transformation rules:

• Reorder: These are rules based on algebraic properties of the operators, such as
commutative, associative and distributive laws. For example, the commutative rule
that reorders two operators that need the same resource in Figure 7, or the simple-
join-swap rule in Figure 1 that combines the commutative and associative proper-
ties of the relational algebra.

• Collapse: These are rules that replace a sub-plan by a smaller sub-plan. For example,
when several operators can be replaced by one, as in the remote-join-eval rule in

Figure 9. Fully specified rewriting rule
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Figure 1. This rule replaces two remote retrievals at the same information source
and a local join by a single remote join operation (when the remote source has the
capability of performing joins). Other examples are the Blocks World rules in
Figure 4 that replace unstack and a stack operators either by an equivalent single
stack operator or the empty plan.

• Expand: These are rules that replace a sub-plan by a bigger sub-plan. Although this
may appear counter-intuitive initially, it is easy to imagine a situation in which an
expensive operator can be replaced by a set of operators that are cheaper as a whole.
An interesting case is when some of these operators are already present in the plan
and can be synergistically reused. We did not find this rule type in the domains
analyzed so far, but Bäckström (1994) presents a framework in which adding actions
improves the quality of the plans. His quality metric is the plan execution time,
similarly to the manufacturing domain of our experiments below. Figure 10 shows
an example of a planning domain where adding actions improves quality (from
Bäckström, 1994). In this example, removing the link between Bm and C1 and
inserting a new action A' shortens significantly the time to execute the plan.

• Parallelize: These are rules that replace a sub-plan with an equivalent alternative
sub-plan that requires fewer ordering constraints. A typical case is when there are
redundant or alternative resources that the operators can use. For example, the rule
punch-by-drill-press in Figure 5. Another example is the rule that Figure 10 sug-
gests that could be seen as a combination of the expand and parallelize types.

Plan-Rewriting Algorithm
The plan-rewriting algorithm is shown in Figure 11. The algorithm takes two inputs:

a valid plan P, and a rewriting rule R = (qm, pr, pc), where qm is the antecedent query, pr
is the replaced sub-plan, and pc is the replacement sub-plan. The output is a valid
rewritten plan P'. To disentangle the algorithm from any particular search strategy, we
write it using non-deterministic choice as is customary.

The matching of the antecedent of the rewriting rule (qm) determines if the rule is
applicable and identifies the steps and links of interest (line 1). This matching can be seen
as sub-graph isomorphism between the antecedent sub-plan and the current plan (with
the results then filtered by applying the :constraints). However, we take a different
approach. PbR implements rule matching as conjunctive query evaluation. Our implemen-
tation keeps a relational representation of the steps and links in the current plan similar

Figure 10. Adding actions can improve quality
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to the node and link specifications of the rewriting rules. For example, the database for
the plan in Figure 2 contains one table for the unstack steps with schema (?n1 ?b1 ?b2)
and tuples (4 C A) and (5 B D), another table for the causal links involving the clear
condition with schema (?n1 ?n2 ?b) and tuples (0 1 C), (0 2 B), (0 2 C), (0 3 B), (0 4 C), (0
5 B), (4 3 A) and (5 1 D), and similar tables for the other operator and link types. The match
process consists of interpreting the rule antecedent as a conjunctive query with
interpreted predicates, and executing this query against the relational view of the plan
structures. As a running example, we will analyze the application of the avoid-move-twice
rule of Figure 4 to the plan in Figure 2. Matching the rule antecedent identifies steps 1
and 4. More precisely, considering the antecedent as a query, the result is the single tuple
(4 C A 1 D) for the variables (?n1 ?b1 ?b2 ?n2 ?b3).

After (non-deterministically) choosing a match σi to work on (line 3), the algorithm
instantiates the sub-plan specified by the :replace field (pr) according to such match

Figure 11. Plan-rewriting algorithm
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(line 4) and removes the instantiated sub-plan pi
r  from the original plan P (line 5). All the

edges incoming and emanating from nodes of the replaced sub-plan are also removed.
The effects that the replaced plan pi

r was achieving for the remainder of the plan (P–pi
r),

the UsefulEffects of pi
r, will now have to be achieved by the replacement sub-plan (or other

steps of P–pi
r). In order to facilitate this process, the AddFlaws procedure records these

effects as open conditions.7 The result is the partial plan Pi
r (line 5). Continuing with our

example, Figure 12(a) shows the plan resulting from removing steps 1 and 4 from the
plan in Figure 2.

Finally, the algorithm embeds the instantiated replacement sub-plan pi
c into the

remainder of the original plan (lines 6-9). If the rule is completely specified, the algorithm
simply adds the (already instantiated) replacement sub-plan to the plan, and no further
work is necessary. If the rule is partially specified, the algorithm computes the embeddings
of the replacement sub-plan into the remainder of the original plan in three stages. First,
the algorithm adds the instantiated steps and links of the replacement plan pi

c (line 6) into
the current partial plan Pi

r (line 7). Figure 12(b) shows the state of our example after pi
c,

the new stack step (6), has been incorporated into the plan. Note the open conditions
(clear A) and on(C D). Second, the FindThreats procedure computes the possible threats,
both operator threats and resource conflicts, occurring in the Pi

r ∪ pi
c partial plan (line 7);

for example, the threat situation on the clear(C) proposition between step 6 and 2 in
Figure 12(b). These threats and the preconditions of the replacement plan pi

c are
recorded by AddFlaws resulting in the partial plan  Pi

c. Finally, the algorithm completes
the plan using rPOP, a partial-order causal-link planning procedure restricted to only
reuse steps (i.e., no step addition) (line 8). rPOP allows us to support our expressive
operator language and to have the flexibility for computing one or all embeddings. If only
one rewriting is needed, rPOP stops at the first valid plan. Otherwise, it continues until
exhausting all alternative ways of satisfying open preconditions and resolving conflicts,
which produces all valid rewritings. In our running example, only one embedding is
possible and the resulting plan is that of Figure 12(c), where the new stack step (6)
produces (clear A) and on(C D), its preconditions are satisfied, and the ordering (6 2)
ensures that the plan is valid.

In Ambite & Knoblock (2001) we show that the plan rewriting algorithm of Figure 11
is sound in the sense that it produces a valid plan if the input is a valid plan, or it outputs
failure if the input plan cannot be rewritten using the given rule. Since each elementary
plan-rewriting step is sound, the sequence of rewritings performed during PbR’s
optimization search is also sound.

We cannot guarantee that PbR’s optimization search is complete in the sense that
the optimal plan would be found. PbR uses local search and it is well known that, in
general, local search cannot be complete. Even if PbR exhaustively explores the space
of plan rewritings induced by a given initial plan and a set of rewriting rules, we still cannot
prove that all solution plans will be reached. This is a property of the initial plan generator,
the set of rewriting rules, and the semantics of the planning domain. The rewriting rules
of PbR play a similar role as traditional declarative search control where the completeness
of the search may be traded for efficiency. An open problem is whether using techniques
for inferring invariants in a planning domain (Gerevini & Schubert, 1998; Fox & Long,
1998; Rintanen, 2000) and/or proving convergence of term and graph rewriting systems
(Baader & Nipkow, 1998) could provide conditions for completeness of a plan-rewriting
search in a given planning domain.
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Figure 12. Plan rewriting: Applying rule avoid-move-twice of Figure 4 to plan of
Figure 2
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Selection of Next Plan: Search Strategies
Many local search methods, such as first and best improvement, simulated anneal-

ing (Kirkpatrick, Gelatt & Vecchi, 1983), tabu search (Glover, 1989), or variable-depth
search (Lin & Kernighan, 1973), can be applied straightforwardly to PbR. Figure 13
depicts graphically the behavior of iterative improvement and variable-depth search. In
our experiments below we have used first and best improvement, which have performed
well. Next, we describe some details of the application of these two methods in PbR.

First improvement generates the rewritings incrementally and selects the first plan
of better cost than the current one. In order to implement this method efficiently we can
use a tuple-at-a-time evaluation of the rule antecedent, similarly to the behavior of Prolog.
Then, for that rule instantiation, generate one embedding, test the cost of the resulting
plan, and if it is not better that the current plan, repeat. We have the choice of generating
another embedding of the same rule instantiation, generate another instantiation of the
same rule, or generate a match for a different rule.

Best improvement generates the complete set of rewritten plans and selects the
best. This method requires computing all matches and all embeddings for each match.
All the matches can be obtained by evaluating the rule antecedent as a set-at-a-time
database query. In our experience, computing the plan embeddings was usually more
expensive than computing the rule matches.

Plan Quality
In most practical planning domains the quality of the plans is crucial. This is one

of the motivations for the Planning by Rewriting approach. In PbR the user defines the
measure of plan quality most appropriate for the application domain. This quality metric
could range from a simple domain-independent cost metric, such as the number of steps,
to more complex domain-specific ones. For example, in query planning the measure of plan
quality usually is an estimation of the query execution cost based on the size of the
database relations, the data manipulation operations involved in answering a query, and
the cost of network transfer. In Ambite and Knoblock (2000), we describe a complex cost
metric based on traditional query estimation techniques (Silberschatz, Korth & Sudarshan,
1997) that PbR uses to optimize query plans. The cost metric may involve actual monetary
costs if some of the information sources require payments. In the job-shop scheduling

Figure 13. Local search
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domain some simple cost functions are the makespan, or the sum of the times to finish
each piece. A more sophisticated manufacturing domain may include a variety of
concerns, such as the cost, reliability, and precision of each operator/process, the costs
of resources and materials used by the operators, the utilization of the machines, etcetera.

A significant advantage of PbR is that the complete plan is available to assess its
quality. In generative planners the complete plan is not available until the search for a
solution is completed, so usually only very simple plan quality metrics, such as the
number of steps, can be used. Moreover, if the plan cost is not additive, a plan refinement
strategy is impractical since it may need to exhaustively explore the search space to find
the optimal plan. An example of non-additive cost function appears in the UNIX planning
domain (Etzioni & Weld, 1994) where a plan to transfer files between two machines may
be cheaper if the files are compressed initially (and uncompressed after arrival). That is,
the plan that includes the compression (and the necessary uncompression) operations
is more cost effective, but a plan refinement search would not naturally lead to it. By using
complete plans, PbR can accurately assess arbitrary measures of quality.

Initial Plan Generation
PbR relies on an efficient plan generator to produce the initial plan on which to start

the optimization process. Fortunately, the efficiency of planners has increased signifi-
cantly in recent years. Much of these gains come from exploiting heuristics or domain-
dependent search control. However, the quality of the generated plans is often far from
optimal, thus the need for an optimization process like PbR. We briefly review some
approaches to efficiently generate initial plans.

HSP (Bonet & Geffner, 2001) applies heuristic search to classical AI planning. The
domain-independent heuristic function is a relaxed version of the planning problem: it
computes the number of required steps to reach the goal disregarding negated effects
in the operators. Such metric can be computed efficiently. Despite its simplicity and that
the heuristic is not admissible, it scales surprisingly well for many domains. Because the
plans are generated according to the fixed heuristic function, the planner cannot
incorporate a quality metric.

TLPlan (Bacchus & Kabanza, 2000) is an efficient forward-chaining planner that
uses domain-dependent search control expressed in temporal logic. Because in forward-
chaining the complete state is available, much more refined domain control knowledge
can be specified. The preferred search strategy used by TLPlan is depth-first search, so
although it finds plans efficiently, the plans may be of low quality. Note that because it
is a generative planner that explores partial sequences of steps, it cannot use sophisti-
cated quality measures.

Some systems automatically learn search control for a given planning domain or
even specific problem instances. Minton (1998) shows how to deduce search control
rules by applying explanation-based learning to problem-solving traces. Another ap-
proach to automatically generating search control is by analyzing statically the operators
(Etzioni, 1993) or inferring invariants in the planning domain (Gerevini & Schubert, 1998;
Fox & Long, 1998; Rintanen, 2000). Abstraction provides yet another form of search
control. Knoblock (1994) presents a system that automatically learns abstraction hier-
archies from a planning domain or a particular problem instance in order to speed up
planning.
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By setting the type of search and providing a strong bias by means of the search
control rules, the planner can quickly generate a valid, although possibly suboptimal,
initial plan. For example, in the manufacturing domain of Minton (1988), analyzed in detail
in the experimental section, depth-first search and a goal selection heuristic based on
abstraction hierarchies (Knoblock, 1994) quickly generates a feasible plan, but often the
quality of this plan, which is defined as the time required to manufacture all objects, is
suboptimal.

EMPIRICAL RESULTS
In this section we show the broad applicability of Planning by Rewriting by

analyzing three domains with different characteristics: a process manufacturing domain
(Minton, 1988), a transportation logistics domain, and the Blocks World domain that we
used in the examples throughout the chapter. An analysis of a domain for query planning
in data integration systems appears in Ambite and Knoblock (2000, 2001) and Ambite
(1998).

Manufacturing Process Planning
The task in the manufacturing process planning domain is to find a plan to

manufacture a set of parts. We implemented a PbR translation of the domain specification
of Minton (1988). This domain contains a variety of machines, such as a lathe, punch,
spray painter, welder, etcetera, for a total of ten machining operations. Some of the
operators of the specification appear in Figure 14 [see (Ambite & Knoblock, 2001;
Ambite, 1998) for the full description].

The measure of plan cost is the makespan (or schedule length), the (parallel) time
to manufacture all parts. In this domain all of the machining operations are assumed to
take unit time. The machines and the objects (parts) are modeled as resources in order
to enforce that only one part can be placed on a machine at a time and that a machine can
only operate on a single part at a time (except bolt and weld which operate on two parts
simultaneously).

We have already shown some of the types of rewriting rules for this domain in
Figures 5 and 7. Figure 15 shows some additional rules that we used in our experiments.
Rules IP-by-SP and roll-by-lathe exchange operators that are equivalent with respect to
achieving some effects. By examining the operator definitions in Figure 14, it can be
readily noticed that both immersion-paint and spray-paint change the value of the painted
predicate. Similarly, roll-by-lathe exchanges roll and lathe operators as they both make parts
cylindrical. To focus the search on the most promising exchanges, these rules only match
operators in the critical path (by means of the interpreted predicate in-critical-path).

The two bottom rules in Figure 15 are more sophisticated. The lathe+SP-by-SP rule
takes care of an undesirable effect of the simple depth-first search used by our initial plan
generator. In this domain, in order to spray paint a part, the part must have a regular shape.
Being cylindrical is a regular shape; therefore the initial planner may decide to make the
part cylindrical by lathing it in order to paint it! However, this may not be necessary as
the part may already have a regular shape (for example, it could be rectangular, which is
also a regular shape). Thus, the lathe+SP-by-SP substitutes the pair spray-paint and lathe
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Figure 14. (Some) operators for manufacturing process planning
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by a single spray-paint operation. The supporting regular-shapes interpreted predicate just
enumerates which are the regular shapes. These rules are partially specified and are not
guaranteed to always produce a rewriting. Nevertheless, they are often successful in
producing plans of lower cost.

The both-providers-diff-bolt rule is an example of rules that explore bolting two parts
using bolts of different size if fewer operations may be needed for the plan. We developed
these rules by analyzing differences in the quality of the optimal plans and the rewritten
plans. This rule states that if the parts to be bolted already have compatible holes in them,
it is better to reuse those operators that produced the holes. The initial plan generator
may have drilled (or punched) holes whose only purpose was to bolt the parts. However,
the goal of the problem may already require some holes to be performed on the parts to
be joined. Reusing the available holes produces a more economical plan.

As an illustration of the rewriting process in the manufacturing domain, consider
Figure 16. The plan at the top of the figure is the result of a simple initial plan generator
that solves each part independently and concatenates the corresponding sub-plans.
Although such plan is generated efficiently, it is of poor quality. It requires six time-steps
to manufacture all parts. The figure shows the application of two rewriting rules, machine-
swap and IP-by-SP, that improve the quality of this plan. The operators matched by the
rule antecedent are shown in italics. The operators introduced in the rule consequent
are shown in bold. First, the machine-swap rule reorders the punching operations on parts
A and B. This breaks the long critical path that resulted from the simple concatenation
of their respective sub-plans. The schedule length improves from six to four time-steps.
Still, the three parts A, B, and C use the same painting operation (immersion-paint). As the
immersion-painter can only process one piece at a time, the three operations must be done
serially. Fortunately, in our domain there is another painting operation: spray-paint. The

Figure 15. Rewriting rules for manufacturing process planning
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IP-by-SP rule takes advantage of this fact and substitutes an immersion-paint operation on
part B by a spray-paint operation. This further parallelizes the plan obtaining a schedule
length of three time-steps, which is the optimal for this plan.

We compare four planners (IPP, Initial, and two configurations of PbR):

• IPP: This is one of the most efficient domain-independent planners (Koehler,
Nebel, Hoffman & Dimopoulos, 1997) of the planning competition held at the Fourth
International Conference on Artificial Intelligence Planning Systems (AIPS-98).
IPP (Koehler et al., 1997) is an optimized re-implementation and extension of
Graphplan (Blum & Furst, 1997). IPP produces shortest parallel plans. For our
manufacturing domain, this is exactly the schedule length, the cost function that
we are optimizing.8

• Initial: The initial plan generator uses a divide-and-conquer heuristic in order to
generate plans as fast as possible. First, it produces sub-plans for each part and
for the joined goals independently. These sub-plans are generated by Sage using
a depth-first search without any regard to plan cost. Then, it concatenates the
subsequences of actions and merges them into a POCL plan.

• PbR: We present results for two configurations of PbR, which we will refer to as
PbR-100 and PbR-300. Both configurations use a first improvement gradient search
strategy with random walk on the cost plateaus. The rewriting rules used are those
of Figure 15. For each problem PbR starts its search from the plan generated by
Initial. The two configurations differ only on how many total plateau plans are
allowed. PbR-100 allows considering up to 100 plans that do not improve the cost
without terminating the search. Similarly, PbR-300 allows 300 plateau plans. Note
that the limit is across all plateaus encountered during the search for a problem, not
for each plateau.

Figure 16. Rewriting in the manufacturing domain
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We tested each of the four systems on 200 problems, for machining 10 parts, ranging
from 5 to 50 goals. The goals are distributed randomly over the 10 parts. So, for the 50-
goal problems, there is an average of 5 goals per part. The results are shown in Figure 17.
In these graphs each data point is the average of 20 problems for each given number of
goals. There were 10 provably unsolvable problems. Initial and PbR solved all 200
problems (or proved them unsolvable). IPP solved 65 problems in total: all problems at 5
and 10 goals, 19 at 15 goals, and 6 at 20 goals. IPP could not solve any problem with more
than 20 goals under the 1,000 CPU seconds time limit.

Figure 17(a) shows the average time on the solvable problems for each problem
set for the four planners. Figure 17(b) shows the average schedule length for the
problems solved by each of the planners for the 50-goal range. The fastest planner is
Initial, but it produces plans with a cost of about twice the optimal. IPP produces the
optimal plans, but it cannot solve problems of more than 20 goals. The PbR configurations
scale gracefully with the number of goals, improving considerably the cost of the plans
generated by Initial. The additional exploration of PbR-300 allows it to improve the plans
even further. For the range of problems solved by IPP, PbR-300 matches the optimal cost
of the IPP plans (except in one problem) and the faster PbR-100 also stays very close to
the optimal (less than 2.5% average cost difference).9

Logistics
The task in the logistics domain is to transport several packages from their initial

location to their desired destinations. We used a version of the logistics-strips planning
domain of the AIPS-98 planning competition, which we restricted to using only trucks
but not planes.10 The domain is shown in Figure 18. A package is transported from one
location to another by loading it into a truck, driving the truck to the destination, and
unloading the truck. A truck can load any number of packages. The cost function is the
(parallel) time to deliver all packages (measured as the number of operators in the critical
path of a plan).

Figure 17. Performance: Manufacturing process planning
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We compare three planners on this domain:

• IPP: IPP produces optimal plans in this domain.
• Initial: The initial plan generator picks a distinguished location and delivers

packages one by one starting and returning to the distinguished location. For
example, assume that truck t1 is at the distinguished location l1, and package p1
must be delivered from location l2 to location l3. The plan would be: drive-truck(t1
l1 l2 c), load-truck(p1 t1 l2), drive-truck(t1 l2 l3 c), unload-truck(p1 t1 l3), drive-truck(t1 l3 l1 c).
The initial plan generator would keep producing these circular trips for the

Figure 18. Operators for logistics
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Figure 19. Logistics rewriting rules
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remaining packages. Although this algorithm is very efficient it produces plans of
very low quality.

• PbR: PbR starts from the plan produced by Initial and uses the plan rewriting rules
shown in Figure 19 to optimize plan quality. The loop rule states that driving to a
location and returning back immediately after is useless. The fact that the operators
must be adjacent is important because it implies that no intervening load or unload
was performed. In the same vein, the triangle rule states that it is better to drive
directly between two locations than through a third point if no other operation is
performed at such point. The load-earlier rule captures the situation in which a
package is not loaded in the truck the first time that the package’s location is visited.
This occurs when the initial planner was concerned with a trip for another package.
The unload-later rule captures the dual case. PbR applies a first improvement search
strategy with only one run (no restarts).

We compared the performance of IPP, Initial, and PbR on a set of logistics problems
involving up to 50 packages. Each problem instance has the same number of packages,
locations, and goals. There was a single truck and a single city. The performance results
are shown in Figure 20. In these graphs each data point is the average of 20 problems
for each given number of packages. All the problems were satisfiable. IPP could only
solve problems up to seven packages (it also solved 10 out of 20 for eight packages,
and one out of 20 for nine packages, but these are not shown in the figure). Figure 20(a)
shows the average planning time. Figure 20(b) shows the average cost for the 50
packages range. The results are similar to the previous experiment. Initial is efficient but
highly suboptimal. PbR is able to considerably improve the cost of these plans and
approach the optimal.

Blocks World
We implemented a classical Blocks World domain with the two operators in

Figure 3. This domain has two actions: stack that puts one block on top of another, and,
unstack that places a block on the table to start a new tower. Plan quality in this domain

Figure 20. Performance: Logistics
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is simply the number of steps. Optimal planning in this domain is NP-hard (Gupta & Nau,
1992). However, it is trivial to generate a correct, but suboptimal, plan in linear time using
the naive algorithm: put all blocks on the table and build the desired towers from the
bottom up. We compare three planners on this domain:

• IPP: In this experiment we used the GAM goal ordering heuristic (Koehler &
Hoffmann, 2000) that had been tested in Blocks World problems with good scaling
results.

• Initial: This planner is a programmatic implementation of the naive linear-time
algorithm. This algorithm produces plans of length no worse than twice the optimal.

• PbR: This configuration of PbR starts from the plan produced by Initial and uses
the two plan-rewriting rules shown in Figure 4 to optimize plan quality. PbR applies
a first improvement strategy with only one run (no restarts).

We generated random Blocks World problems scaling the number of blocks. The
problem set consists of 350 random problems (25 problems at each of the 3, 6, 9, 12, 15,
20, 30, 40, 50, 60, 70, 80, 90, and 100 blocks level). The problems may have multiple towers
in the initial state and in the goal state.

Figure 21(a) shows the average planning time of the 25 problems for each block
quantity. IPP cannot solve problems with more than 20 blocks within the time limit of 1,000
CPU seconds. The local search of PbR allows it to scale much better and solve all the
problems.

Figure 21(b) shows the average plan cost as the number of blocks increases. PbR
improves considerably the quality of the initial plans. The optimal quality is only known
for very small problems, where PbR approximates it, but does not achieve it (we ran Sage
for problems of less than nine blocks). For larger plans we do not know the optimal cost.
However, Slaney and Thiébaux (1996) performed an extensive experimental analysis of
Blocks World planning using a domain like ours. In their comparison among different
approximation algorithms they found that our initial plan generator (unstack-stack)
achieves empirically a quality around 1.22 the optimal for the range of problem sizes we

Figure 21. Performance: Blocks World
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have analyzed (Figure 7 in Slaney & Thiébaux, 1996). The value of our average initial plans
divided by 1.22 suggests the quality of the optimal plans. The quality achieved by PbR
is comparable with that value. In fact it is slightly better which may be due to the relatively
small number of problems tested (25 per block size) or to skew in our random problem
generator. Interestingly the plans found by IPP are actually of low quality. This is due
to the fact that IPP produces shortest parallel plans. That means that the plans can be
constructed in the fewest time steps, but IPP may introduce more actions in each time step
than are required.

In summary, the experiments in this and the previous sections show that across a
variety of domains PbR scales to large problems while still producing high quality plans.

LEARNING PLAN REWRITING RULES
Despite the advantages of PbR in terms of scalability, plan quality, and anytime

behavior, the framework we have described so far requires more inputs from the designer
than other planning approaches. In addition to the operator specification, initial state,
and goal that domain-independent planners take as input, PbR also requires an initial plan
generator, a set of plan rewriting rules, and a search strategy (Figure 22(a)). Although
the plan rewriting rules can be conveniently specified in a high-level declarative
language, designing and selecting which rules are the most appropriate requires a
thorough understanding of the properties of the planning domain and requires the most
effort by the designer.

In this section we address this limitation by providing a method for learning the
rewriting rules from examples. The main idea is to solve a set of training problems for the
planning domain using both the initial plan generator and an optimal planner. Then, the
system compares the initial and optimal plan and hypothesizes a rewriting rule that would
transform one into the other. A schematic of the resulting system is shown in Figure 22(b).
Some ideas on automating the other inputs are discussed in the future work section.

Figure 22. Basic PbR (a) and PbR with rewriting rule learning (b)
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Rule Generation
The main assumption of our learning algorithm is that useful rewriting rules are of

relatively small size (measured as the number of nodes and edges in the rule). If a domain
requires large rewriting rules, it is probably not a good candidate for a local search,
iterative repair algorithm such as PbR. Previous research also lends support for biases
that favor conciseness (Minton & Underwood, 1994). The rule generation algorithm
follows these steps:

1. Problem Generation. To start the process, our algorithm needs a set of training
problems for the planning domain. The choice of training problems determines the
rules learned. Ideally, we would like problems drawn from the target problem
distribution that generate plans gradually increasing in size (i.e., number of plan
steps) in order to learn the smallest rewriting rules first. Towards this end we have
explored two heuristics based on a random problem generator that work well in
practice. For some domains the size of the plans can be controlled accurately by
the number of goals. Thus, our system generates sets of problems increasing the
number of goals up to a given goal size. For each goal size the system generates
a number of random problems. We used this heuristic in our experiments. An
alternative strategy is to generate a large number of problems with different goal
sizes, sort the resulting plans by increasing size, and select the first N to be the
training set.

2. Initial Plan Generation. For each domain, we define an initial plan generator as
described earlier. For example, the plan of Figure 2, which was generated by
putting all blocks on the table and building the desired towers from the bottom up.

3. Optimal Plan Generation. Our algorithm uses a general-purpose planner perform-
ing a complete search according to the given cost metric to find the optimal plan.
This is feasible only because the training problems are small; otherwise, the search
space of the complete planner would explode. In our implementation we have used
IPP and Sage as the optimal planners. For example, Figure 12(c) shows the optimal
plan for the problem in Figure 2.

4. Plan Comparison. Both the initial and optimal plans are ground labeled graphs. Our
algorithm performs graph differences between the initial and the optimal plans to
identify nodes and edges present in only one of the plans. Formally, an intersection
graph Gi of two graphs G1 and G2 is a maximal sub-graph isomorphism between G1
and G2. If in a graph there are nodes with identical labels, there may be several
intersection graphs. Given a graph intersection Gi, a graph difference G1–G2 is the
sub-graph of G1 whose nodes and edges are not in Gi. In the example of Figures 2
and 12(c), the graph difference between the initial and the optimal plans, Gini–Gopt,
is the graph formed by the nodes: unstack(C A) and stack(C D Table); and the edges:
(0 clear(C) 1), (0 clear(C) 4), (0 on(C A) 4), (1 on(C D) Goal), (4 clear(A) 3), (4 on(C Table)
1), (5 clear(D) 1), and (1 2). Similarly, Gopt–Gini is formed by the nodes: stack(C D A),
and the edges: (6 clear(A) 3), (5 clear(D) 6), (0 clear(C) 6), (0 on(C A) 6), (6 on(C D) Goal),
and (6 2).

5. Ground Rule Generation. After the plan comparison, the nodes and edges present
only in the initial plan form the basis for the antecedent of the rule, and those
present only in the optimal plan form the basis for the consequent. In order to
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maximize the applicability of the rule, not all the differences in nodes and edges of
the respective graphs are included. Specifically, if there are nodes in the difference,
only the edges internal to those nodes are included in the rule. This amounts to
removing from consideration the edges that link the nodes to the rest of the plan.
In other words, we are generating partially specified rules. In our example, the
antecedent nodes are unstack(C A) (node 4) and stack(C D Table) (node 1). Therefore,
the only internal edge is (4 on(C Table) 1). This edge is included in the rule
antecedent and the other edges are ignored. As the consequent is composed of
only one node, there are no internal edges. Rule bw-1-ground in Figure 23 is the
ground rule proposed from the plans of Figures 2 and 12(c).
If there are only edge (ordering or causal link) differences between the antecedent
and the consequent, a rule including only edge specifications may be overly
general. To provide some context for the application of the rule our algorithm
includes in the antecedent specification those nodes participating in the differing
edges (see rule sc-14 in Figure 27 for an example).

6. Rule Generalization. Our algorithm generalizes the ground rule conservatively by
replacing constants by variables, except when the schemas of the operators
logically imply a constant in some position of a predicate [similarly to EBL (Minton,
1988)]. Rule bw-1-generalized in Figure 23 is the generalization of rule bw-1-ground,
which was learned from the plans of Figures 2 and 12(c). The constant Table
remains in the bw-1-generalized rule as is it imposed by the effects of unstack (see
Figure 3).

Biasing Toward Small Rules
There may be a large number of differences between an initial and an optimal plan.

These differences are often better understood and explained as a sequence of small
rewritings than as the application of a large monolithic rewriting. Therefore, in order to
converge to a set of small “primitive” rewriting rules, our system applies the algorithm
in Figure 24.

The main ideas behind the algorithm are to identify the smallest rule first and to
simplify the current plans before learning additional rules. First, the algorithm generates
initial and optimal plans for a set of sample problems. Then, it enters a loop that brings
the initial plans increasingly closer to the optimal plans. The crucial steps are 6 and 3.
In step 6 the smallest rewriting rule (r) is chosen first.11 This rule is applied to each of the
current plans. If it improves the quality of some plan, the rule enters the set of learned

Figure 23. Ground vs. generalized rewriting rules
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rules (L). Otherwise, the algorithm tries the next smallest rule in the current generation.
Step 3 applies all previously learned rules to the current initial plans in order to simplify
the plans as much as possible before starting a new generation of rule learning. This helps
in generating new rules that are small and that do not subsume a previously learned rule.
The algorithm terminates when no more cost-improving rules can be found.

EMPIRICAL RESULTS FOR
PBR USING LEARNED RULES

We tested our learning algorithm on the same three domains described before: the
Blocks World domain used along the chapter, the manufacturing process planning
domain of Minton (1988), and our restricted logistics domain.

Blocks World
Our learning algorithm proposed the three rules shown in Figure 25, based on 15

random problems involving 3, 4, and 5 goals (5 problems each). Figure 4 shows the two
manually defined plan rewriting rules for this domain. Rules bw-1 and bw-2 in Figure 25
are essentially the same as rules avoid-move-twice and avoid-undo in Figure 4, respec-
tively. The main difference is the interpreted predicate possibly-adjacent that acts as a filter
to improve the efficiency of the manual rules, but is not critical to the rule efficacy. The
authors thought that the manual rules in Figure 4 were sufficient for all practical
purposes, but our learning algorithm discovered an additional rule (bw-3) that addresses
an optimization not covered by the two manual rules. Sometimes the blocks are in the
desired position in the initial state, but our initial plan generator unstacks all blocks
regardless. Rule bw-3 would remove such unnecessary unstack operators. Note that our

Figure 24. Bias toward small rules
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rewriting engine always produces valid plans. Therefore, if a plan cannot remain valid
after removing a given unstack, this rule will not produce a rewriting.

We compared the performance of the manual and learned rules on the Blocks World
as the number of blocks increases. We tested four planners: Initial, IPP (with the GAM
heuristic); PbR-Manual, PbR with the manually specified rules of Figure 4; and PbR-
Learned, PbR with the learned rules of Figure 25.

Figure 26(a) shows the average planning time of the 25 problems for each block
quantity. IPP cannot solve problems with more than 20 blocks within a time limit of 1,000
CPU seconds. Both configurations of PbR scale much better than IPP, solving all the
problems. Empirically, the manual rules were more efficient than the learned rules by a
constant factor. The reason is that there are two manual rules versus three learned ones,
and that the manual rules benefit from an additional filtering condition as we discussed
above.

Figure 26(b) shows the average plan cost as the number of blocks increases. PbR
improves considerably the quality of the initial plans. The optimal quality is only known
for very small problems, where PbR approximates it.12 The learned rules match the quality
of the manual rules [the lines for PbR overlap in Figure 26(b)]. Moreover, in some
problems the learned rules actually produce lower cost plans due to the additional rule
(bw-3) that removes unnecessary unstack operators.

Manufacturing Process Planning
We ran our learning algorithm on 200 random problems involving 2, 3, 4, and 5 goals

(50 problems each) on ten objects. The system learned a total of 18 rewriting rules,
including some of the most interesting manual rules defined earlier. For example, the rule
lathe+SP-by-SP, shown in Figure 15, was manually specified after a careful analysis of
the depth-first search used by the initial plan generator. Our learning algorithm discov-

Figure 25. Learned rewriting rules: Blocks World
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ered the corresponding rule sc-8 (Figure 27). The learned rule does not use the regular-
shapes interpreted predicate (which enumerates the regular shapes), but it is just as
general because the free variable ?shape2 in the rule consequent will capture any valid
constant.

The rules machine-swap in Figure 7 and sc-14 in Figure 27 show a limitation of our
current learning algorithm, namely, that it does not learn over the resource specifications
in the operators. The manually defined machine-swap rule allows the system to explore the
possible orderings of operations that require the same machine. This rule finds two
consecutive operations on the same machine and swaps their order. Our learning system
produced more specific rules that are versions of this principle, but it did not capture all
possible combinations. Rule sc-14 is one such learned rule. This rule would be subsumed
by the machine-swap, because the punch is a machine resource. This is not a major limitation
of our framework and we plan to extend the basic rule generation mechanism to also learn
over resource specifications.

We compared the performance of the manual and learned rules for the manufactur-
ing process planning domain with the same experimental setting as before. We tested five
planners: Initial; IPP, which produces the optimal plans; PbR-Manual, PbR with the manually
specified rules in Figure 15; PbR-Learned, PbR with the learned rules; and PbR-Mixed,

Figure 26. Performance with learned rules: Blocks World
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Figure 27. (Some) learned rewriting rules: Manufacturing
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which adds to the learned rules the two manually-specified rules that deal with resources
(the machine-swap rule in Figure 27, and a similar one on objects).

The results are shown in Figure 28. In these graphs each data point is the average
of 20 problems for each given number of goals. There were 10 provably unsolvable
problems. Initial, and thus PbR, solved all the 200 problems (or proved them unsolvable).
IPP only solved 65 problems under the 1,000 CPU seconds time limit: all problems at five
and 10 goals, 19 at 15 goals, and six at 20 goals. Figure 28(a) shows the average
planning time on the solvable problems. Figure 28(b) shows the average schedule
length for the problems solved by the planners for the 50-goal range. The fastest planner
is Initial, but it produces plans with a cost of more that twice the optimal (which is
produced by IPP). The three configurations of PbR scale much better than IPP solving
all problems. The manual rules achieve a quality very close to the optimal (where optimal
cost is known, and scale gracefully thereafter). The learned rules improve significantly
the quality of the initial plans, but they do not reach the optimal quality because many
of the resource swap rules are missing. Finally, when we add the two general resource-
swap rules to the learned rules (PbR-Mixed), the cost achieved approaches that of the
manual rules.

Logistics
Our system learned the rules in Figure 29 from a set of 60 problems with two, four,

and five goals (20 problems each). Rules logs-1 and logs-3 capture the same transforma-
tions as rules loop and triangle, respectively. Rule logs-2 chooses a different starting point
for a trip. Rule logs-3 is the most interesting of the learned rules, as it was surprisingly
effective in optimizing the plans. Rule logs-3 seems to be an overgeneralization of rule
triangle, but precisely by not requiring that the nodes are adjacent-in-critical-path, it applies
in a greater number of situations.

We compared the performance of the manual and learned rules on a set of logistics
problems involving up to 50 packages. Each problem instance has the same number of
packages, locations, and goals. There was a single truck and a single city. We tested four
planners: Initial, the sequential circular-trip initial plan generator described above; IPP,

Figure 28. Performance with learned rules: Manufacturing
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Figure 29. Learned rewriting rules: Logistics
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which produces optimal plans; PbR-Manual, PbR with the manually specified rules in
Figure 19; and PbR-Learned, PbR with the learned rules of Figure 29.

The performance results are shown in Figure 30. In these graphs each data point
is the average of 20 problems for each given number of packages. All the problems were
satisfiable. IPP could only solve problems up to seven packages (it also solved 10 out
of 20 for eight packages, and one out of 20 for nine packages, but these are not shown
in the figure). Figure 30(a) shows the average planning time. Figure 30(b) shows the
average cost for the 50 packages range. The results are similar to the previous experi-
ments. Initial is efficient but highly suboptimal. PbR is able to considerably improve the
cost of this plan and approach the optimal. Most interestingly, the learned rules in this
domain achieve better quality plans than the manual ones. The reason is the more general
nature of learned logs-1 and logs-3 rules compared to the manual loop and triangle rules.

RELATED WORK
PbR is designed to find a balance among the requirements of planning efficiency,

high quality plans, flexibility, and extensibility. A great amount of work on AI planning
has focused on improving its average-case efficiency given that the general cases are
computationally hard (Bylander, 1994; Erol et al., 1995). Often, this is achieved by
incorporating domain knowledge either manually specified by experts (e.g., Bacchus &
Kabanza, 2000) or automatically learned search control (e.g., Minton, 1988; Etzioni, 1993;
Gerevini & Schubert, 1998; Fox & Long, 1998; Rintanen, 2000). Although all these
approaches do improve the efficiency of planning, they do not specifically address plan
quality, or else they consider only very simple cost metrics (such as the number of steps).
Some systems learn search control that addresses both planning efficiency and plan
quality (Estlin & Mooney, 1997; Borrajo & Veloso, 1997; Pérez, 1996). However, from the
reported experimental results, PbR appears to be more scalable. Moreover, PbR provides
an anytime algorithm while other approaches must run to completion.
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Local search has a long tradition in combinatorial optimization (Aarts & Lenstra,
1997; Papadimitriou & Steiglitz, 1982). Local improvement ideas have found application
in many domains. Some of the general work most relevant to PbR is on constraint
satisfaction (the min-conflicts heuristic: Minton, 1992), satisfiability testing (GSAT:
Selman, Levesque & Mitchell, 1992), and scheduling (Zweben, Daun & Deale, 1994). Our
work is inspired by these approaches but there are several differences. First, PbR
operates on complex graph structures (partial-order plans) as opposed to variable
assignments. Second, our repairs are declaratively specified and may be changed for each
problem domain, as opposed to their fixed, generic repair strategies. Third, PbR accepts
arbitrary measures of quality, not just constraint violations as in min-conflicts, or number
of unsatisfied clauses as GSAT. Finally, PbR searches the space of valid solution plans,
as opposed to the space of variable assignments, which may be internally inconsistent.

PbR builds on ideas from graph rewriting (Schürr, 1997). The plan-rewriting rules
in PbR are an extension of traditional graph rewriting rules. By taking advantage of the
semantics of planning, PbR introduces partially specified plan-rewriting rules, where the
rules do not need to specify the completely detailed embedding of the consequent as in
pure graph rewriting. Nevertheless, there are several techniques that can transfer from
graph rewriting into Planning by Rewriting, particularly for fully specified rules. Dorr
(1995) defines an abstract machine for graph isomorphism and studies a set of conditions
under which traditional graph rewriting can be performed efficiently. Perhaps a similar
abstract machine for plan rewriting can be defined. The idea of rule programs also appears
in this field and has been implemented in the PROGRES system (Schürr, 1997).

The work most closely related to our plan-rewriting algorithm is plan merging
(Foulser, Li & Yang, 1992). Foulser et al. provide a formal analysis and algorithms for
exploiting positive interactions within a plan or across a set of plans. However, their work
only considers the case in which a set of operators can be replaced by one operator that
provides the same effects to the rest of the plan and consumes the same or fewer
preconditions. Their focus is on optimal and approximate algorithms for this type of
operator merging. Plan rewriting in PbR can be seen as a generalization of operator
merging where a sub-plan can replace another sub-plan. A difference is that PbR is not
concerned with finding the optimal merge (rewritten plan) in a single pass of an

Figure 30. Performance with learned rules: Logistics
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optimization algorithm as their approach does. In PbR we are interested in generating
possible plan rewritings during each rewriting phase, not the optimal one. The optimi-
zation occurs as the (local) search progresses.

Case-based planning (e.g., Kambhampati, 1992; Veloso, 1994; Nebel & Koehler,
1995; Hanks & Weld, 1995) solves a problem by modifying a previous solution. There are
two phases in case-based planning. The first one identifies a plan from the library that
is most similar to the current problem. In the second phase this previous plan is adapted
to solve the new problem. PbR modifies a solution to the current problem, so there is no
need for a retrieval phase nor the associated similarity metrics. Plan rewriting in PbR can
be seen as a type of adaptation from a solution to a problem to an alternate solution for
the same problem. That is, a plan rewriting rule in PbR identifies a pair of sub-plans (the
replaced and replacement sub-plans) that may be interchangeable.

Plan rewriting has been applied to several real-world domains. Autominder (Pollack
et al., 2003) is a comprehensive system to assist the elderly with declining cognitive
functions that is embodied in the nursing robot Pearl (Pineau et al., 2003). The person-
alized cognitive orthotic (PCO) (McCarthy & Pollack, 2002) of Autominder uses plan
rewriting techniques to create reminder plans for elderly patients and to update these
plans in response to environment changes. A PbR-based query planner for data
integration is described in Ambite and Knoblock (2000).

Our approach to learning plan-rewriting rules is closely related to learning search
control. In a sense, our plan rewriting rules can be seen as “a posteriori” search control.
Instead of trying to find search control that would steer the planner during generation
towards the optimal plan and away from fruitless search, our approach is to generate fast
a suboptimal initial plan, and then optimize it, after the fact, by means of the rewriting
rules.

Our rule generalization algorithm has some elements from Explanation-Based
Learning (EBL) (Minton, 1988; Kambhampati, Katukam & Qu, 1996; Estlin & Mooney,
1996), but it compares two complete plans, with the aid of the operator specification, as
opposed to problem-solving traces. Similarly to EBL search control rules, our learned
plan rewriting rules also suffer from the utility problem (Minton, 1988).

Search control can also be learned by analyzing the operator specification without
using any examples (Etzioni, 1993). Similar methods could be applied to PbR. For example,
we could systematically generate rewriting rules that replace a set of operators by another
set that achieves similar effects, then test the rules empirically and select those of highest
utility. Upal (2001) presents techniques to learn rewriting rules by static domain analysis
and by analysis of problem solving traces.

Upal and Elio (2000) compare the performance of search control rules versus plan
rewriting rules (both learned from problem solving traces). In their experiments, search
control rules are more effective than rewriting rules. However, it is unclear whether this
is due to their specific rule learning algorithm or to some intrinsic limitation of plan
rewriting, since they do not report the number or types of the learned rewriting rules, nor
evaluate their utility (cf. Minton, 1988). Thus, the relative merit of learning rewriting rules
versus search control remains an open problem.

In scheduling, several learning techniques have been successfully applied to
obtain search control for iterative repair. Zweben et al. (1992) used an extension of EBL
to learn the utility of the repairs, selecting when to apply a more-informed versus less-



Plan Optimization by Plan Rewriting   155

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

informed repair. Zhang and Dietterich (1995) used a reinforcement learning approach to
select repair strategies for the same problem. Both systems learn how to select the repairs
to improve the efficiency of search, but they do not learn the repairs themselves as in our
work.

DISCUSSION AND FUTURE WORK
In this chapter, we have presented Planning by Rewriting, a paradigm for efficient

high-quality planning. PbR adapts graph rewriting and local search techniques to the
semantics of domain-independent partial-order planning. The basic idea of PbR consists
in transforming an easy-to-generate, but possibly suboptimal, initial plan into a high-
quality plan by applying declarative plan rewriting rules in an iterative repair style.

There are several important advantages to the PbR planning approach. First, PbR
is a declarative domain-independent framework, which brings the benefits of reusability
and extensibility. Second, it addresses sophisticated plan quality measures, while most
work in domain-independent planning has not addressed quality or does it in very simple
ways. Third, PbR is scalable because it uses efficient local search methods. In fact, PbR
provides domain-independent framework for local search. Finally, PbR is an anytime
planning algorithm that allows balancing planning effort and plan quality in order to
maximize the utility of the planning process.

An open area of research is to relax our framework to accept incomplete plans during
the rewriting process. This expands the search space considerably and some of the
benefits of PbR, such as its anytime property, are lost. But for some domains the shortest
path of rewritings from the initial plan to the optimal may pass through incomplete or
inconsistent plans. This idea could be embodied as a planning style that combines the
characteristics of generative planning and Planning by Rewriting. This is reminiscent of
the plan critics approach (Sacerdoti, 1975; Sussman, 1975). The resulting plan-rewriting
rules can be seen as declarative specifications for plan critics. The plan refinements of
both partial order planning (Kambhampati, Knoblock & Yang, 1995) and Hierarchical
Task Network Planning (Erol, Nau & Hendler, 1994) can be easily specified as plan-
rewriting rules.

Planning by Rewriting is also well suited to mixed-initiative planning. In mixed-
initiative planning, the user and the planner interact in defining the plan. For example,
the user can specify which are the available or preferred actions at the moment, change
the quality criteria of interest, etcetera. In fact, some domains can only be approached
through mixed-initiative planning. For example, when the quality metric is very expensive
to evaluate, such as in geometric analysis in manufacturing, the user must guide the
planner towards good quality plans in a way that a small number of plans are generated
and evaluated. Another example is when the plan quality metric is multi-objective or
changes over time. Several characteristics of PbR support mixed-initiative planning.
First, because PbR offers complete plans, the user can easily understand the plan and
perform complex quality assessment. Second, the rewriting rule language is a convenient
mechanism by which the user can propose modifications to the plans. Third, by selecting
which rules to apply or their order of application the user can guide the planner.

We plan to develop a system that can automatically learn the optimal planner
configuration for a given domain and problem distribution in a manner analogous to
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Minton’s Multi-TAC system (Minton, 1996). Such system would perform a search in the
configuration space of the PbR planner proposing different initial plan generators,
candidate sets of rewriting rules, and search methods. By testing each proposed
configuration against a training set of simple problems, the system would hill-climb in
the configuration space in order to achieve the most useful combination of rewriting rules
and search strategy.

The PbR framework achieves a balance between domain knowledge, expressed as
plan-rewriting rules, and general local-search techniques that have proved useful in
many hard combinatorial problems. We expect that these ideas will push the frontier of
solvable problems for many practical domains in which high quality plans and anytime
behavior are needed.
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ENDNOTES
1 Interestingly, one of the most widely studied planning domains, the Blocks World,

also has this property.
2 A domain for manufacturing process planning is analyzed in detail below. The

reader may want consult Figure 16 for an example of the rewriting process. The
application of PbR to query planning in mediator systems is described in Ambite
& Knoblock (2000, 2001) and  Ambite (1998).

3 Although the space of rewritings can be explored by complete search methods, in
the application domains we have analyzed the search space is very large and our
experience suggests that local search is more appropriate. However, to what extent
complete search methods are useful in a Planning by Rewriting framework remains
an open issue. In this chapter we focus on local search.

4 To illustrate the basic concepts in PbR, we will use examples from this simple Blocks
World domain. PbR has been applied to “real-world” domains such as query
planning (Ambite & Knoblock, 2001, 2000).

5 In Sage and PbR, resources are associated to operators, see Knoblock (1996) for
details.

6 The interpreted predicate possibly-adjacent makes the link expression in the
antecedent of the avoid-move-twice rule in Figure 4 redundant. Unstack puts the
block ?b1 on the table from where it is picked up by the stack operator, thus the
causal link (?n1 (on ?b1 Table) ?n2) is already implied.

7 POCL planners operate by keeping track and repairing flaws found in a partial plan.
Open conditions, operator threats, and resource threats are collectively called
flaws (Penberthy & Weld, 1992). AddFlaws(F,P) adds the set of flaws F to the plan
structure P.

8 Although IPP is a domain-independent planner, we compare it to PbR to test
whether the additional knowledge provided by the plan rewriting rules is useful
both in planning time and in plan quality.

9 The reason for the difference between PbR and IPP at the 20-goal complexity level
is because the cost results for IPP are only for the six problems that it could solve,
while the results for PbR and Initial are the average of all of the 20 problems, PbR
matches the cost of these six optimal plans produced by IPP

10 In the logistics domain of AIPS98, the problems of moving packages by plane
among different cities and by truck among different locations in a city are
isomorphic, so we focused on only one of them to better analyze how the rewriting
rules can be learned (Ambite, Knoblock, & Minton, 2000).

11 The size of a rule is the number of the conditions in both antecedent and
consequent. Ties are broken in favor of the rule with the smallest consequent

12 We ran Sage for the 3-block and 6-block problems. We used IPP for the purpose
of comparing planning time. However, IPP optimizes a different cost metric,
shortest parallel time-steps, instead of number of plan steps.
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Section III

Planning and Agents
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ABSTRACT
This chapter discusses the application of intelligent planning techniques to virtual
agent environments as a mechanism to control and generate plausible virtual agent
behaviour. The authors argue that the real world-like nature of intelligent virtual
environments (IVEs) presents issues that cannot be tackled with a classic, off-line
planner where planning takes place beforehand and execution is performed later,
based on a set of precompiled instructions. What IVEs call for is continuous planning,
a generative system that will work in parallel with execution, constantly re-evaluating
world knowledge and adjusting plans according to new data. The authors argue
further on the importance of incorporating the modelling of the agents’ physical,
mental and emotional states as an inherent feature in a continuous planning system
targeted towards IVEs, necessary to achieve plausibility in the produced plans and,
consequently, in agent behaviour.

INTRODUCTION
Intelligent planning has been widely applied in agent environments as a means to

provide a high-level reasoning mechanism that decides and generates agent behaviour.
The majority of the work produced so far adopts the classic off-line planning paradigm
(first plan thoroughly, then act following plan), based on the assumption that the world
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state remains unchanged throughout the whole planning and acting phase, while also
the agent is supposed to have detailed knowledge of the world state as well as the effects
of its actions (Aylett, Coddington & Petley, 2002; Pollack & Horty, 1998; Pollack & Horty,
1999). These assumptions were necessary in order to restrict the complexity of an
otherwise intractable problem, so that investigation into the research area could be
conducted.

Although the off-line planning paradigm is appropriate for a number of applications
where conditions are controllable and the problem domain is fairly limited, there is a wide
range of research and practical fields where it proves inadequate. Real-world domains,
such as multi-agent societies or robotic environments, present continuous change and
the occurrence of events that off-line approaches cannot cope with. Features such as
external events, interaction among multiple entities located in the world or action
execution failures make it impossible for a classical planning algorithm to deal with the
problem.

Requirements such as the above have led the research community over the past few
years to introduce architectures that interleave planning, execution and monitoring in
order to provide for the needs of inherently dynamic domains.

Such a domain is intelligent virtual environments, synthetic worlds inhabited by
graphical agents who have to interact with the environment and demonstrate some sort
of behaviour. Intelligent planning seems a particularly suitable technique to provide
virtual agents with high-level reasoning capabilities, however, because of the special
features virtual environments present, an appropriately designed approach has to be
adopted.

OFF-LINE PLANNING
Traditional Assumptions of the Classical Off-Line
Planning Paradigm

Intelligent planning has been one of the most active areas of Artificial Intelligence
since the early seventies. Research has gone a long way forward from the seminal STRIPS
planner of Nilsson and Fikes (Fikes & Nilsson, 1971), resulting in advanced plan graph
analysis approaches like Graphplan and its derivatives (Blum & Furst, 1997; Long & Fox,
1998), or fast heuristic approaches like HSP (Bonet & Geffner, 2001). The primary aim
driving planning research throughout almost the whole of the past three decades was
the quest for optimisation, either in terms of ability to solve complex problems or in
respect to some evaluation factor, usually the number of steps required to reach the goal
state from the given initial state.

Regardless of the technique utilised, the majority of planning systems are discon-
nected from execution, assuming a single planning phase during which a plan is produced
to be later executed by a separate execution system. This classic, batch technique is
known as off-line planning.

There is such a variety of factors affecting a planning process that, in a generic form,
planning problems are considered intractable. The complexity of planning problems had
to be limited in order to allow research attempts to start with a version of the problem that
is easier to tackle. Therefore, various aspects of the planning problem such as time or
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execution were defined away and off-line planning systems were traditionally applied to
limited and controlled domains, specifically designed in accordance with some basic
assumptions (Pollack & Horty, 1998, Aylett, Coddington & Petley, 2002):

• The problem is defined in a detailed way, with all goals being known to the planning
system beforehand and remaining unchanged throughout the whole planning and
execution session

• The planner is omniscient, possessing complete and valid world knowledge
• The world is static, remaining unchanged throughout the whole planning phase
• Changes occurring to the world during the execution phase can only be a result of

the agent’s own actions
• Actions have a definite outcome
• Goals are categorical in respect to their satisfaction; they are either achieved or not
• Actions are instantaneous

As a result, if the planning system succeeds in producing a solution to the given
problem, execution is reasonably assumed to be successful as well, becoming a minor
technicality in the whole process. If the information passed on to the planner is complete
and accurate, nothing is expected to change between planning and execution time and
no unplanned-for events can happen during execution, then there is no chance of failure.

INTELLIGENT VIRTUAL ENVIRONMENTS
The rapid evolution of desktop 3-D technology over the past decade provided end

users with an unprecedented graphic power that enabled the development of applica-
tions incorporating high profile, visually compelling three-dimensional graphics. A
former privilege of the military, the industry and a few lavishly funded academic
institutions possessing high-end graphics supercomputers, Virtual Reality (VR) tech-
nology is now readily available to any owner of a medium range personal computer.

Having become commonplace by the early nineties, Virtual Reality has since
attracted the attention of numerous researchers from the field of Artificial Intelligence,
who identified VR systems as a promising execution platform for traditional as well as
novel AI techniques. A perennial problem of Artificial Intelligence was (and still is) the
lack of a realistic, yet at the same time controllable, execution platform to experiment on.
Most algorithms have rarely been tested in realistic situations, and most implementations
either work in carefully selected domains or consist mainly proof-of-concept, toy
examples.

Virtual worlds, being more realistic and adequately complex simulation environ-
ments seem to provide the AI community with an ideal test bed for applications,
especially agent-based techniques and algorithms.

The coupling of AI techniques with VR technology led to the emergence of a new
research area known as Intelligent Virtual Agents (Aylett & Cavazza, 2000), synthetic
embodied agents inhabiting computer-generated worlds called Intelligent Virtual
Environments (Aylett & Luck, 2000).
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Intelligent Virtual Agents are autonomous, graphically embodied agents in an
interactive virtual environment, able to interact intelligently with the environment, other
agents, and human users.

Virtual worlds inhabited by IVA’s should be able to support enhanced interaction
capabilities, as well as provide effective graphical representation means, and are known
as intelligent virtual environments.

The term is quite generic and theoretically encompasses both 2-D and 3-D graphical
representations. However, the use of the word “virtual” hints at 3-D implementations,
which will be the main focus of this discussion.

Today, intelligent virtual environments, (IVEs), are employed in a variety of areas,
mainly relating to simulation, entertainment, and education. Sophisticated simulated
environments concerning open urban spaces, building interiors and streets can signifi-

Figure 1. Screenshot from an immersive IVE application at the Centre for Virtual
Environments, University of Salford demonstrating the behaviour of animal-like
virtual agents (Delgado-Mata & Aylett, 2003)
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cantly aid in application areas such as architectural design, civil engineering, traffic and
crowd control. IVEs have set new standards in computer-based entertainment, through
outstanding examples of computer games involving large, life-like virtual worlds with
imaginative scenarios, active user participation in the plot of an interactive drama, virtual
story-telling, and many other areas where immersion and believability are key factors.

Although different researchers might have different views on what an Intelligent
Virtual Agent exactly is, there are some commonly agreed characteristics (Franklin, 1997).
An Intelligent Virtual Agent should, therefore, demonstrate the following basic charac-
teristics:

• Embodiment
• Situatedness
• Intelligent Behavior

These three characteristics are complemented by another property a virtual envi-
ronment should possess, which is believability (Bates, 1994), a resultant of a number of
factors related to different aspects of a virtual agent, ranging from its visual appearance
to its demonstrated behaviour. Believability affects all aspects of virtual environment
design and development and could briefly be defined as a measure of the degree to which
an IVA and consequently, the virtual environment it is situated in, helps the user maintain
an overall sense of presence (Aylett & Cavazza, 2000).

Embodiment refers to the fact that an IVA should be visually represented in a
graphical way, consistent with its attributes as a conceptual entity. IVAs need not
necessarily be humanoid; they can be mechanical (Prophet, 2001), animal-like (Terzopoulos,
1994) or even fictional entities (Aylett, Horrobin, et al., 1999).

The quality of the graphic model might also vary, from very realistic representa-
tions, as in Kalra et al. (1998), to more rough but easier to manipulate and less resource-
consuming designs. In any case, however, the need for believability instructs that they
should be able to move in a convincing manner; similar to the way an equivalent real-
world creature would move. A highly detailed, realistic humanoid agent walking like a
robot is far from being considered believable, as the mechanical motion undermines the
user’s expectation for a human-like walking style.

Situatedness refers to the requirement for an IVA to be located in a virtual world to
which it is directly connected, usually through a set of sensors and effectors, so that it
can perceive events taking place in the environment and act accordingly.  It should be
aware of its surroundings, able to recognize and manipulate objects, along with being
capable to sense the presence of other agents and interact with them. Once again, the
requirement for believability dictates that interaction modes and response from the
environment should be such as it would be expected by the user. Objects have to comply
with physics rules and react as the real-world equivalent would.

Any computer-controlled IVA should incorporate some sort of behavioral control.
Intelligent behavior in virtual environments is a complex issue, comprising several
functions such as communicating, sensing, learning, and reasoning on various levels of
abstraction, which all have to be put together.

Agents should act in a way coherent with stimuli received from the environment,
the domain knowledge it possesses, and its own modelled personality as well as its
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physical and emotional state. For example, a supposedly tired agent demonstrating a
lively behaviour, jumping over fences or running fast would not be believable, as its
actions are inconsistent with its physical state. In a more complicated example, an agent
reacting in a polite and welcoming way to another agent that just delivered him a severe
strike on the head with a bat would look totally awkward.

It is beyond the scope of the present chapter to go into greater detail, however,
detailed descriptions and examples of Intelligent Virtual Agents can be found in
Aylett and Luck (2000), Aylett and Cavazza (2000), and Panayiotopoulos and Avradinis
(2004).

Applying Intelligence in Virtual Environments
These basic requirements of virtual environment applications have led to the

introduction of Artificial Intelligence techniques in order to deal with the problems that
arise. Artificial Intelligence is utilized in various ways in virtual environments, as it can
provide solutions to multiple aspects of VE design and development. For example,
intelligent techniques are applied to control animation (Thalmann & Monzani, 2002),
motion planning or agent navigation in virtual environments (Panayiotopoulos, Zacharis,
Vosinakis & Katsirelos, 1997), while other intelligent techniques, such as Natural
Language Processing (Cavazza, Charles & Mead, 2002), digital speech recognition
processing or speech generation (Rickel, Marsella, Gratch, Hill, Traum & Swartout, 2002),
are being used in virtual environment systems to enhance or facilitate user-computer
interaction.

On the other hand, Artificial Intelligence can provide the tools for behavioural
control of intelligent virtual agents, where diverse approaches are adopted by research-
ers. At a low level, research works using approaches such as neural networks to control
the behaviour of animal-like graphical agents (Delgado-Mata & Aylett, 2003) have been
presented, while at a higher level, the potential of intelligent planning techniques has
been acknowledged as a means to control automatic plot generation in intelligent virtual
environments (Lozano, Cavazza, Mead & Charles, 2002).

The convergence between Artificial Intelligence and virtual reality is going to
become more apparent in the next few years, as both worlds have to benefit from it.
Commercial applications, and especially 3-D computer games, have already started
incorporating mechanisms to control the behaviour of computer-controlled characters
in order to provide a more engaging experience to the user. The AI research community
on the other hand, can find in intelligent virtual environments something missing for a
long time — an adequately complex, yet controlled real-world environment for experimen-
tation with human-level AI algorithms (Laird & vanLent, 2001).

INTELLIGENT PLANNING FOR
REAL-WORLD DOMAINS

A strongly realistic domain, intelligent virtual environments present the AI plan-
ning researcher with issues not usually encountered in traditional planning domains.

VEs are graphical simulations of real-world domains, which makes them susceptible
to the same problems. The particularities of real-world domains in respect to planning



168  Avradinis, Panayiotopoulos, & Aylett

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

have been examined in Pollack and Horty (1998) and Aylett, Coddington and Petley (2002)
and are presented next.

To begin with, one cannot assume that domain knowledge is always complete and
accurate. Real-world agents, no matter whether human, robotic or virtual, have definite
limitations on the amount and quality of knowledge they can acquire before initiating
execution. Their sensor range and efficiency either has physical limitations or is
deliberately compromised for the sake of performance. Moreover, knowledge they have
already established or receive from third parties might well be false. The truth of certain
facts necessary for plan completion can only be established in real-time, making it
necessary to start executing a partially formed plan based on incomplete and possibly
inaccurate information that will be later validated.

Let us consider a very common example demonstrating this case. John wants to get
from home to work, which typically involves either a twenty-mile drive through the city
centre or a thirty-five mile drive on the ring road. Based on previous experience, John
selects the shorter route, expecting light traffic in the city centre. While en route, the
hourly traffic report on the radio is broadcast, saying that the streets in the city centre
are congested because of a protest march. So, John estimates that he will be better off
returning to the junction and selecting the alternative route.

Even if the agent had full and complete knowledge beforehand, the assumption that
the world state would remain unchanged during the execution phase is equally problem-
atic. Real-world domains are rarely static; usually several major or minor changes occur
that interact with the agent’s plan and disrupt its execution. Apart from being a result of
the agent’s own action, changes in the world state can originate from the environment
itself. An example of such a case would be a sudden rainfall on a sunny day. This event
would affect the plans of an agent with a goal to travel a one-mile distance from home
to work. Having noticed the morning sunshine, the agent decides not to take an umbrella
and walk towards the office instead of driving by car. The sudden rainfall is an unplanned-
for change in the world state that will modify the agent’s plan, causing it to quit walking
and hop on the first passing bus.

Besides environmental changes, another characteristic of real-world domains is the
existence of multiple agents in the world. This co-existence implies that agents can
interact and interfere with one another’s plans through their actions. Ambros-Ingerson
and Steel (1988) have presented an illustrative example of how a classic planning problem
can be affected by the presence of a second agent. In this example, the classic Blocks
World domain has been modified with the presence of a second, non-planning agent, a
baby that intervenes in the execution of a plan to stack the boxes in the defined order by
repositioning one of them. This renders the initially devised plan useless and requires
alterations to be made to remedy the problem.

Actions in realistic situations do not always go as planned. Not all of an agent’s
actions have a definite outcome, neither do they all succeed at once, even if all of their
preconditions hold true. For example, washing a stained piece of cloth in a washing
machine does not guarantee it will be clean after a washing cycle; the action may have
to be repeated in order to achieve the desired result. In such cases, the outcome of the
action has to be evaluated after its execution, which is impossible to perform within an
off-line planning approach. Moreover, failure might well occur in the middle of execution,
which consequently means that a number of possibly irreversible actions have been
successfully executed up to this point.
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Failure in the middle of execution is not necessarily totally negative. Although the
goal is not achieved, the result might be just good enough. In addition, the results of the
partial execution of the plan might be “saved” and be utilized at a later moment, when
conditions are more favourable. However, this implies that the planning agent has to be
able to recognise the useful part of the plan or opportunities that have appeared and take
advantage of them.

In real-world problems one has to take into account that actions do take time to
perform, and this may affect the whole plan of an agent, functioning as a criterion for
action selection. Certain actions may be heavily time-dependent, making sense only if
executed within a specific time window. Therefore, a basic time-management mechanism
has to be incorporated into planning systems designed for real-world domains. One has
to note, however, that time only needs to be given enough importance. Complex temporal
models and exhaustive temporal planning in advance are far from being the answer. A
detailed and strict temporal plan lacks robustness, as it presents the agent with a difficult
execution task that has a high probability of failure due to unexpected conditions.

Issues for Consideration in Virtual Environment
Applications

One can reasonably argue that some of the above problems can easily be overcome
in virtual environments by designing systems properly so that they are done away with.
After all, as software implementations, virtual agents can be designed in a way that their
sensors are unlimited, or that they gain instant access to all world knowledge. Their
actions can always be successful, and a high enough level of abstraction can be selected
to work with, so that problems occurring at the lower level are not an issue.

Although this might be partially true, and is indeed something commercial VE
application developers take advantage of, specific limitations exist, especially when VEs
are used as research experimentation platforms. Believability, autonomy, realism and
performance issues limit the degree of arbitrary design decisions that can be made.

For example, the issue of incomplete and potentially false domain knowledge at the
beginning of the planning process is a strong requirement in planners for virtual
environments because of believability issues. An agent entering a building for the first
time moving around without hesitation or glance to confirm its position is non-plausible,
as it demonstrates knowledge it is not supposed to have. Therefore, gradual acquisition
of knowledge is a must for VE applications and has to pursued rather than avoided.

Important issues also emerge in relation to potentially executable actions. Complex
actions can be designed so that they are considered as executable by the agent, however,
in order to achieve believability they may well have to be treated as sub-plans and
decomposed into lower-level actions. For example, the “open door” action can be
designed as immediately executable, however, for the sake of believability or due to motor
function design a particular VE might require it to be broken into a sequence like the
following:

(get_key, insert key, unlock door, get key, turn handle, push_door)

The requirement for believability presents the planner with the problem of goal
generation. It is perfectly reasonable for a planning system designed for the aerospace
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domain to stop functioning after it has achieved all the given goals, however, this does
not apply to an autonomous virtual planning agent, as the lack of goals would mean that
the agent would stand still in the virtual environment like a dummy, which is devastating
for believability. Therefore, a mechanism that generates goals or an alternative handling
method of the behaviour of the agent in idle state has to be included.

 Things become more complicated with the introduction of features like emotions
in VE applications. As several researchers have argued, emotion in a generic sense is an
essential component of human and sometimes animal intelligence (Damasio, 1994;
LeDoux, 1996; Picard, 1997), as it can affect both action selection and execution, while
also functioning as a driving force behind new goal generation. Therefore, one cannot
afford to neglect emotions when dealing with Intelligent Virtual Agent applications if
believability is to be pursued. An emotion-handling mechanism should be included as
an inextricable component of an IVA-targeted planning and execution mechanism
(Gratch, 2000), in order to be able to recognize and generate affective experiences and
expressions. This integrated emotion handling mechanism should operate continuously,
as pointed out by Izard (1993).

Requirements from a Planner for Virtual Environments
The above features of virtual environments make it clear that traditional planning

approaches, designed with a different kind of application domains in mind, are not
appropriate for virtual environments, as the assumptions stated in the introduction do
not stand. The works of Aylett, Coddington and Petley (2002), Pollack and Horty (1998),
Atkins, Abdelzaher, Shin and Durfee (1999) and desJardins, Durfee, Ortiz and Wolverton
(1998) have identified various requirements for planning systems for real-world domains.
Building on their work, we present a set of requirements a planning system designed for
virtual environments should satisfy, in accordance with the generic characteristics of
real-world domains.

• Integrate planning, monitoring and execution as parallel, ongoing processes
• Handle domain uncertainty and operate on partial information
• Decompose the planning problem into smaller subtasks and reason over multiple

levels of abstraction
• Interrupt the planning or execution processes if new information affecting them

appears
• Handle durative actions and incorporate a level of reasoning about time
• Accept new goals coming from the environment or other agents
• Generate new goals on its own
• Demonstrate tolerance in terms of goal satisfaction; partial goal completion should

be acceptable, and sub-goal failure should not terminate the whole planning
process.

• Deal with real-time changes in the environment that might not be a result of the
planning agent’s actions; they might be caused by other agents or the environment
itself.
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• Support indirect execution by delegating actions to other agents in the environ-
ment as well as scheduling action execution.

• Handle parallel action execution in a multi-agent environment

Robotic vs. Virtual Environments
The above requirements for planning for virtual environments could reasonably

seem to someone reminiscent of robotic planning (McDermott, 1992; Beetz, 2001; Haigh
& Veloso, 1996). Indeed, robotic domains have a lot in common with virtual environments
and VE-planning is closely relevant to robotic planning, with the difference that robots
are simulated rather than being hardware implementations. Although practical virtual
environment applications, such as computer games, tend towards a centralized plan or
control approach for reasons of efficiency, research oriented agent-centred approaches
are closely similar to autonomous robotic environments.

Key Similarities Between Virtual and Robotic Environments
• Both present the need for real-time agent response to stimuli
• Sensing, planning and execution take place in both domains and it is often

necessary that these tasks are performed concurrently.
• Both environments are highly dynamic
• Multiple agents may inhabit robotic or virtual environments, creating the need for

agent communication and coordination tasks
• There is limited control of external events from the part of the agents
• Agents only maintain imperfect and local information about the environment
• Both robotic and graphical agents are embodied, meaning that they have to control

a body in the environment which can also be used for communication and actuation
• Agent actions have a temporal extent, which is non-trivial and can be quite long

for specific actions

Apart from the above similarities, however, virtual environments present some
differences from robotics domains, which can significantly affect the planning problem.
Some of these differences work in favour of virtual environments, while others present
yet more challenges that have to be confronted. These features differentiate virtual
environment planning problems from robotic planning problems in a degree such that
planning for virtual environments qualifies as a new, self-contained category.

Key Differences which make VE Planning Easier than Robotic
Planning
• “Cheating” is possible in VE planning if one wants to restrict the problem,

especially in regard to sensing and communication functions. In contrast to a
camera-equipped robotic agent that has to perform complex image recognition to
decide that the object ahead is a table, a graphical agent can acquire this information
using messages or reading the object’s attribute values. Although many could
argue that this is a questionable practice, it is commonplace in practical applica-
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tions like games and is very convenient if one only needs to experiment with the
agents’ high-level reasoning capabilities.

• If one wants to restrict the problem in order to make it tractable, agent actions can
be designed so that a successful outcome is guaranteed. Actions like “grab an
object” are usually considered trivial in virtual environments, unlike robotic
domains where complex constraints have to be met to ensure the object is held
firmly and safely at the same time.

• The designer has extensive control over the degree of realism. This means that the
degree of physics incorporated in a virtual environment can be limited to what is
judged as absolutely necessary. This way, common problems in robotics experi-
ments such as power loss because of batteries running out or robots falling over
can be avoided.

• Implementing sensorimotor functions for a graphical agent is easier than the
equivalent robotic functions. This, in conjunction with the fact that one can work
at a higher level of abstraction allows the implementation of actions, such as
dancing, running, and climbing stairs, which are hard problems for robots.

• No safety issues arise in virtual environments, as opposed to robots that may
collide with objects or people, which can be a real problem if one considers large
humanoid robots that may weigh well over 100kg.

• Virtual agents can execute a much wider range of actions than robots, as the
majority of the physical limitations do not hold or can be ignored, according to the
level of abstraction one is working with.

Key Differences which make VE-Planning more Difficult than Robotic
Planning
• Virtual agents’ extensive action repertoire, apart from the apparent benefits in terms

of believability, has as a negative consequence more complex planning problems
and extensive search spaces which can easily become impossible to handle if too
many actions are allowed to the agent

• Given that nothing has any solidity in virtual environments, interaction among
objects and agents can be problematic. Collision detection can be a difficult task,
especially when complex 3-D models are involved.

• VE requirements for believability introduce another source of complexity, as it is
not only enough to get the task done, it also has to be performed in a plausible
manner, something especially important when talking about humanoid/animal-like
agents. Robotic agents do have to be plausible too, although the expectations are
much lower.

• The higher level of abstraction brings along as a consequence more abstract goal
and action definitions.

• In terms of spatial complexity and size, virtual environments are usually much more
complex than the domains used by robotic experiments, which can nullify the
advantage one has because of greater control over physics.

• Emotions and motivations behind action selection are currently much more impor-
tant in virtual environment applications than in robots, which can introduce a great
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degree of complexity both in terms of 3-D-modeling and behaviour control.
Emotional robots have already been presented (Breazeal, 2002), but they are still
a long way behind their software counterparts.

• Longevity and persistence of virtual environment applications is much greater than
in robots. This implies that longer plans have to be devised or the agents should
be highly autonomous and accept or generate new goals.

CONTINUOUS PLANNING IN
VIRTUAL ENVIRONMENTS

Continuous Planning Fundamentals
The AI planning community has long acknowledged the fact that the traditional off-

line planning paradigm cannot fit domains, such as the ones described above, and has
not remained idle. Several researchers have been trying to address these problems,
resulting in a significant body of work having appeared since the early nineties.
Techniques such as probabilistic planning, (Blythe, 1998; Kushmerick, Hanks & Weld,
1995), conditional planning (Collins & Pryor, 1995) or decision-theoretic and utility
planning (Boutilier, Dean & Hanks, 1999; Williamson & Hanks, 1994) have been intro-
duced in an attempt to deal with categorical goals, indefinite action outcomes or agent
omniscience.

However, it is evident that a necessary major step towards more efficient handling
of real-world domains is an approach that interleaves planning with execution, allowing
the agent to incrementally build its plan and monitor its progress towards achieving its
goals in real-time (Durfee, 1999; Estlin, Rabideau, Mutz & Chien, 1999; Myers, 1999).
Techniques integrating planning with execution as ongoing, closely interacting pro-
cesses were first presented in the late 1980s (Ambros-Ingerson & Steel, 1987) and have
significantly evolved since, defining a new research area within intelligent planning,
which has become known as continuous planning.

Definition
Continuous (or continual, as often referred to in several research papers) planning

could be generically defined as an ongoing process in which planning and execution are
parallel activities, and new goals are possible to be presented to or generated by the agent
at any time, depending on input received by a dynamic, ever-changing environment.

Continuous planning is also often referred to as continual or online planning, in
contrast to traditional, batch or off-line planning. The earlier term IPE, standing for
Interleaved (or Integrated) Planning and Execution is occasionally still being used,
although it mainly refers to sequential planning and execution processes rather than
parallel ones.

A continuous approach implies that the planning agent can adapt to unstable
conditions in the environment, adjusting its plan towards achieving its given goals, and
as being able to generate goals according to newly perceived world states. This
implication distinguishes the concept of continuous planning to approaches such as
plan monitoring and repair, where the planner does not generate new goals and only
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revises its plan if it is bound to fail, without taking into account new conditions that do
not pose threats to the original plan but might actually provide a better alternative to it.

The core difference between off-line and continuous planning is the fact that the
latter is treated as an ongoing, incremental process, rather than being a batch, one-shot
attempt to solve a problem. A classical task-based planning algorithm can be generically
summarized in the following sequence:

begin planning session
acquire current world state information
acquire goal state
produce a plan linking current state to goal
state
output the plan to the execution module

end planning session

In practice, the last step is often omitted, considered as a trivial task that is bound
to succeed, so the majority of planning systems do not deal with execution at all. In
contrast, a continuous planning algorithm as two processes running in parallel could be
generically described as follows:

process(planner)
while (more goals) or (action to execute)

read execution outcome message
   read planner world model
   If (execution outcome message) then
 if (successful execution) then
          remove solved goals
      else
         mark goals failed;
   update goals
   if (executable action) then
     send action for execution;
  If (goal on stack) then
     initiate planning;
endwhile
end process

process (executing agent)
while (agent active)

sense world state
establish beliefs
send outcome message to planner
update planner world model
read actions for execution
select action
execute action
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end while
end process

Although in an abstract form, the algorithm clearly demonstrates the basic differ-
ence between the open loop, single pass off-line approach and the closed loop, multi-
pass continuous approach, schematically shown in the following diagram.

Example Planning Scenario in Intelligent Virtual
Environments

Let us now see how a continuous planning algorithm would cope with a sample
scenario that would be typical in a virtual storytelling application, in contrast to a classic
off-line approach.

The virtual world consists of a street with a subway exit, a grocery store, a bank
ATM and the agent’s home. We assume for the sake of simplicity that a single agent only
resides in the world. We also assume that the agent has a separate belief list from the
universal world state, which implies some of its beliefs might not be valid.

The agent’s plan is created according to its beliefs, which are checked later during
execution time with the world state. Belief validation is performed individually for each
action, meaning that when an action is selected, the preconditions of the action (which
have already been checked with the agent’s beliefs during planning) are now checked
against the world state.

The agent can move around in the world, buy food from the grocery store, eat food
and use the ATM. Therefore, a draft representation of the agent’s action schema is the
following:

The agent’s initial beliefs are that it has money and it is hungry, while its initial
location is at the subway exit. Its goals are to satisfy its hunger and get home. The initial
world state is the same as the agent’s beliefs with the difference that the agent is assumed
not to have money. This means the agent’s initial belief have(money) is invalid.

Planning Execution 

Execution 

Planning 

Tasks for 
execution 

Updated World 
Knowledge 

Plan Actions World State  
Set of Goals 

Figure 2. Schematic representation of a batch, single pass offline approach vs. a
parallel, continuous planning approach
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Using an off-line approach, the produced plan would be the one shown in
Figure 4. Upon execution, Step 1 (go(store)) executes successfully, when the agent tries
to execute the buy(food) action, a failure occurs. This happens because the agent’s
beliefs are inconsistent with the world state — the agent believed it had money, however
it did not. This results in execution failure and termination of the agent’s activity.

A planner interleaving planning with execution would produce the plan in Figure
5. Step 1 would execute fine, as in the off-line example. At the second step, when the action
buy(food) is initiated, the inconsistency between agent beliefs and actual world state is
detected. This results in a belief update for the agent. After the beliefs are updated, the
action go(ATM) is selected, in order to remedy the problem and acquire money. After the
agent has collected money from the ATM, the agent visits the store again in order to buy
the food, an action that now succeeds. The final goal is achieved by going home and
eating the food, which satisfies the agent’s hunger.

Figure 3. Schematic representation of the domain
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Basic Considerations
So, continuous planning appears to be a modification of the generic planning

algorithm such that when a full planning and execution cycle is produced, the resulting
world state and remaining unsatisfied goals are fed back to the system so that the partial
plan created can be refined until the completion of all goals.

While this might be true as a generic, high-level approach, there are still numerous
issues it fails to address. When should the transition between planning and execution
be made? How far should planning be performed before actually executing a partial plan?
What happens if the agent’s goals are fully satisfied? What about external change?
Shouldn’t this affect the agent’s goals? Above all, can this simple loop linking planning
to execution be considered as true continuous planning?

This is indeed an important issue in continuous planning. Merely creating a
planning and execution loop while at the same time maintaining a classical core planning
approach is pointless. The planning process would produce an exhaustive, complete
plan, which, after being executed would leave the agent with no goals to perform,
therefore, why would one need to interleave planning and execution?

This is easily answered when one considers goal generation. Having adopted a
dynamic world approach, it is understandable that during the planning and execution

Table 2. The agent’s beliefs, its goals and the universal world state

Agent Beliefs Agent Goals World State 

at(subway), 

have(money), 

hungry 

not(hungry) 

at(home) 

 

at(subway), 

not(have(money)), 

hungry 

Figure 4. Schematic plan representation for off-line approach
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session new information may have arrived that affects some of the agent’s goals,
rendering them infeasible, facilitating them or even producing alternative, more beneficial
options. Therefore, when the planner is invoked again, it will be presented with a new
set of goals to plan and act upon, which makes continuous planning perfectly sensible.
Goal generation is an exciting aspect of continuous planning, as it is a major step towards
achieving autonomy (Luck, D’Inverno & Munroe, 2003), producing unplanned-for
behaviour.

A second feature that has to be considered is planning depth. The planning process
does not have to produce a fully expanded, complete plan that will be fed to the execution
system. Instead, partial planning can and should be performed. By hierarchically
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decomposing the problem into subtasks (Sacerdoti, 1974; Nau, Muñoz-Avila, Cao, Lotem
& Mitchell, 2001), the system can postpone planning and execution of either non-critical
tasks or parts of the plan for which adequate knowledge has not been established. This
way, the planning subsystem can provide the execution subsystem with what is needed,
at the time it is needed. By reducing the extent of the planning horizon (Gunderson &
Martin, 2000), and consequently the distance between planning and execution, domain
knowledge validity is easier to achieve, while another important positive side effect of
decomposing the problem and performing partial planning is a drastic reduction of
complexity and wasted reasoning time.

Another important issue is how execution and planning actually interact. How far
should planning proceed before passing control to execution, and when should execu-
tion be possible to interrupt? These questions raise the issue of granularity in the
continuous planning system’s operation (Aylett, Coddington, Barnes & Ghanea-Hercock,
1997).

Ideally, planning and execution have to be parallel activities, assisted by a moni-
toring system that constantly observes changes in the environment and other agents’
activities and can interrupt either planning or execution at any time to provide new
information. This is particularly true for multi-agent systems, where interactions and
possible changes are much more frequent, although there are domains like virtual
environments where the parallel performance of planning and execution is not always

Figure 6. Coarse vs. fine granularity plans
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desirable. In practice, sequential approaches operating at a fine granularity can be
adequate, provided, however, that monitoring remains a parallel process.

Real-time planning and execution raises another issue of great importance, which
is knowledge acquisition (Knoblock, 1995). Off-line planning systems are relieved from
this task; as the batch nature of the algorithm allows AI practitioners the time to properly
express domain knowledge in a format comprehensible to the planning system. Continu-
ous planning domains cannot afford this luxury. Domain knowledge has to be established
in real-time, either from sensory data, or information received from other agents. This
takes us back to the binding problem (MITECS, 2001), one of the major problems in
robotics, agent theory and cognitive science altogether. Although one might dismiss this
problem as an issue that has to be dealt with by lower-level layers than the planning one
in an agent architecture (and is indeed treated as such in practical implementations),
its importance and the complexity it introduces to an all-around approach of autonomous
agent systems cannot be neglected.

Numerous other issues may emerge in a closer examination of the intricacies of
continuous planning, especially when considered for application in niche, specialised
domains like virtual environments. Defining executable actions, for example, is a major
concern in integrated planning and execution systems and is a task that is often
implementation-specific. Modelling of an agent’s stance towards other agents is another
important issue, as it might affect its own actions in respect to other agents’ plans.

The last statement refers to multi-agent environments, where many agents can
perform actions that alter the world state. This way, it hints at another approach —
distributed planning, that is, planning activity that is distributed to multiple agents,
processes or locations. Planning activity could include either reasoning or execution

Figure 7. Sequential vs. parallel planning and execution

 

Sequential planning and execution 

Plan 
make coffee 

Execute 
make coffee 

Plan 
cook dinner 

Execute 
cook dinner 

Plan 
make coffee 

Execute 
make coffee 

Execute 
cook dinner 

 

Parallel planning and execution 
 

Plan 
cook dinner 



Continous Planning for Virtual Environments   181

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

tasks which involve multiple agents in order to achieve objectives. This approach,
generally referred to as Distributed Continuous (Continual) Planning, is described
extensively in (desJardins, Durfee, Ortiz & Wolverton, 1998).

Two main approaches in Distributed Continuous Planning can be distinguished,
mainly in respect to coordination and communication among agents. The first one
assumes individual planning agents that have their own agenda and pursue their own
goals, but can also interact with other agents co-residing in the environment, supporting
or obstructing their plans and communicating among one another. The second approach
presupposes the existence of a high-level, overseeing planning entity that can delegate
tasks to agents and coordinate their actions.

Both approaches have their pros and cons, with the former being closer to the
concept of autonomous agents and better suited to applications where a high degree of
self-assertiveness is allowed, yet imposing a heavy overhead to the computer system due
to the potentially excessive exchange of communication messages necessary for agent
interaction. The latter, better suited to centralised organisation paradigms, drastically
limits the need for message exchange, but also restricts autonomy.

Brief Account of Efforts Toward Continuous Planning
Continuous and distributed continuous planning are not new ideas. AI planning

researchers did have issues like execution in mind since the first steps of research in this
area was made. Even STRIPS, dated back to 1971, was designed to be integrated with an
execution module (Fikes, 1971). However, the necessity to make the planning problem
tractable so that initial investigation could begin led to the introduction of the classical
planning assumptions discussed in previous sections.

Since then, much of the work presented was aimed towards relaxing these strict
assumptions, resulting in approaches like causal-link, partial-order, conditional planning
and others that, although often sub-optimal and outperformed by other systems like
BlackBox (Kautz & Selman, 1998), Graphplan, O-Plan (Tate, Drabble & Dalton, 1996) or
SAT-PLAN (Kautz & Selman, 1992), represented a step towards systems applicable to
real-world domains.

Continuing work towards such systems resulted in the gradual introduction of
several planning systems incorporating some mechanism to monitor and adjust plans
(Ward & McCalla, 1982; Wilkins, 1985), with a more comprehensive example of an
interleaved planning and execution architecture being the influential IPEM system by
Ambros-Ingerson & Steel (Ambros-Ingerson & Steel, 1988), although these works seem
to be focused on remedying plan failure, rather than exploiting new information to create
a more effective plan. Other works related to continuous planning include reactive
systems such as Agre and Chapman’s Pengi (Agre & Chapman, 1987) and Georgeff and
Lansky’s PRS (Georgeff & Lansky, 1987), or works by Penberthy, Weld, Golden and
Etzioni at the University of Washington (Penberthy & Weld, 1994; Golden, Etzioni &
Weld, 1996), Kabanza, Barbeau and St Denis (Kabanza, Barbeau & St Denis, 1997),
Bacchus and Petrick (Petrick & Bacchus, 2002; Bacchus & Petrick, 1998) or  Durfee,
Musliner and colleagues (Atkins, Abdelzaher, Shin & Durfee, 2001; Atkins, Durfee &
Shin, 1997; Durfee, Huber, Kurnow & Lee, 1997; Musliner, Kresbach, Pelican, Goldman
& Boddy, 1998; Musliner, Hendler, Agrawala, Durfee, Strosnider & Paul, 1995).
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Contemporary Continuous Planning Systems
Currently there is significant research activity going on in continuous planning and

planning for agent environments. Persistent efforts seem to be taking place in a number
of institutions around the world, with the majority of work coming from the Information
Sciences Institute at the University of Southern California, SRI International, the
University of Pittsburgh and NASA’s Jet Propulsion Laboratory, while one could also
mention Micksch and Seyfang (2000) and Coddington (2002).

Current Research Work
In this section we present some of the most important works related to distributed

continual planning. Some of these works focus on the “distributed” and some of them
focus on the “continual” aspect of the issue. Works are presented grouped in relation
to the research institute where they actually take place.

Information Sciences Institute, University of Southern California
Jonathan Gratch, along with colleagues Stacy Marsella and Randal Hill at the USC

ISI has presented a number of interesting works on planning for complex agent domains.
In a 1999 paper of theirs, Gratch and  Hill (1999) present a multi-agent architecture

applied to military simulations. The architecture is based on Newell and Laird’s SOAR
architecture and uses distributed continuous planning techniques to simulate command
entities controlling operational-level agents in a synthetic battlefield.

The SOAR/CFOR planner is based on the IPEM and XII algorithms (Gratch &
Marsella, 2001) and adopts the principle of hierarchical task decomposition, organising
plans as sequences of tasks, which can be decomposed into subtasks. Each task has a
set of attributes (preconditions, effects, interruption conditions, success probability,
importance, acting/performing entity and a sequence of procedures that should fire
during task execution). The domain model also contains information about task decom-
position, defining decomposition schemata that describe how the task is to be decom-
posed into subtasks. This process is context dependent, so a different decomposition
schema might be selected according to either projected or currently holding conditions.
SOAR/CFOR has two main operation phases, plan generation and plan execution. During
the former, the planner receives a partial plan containing abstract guidelines for mission
completion. This partial plan is refined through task decomposition according to context,
which is also recorded in the plan to allow for later revisions.

During the plan execution phase, the planner builds a world model, which describes
how the planner perceives the current situation. The planner then continuously com-
pares the world model with its current plans, checking stored context validity against the
current world model. The planner’s continuous operation derives from the fact that the
planning and executing agents are different entities, so the planning agent’s world model
is constantly updated by input coming from the executing agents.

Extensive description of the planning algorithm is out of the scope of this survey,
however it is interesting to mention some features relevant to the coordination capabili-
ties of the system. First, the planner maintains multiple plans into memory, representing
the activities of various units at the same time, which allows the planner to examine
interactions between various units’ activities. The planner also has a model of the
decision-making process itself, thus implementing military protocols as meta-plans
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(plans on how to plan). The planner incorporates social modelling capabilities by
recording social stances, that is, inter-agent postures that affect the way the agents
reason about each other.

Preliminary results of experiments with SOAR/CFOR were very encouraging. Gratch
has also conducted research work in the field of synthetic emotional agents, presenting
the Emile behavior model, which was the base for another military simulation, although
no detailed description of the planning algorithm has been published so far. The USC
ISI’s works are described in Gratch (2000, 1998), Hill, Gratch and Rosenbloom (2000) and
Marsella and Gratch (2001).

SRI International
A project for developing a continuous planning architecture is currently under

development at SRI International. The project, named CPEF (Continuous Planning and
Execution Framework) is supervised by Karen Myers and is relevant to Gratch’s SOAR/
CFOR architecture. CPEF (Myers, 1998, Myers, 1999) is a continuous planning system
supporting not only indirect, but also direct execution. In direct mode, execution is
undertaken by the planning agent, as opposed to indirect mode, where execution is
performed by special execution entities, while the planning system acts as a reasoning
and monitoring component.

CPEF draws on various earlier systems: SIPE2 (Wilkins, Myers, & Wesley, 1994)
performs HTN planning and plan repair; Georgeff’s PRS is used as a plan executor,
Cypress was used as a starting point for creating the core planning mechanism (Wilkins,
Myers, Lowrance, & Wesley, 1995), while Myers’ Advisable Planner (Myers, 1997)
serves as a mixed-initiative component. The whole system is based on Myers & Wilkins’
Multiagent Planning Architecture (Wilkins & Myers, 1998) to support coordinated
actions.

Activities in the CPEF system are organized along three functional roles: the User,
the Planner, and the Executor. The system is designed in a way that allows the user to
play an active role in the plan development and execution processes. The role of the
Planner refers to various activities such as plan generation, analysis and repair. The
Executor module is responsible for monitoring world state, monitoring plan execution,
and plan modifications in response to new world state.

Parallel work on agent planning at SRI International has been conducted by Marie
desJardins. DesJardins’ work is mainly focused on distributed planning, resulting in an
extension of the SIPE-2 planner called DSIPE (Distributed SIPE) (desJardins & Wolverton,
1999). DSIPE uses a HTN approach and introduces the concept of planning cells. Two
kinds of planning cells exist in DSIPE: a coordinating planning cell unit and lower level
planning cells. The former delegates parts of the planning problem to several instances
of the latter, which in turn perform actual planning work. The coordinating unit then, in
turn, merges plans produced by lower level units to produce an overall plan.

University of Pittsburgh
Martha Pollack and her colleagues have been working on IRMA (Pollack & Horty,

1998), a planning architecture that aims to follow the above-mentioned principles.
IRMA’s key feature is that it tries to establish a balance between commitment to existing
plans and sensitivity to important new options. This is achieved through a filtering
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mechanism, which checks the compatibility of new options with existing plans and also
assesses the importance of a new option to determine whether it should be adopted, even
if it is conflicting with existing plans.

IRMA’s filtering module is complemented by the PMA (Plan Management Agent),
a higher-level module that aims to address the temporal aspect of the planning problem.
The PMA checks temporal and causal consistency of the plan based on user commit-
ments and takes action when needed.

Jet Propulsion Laboratory, CalTech
Work at the Jet Propulsion Lab has been mainly focused on space robot applica-

tions. The most representative sample of work at the JPL is CASPER (Continuous
Activity Scheduling Planning Execution and Replanning), a planning system uses
iterative repair techniques to allow the continuous modification and updating of a plan
according to changing world conditions. CASPER has been applied to autonomous
spacecraft and autonomous rover applications, such as the famous Mars Pathfinder
project.

CASPER, as the majority of continuous planning systems, adopts a hierarchical
approach, and defines a continuous planning cycle that consists of updating a plan with
new goals, updating the world state with newly received data, detecting and resolving
possible conflicts and executing a partial plan, then repeating the cycle until high-level
goal is reached. Work on the CASPER system as well as its applications is described in
Chien, Knight, Stechert, Sherwood and Rabideau (1999) and Estlin, Rabideau, Mutz and
Chien (1999)

Intelligent Planning in Virtual Storytelling
Intelligent planning has already been successfully utilised in virtual environment

applications as a means to generate and control narrative plot in computer-based
storytelling systems. Virtual Storytelling is a relatively new research area falling under
the umbrella of intelligent virtual environments, aiming to investigate the potential of 3-
D graphic environments as an artificial theatrical stage where dynamically generated
stories are presented.

Several systems including a planning component have been presented so far, with
the Interactive Storytelling (Cavazza, Charles & Mead, 2002), Mimesis (Young, 2002) and
Façade (Mateas & Stern, 2002) projects being among the most well-known ones, whereas
there are also a few other closely related works (Rickel, Marsella, Gratch, Hill, Traum &
Swartout, 2002; Magerko, 2002). The increasing interest in the use of intelligent planning
in the field of virtual storytelling can easily be justified, as the whole rationale behind the
planning problem is very close to the concept of story generation as the production of
a sequence of interdependent actions (Charles, Lozano, Mead, Bisquerra & Cavazza,
2003).

Two general approaches to applying planning in virtual storytelling applications
can be distinguished. The first is plot-based systems that use a global planner to control
a story with a predefined beginning, middle and ending. Here the planning module
undertakes the role of a “story manager,” similar to that of a dungeon master in role-
playing games (Louchart & Aylett, 2002). The second category is character-based
systems that use planning to control the behaviour of each individual character in the



Continous Planning for Virtual Environments   185

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

environment, without following a predetermined plot, an approach similar to that of a
reality show or a soap opera. However, no matter which approach one assumes, either
the “coordinating” role of the planner in the first one or the “behavioural control” role
of the second, considerations already discussed make a strong case for the need for
continuous planning rather than batch techniques.

MOTIVATION-BASED
CONTINUOUS PLANNING

Sample Scenario

Jeremy settles down at his desk one evening to study for an examination he has to take
in three days’ time. Finding himself a little too restless to concentrate, he decides to
take a walk in the fresh air. His walk takes him past a nearby bookstore, where the
sight of an enticing title draws him to look at a book. Just before getting in the
bookstore, however, he meets his friend Kevin, who invites him to the pub next door for
a beer. When he arrives at the pub, however, he finds that the noise gives him a headache,
and decides to return home without having a beer, to continue with his main goal —
studying for the exam. However, Jeremy now feels too sick to study and his first concern
is to cure his headache, which involves taking some medicine and getting a good rest,
thus postponing studying until the next morning.

This scenario, inspired by real-life situations, features a constant change of goals
and re-evaluation of priorities, mainly triggered by changes in the agent’s condition.
Jeremy has a relatively distant, yet important goal that plays a major role in his decisions.
Operating within a specific time frame, Jeremy has non-explicitly devised a plan and a
schedule in order to achieve his goal, passing the exam. Although within a broad planning
horizon Jeremy’s top-priority goal remains the same, from a narrower point of view his
lower-level goals are much more relaxed and can change order and priorities, as well as
be pushed aside by newly generated goals. The main driving force behind Jeremy’s
choices is changes in his emotional, mental and physical states, however, almost always
under a varying degree of influence by his main goal.

Motivations
Motivated by scenarios like the above and adopting the position of Bates, Gratch,

Picard and other researchers who have argued about the importance of emotions for any
model of intelligence, the authors are currently working towards the direction of a
continuous planning system aware of emotional and physical states, modelled using the
concept of motivations (Aylett, Coddington & Petley, 2002; Coddington, 2002).

In Avradinis, Aylett, and Panayiotopoulos (2003) and Avradinis and Aylett (2003),
motivations are defined as emotional, mental or physical states or long term, high-level
drives that affect a situated agent’s existing goals or generate new ones, and are
themselves affected by the agent’s own actions, other agents’ actions or environmental
conditions.
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Motivations can potentially play an important role in determining an agent’s
actions. Assuming an agent possesses some basic physical, mental and emotional
attributes like hunger, thirst, boredom, sociability, and happiness such that when
maintained within some minimum and maximum limits they define a well-being state, then
one of them exceeds these limits a motivation to restore the attribute to its desired level
is generated. This would trigger the activation of an action supporting the generated
motivation, by functioning towards restoring the affected attribute to its normal level.

For example, Jeremy’s decision to go for a walk could be triggered by an increase
of the weight of the motivation feel_bored, caused by the failure of the durative action
study. Jeremy’s spotting the book decreases the weight of the boredom motivation more
than the action take_a_walk does, so he decides to buy the book. Before he executes that
action, however, Kevin’s introduction of the have_a_beer plan changes the situation —
the have_a_beer plan decreases the boredom weight even more, so the action go_to_pub
takes priority and is selected, causing the buy_book goal to be dropped.

Support or subversion of motivations can either be a result of an action specifically
targeted towards this aim, or a side effect of an action having a different primary effect.
For example, the execution of the action eat_food directly targets the motivation
satisfy_hunger. An action like buy_CD, on the other hand, apart from having the
apparent effect have_CD, will also have the side effect of increasing its happiness factor.
Therefore, the motivation feel_happy is a parameter that could affect the selection of the
action buy_CD, and when the action is performed, the motivation is satisfied in a degree.

Motivations can be obviously be affected by the agent’s own actions, for example,
if the agent executes the action sleep then its restore_energy motivation is supported.
Other agents’ actions can affect one’s motivations, for example, an agent in order to
support its need_entertainment motivation may decide to execute the action
turn_on_music, which has the desired result. However, executing this action also has the
side effects of supporting the same motivation of a second agent as well as undermining
the need_peace motivation of a third agent, who happen to be in the same room.
Environmental changes could possibly affect a motivation, for example, walking through
a dark alley could undermine an agent’s feel_safe motivation, while they can also be time-
dependent. Time passing might increase the agent’s hunger, which would result in an
increased priority of the satisfy_hunger motivation.

The authors wish to investigate the potential of the use of motivations as a source
for new goals, where factors like the above will affect the agent’s decisions and create
an unpredictable outcome, mainly dependent on the interactions of the character with
the virtual environment and other agents, rather than following predetermined steps
according to a previously compiled plan or a skeletal scenario.

In a more relaxed approach than the “Jeremy” scenario presented above, a primary
concern of the authors is work towards “aimless” agents, rational agents with trivial
goals. The motivation behind this research direction is the observation that human
behaviour is not always determined by utility, but is often a result of drives such as the
need for pleasure, or the desire to escape boredom.

Implementation Platform
The selected execution and experimentation platform is the popular game

UnrealTournament. A 3-D first person shooter, UnrealTournament has attracted the
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attention of several research groups worldwide (Young, 2001; Cavazza, 2002) that use it
as a visualisation engine to develop their own virtual worlds. UnrealTournament
provides an object-oriented language operating a layer above the game’s 3-D engine
using a virtual machine technology. The language, UnrealScript, allows extensive control
over the behaviour and the appearance of objects located in an UnrealTournament world,
which, in addition to its capability to link to other languages through a C++ interface
makes it particularly attractive as an experimentation platform for AI techniques and
algorithms.

The reasoning capabilities of the motivated agents are going to be provided by a
system interleaving planning and execution, supporting mental, emotional and physical
states through the use of motivations. The proposed planning algorithm is presented in
a draft form below:

while agent is active
select goal from goal_list or execute

action from action_list
if goal selected then

if goal primitive then
append goal to actionlist

elseif goal nonprimitive and expandable
expand goal to subgoals
append subgoals to goal_list

else fail
elseif action selected

execute action & assess outcome
update motivations & world knowledge
generate new goals and update goal_list

endif
end

The latest version of SHOP (Nau, Muñoz-Avila, Cao, Lotem, & Mitchell, 2001) was
adopted as a base upon which to develop our own system. SHOP, a forward chaining HTN
planner, has proven to be efficient and possess enough expressive power to model
complex domains, while at the same time it is a generative planner, an attribute particularly
suitable for the goal production needs of the system.

Figure 8.  Screenshot from the 3-D environment in development and system architecture
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Elements and ideas are also drawn from MACTA-planner (Aylett, Coddington &
Petley, 2002), a non-hierarchical, continuous agent-based planner using motivations as
a key element in its algorithm. Although developed for a robotics domain, MACTA-
planner’s continuous algorithm, its support for motivations as well as its ability to take
into account time make it seem particularly close to the needs of an IVE.

The authors aim is to combine SHOP’s expressive power and hierarchical philoso-
phy with MACTA-planner’s continuous operation and time handling, in order to
produce a HTN-based, continuous generative planning system suitable for producing
goals and selecting actions instigated by motivations.

CONCLUSIONS
In this chapter the increasingly popular continuous planning paradigm was pre-

sented while its application in virtual environments as a method to control intelligent
virtual agent behaviour was discussed. Continuous techniques offer a radical approach
towards planning problems, vitiating most of the traditional assumptions made by the
classical off-line planning paradigm. Targeted towards real-world domains, continuous
planning techniques have to abandon these assumptions, a result of the traditional
application of intelligent planning to limited and controlled domains designed for
research evaluation purposes.

Steps towards this practical approach of intelligent planning have been made long
before, however, it was only recently that continuous planning was established as an
individual research area. This can be partly attributed to the introduction of the intelligent
agent paradigm, which brought significant changes and gave new life to the field of
Artificial Intelligence.

The integration of planning with execution under a unified continuous planning and
execution framework raises issues that had not attracted significant attention by the
research community, such as multi-agent, distributed planning, incremental plan comple-
tion or the implications of action execution. The authors attempted to provide an
introductory discussion of such issues, and presented some of the most important
current continuous planning approaches.

Oriented towards realistic situations, continuous planning seems to fit well with the
needs of another newly emerging research area, intelligent virtual environments. Inhab-
ited with embodied agents, virtual environments require a method to control agent
behaviour in real-time. Continuous planning, sharing many common assumptions with
virtual world domains, seems a promising technique for the achievement of this goal.
Applications of interleaved planning and execution techniques in virtual environments
have already been presented, particularly in the field of interactive storytelling.

The authors’ own research interests lie within this new area and include the
investigation of techniques that can produce emergent agent behaviour not only based
on rational choice, but also affected by factors not usually considered essential
components of intelligence, such as emotions and drives.
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ABSTRACT
Multi-agent planning comprises planning in an environment with multiple autonomous
actors. Techniques for multi-agent planning differ from conventional planning in that
planning activities are distributed and the planning autonomy of the agents must be
respected. We focus on approaches to coordinate the multi-agent planning process.
While usually coordination is intertwined with the planning process, we distinguish
a number of separate phases in the planning process to get a clear view on the different
role(s) of coordination. In particular, we discuss the pre-planning coordination phase
and post-planning coordination phase. In the pre-planning part, we view coordination
as the process of managing (sub) task dependencies and we discuss a method that
ensures complete planning autonomy by introducing additional (intra-agent)
dependencies. In the post-planning part, we will show how agents can improve their
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plans through the exchange of resources. We present a plan merging algorithm that
uses these resources to reduce the costs of independently developed plans. This (any-
time) algorithm runs in polynomial time.

INTRODUCTION
Often the actions or elementary tasks in a plan have to be performed by different

actors. Especially if these actors have a common interest, the plan itself is usually
constructed by a single actor. Examples are production planning in factories, arrival and
departure planning on airports, planning for building projects, and the planning of armed
forces. If, however, the actors involved require some degree of (planning) autonomy
themselves, centralized construction of the plan may be not feasible. Here, “autonomy”
refers to the ability to make decisions in an individually rational fashion, such as when
to perform which action. Such autonomous actors are called agents, and such planning
problems are called multi-agent planning problems.

Reading this book, one may wonder why we need to study such multi-agent
planning problems and techniques as a separate topic. Isn’t it true that such problems
are already dealt with in general discussions of planning? The answer to this question
comes in two parts. On the one hand, in real-life problems, we deal with multiple agents
having their own goals, and it is often impractical or undesirable to create the plan for
all agents centrally. These agents may be people or companies simply demanding to plan
their actions themselves, or refusing to make all information necessary for planning
available to someone else. Furthermore, the planning problem itself may be simply too
complex to be solved by one agent, while planning the parts for each agent individually
may be feasible. On the other hand, when agents acting in the same environment create
their plans individually, they still need to coordinate their actions for a number of
reasons. First of all, coordination is needed to prevent chaos (e.g., collisions, deadlock),
which may easily arise if each agent just acts on itself. Secondly, coordination may be
required because the agents need to meet global constraints, or because there are
dependencies between the actions of the different agents. And even when the agents
can function completely independently, coordination may help to improve the efficiency
of their plans.

Summarizing, in quite a few real-life problems there is a clear need to have each agent
construct its plan more or less independently, but there is also a need to coordinate these
plans. A planning problem that has these key properties is called a multi-agent planning
problem.

In this chapter, we first present a more precise definition of this multi-agent planning
problem. Next, we give an overview of issues that arise when trying to solve such a
problem. Based on this overview we then present a classification of existing research
within multi-agent planning, paying special attention to the role of coordination in the
planning process. In the third and fourth section we discuss two different techniques to
coordinate independently planning agents. Firstly, a distributed algorithm is developed
that derives a (minimal) set of restrictions on the agents’ plans that can be given to them
before they start planning. These restrictions ensure that their plans do not interfere.
Secondly, we address a technique to improve the efficiency of the plans after they have
been created individually. These two methods are discussed separately and we illustrate
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these methods with a logistics application. Finally, we conclude with a discussion of
further research into multi-agent planning.

MULTI-AGENT PLANNING
In this section, we first give a short overview of how the term “multi-agent planning”

is currently used in the literature, and we derive a general problem definition. Then we
analyze the types of dependencies that may occur in a multi-agent system and discuss
the definition of autonomy in this perspective. In the second part of this section, we
present a way to evaluate multi-agent planning approaches: first we present some criteria,
and then we sketch a framework where several phases in solving multi-agent planning
problems are distinguished. Finally, we show where existing techniques fit into this
framework.

Multi-Agent Planning Problem
The term “multi-agent planning” has incidentally been used to denote an approach

to a planning problem with complex goals that splits the problem into manageable pieces,
and lets each agent deal with such a sub-problem (Wilkins & Myers, 1998; Ephrati &
Rosenschein, 1993b). In this approach, the solutions to the sub-problems have to be
combined afterwards to achieve a coherent, feasible solution to the original problem. This
idea of using several problem solvers or algorithms to work on one problem (De Souza,
1993) has been applied, for example, to transportation scheduling (Fischer et al., 1995),
in constraint programming (Hentenryck, 1999), and also to combine several planner
agents to be able to reach a solution faster (Kamel & Syed, 1989; Wilkins & Myers, 1998).
This form of multi-agent planning is called planning by multiple agents or distributed
planning (Mali & Kambhampati, 1999; Durfee, 1999).

Usually, however, multi-agent planning has been interpreted as the problem of
finding plans for a group of agents, also called centralized multi-agent planning
(Briggs, 1996; Ephrati & Rosenschein, 1993a; Rosenschein, 1982). More specifically, it
was used to describe the problem of coordinating the operations of a set of agents to
achieve the goals of each agent (Georgeff, 1984; Konolige, 1982; Muscettola & Smith,
1989).

The difference between such a centralized planning for a group of agents and
coordinating the agents’ individual plans in planning by agents is that, in the latter
approach, agents can have their own, private goals, and they may not like to publish their
complete plans, since they may even be competitors. In this chapter we study solutions
to the problem where the planning is done both for and by the agents themselves. The
following definition will serve as a working definition of multi-agent planning problems:

Definition. The multi-agent planning problem is the following problem: Given a
description of the initial state, a set of global goals, a set of (at least two) agents,
and for each agent a set of its capabilities and its private goals, find a plan for each
agent that achieves its private goals, such that these plans together are coordi-
nated and the global goals are met as well.



Coordination in Multi-Agent Planning   197

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The main difficulties in solving multi-agent planning problems arise because of the
dependencies between agents. The most common types of interdependencies in multi-
agent systems (see also Malone & Crowston, 1994) are:

• prerequisite constraints, such as a producer/consumer relation, or a need for
information, interpretation, or motivation,

• the sharing of resources, or other interferences between actions,
• simultaneity constraints, such as synchronization needed to hand something over

to another, or a common goal, and
• task/subtask dependencies, where one agent uses other agents to fulfill its goals.

Note that these forms of dependencies all can be represented as an exchange of
resources where one agent waits until it receives a resource from the other; for example,
because the other agent has produced this resource especially for this purpose (prereq-
uisite, and subtask dependencies), because the other agent does not need the resource
anymore and releases the resource (sharing of resources), or because each of the agents
needs a special synchronization resource from the other agent to ensure that both are
ready at the same time (simultaneity constraints).

Remark. When an agent is (resource-) dependent on another agent, we cannot call it
autonomous (using the strongest definition of autonomy). However, in general, an
agent always is dependent on another at some point. Therefore we use the subtler
notion of the degree of autonomy. This indicates the share of decisions the agent
can make itself without negotiating with other agents. Most multi-agent planning
approaches try to maximize this degree of autonomy by letting each agent create
its own plan (sometimes partially).

Properties of Multi-Agent Planning Techniques
In many applications we need approaches to the multi-agent planning problem that

allow agents to have some degree of autonomy as well as some amount of privacy. In
other words, we need agents that negotiate with each other for resources instead of being
always cooperative (DesJardins et al., 2000). Furthermore, the approach may need to be
robust for cheating or insincere agents. Multi-agent planning approaches can be
evaluated by the way in which they deal with these issues, but also (just as single-agent
planning approaches) by:

• their ability to be used in a dynamic setting (where goals may change),
• the quality of the result (social welfare) vs. the performance of individuals, and
• the time complexity.

Multi-agent planning techniques can be evaluated by looking at these properties.
However, because often-simplifying assumptions are made, these assumptions need to
be discussed in such an evaluation as well.
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1. The world is deterministic. We assume that we know the result of each action.
Unfortunately, especially in a multi-agent environment, this is not the case,
because, for example, another agent may have changed the world after the
precondition of an action has been established. However, under the assumption
that all agents’ actions are coordinated, this deterministic assumption is quite
acceptable.

2. There is a fair degree of coherence. Either the agents are designed to work together
or they are rational and have an incentive to do so. In other words, agents will try
to maximize their expected utility (Zlotkin & Rosenschein, 1996).

3. Knowledge about the world is correct and consistent among all agents. In other
words, the (relevant part of the) world is completely observable.

4. A feasible goal state exists in which all global goals are achieved, and all private
goals are also met (at least to some degree, such as in “make a lot of money”).

5. Learning is not required. In other words, (past) events do not affect the agents
other than a change of the current state.

6. Communication is reliable and (almost) free. All messages come across safely,
and the agents share a common ontology and utility units. Furthermore, there is no
significant cost associated with communication actions.

Most of these assumptions are commonly used, and, fortunately, they are accept-
able in many application domains.

After the definition of the multi-agent planning problem and the discussion of
common assumptions and criteria used to evaluate solutions to the problem, we can
analyze the process of solving such a problem from an algorithmic point of view.

In general, the following phases in solving a multi-agent planning problem can be
distinguished (generalizing the main steps in task sharing by Durfee, 1999).

1. Refine the global goals or tasks until subtasks remain that can be assigned to
individual agents (global task refinement).

2. Allocate this set of subtasks to the agents (task allocation).
3. Define rules or constraints for the individual agents to prevent them to produce

conflicting plans (coordination before planning).
4. For each agent: make a plan to reach its goals (individual planning).
5. Coordinate the individual plans of the agents (coordination after planning).
6. Execute the plans and synthesize the results of the subtasks (plan execution).

Not always do all phases of this general multi-agent planning process need to be
included. For example, if there are no common or global goals, there is no need for phase
1 and 2, and possible conflicts can be dealt with on forehand (in phase 3) or afterwards
(in phase 5). Also, some approaches combine different phases. For example, agents can
already coordinate their plans while constructing their plans (combination of phase 4 and
5), or postpone coordination until the execution phase (combination of phase 5 and 6),
as, for example, robots may do when they unexpectedly encounter each other while
following their planned routes.
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Approaches to Multi-Agent Planning
For each of the phases that can be distinguished in a multi-agent planning process,

we describe some of the currently most well-known approaches that can be used to deal
with the issues arising in such a phase.

In the first phase, global task refinement, the global tasks or goals are refined such
that each remaining task can be done by a single agent. Apart from any existing single-
agent planning technique discussed in this book, such as for example, HTN (Erol et al.,
1994), or non-linear planning (Sacerdoti, 1975; Penberthy & Weld, 1992), special purpose
techniques have been developed to create a global multi-agent plan. Such so-called
centralized multi-agent planning approaches in fact use the classical planning framework
to construct and execute multi-agent plans (Pednault, 1987; Katz & Rosenschein, 1989,
1993).

The centralized multi-agent planning methods mentioned before usually also take
care of the assignment of tasks to agents (phase 2, task allocation). There are, however,
many other methods to establish such a task assignment in a more distributed way, giving
the agents a higher degree of autonomy and privacy, for example, via complex task
allocation protocols (Shehory & Kraus, 1998) or auctions and market simulations.

An auction is a way to make sure that a task is assigned to the agent that attaches
the highest value (called private value) to it (Walsh et al., 2000; Wellman et al., 2001). A
Vickrey (1961) auction is an example of an auction protocol that is quite often used. In
a Vickrey auction each agent can make one (closed) bid, and the task is assigned to the
highest bidder for the price of the second-highest bidder. This auction protocol has the
nice property that bidding agents are stimulated to bid their true private value (i.e., exactly
what they think it’s worth to them). Market simulations and economics can also be used
to distribute large quantities of resources among agents (Walsh & Wellman, 1999;
Wellman, 1993, 1998). For example, in Clearwater (1996) it is shown how costs and money
are turned into a coordination device. These methods are not only used for task
assignment (phase 2), but can also be used for coordinating agents after plan construc-
tion (phase 5).

In the context of value-oriented environments, game-theoretical approaches
[where agents reason about the cost of their decision making (or communication)]
become more important. See, for example, work by Sandholm, supported by results from
a multiple dispatch center vehicle routing problem (Sandholm & Lesser, 1997). An
overview of value-oriented methods to coordinate agents is given in Fischer at al. (1998).
Markov decision processes give an especially interesting opportunity to deal with a
partially observable world as well (Pynadath & Tambe, 2002).

In phase 3 (coordination before planning), the agents are coordinated before they
even start creating their plans. This can be done, for example, by introducing so-called
social laws. A social law is a generally accepted convention that each agent has to follow.
Such laws restrict the agents in their behavior. They can be used to reduce communica-
tion costs and planning and coordination time. In fact, the work of Yang et al. (1992) and
Foulser et al. (1992) about finding restrictions that make the plan merging process easier,
as discussed in the previous section, is a special case of this type of coordination. Typical
examples of social laws in the real-world are traffic rules: because everyone drives on the
right side of the road (well, almost everyone), virtually no coordination with oncoming
cars is required. Generally, solutions found using social laws are not optimal, but they
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may be found relatively fast. How social laws can be created in the design phase of a multi-
agent system is studied by Shoham & Tennenholtz (1995). Briggs (1996) proposed more
flexible laws, where agents first try to plan using the strictest laws, but when a solution
cannot be found agents are allowed to relax these laws somewhat. Another way to
coordinate agents is to figure out the exact interdependencies between their tasks
beforehand. Prerequisite constraints can be dealt with centrally using existing planning
technology (such as partial order planning; Weld, 1994, among others) by viewing these
tasks as single-agent tasks. More recently, an approach has been proposed to deal with
interferences (such as shared resources) between the goals of one agent (Thangarajah
et al., 2003). In the next section we propose a distributed protocol to deal with prerequisite
constraints.

The fourth phase (individual planning) consists of individual planning for each
of the agents. In principle, any planning technique can be used here, and different agents
may even use other techniques. There are a couple of approaches that integrate planning
(phase 4) and the coordination of plans (phase 3 and 5). In the Partial Global Planning
(PGP) framework (Durfee & Lesser, 1987), and its extension, Generalized PGP (Decker &
Lesser, 1992, 1994), each agent has a partial conception of the plans of other agents using
a specialized plan representation. In this method, coordination is achieved as follows.
If an agent A informs another agent B of a part of its own plan, B merges this information
into its own partial global plan. Agent B can then try to improve the global plan by, for
example, eliminating redundancy it observes. Such an improved plan is shown to other
agents, who might accept, reject, or modify it. This process is assumed to run concur-
rently with the execution of the (first part of the) local plan. PGP has first been applied
to the distributed vehicle monitoring test bed, but, later on, an improved version has also
been shown to work on a hospital patient scheduling problem. Here, Decker & Li (2000)
used a framework for Task Analysis, Environment Modeling, and Simulation (TAEMS)
to model such a multi-agent environment. An overview of the PGP related approaches
is given by Lesser et al. (1998). Clement & Barrett (2003) improved upon this PGP
framework by separating the planning algorithm from coordinating the actions, using a
more modular approach called shared activities (SHAC).

A large body of research focused on what to do after plans have been constructed
separately (coordination after planning, phase 5). These plan merging methods aim at
the construction of a joint plan for a set of agents given the individual (sub) plans of each
of the participating agents. Georgeff (1983, 1988) was one of the first to actually propose
a plan-synchronization process starting with individual plans. He defined a so-called
process model to formalize the actions open to an agent. Parts of such a process model
are the correctness conditions, which are defined on the state of the world and must be
valid before execution of the plan may succeed. Two agents can help each other by
changing the state of the world in such a way that the correctness conditions of the other
agent become satisfied. Of course, changing the state of the world may help one agent,
but it may also interfere with another agent’s correctness conditions (Georgeff, 1984).
Stuart (1985) uses a propositional temporal logic to specify constraints on plans, such
that it is guaranteed that only feasible states of the environment can be reached. These
constraints are given to a theorem prover to generate sequences of communication
actions (in fact, these implement semaphores) that guarantee that no event will fail. To
both improve efficiency and resolve conflicts, one can introduce restrictions on indi-
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vidual plans (in phase 3) to ensure efficient merging. This line of action is proposed by
Yang et al. (1992) and Foulser et al. (1992), and can also be used to merge alternative plans
to reach the same goal. Another approach to merging a set of plans into a global plan deals
with problems that arise from both conflicts and redundant actions by using the search
method A* and a smart cost-based heuristic: Ephrati and Rosenschein (1993a) showed
that, by dividing the work of constructing sub-plans over several agents, one can reduce
the overall complexity of the merging algorithm (Ephrati & Rosenschein, 1994). In other
works on plan merging, Ephrati et al. (1995) and Rosenschein (1995) propose a distributed
polynomial-time algorithm to improve social welfare (i.e., the sum of the benefits of all
agents). Through a process of group constraint aggregation, agents incrementally
construct an improved global plan by voting about joint actions. Ephrati and Rosenschein
even propose algorithms to deal with insincere agents and to interleave planning,
coordination, and execution (Ephrati et al., 1995).

An approach that considers both conflicts and positive relations is proposed by
Von Martial (1989, 1990b, 1992). He presents plans hierarchically, and the top level needs
to be exchanged among the agents to determine such relations. If possible, relations are
solved or exploited at this top level. If not, a refinement of the plans is made, and the
process is repeated. For each specific type of plan relationship, a different solution is
presented. Relations between the plans of autonomous agents are categorized. The main
aspects are positive/negative relations, (non) consumable resources, requests, and
favor relationships.

Recently, Tsamardinos et al. (2000) succeeded in developing a plan merging
algorithm that deals with both durative actions and time. They construct a conditional
simple temporal network to specify (temporal) conflicts between plans. Based on this
specification, a set of constraints is derived that can be solved by a constraint solver.
The solution specifies the required temporal relations between actions in the merged
plan. One of the problems with the plan merging approaches described above is that one
agent may become dependent on another, while this was in the beginning not the case
at all. Finally, Cox and Durfee (2003) describe how to maintain the autonomy, while still
being able to use results from other agents, to improve the efficiency. Basically, their idea
is to add these dependencies conditionally to the plan: if the other agent succeeds, this
more efficient branch of the plan can be executed; otherwise the normal course of action
can still be followed.

We consider the sixth phase (plan execution) to be of a slightly different order and
a bit off-topic. (This in fact includes a vast body of work such as on reactive agents and
behavior models.) Therefore, we do not discuss this topic here any further.

In the remainder of this chapter, we present a solution for each of the two
coordination phases in our general multi-agent planning process description (before and
after planning). First, we give a coordination protocol for phase 3 that (i) ensures that
the agents have the required autonomy for constructing their own plans, and at the same
time (ii) ensures that, whatever individual plans are developed, the joint plan can be
constructed straightforwardly.

The second method (for phase 5) allows us to improve the efficiency of the
individual plans created by standard planning tools. Whereas current STRIPS-based
planners are state-based planners, coordination of dependencies is not about states of
the world, but, as we discussed, all forms of dependencies between agents can be
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represented as an exchange of resources between agents. Therefore, we give a resource-
based perspective on planning and plan merging.

COORDINATION BEFORE PLANNING
The pre-planning coordination problem (phase 3 of the step-wise approach of the

previous section) can described as follows: how to derive constraints for individual
agents from a complex planning problem in such a way that the agents can plan
autonomously, that is, the agents (i) are able to plan independently each other, and (ii)
taken together, their plans solve the original multi-agent planning problem (including
common goals).

In this section, first we introduce this (pre-planning) coordination problem and give
an example to illustrate it. Next, we analyze its complexity and develop a special
distributed approach to solve it. Then we present a fast algorithm that can be used to
solve the problem approximately. Finally, we present a practical application of the
coordination method showing how rather complex multimodal logistic problems can be
solved by using a coordination scheme and conventional single agent planners that can
plan independently from each other. This last application shows that this approach also
can be used as a general technique to make existing single-agent planning systems
suitable for solving multi-agent planning problems.

Setup
In our framework we use the notion of an elementary task. Such a task could be a

simple behavioral action belonging to the action repertoire of the agent, but could also
require an (existing) elaborate plan to perform. The essential property of an elementary
task t is that there is an agent that knows how to achieve t in isolation. We assume that
a set of elementary tasks T and their dependencies is given. Dependencies between
elementary tasks t and t’ may exist in the form of precedence constraints t < t’ meaning
that task t has to be finished before task t’ can be commenced.

Moreover, we assume the existence of a set of agents and for each agent A an
assignment of some of the tasks TA ⊆ T to A. The dependencies of the tasks within an
agent A are called the intra-agent dependencies. The remaining dependencies are called
the inter-agent dependencies referring to precedence constraints between tasks given
to different agents.

In terms of this framework the pre-planning coordination problem is, given a set of
inter-agent constraints, to find a set of intra-agent constraints such that if each agent
individually meets its own constraints then the inter-agent constraints will be satisfied
as well. In particular, we focus on the following definition of the pre-planning coordina-
tion problem:

Given
1. a partially ordered set (T,<) of elementary tasks t to be accomplished,
2. a set A of agents, where each agent A ∈ A has a capability c(A) ⊆ T to perform a

subset of the elementary tasks, and
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3. for each agent A, a task assignment TA ⊆ T such that
3.1. every elementary task t is given to exactly one agent A,
3.2. every agent A is capable to perform each elementary task assigned to it, that

is, TA ⊆ c(A), and
3.3. the tasks assigned to A are partially ordered by the dependency relation from

(T,<) restricted to TA, i.e., (TA , <A) where <A = < ∩ (TA × TA),
find
additional constraints on the task assignments of the individual agents to replace the
inter-agent dependencies.

Remark.  In this chapter, we assume that T is partially ordered by a precedence relation.
We restrict ourselves to precedence relations as the main dependency relation
between elementary tasks. In principle, it should be possible to extend our
framework to other kinds of inter-agent dependencies.

Although each agent A exactly knows how to solve each elementary task t ∈ TA, we
assume that achieving the subtask (TA, <A) constitutes a non-trivial planning task for A.
Common examples of such subtasks are sets of transportation order planning, robot
navigation planning, manufacturing production planning, arrival and departure planning
on airports, etcetera. To illustrate the concepts in this paper we use the following guiding
example:

Example. Consider the following logistic problem (see Figure 1): There are four locations
L1, L2, L3 and L4 and four parcels. Parcel 1 has to be shipped from L1 via L2 to L4, parcel
2 from L4 via L3 to L1, parcel 3 from L2 via L3 to L4 and parcel 4 from L4 via L2 to L3.
There are also three transportation agents A1, A2 and A3. Agents A1 and A2 serve the
locations L1, L2 and L3 and their interconnections, while agent A3 serves L4 and the
connections between L2 and L4 and L3 and L4, but is not allowed on the connection
between L2 and L3. Note that these two transportation regions represent the
capabilities of the agents in our framework. Recognizing these capabilities, we have
the following set of elementary tasks T = { t1

12, t
1

24, t
2

43, t
2

31, t
3

23, t
3

34, t
4

42, t
4

23 } where
tk

ij denotes the transport of parcel k from location Li to location Lj. This set of
elementary tasks is partially ordered by the following four precedence constraints
t1

12 < t1
24, t

2
43 < t2

31, , t
3

23 < t3
34 and t4

42 < t4
23 .

Obviously, tasks t1
24, t

2
43, t

3
34 and t4

42 must be assigned to agent A3; the remaining
tasks must be distributed over the two agents A1 and A2. We assume that this task
allocation problem has been solved and the following allocation of tasks has been
achieved: tasks t1

12 and t4
23 are given to agent A1, tasks t2

31 and t3
23 to agent A2, and t1

24,
t2

43, t
3

34 and t4
42 to agent A3. This results in the partitioning of T in TA1, TA2 and TA3 as

depicted in Figure 2.
Note that in this example, the set of intra-agent constraints is empty. Viewed from

the perspective of the individual agents, each agent has to solve a route planning
problem, but the agents are not free to plan independently due to the presence of the inter-
agent constraints.
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As remarked above, we assume that achieving the subtask (TA, <A) constitutes a
planning problem for agent A. In our logistics example, for example, it requires determining
an optimal visiting sequence. Such a problem is, even in cases with uniform distances,
an NP-hard problem (which can be proven by an easy reduction from the Minimum
Feedback Vertex Set problem.). So, given the subtask (TA, <A), the agent has to construct
a non-trivial plan PA that realizes the set of elementary tasks, respecting the intra-agent
constraints given to A. The exact structure of such a plan PA depends on the particular
planning system used by the agent. It is possible that different agents use different
planning systems, and, thereby, come up with plans that are stated in different languages
and contain a lot of details that are not relevant for coordination. For example, agents A1
and A2 may cooperate and use a single truck and a concrete plan to start in L2, go to L1
to bring parcel 1 to L2, then to transport parcel 3 and 4 from L2 to location L3, then to bring
parcel 2 from L2 to L1 and finally return to L2. The only relevant information, however, this
concrete plan contains is the order in which the elementary tasks are planned: t1

12 is
planned before t3

23 and t4
23 and these tasks are planned before t2

31. Therefore, we abstract
from the details of the concrete plans and only consider abstract plans that refer to (i)
the set TA of tasks achieved in the concrete plan, and (ii) the set of precedence relations
between these tasks as induced by the concrete plan. Hence, on this level of abstract
plans, we conceive an agent plan PA as just specifying a partial order (TA, <PA). Clearly,
such a plan P

A
 should respect the task constraints <A, that is, it should hold that <A ⊆ <PA.

Therefore, in the sequel we just assume that each such an abstract plan P
A   = (TA, <PA) of

an agent A specifies an ordering of TA that extends <A.

Figure 1. A logistics example with four locations L1, L2, L3 and L4, three transportation
agents A1, A2 and A3 and four parcel transportation orders
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Example. Consider the individual agent tasks (TA1, ∅ ), (TA2, ∅ ) and (TA3, ∅ ) as depicted
in Figure 2. Suppose that agent A1 creates a plan PA1 where t4

23 < t1
12 and agent A2

plans t2
31 before t3

23, while agent A3 develops a plan PA3 where t1
24 < t2

43 and t3
34 <

t4
42 (see Figure 3). Note that all three plans respect the original (empty) set of intra-

agent constraints.

As can be easily seen from Figure 3, it is not always possible to find a joint plan
respecting all individual agent plans: no matter how the plans PA1, PA2, and PA3 are
combined there is always the cycle shown in Figure 3 rendering the combination
infeasible. This is the essence of the coordination problem: how to avoid that a
combination of individually allowable plans leads to an infeasible joint plan.

Coordination Problem
In the example given, each agent that creates its plan autonomously only respects

its own set of intra-agent constraints <A. As a consequence the set of inter-agent
constraints is neglected. We solve this problem by finding a minimal set of additional
(intra-agent) constraints, called a coordination set, that ensures that every set of plans
satisfying these intra-agent task constraints can be assembled into a coordinated joint
plan that:

Figure 2. Elementary tasks assigned to agents A1, A2 and A3 and their precedence
constraints
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1. realizes all tasks (T, <),
2. respects every individually constructed plan PA, and
3. minimally affects the original set of constraints < .

Remark. The last condition ensures that the coordination task is a non-trivial problem:
it is always possible by imposing enough constraints on the individual tasks that
a joint feasible plan can be constructed: For example, given the composite task (T,
<), simply extend the ordering < into an arbitrary linear order <*, and then add to
each subtask (TA, <A) the set of constraints ∆A = <* ∩ (TA × TA ) that relate any two
tasks in TA (in fact making TA a totally ordered set). Then every plan PA has to respect
this totally ordered set (TA, <A  ∪ ∆A), hence PA = (TA, <A  ∪ ∆A), and a (totally ordered)
joint plan respecting the individual plans always exists and equals (T, <*).

We now give a precise and general definition of this coordination problem.

Definition. The pre-planning coordination problem is the following problem: Given a
composite task (T,<), a set of agents {Ai}i=1...n and a task allocation {TAi}i=1...n, find
a minimal set of additional intra-agent constraints {∆Ai}i=1...n  (the coordination set)
such that for every set of abstract agent plans  {PAi}i=1...n, where each plan PAi = (TAi,

Figure 3. Three abstract plans of the agents A1, A2 and A3 that, individually, respect the
constraints, but include a cycle
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<PAi) satisfies <A ∪ ∆A, it holds that their joint combination P = (T, < ∪ {<PAi}i=1...n) is
a valid plan, that is, <  ∪ {<PAi}i=1...n specifies a partial order on T = ∪ i=1...n TAi.

Note that if P = (T, <  ∪ {<PAi} i=1...n) specifies a valid joint plan, it automatically
satisfies all original constraints, since the order P imposes on T extends <.

Complexity of the Coordination Problem
The decision-variant of the coordination problem asks for the existence of a

coordination set ∆ of size at most K. If we let K=0, the coordination problem reduces to
the so-called coordination verification problem: for the current task (T,<) and its
decomposition {TAi}i=1...n, does a joint plan P exist that achieves task T and respects for
every set of individual abstract plans PA  each satisfying the subtask  (TA, <A)? It turns
out that this coordination verification problem is a co-NP-complete problem.

The decision variant of the coordination problem itself can be solved by an NP-
algorithm consulting an NP-oracle for the coordination verification problem: given (T,<)
and {TAi}i=1...n  just guess a coordination set ∆, check its size and also check, by consulting
an NP-oracle for the coordination verification problem that  (T,  <∪∆ ) with decompo-
sition {TAi}i=1...n is a yes-instance of the coordination-verification problem. So, the
problem is easily shown to belong to the complexity class Σp

2. In fact, we have shown this
problem to be Σp

2 –complete (see, e.g., Valk, 2004).
Even in rather trivial cases, the coordination problem can be shown to be intractable:

for example, if each agent has to come up with a plan to achieve two tasks that are only
related via inter-agent precedence constraints we are already facing an NP-hard problem.
This reduction can also be shown to be APX-preserving and since currently no APX-
algorithm for solving the directed feedback arc set problem is known (the best approxi-
mation algorithm achieves an O(log n × log log n)-approximation) it is unlikely that there
exists an APX-approximation algorithm for the pre-planning coordination problem.

Partitioning Strategies
These complexity results clearly show that we cannot hope to solve the coordina-

tion problem efficiently. In this section, therefore, we discuss an algorithm that can be
used to produce an approximate solution to the coordination problem. The heuristic we
discuss is based on the following idea: given its task assignment (TA, <A), each agent A
can safely start to construct a plan PA for a subset T1

A ⊆ TA containing all tasks t in TA
that are not dependent (via inter-agent constraints) on tasks t’ assigned to other agents.
The algorithm proceeds as follows: Once we have selected such a subset T1

A for each
agent A (possibly empty for some agents), these tasks (and their dependencies) are removed
from the set of tasks T and for each agent again a new subset of tasks T2

A ⊆ TA - T1
A not

dependent on tasks of other agents is selected. Since the total set T is partially ordered,
it is not difficult to see that after at most n = |T| rounds all tasks will have been removed.
For each agent A we now have an ordered partition (T1

A , T2
A , . . . , Tk

A ) of subsets of TA.
If every agent plan PA satisfies the property that for every i = 1,...,k, all tasks in Ti

A precede
all tasks in Ti+1

A, then it can be proven that the joint plan combining these individual plans
specifies a partial ordering.

Such a partitioning algorithm can be executed in a distributive setting as follows.
Since each agent A needs to know whether a given task t belonging to TA depends upon
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a task given to another agent, we let the agents use a common blackboard. This
blackboard contains information about the dependency structure and each agent can ask
the blackboard for information about dependencies pertaining to its own set of tasks. A
partitioning strategy of an agent A then consists of the following algorithm that for each
i selects a subset of independent tasks Ti

A .

Algorithm (Partitioning)
Input: a task (TA. <A) assigned to A ;
Output: a linearly ordered partition (T1

A, T2
A, . .., Ti

A) of TA;
1. let i = 0;
2. while TA ≠ do

2.1. i := i + 1;
2.2. ask the blackboard for a subset SA ⊆ TA of tasks not dependent upon other agents
2.3. if SA  = TA then let FA = SA else select some subset FA ⊆ SA;
2.4. if FA ≠ ∅ then

2.4.1. let Ti
A = FA

2.4.2. let TA = TA - T
i
A’

2.4.3. send the set Ti
A to the blackboard for removal from T

2.5. else i := i -1
3. return (T1

A, T2
A, . .., Ti

A)

Note that the agents execute their partitioning algorithm concurrently. The only
task of the blackboard is to (re)compute the sets FA that are prerequisite-free for the
agents A initially and after receiving the messages Ti

A containing the tasks that can be
removed from the lists of prerequisites. Furthermore, we note that agents may vary in their
choice of the set FA. We distinguish two extremes: greedy agents always choosing FA =
SA and lazy agents always choosing FA = ∅, unless SA = TA. As can be observed from the
algorithm, from the viewpoint of an individual agent it may be a good idea to be lazy and
just wait and only collect a subset of tasks until the list of prerequisite-free tasks is
sufficiently large. Clearly, the lazy strategy minimizes the number of partitions the agent
has to construct. The problem with such a strategy, however, is that it may result in
deadlock if all agents decide to wait at a strategic moment and no tasks are selected at
all. We therefore seek collective strategies that avoid deadlock while achieving a best
possible performance. The following easy observations can be made:

• If all agents are greedy, deadlock certainly is avoided and the number of task
splittings each agent has to perform is at most the minimum of the number of tasks
in TA and the depth of the partial order of the complete composite task. Note that
the naive strategy based on choosing a total ordering will never perform better,
because it always yields goals for the agents of maximum depth. To improve upon
the performance of a greedy approach the agents could use their inherited
precedences to increase the performance. Here, each agent starts greedy in the first
iteration, but in each next iteration i each agent A only greedily selects a subset of
its tasks if it contains all tasks up to a depth of i in its inherited precedences <A. In
this way, the number of splits is limited to the depth of the inherited precedences
minus one, which is generally much smaller than the depth of the complete
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composite tasks. The second good news about these efficient so-called n-partite
strategies is that they terminate in any multi-agent task environment. The proof is
given in Valk (2004).

• The algorithm is still deadlock-free if the set of lazy agents constitutes an acyclic
dependency set. Here agent A is dependent upon agent A’ if TA contains a task t
that is dependent upon some task t’ in TA.

Example. Let us continue our guiding example. Consider the subtasks and their interre-
lationships as given in Figure 2. Suppose that all three agents apply the partition-
ing algorithm as given above. The set of prerequisite-free tasks for agent A1 equals
SA1 = {t1

12}, for agent A2 we have SA2 = {t3
23} and analogously for agent A3, SA3  = {t2

43, t
4
42}.

Suppose agent A3 chooses greedily: FA3 = SA3, while A1 and A2 choose in a lazy way:
FA1 = FA2 =∅. Since A1 and A2 are not dependent upon each other, deadlock is
avoided. Then, at the end of the first round, T1

A1 = T1
A2 = ∅, while T1

A3 = { t2
43, t

4
42}.

In the second round, agent A1 perceives that SA1 = TA1 = {t1
12, t

4
23}, so now it chooses

FA1 = SA1. Likewise SA2 = TA2 = {t2
31, t

3
23}. Agent A3 on the other hand now is

confronted with FA3 = SA3 = ∅.  So at the end of the second round, T2
A1 = {t1

12, t
4

23},
T2

A2 = {t2
31, t

3
23},  while T2

A3 = ∅.  In the third round, since TA1 = TA2 = ∅, agent A1 and
A2  do not participate. For agent A3, SA3 = TA3, so in this round agent A3 finishes with
T3

A3  = {t1
24, t

3
34}. Therefore, we have the following ordered partitions (removing the

empty sets): ({t1
12, t

4
23}) for agent A1 , ({t1

24, t
3

23}) for agent A2 and ({ t2
43, t

4
42},{t1

24,
t3

34}) for agent A3. Adding the constraints to the task set TA3 results in the subtasks
presented in Figure 4.

Figure 4. Adding a constraint set (dotted lines) by the partitioning algorithm
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We remind the reader that although the partitioning algorithm always returns a
feasible solution, this solution is not necessarily minimal. For example, in Figure 4, there
exists a solution with only two additional coordination constraints: (t2

43, t
4

42) and (t1
24, t

3
34).

Although the analysis of the pre-planning coordination problem and the algorithms to
solve it are interesting in itself, it can be used for another purpose, too: as will be seen
in the next section, this approach can also be used as a methodology for designing fast
planners for complex multi-agent planning problems using conventional planning
systems.

Experiments in a Logistic Domain
Our preplanning coordination approach can also be viewed as a method to tackle

difficult multi-agent planning problems by using conventional (single agent) planning
systems. The idea is that a coordination method should be able to decompose the original
problem into smaller problems that can be given to conventional planning systems whose
solutions then can be easily combined into an integrated plan.

We have applied our coordination approach to the logistic planning problems from
the AIPS-2000 planning competition. The general structure of these problems consists
of:

• a set of cities each containing a set of locations and an airport.
• in each city a truck is used to visit locations, while planes fly between the airports

of the cities.
• orders consist in bringing packages from one location to another location in the

same (local or intracity orders) or a different city (intercity orders).
• all move actions of a plane or a truck are assumed to have a uniform cost

and a minimal cost plan was asked for to bring all packages at their final
destination.

Note that every order can be easily and uniquely decomposed in a sequence of at
most 3 elementary tasks where each elementary task is either a pickup and delivery within
the same city or a pickup and delivery from one airport to another. Every intercity order
therefore consists of a pre-order (bringing a package to the airport) a fly-order and a post-
order (bringing a package from the airport to its final destination). A simple unique task
allocation scheme is used to distribute the elementary tasks among the truck and plane
agents. As a result, each truck agent receives a set of pickup delivery orders (pre- or post-
orders) from a location in its city to another one and the plane receives a set of airport-
to-airport orders. As the result of the decomposition, for every intercity order precedence
constraints are induced between the pre-order part and the fly-order part and the fly-order
part and the post-order part. Applying the partitioning algorithm discussed above to this
problem, we use a variant where the truck agents act greedily while the plane agent is
a lazy agent waiting until all orders it is dependent upon are processed by the truck
agents. The reader might verify that the result of this algorithm applied to such logistic
instances can be described by the following coordination scheme:
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• Partition the set of orders of each truck agent A into two disjoint sets: the set TA
pre

consisting of all (complete) local orders plus its set of pre-orders and the set TA
post

consisting of all post-orders given to A.
• The set of all fly orders is partitioned into one set.

Using this coordination scheme, every truck agent constructs a (route) plan in
which the local orders together with the pre-orders are planned before the post-orders.
The plane agents constructs a plan for all its fly orders together. This coordination
scheme has the following property: whatever local plans are constructed by the agents,
the simple joining of these plans is a valid plan respecting all the constraints. Moreover,
it can be shown that if these local plans can be solved optimally, the resulting plan has
a cost not more than 1.14 times the cost of an optimal plan. If the local plans are solved
by a polynomial approximation algorithm, the cost of the joint plan obtained is at most
1.25 times the cost of an optimal plan (Valk, 2004).

Based upon our analysis, we have implemented the polynomial 1.25-approximate
algorithm to solve this class of logistic problems. After the decomposition and the
construction of the independent (local) planning problems for the trucks (in each city)
and the plane, these planning problems were given to independent simple planners using
a greedy algorithm to come up with routes for the individual vehicles. Using this
coordination approach we were able to solve all 120 planning problems from the AIPS
benchmark set ranging from 41 to 100 orders.

The planners that performed best at the competition were System-R, SHOP and
TAL-planner. The running times and plan performance of these planners compared to the
results obtained with our coordination techniques are shown in Figures 5 and 6,
respectively. The number of plan steps for System-R is not shown in the graph, because
this system produces substantially larger plans.

Figure 5. CPU times of planning competitors compared to the pre-planning coordination
algorithm
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Our approach effectively decomposes the multi-agent planning problem into much
smaller sub-problems for which fast approximations are used. As a result, our algorithm
outperforms all planning systems at AIPS-2000 in terms of running time. Surprisingly,
however, it turns out that our coordination approach is also very effective in terms of plan
quality. Even though the greedy truck strategy may cause poor truck performance, in the
instances used in the competition the performance drop for the trucks is negligible. In
fact, the pre-planning coordination algorithm outperforms all competitors in terms of plan
quality as well. In the experiments we used fast approximations to solve the single-agent
planning problems.

Note that our coordination approach effectively reduces a multi-agent planning
problem to a set of independent conventional single agent planning problems whose
solutions can be simply combined to form a solution for the overall problem. Hence, it
constitutes a simple method to reuse existing planning technology for multi-agent
planning problems.

For instance, in the logistic benchmark problems we could investigate the perfor-
mance of existing planners like TAL-planner, Blackbox and SHOP using the coordination
scheme.

Even more interesting would be the extension of the task dependency framework
to other more subtle forms of dependency relations between elementary tasks and
coordination schemes built on them.

Figure 6. Plan lengths
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COORDINATION AFTER PLANNING
In our framework, we tackle the multi-agent planning problem by distinguishing two

coordination phases in the planning process. In this section we discuss coordination
after planning (phase 5): how to construct coordinated plans for a set of autonomous
agents where each (autonomously planning) agent has solved its individual planning
problem independently from the others. The method we propose is based on a simple plan
merging method using an elegant resource-based logic approach to plans.

The essential idea in our plan merging approach is that every plan can be conceived
as a structured set of resource-consuming and resource-producing actions. Some of the
resources produced by the plan are necessary to fulfill the goals of the individual agent,
while other resources are just by-products of its plan. Furthermore, actions performed
in these plans are not for free and the costs of a plan will depend upon the actions needed
to complete the plan. An agent, therefore, may attempt to reduce its plan cost by removing
actions, while preserving the ability to realize its goals. In a single agent context, such
an agent may try to remove an action by substituting the resources produced by the
action by some set of suitable by-products occurring in its own plan. In a multi-agent
context, such a plan reduction process can also be realized by using the by-products
occurring in plans of other agents. Hence, in this way we achieve plan coordination
between agents by plan reduction processes where resources from one agent (plan) are
used by another agent. As a result, two or more of such plans are merged.

In this section we first introduce the resource-based framework in an informal way.
Next, using this framework, we construct a plan merging by plan reduction algorithm. We
illustrate the merging algorithm using the guiding logistic example introduced in the
previous section.

Framework for Resource-Based Planning
Most approaches to planning are based on languages like STRIPS (Fikes & Nilsson,

1971) and PDDL (McDermott, 1998). These languages take a state-based view on
planning where sets of propositional atoms are used to model a state of the world. Actions
(state transformations) are modeled by using sets of propositions to characterize the
preconditions and post-conditions of an action. A plan is often conceived as a sequence
of state-transforming actions such that for each action in the sequence its preconditions
are satisfied.

 In a multi-agent environment, however, multiple autonomous planning agents each
have their own plan that has to be executed in a shared environment; these individual
plans collectively have to constitute a so-called multi-agent plan that not only realizes
all private goals of the agents, but also the possible global goals.  The execution of a
multi-agent plan involves costs for the participating agents; for example, each action to
be executed costs time, and possibly other costs are involved too. Rational and
benevolent agents are interested in reducing the costs of their contribution, for example,
by eliminating actions in their plan.

The idea of the post-planning coordination approach to be presented in this section
is to reduce these costs through the exchange of resources. These resource exchanges
may allow actions to be removed from the agent’s plan, thereby reducing the execution
costs. This process of exchanging resources, however, requires a slightly different view
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on planning: the so-called resource-based planning perspective. Rather than modeling
the real world by an unstructured set of propositions, we model the world by a finite
collection of resource facts, that is, propositions each describing the state of an
individual resource. Actions are conceived as resource consuming and resource produc-
ing processes and goals are specified as sets of resources. A goal is said to be satisfied
if a resource is produced occurring as an element of the goal.

Note that this action resource formalism (ARF) differs from traditional state-based
planning mainly on a conceptual level, rather than offering a technically completely
different approach. In fact, formally, the produced and consumed resources are similar
to, respectively, add- and delete-lists in STRIPS planning. Conceptually, however, a
state-based model often needs several (not explicitly related) propositions to describe
a single resource object in the world. This makes the exchange of resources between
different plans a rather complicated affair. In this respect, resource exchange would be
much easier if the state of a relevant object in the world is represented by exactly one
resource fact. This resource fact includes all properties of the object as attributes.

In our framework (de Weerdt, 2003; de Weerdt et al., 2003), a resource fact is denoted
by a predicate name together with a complete specification of its attributes and their
values. The predicate name serves to indicate the type of resource mentioned in the fact
(e.g., a truck or a passenger). If trk is a resource type, having attributes num and loc, then
trk(8 : num, A : loc) is an atomic resource fact describing truck number 8 in location A.
An initial state is characterized by a set of atomic resource facts specifying the initial
collection of resources available to the planner. Goal resources are typically not
completely known beforehand. Therefore, a goal is described by one or more resource
facts that may contain variables as values of some of their attributes. A goal such as
trk(n : num, x : loc) is satisfied if there exists a ground resource fact that can be obtained
by instantiating the variables n and x to (ground) terms.

A planning problem description for one agent is given by a set of initial resource
facts, a set of goal resources, and a set of action schemes specifying the possible
resource fact transformations. An action scheme is specified by two sets of general
resources: a set of input resources that are consumed (removed) from the current set of
resources and a set of output resources that are produced (added). For example, the drive
of a truck with number n from a location x to a location y can be described by the following
action scheme:

move(n : num, x : loc, y : loc)  :
{ trk(n : num, x : loc) } → { tc(x : loc, y : loc), trk(n : num, y : loc) }

Here move is the name of the action scheme. The variables n, x and y are the
parameters of the action. From this action scheme many ground actions can be obtained
by instantiating the variables n, x and y. The intuitive meaning of this action is that
whenever we have a truck (input) resource with some number n in some location x, we
are able to produce two (output) resources: a truck resource with number n at location
y, and an additional transportation capacity (tc resource) that describes the possibility
for a parcel (pcl resource) to be transported from x to y (with this truck). Another action,
which is the actual transportation of a parcel, can be defined as follows:
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 tran(n : num, x : loc, y : loc)  :
{ tc(x : loc, y : loc), pcl(n : num, x : loc)  } → { pcl(n : num, y : loc) }

Actions can be combined into plans. While in STRIPS a plan is usually represented
by a sequence of actions, in the ARF the dependencies between actions are explicitly
represented by a direct dependency function d that returns for each input resource fact
r of a ground action used in the plan the resource d(r) = r’ it is directly dependent upon.
Here, r’ is either an output resource of another action or an initially available resource.
Finally, a plan contains a unifying substitution θ, unifying all resources that are directly
dependent upon each other. Thus, a plan is a tuple (O, d, θ), where O is a set of actions,
d a dependency function and θ  the unifying substitution.

Remark. This detailed description of the dependencies in a plan has strong similarities
to the interval preservation constraints and point truth constraints as used in least
commitment planning (Weld, 1994) and in the refinement planning framework of
Kambhampati (1997).

Given a plan P, the set of resources not dependent upon other resources in the plan
is the set of resources that has to be provided by the environment in order to execute the
plan. This set is called In(P). Likewise, the set of resources that is produced by the plan is
called Out(P). If there exists an initial set I of resources in the environment and In(P) ⊆ I,  the
plan P can be executed and the result is the set of resources R’ = Out(P) ∪ ( I – In(P)).
We say that such a set R’ satisfies a goal G if there exists a substitution q such that
Gθ  ⊆ R’.

Example. Recall the two transportation agents A1 and A2 (in the running example, see
Figure 1- 4). After task allocation and pre-planning coordination agent A1 has to
transport parcel 1 from L1 to L2 and parcel 3 from L2 to L3. Furthermore, agent A2 has
to bring parcel 2 from L3 to L1, and parcel 4 from L2 to L3. Two independent ARF
planners for A1 and A2 would probably yield plans as shown in Figure 7. That is,
agent A1 drives to L1 to pick up parcel 1, drives back to L2 to unload parcel 1 and
load parcel 3, and, finally, drives to L3 to deliver parcel 3. Agent A2 first takes in
parcel 2, brings it to L1, drives unloaded to L2, picks up parcel 4, and transports it
to its final destination L3.

Clearly, if we suppose that a truck can hold at least two parcels, there is a lot of
unused transportation capacity in these plans. So, assuming that the agents are
interested in saving costs by saving drives, cooperation between the two agents may
lead to a decrease in costs if the agents succeed in saving drives by reducing the unused
transportation capacity. For example, one of the goals of agent A1 is to bring parcel 3 from
L2 to L3, whereas agent A2 has to bring parcel 4 from L2 to L3. By assumption, both trucks
have enough room available for loads L2 and L3. If the agents agree that one of them brings
both loads from L2 to L3, then agent the other agent can save a drive from L2 to L3 at no
additional costs.

Furthermore, agent A2 drives without any load from L1 to L2 in its original plan. If both
agents agree that A2's truck transports package 1 from L1 to L2, which is one of the orders
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of A1, then agent A1 can save its ride from L2 to L1 and back. Combining these ideas leads
to a more efficient plan in which 3 out of the original 6 move actions are saved. In fact,
the plan merging algorithm presented in the next section finds such an efficient solution.

A Plan Merging Algorithm
If an agent A has a plan PA that, given the initial set of resources, is able to attain

its goal GA, then, in general, only a subset of the output resources Out(PA) is needed to
satisfy GA. The remaining part of Out(PA) is a set of resources that are either initially
available or produced by actions in the plan, and that are not consumed by actions in the
plan, nor required for the goal state. This set is called the set of by-products of agent A.
In the ARF, the essence of multi-agent planning is exactly the use of such a resource by
another agent. The agent that receives by-products from other agents may be able to use
them to remove an action from its plan without compromising the plan, that is, after
removal the plan still is able to attain the goal state from the given initial state. Clearly,
an action can be removed, if the output resources of this action that are required for other
actions or for the goal state can be replaced by equivalent by-products (from itself or from
other agents). This is the property that is used in the plan merging algorithm. If other
agents and their plans are available, plan reduction can be achieved by plan merging:
instead of using their own available resources, agents might use by-products of other
agents to reduce their own plan. By doing so, new dependencies between agents are
created.

Figure 7. Plans in the ARF
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To facilitate the exchange of resource facts during the plan reduction process, we
assume that a trusted third party acts as the auctioneer. The plan merging algorithm (see
Algorithm 2) works as follows: The auctioneer announces the start of the plan merging.
All agents deposit their request sets with this auctioneer. Each request set corresponds
to the removal of an action from an agent’s plan and contains a set of resource facts the
agent needs to obtain in order to remove the action. Furthermore, the request set contains
a cost reduction value defined by the difference in costs between the old plan and the
resulting plan if the exchange would succeed. The (greedy) auctioneer deals with the
request with the highest potential cost reduction first. We assume that all the agents
honestly announce their cost reduction values. Right before each auction round starts,
the requesting agent (Ai) is asked for the specific set of resource facts that has to be
replaced by resource facts of other agents — this set is called the RequestSet. This set
is not necessarily equal to the set in the initial request, since other exchanges may have
influenced the availability of resource facts for the agent. Next, the set of requested
resource facts is sent to each agent, except to Ai. The agents return all their available
resource facts for which there is an equivalent one in the request set RequestSet, and
include the price of each of their offered resource facts. After all bids (collected in R) are
collected by the auctioneer, it selects for each requested resource fact the cheapest bid.
If for each resource fact in RequestSet a replacement can be found, the requesting agent
Ai may remove the corresponding action(s). Next, it has to add dependencies between
the providing agents and the initial resource facts for the requesting agent. At the end
of each successful exchange each involved agent has to update the cost reduction values
of all of their requests, because this value can change as the agent can now have more
or less resource facts available. This process can be repeated until none of the auctions
has been successful. This plan merging algorithm is an anytime algorithm, because it can
be stopped at any moment, and if the algorithm is stopped, it still returns an improved
set of agent plans, because it uses a greedy policy, that is, dealing with the requests with
the largest potential cost reduction first. Algorithm 2 can be shown to have a worst-case
time complexity of O(n2) where n is the number of actions of the plans of all agents
involved in plan merging (Tonino et al., 2002).

Algorithm 2. Plan merging (A)
1. auctioneer receives requests with their cost reduction from all agents A
2. while some requests left do

2.1. get the request with the highest potential cost reduction
2.2.  ask the requesting agent Ai for the required resource facts RequestSet
2.3. for each agent Aj ∈ A\{Ai} do

2.3.1. ask Aj for available resources equivalent to resources in RequestSet
2.3.2. add these resources to R’

2.4. if R’ ⊆ RequestSet then
2.4.1. let R”⊆ R’ be the cheapest set that satisfies RequestSet
2.4.2. add for each r ∈ RequestSet the corresponding dependency to R”
2.4.3. remove as much actions as possible from the plan of Ai
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Example. We apply the plan merging algorithm to the running example. Initially, one
action can be removed in the plan of each agent, because the products of these
actions are available as by-products in the other agent’s plan. Agent 1 can remove
the move action of its truck from L1 to L2, and agent 2 can remove the move action
from L2 to L3. Note that, if agent 2 removes its move action from L2 to L3, then the
drive action from L3 to L2 can also be removed: the only purpose of this move action
is to provide the input resource of the truck being at location L2. Hence, the removal
of the action of agent 2 is the best choice and the request set is inquired which
contains a single ride resource from L2 to L3. There is only one way to provide this
request: via the available ride resource from L2 to L3 of agent 1. The dependencies
are updated correspondingly and two move actions are removed from the plan of
agent 2.

In the next step of the algorithm agent 1 can remove the move action for its truck
from L2 to L1. The auctioneer selects this action and agent 1 tries to remove it. But then,
a replacement will be needed for the truck resource at L1. The first action in the plan of
agent 2 provides the required resource.  The merged plan is shown in Figure 8. In the
third iteration, no more actions can be removed and the algorithm terminates.

Plan merging applied to a real data set can improve the efficiency of plans (of taxis,
but in a similar setting) about 25% (de Weerdt, 2003). In this section, we have seen how
this plan merging algorithm works and how the action resource framework helps to
combine different propositions for the same real-world object in an object-oriented way.

Figure 8. Merged plans for agent A1 and A2
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Although the presented algorithm can be further improved, it already shows that the
agents are free to decide when to offer resources, and when to agree to become dependent
on someone else to achieve a more efficient plan.

CONCLUSIONS AND DISCUSSION
Multi-agent planning research is concerned with novel planning techniques to

cope with environments in which multiple autonomous actors each claim some level of
control over their own actions. To solve this problem of planning for and by multiple
agents we distinguished six phases: (i) refine goals/tasks such that they can be assigned
to single agents, (ii) allocate subtasks to agents, (iii) cast sufficient constraints on
individual planning activities, (iv) independent single-agent planning, (v) coordinate
single-agent plans, and (vi) coordinated plan execution. It can be easily observed that
in current approaches the perspective of cooperative planning agents in multi-agent
planning problems is the dominant approach. If agents are cooperative, information and
thus (partial) plans as well may easily be made public to all agents. Consequently, the
planning and the coordination phases ((iii), (iv) and (v)) are usually integrated. In our
conception of multi-agent planning, however, agents strive to make plans as indepen-
dently as possible and do not want to be interfered by others during planning unless
strictly necessary. Therefore, we adopt a different approach in which planning au-
tonomy has the highest priority. Creating plans independently has definite advantages:
first of all, the multi-agent planning problem is decomposed into smaller problems that
are much easier to solve. This can substantially reduce the complexity of the planning
problem to be solved by an agent. It also allows the agents some level of control over
its own actions and the possibility to select a plan from which the agent benefits most.
Moreover, each agent may choose a different traditional planning technique to construct
its plan. In this respect, we presented two techniques to coordinate independently
constructed plans: a pre-planning and a post-planning coordination algorithm.

The pre-planning coordination technique shows how to derive restrictions on the
single-agent plans, such that they can be combined seamlessly. In the post-planning
phase, we have shown that, using a suitable plan representation, the efficiency of the
agents’ plans can be improved, while (still) satisfying the privacy requirements of
autonomous planning agents.

Further research into this approach to multi-agent planning where planning au-
tonomy plays a major role should pay attention to the following subjects:

• Utility-Based Constraint Minimization. Individually rational agents usually find
additional restrictions on their planning activities quite unacceptable. Such restric-
tions, however, must inevitably be satisfied to guarantee feasible and/or efficient
plans. Simply systematically seeking to minimize these additional intra-agent
constraints is not enough. Therefore, future work should focus on the introduction
of a transferable utility and a distributed protocol where agents negotiate about
such restrictions (due to dependencies) and/or resources in order to maximize their
own utility function.

• General Dependency Constraints. Another aspect that needs further attention is
the kind of dependencies to be handled. It should be possible to extent the general
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coordination idea — transforming inter-agent dependencies into an adequate set
of intra-agent dependencies — to more general task-dependencies, such as the
sharing of scarce resources, simultaneity constraints, and soft constraints.

• Coordinated Plan Execution. We did not address the problem of coordinated plan
execution. The exchange of resources by the plan merging algorithm creates
additional dependencies. During execution, agents must rely on others for the
supply of required resources. Failure of one or more agents to fulfill a demand may
render plans of other agents useless. We suggest an integration of commitment
structures and reputation mechanisms as a useful way to handle these issues.

• Handling Dynamic Task Environments. A last issue for future work that is
becoming more and more important in (multi-agent) planning is to deal with
dynamically arriving (sub) goals. We can extend our task-oriented pre-planning
approach to multiple composite tasks by partitioning these tasks more or less
according to the order of arrival. The consequences of a dynamic setting for the
after planning coordination phase is that the process of exchanging resources
should run parallel to the construction of the plan.

As can be observed from the survey of multi-agent planning techniques presented
in this chapter, there exist quite a few different approaches to multi-agent planning.
Almost all of them (including the two coordination algorithms presented in this chapter),
however, stress particular aspects of the multi-agent planning problem and do not cover
the full range of aspects. We feel that in the near future, multi-agent planning systems
can be developed that combine the many existing techniques. Consequently, these
systems will need to make less assumptions, and will consequently have a broader
perspective than any of the current multi-agent planning systems. We believe that
recognizing the different phases in solving multi-agent planning problems, and the
coordination phases in particular, provides a very useful view on existing approaches,
and a useful tool for integrating them.
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ABSTRACT
This chapter provides an overview of complementary research in the active research
areas: AI planning technology and intelligent agents technology. It has been widely
acknowledged that modern intelligent agents approaches should combine
methodologies, techniques and architectures from many areas of computer science,
cognitive science, operation research, cybernetics, and so forth. AI planning is an
essential function of intelligence that is necessary in intelligent agents applications.
This chapter presents the current state-of-the-art in the field of intelligent agents,
focusing on the role of AI planning techniques. It sketches a typical classification of
agents, agent theories and architectures from an AI planning perspective, it briefly
introduces the reader to the basic issues of AI planning, and it presents different AI
planning methodologies implemented in intelligent agents applications. The authors
aim at stimulating research interest towards the integration of AI planning with
intelligent agents.
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INTRODUCTION
Intelligent agents is an area of interest that attracts researchers from different

Artificial Intelligence fields, such as distributed artificial intelligence, AI Planning and
robotics, as well as classical computer science fields, such as information systems,
databases, and human-computer interaction. Recently, research in intelligent agents has
also started taking into consideration issues that are normally examined by cognitive
science, operation research and cybernetics researchers. The research efforts of all these
groups have contributed expertise and interesting results in intelligent agents technol-
ogy during the last decade. AI has been considered as the main contributor to the field
of intelligent agents (Jennings et al., 1998). However, which AI techniques would be
appropriate for developing intelligent agent applications is a matter of thorough inves-
tigation.

AI planning seems to have attracted increased research interest in the last five
years. The main reason for this significant increase is that planning systems have
obviously been upgraded. Planners are becoming faster. They are now capable to
synthesize over 100 plans in minutes. The development of new efficient methods and
techniques enables more complex real-world problem solutions. Moreover, the imple-
mentation of new ideas contributes to better understanding of advanced AI planning
techniques.

Intelligent agents are computational entities that perceive environmental condi-
tions, act to affect conditions and reason about conditions and actions. Early research
on AI planning has been concerned with the design of intelligent agents, because of the
assumption that any artificial agent needs an AI planning system to reason and take
decisions about its actions.

Agent technology is one of the vehicles of AI planning research towards practical
real-world applications. On the other hand, intelligent agents research has taken
advantage of AI planning contribution. AI planning is a critical technology for the
control of intelligent agents, and especially for multi-agent architectures where plans can
facilitate coordinated actions. The term “planning agent” means an intelligent agent that
constructs and executes a sequence of actions that achieve a given goal.

Intelligent agents are categorized into two broad classes: robots and softbots. A
robot is a hardware entity that is equipped with sensors, actuators and software for
perception, modeling of the environment, and acting. A softbot (software robot) is a
software agent that interacts with a software environment. Softbots resemble physical
robots in several aspects. They both have perception and effectors mechanisms, but
while robots have machinery parts, softbots have software parts. Nowadays software
becomes more and more complex. An increasing request for finding intelligent ways to
support software users have intensified research efforts on software agents.

In the following, this chapter starts with a brief introduction to the basic issues of
intelligent agents. Definitions of the notion of an agent, agent terminology and agent
classification are presented. The reader can then be familiarized with the basic issues in
AI planning. Next, the theoretical foundations of agents and various agent architectures
are discussed, emphasizing AI planning. Different AI planning techniques, which are
used to control intelligent agents, are also discussed. Then, AI planning techniques for
multi-agent environments are presented. The utility of AI planning techniques in various
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agent applications and the current research challenges in plan-based intelligent agents
control are also discussed. The authors’ conclusions finalise this chapter.

BASIC ISSUES IN INTELLIGENT AGENTS
Agent Definitions

In the scientific world, it seems that the definition of the term “agent” has not been
agreed upon. We quote a number of definitions that focus on different attitudes of
agents:

Russell and Norvig (1995) give a general concept of agenthood (Figure 1):

“An agent is any entity that can be viewed as perceiving its environment through
sensors and acting upon its environment through effectors.”

Jennings and Wooldridge (1996) focus on autonomy and goal-directed behaviour:

“An agent is a self-contained program capable of controlling its own decision-making
and acting, based on its perception of its environment, in pursuit of one or more
objectives.”

Hayes-Roth (1995) focuses on reasoning:

“Intelligent agents continuously perform three functions: perception of dynamic
conditions in the environment; actions to affect conditions in the environment;
reasoning to interpret perceptions, solve problems, draw interferences, and determine
actions.”

Nwana (1996) focuses on the notion of user’s assistance:

“We define an agent as referring to a component of software and/or hardware which
is capable of acting exactingly in order to accomplish tasks on behalf of its users.”

Coen (1995) focuses on social ability and distribution:

“Software agents are programs that engage in dialogs, are autonomous and intelligent,
must be robust, are not time invariant and are distributed over networks.”
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Figure 1. Generic agent (Russell & Norvig, 1995)
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Despite of the different conceptualizations of agenthood, there are some common
characteristics which appear in all definitions: the notion of an environment which
provides an agent with some perceptions, the notion of an action, that is, the change of
the environment, the notions of sensors and effectors, and some means for decision-
making which are used by an agent in order to achieve its own objectives. If decision-
making is rational and requires the generation of a sequence of actions, or the anticipation
of a sequence of changes as a proof of some other entity’s behaviour, then a planning
system must become a core module of the agent.

Agent Classification
Intelligent agents can be categorized into two broad classes: robots and softbots.
A robot or robotic agent is a hardware entity that is equipped with sensors,

actuators and software for perception, modeling of the environment, and acting. Robots
used in manufacturing are usually pre-programmed to perform a series of actions, thus
they do not need to be “intelligent.” On the other hand, autonomous robots act in an
intelligent fashion. Shakey, developed at SRI’s AI Center (1966-72), was the first mobile
robot to reason about its actions.

A softbot (software robot) is a software agent that interacts with a software
environment. Softbots resemble robots, but instead of perceiving and affecting the world
through devices, they use software. Reviews on software agents are included in
Genesereth and Ketchpel (1994), Müller (1996), Wooldridge and Jennings (1995) and
Nwana (1996).

Agents can be further classified according to their characteristics. Most research-
ers adopt as basic characteristics of software agents, the following ones (Wooldridge
& Jennings, 1995):

• autonomy – operate themselves, are self-controlled,
• reactivity – respond in a timely fashion to changes,
• pro-activeness – take initiative to react, and
• social ability – interact with other agents.

Agents differ from conventional (object-oriented) software technology in one or
more of these properties. Petrie (1996) discusses the different attitudes of the notion of
“intelligence.” Many researchers consider that autonomous agents are “intelligent,”
while for others autonomy is one crucial characteristic of intelligent agents.

Researchers have complemented the above list (Jennings & Wooldridge, 1996;
Nwana, 1996) with new attributes that may make agents “more intelligent:”

• rationality – ability for self-interested actions,
• communicating ability – cooperate and negotiate using agent communication

languages,
• adaptability – learn by themselves to act or react,
• mobility – move around an electronic network,
• learning ability – use experience to improve their performance.



AI Planning and Intelligent Agents   229

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Adding human-like characteristics to agents can result in considering secondary
attributes such as:

•  veracity – communicate sincerely,
• benevolence – try to do what they ask to do,
• emotionality – behave in a way that gives the illusion of life.

Visual representation of agents that run within graphic environments is a way of
giving them life-like attributes and making them believable (Vosinakis & Panayiotopoulos,
2001; Burke & Blumberg, 2002).

Many researchers that come from the field of Artificial Intelligence argue that
intelligent agents should also have mentalistic attitudes such as:

• beliefs, knowledge, and intentions.

BDI (Beliefs-Desires-Intentions) agents (Rao & Georgeff, 1995) may be character-
ized not only by intention, but also by desire, obligation, commitment, choice, and and
so forth.

Brustoloni’s (1991) classification of software agents according to their control
structure includes a three-way classification.  Regulation agents, which never plan nor
learn (the attribute of reactivity is essential), planning agents which plan (the attribute
of pro-activeness is essential) and adaptive agents, which not only plan, but learn as well
(the attribute of learning advances the pro-activeness). A simple binary classification of
agents into planning agents or non-planning agents distinguishes the important role
of AI planning on agents.

BASIC ISSUES IN AI PLANNING
AI planning research aims at proposing control algorithms to be used by an agent

in order to construct a course of actions that, when executed, will achieve a set of
predefined goals.

The inputs of a classical planning system include a description of the initial state
of the world, a description of the agent’s goals and a description of the actions that can
be performed by the agent. The output is a course of actions (the plan) that, when
executed, will achieve the agent’s goals. On the classical STRIPS representation (Fikes
et al., 1971), the initial state of the world is described with a set of ground literals. Each
action is described as an operator, which has a list of preconditions that should hold in
order to be applicable and a list of post-conditions (or effects) that hold after its
application. Post-conditions consist of an add-list, literals that will be made true, and a
delete-list, literals that will cease to be true after the application of the operator. STRIPS
makes the closed world assumption: actions cannot be added or deleted from the fixed
universe of objects. STRIPS overcomes the frame problem, that is, the problem of
reasoning about the consequences of actions.

The languages used to represent the world, goals and actions actually specify
different classes of planning problems, depending on their expressive ability. For
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example, more expressive action languages may consider not only conjunctive but also
disjunctive preconditions, conditional effects that depend on context, and universally
qualified preconditions and effects instead of quantifier-free.

Classical planning is too restrictive because of a number of simplifying assump-
tions. Pollack and Horty (1999) enumerate these assumptions:

• Omniscience: The planning agent knows everything about the world, which is
observable (not partially observable).

• Deterministic effects: the actions that the agent can perform have deterministic
effects (not stochastic).

• Instantaneous actions: the actions that the agent can perform are instantaneous
(not durative).

• Fixed & Categorical goals: the goals that should be achieved are fixed (un-
changed) and categorical (not partially satisfied).

• Static world: the agent is the only source of change in the world since no
exogenous events may occur.

Classical planning approaches can be categorized according to their search space
representation:

• Planning as search in the space of states, for example, STRIPS (Fikes et al., 1971),
PRODIGY (Veloso & Rizzo, 1998).

Given an initial state, a set of operators (action descriptions) and a set of goal states,
the solution is a sequence of operators that leads from the initial state to a goal state. Each
node of the search graph is a complete description of the state of the problem. When the
constructed plan is a total-order of actions, this approach is called total-order planning.

• Planning as search in the space of plans, for example, NOAH (Sacerdoti, 1975),
SNLP (McAllester & Rosenblitt, 1991), UCPOP (Penberthy & Weld, 1992), IxTeT
(Lamare & Ghallab, 1998).

In plan space planners, each node of the search graph is a not a state but a partial
plan and each edge is a transformation on plans. Successive transformations to the
partially completed plan are made until a complete plan is produced. This is a partial-
order planning approach, since it relaxes the temporal order of actions. A least
commitment strategy may be applied to postpone the ordering decision and the
instantiation of operators as long as possible. Causal link planning systems, such as
SNLP and UCPOP, use causal links to control “threats,” that is, new effects that may
interfere with a previous precondition. Causal links record all decisions and when a threat
appears, a method that solves the threat is chosen. Causal link planning seems to be
appropriate for domains that are unknown to the agent (Etzioni & Weld, 1994), because
of their insensitivity to irrelevant information in the initial state.
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• Planning as search in the space of task networks,for example, NOAH (Sacerdoti,
1975), SIPE-2 (Wilkins, 1988), and O-PLAN2 (Tate et al., 1994).

Hierarchical Task Network Planning (HTN) exploits the hierarchical structure of
application domains. Pre-defined and pre-structured abstract plan solutions, namely
action or task reduction schemas, are used to the construction of a task network. Each
task reduction schema describes a higher level task, which can be expanded into a set
of subtasks. Additionally, O-PLAN2 includes ordering or temporal constraints between
subtasks. HTN planning is the oldest way for providing domain-specific knowledge to
improve performance.

• Planning as heuristic search in the space of states, for example, GRT (Refanidis &
Vlahavas, 2001), HSP (Bonet & Geffner, 1999).

Heuristic search planners search state space with a heuristic that can be extracted
automatically from the problem encoding, and then be combined with standard search
algorithms. Success depends on the choice of heuristic, search algorithm and search
direction. GRT, for instance, is a domain-independent heuristic planner, which uses pure
STRIPS representation and forward search in the state of spaces. Heuristic search
planners demonstrate impressive performance on planning competition problems.

Significant extensions of classical planning approaches have been emerged by
adopting efficient algorithms from other research areas:

• Planning as model checking, for example, UMOP (Jensen & Veloso, 2000), CMBP
(Cimatti & Roveri, 2000).

The planning domain is described by a semantic model, where desired domain
properties are described by logic formulas. Planning via model checking intersects with
other model-theoretic approaches to planning, such as decision-theoretic planning,
Markov decision processes, or controller synthesis. An example of an implementation
of planning as model checking, which is based on symbolic model checking, are OBDDs
(Ordered Binary Decision Diagrams). OBDDs are symbolic data structures used to
represent and manipulate efficiently sets of states and actions. UMOP is an OBDD-based
planning framework, which has been applied to multi-agent non-deterministic domains.

Model checking is general. Except for classical planning, planning as model
checking can be used as a framework to other planning techniques, such as conditional
planning, conformant planning and temporal planning.

• Planning using maximal graphs, for example, Graphplan (Blum & Furst, 1997).

Planning using maximal graphs create a large maximal graph that includes all
potential plans before starting the search process. Parallel actions of the same level are
included in the same graph. Parallel actions, which cannot be executed concurrently, are
related with mutual exclusion. Graphplan operates in two cyclic phases, graph expansion
and solution extraction. Graph expansion extends a planning graph until it has achieved
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a necessary condition, while solution extraction performs a backward-chaining search
to find an existing plan in the current planning graph. Any inconsistencies are then
removed by the search process.

• Planning as constraint satisfaction, for example, SATplan (Kautz & Selman, 1996).

In planning as satisfiability, rather than deduction, a problem is a set of axioms with
the property that any model of the axioms corresponds to a valid plan. This approach
enables one to solve large planning problems, which could not be solved by specialized
planning systems. Efficient SAT-based planning systems are built, such as Blackbox
(Kautz & Selman, 1998).

Graphplan and SATplan outperform causal link planners in most domains. How-
ever, initial versions of Graphplan and SATplan assume complete knowledge of the
planning domain, including full knowledge of the conditions under which the plan will
be executed and the effects of every action. For that reason, these versions would not
be appropriate for intelligent agents that operate autonomously in dynamic complex
environments, where causal link planners work well (Pollock, 1998). Interesting varia-
tions to Graphplan extend classical approach. For example, Conformant Graphplan
(Smith & Weld, 1998) handles uncertainty in the initial state and action effects, and
Sensory Graphplan (Weld et al., 1998) allows contingent plans based on run-time
information gathered by noiseless sensory actions that might have preconditions.

AI PLANNING IN AGENT THEORIES
Both philosophical and AI literature recognize the role of mental attitudes in the

design of rational agents. Agent theories are formal representations of the attitudes of
agency and the relations of such attitudes. The attitudes of a reasoning agent are
classified into two basic categories: information attitudes and pro-attitudes (Wooldridge
& Jennings, 1995). A formalism for agent representation is suggested to capture at least
one attitude of each category. Information attitudes are related to agent’s information
about the world and include belief and knowledge. Pro-attitudes direct agent’s actions
and include desire, intention, obligation, commitment and choice.

Based on the previously outlined theory, a planning theory of intelligent agents was
proposed by Bell (1995). According to Bell, a resource-bounded intelligent agent
architecture should contain a theoretical reasoning module and a practical reasoning
module. The theoretical reasoning module represents the agent’s information attitudes.
It includes deductive, inductive, abductive or probabilistic reasoning. The practical
reasoning module represents agent’s pro-attitudes and consists of a high-level AI
planning system. Practical reasoning is the process of continuously deciding which
action the agent is to perform next in order to get closer to its goals. Pollock (1998)
constructed a general theory of rational cognition in autonomous agents. Rational
cognition is distinguished between epistemic and practical cognition, analogously to
the theoretical and practical reasoning.

Intelligent agent theories had started appearing earlier. The notions of knowledge
and belief, as that of modal logics and their operators, played a central role in these
theories. Hintikka (1962) proposed a logical model of knowledge and beliefs called the
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possible worlds model. Knowledge and belief are information attitudes about the world
that play an important role in theoretical reasoning. Dennett (1987) has introduced the
term intentional system to give an intentional stance explanation of a system’s
behaviour where an agent is modelled as having beliefs and desires. Beliefs are agent’s
expectations about the current state of the world and desires are agent’s preferences over
future world states.

Bratman (1987) introduced a theory of practical reasoning. The theory focused on
the significant role that intentions play in practical reasoning, unlike other theories where
intentions are reducible to beliefs and desires. Bratman treats intentions as partial plans
that the agent is committed to execute. In this formalism, called BDI architecture (Belief,
Desire, Intentions), the set of possible worlds consists of those worlds that the agent
believes to be possible, desires to achieve and has committed to achieve. Cohen and
Levesque (1990) developed a theory of intentions, which had a favourable impact on
reasoning about agents. There, intentions are defined in terms of temporal sequences of
an agent’s beliefs and goals.

Rao and Georgeff (1991) developed an alternative formalism for BDI architectures.
Belief, Desire and Intentions are described as modal operators, where intention is a
concept with equal status to belief and desire. Moreover, choice and chance are
distinguished. In particular, an agent can deliberately select an action, or the environ-
ment may determine the different outcomes of an action.

In order to be used for actual implementations, BDI theory has been extended with
the notions of goals and plans (Bratman et al., 1988; Rao & Georgeff, 1992). When an
agent is allowed to have unachievable desires, goals are achievable desires. Goals may
be a subset of beliefs, when an agent believes its goals to be achievable (strong realism).
Plans are related both with the notion of beliefs and the notion of intentions. Firstly,
plans can be viewed as beliefs when they are stored in a plan library. Plans can also be
viewed as intentions when considering the partial plans of actions that the agent adopts
at each state of processing.

Shoham (1993) adopting the notion of intentional stance, proposed agent-oriented
programming (AOP), which is based on a logic with three modalities: belief, commitment
and ability. AOP is agent programming where the agent’s intentions can be expressed
as commitment rules. A commitment rule contains a message condition, a mental
condition and an action. The agent becomes committed to the action if the rule is satisfied,
that is, when the mental condition is matched with the beliefs of the agent and the message
condition with the received messages. The AOP language does not include planning
capabilities and decision-making.

All these theories provide us with a vast and overwhelming repertoire of tools for
developing theoretical models for agent systems. In practice however, many of them must
be simplified in order to achieve an acceptable performance.

AI PLANNING IN AGENT ARCHITECTURES
An agent architecture is a particular methodology for building agents (Maes, 1991).

Agent architectures are distinguished into deliberative, reactive and hybrid, depending
on whether agent’s behaviour is represented by means of action rules, reactions rules
or both kind of rules, respectively. Actually, the categorization of approaches that
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attempt to combine deliberation with reaction is difficult because of their subtle differ-
ences. In ECAI’s (2000) Workshop on Balancing Reactivity and Social Deliberation in
Multi-agent Systems, many interesting approaches were presented. In Kourakos-
Mavromichalis and Vouros (2001), a continuum from reactive to deliberative approaches
was presented; across which are moving agents that intermix and balance these two
approaches. In the following, we attempt to include subcategories of these architectures,
in order to move more discretely from reactive to deliberative behaviour of agents.

Multi-agent system architecture can be considered as a collection of cooperating
or competing agent architectures. Multi-agent system architectures allow many agents
to cooperate in the same environment to perform some task that cannot be performed by
a single agent. A single agent may have limited knowledge, capabilities, or resources and
would perform the task slower. When designing a multi-agent system architecture one
should consider the reason for agents’ interaction (e.g., limited resources or capabili-
ties), the mechanisms that ensure co-operation, the type of communication to use, and
agents’ organization.

Deliberative Agent Architectures
Deliberative agent architectures adopt an explicit representation of the world and

tasks are performed in a goal-directed manner. An agent can deliberate about both means
(ways to achieve a goal) and ends (decisions of which goal to achieve).  Deliberation is
useful in hazardous environments where correct action selection is crucial. Moreover,
deliberative agents can produce an optimal, domain independent solution. However,
deliberation requires accurate representation of the world, it takes time to give a solution
and it is difficult to predict how long it will take to solve different problems. Therefore,
pure deliberative architectures may not be appropriate in dynamic environments, where
the agent has to monitor the environment and re-plan quickly if there is any change.
Shakey, the robot developed at SRI’s AI Center, performed in a static environment and
included the STRIPS planning system (Fikes et al., 1971). Examples of deliberative
architectures are IPEM (Ambros-Ingerson & Steel, 1988), IRMA (Bratman et al., 1988),
HOMER (Vere & Bickmore, 1990), PHOENIX (Cohen et al., 1990) and GRATE (Jennings
et al., 1992). Gratch (1998) proposed a deliberative approach in dynamic multi-agent
domains. Multiple plans are assigned “intentions,” such as modifiability and executability,
which are treated as meta-relations. A plan can be modified or executed by deliberately
enabling modifications or executions at a meta-level.

BDI Agent Architectures
BDI agent architectures are deliberative architectures with planning abilities. When

agents are modelled within BDI agent architecture, they internally represent their beliefs,
desires, and intentions and apply practical reasoning to decide action selection.

The process of continuously deciding which action the agent is to perform next in
order to get closer to its goals was described in Wooldridge (1999). A sensory input is
received by the belief revision function, along with the agent’s current beliefs and a new
set of beliefs is produced. Then the option generation function receives agent’s current
beliefs about its environment and its current intentions and produces the options
available to the agent, which constitute its desires. The filter function receives agent’s
current beliefs, desires, and intentions and produces the agent’s intentions. The action
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selection function receives agent’s current intentions and determines an action to
carrying out.

PRS (Georgeff & Lansky, 1987) is the first implementation of a BDI theory. Other
examples of BDI models are IRMA (Bratman et al., 1988), HOMER (Vere & Bickmore, 1990),
GRATE (Jennings et al., 1992), and OSCAR (Pollock, 1999). Although BDI-models are
widely used in Distributed Artificial Intelligence (Cohen & Levesque, 1990; Rao &
Georgeff, 1991) it is under question if they are suitable to model multi-agent systems since
they lack a notion of communication.

Reactive Agent Architectures
The reactive agent architecture was introduced in order to allow robust performance

in dynamic environments, where the deliberative agents fail to perform. We divide
reactive agent architectures into three subcategories that signify the different underly-
ing ideas on which they are based. These are: purely reactive agents, simple reactive
planning agents, and sophisticated reactive planning agents. Purely reactive agents
act without planning and do not include a symbolic model of the world. The reactive
planning approach adds an AI point of view to agents. They include a symbolic model
of the world and apply reactive reasoning to choose between alternative plans at run-
time. Such reactive planners are considered as simple, while sophisticated reactive
planners include more complicated constructs in order to handle execution failures or
environmental changes.

The need of reactive planning distinction into simple and sophisticated arose from
Bryson & Stein’s (2000) statement that “reactive planning” is an oxymoron term.
Actually, this term describes how reactive systems handle action selection. Classical
planners produce plans, each consisting of steps that the agent has to execute in order
to achieve its goals. On the other hand, reactive planners choose a reactive plan to
execute next, depending on the current situation. However, reactive planners may differ
in the ways they pursue their goals, choose their plans, or react to unpredicted changes
of the environment.

Purely Reactive Agents (Behaviour-Based Agents or Triggering Agents)
The idea of purely reactive agent architectures emerged from a group of researchers

that criticized classical AI approaches, denying the need of planning. Since the planning
process is time-consuming, it is not involved in cases of rapid reactions to environmental
changes. Brooks (1991) identifies that “intelligent” behaviour arises as a result of an
agent’s interaction with the environment. Purely reactive agent architectures do not
include any kind of symbolic model of the world and do not use complex symbolic
reasoning. They respond in a stimulus-response manner to the present state of the
environment, according to a set of predefined sensor-action rules.

The main advantage of purely reactive agents is their response to unpredictable
environmental changes, within fixed time boundaries (i.e., a mobile robot responds to
people and obstacles, reading sensory data). Other advantages of purely reactive agents
are fault-tolerance, robustness, flexibility and adaptability. However, such reactive
systems can be efficient only to special cases where their behaviour is proved to be
correct in all possible situations. They have limited knowledge of the world and their
response to changes is predefined, either by the designer of the system or by an evolution
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process. Moreover, providing the agent in advance with the appropriate sequences of
actions to be performed in a dynamically changing environment is a difficult, time-
consuming task. As a result of these drawbacks, AI researchers criticize pure reactivity
as too weak to create any complex behaviour that is worthy of the adjective “intelligent.”

Examples of pure reactive architectures, except for Brooks (1991), are PENGI (Agre
& Chapman, 1987) and situated automata (Kaelbling, 1991). Maes (1991) extends pure
reactive approach by proposing a model of action selection in dynamic agents, where the
agent can decide which goal to achieve next.

Simple Reactive Planning Agents: Moving from Pure Reactivity to
Planning

Reactive planning approaches extend Brook’s approach by incorporating a planner
for the production of plans, which are used as reactions to predefined situations.
Universal planning (Schoppers, 1987) and Situated Control Rules (Drummond, 1989) are
two approaches that view planning as synthesis of reactions to situations.

Situated Control Rules (SCRs) are synthesized through temporal projection and are
used to constrain the behaviours produced by plan nets. The term “temporal projection”
is carefully used instead of “planning” because there is no provision of goal directed-
ness in the projection process. In particular, a situated control rule maps a state to a set
of recommended actions. The executor always checks if there are any applicable SCRs
and it randomly selects one of them to act. This synthesis of a plan expressed as critical
SCRs, is called critical choice planning.

Universal Plans are constructed by a planner. A problem specifies only a goal
condition to be achieved, not a particular final state. The planner must predetermine its
reactions in possible situations. In contrast to classical planning, the same action can
produce multiple effects depending on the situation of execution. At execution time the
actual situation is classified, and the response planned for that class of situations is then
performed. Universal plans have no preconditions; they always apply. Kabanza et al.
(1997) explicitly represent universal plans as a set of Situated Control Rules. Their
algorithm incrementally adds SCRs to a final plan.

AuRA (Autonomous Robot Architecture) (Arkin, 1990) includes a planning sub-
system, which consists of a hierarchical planner. Aura focuses much more on reactivity
than on planning, since the representation is domain-dependent and goals cannot be
expressed.

Sophisticated Reactive Planning Agents: Moving Toward Hybrid Agent
Architectures

Sophisticated reactive planning approaches have several constructs to handle
changes of the environment. They may reassess goal priorities, suspend pursuing or
abandon a goal, or change their plans in case of execution failures. Means-ends
reasoning along with reactive reasoning may be used.

Two famous approaches that moved towards combination of planning and reactiv-
ity are PRS and RAP. Many researchers classify them to hybrid architectures (e.g.,
Müller, 1996; Wooldridge & Jennings, 1995; Nwana, 1996), while others keep classifying
them to reactive planning architectures (e.g., Wilkins et al., 1995; Veloso & Rizzo, 1998).
PRS and RAP are typically incorporated as reactive components into many hybrid
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systems that integrate deliberative with reactive agent architectures. For example, an
extension of PRS and the SIPE planner are included in Cypress (Wilkins et al., 1995), while
RAP has been coupled with the PRODIGY planner in Veloso and Rizzo (1998).

Procedural Reasoning System (PRS) (Georgeff & Lansky, 1987) is a BDI architec-
ture that combines planning with reactive behaviour. Beliefs are facts about the world,
or system’s internal state. Desires are represented as system behaviours. A database
contains current beliefs. A set of current goals to be realized is determined. A set of
procedures, called Knowledge Areas (KAs), describe how certain sequences of actions
may be performed in order either to achieve goals or react to events in safety-threatening
situations. Each KA consists of a body (a plan schema), and an invocation condition that
specifies under what situations the KA is applicable. The intentions are the KAs that
have been chosen for execution. An interpreter selects appropriate KAs based on the
set of intentions and executes them. Actually, KAs can be activated either in response
to a new goal (goal-driven) or to some environmental change (data-driven). Meta-KAs
can manipulate the internal beliefs, goals and intentions of PRS. For example, according
to Wilkins et al. (1995), meta-KAs can compute the amount of reasoning that can be
undertaken and decide to modify the intentions of the system.

Firby (1987) uses Reactive Action Packages (RAPs) for building a reactive planner.
The agent architecture consists of three modules: a planner, an executor and a controller.
A plan consists of partially ordered networks of subtasks. The planner produces a vague
plan and the executor completes the missing details at run-time. Execution monitoring
recognizes run-time failures and alternative methods are selected to achieve the goal. The
controller provides sensing routines and behaviour routines that can be activated by
requests from the executor.

Both PRS and RAP are flexible plan execution systems that interleave plan execution
with the refinement of abstract plans into specific actions. They produce partial plans,
but plan refinement, that is, the specific means for accomplishing every sub-goal of a
plan, is postponed for future deliberation. In this way, they have the flexibility to make
detailed decisions with as much information as possible. Although PRS reason about
means and ends like classical planners, and RAP reason about which goals to achieve
(not about alternatives to achieve them), agents still cannot develop new plans exploring
the current situation because of the hand-coded nature of their plan specification
language. This drawback of reactive planners resulted in the development of hybrid
agent architectures.

Hybrid Agent Architectures
Hybrid agent architectures combine deliberative and reactive architectures in a

common reasoning framework, to obtain the advantages of both. Hybrid architectures
can be distinguished into uniform and layered.

Uniform architectures use a single representation and control scheme for both
reaction and deliberation. Examples of uniform architectures are: Cypress (Wilkins et al.,
1995), Propice-Plan (Despouys & Ingrand, 1999), and Vivid agents (Wagner, 1996).
Cypress concatenates the classical HTN planner SIPE-2, and the reactive execution
system PRS-CL. Propice-Plan combines plan synthesis with an execution model based
on the PRS, in a unified framework.

Layered architectures are organized in two or more separate layers that implement
different representations and algorithms. The basic layers are the deliberation and the
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reactive layers. How these layers can be integrated is a main problem, since they represent
the world in a different way and they work in different timescales.

Layered architectures can be divided in two classes depending on the direction of
control flow. In Figure 2, two schemas are depicted: A) a horizontally layered archi-
tecture, where each layer is connected to the sensory input and action output. This
concurrent model of control allows the concurrent operation of the deliberative and
reactive layers, which are always active, processing sensor data and generating actions,
for example, DD&P (Hertzberg et al., 1998), UMOP (Jensen & Veloso, 2000) and Touring
Machines (Ferguson, 1992),  B) a vertical layered architecture, where only one level is
connected to the sensory input and action output. This hierarchical model of control
allows the deliberative layer to control the operation of the reactive layer. In this case
the reactive component is responsible for low-level tasks, while the deliberative compo-
nent organizes and sequences these tasks, for example, IDEA (Muscettola et al., 2001)
and INTERRAP (Müller & Pischel, 1994). In some cases, vertical layered architectures
have the first layer connected to the input and the last layer to the output.

DD&P is a two-layer robot control architecture with concurrency among and within
levels. Touring Machines combine reactive, planning and modeling layers. INTERRAP
further subdivides these layers into two vertical layers: knowledge bases and control.
Two similar architectures for robotic applications that are based on RAP are ATLANTIS
(Gat, 1992) and 3T (Bonasso et al., 1997). ATLANTIS consists of three modules: a
controller, a sequencer and a deliberator. In 3T, a three-layer architecture results when
a sequencing layer mediates between the reactive and the deliberative layers. Their
difference is that in 3T the reactive ability is implemented at the lowest reactive layer,
while in ATLANTIS it is partly a task of the sequencing layer, with occasional invocation
of high-level procedures (path planning).

ROGUE architecture, which applied to Xavier robot (Haigh & Veloso, 1998),
includes five layers: task planning, path planning, map-based navigation, local obstacle
avoidance and servo-control. Upper layers utilize functionality of lower layers to
implement more complex tasks.

Hybrid agent architectures may inherit some of the problems of reactive agent
architectures, which are related with difficulties in developing new plans at run-time.
Learning from experience can help an agent to decide whether to construct a new plan

Figure 2. Layered architectures (A) horizontal (B) vertical (Müller et al., 1995, p.263)
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or utilize a precompiled one. Learning methods are included in approaches such as
Pioneer-1 (Oates et al., 1999), ROGUE (Haigh & Veloso, 1998) and XFRMLEARN (Beetz
& Belker, 1999).

AI PLANNING TECHNIQUES FOR
INTELLIGENT AGENTS

AI planning technology satisfies two basic objectives of software agent technol-
ogy (Weld, 1996).

Firstly, planners satisfy the objective of interface. They provide a natural way to
construct a goal-oriented interface, since a planner receives a high-level goal as input
and produces a sequence of actions as output that will be executed to achieve the goal.
In order to build an agent’s interface, an expressive action description language is
needed, as well as a planner that operates quickly.

Secondly, planners satisfy the objective of integration, since they integrate
databases of action descriptions. For example, when an action is an Internet information
source, the planner automatically integrates databases and services. However, action
descriptions may be incomplete when agents act upon a dynamic, partially observed
environment. Moreover, actions may be durative having non-deterministic effects and,
goals to be achieved may be changed, abandoned, postponed, or partially satisfied
depending on environmental changes.

The simplifying assumptions of classical planning (Pollack & Horty, 1999) that have
been discussed previously in the basic issues in AI planning hardly hold in a dynamic
complex environment. Many researchers report that incomplete and incorrect informa-
tion is a central problem in planner-based control of agents. Incompleteness derives from
the inaccessibility of the world. Incorrectness derives from the difference between the
agent’s model and the real world.

 As a result, many AI planning techniques have been developed that extend the
classical planning paradigm and attempt to deal with real-world problems and uncer-
tainty. In the following we briefly discuss the most important of these techniques that
are influential to intelligent agents implementation.
• Anticipation/Anticipatory/Adaptive planning.  Intelligent agents that perform

complex tasks in changing environments must be able to adapt their plans
according to environmental change. Hayes-Roth (1995) argued that there are
several aspects of adaptation, which are necessary for agents: adaptation of
agent’s perceptual strategy, control mode, choices of reasoning tasks to perform,
choices of reasoning methods for performing chosen tasks, and meta-control
strategy for global coordination of all its behaviour. Most anticipatory agent
approaches focus on choices of tasks to perform. They contain a predictive model
in order to decide which task to select. For example, the anticipatory agent proposed
in Davidsson (1996) and Propice-Plan (Despouys & Ingrand, 1999) both include
an anticipation module to opportunistically adapt plans based on predictions of
the best future options. Rus et al. (1997) pointed out that; “mobility and adaptation
are key attributes for autonomous agents.”
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• Conditional/Contingency Planning (Schoppers, 1987; Pryor & Collins 1996; Pol-
lock, 1998). Conditional planning can solve problems that involve uncertainty. In
classical planning, there is no sensor feedback, the world state is completely known
and the outcome of every action is fully predictable. Planning with incomplete
information of the world can be conditional when sensor information is available,
or conformant when no information from sensors is available. Conditional planning
consists of contingent plans for each possible situation that could arise. A
conditional planning agent deals with conditional steps until it finds a real action
to perform. Executing a plan that handles all possible contingencies can be very
efficient. Conditional planning has been applied, for instance, in automated
manufacturing (Castillo et al., 2002), where a set of devices may be seen as a set
of agents acting in uncertain environment, and in the domain of military applica-
tions, such as a battlefield environment (Lupton & Stojkovic, 1998), where agents
have to deal with incomplete and incorrect information.

• Conformant Planning is planning under incomplete information, when it is not
possible to gather new information at run-time (as in conditional planning). In
conformant planning the initial state is only partially specified, the effects of
actions are non deterministic and exogenous events are possible. Several ap-
proaches to conformant planning have been proposed. CGP (Smith & Weld, 1998)
extends Graphplan, and GPT (Bonet & Geffner, 2000) encodes conformant planning
as heuristic search. Many approaches are based on Symbolic Model Checking,
such as CMBP (Cimatti & Roveri, 2000).

• Transformational planning. Like anticipation planning, transformation planning
allows online plan adaptations. In contrast to anticipation planning, adaptations
of plans are not directly derived from the predictive model, but they are provided
by a user-defined set of transformational rules. XFRM (Beetz & McDermott, 1994)
is a transformational planning system that is embedded in a simulated robot. XFRM
includes a projector to predict what would happen if the current plan was executed
and a transformer to try standard repairs.

• Case-Based Planning. Case-based reasoning is used to solve new problems by
adapting solutions of previous similar problems. The reasoning cycle of a case-
based reasoning system includes retrieval of a similar case from the knowledge
base, reuse such a case to suggest a solution, revision of suggested solution and
maintenance of confirmed solution. In Laza & Corchado (2002), BDI deliberative
agents are implemented using case-based reasoning to facilitate their learning and
adaptation. A conversational case-based reasoner is inserted in the RETSINA
multi-agent system (Giampapa & Sycara, 2001) to help a human user to decide a
course of actions.

• Interleaving planning and execution is an online planning method where only the
actions that are ready for execution are chosen. This approach is applied when it
is more important to act reasonably in a timely manner than to minimize the plan-
execution time after a long time. There is no need to construct a huge plan as in
conditional planning, but it is risky in worlds with irreversible actions. Koenig
(1999) points out three decisions to be taken when designing such an approach:
how much to plan between plan executions, how many actions to execute between



AI Planning and Intelligent Agents   241

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

planning, and how to avoid cycling forever. Two different approaches for interleav-
ing planning and execution are discussed in the following:
• Plan monitoring and repair can be applied if the knowledge available to the

agent is not sufficient, or the number of contingency plans is extremely large.
Plan execution is monitoring to detect any differences between the assumed
and the current conditions, caused by unexpected changes of the world. In
case the current conditions differ from the assumed ones, the agent detects
execution failure and stops execution in order to create a modified plan. A
deliberative planner such as IPEM (Ambros-Intgerson & Steel, 1988), shares
re-planning ability with reactive planners such as PRS (Georgeff & Lansky,
1987) and RAP (Firby, 1987), but is also capable of dealing with action
interactions.

• Continual/Continuous planning is opposed to plan monitoring and repair
where plan modification is triggered only by failure of current plan. In
contrast, continual planning can be applied when unexpected changes in the
world do not violate current plans, but plan revision might be desirable to
accomplish goals more efficiently or effectively. Another situation where
continual planning is an appropriate method is when an agent’s goals change
and the motivation for plan achievement may be lost (Cohen & Levesque,
1990). In continual planning problems, planning and execution are parallel.
The executor is always active and the planner may be invoked at any time
(continually) to modify plans, each time the goals, the current state of the
world, or the current state of the plan is updated. For fast reactions, a set of
plans needs to be predefined off-line, which sometimes may lead away from
the desired goal. Examples of continual planning approaches are: Lyons and
Hendriks (1992), NMRA (Pell et al., 1997), CASPER (Chien et al., 2000),
Cypress (Wilkins et al., 1995), and Marinagi et al. (2000). CPEF is a continu-
ous planning framework that integrates HTN planning (SIPE-2), plan moni-
toring and execution and dynamic plan-repair methods (Myers, 1998). A
distributed continual planning for unmanned ground vehicles is presented
in Durfee (1999b), while a survey on distributed continual planning can be
found in desJardins et al. (1999).

• Decision-Theoretic planning (DTP) generalizes classical planning dealing with
uncertainty in action effects, uncertainty in knowledge of the system state, multiple
competing goals that may be partially satisfied (Haddawy & Hanks, 1998) and
continuing, process-oriented planning problems  (Boutilier et al., 1999). These
characteristics make decision-theoretic planning suitable for modeling agents,
which act in dynamic, non-deterministic environments and have incomplete and/
or incorrect knowledge about the environment. For example, noisy sensors and
actuators may be sources of uncertainty in robotic agents.
DTP uses probability theory to encode uncertain knowledge and utility theory to
compromise multiple (and potentially) competing goals. Formal models for agent’s
decision making using Markov Decision Processes (MDP) have been developed.
MDP models assume that the agent has full observability of the world, while
Partially Observable MDPs (POMDPs) relax this assumption. In a POMDP, it is
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assumed that the effects of actions are non-deterministic and only partial informa-
tion about world states is available. Many extensions of MDP to multiple agents
have been developed, such as Multi-agent Markov Decision Process (MMDP)
(Boutilier, 1999; Goldman & Zilberstein, 2003). Many references to multi-agent
variants of MDP are included in Becker et al. (2003), where an effective technique
to handle decentralized MDPs is presented.
A contingent plan may also be built applying Probabilistic Contingent Planning
(Onder & Pollack, 1999; Bonet & Geffner, 2000), where actions and sensors are
probabilistic. In this case, planning with incomplete information is formulated as
a problem of search in the space of probabilistic distribution over states. Proba-
bilistic variants of the SATplan (Kautz & Selman, 1996) have been emerged such
as E-MAJSAT (Majercik & Littman, 1998). In (Grosskreutz, 1999) a unified frame-
work is proposed for modeling and reasoning about the behaviour of a mobile
service robot. Predictions about the accuracy of a reactive plan are based on
probabilistic belief, state of the world and probabilistic models of the effects of
robotic actions.

• Time-dependent planning. Time spent for planning has to be minimized to allow
real-time performance in unpredictable and/or dynamic environments. Time-de-
pendent planning allows certain tradeoffs between planning time and reactivity
(Dean & Boddy, 1988; Drummond & Bresina, 1990). Any-time algorithms are
planning methods that can solve planning tasks for any given bound on their
planning time, and their solution quality increases with the available planning time.
In case of interleaving planning and execution, any-time algorithms can be used
to determine which action to execute next, which allows adjusting the amount of
planning performed between plan executions and planning. Anytime agents
(Nareyek, 2002) provide a continuous transition from reaction to planning. There
is always an available plan, which is iteratively adapted to any environmental
changes. The time spent for improvement depends on the agent’s computation time
limit. For rapid reactions, very primitive plans are executed. If the available time is
sufficient, the current plan is revised in order to become optimal.

• Temporal planning. Relaxing the restriction of instantaneous actions, classical
planning is extended to include the explicit representation of the notion of time.
Temporal planning deals explicitly with deadlines, scheduled events and actions
that take time, in order to be applied to agents that act in a dynamic, time-
constrained environment. IxTeT is a general temporal planner (Lamare & Ghallab,
1998), which was integrated with a path planner for a mobile robot. IxTeT compares
quite well with Graphplan. TLPlan (Bacchus & Kabanza, 2000) is a planning system
that utilizes domain specific search control information to control simple forward
chaining search. Search control knowledge is declaratively expressed using a first-
order temporal logic. TLPlan operates efficiently when sufficient control informa-
tion is available.



AI Planning and Intelligent Agents   243

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

AI PLANNING TECHNIQUES FOR
MULTI-AGENT ENVIRONMENTS

Distributed Problem Solving is a subfield of Distributed Artificial Intelligence,
which “involves the collective effort of multiple problem solvers to combine their
knowledge, information, and capabilities so as to develop solutions to problems that
each could not have solved as well (if at all) alone” (Durfee, 1999a). Multi-agent Systems
(MAS) refers to all types of systems that contain multiple autonomous agents aiming at
solving problems that are beyond the individual capacities or knowledge of each agent.
Research on MAS concerns the behaviour of these problem solvers/agents (Jennings
et al., 1998; Febrer, 1999; Wooldridge, 2002). Main issues of MAS research include
general organizational concepts, the distribution of management tasks, dynamic orga-
nizational changes and communication mechanisms.

Distributed Planning or Multi-agents Planning can be considered as a specializa-
tion of Distributed Problem Solving, having as a target to construct a plan. Based on
Durfee’s (1999a) review article and the special issue of the AI Magazine on Distributed
Continual Planning (for example, desJardins et al., 1999) in the following we categorize
the approaches on distributed planning in two main categories: centralized planning
and decentralized planning.

• The Centralized Planning (for Distributed Plans) approach involves a central
planning system with which all agents are connected and synchronized. A
centralized partial order planner generates plans that can be executed in parallel.
Each piece of plan is allocated and executed by a different agent (Jensen & Veloso,
1998; Jensen & Veloso, 2000; Barber & Han, 1998; Gratch, 1998). Wilkins & Myers
(1998), for example, proposed the Multiagent Planning Architecture (MPA). A
planning cell consists of a group of agents that are hierarchically organized; share
the same plan representation; and are committed to one particular planning process
at a time. A planning cell manager decomposes and distributes a planning task to
the planning agents, each of which has its own responsibility. A plan server stores
plans and plan related information and make information accessible to agents
through queries.

• The Decentralized Planning approach does not include a central planner, rather
planning is distributed among agents and local planners cooperate to acquire
necessary information. Durfee (1999a), divides decentralized planning into two
versions:
• Distributed Planning for Centralized Plans. The planning process is distrib-

uted among numerous task-specific planning agents, which cooperate to
synthesize the final plan.  Cooperative Distributed Planning (CDP) approach
is concerned with this version (Clement & Durfee, 1999; Durfee, 1999b;
Jennings et al., 1992). CDP aims at a coherent and effective execution of the
distributed parts of the developing plan, searching the space of joint plans to
find an optimal one. Agents in CDP exchange information about their plans,
and continuously revise them before synthesizing the whole plan. In an
extreme CDP approach, distribution aims at just allowing parallel computation
of plans.
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• Distributed Planning for Distributed Plans. Both the planning process and
plans are distributed. In this version, agents are self-interested, since they
care about generating their individual plans.  This is the most challenging
version of distributed planning and many techniques have been developed:
• Plan merging approach concerns the problem of having individual

agents generating their plans and ensure that plans will be executed
without conflict (Cox & Durfee, 2003).

• Iterative Plan formation approach concerns the construction of all
feasible individual plans for accomplishing an agent’s goal and search
through how subsets of agents’ plan can fit together. This approach
can be utilized when local decisions depend on the decisions of others
(Ephrati & Rosenschein, 1994).

• Negotiated Distributed Planning (NDP) approach (desJardins et al.,
1999) concerns the control and coordination of agents’ actions. NDP
aims at negotiating over plan activities in order to meet an individual
agent’s goals. This approach can be utilized when local plan revision
depends on open possibilities (e.g., games, air-traffic control). Nego-
tiation should be human-like, fair and envy-free (Balogh et al., 2000).

Distributed planning research also considers different approaches for the combi-
nation of coordination, planning and execution. Coordination can be done before an
agent begins planning, in order to ensure that the agent will be coordinated with others.
Alternatively, coordination can be done after agents terminate planning. In this case,
uncertainty during execution can be anticipated using techniques discussed in the
previous section, such as conditional planning, or plan monitoring and repair. Another
technique called Distributed Continual Planning (DCP) can be applied (desJardins,
1999; Durfee, 1999b; Myers, 1998), where each agent is a continual planning agent who
refines its abstract plans and its refinement decisions should be compatible with other
agents’ decisions. CDP and DCP could come together only when any individual agent’s
goal is to cooperate with the others.

Let us consider again the issue of Balancing Reactivity and Social Deliberation in
Multi-agent Systems (ECAI’ 2000 Workshop), from the multi-agent point of view.
Problem-solving results of social deliberative planners are usually better than the results
of reactive planners. However, they do not allow flexible interaction with other agents
while individual agents generate local plans. Hence, they may not be able to exploit
important information for local plan construction. On the contrary, reactive planners are
more robust and efficient since they are capable to respond quickly to unpredictable
changes in the environment, but they do not allow the agent to deliberate enough on its
own decisions, which may lead to conflict in the interaction with other agents. Therefore,
balancing reactivity and social deliberation is a demand in multi-agent systems in order
to allow agents to collaborate in the construction of distributed plans.

The ICAGENT (Kourakos-Mavromichalis & Vouros, 2001) is a framework that
balances between deliberation and reactivity. Another such approach that meets the
same demand is HITaP (Paolucci et al., 1999) a planner, which is used in the RETSINA
multi-agent system (Sycara et al., 2003). HiTaP allows for the construction of shared
plans and for managing the negotiation process. Uhrmacher & Gugler (2000) developed
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a strategy for distributed, parallel simulation of multiple deliberative agents, where a time
model is employed to relate the actual execution time to the simulation time.

AI PLANNING IN AGENT APPLICATIONS
Intelligent agent technology is realized in a wide range of application domains. The

list is quite long and is expected to become longer. One can consider application domains
such as: workflow management, project management, telecommunications network
management, power systems management, air traffic control, aircraft and spacecraft
control, transportation management, intelligent design and manufacturing systems, e-
commerce, job-shop scheduling, education, banking, patient care, medical monitoring
and diagnosis, personal digital assistants, e-mail, data-mining, information retrieval,
information filtering, digital libraries, smart databases, calendar management, musical
interaction, plant monitoring and control, military command and control, simulations,
smart systems (e.g., homes,  automobiles), decision support systems, games, and so
forth.

Some intelligent agents applications may be outside the scope of AI research. We
are interested in focusing on agent applications where AI planning is deeply involved,
such as the following:

• Manufacturing agents: They belong to industrial applications of agent technol-
ogy. Manufacturing agents are used to represent various objects on the shop floor
— machines, tools, raw materials, and workers. A conditional planning approach
to automated manufacturing is presented in Castillo et al. (2002). A multi-agent
application to manufacturing is presented in Hahndel et al. (1996), where the
complexity of manufacturing planning and scheduling on control level is distrib-
uted to an arbitrary number of agents. A state-of-the-art survey on manufacturing
agents is presented in Shen and Norrie (1999).

• Robotic agents: Autonomous robots perform plan-based control in order to
achieve better problem-solving capability. A plan-based controller manages and
adapts robotic plans during execution in order to achieve complex and changing
goals. The use of plans enables these robots to flexibly interleave complex and
interacting tasks, exploit opportunities, quickly plan their courses of action, and,
if necessary, revise their intended activities (Beetz, 2003). Many AI planning
approaches were applied to autonomous robotic agents such as: PRS applied on
a mobile robot called Flakey (Georgeff et al., 1987), NMRA (New Millennium Remote
Agent), an on-board AI system to control the Deep Space 1 spacecraft (Pell et al.,
1997), ROGUE applied to XAVIER robot (Haigh & Veloso, 1998), ConGOLOG
(Concurrent alGOl in LOGic) applied to the CARL robot (Grosskreutz, 1999),
CASPER (Continuous Activity Scheduling Planning Execution and Replanning)
(Chien et al., 2000), applied to the Earth Observing-1 spacecraft (Sherwood et al.,
2003), IDEA (Intelligent Distributed Execution Architecture) applied to the Remote
Agent spacecraft controller in the Deep Space 1 spacecraft (Muscettola et al,.
2001), XFRMLEARN  applied to a mobile robot (Beetz & Belker, 1999) and a hybrid
mobile robot architecture (Low et al., 2002). In Marinagi (2001), robot action
planning is reviewed.
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• Information/Internet Agents: manipulate or collate information from many distrib-
uted sources. They are proactive, dynamic, adaptive and cooperative WWW
information managers. RODNEY is an Internet Softbot (Erzioni & Weld, 1994),
which uses the XII planner, a descendant of the classical UCPOP planner. Decker
et al. (1997) presented an information agent that contains a planner based on
Hierarchical Task Network (HTN) planning formalism. Plan library contains task
reduction schemas. Each task reduction schema specifies a set of subtasks, such
as deciding the name of an agent and sending a message. BDI architectures for Web
agents are presented in Huang et al. (2001) and Dickinson & Wooldridge (2003).
ExperNet, a system for WAN management (Vlahavas et al., 2002), uses hierarchical
planning in order to repair network problems.

• Workflow Management/Calendar Agents: Workflow Management systems (WFM)
use structured representations of activities to automate the workflow. Recently,
WFM systems may include complex domains (e.g., production control, telecommu-
nication service provision, military applications).  Personal electronic calendar
systems assist in organizing, scheduling and coordinating meetings between
several individuals. The Plan-Management Agent (PMA) (Pollack & Horty, 1999)
has been related to workflow management and calendar systems. PMA applies AI
planning technology to help users in managing a large and complex set of plans by
re-planning and by reasoning about alternative ways to perform a given task. Two
other approaches to WFM are CPEF (Myers, 1998) and IWCM (Berry & Myers,
1999). The Continuous Planning and Execution Framework (CPEF) supports the
generation and execution of complex plans to attain assigned goals, while remain-
ing responsive and adaptive to environmental changes. The Intelligent Workflow
for Collection Management (IWCM) is based on CPEF to support adaptive
workflow process.

• Mobile/Transportable Agents: They migrate from one machine to another. Mobile
agents are: one-hop, which migrate to one other place and, multi-hop, which roam
wide area networks (WANs) such as the World Wide Web. They perform tasks
such as information retrieval and telecommunication network routing. Mobile
Agents are based on Remote Programming for distributed systems. The client
program sends an agent to a remote server, where the agent locally performs the
desired task and then returns to the client machine to deliver the results to the client
program. An example of a system for information retrieval and gathering is
presented in Rus et al. (1997). They have implemented transportable agents that
gather information navigating heterogeneous networks. Reactive planning is used
to control the navigation and give adaptation powers to transportable agents. In
particular, the agents construct an initial plan, which may be a sequence of sites.
As the agents travel, they receive sensor information about environmental changes
and adapt the plan online.

• Virtual agents: They are autonomous entities in a virtual environment, with
human-like behaviour. They are used in many applications, such as entertainment,
education, simulation, and so forth.  SimHuman (Vosinakis & Panayiotopoulos,
2001) is a virtual agent platform, which includes a planner to decide how to act. In
Burke and Blumberg (2002) a behaviour-based architecture for autonomous virtual
agents is presented. A creature could be informed by past stimuli, reactive to
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present stimuli and able to plan for the stimuli predicted to appear in future. The
representation of temporal causality is integrated into the action selection mecha-
nism.

• Computer Games: Modern computer games need advanced AI planning tech-
niques to deal with dynamic environments, real-time responses, incomplete knowl-
edge of the world and restricted resources. The characters of computer games can
be seen as AI agents. Nareyek (2002) proposes time-dependent planning for easy
adaptation of environmental changes. The planning of the anytime agent’s
behaviour is realized in a constraint-programming framework combined with local
search.

RESEARCH CHALLENGES
Considering the research challenges in AI planning when integrated with intelligent

agents, we have collected various scientific views. We feel that they are all still
influential, even these that were not recently stated.

From the AI planning point of view, a list of critical problems of plan-based
reasoning which are carried on to agent applications has been reported in Ndumu and
Nwana (1997). These are:

• Slow execution time of AI planners becomes a crucial problem in dynamic and
unpredictable environments.

• Commonsense reasoning (reasoning of time, space, causality, etc.) is handled in
an ad hoc application specific manner.

• Multi-agent planning is required for multi-agent environments. The response
times become slower as agents need to reason about goals, plans and beliefs of
other agents.

• Modal reasoning (reasoning using modalities: possibility, necessitation, etc.)
techniques are still not applicable in practical agent systems.

• Temporal reasoning still presents a major challenge in agents’ research.
• Knowledge representation formalisms that best support plan-based reasoning

need to be determined.
• Truth maintenance of agent’s knowledge base needs to be ensured.  The conflicts

need to be identified and their elimination needs to be determined.

Extensive research efforts need to be conducted to give solutions to these problems
so that AI planning can support practical systems effectively.

From the robotic agent point of view (Beetz, 2003), the research challenges are
related to problems in robot planning and plan-based robot control in different applica-
tion domains.

• Complex tasks: High-level planning and learning techniques are required in the
case of increased complexity of robotic tasks.
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• Uncertainty: Planning mechanism need to be extended to deal with incorrect,
incomplete or ambiguous representation of the world.

• Integration with motion, grasp and path planning:  New planning mechanisms are
required in order to properly integrate task planning with motion, grasp and path
planning.

• Collaboration: Cooperation and negotiation issues need to be explored when
robotic tasks are dynamically distributed among many robots.

In order to develop the above mentioned mechanisms, Beetz (2003) proposes that
the following issues should be investigated in the near future: the development of plan
languages with reasoning capabilities, richer control flow and interactions between
planning and execution, temporal plan management, planning for human robot interac-
tion, heterogeneous representation and reasoning for plan-based control and object
recognition and manipulation tasks.

Considering multi-agent planning, there are many interesting challenges. Jennings
et al. (1998) discussed the challenges that multi-agent systems face. These challenges
that are related to multi-agent planning are:

• Representation and plan generation. In order to construct a distributed planning
system, appropriate representation for actions, plans and knowledge of other
agents’ plans, and the plan generation method have to be addressed.

• Task allocation. For cooperation, a mechanism to decompose the planning problem
and assign sub-goals to agents is needed.

• Coordination. To achieve coordination among agents, many difficult issues should
be addressed, such as reasoning about the process of coordination, as well as
recognizing and reconciling dissimilar viewpoints and conflicting intentions dur-
ing coordination.

• Communication. To achieve communication during planning, agents have to
determine what and when to communicate, what protocols to use, how to apply
effective methods to reduce communication requirements and how to manage
allocation of limited resources.

CONCLUSIONS
Agents are popular. They appear in many commercial software products. Giant

companies such as Microsoft and IBM have established agent search to the production
process. Researchers working in industrial environments are looking for practical
techniques to insert “intelligence” into agent technology. For the benefit of both
industry and academia, Artificial Intelligence provides the component functions of
intelligence that agent-based applications need. One such basic function is AI planning.
Emergent technologies such as the Internet demand the AI planning technology to focus
on interactive autonomous agents control. Weld (1996), give reasons why AI planning
is a crucial technology for software robot control and foresees the ubiquity of planning
technology in cyberspace.
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An issue that has been discussed in Hayes-Roth (1995) and Jennings et al. (1998)
is the distribution of intelligent agents research among AI sub-communities. Until the
1980s, inquiries on intelligent agents have been held focusing independently on
planning, search, knowledge representation, machine learning, pattern recognition,
vision, natural language, and so forth. However successful the results are in each of these
areas, neither the fragmentation of efforts meets the goal of intelligent agents construc-
tion, nor the synthesis of results is straightforward. Among these areas, AI planning is
the research area most closely connected with intelligent agents.  Besides that the
integration of AI planning with intelligent agents should be improved, researchers
should also investigate the integration of AI planning with algorithms from other AI
research areas in an intelligent agents framework. The ASE Software is an example of
synergistic integration of different AI technologies, such as planning, machine learning
and pattern recognition, into a spacecraft science agent (Sherwood, 2003).

Alonso (2002) states that researchers have to re-examine the original AI goal of
building intelligent agents of general competence. Taking a fresh look at that old goal,
AI should develop autonomous agents able to behave flexibly in dynamic unpredictable
domains. In order to accomplish the AI goal, new methods and techniques should be
developed in related research areas, and issues, such as system design, reusability and
security, should be considered.

In real domains where several agents perform tasks, many sources of uncertainty
may exist that affect agents’ behaviour. Practical planning approaches should at least
perform fast, include expressive models of actions, and deal with uncertainty. Recently,
the AI planning community has recognized the necessity of developing new approaches
of planning under uncertainty with practical applications. Sound planning models and
fast planning algorithms are required to be established (Bonet & Geffner, 2000; Castillo
et al., 2002).

After all, the evidence of the convergence of intelligent agent research in AI
planning research is at the same time a challenge and a motivation for scientists of both
fields to coordinate their research.
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ABSTRACT
This chapter proposes to model a planning problem (e.g., the control of a satellite
system) by identifying a set of relevant components in the domain (e.g., communication
channels, on-board memory or batteries), which need to be controlled to obtain a
desired temporal behavior. The domain model is enriched with the description of
relevant constraints with respect to possible concurrency, temporal limits and scarce
resource availability. The paper proposes a planning framework based on this view
that relies on a formalization of the problem as a Constraint Satisfaction Problem
(CSP) and defines an algorithmic template in which the integration of planning and
scheduling is a fundamental feature. In addition, the paper describes the current
implementation of a constraint-based planner called OMP that is grounded on these
ideas and shows the role constraints have in this planner, both at domain description
level and as a guide for problem solving.
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INTRODUCTION
The integration of planning and scheduling is often seen as a key feature for solving

real-world problems. Several planning architectures produced over the past two decades
(e.g., Currie and Tate, 1991, Muscettola, 1994, Laborie and Ghallab, 1995b, Jonsson et al.,
2000, Chen et al., 2000) have already included aspects from both planning and scheduling
(P&S) theories among their features. In fact, these architectures have always emphasized
the use of a rich representation language to capture complex characteristics of the domain
involving time and resource constraints. Also, the more recent international planning
competitions [IPC] have considered this integration as a direction to follow and specific
features appear in the most recent release of PDDL [the planning description language
defined for the competition (Fox and Long, 2003)] to extend its expressiveness. 

While planning and scheduling have been traditionally separate research lines,
both can be seen as an abstraction of real-world problems. On one hand, solving a
planning problem means finding how to achieve a given goal, that is, computing a
sequence of actions which realize the goal without considering the problem’s time and
resource features. The generation of a sequence of moves in the Blocks World domain
is a typical example of planning problem. On the other hand, solving a scheduling problem
means determining when to perform a set of actions consistently with time and resource
constraints specified within the domain. In a satellite domain for example, this could be the
problem of deploying over time a set of downlink data operations from a satellite to Earth
according to visibility windows, channel data rates and onboard memory capacities.

 This chapter contributes to an emerging research line that aims at joining results
from classical planning, scheduling and constraint reasoning — in particular temporal
and resource reasoning — by proposing the so-called Constraint Satisfaction Problem
(CSP) (Tsang, 1993) as a common framework for representing both planning and
scheduling problems. In particular, this chapter addresses problems in which the domain
(e.g., a satellite system) can be decomposed into components (e.g., communication
channels, onboard memory or batteries) and where both time and concurrency are
fundamental elements. In this light, we can think of these components as a set of threads
in the execution of a concurrent system: each temporal evolution of these variables lies
on a timeline which evolves simultaneously with other timelines and where each
component can assume one and only one value on a fixed time point. The values that each
state of a component may assume on a specific time point are constrained by specifying
cause-effect relationships and synchronization constraints among different compo-
nents. Furthermore, one of the features, which distinguish this approach from so-called
“classical planning”, is the concept of goal, which is not an atemporal state of the world,
rather a temporal evolution of a system.

 As a conclusive observation, it is worth noting that the direct formulation of an
integrated planning and scheduling problem as a Constraint Satisfaction Problem can
open new and interesting research lines. In fact, “classical” CSP concepts such as
propagation (e.g., enforcing arc or path-consistency) or the definition of new variable
and value ordering heuristics can be extended to this framework. For example, a very
simple variable ordering heuristic is to first take all the planning decisions and then to
solve all the resource conflicts. However, a more effective ordering strategy is to
interleave planning and scheduling decisions, in order to prune infeasible planning
decisions due to lack of resource support and vice versa.
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Plan of the Paper
This chapter is organized as follows. A first section proposes a general framework

for modeling complex planning problems by means of different types of domain compo-
nents that have a temporal evolution. A formalization of this modeling as the specification
of a CSP is presented. A subsequent section describes the OMP planner, which works
according to this formal framework. A detailed analysis of the domain description
language is given and the structure of the software architecture is shown. The planner
focuses on the idea of integrating different specialized CSPs for causal, temporal and
resource reasoning. A full running example shows the ability of this planner to capture
complex domain features. Finally, a separate section proposes a discussion on the key
aspects of OMP and how they are related to other research in P&S, exposing the ideas
presented in the body of this paper in the light of other approaches. We end the chapter
with a summary and a brief discussion on possible future research directions.

PLANNING WITH CONCURRENCY,
TIME AND RESOURCES

The aim of this section is to describe a general framework for solving integrated
planning and scheduling problems. The approach described herein significantly di-
verges from a classical STRIPS-like vision at the modelling level, relying on a represen-
tation where both planning and scheduling problem instances have as a common model
the so-called Constraint Satisfaction Problem (CSP) (Tsang, 1993). A CSP consists of a
set of variables X={X1,X2, ..., Xn} each associated with a domain Di of values, and a set
of constraints C={C1, C2, ... , Cm} which denote the legal combinations of values for the
variables s.t. Ci ⊆ D1×D2 ×…×Dn. A solution consists of assigning to each variable one
of its possible values so that all the constraints are satisfied. The resolution process can
be seen as an iterative search procedure where the current (partial) solution is extended
at each cycle by assigning a value to a new variable. As new decisions are made during
this search, a set of propagation rules removes elements from the domains Di, which
cannot be contained in any feasible extension of the current partial solution.

The approach presented in this chapter models a domain by directly applying a CSP
ontology, hence identifying first a set of variables, here called components, as primary
entities. Each component (or variable) has its own description as a finite set of values
that it can assume over time. In addition, the modeler has to define constraints that limit
the set of possible temporal evolutions of the domain components.

As a consequence of this CSP view, a planning problem requires two basic elements
to be modeled: the set of variables and the set of constraints. These two fundamental
elements define together the planning domain theory, that is a set of mandatory rules
that must hold in any solution.

• Each variable (or component) has the set of possible temporal evolutions Σi =
{tei | tei: T → Di } as its domain. Di is a set of values the variable can assume over
time and T is a discrete interval of temporal instants in [0,H].
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• A set of constraints C ⊆ Σ1 × Σ2 ×... × Σn which limits the set of possible temporal
domain evolutions. There are at least three classes of possible constraints.
• Sequence&Synchronization constraints: they specify all the possible se-

quences of values a single component may assume over time and the legal
combinations of values over the same period among different components
(allowed synchronizations). We also refer to these types of constraints as
causal constraints. This is because they specify a causal theory of the
domain, that is, the legal value combinations within the set of components –
for example, the physical laws a component should always satisfy. It is worth
underscoring that this is a key difference with respect to the STRIPS modelling
assumption, where the causal theory is integrated in the action representa-
tion.

• Temporal constraints: they specify the duration (a time interval) in which a
single value holds, and the qualitative and quantitative constraints among the
time intervals related to different values. In this chapter, these constraints are
specified as a combination of qualitative interval algebra (Allen, 1983) (such
as before, during or starts) and quantitative temporal constraint (Dechter et
al., 1991) (e.g., to allow expressing “value x starts 5 seconds before value y”).

• Resource constraints: planned activities can share resources for execution.
For example, in a satellite domain, they can compete for the same communica-
tion channel or the same onboard memory. This is modelled by allowing
component values to require resources during the time interval in which they
hold. In our framework we can specify constraints with respect to three basic
resource types: binary resources that have single capacity, renewable and
consumable resources that are multicapacitated — that is, they may serve
more activities at the same time.

In general, a feasible solution is a temporal domain evolution Σ ∈ Σ1 × Σ2 ×... × Σn
which satisfies all the domain constraints C. However, a more useful notion of solution
satisfies some additional constraints besides the pure domain theory. Such additional
constraints are the goals.

In conclusion, this constraint-based model already includes in its fundamental
definition the concept of temporal evolution: each component has its own evolution and
the set of components interact with one another via the constraints specified in the
domain theory. The notion of concurrency is explicitly represented, since each compo-
nent can be seen as a parallel thread, which may have synchronization constraints with
other threads when specific values are assumed. Furthermore, two comments are worth
giving: (a) within this formalism the concept of goal is not an atemporal state of the world,
but the specification of a segment of temporal evolution of the system; (b) as better
described in the rest of the chapter, resources are modelled as independent components
so that scheduling features are integrated in the representation as it is usually done in
constraint-based scheduling (Baptiste et al., 2001).
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A CSP Model for Planning
The aim of this paper is first to show how a complete planner can be developed

starting from the modeling perspective introduced in the previous section, and then to
situate such a planner with respect to similar architectures like Muscettola (1994), Ghallab
and Laruelle (1994), Chien et al. (2000), and Jonsson et al. (2000).

The description we have given so far is very general. In this section we will add
details that allow us to define the planning algorithm. In particular, we formally define
three basic elements: a domain theory, a planning problem, and its solution.

Domain Theory
A domain theory is denoted by 〈X,C〉 where X = SV ∪ R = {SV1, SV2, ..., SVn, R1, R2,

..., Rm} is a set of variables and C = {C1, C2, ..., Cm} is a set of constraints. Roughly speaking,
each variable represents a component of the domain, an element generated by a
knowledge modeler through a decomposition process over the working domain. In
general, a component has its own behavior, which may depend on, or be influenced by,
the behaviors of the other components. Within the domain theory we distinguish two
different types of components (variables): state values and resources.

1. State value:  a variable SVi ∈ SV that models a state value component assumes
values in a set Σi = {v(t) | v: T → Di}, where T = [0,H] is the domain horizon, Di is
a finite set of ground values and Si is a set of stepwise constant temporal functions.
With a state value component it is possible to represent physical devices that
assume different states over time. For example, a camera on a satellite for Earth
observation can be modelled as a state value defining its different states in the set
D = {off, standby, pre-operation, operation-min, operation-max, post-opera-
tion}.

2. Resource: a variable Rj ∈ R that models a resource can assume values on a set
Σj = {q(t) | q: T → N}, where T = [0,H] is the domain horizon, N is the set of natural
numbers and Σj is a set of stepwise constant integer time function. A resource has
a different nature with respect to a state value component: in this case the value
assumed by the variable over time represents the cumulative effects of a set of
different causes, generally called resource uses or productions. An example of
resource could be a communication channel, where for each instant t ∈ T the value
q(t) represents the currently used capacity of the channel.

The description of both the variables and their domains is only the first part of the
planning domain theory, the second part consisting in the description of the constraints
over X.

In fact, with respect to the two examples just proposed above, for a state value
component, only some possible sequences of states in the set D = {off, standby, pre-
operation, operation-min, operation-max, post-operation} are physically possible.

For example, 〈pre-operation → standby → pre-operation〉 and 〈pre-operation →
standby → operation-min → post-operation → …〉 are feasible sequences of states,
whereas other sequences like 〈off → operation-max → …〉 are not feasible because the
camera needs some set-up operations before working at full power. The same applies for
a resource component: the communication channel has a bandwidth constraint that limits
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the maximal data rate in the channel. In addition, there are interaction constraints among
the different components of the domain. For example, when the camera works at full
power, it must be locked on a target, it uses a given amount of power from a generator
(another example of resource) and might also use a portion of a channel’s bandwidth if
data are directly downlinked to Earth. Hence, the exact definition of the set of constraints
that characterize our class of domains is a fundamental part of the domain description.

It is worth noting that both domain components assume constant values over time
intervals.  Different types of constraints are specified over single time intervals to restrict
the possible temporal evolution of the components. A time interval is specified as a 3-
ple 〈s,e,d〉 where s is the start time, e is the end time and d is the interval duration (the
temporal distance between s and e). We consider three constraint specification mecha-
nisms that apply restrictions on the component’s behaviors, reflecting three different
types of constraints: elementary, component, and compatibility. These constraints are
defined according to the hierarchy elementary → component → compatibility (the
definition of each class is supported by the definition of the previous one). The
corresponding constraint specification mechanisms allow one to specify in a compact
way a combination of sequence&synchronization (causal), temporal and resource
constraints.

Elementary constraints are the basic elements of our formalization and restrict the
possible values a component may assume over a time interval. There are two types of
elementary constraints:

1. On a state value component SVi an elementary constraint consists in the tuple tki
= 〈s,e,[dmin,dmax],v〉, where s and e are the start and end times of a time interval [s,e]
with duration constraints e-s ∈ [dmin,dmax] and v ⊆ Di. Specifying this constraint,
called token in the rest of this work, we specify two restrictions on a segment of
temporal evolution of SVi starting at s and ending at e: (a) a duration restriction (the
interval duration should be greater than dmin and less than dmax; (b) a value
restriction (over the same interval only values in the subset v of Di can be
assumed).

2. On a resource component Ri an elementary constraint is a tuple ai = 〈s,e,[dmin,dmax],q〉,
which specifies that over the interval [s,e] with duration constraint [dmin,dmax] the
amount of resource produced/consumed is q ∈ N. In classical scheduling, this
constraint equates to specifying the need to serve an activity with a resource in
a time interval. For this reason we also refer to these tuples as activities.

Component constraints specify basic integrity constraints over components once
a set of elementary constraints are defined:

1. For each state value component SVi, given a set of imposed elementary constraints
{tk0,tk1, ..., tkm}, a total order is imposed such that for each pair of sequential tokens
(tki,tki+1) (i = 0 .. m-1) the constraint e(tki)=s(tki+1) holds. Roughly speaking, these
constraints forbid “logical holes” in the component’s behavior and impose that the
component assumes at least one value in each of the time intervals defined over
a planning horizon [0,H] by the elementary constraints.

2. For each resource Ri, a capacity constraint is represented by the pair of integer
numbers cmin and cmax.  If A is the set of elementary constraints imposed on the
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resource and At = {a ∈ A | s(a) ≤ t < e(a)} ∀ t ∈ [0,H], then the following constraint
must hold: cmin ≤ ∑ai ∈ At qi ≤ cmax   ∀t ∈ [0,H].

Compatibilities are the most complex among the constraint specification mecha-
nisms.  Although they allow one to specify combinations of sequence&synchronization
(causal), temporal and resource constraints, they represent the main tool to specify
causal relations between components. A compatibility constraint consists of a set of
tuples, compi = {〈refi, SVconsti, RESconsti 〉}, where refi denotes a token, called reference
value, in presence of which the constraints SVconsti and RESconsti must be imposed
respectively over a state value component and a resource component. The semantic of
the compound constraint represented by a single tuple is the following: when a state
value assumes the reference value refi, the set of tokens and the set of activities must be
additionally imposed on the variable set X satisfying specific temporal relations. In fact
these two sets of constraints are specified as follows:

1. SVconsti = {〈tki1, tri1 〉,...,〈tkin,trin〉} is a set of constraining values for state value
components such that tkij is an elementary constraint and trij ∈ TR is a temporal
relationship which should be satisfied between the reference value and the
constraining value.

2. RESconsti = {〈ai1,tri1〉,...,〈ain,trin〉} is a set of constraining values for the resource
components such that aij is an elementary constraint and trij ∈ TR is a temporal
relationship which should be satisfied between the reference value and constrain-
ing activity.

In our current specification the temporal relations in TR are a combination of
qualitative and quantitative specifications. More formally, let si and sj (ei and ej) represent
the start time (end time) associated to the token-token pair (tki, tkj) [or token-activity pair
(tki, aj)].  The temporal relations trij ∈ TR can be chosen among the following (the
syntactic specification is on the left, the quantitative interpretation on the right):

1. 〈DURING, [d1,D1] [d2,D2]〉     ⇒      si-sj ∈ [d1,D1]   ∧  ej-ei ∈ [d2,D2]
2. 〈CONTAINS, [d1,D1] [d2,D2]〉     ⇒      sj-si ∈ [d1,D1]   ∧  ei-ej ∈ [d2,D2]
3. 〈BEFORE, [d1,D1] 〉     ⇒      sj-ei ∈ [d1,D1]
4. 〈AFTER, [d1,D1]〉     ⇒      si-ej ∈ [d1,D1]
5. 〈OVERLAPS, [d1,D1] [d2,D2]〉     ⇒      ei-sj ∈ [d1,D1]   ∧  si-ej ∈ [d2,D2]
6. 〈OVERLAPPED-BY, [d1,D1] [d2,D2]〉     ⇒      ej-si ∈ [d1,D1]   ∧  sj-ei ∈ [d2,D2]

Hence, a single compound constraint of the form 〈refi, SVconsti, RESconsti〉
represents a complex constraint which plays a pivotal role in plan construction because
it models the behavior of the components when constraints are imposed on them. Notice
that compatibility compi is a set of compound constraints that is considered as satisfied
when at least one element of the set is verified. As better shown by the examples in the
rest of the chapter, a planning algorithm uses compatibilities to specify subgoaling
during problem solving. While in a partial order planner subgoaling is generated by
unsupported pre/post conditions for an action in the current plan, in this constraint-
driven style of planning the same mechanism is used to justify unsupported compatibili-
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ties in a currently partially justified causal theory. Thanks to the notion of compatibility,
we now have the specification machinery to tell the planner that some sequences in the
domain D = {off, standby, pre-operation, operation-min, operation-max, post-opera-
tion} are not possible according to physical laws. For example, it is possible to state that
operation-max can be assumed only if the pre-operation value is assumed for at least
20 seconds immediately before (with some simplification of the token specifications,
such a compatibility can be stated as 〈〈sr,er,[d,D],operation-max〉,〈〈 sc,ec,[20,H],pre-
operation〉, 〈BEFORE, [0,0]〉〉, φ 〉).

Planning Problem
We now introduce a more detailed definition for a planning problem P and its

solution S. A planning problem is a tuple P = 〈〈X,C〉,G〉, where 〈X,C〉 is a domain theory
and G is a set of goals that specify a set of additional constraints over the domain theory.
In this paper, we consider goals of the form (tkref, tr, tkg), where tkref is a reference value
which is anchored to the origin of the timeline (intuitively, tkref begins the evolution of
each state component), tkg is a desired value token, and tr ∈ TR is a quantitative temporal
constraint between tkref and tkg. It is worth making a comment at this point: the domain
theory allows one to specify a set of temporal functions for the components X = SV ∪
R, the goal language allows one to specify the desire for the user to select some temporal
functions for the state values in SV that on specific time intervals assume specific values.
So in the example in which D = {off, standby, pre-operation, operation-min, operation-
max, post-operation} with a temporal horizon [0,H], we would like to create temporal
behaviors that assume the value operation-min in the interval [40,75], and the value
operation-max in [120,140] and [180,210].

It is also worth noting that with a slight extension of the goal specification language
we can define a pure scheduling problem by assuming that predefined activities should
be allocated on certain resources. Additionally, temporal constraints can be specified
among these activities. It is straightforward to show how also this specification falls
within the representation power of our domain theory.

Solution
A solution is a pair S = 〈P,AC〉, where P is a planning problem as defined above,

and AC is a set of additional constraints which guarantee that each state value
component assumes only one value for each time instant, and that all the imposed
constraints are satisfied. In particular:

1. For each state component a set of token constraints {tk0, tk1, …, tkm} is imposed,
where tki = 〈s,e,[dmin,dmax],v〉 and v is a singleton value set. In addition, each token
tki is supported, that is, for each value v(tki) in the current solution all the relative
compatibility constraints are satisfied.

2. For each resource a set of activities {a0, a1, …, am} is imposed, where ai = 〈s, e,
[dmin,dmax], q〉 and the cumulative constraint cmin ≤ ∑ai ∈ At qi ≤ cmax ∀t ∈ [0,H] holds.

3. The set of temporal constraints must be consistent. It is worth observing that the
set of imposed temporal constraints form a so-called Simple Temporal Problem
(STP) (Dechter et al., 1991). This problem is a particular CSP, in which the set of
variables X = {t0, t1, …, tn} represent time points and the set of constraints C is a



Planning with Concurrency, Time and Resources   267

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

set of linear inequalities of the type a ≤ tj- ti ≤ b. The consistency of an STP is
checked polynomially (Dechter et al., 1991).  All the constraints in the problem can
be represented as an STP.  In fact, two time points are associated to the start and
end of each token, two additional time points t0 and tH represent the start and the
end time of the temporal horizon, and, as shown above, each duration constraint,
or precedence relation imposed via the compatibility constraints, can be mapped
into a set of constraints of the type a ≤ tj- ti ≤ b.

According to the definition of solution proposed in this work we observe how the
notion of constraint has been uniformly used for representing the definition of a domain
theory, a planning problem and its solution. The previous definitions specify quite a
number of mandatory (hard) constraints that a solution should satisfy. Of course the
problem of controlling the search of a planning algorithm still holds because of the
amount of alternatives to create consistent temporal behaviors for each component. A
solution is obtained via addition of soft constraints, which represent search decisions
for finding a particular solution.  Within a CSP framework, after each search decision is
taken, a set of propagation rules can be applied in order to make explicit a set of
constraints, which can be also considered mandatory with respect to the set of decisions
taken in the current solutions. In the next subsection we propose an algorithm for solving
planning problems within the above CSP framework, through which we will further detail
the role of the domain theory, of propagation rules and of search decisions.

A Planning Algorithm
The resolution of a planning problem consists in posting a set of constraints G over

the variables according to the planning domain theory, and enforcing further sets of
constraints until the behavior of each component is defined without ambiguity. Hence,
we have a solution when (1) for each time instant t ∈ [0,H] only one value is assumed by
the state value components, (2) all the compatibility constraints hold, (3) the additive
components (resources) respect the cumulative constraints, and (4) the underlying STP
problem is consistent.

A basic planning algorithm for the constraint-based domain specification above is
given in Figure 1. The planning algorithm MakePlan work incrementally by posting
constraints on a partial solution. At each recursive call the algorithm integrates the goals
G in the problem CSP-based representation 〈X,C〉 obtaining an updated partial solution
(Step 3).  Next, a propagation function is invoked for testing the consistency of the set
of temporal and resource constraints currently imposed (Step 4). It is worth observing
that while the temporal propagation, given the STP restriction, is a complete and
polynomial algorithm; the resource constraint propagation is an incomplete step that in
case of consistency does not guarantee the existence of a solution (Laborie, 2003) (e.g.,
resource constraint violations may still exist).

In case the propagation algorithm detects an inconsistency, it stops; otherwise it
searches for flaws in the plan. Examples of flaws might be a resource conflict (e.g., a pair
of activities which require the same resource in the same interval of time for which the
combined resource usage exceeds the resource’s capacity), or a single goal on a state
value component, which is unsupported by the values on the other components
according to the compatibility constraints. The idea of flaw is not new in the planning
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literature (Ghallab and Laruelle, 1994).  It represents the abstract idea of an “open
subproblem” in the current partial solution.  When a solution is found to this subproblem,
a new step has been accomplished towards a complete solution.

During refinement search a flaw identification function is called (Step 6). When
there are no more flaws, a solution is returned (Step 12). Otherwise, a flaw is selected,
according to a heuristic strategy (Step 8), a set of possible solvers is generated, and one
is chosen as a new goal (Step 9). Then, new goals are added recursively to the current
solution specification. Steps 8 and 9 generate and add to the current solution a set of new
goals or additional constraints ac: these constraints could be either other tokens or
activities (if the planner decides to expand some compatibilities to justify unsupported
token), or they could be temporal constraints to solve an eventual resource conflict. In
the non-deterministic algorithm proposed in Figure 1, Steps 8 and 9 lead to different
search paths (computations) for each distinct solving strategy. In the following section
a complete running example of the algorithm is proposed in order to clarify how it works.

As will be clear in the following, our current planner uses an initialization on each
state value that is specified in the problem definition. In fact, on each state value
component the following set of elementary constraints are imposed: 〈s0,e0,[0,H],{vin}〉,
〈s1,e1,[0,H],D〉, 〈s2,e2,[0,H],{vfin}〉 (with s0= t0, e0=s1, e1=s2, e2= tH), where vin, vfin ∈ D are,
respectively, the initial and the final values of the component. In other words, any
problem specification contains not only the goals to achieve during a temporal horizon
[0,H], but imposes also initial and final values to each state component. The insertion of
the token 〈s1,e1,[0,H],D〉, guarantees that within the horizon [0,H] every temporal
evolution is potentially possible according to the domain theory. This represents
somehow an implementation choice given the bias in the current system towards the
state-value components of a domain for driving the problem solving activities. At
present, we always start from a planning problem that contains resource specification as
a scheduling subcomponent. The initialization allows one to specify a “safe” value for
the state-value components that are assumed when nothing is required. This is a
reasonable choice when modelling physical components, but it is not needed for the
underlying theoretical framework, which can be stretched in other directions if different
problems are addressed.

Using CSP for Planning
The next section of this paper describes a particular planning architecture that

works according to the principles discussed in this section. It is worth mentioning that
CSP is a powerful technology for problem solving, whose application to planning has
been explored in different directions. Exploration on the use of CSP subcomponents in
a larger planning architecture has been quite frequent; see, for example, O-PLAN (Tate
et al., 1994), IxTeT (Ghallab & Laruelle, 1994; Laborie & Ghallab, 1995a) and HSTS
(Muscettola et al., 1992; Muscettola, 1994).  More recently, several works explore the
similarity between CSP reasoning and the GraphPlan algorithm (Kambhampati et al., 1997)
and work at extending the application of several CSP search control techniques applied
to the problem of solution extraction from a Planning Graph (Kambhampati, 2000). Other
works use Constraint Programming as a general tool for compiling a classical planning
problem into a CSP to take advantage of the CSP standard solving technology (Van Beek
& Chen, 1999; Do & Kambhampati, 2001b; Lopez & Bacchus, 2003). In these approaches
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the use of CSP parallels the use of SAT technology for compiling a planning problem into
a propositional satisfiability problem as done in Kautz & Selman (1996, 1992). In our
current work we are pushing the use of CSP even further by proposing a planning
modelling language that is directly based on CSP instead of being inspired to an action
centric view of planning (e.g., Fikes and Nilsson, 1971). In the same direction a closer work
is Frank & Jonsson (2003), which proposes a framework where causal knowledge is
expressed through compatibilities, requiring an extension of the current constraint
programming machinery.  With respect to this last work we give different emphasis to the
issue of explicitly modelling different types of components evolving concurrently, and
to exploiting the link with standard constraint-based scheduling technology.

Before moving on to the description of the planner, it is worth underscoring that
in our work we are biased by the preference for modelling expressivities rather than
optimizing problem solving efficiency. Constraint-based reasoning on problems with
complex resources, temporal and causal constraints, together with the representation of
the concurrency of the domain, are two of the main issues of our approach. This bias
reflects quite clearly in the rest of the paper when we present our planner (in the next
section) and a more detailed discussion of related works. This bias sharpens slightly the
distance between this work and the majority of the current planning literature, which
instead is biased towards solving efficiently well-known benchmark sets of planning
problems.

Figure 1. Function MakePlan

1. MakePlan (〈X,C〉,G) 
2. { 
3.    PostConstraints(〈X,C〉,G) 
4.    if (PropagateConstraints(〈X,C〉)) 
5.     { 
6.         if (ExistPlanFlaw(〈X,C〉)) 
7.         { 
8.             f ← SelectFlaw(〈X,C〉) 
9.             ac ← Choose(FlawSolvers(〈X,C〉,f)) 
10            MakePlan(〈X,C〉, ac) 
11        } 
12        else return(〈X,C〉) 
13     } 
14.    else return(nil) 
15. } 
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A Basic Example: The Rochester CS Building Door
To better show the kinds of problems that are addressable in this planning

framework, let us resort to a well-known example introduced by Allen (1991). The problem
describes the door of the Computer Science Building at Rochester. Because of its peculiar
design, opening it requires two hands. In fact, a spring lock must be held open with one
hand, while the door is pulled open with the other hand. This domain requires synchro-
nization between two actions: the act of opening the door requires pulling down the
handle while the spring lock is up. This problem can be formulated in terms of time and
resource constraints. Notice that explicit concurrency is a problem for classical planners,
thus this example is quite challenging. For the problems involving classical planners and
an alternative solution with respect to the present one please refer to Allen (1991).

In the knowledge engineering domain we have introduced so far we can model the
basic problem using five components: three state values describing the physical
environment to interact with (DOOR, HANDLE and SPRING_LOCK) and two binary
resources describing the hands of an executing agent (LEFT_HAND and RIGHT_HAND).
The DOOR can assume the state values Open or Closed, the HANDLE can be Normal
or Down and the SPRING_LOCK can be Unlocked or Locked.

In a CSP perspective the goal of opening the door is seen as a constraint imposing
that DOOR must assume the value Open in a certain time interval. In our domain theory
we can specify that during the interval in which the component DOOR assumes the value
Open, the component HANDLE must be Down and the component SPRING_LOCK must
be Unlocked. Moreover, both actions to pull down the handle and to unlock the spring
lock require using hands: this can be formalized in our ontology by specifying the
additional constraint that when the state value HANDLE assumes value Down it also
requires using either resource LEFT_HAND or resource RIGHT_HAND. In the same way
when component SPRING_LOCK assumes value Unlocked it requires using either
resource LEFT_HAND or resource RIGHT_HAND.

The planning process that can be associated to the door opening problem is
described in Figure 2. In the initial situation (Figure 2(a)) each state value may assume
any of the possible values over the planning horizon [0,H] and there is no resource
allocation. An initial scenario for planning is generated by imposing the goal constraint
Open on the state variable DOOR from instant t1 to instant t2. After goal insertion, the
current plan becomes as shown in Figure 2(b). In this intermediate plan there is a flaw
because the value Open is not justified (this is not a decision point because there is only
one flaw), since a compatibility constraint for this value in the state variable DOOR
requires synchronized values Down and Unlocked on the state variables HANDLE and
SPRING_LOCK respectively (to capture the physical constraints of the Rochester door).
By applying a subgoal expansion, the partial plan evolves as in Figure 2(c). Now there
are two additional flaws because the new values require resources to be executed. No
matter which flaw the planner chooses to solve first, since LEFT_HAND and
RIGHT_HAND are two binary resources, allocating an activity on one of those forbids
any contemporary allocation on the same temporal interval. Let us suppose the planner
tries to allocate two activities on the same resource (Figure 2(d)).  If the attempt is to
schedule the second activity before or after the first one, the temporal constraints posted
over the state value components (action Down on HANDLE and action Unlocked on
SPRING_LOCK must be simultaneous) fail during constraint propagation and the
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Figure 2. Concurrent planning of the Rochester Door
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planner backtracks. If the planner tries another compatibility expansion allocating the
second activity on the other resource (Figure 2(e)), then a consistent situation is
created and the solving activity may continue. In this plan, there are six others flaws:
during intervals [0,t1] and [t2,H] unambiguous choices for the values of the components
are requested. Supposing that the components are in “idle states” in the beginning and
at the end of the planning horizon (the door is closed, the spring-lock is locked and the
handle is not down), the planner chooses a series of alternated values for the compo-
nents, since only two distinct states are allowed for each component. By imposing these
choices on the current plan, the planner obtains the solution shown in Figure 2(f).

The example is necessarily simple for the sake of clarity, but it provides some basic
intuition on the kind of planning we are talking about. Most importantly, this formaliza-
tion of Allen’s problem shows quite clearly the expressiveness of this approach in terms
of knowledge engineering. The natural question is how to realize a planner that contains
these ideas. As shown in the example such a planner should be designed following two
key points: (a) it should be able to interpret a domain modeling language which captures
quite complex domain constraints, and (b) its overall solving ability should rely on a form
of constraint reasoning. The next section describes one of these planners.

OMP: A CSP-BASED
PLANNING ARCHITECTURE

In the previous section we have introduced a general model of planning as a
constraint satisfaction which uniformly deals with causal constraints, specifying correct
temporal sequencing of domain features, and with time and resource constraints,
specifying scheduling information regarding the same features. Within this framework,
it is possible to formalize key aspects of some of the current planning architectures, as
shortly discussed later in the paper. The current section presents a planning architecture,
named OMP, for OPEN MULTI-CSP PLANNER, which was conceived in the context of
this framework. The design principles underlying the OMP planner are inspired by
experience from previous collaborations (Muscettola et al., 1992) and from recent work
(Cesta & Oddi, 1996; Cesta et al., 2002), and are also the basis for further developments
(e.g., Oglietti & Cesta, 2003).

This software architecture is grounded on two aspects:

• the knowledge modeling tool that allows one to describe the domain theory for the
planning problem. This language, called DDL.2, is described in the next subsection,
in which we also show how problems are modeled by using PDL.2, a Problem
Description Language which is tightly connected to DDL.2;

• the software architecture, which, starting from a DDL.2 domain specification,
maintains a structured constraint database through the application of different
types of constraint reasoners.

A “Non-Classical” Domain Modeling Language
Most of the planning frameworks employ the STRIPS ontology for domain descrip-

tion (Fikes & Nilsson, 1971). This ontology also influences deeply the PDDL interlingua
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(Mc Dermott et al., 1998; Fox & Long, 2003). The basic method of this type of problem
formalization consists of describing domain causality in the form of actions to be
performed by an executor. Actions explicitly describe the changes that their execution
causes on the external world.

On the contrary, OMP follows a modeling paradigm that does not focus on the
executing agent, rather on the relevant sub-parts (components) of a domain that
continuously evolve as concurrent threads. Such an approach that can be formalized,
as in the previous section, has been first proposed in HSTS (Muscettola et al., 1992;
Muscettola, 1994) and has been studied in several subsequent works (Cesta & Oddi,
1996a; Jonsson et al., 2000; Chien et al., 2000; Frank & Jonsson, 2003). Additionally, in
this paper we develop the domain modelling further as a CSP specification and stress the
link with CSP approaches to scheduling (see, for example, Cesta et al., 2002).

In particular, the software architecture of OMP is strongly inspired by the layered
modeling used in CSP scheduling according to which a temporally consistent model of
the world is maintained. On top of this model, resource profiles are represented as
separate evolving parallel threads. Following the same schema, in OMP the ground layer
represents the temporal model of the world, on top of which several concurrent threads
are defined to represent not only resources but also the causal theory of the domain. In
fact, as shown in the previous section, also the causal theory specification is subdivided
in separate concurrent threads, namely the state value components, which are functions
of time whose temporal evolutions are piecewise constants. It is worth underscoring that
in this style of planning, causal components are used to model both “controllable”
processes of the domain and the exogenous events that influence the temporal evolution
of the whole domain. From now on we will use a terminology similar to Muscettola et al.
(1992), Muscettola (1994), Cesta & Oddi (1996a), and Jonsson et al. (2000), and instead
of state value components we use the term state variables. The term comes from classical
control theory (Kalman et al., 1969) where state variables are temporal functions used to
describe features of a physical system.

The reason we are pursuing this research direction can be summarized in the
following set of advantages of this representation:

1. Quantitative temporal constraints are a basic native feature. As a consequence, it
is immediate to model durations of relevant states, but also quantitative temporal
separation between actions (e.g., set-up times, delays, etc.). Current planning
technology is able to deal with actions having a duration, but does not allow one
to specify separation constraints between goals (e.g., achieve B no later than 20
minutes after achieving A).

2. Concurrent components are directly modelled as separate threads. As a conse-
quence the reality we describe is natively parallel, thus not only allowing for a
realistic model but suggesting a structured approach to knowledge engineering;

3. The need for resources in particular states of a state variable is modeled. This is
useful when planning in many complex environments where there are entities with
limited capacity, like fuel or energy for example. DDL.2 integrates a generalized
resource model (including multi-capacity resources). Notice that resources are
here separate entities endowed with a temporal evolution;
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4. Uncontrollable events are uniformly modeled as state variables. This represents a
simple solution to the problem of representing exogenous events (physical laws
or visibility windows for example), a known problem for STRIPS ontologies;

5. The integration of planning and scheduling is quite strong. Both problems are
addressed within the same model.

However, the main limitation of this approach lies precisely in the lack of any explicit
notion of action. This creates a main distinction with respect to other approaches in the
literature and has represented a barrier for the widespread use of this approach. As a
consequence, for example, an exact mapping between the two approaches is still an open
problem. It is also worth saying that even if the two perspectives seem to diverge, in both
cases a solver is looking for a legal sequence of states and this is a concept that is action
independent. In classical planning, attention is given to the path from the initial state to
the final state, while in this and similar works, emphasis is given to particular intermediate
states that are traversed by the synthesized sequence of states. Furthermore, in
considering an integrated planning and scheduling perspective we may have the very
simple perspective of taking care of time and resource constraints during planning. Also
this second feature of a solution is not necessarily influenced by the notion of action.
These are some of the reasons for which we consider our line of research worth pursuing.

The Domain Description Language
The OMP domain theory is described using DDL.2 specifications. The DDL.2

domain description language is an evolution with respect to our previous proposal called
DDL.1 (Cesta & Oddi, 1996a), which formalizes an interesting subset of the HSTS
(Muscettola et al., 1992; Muscettola, 1994) modeling language.

The basic entity of the modeling language is the Domain, which contains compo-
nents, which in turn are the basic dynamic objects of the P&S model. For the sake of
clarity, some other less important features of the modeling language (e.g., types and
functions) will not be described in this work.

< PlanningDomain > ::=  “DOMAIN” < DomainName >
( < TypeDefinition > )*
( < FunctionDefinition > )*
( < ComponentDefinition > )*

< ComponentDefinition > ::=  ( < StateVariable > | < UncontrollableSV > |  < Resource > )

The key aspect when modeling a domain according to this approach is to identify
the concurrent threads that are relevant in a certain scenario. These threads are called
components and can be state variables (SVs), uncontrollable state variables (USVs), or
resources. All components are temporal functions.

An uncontrollable state variable is used to represent exogenous constraints. Its
specification is quite similar to a function definition: in fact, a USV is a function from time
to the states it assumes over time. The behavior of USVs is not planned for but known
in advance, and is used for synchronization with the other concurrent threads (SVs and
resources). The behavior of SVs and resources is planned for in the problem-solving
phase in order to ultimately solve the planning problem. A typical example of use for USVs
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is to represent temporal visibility windows for space targets during a space mission
planning activity. The language allows one to specify relevant visibility intervals for
such objects by modeling them as USVs.

Resources are the second type of concurrent threads. OMP allows one to specify
binary, renewable and consumable resources. The syntactic definition of the different
types of resources is rather simple (see below). They are constrained according to current
scheduling practice. For renewable and consumable resources we specify a minimal and
maximal capacity value, while binary resources (that are either “busy” or “available”) do
not require further specification.

      < Resource > ::=  “RES” < ResName > “:” < ResType > “;”

      < ResourceType > ::= (< BinaryResource > | < RenewableRes > | < ConsumableRes >)

      < BinaryRes > ::= “BINARY”

      < RenewableRes > ::=  “RENEWABLE” “(“ < CapVal > “,” < CapVal > “)”

      < ConsumableRes > ::= “CONSUMABLE” “(“ < CapVal > “,” < CapVal > “)”

The third type of concurrent threads is the (controllable) state variables. As
shown in the previous section, this is a powerful but complex feature, and is typical in
this family of description languages. State variables are basically modeled as finite state
machines. The specification of a state variable involves the definition of its possible
states (values) and state transitions that are allowed. What makes a domain definition
more complicated is that the behaviors of different threads are not independent. In fact,
in certain states they (a) may require synchronization with other SVs, and/or (b) may
compete for resource utilization.

A state variable definition specifies its name and a list of values that the SV may
assume.  Each value is specified with its name and a list of static variable types. Indeed,
the possible state variable values for DDL.2 are a discrete list of predicate instances like
P(x1,...,xm). For each state variable SVi we specify (a) a domain DVi of predicates
P(x1,...,xm), (b) a domain DXj for each static variable xj in the predicate.

We can specify the temporal durations of the state of a SV either by absolute values
or by functions of static variable values (to indicate a dependency of the state evolution).
The key aspect in DDL.2, and in general in this style of planning, is the specification of
causal constraints. Causal constraints help the specification of feasible state evolutions
over the state variables to separate feasible temporal behaviors from unfeasible ones.
Causal constraints are specified as compatibility specifications, and the specification
syntax is as follows:

< StateVariable > ::= “SV” < SVName > < StateList > ( < CompatibilityList > )*

< CompatibilityList > ::=  “{“ ( < Compatibility > )* “}”

< Compatibility > ::= “COMP” “{“
“VALUE” < RefValue >
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“MEETS” < NextStateList >
“METBY” < PreviousStateList >
( “SYNC” < SyncList > )? “}”

< RefValue > ::= < StateName > < VarList > < TemporalInterval >

< TemporalInterval > ::= “[“ < TemporalExpr > “,” < TemporalExpr > “]”

< TemporalExpr > ::= ( < IntegerValue > | ( < FunctionName > < VarList > ) )

Each compatibility is related to a value, its reference value (introduced by the
VALUE tag in the specification). It is possible to define more disjunctive compatibilities
relating to the same state. Each compatibility specifies:

• A non-empty disjunctive list of feasible values that can follow the reference value
(MEETS tag);

• A non-empty disjunctive list of feasible values that can come before the reference
value (MEET-BY tag);

• A conjunctive list of causal constraints or synchronizations (SYNC tag). This is
the key feature for describing interactions between parallel threads.

Since the causal constraints related to the definition of next and previous states
cannot be empty, a compatibility specification necessarily distinguishes between that
specification and the specification of other synchronization constraints. In each com-
patibility, by specifying the reference state and the next and previous states (with respect
to the reference), we describe a piece of temporal behavior for the SV. By specifying more
than one next and/or previous state for the reference state, we are describing a non-
deterministic state machine. During its search activity, a planning algorithm will project
all the feasible state sequences.

We do not include the complete specification of DDL.2 but conclude this presen-
tation with a partial definition of the kind of temporal and resource constraints it can
model.

< SyncList > ::= “{“ ( < ResUseConstraint > | < DuringConstraint > |
< ContainsConstraint > |< BeforeConstraint > |
< AfterConstraint > | < OverlapsConstraint > |
< OverlappedByConstraint >  )* “}”

< ResUseConstraint > ::= “USE” < ResourceName > ( < Quantity > )?
    < TemporalInterval > < TemporalInterval >
    ( < UsageType > )? “;”

< UsageType > ::= ( “FROMSTARTTOEND” | “AFTERSTART” |
          “AFTEREND” | “BEFORERSTART” |
          “BEFOREEND” | “ALWAYS” )
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< DuringConstraint > ::=  “DURING” < ConstrValue >
< TemporalInterval > < TemporalInterval > “;”

< ConstrValue > ::=  < SVName > < StateName >
        < VarList > < TemporalInterval >

It is worth noting that the resource specification is close to the proposal shown in
Laborie (2003).

To give a practical example we include here the specification of two compatibilities
in the Rochester Door example.

SV DOOR {Open (), Closed () }
 {
     COMP {
          VALUE Closed () [1 , +INF]
          MEETS { Open () [1 ,+INF]; }
          MET-BY { Open () [1 ,+INF]; }

            }

    COMP {
          VALUE Open () [1 , +INF]
          MEETS { Closed () [1 ,+INF]; }
          MET-BY { Closed () [1 ,+INF]; }
          SYNC {

             DURING SPRING-LOCK Unlocked() [1 ,+INF] [0,0] [0,0];
                                  DURING HANDLE Down() [1 ,+INF] [0,0] [0,0];

                 }
      }

  }

The specification of compatibility used in OMP is mostly homogeneous with the
one given in Cesta and Oddi (1996a). The reader may refer to that paper for a formal
semantics of compatibility constraints. It should now be clear how DDL.2 is quite simply
a means for creating a constraint-based model of the real-world, which is perfectly in line
with the abstract CSP description given in the previous section. A final observation
concerns the role played by temporal constraints. It is worth noting that they are
customized within the state variable specification. A lot of them will be instantiated once
the compatibility specification gives rise to actual causal constraints during planning.
The problem-solving phase will consist in synthesizing new temporal constraints, which
derive from the causal, and the resource constraints.

The Problem Description Language
Planning in OMP consists of deciding temporal behaviors for the concurrent

threads which are consistent with the domain specification in DDL.2 syntax, and which
satisfy the goals that are to be achieved.  In “planning with concurrent threads” the goal
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naturally boils down to a partial specification of temporal behavior on some of the
threads.

The planning goals in OMP are specified according to a problem description
language called PDL.2 (see the following syntax).  Its current version reflects some
general assumptions that have been made for this implementation of the architecture. In
particular, we plan over a finite temporal horizon, and PDL.2 allows the specification of
an initial and final value for each SV. Also, the initialization of consumable resources is
required in the problem definition (quantity of resource at reference time 0). Furthermore,
the binary and renewable resources are considered completely free at the start of the
horizon.  As we have already discussed in the previous section, the expressivities of
PDL.2 reflects the current effort of developing a planner with some scheduling ability.
These aspects may change in future work if different strategies to link planning and
scheduling will be investigated.

< Problem > ::= “PROBLEM” < ProblemName >
      “{“< PlanningHorizon >
     < SVInit >
     < ResourcesInit > “}”

< PlanningHorizon > ::= “HORIZON” “:” < IntValue > “;”

< SVInit > ::= “SV” < SVName >
   “{“ < InitialState > “;”
   < FinalState > “;”
   < GoalsSpec > “}”

< InitialState > ::= “START” “:” < GroundState >

< FinalState > ::= “STOP” “:” < GroundState >

< GoalsSpec > ::= “GOALS” “:” “{“ ( < GroundState > < IntervalSpec > )* “}”

< IntervalSpec > ::= “AT” < TemporalGroundInterval >

< ResourcesInit > ::= ( “RESOURCE” < ResName >
             “INITCAPACITY” “:” < IntValue > “;” )*

OMP provides a PDL.2 designed to accommodate the specification of both a
temporal horizon and a set of specific values of the SVs that are desired in a certain time
interval.

According to the given syntax for each SV the start and end values can be specified
(tags START and STOP). In this way we can force, for example, any selected solution to
be a temporal evolution that starts in t0 and ends in tH with the state variable to assume
a “low energy safe state.” After the GOALS tag, PDL.2 allows to specify desired values
within [0,H] always specifying an absolute time constraint with t0.  It is easy to verify that
this is consistent with the generic problem specification discussed in the previous
section. To remark the difference between the START and STOP tags and the GOALS
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we show a fragment of problem specification from the Rochester Door domain. This
specification requires a temporal solution that starts with the door closed (START tag),
opens it for 2 seconds during the interval [5,8] from t0 (GOALS tag), and ends with the
door closed (END tag). The real goal consists in opening the door, as shown before, while
the START/STOP specification allows one to refine the requirements for the door’s
temporal evolutions. If we want a plan with several openings of the door, for instance,
we should insert a list of requirements in GOALS.

PROBLEM openRochesterDoor
 {
       HORIZON : 10;
       SV DOOR
  {
       START : Closed() [1,+INF];
       STOP : Closed() [1,+INF];
       GOALS : { Open() [2,2] AT [5,8]; }
  }
/* Other initializations */
 }

Planning in OMP
To create a complete connection with the general problem solving characterization

given in the previous section we have first introduced the language to synthesize
knowledge constraints for the subsequent planning phase. We now describe the
software architecture that accepts this set of constraints as a domain specification and
generates solutions to given problems.

The language allows the description of a discrete event dynamic system, in which
concurrent threads may have temporal evolutions that are piecewise constant functions
of time. Such systems are studied in a sub-area of control theory and optimization (see,
for example, Ramadge & Wohnam, 1989). The domain theory specification we have
shown in the paragraphs above is capable of modeling such systems, thus the problem
of deciding an evolution of such systems equates to solving a temporal planning
problem.

While classical plan-space search planners build a partial plan, which necessarily
asserts a conjunction of predicates (goals) in any possible completion, here a planner
searches in the temporal evolution space of threads to determine those evolutions which
necessarily include certain other pieces of evolution given as goals. In other words,
planning in this framework consists of determining the elements of a matrix S×T where
S is the space of threads (including both state variables and resources) and T is the
timeline. Some of the values (with a temporal duration) are given as goals and the planner
is responsible for finding a “convenient position” on the matrix for those values, as well
as filling the rest of the matrix with values which are compatible with the goal positioning
(i.e., any positioned value should satisfy all the constraints specified in the DDL.2 domain
definition).

OMP is an integrated constraint-based software architecture for planning and
scheduling which exploits this general solving schema using several families of con-
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straints to effectively search for a solution. Through the integration of multiple CSPs, the
solution of a planning problem is found by interleaving decision and propagation steps
while maintaining a set of potential solutions in a way similar to what is done in Partial
Order Planning (POP).

The Software Architecture
A sketch of the basic software modules that compose OMP is given in Figure 3.

It is possible to recognize the typical structure of a CSP solver in the bipartition between
a CONSTRAINT DATA-BASE (CDB), which is responsible for maintaining a model of
the world that leads the search towards a solution, and a DECISION MAKER (DM), which
drives the search by reasoning on the current CDB and the open goals (the open flaws
according to the terminology introduced above). The decisions of the DM consist in
additional constraints on the CDB according to the schema of the previous section.

The planner is thus capable of reasoning on two different levels, since it handles
concurrent threads by performing constraint propagation. Let us comment on this dual
nature of OMP:

• The constraint database contains three modules that are responsible for the
management of temporal, causal and resource constraints respectively. Several
important design choices have been made in the realization of these modules,
although different implementations are possible maintaining the same frame of

Figure 3. OMP software architecture
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reference. This particular CDB justifies the term multi-CSP in the name of the
planner.

• The CDB represents the matrix 〈concurrent threads vs. time〉 (S×T) that we have
introduced at the beginning of this section. This abstract view (shown in italics in
Figure 3) is concretely implemented in the interacting CSPs. At the end of a problem
solving phase the solution (plan) can be directly extracted from the CBD by reading
it according to the different concurrent threads.

• Two additional modules are needed to process the declarative specifications of the
domain and the current problem. A DDL COMPILER creates a database of domain
rules that set up the basic structure of the S×T matrix in the CDB, and this database
is used by the DM to reason on domain knowledge. A PDL COMPILER analyzes
the current problem requirements and initializes the CDB with a first set of
constraints, also initializing the flaw list that is given to the DM.

The sketch in Figure 3 is quite general and in principle leads to different ground
implementations. In the next subsection we describe some features of the current release
of OMP.

Multiple Interacting CSPs
A key aspect of OMP is the interaction of three families of constraints that compose

the CDB (temporal, resource and causal constraints). Following a constraint-based
scheduling practice, we have seen the problem-solving phase as an exploration of a
temporal representation of the world that evolves on top of a consistent temporal
network. The concurrent threads represent the temporal evolution of the domain
components (SVs, USVs and resources), and are strongly grounded on the temporal
network. As for the time constraints, we are currently using a standard STP representa-
tion (Dechter et al., 1991) with facilities for dynamic constraint management (Cesta &
Oddi, 1996b). For the resource constraints, we have implemented a version of the data
structures and propagation algorithms described in Laborie (2003], which allow us to
deduce implicit temporal constraints based on state-of-the-art constraint propagation
rules.

The causal constraints are managed by a specific module developed from scratch
which refines the temporal evolution of the state variables calculating a sequence of
temporal segments during which the state variables maintain the same set of values,
deducing these intervals from elementary constraints imposed over the state value
component (tokens).

It is worth saying that, in the current implementation, any token of a temporal
segment of a SV has a start/end time pair which is connected to time points of the temporal
network and a distance constraint which reflects information on its duration. Whenever
a compatibility specification that contains a resource requirement is instantiated, it
creates an activity on the resource whose start-end time pair and duration constraints
are consistent (compatible) with the behavior of the other components of the system.

A solution to a planning problem defined by a PDL.2 specification over a
DDL.2 domain description is such that the PDL.2 specification is completely satisfied by
a configuration of time, resource and causal constraints that are consistent with the
constraints scheme in the domain. It is worth noting that when a single value is chosen
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for a temporal interval, a compatibility instantiation phase causes the dynamic propaga-
tion of compatibility constraints on the different concurrent threads that are connected
directly and indirectly with that value specification. Once new causal constraints are
added, their effect is propagated on the other CSPs in the form of additional temporal
constraints for the temporal network as well as added resource usage and propagation
for the resource constraints.

To better clarify the interaction between different CSPs let us describe Figure 4,
which details the interactions among different types of constraint reasoning (the
numbers correspond to those shown in the figure):

1. a token T is imposed on a certain state value component;
2. let us suppose that the domain theory contains a compatibility specification that

imposes the allocation of a resource to justify the presence of T in the evolution
of the SV. As a consequence, an activity is generated on the resource R to take into
account the compatibility constraint on resource (USE Tr);

Figure 4. Example of interaction among different CSPs
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3. temporal links between start and end time points T and Tr are imposed to bind the
start and end of the activity;

4. the compatibility specification is dynamically expanded by imposing a resource
allocation in order to satisfy the constraint expressed by Tr;

5. the resource propagation, which is carried out (in order to maintain a resource
profile which is consistent with capacity constraints), generates a constraint,
which imposes a certain position for the allocated activity. This step sequences the
activity on the resource;

6. the constraint generated by resource propagation translates into a temporal
constraint on the initial or ending time point of the activity, thus also on Tr’s time
points;

7. through the temporal constraints that emerge from the constraint between T and
Tr, the constraint generated by the resources’ information propagation imposes a
certain position also for the T token over the state value component;

8. the constraint imposed on T propagates in the sequence and provokes a reshuffling
of the posted token on the SVs.

The example in Figure 4 also shows the contextual interleaving of planning and
scheduling choices in OMP. We split reasoning about what to do from reasoning about
when to do it and use constraints over a temporal network to join these two types of
decisions. Notice that resource information is implicitly fed back to the planning phase,
thus avoiding premature serialization of activities (a common behavior of most
P&S architectures).

A Complex Example: The Three Synchronized Satellites
To conclude the presentation of OMP we introduce an example that is related to a

more complex domain created referring to a real scenario. The goal is to model a space
application domain in which plans are needed to decide information transfer paths using
a constellation of three satellites. The constellation rotates for 24 hours around the Earth.
At any moment each satellite can communicate with both ground stations and with the
two other satellites. The constellation rotates, and there are three ground zones, each one
covered by a satellite during seven hours; there are three blind zones (no visibility),
which occur when satellites are leaving a ground zone and entering the next zone.  Indeed,
this scenario poses strong real-time requirements that may not be met by the current
implementation of OMP (our work has not focused on performance related issues as of
yet). Nonetheless, this scenario shows the complexity of the constraints that we are able
to capture with the framework and a more meaningful example of the use of compatibilities.
DDL.2 allows one to capture the general behavior of the domain using a combination of
its features.

We define three uncontrollable state variables SATx POSITION (x = 1 ... 3) which
can assume two values: None() during blind zones and Visible(y) (y = 1 ... 3) when zone
y is visible to satellite x. The model for visibility windows is shown in Figure 5, while
Figure 6 shows the DDL.2 definition of the visibility USV for the first satellite. The
definition shows that there are three visibility zones (ground1, ground2 and ground3).
When the state variable does not assume the value Visible it assumes the value None()
(the DEFAULT statement has been introduced to simplify the definition of this kind of
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feature). It is worth noting that it is quite easy to modify the definition of the SVs (for
example, if there is a fault in one of the ground stations, the visibility windows should
be changed according to new flight dynamics information).

Each satellite can send or receive data packets of variable length from a visible
ground station or from two other satellites (we assume the three satellites are always
visible to each other). Each data packet has six parts: (a) Id: an identifier, (b) Length:
packet length, (c) Source: ground zone source, (d) Destination: ground zone destina-
tion, (e) Time: Maximal retransmission time (see below), and (f) the Payload.

The goal is to generate temporal evolutions of the concurrent threads while
guaranteeing different levels of quality of service: some users would like to send
connectionless information, while others need their data to arrive within a fixed time.
Thus, it is possible to specify a time frame within which the data packets must be received
by the user. We have two strategies to send data from a ground zone to another zone:
(a) we store the information and wait for the constellation to rotate into a position in which
the destination is visible, or (b) we send the data to another satellite which is currently
covering the destination zone. When a data packet is transmitted or received, the
necessary transmission time is computed based on the packet’s length using the
calcTime(Length) function.

Finally, a satellite has finite memory capacity, thus when the on-board memory is
full, download activities are to be performed before receiving other data. We model this

Figure 5. A graphic representation of the exogenous constraint

Figure 6. Visibility window model
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by means of a consumable resource (MEMORY), and for each store we use an amount
of this resource computed using the CalcMem(length) function. Memory is loaded at
the end of receiving operations, while it is freed at the end of sending operations.

The satellites are modeled using state variables SATx (x = 1 ... 3) that can assume
six different values:

1. ReceiveFromEarth(Id,Length,Source,Destination,Time). Variables assume this
state when a satellite is receiving data from a ground station.

2. ReceiveFromSatL(Id,Length,Source,Destination,Time). Variables assume this
state when a satellite is receiving data from the satellite on its left.

3. ReceiveFromSatR(Id,Length,Source,Destination,Time). Variables assume this
state when a satellite is receiving data from the satellite on its right.

4. SendToEarth(Id,Length,Source,Destination). Variables assume this state when a
satellite is sending data to a ground station.

5. SendToSatL(Id,Length,Source,Destination,Time). Variables assume this state
when a satellite is sending data to the satellite on its left (the Time parameter is
explained below).

6. SendToSatR(Id,Length,Source,Destination,Time). Variables assume this state
when a satellite is sending data to the satellite on its right (the Time parameter is
explained below).

The comprehensive model contains three state variables (one for each satellite) and
three uncontrollable state variables to model the visibility windows of the three satellites,
plus three consumable resources which model the memory store for each satellite. As
usual in this modeling framework, we express the constrained behavior of the different
threads by specifying compatibility constraints. For example, the compatibility specifi-
cation in Figure 7 shows constraints to be satisfied on data reception 2.

The first compatibility will be expanded when the planner decides to wait for the
constellation to rotate for data sending. It is worth saying that there is a temporal
constraint [0,time - calcTime(length)]: if the transmission must finish before time, then
we need to start the sending process at most within time - calcTime(length) to ensure
enough time to complete the transmission. Obviously, the source satellite needs to
synchronize visibility windows (DURING statement) in order to receive data from the
earth zone.

The second and third compatibilities will be expanded when the planner decides to
send data to another satellite: in this case there are no visibility problems, but we need
to decrease the time interval for the other satellite to relay the data back to earth (if satB
receives data that satA must process in time t, and for which it takes time t' to transmit
to satB, then satB has time t-t' to process the data).

Let us end this section by showing a practical example of compatibility expansion.
The sequence of sketches in Figures 8 gives the main intuition behind this concept. Let
us suppose our goal is to send a data packet (with Id = 123 and Length = 100) from ground
zone one to ground zone three. Maximum transfer time is one hour. The packet is received
between time t1 and time t2. Obviously, the packet is received during the visibility window
of the first ground zone for the satellite. In Figure 8(a) we show the values of the state
variables SAT1 and SAT1POSITION.
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The planner tries to justify the posted goal: thus it expands the compatibilities in
Figure 7. It expands the first compatibility, trying to send the data to earth in one hour
(Figure 8(b)). But when the planner tries to justify the SendToEarth value, it needs to
synchronize this value with the visibility window of the third ground zone. Here there
is a temporal conflict, because the planner attempts to move this action forward until the
state variable SAT1POSITION assumes value Visible(ground3), but action SendToEarth
must finish in one hour. As a consequence, the planner backtracks, expanding the second
compatibility (see Figure 8(c)), and this requires sending the data to the satellite on the
right. But this satellite is flying over the second ground zone, so when the planner
attempts to justify the inserted value it will fail (here we suppose that the interval [t1,t2]
lasts one minute). At this point, the planner backtracks again, and expands another
compatibility, consisting of sending the data to the third satellite (see Figure 8(d)). This
choice allows the planner to justify the goal (here we suppose that the interval [t3,t5] lasts
less than 59 minutes), since the third satellite is flying over the third ground zone (see
Figure 8(e)) and it can perform a SendToEarth operation sending the data received from
first satellite (the data was send with a SendToSatL performed by first satellite and
received with a ReceiveFromSatR operation performed by the third satellite).

Figure 7. ReceiveFromEarth compatibilities

COMP 
{ 
 STATE ReceiveFromEarth (id,length,source,destination,time) [calcTime(length) , calcTime(length)] 
  
 SYNC  
 { 
 DURING Sat1Position Visible(source) [0,+INF] [0,+INF] [0,+INF]; 
 BEFORE SAT1 SendToEarth(id,length,source,destination) [calcTime(length) ,calcTime(length)] [0 ,time - calcTime(length))]; 
 USE MEMORY1 memoryOcc(length) [0, 0] [0, 0] AFTEREND; 
 } 
  
 SYNC  
 { 
 DURING Sat1Position Visible(Source) [0,+INF] [0,+INF] [0,+INF]; 
 BEFORE SAT1 SendToSatL(id,length,source,destination,time-calcTime(length))[calcTime(length) ,calcTime(length)][0 ,0]; 
 } 
  
 SYNC  
 { 
 DURING Sat1Position Visible(Source) [0,+INF] [0,+INF] [0,+INF]; 
 BEFORE SAT1 SendToSatR(id,length,source,destination,time-calcTime(length)) [calcTime(length) ,calcTime(length)] [0 ,0]; 
 } 
}  
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Figure 8. Example of compatibility expansion

(a) Goal Insertion

(b) First Attempt

(c) Second Attempt

(d) Third Attempt

Sat1

ReceiveFromEarth(123,100,ground1,ground3,1h)

ReceiveFromSatR(123,100,ground1,ground3,59m)

Sat3

t1 t2

SendToSatL(123,100,ground1,ground3,59m)

t3

Sat3Position

None() Visible(ground3)

Sat1

ReceiveFromEarth(123,100,ground1,ground3,1h)

ReceiveFromSatL(123,100,ground1,ground3,59m)

Sat2

t1 t2

SendToSatR(123,100,ground1,ground3,59m)

t3

Sat2Position

None() Visible(ground2)

Sat1

ReceiveFromEarth(123,100,ground1,ground3,1h)

Sat1Position

None() Visible(ground1) None()

t1 t2

SendToEarth(123,100,ground1,ground3)

Maximum 1 hour

Sat1

ReceiveFromEarth(123,100,ground1,ground3,1h)

Sat1Position

None() Visible(ground1) None()

t1 t2
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RELATED WORK
This chapter presents a new planner called OMP, which is conceived in the context

of an approach we can define planning with concurrent threads. This framework is
grounded on a generalized use of constraint-based reasoning.  This section proposes
an analysis of the literature related with our effort, subdivided according to a hierarchy
of aspects starting from very general issues to specific comparisons. This analysis is
devoted to situating our research with respect to others and is not intended as a
comprehensive survey of the topics that would deserve a specific paper.

Planning and Scheduling Integration Schemata
The integration of planning and scheduling in the one problem-solving architecture

has been an open issue for quite a while. A possibility is to implement the planning and
the scheduling paradigms separately, thus allowing them to independently solve the two
problem instances they are best suited for, and to link the planning and the scheduling
engines afterwards. A different way of addressing the problem is to deal with enhancing
the ordinary causal solving techniques of a planner with the introduction of special data
structures capable of modeling time and/or resources. The key issue is the strategy for
information sharing between the two kinds of reasoning.

Following the terminology in Cesta et al. (2003), we define serial causal and time/
resource reasoning as those architectures in which the planning and scheduling phases
are simply serialized, meaning that the exchange of information takes place only once.
Basically, the output of the planning procedure is directly forwarded as input of the
subsequent scheduling phase to produce the final solution. Examples of serial
P&S integration are Srivastava et al. (2001) and Cesta et al. (2003).

On the other end of the spectrum we have the case in which data exchange is
performed at every decision point. According to the previously mentioned paper, this
approach can be defined as contextual causal and time/resource reasoning. Examples
of this approach are reported in a great deal of work in planning literature, and this
paradigm is also followed in OMP.

Figure 8. Example of compatibility expansion (continued)

(e) Fourth Attempt

Sat1

ReceiveFromEarth(123,100,
ground1,ground3,1h)

ReceiveFromSatR(123,100,gro
und1,ground3,59m)

Sat3

t1
t2

SendToSatL(123,100,ground1,
ground3,59m)

t3

Sat3Position

None() Visible(ground3)

SendToEarth(123,100,ground1,
ground3)

t4 t5t2 t3
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Another perspective with respect to the integration of planning and scheduling can
be found in Smith et al. (2000).

Directions for Contextual Reasoning on Time and Resources
The contextual integration of planning and scheduling is pursued in two distinct

approaches in the current research scenario:

• Empowered Domain Independent Planners (EDIP): following the push derived by
the International Planning Competition (IPC) (but not only), quite a number of
researchers are addressing the problem of empowering the best planning algo-
rithms at hand with additional features which deal with the key aspects of
scheduling problems, namely time and resource information. Complete citations
are not possible here but see at least the extensions to SAT (Wolfman & Weld,
2001), Graphplan (Koehler, 1998; Smith & Weld, 1999), heuristic search (Haslum &
Geffner, 2001) or integrations of some of them (Do & Kambhampati, 2001a; Gerevini
et al., 2003). These efforts have resulted in a remarkable improvement of perfor-
mance (due to the fact that attention has focused mainly on algorithmic aspects and
search improvements) and an interesting advancement in the expressiveness of the
problems addressed [for this last aspect see the PDDL2.1 document (Fox & Long,
2003)].

• Generalized Planning Architectures (GPA): these are “historical” approaches to
planning with software systems that comprehensively address a problem. At
present some planning and scheduling architectures are in use, mainly because
they are supported by consistent research groups. We remind: IxTeT (Ghallab &
Laruelle, 1994; Laborie & Ghallab, 1995a) and RAX-PS (Jonsson et al., 2000). IxTeT
follows the tradition of planning architectures that has other incarnations in SIPE
(Wilkins, 1984), FORBIN (Dean et al., 1988) and O-PLAN (Tate et al., 1994). RAX-
PS has roots in the constraint-based scheduling tradition of systems like OPIS
(Smith et al., 1990) and SONIA (Le Pape, 1994), and inherits the experience of HSTS
(Muscettola et al., 1992; Muscettola, 1994). A system that shares some of the
features of this class is ASPEN (Chien et al., 2000). At different levels many of these
architectures have been influenced by CSP techniques.

These two sets of planners have indeed the main separation point in the domain
description language they refer to. The EDIP group is grounded on a STRIPS-like state
based representation that models the world as a state transition (world states and their
transitions) and, in addition, chooses the point of view of the agent that changes the
world by executing actions. GPAs, in particular the more up-to-date and representative
systems, model the world focusing on continuous evolutions of sub-parts usually called
state variables. The state variables have an associated function of time (currently called
timelines) whose continuous evolution describes the world’s temporal behavior. A
further aspect for the effort represented by GPAs is the number of different knowledge
engineering languages that they use. If on one hand this multitude of language proposals
may be considered a negative feature, it should be said that it is the GPAs that have been
able to develop the real applications of AI P&S technology. In OMP we are mostly
following the GPA line of development, pushing a lot more on an intensive use of



290   Cesta, Fratini, & Oddi

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

heterogeneous CSPs and on stressing specific features of the domain description
language. The attempt is not only to produce a new planner, but also to clarify the basic
principles behind the GPA long-term effort. As said before, a recent work that has several
contacts with ours is Frank and Jonsson (2003).

Planning with Concurrency
An aspect that is often neglected in planning and that requires a separate comment

concerns dealing with concurrency. As discussed in Oglietti & Cesta (2003), all aspects
connected with concurrency are dealt with in most of the current planners implicitly, by
means of interpreting partial order plans as parallel plans. Quoting Bäckström, they all
follow the intuitive idea that “a non-linear plan is a parallel plan if any unordered actions
can be executed in parallel without interfering with each other” (1992). Therefore, as far
as the concurrency of actions is concerned, most planners share the same view of
STRIPS. This approach has various limitations in treating concurrency, which are well
noted in the literature, see, for example, Brenner (2003) and Frank et al. (2003).

Few approaches go beyond this and propose some kind of explicit representation
of concurrency, like BTPL (Brenner, 2003), or CSTRIPS (Oglietti & Cesta, 2003). Planning
systems like HSTS (Muscettola et al., 1992; Muscettola, 1994), RAX-PS (Jonsson et al.,
2000) and OMP contribute in the last direction, offering examples of practical architec-
tures whose domain description languages contain constructs for explicit description of
some level of concurrency in the domain. A rationale followed in these last approaches
is the one of capturing, with concurrent features, the explicit decomposability of a
domain. This allows that the process of controlling the solving phase takes advantage
of the separable features.

Planning Architectures
The current version of OMP is able to solve a quite interesting set of problems. Our

planner is quite recent and cannot be considered a stable software system like other
similar proposals. Nevertheless, a comparison with three of such architectures is worth
making and, in particular, with the three systems that at some level share the distinctions
introduced in this chapter.

• IxTeT: IxTeT (Ghallab & Laruelle (1994) follows a domain representation philoso-
phy based on state attributes which assume values on a domain. Moreover, it
represents system dynamics with a STRIPS-like logical formalism. It is the archi-
tecture that more closely follows a CSP approach as a general frame of reference,
so the basic cycle in Figure 1 fits well with how IxTeT works. In contrast with OMP,
resource reasoning is used as a conflict analyzer on top of the plan representation
(see Laborie & Ghallab, 1995b). While integrating large resource propagation
strategies within its basic representation is not easy, we believe that a way for
integrating complex propagation of resources is with a separate module similarly
to what is done in OMP.

• ASPEN: The central data structure in JPL’s Aspen architecture (Chien et al., 2000)
is an activity representing an action either in a plan or in a schedule. Activities can
use one or more resources, and have parameters whose values are instantiated by
other activities. Activities are managed hierarchically in the ADB (Activity Data
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Base), which represents also resource usage constraints and some temporal
constraints, like “forall”-type constraints. Indeed, a separated Temporal Con-
straints Network exists, but how the ADB and this network representation are kept
synchronized needs further clarification. The state variables (defined as an enu-
merated type or vector) play a minor role in this formalism: an activity may need
synchronization with some value (for each SV we can specify only state changing
rules). Resource timelines exist and are used for counting reservation amounts, but
resource constraints are managed in the ADB. Unfortunately it is very difficult to
understand which type of propagation and how much resource propagation exists
in this architecture. The planning process involves linked activity instantiation and
hierarchical expansion. As a general comment we may say that ASPEN is a
remarkable effort as an engineered platform for different applications but is the
most diverging architecture with respect to the CSP characterization we have
introduced here.

• RAX-PS: RAX-PS (Jonsson et al., 2000) is the closest relative of OMP. It is fair to
say that this architecture, and its predecessor HSTS, has been the first to propose
a modeling language with explicit representation of state variables. A clear
difference is that in our approach we reason about resources in a separate module
while RAX-PS views resources as specialized SVs. Their view is certainly appealing
and formally clean, but unfortunately the problem of integrating, in a clean way,
multi-capacity resources is far from being solved. In fact, while it is immediate to
represent binary resources as state variables, integrating multi-capacity resources
destroys the least commitment principle for aggregate or consumable resources 3.

Coming back to the EDIP vs. GPA distinction, we can make a general comment
concerning the search control behaviors. The recent research push driven by the IPC
competition has produced a significant effort with respect to search techniques that have
been applied to EDIP. The same has not happened for the GPAs, where most of the
attention has been devoted to flexible modeling languages and engineering complex
software systems. Further analysis will be needed to improve and generalize the search
control in the second family of systems. Indeed our work here is a step in this direction
because grounding the system on multiple CSPs enables the inheritance of a large amount
of studies from the constraint programming area.

CONCLUSIONS
This paper has presented OMP, a new planner that is strongly based on the CSP

approach to problem solving.  This particular paper has also the goal of clarifying the
general scenario in which planners like OMP generate from. In fact, the first part of the
paper has described a general framework for “planning with concurrent threads” that
literature presents also in other incarnations.

A interesting aspect in OMP is the inspiration to scheduling architectures, the
integration of a complete resource reasoning module as a separate entity, and the idea
of integrating multiple-CSPs, each capturing one particular aspect of the world to be
modeled.  In addition we have shown two examples of real-world modeling with different
complexities and a detailed analysis of the related works.
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The paper has also identified aspects of OMP, which are quite primitively imple-
mented at the moment. These aspects are presently being worked on to produce a second
release of the planner. In addition, the realization of the first version of the planner has
generated a number of immediate research directions: (a) the definition of a set of
propagation rules for causal constraints; (b) the refinement of the problem description
language to model alternative integration schemata between planning and scheduling;
and, (c) the investigation on how scheduling heuristics can play a role in search control
for this planner.  In addition we are addressing the problem of characterizing more
formally the planning problems that can be modeled with DDL.2-like languages in order
to analyze the mapping with other planning languages.
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ENDNOTES
1 For the sake of simplicity we assume discrete intervals. This formalization still holds

for continuous values.
2 For the sake of simplicity, we do not show the MEETS and MET-BY compatibilities.

In this model, the state variable value changes do not have any particular
constraints. On the contrary, the SYNC rules are much more interesting.

3 We are assuming that the current implementation of this aspect in RAX-PS is the
one described in (Frederking & Muscettola, 1992), which is the only technical
description available concerning reservoirs on that architecture.
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Chapter IX

Efficiently Dispatching
Plans Encoded as Simple

Temporal Problems
Martha E. Pollack, University of Michigan, USA

Ioannis Tsamardinos, Vanderbilt University, USA

ABSTRACT
The Simple Temporal Problem (STP) formalism was developed to encode flexible
quantitative temporal constraints, and it has been adopted as a commonly used
framework for temporal plans. This chapter addresses the question of how to
automatically dispatch a plan encoded as an STP, that is, how to determine when to
perform its constituent actions so as to ensure that all of its temporal constraints are
satisfied. After reviewing the theory of STPs and their use in encoding plans, we present
detailed descriptions of the algorithms that have been developed to date in the
literature on STP dispatch. We distinguish between off-line and online dispatch, and
present both basic algorithms for dispatch and techniques for improving their efficiency
in time-critical situations.

INTRODUCTION
The past decade has seen a number of advances in the field of automated planning.

Along one dimension, researchers have added significant expressive power to planning
representations. One of the most notable extensions has been the explicit encoding of
quantitative temporal constraints, which are a crucial aspect of many real-world planning
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problems. At the same time, increased attention has been given to the issues involved
in plan execution, which cannot be divorced from, and indeed in real-world settings must
often be interleaved with, the plan generation process. Together, these two research
trends have created a challenge: how does one dispatch a plan with temporal constraints,
that is, determine when to perform its constituent actions so as to ensure or at least
maximize the probability that all of its temporal constraints are satisfied?

The difficulty of dispatching a plan depends on the nature of the plan and the
environment in which it is to be executed.  The simplest case arises when (1) a plan
includes a specific time for the performance of each of its actions, and (2) it is to be
executed in a static setting, one in which the only changes are the direct result of the plan
execution itself.  In this circumstance, plan dispatch is trivial: all that is required is for each
action to be performed at its specified time.

But most real-world planning and execution applications are not so simple.  The
evolution of the world is generally not fully known in advance, and thus it is difficult to
give precise specifications of the times and durations of actions.  Allowing for flexible
constraints can make it possible to accommodate unanticipated events, but also makes
dispatch more complicated, because there is no longer a unique point in time at which
each action is to be performed.

The Simple Temporal Problem (STP) formalism was developed to encode represen-
tation and reasoning with flexible quantitative temporal constraints (Dechter, Meiri &
Pearl, 1991). This chapter presents the theory of the STP in detail, its uses for encoding
plans, and algorithms for efficiently dispatching STPs in online, dynamic, and flexible
ways. Other useful formalisms explicitly represent and reason with temporal uncertainty
(Morris, Muscettola & Vidal, 2001; Tsamardinos, 2002; Tsamardinos, Vidal & Pollack,
2003; Vidal & Fargier, 1997; Vidal & Fragier, 1999), but the STP remains the most efficient
representation to reason with and, as-of-yet, the most commonly employed in practical
temporal-planning applications1. In addition, STP dispatching is a key component of
dispatching plans encoded in some of the other more expressive formalisms.

SIMPLE TEMPORAL PROBLEM
The Simple Temporal Problem (STP) is a special case of a temporal constraint

satisfaction problem2. The class of temporal constraint satisfaction problems was
initially developed by Dean & McDermott (1987) and subsequently generalized and
formalized by Dechter, Meiri & Pearl (1991).

Definition 1: Simple Temporal Problem. A Simple Temporal Problem (STP) is a constraint-
satisfaction problem <V, E> such that V is a set of real-valued temporal variables
and E is a set of constraints of the form Xj – Xi  ≤ bij, where Xi , Xj ∈ V and bij ∈ ℜ.
In this chapter, as in much of the literature, we will, without loss of generality, make
the simplifying assumption that the bounds bij are restricted to the integers.

With an STP, the temporal constraints are a set of binary and linear inequalities.
For ease of presentation, we will often combine two constraints of the form Xj – Xi ≤ bij
and Xi – Xj ≤ bji into one, writing them as –bji ≤ Xj – Xi ≤ bij or as Xj – Xi ∈[–bji , bij]. Notice
that the lower bound is negated when converted from single inequalities to interval
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inequalities. The interval representation is easier to read: the constraint 5 ≤ Y – X ≤ 10
or Y – X ∈ [5, 10] means that Y will occur between 5 and 10 time units after X. However,
the use of the single inequalities simplifies the reasoning algorithms.

In our notation, we will denote a bound index both using variable indices and the
variables themselves, for example, bij is the bound on the constraint between variable Xi
and Xj , while bXY is the bound between variables X and Y.  In addition, we will use the
X ← x to denote the assignment of value x to variable X.

To model a temporal plan as an STP we assign two temporal variables to each action
in the plan: one to represent its start, and another to represent its end. We use the term
event to refer to either the start or end of an action. Obviously, if the plan contains other
events, not associated with specific actions, they can also be represented with temporal
variables. In addition, we define a special variable, called the temporal reference point,
denoted as TR to correspond to the beginning of the execution of the plan. The need for
a temporal reference point arises from the fact that the STP formalism only allows relative
(binary) constraints, for example, X occurs between 5 to 10 time units after Y. The TR
allows us to express absolute (unary) execution time constraints, such as that X occurs
at exactly 10 a.m. on 1/1/2005.  If we assume that the TR corresponds to 12 a.m. on 1/1/
2005, an arbitrary start time for execution, then the constraint just mentioned can be
expressed as 10 ≤ X – TR ≤ 10, provided the time unit is hours.

Since an STP only allows binary constraints we can represent an STP with a graph
whose vertices correspond to the variables V and whose edges correspond to the
constraints E. There are two types of graphs possible.  In a Simple Temporal Network
(STN), each edge from node X to node Y corresponds to an interval constraint Y – X ∈ [l , u]
and is labeled [l , u].  In a distance graph, each edge from X to Y corresponds to an individual
constraint Y – X ≤ u and is annotated with the constraint bound u. We will use the notation
X → Y to denote an edge from variable X to variable Y (not to be confused with the notation
for assignment introduced above).

As an example, consider a plan that involves making coffee and toast. The two
activities last between 3-5 and 2-4 minutes respectively. An additional constraint is that
each activity must finish within 2 minutes of the other so that both the coffee and the
toast are warm enough to eat together. We will denote with CS and CE the time-points of
starting and ending the coffee making activity, and with TS and TE  the start and end of
the toast making activity. The constraint that the duration of making the coffee is between
three and five minutes is expressed by the inequalities 3 ≤ CE  - CS ≤ 5. Similarly, for the
making toast activity we have the constraint 2 ≤ TE  - TS ≤ 4. The constraint that the two
activities have to finish within two minutes of each other gives rise to the constraint:
-2 ≤ CE  - TE ≤ 2.  Finally, we add the constraints 0 ≤ CS  - TR ≤ ∞ and 0 ≤ TS  - TR ≤ ∞ to ensure
everything will occur after the temporal reference point TR. We need only these
constraints to force the start of both activities to occur after TR; the reasoning algorithms
presented below can then infer that the ends of the activities also have to happen after
TR.  Figure 1 shows the resulting STP. The set representation can be awkward, and so
we more commonly use the graphical representation: Figure 2(a) and Figure 2(b) show
the STN and distance graph, respectively, for our example. By convention, if we omit an
edge from a figure, it is one that has an infinite bound, essentially not imposing any
constraint.

A solution to an STP is an assignment of times to variables such that all constraints
are satisfied. An STP is consistent if and only if it has at least one solution. One of the
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main reasons that the STP formalism is attractive is that consistency checking can be
performed in time polynomial in the number of variables, using a shortest-path algorithm.
To see this, first consider a path in the distance graph from X to Y going through nodes
X=i0 , i1 , …in-1, in=Y. The path corresponds to the following constraints:
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By adding the inequalities together we conclude that Y – X ≤ ∑ = −
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j ii jj
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1 1 . This is an

entailed constraint implied by all the constraints on the path. Clearly each path from X
to Y imposes an entailed constraint but all are subsumed by the constraint Y – X ≤  dXY,
where dXY is the weight of the shortest path from X to Y. The quantity dXY is called the
distance between X and Y and is a very important concept in STP reasoning. It is the

Variables:   V = {TR , CS  ,  CE , TS , TE } 
Constraints: E = { 
3 ≤ CE  - CS ≤  5 , Duration for Coffee is between 3 and 5 minutes 
2 ≤ TE  - TS ≤  4 , Duration for Toast is between 2 and 4 minutes 
-2 ≤ CE  - TE ≤ 2 , Toast has to finish within 2 minutes of finishing making Coffee 
0 ≤ CS  - TR ≤ ∞ , Coffee has to start after TR 
0 ≤ TS  - TR ≤ ∞  , Toast has to start after TR 
} 

Figure 1. Simple temporal problem example
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Figure 2. (a) The STN of the STP in Figure 1; (b) the distance graph of STP in
Figure 1
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smallest value n for which the constraint Y – X ≤ n is satisfied in all STP solutions (if there
are any).

Let us consider a cycle in the STN from a variable X back to itself. Using the previous
reasoning method for adding all the inequalities together, the cycle induces the entailed
constraint X – X ≤ dXX, or, equivalently, 0 ≤ dXX. If dXX < 0, then the STP entails the
constraint 0 < 0, which can not be satisfied for any values of the variables and hence,
the STP has no solution. The converse also holds; hence:

Theorem 1: (Dechter, Meiri & Pearl, 1991) An STP is consistent if and only if its distance
graph contains no negative cycles.

Calculating the distances between all nodes is equivalent to solving the all-pairs
shortest path problem, since for each pair of nodes X and Y the shortest path from X and
Y provides the distance dXY.  The all-pairs shortest path problem can be solved in
polynomial time, using the Floyd-Warshall or the Bellman-Ford algorithms, which have

time complexity )( 3VΘ  and )( EVO  respectively (Cherkassky & Goldberg, 1996;

Cormen, Leiserson & Rivest, 1990). In addition, specialized algorithms have been
developed for checking STP consistency (Cesta & Oddi, 1996; Xu & Choueiry, 2003).

An algorithm for checking STP consistency using the Floyd-Warshall all-pairs
shortest-path method is given in Figure 3. The algorithm first calls procedure APSP to
calculate the all-pairs shortest path array where each element dij is the distance between

STP-Consistency(STP <V, E>) 
“Returns the all-pairs shortest path matrix for a consistent STP and NO for an inconsistent STP” 
Calculate all-pairs shortest-path array: 
1. d =APSP(<V, E>) 
Check for negative cycles: 
2. For i=1 to |V| 
3.    If dii < 0, return NO 
4. Return d 
 
APSP(STP <V, E>) 
“Returns the all-pairs shortest path array of the STP” 
Initialize all-pairs shortest path array d: 
5. n =|V| 
6. For i,j=1…n , dij = ∞ 
7. For i=1…n , dii = 0 
8. For each constraint Xj – Xi ≤ bij ∈ E 
9.    dij = min(dij , bij ) 
Floyd-Warshall: 
10. For k=1 to n 
11.    For i=1 to n 
12.       For j=1 to n 
13.          dij = min(dij , dik + dkj) 
14. Return d 

Figure 3. An STP consistency checking algorithm
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nodes Xi and Xj. Each dij is initialized to ∞ to encode the null constraint X – Y ≤ ∞. Notice
that a pair of null constraints X – Y ≤ ∞ and Y – X ≤ ∞  is equivalent to X – Y ∈ [-∞ , ∞],
which justifies why each and every value of the APSP is initialized to ∞ and not -∞, a
common source of confusion.

At Line 7, the diagonal is initialized to dii = 0 for all variables Xi. This is justified by
the fact that each variable Xi is executed at the same time with itself, so that 0 ≤ Xi – Xi ≤ 0
holds. The algorithm then encodes all explicit STP constraints. If there are two or more
STP constraints for the same pair of nodes X and Y, e.g., X – Y ≤ b1 and X – Y ≤ b2, the tightest
constraint of the two is selected, that is, the X – Y ≤ min(b1, b2). The Floyd-Warshall triple-
nested loop then propagates all constraints to discover the shortest paths (distances)
dij between each pair of variables Xi and Xj. Finally, the main procedure checks whether
there is a node Xi for which dii < 0; if there is, the STP is not consistent and the algorithm
returns “No;” otherwise it returns the all-pairs shortest path array.

The all-pairs shortest path array for our example STP is shown in Figure 4.  Again,
it is usually more convenient to use a graphical depiction, called a d-graph.  For a given
STP <V, E> the d-graph has vertices V and an edge from each pair of vertices; that is,
it is a fully connected graph.  The label on the edge from X to Y is dXY. Notice that it is
actually the d-graph that contains the distances between the variables and not the
Distance Graph. The confusion in names is due to historical reasons. The d-graph of the
STP of  Figure 1 is shown in Figure 5.

 TR CS CE TS TE 
TR 0 ∞ ∞ ∞ ∞ 
CS 0 0 5 5 7 
CE -3 -3 0 0 2 
TS 0 3 6 0 4 
TE -2 -1 2 -2 0 
 

Figure 4. All-pairs shortest-paths array for the simple temporal problem example of
Figure 1
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Figure 5. The d-graph of the STP in Figure 1
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Consider a constraint –dYX ≤ Y – X ≤ dXY (which corresponds to the two edges in the
d-graph Y – X ≤ dXY and X – Y ≤ dYX).  An important characteristic of d-graph is the following:

Theorem 2: (Dechter, Meiri & Pearl, 1991) In a consistent STP <V, E>, for any X, Y ∈ V,
and any t ∈ [-dYX , dXY] there is always a solution in which Y – X =t.

This theorem shows that the d-graph is a minimal representation of the original STP,
in the sense that no constraints in it can be made tighter without eliminating solutions:
every value consistent with a constraint in the d-graph participates in at least one
solution.

A final important property of certain STPs is decomposability. A network is
decomposable if every locally consistent partial solution to it can be extended to a
globally consistent solution. By locally consistent partial solution, we mean that all the
constraints among the variables participating in the partial solution are satisfied.

To illustrate decomposability, consider again the STN for our coffee and toast
example, shown in Figure 2(a).  Figure 6 shows the partial assignment TR←0, CS ←0,
CE←3, TS ←10. The reader can verify that this assignment is locally consistent: all the
constraints among the four variables TR, CS , CE , and TS  are satisfied by the partial
assignment.  However, there is no way to extend this assignment to a globally consistent
solution, which must include a legal assignment to TE: to respect the constraint TE – TS
∈ [2,4], it must be the case that TE ∈ [12,14], while to respect the constraint that TE – CE
∈ [-2, 2], it must be the case that TE ∈ [1,5].

Decomposability suggests a way to design an algorithm for finding solutions to an
STP. If an STP is known to be decomposable, then finding a partial local solution implies
that we can extend this solution further to more variables, and inductively find a global
solution. This is the approach taken in the algorithms presented in the next section.
Initially, the algorithms begin by constructing a local partial solution for a single variable.
Subsequently, they find a locally consistent partial solution involving a second variable,
then a third, and so on. Of course, this approach only works for decomposable STPs.
While not every STP is decomposable, every corresponding d-graph for a given STP is
decomposable and equivalent to the original STP  (Muscettola, Morris & Tsamardinos,
1998) hence, d-graphs are used frequently in STP reasoning.

TR←0

TETS ←10

CE ←3CS ←0
[0,∞]

[0,∞]

[3,5]

[2,4]

[-2,2]

 

Figure 6. Example of an STP that is non-decomposable
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SOLVING SIMPLE TEMPORAL PROBLEMS
The algorithm presented in Figure 4 is sufficient to determine whether an STP is

consistent. But how do we actually find an assignment that satisfies the constraints?
One algorithm for solving STPs is shown in Figure 7 (Dechter, Meiri & Pearl, 1991).

The algorithm operates on the d-graph for the input STP, which, as noted above, is
decomposable.  Values are assigned to each variable, one at a time, in an arbitrary order.
The first variable can arbitrarily take any value, although in practice we usually begin by
selecting the temporal reference point TR and assigning it a value of 0.  For the sake of
example, however, suppose that variable X1 is selected and assigned the value 3. This
assignment now restricts the values we can assign to the rest of the variables. For
example, suppose that X2 is the second variable selected.  It has to hold that:

2,1121,2 dXXd ≤−≤− and so, since X1 = 3

 2,121,2 3 dXd ≤−≤− hence

2,121,2 33 dXd +≤≤− and finally

],[3 2,11,22 ddX −+∈

Notice that the distances d1,2 and d2,1 compactly represent the way X1 constrains the
value of X2 for any path between the two. Let us assume that the assignment X2 ← 5 obeys
both such constraints. Then, the third variable selected, X3, has to respect both of the
following constraints:

],[5
],[3

3,22,33

3,11,33

ddX
ddX

−+∈
−+∈

that is,

]),[5(]),[3( 3,22,33,11,33 ddddX −+∩−+∈

In general, the value that can be assigned to a previously unassigned variable Xk,
given that we have already assigned Xi ← xi, for i=1…m, is constrained to be in the interval

]),[( ,,1 ikiki
m
i ddx −+∩ = . We will call this interval the time window of Xk and denote it as

TW(Xk). TW(Xk) represents the time interval allowable for a value for Xk, based on the STP
constraints and the current (possibly partial) assignments to the rest of the variables.

The algorithm in Figure 7 is based on iteratively computing time windows and
selecting values from within them. It is proved in Dechter, Meiri & Pearl (1991) that this
algorithm will always be able to find a solution if one exists. We now provide a trace on
our running STP example, whose all-pairs shortest path array is shown in Figure 4. We
will consider the variables in the order of Figure 4, that is, X1 = TR, X2 = CS, etc. We begin
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by arbitrarily assigning value 0 to TR as shown in Figure 8(a). In Figure 8(b), TR ← 0
is propagated to CS (denoted by the bold edge in the figure). The algorithm specifies that
CS should be in 0+[0,∞]. Arbitrarily, we select value 5 to assign to CS. The next variable
to be assigned in our ordering is CE. We have to select a value from (0+[3,∞])∩(5+[3,5]),
that is, [8,10]; assume we select value 10 (Figure 8(c)).

Next we assign TS←7 as shown in Figure 8(d). Notice that the edge ES CT  → ]6,0[

was replaced with the equivalent edge3 SE TC  → − ]0,6[ for easier interpretation. Finally,
in Figure 9, TE ←11. The final assignment returned by the algorithm is {{TR←0},
{CS←5}, {CE←10}, {TS←7}, {TE←11}}.

Three points need to be emphasized.  First, the intersection of all the propagated
constraints will be non-empty provided that the original STP is consistent. Second, what
the algorithm propagates are not the original STP constraints, but the distances between
variables. Third, it is essential to propagate the constraints from all previously assigned
variables when computing a new time window.

In each step the algorithm takes the intersection of up to |V| intervals for each
variable in the STP; hence the total complexity of the algorithm (excluding the calculation
of APSP) is Θ(|V|2).  However, there are special solutions that can be obtained in time
Θ(|V|) (Dechter, Meiri & Pearl, 1991). For example, two of these solutions contain the
largest and smallest values allowed for each variable with respect to TR, respectively,
and can be just “read off” the all-pairs shortest path: they are the first row and first column
respectively. This is justified as follows. Notice that Floyd-Warshall guarantees after line
13, that for any i, j, k, it holds that dij ≤ dik + dkj. Also notice that each original bound bkj
between two variables k and j is greater than or equal to the shortest-path between the
variables, that is, dkj ≤ bkj. By setting i=TR and using the above two inequalities we obtain
dTR,j ≤ dTR,k + dkj ≤ dTR,k + bkj. Equivalently, dTR,j – dTR,k ≤ bkj. In other words, each original

STP-Solution(STP <V, E>) 
“Return an assignment to the STP variables that respects the constraints, or NO if this is not 
possible.” 
1.  d = STP-consistency(<V, E>) 
2.  If d= NO 
3.     Return NO 
4.  Else 
5.  Impose an arbitrary ordering on V: X1 , …, X|V| 

6.  Arbitrarily select a value x1 ∈ [-∞,∞] and assign X1 ←x1 
7.  Solution = {X1 ← x1} 
8.  For k=2 … |V| 
9.    1

1 , ,( ) [ , ]k
k i i k i i kTW X x d d�

��� � �  
10.   Arbitrary select value xk ∈ TW(Xk) 
11.   Solution = Solution ∪{{Xk ← xk}} 
12. End For 
13. Return Solution 

Figure 7. Algorithm for finding STP solutions
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constraint Xj – Xk ≤ bkj is satisfied if we assign Xj ← dTR,j and Xk ← dTR,k. For variable TR
the above reasoning means that we should assign TR ← dTR,TR = 0. Thus, a solution can
be immediately discovered by assigning each variable its latest allowable time with
respect to TR (provided it is not infinity): {Xi ← dTR,i , ∀Xi ∈ Xi }. The values dTR,i appear
in the row corresponding to TR in the all-pairs shortest path array. For example, in Figure
4, the first row corresponds to the solution {{TR ← 0}, {CS ← ∞}, {CE ← ∞}, {TS ← ∞},
{TE ← ∞}}.  Unfortunately, because of the appearance of infinities, this solution is invalid
in this example.

The second solution is obtained by assigning each variable its earliest allowable
time with respect to TR (again provided it is not negative infinity). Using similar reasoning
to that described above, Floyd-Warshall guarantees that dij ≤ dik + dkj. For j=TR we obtain
di,TR ≤ dik + dk,TR ≤ bik + dk,TR. Equivalently, (-dk,TR) – (-di,TR) ≤ bik. Thus, each original

Figure 8. Incremental assignment to a D-graph

(a) Assigning time 0 to TR (b) Assigning time 5 to Cs

(c) Assigning time 10 to CE (d) Assigning time 7 to TS
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constraint Xk – Xi ≤ bik is satisfied by the assignment Xk ← -dk,TR and Xi ← -di,TR . A solution
is provided by the set {Xi ← -di,TR , ∀Xi ∈ Xi }. Notice that in this second case the distances
appear negated. The values di,TR appear in the column corresponding to TR in the all-pairs
shortest path array. Again in Figure 4, we read the solution {{TR ← 0}, {CS ← 0},
{CE ← 3}, {TS ← 0}, {TE ← 2}}; this is a valid solution. Equivalent results for the other
columns and rows are obtained if we use other variables in place of TR in the above
derivations.

OFF-LINE AND ONLINE DISPATCH
Having described the STP formalism in detail, we now consider the problem of

dispatching a temporal plan encoded as an STP.  Dispatching a plan entails deciding when
each of its constituent events — the starts and ends of actions — should occur.  In some
systems, such as the Remote Agent (Muscettola, Nayak, Pell & Williams, 1998), action
execution is fully automated, and dispatch may result directly in the execution of an
action.  In other systems, such as Autominder (Pollack et al., 2003), dispatch
instead results in the issuing of an instruction to a human agent to begin (or end) an
action.

Provided that an STP is consistent, one way to dispatch it for execution is to find
a solution to it off-line, that is, in advance of execution, and then use the timepoints in
that solution as precise specifications of the times at which each action begins and ends.
An algorithm that does this is shown in Figure 10.

However, this method of pre-computing a solution is undesirable if there is
uncertainty in the execution environment.  In such environments, some events in a plan
are under the direct control of the execution agent, but other events are not, and it does
not make sense for the dispatcher to assign fixed times to this latter class.  The former
events are called controllable and the latter uncontrollable events.  In the example plan
expressed by the STP in Figure 1, the agent controls the execution times of variables TR,
CS, and TS, that is, the time it will start executing the plan, and the times it starts the
activities of making coffee and toast. In contrast, it does not directly control the execution
times of CS and TS, that is, the end of these activities. Even if the dispatching agent has

 

Figure 9. Assigning time 11 to TE
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expectations of when the uncontrollable events will occur, this still does not satisfy the
assumption that it deterministically controls their time of occurrence.

The STP formalism assumes that all events are controllable. Other more recent
formalisms, such as the Simple Temporal Problem with Uncertainty (Vidal & Fargier, 1997;
Vidal & Ghallab, 1996), the Probabilistic Simple Temporal Problem (Tsamardinos, 2002),
and the Conditional Temporal Problem (Tsamardinos, Vidal & Pollack, 2003) explicitly
encode and reason about temporal uncertainty. However, because reasoning with STPs
is significantly less computationally costly than using these other formalisms, there are
times at which it is advantageous to use STPs, even in uncertain environments, and hence
techniques have been developed to enable more flexible STP dispatch (Muscettola,
Morris & Tsamardinos, 1998; Tsamardinos, 1998; Tsamardinos, Morris & Muscettola,
1998).

To deal with temporal uncertainty during the execution of a plan encoded as an STP,
we shift from an off-line to an online approach. Instead of pre-computing a solution, the
dispatcher constructs the solution online during execution, assigning times to the
uncontrollable events when they are observed. That is, as long as the uncontrollable
event Xi occurs at a time xi, which is within its time window, the dispatcher makes the
assignment Xi ← xi, recalculates the time window for all other variables in the STP, and
proceeds.

If an uncontrollable event occurs outside of its time window, it follows immediately
that at least one of the (explicit or implicit) constraints in the plan has been violated and
a solution cannot be found. The appropriate system response in this case depends on
the domain.

The algorithm for dynamically constructing a solution and dispatching it is shown
in Figure 11. Because it is constructing a solution online it cannot dispatch a later event
before an earlier one, that is, it must respect the monotonicity of time.  Note that this
requirement is not met by the off-line Dispatch-STP algorithm.  For instance, when
applied to the APSP array of Figure 4 it first assigns CE ← 10 (Figure 8(c)) and then
TS ← 7 (Figure 8(d)). When computing a solution off-line this is not a problem because
the dispatcher can reorder the assignments in order of increasing time before execution
begins.

Dispatch-STP(STP <V, E>) 
“Constructs a solution to the input STP off-line and uses the solution as precise times 
for event dispatch.” 
1. Solution = STP-Solution(<V, E>) 
2. If Solution ≠ NO 
3.    Order assignments in Solution in increasing time order 
4.   While Solution ≠ ∅ 
5.       {Xi ← xi } = Pop(Solution) 
6.        Wait until time xi 
7.       Dispatch(Xi) 
8.   End While 
9. End If 

Figure 10. Dispatching simple temporal problems off-line
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To ensure that temporal monotonicity is respected, Dispatch-STP-Online tracks
whether events are enabled and live.

Definition 2: Enabled variable. A variable X in an STP is enabled if all other variables
that are constrained to occur before X have already been executed.

If the distance dXY between X and Y is negative, that is, dXY < 0, then X should be
dispatched after Y: Y – X ≤ dXY < 0, and so Y < X. Thus, X becomes enabled only after the
execution of all events Y such that dXY  < 0.

Definition 3: Live variable. A variable X is live if the current time t is within TW(X).

Obviously, a node X should be dispatched only if it is live and enabled. We now
see how this requirement is met in Dispatch-STP-Online. The algorithm first initializes
the set of enabled and dispatched variable sets as well as the time windows of all

Dispatch-STP-Online(STP <V,E>) 
“Dynamically dispatches an STP.” 
1.  APSP = APSP(<V, E>) 
2.  Enabled = {X1}; X1 must be TR 
3.  Dispatched = ∅ 
4.  For all Xi , TW(Xi) = [-∞,∞ ] 
5.  While Dispatched ≠ V 
6.     Wait for one of the following situations: 
7.         Case 1: CurrentTime moves into TW(Xk) for some controllable Xk ∈ Enabled 
8.             Dispatch(Xk) 
9.             Dispatched = Dispatched ∪ {Xk} 
10.           Enabled = Enabled \ {Xk} 
11.           Add to Enabled all Xj for which for which the following holds: 
12.                For every Xm for which djm < 0 , Xm ∈ Dispatch 
 
13.       Case 2: Uncontrollable Xk ∈ Enabled has occurred and CurrentTime ∈ TW(Xk) 
14.             Dispatched  = Dispatched ∪ {Xk} 
15.             Enabled = Enabled \ {Xk } 
16.             Add to Enabled all Xj for which the following holds: 
17.                   For every Xm for which djm < 0, Xm ∈ Dispatched 
 
18.      Case 3: Uncontrollable Xk has occurred but Xk not Enabled or not Live 
19.             Break execution and take appropriate action 
 
20.     End Wait 
 
21.     For each Xj ∈ V \ Dispatched 
22.     TW(Xj) = TW(Xj) ∩ (xk + [-djk , dkj ]) 
23.     End For 
24.   End While 

Figure 11. Algorithm for dynamically constructing STP solutions
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variables. (Note that initially only TR is enabled, and nothing has been dispatched.) The
algorithm then waits for one of the three types of events to occur: (i) the current time
advances to within the time window of some enabled variable Xk, which is then both live
and enabled. At this point the algorithm proceeds with dispatching Xk and identifying
the variables that become enabled as a result. (ii) An uncontrollable event that is live and
enabled occurs. Again, all variables that become enabled are identified. (iii) An uncon-
trollable occurs that is either not live or not enabled. The algorithm breaks execution and
takes domain-dependent action. In the first two cases, the dispatch or observation time
of  Xk is propagated to the all of the rest of the variables.  The correctness of the algorithm
is based on the following theorem.

Theorem 3: The dispatch algorithm in  Figure 11 will never decrease the upper bound
of the time window of an undispatched variable to a value less than the current time.

Proof: (By Contradiction.)  Suppose to the contrary that some event Xk has just been
dispatched at current time xk, and that this pushes the time window of some Xj to
the past, where Xj is still not dispatched. The upper bound of the time window of

Xj is kkjkijiDispatchedX
xdxdx

i

<+≤+
∈

)(min . The last inequality stems from the fact

that we assumed that the upper bound of Xj became less than the current time, xk.
From these inequalities we can derive the fact that dkj < 0. However, if dkj < 0, this
means that in every solution, Xj must precede Xk, or, in other words, that Xk will not
be enabled until Xj has occurred. But since we have assumed that Xj has not
occurred by xk, it follows that Xk would not have been enabled at xk, and conse-
quently it would not have been selected for dispatch: lines 7 and 13 of the algorithm
restrict dispatchable events to those that are enabled.  We have thus derived a
contradiction.

The algorithm as presented dispatches a controllable event as soon as the current
time enters its time-window. More generally, the algorithm can be made non-deterministic
and given the freedom to dispatch controllable events at any time within their time-
windows according to preferences or other domain-dependent characteristics. The only
challenge with waiting to dispatch a variable to a later time is making sure that the current
time does not surpasses the upper bound of a time-window of a live and enabled variable
without the algorithm dispatching it.

Note that Dispatch-STP-Online achieves the goal of dispatching events in mono-
tonically increasing temporal order.  Recall that Dispatch-STP may assign execution
times at any order. For example, it may decide to assign CE ← 10 first, then assign
CS ← 7. In Dispatch-STP-Online this cannot happen because dCECS

 = -3 < 0 and so CE
becomes enabled only after CS has been dispatched.

What is the time complexity of Dispatch-STP-Online? We will assume the time for
Dispatch, the function that executes controllable events, is constant. In order to check
whether a variable Xj becomes enabled we can keep counters on the number of undispatched
variables Xm with djm  < 0. As soon as an event is executed all the counters of each such
Xj are decreased by one and variables with zero counters are added into the Enabled set.
In the worst case, for each variable we dispatch we decrease and check O(|V|) counters.
Also, for each of the O(|V|) dispatched variables we update at most O(|V|) time windows,
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with each time window update taking constant time. Thus, overall, the algorithm still has
O(|V|2) complexity (Tsamardinos, 1998).

EFFICIENT DISPATCH OF
SIMPLE TEMPORAL PROBLEMS

In some domains with real-time execution constraints, time complexity of O(|V|2) is
not efficient enough. We now present an algorithm from Muscettola, Morris &
Tsamardinos (1998),  Tsamardinos (1998) and Tsamardinos, Morris & Muscettola (1998)
that can improve the efficiency of STP dispatch in many cases. The key idea is that instead
of updating the time windows of every undispatched event each time an event A is
dispatched, we update only the time windows of the immediate neighbors of A, that is,
the events B for which there is an edge A ← B in the distance graph.  An algorithm that
takes this approach replaces lines 21-23 of Dispatch-STP-Online with the following:

21. For each Xj ∈ V  \ Dispatched such that there is an edge Xk → Xj in the d-graph
22.      TW(Xj) = TW(Xj) ∩ (xk + [-djk, dkj])
23. End For

We will call the algorithm that includes this modification Greedy-Dispatch-STP-
Online. Suppose that we attempt to use Greedy-Dispatch-STP-Online on the initial STP
of Figure 2(a).  The dispatch algorithm would again begin by assigning TR ← 0,
however, in contrast to the earlier version of the algorithm, it would only update the time
windows for CS and TS ; this is illustrated in Figure 12(a). Next the algorithm might assign
CS ← 0 and propagate this dispatch decision to the neighbors of CS, as shown in Figure
12(b). Let us suppose that CE is executed next, at time 3; the result is propagated only
to TE, whose time window is updated as shown in Figure 12(c).  The algorithm then has
to select TS since TE is not enabled yet. Any value within TW(TS) may be chosen, for
example, TS ← 10 (Figure 12(d)). Unfortunately, propagating this value to TE causes a
problem: TW(TE) become ∅ and execution breaks. The alert reader will recognize that this
is the same situation we described earlier in discussing decomposability: not every STP
is decomposable.

Propagating dispatch decisions only to the immediate neighbors of dispatched
events may be more efficient than global propagation but in general it is not sound. It
is, however, guaranteed to work on STPs that are decomposable, because, by definition,
any locally consistent solution in a decomposable network can be extended to a globally
consistent one.  Thus, with a decomposable network, it is sufficient at each stage of
constructing the solution to ensure only local consistency, and so to perform only local
propagation.

Recall that the d-graph of any STP is decomposable.  We thus might think of making
Greedy-Dispatch-STP-Online sound by running it not on the input distance graph for
an STP, but rather on that STP’s d-graph.  Doing so, however, would not increase
efficiency:  indeed, the algorithm would become equivalent to Dispatch-STP-Online,
because the d-graph is fully connected, and thus propagating a dispatch decision from
an event to its neighbors would always mean propagating the decision to all variables
in the problem!  However, it turns out that if we start with a d-graph, we can often remove
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a number of edges prior to execution without impacting the decomposability of the
network (Tsamardinos, 1998; Tsamardinos, Morris & Muscettola, 1998). The edges that
we can remove are said to be dominated.

Definition 4: Edge domination.
1. Consider two edges in the d-graph of a consistent STP, A → C and B → C, with the

same destination C and both non-negative, that is, dBC , dAC ≥ 0. We say that B → C
upper-dominates A → C if in any consistent execution B + dBC ≤ A + dAC .

2. Consider two edges in the d-graph of a consistent STP A → C and A → B with the
same origin A and both negative, that is, dAB , dAC < 0. We say that A → B lower-
dominates A → C if in any consistent execution B – dAB ≤ C – dAC .

3. An edge dominates another edge if the first edge upper or lower dominates the
second edge.

We can now state the main theorem:

Theorem 4: (Tsamardinos, 1998) Removing an edge in a decomposable STP retains
decomposability if and only if the edge is dominated by another edge in the graph.

Figure 1: (a) Assigning time 0 to TR. (b) Assigning time 0 to C . (c) Assigning 

Figure 12. (a) Assigning time 0 to TR; (b) Assigning time 0 to CS; (c) Assigning time 3
to CE; (d) Assigning time 10 to TS
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Thus, if one starts with the d-graph that is equivalent to the original STP, one can
use the above theorem to filter out unnecessary edges. The remaining question is how
to identify dominance among edges:

Theorem 5: The Triangle Rule. (Tsamardinos, 1998) An edge A → C is dominated by
some other edge if there is a variable B such that dAB + dBC = dAC and either dAB < 0
or dBC ≥ 0.

The theorem provides an easy way to check whether an edge should be removed.
Algorithm MED (Figure 13) filters out the edges of a decomposable network, using these
ideas. It starts with a network that is necessarily decomposable:  the d-graph of the STP
to dispatch. It then uses the Triangle Rule and Theorem 4 to remove edges, being careful
not to remove two edges that mutually dominate each other.

The algorithm provably identifies a minimal, equivalent, and dispatchable network
(the name of the algorithm is the acronym of these properties): minimal in the number of
edges in the network, equivalent in the sense that the output STP allows the same
executions as the original input STP, and dispatchable in the sense that Greedy-
Dispatch-STP-Online can always execute it correctly, provided that the uncontrollable
events occur within their time windows. This last point follows directly from Theorem 4:
since only dominated edges are removed by MED, the network processed by Greedy-
Dispatch-STP-Online is still dispatchable.

We now provide a trace of the MED algorithm on the toast and coffee example. MED
begins by computing the fully connected d-graph of Figure 5. Notice that all edges
annotated with ∞ can be removed since they do not constrain the execution. MED next
checks all triplets of variables and removes an edge whenever the Triangle Rule holds.

In our example, and as shown in the Figure 14(a), the Triangle Rule holds for the
triangle CS, CE, TS : dCSCE

 = 5, dCETS = 0; thus, dCSCE + dCSTS = dCSTS 
and dCETS

 ≥ 0 and so
CS → TS is dominated by CE → TS and can be removed. In the figure the bold edges indicate
the triangle, with the dashed component representing the dominated edge removed.

MED(STP <V,E>) 
“Filter the dominated edges of a d-graph for an STP” 
1.   APSP = APSP(<V,E>) 
2.   Initially all edges (entries in APSP) are unmarked 
3.   For each triplet of variables A, B, and C 
4.       If the Triangle Rule holds for A→C 
5.            If A→C also dominates A→B or B→C 
6.                  Mark only one of the two mutually dominated edges for removal 
7.            Else 
8.                  Mark A→C  for removal 
9.            End If 
10.    End If 
11.  End For 
12.  Remove all marked edges from the STP and return the resulting network 

Figure 13. The minimal, equivalent, dispatchable algorithm
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The Triangle Rule also holds for triangle CE , CS , TR: edge CE →TR is dominated by
CE →CS (Figure 14(b)). It is easy to see why: CS will be dispatched before CE because of
the negative edge CE →CS. The bound imposed on CE when CS is dispatched is always
tighter than the one imposed by the dispatch of TR. Algebraically, this is justified by the
conditions dCECS

 + dCSTR = dCETR ((-3) + 0 = (-3)) and dCECS = 0, which satisfy the Triangle
Rule.

At the end of the algorithm a minimal, equivalent, dispatchable network has been
computed; it is shown in Figure 15. As another example consider the network of Figure
16(a). Figure 16(b) and Figure 16(c) show two minimal, equivalent, and dispatchable
STNs.
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Figure 14. (a) Removing the edge CS  → TS: it is dominated by CE → TS; (b) removing
the edge CE → TR: it is dominated by CE → CS.
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Figure 15. Minimal, equivalent, dispatchable network of Figure 2(a)
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The complexity of the MED algorithm is Θ(|V|3) since it checks the Triangle Rule in
every triangle. A more efficient algorithm for sparse networks is presented in Tsamardinos
(1998) and Tsamardinos, Morris & Muscettola (1998). In either case, MED can be run off-
line to improve the performance of Greedy-Dispatch-STP-Online. Note that Greedy-
Dispatch-STP-Online still has worst-case complexity Θ(|V|2) because MED might not
delete any edges. However, in practice, it appears that MED usually does significant
pruning, as discussed further in the next section.

In addition to facilitating execution, the minimal, equivalent, and dispatchable
network depicts some fundamental characteristics of an STP, showing which edges are
necessary to ensure monotonic construction of a solution, and illustrating the flow of
constraint propagation during execution. The minimal, equivalent, and dispatchable
network can thus potentially be used in visualizing an STN for other applications.

PRACTICAL APPLICATIONS
AND RELATED WORK

Throughout this chapter so far, we have made use of an extremely small, simple
example: our coffee and toast-making scenario.  However, STPs have been studied in the
context of much larger problems, and have been deployed in at least one real, very large-
scale application. The Remote Agent (Muscettola et al., 1998), an autonomous system
that controlled a NASA spacecraft for several days in 1999, used STPs as the formalism
of its execution component.  Indeed, the MED algorithm described in the previous section
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Figure 16. (a) An example STN (b) and (c) two of the minimal, equivalent, dispatchable
networks of the STN in (a)
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of this chapter was motivated by the need to have extremely fast dispatch on the Remote
Agent, since controlling a spacecraft requires observing very tight, very precise
temporal constraints. Experiments with actual plans of up to 60,000 nodes (some of which
were from the Remote Agent applications, while others came from an industrial process-
management application) showed that MED pruned between 94% and 99% of the nodes
of the full d-graph (Tsamardinos, 1998).

Two other planning systems that directly employ the STP formalism or related
variations for representation and execution are the parcPLAN (El-Kholy & Richards,
1996) and the IXTET (Lemai & Ingrand, 2003). The latter has been used for various
applications, including, notably control of mobile robots.

One key limitation of the STP formalism is its assumption that all events are
controllable.  This assumption is frequently violated: for example, in the Remote Agent
domain, a number of types of events, such as the duration of a jet-thrusting action, can
only be approximated, and other, exogenous events, such as the appearance of an object
that should be photographed, cannot be predicted at all. As we explained earlier, the use
of online dispatch for STPs permits some degree of flexibility in the schedule,
allowing such uncontrollable events to be potentially handled, but the approach is
imperfect.

In response, recent work on temporal constraint-based reasoning has led to the
development of extended formalisms that explicitly model both temporal uncertainty and
other forms of uncertainty, such as uncertainty about the causal effects of actions. While
these formalisms allow more direct encoding of uncertainty than does the STP, reasoning
with them is significantly more costly than is reasoning with STPs, and techniques for
dispatching plans represented with these extended formalisms are still only partially
understood.

The Disjunctive Temporal Problem (DTP) (Stergiou & Koubarakis, 1998, 2000;
Tsamardinos, 2001; Tsamardinos & Pollack, 2003; Tsamardinos, Pollack, & Ganchev,
2001) allows disjunctive temporal constraints to be specified. In planning, these
constraints can be used to express the fact that two activities should not overlap
(e.g., AE ≤ BS ∨ BE ≤ AS expresses the fact that activity A cannot overlap with activity B)
as well as more complex constraints, e.g.,  “if activity A takes more than 10 time units, then
activity B should have duration less than 5 time units”).  The added expressivity comes
at a cost: solving a DTP is an NP-complete problem.  While uncertainty is not explicitly
represented in DTPs, the more expressive constraints allow for a more flexible execution.

One way to conceptualize a DTP is as a collection of STPs on the same variables
(called component STPs). Under this view, dispatching an DTP involves two sub-
processes (Tsamardinos, Pollack & Ganchev, 2001). The first propagates execution
constraints in all the STP components, as described in this chapter. The second
guarantees that execution activity or inactivity will not render all STP components
invalid:  that is, it prevents the system from reaching a state in which no component STP
can be executed in a way that satisfies its constraints.

Another extension of STPs and DTPs is the Conditional Temporal Problem (CTP)
(Tsamardinos, Vidal & Pollack, 2003).  CTPs allow conditional execution of events, for
example, one can model constraints of the kind “execute event A if predicate p is observed
to be true in the current state of the world, otherwise execute event B.”  A CTP can be
converted to a DTP for reasoning and execution purposes by adding special disjunctive
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constraints that model the conditional relations.  Subsequently, DTP dispatching
algorithms can be used with minor modifications, for example, taking care not to dispatch
events that should not be executed given the current observations.

The Simple Temporal Problem with Uncertainty (STPU) (Morris, Muscettola &
Vidal, 2001; Vidal & Fargier, 1997; Vidal & Ghallab, 1996) extends the STP by explicitly
representing the temporal uncertainty of the occurrence of uncontrollable events. There
are two distinct types of constraints in an STPU: those that the execution agent has to
respect and satisfy, called requirement constraints, and those that Nature (i.e., the
environment) is expected to satisfy, called contingent constraints.  While solving STPUs
requires a significant departure from STP reasoning, once an STPU has been shown to
be executable, it can be executed in a fashion similar to that of an STP.

Alternatively, an STPU can be converted to a timed automaton, after which a
controller automaton can be synthesized (Vidal, 2000). The controller retains the state
of the system and specifies the transitions among different states according to occur-
rences of uncontrollable events and the current time. Unfortunately, the complexity of
synthesizing the controller is pB, where B is the number of controllable variables and p
is the maximum number of variables possibly occurring at the same time. However, timed
automata have the advantage of being able to represent conditional execution and
synchronization constraints.

An extension of STPUs to include disjunctions, or equivalently an extension of the
DTP to include temporal uncertainty, is described in Vidal & Bidot (2001), however,
reasoning and dispatching in this formalism is still an open problem.

The Probabilistic Simple Temporal Problem (PSTP) (Tsamardinos, 2002) extends the
STPU by replacing the contingent constraints, which simply represent bounds on the
times of occurrence of uncontrollable events, with probabilistic distributions expressing
expectations of those times. To dispatch a PSTP, a non-linear optimization method is used
to discover the static (fixed) schedule that maximizes the probability of correct execution.
Such a schedule can only be found under certain conditions. If found, the schedule must
be updated continuously as time passes or when an uncontrollable is observed. A similar
approach using probability distributions to represent expectations is described in Bidot,
Laborie, Beck & Vidal (2003). A fixed schedule is again produced that optimizes the
estimated make-span, or other criteria. The schedule is updated whenever an uncontrol-
lable is observed. A main difference between the two approaches is that the first uses
analytical methods for optimization of the scheduled adopted, while the second uses
simulation.

An additional limitation of STPs is that they model only temporal constraints; other
types of constraints, such as resource constraints, must be handled separately. As a
simple example, consider a meeting scheduling application, which must satisfy not only
temporal constraints, but also constraints on who attends the meetings. A number of
algorithms and formalisms for representing resource constraints are presented in Laborie
(2003). The implications of such extensions for dispatch have not yet been fully studied.

Finally, the STP dispatch algorithms we presented allow the agent to select any
arbitrary time within the time-window of a variable for dispatching it. Recent work has
extended the STP (Khatib, Morris, Morris, & Rossi, 2001) and the DTP (Peintner &
Pollack, 2004) to permit explicit modeling of preferences (soft constraints) on the times
assigned to events, so that solutions that maximize those preferences can be found.
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These approaches again produce an STP (or DTP) that can then be dispatched with the
techniques described in this chapter.

CONCLUSIONS
The development of the STP formalism and its use in modeling temporal plans has

been a significant advance in the field of automated planning, because the ability to
represent flexible temporal constraints greatly increases the range of real-world planning
problems that can be modeled.  However, because many planning applications involve
not only generating but also executing plans, the question of STP dispatch has become
very important. As we defined it, plan dispatch is the problem of deciding when each of
the actions in a given plan should be begun and ended in order to guarantee that all of
its temporal constraints are satisfied. Dispatch can be separated from actual plan
execution: thus, for example, one component of an automated system may be responsible
for dispatch and another for executing the dispatched actions. In fact, in some systems
[e.g., Pollack et al. (2003)], the dispatch process is automated, but its result is a set of
commands to a human user who performs action execution.

In this chapter, we have provided detailed descriptions of the algorithms that have
been developed to date in the literature on STP dispatch. We distinguished between off-
line dispatch, in which times are assigned to starts and ends of all actions in a plan prior
to the start of execution, and online dispatch, in which these assignments are made while
execution is in process.  Off-line dispatch is simpler and can be achieved by using
algorithms that make use of shortest-path techniques to find a solution to an STP. Online
dispatch, while more complicated, is also more flexible: by deferring decisions about the
timing of actions under an agent’s control, one can potentially handle uncertainty about
the timing of uncontrollable events. We presented both a basic algorithm for online
dispatch and techniques for increasing the efficiency of each dispatch decision by
making use of a reduced but equivalent form of the STP: the minimal, equivalent, and
dispatchable network. Finally, we briefly sketched some recent extensions to STPs,
noting that many of them rely on a reduction to STPs to perform dispatch.
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ENDNOTES
1 Schwalb & Dechter (1997) provide an overview of constraint-based temporal

reasoning, without focusing on planning or dispatch problems.
2 A constraint-satisfaction problem (CSP) is defined by a set of variables with

associated domains from which they can be assigned values, and a set of
constraints on those assignments. Dechter ( 2003) provides a thorough overview
of the CSP field.

3 This is derived by multiplying the corresponding inequalities by -1.
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Chapter X

Constraint Satisfaction for
Planning and Scheduling

Roman Barták, Charles University, Prague, Czech Republic

ABSTRACT
As the current planning and scheduling technologies are coming together by assuming
time and resource constraints in planning or by allowing introduction of new activities
during scheduling, the role of constraint satisfaction as the bridging technology is
increasing and so it is important for researchers in these areas to understand the
underlying principles and techniques. The chapter introduces constraint satisfaction
technology with emphasis on its applications in planning and scheduling. It gives a
brief survey of constraint satisfaction in general, including a description of mainstream
solving techniques, that is, constraint propagation combined with search. Then, it
focuses on specific time and resource constraints and on search techniques and
heuristics useful in planning and scheduling. Last but not least, the basic approaches
to constraint modelling for planning and scheduling problems are presented.

CONSTRAINT SATISFACTION
IN A NUTSHELL

Constraint satisfaction is a technology for modelling and solving combinatorial
(optimisation) problems. The technology arose from research in artificial intelligence in
the mid-1970s and recently it became very popular, especially in the area of scheduling.
The basic idea behind constraint satisfaction is to describe the problem declaratively by



Constraint Satisfaction for Planning and Scheduling   321

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

means of variables and constraints and then to apply generic solving techniques to find
an assignment of values to the variables satisfying the constraints. Formally, a con-
straint satisfaction problem (CSP) is a triple Θ = (V,D,C), where:

• V = {v1,v2,…,vn} is a finite set of variables,
• D = {D1,D2,…,Dn} is a set of domains (i.e., Di is a set of possible values for the

variable vi),
• C = {c1,c2,…,cm} is a finite set of constraints restricting the values that the variables

can simultaneously take, that is, a constraint is a subset of the Cartesian product
of the domains of the constrained variables; we denote by var(c) the set of variables
constrained by c.

A solution to the constraint satisfaction problem Θ is a complete assignment of the
variables from V that satisfies all the constraints. The values for the variables are chosen
from their respective domains. Formally, an assignment is a set of pairs variable/value
such that a given variable appears at most once in this set. A complete assignment for
V contains a value for every variable from V.

Example 1 (CSP): Let V = {a,b,c} be a set of variables with domains D = {Da={1,2},
Db={1,2,3}, Dc={2,3}} and C = {a≠c, a<b, b≠c} be a set of constraints. Then the
following two complete assignments of the variables are (the only) solutions of CSP
Θ = (V,D,C):

• α1 = {a/1, b/2, c/3},
• α2 = {a/1, b/3, c/2}.

In pure constraint satisfaction, the domains of variables are assumed to be finite
discrete sets of values so the constraint satisfaction problem is a combinatorial problem.
Sometimes, a single domain D for all the variables is used (union of all Di). Then the
particular domain Di is specified via a unary constraint over vi.

If domain D consists of exactly two elements then we are speaking about Boolean
constraint satisfaction problems. Note that an arbitrary CSP can be converted to an
equivalent Boolean CSP via a SAT encoding. For example, the variable x with domain of
size n can be represented by n Boolean variables indicating the value assigned to the
variable x; plus there must be constraints between these Boolean variables specifying
that exactly one of them has the value true and the others have the value false. Also, the
original constraints over x must be reformulated to use the new Boolean variables instead
of x.

If there are only binary constraints in C (and perhaps unary constraints to specify
domains) then we are speaking about binary constraint satisfaction problems. Again,
an arbitrary CSP can be converted to an equivalent binary CSP. For example, the role of
variables and constraints can be swapped, that is, an n-ary constraint is represented as
a variable with domain containing n-tuples satisfying the constraint. This variable is
called a dual variable for the constraint. Two dual variables are connected by a binary
constraint if the original constraints share a variable. A binary CSP can be naturally
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described as an undirected graph, where vertices correspond to variables and edges to
constraints. This graph is called a constraint network. See Figure 1 for an example of
the conversion described above and of a constraint network. For a general (non-binary)
CSP, the constraint network is represented as a hyper-graph.

Example 2 (CSP models): Let W be the width of a rectangular area A and H be its height.
The task is to place N rectangles of height 1 but of different widths into the area
A in such a way that no two rectangles overlap. Let wi be the width of the
rectangle i.
This task can be formulated as a constraint satisfaction problem in the following
way. The position of the rectangle i is described using two variables, row ri and
column ci. For each i, the domain for ri is {1,…,H} and the domain for ci is {1,…,W-
wi +1}. The non-overlapping constraint can be described using the following
formula, which says, “if any two different rectangles i and j are placed in the same
row, then either the rectangle i is left to the rectangle j or vice versa:”

∀i≠j   (ri = rj) ⇒ (ci + wi < cj ∨ cj + wj < ci)

The problem can be further restricted by limiting rows to which some rectangles can
be placed, which is simply modelled via the domain of variables ri (or via unary
constraints). It is also possible to put additional constraints between the rect-
angles, for example to specify that some rectangle a must always be left to another
rectangle b. Figure 2 shows a solution of the problem for the area of size 6×6 and
for 10 randomly generated rectangles.

The above problem, together with the constraints restricting the rows for rect-
angles, is called a random placement problem (Rudová, 2002). The problem was
designed as a benchmark set for timetabling problems — we can see it as an abstraction
of a simple scheduling/timetabling problem where the rows describe unary resources, the
columns describe a discrete time, and the rectangles correspond to activities. We will
discuss constraint models for planning and scheduling problems later in the chapter.

Notice the natural specification of the problem in terms of a CSP and the possibility
to express non-trivial constraints combining logical and arithmetic operators (recall that

Figure 1. Binarisation of the constraint satisfaction problem [The constraints Rij in the
binary CSP (right) restrict the dual variables to tuples in which the original shared
variables take the same value (i and j indicate a position in the tuple).]
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the constraint is an arbitrary relation), as well as the simplicity of adding other constraints
without changing the model completely. This expressive power and declarative character
are typical features of constraint satisfaction. Now, the question is how to find a solution
to such problems.

There exist many solving techniques that can be applied to constraint satisfaction.
We have already mentioned one possibility in the above paragraphs. In particular the CSP
is converted to an equivalent Boolean CSP and SAT technology is used to find a solution
of the problem. Another possibility is to use various local search techniques that explore
complete but inconsistent assignments (some constraints are violated) and, by local
changes in the assignment (usually a value of a single variable is changed), they
“improve” the assignment towards the assignment satisfying all the constraints. In this
chapter, we focus on technology that is characteristic for constraint satisfaction and that
is, in our opinion, the mainstream constraint satisfaction technique. We mean the
combination of domain filtering via maintaining consistency with depth-first search.

Consistency Techniques
In the previous section, we showed that an arbitrary CSP could be translated to an

equivalent binary CSP. For simplicity reasons we will use a binary CSP to explain the ideas
behind basic consistency techniques. As we already mentioned, if a CSP is binary then
it can be represented as a constraint network. Many names for the consistency
techniques are then derived from the graph notions, in particular in this section we will
be speaking about arc and path consistencies, which have the largest practical applica-
bility.

Example 3 (domain filtering): Assume two variables a and b with domains Da={1,2},
Db={1,2,3} and the constraint a<b. By looking to semantics of the constraint, we
can deduce that the value 1 cannot be assigned to the variable b in any solution,
simply because b must be greater than a and the minimal value of a is 1 (thus the
minimal value of b is 2). Consequently, the value 1 can be removed from the domain
Db. This process is called domain filtering or domain pruning.

The idea presented in Example 3 can be applied to any constraint. Actually, it can
be extended to a constraint network so we get what is called arc consistency.

Figure 2. Random placement problem
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Arc consistency. We say that a constraint is arc consistent (AC) if for any value of the
variable in the constraint there exists a value for the other variable in such a way
that the constraint is satisfied (we say that the value is supported). A CSP is arc
consistent if all the constraints are arc consistent.

The binary constraint is made arc consistent by propagating the domain from one
variable to the other variable and vice versa, that is by doing domain filtering in both
directions, which removes the non-supported values from the domains. This process is
also called a constraint revision and it is usually realised by a special procedure (denoted
by REVISE in Figure 4) that is designed for each constraint type. For example, the revision
of the constraint a≤b can be realised by removing all the values from the domain of b that
are smaller than the minimal value in the domain of a and by removing all the values from
the domain of a that are greater than the maximal value in the domain of b. We will give
later more details on the revision procedures for selected planning and scheduling
constraints.

The simplest algorithm for achieving arc consistency repeats the revisions of
constraints until no domain of any variable is changed. Note that a constraint that has
already been revised (made arc consistent) may become inconsistent after revision of
another constraint that prunes the domain of one of its variables.  Therefore, if any
domain is pruned then all the constraints should be revised again. Figure 3 illustrates
the process of repeated constraint revisions. We can stop this process when any domain
becomes empty, then the problem has no solution, or when all the constraints are revised
and no domain is changed, then the problem is arc consistent.

The above simple arc consistency algorithm is called AC-1 (Mackworth, 1977) and
it suffers from the problem of non-necessary repetition of revisions. In particular, if the
domain of some variable is changed, then only the constraints over this variable are
directly affected by this domain change. Consequently, it is enough to re-revise only the
constraints over the variable whose domain is changed, rather than to revise all the
constraints like AC-1 does. The idea of repeating only the necessary revisions was
included in the algorithm for scene labelling by Waltz (1975), which was then generalized
to solve arbitrary CSP, and it is called AC-2 now (Mackworth, 1977). A more efficient and
simpler version of this algorithm is called AC-3, which is probably the most widely used
consistency algorithm. AC-3 (Mackworth, 1977) uses a queue of constraints to be
revised. Each time a constraint c is removed from this queue, the constraint c is revised.
If the domain of any variable in this constraint is changed then all the constraints over
the changed variables are added to the queue (with the exception of c). The algorithm
stops when the queue is empty, in such a case the constraint network is arc consistent,
or when domain of any variable is empty, then the constraint network is inconsistent

Figure 3. Achieving arc consistency (x in Dx means that variable x has domain Dx)
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(there is no solution satisfying all the constraints). Figure 4 shows the pseudo-code of
AC-3, which returns the result of the consistency check as well as the pruned domains.

There exist many other arc consistency algorithms that decrease further the number
of constraint checks by better bookkeeping, for example, AC-4 (Mohr & Henderson,
1986), and its successors AC-6 (Bessière, 1994) and AC-7 (Bessière et al., 1999), which
are optimal in the worst-case time complexity. However, these algorithms require complex
data structures (so they also have higher memory consumption) and they are designed
only for binary constraints. Recently, two new versions of the AC-3 algorithm, AC-3.1
(Zhang & Yap, 2001) and AC-2001 (Bessière & Régin, 2001), have been independently
proposed to achieve the optimal worst-case time complexity without the complex data
structures typical for AC-4 and AC-6.

Rather than explicit binarisation of constraints, the existing constraint solvers
handle n-ary constraints directly. The notion of arc consistency can be simply extended
to non-binary constraints — we are speaking about generalised arc consistency. The
constraint is generalised arc consistent (GAC) if for any value of the variable in the
constraint there exist values for the other variables in the constraint, such that the value
tuple satisfies the constraint. In Figure 4, we presented the algorithm AC-3 in such a way
that it can immediately handle n-ary constraints. Instead of revising a binary arc, this
algorithm revises the hyper-arcs. For example, if the domain of the variable x is changed
then the revision of the constraint x+y=z is done by calling the following two functions:
z ←←←←← x+y, y ←←←←← z-x that propagate information about the change of x to z and y. Hence, such
functions are called propagators or filtering algorithms. To simplify development of
propagators, the implementation of AC-3 usually uses a queue of variables with changed
domains rather than a queue of constraints for revision. Then, after removing a variable
from the queue, the consistency algorithm calls the propagators that use this variable
as input so the information about the change is propagated to other variables, which are
then added to the queue (if their domains are pruned). This approach gives the

Figure 4. AC-3 algorithm

procedure AC-3(V,D,C) 

 Q ← C 

 while non-empty Q do 

  select c from Q 

  D’ ← c.REVISE(D) 

  if any domain in D’ is empty then return (fail,D’) 

  Q ← Q ∪ {c’∈C | ∃x∈var(c’) D’x≠Dx} – {c} 

  D ← D’ 

 end while 

 return (true,D) 

end AC-3 
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consistency algorithm enough flexibility for the integration of user defined filtering
algorithms and, therefore, it is the most common algorithm used by the constraint
satisfaction packages.

Even if arc consistency removes many incompatible values from domains of the
variables, it is still a local consistency technique that, in general, guarantees neither
finding a solution of the problem nor proving that there is no solution. Figure 5 shows
an example of an arc consistent problem that has no solution.

The difficulty of arc consistency is that it “sees” the constraints independently and
the only way of “co-operating” between the constraints is via domains of variables
shared by the constraints. To overcome this difficulty, stronger consistency techniques
have been proposed.

Assume the problem from Figure 5. Let value a be used for x1 and value b be used
for x2. This pair satisfies the constraint x1≠x2 but if we try to find a value for the variable
x3 that is consistent both with a for x1 and with b for x2, we fail. It means that a for x1 cannot
be used together with b for x2. The above process describes the basic idea behind path
consistency.

Path consistency.  We say that a path (x1,…,xn) is path consistent (PC) if for every pair
v1,vn of consistent values (i.e., this pair satisfies all binary constraints between x1
and xn) there exist values v2,…vn-1 such that all the binary constraints between xi
and xi+1 are satisfied.
Note, that this definition says nothing about satisfaction of constraints between
xi and xj for |i-j|>1. CSP is path consistent if all the paths are path consistent.

It may seem that path consistency algorithms need to explore all paths in the
constraint network. Fortunately, Montanari (1974) showed that it is enough to make
paths of length two consistent to make the CSP path consistent. Therefore path
consistency algorithms work with paths of length two only and, like AC algorithms, they
make these paths consistent by repeated revisions. However, there is one significant
difference from AC. While AC algorithms prune domains of variables only, when revising
the path (xi,xk,xj) the pairs of values are removed from the relation representing the binary
constraint between  xi and xj. It means that PC algorithms use the binary relations explicitly
so they need their extensional representation, for example using {0,1} matrix. Then
revision of the path (xi,xk,xj) is done using binary multiplication and conjunction of these
matrices:

Rij ← Rij & (Rik * Rkk * Rkj)

Figure 5. Arc consistent constraint satisfaction problem with no solution
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Figure 6 shows an example of path revision. Notice also that the domain of the
variable can be encoded as a matrix too so we do not need to handle variables’ domains
separately.

The simplest path consistency algorithm repeatedly updates all paths (xi,xk,xj) until
any relation is changed. This algorithm is called PC-1 (Mackworth, 1977).

Naturally, the algorithm PC-1 can be improved in many ways. For example, it is not
necessary to keep all copies of sets of matrices R0,…, Rn — it is enough just to remember
whether any matrix has been changed. Also, the revision of the path (xi,xk,xj) gets the same
result as the revision of the path (xj,xk,xi) so half of the revisions can be removed. Finally,
like in AC-3, it is possible to do re-revisions of only the paths that are affected by some
previous revision. The resulting algorithm is called PC-2, for details see Mackworth
(1977). We present here the less advanced PC-1 algorithm only because it shows better

Figure 6. Revision of path (A,B,C) where the initial domain for the variables A,B,C is
{1,2,3}
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Figure 7. PC-1 algorithm

procedure PC-1(V,C) 

 n ← |V|, Rn ← C 

 repeat 

  R0 ← Rn 

  for k = 1 to n do 

   for i = 1 to n do 

    for j = 1 to n do 

              Rkij ← Rk-1ij & (R
k-1

ik * R
k-1

kk * R
k-1

kj) 

     if Rkij = (0) then stop with failure 

 until Rn=R0 

 C ← R0 

end PC-1 
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the nature of path consistency. In particular, one can see similarity of path consistency
to computing a transitive closure of the graph or to computing minimal distances between
the nodes.

Even if path consistency is strictly stronger than arc consistency, for example it can
discover that the problem from Figure 5 has no solution; it is rarely used in practice to
solve general constraint satisfaction problems. The main reason is that the performance/
complexity ratio is not very good; in particular general PC algorithms require a lot of
memory so they are hardly applicable to real-life problems. Nevertheless, as we will show
later, path consistency can be successfully applied to constraint networks with some
special structure, in particular to networks of temporal constraints.

We introduced path consistency as a way of improving domain pruning. However,
like arc consistency, path consistency is still a local technique, which, in general, does
guarantee neither finding a solution of the problem nor proving that there is no solution.
There exist even stronger consistency techniques than path consistency, but the
complexity of these consistency algorithms increases with the consistency level, so
these techniques are rarely used in practice. Nevertheless, there is another way to
improve domain pruning without disadvantages of stronger consistency levels. If we
look back to the problem from Figure 5, we can see that the constraint network is
homogeneous, that is, every pair of variables is connected with an inequality constraint.
Instead of modelling the problem using a set of binary inequalities, it is possible to
encapsulate the variables into a single constraint, all-different constraint in this case, and
use a dedicated efficient filtering algorithm for this constraint. These super-constraints,
called global constraints, represent a method of including advanced special solvers into
a constraint satisfaction framework. Régin (1994) popularized global constraints by
proposing an efficient filtering algorithm for the all-different constraint based on
matching in bipartite graphs. We will present later some special global constraints for
planning and scheduling problems.

Basic Search Techniques
No matter how much (polynomial) pruning is done in the constraint network there

are still some choices left and the only way to proceed is trial and error method, that is,
search through the remaining choices. For solving constraint satisfaction problems,
backtracking-based search is probably the most typical technique to select among the
remaining choices. The backtracking algorithm extends the partial assignment by
assigning values to the variables. It starts with the first variable and assigns a value from
the current domain to this variable. Then it continues with the next variable and so on.
After assigning a value to the variable the algorithm checks the consistency (we will give
more details later) and if some inconsistency is detected then another value for the
variable is tried. In case of having no more values for the variable, we are speaking about
the dead end, the algorithm backtracks to the last assigned variable and it tries to assign
a different value to this variable (if possible). The algorithm stops either when a complete
assignment is found or when it is concluded that no solution exists. Backtracking requires
a linear space but in the worst case, it has an exponential time complexity in the number
of variables. Because the algorithm labels the variables, it is often called labelling.
Figure 8 shows the skeleton of the basic labelling algorithm that is looking for a single
complete assignment of variables.
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In the previous text, we mentioned that the backtracking algorithm performs a
consistency check after any attempt to assign a value to the variable. This consistency
check may be as simple as testing whether the newly assigned value is consistent with
already assigned variables. In this case, only the constraints among already assigned
variables are checked and we are speaking about pure chronological backtracking.

By using some consistency procedure, as described in the previous section, the
search algorithm may prevent future dead ends by removing inconsistent values from
variables’ domains, and thus detecting that the current partial assignment cannot be
extended to some not-yet assigned variables (to the variables for which the domain is
made empty during consistency check). Simply speaking, the procedure consistent in the
backtracking algorithm can be substituted by the procedure AC-3 (or another consistency
procedure). Then we are speaking about backtracking with full look-ahead. Naturally,
it is possible to use stronger consistency procedures like path consistency there, but as
we already mentioned this is rarely done due to time and memory complexity of these
procedures. On the other hand, it could be useful to perform less consistency tests, for
example to propagate information about the new value only to variables which are
connected via a constraint to the currently labelled variable — this technique is called
forward checking. Figure 9 compares the size of the search tree for pure chronological
backtracking, forward checking, and full look-ahead techniques. The stronger the
consistency technique that is used, the fewer nodes need to be explored, but also a larger
overhead is necessary to explore each node. Thus a balance between this overhead and
the size of the search tree needs to be found for a particular problem. Currently, the full
look-ahead technique is mostly used in practice.

The labelling procedure requires knowing the ordering of variables to be assigned
as well as the ordering of values in which they are tried for each variable. Visibly, these
orderings may influence efficiency of the algorithm, for example, if the “right” value is
used for each variable then no backtracks are necessary and the solution is found in a
linear time. Note that the variable ordering defines a shape of the search tree while the
value ordering defines how the search tree is explored.

Figure 8. A skeleton of the backtracking algorithm

procedure labelling(V,D,C) 

 if all variables from V are assigned then return V 

 select not-yet assigned variable x from V 

 for each value v from Dx do 

  (TestOK,D’) ← consistent(V,D,C∪{x=v}) 

  if TestOK=true then R ← labelling(V,D’,C) 

  if R ≠ fail then return R 

 end for 

 return fail 

end labelling 
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For variable ordering there exists computationally inexpensive and pretty good
generic heuristics based on a so-called first-fail principle. The idea of this principle can
be summarized in the following sentence: “prefer the variable whose instantiation will
lead to a failure.” It may seem strange to look for a failure, but recall that a value must be
assigned to each variable so if this assignment leads to a failure then it is better to
discover it earlier in the search tree. In existing systems, the first-fail principle for variable
ordering is usually realised by the following heuristic: prefer the variable with the smallest
domain and if there are a number of such variables then select the variable participating
in the largest number of constraints (break ties randomly). This technique avoids
branching on a higher number of possibilities.

For value ordering, the values belonging to the solution with higher probability are
preferred to be tried first. This is called a succeed-first principle. There exist generic
techniques to estimate quality of the value, for example, based on counting the number
of supporters for the value in other variables, but these techniques are rather
computationally expensive and usually problem-dependent value ordering heuristics are
used. We present later some specific value and variable ordering heuristics for sched-
uling problems.

Constraint Optimisation
In many real-life applications, the users are not looking for any solution of the

constraint satisfaction problem but they require a good solution, for example, a solution
minimising makespan in scheduling. The quality of solution is usually measured by an
application dependent function called an objective function. The goal is to find a
complete assignment of variables that satisfies all the constraints and that minimizes or
maximizes the objective function respectively. Such problems are referred to as Con-
straint Optimisation Problems.

A Constraint Optimisation Problem (COP) consists of a standard CSP and an
objective function mapping every complete assignment of variables to a numerical value.

Figure 9. Search trees for solving 4-queens problem using pure backtracking, forward
checking, and full look-ahead

 Pure chronological backtracking 

Full look-ahead 

Forward checking 
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The most common search algorithm for constraint optimisation is called branch-
and-bound (B&B). The branch-and-bound algorithm needs a heuristic function that
maps a partial assignment of variables to a numerical value. This value represents an
underestimate (in case of minimization) of the objective function for the best complete
assignment that can be obtained from the partial assignment (if exists). The branch-and-
bound algorithm searches for solutions in a depth-first manner and behaves like
chronological backtracking except that as soon as a value is assigned to the variable, the
value of the heuristic function for the assignment is computed. If this value exceeds the
bound (the value is equal to or greater than the bound), then the sub-tree under the
current partial assignment is pruned immediately. Note that if full look-ahead technique
is used then no special mechanism for bound checking is necessary. The objective
function can be connected with the bound using a strict inequality constraint:

objective_function(V) < bound

and the heuristic function can be included in the propagator for such a constraint. Note
finally that constraint propagation works in both directions (from variables to the bound
and vice versa), so in the above model, the “objective” constraint can also remove values
from the variables that would violate the bound. Again, this technique allows integration
of existing optimisation techniques within the constraint satisfaction framework.

The only remaining question is where to get the bound. Initially, the bound could
be (plus) infinity (in case of minimization). Later, when a complete assignment is found,
the assignment is saved as the so-far best solution and the bound is decreased to the
value of the objective function for this complete assignment. Changing the bound causes
a violation of the objective constraint, so search process continues like if a failure occurs
until the search tree is completely explored. Another option is to restart search with the
new bound and to repeat the restarts each time a complete assignment is found until the
search tree is fully explored. In both cases, the last saved assignment represents the
solution of the problem.

The efficiency of the above branch-and-bound algorithm is determined by two
factors: the quality of the heuristic function and whether a good bound is found early.
Observations of real-life problems show that the “last step” to optimum, that is,
improving a good solution even more, is usually the most computationally expensive part
of the solving process. Fortunately, in many applications, users are satisfied with a
solution that is close to optimum if this solution is found early. The branch-and-bound
algorithm can be used to find sub-optimal solutions by using an “acceptability” bound.
If the algorithm finds a complete assignment that satisfies the acceptability bound then
this assignment can be returned to the user even if it is not proved to be optimal. There
also exist techniques that can find a complete assignment within a given distance from
the optimum, even if the optimum is unknown in advance. These techniques use lower and
upper estimate of the objective function and, by bisecting the interval between these bounds,
they can find out the maximum distance of the current assignment from the optimum.

A Note on Conditional Constraints
The formulation of a constraint satisfaction problem is static in the sense that all

the variables, domains, and constraints must be known in advance before starting to
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solve the problem. This static formulation is not appropriate for some problem areas, like
configuration and planning, where existence of some variables and constraints may
depend on the values of other variables. Assume a simple car configuration problem,
where the user is choosing among different engines and equipment. The possibility to
use air conditioning depends on the chosen engine: for weak engines, it is not possible
to use air conditioning. In the words of constraint satisfaction, it means that the variable
describing the type of air conditioning (either manual or automatic) is present in the
constraint network only if the variable describing the engine type is assigned a specific
value (a strong enough engine).

The above problem, with the standard CSP formulation, was pointed out by Mittal
& Falkenhainer (1990), who proposed a concept of Dynamic Constraint Satisfaction.
Basically, Dynamic CSP is formulated like a standard CSP with variables, domains, and
constraints, but some variables can be either active or inactive. To activate the variable,
there are special activation constraints in the form of implication:

cond(x1,…, xn) → activate(xj)

which say that the variable xj is active, if the variables x1,…, xn are active (xj ∉{ x1,…, xn })
and values assigned to these variables satisfy the condition cond. The solution to a
Dynamic CSP is an assignment for all active variables satisfying the constraints among
them such that no subset of these variables is a solution. When solving a Dynamic CSP
it is possible to start with assigning values to the initially active variables. During this
process, some other variables may become active, so labelling continues with these
variables until the set of active non-assigned variables is empty. Another possibility is
to translate a Dynamic CSP to a standard CSP, for example by adding one more value to
the domain of possible inactive variables. This value will indicate that the variable is
inactive in the complete assignment. We will discuss this technique later when speaking
about modelling planning problems.

CONSTRAINTS IN SCHEDULING
The scheduling task is to allocate known activities to available resources and time

respecting capacity, precedence, and other constraints. Because scheduling problems
belong to the area of combinatorial optimisation problems they can be naturally de-
scribed as constraint satisfaction problems. To model the problem as a CSP one needs
to decide how to map the problem objects into variables and constraints.

One of the traditional modelling approaches uses variables to describe the activi-
ties. In particular, there are three variables identifying the position of the activity in time,
namely, the start time, the end time, and the processing time (duration). Let A be an
activity, we denote these variables by start(A), end(A), and p(A). We expect the domains
for these variables to be discrete (for example natural numbers) where the release time
and the deadline of the activity make natural bounds for them (and the time windows
restrict the domains even more). Note that if the processing time of the activity is constant
then one variable is enough to locate the activity in time. We still prefer to use all three
variables to simplify description of the constraints.
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If resource allocation is included in the scheduling problem then there is one more
variable for the activity. This variable describes the resource to which the activity is
allocated, we denote it by resource(A). Assume that each resource has assigned a unique
number called identification. Then the domain of resource(A) consists of identifications
of the resources to which the activity A can be allocated.

Basically, there are two groups of constraints in scheduling problems: temporal
constraints describing the precedence relations and resource constraints describing the
resource capacities. The first temporal constraint binds the time variables of each
activity: start(A)+p(A)=end(A). Time dependencies between the activities can also be
naturally described by constraints between the time variables. Assume that the activity
A must be processed before the activity B, denoted by A<<B. This relation is modelled
using the temporal constraint end(A)≤start(B). In general, an arbitrary time dependency
between the activities can be described in the form:

min_delay(A,B) ≤ start(B)-end(A) ≤ max_delay(A,B)

where min_delay and max_delay specify the minimal delay and the maximal delay
between the activities. For example, if the activity B must start no later than 10 time units
after the activity A is finished (but it could start earlier, even before A) then we use the
constraint:

start(B)-end(A) ≤ 10.

Notice that we put no restriction on the structure of the activities so any two
activities may be connected by the above temporal constraints.

Assume now that activities A and B are allocated to the same unary resource. At
the unary resource, two activities are not allowed to be processed at the same time; in
particular the activities cannot overlap in time. This resource feature can be modelled
using a disjunctive resource constraint (therefore unary resource is sometimes called a
disjunctive resource):

A<<B ∨ B<<A, i.e., end(B)≤start(A) ∨ end(A)≤start(B).

The propagation through this constraint works as follows: as soon as we know that
start(A)<end(B) then we can deduce that end(A)≤start(B) and vice versa. If there are
n activities allocated to the unary resource then we need O(n2) disjunctive constraints
of the above form. We show later how the unary resource can be modelled more
effectively using a single global constraint instead of the set of disjunctive constraints.

If resource allocation is involved in the scheduling problem then it is unknown in
advance to which resource the activity is allocated. Moreover, the time windows and the
duration of the activity may depend on the resource to which the activity is allocated.
Resource allocation is modelled as if the activity A is split to the set of fictitious activities
Ari allocated to particular resources ri. In particular, the time variables describing the
activity are duplicated for each resource to which the activity can be allocated. For
example, if the activity A can be allocated to resources r1 and r2, then we use two sets of
time variables start(r1,A), end(r1,A), p(r1,A) and start(r2,A), end(r2,A), p(r2,A) in addi-
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tion to the original time variables start(A), end(A), and p(A). These resource specific time
variables participate in the above-described resource constraints. The resource specific
time windows and activity duration are encoded in domains of these variables. However,
if any inconsistency is detected for the fictitious activity Ar then failure is not imposed
but the resource r is removed from domain of the variable resource(A). Naturally, the
corresponding variables are connected via a constraint, ensuring that the information is
passed between the variables. In particular, the domain of the variable start(A) is kept
to be the union of the domains of variables start(r1,A) and start(r2,A); the same constraint
is used for end(A) and p(A).

In the above paragraphs we described the basic constraint model for scheduling
problems. Notice that we spoke about scheduling in general, that is, about a problem of
allocating known activities to times and resources without specifying whether the
scheduling problem to be solved is job-shop, open-shop, flow-shop or another problem
from the well-known Graham’s classification of scheduling problems (Graham et al.,
1979). The reason is that depending on the particular set of constraints we may get
different scheduling problems. Moreover, thanks to additivity of the constraint models,
there is no problem adding side constraints specific to a particular problem and going
beyond the Graham’s classification. That is the main advantage of constraint-based
scheduling over the specific scheduling algorithms that usually cannot be modified to
cover the side constraints. On the other hand, these effective scheduling algorithms can
be sometime encoded in the filtering algorithms for constraints, as we will show in the
next section.

Domain Filtering for Scheduling
In this section we present some filtering techniques for global constraints used in

scheduling applications. Recall that in the arc consistency scheme the filtering algorithm
reduces domains of the variables and it is evoked every time a domain of any involved
variable is changed.

In the previous section, we modelled a unary resource using a set of disjunctive
constraints imposed between each pair of activities allocated to the resource. This model
does not propagate well as we can see from Figure 10, where for three activities A, B,
and C this model does not prune domains of time variables at all, even if the time window
for the activity A can be reduced significantly as we will show later. The weak propagation
is caused both by a disjunctive character of the constraints as well as by locality of arc
consistency.

The obvious technique to improve domain filtering would be to use a global
constraint connecting all the activities (their time variables). The filtering algorithm
behind this global constraint is based on a popular technique called edge finding. We
describe the version for unary resources but there exist variants for cumulative resources
(Baptiste & Le Pape, 1996) and batch resources as well (Vilím & Barták, 2002). The basic
idea behind edge finding is to identify an “edge” between some activity and a group of
activities, in particular to find out if the activity must be processed before the set of
activities (or after it). Assume that A is an activity and Ω is a set of activities that does
not contain A. For the unary resource the total processing time for the set of activities
Ω equals to the sum of processing times of these activities:
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Assume now that processing of the activities from the set Ω∪{A} does not start
with A. It implies that processing must start with some other activity from Ω so the minimal
start time for the activities from Ω∪{A} is:

)}({min))(min( Xstartstart
X Ω∈

=Ω

If we add the (minimal) processing time of Ω∪{A} to the minimal start time of Ω then
we get the minimal end time for processing all the activities from Ω∪{A}. If this time is
greater then the maximal end time of Ω∪{A} then there is not enough time to process all
the activities Ω∪{A} in the interval [min(start(Ω)), max(end(Ω∪{A}))]. It implies that the
activity A can neither be processed inside nor after Ω (Figure 11) so it must be processed
before Ω. The following formula describes the above deduction formally:

min(start(Ω)) + p(Ω) + p(A) > max(end(Ω ∪ {A})) ⇒ A<<Ω.

A<<Ω means that A must be processed before every activity from Ω, in particular
it must be processed before any Ω'⊆Ω. We can use this information to decrease the upper
bound for the end time of the activity A using the following formula:

end(A) ≤ min{ max(end(Ω’)) - p(Ω') |  Ω'⊆Ω }.

A similar rule can be constructed to deduce that A must be processed after Ω:

min(start(Ω ∪ {A})) + p(Ω) + p(A) > max(end(Ω)) ⇒ Ω<<A.

The above edge finding rules form the core of the filtering algorithm reducing the
bounds of the time variables. Figure 11 illustrates the process of applying the edge
finding rule to the activity A and the set Ω={B,C}. The time window for A  is reduced using
this technique while the original disjunctive constraints deduce no domain pruning.

Figure 10. Propagation of disjunctive resource constraints deduces no domain pruning
for time windows of activities A, B, and C (numbers in parentheses indicate activities’
duration)
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It may seem that the edge finding based filtering algorithm must explore all the
subsets Ω of the set of activities allocated to a given resource, which leads to exponential
time complexity. Fortunately, as shown by Baptiste & Le Pape (1996), it is enough to
explore only the sets defined by pairs of activities called tasks intervals (Caseau &
Laburthe, 1995) so the time complexity of the edge finding filtering algorithm is O(n3)
where n is the number of activities allocated to the resource. The task interval [A,B] is
defined for each pair of activities (tasks) A and B such that min(start(A))≤max(end(B)) in
the following way:

[A,B] = {C | min(start(A)) ≤ min(start(C)) & max(end(C)) ≤ max(end(B))}.

Then, it is easy to prove that instead of using the set Ω of the activities in the edge
finding rule, we get the same or even better pruning for the task interval [A,B], such that
A,B∈Ω, min(start(Ω))=min(start(A)), and max(end(Ω))=max(end(B)).

Note finally that there exist edge finding algorithms with the time complexity O(n2),
for example the algorithm by Wolf (2003) based on the sweep pruning technique, or even
edge finding algorithms with the time complexity O(n.log n) by Carlier & Pinson (1994).

The above edge finding rules deduce that some activity must be processed first or
last in the set of activities. Complementary, we may define rules deducing that an activity
cannot be processed first or last. These rules, originally described by Baptiste & Le Pape
(1996) as a part of edge finding, are now called not-first/not-last rules (Torres & Lopez,
2000). These rules deduce different domain pruning than edge finding (actually, neither
edge finding nor not-first/not last outperforms the other technique) so all the rules are
usually combined to deduce the largest possible domain pruning.

The not-first rule is based on the following idea. Assume that some activity A is
processed before all activities from the set Ω, we say that A is processed first in Ω∪{A}.
It means that the minimal start time of the set of activities Ω∪{A} is the minimal start time
of the activity A. If we add to this start time a processing time for the activities in Ω∪{A}
then we get a minimal end time for processing Ω∪{A}. If this minimal end time exceeds

Figure 11. Edge finding rule can deduce that activity A must be processed before the
activities B and C (processing time is in parentheses)
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the maximal end time of activities Ω (A is the first activity so it cannot be at the end) then
there is not enough time to process all the activities from Ω∪{A}. Consequently, we may
deduce that A cannot be processed first in Ω∪{A}. Formally:

min(start(A)) + p(Ω) + p(A) > max(end(Ω)) ⇒  ¬ A<<Ω.

If A cannot be processed before the set of activities Ω (¬ A<<Ω) then A must be
processed after at least one activity from the set Ω. Thus, we can increase the minimal
start of A to be greater or equal to the minimal end time of the earliest-ending activity
from Ω. Formally:

start(A) ≥ min{ end(B) |  B∈Ω }.

The symmetrical not-last rule can be defined in a similar way:

min(start(Ω)) + p(Ω) + p(A) > max(end(A)) ⇒  ¬ Ω<<A.

Like in edge finding, it is not necessary to explore all the sets Ω but only carefully
selected sets similar to the task intervals. Baptiste & Le Pape (1996) designed a not-first/
not-last algorithm with the time complexity O(n2) and Vilím (2004) proposed a filtering
algorithm with the time complexity O(n.log n).

As we already mentioned, the edge finding rule can be modified to model cumulative
resources (Baptiste & Le Pape, 1996), that is, discrete resources with capacity greater
than one (more activities can be processed in parallel). To cover a broader range of
propagation techniques for scheduling, we include here another filtering algorithm based
on demand profile rather than present a modified edge-finding rule. This technique uses
a graph of necessary aggregated demand (demand profile) to deduce some domain
pruning for time variables.

Assume that activities require/consume some capacity of the resource when being
processed, this is called a resource demand, and this capacity may be different for
different activities. For activity A we denote the requested capacity cap(A). The activities
are allocated to the resource in such a way that at each time point the total capacity of
the resource cannot be exceeded. We may assume that the total capacity of the resource
denoted MaxCapacity is not changing in time (otherwise, special activities consuming
the resource at given times may be inserted).

The demand profile of the resource is computed using the activities A such that
max(start(A))<min(end(A)). Then, we know that the activity A consumes cap(A) of the
resource capacity in the time interval [max(start(A), min(end(A))] independently of the
final time allocation of the activity (see Figure 12 right).  By aggregating demands of all
such activities for each time point we get necessary resource demand — a demand profile
of the resource. This resource demand profile can now be used to identify time intervals
where there is not enough capacity to process some activity. Using these intervals we
can reduce the time bounds for the activity as Figure 12 shows. Time complexity of this
algorithm is O(n), where n is the number of activities processed by the resource.

The above technique is sometimes called a timetable constraint (Baptiste et al.,
2001) because we get the same pruning as if we use a timetable representation of the time
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location of the activity. Timetable for the activity A is a set of Boolean (0,1) variables X(A,t)
indicating whether the activity A is processed in time t. The following capacity constraint:

∀t  ∑A X(A,t).cap(A) ≤ MaxCapacity

together with the constraints connecting the variables X(A,t) with start(A) and end(A) do
exactly the same pruning as described in above paragraphs.

Branching Schemes for Scheduling
In the section on constraint satisfaction we described a general search procedure

for solving a CSP that is based on assigning values to the variables. We can see selection
of a value for the variable in a broader sense as resolving a disjunction. In particular, if
the current domain of the variable x contains values v1,…,vn, then value selection is
equivalent to selection of an elementary equality constraint from the disjunction
x=v1 ∨ … ∨ x=vn. Note that by selecting this constraint, say x=vj, and posting it to the
constraint store, we make the disjunction satisfied. Naturally, it is possible to use an
arbitrary disjunctive constraint, for example A<<B ∨ B<<A for branching during search.
Then, the constraint A<<B might be posted first and if it leads to a failure then the
constraint B<<A is posted as an alternative or vice versa.

In scheduling, both techniques — value selection and disjunction resolution — are
combined. In particular, value selection is used to find a resource for the activity, that
is, to find a value for the variable resource(A), while disjunction resolution is used to
decide about ordering of activities in time, that is, to choose between the orders
A<<B and B<<A (non-overlap) or between A<<B and ¬A<<B.

The notions of value and variable selection heuristics can be generalised to
disjunction resolution in the following way: the variable selection heuristics correspond
to heuristics proposing a disjunctive constraint to be resolved first; the value selection
heuristics correspond to the heuristics proposing an elementary constraint within the
disjunction to be posted first. Let us now present some specific “value and variable

Figure 12. Necessary aggregated demand is used for reduction of time bounds using
the intervals where there is not enough capacity for processing the activity (Every
activity contributes to necessary demand in times when it must be processed (a shadow
rectangle in the right graph). Height of the activity corresponds to required capacity
of the resource.)
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ordering” heuristics for scheduling that are based on the notion of slack. These
heuristics were proposed first by Smith & Cheng (1993).

The slack for ordering of two activities A<<B is defined using the formula:

max(end(B)) - min(start(A)) - p({A,B}).

The meaning of this notion is following: if we put the activity A to its earliest start
time then the slack characterises the time in which the activity B can be placed after A
(Figure 13). A larger slack implies a higher degree of freedom for the activity B. Now, if
we are ordering activities A and B (“value selection”) then according to the succeed-first
principle, the ordering with a larger slack is tried first.

The slack for two not-yet ordered activities A and B is a combination of the slacks
for both orderings A<<B and B<<A, in particular:

max{ max(end(A)) - min(start(B)), max(end(B)) - min(start(A)) } - p({A,B}).

Now, if we are deciding which pair of activities should be ordered first (“variable
ordering”), then according to the first-fail principle, the activities with a smaller slack
should be ordered first. The above branching scheme requires O(n2) choices to be
resolved during search because each pair among the n activities should be ordered.

In Baptiste et al. (1995) a different branching scheme for activity selection is studied.
Rather than deciding about the order of two not-yet ordered activities, we can decide
about the first or last activity in the resource — we are resolving either the disjunction
A<<Ω∨¬A<<Ω or the disjunction Ω<<A ∨¬Ω<<A. According to the first-fail prin-
ciple, if the number of activities that can be first in the resource is smaller than the number
of activities that can be last then we may rather select one of the possible first activities
to avoid branching on a higher number of possibilities and vice versa. Now, if the first
activity is being selected, then the activity with the smallest minimal start time should
be selected to be executed first. Ties are broken by preferring the activity with the smallest
maximal start time. Selecting an activity A to be processed first imposes the ordering
constraint A<<Ω , where Ω is a set of all activities different from A.  If the selection leads
to a failure then we know that the selected activity cannot be executed first so its minimal
start time can be increased to the minimal end time among the remaining activities that
can still be executed first. This follows the not-first rule presented in the previous section.
Similarly, when the last activity is being selected, then the activity with the largest
maximal end time should be selected to be executed last. Ties are broken by preferring

Figure 13. Slack for ordering of activities A<<B
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the activity with the largest minimal end time. In case of failure, the maximal end time of
the selected activity is decreased to the maximal start time among the remaining possible
last activities according to the not-last rule. Caseau & Laburthe (1995) proposed a
modified version of this branching scheme, which takes in account the most constrained
subset of activities instead of the set of all unscheduled activities. This technique allows
faster focusing on bottlenecks. Both these branching schemes require O(n) choices to
be resolved during search because the position of each of n activities should be decided.

Finally, let us define the slack for the set of activities Ω using the following formula:

max(end(Ω)) - min(start(Ω)) - p(Ω).

If Ω is a set of all activities allocated to some resource, then the slack for Ω is called
a resource slack. The resources with a small slack are the critical resources, sometimes
called bottlenecks. The resource slack can be now used in two ways. First, if we are
selecting a resource for some activity (“value selection”), the resource with a larger slack
is preferred. Second, if we are deciding on which resource the activities should be ordered
first (“variable ordering”) then the resource with a smaller slack should be handled first.
In fact, we can use a finer version of these heuristics saying that the resource with the
minimal slack for any subset of the activities processed by that resource is scheduled
first. This corresponds to a known wisdom that critical resources or resources with
bottlenecks should be scheduled first (Baptiste et al., 2001). Last but not least, during
resource allocation, the activities with a smaller number of alternative resources should
be allocated to some resource first according to the first-fail principle.

In the above paragraphs we presented some heuristics guiding scheduling. If these
heuristics work well then it is all right. However, the question is what to do when
heuristics fail, that is, when the value proposed by the heuristic leads to a failure. To
recover from the violations of heuristics, Harvey & Ginsberg (1995) proposed a search
algorithm called Limited Discrepancy Search (LDS) that proved to be very efficient,
especially in the scheduling problems. The basic idea of LDS follows two observations.
First, the number of violations of the heuristic on a search branch leading to the solution
is usually small — good heuristics are reliable in most cases. Second, the heuristics are
usually less reliable at the earlier part of the search tree and, as search proceeds, more
information for a better heuristic decision is available. According to these observations,
it seems promising to explore first the search branches with a smaller number of violations
of the heuristic and among these branches to explore first the branches where the
heuristic is violated in the earlier parts of the branch.

LDS changes the search strategy in such a way that the number of allowed heuristic
violations — so called discrepancies — is increasing as search progresses. During the
first run, LDS follows the heuristic. In case of failure, LDS explores the branches with at
most one heuristic violation starting with the branches where the heuristic is violated in
the earlier part of the search tree. In case of failure, the number of allowed discrepancies
is increased again and so on until the solution is found. At the end, LDS might explore
the whole search tree so it is a complete search technique. However, the hope is that by
changing the order of search branches by respecting the above rules, LDS increases the
chances to find a solution earlier. Figure 14 shows the order in which LDS explores the
branches of a binary search tree as the number of allowed discrepancies increases.
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Notice that in each subsequent iteration of LDS the branches from the previous
iteration are revisited. This decreases the overall efficiency of LDS, so Korf (1996)
proposed a new version of the algorithm called Improved Limited Discrepancy Search
(ILDS) where each branch is visited exactly once. A similar issue is addressed in other
discrepancy-based algorithms like Depth-bounded Discrepancy Search (DDS) by Walsh
(1997) or Discrepancy-Bounded Depth First Search (DBDFS) by Beck & Perron (2000).

CONSTRAINTS IN PLANNING
While constraints are now widely accepted by the scheduling community and

constraint models are more or less standard for scheduling applications, constraints are
still rarely applied to planning. The main reason is internal dynamics of planning
problems, where one does not know the activities to be planned in advance, which is in
conflict with the static formulation of the constraint satisfaction problem, where the
variables and constraints must be specified before solving the problem. Nevertheless,
as pointed out by Kautz & Selman (1992), it is possible to start planning with some lover
bound on the plan size and to formulate this sub-problem statically (they used a SAT
formulation). When solving of the sub-problem fails, the size of the plan is increased by
one and the above process is repeated until a solution is found or some upper bound on
the plan length is exceeded.

Planning problems are usually defined over the world whose state is described as
a set of propositions. The state of the world can be changed by actions that have some
propositions as conditions and that add and remove some propositions as its effect. The
initial state is described using the set of initial propositions and the goal state is described
using a set of final propositions that must be true in the final world. The plan of a given
length can be represented by a planning graph (Blum & Furst, 1997), which is a layered
graph where layers for propositions and actions interchange. The action layer contains
nodes representing the actions; the propositional layer contains nodes representing the
propositions. The first layer of the graph is an action layer where only the actions
applicable to the initial state are included (i.e., action conditions are among the initial
propositions). The last layer of the graph is a propositional layer and it must contain all
the final propositions. An action node is connected with the propositions in the previous
layer that are conditions of the action and with the propositions in the next layer that

Figure  14. LDS explores the branches with a smaller number of discrepancies first (It
also prefers the branch where the discrepancy is located in the earlier part. In the
figure, the heuristic always proposes to go left.)
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correspond to propositions added by the action (Figure 15). The delete effect of the
action is modelled via so called mutexes describing which actions cannot be active
together at the same layer. Basically, if the action a adds some proposition p and the
action b deletes the same proposition p then these two actions form mutex as they cannot
be active at the same time/layer. The action mutex can be propagated to the propositional
mutex, so it is possible to state that two propositions cannot be active at the same layer
(for example, these propositions are added by different actions and any pair of such
actions is mutex). Using this propagation it is possible to deduce other action mutexes,
etcetera. Recall also that in addition to real actions in the planning graph there are also
special so-called no-op actions that transport the non-used propositions between the
layers (a non-used proposition is a proposition that is active in the layer but it is not used
as a condition of any action in the next layer). Basically, such action has a proposition
p as its condition and it adds the same proposition p as its effect. These actions are
handled like other actions in the planning graph. Naturally, the no-op action for a
proposition p forms a mutex with any action that deletes p.

As pointed out above, the planning can be done by constructing the planning graph
for a given plan length, then trying to find out if the plan exists in the graph, and in case
of a negative answer the planning graph is extended by one step (two layers). We present
two constraint encodings of the planning graph as proposed by Do & Kambhampati
(2000) and Lopez & Bacchus (2003).

A Graphplan Constraint Model
The planning graph can be reformulated as a CSP by assuming variables for

propositions in each (propositional) layer (Do & Kambhampati, 2000). Just note that the
propositions in different layers are modelled by different variables, so we have a variable
pi,l for the proposition i in the layer l (only propositional layers are numbered). The actions
supporting a given proposition correspond to the variable domains. It is possible to use
a Dynamic CSP to model that some propositions are inactive in the layer, however we

Figure 15. A simple planning graph (no-op actions and mutexes are not included)
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rather use a standard CSP formulation there. To model that the proposition is inactive
in the layer, we simply extend the domain (with actions) of the variable by an element ⊥.

The conditions of the action are modelled via constraints connecting the proposi-
tions as conditions with all the propositions as the effect. Assume that an action a1 has
the conditions p1, p2, p3 and an effect p4. This is modelled using the following constraint
imposed on the propositions in all layers m (such constraint is introduced for all the
effects):

p4,m = a1 ⇒ p1,m-1≠⊥ & p2,m-1≠⊥ & p3,m-1≠⊥.

Basically, the constraint says that if action a1 is used to “produce” p4 then there must
be some actions producing p1, p2, p3 in the previous layer.

The propositional mutex stating that two propositions say pi and pj cannot be active
together at some layer l can be modelled using a binary constraint of the following form:

pi,l =⊥ ∨ pj,l=⊥.

The action mutex cannot be expressed directly as a constraint because there are no
variables for the actions. Assume that actions a and b are marked mutex. Then for every
pair of propositions pi and pj at the layer l (next to the action layer with a and b) such that
pi is added by a and pj is added by b we have an action mutex constraint:

pi,l ≠ a ∨ pj,l ≠ b.

The above constraints ensure that actions are correctly connected with proposi-
tions so they form a sound plan. This plan should achieve a goal state, that is, the final
layer should contain all final propositions. This is modelled by constraints requesting
the final propositions in the last layer to be active. If l is the number of the last layer and
pi is a final proposition, we use the constraint:

pi,l ≠ ⊥.

Notice that like a planning graph, the above constraint model supports parallel
actions, that is, two or more actions can be active at the same layer provided that they
are compatible (no mutex). If one wants to have exactly one action per layer (no-op actions
are ignored), then it is possible to achieve it by imposing a constraint saying that exactly
one variable per layer has assigned an action different from a no-op action. A similar
constraint should be used if we want to omit void layers, that is, layers where only no-
op actions are used (at least one variable per layer has assigned an action different from
a no-op action).

A Boolean Constraint Model
Lopez & Bacchus (2003) proposed a different constraint model that uses Boolean

variables both for actions and for propositions. Again, different variables are used for
actions and propositions in different layers (we number the layers continuously from 1,
so action layers are marked by odd numbers while propositional layers are marked by even
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numbers). Value true for the variables means that the action/proposition is active in
respective layer.

Precondition constraints model conditions of the actions. In particular, if an action
ai uses a proposition pj as its condition then the following constraint is posted for all
layers m:

ai,m+1  ⇒ pj,m.

The effect of the action can be modelled directly now because we have both action
and propositional variables. The proposition pi is active in some propositional layer m
if and only if there is an action in layer m-1 that adds pi or pi is active in the previous
propositional layer m-2 and there is no action at layer m-1 that deletes it (next state
constraint):

pi,m ⇔    (∨pi∈add(aj)
 aj,m-1) ∨  (pi,m-2 & (∧ pi∈del(aj)

 ¬aj,m-1))).

Notice that the above constraint encapsulates the no-op actions, which are no more
used in the constraint model. It may also seem that mutexes are also covered (because
delete effect is included in the constraint). However note that the above constraint allows
two “incompatible” actions at the same layer, one adding the proposition and one
deleting it. Moreover additional mutexes may exist in the planning graph. Action and
propositional mutexes can be modelled using constraints in an obvious way (mutex
constraints):

¬ai,l  ∨ ¬aj,l, for mutex between actions ai and aj at layer l,
¬pi,l  ∨ ¬pj,l, for mutex between propositions pi and pj at layer l.

Like in the previous model, it is necessary to state that the final propositions are
active in the last layer. This is done by assigning the value true to the variables for all
such propositions in the last layer.

This model again allows parallel actions in the layer (provided that they are not
mutex). If one wants to have exactly one action per layer then it is possible to impose a
constraint stating that exactly one action variable per layer has the value true. If we want
to omit void layers where no real action is used (notice that the next state constraints allow
such situation) then a constraint stating that at least one action variable per layer has
the value true (this is simply a disjunction of the variables from the action layer).

The advantage of constraint models for planning is that they can exploit the state-
of-the-art constraint satisfaction technology. Moreover, they are further extendable to
cover problems with numerical variables, resources, and time. In particular, special
resource constraints developed in scheduling are immediately available to such planning
models.

Domain Filtering for Planning
While scheduling deals with absolute times of activities, in planning a relative

ordering of actions is probably more important. Moreover, resources in scheduling
usually represent machines for processing the activities (unary or cumulative resources),
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while resources in planning often represent material or energy that is consumed/
produced by actions (reservoir). In the next paragraphs we present a filtering technique
that deduces relative ordering of actions using resource (in the planning sense)
restrictions. In particular, this method is useful for modelling resources called reservoirs.

Reservoir is a resource that can store some item: it has an initial level of the item
and a maximal level (capacity). Actions either consume the item from the reservoir
(enough quantity must be present) or they store the item there (capacity cannot be
exceeded). Assume now that we have a reservoir with capacity two that is full at the
beginning. We have three consuming actions A, B, and C such that A<<B<<C and each
action consumes one item. There is one more action D that stores one item. Because the
reservoir is full at the beginning, we can deduce that D cannot be processed first so A<<D
(otherwise the capacity is exceeded). Because the initial level of the reservoir is two and
A, B, and C require together three items, there must be some storing action before C, thus
D<<C (Figure 16).

The question is how to formally describe the above propagation technique. We
describe the filtering rules based on works by Cesta & Stella (1997) and Laborie (2003).
Assume that prod(a) describes a capacity produced by the action a: a positive number
indicates production while a negative number indicates consumption. Assume also that
no two actions can be processed at the same time, that is, either a<<b or b<<a. We define
an optimistic resource profile (orp) for the action a using the following formula:

orp(a) = InitLevel + prod(a) + ∑b<<a prod(b) + ∑b??a & prod(b)>0 prod(b),

where b??a means that the relative order of b to a is not decided yet and InitLevel is the
initial level in the resource. The optimistic resource profile describes the maximal possible
level in the resource when the action a is processed, that is, all production actions whose
order to a is not decided yet are assumed to be before a. Now, we can define the following
propagation rules:

orp(a) < MinLevel ⇒ fail

“despite the fact that all production is planned before a, the minimal required level in
the resource is not reached”

Figure 16. Partial ordering of activities (arcs) can be extended (dashed arcs) by using
information about resource capacity and consumed (-) and produced (+) quantities
(Resource capacity and initial level is two here.)
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orp(a) – prod(b) – ∑b<<c & c??a & prod(c)>0 prod(c)  < MinLevel ⇒ b<<a,

for any b such that b??a and prod(b)>0

“if production in b is planned after a and the minimal required level in the resource is
not reached then b must be before a.”

For the problem from Figure 16 we can deduce that D must be before C by computing
orp(C) and applying the above rules for MinLevel=0.

A similar idea can be applied to consumption. We define a pessimistic resource
profile (prp) for the action a using the following formula:

prp(a) = InitLevel + prod(a) + ∑b<<a prod(b) + ∑b??a & prod(b)<0 prod(b).

The pessimistic resource profile describes the minimal possible level in the resource
when the action a is processed, that is, all consumption actions whose order to a is not
decided yet are assumed to be before a. Now, we can define the following propagation
rules:

prp(a) > MaxLevel ⇒ fail

“despite the fact that all consumption is planned before a, the maximal required level
(resource capacity) in the resource is exceeded”

prp(a) – prod(b) – ∑b<<c & c??a & prod(c)<0 prod(c)  > MaxLevel ⇒ b<<a,

for any b such that b??a and prod(b)<0

“if consumption in b is planned after a and the maximal required level in the resource
is exceeded then b must be before a.”

For the problem from Figure 16 we can deduce that A must be before D by
computing prp(D) and applying the above rules for MaxLevel=2.

All so far presented filtering rules assume resource restrictions somehow. It is
possible to study precedence relations between the actions separately; then we are
speaking about (simple) temporal problems. Assume that time(a) indicates the time of
the action a. As we already mentioned, the precedence relation between two actions a
and b can be modelled using the following pair of constraints which are called a simple
temporal constraint:

time(b)-time(a) ≤ da,b
time(a)-time(b) ≤ db,a.

As shown by Dechter, Meiri, & Pearl (1991), a simple temporal problem can be solved
in polynomial time by applying Floyd-Warshall’s algorithm for computing the shortest
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path between all pairs of actions. Actually, Floyd-Warshall’s algorithm does the same
job as achieving path consistency there so path consistency is often applied to solve
temporal problems.

CONSTRAINT SOLVERS: A SHORT SURVEY
Users applying constraint satisfaction technology in their projects are not forced

to develop their own constraint solvers. There exist many off-the-shelf constraint
solvers, both free and commercial, implementing constraint satisfaction algorithms so
the users may concentrate on problem modelling rather on implementation details.
Moreover, the constraint solvers are usually extendable so the users may define new
specific constraints as well as use search strategies developed for a particular problem.
Usually, the solvers are provided as libraries for a particular programming language.
Many of them are embedded in Prolog systems, but there exist libraries for C++, Java, and
Lisp as well. For this survey we selected five of these solvers that, in our opinion, belong
to the most widespread systems and, at the same time, represent different approaches
to implementation and usage of the constraint technology. Fernández & Hill (2000) did
a deeper comparison of eight constraint solvers including the solvers presented here
(with the exception of CHIP). For a list of other constraint systems and languages look
at the Constraints Archive (2003) or at Barták (1998).

Let us start our short survey with three Prolog systems sharing the same roots but
differing slightly in their aims, namely SICStus Prolog, ECLiPSe, and CHIP.

SICStus Prolog by SICS (www.sics.se/sicstus) is a classical representative of
Constraint Logic Programming. It is a strong Prolog system enhanced by libraries for
solving constraints over finite domains, Booleans, and real numbers. The constraints are
naturally integrated into the Prolog language and users may define their own constraints
(filtering algorithms) via a standard interface. SICStus Prolog is a commercial product.

SICStus Prolog (version 3.11.1) provides several constraints for modelling sched-
uling problems. In particular, there is a constraint serialized for modelling unary resources
with user-defined precedence between the activities.  This constraint implements the
edge finding algorithm and it also contains a path-consistency algorithm for improved
pruning of temporal (precedence) relations. There is also a constraint cumulative for
modelling a single cumulative resource with restricted capacity and a constraint cumulatives
for modelling a set of cumulative resources that are shared by the activities (for each
activity a particular set of alternative resources can be specified). All the constraints are
closed so it is not possible to add other variables (activities) to them after posting the
constraint to the system.

SICStus Prolog provides a standard enumeration (labelling) procedure that can be
customised by user defined variable and value selection heuristics. A version of Limited
Discrepancy Search is included. There is also a special search procedure for activity
ordering. This procedure uses the branching scheme based on decisions about the first
or last activity among the set of activities. Users may define their own depth-first search
strategies.

SICStus Prolog provides bi-directional interfaces to C/C++ and Java and a uni-
directional Visual Basic interface that allows loading and calling a SICStus Prolog
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program from Visual Basic but not the other way around. There are libraries for interfacing
Tcl/Tk, accessing COM objects, interfacing Berkeley DB, and parsing and generating
XML. It is also possible to generate stand-alone executables.

ECLiPSe by IC-Parc (www.icparc.ic.ac.uk/eclipse) is very close to SICStus Prolog
in the way the constraints are handled (it is easy for programmers to switch between the
two systems even if the code is not fully interchangeable). This system is designed
specifically to work with constraints and it provides interfaces to third-party solvers, in
particular to the CPLEX and XPRESS-MP linear and mixed-integer programming solvers.
ECLiPSe is going in the direction of integrating constraint technology with classical OR
technology; that is, with linear and mixed-integer solvers. In addition to constraints over
integers and reals, there is also a symbolic solver and a solver over finite sets of integers.
Integration of various solvers is one of the strongest features of ECLiPSe. The ECLiPSe
system is free for academic and research (non-profit) purposes. Recently it became
available for commercial purposes as well.

ECLiPSe (version 5.7) provides similar scheduling constraints like SICStus Prolog.
There is a constraint disjunctive for modelling a unary resource and a constraint cumulative
for modelling a cumulative resource. The user may choose whether to use a quadratic or
cubic version of the edge finder that is behind these constraints. All the constraints are
closed so it is not possible to add other variables (activities) to them after posting the
constraint to the system. Again, there is an interface for defining one’s own constraints
(filtering algorithms).

ECLiPSe provides several depth-first search methods including incomplete search
techniques like Credit Search (Beldiceanu et al., 1997), Bounded Backtrack Search
(Harvey, 1995), and Limited Discrepancy Search (Harvey & Ginsberg, 1995). No special
branching scheme for scheduling is provided but the users may define their own depth-
first search strategies including those specific for scheduling. Moreover, there is a so-
called repair library that allows implementation of local search algorithms. Last but not
least, there is a hybrid library for finding optimal solutions to resource-constrained
scheduling problems, using an external linear solver to do “probing” (solving the
problem with the resource constraints relaxed and using the results to guide the main
search).

ECLiPSe provides interfaces to C/C++ and Java. ECLiPSe code can be called from
C++ or Java and external predicates for ECLiPSe can be written in C/C++. There is an
interface to Tcl/Tk that is useful to design a graphical user interface for ECLiPSe
programs. There is also a library for parsing and generating XML. Visualisation tools are
provided to see what is happening during search. Gantt chart viewer and the network
viewers (for showing precedence relationships) are also included.

CHIP (Constraint Handling in Prolog) by Cosytec (www.cosytec.com) is a third
representative of (originally) Prolog-based systems sharing the same roots with ECLiPSe.
This system uses Prolog just as a host language, the constraint solver is fully imple-
mented in C and it is also available separately as C and C++ libraries. CHIP is a commercial
product; in comparison with competitors, its development stagnated a bit in recent years.

CHIP popularised the idea of global constraints and the main philosophy behind
CHIP is that problems should be modelled using global constraints. There are five basic
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concepts of global constraints in CHIP (version 5): different (items are different from each
other), order (items are partially ordered), resource (items use limited resources), tour
(items in different locations must be visited in some sequence), and dependency (some
item depends on some other items). For modelling scheduling problems, the constraints
of order and resource concepts are of particular interest. There is a disjunctive constraint
for modelling a unary resource. This constraint is generalized in a cumulative constraint
where the resource capacity as well as the resource requirements for each activity can
be arbitrary. Several cumulative constraints are combined with a precedence graph
between the activities in a precedence constraint. This constraint can deduce more
information than a set of cumulative constraints. Again, all the constraints are closed so
it is not possible to add other variables (activities) to them after posting the constraint
to the system.

As we mentioned, the CHIP system concentrates primarily on providing the global
constraints. So, if the problem can be modelled using available global constraints then
it is easy to solve it in CHIP. However, it is more complicated to go beyond the available
global constraints.

In addition to the finite domain constraint solver, the CHIP environment includes
a graphical library, interfaces to relational databases, and foreign language interfaces.

Probably the largest company providing constraint technology is ILOG, Inc., which
offers a whole family of constraint-based products (www.ilog.com/products). The core
engine of its optimisation suite is ILOG Solver, which is a C++ library for constraint
satisfaction. This library can be extended by add-ons dedicated to particular problem
areas like ILOG Scheduler, ILOG Configurator, or ILOG Dispatcher. Recently, a new
branch of constraint libraries for Java, in particular JSolver and JConfigurator has been
released. All these products are commercial (and rather expensive).

Among the surveyed tools, ILOG probably provides the most direct support for
scheduling problems via ILOG Scheduler (version 6.0). Its C++ object technology allows
defining classes for activities, resources, and constraints. There are several types of
resources, namely state resources (a resource of infinite capacity whose state can vary
over time), discrete resources with finite discrete capacity (we called them cumulative
resources), unary resources with capacity one, discrete energy resources (energy like
watt-hours is consumed rather than capacity), and reservoirs (resources that can be both
consumed and produced — see the previous section). Activities are linked to resources
via so-called resource constraints defining how capacity is consumed or produced and
when. These activity constraints are posted one by one, which corresponds to adding
the activities to the resource. To get stronger domain filtering via filtering algorithms that
we described in the previous sections, the resource should be usually closed explicitly
which indicates that no more activities will come to the resource. It is also possible to
specify alternative resources for the activity. Finally, there are two types of temporal
constraints, namely precedence constraints defining ordering of activities and time
bound constraints defining time windows for activities.

ILOG Scheduler provides some basic search procedures for ordering activities in
the resources using information on slacks. Because ILOG Scheduler is merely a “sched-
uling interface” to ILOG Solver, the users may use the predefined search procedures of
ILOG Solver as well, in particular Depth First Search, Limited Discrepancy Search
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(Harwey & Ginsberg, 1995), Depth Bounded Discrepancy Search (Walsh, 1997), or
Interleaved Depth First Search (Meseguer, 1997). Also, the users may define their own
search procedures via classes of ILOG Solver. Local search is also supported.

On the other side of the cost spectrum is the Mozart system by the Mozart
consortium (www.mozart-oz.org). Opposite to the above presented systems, Mozart is
a self-contained development platform based on the Oz language that mixes logic,
constraint, object-oriented, concurrent, and multi-paradigm programming. Thanks to its
research and academic origin, there are many papers and tutorials describing the system
and its features, for example Würtz (1996, 1997) describes application of Mozart to
scheduling problems. The Mozart system is available for free.

Mozart (version 1.2.5) provides a support for scheduling problems via special
propagators (global constraints). There is a serialized propagator modelling a unary
resource that uses an improved edge finding algorithm proposed by Martin & Schmoys
(1996). Another propagator taskIntervals for unary resources is based on the algorithm
introduced by Caseau & Laburthe (1995). Several propagators are available for modelling
cumulative resources, for example the cumulativeEF propagator generalises the edge-
finding propagation in serialized and the cumulativeTI propagator generalises the propa-
gation in taskIntervals. The users may define their own propagators.

In addition to standard depth-first search procedures, Mozart provides several
branching schemes for solving scheduling problems. These branching schemes (they
call them distributions) are based on decisions about the first or last activity among the
set of activities. In particular, they provide the branching schemes that we described in
the section on scheduling (Baptiste et al., 1995) and a modified version of the branching
scheme proposed by Caseau & Laburthe (1995). It is possible to design other depth-first
search procedures (distribution strategies). Mozart provides visualization of the search
tree that is useful to see what is happening during search.

FURTHER READINGS
This chapter is a short journey to the world of constraint satisfaction and its

application to planning and scheduling. Naturally, this journey cannot be exhaustive; we
have concentrated of selected features and techniques of constraint satisfaction that are
the most appropriate for planning and scheduling.

A detailed description of many constraint satisfaction algorithms can be found in
Tsang (1995), Dechter (2003), and Barták (1998). Schulte (2002) gives details on imple-
mentation of constraint solvers; in particular he describes the insides of the Mozart
system. A short survey on applying constraints to scheduling was written by Wallace
(1994). The book by Brucker (2001) describes the traditional scheduling algorithms, while
the books by Baptiste et al. (2001), Dorndorf (2002) and Phan-Huy (2000) cover the most
widely used constraint-based scheduling techniques. Several papers (Baptiste & Le
Pape, 1996; Baptiste et al., 1995; Caseau & Laburthe, 1995; Cesta & Stella, 1997; Laborie,
2003; Torres & Lopez, 2000; Vilím & Barták, 2002; Vilím, 2004; Wolf, 2003) describe
particular filtering algorithms used for domain pruning in resource constraints. The
system CPlan (van Beek & Chen, 1999) was the first attempt to model planning problems
as constraint satisfaction problems via hand-coded models. Papers (Do & Kambhampati,
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2000; Lopez & Bacchus, 2003) describe general CSP encodings of planning graphs
introduced by GraphPlan (Blum & Furst, 1997). The papers by Lever & Richards (1994)
and El-Kholy & Richards (1996) show how constraint technology may help with solving
planning problems with temporal constraints and limited resources – a parcPLAN system
is described there. Finally, the paper by Frank et al. (2000) presents a constraint
reformulation of planning problems with interval time and resources.
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