

Introduction to Neural Networks

CS405

What are connectionist neural
networks?

• Connectionism refers to a computer modeling
approach to computation that is loosely based
upon the architecture of the brain.

• Many different models, but all include:
– Multiple, individual “nodes” or “units” that operate at

the same time (in parallel)
– A network that connects the nodes together
– Information is stored in a distributed fashion among the

links that connect the nodes
– Learning can occur with gradual changes in connection

strength

Neural Network History
• History traces back to the 50’s but became popular in the 80’s

with work by Rumelhart, Hinton, and Mclelland
– A General Framework for Parallel Distributed Processing in Parallel

Distributed Processing: Explorations in the Microstructure of
Cognition

• Peaked in the 90’s. Today:
– Hundreds of variants
– Less a model of the actual brain than a useful tool, but still some

debate
• Numerous applications

– Handwriting, face, speech recognition
– Vehicles that drive themselves
– Models of reading, sentence production, dreaming

• Debate for philosophers and cognitive scientists
– Can human consciousness or cognitive abilities be explained by a

connectionist model or does it require the manipulation of symbols?

Comparison of Brains and Traditional
Computers

• 200 billion neurons, 32 trillion
synapses

• Element size: 10-6 m

• Energy use: 25W
• Processing speed: 100 Hz

• Parallel, Distributed
• Fault Tolerant
• Learns: Yes

• Intelligent/Conscious: Usually

• 1 billion bytes RAM but trillions of
bytes on disk

• Element size: 10-9 m
• Energy watt: 30-90W (CPU)

• Processing speed: 109 Hz
• Serial, Centralized
• Generally not Fault Tolerant
• Learns: Some
• Intelligent/Conscious: Generally No

Biological Inspiration

“My brain: It's my second favorite organ.”

- Woody Allen, from the movie Sleeper

Idea : To make the computer more robust, intelligent, and learn, …
Let’s model our computer software (and/or hardware) after the brain

Neurons in the Brain
• Although heterogeneous, at a low level

the brain is composed of neurons
– A neuron receives input from other neurons

(generally thousands) from its synapses
– Inputs are approximately summed
– When the input exceeds a threshold the neuron

sends an electrical spike that travels that
travels from the body, down the axon, to the
next neuron(s)

Learning in the Brain
• Brains learn

– Altering strength between neurons
– Creating/deleting connections

• Hebb’s Postulate (Hebbian Learning)
– When an axon of cell A is near enough to excite a cell B and repeatedly

or persistently takes part in firing it, some growth process or metabolic
change takes place in one or both cells such that A's efficiency, as one
of the cells firing B, is increased.

• Long Term Potentiation (LTP)
– Cellular basis for learning and memory
– LTP is the long-lasting strengthening of the connection between two

nerve cells in response to stimulation
– Discovered in many regions of the cortex

Perceptrons
• Initial proposal of connectionist networks
• Rosenblatt, 50’s and 60’s
• Essentially a linear discriminant composed of

nodes, weights

I1

I2

I3

W1

W2

W3

 O

otherwise

Iw
O

i
ii

:0

0:1

I1

I2

I3

W1

W2

W3

O
or

1

Activation Function

Perceptron Example

2

1

.5

.3 =-1

2(0.5) + 1(0.3) + -1 = 0.3 , O=1

Learning Procedure:
Randomly assign weights (between 0-1)

Present inputs from training data

Get output O, nudge weights to gives results toward our
desired output T

Repeat; stop when no errors, or enough epochs completed

Perception Training
)()()1(twtwtw iii

ii IOTtw)()(

Weights include Threshold. T=Desired, O=Actual output.

5.1)2)(10(5.0)1(1 tw

Example: T=0, O=1, W1=0.5, W2=0.3, I1=2, I2=1,Theta=-1

7.0)1)(10(3.0)1(2 tw

2)1)(10(1)1(tw

If we present this input again, we’d output 0 instead

How might you use a perceptron
network?

• This (and other networks) are generally used to learn how to make
classifications

• Say you have collected some data regarding the diagnosis of
patients with heart disease
– Age, Sex, Chest Pain Type, Resting BPS, Cholesterol, …, Diagnosis (<50%

diameter narrowing, >50% diameter narrowing)

– 67,1,4,120,229,…, 1
– 37,1,3,130,250,… ,0
– 41,0,2,130,204,… ,0

• Train network to predict heart disease of new patient

Perceptrons
• Can add learning rate to speed up the learning process; just

multiply in with delta computation

• Essentially a linear discriminant

• Perceptron theorem: If a linear discriminant exists that can
separate the classes without error, the training procedure is
guaranteed to find that line or plane.

Class1 Class2

10

1 0

XOR Problem: Not Linearly Separable!

Exclusive Or (XOR) Problem

Input: 0,0 Output: 0
Input: 0,1 Output: 1
Input: 1,0 Output: 1
Input: 1,1 Output: 0

We could however construct multiple layers of perceptrons to get around
this problem. A typical multi-layered system minimizes LMS Error,

LMS Learning
LMS = Least Mean Square learning Systems, more general than the
previous perceptron learning rule. The concept is to minimize the total
error, as measured over all training examples, P. O is the raw output,
as calculated by

P

PP OTLMSceDis 2

2

1
)(tan

E.g. if we have two patterns and
T1=1, O1=0.8, T2=0, O2=0.5 then D=(0.5)[(1-0.8)2+(0-0.5)2]=.145

We want to minimize the LMS:

E

W

W(old)

W(new)

C-learning rate

i

ii Iw

LMS Gradient Descent
• Using LMS, we want to minimize the error. We can do this by finding

the direction on the error surface that most rapidly reduces the error
rate; this is finding the slope of the error function by taking the
derivative. The approach is called gradient descent (similar to hill
climbing).

k
k w

Error
cw

To compute how much to change weight for link k:

k

j

jk w

O

O

Error

w

Error

Chain rule:

)(
)(

2
1)(

2
1

22

jj
j

jj

j

P
PP

j

OT
O

OT

O

OT

O

Error

We can remove the sum since we are taking the partial derivative wrt Oj

)('
kkk

k

j WIFunctionActivationfI
w

O

 FunctionActivationfIOTcw kjjk ')(

)(WIfO j

Activation Function
• To apply the LMS learning rule, also known

as the delta rule, we need a differentiable
activation function.

 FunctionActivationfOTcIw jjkk '

otherwise

Iw
O i

ii

:0

0:1

Old:

New:

i
ii Iw

e

O

1

1

LMS vs. Limiting Threshold
• With the new sigmoidal function that is differentiable, we

can apply the delta rule toward learning.
• Perceptron Method

– Forced output to 0 or 1, while LMS uses the net output
– Guaranteed to separate, if no error and is linearly separable

• Otherwise it may not converge

• Gradient Descent Method:
– May oscillate and not converge
– May converge to wrong answer
– Will converge to some minimum even if the classes are not

linearly separable, unlike the earlier perceptron training method

Backpropagation Networks
• Attributed to Rumelhart and McClelland, late 70’s

• To bypass the linear classification problem, we can
construct multilayer networks. Typically we have fully
connected, feedforward networks.

I1

I2

1

Hidden Layer

H1

H2

O1

O2

Input Layer Output Layer

Wi,j
Wj,k

1’s - bias

j
jxj Hw

e

xO
,

1

1
)(

I3

1

i
ixi Iw

e

xH
,

1

1
)(

Backprop - Learning
Learning Procedure:

Randomly assign weights (between 0-1)

Present inputs from training data, propagate to outputs

Compute outputs O, adjust weights according to the delta
rule, backpropagating the errors. The weights will be
nudged closer so that the network learns to give the
desired output.

Repeat; stop when no errors, or enough epochs completed

Backprop - Modifying Weights

 sumjjkk e
fFunctionActivationfOTcIw

1

1
 ;'

We had computed:

For the Output unit k, f(sum)=O(k). For the output units, this is:

)1(, kkkkjkj OOOTcHw

)(1)((sumfsumfOTcIw jjkk

I H O
Wi,j Wj,k

For the Hidden units (skipping some math), this is:

kj
k

kkkkijjji wOOOTIHcHw ,,)1()()1(

Backprop
• Very powerful - can learn any function, given enough hidden

units! With enough hidden units, we can generate any function.
• Have the same problems of Generalization vs. Memorization.

With too many units, we will tend to memorize the input and
not generalize well. Some schemes exist to “prune” the neural
network.

• Networks require extensive training, many parameters to fiddle
with. Can be extremely slow to train. May also fall into local
minima.

• Inherently parallel algorithm, ideal for multiprocessor hardware.

• Despite the cons, a very powerful algorithm that has seen
widespread successful deployment.

Backprop Demo

• QwikNet
– Learning XOR, Sin/Cos functions

Unsupervised Learning

• We just discussed a form of supervised learning
– A “teacher” tells the network what the correct output is

based on the input until the network learns the target
concept

• We can also train networks where there is no
teacher. This is called unsupervised learning.
The network learns a prototype based on the
distribution of patterns in the training data. Such
networks allow us to:
– Discover underlying structure of the data
– Encode or compress the data
– Transform the data

Unsupervised Learning – Hopfield
Networks

• A Hopfield network is a type of content-
addressable memory
– Non-linear system with attractor points that

represent concepts
– Given a fuzzy input the system converges to the

nearest attractor
• Possibility to have “spurious” attractors that is a blend

of multiple stored patterns
• Also possible to have chaotic patterns that never

converge

Standard Binary Hopfield Network

• Recurrent; Every unit is connected to every other unit
• Weights connecting units are symmetrical

– wij = wji

• If the weighted sum of the inputs exceeds a threshold, its
output is 1 otherwise its output is -1

• Units update themselves asynchronously as their inputs
change

B

C

A

D

wADwABwAC

wBC wBD

wCD

Hopfield Memories

• Setting the weights:
– A pattern is a setting of on or off for each unit
– Given a set of Q patterns to store

• For every weight connecting units i and j:

• This is a form of a Hebbian rule which makes the weight
strength proportional to the product of the firing rates of the
two interconnected units

p
j

Q

p

p
iij xxw

1

Hopfield Network Demo

• http://www.cbu.edu/~pong/ai/hopfield/
hopfieldapplet.html

• Properties
– Settles into a minimal energy state

– Storage capacity low, only 13% of number of units

– Can retrieve information even in the presence of noisy
data, similar to associative memory of humans

Unsupervised Learning – Self
Organizing Maps

• Self-organizing maps (SOMs) are a data
visualization technique invented by Professor
Teuvo Kohonen
– Also called Kohonen Networks, Competitive Learning,

Winner-Take-All Learning
– Generally reduces the dimensions of data through the

use of self-organizing neural networks
– Useful for data visualization; humans cannot visualize

high dimensional data so this is often a useful technique
to make sense of large data sets

Basic “Winner Take All” Network

• Two layer network
– Input units, output units, each input unit is connected to each

output unit

I1

I2

O1

O2

Input Layer

Wi,j

I3

Output Layer

Basic Algorithm
– Initialize Map (randomly assign weights)

– Loop over training examples
• Assign input unit values according to the values in the current

example

• Find the “winner”, i.e. the output unit that most closely
matches the input units, using some distance metric, e.g.

• Modify weights on the winner to more closely match the input

2

1

n

i
iij IW

For all output units j=1 to m
and input units i=1 to n
Find the one that minimizes:

)(1 tt
i

t WXcW

where c is a small positive learning constant
that usually decreases as the learning proceeds

Result of Algorithm

• Initially, some output nodes will randomly be a
little closer to some particular type of input

• These nodes become “winners” and the weights
move them even closer to the inputs

• Over time nodes in the output become
representative prototypes for examples in the input

• Note there is no supervised training here
• Classification:

– Given new input, the class is the output node that is the
winner

Typical Usage: 2D Feature Map

• In typical usage the output nodes form a 2D “map”
organized in a grid-like fashion and we update weights in a
neighborhood around the winner

I1

I2

Input Layer

I3

Output Layers

O11 O12 O13 O14 O15

O21 O22 O23 O24 O25

O31 O32 O33 O34 O35

O41 O42 O43 O44 O45

O51 O52 O53 O54 O55

…

Modified Algorithm

– Initialize Map (randomly assign weights)
– Loop over training examples

• Assign input unit values according to the values in the current
example

• Find the “winner”, i.e. the output unit that most closely
matches the input units, using some distance metric, e.g.

• Modify weights on the winner to more closely match the input
• Modify weights in a neighborhood around the winner so

the neighbors on the 2D map also become closer to the
input

– Over time this will tend to cluster similar items closer on the
map

Updating the Neighborhood

• Node O44 is the winner
– Color indicates scaling to update neighbors

Output Layers

O11 O12 O13 O14 O15

O21 O22 O23 O24 O25

O31 O32 O33 O34 O35

O41 O42 O43 O44 O45

O51 O52 O53 O54 O55

)(1 tt
i

t WXcW

c=1

c=0.75

c=0.5

Consider if O42
is winner for
some other
input; “fight”
over claiming
O43, O33, O53

Selecting the Neighborhood

• Typically, a “Sombrero Function” or Gaussian
function is used

• Neighborhood size usually decreases over time to
allow initial “jockeying for position” and then
“fine-tuning” as algorithm proceeds

Color Example

• http://davis.wpi.edu/~matt/courses/soms/
applet.html

Kohonen Network Examples

• Document Map:
http://websom.hut.fi/websom/milliondemo/
html/root.html

Poverty Map

http://www.cis.hut.fi/
research/som-research/
worldmap.html

SOM for Classification

• A generated map can also be used for classification

• Human can assign a class to a data point, or use the
strongest weight as the prototype for the data point

• For a new test case, calculate the winning node and
classify it as the class it is closest to

• Handwriting recognition example: http://fbim.fh-
regensburg.de/~saj39122/begrolu/kohonen.html

Psychological and Biological
Considerations of Neural Networks

• Psychological
– Neural network models learn, exhibit some behavior similar to

humans, based loosely on brains
– Create their own algorithms instead of being explicitly programmed
– Operate under noisy data
– Fault tolerant and graceful degradation
– Knowledge is distributed, yet still some localization

• Lashley’s search for engrams

• Biological
– Learning in the visual cortex shortly after birth seems to correlate

with the pattern discrimination that emerges from Kohonen Networks
– Criticisms of the mechanism to update weights; mathematically

driven; feedforward supervised network unrealistic

Connectionism
• What’s hard for neural networks? Activities beyond recognition, e.g.:

– Variable binding
– Recursion
– Reflection
– Structured representations

• Connectionist and Symbolic Models
– The Central Paradox of Cognition (Smolensky et al., 1992):
– "Formal theories of logical reasoning, grammar, and other higher mental

faculties compel us to think of the mind as a machine for rule-based
manipulation of highly structured arrays of symbols. What we know of the brain
compels us to think of human information processing in terms of manipulation
of a large unstructured set of numbers, the activity levels of interconnected
neurons. Finally, the full richness of human behavior, both in everyday
environments and in the controlled environments of the psychological
laboratory, seems to defy rule-based description, displaying strong sensitivity to
subtle statistical factors in experience, as well as to structural properties of
information. To solve the Central Paradox of Cognition is to resolve these
contradictions with a unified theory of the organization of the mind, of the
brain, of behavior, and of the environment."

Possible Relationships?

• Symbolic systems implemented via
connectionism
– Possible to create hierarchies of networks with

subnetworks to implement symbolic systems

• Hybrid model
– System consists of two separate components;

low-level tasks via connectionism, high-level
tasks via symbols

Proposed Hierarchical Model

• Jeff Hawkins

• Founder: Palm Computing, Handspring

• Deep interest in the brain all his life

• Book: “On Intelligence”
– Variety of neuroscience research as input

– Includes his own ideas, theories, guesses
– Increasingly accepted view of the brain

The Cortex

• Hawkins’s point of interest in the brain
– “Where the magic happens”

• Hierarchically-arranged in regions
• Communication up the hierarchy

– Regions classify patterns of their inputs
– Regions output a ‘named’ pattern up the hierarchy

• Communication down the hierarchy
– A high-level region has made a prediction
– Alerts lower-level regions what to expect

Hawkins Quotes

“The human cortex is particularly large and
therefore has a massive memory capacity.
It is constantly predicting what you will see,
hear and feel, mostly in ways you are
unconscious of. These predictions are our
thoughts, and when combined with sensory
inputs, they are our perceptions. I call this
view of the brain the memory-prediction
framework of intelligence.”

Hawkins Quotes

“Your brain constantly makes predictions
about the very fabric of the world we live
in, and it does so in a parallel fashion. It
will just as readily detect an odd texture, a
misshapen nose, or an unusual motion. It
isn’t obvious how pervasive these mostly
unconscious predictions are, which is
perhaps why we missed their importance.”

Hawkins Quotes

“Your brain constantly makes predictions
about the very fabric of the world we live
in, and it does so in a parallel fashion. It
will just as readily detect an odd texture, a
misshapen nose, or an unusual motion. It
isn’t obvious how pervasive these mostly
unconscious predictions are, which is
perhaps why we missed their importance.”

Hawkins Quotes
“Suppose when you are out, I sneak over to

your home and change something about
your door. It could be almost anything. I
could move the knob over by and inch,
change a round knob into a thumb latch, or
turn it from brass to chrome…. When you
come home that day and attempt to open the
door, you will quickly detect that
something is wrong.”

Prediction

• Prediction means that the neurons involved
in sensing your door become active in
advance of them actually receiving sensory
input.
– When the sensory input does arrive, it is

compared with what is expected.
– Two way communication; classification up the

hierarchy, prediction down the hierarchy

Prediction

• Prediction is not limited to patterns of low-level
sensory information like hearing and seeing

• Mountcastle’s principle : we have lots of
different neurons, but they basically do the
same thing (particularly in the neocortex)
– What is true of low-level sensory areas must be true

for all cortical areas. The human brain is more
intelligent than that of other animals because it can
make predictions about more abstract kinds of
patterns and longer temporal pattern sequences.”

Visual Hierarchies

• Lowest visual level inputs pixels

• Second level recognizes edges, lines, etc
from known patterns of pixels

• Third level recognizes shapes from known
patterns of edges, lines, etc

• Fourth level recognizes objects from known
patterns of shapes

Layers

Not there yet…

• Many issues remain to be addressed by
Hawkins’ model
– Missing lots of details on how his model could

be implemented in a computer
– Creativity?
– Evolution?

– Planning?
– Rest of the brain, not just neocortex?

Links and Examples

• http://davis.wpi.edu/~matt/courses/soms/
applet.html

• http://websom.hut.fi/websom/milliondemo/
html/root.html

• http://www.cis.hut.fi/research/som-
research/worldmap.html

• http://www.patol.com/java/TSP/index.html

