Optimal Code Selection in DAGs

M. Anton Ertl

Institut fiir Computersprachen
Technische Universitdt Wien
Argentinierstrafle 8, 1040 Wien, Austria
anton@mips.complang.tuwien.ac.at
http://www.complang.tuwien.ac.at/anton/

Tel.: (+43-1) 58801 18515
Fax.: (+43-1) 58801 18598

Abstract

We extend the tree parsing approach to code selection to
DAGs. In general, our extension does not produce the opti-
mal code selection for all DAGs (this problem would be NP-
complete), but for certain code selection grammars, it does.
We present a method for checking whether a code selection
grammar belongs to this set of DAG-optimal grammars, and
use this method to check code selection grammars adapted
from lcc: the grammars for the MIPS and SPARC architec-
tures are DAG-optimal, and the code selection grammar for
the 386 architecture is almost DAG-optimal.

1 Introduction

The code generator of a compiler transforms programs from
the compiler’s intermediate representation into assembly
language or binary machine code. Code generation can be
divided into three phases: Code selection translates the op-
erations in the intermediate representation into instructions
for the target machine; instruction scheduling orders the in-
structions in a way that keeps register pressure and/or the
number of pipeline stalls low; register allocation replaces
the pseudo-registers used in the intermediate representation
with real registers and spills excess pseudo-registers to mem-
ory.

A popular method for code selection is tree parsing. It al-
lows very fast code selectors and guarantees optimality (with
respect to its machine description). Tree parsing works only
if the intermediate representation is a tree. However, the
preferred intermediate representation is often in the form of
DAGs (directed acyclic graphs).

This paper extends tree parsing for dealing with DAGs.
Our main contributions are: a linear-time method for pars-
ing DAGs (Section 4); and a check, whether this method
parses all DAGs optimally for a given grammar (Section 5).
We report our (encouraging) experiences with this checking
method in Section 6.

nonterminal—pattern cost

1 start— reg 0
2 reg— Reg 0
3 reg— Int 1
Fetch
4 reg— ‘ 2
addr
Plus
5 reg— A 2
reg reg
6 addr— reg 0
7 addr— Int 0
Plus
8 addr— A 0
reg Int

Figure 1: A simple tree grammar

In Section 2 we introduce code selection by tree parsing
and in Section 3 we discuss why we would like to perform
code selection on DAGs. Finally, Section 7 presents some
related work.

2 Code Selection by Tree Parsing

The machine description for code selection by tree parsing
is a tree grammar. Figure 1 shows a simple tree grammar
(from [Pro95]). Following the conventions in the code selec-
tion literature, we show nonterminals in lower case, opera-
tors capitalized, and trees with the root at the top (i.e., if we
view intermediate representation trees as data flow graphs,
the data flows upwards).

Each rule consists of a production (of the form
nonterminal—pattern), a cost, and some code generation
action (not shown). The productions work similar to pro-
ductions in string grammars: A derivation step is made by
replacing a nonterminal occurring on the left-hand side of
a rule with the pattern on the right-hand side of the rule.
For a complete derivation, we begin with a start nonter-
minal, and perform derivation steps until no nonterminal is
left. Figure 3 shows two ways to derive a tree (adapted from

Paper and BibTeX entry are available at http://www.complang.tuwien.ac.at/papers/. This paper was published in:

Principles of Programming Languages (POPL '99)

Copyright 1998 by the Association for Computing Machinery, Inc. Permission to make digital or hard copies of part or all of this work for per

Labeler information

start:cost=4 rule=1
Fetch @addr:cost=4 rule=6
reg: cost=4 rule=4

start:cost=2 rule=1

Derivation tree

Fetch addr:cost=2 rule=6 I

reg: cost=2 rule=4

4
start:cost=3 rule=1 ‘
8

Plus addr:cost=0 rule=8

reg: cost=3 rule=5 /

start:cost=0 rule=1 start: cost=1 rule=1 2
addr:cost=0 rule=6 Reg INt addr:cost=0 rule=7
reg: cost=0 rule=2 reg: cost=1 rule=3

Figure 2: The information computed by the labeler and the resulting derivation tree.

Figure 3: Two derivations of the same tree (the circles and
numbers indicate the rules used).

[Pro95]). The cost of a derivation is the sum of the costs of
the applied rules.

For code selection the operators used in the tree grammar
are the operators of the intermediate representation, and the
costs of the rules reflect the costs of the code generated by
the rule. The cost of a whole derivation represents the cost
of the code generated for the derived tree.!

As the example shows, code selection grammars are usu-
ally ambiguous. The problem in tree parsing for code selec-
tion is to find a minimum-cost derivation for a given tree.

A relatively simple method with linear complexity is the
dynamic programming approach used by BEG [ESL89] and

While—in these days of superscalar and deeply pipelined proces-
sors with high cache miss costs—we cannot use an additive cost model
for a direct prediction of the number of cycles used by the generated
code, there are resources like code size and functional unit usage that
conform to an additive cost model and have an influence on the exe-
cution time through events like instruction cache misses, instruction
fetch unit contention or functional unit contention. Moreover, by
reducing the number of instructions the code selector also tends to
shorten data dependence chains and the associated latencies: e.g., on
all MIPS processors the instruction 1w $1,4($2) has a shorter latency
than the equivalent sequence 1i $1,4; addiu $1,$2,$1; 1w $1,0($1)
that would be produced by a naive code selector.

Iburg [FHP93]. It works in two passes:

Labeler: The first pass works bottom-up. For every
node/nonterminal combination, it determines the min-
imal cost for deriving the subtree rooted at the node
from the nonterminal and the rule used in the first
step of this derivation. Because the minimal cost
for all lower node/nonterminal combinations is already
known, this can be performed easily by checking all ap-
plicable rules, and computing which one is cheapest.
Rules of the form nonterminal—nonterminal (chain
rules) have to be checked repeatedly until there are
no changes. If there are several optimal rules, any of
them can be used.

Reducer: This pass performs a walk of the derivation tree.
It starts at start nonterminal at the root node. It looks
up the rule recorded for this node/nonterminal combi-
nation. The nonterminals in the pattern of this rule
determine the nodes and nonterminals where the walk
continues. At some time during the processing of a rule
(typically after the subtrees have been processed), the
code generation action of the rule is executed.

Figure 2 shows the information generated by this
method. The resulting, optimal derivation is the same that
is shown on the right-hand side of Fig. 3.

3 DAGs

Intermediate representation DAGs arise from language con-
structs like C’s +=, from common subexpression elimination,
or from performing code selection on basic blocks (instead
of statements or expressions). Figure 4 gives an example for
these possibilities.

We assume in this paper, that it is acceptable to gener-
ate code for shared subgraphs just once; and that it is also
acceptable to generate code that corresponds to a partial or
complete replication of shared subgraphs. This assumption
depends on the semantics of the intermediate representation,
i.e., the intermediate operations must be functions or (when
scheduled correctly) idempotent. This assumption is usually

Source

Intermediate representation

Operators like +=
p- >count += 3;

Common subexpression elimination PIu s
p->count = p->count +3;
Code selection on basic blocks
int *pc = & p->count);
(*pc) = (*pc)+3;

Reg(p) Int(count) /\

Store Store
Plus Plus
/T~

Fetch Int(3) Fetch Int(3)
Plus

Reg(p) Int(count) Reg(p) Int(count)

Figure 4: Three ways of getting intermediate representation DAGs

optimal DAG-splitting

1w $2, count($1) Store addu $2, $1, count
nop #load delay \P| 1w $3, 0(%2)
addu $2, $2, 3 /US\ nop #load delay
sw $2, count($1) Fetch Int(3) addu $3, $3, 3

| sw $3, 0($2)

Reg Reg
Plus

N

4 cycles Reg(p)

Int(count) 5 cycles

Figure 5: Code generated from the DAG in Fig. 4 for the MIPS R3000 with optimal and DAG-splitting code selection.

p resides in register $1.

valid (e.g., it is valid for lcc’s intermediate representation
[FH91, FH95]).> Note that the problem of optimal pars-
ing becomes easier, if this assumption is not valid, because
there is no choice between replication and non-replication.
Common subexpression elimination also relies on this as-
sumption®.

One approach for handling DAGs is to split them into
trees (by removing edges between shared nodes and their
parents, see Fig. 5) and to parse each tree separately; the
results for each tree are forced into a register. No work is
done twice, but the resulting code can be suboptimal for the

whole DAG (see Fig. 5).

4 Parsing DAGs

Our general approach is a straightforward extension of the
tree-parsing algorithm to DAGs:

Labeler: The same information (as in the tree labeler) is
computed for each node. Only the component for vis-
iting the nodes in bottom-up order may have to be
adapted (e.g., a recursive walk would have to be ex-
tended with a wvisited flag).

Reducer: The reducer now has to deal with the potential
existence of several roots. Moreover, it has to set (and

2This assumption would not be valid for, e.g., an intermediate
representation that contains an operator like C’s ++ operator.

3But with a different perspective: It is ok to have only one shared
subgraph instead of two equal ones.

check) a visited flag in every node/nonterminal combi-
nation it visits, thus ensuring that the reducer walks
every path of the derivation graph exactly once.

Figure 6 shows how this method parses a graph using
the grammar of Fig. 1.

This DAG-parsing algorithm does not take node sharing
into account in the labeling stage. In the reducing stage
sharing is only considered for node/nonterminal combina-
tions. Le., if a subgraph is derived several times from the
same nonterminal, the reduction of the subgraph is shared.
In contrast, if a shared subgraph is derived from different
nonterminals through base rules, its root node will be re-
duced several times (i.e., the operation represented by the
node will be replicated in the generated code); a child sub-
graph of the node will also be derived several times, with
the sharing of reductions depending again on whether the
derivations are from the same nonterminal.

E.g., in Fig. 6 the left Plus node is reduced twice, because
it is derived from addr through rule 8 (parent node: Fetch),
and from reg through rule 5 (parent node: the right Plus);
but the reduction of its left child (the left Reg) is shared,
because it is derived from reg in both derivations.

The cost of deriving a DAG is the sum of the costs of
the applied derivations (shared derivations are only counted
once). The problem in parsing DAGs for code selection is to
find the minimum-cost derivation for the DAG. In general,
this problem is NP-complete [Pro98].

Our method for parsing DAGs is linear in time and space.
The labeler visits every node once and the time it spends
on each node is constant (independent of the graph size).

Labeler information

start:cost=2 rule=1 start:cost=5 rule=1
addr:cost=2 rule=6 Fetch Plus addr:cost=5 rule=6
reg: cost=2 rule=4 reg: cost=5 rule=5

start:cost=3 rule=1 start:cost=0 rule=1
addr:cost=0 rule=8 Plus Reg addr:cost=0 rule=6

reg: cost=3 rl?\ reg: cost=0 rule=2
start:cost=0 rule=1 start:cost=1 rule=1

addr:cost=0 rule=6 Reg Int addr:cost=0 rule=7
reg: cost=0 rule=2 reg: cost=1 rule=3

Derivation DAG

DAG cover

! 1

T /5\
/85\ 2
2 3

cost=7

Figure 6: Parsing a DAG. In the DAG cover the dashed lines represent the rules shown with slanted numbers.

Similarly, the reducer visits every node/nonterminal combi-
nation at most once and spends constant time on each com-
bination. Replication of operations is limited by the number
of nonterminals in the grammar, i.e., it is independent of the
grammar size.

Our method is linear, but does it produce optimal deriva-
tions? In general, it does not. Fortunately, for a certain class
of grammars this method parses DAGs optimally, as we will
show in Section 5.

A note on grammar design for parsing DAGs: For gram-
mars to be used on trees there is a practice of distributing
cost among the rules contributing to an instruction; e.g.,
to assign some cost to an addressing mode. When pars-
ing DAGs this practice would lead to some of the cost be-
ing counted only once, although in the generated code the
cost occurs twice. Therefore, grammars intended to be used
with DAGs should attribute the full cost to rules that actu-
ally generate code (in general, rules that actually cause the
cost), and no cost to other rules.

5 Determining Optimality

5.1 Normal form grammars

To simplify the discussion, we assume that the grammar is in
normal form [BDB90], i.e., contains only rules of the form
n — ny (chain rules) or n — Op(ni, ..., n;) (base rules),
where the ns are nonterminals. A tree grammar can be con-
verted into normal form easily by introducing nonterminals.
Most rules in the example grammar (see Fig. 1) are already
in normal form, except rule 8, which can be converted to
normal form by splitting it into two rules:

nonterminal—pattern cost

Plus

8a addr— A 0
reg nl

8b nl— Int 0

The advantage of normal form is that we don’t have to
think about rules that parse several nodes at once and thus
“Sump over” nodes in the reducer; instead, we know that
any derivation of the node has to go through a nonterminal
at the node.

5.2 Basic idea

Our DAG-parsing algorithm (Section 4) makes its choice of
rules as if it was parsing a tree, irrespective of the sharing
of subgraphs. In other words, in case of a shared node it
optimizes locally for each parent. The job of our checker is
to determine whether these locally optimal choices are also
globally optimal for every DAG that can be derived from
the grammar.

The basic principle of our checker is: Given a subgraph
G, we consider that it can be derived from any number
other parents, from every combination of nonterminals, us-
ing every globally optimal derivation; these cases represent
all ways of sharing G. Then we check the following condition
for every nonterminal n: The locally optimal derivation of
G from n must be optimal for all of these cases; if it is, this
derivation of G from n is globally optimal.

There is just one problem: This method requires knowing
globally optimal derivations, but in general we do not know
them. We use a conservative approximation: We assume a
derivation is globally optimal unless we know that it is not;
this ensures that the checker reports all grammars for which
our parsing method is not optimal for all DAGs, but it also
may report some spurious problems.*

When checking a derivation, we assume that the shared
node/nonterminal combinations are fully paid for by the
other parents; i.e., for the derivation we are looking at these
node/nonterminal combinations have cost 0. If a rule is op-
timal in this case, and in the full-cost case, then it is also
optimal for all distributions of costs in between.

5.3 The checker

We check a grammar for DAG-optimality by constructing an
inductive proof over the set of all possible DAGs: The base
cases are the terminals, the step cases build larger DAGs
from smaller DAGs.?> We implemented such a checker called
Dburg®.

4This is similar to, e.g., LL or LALR parser generators, that report
conflicts that may be caused by an ambiguous grammar, but also can
be artifacts of the parser generation algorithm.

5This structure makes our checker very similar to a generator for
tree parsing automata [Cha87, Pro95], and it should be easy to extend
our checker into a generator.

6 Available at http://www.complang.tuwien.ac.at/anton/dburg/.

5.3.1 Data structures

An stem is a record that contains a cost and a set of rules.

An itemset is an array of items, indexed by nonterminals.
The costs of the items in an itemset can be absolute or
relative to a base § (common for the whole itemset).

A state is a record consisting of one full-cost itemset and
a set of partial-cost itemsets.”

These data structures have the following meanings:

A state represents a class of graphs that have certain
commonalities with respect to the rules and costs for deriv-
ing them. Each state corresponds to a base case or a step
case of the proof.

The full-cost itemset is the information computed by the
labeling pass of the parsing algorithm for the root node of
the represented graphs, with two twists: Relative costs allow
representing graphs with different absolute costs; and the
items store the set of optimal rules instead of just one of
these rules.

A partial-cost itemset represents the incremental costs
(and rules used) for deriving the graphs for a specific sharing
pattern. The incremental cost for deriving a partially shared
graph from a nonterminal is the cost incurred for the non-
shared rule derivations; it is computed by setting the costs
of all shared node/nonterminal combinations to 0 and doing
a labeling pass.® The partial-cost itemsets also include an
itemset for no sharing (i.e., one corresponding to the full-
cost itemset).

5.3.2 Computing the states

Dburg computes the states with a worklist algorithm: Dburg
tries to build a new state by applying every n-ary operator
to every tuple of n states, until no new states occur. At
the start, there are no states, so only operators without
operands (i.e., terminals) can be applied.

Dburg applies an operator o to a tuple of child states
(s1, ..., sx) like this:

First it computes the full-cost itemset from the full-cost
itemsets of the child states just as it is done in labeling: for
each base rule r of the form n — o(ni,...,nt), it computes:

r.cost + Z si.fullcost [n;].cost

For each nonterminal, Dburg builds an item that contains
the least cost for the nonterminal, and the set of optimal
rules for this nonterminal; this results in a preliminary item-
set I.

Then Dburg repeatedly applies the chain rules until there
is no change: for a chain rule r of the form n — ny it
computes

r.cost + I[n1i].cost

If the resulting cost ¢ is smaller than I[n].cost, the item
I[n] is replaced by one with cost ¢ and rule set {r}; if the
resulting cost is equal to I[n].cost, the rule is added to the
optimal rules for the item I[n].

"States used by tree parsing automaton generators differ by not
having partial-cost itemsets and having only one rule (instead of a
set) in each item.

$You may wonder about the case where a derivation shares a
node/nonterminal combination that is not shared with any other par-
ent (i.e., diamond-shaped graphs). This case is equivalent to the case
where this subgraph is replicated and one of the copies is paid by the
derivation we are looking at, while the other copies have cost 0.

The computation of the partial-cost itemsets basically
works in the same way, with the following differences:

For computing the partial-cost itemsets for an opera-
tor and a tuple of states, Dburg uses every combination of
partial-cost itemsets (representing various sharing variants
of the subgraphs).

Dburg also produces partial-cost itemsets for every sub-
set N of the nonterminals, where the members of the subset
have (absolute) cost 0; this represents the sharing of the
whole graph represented by the state through the nonter-
minals in N. To produce such a zero-cost item, the rules
may be applied at cost 0, whatever their normal cost (be-
cause they do not contribute to the incremental cost), but
the items used for producing the item must also have cost 0
(they must not contribute to the incremental cost, either).
However, if a rule is not among the optimal rules for any
partial-cost itemsets where the cost of the rule counts, it is
not used for producing a zero-cost item, either (this avoids
some spurious errors and warnings when checking).

Because the absolute cost is important for these compu-
tations, Dburg does not use relative costs for partial-cost
itemsets that contain an item of cost 0. For all other item-
sets, Dburg uses relative costs (cost + §); this allows the al-
gorithm to terminate (in most cases), because relative costs
allow the worklist algorithm to determine that a state is not
new.

Figure 7 shows the states computed for our example
grammar. In the rest of the section we give an example
for the computation of the partial-cost itemsets: We will
look at a specific case, the operator Plus with A as the left
child state and B as the right child (i.e., state D):

State A represents the graph Reg, state B represents the
graph Int, and state D represents Plus(Reg, Int). A has one
partial-cost itemset (A1) that represents all ways of sharing
this graph. B has two partial-cost itemsets:

e B2 represents all ways of sharing where reg is not paid
(directly or indirectly) by some other parent; the non-
terminals start and reg cost 1 (because rule 3 costs 1).

o B1 represents all ways of sharing where reg is shared
and paid by some other parent; the nonterminals start
and reg come for free.

There are two combinations of the partial-cost itemsets
of the children: Plus(A1,B1) and Plus(A1,B2). There are 16
subsets of the set of nonterminals, i.e., 16 possible sharing
variants, but the only important issue for this example is
whether reg is in the subset or not:

e If yes, then rule 5 (the only one applicable for deriving
Plus from reg) must be applied at cost 2; this produces
D2 from Plus(A1,B1) and D3 from Plus(A1,B2).°

o If no, then rule 5 must be applied at cost 0; this is only
legal for Plus(A1,B1), giving D1. In B2 reg has a non-
zero cost, so it is not shared, and cannot be used for a
shared graph Plus(A1,B2).

In D1 two rules are optimal for deriving the tree from
addr; in addition to 8a, rule 6 is optimal in D1, because
reg has cost 0.

9The difference between D2 and D3 is who pays for deriving the
right-hand child (state B, representing the graph Int) from reg: in D3
it is the parent we are looking at (the Plus node), in D2 it is some
other parent.

start reg addr nl

state pattern itemset | cost rules | cost rules | cost rules | cost rules
A Reg full-cost | 0+ 1 0+4 2 0+4 6

Al 0 1 0 2 0 6
B Int full-cost | 1+ 1 1+9 3 0+6 7 0+6 8b

B1 0 1 0 3 0 6,7 0 8b

B2 1 1 1 3 0 7 0 8b
C Fetch(*) full-cost | 0+¢ 1 0+6 4 0+6 6

C1 0 1 0 4 0 6

C2 0+46 1 046 4 046 6
D Plus(Reg,Int) full-cost | 3+6 1 3+6 5 0+6 8a

D1 0 1 0 5 0 68a

D2 2 1 2 5 0 8a

D3 3 1 3 5 0 8a
E Plus(*,*) full-cost | 0+6 1 0+4 5 0+6 6

E1l 0 1 0 5 0 6

E2 0+6 1 0+6 5 0+6 6
F Plus(*,Int) full-cost | 3+¢ 1 3+6 5 0+6 8a

F1 0 1 0 5 0 6,8a

F2 2 1 2 5 0 8a

F3 3 1 3 5 0 8a

F4 246 1 246 5 0+6 8a

F5 3+46 1 346 5 0+6 8a

Figure 7: States for the tree grammar in Fig. 1 and their itemsets

5.3.3 Checking

After computing a state, Dburg performs a check for each
nonterminal that can derive the DAGs represented by the
state: If the intersection of the sets of rules in the items for
this nonterminal is empty, then there is no rule that is op-
timal for all sharing variants, and our way of parsing DAGs
(see Section 4) can result in suboptimal parsing of some
DAGs. This result can have two causes: Either the globally
optimal derivation is locally suboptimal for this nontermi-
nal, or this is a spurious conflict resulting from considering
a derivation as potentially globally optimal for some sharing
pattern that actually is not globally optimal for any sharing
pattern.

The checker also produces another result: If a rule that is
optimal for the full-cost item is not in all partial-cost items
(for the LHS nonterminal of the rule), then using this rule
in this state would result in suboptimal parsing for some
DAGs; this rule should therefore not be used for parsing
this state. We have to modify our parser to avoid this rule;
a simple way to achieve this is to generate a tree parsing
automaton from the states that Dburg has computed; this
parser would use the rules that are optimal in all itemsets
of the state.

If there are no such partially optimal rules, we can use
the grammar with any tree parser generator, e.g., Burg or
Iburg (of course, the labeller and the reducer have to be
adapted to DAGs as described in Section 4).

Back to our example (Fig. 7): It is easy to see that all
partial-cost items contain supersets of the rulesets of their
corresponding full-cost items, so our example grammar can
be used to parse DAGs optimally with any tree parser gen-
erator.

6 Experiences

6.1 Results

We have applied Dburg to the example grammar of Fig. 1
and four realistic grammars: adaptions of the grammars sup-
plied with lcc-3.3 [FH95] for the MIPS, SPARC and 386 ar-
chitectures and the MIPS grammar of the RAFTS compiler
[EPIT].

As discussed above, Dburg found that the example gram-
mar of Fig. 1 can be used for optimal parsing of DAGs, with
any tree parser generator.

6.2 RAFTS’ grammar

The RAFTS-MIPS grammar is already in use for parsing
DAGs, using a Burg-generated parsing automaton. It is
similar in spirit to lec’s MIPS grammar; the differences are
that it does not deal with floating-point instructions (but
code selection for the MIPS FP instructions is quite trivial
anyway), is more complex in the integer part (e.g., there
are patterns for selecting instructions like bgez), and there
are some differences due to differences in the intermediate
representation.

At first Dburg did not terminate for the RAFTS-MIPS
grammar. This nontermination uncovered a bug in the
grammar (a rule had the wrong cost), and after fixing
that bug, Dburg did terminate. Then Dburg reported
state/nonterminal combinations that have no globally opti-
mal rule. We fixed all these problems by adding rules'®. Our
improved RAFTS grammar can be used for optimal code se-
lection on DAGs; however, Dburg warns that our use of a
Burg-generated parsing automaton may result in subopti-
mal parsing of some DAGs (i.e., we should use a generator
that knows about DAG-optimal rules instead of Burg).

10Note that adding rules cannot decrease the quality of code selec-
tion (if the result is DAG-optimal).

A typical problem found in the RAFTS-MIPS grammar
is this: The grammar contained the following rules:

nonterminal— pattern cost

0 cons— Cons 0
1 reg— cons 1
And
2 reg— A 1
reg reg
And
3 reg— A 1
reg cons
And
4 reg— A 1
cons reg

When deriving the tree And(Cons,Cons) from reg, the fol-
lowing problem arises: If the left Cons node is derived from
reg by another parent, then rule 3 is optimal and rule 4 is
not optimal; if the right Cons node is derived from reg by
another parent, the situation is reversed. So without know-
ing the sharing situation we cannot decide which rule to use.
We solved the problem by adding another rule:

nonterminal— pattern cost

And

5 cons— A 0

cons cons

Now rule 1 is optimal for the problematic case, inde-
pendent of the sharing pattern. Moreover, the addition of
this rule also improves the code selection for trees, because
now constant folding is performed at compile time instead
of computing the constant at run-time.

6.3 lcc’s grammars

lcc’s grammars use dynamic costs (i.e., costs determined at
code selection time) for complex code selection decisions.
This technique is incompatible with tree parsing automata
in general and with Dburg in particular. We have removed
the dynamic costs in various ways: in most cases we replaced
them with fixed costs; however, in some cases we also re-
moved rules. In particular, the 386 grammar used dynamic
costs for selecting read-modify-write instructions, which we
eliminated; this is no loss because these instructions cost the
same as the equivalent sequence of simple instructions (and
on the Pentium, the simpler instructions are easier to pair).

Another technique used by lcc’s grammars is to assign
costs to rules corresponding to addressing modes. This al-
lows simplifications in the grammar and works for trees, but
not for DAGs (two instructions cannot share the computa-
tion of the addressing mode). We assigned these costs to the
corresponding rules for instructions. The resulting grammar
is equivalent to the old one for tree parsing, but works better
with DAGs.

Dburg reports that the resulting MIPS and SPARC
grammars can be used for optimal parsing of DAGs with
any tree parser generator.

For the 386 grammar Dburg reported seven cases without
a DAG-optimal rule. Six of these vanished after we added
the rule

base—acon 0

which also improves the code selection for trees (it al-

lows the code selector to generate the addressing mode
indexx*scale+displacement).

The last problem is harder, but not very important. It
can only take effect when a CVDI (convert double to inte-
ger) node is shared. This is extremely rare, so suboptimal-
ity in that case is acceptable. Apart from this problem, the
grammar can be used for optimal parsing of DAGs; how-
ever, there are many cases where tree-optimal rules are not
DAG-optimal (i.e., using Burg or Iburg with the resulting
grammar may produce suboptimal parses even in the ab-

sence of shared CVDI nodes).

6.4 Usability

Performing all combinations of itemsets may appear to take
a huge amount of time, result in a huge number of itemsets,
and significantly increase the danger of non-termination.
However, in practice we found this to be no problem: For
the grammars we looked at, the number of itemsets per state
is moderate (typically < 10), the time used for generating
all states is bearable (very grammar-dependent, < 7min on
a 600MHz 21164A for the 386 grammar, < lmin for the
others), and only for the original RAFTS-MIPS grammar
Dburg did not terminate (thus uncovering a bug). Apart
from that, Dburg generates slightly more states than it did
before we added the computation of partial-cost itemsets.
The memory use is also bearable (12MB for the 386 gram-
mar).

7 Related Work

The Davidson-Fraser approach to code selection (used in,
e.g., GCC) [DF84, Wen90] can deal with DAGs, but does
not guarantee optimality (not even for trees). However, it
is more flexible in the kind of code selection patterns al-
lowed (not only tree patterns), and can therefore produce
better code than tree parsing. Its disadvantages are that it
is harder to use (e.g., adding a new rule can result in worse
code) and that the resulting code selectors are slower.

lcc’s front-end [FH91, FH95] can produce intermediate
representation DAGs or trees. The code selectors in [FH95]
are based on tree parsing; they deal with the problem by
asking lcc’s front end to split the DAGs into trees.

In [BE91] an approach for dealing with DAGs in the con-
text of tree parsing is discussed that has the same results as
DAG-splitting in general, but allows replication of zero-cost
sub-trees (e.g., constants or effective address expressions).

[PW96] presents a method for performing single-pass tree
parsing code selection (in contrast to the classic method,
which requires a labeler pass and a reducer pass). Like our
way of optimal parsing of DAGs, this method works only
with certain grammars, but can be used with realistic code
selection grammars.

8 Further work

Although nontermination was not a problem in our experi-
ments, it would be worthwhile to investigate causes for non-
termination, and how they can be avoided; ideally Dburg
should terminate whenever Burg terminates.

Concerning spurious errors, more experimentation is
needed to see if this is a practical problem. If yes, meth-
ods for improving the accuracy of the optimality test need
to be developed.

An important practical issue is how to report errors and
warnings about supoptimality in a way that can be under-
stood easily. In particular, it should make it easy to discern
real suboptimalities from spurious errors that are artifacts
of our conservative apporoach. For real errors it should be
easy to see what changes in the grammar might help.

Users would probably accept suboptimalities in many
cases, if they know what cases are still handled opti-
mally (e.g., as in the 386 grammar). Providing such near-
optimality guarantees would be a worthwhile extension.

Dynamic costs are often used in practice, but dburg cur-
rently does not handle them. An extension of Dburg that
takes this issue into account would have great practical im-
portance.

Another area of investigation is the relation with single-
pass tree parsing [PW96]. Both DAG-parsing and single-
pass tree parsing have to decide comparatively early which
derivation to use, so there is probably a large overlap be-
tween the grammars accepted by dburg and by wburg, lead-
ing to a class of grammars suited for single-pass DAG-
parsing.

9 Conclusion

We extend tree parsing for dealing with DAGs. This exten-
sion is simple and parses DAGs in linear time. The same
derivations are selected as in tree parsing; sharing of nodes
by several parents does not influence the selection of deriva-
tions. In general, this method does not produce the optimal
code selection for all DAGs, but for certain code selection
grammars, it does. We also present Dburg, a tool to check
whether a code selection grammar belongs to this set of
DAG-optimal grammars. We used Dburg to check realis-
tic code selection grammars for the MIPS, SPARC and 386
architectures; they required a few additions, but can now
be used for optimal (or, for the 386, nearly optimal) code
selection on DAGs.

Acknowledgements

Discussions with Franz Puntigam helped me in refining the
ideas in this paper. Manfred Brockhaus, Andreas Krall,
Franz Puntigam and the referees of POPL’98, PLDI'98 and
POPL’99 provided valuable feedback on earlier versions of
this paper.

References

[BDB90] A. Balachandran, D. M. Dhamdhere, and
S. Biswas. Efficient retargetable code generation
using bottom-up tree pattern matching. Computer
Languages, 15(3):127-140, 1990.

[BE91] John Boyland and Helmut Emmelmann. Dis-
cussion: Code generator specification techniques
(summary). In Robert Giegerich and Susan L.
Graham, editors, Code Generation — Concepts,
Tools, Techniques, Workshops in Computing,

pages 66—69. Springer, 1991.

David R. Chase. An improvement to bottom-
up tree pattern matching. In Fourteenth Annual
ACM Symposium on Principles of Programming
Languages, pages 168177, 1987.

[Cha87]

[DF84]

[EP97]

[ESL89)

[FHO1]

[FH95]

[FHP93]

[Pro95]

[Pro9g]

[PW96]

[Wen90]

Jack W. Davidson and Christopher W. Fraser.
Code selection through object code optimization.
ACM Transactions on Programming Languages
and Systems, 6(4):505-526, October 1984.

M. Anton Ertl and Christian Pirker. The structure
of a Forth native code compiler. In EuroForth ’97

Conference Proceedings, pages 107-116, Oxford,
1997.

Helmut Emmelmann, Friedrich-Wilhelm Schréer,
and Rudolf Landwehr. BEG — a generator for effi-
cient back ends. In SIGPLAN ’89 Conference on
Programming Language Design and Implementa-
tion, pages 227-237, 1989.

Christopher W. Fraser and David R. Hanson. A
code generation interface for ANSI C. Software—
Practice and Ezperience, 21(9):963-988, Septem-
ber 1991.

Christopher Fraser and David Hanson. A Retar-
getable C compiler: Design and Implementation.
Benjamin/Cummings Publishing, 1995.

Christopher W. Fraser, David R. Hanson,
and Todd A. Proebsting. Engineering a
simple, efficient code generator genera-

tor. ACM Letters on Programming Lan-
guages and Systems, 1993. Available from
ftp://ftp.cs.princeton.edu/pub/iburg.tar.Z.

Todd A. Proebsting. BURS automata genera-
tion. ACM Transactions on Programming Lan-

guages and Systems, 17(3):461-486, May 1995.

Todd Proebsting. Least-cost instruc-
tion selection in DAGs is NP-complete.
http://research.microsoft.com/ tod-

dpro/papers/proof.htm, 1998.

Todd A. Proebsting and Benjamin R. Whaley.
One-pass, optimal tree parsing — with or with-
out trees. In Tibor Gyiméthy, editor, Compiler
Construction (CC’96), pages 294-308, Linkoping,
1996. Springer LNCS 1060.

Alan L. Wendt. Fast code generation using
automatically-generated decision trees. In SIG-
PLAN ’90 Conference on Programming Language
Design and Implementation, pages 9-15, 1990.

