
510740-7475/02/$17.00 © 2002 IEEEJuly–August 2002

COMPILERS TRANSLATE high-level program-

ming languages such as C and C++ into assembly

code for a target processor. Used for decades to

program desktop operating systems and appli-

cations, compilers are among the most wide-

spread software tools.

For processor-based embedded systems,

however, the use of compilers is less common.

Instead, designers still use assembly language

to program many embedded applications.

Anyone who has programmed a processor in

assembly knows the resulting problems: a huge

programming effort and, compared with C or

C++, far less code portability, maintainability,

and dependability. So, why is assembly pro-

gramming still common in embedded-system

design? The reason lies in embedded systems’

high-efficiency requirements.

Processor-based embedded systems fre-

quently employ domain-specific or application-

specific instruction set processors (ASIPs),

which meet design constraints such as perfor-

mance, cost, and power consumption more

efficiently than general-purpose processors.

Building the required software development

tool infrastructure for ASIPs, however, is expen-

sive and time-consuming. This is especially true

for efficient C and C++ compiler design, which

requires large amounts of resources and expert

knowledge. Therefore, C compilers are often

unavailable for newly designed ASIPs.

Of course, not only the processor architec-

ture but also the embedded software executed

on the processor must be efficient. However,

many existing compilers for ASIPs and domain-

specific processors such as DSPs generate low-

quality code. Experimental studies1 show that

compiled code may be several times larger

and/or slower than handwritten assembly

code. Because this poor code is virtually use-

less for embedded systems under efficiency

constraints, it requires a time-intensive postpass

optimization. The cause of many compilers’

poor code quality is the highly specialized

architecture of ASIPs, whose instruction sets are

incompatible with high-level languages and tra-

ditional compiler technology.

To boost designer productivity, a transition

from assembly to C must take place in the

embedded-system domain. That means the

problems of compiler unavailability and poor

code quality must be solved. As embedded

applications increase in complexity, assembly

programming will no longer meet short time-to-

market requirements. Given the trend toward

increasingly complex high-end processor archi-

tectures—with deep pipelining, predicated exe-

cution, and high parallelism—future human

programmers are unlikely to outperform com-

pilers in terms of code quality.

Moreover, designers increasingly employ

compilers not only for pure application pro-

gramming after an ASIP’s architecture is fixed

but also for architecture exploration. During

exploration, the designer tunes the initial archi-

Compiler Design Issues for
Embedded Processors

The growing complexity and high efficiency

requirements of embedded systems call for new

code optimization techniques and architecture

exploration, using retargetable C and C++

compilers.

Rainer Leupers
Aachen University of Technology

tecture for a given application or application

set. This tuning requires an iterative, profiling-

based methodology, by which the designer

evaluates the cost-performance ratios of many

potential architecture configurations. If C or

C++ application programming is intended, the

designer should apply a compiler-in-the-loop

type of architecture exploration, as illustrated

in Figure 1, thus avoiding a compiler and archi-

tecture mismatch.

A number of in-house ASIP design projects

conducted by system houses suffer from the

fact that the architecture was fixed before any-

body thought about compiler issues. If the sys-

tem designers decide only afterward that a C

compiler should be added to the software tool

chain, the compiler designers often have diffi-

culty ensuring good code quality because an

instruction set designed primarily from a hard-

ware designer’s viewpoint fails to support their

efforts. Therefore, architecture-compiler co-

design is essential to good overall efficiency of

processor-based designs.

Solving these problems is a topic of intensive

research in academia and industry. To combat

poor code quality, compiler designers need

domain-specific code optimization techniques

that go beyond classical compiler technology,

which mainly supports machine-independent

optimization and code generation for clean

architectures (those with homogeneous regis-

ter files) such as reduced-instruction-set com-

puters (RISCs).

Compiler design
Because a compiler is a comprehensive

piece of software (frequently 50,000 lines of

source code or more), it is usually subdivided

into numerous phases. Many code optimization

problems are known to be NP-complete; that is,

they (most likely) require exponential compu-

tation time for optimal solutions.2 Compilers han-

dle this computational complexity by separating

the code optimization process into multiple pass-

es, each with a limited scope, and using heuris-

tics instead of optimal solutions. The compiler

usually consists of a front end, an intermediate

representation (IR) optimizer, and a back end.

Figure 2 illustrates this structure.

Front end
The front end for the source language (C, for

example) translates the source program into a

machine-independent IR for further processing.

The IR is frequently stored in a simple format,

such as three-address code, in which each

statement is either an assignment with at most

three operands, a label, or a jump. The IR serves

as a common exchange format between the

front end and the subsequent optimization

passes and also forms the back-end input. The

front end also checks for errors such as syntax

errors or undeclared identifiers and emits cor-

responding messages.

The front end’s main components are the

scanner, the parser, and the semantic analyzer.

The scanner recognizes certain character strings

in the source code and groups them into tokens.

The parser analyzes the syntax according to the

underlying source-language grammar. The

semantic analyzer performs bookkeeping of

identifiers, as well as additional correctness

checks that the parser cannot perform. Many

tools (for example, lex and yacc for Unix- and

Linux-based systems) that automate the gener-

ation of scanners and parsers from grammar

specifications are available for front-end

construction.

Embedded Systems

52 IEEE Design & Test of Computers

Application

Architecture

Linker

Simulator

Profiler

Assembler

Compiler

Figure 1. Iterative architecture exploration.

IR optimizer
The IR generated for a source program nor-

mally contains many redundancies, such as mul-

tiple computations of the same value or jump

chains. To a certain extent, these redundancies

arise because the front end does not pay much

attention to optimization issues. The human pro-

grammer might have built redundancies into the

source code. These redundancies must be

removed by subsequent optimization passes,

which will do their job no matter what the

source of the redundancies. For example, con-

sider constant folding, which replaces compile-

time constant expressions with their respective

values. In the following C example, an element

of array A is assigned a constant:

void f() {

int A[10];

A[2] = 3 ∗ 5;

}

A front end might decompose the C source

into a sequence of three-address code state-

ments by adding temporary variables, and then

it generates an unoptimized IR with two com-

pile-time constant expressions. (Here I use the

C-like three-address code IR notation of the

Lance compiler system.3) One expression (3 ∗
5) was present in the source code; the other (2

∗ 4) has been inserted by the front end to scale

array index 2 by the number of memory words

occupied by an integer (here assumed to be 4):

void f() {

int A[10], t1, t3, ∗t5;
char ∗t2, ∗t4;
t1 = 3 ∗ 5;

t4 = (char ∗)A;
t3 = 2 ∗ 4;

t2 = t4 + t3;

t5 = (int ∗)t2;
∗t5 = t1;

}

Now the IR optimizer can apply constant fold-

ing to replace both constant expressions by con-

stant numbers, thus avoiding expensive

computations at program runtime. Constant

propagation replaces variables known to carry

a constant value with the respective

constant. Jump optimization sim-

plifies jumps and removes jump

chains. Loop-invariant code motion

moves loop-invariant computations

out of the loop body. Dead code

elimination removes computations

whose results are never needed in

the given program.

A good compiler consists of

many such IR optimization passes,

some of which are far more com-

plex and require an advanced code

analysis.4 Because there are strong

interaction and mutual depen-

dence between these passes, some

optimizations enable opportunities

for other optimizations and should

be applied repeatedly to be most

effective. However, theoretical lim-

itations prevent any compiler from

achieving an optimal IR for arbitrary

source code.5

Back end
The back end (or code genera-

tor) maps the machine-indepen-

dent IR into a behaviorally

equivalent machine-specific assem-

bly program. For this purpose, most

of the original, statement-oriented IR

is converted into a more expressive

control/dataflow graph representa-

tion. Front-end and IR optimization

technologies are quite mature

thanks to the achievements of clas-

sical compiler construction, but the

back end is often the most crucial

compiler phase for embedded processors.

The back end usually includes three major

phases. Code selection maps IR statements into

assembly instructions. Register allocation as-

signs symbolic variables and intermediate

results to the physically available machine reg-

isters. Scheduling arranges the generated

assembly instructions in time slots, considering

interinstruction dependencies and limited

processor resources. Naturally, all three phases

aim at maximum code quality within their opti-

mization scopes.

53July–August 2002

Figure 2. Coarse structure of a

typical C compiler.

Source code

Optimized
IR

Intermediate
representation

(IR)

Front end
(scanner, parser,

semantic analyzer)

IR optimizer
(constant folding,

constant propagation,
jump optimization,

loop-invariant code motion,
dead code elimination)

Assembly code

Back end
(code selection,

register allocation,
scheduling,

peephole optimization)

The back end often includes a final peep-

hole optimization pass—a relatively simple pat-

tern-matching replacement of certain expensive

instruction sequences by less expensive ones.

For each of the three major back-end passes,

standard techniques, such as tree parsing, graph

coloring, and list scheduling,4 are effective for

general-purpose processors with clean architec-

tures. However, such techniques are often less

useful for ASIPs with highly specialized instruc-

tion sets. To achieve good code quality, the code

selector, for instance, must use complex instruc-

tions, such as multiply-accumulate (shown in

Figure 3c) or load-with-autoincrement. Or it

must use subword-level instructions (such as

those used by SIMD and network processor

architectures), which have no counterpart in

high-level languages.

Likewise, the register allocator utilizes a spe-

cial-purpose register architecture to avoid hav-

ing too many stores and reloads between

registers and memory. If the back end uses only

traditional code generation techniques for

embedded processors, the resulting code qual-

ity may be unacceptable.

Embedded-code optimization
C and its object-oriented extension C++ aim

mainly at compiling for clean targets such as

RISC processors with large homo-

geneous register files, rather than

DSPs, for which there are some-

times more exceptions than rules in

the programmer’s manual. C and

C++ are well known and wide-

spread, and a large amount of lega-

cy and reference code is written in

these languages. Therefore, al-

though there are other high-level

languages, C and C++ will likely be

dominant for programming embed-

ded processors.

To support C and C++, compil-

ers must be clever enough to map

source code into highly efficient

assembly code for ASIPs. Re-

searchers have developed three

main approaches to achieving this

goal.

Dedicated code optimization techniques
Code optimization technology must keep

pace with trends in processor architecture by

continually extending the suite of known tech-

niques. DSP code optimization research has

progressed well in the past decade. For exam-

ple, researchers have developed several vari-

ants of offset assignment techniques that

exploit address generation units (AGUs) in

DSPs and have successfully integrated these

techniques in C compilers.6 Although not all the

available knowledge in this area has rippled

down into production-quality compilers, it may

now be time to switch research activities

toward forthcoming embedded-processor fam-

ilies such as VLIW and network processors.

The following are promising dedicated opti-

mization techniques for embedded processors:

� Single-instruction, multiple-data instructions.

Recent multimedia processors use SIMD

instructions, which operate at the subword

level. SIMD instructions help ensure good

use of functional units that process audio

and video data, but they require special

compiler support.

� Address generation units. Many DSPs are

equipped with AGUs that allow address

computations in parallel with regular com-

IEEE Design & Test of Computers

a b

∗

+

+

c

(a)

a b

∗

t t

t

+

+

c

(b)

∗ ∗

a b

+

+

c

(c)

MAC instructions

Figure 3. Code selection with multiply-accumulate (MAC) instructions:

Dataflow graph (DFG) representation of a simple computation (a).

Conventional tree-based code selectors must decompose the DFG into two

separate trees (linked by a temporary variable t), thereby failing to exploit the

MAC instructions (b). Covering all DFG operations with only two MAC

instructions requires the code selector to consider the entire DFG (c).

Embedded Systems

54

putations in the central data path. Good use

of AGUs is mandatory for high code quality

and requires special techniques not covered

in classical compiler textbooks.

� Code optimization for low power and low

energy. In addition to the usual code opti-

mization goals of high performance and

small code size, the power and energy effi-

ciency of generated code is increasingly

important. Embedded-system architects must

obey sufficient heat dissipation constraints

and must ensure efficient use of battery

capacity in mobile systems. Compilers can

support power and energy savings. Fre-

quently, performance optimization implicit-

ly optimizes energy efficiency; in many cases,

the shorter the program runtime, the less

energy is consumed. “Energy-conscious”

compilers, armed with an energy model of

the target machine, give priority to the lowest-

energy-consuming (instead of the smallest or

fastest) instruction sequences.7 Since systems

typically spend a significant portion of ener-

gy on memory accesses, another option is to

move frequently used blocks of program

code or data into efficient on-chip memory.8

New optimization methodologies
Despite the difficulties in compiler design for

embedded processors, there is some good

news: Unlike compilers for desktop computers,

compilers for ASIPs need not be very fast. Most

embedded-software developers agree that a

slow compiler is acceptable, provided that it

generates efficient code. Even overnight com-

pilation of an application (with all optimization

flags switched on) would make sense, as long

as the compiler delivers its result faster than a

human programmer.

A compiler can exploit an increased amount

of compilation time by using more-effective

(and more time-consuming) optimization tech-

niques. Examples are genetic algorithms, sim-

ulated annealing, integer linear programming,

and branch-and-bound search, which are

beyond the scope of traditional desktop com-

pilers. Researchers have successfully applied

these techniques to code optimization for chal-

lenging architectures such as DSPs, and further

work in this direction seems worthwhile.

Phase coupling
Many modern high-performance embedded

processors have very long instruction word

architectures. A VLIW processor issues multiple

instructions (typically four to eight) per instruc-

tion cycle to exploit parallelism in application

programs. Because all parallel functional units

must be fed with operands and store a result, a

VLIW processor normally requires many regis-

ter file ports, which are expensive from a cost-

performance viewpoint. Clustering the data

path, with each cluster containing its own local

units and register file, can circumvent this

expense. Obtaining high code quality for clus-

tered VLIW processors requires phase cou-

pling—close interaction between code

generation phases in a compiler—which is not

implemented in traditional compilers.

The multiple phases of compilers must exe-

cute in some order, and each phase can impose

unnecessary restrictions on subsequent phases.

A phase-ordering problem exists between reg-

ister allocation and scheduling:

� If register allocation comes first, false depen-

dencies between instructions, caused by

register sharing among variables, may

occur, restricting the solution space for the

scheduler.

� If scheduling comes first, the register pressure

(the number of simultaneously required phys-

ical registers) may be so high that many spill

instructions must be inserted in the code.

Obviously, both cases will negatively affect

code quality. There are many other examples

of phase-ordering problems. In fact, any phase

ordering can lead to suboptimal code for cer-

tain compiler input programs. The separation

into phases was introduced to meet the high-

speed-compilation requirements of desktop sys-

tems. Clearly, if more compilation time is

available, the compiler can use more-complex

code generation algorithms that perform mul-

tiple tasks in a phase-coupled fashion.

Figure 4 (next page) shows the coarse archi-

tecture of a contemporary clustered VLIW DSP.

Clustering a VLIW data path leads to an effi-

cient hardware implementation but incurs a

potential communication bottleneck between

55July–August 2002

clusters. The instruction scheduler aims at bal-

ancing the computational load between clus-

ters, but clusters must exchange values and

intermediate results through a limited inter-

connection network. Hence, the compiler must

take the required intercluster communication

into account during scheduling through a tight

interaction between the instruction assignment

and scheduling phases.9 This coupling requires

more time-consuming code generation algo-

rithms, but the result is good code, one of the

most important goals for embedded software.

Retargetable compilers
To support fast compiler design for new

processors and hence support architecture

exploration, researchers have proposed retar-

getable compilers. A retargetable compiler can

be modified to generate code for different target

processors with few changes in its source code.

To implement a retargetable computer, the

designer provides it with a formal description (in

a modeling language) of the target processor. In

contrast, traditional compilers have a fixed, built-

in processor model. A retargetable compiler

reads the processor model as an additional input

and reconfigures itself to emit assembly code for

the current target machine. Thus, a new com-

piler can be generated quickly after each change

in the ASIP architecture under design.

Retargetable compilers are cross-compilers.

They run on a desktop host and generate

assembly code for a certain target machine.

Thus, besides a source program, they need a

model of that machine as an input. There are

different degrees of compiler retargetability:

� Developer retargetability. A programmer can

port the compiler to a new target by chang-

ing most of its back-end source code. This

requires in-depth knowledge of the compil-

er, usually possessed only by compiler

developers.

� User retargetability. An experienced user can

retarget the compiler by making only a few

source code modifications. An external tar-

get description specifies most of the retar-

geting information in a special description

language.

� Parameter retargetability. The compiler can

be retargeted only within a narrow class of

processors, so adjusting parameters such as

register file sizes, word lengths, or instruction

latencies is sufficient.

Many existing compilers are developer retar-

getable. Retargeting them requires an enor-

mous supply of labor and expertise, normally

not available in companies concentrating on

ASIP and system development. Therefore, for

architecture exploration, compilers should be

user retargetable.

The most common way to achieve user retar-

getability is to employ a mixture of processor

description languages and custom components.

An example is the GNU (a recursive acronym for

“GNU’s not Unix”) C compiler (GCC). Users can

retarget GCC using a machine description file in

a special format with parameters, macros, and

support functions that capture all the machine

details the GCC’s description format doesn’t

cover (http://gcc.gnu.org). With this mechanism,

users have ported the GCC to numerous targets,

but due to the compiler’s preference for RISC-like

machines, few are embedded processors.

A similar restriction applies to the Little C

Compiler. The LCC (http://www.cs.princeton.

edu/software/lcc) has a more concise machine

description format than the GCC but fewer IR-

level code optimizations. The LCC’s retargeting

mechanism embodies no idea about the

machine instruction semantics and lets the user

translate primitive C source language operations

into assembly language, as Figure 5 shows in an

excerpt from the LCC’s Intel x86 target machine

description file.

Each line in the excerpt describes the assem-

bly implementation of a certain C-level condi-

tional jump statement. For instance, LEI4

IEEE Design & Test of Computers

Cluster A

Register file A

L1 S1 M1 D1

Cluster BCross paths

Functional units

X1

X2

Register file B

D2 M2 S2 L2

Figure 4. Clustered VLIW architecture of a TI C6201 DSP.

Embedded Systems

56

denotes “jump on ≤,” which compares two 4-byte

integers. The two operands of LEI4 are a mem-

ory variable (mem) and a placeholder for a regis-

ter or constant (rc). Following this operation

pattern, the user specifies an appropriate assem-

bly instruction sequence (such as cmp and jle)

within a string. This string, used in the assembly

code emission phase, contains placeholders (%0,

%1, %a) that are later filled with concrete

operand names or constants and the jump target

address. Finally, a numerical value (here 5) spec-

ifies the instruction “cost,” which controls the

optimization process in the code selector.

The user-retargetable class includes many

other systems: commercial tools such as CoSy

(http://www.ace.nl) and Chess (http://www.

retarget.com) and research compilers such as

SPAM (http://www.ee.princeton.edu/spam/)

and Record (http://LS12-www.cs.uni-dortmund.

de/). Some of these generate compilers from

processor models in a hardware description lan-

guage instead of custom machine description

formats. This allows a closer coupling between

compilation and hardware synthesis models and

hence reduces the number of processor models

needed. On the other hand, extracting the

detailed instruction set from a potentially low-

level HDL model is difficult.

Operational parameterizable compilers

include the Trimaran (http://www.trimaran.org)

and Tensilica’s Xtensa (http://www.tensilica.

com), both providing compiler retargeting in

very short turnaround times. Thus, retargetable

compilation for architecture exploration is some-

what available. However, because such compil-

ers focus on special processor classes, they

support exploration of only a limited architecture

space. Leupers and Marwedel provide a com-

prehensive overview of retargetable compilers.10

Outlook
About a decade ago, it was not yet clear that

ASIPs would become important design plat-

forms for embedded systems. By now, it is obvi-

ous that efficiency demands create a need for a

large variety of ASIPs, which serve as a compro-

mise between highest flexibility (general-pur-

pose processors) and highest efficiency (ASICs).

ASIPs require tool support for architecture explo-

ration based on application-driven profiling.

Software development tools play an important

role in mapping application programs to ASIPs.

Although there is a clear trend toward C and C++

programming of ASIPs, compilers are not

enough. A complete compiler-in-the-loop explo-

ration methodology also requires assemblers,

linkers, simulators, and debuggers. Hence, the

retargetability of these tools is equally important

for architecture exploration. There are already

software systems that generate powerful low-level

software development tools from a single, con-

sistent ASIP model. For example, LisaTek’s Edge

tool suite (http://www.lisatek.com) supports the

architecture exploration loop shown in Figure 1.11

Users control simulation, debugging, and profil-

ing via a graphical user interface.

Researchers are attempting to adapt the

modeling languages used in such tool genera-

tors to C and C++ compilers, HDL models for

synthesis, and hardware-software codesign and

cosimulation. This adaptation will allow a fully

integrated ASIP architecture exploration solu-

tion based on a single “golden” processor

model, thereby avoiding the model consisten-

cy problems of current design flows.

An open issue is the tradeoff between retar-

getability and code quality for C compilers. In

the past, a major argument against retargetable

compilers was that they could not guarantee

sufficient code quality and therefore were use-

less. Today, however, embedded-processor

designers have widely recognized the need for

architecture exploration and architecture-

compiler codesign—and how retargetable

compilers can meet that need.

Ultimately, what counts is not only the archi-

tecture’s efficiency but also the overall hard-

ware-software efficiency. This means that

so-called superoptimizing retargetable compil-

ers are not essential—at least not during archi-

57July–August 2002

stmt: EQI4(mem,rc) “cmp %0,%1\nje %a\n” 5

stmt: GEI4(mem,rc) “cmp %0,%1\njge %a\n” 5

stmt: GTI4(mem,rc) “cmp %0,%1\njg %a\n” 5

stmt: LEI4(mem,rc) “cmp %0,%1\njle %a\n” 5

stmt: LTI4(mem,rc) “cmp %0,%1\njl %a\n” 5

stmt: NEI4(mem,rc) “cmp %0,%1\njne %a\n” 5

Figure 5. Assembly language excerpt from LCC’s Intel

x86 target machine description file.

IEEE Design & Test of Computers

tecture exploration. Instead, for complex appli-

cations, it is more important to explore many

potential design points in little time. This is not

possible with assembly programming. Even a

nonoptimizing, yet flexible, compiler (if it is

available quickly) significantly reduces soft-

ware development time; the programmer can

manually tune the few critical hot spots at the

assembly level. Dedicated optimizations can be

added to the compiler later to reduce the

amount of hand tuning required.

RETARGETABLE COMPILERS for embedded

processors are a promising yet challenging

technology for system design. The first com-

mercial tools are already in industrial use.

Meanwhile, researchers are developing new

processor-specific code generation techniques

that continually narrow the code quality gap

between C compilers and assembly program-

ming. The approaches that achieve the right

balance of flexibility, code quality, retargeting

effort, and compatibility with existing design

tools will be successful. �

References
1. V. Zivojnovic et al., DSPStone—A DSP-Oriented

Benchmarking Methodology, tech. report, Aachen

Univ. of Technology, Germany, 1994.

2. M.R. Gary and D.S. Johnson, Computers and

Intractability—A Guide to the Theory of NP-Com-

pleteness, W.H. Freeman & Co., New York, 1979.

3. R. Leupers, Code Optimization Techniques for

Embedded Processors, Kluwer Academic,

Boston, 2000.

4. S.S. Muchnik, Advanced Compiler Design and

Implementation, Morgan Kaufmann, San Mateo,

Calif., 1997.

5. A.W. Appel, Modern Compiler Implementation in

C, Cambridge Univ. Press, Cambridge, UK, 1998.

6. S. Liao et al., “Storage Assignment to Decrease

Code Size,” Proc. ACM SIGPLAN Conf. Program-

ming Language Design and Implementation (PLDI

95), ACM Press, New York, 1995, pp. 186-195.

7. M. Lee et al., “Power Analysis and Minimization

Techniques for Embedded DSP Software,” IEEE

Trans. VLSI Systems, vol. 5, no. 1, Mar. 1997, pp.

123-135.

8. S. Steinke et al., “Assigning Program and Data

Objects to Scratchpad for Energy Reduction,”

Proc. Design, Automation and Test in Europe

(DATE 02), IEEE CS Press, Los Alamitos, Calif.,

2002, pp. 409-415.

9. J. Sánchez and A. Gonzales, “Instruction Schedul-

ing for Clustered VLIW Architectures,” Proc. 13th

Int’l Symp. System Synthesis (ISSS 00), IEEE CS

Press, Los Alamitos, Calif., 2000, pp. 41-46.

10. R. Leupers and P. Marwedel, Retargetable Com-

piler Technology for Embedded Systems—Tools

and Applications, Kluwer Academic, Boston,

2001.

11. A. Hoffmann et al., “A Novel Methodology for the

Design of Application-Specific Instruction Set

Processors (ASIPs) Using a Machine Description

Language,” IEEE Trans. Computer-Aided Design,

vol. 20, no. 11, Nov. 2001, pp. 1338-1354.

Rainer Leupers is a pro-
fessor of software for systems
on silicon at the Institute for
Integrated Signal Processing
Systems at Aachen Universi-
ty of Technology, Germany.

His research interests include software tools and
design automation for embedded systems. Leu-
pers has a diploma and a PhD in computer sci-
ence from the University of Dortmund, Germany.

Direct questions and comments about this
article to Rainer Leupers, Aachen Univ. of Tech-
nology, Inst. for Integrated Signal Processing
Systems, SSS-611920, Templergraben 55,
52056 Aachen, Germany; leupers@iss.rwth-
aachen.de.

For further information on this or any other comput-

ing topic, visit our Digital Library at http://computer.

org/publications/dlib.

Embedded Systems

58

