Retargetable compilers and architecture exploration

for embedded processors

R. Leupers, M. Hohenauer, J. Ceng, H. Scharwaechter, H. Meyr, G. Ascheid and G. Braun

Abstract: Retargetable compilers can generate assembly code for a variety of different target
processor architectures. Owing to their use in the design of application-specific embedded
processors, they bridge the gap between the traditionally separate disciplines of compiler
construction and electronic design automation. In particular, they assist in architecture exploration
for tailoring processors towards a certain application domain. The paper reviews the state-of-the-art
in retargetable compilers for embedded processors. Based on some essential compiler background,
several representative retargetable compiler systems are discussed, while also outlining their use in
iterative, profiling-based architecture exploration. The LISATek C compiler is presented as a
detailed case study, and promising areas of future work are proposed.

1 Introduction

Compilers translate high-level language source code into
machine-specific assembly code. For this task, any compiler
uses a model of the target processor. This model captures
the compiler-relevant machine resources, including the
instruction set, register files and instruction scheduling
constraints. While in traditional target-specific compilers
this model is built-in (i.e. it is hard-coded and probably
distributed within the compiler source code), a retargetable
compiler uses an external processor model as an additional
input that can be edited without the need to modify the
compiler source code itself (Fig. 1). This concept provides
retargetable compilers with high flexibility with respect to
the target processor.

Retargetable compilers have been recognised as import-
ant tools in the context of embedded system-on-chip (SoC)
design for several years. One reason is the trend towards
increasing use of programmable processor cores as SoC
platform building blocks, which provide the necessary
flexibility for fast adoption, e.g. of new media encoding or
protocol standards and easy (software-based) product
upgrading and debugging. While assembly language used
to be predominant in embedded processor programming for
quite some time, the increasing complexity of embedded
application code now makes the use of high-level languages
like C and C++ just as inevitable as in desktop application
programming.

In contrast to desktop computers, embedded SoCs have
to meet very high efficiency requirements in terms of
MIPS per Watt, which makes the use of power-hungry,

© IEE, 2005

IEE Proceedings online no. 20045075

doi: 10.1049/ip-cdt:20045075

Paper first received 7th July and in revised form 27th October 2004

R. Leupers, M. Hohenauer, J. Ceng, H. Scharwaechter, H. Meyr, and
G. Ascheid are with the Institute for Integrated Signal Processing Systems,
RWTH Aachen University of Technology, SSS-611920, Templergraben 55,
D-52056, Aachen, Germany

G. Braun is with CoWare Inc., CA 95131, USA
E-mail: leupers @iss.rwth-aachen.de

IEE Proc.-Comput. Digit. Tech., Vol. 152, No. 2, March 2005

high-performance off-the-shelf processors from the desktop
computer domain (together with their well developed
compiler technology) impossible for many applications.
As a consequence, hundreds of different domain or even
application-specific programmable processors have
appeared in the semiconductor market, and this trend
is expected to continue. Prominent examples include
low-cost/low-energy microcontrollers (e.g. for wireless
sensor networks), number-crunching digital signal pro-
cessors (e.g. for audio and video codecs), as well as network
processors (e.g. for internet traffic management).

All these devices demand for their own programming
environment, obviously including a high-level language
(mostly ANSI C) compiler. This requires the capability of
quickly designing compilers for new processors, or vari-
ations of existing ones, without the need to start from scratch
each time. While compiler design traditionally has been
considered a very tedious and manpower-intensive task,
contemporary retargetable compiler technology makes it
possible to build operational (not heavily optimising) C
compilers within a few weeks and more decent ones
approximately within a single man-year. Naturally, the
exact effort heavily depends on the complexity of the target
processor, the required code optimisation and robustness
level, and the engineering skills. However, compiler
construction for new embedded processors is now certainly
much more feasible than a decade ago. This permits us
to employ compilers not only for application code develop-
ment, but also for optimising an embedded processor
architecture itself, leading to a true ‘compiler/ architecture
codesign’ technology that helps to avoid hardware—software
mismatches long before silicon fabrication.

This paper summarises the state-of-the-art in retargetable
compilers for embedded processors and outlines their design
and use by means of examples and case studies. We provide
some compiler construction background needed to under-
stand the different retargeting technologies and give an
overview of some existing retargetable compiler systems.
We describe how the above-mentioned ‘compiler/architec-
architecture codesign’ concept can be implemented in a
processor architecture exploration environment. A detailed
example of an industrial retargetable C compiler system is
discussed.

209

classical compiler retargetable compiler
sou;ce source processor
cooe code model

compiler

processor
model

asm
code code

asm

Fig. 1 Classical against retargetable compiler

2 Compiler construction background

The general structure of retargetable compilers follows that
of well proven classical compiler technology, which is
described in textbooks such as [1-4]. First, there is a
language frontend for source code analysis. The frontend
produces an intermediate representation by which a number
of machine-independent code optimisations are performed.
Finally, the backend translates the intermediate represen-
tation into assembly code, while performing additional
machine-specific code optimisations.

2.1 Source language frontend

The standard organisation of a frontend comprises a
scanner, a parser and a semantic analyser (Fig. 2). The
scanner performs lexical analysis on the input source file,
which is first considered just as a stream of ASCII
characters. During lexical analysis, the scanner forms
substrings of the input string to groups (represented by
tokens), each of which corresponds to a primitive syntactic
entity of the source language, e.g. identifiers, numerical
constants, keywords, or operators. These entities can be
represented by regular expressions, for which in turn finite
automata can be constructed and implemented that accept
the formal languages generated by the regular expressions.
Scanner implementation is strongly facilitated by tools
like lex [5].

The scanner passes the tokenised input file to the parser,
which performs syntax analysis with respect to the context-
free grammar underlying the source language. The parser
recognises syntax errors and, in the case of a correct input,
builds up a tree data structure that represents the syntactic
structure of the input program.

Parsers can be constructed manually based on the LL(k)
and LR(k) theory [2]. An LL(k) parser is a top-down parser,
i.e. it tries to generate a derivation of the input program from
the grammar start symbol according to the grammar rules. In
each step, it replaces a non-terminal by the right-hand side
of a grammar rule. In order to decide which rule to apply out
of possibly many alternatives, it uses a lookahead of k
symbols on the input token stream. If the context-free
grammar shows certain properties, this selection is unique,

int £ (int x)

e
il
(“const” IR
int ¥i scanner arser semantic
Ze:ui};:;?; P analyser
}

token syntax
source stream tree
code

Fig. 2 Source language frontend structure

210

so that the parser can complete its job in linear time in the
input size. However, the same also holds for LR(k) parsers
which can process a broader range of context-free
grammars. They work bottom-up, i.e. the input token
stream is reduced step-by-step until finally reaching the start
symbol. Instead of making a reduction step solely based on
the knowledge of the k lookahead symbols, the parser
additionally stores input symbols temporarily on a stack
until enough symbols for an entire right-hand side of
a grammar rule have been read. Due to this, the
implementation of an LR(k) parser is less intuitive and
requires more effort than for LL(k).

Constructing LL(k) and LR(k) parsers manually provides
some advantage in parsing speed. However, in most
practical cases tools like yacc [5] (that generates a variant
of LR(k) parsers) are employed for semi-automatic parser
implementation.

Finally, the semantic analyser performs correctness
checks not covered by syntax analysis, e.g. forward
declaration of identifiers and type compatibility of operands.
It also builds up a symbol table that stores identifier
information and visibility scopes. In contrast to scanners
and parsers, there are no widespread standard tools like lex
and yacc for generating semantic analysers. Frequently,
attribute grammars [1] are used, though, for capturing the
semantic actions in a syntax-directed fashion, and special
tools like ox [6] can extend lex and yacc to handle attribute
grammars.

2.2 Intermediate representation and
optimisation

In most cases, the output of the frontend is an intermediate
representation (IR) of the source code that represents the
input program as assembly-like, yet machine-independent
low-level code. Three-address code (Figs. 3 and 4) is a
common IR format.

There is no standard format for three-address code, but
usually all high-level control flow constructs and complex
expressions are decomposed into simple statement
sequences consisting of three-operand assignments and
gotos. The IR generator inserts temporary variables to store
intermediate results of computations.

Three-address code is a suitable format for performing
different types of flow analysis, i.e. control and data flow
analysis. Control flow analysis first identifies the basic block
structure of the IR and detects the possible control transfers
between basic blocks. (A basic block is a sequence of IR
statements with unique control flow entry and exit points).
The results are captured in a control flow graph (CFG).
Based on the CFG, more advanced control flow analyses can
be performed, e.g. in order to identify program loops.
Figure 5 shows the CFG generated for the example from
Figs. 3 and 4.

Data flow analysis works on the statement level
and determines interdependencies between computations.

int fib (int m)

{ intf0=0,f1=1,f2,i;
if (m <= 1) return m;
else
for (i=2;i<=m;i++) {
f2 =f0 +f1;
fo=11;
f1=12;}
return 2;

}

Fig. 3 Sample C source file fib.c (Fibonacci numbers)

IEE Proc.-Comput. Digit. Tech., Vol. 152, No. 2, March 2005

int fib (int m2)

intf0_4, f1_5,2_6,i_7, t1, 12, 13, t4, 16, t5;

fo_4 = 0;
f1.5=1;
t1=m_2<=1;
f() goto LL4;
i7=2;
t2_|7<_m2
t6=112;

if (t6) goto LL1;
LL3: t5=f0_4 +f_15;

f2_6=15;

fo_4=f_15;

f1_5=f 26;
LL2: t3=i_7;

4=t 3+1;

i_7=14

2=i_7<=m_2;

if (t2) goto LL3;
LL1: goto LLS5;
LL4: return m_2;
LL5: returnf_26;

}

Fig. 4 Three-address code IR for source file fib.c

Temporary variable identifiers inserted by the frontend start with letter ‘t’.
All local identifiers have a unique numerical suffix. This particular IR
format is generated by the LANCE C frontend [7]

(Err— Lnix
Hil (1) 0_4 = 0;
CEONFIER=R
(31 = e 2=
(4) if (1) goto LL4
(22) LL4:

(23) return m_2;

(9) LL3: i
= [d=hh s & =
N, () 2= i 7 =2

Eﬁgi 5':&1_5 (7) t6 = 112;

(13) f1.5 = f2 5, (8) if (tB) goto LL1;
3 /

(14) LL2:

(15) 3 = 1.7;

(16) t4 = 13 + 1;

(AT et = s

(18) 12 = i_7 <= m_2;

(18) if (42) goto LL3; /

(20) LL1:
(21) goto LLS;

(24) LLS:
(25) return f2_6;

Fig. 5 Control flow graph for fib.c

IEE Proc.-Comput. Digit. Tech., Vol. 152, No. 2, March 2005

For instance, the data flow graph (DFG) from Fig. 6 shows
relations of the form ‘statement X computes a value used as
an argument in statement Y’.

Both the CFG and the DFG form the basis for many code
optimisation passes at the IR level. These include common
subexpression elimination, jump optimisation, loop-invar-
iant code motion, dead code elimination and other ‘Dragon
Book’ [1] techniques. Owing to their target machine
independence, these IR optimisations are generally con-
sidered complementary to machine code generation in the
backend and are supposed to be useful ‘on average’ for
any type of target. However, care must be taken to select an
appropriate IR optimisation sequence or script for each
particular target, since certain (sometimes quite subtle)
machine dependencies do exist. For instance, common
subexpression elimination removes redundant computations
to save execution time and code size. At the assembly level,
however, this effect might be over-compensated by the
higher register pressure that increases the amount of spill
code. Moreover, there are many interdependencies between
the IR optimisations themselves. For instance, constant
propagation generally creates new optimisation opportu-
nities for constant folding, and vice versa, and dead code
elimination is frequently required as a ‘cleanup’ phase
between other IR optimisations. A poor choice of IR
optimisations can have a dramatic effect on final code
quality. Thus, it is important that IR optimisations be
organised in a modular fashion, so as to permit enabling and
disabling of particular passes during fine-tuning of a new
compiler.

2.3 Machine code generation

During this final compilation phase, the IR is mapped to
target assembly code. Since for a given IR an infinite
number of mappings as well as numerous constraints exist,
this is clearly a complex optimisation problem. In fact,
even many optimisation subproblems in code generation are
NP-hard, i.e. require exponential runtime for optimal
solutions. As a divide-and-conquer approach, the backend
is thus generally organised into three main phases: code
selection, register allocation and scheduling, which are
implemented with a variety of heuristic algorithms.
Dependent on the exact problem definition, all of these
phases may be considered NP-hard, e.g. [8] analyses the
complexity of code generation for certain types of target
machines.

For the purpose of code selection, the optimised IR is
usually converted into a sequence of tree-shaped DFGs.
Using a cost metric for machine instructions, the code
selector aims at a minimum-cost covering of the DFGs by
instruction patterns (Figs. 7 and 8). In particular for target
architectures with complex instruction sets, such as CISCs
and DSPs, careful code selection is the key to good code
quality.

For complexity reasons, most code selectors work only on
trees [9], even though generalised code selection for
arbitrary DFGs can yield higher code quality for certain
architectures [10, 11]. The computational effort for solving
the NP-hard generalised code selection problem is normally
considered too high in practice, though.

Subsequent to code selection, the register allocator
decides which variables are to be kept in machine registers
to ensure efficient access. Careful register allocation is key
for target machines with RISC-like load-store architectures
and large register files. Frequently, there are many more
simultaneously live variables than physically available
machine registers. In this case, the register allocator inserts

211

o
“ |guto LL5;| |r‘et.ur‘n m,Z;l |1.1 = m=2 K= 1;| i ; I
/ AN
L W7 \\1
it (11) goto LL4;] [ta = 1':7,-| [tz =i_7 <= m_z5] |f1_5l: 1] [roe = 03]
| N
\
\‘l / \‘
[t4=13+1; f [t5 = 1z [[15 = t0_4 + r1.5;] 9726 = 15;
/ 7 “‘\ , N\
/ A Y I
/ \ N M
[i-7 = 14;] [if (468) goto Lit;] [f0_4 = #1.5;] |15 = f2.6;] [return f2_6;]
12 = 4.7 <= m_Z;I
5
|1'1c (12) goto LL3;

6 ADDCONST

(BES)

load d(A,)

Fig. 7 Five instruction patterns available for a Motorola 68k
CPU

ADDREG ADDREG

Fig. 8 Two possible coverings of a DFG using the instruction
patterns from Fig. 7

spill code to temporarily store register variables to main
memory. Obviously, spill code needs to be minimised in
order to optimise program performance and code size. Many
register allocators use a graph colouring approach [12, 13]
to accomplish this.

For target processors with instruction pipeline hazards
and/or instruction-level parallelism, such as VLIW
machines, instruction scheduling is required to optimise

212

code execution speed. The scheduler requires two sets of
inputs to represent the interinstruction constraints: instruc-
tion latencies and reservation tables. Both constraints refer
to the schedulability of some pair (X, Y) of instructions. If
instruction Y depends on instruction X, the latency values
determine a lower bound on the number of cycles between
execution of X and Y. If there is no dependence between X
and Y, the occupation of exclusive resources represented by
the reservation tables determines whether the execution of X
may overlap the execution of Y in time, e.g. whether X and
Y may be executed in parallel on a VLIW processor. As for
other backend phases, optimal scheduling is an intractable
problem. However, there exist a number of powerful
scheduling heuristics, such as (local) list scheduling and
(global) trace scheduling [3].

Besides the above three standard code generation phases,
a backend frequently also incorporates different target-
specific code optimisation passes. For instance, address
code optimisation [14] is useful for a class of DSPs, so as to
fully utilise dedicated address generation hardware for
pointer arithmetic. Many VLIW compilers employ loop
unrolling and software pipelining [15] for increasing
instruction-level parallelism in the hot spots of application
code. Loop unrolling generates larger basic blocks inside
loop bodies, and hence provides better opportunities for
keeping the VLIW functional units busy most of the time.
Software pipelining rearranges the loop iterations so as to
remove intraloop data dependencies that otherwise would
obstruct instruction-level parallelism. Finally, NPU archi-
tectures for efficient protocol processing require yet a
different set of machine-specific techniques [16] that exploit
bit-level manipulation instructions.

The separation of the backend into multiple phases is
frequently needed to achieve sufficient compilation speed,
but tends to compromise code quality due to interdepen-
dencies between the phases. In particular, this holds for
irregular ‘non-RISC’ instruction sets, where the phase
interdependencies are sometimes very tight. Although there
have been attempts to solve the code generation problem in
its entirety, e.g. based on integer linear programming [17],
such ‘phase-coupled’ code generation techniques are still
not in widespread use in real-word compilers.

IEE Proc.-Comput. Digit. Tech., Vol. 152, No. 2, March 2005

3 Approaches to retargetable compilation

From the above discussions is it obvious that compiler
retargeting mainly requires adaptations of the backend, even
though IR optimisation issues certainly should not be
neglected. In order to provide a retargetable compiler with a
processor model, as sketched in Fig. 1, a formal machine
description language is required. For this purpose, dozens of
different approaches exist. These can be classified with
respect to the intended target processor class (e.g. RISC
against VLIW) and the modelling abstraction level,
e.g. purely behavioural, compiler-oriented against more
structural, architecture-oriented modelling styles.
Behavioural modelling languages make the task
of retargeting easier, because they explicitly capture
compiler-related information about the target machine,
i.e. instruction set, register architecture and scheduling
constraints. However, they usually require good under-
standing of compiler technology. In contrast, architectural
modelling languages follow a more hardware design
oriented approach and describe the target machine in more
detail. This is convenient for users not so familiar with
compiler technology. However, automatic retargeting gets
more difficult, because a ‘compiler view’ needs to be

MODULE SimpleProcessor (IN inp: (7:0); OUT outp:(7:0));

extracted from the architecture model, while eliminating
unnecessary details.

In the following, we will briefly discuss a few
representative examples of retargetable compiler systems.
For a comprehensive overview of existing systems see [18].

3.1 MIMOLA

MIMOLA denotes both a mixed programming and hard-
ware description language (HDL) and a hardware design
system. As the MIMOLA HDL serves multiple purposes,
e.g. register-transfer level (RTL) simulation and synthesis,
the retargetable compiler MSSQ [19, 20] within the
MIMOLA design system follows the above-mentioned
architecture-oriented approach. The target processor is
described as an RTL netlist, consisting of components and
interconnect. Figure 9 gives an example of such an RTL
model.

Since the HDL model comprises all RTL information
about the target machine’s controller and data path, it is
clear that all information relevant for the compiler backend
of MSSQ is present too. However, this information is only
implicitly available, and consequently the lookup of this
information is more complicated than in a behavioural
model.

STRUCTURE

IS TYPE InstrFormat = FIELDS -- 21-bit horizontal instruction word
imm: (20:13) ;
RAMadr: (12:5) ;
RAMCtT: (4);
mux : (3:2);
alu: (1:0) ;
END;
Byte = (7:0); Bit = (0); -- scalar types
PARTS -- instantiate behavioral modules
IM: MODULE InstrROM (IN adr: Byte; OUT ing: InstrFormat) ;
VAR storage: ARRAY[O0..255] OF InstrFormat;
BEGIN ing <- storagel[adr]; END;

PC, REG: MODULE Reg8bit (IN data: Byte; OUT outp: Byte);
VAR R: Byte;
BEGIN R := data; outp <- R; END;
PCIncr: MODULE IncrementByte (IN data: Byte; OUT inc: Byte);
BEGIN outp <- INCR data; END;
RAM: MODULE Memory (IN data, adr: Byte; OUT outp: Byte; FCT c¢: Bit);
VAR storage: ARRAY[0..255] OF Byte;
BEGIN
CASE ¢ OF: 0: NOLCAD storage; 1: storageladr] := data; END;
outp <- storage[adr];
END;
ALU: MODULE AddSub (IN d0, dl: Byte; OUT outp: Byte; FCT c: (1:0}));
BEGIN -- "$" denotes binary numbers
outp «<- CASE ¢ OF %00: 40 + dil; %01: d0 - dl; %1x: dO; END;
END;
MUX: MODULE Mux3x8 (IN do0,dl,d2: Byte; OUT outp: Byte; FCT c: (1:0));
BEGIN outp <- CASE c¢ OF 0: d0; 1: dl; ELSE: d2; END; END;
CONNECTIONS
-- controller: -- data path:
PC.outp -> IM.adr; IM.ins.imm -> MUX.do;
PC.outp -> PCIncr.data; inp -> MUX.d1l; -- primary input
PCIncr.outp -» PC.data; RAM.outp -»> MUX.d2;
IM.ins.RAMadr -> RAM.adr; MUX.outp -»> ALU.d1;
IM.ins.RAMctr -> RAM.C; ALU.outp -> REG.data;
IM.ins.alu -> ALU.c; REG.outp -> ALU.dO;
IM.ins.mux -> MUX.c; REG.outp -»> outp; -- primary output
END; -- STRUCTURE LOCATION_FOR_PROGRAMCOUNTER PC;

LOCATION FOR_INSTRUCTIONS IM; END;
Fig. 9 MIMOLA HDL model of a simple processor

IEE Proc.-Comput. Digit. Tech., Vol. 152, No. 2, March 2005

STRUCTURE

213

MSSQ compiles an ‘extended subset’ of the PASCAL
programming language directly into binary machine code.
Due to its early introduction, MSSQ employs only few
advanced code optimisation techniques (e.g. there is no
graph-based global register allocation), but performs the
source-to-architecture mapping in a straightforward fashion,
on a statement-by-statement basis. Each statement is
represented by a data flow graph (DFG), for which an
isomorphic subgraph is searched in the target data path.
If this matching fails, the DFG is partitioned into simpler
components, for which graph matching is invoked
recursively.

In spite of this simple approach, MSSQ is capable of
exploiting instruction-level parallelism in VLIW-like archi-
tectures very well, due to the use of a flexible instruction
scheduler. However, code quality is generally not accep-
table in the case of complex instruction sets and load /store
data paths. In addition, it shows comparatively high
compilation times, due to the need for exhaustive graph
matching.

The MIMOLA approach shows very high flexibility in
compiler retargeting since in principle any target processor
can be represented as an RTL HDL model. In addition, it
avoids the need to consistently maintain multiple different
models of the same machine for different design phases,
e.g. simulation and synthesis, as all phases can use the same
‘golden’ reference model. MSSQ demonstrates that retar-
getable compilation is possible with such unified models,
even though it does not handle well architectures with
complex instruction pipelining constraints (which is a
limitation of the tool, though, rather than of the approach
itself). The disadvantage, however, is that the comparatively
detailed modelling level makes it more difficult to develop
the model and to understand its interaction with the
retargetable compiler, since e.g. the instruction set is
‘hidden’ in the model.

Some of the limitations have been removed in RECORD,
another MIMOLA HDL based retargetable compiler that
comprises dedicated code optimisations for DSPs. In order
to optimise compilation speed, RECORD uses an instruc-
tion set extraction technique [21] that bridges the gap
between RTL models and behavioural processor models.
Key ideas of MSSQ, e.g. the representation of scheduling
constraints by binary partial instructions, have also been
adopted in the CHESS compiler [22, 23], one of the first
commercial tool offerings in that area. In the Expression
compiler [24], the concept of structural architecture
modelling has been further refined to increase the reuse
opportunities for model components.

3.2 GNU C compiler

The widespread GNU C compiler gcc [25] can be retargeted
by means of a machine description file that captures the
compiler view of a target processor in a behavioural fashion.
In contrast to MIMOLA, this file format is heterogeneous
and solely designed for compiler retargeting. The gcc
compiler is organised into a fixed number of different
passes. The frontend generates a three-address code like
intermediate representation (IR). There are multiple built-in
‘Dragon Book’ IR optimisation passes, and the backend is
driven by a specification of instruction patterns, register
classes and scheduler tables. In addition, retargeting gcc
requires C code specification of numerous support func-
tions, macros and parameters.

The gcc compiler is robust and well-supported, it includes
multiple source language frontends and it has been ported to
dozens of different target machines, including typical

214

embedded processor architectures like ARM, ARC, MIPS
and Xtensa. However, it is very complex and hard to
customise. It is primarily designed for ‘compiler-friendly’
32-bit RISC-like load-store architectures. While porting to
more irregular architectures, such as DSPs, is possible as
well, this generally results in huge retargeting effort and/or
insufficient code quality.

3.3 Little C compiler

Like gcc, retargeting the ‘little C compiler’ lcc [26, 27] is
enabled via a machine description file. In contrast to gcc, lcc
is a ‘lightweight’ compiler that comes with much less source
code and only a few built-in optimisations, and hence lcc
can be used to design compilers for certain architectures
very quickly. The preferred range of target processors is
similar to that of gcc, though with some further restrictions
on irregular architectures.

In order to retarget lcc, the designer has to specify the
available machine registers, as well as the translation of C
operations (or IR operations, respectively) to machine
instructions by means of mapping rules. The following
excerpt from lcc’s Sparc machine description file [27]
exemplifies two typical mapping rules:

addr: ADDP4 (reg, reg) “%%%0 + %%%1"
reg: INDIRI1 (addr) “1dsb [%0], %%%c\n"

The first line instructs the code selector how to cover
address computations (‘addr’) that consist of adding two 4-
byte pointers (‘ADDP4’) stored in registers (‘reg’). The
string ‘%% %0 + %%% 1’ denotes the assembly code to be
emitted, where ‘%0’ and ‘%1’ serve as placeholders for the
register numbers to be filled later by the register allocator
(and ‘%%’ simply emits the register identifier symbol ‘%”).
Since ‘addr’ is only used in context with memory accesses,
here only a substring without assembly mnemonics is
generated.

The second line shows the covering of a 1-byte signed
integer load from memory (‘INDIRI1’), which can be
implemented by assembly mnemonic ‘ldsb’, followed by
arguments referring to the load address (‘%0’, returned from
the ‘addr’ mapping rule) and the destination register (‘%c’).

By specifying such mapping rules for all C/IR operations
plus around 20 relatively short C support functions, lcc can
be retargeted quite efficiently. However, lcc is very limited
in the context of non-RISC embedded processor architec-
tures. For instance, it is impossible to model certain
irregular register architectures (as e.g. in DSPs) and there
is no instruction scheduler, which is a major limitation for
targets with instruction level parallelism. Therefore, Icc has
not found wide use in code generation for embedded
processors so far.

3.4 CoSy

The CoSy system from ACE [28] is a retargetable compiler
for multiple source languages, including C and C++. Like
gcc, it includes several Dragon Book optimisations, but
shows a more modular, extensible software architecture,
which permits the addition of IR optimisation passes
through well-defined interfaces.

For retargeting, CoSy comprises a backend generator that
is driven by the CGD machine description format. Similar to
gcc and Icc, this format is full-custom and only designed for
use in compilation. Hence, retargeting CoSy requires
significant compiler know-how, particularly with respect
to code selection and scheduling. Although it generates
the backend automatically from the CGD specification,
including standard algorithms for code selection, register

IEE Proc.-Comput. Digit. Tech., Vol. 152, No. 2, March 2005

registers
(************* general-purpose registers P L T S— _ machine
RO,R1,R2,R3,R4,R5,R6,R7,R8,R9,R10,R11,R12,R13,R14,R15, .
registers
(****x*k**x**x— ﬂoatlng_polnt reglsters KKK KKKIKKKAKKK
FO,F1,F2,F3,F4,F5,F6,F7,F8,F9,F10,F11,F12,F13,F14,F15,
(remerrnens double-precision regis rerernenrern)
D0<FO0,F1>,D2<F2,F3>,D4<F4,F5> ,F7>,D8<F8,F9>,D10<F10,F11>,D12<F12,F13>,D14<F14,F15>,
(revsrensnnns fiscellaneous registers * wrerernene) ~ombined
PC, FPSR; registers
(rersrrennnnns aliases sexsrinnernene)
REGI: R2..R31;
REGIO: RO..R31;
REGF: FO..F31; reqister
REGD: D0.D30; ———— %9
RET: R31; classes
FP: R30: /
SP: R29;
TEMP: R2..R15,F0..F15;
AVAIL (* registers available to the register allocator *)
<R0..R29,R31,F0..F15,F0..F31,D0..D30>;
Fig. 10 CGD specification of processor registers
argument
registers

rule name

[

IR operation

matching CONDITION {
condition T ——

}
COST 1;

linkto | pRODUCER ALU_Out;

;j:cer?;'lg; ~——CONSUMER ALU_In;
- TEMPLATE ALU_op;
EMIT {
assembly
output }

RULE [mir Plus_regi_regi__regi] o:mirPlus (rs1:regi0, rs2:regi0) -> rd:regi;

IS_POINTER_OR_INT(0.Type)

printf(" ADD %s,%s,%s\n", REGNAME(rd), REGNAME(rs 1), REGNAME(rs2));

Fig. 11 CGD specification of mapping rules

allocation and scheduling, the designer has to fully under-
stand the IR-to-assembly mapping and how the architecture
constrains the instruction scheduler.

The CGD format follows the classical backend organis-
ation. It includes mapping rules, a register specification, as
well as scheduler tables. The register specification is a
straightforward listing of the different register classes and
their availability for the register allocator (Fig. 10).

Mapping rules are the key element of CGD (Fig. 11).
Each rule describes the assembly code to be emitted for a
certain C/IR operation, depending on matching conditions
and cost metric attributes. Similar to gcc and lcc, the register
allocator later replaces symbolic registers with physical
registers in the generated code.

Mapping rules also contain a link to the CGD scheduler
description. By means of the keywords ‘PRODUCER’ and
‘CONSUMER’, the instructions can be classified into
groups, so as to make the scheduler description more
compact. For instance, arithmetic instructions performed on
a certain ALU generally have the same latency values. In the
scheduler description itself (Fig. 12), the latencies for pairs
of instruction groups are listed as a table of numerical
values. As explained in Section 2.3, these values instruct the
scheduler to arrange instructions a minimum amount of
cycles apart from each other. Different types of interinstruc-
tion dependencies are permitted. Here the keyword “TRUE’
denotes data dependence. (Data dependencies are some-
times called ‘true’, since they are induced by the source
program itself. Hence, they cannot be removed by the

IEE Proc.-Comput. Digit. Tech., Vol. 152, No. 2, March 2005

SCHEDULER
| instruction

PRODUCER ALU_Out, MUL_Out, ——— | classes

| —

CONSUMER ALU_In, MUL _In;

instruction
TRUE ALU_In MUL_In: Class
ALU_Out 1 T €
~ I
MUL_Out 2 2 atencies
RESOURCES EX_alu, EX_mul; .
reservation
TEMPLATES - tables
ALU_op :=() & () & EX_alu & (); /

MUL_op :=() & () & EX_mul & EX_mul & ();

Fig. 12 CGD specification of scheduler tables

compiler. In contrast, there are ‘false’, or antidependencies
that are only introduced by code generation via reuse of
registers for different variables. The compiler should aim at
minimising the amount of false dependencies, in order to
maximise the instruction scheduling freedom).

Via the “TEMPLATE’ keyword, a reservation table entry
is referenced. The ‘&’ symbol separates the resource use of
an instruction group over the different cycles during its
processing in the pipeline. For instance, in the last line of
Fig. 12, instruction group ‘MUL_op’ occupies resource
‘EX_mul’ for two subsequent cycles.

The CGD processor modelling formalism makes CoSy a
quite versatile retargetable compiler. Case studies for RISC
architectures show that the code quality produced by CoSy

215

compilers is comparable to that of gcc. However, the
complexity of the CoSy system and the need for compiler
background knowledge make retargeting more tedious than,
for example, in the case of Icc.

4 Processor architecture exploration

4.1 Methodology and tools for ASIP design

As pointed out in Section 1, one of the major applications of
retargetable compilers in SoC design is to support the design
and programming of application-specific instruction set
processors (ASIPs). ASIPs receive increasing attention in
both academia and industry due to their optimal flexibili-
ty /efficiency compromise [29]. The process of evaluating
and refining an initial architecture model step-by-step to
optimise the architecture for a given application is
commonly called architecture exploration. Given that the
ASIP application software is written in a high-level
language like C, it is obvious that compilers play a major
role in architecture exploration. Moreover, in order to
permit frequent changes of the architecture during the
exploration phase, compilers have to be retargetable.

Today’s most widespread architecture exploration meth-
odology 1is sketched in Fig. 13. It is an iterative approach
that requires multiple remapping of the application code to
the target architecture. In each iteration, the usual software
development tool chain (C compiler, assembler, linker) is
used for this mapping. Since exploration is performed with a
virtual prototype of the architecture, an instruction set
simulator together with a profiler are used to measure the
efficiency and cost of the current architecture with respect to
the given (range of) applications, e.g. in terms of
performance and area requirements.

We say that hardware (processor architecture and
instruction set) and software (application code) ‘match’,
if the hardware meets the performance and cost goals, and
there is no over- or underutilisation of HW resources.
For instance, if the HW is not capable of executing the ‘hot
spots’ of the application code under the given timing
constraints, e.g. due to insufficient function units, too much
spill code, or too many pipeline stalls, then more resources
need to be provided. However, if many function units are
idle most of the time or half of the register file remains
unused, this indicates an underutilisation. Fine-grained
profiling tools make such data available to the processor
designer. However, it is still a highly creative process to
determine the exact source of bottlenecks (application code,
C compiler, processor instruction set, or microarchitecture)

application

C compiler

assembler

Fig. 13 Processor architecture exploration loop

216

and to remove them by corresponding modifications, while
simultaneously overlooking their potential side effects.

If the HW/SW match is initially not satisfactory, the
ASIP architecture is further optimised, dependent on
the bottlenecks detected during simulation and profiling.
This optimisation naturally requires hardware design
knowledge, and may comprise, for example, addition of
application-specific custom machine instructions, varying
register file sizes, modifying the pipeline architecture,
adding more function units to the data path, or simply
removing unused instructions. The exact consequences of
such modifications are hard to predict, so that usually
multiple iterations are required in order to arrive at an
optimal ASIP architecture that can be handed over to
synthesis and fabrication.

With the research foundations of this methodology laid in
the 1980s and 1990s (see [18] for a summary of early tools),
several commercial offerings are available now in the EDA
industry, and more and more start-up companies are
entering the market in that area. While ASIPs offer many
advantages over off-the-shelf processor cores (e.g. higher
efficiency, reduced royalty payments and better product
differentiation), a major obstacle is still the potentially
costly design and verification process, particularly concern-
ing the software tools shown in Fig. 13. In order to minimise
these costs and to make the exploration loop efficient,
all approaches to processor architecture exploration aim
at automating the retargeting of these tools as much as
possible. In addition, a link to hardware design has to be
available in order to accurately estimate area, cycle time and
power consumption of a new ASIP. In most cases this is
enabled by automatic HDL generation capabilities for
processor models, which provides a direct entry to gate-
true estimations via traditional synthesis flows and tools.

One of the most prominent examples of an industrial
ASIP is the Tensilica Xtensa processor [30]. It provides a
basic RISC core that can be extended and customised by
adding new machine instructions and adjusting parameters,
e.g. for the memory and register file sizes. Software
development tools and an HDL synthesis model can
be automatically generated. Application programming is
supported via the gcc compiler and a more optimising
in-house C compiler variant. The Tensilica Xtensa, together
with its design environment, completely implement the
exploration methodology from Fig. 13. However, the use of
a largely predefined RISC core as the basic component
poses limitations on the flexibility and the permissible
design space. An important new entry to the ASIP market is
Stretch [31]. Their configurable S5000 processor is based on
the Xtensa core, but includes an embedded field program-
mable gate array (FPGA) for processor customisation.
While FPGA vendors have combined processors and
configurable logic on a single chip for some time, the
S5000 ‘instruction set extension fabric’ is optimised for
implementation of custom instructions, thus providing a
closer coupling between processor and FPGA. In this way,
the ASIP becomes purely software-configurable and field-
programmable, which reduces the design effort, but at the
expense of reduced flexibility.

4.2 ADL-based approach

More flexibility is offered by the tool suite from Target
Compiler Technologies [23] that focuses on the design of
ASIPs for signal processing applications. In this approach,
the target processor can be freely defined by the user in the
nML architecture description language (ADL). In contrast
to a purely compiler-specific machine model, such as in

IEE Proc.-Comput. Digit. Tech., Vol. 152, No. 2, March 2005

the case of gcc or CoSy’s CGD, an ADL such as nML also
captures information relevant for the generation of other
software development tools, e.g. simulator, assembler and
debugger, and hence covers a greater level of detail.
However, in contrast to HDL-based approaches to retarge-
table compilation, such as MIMOLA, the abstraction level is
still higher than RTL and usually allows for a concise
explicit modelling of the instruction set. The transition to
RTL only takes place once the ADL model is refined to an
HDL model for synthesis.

LISATek is another ASIP design tool suite that originated
at Aachen University [32]. It has first been produced by
LISATek Inc. and is now available as a part of CoWare’s
SoC design tool suite [33]. LISATek uses the LISA 2.0
(language for instruction set architectures) ADL for
processor modelling. A LISA model captures the processor
resources like registers, memories and instruction pipelines,
as well as the machine’s instruction set architecture (ISA).
The ISA model is composed of operations (Fig. 14),
consisting of sections that describe the binary coding,
timing, assembly syntax and behaviour of machine
operations at different abstraction levels. In an instruction-
accurate model (typically used for early architecture
exploration), no pipeline information is present, and each
operation corresponds to one instruction. In a more fine-
grained, cycle-accurate model, each operation represents a
single pipeline stage of one instruction. LISATek permits
the generation of software development tools (compiler,
simulator, assembler, linker, debugger, etc.) from a LISA
model, and embeds all tools into an integrated GUI
environment for application and architecture profiling. In
addition, it supports the translation of LISA models to
synthesisable VHDL and Verilog RTL models. Figure 15
shows the intended ASIP design flow with LISATek. In
addition to an implementation of the exploration loop from
Fig. 13, the flow also comprises the synthesis path via HDL
models, which enables back-annotation of gate-level hard-
ware metrics.

OPERATION ADD IN pipe.EX {
// declarations
DECLARE {
INSTANCE writeback;
GROUP srcl, dst = { reg };
GROUP src2 = { reg || imm };}

// assembly syntax
SYNTAX { "addc"™ dst "," srcl "," src2 }

// binary encoding
CODING { 0b0101 dst srcl src2 }

// behavior (C code)

BEHAVIOR {

u32 opl, op2, result, carry;

if (forward) ({
opl = PIPELINE REGISTER(pipe,EX/WB).result;}
else
opl = PIPELINE REGISTER (pipe,DC/EX) .opl;}
result = opl + op2;

carry = compute carry{opl, op2, result);
PIPELINE REGISTER (EX/WB).result = result;
PIPELINE REGISTER(EX/WB) .carry = carry; }

|~

// pipeline timing
ACTIVATION { writeback, carry update }

}

Fig. 14 LISA operation example: execute stage of an ADD
instruction in a cycle-true model with forwarding hardware
modelling

IEE Proc.-Comput. Digit. Tech., Vol. 152, No. 2, March 2005

target architecture
LISA 2.0 description

LISATek generators

exploration

assembler

simulator

implementation

VHDL description
synthesis tools
gate-level model

evaluation results

L profiling data,

execution speed

evaluation results
chip size, clock speed,
power consumption

Fig. 15 LISATek-based ASIP design flow

In [34] it has been exemplified how the LISATek
architecture exploration methodology can be used to
optimise the performance of an ASIP for an IPv6 security
application. In this case study, the goal was to enhance a
given processor architecture (MIPS32) by means of
dedicated machine instructions and a microarchitecture for
fast execution of the compute-intensive Blowfish encryption
algorithm (Fig. 16) in IPsec. Based on initial application C
code profiling, hot spots were identified that provided first
hints on appropriate custom instructions. The custom
instructions were implemented as a coprocessor (Fig. 17)
that communicates with the MIPS main processor via shared
memory. The coprocessor instructions were accessed from
the C compiler generated from the LISA model via compiler
intrinsics. This approach was feasible due to the small

plain text
64 bit
32 bit 32 bit
P, 32 bit ® \
32 bit 32 bit

| F —> @
P,—» ®

| F —®

further 13 iterations

| - .
| T

Py, — P

32 bit 32 bit
64 bit

cipher text

Fig. 16 Blowfish encryption algorithm for IPsec

P; denotes a 32-bit subkey, F denotes the core subroutine consisting of
substitutions and add/xor operations

217

1kB
ext_mem

memory module

systemC bus model

SystemC
processor module

MIPS32

simulator

A
Pl prog_bus
|

(simple_bus)

SystemC

LISA port processor module

data_bus

simulator

A
prog_bus |P
|

API API

API| API| API|
kseg_rom useg_rom data_ram

data_ram prog_rom

MIPS32 main processor

IPsec coprocessor

Fig. 17 MIPS32/coprocessor system resulting from Blowfish architecture exploration

number of custom instructions required, which can be easily
utilised with small modifications of the initial Blowfish C
source code. LISATek-generated instruction-set simulators
embedded into a SystemC based cosimulation environment
were used to evaluate candidate instructions and to optimise
the coprocessor’s pipeline microarchitecture on a cycle-
accurate level.

Finally, the architecture implementation path via LISA-
to-VHDL model translation and gate-level synthesis was
used for further architecture fine-tuning. The net result was a
5x speedup of Blowfish execution over the original MIPS at
the expense of an additional coprocessor area of 22k gates.
This case study demonstrates that ASIPs can provide
excellent efficiency combined with IP reuse opportunities
for similar applications from the same domain.
Simultaneously, the iterative, profiling-based exploration
methodology permits us to achieve such results quickly,
i.e. typically within a few man-weeks.

The capability of modelling the ISA behaviour in arbitrary
C/C++ code makes LISA very flexible with respect to
different target architectures and enables the generation of
high-speed ISA simulators based on the JITCC technology
[35]. As in the MIMOLA and Target approaches, LISATek
follows the ‘single golden model’ paradigm, i.e. only one
ADL model (or automatically generated variants of it) is used
throughout the design flow in order to avoid consistency
problems and to guarantee ‘correct-by-construction’ soft-
ware tools during architecture exploration. Under this
paradigm, the construction of retargetable compilers is a
challenging problem, since in contrast to special-purpose
languages like CGD, the ADL model is not tailored towards
compiler support only. Instead, similar to MIMOLA /MSSQ
(see Section 3.1), the compiler-relevant information needs to
be extracted with special techniques. This is discussed in
more detail in the following Section.

5 C compiler retargeting in the LISATek platform

5.1 Concept

The design goals for the retargetable C compiler within the
LISATek environment were to achieve high flexibility and

218

good code quality at the same time. Normally, these goals
are contradictory, since the more the compiler can exploit
knowledge of the range of target machines, the better is the
code quality, and vice versa. In fact, this inherent trade-off
has been a major obstacle for the successful introduction of
retargetable compilers for quite some time.

However, a closer look reveals that this only holds for
‘push-button’ approaches to retargetable compilers, where
the compiler is expected to be retargeted fully automatically
once the ADL model is available. If compiler retargeting
follows a more pragmatic user-guided approach (naturally
at the cost of a slightly longer design time), then one can
escape from the above dilemma. In the case of the LISA
ADL, an additional constraint is the unrestricted use of
C/C++ for operation behaviour descriptions. Due to the
need for flexibility and high simulation speed, it is
impossible to sacrifice this description vehicle. However,
this makes it very difficult to automatically derive the
compiler semantics of operations, due to large syntactic
variances in operation descriptions. In addition, hardware-
oriented languages like ADLs do not at all contain certain
types of compiler-related information, such as C type bit
widths, function calling conventions etc., which makes an
interactive GUI-based retargeting environment useful.

In order to maximise the reuse of existing, well tried
compiler technology and to achieve robustness for real-life
applications, the LISATek C compiler builds on the CoSy
system (Section 3.4) as a backbone. Since CoSy is capable
of generating the major backend components (code
selector, register allocator, scheduler) automatically, it is
sufficient to generate the corresponding CGD fragments
(see Figs. 10—12) from a LISA model in order to implement
an entire retargetable compiler tool chain.

5.2 Register allocator and scheduler

Out of the three backend components, the register allocator,
is the easiest one to retarget since the register information is
explicit in the ADL model. As shown in Fig. 10, essentially
only a list of register names is required, which can be
largely copied from the resource declaration in the LISA
model. Special cases (e.g. combined registers, aliases,

IEE Proc.-Comput. Digit. Tech., Vol. 152, No. 2, March 2005

opcode registers 1, 2 opcode registers 1, 2
composition 0: ()
two parallel instructions 15|14|13|12 11|10 9| 8|7 |6 |5 |4 3 |2 1 |O
with register arguments A\
Y '
instructions: reg8_insn1 instructions: reg8_insn2
opcode registers 1, 2 immediate
composition 1: A
a sngle instructions
i i 15|14|13|12 11|1O 9|8 7|6|5|4|3|2|1|O
with register and
immediate arguments N

Fig. 18 Two instruction encoding formats (compositions)

special-purpose registers such as the stack pointer) can be
covered by a few one-time user interactions in the GUL

As explained in Section 2.3, generation of the instruction
scheduler is driven by two types of tables: latency tables and
reservation tables. Both are only implicit in the ADL model.
Reservation tables model interinstruction conflicts. Similar
to the MSSQ compiler (Section 3.1), it is assumed that all
such conflicts are represented by instruction encoding
conflicts. (This means that parallel scheduling of instruc-
tions with conflicting resource usage is already prohibited
by the instruction encoding itself. Architectures for which
this assumption is not valid appear to be rare in practice, and
if necessary there are still simple workarounds via user
interaction, e.g. through manual addition of artificial
resources to the generated reservation tables). Therefore,
reservation tables can be generated by examining the
instruction encoding formats in a LISA model.

Figures 18 and 19 exemplify the approach for two
possible instruction formats or compositions. Composition
0 is VLIW-like and allows two parallel 8-bit instruction to
be encoded. In composition 1, the entire 16 instruction bits
are required due to an 8-bit immediate constant that needs to
be encoded. In the corresponding LISA model, these two
formats are modelled by means of a switch/case language
construct.

The consequences of this instruction format for the
scheduler are that instructions that fit into one of the 8-bit

OPERATION decode_op

{

DECLARE
{
ENUM composition = {compositiond,
compositionl};
GROUP reg8 insnl, reg8 insn2 = { reg8 op };
GROUP immlé6 insn = { immlé op};
}
SWITCH (compositions)
{
CASE composgitionO:
{
CODING AT (progam_counter)
{ insn reg = = reg8 insnl | | reg8 insn2 }
SYNTAX { reg8 insnl * " reg insn2}
1
CASE compositionl:
{
CODING AT (progam counter)
{ 4insn reg = = immlé insn }
SYNTAX { immlé6 insn }
1
!

1
Fig. 19 LISA model fragment for instruction format from Fig. 18

IEE Proc.-Comput. Digit. Tech., Vol. 152, No. 2, March 2005

instructions: imm16_insn

slots of composition 0 can be scheduled in either of the two,
while an instruction that requires an immediate operand
blocks other instructions from being scheduled in parallel.
The scheduler generator analyses these constraints and
constructs virtual resources to represent the interinstruction
conflicts. Naturally, this concept can be generalised to
handle more complex, realistic cases for wider VLIW
instruction formats. Finally, a reservation table in CGD
format (see Fig. 12) is emitted for further processing with
CoSy. (We also generate a custom scheduler as an optional
bypass of the CoSy scheduler. The custom one achieves
better scheduling results for certain architectures [36].)

The second class of scheduler tables, latency tables,
depends on the resource access of instructions as they run
through the different instruction pipeline stages. In LISA,
cycle-accurate instruction timing is described via activation
sections inside the LISA operations. One operation can
invoke the simulation of other operations downstream in the
pipeline during subsequent cycles, e.g. an instruction fetch
stage would typically be followed by a decode stage, and so
forth. This explicit modelling of pipeline stages makes it
possible to analyse the reads and writes to registers at a
cycle-true level. In turn, this information permits the
extraction of different types of latencies, e.g. due to a data
dependency.

An example is shown in Fig. 20, where there is a typical
four-stage pipeline (fetch, decode, execute, writeback) for a
load/store architecture with a central register file. (The first
stage in any LISA model is the ‘main’ operation that is
called for every new simulation cycle, similar to the built-in
semantics of the ‘main’ function in ANSI C). By tracing the
operation activation chain, one can see that a given
instruction makes two read accesses in stage ‘decode’ and
a write access in stage ‘writeback’. For arithmetic instruc-
tions executed on the ALU, for instance, this implies a
latency value of two (cycles) in the case of a data
dependency. This information can again be translated into
CGD scheduler latency tables (Fig. 12). The current version
of the scheduler generator, however, is not capable of
automatically analysing forwarding/bypassing hardware,
which is frequently used to minimise latencies due to
pipelining. Hence, the fine-tuning of latency tables is
performed via user interaction in the compiler retargeting
GUI, which allows the user to add specific knowledge in
order to over-ride potentially too conservative scheduling
constraints, so as to improve code quality.

5.3 Code selector

As sketched in Section 2.3, retargeting the code selector
requires specification of instruction patterns (or mapping
rules) used to cover a data flow graph representation of

219

’ main H fetch |—>| decode

read ports

register
alu_instr

execute

writeback

write port

2][3]

register file

Fig. 20 Register file accesses of an instruction during its processing over different pipeline stages

the intermediate representation (IR). Since it is difficult to
extract instruction semantics from an arbitrary C/C++
specification as in the LISA behaviour models, this part of
backend retargeting is least automated. Instead, the GUI
offers the designer a mapping dialogue (Fig. 21, see also
[37]) that allows for a manual specification of mapping
rules. This dialogue enables the ‘drag-and-drop’ compo-
sition of mapping rules, based on (a) the IR operations
needed to be covered for a minimal operational compiler
and (b) the available LISA operations. In the example from

Fig. 21, an address computation at the IR level is
implemented with two target-specific instructions (LDI and
ADDI) at the assembly level.

Although significant manual retargeting effort is required
with this approach, it is much more comfortable than
working with a plain compiler generator such as CoSy
(Section 3.4), since the GUI hides many compiler internals
from the user and takes the underlying LISA processor
model explicitly into account, e.g. concerning the correct
assembly syntax of instructions. Moreover, it ensures very

UM coware LISATek Compiler Designer: test.xml ---

File Build Help

== NN

Registers | Datalayout | Stacklayout | Nonterminals | Conventions | Scheduler | Matcher I

Rule Hierarchy
Z-ZRule Patterns

Instruction Mapping IExtended |

-2 Calling
"ggpi”t I © [Pattern Ok
- Control
-EMove — Campiler IR —Mapping - Instructions
-"BLUadStorle IR Element Pattern Lahel +/ INSTRUCTION
-~ B srcamivint mirActual miraddrConst o +- XK alu_operation:
te:mirint mir&ddrConst =-Walue +- X control_operation: ®
~E rl::mfrlnt' mir&ddrDiff B --> Kinit_operation: 2t
-~ [B] src:mitint miraddrPlus =-Nt_p32dst -~/ transfer_operation:
~ B srcmirint :::zzg . =/ Instruction:i_load ‘ﬁ‘l
stc:mirlnt mianEEtram =~/ Immediatel 6:immediate 6
mirObje irBitinsert -/ value: <(o.Values>16)= @'l
:mirOhje . b
e mirBoolval »/LDI:
0-mf" e mirCall -/t _writeback_bp:
amjrCont mirCompare Asi | +/ Offsetimmediates
o:mirCont mirContent LDl <dst= 16 (0.Value=>16) o/ value: <16
mirAssi mirConvert | ADDI <dsts <dst= (0.Value&0xf) +/ Rl:registerd
mirdssi e i L/ <tlsts
— onterminal | i
gc .mrltl’Add T +- X Instruction:p_load
-ZConvel - ; i
- R tion:p_st
=g M_ce : X nstruc!on.p_s ore
o o NEi32 + Klnstruction:pp_move
Nt_pa2 +- XK Instruction:pr_move
Nt_sitmm16 +- K Instruction:r_load
Nt_uimm1 B + K lnstruction:r_store
Nt_‘ulmmS + Klnstruction:rp_move
rsnzlrlrllar - +- X Instruction:rr_move
4 +- X Instruction:so_move
+- X Instruction:w_load
+- XK Instruction:aw_store
|

Wrote shomeshohenauflisal

Cancel I

%)

Fig. 21

220

GUI for interactive compiler retargeting (code selector view)

IEE Proc.-Comput. Digit. Tech., Vol. 152, No. 2, March 2005

high flexibility with respect to different target processor
classes, and the user gets immediate feedback on consist-
ency and completeness of the mapping specification.

The major drawback, however, of the above approach is a
potential model consistency problem, since the LISA model
is essentially overlayed with a (partially independent) code
selector specification. In order to eliminate this problem, yet
retaining flexibility, the LISA language has recently been
enhanced with semantic sections [38]. These describe the
behaviour of operations from a pure compiler perspective
and in a canonical fashion. In this way, semantic sections
eliminate syntactic variances and abstract from details such
as internal pipeline register accesses or certain side effects
that are only important for synthesis and simulation.

Figure 22 shows a LISA code fragment for an ADD
instruction that generates a carry flag. The core operation
(‘dst = srcl 4 src2’) could be analysed easily in this
example, but in reality more C code lines might be required
to capture this behaviour precisely in a pipelined model. The
carry flag computation is modelled with a separate if-
statement, but the detailed modelling style might obviously
vary. However, the compiler only needs to know that the
operation adds two registers and that it generates a carry,
independent of the concrete implementation.

The corresponding semantics model (Fig. 23) makes this
information explicit. Semantics models rely on a small set
of precisely defined micro-operations (‘_ADDI for ‘integer
add’ in this example) and capture compiler-relevant side
effects with special attributes (e.g. ‘*_C’ for carry gener-
ation). This is feasible, since the meaning of generating

OPERATION ADD {

DECLARE {

GROUP srcl, dst = { reg };

GROUP src2 = { reg || imm };}

SYNTAX { "add" dst "," srcl "," src2 }
CODING { 0b0000 srcl src2 dst }
BEHAVIOR {

dst = srcl + src2;

if (({srel < 0) && (src2 < 0)) ||
({srcl > 0) && (src2 > 0) &&
(dst < 0)) ||
({srcl > 0) && (src2 < 0) &&
(srcl > -src2)) ||
({(srcl < 0) && (src2 > 0) &&
(-srcl < src2)))

{ carry = 1; }}}

Fig. 22 Modelling of an add operation in LISA with carry flag
generation as a side effect

OPERATION ADD {

DECLARE {

GROUP srcl, dst = { reg };

GROUP src2 = { reg || imm };}

SYNTAX { "add" dst "," srcl "," src2 }

CODING { 0b0000 srcl src2 dst }

SEMANTICS { ADDI[C] (srcl, src2) -»> dst; }}

OPERATION reg {
DECLARE {
LABEL index; }
SYNTAX { "R" index=#U4 }
CODING { index=0bxxxx }
SEMANTICS { REGI(R[index])<0..31> }}

Fig. 23 Compiler semantics modelling of the add operation
from Fig. 22 and a micro-operation for register file access
(micro-operation ‘_REGI’)

IEE Proc.-Comput. Digit. Tech., Vol. 152, No. 2, March 2005

a carry flag (and similar for other flags like zero or sign) in
instructions like ADD does not vary between different target
processors.

Frequently, there is no one-to-one correspondence
between IR operations (compiler-dependent) and micro-
operations (processor-dependent). Therefore, the code
selector generator that works with the semantic sections
must be capable of implementing complex IR patterns by
sequences of micro-operations. For instance, it might be
needed to implement a 32-bit ADD on a 16-bit processor
by a sequence of an ADD followed by an ADD-with-carry.
For this ‘lowering’, the code selector generator relies on
an extensible default library of transformation rules.
Contrarily, some LISA operations may have complex
semantics (e.g. a DSP-like multiply-accumulate) that
cover multiple IR operations at a time. These complex
instructions are normally not needed for an operational
compiler but should be utilised in order to optimise code
quality. Therefore, the code selector generator analyses the
LISA processor model for such instructions and automati-
cally emits mapping rules for them.

The use of semantic sections in LISA enables a much
higher degree of automation in code selector retargeting,
since the user only has to provide the semantics per LISA
operation, while mapping rule generation is completely
automated (except for user interactions possibly required to
extend the transformation rule library for a new target
processor).

The semantics approach eliminates the above-mentioned
model consistency problem at the expense of introducing a
potential redundancy problem. This redundancy is due to
the coexistence of separate behaviour (C/C++) and
semantics (micro-operations) descriptions. The user has to
ensure that behaviour and semantics do not contradict.
However, this redundancy is easily to deal with in practice,
since behaviour and semantics are local to each single LISA
operation. Moreover, as outlined in [39], coexistence of
both descriptions can even be avoided in some cases, since
one can generate the behaviour from the semantics for
certain applications.

5.4 Results

The retargetable LISATek C compiler has been applied to
numerous different processor architectures, including RISC,
VLIW and network processors. Most importantly, it has
been possible to generate compilers for all architectures
with limited effort, of the order of some man-weeks,
dependent on the processor complexity. This indicates that
the semi-automatic approach outlined in Section 5 works for
a large variety of processor architectures commonly found
in the domain of embedded systems.

While this flexibility is a must for retargetable compilers,
code quality is an equally important goal. Experimental
results confirm that the code quality is generally acceptable.
Figure 24 shows a comparison between the gcc compiler
(Section 3.2) and the CoSy based LISATek C compiler for a
MIPS32 core and some benchmarks programs. The latter
one is an ‘out-of-the-box’ compiler that was designed within
two man-weeks, while the gcc compiler, due to its wide use,
probably incorporates significantly more manpower.
On average, the LISATek compiler shows an overhead of
10% in performance and 17% in code size. With specific
compiler optimisations added to the generated backend, this
gap could certainly be further narrowed.

Further results for a different target (Infineon PP32
network processor) show that the LISATek compiler
generates better code (40% in performance, 10% in code

221

execution cycles

140.000.000 1
120.000.000 {
100.000.000 1

80.000.000 1

60.000.000 1

40.000.000 1

20.000.000 1

0 T)
gcc, -O4 gcc, -02 cosy, -O4 cosy, -02
code size

80.000 -

70.000

60.000

50.000

40.000

30.000

20.000

10.000 -

0
gcce, -O4 gcc, -02 cosy, -O4 cosy, -02

Fig. 24 Comparison between gcc compiler and CoSy based
LISATek C compiler

size) than a retargeted lcc compiler (Section 3.3), due to
more built-in code optimisation techniques in the CoSy
platform. Another data point is the ST200 VLIW processor,
where the LISATek compiler has been compared to the ST
Multiflow, a heavily optimising target-specific compiler.
In this case, the measured overhead has been 73% in
performance and 90% in code size, which is acceptable for
an ‘out-of-the-box’ compiler that was designed with at least
an order of magnitude less time than the Multiflow. Closing
this code quality gap would require adding special
optimisation techniques, e.g. in order to utilise predicated
instructions, which are currently ignored during automatic
compiler retargeting. Additional optimisation techniques
are also expected to be required for highly irregular DSP
architectures, where the classical backend techniques
(Section 2.3) tend to produce unsatisfactory results. From
our experience we conclude that such irregular architectures
can hardly be handled in a completely retargetable fashion,
but will mostly require custom optimisation engines for
highest code quality. The LISATek/CoSy approach enables
this by means of a modular, extensible compiler software
architecture, naturally at the expense of an increased design
effort.

6 Summary and outlook

Motivated by the growing use of ASIPs in embedded SoCs,
retargetable compilers have made their way from academic
research to EDA industry and application by system and
semiconductor houses. While still being far from perfect,
they increase design productivity and help to obtain better
quality of results. The flexibility of today’s retargetable

222

compilers for embedded systems can be considered
satisfactory, but more research is required on how to make
code optimisation more retargetable.

We envision a pragmatic solution where optimisation
techniques are coarsely classified with respect to different
target processor families, e.g. RISCs, DSPs, NPUs and
VLIWs, each of which show typical hardware character-
istics and optimisation requirements. For instance, software
pipelining and utilisation of SIMD (single instruction
multiple data) instructions are mostly useful for VLIW
architectures, while DSPs require address code optimisation
and a closer coupling of different backend phases. Based on
a target processor classification given by the user with
respect to the above categories, an appropriate subset of
optimisation techniques would be selected, each of which is
retargetable only within its family of processors.

Apart from this, we expect growing research interest in
the following areas of compiler-related EDA technology:
Compilation for low power and energy: Low power
and/or low energy consumption have become primary
design goals for embedded systems. As such systems are
more and more dominated by software executed by
programmable embedded processors, it is obvious that
also compilers may play an important role, since they
control the code efficiency. At first glance, it appears that
program energy minimisation is identical to performance
optimisation, assuming that power consumption is approxi-
mately constant over the execution time. However, this is
only a rule-of-thumb, and the use of fine-grained instruc-
tion-level energy models [40, 41] shows that there can be a
trade-off between the two optimisation goals, which can be
explored with special code generation techniques. The effect
is somewhat limited, though, when neglecting the memory
subsystem, which is a major source of energy consumption
in SoCs. More optimisation potential is offered by
exploitation of small on-chip (scratchpad) memories,
which can be treated as entirely compiler-controlled, energy
efficient caches. Dedicated compiler techniques, such as
[42, 43], are required to ensure an optimum use of
scratchpads for program code and/or data segments.
Source-level code optimisation: In spite of powerful
optimising code transformations at the IR or assembly
level, the resulting code can be only as efficient as the source
code passed to the compiler. For a given application
algorithm, an infinite number of C code implementations
exist, possibly each resulting in different code quality after
compilation. For instance, downloadable reference C
implementations of new algorithms are mostly optimised
for readability rather than performance, and high-level
design tools that generate C as an output format usually do
not pay much attention to code quality. This motivates the
need for code optimisations at the source level, e.g. C-to-C
transformations, that complement the optimisations per-
formed by the compiler, while retaining the program
semantics. Moreover, such C-to-C transformations are
inherently retargetable, since the entire compiler is used
as a backend in this case. Techniques like [44—-46] exploit
the implementation space at the source level to significantly
optimise code quality for certain applications, while tools
like PowerEscape [47] focus on efficient exploitation of the
memory hierarchy in order to minimise power consumption
of C programs.

Complex application-specific machine instructions: Recent
results in ASIP design automation indicate that a high
performance gain is best achieved with complex appli-
cation-specific instructions that go well beyond the classical
custom instructions like multiply-accumulate for DSPs.
While there are approaches to synthesising such custom

IEE Proc.-Comput. Digit. Tech., Vol. 152, No. 2, March 2005

instructions based on application code analysis [48—50], the
interaction with compilers is not yet well understood. In
particular, tedious manual rewriting of the source code is
still required in many cases to make the compiler aware of
new instructions. This slows down the ASIP design process
considerably, and in an ideal environment the compiler
would automatically exploit custom instruction set exten-
sions. This will require generalisation of classical code
selection techniques to cover more complex constructs like
directed acyclic graphs or even entire program loops.

7

1

w

o]

10
11

13

14

15

19
20

21
22

23

References

Aho, A.V., Sethi, R., and Ullman, J.D.: ‘Compilers — principles,
techniques, and tools’ (Addison—Wesley, 1986)

Appel, A.W.: ‘Modern compiler implementation in C’ (Cambridge
University Press, 1998)

Muchnik, S.S.: ‘Advanced compiler design & implementation’
(Morgan Kaufmann Publishers, 1997)

Wilhelm, R., and Maurer, D.: ‘Compiler design’ (Addison—Wesley,
1995)

Mason, T., and Brown, D.: ‘lex & yacc’ (O’Reilly & Associates, 1991)
Bischoff, K. M.: ‘Design, implementation, use, and evaluation of Ox: an
attribute-grammar compiling system based on Yacc, Lex, and C’,
Technical Report 92—-31, Dept. of Computer Science, Iowa State
University, USA, 1992

Leupers, R., Wahlen, O., Hohenauer, M., Kogel, T., and Marwedel, P.:
‘An executable intermediate representation for retargetable compilation
and high-level code optimization’. Int. Workshop on Systems,
Architectures, Modeling, and Simulation (SAMOS), Samos, Greece,
July 2003

Aho, A., Johnson, S., and Ullman, J.: ‘Code generation for expressions
with common subexpressions’, J. ACM, 1977, 24, (1)

Fraser, C.W., Hanson, D.R., and Proebsting, T.A.: ‘Engineering a
simple, efficient code-generator generator’, ACM Lett. Program. Lang.
Syst., 1992, 1, (3), pp. 213-226

Bashford, S., and Leupers, R.: ‘Constraint driven code selection for
fixed-point DSPs’. 36th Design Automation Conf. (DAC), 1999

Ertl, M. A.: ‘Optimal code selection in DAGs’. ACM Symp. on
Principles of Programming Languages (POPL), 1999

Chow, F., and Hennessy, J.: ‘Register allocation by priority-based
coloring’, SIGPLAN Not., 1984, 19, (6)

Briggs, P.: ‘Register allocation via graph coloring’. PhD thesis, Dept. of
Computer Science, Rice University, Houston/TX, USA, 1992

Liao, S., Devadas, S., Keutzer, K., Tjiang, S., and Wang, A.: ‘Storage
assignment to decrease code size’. ACM SIGPLAN Conf. on
Programming Language Design and Implementation (PLDI), 1995
Lam, M.: ‘Software Pipelining: An Effective Scheduling Technique for
VLIW machines’. ACM SIGPLAN Conf. on Programming Language
Design and Implementation (PLDI), 1988

Wagner, J., and Leupers, R.: ‘C compiler design for network processor’,
IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., 2001, 20, (11)
Wilson, T., Grewal, G., Halley, B., and Banerji, D.: ‘An integrated
approach to retargetable code generation’. 7th Int. Symp. on High-
Level Synthesis (HLSS), 1994

Leupers, R., and Marwedel, P.: ‘Retargetable compiler technology for
embedded systems — tools and applications’ (Kluwer Academic
Publishers, 2001)

Marwedel, P., and Nowak, L: ‘Verification of hardware descriptions by
retargetable code generation’. 26th Design Automation Conf., 1989
Leupers, R., and Marwedel, P.: ‘Retargetable code generation based on
structural processor descriptions’ (Kluwer Academic Publishers, 1998),
Design Automation for Embedded Systems, vol. 3, no. 1

Leupers, R., and Marwedel, P.: ‘A BDD-based frontend for retargetable
compilers’. European Design & Test Conf. (ED & TC), 1995

Van Praet, J., Lanneer, D., Goossens, G., Geurts, W., and De Man, H.:
‘A graph based processor model for retargetable code generation’.
European Design and Test Conference (ED & TC), 1996

Target Compiler Technologies: http://www.retarget.com

IEE Proc.-Comput. Digit. Tech., Vol. 152, No. 2, March 2005

24
25
26
27
28
29

30
31
32

33
34

35

36

37

38

40

4

—_

42

43

44

45

46

47

48
49

Mishra, P., Dutt, N., and Nicolau, A.: ‘Functional abstraction driven
design space exploration of heterogenous programmable architectures’.
Int. Symp. on System Synthesis (ISSS), 2001

Free Software Foundation/EGCS: http://gcc.gnu.org

Fraser, C., and Hanson, D.: ‘A retargetable C compiler: design and
implementation” (Benjamin/Cummings, 1995)

Fraser, C., and Hanson, D.: LCC home page, http://www.cs.princeton.
edu/software/lcc

Associated Compiler Experts: http://www.ace.nl

Orailoglu, A., and Veidenbaum, A.: ‘Application specific micropro-
cessors (guest editors introduction)’, IEEE Des. Test Comput., 2003, 20,
pp- 6-7

Tensilica Inc.: http://www.tensilica.com

Stretch Inc.: http://www.stretchinc.com

Hoffman, A., Meyr, H., and Leupers, R.: ‘Architecture exploration for
embedded processors with LISA’ (Kluwer Academic Publishers, 2002),
ISBN 1-4020-7338-0

CoWare Inc.: http://www.coware.com

Scharwaechter, H., Kammler, D., Wieferink, A., Hohenauer, M.,
Karuri, K., Ceng, J., Leupers, R., Ascheid, G., and Meyr, H.: ‘ASIP
architecture exploration for efficient IPSec encryption: a case study’.
Int. Workshop on Software and Compilers for Embedded Systems
(SCOPES), 2004

Nohl, A., Braun, G., Schliebusch, O., Hoffman, A., Leupers, R., and
Meyr, H.: ‘A universal technique for fast and flexible instruction set
simulation’. 39th Design Automation Conf. (DAC), New Orleans, LA,
(USA), 2002

Wahlen, O., Hohenauer, M., Braun, G., Leupers, R., Ascheid, G.,
Meyr, H., and Nie, X.: ‘Extraction of efficient instruction schedulers
from cycle-true processor models’. 7th Int. Workshop on Software and
Compilers for Embedded Systems (SCOPES), 2003

Hohenauer, M., Wahlen, O., Karuri, K., Scharwaechter, H., Kogel, T.,
Leupers, R., Ascheid, G., Meyr, H., Braun, G., and van Someren, H.:
‘A methodology and tool suite for C compiler generation from ADL
processor models’. Design Automation & Test in Europe (DATE),
Paris, France, 2004

Ceng, J., Sheng, W., Hohenauer, M., Leupers, R., Ascheid, G., Meyr, H.,
Braun, G.: ‘Modeling instruction semantics in ADL processor
descriptions for C compiler retargeting’. Int. Workshop on Systems,
Architectures, Modeling, and Simulation (SAMOS), 2004

Braun, G., Nohl, A., Sheng, W., Ceng, J., Hohenauer, M.,
Scharwaechter, H., Leupers, R., and Meyr, H.: ‘A novel approach for
flexible and consistent ADL-driven ASIP design’. 41st Design
Automation Conf. (DAC), 2004

Lee, M., Tiwari, V., Malik, S., and Fujita, M.: ‘Power analysis and
minimization techniques for embedded DSP software’, IEEE Trans.
Very Large Scale Integr. (VLSI) Syst., 1997, 5, (2)

Steinke, S., Knauer, M., Wehmeyer, L., and Marwedel, P.: ‘An accurate
and fine grain instruction-level energy model supporting software
optimizations’. Proc. PATMOS, 2001

Steinke, S., Grunwald, N., Wehmeyer, L., Banakar, R., Balakrishnan, M.,
and Marwedel, P.: ‘Reducing energy consumption by dynamic copying
of instructions onto onchip memory’. ISSS, 2002

Kandemir, M., Irwin, M.J., Chen, G., and Kolcu, I.: ‘Banked scratch-
pad memory management for reducing leakage energy consumption’.
ICCAD, 2004

Falk, H., and Marwedel, P.: ‘Control flow driven splitting of loop nests
at the source code level’. Design Automation and Test in Europe
(DATE), 2003

Liem, C., Paulin, P., and Jerraya, A.: ‘Address calculation for
retargetable compilation and exploration of instruction-set architec-
tures’. 33rd Design Automation Conf. (DAC), 1996

Franke, B., and O’Boyle, M.: ‘Compiler transformation of pointers to
explicit array accesses in DSP applications’. Int. Conf. on Compiler
Construction (CC), 2001

PowerEscape Inc.: http://www.powerescape.com

Sun, F., Ravi, S. er al.: ‘Synthesis of custom processors based on
extensible platforms’, ICCAD 2002

Goodwin, D., and Petkov, D.: ‘Automatic generation of application
specific processors’. CASES 2003

Atasu, K., Pozzi, L., and Ienne, P.: ‘Automatic application-specific
instruction-set extensions under microarchitectural constraints’. DAC
2003

223

http://www.retarget.com
http://gcc.gnu.org
http://www.cs.princeton.edu/software/lcc
http://www.cs.princeton.edu/software/lcc
http://www.ace.nl
http://www.tensilica.com
http://www.stretchinc.com
http://www.coware.com
http://www.powerescape.com

