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Software obfuscation has always been a controversially discussed research area. While theoretical results
indicate that provably secure obfuscation in general is impossible, its widespread application in malware and
commercial software shows that it is nevertheless popular in practice. Still, it remains largely unexplored to
what extent today’s software obfuscations keep up with state-of-the-art code analysis and where we stand in
the arms race between software developers and code analysts. The main goal of this survey is to analyze the
effectiveness of different classes of software obfuscation against the continuously improving deobfuscation
techniques and off-the-shelf code analysis tools.

The answer very much depends on the goals of the analyst and the available resources. On the one
hand, many forms of lightweight static analysis have difficulties with even basic obfuscation schemes, which
explains the unbroken popularity of obfuscation among malware writers. On the other hand, more expensive
analysis techniques, in particular when used interactively by a human analyst, can easily defeat many
obfuscations. As a result, software obfuscation for the purpose of intellectual property protection remains
highly challenging.
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1. INTRODUCTION

The development of code obfuscation techniques is driven by the desire to hide the
specific implementation of a program from automatic or human-assisted analysis of
executable code. Its roots date back to the early days of programming when the main
purpose of obfuscation was to place hidden functionality into programs—often just for
hiding a secret message to surprise users who reveal it by coincidence (e.g., Easter eggs).
Particularly creative ways to obscure functionality were even rewarded in competitions
like the International Obfuscated C Contest, which has been held since 1984.1

By the late 1980s, malware became a major reason for the steady refinement of
code obfuscation techniques. For instance, in 1986 the Brain computer virus, which is
believed to be the first computer virus for MS-DOS, obfuscated the functionality of its
code by intercepting reads of the virus binary to return innocuous code [Avoine et al.
2007]. These early occurrences of software obfuscation marked the beginning of an arms
race between developers and analysts. Since then, software protection researchers have
been developing more and more sophisticated obfuscation techniques to hide behavior
of code, while analysts have been using increasingly complex code analysis techniques
to defeat obfuscations.

The underground economy and its demand for stealthy malware is still one of the
major driving forces behind the development of obfuscation techniques. The other
leading application area of code obfuscation is the protection of commercial software
against reverse engineering [Grover 1992]. The motivation for reverse engineering
can be diverse: An analyst might be interested in extracting some secret information
from the program code that should not be revealed to the user. This secret might be a
cryptographic key, a sophisticated algorithm considered a trade secret, or credentials
for a remote service. Typical examples include media players that store secret keys
or incorporate proprietary algorithms like the content scramble system (CSS) cipher
to play back copy-protected content. Another motivation for reverse engineering is
the modification of software to change its behavior. An analyst might want to use
hidden program functionality, uncover firmware features that are disabled in low-cost
devices, or interface commercial software with own products; all these actions will
likely interfere with the business model of the software vendor.

Techniques originally developed for malware have experienced a comeback in the
field of attack prevention. Since the early 1990s polymorphic engines had been widely
used in malware development to generate different-looking versions of malicious code
to evade signature-based detection [Nachenberg 1997; Song et al. 2010]. Software
diversity is a related concept for delivering syntactically different but semantically
identical versions of applications to different users [Franz 2010; Davi et al. 2012]. This
way, automated attacks developed against one instance of a program are thus less
likely to work against a different obfuscated version [Forrest et al. 1997; Anckaert
et al. 2004, 2006].

On the analyst’s side, research in the area of code analysis progressed significantly
over the past several years. Disassemblers, which extract the executable assembly code
from binaries, became increasingly sophisticated, implementing complex heuristics or
expensive static analysis methods to reconstruct code from a potentially obfuscated
binary as precisely as possible. In addition, research tools such as JakstaB [Kinder
and Veith 2008] or Bap [Brumley et al. 2011] directly analyze binary code to precisely
reconstruct control flow and reason about the behavior of the code. Systems for dynamic
malware analysis, such as Anubis [Bayer et al. 2006], allow a detailed analysis of the
runtime behavior of a piece of code.

Thttp://www.iocce.org/1984/ (accessed February 25, 2015).
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Since the groundbreaking work of Collberg et al. [1997] on a taxonomy of obfus-
cation techniques, a vast number of code obfuscation schemes have been proposed in
the literature. Nevertheless, the security and effectiveness of these techniques remain
controversially discussed topics. Indeed, early theoretical results for obfuscation that
is secure in a cryptographic sense were negative. Barak et al. [2001] showed that it
is impossible to construct a universal obfuscator that is applicable to any program;
positive results are known for very restricted classes of functionality such as point
functions [Lynn et al. 2004; Wee 2005; Canetti and Dakdouk 2008]. Other works on
theoretical aspects of code obfuscation include those of Dalla Preda and Giacobazzi
[2005], Goldwasser and Rothblum [2007], and Giacobazzi [2008]. While addressing the
theoretical understanding of obfuscation, these results have little to say about the prac-
tical effectiveness of obfuscation. Recently, Garg et al. [2013] presented a first candidate
for general-purpose obfuscation (indistinguishability obfuscation). While it is unclear
how useful this progress is to hide secrets in a program in practical settings, it still
brought new momentum to the discussion and encouraged follow-up work [Brakerski
and Rothblum 2014; Barak et al. 2014; Bitansky et al. 2014].

Code obfuscation is widely employed in practice: For example, almost all newly
discovered malware comes with some form of obfuscation to hide its functionality, and
commercial software products such as Skype or Digital Rights Management (DRM)
engines use obfuscation techniques as part of their protection portfolio. Consequently,
a plethora of obfuscation techniques have been described in the literature (e.g., Collberg
et al. [1997], Wang et al. [2000], Dedic¢ et al. [2007], and Jakubowski et al. [2007]); most
of them try to “raise the bar” for reverse engineering attempts but do not come with a
rigorous security analysis, let alone a proof. Some attempts have been made to quantify
the additional complexity that is added to an executable by employing code obfuscation
techniques (for example, see Madou et al. [2006]); however, it remains unclear whether
such notions indeed capture all security properties of obfuscation correctly. While this
is clearly unsatisfactory from a theoretic point of view, it is probably the best one can
achieve with current knowledge.

Still, it remains largely unexplored to what extent today’s code obfuscation tech-
niques can keep up with the progress in code analysis and where we stand in the arms
race between developers and analysts. The main goal of this survey is thus to provide a
comprehensive picture of the state of the art in code obfuscation and of its effectiveness
against deobfuscation techniques and code analysis tools that are available today.

To this end, we first build a classification of analysis scenarios in Section 2; in
particular, we pair each analysis method with a specific analysis goal to define a set of
scenarios that form our basic model of the code analyst. Subsequently, we describe and
categorize existing code obfuscation techniques in Section 3. There is a large body of
literature on obfuscation and analysis, and we do not claim to survey it in all its breadth;
instead, we try to paint a representative picture of the state of the art in both fields.

In all of our analysis scenarios, we assume that the analyst receives binary or byte
code. Thus, we limit ourselves to obfuscations that affect the binary or byte code rep-
resentation of a program. We make no distinction whether the obfuscation is applied
before, during, or after compilation, however. We decided to leave obfuscation tech-
niques targeting the readability of source code (such as the removal of comments or
renaming of variables) out of scope, even though we acknowledge the importance of
such obfuscations for languages such as JavaScript.

Section 4 discusses the state of the art in program analysis methods and particularly
focuses on their capabilities and limits. Section 5 uses the described classifications
to assess the security of code obfuscation techniques against the different scenarios,
taking into account recently published attacks as well as recent off-the-shelf program
analysis tools. We rely on published results where possible and apply our own judgment
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where we could not find literature addressing a particular scenario. Finally, Section 6
concludes the article.

2. ANALYSIS SCENARIOS

In this section, we detail our methodology and introduce the analysis scenarios we
use throughout the rest of the article to assess the strength of obfuscation techniques
against specific adversaries with specific goals. This allows us to characterize the pro-
tection a developer may want to achieve at a finer granularity than the blackbox notion
typically used in the formal analysis of software obfuscation [Barak et al. 2001].

2.1. Methodology of This Survey

We classify the feasibility of real-life analysis scenarios on programs in the presence
of code obfuscation, based on a careful analysis of the literature on program analysis
and reverse engineering. For our classification, we use a number of analysis scenarios
consisting of an analysis technique and a goal that an analyst wants to achieve.

We assume that a developer implements the strongest possible obfuscator of one
particular class of obfuscations. We do not consider second order effects, that is, com-
binations of different types of obfuscations. A systematic analysis of how obfuscation
techniques compose with one another would be challenging already just due to the
sheer number of possible combinations. Still, it certainly makes an interesting and
relevant topic for future work, since many commercial obfuscators employ (and indeed
recommend to use) multiple obfuscations at the same time.

We make a similar assumption on the side of the analyst and evaluate the strength
of obfuscations against four code analysis categories (introduced in Section 2.2) indi-
vidually. Approaches that involve the staged application of multiple techniques are
represented by the category of their first analysis stage; for instance, pattern matching
on disassembled code requires an at least partially successful disassembly by static
analysis. Hybrid techniques that unite aspects of multiple categories are sorted into
the category they share the most properties with. Our strongest category involves a
human analyst who may use multiple techniques of different types; our model here
assumes that the analyst will apply techniques from either category and switch to a
different one if they do not make any more progress towards the analysis goal.

As stated above, our evaluation of the effectiveness of different classes of software
obfuscation schemes against the defined analysis scenarios is based on a literature
review. For each combination of an analysis scenario and a specific class of obfusca-
tions (see Section 3), we sought out literature specifically addressing that combination.
Sometimes we could directly report published results of analyzing particular obfusca-
tions, sometimes we had to make our own inferences from the available information.
Our results are not derived from a formal analysis and are necessarily open to inter-
pretation. Nevertheless, we believe that our scenarios capture the relevant analysis
context and that our classification presents an accurate snapshot of the current state
in the arms race between code obfuscation and analysis.

2.2. Code Analysis Categories

We categorize code analysis techniques in four general classes. An analyst can use
different analyses depending on their goal and their available resources and time.
For example, a human reverse engineer who tries to understand a piece of code of a
competitor may afford spending time and effort on highly complex and time-consuming
analyses; in contrast, an antivirus vendor, who has to timely analyze hundreds of
thousands of different malware samples each day, may be required to resort to very
lightweight and thus limited analysis techniques that at the same time ensure a low
false-positive rate.
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Pattern matching. Pattern matching is the simplest and fastest form of code analysis;
it is a syntactic analysis performed on the program binary or byte code. Techniques in
this category include identification of static sequences of instructions, regular expres-
sions, or machine learning-based classifiers for binary data (see Section 4.1).

Automated static analysis. Static analysis inspects a program (on binary or byte
code level) without actually executing it. In contrast to syntactic pattern matching,
static analysis reasons about the program semantics. Simple forms of static analysis
include disassemblers that interpret branch targets. Static analysis is frequently used
to reconstruct high-level information about programs, such as their control flow graph
(see Section 4.2).

Automated dynamic analysis. Dynamic analysis runs a program to observe its actions
and/or collect its flow of information. Dynamic analysis has the advantage of being
able to very precisely reason about the program behavior along the observed traces.
However, the data gathered from one or several runs of a program does not necessarily
allow to draw conclusions about the behavior of the entire program (see Section 4.3).

Human-assisted analysis. As the most capable “analysis,” we consider a human an-
alyst who performs a tool-assisted exploration of a piece of code; the tools can be based
on all of the other analysis types. Typically, this process is referred to as reverse engi-
neering, where the analyst aims at understanding the program structure and behavior
with the help of a variety of tools (see Section 4.4).

2.3. Analyst’s Aims

We now systematically categorize and characterize the possible motivations of an an-
alyst for analyzing software, in order of increasing complexity. We believe that almost
all analyst goals observed in practice fit in one of these four general categories. As
a running example to illustrate the goals throughout the section, we use a program
implementing a cryptographic algorithm with an embedded secret key. Furthermore,
we present other examples for each category to demonstrate the practicability of this
classification.

Finding the location of data. The analyzer wishes to retrieve some data embedded in
the program in its original, nonobfuscated representation from the obfuscated program.
In our running example, the analyzer may want to extract the secret cryptographic key
from the obfuscated program to be able to decrypt data in a different context than
provided by the application (e.g., to circumvent DRM policies). Other typical examples
that fall into this category are the extraction of licensing keys, certificates, credentials
for remote services, and device configuration data.

Finding the location of program functionality. The analyzer aims at identifying the
entry point of a particular function within an obfuscated program. In our running ex-
ample, the analyzer may want to find the entry point of a cryptographic algorithm in
the obfuscated program to subsequently analyze it. Another aim could be to find the
exact location of a copy protection mechanism (such as a check for the presence of a
hardware dongle or the validation of a licensing key) in order to circumvent it. Further-
more, finding the code representation of a particular functionality of a program can be
useful for manual reverse engineering on small areas of the program. More generally,
one may ask the question whether a program implements a particular functionality at
all, such as the AES (Advanced Encryption Standard) algorithm, or simply whether a
program is malicious or not.

Another related aim of the analyst might be to modify the behavior of a program in
a particular way (e.g., bypassing a copy protection mechanism). However, we consider
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this to be out of scope of this work, because it falls into the field of tamper-proofing
rather than obfuscation (e.g., Horne et al. [2002] and Chang and Atallah [2002]). Still,
finding the location of program functionality is a fundamental prerequisite of this aim.

Extraction of code fragments. The analyzer aims at extracting a piece of code in-
cluding all possible dependencies that implement a particular functionality from the
obfuscated program. In our running example, the analyzer’s aim can be the extraction
of the cryptographic algorithm in order to build a custom decryption routine. Note that
for this purpose it is not necessary to fully understand the code; just using it in a new
application may be enough. This approach has been used for breaking DRM imple-
mentations. Instead of understanding how exactly the decryption routine embedded
into a player works, it is simply extracted and included in a counterfeit player, which
decrypts the digital media without enforcing the contained usage policies. Another aim
of the analyst may be the extraction of fragments of commercial software of competi-
tors. In some analysis scenarios code does not need to be extracted, but a functional
component of an executable is accessed at runtime (in-situ reuse) [Miles et al. 2012].
This technique is comparable to the concept of return oriented programming, which
reuses code fragments to create new functionality [Shacham 2007].

Understanding the program. The analyzer wishes to fully understand a code frag-
ment or even the entire obfuscated program. This requires that the analyst must be
able to remove the applied obfuscation techniques and gain full understanding of the
original, nonobfuscated program or a nontrivial fragment of it. In our running example,
the analyzer may want to understand how a proprietary cipher embedded into the ob-
fuscated program works in order to start cryptanalysis attempts. Other motivations for
trying to understand a program can be the desire of an analyst to find vulnerabilities,
to correct flaws in software for which the source code is not available, and create new
programs that are compatible with proprietary software. Finally, a major driving force
for human-assisted reverse engineering is to gain understanding of proprietary imple-
mentation details such as file formats or protocols, which often constitutes intellectual
property theft.

2.4. Scenarios

By combining each code analysis technique with each of the analyst’s aims, we arrive
at the analysis scenarios that form the basis of our survey.

Not all combinations are reasonable according to our definitions. While pure pattern
matching can clearly help to locate a code fragment, its extraction will then either (a)
require additional static analysis for dependency analysis and thus fall into another
category or (b) be trivial and thus identical in difficulty. Similarly, pattern matching
does not lend itself to code understanding, so we leave out both combinations and
consider a total of 14 scenarios. An overview of the literature that describes code
analysis techniques based on these scenarios is provided in Table I. In the following,
we explain all 14 scenarios in more detail.

Locating data through pattern matching. A matching algorithm is used to determine
the existence and location of data that conforms to a pattern specification. Patterns for
the automated identification of data inside a program describe the structure of the data
such as its length or data type, its environment in the form of the code surrounding it,
or even properties such as its entropy.

Locating code through pattern matching. Particular code fragments are detected by
pattern matching, for example, on instruction sequences with or without wildcards.
When pattern matching is applied to the outcome of a static or dynamic analysis
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Table I. Literature on Code Analysis Categorized Based on the 14 Scenarios

Pattern Automatic Automatic Human
Matching Static Dynamic Analysis
[Moser et al. 2007b] [Shamir and Van Someren 1999] [Cozzie et al. 2008] [Jacob et al. 2003]
« [Kinder and Veith 2008] [Lin et al. 2010] [Link et al. 2004]
E [Kinder 2012] [Slowinska et al. 2011] [Billet et al. 2005]
(=] [Zhao et al. 2011] [Wyseur and Preneel 2005]
o0 [Goubin et al. 2007]
-g [Piazzalunga et al. 2007]
« [Wyseur et al. 2007]
8 [Michiels et al. 2009]
- [Saxena et al. 2009]
[Wyseur 2009]
[De Mulder et al. 2010]
[Newsome et al. 2005] [Flake 2004] [Deprez and Lakhotia 2000] [Madou et al. 2006b]
[Moser et al. 2007b] [Harris and Miller 2005] [Madou et al. 2005] [Madou et al. 2006c]
[Tang and Chen 2007] [Bruschi et al. 2006a] [Zhang and Gupta 2005] [Rolles 2009]
[Griffin et al. 2009] [Bruschi et al. 2006b] [Royal et al. 2006] [Quist and Liebrock 2009]
) [Dalla Preda et al. 2011] [Chouchane and Lakhotia 2006] [Wilde and Scully 2006]
'g [Dalla Preda et al. 2006] [Moser et al. 2007a]
&) [Walenstein et al. 2006] [Brumley et al. 2008]
o0 [Bilar 2007] [Sharif et al. 2008]
-E [Karnik et al. 2007] [Song et al. 2008]
« [Nagarajan et al. 2007] [Guizani et al. 2009]
8 [Popov et al. 2007] [Li et al. 2009]
= [Gao et al. 2008] [Sharif et al. 2009]
[Coogan et al. 2009] [Webster and Malcolm 2009]
[Treadwell and Zhou 2009] [Comparetti et al. 2010]
[Tsai et al. 2009] [Debray and Patel 2010]
[Jacob et al. 2012] [Yin and Song 2010]
[Kinder 2012] [Coogan et al. 2011]
[Bourquin et al. 2013] [Grobert et al. 2011]
[Calvet et al. 2012]
[Zeng et al. 2013]
a invalid scenario [Sneed 2000] [Christodorescu et al. 2007] [Ning et al. 1993]
=] [Christodorescu et al. 20071 [Leder et al. 2009] [Canfora et al. 1994]
3 [Sharif et al. 2009] [Field et al. 1995]
w0 [Caballero et al. 2010] [Cimitile et al. 1996]
) [Kolbitsch et al. 2010] [Lanubile and Visaggio 1997]
'«3 [Zeng et al. 2013] [Canfora et al. 1998]
® [Danicic et al. 2004]
£ [Fox et al. 2004]
& [Danicic et al. 2005]
a invalid scenario [Rugaber et al. 1995] [Udupa et al. 2005] [Biondi and Desclaux 2006]
-] [Majumdar et al. 2006] [Eagle 2008]
8 [Raber and Laspe 2007] [Myska 2009]
w0 [Guillot and Gazet 2010] [Kholia and Wegrzyn 2013]
=
=]
g
3
4
o
-]
a
=]

(e.g., on disassembled or normalized code [Christodorescu et al. 2007]), we classify the

analysis as static or dynamic, respectively.

Locating data through static analysis. A static analysis interprets the semantics of
a program to locate particular data. For example, the reconstruction of the possible
arguments of function calls can reveal a cryptographic key that is used to decrypt
DRM-protected media or sent to an external device, or it could determine a token that

is transmitted over the network.

Locating code through static analysis. A static analysis that determines code that
could be executed at runtime. Examples are disassemblers that interpret control flow
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instructions using heuristics or formal methods. The control flow graph often allows
us to recognize particular structures; for example, the control flow characteristics of a
cryptographic algorithm can reveal its location in a binary.

Extracting code through static analysis. A static analysis technique (such as def-use
chains) analyzes the dependencies of a piece of code to compute a self-contained slice
that can be extracted and run on its own. Most static analysis techniques will result in
extracting a superset of the required code (see Section 4.2).

Understanding code through static analysis. This scenario captures static de-
obfuscation techniques that are able to transform fragments or all of the obfuscated
code into a low- or high-level representation from which a human analyst can under-
stand the program functionality with reasonable effort.

Locating data through dynamic analysis. A dynamic analysis observes the data
accessed or stored by a program at runtime and uses these observations to locate
particular data, for example, in the parameters of system calls or particular memory
locations.

Locating code through dynamic analysis. Dynamic analysis reveals the behavior of
a program and its interaction with the environment (e.g., system calls) at runtime. In
this scenario, a particular functionality is located through its specific runtime behavior.

Extracting code through dynamic analysis. A dynamic analysis locates a piece of
code and also determines its dependencies along the observed traces. Because the code
extracted from one run may not contain everything required for another run of the
program, the resulting control flow graph is a subset of all possible execution paths
(see Section 4.3).

Understanding code through dynamic analysis. Analogously to the scenario of un-
derstanding code through static analysis, this scenario targets automated dynamic
deobfuscation techniques that are able to transform the obfuscated code into a rep-
resentation from which a human analyst can understand the program’s functionality
with reasonable efforts.

Human-assisted analysis (four scenarios). Static and/or dynamic approaches assisted
by a human analyst aim at getting full understanding of a particular aspect of the
program. This aspect can be data in its pure form (data deobfuscation), the location of
code implementing a particular functionality or its dependencies, as well as the entire
program itself.

3. SOFTWARE OBFUSCATION

In this section, we briefly describe various code obfuscation schemes from the literature
and classify them into the three categories of data obfuscation, static code rewriting,
and dynamic code rewriting. Many of the described obfuscation techniques appeared
first in malware samples. Consequently, it is hard to pay tribute to the original source;
we did this wherever possible. More details on early techniques are given by Collberg
et al. [1997] and Collberg and Nagra [2009].

3.1. Data Obfuscation

Code obfuscation techniques of this category modify the form in which data are stored
in a program to hide it from direct analysis. Usually, data obfuscation also requires the
program code to be modified, so the original data representation can be reconstructed
at runtime. Many data obfuscation techniques were first described by Collberg et al.
[1998a].
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Reordering of data. Variables can be split into two or more pieces in order to make it
more difficult for an analyst to identify them. The mapping between an actual value of
a variable and its split representation is managed by two functions. One is executed at
obfuscation time, and the other one reconstructs the original value of a variable from
its split parts at runtime. For example, Boolean variables can be obfuscated by splitting
them into multiple Boolean values. At runtime, the variable’s actual value is retrieved
by performing a specific Boolean operation (such as a logical XOR) over the parts of the
variable. Other data types such as integers and string variables can be obfuscated in a
similar way. In contrast to variable splitting, variable merging combines two or more
variables into one.

To obfuscate the structure of an array, it can be split into two or more subarrays.
Conversely, multiple arrays can be merged into one. Folding (increasing the number
of dimensions of the array) and flattening (decreasing the number of dimensions) are
similar techniques which can be used for obfuscating data stored in arrays.

Obfuscating the structure of data by reordering its components to decrease locality
(logically related items are physically close in the binary) is another fundamental
obfuscation technique [Collberg et al. 1998a]. For example, this obfuscation is often
applied to cryptographic keys stored within commercial software.

A low-level implementation of data reordering for obfuscation was introduced by
Anckaert et al. [2009]. By redirecting memory accesses though a software-based dis-
patcher, the order of data in memory can be shuffled periodically, making its identifi-
cation and analysis more difficult.

Encoding. Static data (such as strings) within binaries contains useful information
for an analyst. Under this obfuscation technique, data are converted to a different
representation with some special encoding function to mitigate the need of storing the
static data in cleartext in the binary. At runtime, the inverse function is used to decode
the data. A variant of data encoding that works via mixed-mode computation over
Boolean-arithmetic algebras was introduced by Zhou et al. [2007].

Converting static data to procedures. This obfuscation method replaces static data
with a function that calculates the data at runtime. For example, a string object can be
built at runtime, so an analyst is not able to extract its value by examining the binary.

An extreme form of this obfuscation method is whitebox cryptography. Its basic idea
is to merge a secret key with elements of the cipher (e.g., the S-boxes), so the key cannot
be found in the binary anymore. The first whitebox implementations of Data Encryption
Standard (DES) [Chow et al. 2003a] and AES [Chow et al. 2003a] were proposed by
Chow et al., followed by other approaches [Link and Neumann 2005; Wyseur and
Preneel 2005; Bringer et al. 2006]. However, all published whitebox algorithms have
been broken so far (for more details, please refer to Section 5).

3.2. Static Code Rewriting

A static rewriter is similar to an optimizing compiler, as it modifies program code during
obfuscation but allows its output to be executed without further runtime modifications.
Strictly speaking, all data obfuscation techniques described above would also fall into
the category of static code rewriting. However, as the obfuscation targets are distinct
(data vs. binary code) and require specific obfuscation techniques, we use separate
categories for data obfuscation and static code rewriting. In malware obfuscation the
term metamorphism describes automated mutation of binary code through static code
rewriting techniques applied to its disassembled representation.

Replacing instructions. Any behavior of a program can be implemented in multiple
ways, and instructions or sequences of instructions can be replaced with syntactically
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different, yet semantically equivalent, code. For example, on the Intel x86 platform the
instructions MOV EAX, 0 and XOR EAX, EAX are equivalent and can be replaced with
each other. More complex obfuscations of this type include the replacement of CALLSs
with a combination of PUSH and RET instructions [Lakhotia et al. 2010]. De Sutter et al.
[2009] replaced infrequently used opcodes with blocks of more frequently used ones
to reduce the total number of different opcodes used in the code and to normalize
their frequency. Similarly, shellcode for application exploits can be transformed into
innocuous-looking sequences of input characters by tools such as SCMorphism.? Mason
et al. [2009] demonstrated how shellcode can even be encoded into a representation
that looks similar to English prose. Related concepts are used to hide network traffic
by transforming an encrypted payload into a format that resembles common network
protocols such as HTTP [Dyer et al. 2013].

Potentially malicious code can also be hidden in side effects of innocent-looking
sequences of instructions [Schrittwieser et al. 2013]. A side effect can be any effect on
the state of the underlying machine that is not covered by the analysis model (e.g., the
state of the flags register). Similar concepts have also been discussed in the context of
shellcode obfuscation.?

Opaque predicates. A predicate (Boolean-valued function) is opaque if its outcome
is known to the obfuscator at obfuscation time but difficult to determine for a de-
obfuscator [Collberg et al. 1997, 1998b]. Opaque predicates are used to make static
reverse engineering more complex by introducing an analysis problem which is diffi-
cult to solve without running the program. The prime example for the use of opaque
predicates is the obfuscation of a program’s control flow graph by adding conditional
jumps that are dependent on the result of opaque predicates.

To prevent an analyst from identifying opaque predicates through their static behav-
ior across a large number of program executions, refined concepts for opaque predicates
were developed. Palsberg et al. [2000] introduced the concept of dynamic opaque pred-
icates. It uses a set of correlated opaque predicates that all evaluate to the same result
in one run, but they may all evaluate to the same different result in other runs of
the program. Majumdar and Thomborson [2006] described temporally unstable opaque
predicates for which evaluations at multiple points inside the program lead to different
results.

Inserting dead code. The term “dead code” refers to code blocks which are not or
simply cannot be reached in the control flow graph and thus never get executed
[Collberg et al. 1997]. Inclusion of such code can make the analysis of a program
more time consuming as it increases the amount of code that has to be analyzed. For
making the identification of dead code more difficult, opaque predicates that always
resolve to either true or false can be used.

Inserting irrelevant code. Cohen [1993] described the concept of irrelevant (“garbage”)
code. Sequences of instructions that do not have an effect on the execution of a program
can be inserted into the code to make analysis more complex. The most simple form
of irrelevant code are NOP instructions which do not modify the program’s state. In
contrast to dead code, irrelevant code can be reached by the control flow of the program
and is executed at runtime, however, without any effect on the program state.

Reordering. Similarly to data structures, also expressions and statements can be
reordered to decrease locality, whenever the order does not affect the program behavior.

2http://www.kernelhacking.com/rodrigo/scmorphism/HowItWorks.txt (accessed June 07, 2015).
Shttp://www.securityfocus.com/archive/82/327100/2009-02-24/1 (accessed June 07, 2015).
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Such techniques were originally introduced for code optimization [Bacon et al. 1994]
but also apply in the context of obfuscation.

This concept can be taken even further to move parts of the code or functionality into
different modules or programs, as was done in the Stuxnet malware [Matrosov et al.
2010].

Loop transformations. Many loop transformations have been designed to improve
the performance and space usage of loops [Bacon et al. 1994]. Some of them increase
the complexity of the code and can therefore be used for obfuscation purposes. Loop
tiling was originally designed to optimize the cache behavior of code. It breaks up the
iteration space of a loop and creates inner loops that fit in the cache. In loop unrolling,
originally developed to improve performance, the body of the loop is replicated one or
more times to reduce the number of loop iterations. The loop fission method splits a
loop into two or more loops with the same iteration space and spreads the loop body
over these new loops.

Function splitting / recombination. Function cloning describes the concept of splitting
the control flow in two or more different paths that look different to the analyst, while
they are in fact semantically equivalent. Another transformation type merges the
bodies of two or more (similar) functions. The new method has a mixed parameter list
of the merged functions and an extra parameter that selects the function body to be
executed.

The related idea of overlapping functions—where the binary code of one function
ends with bytes that also define the beginning of another function—is commonly used
by compilers for optimization purposes and can also by used to confuse a disassembler.
A similar but more sophisticated concept was introduced by Jacob et al. [2007]: two
independent code blocks are interweaved in a way that, depending on the entry and
exit points of the merged code, different functionality is executed.

Aliasing. Inserting spurious aliases (i.e., pointers to memory locations) can make code
analysis more complex, as the number of possible ways for modifying a particular loca-
tion in memory increases [Horwitz 1997; Ramalingam 1994]. These pointer-references
can also be used as indirections to complicate the reconstruction of the control flow
graph of a program in static analysis scenarios [Wang et al. 2001].

Name scrambling. Modifying identifier names such as the ones of variables and
methods and replacing them with random strings is a prime example for source code
obfuscation, which is not covered in our work. While binary code usually does not
contain identifier names any more, byte code preserves some of the identifier names.
For example, Java byte code contains class, field, and method names. By substituting
expressive names with random strings, semantic information that can be important
for a human analyst is removed.

Control flow obfuscation. This class of obfuscations aims at obfuscating the program
control flow graph. The control flow flattening obfuscation completely obscures the
links between basic blocks. Wang et al. [2000] described chenxification, which puts
the basic blocks of a program into a large switch-statement (called dispatcher) that
decides where to jump next based on an opaque variable. Control flow flattening
using a central dispatcher was also described by Chow et al. [2001]. A similar concept
by Linn and Debray [2003] uses a so-called branch function to obfuscate the targets
of CALL instructions. All calls are forced to pass through the branch function, which
directs the control flow to the actual target based on a call table. Popov et al. [2007]
proposed to replace control transfer instructions by traps that cause signals. The signal
handling code then performs the originally intended control flow transfer. Further
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control obfuscation techniques were described by Laszlé and Kiss [2009], Cappaert
and Preneel [2010], Coppens et al. [2013], and Schrittwieser and Katzenbeisser [2011].

Parallelized code. While originally being a code optimization technique, parallelizing
code also became popular in the context of code obfuscation, since parallelized code
tends to be harder to understand than sequential code [Collberg et al. 1997]. Adding
dummy processes to a program or parallelizing sequential code blocks that do not
depend on each other [Wolfe et al. 1995] increases the complexity of analysis.

Removing library calls. Calls to libraries of programming languages (particularly
ones with a high level of abstraction) offer useful information to an analyst. Because
they are called by their name, they cannot be obfuscated. By replacing standard li-
braries with custom versions, these calls can be removed and thus their functionality
obfuscated. Another variant of this obfuscation method is to link libraries statically
into the application or to combine many small libraries into a few large ones.

Breaking relations. This technique aims at obfuscating relations between compo-
nents of a program such as the structure of the call graph or the inheritance structure
of an object-oriented program. For example, classes can be split up (factoring); simi-
larly, common features of independent classes that do not have common behavior can
be moved into a new parent class (false refactoring). Sosonkin et al. [2003] presented
concepts for Java bytecode obfuscation through class coalescing, class splitting, and ob-
ject type hiding. A related approach by Sakabe et al. [2005] takes advantage of concepts
in object-oriented languages such as polymorphism to obfuscate the relation between
objects. Moreover, the idea of class hierarchy flattening to remove all inheritance rela-
tions from object-oriented programs was introduced in the literature [Foket et al. 2013,
2014].

3.3. Dynamic Code Rewriting

The main characteristic of code obfuscation schemes in this category is that the exe-
cuted code differs from the code that is statically visible in the executable.

Packing / Encryption. Various malware obfuscation approaches analyzed in the litera-
ture follow the concept of packing, which hides malicious code by encoding or encrypting
it as data that cannot be interpreted by static analysis. An unpacking routine turns
this data back into machine-interpretable code at runtime. By changing the encryp-
tion/encoding keys, packed program code can easily be rewritten upon distribution to
complicate simple pattern matching analysis (polymorphism [Nachenberg 1997]).

The concept of packing is also used for benign software. Both the reduction of storage
requirements though compression and the aim for obfuscating the code of an application
to deter program analysis are key motivations for the adaption of packing technologies.
For these application areas, a large number of commercial packers such as VMProtect,*
ASPack,’ Armadillo,® Execryptor,” Enigma,® PECompact,” and Themida'® as well as
open-source tools (e.g., UPX!! and Yoda'?) exist. Most of these tools are also popular

4http://vmpsoft.com (accessed February 25, 2015).

Shttp://www.aspack.com (accessed February 25, 2015).
8http://www.siliconrealms.com/armadillo.php (accessed February 25, 2015).
Thttp://www.strongbit.com/execryptor.asp (accessed February 25, 2015).
8http://enigmaprotector.com (accessed February 25, 2015).
9http://bitsum.com/pecompact (accessed February 25, 2015).
Ohttp://www.oreans.com/themida.php (accessed February 25, 2015).
Uhttp://upx.sourceforge.net (accessed February 25, 2015).
2http://yodap.sourceforge.net (accessed February 25, 2015).
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with malware authors to hide the maliciousness of their code [Brosch and Morgenstern
2006].

The concept of packing for software protection was also discussed in academia.
Cappaert et al. [2006] introduced a modified form of packing, where code can be de-
crypted at fine granularity right before execution using a key derived from other code
sections. Wu et al. [2010] introduced a polymorphism-based concept called mimimor-
phism which encodes data into a representation that looks like program code. A taxon-
omy of packer-based obfuscation schemes as well as similar techniques was presented
by Mavrogiannopoulos et al. [2011]. Recently, Roundy and Miller [2013] presented a
survey on obfuscation techniques used in malware packers.

Dynamic code modification. In this technique similar functions are obfuscated by pro-
viding a general template in memory that is patched right before its execution [Collberg
et al. 1997]. Static analysis techniques fail to analyze the program, as its functionality is
available at runtime only. Other concepts of dynamic code modification [Kanzaki et al.
2003; Madou et al. 2006a] implement the idea of correcting intentionally erroneous
code at runtime right before execution.

Environmental requirements. Riordan and Schneier [1998] proposed the concept of
environmental key generation, in which a cryptographic key is not statically stored in
a binary but constructed from environmental data collected from within the computing
environment. Only if a specific environmental condition is met (called activation en-
vironment) is the program able to generate the key and execute its code. Outside the
activation environment the program does not reveal its secrets to an analyst.

Similar concepts can be applied to code as well. Sharif et al. [2008] proposed a mal-
ware obfuscation scheme that makes the code conditionally dependent on an external
trigger value. Without knowledge of this specific value, the triggered behavior is con-
cealed from dynamic analysis. Similar techniques are widely used in malware.

Hardware-assisted code obfuscation. Hardware tokens can be used to improve the
strength of other code obfuscation techniques [Fu et al. 2007; Zhuang et al. 2004,
Bitansky et al. 2011]. The basic idea is to create a hardware-software binding by
making the execution of the software dependent on some hardware token. Without this
token, analysis of the software will fail, because important information (e.g., targets of
indirect jumps) is not available.

Hardware-based isolation mechanisms for trusted computation such as Intel SGX
(Software Guard Extensions) allow an application to prevent other applications and
even the operating system kernel from accessing certain memory regions [Anati et al.
2013]. Such mechanisms seem well suited to protect code and data from runtime inspec-
tion and tampering and may in the future become an impediment to dynamic analysis.

Virtualization. Virtualization describes the concept of converting the program’s
functionality into byte code for a custom virtual machine (VM) interpreter that is
bundled with the program [King and Chen 2006; Ghosh et al. 2010]. Virtualization
can also be combined with polymorphism by implementing custom virtual machine
interpreters and payloads for each instance of the program [Anckaert et al. 2006]. Vrba
et al. [2010] proposed the combination of fine-granular encryption and virtualization
to hide VM code from analysis. Collberg et al. [1997] described a variant of this concept
under the term table interpretation. A similar concept by Monden et al. [2004] uses a
finite state machine-based interpreter to dynamically map between instructions and
their semantics.

Antidebugging and -disassembly techniques. This obfuscation category includes tech-
niques that actively oppose analysis attempts via disassembly or debugging. For
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example, attached debuggers can be detected based on timing and latency analysis
or the identification of code modifications caused by software breakpoints. Another
technique is the execution of undocumented instructions in order to confuse a code
analysis tool or a human analyst [Brand 2010].

4. CODE ANALYSIS

We consider four broad classes of analysis against programs protected by obfuscation:
pattern matching, automated static analysis, automated dynamic analysis, and manual
reverse engineering by a human who has access to automated tools.

Note that there is no universally accepted definition for static or dynamic analysis;
in fact, we believe that it is impossible to draw strict boundaries between any of the
analysis classes, so we apply our best judgment to arrive at a meaningful classification
of existing approaches to analyzing programs. Madou et al. [2005] argue that consid-
ering resilience against only particular types of analysis can leave a technique open to
circumvention by hybrid approaches.

4.1. Pattern Matching

With the term “pattern matching,” we refer to fast automated techniques for finding and
unveiling known structures in binary programs. For instance, this could be artifacts
introduced by obfuscation tools or signatures of well-known libraries and code samples.
In contrast to our definition of static and dynamic analysis, pattern matching is purely
syntactic and does not reason about the program semantics. The types of patterns to
look for can range from simple byte strings to regular expressions or other languages
allowing wildcards. We also consider machine learning techniques that essentially
treat programs as byte strings to be pattern matching.

One example for pattern matching is the Fast Library Identification and Recognition
Technology (F.L.I.R.T.) in IDA.13 It uses signatures to identify library functions with the
goal of simplifying reverse engineering. Function signatures of well-known libraries are
stored in a database; when disassembling a new binary, its bytes are checked against
known signatures. Recognized functions are named and annotated using the stored
information to aid a human reverse engineer in understanding the functionality of the
code.

Usually, the patterns to look for have been generated ahead of time or are curated
by human analysts. Differential pattern matching approaches work without a pri-
ori knowledge and instead compare static or dynamic artifacts, such as control flow
graphs [Flake 2004; Nagarajan et al. 2007] or instruction traces [Zhang and Gupta
2005]. As mentioned when discussing our methodology in Section 2.1, we consider this
type of pattern matching a multistage analysis with an initial static or dynamic phase.
Note that a simple translation of byte patterns to instruction opcodes in the manner of
a linear sweep disassembler would still fall under pure pattern matching; we draw the
boundary to static analysis where a disassembler interprets possible jump targets.

4.2. Static Analysis

Static analysis is widely used for optimizing code, finding or proving the absence of
bugs, and reverse engineering. In its broadest sense, static analysis refers to any pro-
gram analysis that is performed just by inspecting executable code or a disassembled
representation of a program of interest but without ever executing it on a real or virtual
machine. In this survey, we distinguish static analysis from syntactic pattern match-
ing as describing analyses that reason about the program semantics. For a detailed

Bhttps://www.hex-rays.com/products/ida/tech/flirt/in_depth.shtml (accessed February 25, 2015).
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introduction to static program analysis, we refer the reader to the classic textbook by
Nielson et al. [1999].

Static analysis deduces information about a program by reasoning about the possible
executions of the target program. A static analysis is considered to be sound if it is
guaranteed to include all possible executions of a program in its judgment. For example,
a static analysis that attempts to generate a control flow graph from a binary program
is sound if the resulting graph contains at least all those control transfers that will ever
occur at runtime. Because of undecidability, static analysis can only achieve soundness
by overapproximating, that is, by generalizing the concrete program behavior and
accepting that this generalization will also include behavior that does not occur in
real executions. To continue the example, a sound control flow graph could contain
edges that will never be taken at runtime. Overapproximation is the reason why static
analysis can report false positives when it is used for bug finding or malware detection.

In principle, the precision of a static analysis can be increased to reduce the number
of false positives, but such added precision comes with a corresponding increase in
cost. As a compromise, many practical static analysis systems choose to be unsound,
that is, they do not guarantee to cover all possible behaviors. This may introduce false
negatives in addition to false positives but is often an acceptable tradeoff to make
systems useful in practice.

An example of the tradeoffs in precision, performance, and soundness can be seen
in the various approaches to reconstruct the control flow of binaries: a linear sweep
disassembler that disassembles byte after byte starting at the entry point performs a
low-precision static analysis that is unsound because it can miss code reached through
branches [Schwarz et al. 2002] (in fact, since its interpretation of the instruction se-
mantics is trivial, we classify linear sweep as pattern matching, see above). A recursive
traversal disassembler improves accuracy by trying to identify and follow the location
of branches during analysis, but it will still leave out many indirect branches whose
targets are computed at runtime. Disassembly by abstract interpretation performs a
sound static analysis of the binary code to also systematically resolve indirect branches
whose targets are computed at runtime [Kinder et al. 2009]. The computational cost
depends on the exact type of analysis performed but can be significant.

Analysis platforms such as CopeESURFER/x86 [Balakrishnan and Reps 2004], JAk-
staB [Kinder and Veith 2008], or Bap [Brumley et al. 2011] provide the necessary
infrastructure and abstractions to apply higher-level static analysis to binaries. Typ-
ically, low-level details of instruction encoding and semantics are abstracted by such
platforms, and custom analyses can work on a simplified low-level language instead of
machine code.

From a conceptual standpoint, obfuscation decreases the precision a particular static
analysis can achieve, that is, obfuscation introduces additional sources of overapprox-
imation [Giacobazzi and Mastroeni 2012]. Recall from Section 3.2 that control flow
flattening forces all control flow to pass through a dispatcher. Because the dispatcher
is executed many times on all paths, a static analyzer that generalizes the program
behavior at the location of the dispatcher will be very imprecise. To maintain precision,
a static analyzer can compensate by generalizing the behavior at a finer granular-
ity [Kinder 2012].

In general, whenever the details of a particular obfuscation technique are known,
an analysis can be crafted to almost completely eliminate the effect of the obfusca-
tion [Krigel et al. 2004]. However, despite existing work on automated refinement of
the precision of general static analysis [Das et al. 2002; Bardin et al. 2011], tailoring
analyzers to cope with obfuscation schemes is still a largely manual process.

Besides the conceptual precision requirements, there are also significant practi-
cal challenges for statically analyzing obfuscated code. All existing tools make some
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assumptions about the behavior or structure of the executable code, which can be
broken by obfuscations. Many static analyzers fail even in the presence of simple
obfuscations used regularly by malware [Moser et al. 2007b]. Especially tools that de-
pend on an initial disassembly phase, such as CopDESURFER/x86 [Balakrishnan and Reps
2004] or early semantic malware detectors [Christodorescu et al. 2005; Kinder et al.
2005], are vulnerable to syntactic obfuscations. Such obfuscations target disassemblers
that rely mostly on heuristics to discover all executable code [Linn and Debray 2003].
Removing the separate disassembly phase and working on code directly improves re-
silience against these simpler obfuscation schemes [Kinder et al. 2009; Brumley et al.
2011]. Nevertheless, especially dynamic obfuscations are difficult to handle for static
analyzers. For example, no static tool to date is able to reliably deal with self-modifying
code, even though one could, in theory, imagine the static analysis compensating by
analyzing the possible runtime state of the code section.

However, static analysis of obfuscated code can still give a reverse engineer valuable
information and lead to a better understanding of the overall binary and further guide
additional deobfuscation steps. Our analysis in Section 5 considers static analysis tools
at the current state of the art, including minor adaptations for each particular scenario.

4.3. Dynamic Analysis

Dynamic analysis refers to observing the behavior of deployed and running systems,
and it is today an important part of forensic analysis of malware [Egele et al. 2012].
It analyzes real executions of a program, either online (at runtime) or offline (over a
recorded trace). In particular, any form of software testing is a dynamic analysis. Just
like static analysis, dynamic analysis is also performed with respect to particular prop-
erties of interest. For example, a dynamic analysis may record system call invocations
or executed instructions or trace the flow of “tainted” data that is received from the
network.

Dynamic analysis is conceptually dual to static analysis: A sound dynamic analysis
considers a subset of all execution traces of a program and is therefore underapproxi-
mate. Each bug, warning, or suspicious behavior found is then guaranteed to also occur
during at least one real execution. On the flip side, a dynamic analysis may miss be-
havior when the number of possible traces in a program is too large to be exhaustively
tested. In the general case, this is unavoidable due to undecidability.

While static analysis trades off precision against cost, dynamic analysis trades off
coverage against cost. Each execution of the program under test corresponds to an
additional trace covered. An automated dynamic analysis will typically try to cover
traces that exhibit diverse behaviors to get a representative profile of the program. If a
program exhibits a particular type of behavior only under very specific circumstances,
then it may never be observed. This is especially problematic for malware, which may
respond only to certain “triggers” [Crandall et al. 2006; Kolbitsch et al. 2011]. This
challenge is closely related to the problem of automated test case generation, and
approaches can be roughly classified into blackbox, graybox, and whitebox depending
on how they treat the program under test.

Blackbox testing assumes no knowledge of the program and is usually done via ran-
dom input generation. Since it is very hard to achieve meaningful coverage through
blind enumeration of inputs, effective fuzz testing tools employ a graybox approach
and use domain-specific knowledge about the input format to generate inputs that
have different meaning (e.g., image files with different sizes). Coverage-guided fuzzers
such as AFL'* mutate an initial input following a variety of heuristics. Whitebox test-
ing also uses the program structure to guide input generation. Tools based on symbolic

Hhttp:/lcamtuf.coredump.cx/afl/ (accessed June 07, 2015).
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execution [King 1976] and dynamic test generation (also referred to as concolic execu-
tion in the literature) have been particularly successful [Godefroid et al. 2005; Cadar
et al. 2006; Sen et al. 2005]. They use a constraint solver to generate inputs system-
atically, such that one input will cover exactly one unique control flow path through
the program. However, since the number of control flow paths can be infinite (due to
loops), even symbolic execution will remain incomplete and thus underapproximate in
a finite amount of time. A survey by Schwartz et al. [2010] provides a good introduction
to symbolic execution and explains the related challenges in more detail.

In practice, systematic exploration methods such as symbolic execution are addition-
ally limited by their underlying constraint solver which is used to identify valid control
flow paths. A new control flow path that exhibits hitherto unseen behavior can only be
triggered if the constraint solver is able to find an input that drives execution down that
path. If the constraint is unsupported (e.g., floating point) or simply too difficult, then
the symbolic execution engine is unable to cover the path. As a best effort solution, the
engine can then resort to random testing (fuzzing) of input parameters [Godefroid et al.
2008]. As with static analysis, there are also dynamic techniques that compromise on
soundness. For instance, it is possible to directly manipulate registers or memory to
trigger different branches or execute particular areas of code [Madou et al. 2005; Moser
et al. 2007a]. While this may put the program into a state that would never occur under
normal circumstances, it will cause a particular path to be executed without requiring
any constraint solving, which may just be enough for the particular reverse engineering
task at hand.

A significant practical advantage of dynamic over static approaches in the analysis of
obfuscated code is that it can be applied to binaries with relative ease. In fact, it is often
simpler to dynamically analyze binaries than source code, because traces recorded at
runtime show addresses of instructions in the binary and not just (obfuscated) source
code information. However, the use of antidebugging techniques can oppose dynamic
analysis attempts.

Because dynamic analysis monitors what is actually executed at runtime, obfusca-
tions cannot fully conceal the behavior of a program. For instance, a dynamic analysis
can trace self-modifying code just like regular code if it records the opcode and operands
of the current instruction in addition to the value of the program counter [Thakur et al.
2010].

As for static analysis, Section 5 lists what is possible using the current state of
dynamic analysis tools, with only relatively minor technical adaptations.

4.4. Human-Assisted Reverse Engineering

We use this very broad category to cover any kind of analysis that a skilled human
reverse engineer can perform with the help of any state-of-the-art tool. The ability for
creative problem solving and adaptation makes humans much more efficient in dealing
with obfuscations than fully automated techniques. In contrast to a purely automated
approach, however, humans can be misled by clues that suggest structure, such as type
names or inheritance relationships among classes.

Disassemblers and decompilers alike have gone through major improvements over
the past two decades [Cifuentes and Gough 1995; Schwarz et al. 2002; Schwartz et al.
2013]. The de facto industry standard for disassembling and reverse engineering, IDA
Pro, now includes a powerful decompiler for the x86, x64, and ARM processor architec-
tures.’® Academic research has made significant progress as well. The Boomerang
Project'® is an attempt to develop an open-source decompiler. Early results from

Bhttps://www.hex-rays.com/products/decompiler (accessed February 25, 2015).
16http://boomerang.sourceforge.net (accessed February 25, 2015).
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a study [Emmerik and Waddington 2004] conducted on a real-world program were
promising. Despite the fact that only the core algorithm and not the entire program
was decompiled, the experiment was able to demonstrate that decompilation with
human assistance can be practical in certain use cases. The project, however, does
not seem to receive much attention anymore. Recently, a new binary-to-C decompiler
named PHOENIX was introduced by Schwartz et al. [2013]. It implements a structural
analysis algorithm that uses iterative refinement strategies as well as the property
of semantics preservation in order to archive significantly more accurate results than
previous approaches. The reconstruction of high-level control flow structures is a chal-
lenging problem in decompiler research. State-of-the-art decompilers rely on structural
analysis and advanced pattern matching and fall back to using goto statements for
control flow transfers if no patterns can be identified. Recently, Yakdan et al. [2015] pro-
posed a decompiler that does not rely on pattern matching and produces more compact
and goto-free code. It uses semantics-preserving transformations to restore structured
control flow graphs.

A major driving force behind the development of human-assisted code analysis ap-
proaches is the software cracking scene. In early years, the SoftICE debugger was a
popular tool among reverse engineers; however, it is no longer maintained [Willems
and Freiling 2012]. Today, the freely available debugger OllyDBG'” to some extent con-
tinues where SoftICE left off. A large number of plugins that are dedicated to cracking
and tampering purposes have been made available by the scene (e.g., Ollybone [Stewart
2006] for semiautomatic unpacking).

The concepts and tools in this code analysis category have in common that the
automated analysis process can be directly influenced by the human reverse engineer
resulting in very different outcomes depending on the human’s decisions. For example,
the disassembling process of IDA Pro can be influenced by a human reverse engineer
to perform recursive traversal at specific locations of the program’s code. This code
analysis category is naturally hard to grasp formally. In our analysis in the next section,
we base the capabilities of human reverse engineers on published results and common
knowledge about the state of the art. A comprehensive introduction to software reverse
engineering was published by Eilam [2005].

5. ROBUSTNESS ANALYSIS

In this section, we evaluate the effectiveness of different classes of software obfusca-
tion schemes against the program analysis scenarios introduced in Section 2.4. The
effectiveness of a specific type of code obfuscation is evaluated by comparing it to code
analysis approaches described in the literature. We are well aware of the arms race
between code obfuscation and analysis and the fact that in theory every obfuscation
technique can be broken with targeted analysis techniques (see Section 4). In this sur-
vey, we focus on the status quo of code obfuscation in real-life application scenarios and
evaluate the capabilities of state-of-the-art code analysis tools (also considering possi-
ble non-complex modifications to the analysis techniques) in order to target particular
obfuscations. The possibility of developing analysis techniques targeted to break a spe-
cific obfuscation scheme does not prove it useless in general, as a small modification to
the obfuscation technique can again raise the bar for analysis.

As of today’s knowledge, a precise formalization of the security of an obfuscation
scheme seems to be difficult to achieve. Previous attempts to quantify the hardness of a
particular class of code obfuscation are based on software complexity metrics [Collberg
et al. 1997; Anckaert et al. 2007]. However, it remains unclear whether such notions
are able to capture all security properties of the obfuscating transformation correctly.

1Thttp://www.ollydbg.de (accessed February 25, 2015).
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Table Il. Analysis of the Strength of Code Obfuscation Classes in Different Analysis Scenarios

PM Autom. Static ‘ Autom. Dynamic ‘ Human Assisted
Name LD‘ LC LD‘ LC ‘ EC ‘ UC LD LC EC UC LD LC EC ‘ ucC
Data obfuscation ‘
Reordering data v

Changing encodings %

Converting static data to procedures [S

‘ /]

Static code rewriting

Replacing instructions

N

Opaque predicates

Inserting dead code

Inserting irrelevant code

Reordering

Loop transformations

Function splitting/recombination

Aliasing

Control flow obfuscation

Parallelized code

Name scrambling

Removing standard library calls

Breaking relations

Dynamic code rewriting

Packing/Encryption

Dynamic code modifications

Environmental requirements

Hardware-assisted code obfuscation

Virtualization

Anti-debugging techniques

obfuscation breaks analysis fundamentally
obfuscation is not unbreakable, but makes analysis more expensive

Legend obfuscation only results in minor increases of costs for analysis

v' | A checkmark indicates that the rating is supported by results in the literature

Scenarios without a checkmark were classified based on theoretical evaluation

PM = Pattern Matching, LD = Locating Data, LC = Locating Code, EC = Extracting Code, UC = Under-
standing Code.

In this survey, we thus follow a different approach and rate the strength of each
obfuscation class. A summary of the results can be found in Table II. Black marks ob-
fuscation techniques that break a certain type of program analysis fundamentally with
respect to its state-of-the-art techniques. Gray denotes scenarios in which a particular
code obfuscation class cannot be considered unbreakable but still makes analysis sub-
stantially more expensive. For example, while an analysis technique might work under
lab conditions when dealing with toy programs, limits of available resources could be
reached while analyzing larger programs. White marks obfuscation techniques that
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only slightly raise the cost of analysis and therefore cannot justify the cost of adopting
them, such as increased code size or added runtime overhead. Furthermore, we dis-
tinguish between ratings that are supported by results in the literature (marked with
a checkmark in Table IT) and ones that we based on our own evaluation of the state of
the art.

5.1. Pattern Matching

The most basic form of pattern matching is limited to comparing program code on byte
level against some predefined pattern. Consequently, this type of pattern matching is
weak against all kinds of code modifications, including obfuscating transformations.
However, several more sophisticated pattern matching concepts, mostly for identifying
malicious behavior, were introduced in the literature. Such advanced pattern matching
arguably can cope with naive obfuscation techniques such as equivalent instructions.
In the following, we discuss the state of the art in research on pattern matching-based
code analysis in the presence of different classes of code obfuscation schemes.

Locating data. Naive pattern matching techniques on data break as soon as the
structure of the data changes. Thus, even simple obfuscations are effective against
simple forms of pattern matching. This was confirmed by Moser et al. [2007b], who
were able to show that simple data obfuscation techniques are sufficient to make
pattern matching ineffective for the identification of data. Antidisassembly techniques
are not effective against pattern matching-based analysis of the binary, since they do
not necessarily require the program to be disassembled.

Locating code. Moser et al. [2007b] also demonstrated the limitations of pattern
matching against the static code rewriting technique control flow flattening. Their
reasoning can be easily extended to other forms of static rewriting and dynamic code
rewriting as any modification of the binary clearly destroys the pattern.

In the literature, locating code through pattern matching is often described in a mal-
ware context. The primary aim of techniques in this analysis scenario is the generation
of generic patterns describing malicious behavior of program fragments to automati-
cally classify software as malicious or benign. While these approaches do not aim at
understanding the semantics of the program, they still can identify locations in the
code that implement abnormal (malicious) behavior. HaNcock [Griffin et al. 2009] is
a system for the automated generation of signatures for malware. Through normal-
ization of opcodes, it is resistant against simple code transformations such as register
reassignment. Dalla Preda et al. [2011] generated signatures of metamorphic malware
through abstract interpretation of semantics developed for self-modifying code. Gener-
ally, the expressiveness of the language used for creating patterns (e.g., static strings
vs. regular expressions) dictates both their resilience against obfuscations and the per-
formance of matching algorithms. Since existing techniques emphasize performance
over expressiveness, we marked static code rewriting techniques in gray.

Dynamic code obfuscation techniques, for instance, virtualization, remove the struc-
ture of the code entirely, thus rendering pattern matching-based analysis approaches
ineffective. To some extent, however, code analysis based on patterns is still possible
as demonstrated in the literature. Tang and Chen [2007] proposed the identification
of polymorphic malware on a network stream using statistical analysis. In contrast to
fixed string pattern matching, polymorphic versions of a program can be identified with
this approach. PoLygrarH [Newsome et al. 2005] is a concept for the automated iden-
tification of polymorphic worms which exploits the existence of invariant substrings
in all polymorphic variants of a malware. Both approaches exploit the characteristic
structure of polymorphic programs. To summarize, while it was shown in literature

ACM Computing Surveys, Vol. 49, No. 1, Article 4, Publication date: April 2016.



Protecting Software through Obfuscation: Can It Keep Pace with Progress in Code Analysis? 4:21

that pure identification of the obfuscation method polymorphism is feasible in a mal-
ware context, locating particular functionality inside the binary is still impossible with
pattern matching if the implementation details are unknown to the analyst. As in
the previous scenario, antidisassembly techniques do not provide additional protection
against pattern matching approaches aiming at locating code.

5.2. Static Code Analysis

Locating data. Similarly to pattern matching, automated static analysis of data is
limited when analyzed data are not stored in its original representation. In Table II, the
data obfuscation class reordering is marked in gray, because a simple dataflow analysis,
which is necessary for the reconstruction of reordered data, is arguably possible with
automated static analysis tools such as JakstaB [Kinder and Veith 2008]. Furthermore,
it can be argued that a static code rewriting technique can be effective against locating
data if it complicates the reconstruction of the control flow graph of the program: Static
dataflow analysis strongly depends on knowledge of the control flow. For this reason,
control flow modifying obfuscation techniques are marked in gray in Table II.

Dynamic code rewriting in general is effective against locating data inside programs
as the original representation of the data is destroyed. At first sight, static analy-
sis appears completely helpless against virtualization obfuscation, as only the code
of the interpreter can be directly analyzed. In static analysis, this leads to an effect
that Kinder [2012] called domain flattening: Dataflow information from different loca-
tions in the original program are merged to one location in the interpreter, resulting
in a more imprecise analysis. However, Kinder [2012] was able to demonstrate that
by lifting the static analysis to a second dimension of location (the virtual program
counter), the same analysis precision as on nonobfuscated code is achievable. While
the introduced approach was evaluated on a toy example only, the preliminary results
still indicate promising directions for static analysis of VM-protected binaries. For that
reason, we marked virtualization in gray for this analysis scenario. Antidisassembly
techniques can, to some extent, limit static analysis and thus are marked in gray as
well.

Locating code. Locating a particular program feature in binary code through static
analysis can be based on an analysis of the structure of the control flow graph (e.g.,
Harris and Miller [2005]) of the program. Therefore, code obfuscation schemes that
modify or hide the control flow of a program (opaque predicates, loop transformations,
parallelized code, etc.) can be considered as candidates for protection against static
analysis techniques. Opaque predicates are the most important concept for control
flow obfuscation against static analysis tools. Dalla Preda et al. [2006] proposed an
abstract interpretation-based methodology for removing simple opaque predicates. This
automated, static concept was shown to be more complete than approaches for dynamic
analysis of opaque predicates. However, as the authors state, their analysis concept is
limited to simple types of opaque predicates only. Thus, we consider more complex
opaque predicates still effective in making static reconstruction of the control flow
graph significantly more difficult.

Tools for matching program code based on control flow similarities include BINDIFF
[Flake 2004], BinaunT [Gao et al. 2008], BINSLAYER [Bourquin et al. 2013], and the
implementation by Nagarajan et al. [2007]. Moreover, Tsai et al. [2009] introduced a
framework for analyzing control flow obfuscation by representing it as a composition
of atomic operators to evaluate robustness. Still, it remains unclear to what extent
such theoretical results can support the evaluation of the strength of an obfuscation
in real-life applications. We conclude that while no general statement regarding the
strength of obfuscation can be made for this particular analysis scenario, obfuscation

ACM Computing Surveys, Vol. 49, No. 1, Article 4, Publication date: April 2016.



4:22 S. Schrittwieser et al.

schemes that complicate the reconstruction of the control flow graph can still make the
analyst’s aim of identifying the entry point into a particular functionality considerably
harder.

Code obfuscation based on dynamic code rewriting makes static analysis considerably
more difficult as the analyzed code in the binary does not correspond to the code that
is actually executed. However, approaches to circumvent obfuscation were introduced
in the literature on malware samples. Malware packers were analyzed with heuristics-
based static analysis techniques (e.g., Treadwell and Zhou [2009]) and comparison
with previously seen malware samples was performed [Jacob et al. 2012; Karnik et al.
2007]. Similarly to pattern-matching-based approaches, in automated static analysis,
the maliciousness of code is evaluated by identification of abnormal structures of the
program code. The idea of using model checking for detecting malicious code was pro-
posed by Kinder et al. [2005]. Furthermore, static analysis of polymorphism as well as
metamorphism was discussed in recent literature. Bruschi et al. [2006a] compared a
normalized version of the control flow graph of a binary against control flow graphs of
known malware in order to detect malicious behavior. In a similar concept, Walenstein
et al. [2006] normalized program code (e.g., through simple instruction substitution
patterns) to be able to compare it to known malware samples. Another code normal-
ization technique was presented by Bruschi et al. [2006b]. Coogan et al. [2009] used
a combination of two static code analysis techniques (slicing and alias analysis) to
identify malware packers. The idea of using the frequency of opcodes as a predictor
for malware was proposed by Bilar [2007]. For example, massive use of mathematical
operations might indicate malware that tries to obfuscate its malicious behavior using
a packer-based approach. Furthermore, it was shown that a high frequency of a usually
rare opcode is an indicator for polymorphic or metamorphic malware. Chouchane and
Lakhotia [2006] proposed the detection of metamorphic malware by creating signatures
for instruction-substitution engines. However, similar to pattern-matching-based ap-
proaches, none of the introduced concepts for static analysis is able to find the location
of specific functionality. Only the characteristic structure of a malware packer can be
identified. As a consequence, we marked packing/encryption and replacing instruc-
tions in gray. Like in the previous scenario (locating data), virtualization obfuscation
was marked gray in Table II due to preliminary results on the challenges of statically
analyzing virtualization-obfuscated programs by Kinder [2012].

Extracting code. While the software engineering literature knows of concepts for
reusing functionality from legacy binary code (e.g., Sneed [2000]), the automated static
extraction of obfuscated code has not been widely discussed.

Our reasoning regarding the effectiveness of different classes of code obfuscation
techniques in this analysis scenario is simple: Extracting code from a program through
static analysis is at least as difficult as locating code, because the latter is a funda-
mental requirement for the former. Table II indicates differences between locating and
extracting code in the scenario of static code rewriting for four obfuscation techniques.
Aliasing, control flow flattening, parallelized code, and breaking relations share the
common effect of increasing code dependencies by interweaving independent parts of
the program. These interweavings are difficult to resolve through static analysis, thus
making the extraction of code sections considerably harder than just locating code.
Collberg et al. [1997] first described the effect of raising analysis complexity when
extending the scope of the obfuscating transformation. Analogously, in the category
of dynamic code rewriting, virtualization was marked in black because of the inter-
weavings that make it difficult to extract all required code sections. Antidebugging
and Antidisassembly was marked in black due to the existence of a wide range of
techniques that actively interfere with static disassembly [Branco et al. 2012]. This
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includes concepts to prevent a disassembler from recovering a correct higher level
representation of the code [Popov et al. 2007].

Understanding Code. For a human analyst to better understand an obfuscated pro-
gram, an automated analysis tool has to be able to remove at least parts of the applied
code obfuscation scheme from the binary.

Several concepts for static deobfuscation with the aim for making the program code
more understandable for a human analyst were proposed in the literature. An early
work by Rugaber et al. [1995] has shown that detecting interleaved code (e.g., through
function recombination) is a time-consuming task. Majumdar et al. [2006] evaluated the
robustness of the obfuscation technique aliasing, where two or more pointers refer to
the same memory location. An experimental evaluation showed that resilience expected
from the theoretical approach does not hold in real-life scenarios; still, in general
it is difficult to evaluate the actual strength of aliasing. Guillot and Gazet [2010]
developed techniques for automated static deobfuscation. The basic concept is to make
program code more understandable by automated rewriting based on local semantic
analysis, similarly to optimization steps made by compilers. Raber and Laspe [2007]
introduced a plugin for IDA Pro that is capable of removing basic obfuscation and
antidebugging techniques from a binary. A shared limitation of all introduced concepts
is the major gap in success rates between academic examples and real-world scenarios.
While these concepts show that theoretical analysis models work under laboratory
conditions, practical application is limited. Thus, we marked data obfuscation as well
as static code rewriting techniques in gray.

In Table II name scrambling was marked in black. Identifier names are often critical
to human understanding of a program but cannot be fully restored with the help of
automated code analysis techniques. Collberg et al. [1997] described this transforma-
tion as one-way, although limited recovery is possible via code analysis (e.g., induction
variables of loops can be identified and renamed to “i”, dynamic data structures can
be renamed to common identifiers, etc.). Parallelized code can implicitly be considered
as a strong obfuscation technique in this analysis scenario as code extraction, which
is a fundamental requirement for code understanding, and is also difficult. Following
the same line of reasoning, dynamic code rewriting methods in general are effective
against code understanding through automated static analysis.

5.3. Dynamic Code Analysis

Locating data. Every known data obfuscation technique except for whitebox cryptog-
raphy has a limited practical effect in dynamic analysis scenarios since data is always
visible at some point during runtime. For example, although the cryptographic key of
a DRM client might be stored in an obfuscated way (e.g., through data encoding) in
the binary, during runtime the cryptographic algorithm has to reconstruct the original
representation of the key in order to perform decryption tasks. In the literature, sev-
eral concepts for an automated dynamic extraction of data structures from program
binaries were introduced. Shamir and Van Someren [1999] proposed the identification
of cryptographic keys in binary code through entropy analysis—a concept which can
also be applied to memory.

Zhao et al. [2011] introduced a concept for dynamic extraction of data in malware.
Cozzie et al. [2008] extracted data structures from memory dumps using Bayesian un-
supervised learning. Lin et al. [2010] introduced a system called REwARDS which reveals
data structures through observation of the program execution. It marks each memory
location that was accessed at runtime with a timestamp and traces the propagation
of data. A similar concept called HowarD was proposed by Slowinska et al. [2011]
in 2011. It aims at extracting data structures from binaries by dynamically tracing
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(using QEMU-based emulation) how a program accesses the memory. HowArD is able
to reconstruct large parts of the symbol table. It thus simplifies the progress of reverse
engineering and improves readability of obfuscated code as well as data.

To sum up, in a dynamic analysis context, most static as well as dynamic code
rewriting techniques do not provide significant additional security in the context of data
protection. The only exception are obfuscations that require special runtime enablers
(additional hardware or environmental conditions) to execute. These techniques can
withstand dynamic analysis in situations where the runtime enabler is not present. For
this reason, both the techniques environmental requirements and hardware-assisted
code obfuscation were marked in gray in Table II.

Locating code. Locating a particular feature inside binary code through dynamic
analysis is based on the observation of the program behavior. Static code rewriting
techniques are not effective in dynamic analysis scenarios due to one important fac-
tor: Most of them are not explicitly targeted at the prevention of dynamic analysis.
Replacing instructions, inserting dead code, opaque predicates, code insertions, and so
on, were in the first place developed to obfuscate the static representation of binary
code. However, automated dynamic analysis techniques do not depend on the static
representation as much as static analysis or even human analysis do; thus they are
less affected by the obfuscation. In the literature, very diverse concepts for dynamic
analysis of obfuscated code were proposed. Li et al. [2009] described a technique that
identifies malicious behavior based on the malware’s runtime system call sequences.
McVETo [Thakur et al. 2010] is a dynamic test generator and model checker for machine
code. While traditional dynamic analysis suffers from the problem of incompleteness as
a program behavior can only be analyzed on one input at at time, McVETO implements
a combined static and dynamic approach which aims at reaching more code locations
by actively manipulating program inputs. Another strategy for finding a particular
feature in program code was discussed by Deprez and Lakhotia [2000] and Wilde and
Scully [2006]. The basic idea is to execute the program twice with two different inputs
whereby one input invokes the feature and the other does not. From calculating the
differences between the two traces conclusions on the location of the particular feature
can be drawn. Madou et al. [2005] discussed the effectiveness of hybrid (static and
dynamic) analysis approaches and demonstrated it in the context of the reconstruction
of an obfuscated control flow graph. Zhang and Gupta [2005] proposed the compari-
son of instrumented executions of different program versions for matching purposes.
Brumley et al. [2008] introduced a concept for automated generation of exploits based
on static and dynamic comparison of programs and patched versions of it.

While dynamic code analysis is strong against static code obfuscation, dynamic ob-
fuscation techniques are much more robust because executed code differs from the code
that is statically visible in the executable. However, analyses targeting dynamic code
rewriting obfuscations were presented in the context of malware analysis, in particular
for packed programs. Moser et al. [2007a] proposed a solution for the incompleteness
problem of dynamic analysis by making the exploration of multiple execution paths
possible. Thus, the approach allows the identification of malicious behavior that is
executed only if a certain conditions is met. REaNIMATOR [Comparetti et al. 2010] is a
two-step malware identification system. First, known malware is dynamically analyzed
and code that is responsible for a particular malicious behavior is modeled. This model
can then be used in a second step to identify the same malicious behavior in other code
samples through static analysis. However, dynamic code rewriting techniques such as
packing can limit the detection rate of this approach significantly. Sharif et al. [2008]
introduced the EUrREKA framework that automatically extracts the payload of a packed
program by running the binary in a virtual machine. REnovo by Kang et al. [2007] is
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another dynamic unpacker that monitors executed instructions and memory writes at
runtime to extract a hidden payload and is based on the dynamic code analysis compo-
nent TEmU [Yin and Song 2010] of the BirBrazE platform [Song et al. 2008]. Heuristics-
and statistics-based strategies are used to determine the exact moment when the un-
packing process is finished and the unpacked code is fully stored in memory. Royal et al.
[2006] introduced a behavioral-based approach for automated unpacking inside a VM.
Its combination of static and dynamic analysis identifies unpacking routines through
its characteristic behavior. A malware analysis approach by Debray and Patel [2010]
focuses on the automated identification of unpacking routines inside binaries. Grobert
et al. [2011] proposed the detection of cryptographic algorithms by analyzing program
execution traces, which show unique characteristics depending on the implemented
algorithm. In a similar concept named Avricor [Calvet et al. 2012], the identification
of cryptographic algorithms in execution traces is based on the comparison of input-
output relationships with known cryptographic algorithms. With this concept, even
heavily obfuscated algorithms can be identified because the input-output relationship
does not differ from the original version of the algorithm.

Furthermore, several approaches for automated dynamic analysis of programs pro-
tected by virtualization were introduced in recent years. Sharif et al. [2009] proposed
the use of taint-flow and dataflow analysis techniques to find the byte code imple-
menting the payload of the virtualized program. The described automated reverse
engineering approach is able to reconstruct control flow graphs and was evaluated
against the code virtualization tools VMProtect and Code Virtualizer. A different strat-
egy for automated dynamic analysis of virtualized code was proposed by Coogan et al.
[2011]. Instructions that contribute to arguments of system calls are collected to un-
derstand the functionality of the program. Webster and Malcolm [2009] proposed the
use of formal algebraic specifications to detect metamorphic and virtualization-based
malware. TRACESURFER [Guizani et al. 2009] uses dynamic binary instrumentation for
the detection of self-modifying malware.

To conclude, we marked dynamic code rewriting approaches in gray because practical
application of all described approaches is limited to malware identification tools only. In
other words, they do not directly aim at locating particular functionality but malicious
behavior in general.

Extracting code. Similarly to the scenario of static extraction of code sections, dy-
namic code extractors have to deal with dependencies between different parts of the
program. Several static classes of code obfuscation add bogus dependencies in order to
make analysis more difficult. Thus, we can make similar assumptions on the resilience
of the code obfuscation techniques. Still, several dynamic concepts for automated ex-
traction of code section were described in the literature. Top by Zeng et al. [2013] collects
instruction traces and translates the executed instructions into a high-level program
representation that can be reused as a normal C function in new software. The au-
thors claim the concept to be resilient against the obfuscation techniques packing/
encryption, aliasing, control flow obfuscation (e.g., flattening), inserting dead code, as
well as several popular antidebugging techniques such as “Soft Breakpoint Detection,”
“Anti-VMware IN Instruction,” and “IsDebuggerPresent Check.” Following the results
of Zeng et al. [2013], we also marked parallelized code, which is arguably less effective
in dynamic code analysis scenarios, in gray.

Most other concepts introduced in recent literature are focused on malware. Leder
et al. [2009] proposed a concept for automated extraction of cryptographic routines
through dynamic data analysis. The automated isolation of a single function from
a (malicious) binary was proposed by Caballero et al. [2010]. In contrast, INSPECTOR
by Kolbitsch et al. [2010] allows the automated extraction of a particular malicious
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behavior that does not necessarily have to be limited to one function of the pro-
gram only. Following the evaluation of this approach, the dynamic obfuscation class of
packing /encryption has to be considered weak against the described approach.

Other dynamic code rewriting techniques were marked in gray in Table II. In contrast
to the locating code scenario we marked virtualization in black as the technique by
Sharif et al. [2009] for analyzing virtualization-protected code is limited to locating
code and does not yield valid executables.

Understanding code. Analogously to previous scenarios, a deeper understanding of
the code of a program requires at least basic deobfuscation in the automated analysis. In
literature, several concepts were introduced. Udupa et al. [2005] proposed automated
deobfuscation of control flow flattening and dead code insertion using a hybrid approach
of static and dynamic analysis techniques. The incomplete control flow graph from a
dynamic analysis is enriched by adding some control flow edges that could possibly be
taken through static analysis. While the results presented in the article show that the
evaluation of isolated analysis problems is possible, it is difficult to reason about the
value of the concept for real-life programs.

5.4. Human Analysis

The capabilities of a human code analyst are difficult to quantify in general. Tilley
et al. [1996] first described a framework for program understanding including cognitive
aspects of a human reverse engineer. However, it is still safe to assume that provided
with sufficient patience a human analyst can break any class of software-only code
obfuscation (i.e., an obfuscation where no trust anchor in hardware exists) and is only
limited by scalability constraints.

Locating data. Most data obfuscation techniques have only limited strength in the
analysis scenario of a human analyst trying to locate data structures in programs.
One important concept for the protection of data (keys) inside a binary is whitebox
cryptography. It was proposed to prevent the extraction of a cryptographic key from
the binary by mixing it with the algorithm. In the mid-2000s, the first implementa-
tions of whitebox algorithms for DES and AES were proposed [Chow et al. 2003a,
2003b; Link and Neumann 2005; Bringer et al. 2006]. However, all of them have
been broken using techniques such as fault injection [Jacob et al. 2003], statistical
analysis [Link et al. 2004], condensed implementation [Wyseur and Preneel 2005], dif-
ferential cryptanalysis [Goubin et al. 2007; Wyseur et al. 2007; Billet et al. 2005; De
Mulder et al. 2010], or generic cryptanalysis [Michiels et al. 2009]. Given this mixed
history, in recent years, research on whitebox cryptography focused on the question how
the general idea and its security concepts can be backed by a theoretical foundation.
Wyseur [2009] discussed the state of the art of whitebox cryptography and proposed
new block ciphers and design principles for the construction of whitebox cryptographic
algorithms. Saxena et al. [2009] described a theoretical model of whitebox cryptography
using appropriate security notions and presented both positive and negative results
on whitebox cryptography. This leads us to the conclusion that in its current state the
strength of whitebox cryptography is unproven, although it can make the extraction of
the cryptographic key considerably more complex. Thus, we marked the obfuscation
class converting static data to procedures in gray. Other obfuscation techniques that
can provide at least limited resilience in this analysis scenario are environmental re-
quirements and hardware-assisted code obfuscation because of their dependencies on
external factors such as the presence of a particular hardware token. The strength of
dongles for software protection was evaluated by Piazzalunga et al. [2007]. The authors
developed a model for forecasting the amount of time an analyst would need to break
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dongle-based software protection schemes and concluded that today’s available dongle
solutions provide only minimal protection. Still, we marked the class of hardware-
assisted code obfuscation techniques in gray as dongles are only one simple concept
in this class of obfuscations. Several approaches that are more resilient to dynamic
analysis were introduced in the literature [Fu et al. 2007; Zhuang et al. 2004; Bitansky
et al. 2011].

Locating Code. Some obfuscation techniques break abstractions in the code that aid
human understanding. Name scrambling, removing standard library calls, and break-
ing relations do not prevent an automated tool from analyzing a program. However,
they can make manual analysis by a human more difficult.

Other classes of code obfuscation have limited robustness against a human ana-
lyst trying to locate code. For example, Rolles [2009] introduced a semiautomated
de-obfuscation approach against virtualization-obfuscation, which is based on reverse
engineering the virtual machine, extracting the byte code, and then turning it into
native code. Madou et al. [2006b, 2006¢] developed an interactive deobfuscation tool
named Loco that allows an analyst to navigate through the control flow graph of a pro-
gram to undo static obfuscating transformations such as control flow flattening. Quist
and Liebrock [2009] demonstrated how a sophisticated visual representation of the
control flow of a program can speed up the analysis process. In particular, unpacking
routines of malware can be identified efficiently using a visualization approach.

Extracting Code. Finding the location of code is a prerequisite for code extraction.
Thus, similarly to the scenario of dynamic analysis, the extraction of code can be
considered at least as difficult as locating code for a human analyst. One of the most
popular approaches for human-assisted code extraction is program slicing, which is
based on the idea of reducing the program code to a minimum slice that still produces
a particular behavior or affects the value of a particular variable. In the literature,
a multitude of program slicing approaches have been introduced over the past two
decades (e.g., Lanubile and Visaggio [1997] and Ning et al. [1993]). A major limitation of
program slicing is that the human analyst needs a deep understanding of the program
internals to be able to specify a slicing criterion such as relevant variables and behavior.
Several attempts have been made to raise the level of abstraction in slicing and thus
make it less depended on manual analysis, such as conditioned slicing [Canfora et al.
1994, 1998; Cimitile et al. 1996; Danicic et al. 2004] and constraint slicing [Fox et al.
2004; Danicic et al. 2005; Field et al. 1995]. We marked opaque predicates and aliasing
in gray as these obfuscation techniques can make the identification of the minimal
subset that still implements a particular functionality more difficult.

Understanding Code. Despite the fact that getting a comprehensive understanding
of the program structure and functionality can be considered the most ambitious aim
of a human analyst, today’s state of the art in code obfuscation provides only limited
protection in this analysis scenario. This assumption is backed by a plethora of reports
about successfully removed copy protection schemes for digital media such as CSS
(DVD copy protection), Windows Media DRM [Myska 2009], and high-bandwidth
digital content protection (HDCP) [Lomb and Guneysu 2011]. Another piece of evi-
dence for this assumption is the successful reverse engineering of the VoIP (Voice over
IP) software Skype. While Skype is known for its extensive use of code obfuscation,
Biondi and Desclaux [2006] still were able to reveal the internal structure of the
software. Furthermore, the client software of the cloud service provider Dropbox was
successfully reverse engineered despite being heavily obfuscated [Kholia and Wegrzyn
2013]. A decisive factor for these recent success stories in code analysis are today’s
sophisticated reverse engineering tools that have become better and better in dealing
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with obfuscated code [Eagle 2008; Ferguson and Kaminsky 2008; Eilam 2005]. For
instance, the F.L.I.LR.T. library of IDA Pro enables the recognition of standard library
functions generated by a variety of different compilers. It can be concluded that almost
all code obfuscation techniques have to be considered ineffective against a human
analyst that puts enough time and effort into manual deobfuscation. We marked name
scrambling, removing standard library calls, breaking relations, and virtualization in
gray as these obfuscations can make manual analysis by a human more difficult. Fur-
thermore, the obfuscation classes environmental requirements and hardware-assisted
code obfuscation can be considered as strong against human analysis as long as the
external requirement cannot be accessed by the analyst. Antidebugging and Antidisas-
sembly was also marked in gray as all human-assisted analysis approaches described
in the literature are still based on automated static and dynamic analysis tools.

6. CONCLUSIONS

In this survey, we addressed the question regarding to what extent software obfuscation
is able to provide reasonable protection of programs against state-of-the-art code anal-
ysis techniques and tools. Despite more than two decades of research on obfuscation
theory, reliable concepts for the evaluation of the resilience of an obfuscation technique
have still not been found, and there are similar limitations for the evaluation of code
analysis and deobfuscation techniques. With these constraints in mind, we conducted
a literature review of code analysis techniques applied against different classes of ob-
fuscations in specific attack scenarios. Where we could not find direct evidence of the
resilience of an obfuscation in a particular analysis scenario in the literature, we made
and justified our own inferences. Hence, this survey should not be seen as a formal
analysis but as a snapshot of the current state in the arms race between obfuscation
and code analysis. We considered the effects of obfuscations applied in isolation of each
other, but we would like to point out that the analysis of combinations of multiple types
of obfuscations constitutes an interesting area for future research.

Our results indicate that the strength of obfuscations heavily depends on the goals
of the analyst and the available resources. Most of the more heavyweight analysis
approaches introduced in academia have only been demonstrated to work on relatively
small and specific examples, whereas large real-world programs can be significantly
harder to analyze. A major limiting factor for code analysis is that the high complexity
of the analysis problems often exceeds the resources available to the analyst. Therefore,
simple obfuscations can still be quite effective where the deployed techniques have to be
fast and lightweight, like many pattern matching or static analysis algorithms. This
explains the unbroken popularity of software obfuscation among malware writers.
Where more resources are available to run an expensive dynamic analysis or even
perform manual reverse engineering, obfuscations are much less effective. As a result,
intellectual property protection against a human adversary remains challenging.

Another observation is that much of the current academic research on code analysis
in the presence of obfuscations focuses on malware. Frequently, the relevant literature
describes methods for classifying programs as malicious based on identifying obfusca-
tion techniques that are common in malware. The analysis of the actual functionality
of an obfuscated program is typically left out of scope. Substantially less academic
research has been done on reverse engineering obfuscated general (nonmalicious) pro-
grams, and tool support is worse.

The arms race between software obfuscation and analysis is still ongoing and the
fundamental challenge of devising software protection mechanisms that are resistant
against a human analyst remains. With today’s software obfuscation techniques one has
to assume that a dedicated analyst who is willing to spend enough time and effort will
always be able to successfully analyze a program. Nevertheless, as this survey shows,
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specific classes of software obfuscation can be effective in more restricted analysis
scenarios.

REFERENCES

Ittai Anati, Shay Gueron, Simon Johnson, and Vincent Scarlata. 2013. Innovative technology for cpu based
attestation and sealing. In Proceedings of the 2nd International Workshop on Hardware and Architectural
Support for Security and Privacy.

B. Anckaert, B. De Sutter, and K. De Bosschere. 2004. Software piracy prevention through diversity. In
Proceedings of the 4th ACM Workshop on Digital Rights Management. ACM, New York, NY, 63-71.

B. Anckaert, M. Jakubowski, and R. Venkatesan. 2006. Proteus: Virtualization for diversified tamper-
resistance. In Proceedings of the ACM Workshop on Digital Rights Management. ACM, New York, NY,
47-58.

Bertrand Anckaert, Mariusz H. Jakubowski, Ramarathnam Venkatesan, and Chit Wei Saw. 2009. Runtime
protection via dataflow flattening. In Proceedings of the 3rd International Conference on Emerging
Security Information, Systems and Technologies (SECURWARE’09). IEEE, 242-248.

B. Anckaert, M. Madou, B. De Sutter, B. De Bus, K. De Bosschere, and B. Preneel. 2007. Program obfuscation:
A quantitative approach. In Proceedings of the 2007 ACM Workshop on Quality of Protection. ACM, New
York, NY, 15-20.

G. Avoine, P. Junod, and P. Oechslin. 2007. Computer System Security: Basic Concepts and Solved Exercises.
EPFL Press.

D. F. Bacon, S. L. Graham, and O. J. Sharp. 1994. Compiler transformations for high-performance computing.
ACM Comput. Surv. 26, 4 (1994), 345-420.

Gogul Balakrishnan and Thomas W. Reps. 2004. Analyzing memory accesses in x86 executables. In Compiler
Construction, Evelyn Duesterwald (Ed.). Vol. 2985. Springer, Berlin, 5-23.

Boaz Barak, Sanjam Garg, Yael Tauman Kalai, Omer Paneth, and Amit Sahai. 2014. Protecting obfuscation
against algebraic attacks. In Advances in Cryptology-EUROCRYPT 2014. Springer, Berlin, 221-238.

B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. Vadhan, and K. Yang. 2001. On the
(im)possibility of obfuscating programs. In Advances in Cryptology-Crypto 2001. Springer, Berlin, 1-
18.

Sébastien Bardin, Philippe Herrmann, and Franck Védrine. 2011. Refinement-based CFG reconstruction
from unstructured programs. In Proceedings of the 12th International Conference on Verification, Model
Checking, and Abstract Interpretation (VMCAI’'11). 54-69.

U. Bayer, C. Kruegel, and E. Kirda. 2006. TTAnalyze: A tool for analyzing malware. In Proceedings of the
15th Annual Conference of the European Institute for Computer Antivirus Research (EICAR’06).

Daniel Bilar. 2007. Opcodes as predictor for malware. Int. J. Electron. Security Digital Forens. 1, 2 (2007),
156-168.

Olivier Billet, Henri Gilbert, and Charaf Ech-Chatbi. 2005. Cryptanalysis of a white box AES implementa-
tion. In Proceedings of the 11th International Conference on Selected Areas in Cryptography. Springer,
Berlin, 227-240.

Philippe Biondi and Fabrice Desclaux. 2006. Silver needle in the skype. Black Hat Eur. 6 (2006), 25-47.

Nir Bitansky, Ran Canetti, Henry Cohn, Shafi Goldwasser, Yael Tauman Kalai, Omer Paneth, and Alon
Rosen. 2014. The impossibility of obfuscation with auxiliary input or a universal simulator. In Advances
in Cryptology—-CRYPTO 2014. Springer, Berlin, 71-89.

Nir Bitansky, Ran Canetti, Shafi Goldwasser, Shai Halevi, Yael Tauman Kalai, and Guy N. Rothblum.
2011. Program obfuscation with leaky hardware. In Advances in Cryptology-Asiacrypt 2011. Vol. 7073.
Springer, Berlin, 722-739.

Martial Bourquin, Andy King, and Edward Robbins. 2013. BinSlayer: Accurate comparison of binary executa-
bles. In Proceedings of the 2nd ACM SIGPLAN Program Protection and Reverse Engineering Workshop.
ACM, New York, NY.

Zvika Brakerski and Guy N. Rothblum. 2014. Virtual black-box obfuscation for all circuits via generic graded
encoding. In Theory of Cryptography. Springer, Berlin, 1-25.

Rodrigo Rubira Branco, Gabriel Negreira Barbosa, and Pedro Drimel Neto. 2012. Scientific but not aca-
demical overview of malware anti-debugging, anti-disassembly and anti-vm technologies. In Blackhat
2012.

Murray Brand. 2010. Analysis Avoidance Techniques of Malicious Software. Ph.D. Dissertation. Edith Cowan
University.

ACM Computing Surveys, Vol. 49, No. 1, Article 4, Publication date: April 2016.



4:30 S. Schrittwieser et al.

Julien Bringer, Herve Chabanne, and Emmanuelle Dottax. 2006. White box cryptography: Another attempt.
IACR Cryptology Eprint Archive 2006 (2006).

Tom Brosch and Maik Morgenstern. 2006. Runtime packers: The hidden problem. Black Hat USA. Retrieved
from https://www.blackhat.com/presentations/bh-usa-06/BH-US-06-Morgenstern.pdf.

David Brumley, Ivan Jager, Thanassis Avgerinos, and Edward J. Schwartz. 2011. BAP: A binary analysis
platform. In Proceedings of the 23th International Conference on Computer Aided Verification (CAV’11).
463-469.

David Brumley, Pongsin Poosankam, Dawn Song, and Jiang Zheng. 2008. Automatic patch-based exploit
generation is possible: Techniques and implications. In Proceedings of the 2008 IEEE Symposium on
Security and Privacy (SP’08). IEEE, 143-157.

D. Bruschi, L. Martignoni, and M. Monga. 2006a. Detecting self-mutating malware using control-flow graph
matching. Detection of Intrusions and Malware & Vulnerability Assessment (2006), 129-143.

Danilo Bruschi, Lorenzo Martignoni, and Mattia Monga. 2006b. Using code normalization for fighting self-
mutating malware. In Proceedings of the International Symposium on Secure Software Engineering.
37-44.

Juan Caballero, Noah M. Johnson, Stephen McCamant, and Dawn Song. 2010. Binary code extraction and
interface identification for security applications. In Proceedings of Network and Distributed System
Security Symposium (NDSS’09).

Cristian Cadar, Vijay Ganesh, Peter M. Pawlowski, David L. Dill, and Dawson R. Engler. 2006. EXE: Au-
tomatically generating inputs of death. In Proceedings of the 13th ACM Conference on Computer and
Communications Security. 322—-335.

Joan Calvet, José M. Fernandez, and Jean-Yves Marion. 2012. Aligot: Cryptographic function identification
in obfuscated binary programs. In Proceedings of the 19th ACM Conference on Computer and Commu-
nications Security. ACM, New York, NY, 169-182.

R. Canetti and R. Dakdouk. 2008. Obfuscating point functions with multibit output. Advances in Cryptology—
Eurocrypt 2008 (2008), 489-508.

Gerardo Canfora, Aniello Cimitile, and Andrea De Lucia. 1998. Conditioned program slicing. Inform. Soft-
ware Technol. 40, 11 (1998), 595-607.

Gerardo Canfora, Aniello Cimitile, Andrea De Lucia, and Giuseppe A. Di Lucca. 1994. Software salvaging
based on conditions. In Proceedings of the International Conference on Software Maintenance (ICSM’94).
IEEE, 424-433.

Jan Cappaert, Nessim Kisserli, Dries Schellekens, and Bart Preneel. 2006. Self-encrypting code to protect
against analysis and tampering. In Proceedings of the 1st Benelux Workshop on Information and System
Security.

Jan Cappaert and Bart Preneel. 2010. A general model for hiding control flow. In Proceedings of the 10th
Annual ACM Workshop on Digital Rights Management. ACM, New York, NY, 35-42.

Hoi Chang and Mikhail J. Atallah. 2002. Protecting software code by guards. In Revised Papers from the ACM
CCS-8 Workshop on Security and Privacy in Digital Rights Management. Springer, Berlin, 160-175.

Mohamed R. Chouchane and Arun Lakhotia. 2006. Using engine signature to detect metamorphic malware.
In Proceedings of the 4th ACM Workshop on Recurring Malcode. ACM, New York, NY, 73-78.

S. Chow, P. Eisen, H. Johnson, and P. Van Oorschot. 2003a. White-box cryptography and an AES implementa-
tion. In Revised Papers from the 9th Annual International Workshop on Selected Areas in Cryptography.
Springer, Berlin, 250-270.

Stanley Chow, Phil Eisen, Harold Johnson, and Paul C. Van Oorschot. 2003b. A white-box DES implemen-
tation for DRM applications. In Digital Rights Management. Vol. 2696. Springer, Berlin, 1-15.

Stanley Chow, Yuan Gu, Harold Johnson, and Vladimir A. Zakharov. 2001. An approach to the obfuscation
of control-flow of sequential computer programs. In Information Security. Springer, Berlin, 144-155.

Mihai Christodorescu, Somesh Jha, Johannes Kinder, Stefan Katzenbeisser, and Helmut Veith. 2007. Soft-
ware transformations to improve malware detection. JJ. Comput. Virol. 3, 4 (2007), 253-265.

M. Christodorescu, S. Jha, S. A. Seshia, D. Song, and R. E. Bryant. 2005. Semantics-aware malware detection.
In Proceedings of the 26th IEEE Symposium on Security and Privacy. IEEE, 32-46.

Cristina Cifuentes and K. John Gough. 1995. Decompilation of binary programs. Software Pract. Exp. 25, 7
(1995), 811-829.

Aniello Cimitile, Andrea De Lucia, and Malcolm Munro. 1996. A specification driven slicing process for
identifying reusable functions. J. Software Maint. Res. Pract. 8, 3 (1996), 145-178.

F. B. Cohen. 1993. Operating system protection through program evolution. Comput. Security 12, 6 (1993),
565-584.

ACM Computing Surveys, Vol. 49, No. 1, Article 4, Publication date: April 2016.


https://www.blackhat.com/presentations/bh-usa-06/BH-US-06-Morgenstern.pdf

Protecting Software through Obfuscation: Can It Keep Pace with Progress in Code Analysis? 4:31

Christian Collberg and Jasvir Nagra. 2009. Surreptitious Software: Obfuscation, Watermarking, and Tam-
perproofing for Software Protection. Addison-Wesley Professional.

C. Collberg, C. Thomborson, and D. Low. 1997. A Taxonomy of Obfuscating Transformations. Technical
Report. Department of Computer Science, The University of Auckland, New Zealand.

Christian Collberg, Clark Thomborson, and Douglas Low. 1998a. Breaking abstractions and unstructuring
data structures. In Proceedings of the 1998 International Conference on Computer Languages. IEEE,
28-38.

C. Collberg, C. Thomborson, and D. Low. 1998b. Manufacturing cheap, resilient, and stealthy opaque con-
structs. In Proceedings of the 25th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages. ACM, New York, NY, 184-196.

Paolo Milani Comparetti, Guido Salvaneschi, Engin Kirda, Clemens Kolbitsch, Christopher Kruegel, and
Stefano Zanero. 2010. Identifying dormant functionality in malware programs. In Proceedings of the
30th IEEE Symposium on Security and Privacy. IEEE, 61-76.

Kevin Coogan, Saumya Debray, Tasneem Kaochar, and Gregg Townsend. 2009. Automatic static unpacking
of malware binaries. In Proceedings of the 16th Working Conference on Reverse Engineering (WCRE’09).
IEEE, 167-176.

K. Coogan, G. Lu, and S. Debray. 2011. Deobfuscation of virtualization-obfuscated software: A semantics-
based approach. In Proceedings of the 18th ACM Conference on Computer and Communications Security.
ACM, New York, NY, 275-284.

Bart Coppens, Bjorn De Sutter, and Jonas Maebe. 2013. Feedback-driven binary code diversification. ACM
Trans. Arch. Code Optimiz. (TACO) 9, 4 (2013).

Anthony Cozzie, Frank Stratton, Hui Xue, and Samuel T. King. 2008. Digging for data structures. In Pro-
ceedings of the Symposium on Operating Systems Design and Implementation (OSDI'08).

Jedidiah R. Crandall, Gary Wassermann, Daniela A. S. de Oliveira, Zhendong Su, S. Felix Wu, and Frederic
T. Chong. 2006. Temporal search: Detecting hidden malware timebombs with virtual machines. ACM
SIGPLAN Not. 41, 11 (2006), 25-36.

Mila Dalla Preda and Roberto Giacobazzi. 2005. Semantic-based code obfuscation by abstract interpretation.
In Automata, Languages and Programming. Springer, Berlin, 1325-1336.

M. Dalla Preda, R. Giacobazzi, S. Debray, K. Coogan, and G. Townsend. 2011. Modelling metamorphism by
abstract interpretation. In Proceedings of the 17th Annual Symposium onStatic Analysis. 218-235.

M. Dalla Preda, M. Madou, K. De Bosschere, and R. Giacobazzi. 2006. Opaque predicates detection by
abstract interpretation. Algebr. Methodol. Software Technol. (2006), 81-95.

Sebastian Danicic, Mohammed Daoudi, Chris Fox, Mark Harman, Robert M. Hierons, John R. Howroyd,
Lahcen Ourabya, and Martin Ward. 2005. Consus: A light-weight program conditioner. J. Syst. Software
77, 3 (2005), 241-262.

Sebastian Danicic, Andrea De Lucia, and Mark Harman. 2004. Building executable union slices using
conditioned slicing. In Proceedings of the 12th IEEE International Workshop on Program Comprehension.
IEEE, 89-97.

Manuvir Das, Sorin Lerner, and Mark Seigle. 2002. ESP: Path-sensitive program verification in polynomial
time. In Proceedings of the ACM SIGPLAN 2002 Conference on Programming Language Design and
Implementation. New York, NY, 57-68.

Lucas Davi, Alexandra Dmitrienko, Stefan Niirnberger, and Ahmad-Reza Sadeghi. 2012. XIFER: A software
diversity tool against code-reuse attacks. In Proceedings of the 4th ACM International Workshop on
Wireless of the Students, by the Students, for the Students (S3’12).

Yoni De Mulder, Brecht Wyseur, and Bart Preneel. 2010. Cryptanalysis of a perturbated white-box AES
implementation. In Progress in Cryptology—INDOCRYPT 2010. Springer, Berlin, 292-310.

B. De Sutter, B. Anckaert, J. Geiregat, D. Chanet, and K. De Bosschere. 2009. Instruction set limitation in
support of software diversity. Inform. Security Cryptol. (2009), 152—-165.

Saumya Debray and Jay Patel. 2010. Reverse engineering self-modifying code: Unpacker extraction. In 17th
Working Conference on Reverse Engineering (WCRE’10). IEEE, 131-140.

N. Dedi¢, M. Jakubowski, and R. Venkatesan. 2007. A graph game model for software tamper protection. In
Proceedings of the 9th International Conference on Information Hiding. Springer-Verlag, 80-95.

dJ. C. Deprez and A. Lakhotia. 2000. A formalism to automate mapping from program features to code. In
Proceedings of the 8th International Workshop on Program Comprehension. IEEE, 69-78.

Kevin P. Dyer, Scott E. Coull, Thomas Ristenpart, and Thomas Shrimpton. 2013. Protocol misidentification
made easy with format-transforming encryption. In Proceedings of the 2013 ACM SIGSAC Conference
on Computer & Communications Security. ACM, New York, NY, 61-72.

ACM Computing Surveys, Vol. 49, No. 1, Article 4, Publication date: April 2016.



4:32 S. Schrittwieser et al.

Chris Eagle. 2008. The IDA Pro Book: The Unofficial Guide to the World’s Most Popular Disassembler. No
Starch Press.

Manuel Egele, Theodoor Scholte, Engin Kirda, and Christopher Kruegel. 2012. A survey on automated
dynamic malware-analysis techniques and tools. ACM Comput. Surv. 44, 2 (2012).

Eldad Eilam. 2005. Reversing: Secrets of Reverse Engineering. Wiley, New York, NY.

M. V. Emmerik and Trent Waddington. 2004. Using a decompiler for real-world source recovery. In Proceed-
ings of the 11th Working Conference on Reverse Engineering. IEEE, 27-36.

Justin Ferguson and Daniel Kaminsky. 2008. Reverse Engineering Code with IDA Pro. Syngress.

John Field, Ganesan Ramalingam, and Frank Tip. 1995. Parametric program slicing. In Proceedings of the
22nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages. ACM, New York,
NY, 379-392.

Halvar Flake. 2004. Structural comparison of executable objects. In Proceedings of the Detection of Intrusions
and Malware & Vulnerability Assessment, GI SIG SIDAR Workshop (DIMVA04). 161-173.

Christophe Foket, Bjorn De Sutter, Bart Coppens, and Koen De Bosschere. 2013. A novel obfuscation: Class
hierarchy flattening. In Foundations and Practice of Security. Springer, Berlin, 194-210.

Christophe Foket, Bjorn De Sutter, and Koen De Bosschere. 2014. Pushing java type obfuscation to the limit.
IEEE Trans. Dependable Secure Comput. 6 (2014), 553-567.

Stephanie Forrest, Anil Somayaji, and David H. Ackley. 1997. Building diverse computer systems. In Pro-
ceedings of the 6th Workshop on Hot Topics in Operating Systems. IEEE, 67-72.

Chris Fox, Sebastian Danicic, Mark Harman, and Robert M. Hierons. 2004. ConSIT: A fully automated
conditioned program slicer. Software: Pract. Exp. 34, 1 (2004), 15—46.

Michael Franz. 2010. E. unibus pluram: Massive-scale software diversity as a defense mechanism. In Pro-
ceedings of the 2010 Workshop on New Security Paradigms. ACM, New York, NY, 7-16.

Bin Fu, Sai Aravalli, and John Abraham. 2007. Software protection by hardware and obfuscation. In Pro-
ceedings of the 2007 International Conference on Security & Management (SAM’07). 367-373.

Debin Gao, Michael K. Reiter, and Dawn Song. 2008. Binhunt: Automatically finding semantic differences
in binary programs. In Information and Communications Security. Springer, Berlin, 238-255.

Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent Waters. 2013. Candidate
indistinguishability obfuscation and functional encryption for all circuits. In Proceedings of the 2013
IEEE 54th Annual Symposium on Foundations of Computer Science (FOCS’13). IEEE, 40-49.

Sudeep Ghosh, Jason D. Hiser, and Jack W. Davidson. 2010. A secure and robust approach to software tamper
resistance. In Information Hiding. Springer, Berlin, 33—47.

Roberto Giacobazzi. 2008. Hiding information in completeness holes: New perspectives in code obfuscation
and watermarking. In Proceedings of the 6th IEEE International Conference on Software Engineering
and Formal Methods (SEFM’08). IEEE, 7-18.

Roberto Giacobazzi and Isabella Mastroeni. 2012. Making abstract interpretation incomplete: Modeling the
potency of obfuscation. In Proceedings of the 19th International Symposium Static Analysis (SAS’12).
Springer, Berlin, 129-145.

Patrice Godefroid, Nils Klarlund, and Koushik Sen. 2005. DART: Directed automated random testing. In Pro-
ceedings of the 2005 ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI'05). 213-223.

Patrice Godefroid, Michael Y. Levin, and David A. Molnar. 2008. Automated whitebox fuzz testing. In Pro-
ceedings of Network and Distributed System Security Symposium (NDSS’08).

Shafi Goldwasser and Guy N. Rothblum. 2007. On best-possible obfuscation. In Theory of Cryptography.
Vol. 4392. Springer, Berlin, 194-213.

L. Goubin, J. M. Masereel, and M. Quisquater. 2007. Cryptanalysis of white box DES implementations. In
Selected Areas in Cryptography. Vol. 4876. Springer, Berlin, 278-295.

K. Griffin, S. Schneider, X. Hu, and T. Chiueh. 2009. Automatic generation of string signatures for malware
detection. In Recent Advances in Intrusion Detection. Lecture Notes in Computer Science, Vol. 5758.
Springer, Berlin, 101-120.

Felix Grobert, Carsten Willems, and Thorsten Holz. 2011. Automated identification of cryptographic primi-
tives in binary programs. In Recent Advances in Intrusion Detection. Lecture Notes in Computer Science,
Vol. 6961. Springer, Berlin, 41-60.

Derrick Grover. 1992. Protection of Computer Software: Its Technology and Application. Cambridge Univer-
sity Press, Cambridge.

Y. Guillot and A. Gazet. 2010. Automatic binary deobfuscation. /. Comput. Virol. 6, 3 (2010), 261-276.

Wadie Guizani, J.-Y. Marion, and Daniel Reynaud-Plantey. 2009. Server-side dynamic code analysis. In Pro-
ceedings of the 2009 4th International Conference on Malicious and Unwanted Software (MALWARE’09).
IEEE, 55-62.

ACM Computing Surveys, Vol. 49, No. 1, Article 4, Publication date: April 2016.



Protecting Software through Obfuscation: Can It Keep Pace with Progress in Code Analysis? 4:33

L. C. Harris and B. P. Miller. 2005. Practical analysis of stripped binary code. ACM SIGARCH Comput. Arch.
News 33, 5 (2005), 63—68.

Bill Horne, Lesley Matheson, Casey Sheehan, and Robert E. Tarjan. 2002. Dynamic self-checking techniques
for improved tamper resistance. In Revised Papers from the ACM CCS-8 Workshop on Security and
Privacy in Digital Rights Management. Springer, Berlin, 141-159.

S. Horwitz. 1997. Precise flow-insensitive may-alias analysis is np-hard. ACM Trans. Program. Lang. Syst.
19, 1 (1997), 1-6.

Grégoire Jacob, Paolo Milani Comparetti, Matthias Neugschwandtner, Christopher Kruegel, and Giovanni
Vigna. 2012. A static, packer-agnostic filter to detect similar malware samples. In Proceedings of the
9th International Conference on Detection of Intrusions and Malware, and Vulnerability Assessment.
Springer-Verlag, 102-122.

M. Jacob, D. Boneh, and E. Felten. 2003. Attacking an obfuscated cipher by injecting faults. Digital Rights
Manag. (2003), 16-31.

Matthias Jacob, Mariusz H. Jakubowski, and Ramarathnam Venkatesan. 2007. Towards integral binary
execution: Implementing oblivious hashing using overlapped instruction encodings. In Proceedings of
the 9th Workshop on Multimedia & Security. ACM, New York, NY, 129-140.

M. Jakubowski, P. Naldurg, V. Patankar, and R. Venkatesan. 2007. Software integrity checking expressions
(ICEs) for robust tamper detection. In Information Hiding. Vol. 4567. Springer, Berlin, 96-111.

Min Gyung Kang, Pongsin Poosankam, and Heng Yin. 2007. Renovo: A hidden code extractor for packed
executables. In Proceedings of the 2007 ACM Workshop on Recurring Malcode. ACM, New York, NY,
46-53.

Yuichiro Kanzaki, Akito Monden, Masahide Nakamura, and Ken-ichi Matsumoto. 2003. Exploiting self-
modification mechanism for program protection. In Proceedings of the 27th Annual International Con-
ference on Computer Software and Applications. IEEE, 170-179.

Abhishek Karnik, Suchandra Goswami, and Ratan Guha. 2007. Detecting obfuscated viruses using cosine
similarity analysis. In Proceedings of the 1st Asia International Conference on Modelling & Simulation
(AMS’07). IEEE, 165-170.

Dhiru Kholia and Przemystaw Wegrzyn. 2013. Looking inside the (drop)box. In Proceedings of the 7th Usenix
Workshop on Offensive Technologies (Woot’13).

Johannes Kinder. 2012. Towards static analysis of virtualization-obfuscated binaries. In Proceedings of the
19th Working Conference Reverse Engineering (WCRE 2012). IEEE, 61-70.

Johannes Kinder, Stefan Katzenbeisser, Christian Schallhart, and Helmut Veith. 2005. Detecting malicious
code by model checking. In Detection of Intrusions and Malware, and Vulnerability Assessment. Vol. 3548.
Springer, Berlin, 174-187.

J. Kinder and H. Veith. 2008. Jakstab: A static analysis platform for binaries. In Proceedings of the 20th
International Conference on Computer Aided Verification (CAV’08). Springer, Berlin, 423-427.

J. Kinder, F. Zuleger, and H. Veith. 2009. An abstract interpretation-based framework for control flow
reconstruction from binaries. In Proceedings of the 10th International Conference on Verification, Model
Checking, and Abstract Interpretation (VMCAI'09). Springer, Berlin, 214-228.

James C. King. 1976. Symbolic execution and program testing. Commun. ACM 19, 7 (1976), 385-394.

S. T. King and P. M. Chen. 2006. SubVirt: Implementing malware with virtual machines. In Proceedings of
the 27th IEEE Symposium on Security and Privacy. IEEE.

C. Kolbitsch, T. Holz, C. Kruegel, and E. Kirda. 2010. Inspector gadget: Automated extraction of proprietary
gadgets from malware binaries. In Proceedings of the 30th IEEE Symposium on Security and Privacy.
IEEE, 29-44.

Clemens Kolbitsch, Engin Kirda, and Christopher Kruegel. 2011. The power of procrastination: Detection
and mitigation of execution-stalling malicious code. In Proceedings of the 18th ACM Conference on
Computer and Communications Security. ACM, New York, NY, 285-296.

Christopher Kruigel, William K. Robertson, Fredrik Valeur, and Giovanni Vigna. 2004. Static disassembly of
obfuscated binaries. In Proceedings of the USENIX Security Symposium. 255-270.

Arun Lakhotia, Davidson R. Boccardo, Anshuman Singh, and Aleardo Manacero Jr. 2010. Context-sensitive
analysis without calling-context. Higher-Order Symbol. Comput. 23, 3 (2010), 275-313.

Filippo Lanubile and Giuseppe Visaggio. 1997. Extracting reusable functions by flow graph based program
slicing. IEEE Trans. Software Eng. 23, 4 (1997), 246-259.

Timea Laszlé and Akos Kiss. 2009. Obfuscating C++ programs via control flow flattening. Annales Uni-
versitatis Scientarum Budapestinensis De Rolando Eétvés Nominatae, Sectio Computatorica 30 (2009),
3-19.

ACM Computing Surveys, Vol. 49, No. 1, Article 4, Publication date: April 2016.



4:34 S. Schrittwieser et al.

Felix Leder, Peter Martini, and Andre Wichmann. 2009. Finding and extracting crypto routines from mal-
ware. In IEEE 28th International Performance Computing and Communications Conference (IPCCC’09).
IEEE, Washington, DC, 394-401.

J. Li, M. Xu, N. Zheng, and J. Xu. 2009. Malware obfuscation detection via maximal patterns. In Proceedings
of the 3rd International Symposium on Intelligent Information Technology Application (LITA09), Vol. 2.
IEEE, 324-328.

Z. Lin, X. Zhang, and D. Xu. 2010. Automatic reverse engineering of data structures from binary execution.
In Proceedings of the 17th Network and Distributed System Security Symposium.

Hamilton E. Link and William D. Neumann. 2005. Clarifying obfuscation: Improving the security of white-box
des. In Proceedings of the International Conference on Information Technology: Coding and Computing
(ITCC’05), Vol. 1. IEEE, 679-684.

Hamilton E. Link, Richard Crabtree Schroeppel, William Douglas Neumann, Philip LaRoche Campbell,
Cheryl Lynn Beaver, Lyndon George Pierson, and William Erik Anderson. 2004. Securing Mobile Code.
Technical Report. Sandia National Laboratories.

C. Linn and S. Debray. 2003. Obfuscation of executable code to improve resistance to static disassembly. In
Proceedings of the 10th ACM Conference on Computer and Communications Security. ACM, New York,
NY, 290-299.

Benno Lomb and Tim Guneysu. 2011. Decrypting HDCP-protected video streams using reconfigurable hard-
ware. In Proceedings of the International Conference on Reconfigurable Computing and FPGAs (ReCon-
Fig’l1). IEEE, 249-254.

B. Lynn, M. Prabhakaran, and A. Sahai. 2004. Positive results and techniques for obfuscation. In Advances
in Cryptology—-Eurocrypt 2004. Springer, Berlin, 20-39.

Matias Madou, Bertrand Anckaert, Bruno De Bus, Koen De Bosschere, Jan Cappaert, and Bart Preneel.
2006. On the effectiveness of source code transformations for binary obfuscation. In Proceedings of the
International Conference on Software Engineering Research and Practice (SERP’06). 527-533.

Matias Madou, Bertrand Anckaert, Bjorn De Sutter, and Koen De Bosschere. 2005. Hybrid static-dynamic
attacks against software protection mechanisms. In Proceedings of the 5th ACM Workshop on Digital
Rights Management. ACM, New York, NY, 75-82.

Matias Madou, Bertrand Anckaert, Patrick Moseley, Saumya Debray, Bjorn De Sutter, and Koen De Boss-
chere. 2006a. Software protection through dynamic code mutation. In Information Security Applications.
Springer, Berlin, 194-206.

M. Madou, L. Van Put, and K. De Bosschere. 2006b. LOCO: An interactive code (de) obfuscation tool.
In Proceedings of the 2006 ACM SIGPLAN Symposium on Partial Evaluation and Semantics-Based
Program Manipulation. ACM, New York, NY, 140-144.

M. Madou, L. Van Put, and K. De Bosschere. 2006¢c. Understanding obfuscated code. In Proceedings of the
14th IEEE International Conference on Program Comprehension (ICPC’06). IEEE, 268-274.

A. Majumdar, A. Monsifrot, and C. Thomborson. 2006. On evaluating obfuscatory strength of alias-based
transforms using static analysis. In Proceedings of the International Conference on Advanced Computing
and Communications (ADCOM’06). IEEE, 605-610.

Anirban Majumdar and Clark Thomborson. 2006. Manufacturing opaque predicates in distributed systems
for code obfuscation. In Proceedings of the 29th Australasian Computer Science Conference-Volume 48.
Australian Computer Society, 187-196.

Joshua Mason, Sam Small, Fabian Monrose, and Greg MacManus. 2009. English shellcode. In Proceedings
of the 16th ACM Conference on Computer and Communications Security. ACM, New York, NY, 524-533.

Aleksandr Matrosov, Eugene Rodionov, David Harley, and Juraj Malcho. 2010. Stuxnet under the microscope.
ESET LLC (September 2010) (2010).

Nikos Mavrogiannopoulos, Nessim Kisserli, and Bart Preneel. 2011. A taxonomy of self-modifying code for
obfuscation. Comput. Security 30, 8 (2011), 679-691.

Wil Michiels, Paul Gorissen, and Henk D. L. Hollmann. 2009. Cryptanalysis of a generic class of white-box
implementations. In Selected Areas in Cryptography. Vol. 5381. Springer, Berlin, 414-428.

Craig Miles, Arun Lakhotia, and Andrew Walenstein. 2012. In situ reuse of logically extracted functional
components. J. Comput. Virol. 8, 3 (2012), 73-84.

Akito Monden, Antoine Monsifrot, and Clark Thomborson. 2004. A framework for obfuscated interpreta-
tion. In Proceedings of the 2nd Workshop on Australasian Information Security, Data Mining and Web
Intelligence, and Software Internationalisation-Volume 32. Australian Computer Society, 7-16.

Andreas Moser, Christopher Kruegel, and Engin Kirda. 2007a. Exploring multiple execution paths for mal-
ware analysis. In Proceedings of the 28th IEEE Symposium on Security and Privacy. IEEE, 231-245.

ACM Computing Surveys, Vol. 49, No. 1, Article 4, Publication date: April 2016.



Protecting Software through Obfuscation: Can It Keep Pace with Progress in Code Analysis? 4:35

A. Moser, C. Kruegel, and E. Kirda. 2007b. Limits of static analysis for malware detection. In Proceedings of
the 23rd Annual Computer Security Applications Conference (ACSAC’07). IEEE, 421-430.

M. Myska. 2009. The true story of DRM. Masaryk Ujl & Tech. 3 (2009), 267-278.
C. Nachenberg. 1997. Computer virus-coevolution. Commun. ACM 50, 1 (1997), 46-51.

Vijayanand Nagarajan, Rajiv Gupta, Xiangyu Zhang, Matias Madou, and Bjorn De Sutter. 2007. Matching
control flow of program versions. In Proceedings of the IEEE International Conference on Software
Maintenance (ICSM’07). IEEE, 84-93.

J. Newsome, B. Karp, and D. Song. 2005. Polygraph: Automatically generating signatures for polymorphic
worms. In Proceedings of the 26th IEEE Symposium on Security and Privacy. IEEE, 226-241.

Flemming Nielson, Hanne R. Nielson, and Chris Hankin. 1999. Principles of Program Analysis. Springer,
Berlin.

Jim Q Ning, Andre Engberts, and Wojtek Kozaczynski. 1993. Recovering reusable components from legacy
systems by program segmentation. In Proceedings of the Working Conference on Reverse Engineering.
IEEE, 64-72.

Jens Palsberg, Sowmya Krishnaswamy, Minseok Kwon, Di Ma, Qiuyun Shao, and Yi Zhang. 2000. Experi-
ence with software watermarking. In Proceedings of the 16th Annual Conference on Computer Security
Applications (ACSAC’00). IEEE, 308-316.

Ugo Piazzalunga, Paolo Salvaneschi, Francesco Balducci, Pablo Jacomuzzi, and Cristiano Moroncelli. 2007.
Security strength measurement for dongle-protected software. IEEE Security Privacy 5, 6 (2007), 32—40.

Igor V. Popov, Saumya K. Debray, and Gregory R. Andrews. 2007. Binary obfuscation using signals. In
Proceedings of the Usenix Security Symposium. 275-290.

Daniel A. Quist and Lorie M. Liebrock. 2009. Visualizing compiled executables for malware analysis. In
Proceedings of the 6th International Workshop on Visualization for Cyber Security, 2009 (VizSec’09).
IEEE, 27-32.

Jason Raber and Eric Laspe. 2007. Deobfuscator: An automated approach to the identification and removal
of code obfuscation. In Proceedings of the 14th Working Conference on Reverse Engineering (WCRE’07).
IEEE, 275-276.

G. Ramalingam. 1994. The undecidability of aliasing. ACM Trans. Program. Lang. Syst. 16,5 (1994), 1467—
1471.

J. Riordan and B. Schneier. 1998. Environmental key generation towards clueless agents. Mobile Agents and
Security (1998), 15-24.

R. Rolles. 2009. Unpacking virtualization obfuscators. In Proceedings of the 3rd Usenix Workshop on Offensive
Technologies (Woot'09).

Kevin A. Roundy and Barton P. Miller. 2013. Binary-code obfuscations in prevalent packer tools. ACM
Comput. Surv. 46,1 (2013).

P. Royal, M. Halpin, D. Dagon, R. Edmonds, and W. Lee. 2006. Polyunpack: Automating the hidden-code
extraction of unpack-executing malware. In Proceedings of the 22nd Annual Computer Security Appli-
cations Conference (ACSAC’06). IEEE, 289-300.

S. Rugaber, K. Stirewalt, and L. M. Wills. 1995. The interleaving problem in program understanding. In
Proceedings of the 2nd Working Conference on Reverse Engineering. IEEE, 166-175.

Yusuke Sakabe, Masakazu Soshi, and Atsuko Miyaji. 2005. Java obfuscation approaches to construct tamper-
resistant object-oriented programs. IPSJ Digital Courier 1 (2005), 349-361.

Amitabh Saxena, Brecht Wyseur, and Bart Preneel. 2009. Towards security notions for white-box cryptogra-
phy. In Information Security. Springer, Berlin, 49-58.

S. Schrittwieser and S. Katzenbeisser. 2011. Code obfuscation against static and dynamic reverse engineer-
ing. In Proceedings of the 13th International Conference on Information Hiding (IH’11). Springer, Berlin,
270-284.

Sebastian Schrittwieser, Stefan Katzenbeisser, Peter Kieseberg, Markus Huber, Manuel Leithner, Martin
Mulazzani, and Edgar Weippl. 2013. Covert computation: Hiding code in code for obfuscation purposes.
In Proceedings of the 8th ACM SIGSAC Symposium on Information, Computer and Communications
Security. ACM, 529-534.

Edward J. Schwartz, Thanassis Avgerinos, and David Brumley. 2010. All you ever wanted to know about dy-
namic taint analysis and forward symbolic execution (but might have been afraid to ask). In Proceedings
of the 31st IEEE Symposium on Security and Privacy, S&P 2010. 317-331.

Edward J. Schwartz, J. Lee, Maverick Woo, and David Brumley. 2013. Native x86 decompilation using
semantics-preserving structural analysis and iterative control-flow structuring. In Proceedings of the
Usenix Security Symposium.

ACM Computing Surveys, Vol. 49, No. 1, Article 4, Publication date: April 2016.



4:36 S. Schrittwieser et al.

Benjamin Schwarz, Saumya Debray, and Gregory Andrews. 2002. Disassembly of executable code revisited.
In Proceedings of the 9th Working Conference on Reverse Engineering. IEEE, 45-54.

Koushik Sen, Darko Marinov, and Gul Agha. 2005. CUTE: A concolic unit testing engine for C. In Pro-
ceedings of the 10th European Software Engineering Conference held jointly with 13th ACM SIGSOFT
International Symposium on Foundations of Software Engineering. 263-272.

Hovav Shacham. 2007. The geometry of innocent flesh on the bone: Return-into-libc without function calls
(on the x86). In Proceedings of the 14th ACM Conference on Computer and Communications Security.
ACM, New York NY, 552-561.

Adi Shamir and Nicko Van Someren. 1999. Playing’hide and seek’ with stored keys. In Financial Cryptogra-
phy. Vol. 1648. Springer, Berlin, 118-124.

M. Sharif, A. Lanzi, J. Giffin, and W. Lee. 2009. Automatic reverse engineering of malware emulators. In
Proceedings of the 30th IEEE Symposium on Security and Privacy. IEEE, 94-109.

M. Sharif, V. Yegneswaran, H. Saidi, P. Porras, and W. Lee. 2008. Eureka: A framework for enabling static
malware analysis. Computer Security-Esorics 2008 (2008), 481-500.

Monirul I. Sharif, Andrea Lanzi, Jonathon T. Giffin, and Wenke Lee. 2008. Impeding malware analysis using
conditional code obfuscation. In Proceedings of the Network and Distributed System Security Symposium
(NDSS’08).

A. Slowinska, T. Stancescu, and H. Bos. 2011. Howard: A dynamic excavator for reverse engineering data
structures. In Proceedings of the Network and Distributed System Security Symposium (NDSS’11).
Harry M. Sneed. 2000. Encapsulation of legacy software: A technique for reusing legacy software components.

Ann. Software Eng. 9, 1-2 (2000), 293-313.

Dawn Song, David Brumley, Heng Yin, Juan Caballero, Ivan Jager, Min Gyung Kang, Zhenkai Liang, James
Newsome, Pongsin Poosankam, and Prateek Saxena. 2008. BitBlaze: A new approach to computer
security via binary analysis. In Proceedings of the 4th International Conference on Information Systems
Security. Keynote Invited Paper.

Yingbo Song, Michael E. Locasto, Angelos Stavrou, Angelos D. Keromytis, and Salvatore J. Stolfo. 2010. On
the infeasibility of modeling polymorphic shellcode. Mach. Learn. 81, 2 (2010), 179-205.

Mikhail Sosonkin, Gleb Naumovich, and Nasir Memon. 2003. Obfuscation of design intent in object-oriented
applications. In Proceedings of the 3rd ACM Workshop on Digital Rights Management. ACM, New York,
NY, 142-153.

Joe Stewart. 2006. Ollybone: Semi-automatic unpacking on IA-32. In Proceedings of the 14th Def Con Hacking
Conference.

Y. Tang and S. Chen. 2007. An automated signature-based approach against polymorphic internet worms.
IEEE Trans. Parallel Distrib. Syst. 18, 7 (2007).

A. Thakur, J. Lim, A. Lal, A. Burton, E. Driscoll, M. Elder, T. Andersen, and T. Reps. 2010. Directed proof
generation for machine code. In Proceedings of the 22th International Conference on Computer Aided
Verification (CAV’10). Springer, Berlin, 288-305.

S. R. Tilley, S. Paul, and D. B. Smith. 1996. Towards a framework for program understanding. In Proceedings
of the 4th Workshop on Program Comprehension. IEEE, 19-28.

S. Treadwell and M. Zhou. 2009. A heuristic approach for detection of obfuscated malware. In Proceedings
of the IEEE International Conference on Intelligence and Security Informatics (ISI'09). IEEE, 291-299.

H. Y. Tsai, Y. L. Huang, and D. Wagner. 2009. A graph approach to quantitative analysis of control-flow
obfuscating transformations. IEEE Trans. Inform. Forens. Security 4, 2 (2009), 257-267.

S. K. Udupa, S. K. Debray, and M. Madou. 2005. Deobfuscation: Reverse engineering obfuscated code. In
Proceedings of the 12th Working Conference on Reverse Engineering. IEEE.

Zeljko Vrba, Pal Halvorsen, and Carsten Griwodz. 2010. Program obfuscation by strong cryptography. In
Proceedings of the International Conference on Availability, Reliability, and Security (ARES’10). IEEE,
242-247.

A. Walenstein, R. Mathur, M. R. Chouchane, and A. Lakhotia. 2006. Normalizing metamorphic malware
using term rewriting. In Proceedings of the 6th IEEE International Workshop on Source Code Analysis
and Manipulation (SCAM’06). IEEE, 75-84.

C. Wang, J. Davidson, J. Hill, and J. Knight. 2001. Protection of software-based survivability mechanisms.
In Proceedings of the 2001 International Conference on Dependable Systems and Networks (Formerly:
FTCS). IEEE, 193-202.

C. Wang, J. Hill, J. Knight, and J. Davidson. 2000. Software Tamper Resistance: Obstructing Static Analysis
of Programs. Technical Report. CS-2000-12, University of Virginia.

M. Webster and G. Malcolm. 2009. Detection of metamorphic and virtualization-based malware using alge-
braic specification. J. Comput. Virol. 5, 3 (2009), 221-245.

ACM Computing Surveys, Vol. 49, No. 1, Article 4, Publication date: April 2016.



Protecting Software through Obfuscation: Can It Keep Pace with Progress in Code Analysis? 4:37

H. Wee. 2005. On obfuscating point functions. In Proceedings of the 37th Annual ACM Symposium on Theory
of Computing. ACM, New York, NY, 523-532.

N. Wilde and M. C. Scully. 2006. Software reconnaissance: Mapping program features to code. JJ. Software
Maint.: Res. Pract. 7, 1 (2006), 49-62.

Carsten Willems and Felix C. Freiling. 2012. Reverse code engineering-state of the art and countermeasures.
Inform. Technol. 54, 2 (2012), 53—-63.

M. J. Wolfe, C. Shanklin, and L. Ortega. 1995. High Performance Compilers for Parallel Computing. Addison-
Wesley Longman, Reading, MA.

Z.Wu, S. Gianvecchio, M. Xie, and H. Wang. 2010. Mimimorphism: A new approach to binary code obfuscation.
In Proceedings of the 17th ACM Conference on Computer and Communications Security. ACM, New York,
NY, 536-546.

Brecht Wyseur. 2009. White-Box Cryptography. Ph.D. Dissertation. KU Leuven.

B. Wyseur, W. Michiels, P. Gorissen, and B. Preneel. 2007. Cryptanalysis of white-box DES implementations
with arbitrary external encodings. In Proceedings of the 14th International Conference on Selected Areas
in Cryptography. Springer, Berlin, 264-277.

Brecht Wyseur and Bart Preneel. 2005. Condensed white-box implementations. In Proceedings of the 26th
Symposium on Information Theory in the Benelux. 296-301.

Khaled Yakdan, Sebastian Eschweiler, Elmar Gerhards-Padilla, and Matthew Smith. 2015. No more gotos:
Decompilation using pattern-independent control-flow structuring and semantics-preserving transfor-
mations. In Proceedings of the 22nd Network and Distributed Systems Security Symposium (NDSS).

Heng Yin and Dawn Song. 2010. TEMU: Binary Code Analysis Via Whole-System Layered Annotative Exe-
cution. Technical Report UCB/EECS-2010-3. EECS Department, University of California, Berkeley.

Junyuan Zeng, Yangchun Fu, Kenneth A. Miller, Zhigiang Lin, Xiangyu Zhang, and Dongyan Xu. 2013.
Obfuscation resilient binary code reuse through trace-oriented programming. In Proceedings of the 20th
ACM Conference on Computer and Communications Security. ACM, New York, NY.

Xiangyu Zhang and Rajiv Gupta. 2005. Matching execution histories of program versions. In ACM SIGSOFT
Software Engineering Notes, Vol. 30. ACM, New York, NY 197-206.

Z. Zhao, G. J. Ahn, and H. Hu. 2011. Automatic extraction of secrets from malware. In Proceedings of the
18th Working Conference on Reverse Engineering (WCRE’11). IEEE, 159-168.

Yongxin Zhou, Alec Main, Yuan X. Gu, and Harold Johnson. 2007. Information hiding in software with mixed
boolean-arithmetic transforms. In Information Security Applications. Springer, Berlin, 61-75.

X. Zhuang, T. Zhang, H. H. S. Lee, and S. Pande. 2004. Hardware assisted control flow obfuscation for
embedded processors. In Proceedings of the 2004 International Conference on Compilers, Architecture,
and Synthesis for Embedded Systems. 292—-302.

Received November 2013; revised June 2015; accepted January 2016

ACM Computing Surveys, Vol. 49, No. 1, Article 4, Publication date: April 2016.



