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Collaborative filtering is among the most preferred techniques when implementing recommender systems.
Recently, great interest has turned toward parallel and distributed implementations of collaborative filtering
algorithms. This work is a survey of parallel and distributed collaborative filtering implementations, aiming
to not only provide a comprehensive presentation of the field’s development but also offer future research
directions by highlighting the issues that need to be developed further.
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1. INTRODUCTION

The quality of a recommender system’s output highly depends on thequantity of used
data. The more data available to a recommender system, the better the recommenda-
tion. Considering the need to address continuously growing amounts of data, the design
of parallel and distributed recommender systems has become necessary. Parallel and
distributed computing techniques can be combined with each other for the purpose
of exploiting their advantages, and various modifications can be applied to existing
algorithms to better fit the requirements of the utilized techniques. Furthermore, it is
crucial for the development of high-quality recommender systems to utilize the avail-
able heterogeneous infrastructures. The study and design of parallel algorithms and
implementations that will address emerging problems and exploit the advantages of
new technologies is thus important.

Among the benefits that are expected to be obtained through the use of parallel and
distributed systems in the field of recommender systems are the following:

—Faster result delivery is achieved, owing to more computational power and memory
being available when using parallel and distributed systems.

—Greater amounts of data can be used—a fact that is expected to lead to greater
efficiency.
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—The simultaneous execution of different algorithms can be facilitated, which can lead
to the design of new algorithms that will utilize the results of all simultaneously
running algorithms. Therefore, the use of different data sources will be easier, as
will be the variety of item types that can be recommended.

—The development of new algorithms and improvements in existing ones will be ac-
complished through the study of the choice, design, and parallelization of algorithms
suitable for the respective system.

Each parallel and distributed computing technique has advantages and disadvan-
tages that must be considered when choosing the most appropriate technology or an
adequate combination of different technologies to address each problem. The use of
distributed systems is appropriate when employing algorithms that allow for data dis-
tribution or when different parts of the calculations can be performed independently
of each other. However, the communication cost among nodes may be high and may
even dominate the performance. Multithreading achieves short runtimes; however,
special care must be given to avoid memory conflicts and race conditions. The use of
frameworks for massively parallel processing augments the processing speed and fa-
cilitates large data handling, yet the algorithm must be adequate for implementation
over the selected framework or appropriately modified. Graphic processing unit (GPU)
usage can result in impressively fast processing, especially when an algorithm employs
matrix-vector computations. Memory accesses must be controlled to achieve the best
possible performance. The selection of the appropriate architecture to be used depends
on the problem faced and on the algorithm chosen for parallelization. Parallel and dis-
tributed computing techniques must be carefully selected to help improve the overall
performance.

1.1. Parallel and Distributed Computing

Currently, it is rare that a sequential computer can provide the processing power
that many scientific and commercial applications need. A solution that addresses
this constraint is using multiple interconnected processors to simultaneously execute
tasks. This technique is called parallel and distributed computing. The distinction be-
tween parallel and distributed computing involves many overlaps and often is not clear
[Kumar et al. 1994; Coulouris et al. 2011].

A distributed system is a collection of networked computers. When executing a
task over a distributed system, communication and synchronization among the in-
volved processors is performed by exchanging data messages over a common network
interface.

The most common architectures used in distributed systems are client-server and
peer-to-peer (P2P) architectures. In client-server architectures, a processor called the
server provides a service and is used as a coordinator among the other processors,
which are called clients. The clients communicate with the server and perform the
tasks assigned to them. P2P systems differ from the client-server systems in that all
of the system’s processors coordinate to complete a task.

A computer cluster is a system of interconnected computer nodes that work as a
single computing resource. According to the architecture of the computer nodes, a
cluster can be homogeneous when all nodes have a similar architecture and heteroge-
neous when nodes of different architectures are used. Clusters are often referred to
as distributed memory parallel systems. Communication and synchronization between
computer nodes are handled by MPIs.

On shared memory systems, several processors share a common memory space. The
communication between the processors is implicit, and synchronization is achieved by
accessing different shared memory locations and using atomic operations and barriers.
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Parallel applications are often accelerated through the use of one or more GPUs
together with a central processing unit (CPU). GPUs are parallel co-processors that
need to coordinate with a CPU and cannot be used without a CPU. GPUs follow a data
parallel programming model. GPUs are based on scalable arrays of multithreaded
streaming multiprocessors (SMs), which consist of several stream processors (SPs).
Various libraries and interfaces exist for writing programs that can be executed across
a system that consists of both CPUs and GPUs.

Many frameworks have been developed to facilitate the processing of high-volume
data. In addition to the well-established message passing interfaces (MPIs), which are
a standard in regard to communication among computer nodes, several frameworks
have been developed, each one specialized for different programming models. Com-
mon technologies for shared memory parallel programming are OpenMP, Pthreads,
and Java Threads, whereas CUDA and OpenCL are used for GPU computing. For
distributed system development, Java-based tools seem to dominate.

One of the most popular frameworks is Hadoop [Apache Hadoop 2016]. Hadoop en-
ables the distributed processing of large datasets across computer clusters. Hadoop is
designed for the MapReduce model [Zhao and Pjesivac-Grbovic 2009], which represents
data as key-value pairs and performs computations under map and reduce phases. Ma-
hout [Apache Mahout 2016] is a framework adequate for the development of machine
learning applications. Recently, many Mahout algorithms have been built on the Scala
and Spark frameworks. The Spark framework [Apache Spark 2009] can run on Hadoop
clusters or stand alone. Spark is adequate for both directed acyclic graph (DAG) and
MapReduce applications. Another framework adequate for DAG-based applications is
Storm [Apache Storm 2012]. A Storm cluster performs under the master-worker model
and processes streaming data. Stratosphere [2009] is a large data analytics framework
for distributed data processing. Stratosphere is adequate for both DAG and MapReduce
implementations. GraphLab [Low et al. 2010] is a framework for graph-based imple-
mentations and for algorithms based on the bulk synchronous parallel (BSP) model.
GraphLab is targeted at machine learning graph iterative algorithms for sparse data.

All of the preceding frameworks have been designed for creating scalable and fault-
tolerant applications that are able to handle big data while minimizing the program-
mer’s effort. Selecting between frameworks depends on the algorithms to be imple-
mented and whether the framework is designed for graph, MapReduce, or BSP models.
Another aspect that may influence a user’s decision in selecting a framework can be
the programming languages supported by each framework.

The continuous development of interfaces and frameworks for parallel and dis-
tributed programming offers a variety of options to programmers. Often, a combination
of different technologies is the best solution for an application. Heterogeneous comput-
ing is the combination of different technologies using different types of processors. A
heterogeneous application is developed following more than one parallel or distributed
programming technique.

1.2. Recommender Systems

Recommender systems are mechanisms used to produce item recommendations to their
users. Their purpose is to make personalized recommendations that will be interesting
and simultaneously useful. This fact consists the difference between recommender
systems and information retrieval search engines [Ricci et al. 2011].

Recommender systems are categorized into the following classes according to the
techniques applied. Collaborative filtering recommender systems exploit the fact that
users with similar past preferences are likely to have common preferences again.
Content-based recommender systems calculate item similarities based on item fea-
tures. Demographic recommender systems use the users’ demographic information.
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Knowledge-based recommender systems utilize specific domain knowledge that spec-
ifies to what extent an item is useful to the user. Community-based recommender
systems provide recommendations based on the preferences of groups of users that
have some common properties. All of preceding categories can be combined with each
other, and a recommender system that belongs to more than one category is called a
hybrid recommender system.

Collaborative filtering techniques are among the most popular techniques applied
to recommender systems [Sarwar et al. 2000a]. Collaborative filtering recommender
systems are further classified into model-based and memory-based systems. Hybrid
collaborative filtering recommender systems, which combine model- and memory-based
methods, have been developed. Su and Khoshgoftaar [2009] provide a classification of
the collaborative filtering algorithms into the preceding categories.

Memory-based techniques are also mentioned as neighborhood-based methods. The
dataset is used to calculate the similarity of the users with the active user. The active
user is the user for whom the recommendation is produced. Then, a neighborhood is
formed by the k users that are most similar to the active user. Finally, the predictions of
the ratings that the active user would give to the items are computed. The similarity is
more often measured by the Pearson correlation coefficient or by cosine vector similarity
[Vozalis and Margaritis 2003], which are both variants of the inner product. The most
popular algorithms that belong to this category are the item-based, user-based, and
slope one algorithm. These algorithms can employ any of the similarity measures. The
user- and item-based algorithms are often encountered in top-N approaches, where a
set of N items is recommended.

Model-based techniques use the dataset to train a model and produce predictions
according to the model. The objective of the model is to represent the user’s behavior
by recognizing the behavior patterns that occur in the training set, and the model
benefits from the observed patterns to create predictions for the missing ratings. Vari-
ous machine learning and data mining algorithms are used to create the model. Linear
algebra models, such as singular value decomposition (SVD), principal component anal-
ysis (PCA), latent semantic analysis (LSA), and Latent Dirichlet allocation (LDA), are
very often used to represent users and items by an f -dimensional latent factor space.
To train these models, two commonly used methods are stochastic gradient descent
(SGD) and alternating least squares (ALS). Models based on matrix factorization tech-
niques are often preferred because they offer high accuracy and scalability [Ricci et al.
2011]. Other model-based techniques are Bayesian networks, clustering methods, and
association rule-based methods [Su and Khoshgoftaar 2009].

Although the field of recommender systems has been significantly developed, certain
problems remain unsolved. Great concern is given to aspects such as the quality of
the recommendations, sparsity of the data, scalability, synonyms, and addressing new
users and items, which are issues that have required attention since the beginning of
recommender systems research [Sarwar et al. 2000a; Vozalis and Margaritis 2003].

Data sparsity is a growing problem that still needs to be addressed. Usually, the
information that users provide to the recommender system is minimal considering the
abundance of items that exist. This fact leads to very sparse data, which degrade the
overall performance. Although many techniques have been developed to address data
sparsity, it still remains a hot issue in the field of recommender systems.

Both the number of users and the number of items are continuously increasing. Thus,
the need for fast and scalable computations is important. Currently, recommendations
are expected to be produced extremely fast for a recommender system to be able to
function properly online. Great effort must be given to develop efficient and scalable
algorithms.
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The variety of technologies that exist can provide great advantages. To exploit them
in an efficient manner, the use of heterogeneous systems has increased. Thus, the
algorithms should be redesigned to properly adjust to the needs that emerge from the
use of heterogeneous systems.

Although research in the field of recommender systems has been conducted for more
than 20 years, the issues that still offer room for improvement are not few in number. To
address data abundance and to keep the time needed to produce the recommendations
low, parallel and distributed systems are increasingly being used. In the following
sections, approaches to recommender systems that employ parallel and/or distributed
techniques will be surveyed to provide a concise view of the developments of the field
and to highlight the areas that require further research.

1.2.1. Evaluation Metrics. How to evaluate recommender systems is an issue that at-
tracts great interest. Recommender systems can have various properties, such as be-
ing trustful; recommending novel, useful, and interesting products; and being scalable.
When designing a recommender system, one should decide which of the factors that
characterize the recommender system are important for his implementation and there-
fore should select the adequate evaluation metrics to test whether the implementation
meets the required criteria. A great variety of measures exists to evaluate each of
the properties that a recommender system can have. The difficulty of applying a com-
mon evaluation framework for all recommender systems is revealed by considering the
polymorphic nature that a recommender system can have and the variety of metrics.

One of the most important evaluation measurements is accuracy. Accuracy can mea-
sure how well a recommender system predicts a rating and is measured by means of
mean absolute error (MAE) or root mean squared error (RMSE). Measures also exist
that express how often a recommender system makes good or wrong recommendations.
Metrics that classify accuracy are the F-measure, precision, recall, receiver operating
characteristic (ROC curves) and area under the ROC curve (AUC) [Herlocker et al.
2004].

Since the fast delivery of results is very important, time is an aspect that is often
measured. Usually the total elapsed time is measured, and the time of various tasks,
such as the prediction delivery, the computation, and the communication time, is ana-
lyzed. Furthermore, when parallel and distributed programming techniques are used,
the corresponding metrics, such as speedup and isoefficiency, are also employed.

1.2.2. Datasets. A great variety of datasets is used in recommender systems’ research.
Some of them contain demographic data or timestamps, whereas others emphasize
in associations among the users. Additionally, the different order of magnitude and
diversity on the rating scale, as long as the variety in sparsity and attributes provided
in each dataset consist of reasons for which the use of more than one dataset to evaluate
a recommender system, is fundamental.

The most commonly used datasets are the Netflix and MovieLens. The Netflix dataset
was used for the Netflix Prize competition [Netflix 2009] and contains more than
480,000 users, 17,000 items, and 100 million ratings. Unfortunately, the Netflix dataset
is no longer available. GroupLens Research [GroupLens 1997] has released the Movie-
Lens datasets, which are offered in various sizes shown in Table I. The MovieLens 10M
dataset has been recently extended to MovieLens 2k, which associates the movies of
MovieLens dataset with their corresponding Web pages at the Internet Movie Database
(IMDb) [IMDb 1990] and the Rotten Tomatoes movie review system [Rotten Tomatoes
1998].

General information about the most commonly used datasets in recommender sys-
tems can be seen in Table I.
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Table I. Basic Information on Datasets

Dataset Users Items Records Scale Value
Netflix 480,189 17,770 100,000,000 1–5 Integer

MovieLens 100k 943 1,682 100,000
MovieLens 1M 6,040 3,900 1,000,000 1–5 Integer
MovieLens 10M 71,567 10,681 10,000,000
MovieLens 20M 138,493 27,278 20,000,263 1–5 Integer
MovieLens 2k 2,113 10,197 855,598 0–5 Real
(HetRec 2011)
Book-Crossing 278,858 271,379 1,149,780 1–10 Integer

Jester 73,496 100 4,100,000 (−10)–(+10) Real
EachMovie 72,916 1,628 2,811,983 0–5 Integer

Yahoo! Music
KDD Cup 2011

Track 1 1,000,990 624,961 262,810,175 1–5 Integer
Track 2 249,012 296,111 61,944,406 1–5 Integer
Flixster 2,523,386 49000 8,200,000 1–5 Real

Delicious 2k 1,867 69,226 — — —
(HetRec 2011) URLs

Last.fm 2k 1,892 17,632 — — —
(HetRec 2011) artists

Million Song Dataset 1,129,318 386,133 49,824,519 — Integer
[McFee et al. 2012]

Table II. Classification of the Implementations

Collaborative Filtering
Memory Based Model Based Hybrid

Distributed 13 4 7

Parallel
Distributed memory 10 1

Shared memory 1 9
GPU 6 10

Platform Based 8 15 1

Heterogeneous 2 3

1.3. Classification Scheme

The remainder of this article is organized as follows. Section 2 provides a brief col-
lection of the survey approaches found in the literature that concern recommender
systems. As can be noticed, none of these works addresses parallel and distributed
collaborative filtering recommender systems. Section 3 presents the distributed imple-
mentations. Section 4 concerns the parallel implementations and separates them into
three categories according to whether they are implemented in distributed memory
environments or in shared memory environments and whether they utilize GPU accel-
erators. Platform-based approaches are discussed in Section 5, and Section 6 presents
the heterogeneous approaches that belong to more than one of the preceding cate-
gories. In all sections, the implementations are classified according to which type of
collaborative filtering technique belongs to the algorithm implemented. The structures
according to which the implementations are classified can be found in Table II. In the
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same table, one can also find the number of implementations that have been classified
into each category. Finally, in Section 7, the conclusions of the survey are presented.

To the best of our knowledge, the present work represents the first attempt to collect
the parallel and distributed implementations of collaborative filtering recommender
systems. Studying existing implementations is expected to lead to the indication of
further areas of study and to highlight the trends of recent research, as well as the
gaps and the difficulties facing the field.

2. RELATED WORK

This section is devoted to briefly outlining the surveys concerning recommender sys-
tems. The surveys are classified into three categories. The first category includes sur-
veys that provide a general introduction to recommender systems. The second category
consists of surveys that address recommender systems of particular methods, and the
third category lists surveys of applications of recommender systems.

2.1. General Introductory Surveys

One of the early surveys addressing recommender systems is the survey presented
by Adomavicius and Tuzhilin [2005]. Recommender systems are classified into three
categories: content-based, collaborative, and hybrid implementations. The constraints
of each category are discussed, and possible ways of improving the recommendation
methods are proposed. Park et al. [2012] present a literature review of works con-
cerning recommender systems, classified according to their publication year, the data
mining techniques that they applied, and the nature of the recommended items. Re-
cent advances in the field are surveyed by Lü et al. [2012], whereas Bobadilla et al.
[2013] provide an overview of the evolution of the recommender systems field, therein
emphasizing the works that exploit social information and showing the importance of
the various sources of information for the recommendation process.

A detailed presentation of the field of recommender systems and the most popular
techniques used, such as collaborative filtering, content-based filtering, data mining,
and context-aware systems, are detailed in Ricci et al. [2011] and Jannach et al. [2011].
Various applications are described, and a variety of topics are addressed. However, the
scalability of the algorithms is not covered, and no chapter devoted to parallel and
distributed applications in the field of recommender systems can be found in these
works.

2.2. Surveys Concerning Methods of Recommender Systems

Recommender systems that combine different recommendation techniques are pre-
sented by Burke [2002]. A comparison of the different recommendation techniques is
provided, and existing hybrid approaches are briefly presented. This survey proved that
there were many combinations of techniques to be explored and outlined the needs of
the field of hybrid recommender systems. Context-aware technology-enhanced recom-
mender systems are discussed by Verbert et al. [2012], and a classification framework
of the context information that divides the contextual information into eight categories
is introduced. Tag-aware recommender systems are surveyed by Zhang et al. [2011],
and Fernandez-Tobias et al. [2012] propose a taxonomy for cross-domain recommender
systems and survey recent approaches. An overview of collaborative filtering and both
content-based and hybrid recommender systems is given by Thorat et al. [2015].

A study on heterogeneous recommender systems is conducted by Bellogı́n et al.
[2013a]. The effectiveness of various sources of information is investigated, and a vari-
ety of content-based, collaborative filtering, and social recommender systems are eval-
uated on different datasets. A comparative evaluation of social, collaborative filtering,
and hybrid recommender systems is performed by Bellogı́n et al. [2013b]. Experimental
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results are analytically presented and discussed in both works. Social recommender
systems are also addressed by Bernardes et al. [2015], who provide a comparison of
these systems using various datasets.

Collaborative filtering is studied by Su and Khoshgoftaar [2009]. The collabora-
tive filtering techniques are classified into memory-based, model-based, and hybrid
approaches, and the basic techniques of each category are described. A description
and comparison of collaborative filtering algorithms are presented in many surveys
[Cacheda et al. 2011; Candillier et al. 2007; Hameed et al. 2012]. The different algo-
rithms used in user-based and item-based techniques are analyzed by Almazro et al.
[2010], and the metrics used for evaluation are discussed.

A detailed and well-presented survey of collaborative filtering methods is provided
by Ekstrand et al. [2011]. The different collaborative filtering methods are presented,
and an analysis is given regarding which method is adequate for each problem that
needs to be addressed. Detailed information is also provided on how to evaluate a
recommender system.

Sachan and Richariya [2013] realized a survey on collaborative filtering approaches,
mostly emphasizing how each approach addresses the most common challenges of
collaborative filtering recommendations. This work concludes that more research is
needed to address sparsity issues because sparsity affects the quality of the recom-
mendations and also because datasets are expected to be even sparser in the future.

Shi et al. [2014] present the state of the art and discusses the challenges in the field
of collaborative filtering recommendations for systems that in addition to using ratings
also use information such as the features and characteristics of the users and items, or
information related to the users’ interactions.

Yang et al. [2014] survey collaborative filtering recommender systems that use in-
formation from social networks. The surveyed approaches are classified according to
whether they use matrix factorization models or neighborhood-based approaches. Ma-
trix factorization models are also presented by Bokde et al. [2015], who describe how
they are used in collaborative filtering algorithms.

2.3. Surveys of Applications of Recommender Systems

Rao and Talwar [2008] analyzed the application domain of recommender systems. Al-
most 100 recommender systems are classified, and the majority belong to the Web
recommendation, movie/TV recommendation, and information/document recommen-
dation application domains. A survey of the work in the field of Web recommender
systems is performed by Kumar and Thambidurai [2010], where a classification of Web
recommender systems is outlined. Three techniques are mainly used: explicit and im-
plicit profiling and legacy data. Lu et al. [2015] offers a survey of the current trends
in recommender systems applications, where the applications are classified into eight
categories, and the techniques that are used in each category are presented.

3. DISTRIBUTED IMPLEMENTATIONS

In this section, distributed implementations of collaborative filtering recommender sys-
tems are discussed. The implementations are classified into the collaborative filtering
categories that are analyzed by Su and Khoshgoftaar [2009]. The implementations of
each category are discussed according to their chronological appearance. This method-
ology is followed to demonstrate how the field of distributed recommender systems has
evolved over the years and to offer an overview of what has been achieved.

Another factor that will be considered is the experiments that have been realized and
the metrics that have been preferred for evaluation. Analyzing such factors will reveal
the most-followed methods and will serve as a reference for conducting reproducible
experiments. Table III provides a list of all implementations presented in this section.
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Table III. List of Distributed Implementations

Reference Category Description
Olsson [1998] HYBRID Content-based, collaborative,

and social filtering (item based)
Harth et al. [2001] MODEL iOwl tool, association rules

Tveit [2001] MEMORY User-based collaborative filtering (CF)
Canny [2002] MODEL P2P SVD

Han et al. [2004a], Han et al. [2004b] MEMORY User-based CF
Ali and van Stam [2004] HYBRID Item-based and Bayesian

content-based filtering
Miller et al. [2004] MEMORY Item based

Berkovsky et al. [2005] MEMORY Traditional CF user based
Link et al. [2005] HYBRID Neighborhood and content based

Awerbuch et al. [2005] HYBRID Random product or user probation
Wang et al. [2006] MEMORY User-item relevance model

and top-N CF (item based)
Castagnos and Boyer [2006] HYBRID Hierarchical clustering and user based
Berkovsky and Kuflik [2006] MEMORY Hierarchical formation in the

CF algorithm (user based)
Xie et al. [2007] MEMORY CF with most same opinion and average

rating normalization (user based)
Berkovsky et al. [2007a] MEMORY CF with data obfuscation (user based)
Berkovsky et al. [2007b] MEMORY CF with domain specialization (item based)

Castagnos and Boyer [2007] MEMORY User based
Ruffo and Schifanella [2009] MEMORY Affinity networks (user based)
Ahn and Amatriain [2010] MEMORY Expert CF (user based)

Liu et al. [2010] HYBRID Combination of user- and item based
Isaacman et al. [2011] MODEL Distributed gradient descent

Tomozei and Massoulié [2011] MODEL User profiling via spectral methods
Kumar et al. [2012] HYBRID Context-aware P2P service selection

and recovery (CAPSSR)

Recommender systems developed using distributed computing techniques were ini-
tially proposed by Olsson [1998], Harth et al. [2001], and Tveit [2001]. In early dis-
tributed collaborative filtering approaches, no preference is given to any specific algo-
rithmic category.

Olsson [1998] proposes a method that combines content-based collaborative filtering
and social filtering. Harth et al. [2001] introduces a model-based recommender system
named iOwl, which works both as a server and as a client and suggests links to Web
pages to its users using association rules. These two approaches propose models that
collect data from Web sites. As a result, the repetition of any conducted experiments
will be difficult. A memory-based approach that uses the Pearson correlation coefficient
on a P2P architecture similar to Gnutella [Ripeanu et al. 2002] is described by Tveit
[2001]. The preceding approaches emphasize the description and analysis of the pro-
posed model without conducting any experiments. Therefore, no evaluation is provided.
However, those methods consist the beginning of the field of distributed recommender
systems.

3.1. Distributed Memory–Based Collaborative Filtering

In this section, the distributed implementations of memory-based collaborative filtering
algorithms are presented. Initially, traditional user-based and item-based collaborative
filtering methods were chosen for implementation.
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Implement the user-based algorithm on a P2P architecture through a distributed
hash table (DHT) method [Han et al. 2004a; Han et al. 2004b]. Different parts of
the user database are distributed to peers in such a way that all users in the same
peer group have rated at least one item with the same value. After the similar peers
are found, a local training set is constructed, and the similar users’ vote vectors are
retrieved and used to compute the prediction. Miller et al. [2004] use five P2P ar-
chitectures to examine the item-based algorithm’s performance. A model is created
for the users while they are online. This model is used even if the users are offline.
Berkovsky et al. [2005] apply the traditional collaborative filtering algorithm over a
set of distributed data repositories. Data are distributed both geographically and by
topic.

Although Han et al. [2004a] and Han et al. [2004b] use a different dataset than Miller
et al. [2004] and Berkovsky et al. [2005], all implementations are evaluated using the
MAE metric. Miller et al. [2004] also measure recall, coverage, and memory usage. It
would be interesting to test all of the proposed algorithms on the same datasets to
compare the prediction accuracy of the different approaches.

Next, more sophisticated ideas that combine traditional collaborative filtering al-
gorithms with other methods have been developed. Wang et al. [2006] calculate item
similarity using log-based user profiles collected from the Audioscrobbler community
[Audioscrobbler 2002]. The items are distributed over a P2P network, and the rele-
vance between two items is updated only when an item is downloaded by a peer. The
similarities between items are stored locally in item-based tables. Finally, the top-N
ranked items are recommended to the user. Berkovsky and Kuflik [2006] form a hi-
erarchical neighborhood, which consists of super-peers and peer-groups. Super-peers
are responsible for computations within their peer-group and aggregate their results
before providing them to the active user. Xie et al. [2007] propose a distributed collab-
orative filtering algorithm based on traditional memory-based collaborative filtering.
The proposed algorithm locates similar users using a DHT scheme. The number of
users that contribute to the recommendation is reduced using the concept of the most
same opinion. Thus, only the ratings of the users with the highest consistency with the
active user are used. Furthermore, to avoid losing users who have similar taste but do
not rate the items identically, average rating normalization is applied. Berkovsky et al.
[2007a] combine the distributed storage of user profiles with data alteration techniques
to mitigate privacy issues. This approach focuses on the effect of obfuscating the ratings
on the accuracy of the predictions. Domain specialization over the items is developed
by Berkovsky et al. [2007b] to confront the data sparsity problem. The rating matrix
is partitioned into smaller matrices that contain ratings given to items that belong to
a certain type. Wang et al. [2006] give the coverage and precision of the recommen-
dations, and Berkovsky and Kuflik [2006], Berkovsky et al. [2007a], Berkovsky et al.
[2007b], and Xie et al. [2007] use the MAE metric. Information on the variety of the
datasets, the technologies, and the applied metrics can be found in Table IV.

A variation on the user-based collaborative filtering algorithm is proposed by
Castagnos and Boyer [2007]. Each user has his own profile and a single ID. The users
can affect the degree of personalization implicitly. The Pearson correlation coefficient
is used for the similarity computation, and the nearest neighbors of the active user are
selected. Four lists of IDs are kept for each user, representing the most similar users,
users who exceed the minimum correlation threshold, the black-listed users, and users
who have added the active user to their group profile. Because there is no need to store
any neighbors’ ratings or similarities, this model has the advantage of low memory re-
quirements. The algorithm is evaluated on the MovieLens dataset, therein measuring
the MAE metric and the computation time.
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Table IV. Distributed Memory–Based Implementations

Algorithm Technologies Datasets Metrics
User-based collaborative

filtering (CF)
Java N/A N/A

[Tveit 2001]
PipeCF DHT EachMovie MAE

[Han et al. 2004a]
[Han et al. 2004b]

PocketLens
Item based

[Miller et al. 2004]

Chord
architecture

for P2P
file-sharing
networks

MovieLens Neighborhood similarity
MAE, recall, coverage

Memory usage,
prediction time

Traditional CF
[Berkovsky et al. 2005]

Loud voice
platform

MovieLens MAE

User-Item N/A Audioscrobbler Coverage
relevance model Precision

[Wang et al. 2006]
Distributed hierarchical Java simulation MovieLens MAE
neighborhood formation EachMovie

in the CF algorithm Jester
[Berkovsky and Kuflik 2006]

DCFLA
[Xie et al. 2007]

Algorithmic
simulation

EachMovie MAE

Distributed storage Java simulation MovieLens MAE
of user profiles

[Berkovsky et al. 2007a]
Item clustering Java simulation EachMovie MAE

[Berkovsky et al. 2007b]
User-based JXTA MovieLens MAE

AURA Platform Computation time
[Castagnos and Boyer 2007]

Affinity networks Modification of Self-collected Average
[Ruffo and Schifanella 2009] Phex (Java

file-sharing app)
accuracy

Expert CF RIA (Java, Collected from N/A
[Ahn and Amatriain 2010] RESTful,

XML-RPC)
metacritic.com,

rottentomatoes.com

Ruffo and Schifanella [2009] describe a P2P recommender system that instead of em-
ploying user profiles to produce the recommendations uses affinity networks between
the users. The affinity networks are generated according to the files that the peers are
sharing. Ahn and Amatriain [2010] present a distributed expert collaborative filtering
[Amatriain et al. 2009] recommender system. In expert collaborative filtering, the peer
user ratings are replaced with ratings provided by domain experts. In this implemen-
tation, the expert ratings are acquired from Metacritic [1993]. The expert ratings are
stored to the server in a matrix that is used by the clients during the recommendation
process. The distributed expert collaborative filtering approach has the advantage that
it deals with privacy issues well because user profile information is maintained on the
users’ machines.

3.2. Distributed Model–Based Collaborative Filtering

This section briefly presents the distributed model–based collaborative filtering im-
plementations. Canny [2002] introduces the first distributed recommender system
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Table V. Distributed Model–Based Implementations

Algorithm Technologies Datasets Metrics
Association rules Python, iOwl N/A N/A

[Harth et al. 2001]
P2P SVD Matlab EachMovie MAE

[Canny 2002] Average recommendation
time

Distributed gradient Facebook app Netflix RMSE
descent WebDose Probability distribution

[Isaacman et al. 2011] Estimation of rating
Similarity-based profiling Mathematical simulation Netflix (synthetic) Convergence of the

[Tomozei and Massoulié 2011] asynchronous distributed
algorithm

implementation, wherein a P2P SVD model is proposed. This work focuses on pri-
vacy issues, and the recommendations are provided from a distributed computation of
an aggregate model of user preferences.

Among the most popular matrix factorization techniques is the SGD algorithm. A
distributed implementation of this algorithm is proposed by Isaacman et al. [2011],
where the information that users provide over items is only available to the users who
produced these items.

Another dimensionality reduction algorithm was developed by Tomozei and
Massoulié [2011]. A distributed user profiling algorithm creates a profile vector for
each user that represents her taste. Considering a network described by an undirected
graph, a similarity value is calculated between all nodes that are connected. The eigen-
vectors of the adjacency matrix defined from the similarity values are computed in a
distributed manner and are used to form the recommendations.

The datasets and metrics used in the preceding implementations can be found in
Table V.

3.3. Hybrid Distributed Collaborative Filtering Methods

In addition to Olsson [1998], a few more hybrid distributed methods have been devel-
oped. These implementations can be found in Table VI.

Ali and van Stam [2004] follow a client-server architecture, where item correlations
are computed at the server side and are used on the client side to make the predictions.
No evaluation of the model is provided.

Link et al. [2005] combine memory-based collaborative filtering using neighbors with
content-based collaborative filtering. The “mailing list” model and the “word-of-mouth”
model are described. Users share information with their neighbors according to one of
the two models. The intention of the distributed recommender systems that described
in this work is to provide item information to as many users as possible, who are
expected to have an interest in the items. Unfortunately, no details are given on the
implementation, and its performance needs to be evaluated.

Awerbuch et al. [2005] describe a P2P distributed algorithm that focuses on the
minimization of the recommendation complexity by avoiding the evaluations provided
by the untrusted users. However, the algorithm is only described theoretically and is
not implemented.

User-based collaborative filtering employing the Pearson correlation coefficient is
combined with a hierarchical clustering algorithm by Castagnos and Boyer [2006]. The
user profiles are sent to the server, and the system creates virtual communities using
the hierarchical clustering algorithm. The classification of the active user to a group
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Table VI. Distributed Hybrid Implementations

Algorithm Technologies Datasets Metrics
Content-based filtering Agent based N/A N/A

Collaborative filtering and social filtering
[Olsson 1998]

Item-based Proprietary TiVo data N/A
Bayesian content-based

filtering
[Ali and van Stam 2004]
User neighborhood and Mathematical N/A N/A
content-based filtering simulation

[Link et al. 2005]
User-based Java MovieLens MAE

hierarchical clustering Computation time
[Castagnos and Boyer 2006]

Random product or Mathematical N/A N/A
user probation simulation

[Awerbuch et al. 2005]
User- and item-based combination N/A MovieLens MAE

[Liu et al. 2010]
Context-aware N/A MovieLens Scalability

P2P service Jester Accuracy
CAPSSR DFM, precision

[Kumar et al. 2012] Mean waiting time

occurs on the client side. The predictions are made according to the distances between
the active user and the closest group’s users.

Liu et al. [2010] combine user-based and item-attribute–based ratings by using the
item similarities to predict a user’s rating for an item. The users are clustered according
to user similarity values, therein using the k-means algorithm and demographic data.
The described approach focuses on the user cluster formation, and no details are given
on the P2P communication protocol.

Kumar et al. [2012] propose an algorithm for context-aware P2P service selection
(CAPSSR). Users can access various services available on the Internet. After using
one service, the service’s rating is increased or decreased depending on whether the
use of the service was successful. For the evaluation of the algorithm, the MovieLens
and Jester datasets are used. Scalability, accuracy, efficiency, and mean waiting time
are evaluated. This is the only distributed implementation that provides information
about the algorithm’s scalability.

The majority of distributed memory–based approaches are developed using the Java
language, whereas there seems to be no language preference in memory-based and
hybrid distributed implementations. The distributed approaches are mainly evaluated
by accuracy metrics, with the MAE measured in particular. Few approaches evaluate
the accuracy using the RMSE or other metrics, and the most popular datasets are the
EachMovie and MovieLens datasets. Scalability has only recently been considered.

Table III lists all distributed collaborative filtering implementations discussed in
Section 3 in chronological order. An initial preference for memory-based techniques
is observed. However, in recent years, interest seems to have turned to model-based
and hybrid approaches. This most likely occurs because dimensionality reduction tech-
niques are more suitable for addressing the ever-increasing amount of data to be
processed. Thus, the model-based approaches seem to be more promising for delivering
results faster than memory-based approaches.
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Table VII. List of Implementations on Distributed Memory Systems

Reference Category Description
George and Merugu [2005] MODEL Bregman co-clustering

Zhou et al. [2008] MODEL ALS-WR
Chen et al. [2008] HYBRID Combinational collaborative filtering

Kwon and Cho [2010] MODEL Bregman co-clustering
Liu et al. [2011] MODEL PLDA+
Yu et al. [2012] MODEL Coordinate descent CCD++

Teflioudi et al. [2012] MODEL DALS, ASGD, DSGD++
Narang et al. [2012] MODEL Co-clustering

Ho et al. [2013] MODEL SGD, LDA, CGD
Yun et al. [2014] MODEL RobiRank p
Yu et al. [2014] MODEL DS-ADMM

Among the memory-based algorithms, traditional user- and item-based algorithms
are deployed more often than the top-N approaches. The majority of distributed
memory–based collaborative filtering approaches employ the MAE metric to measure
the recommendation accuracy. Other metrics, such as recall, coverage, and precision,
are being used less often. However, none of the experiments include speedup analysis,
and computation and communication time are rarely considered. Emphasis is given to
privacy issues by distributing parts of the users’ information to the available peers. Oc-
casionally, the P2P architecture is simulated by multithreaded applications, although
no preference to any specific technology is shown. The MovieLens and EachMovie
datasets are preferred for the larger portions of the experiments.

The model-based algorithms developed for distributed systems are not enough to
offer sufficient conclusions. However, it is noticeable that none of the implementations
employs clustering techniques and that the dimensionality reduction techniques seem
to attract greater interest. In addition to the accuracy metrics, factors such as the time
needed for a recommendation and the algorithm’s convergence are also measured. Yet
no preference is found for any specific metrics.

Table VI presents the hybrid distributed collaborating filtering approaches. As can
be seen, information on the technologies and datasets used is incomplete, and no
common framework exists for performance evaluations. Some of the proposed methods
are mathematical simulations and are not implemented. In addition, the small number
of hybrid distributed approaches reveals a gap that needs to be filled. Investigating the
performance of other hybrid implementations could prove to be useful.

4. PARALLEL IMPLEMENTATIONS

4.1. Distributed Memory Implementations

This section presents the parallel implementations that are built on distributed mem-
ory systems. A list of these approaches is provided in Table VII, and additional informa-
tion can be found in Table VIII. As shown in these tables, no memory-based algorithms
are implemented in distributed memory systems, and a clear preference is noticed for
model-based algorithms. Here, the implementations are presented according to the
implemented algorithm.

Clustering is a model-based collaborative filtering method that is used quite often.
The Bregman co-clustering algorithm [Banerjee et al. 2004] is parallelized by George
and Merugu [2005] and Kwon and Cho [2010]. George and Merugu [2005] creates
the user and item neighborhoods simultaneously by dividing the submatrices of the
rows and columns of the ratings matrix among the processors. A comparison of the
proposed algorithm with SVD [Sarwar et al. 2000b], NNMF [Hofmann 2004], and
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Table VIII. Parallel Implementations on Distributed Memory Environments

Algorithm Technologies Datasets Metrics
Parallel C++, MPI MovieLens MAE, average prediction time

co-clustering LAPACK library Bookcrossing Training time
Bregman Comparison to SVD, NNMF

[George and Merugu 2005] and classic correlation-based filtering
ALS-WR Parallel Matlab, Netflix RMSE

[Zhou et al. 2008] MPI
Combinational MPI Orkut Speedup, computation/

collaborative filtering (CCF) (synthetic) communication time
[Chen et al. 2008] analysis

Bregman MPI Netflix Speedup
co-clustering Time per iteration

[Kwon and Cho 2010]
PLDA+ MPI NIPS Speedup,

[Liu et al. 2011] Wiki 20T communication time,
Wiki 200T sampling time

Coordinate C++ and MPI MovieLens Speedup,
descent CCD++ Netflix training time
[Yu et al. 2012] Yahoo! Music
DALS, ASGD, C++ Netflix Time per iteration,

DSGD++ MPI KDD Cup 2011 number of iterations,
[Teflioudi et al. 2012] (Track 1) total time to converge

Co-clustering MPI Netflix RMSE
[Narang et al. 2012] Yahoo KDD Cup Speedup

SGD, LDA, CGD N/A Netflix Computation time vs.
[Ho et al. 2013] network waiting time

RobiRank p N/A Million Song Dataset Speedup, precision
[Yun et al. 2014]

DS-ADMM MPI Netflix Speedup
[Yu et al. 2014] Yahoo! Music R1, R2 RMSE

classic correlation-based filtering [Resnick et al. 1994] is provided. Kwon and Cho
[2010] perform the row and column cluster assignments in parallel by also dividing the
rows and columns among processors. In both implementations, MPI is used.

Another co-clustering–based collaborative filtering algorithm is proposed and exam-
ined by Narang et al. [2012]. The algorithm’s performance is compared to the authors’
previous work [Narang et al. 2011b]. The initial ratings matrix is partitioned according
to a certain number of rows and columns, and the algorithm described is applied to
each partition by Narang et al. [2011b]. The row and column clusters formed in each
partition are merged with the neighboring partition. This procedure is followed by var-
ious levels of row and column clusters until the complete matrix is obtained as a single
partition. Then, the flat parallel co-clustering is applied once more. This hierarchical
co-clustering algorithm attempts to reduce the communication and computation costs.
The performance of the proposed algorithm is examined on the Netflix and Yahoo KDD
Cup datasets. The experiments are conducted on the Blue Gene/P architecture, and
RMSE is the accuracy metric used. Detailed scalability analysis is also provided.

A distributed LDA algorithm is described by Liu et al. [2011] and is implemented
using MPI. This implementation improves the scalability of the author’s previous effort
[Wang et al. 2009] and reduces the communication time by applying methods such as
data placement, pipeline processing, word bundling, and priority-based scheduling.

Zhou et al. [2008] implement the alternating least squares with weighted λ regu-
larization algorithm (ALS-WR) using parallel Matlab. The updates of the U and M
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matrices are parallelized, and the rows and columns of the ratings matrix are dis-
tributed over the cores.

The ALS and SGD algorithms used for matrix factorization are parallelized by
Teflioudi et al. [2012]. The parallel ALS (PALS), parallel SGD (PSGD), distributed
ALS (DALS), asynchronous SGD (ASGD), and DSGD-MR, along with its extension
DSGD++, are described, implemented, and compared. All of the preceding algorithms
are implemented in C++, and MPI is used for communication over the nodes of the
distributed algorithms. The Netflix dataset and the dataset of Track 1 of the KDD
Cup 2011 contest are used. The time required to complete an iteration, the number of
iterations required to converge, and the total time to converge of the algorithms are
compared.

Yu et al. [2012] propose a coordinate descent algorithm, CCD++, that approximates
the ratings matrix by WHT , therein updating one variable at a time while maintaining
the other variables fixed. The algorithm is parallelized on an MPI cluster. Each machine
updates different subvectors of the row vectors of W and H and broadcasts the results.
The CCD++, ALS, and SGD algorithms are parallelized and compared. The training
time and the speedup are measured. The MovieLens 10M, Netflix, and Yahoo! Music
datasets are used for the experiments.

Yun et al. [2014] present a parallel version of an algorithm that predicts the songs
a user is going to listen to. The proposed algorithm, RobiRank p, is a stochastic opti-
mization algorithm for item ranking based on SGD. The data are distributed across
p processors. Each processor runs SGD during a predefined time period, and at the
end of this period, a synchronization of all processors takes place, and each processor
independently updates a parameter ξ , which is used to obtain an upper bound of the
objective function.

A stochastic matrix factorization model called the distributed stochastic alternating
direction methods of multipliers (DS-ADMM) is proposed by Yu et al. [2014]. First, the
data are distributed over the processors by dividing the ratings matrix and the matrix
that contains the users’ latent factors into submatrices. Each submatrix will contain a
part of both matrices. Each node will have one of the submatrices and a local copy of the
item latent factor matrix. Then, in each iteration, each node updates its corresponding
user and item latent factor matrices, and the global item latent matrix is updated when
all nodes have finished updating their local copies.

Among other machine learning algorithms, SGD, LDA, and CGD are also imple-
mented using a parallel parameter server by Ho et al. [2013]. The algorithms are
developed under a stale synchronous parallel (SSP) model.

Chen et al. [2008] propose a collaborative filtering method for community recom-
mendation for social networking sites. Parallel Gibbs sampling and the parallel ex-
pectation maximization algorithm are combined. Experiments are performed on the
Orkut dataset to measure the implementation’s speedup. Furthermore, an analysis of
the computation and communication time is provided. However, no information on the
technologies used to achieve the algorithm’s parallelization is given.

4.2. Shared Memory Implementations

Recommendation algorithms that have been implemented on shared memory archi-
tectures will be discussed in this section. A list of these implementations is given in
Table IX.

Narang et al. [2010] present a parallel model-based collaborative filtering algorithm
based on the concept decomposition technique for matrix approximation. This tech-
nique performs clustering with the k-means algorithm and then solves a least squares
problem. The proposed algorithm consists of four multithreaded stages, concluding
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Table IX. List of Implementations on Shared Memory Systems

Reference Category Description
Narang et al. [2010] MODEL Concept decomposition

Louppe and Geurts [2010] MODEL Asynchronous gradient descent
Recht and Re [2011] MODEL SGD
Recht et al. [2011] MODEL SGD

Karydi and Margaritis [2012a] MEMORY Slope one
Yu et al. [2012] MODEL Coordinate descent CCD++

Zhuang et al. [2013] MODEL FPSGD
Shi et al. [2013] MODEL GAPfm

Zhang et al. [2013] MODEL LMF
Lee et al. [2014] MODEL LCR

with the prediction phase. Pthreads is used to implement the proposed method, which
is evaluated on the Netflix dataset. Training and prediction time are measured using
the RMSE metric. A detailed scalability analysis is also presented.

Parallel gradient descent in a shared memory environment is applied by Louppe
and Geurts [2010]. In this approach, if the parameter θ is already processed, the other
processors skip the update, and the processor with the most queued updates is the next
processor that obtains access to update θ . This method attempts to reduce the idle time
of the processors.

Recht and Re [2011] implements incremental SGD on multicore processors. One core
is assigned for the ordering and partitioning of the data into chunks. Nonoverlapping
chunks are grouped into rounds, and each round’s chunks are accessed by a different
process.

Recht et al. [2011] implement SGD without locking access to shared memory. Al-
though memory overwrites are not avoided, they are rare because of the data sparse-
ness. Therefore, they do not cause errors in the computations.

Karydi and Margaritis [2012a] describe a multithreaded application of the memory-
based slope one algorithm, implemented with the OpenMP library. Each thread as-
sumes the computations on a different part of the ratings matrix. The MovieLens
dataset is used for the performance and scalability evaluation, and the metrics used
for the evaluation can be seen in Table X.

The CCD++ algorithm [Yu et al. 2012] described in Section 3.2 is also parallelized on
a multicore system using the OpenMP library. Each core updates different subvectors
of the row vectors of W and H. Parallel implementations of the CCD++, ALS, and SGD
algorithms are compared based on the running time against RMSE and speedup. The
datasets used for the experiments can be found in Table X.

A new parallel matrix factorization approach based on SGD is analyzed by Zhuang
et al. [2013]. The FPSGD method is designed for shared memory systems and embodies
two techniques: lock-free scheduling to avoid data imbalances and a partial random
method to address memory discontinuity. A comparison of other parallel SGD methods
[Gemulla et al. 2011; Recht et al. 2011; Yu et al. 2012] is provided, and after applying
optimizations such as cache-miss reduction and load balancing, FPSGD is found to
be more efficient. Information is given concerning the algorithm’s runtime, and the
RMSE is used to evaluate the implementation. The MovieLens, Netflix, and Yahoo!
Music datasets are used for the experiments.

Zhang et al. [2013] present localized matrix factorization (LMF), a method that
factorizes the matrices in block diagonal form before proceeding to a prediction. First,
a large sparse matrix is transformed into a block diagonal form and then the diagonal
blocks can be trained in parallel. Computational time and speedup are determined
using eight threads.
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Table X. Implementations on Shared Memory Systems

Algorithm Technologies Datasets Metrics
Concept Pthreads Netflix RMSE, ccalability

decomposition Prediction/training time
[Narang et al. 2010]

Asynchronous gradient descent N/A Netflix Speedup, parallel efficiency
[Louppe and Geurts 2010] RMSE, wall-clock time

Parallel SGD N/A MovieLens Total CPU time
JELLYFISH Netflix RMSE

[Recht and Re 2011]
Multicore SGD C++ Reuters RCV1 Speedup

Hogwild Pthreads Netflix
[Recht et al. 2011] KDD Cup 2011 (Task 2)

Jumbo (synthetic)
Abdomen

Slope one OpenMP MovieLens Scalability, speedup
[Karydi and Margaritis 2012a] Total elapsed time

Prediction per second
Prediction time per rating

Coordinate C++ and OpenMP MovieLens Running time vs. RMSE,
descent CCD++ Netflix speedup
[Yu et al. 2012] Yahoo! Music

FPSGD C++ MovieLens Total time
[Zhuang et al. 2013] SSE instructions Netflix RMSE

Yahoo! Music
GAPfm Matlab Netflix Average iteration time

[Shi et al. 2013] MovieLens
LMF N/A MovieLens RMSE

Yahoo! Music Speedup
DianPing Computational time

LCR N/A MovieLens Zero-one error
[Lee et al. 2014] EachMovie Average precision

Yelp DCG@k

Shi et al. [2013] propose the GAPfm algorithm, which uses latent factors to provide
top-N recommendations. Parallel computing is used to update the user latent factors
that the algorithm needs to learn simultaneously. The proposed algorithm is based
on the GAP algorithm presented by Robertson et al. [2010], and its performance is
compared to that of PopRec, SVD++, and CofiRank. The proposed algorithm is executed
using eight cores, and its design for distributed systems lies within the authors’ future
plans.

Lee et al. [2013] propose a matrix factorization model assuming that the rating
matrix is locally low rank and represented as a weighted sum of low-rank matrices. The
proposed model, called LLORMA, is based on SVD. Lee et al. [2014] extend LLORMA
and propose a method called local collaborative ranking (LCR). This method uses
synchronization at the beginning of each iteration, and each local model is updated in
parallel. The description of the method is not focused on the parallelization settings and
the used technologies. It is interesting that the proposed method is evaluated using the
Yelp dataset, which enables experiments under extreme sparsity levels. In addition, its
accuracy and precision are evaluated using metrics that have not been used before in
other approaches on shared memory systems. However, the algorithm’s performance
on parallel systems is not evaluated.
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Table XI. List of Implementations on GPUs

Reference Category Description
Vinay et al. [2006] MODEL SVD

Lahabar and Narayanan [2009] MODEL SVD
Kato and Hosino [2010b] MODEL SVD
Kato and Hosino [2010a] MEMORY K-nearest neighbor

Hansen et al. [2011] MODEL Co-clustering
Li et al. [2011] MEMORY Top-N user-based random walk

Tripathy et al. [2012] MEMORY Item-based collaborative
filtering (CF), user-based CF

Chua [2012] MODEL Approximate SVD
Cai et al. [2012] MODEL RBM-CF

Zastrau and Edelkamp [2012] MODEL SGD
Zhanchun and Yuying [2012] MEMORY User-based CF

Foster et al. [2012] MODEL Approximate SVD
Cai et al. [2013] MODEL RBM-CF

Nadungodage et al. [2013] MEMORY Item based
Noel and Osindero [2014] MODEL Dogwild (SGD)

Wang et al. [2014] MEMORY User based

4.3. GPU-Based Implementations

Recently, general-purpose computations on GPU devices have emerged as an attrac-
tive solution for parallel computing. The performance of implementations belonging
to various areas of computer science has been significantly increased when GPUs are
used. This section presents implementations of collaborative filtering algorithms that
have been parallelized on GPU devices. First, the memory-based implementations will
be described according to their chronological appearance and then the model-based
approaches will be discussed according to the algorithm they implement. Table XI
presents a list of all implementations on GPUs that are discussed next.

4.3.1. Memory-Based Implementations on GPU. The k-nearest neighbor problem is con-
fronted by Kato and Hosino [2010a], where an algorithm that finds the k most similar
users using GPUs is introduced. The Hellinger distance is employed, and the algorithm
is implemented in CUDA. The problem of computing the distances is divided into grids.
Each GPU processes a grid. Each grid is divided row-wise into blocks, which are as-
signed to thread blocks. Each thread assumes a row of the block. For the selection of the
nearest neighbors, the threads in a block simultaneously process their corresponding
parts of the data and realize the necessary computations.

Li et al. [2011] describe a hybrid parallel top-N recommendation algorithm that
attempts to address the cold-start user problem and the scalability problem. The pro-
posed algorithm combines user-based collaborative filtering with random walk on trust
network and merges the results to provide the top-N recommended items. First, the
user-based algorithm, where the similarities between users are computed based on the
Pearson correlation, is run. A heap structure is used to assist in selecting a subset
of similar users. Finally, random walks are used to define a subset of trusted users.
The results obtained by the two algorithms are merged to provide the final top-N
recommendations. All three parts of the algorithm are implemented in CUDA.

The traditional item- and user-based collaborative filtering algorithms are paral-
lelized by Tripathy et al. [2012]. The performance of the proposed algorithms is
examined using Intel’s Single-Chip Cloud Computer (SCC) and using an NVIDIA
Cuda-enabled GPGPU co-processor. The similarity measure used is the Pearson corre-
lation coefficient. The identification of common items is usually achieved via brute force
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Table XII. Memory-Based Implementations on the GPU

Algorithm Technologies Datasets Metrics
K-nearest neighbor CUDA N/A Total elapsed time

[Kato and Hosino 2010a]
Top-N C++, Flixster Recall

User-based collaborative filtering CUDA Speedup
Random walk
[Li et al. 2011]

User based CUDA Flixter (synthetic) Execution time
Item based Bookcrossing (subset) Power/energy consumption

[Tripathy et al. 2012] MovieLens (subset) Speedup
User based CUDA GroupLens (subset) RMSE, execution time

[Zhanchun and Yuying 2012] CPU/GPU time usage
Item based CUDA Flixster Speedup

[Nadungodage et al. 2013] C++ Runtime
User based CUDA MovieLens Speedup

[Wang et al. 2014] Runtime

methods. This approach avoids such methods using an intermediate matrix. The num-
ber of co-rated items is calculated, and subsequently the intermediate matrix is used
to calculate the correlation coefficient.

Another implementation of the user-based collaborative filtering algorithm on the
GPU is approached by Zhanchun and Yuying [2012]. Three different approaches are
investigated. First, the Pearson correlation coefficient is used. Then, implied similari-
ties are calculated. Implied similarity is based on the common neighbors among users.
Finally, the empty cells of the ratings matrix are filled with the value of the average
rating for each user. The accuracy of the three approaches, as well as the total execu-
tion time on both CPUs and GPUs, are examined using a part of a dataset provided by
GroupLens.

Nadungodage et al. [2013] develop two item-based GPU algorithms using a different
compression technique for each algorithm. The first algorithm is implemented using bit
packing, and the second algorithm uses a compact format to store the nonzero values.
Three kernels are used in both versions. The first kernel calculates the weighted co-
occurrence frequency of pairs of items, the second calculates the similarity values,
and the third finds the top-k similarities. Only the first kernel exhibits differences in
the two implemented algorithms. In the first algorithm, the co-occurrence of a pair of
items is computed in each row in each thread block. Each row of threads computes the
weighted sum in parallel. In the second algorithm, in each thread block, each row of
threads processes the data that correspond to a user and updates the co-occurrences
using atomic operations.

The user-based algorithm on GPUs is also developed by Wang et al. [2014]. Two
kernels are used. The first kernel calculates the average rating of the users, and the
second kernel computes the similarities. Each thread block calculates the partial Pear-
son correlation and stores it in shared memory. The partial results are accumulated
until all data are processed.

Table XII shows the datasets on which the preceding implementations are used to
conduct the experiments and the evaluation metrics that are used.

4.3.2. Model-Based Implementations on GPUs. Model-based collaborative filtering imple-
mentations on GPUs commenced with an approach to the SVD algorithm [Vinay et al.
2006]. First, a bidiagonalization of the ratings matrix is performed and then the bidiag-
onal matrix is diagonalized by an implicit-shifted QR algorithm. The diagonalization is
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performed on a CPU. The time needed for the bidiagonalization according to the size of
the matrix is measured. Information on how the parallelization on the GPU is achieved
is not specified, nor is any information on the used dataset given.

Among the first implementations of SVD on the GPU is that described by Lahabar
and Narayanan [2009]. The CUDA architecture and CUBLAS library are used. All
data necessary to perform the bidiagonalization are stored in the GPU memory to
avoid data transfer between CPUs and GPUs. The diagonalization of the bidiagonal
matrix is also performed on the GPU. The rows of the matrix are divided into blocks,
and each element of the block is processed by a different thread. The performance is
compared to that of an optimized CPU implementation on Matlab and to Intel MKL.
Random dense matrices are used for the experiments, and the average execution time
and speedup are examined.

Kato and Hosino [2010b] propose another parallel version of SVD on the GPU im-
plemented in CUDA. The order of the computations of the U and V matrices is altered.
Instead of examining all of the input data step by step, when the element aij of the
sparse matrix A that contains the ratings is processed, the i-th row of U and the j-th
row of V are updated. This means that all rows of U can be updated in parallel. First,
U is updated for each aij �= 0 and then V. The results are compared to those of a
single-threaded implementation on a modern CPU. The time needed for one step of the
iteration of convergence is measured.

Approximate SVD is parallelized by Chua [2012] using the R and C languages and
the CUDA architecture. A single-node GPU kernel and a distributed GPU kernel over
six nodes are used to approximate the matrix A, which contains the ratings. The
algorithm is parallelized following the description of Kato and Hosino [2010b]. The
total execution time and computations versus communication time are given. However,
the author reports that the performance of the implemented algorithm is very sensitive
to changes in the learning parameters, and the implementation only works for square
matrices of sizes up to 1,024.

Approximate SVD using CUDA is also addressed by Foster et al. [2012]. The proposed
method is based on an SVD method, called QUIC-SVD [Holmes et al. 2008], which is
an approximate SVD algorithm that utilizes a tree-based structure. The algorithm
is implemented on the CUDA architecture with the CULA library for linear algebra.
Measures have been taken to be able to process matrices with a size larger than that
of the GPU or main memory. The ratings matrix is divided in submatrices, and QUIC-
SVD runs on every submatrix. Blocks of the ratings matrix are loaded into memory
and are sequentially processed. A cosine tree is created for each submatrix, and a
common basis is shared among the trees. The algorithm’s results are compared to
those of a multithreaded CPU version and two other implementations of SVD. Random
matrices of various sizes are used for the experiments, and running time and speedup
are provided.

Hansen et al. [2011] describes the parallelization of the nonparametric co-clustering
model on a GPU. In this implementation, computations are made on both the CPU
and the GPU. The speedup of the GPU computations over the CPU computations is
measured. Two datasets are used for the collaborative filtering domain: the Netflix
dataset and a Facebook dataset of user application consumption.

The SGD algorithm is parallelized on a GPU by Zastrau and Edelkamp [2012]. A
hush function is created to facilitate executing threads in parallel. The implementation
of the SGD algorithm is compared to an implementation of ALS on a GPU and to a
batch gradient descent. The Netflix dataset is used, and the RMSE as well as execution
time and scalability are measured.

One of the main reasons that restricted Boltzmann machines are often used in
collaborative filtering is their property of being able to easily handle large datasets
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[Salakhutdinov et al. 2007]. A preference has recently been shown for the usage of
restricted Boltzmann machines for collaborative filtering algorithms on GPUs. A re-
stricted Boltzmann machine is applied to collaborative filtering by Cai et al. [2012],
and a parallel implementation on GPUs using CUDA is discussed. The computations
of the collaborative filtering RBM are remodeled as matrix operations to be imple-
mented in CUDA. The Java programming language and the JCUDA library are used.
The experiments are run on the Netflix dataset, and the implementations speedup is
examined.

The same authors also applied restricted Boltzmann machines on GPUs [Cai et al.
2013]. The matrix multiplications on GPUs described in their previous work [Cai et al.
2012] are adjusted to a hybrid framework that schedules the use of CPUs and GPUs.
A CPU thread controls the scheduler, and another thread activates the CUDA kernels.
The remainder of the CPU cores undertake the multiprocessor kernels. The framework
is implemented in JAVA, and the JCUDA library is used for the CUDA kernels. The
speedup of the hybrid implementation is compared to that of a CUDA implementation
and to that of a multithreaded implementation. The runtime of the hybrid kernel
is given, and the proportion of the CPU computation and hybrid kernel’s runtime is
discussed. Information about the used dataset is vague.

Asynchronous SGD based on Hogwild is implemented using GPUs by Noel and
Osindero [2014]. The presented approach follows the master-worker model. The master
is responsible for sending data to workers, and the workers compare the received data
to a copy and update their local copy of data only once after the master has finished
sending the data. Finally, the updates are sent to the master. Race conditions occur;
however, as in Hogwild, they do not have significant impact to the accuracy.

The technologies and the datasets used by each model-based algorithm implementa-
tion on GPUs can be found in Table XIII.

It is observed that among the parallel implementations, the model-based algorithms
are preferred. The applications on shared memory models represent the most recent
applications, whereas algorithms continue to be developed on distributed memory sys-
tems. The development of recommendation algorithms on GPUs is also very active. The
parallel implementations are mostly evaluated by the achieved speedup over the se-
quential versions. Although accuracy is often measured in both shared and distributed
memory implementations, it seems that it is of less importance to the GPU-based im-
plementations. This can be justified because the GPU-based approaches focus on the
strategies that they use to process the data and not on the design of new algorithms.
Thus, it would be interesting to see new or modified collaborative filtering algorithms
implemented on GPUs.

In all parallel implementations, a clear preference for model-based algorithms is
observed. As shown in Table VII, the majority of the algorithms implemented on dis-
tributed memory systems are model-based algorithms. Only one hybrid approach can
be found, and none of the approaches implements memory-based algorithms.

The algorithms that are more often implemented on distributed memory systems
are ALS, SGD, and co-clustering methods. MPI is used for communication among the
system’s nodes in all implementations. For these approaches, speedup is the metric
that is most often used for evaluation. The Netflix dataset is used for almost all imple-
mentations, followed by the MovieLens and KDD Cup 2011 dataset.

The shared memory collaborative filtering implementations are listed according to
their publication year in Table IX. Although the number of shared memory approaches
is not sufficient to draw significant conclusions, one interesting fact is that all ap-
proaches are very recent. A preference to model-based approaches is shown, without
indicating any inclination as to a specific algorithm. The Netflix, MovieLens, and Yahoo!
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Table XIII. Model-Based Implementations on the GPU

Algorithm Technologies Datasets Metrics
SVD CUDA N/A Time for bidiagonalization

[Vinay et al. 2006] Intel MKL
SVD CUDA Random dense Average execution time

[Lahabar and Narayanan 2009] CUBLAS library matrices Speedup
Matlab

SVD CUDA Random data Time for one step of the
[Kato and Hosino 2010b] iteration of convergence

Nonparametric CUDA Netflix Speedup
co-clustering Facebook AUC

[Hansen et al. 2011]
Approximate R,C N/A Total execution time

SVD CUDA Computation/communication time
[Chua 2012]

RBM for collaborative filtering (CF) CUDA, Java Netflix Speedup
[Cai et al. 2012] JCUDA library

SGD CUDA Netflix RMSE, execution time
[Zastrau and Edelkamp 2012] Speedup

Approximate SVD CUDA Random Running time
QUIC-SVD CULA library matrices Speedup

[Foster et al. 2012]
RBM for CF CUDA, Java Self-generated Speedup

[Cai et al. 2013] JCUDA library Runtime
Dogwild CUDA Streaming data Time (sec)

[Noel and Osindero 2014] accuracy

Music datasets are used to conduct experiments. For the most recent implementations,
all three datasets are used to provide more accurate explanations of the results.

Time-related measurements seem to be more important in the shared memory im-
plementations than in the distributed memory implementations, having speedup and
scalability analyzed in almost all implementations. The RMSE metric is also consid-
ered by the majority of the implementations, whereas none of the implementations
conduct experiments using the MAE metric. Furthermore, it is important to observe
that none of the shared memory implementations combine model- and memory-based
algorithms.

All implementations developed using GPUs are built on CUDA. A preference to the
model-based algorithms is also shown in the implementations that utilize GPU accel-
erators. Most of the memory-based applications parallelize the user-based algorithm,
and a few address the item- and neighborhood-based algorithms. However, the memory-
based implementations are too few in number to allow for sufficient conclusions. The
preferred datasets are the Flixster and MovieLens datasets.

Regarding the metrics, a preference is noticed for the measurement of the total exe-
cution time and the speedup over the sequential implementations. RMSE is seemingly
less important to researchers because no attention is given to proving the selected
algorithms’ efficiencies. They are more concerned with comparing the CPU and GPU
execution times. For the first time, a focus on the power and energy consumption of the
implementations is noticed. Although this metric is utilized in only one implementa-
tion, other works are also expected to concern such issues in the future.

Among the model-based collaborative filtering algorithms, the algorithm that has
been consistently selected for parallelization on GPUs is SVD. Other algorithms, such
as SGD, co-clustering, and the usage of restricted Boltzmann machines on collaborative
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filtering, have also been implemented, although not to such an extent. The majority
of the model-based algorithms that have been implemented using CUDA employ li-
braries, such as CUBLAS or CULA, to handle the various algebraic problems that they
encounter more efficiently.

It is interesting that many of the model-based approaches on GPUs select random
datasets for the experiments. This fact, in addition to negatively affecting the experi-
mental reproducibility, also complicates the comparison of the results to those of other
implementations. Aside from randomly produced datasets, the Netflix dataset is the
most used. The metrics that are mostly preferred are the speedup and execution time.
Measuring computation and communication time, as well as RMSE, rarely occurs.
When using very large datasets on GPUs, the problem of high data transfer times
between CPUs and GPUs occurs and can significantly affect the overall performance.
Fortunately, major companies in the field have recently announced developments of
new technologies that can address this challenge via unified memory [Developer Zone
NVIDIA 2013; Developer Central AMD 2014]. Consequently, GPUs are expected to be
used more extensively for the development of applications that will utilize the infor-
mation provided by very large datasets.

5. PLATFORM-BASED RECOMMENDATIONS

Because the available amount of data is continuously increasing, it is inevitable that
new methods for facilitating and expediting its elaboration will be developed. To this
end, the use of Big Data frameworks represents a significant contribution. This section
is devoted to the implementations of collaborative filtering recommendation algorithms
realized with the aid of frameworks that are adequate for parallel processing and for
the handling of large datasets. The implementations will be classified into memory- and
model-based implementations, and they will be discussed according to their publication
year, commencing with the oldest one. Table XIV lists the implementations that are
based on frameworks.

The field opens with a hybrid approach that provides recommendations to Google
News users [Das et al. 2007]. The model-based PLSI and MinHash clustering algo-
rithms are combined with the item co-visitation counts. The MapReduce framework is
used to parallelize the MinHash clustering method and the expectation maximization
(EM) algorithm. The user’s click history constitutes the input of the algorithm’s map
phase, which is conducted over various machines. The algorithm outputs key-value
pairs that correspond to the clusters to which each user belongs. A comparison of the
MinHash and PLSI algorithms proves that their combination performs worse than the
original algorithms. Information on the used datasets and the metrics selected for eval-
uation are provided in Table XV. In Table XVI, the datasets and metrics used in each
memory-based implementation can be found, and Table XVII presents information on
the model-based implementations.

5.1. Memory-Based Implementations

Zhao and Shang [2010] implement a user-based collaborative filtering algorithm fol-
lowing the MapReduce model on the Hadoop platform. The algorithm is divided into
three phases. In the data partitioning phase, the user IDs are separated into differ-
ent files and are used as input during the map phase. The algorithm includes a map
phase, where the recommendation list for each user is calculated, and a reduce phase,
where all information calculated is collected, and output is generated. The algorithm’s
speedup is considered on the Netflix dataset.

A parallel user profiling approach is proposed by Liang et al. [2010]. The suggested
implementation is developed on the Hadoop Map-Reduce framework and Cascading
[Cascading 2009], therein using the Del.icio.us dataset [Delicious 1998] on the Amazon
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Table XIV. List of Implementations on Frameworks

Reference Category Description
Das et al. [2007] HYBRID MinHash and PLSI clustering

Co-visitation counts
Chen et al. [2009] MODEL LDA
Wang et al. [2009] MODEL PLDA

Daruru et al. [2009] MODEL Bregman co-clustering
Zhao and Shang [2010] MEMORY User based

Liang et al. [2010] MEMORY User profiling
Davidson et al. [2010] MEMORY Distributed item based
Zinkevich et al. [2010] MODEL SGD

Jiang et al. [2011] MEMORY Item based
Gemulla et al. [2011] MODEL DSGD

Ali et al. [2011] MODEL Distributed SGD
Wu et al. [2011] MEMORY AND MODEL Collaborative filtering library:

ALS, Wals, BPTF, SGD,
SVD++, Item-kNN,

Time-kNN, Time-SGD,
Time-SVD++, MFITR

Chen and Hongfa [2011] MEMORY User-based clustering
Slope one (CWSO)

Schelter et al. [2012] MEMORY Pairwise item comparison
Top-N recommendation

Kanagal et al. [2012] MODEL Taxonomy-aware latent factor
Schelter et al. [2013] MODEL ALS

Tang and Harrington [2013] MODEL Truncated SVD and ALS
Li et al. [2013] MODEL DSGD

Sparks et al. [2013] MODEL ALS, SGD
Du et al. [2014] MODEL Maxios (NNMF-ADMM)
Johnson [2014] MODEL Logistic-MF

Udell et al. [2014] MODEL PCA
Xu et al. [2014] MEMORY DSingCF (item based)

Table XV. Hybrid Implementations on Frameworks

Algorithm Technologies Datasets Metrics
MinHash clustering MapReduce MovieLens, Precision, recall,

EM, PLSI Google News live traffic ratios
[Das et al. 2007]

EC2 EMR clouds. To create the user profiles, a tag vector is formed for each user. The
recommendation is obtained by the user-based algorithm, therein using the cosine sim-
ilarity to select the k-nearest neighbors. The top-N items are recommended according
to the prediction value. Three Cascading flows implement the user profiling phase, the
formation of the neighborhood and the recommendation phase. A comparison is given
of the running time for the three jobs on the cloud and on a local desktop machine.

Personalized video recommendations are made through YouTube’s distributed item-
based recommendation system [Davidson et al. 2010]. Item similarity is calculated
considering the user’s co-visitation counts. To process large amounts of data, rec-
ommendations are calculated following a batch-oriented precomputation approach of
MapReduce computations. The recommendation quality is evaluated through the fol-
lowing metrics: click-through rate (CTR), long CTR, session length, time until first
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Table XVI. Memory-Based Implementations on Frameworks

Algorithm Technologies Datasets Metrics
User-based collaborative filtering (CF) MapReduce Hadoop Netflix Speedup

[Zhao and Shang 2010]
Parallel user profiling MapReduce Hadoop Del.icio.us Running time

[Liang et al. 2010]
Distributed item-based MapReduce Live Traffic CTR

YouTube’s BigTable (self-collected) Long CTR
Recommender Session length

System Recommendation coverage
[Davidson et al. 2010] Time until first long watch

Item-based CF MapReduce Hadoop MovieLens Isoefficiency,
[Jiang et al. 2011] speedup

CF library (GraphLab) GraphLab Yahoo! Music RMSE, speedup
item-KNN,
time-KNN

[Wu et al. 2011]
User-based clustering Hadoop MovieLens MAE,

weighted slope one (CWSO) Weka acccuracy
[Chen and Hongfa 2011]

Pairwise item comparison MapReduce Hadoop MovieLens MAE, RMSE
and top-N recommendation Flixter speedup,

[Schelter et al. 2012] Yahoo! Music runtime
DSingCF MapReduce Hadoop MovieLens Speedup, execution time

[Xu et al. 2014] MAE, RMSE, NDCG

long watch, and recommendation coverage. Unfortunately, no other implementations
assume these metrics.

The item-based collaborative filtering algorithm is implemented on Hadoop by Jiang
et al. [2011]. This approach separates the three most excessive computations into four
map-reduce phases, which are executed in parallel on a three-node Hadoop cluster. In
the first map-reduce phase, the average rating for each item is computed. The second
map-reduce phase computes the similarity between item pairs, and in the third map-
reduce phase, the similarity matrix is recorded. Finally, the computations for the item
prediction occurs in the fourth map-reduce phase. The MovieLens dataset is used, and
isoefficiency and speedup scalability metrics are used to measure the implementation’s
performance.

Chen and Hongfa [2011] implement a user-based clustering weighted slope one
(CWSO) algorithm using Hadoop on a five-machine cluster. This approach clusters
users and assigns weights to each cluster. Then the ratings are predicted using
weighted slope one. The prediction is accomplished with two map-reduce phases. In the
first phase, a list of the items that are rated and belong to the same cluster as the active
user’s cluster is constructed. In the second phase, the average deviation between two
items is calculated and used for the prediction. Users are clustered with the k-means
algorithm on WEKA [University of Waikato 1997]. The MovieLens dataset is used, and
MAE and accuracy are measured.

A neighborhood-based algorithm for batch recommendation is implemented on the
Hadoop MapReduce framework by Schelter et al. [2012]. One map-reduce phase counts
the item co-occurrences without considering the rating values that have been given
to the items. The item vectors are preprocessed to compute their norm and their
dot products and finally proceed to the similarity computation. Another map-reduce
phase applies a threshold to sparsify the similarity matrix, therein omitting very low
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Table XVII. Model-Based Implementations on Frameworks

Algorithm Technologies Datasets Metrics
Parallel LDA

[Chen et al. 2009]
MPI

MapReduce
Orkut Scalability, speedup,

running time
PLDA MPI Wikipedia Speedup

[Wang et al. 2009] MapReduce A forum dataset Computation time
Communication time

Running time
Co-clustering Pervasive Netflix RMSE,

Dataflow DataRush speedup
Bregman library Prediction/training time

[Daruru et al. 2009]
SGD MapReduce Email system RMSE

[Zinkevich et al. 2010]
Distributed R and C, Netflix Speedup,

stratified DSGD Hadoop elapsed wall-clock time
[Gemulla et al. 2011]

Distributed SGD
(streaming data)
[Ali et al. 2011]

MapReduce Hadoop,
Storm

MovieLens Total elapsed time vs.
RMSE, number of

iterations vs. RMSE
Collaborative filtering

library (GraphLab)
GraphLab Yahoo! Music RMSE, speedup

ALS, Wals, BPTF, SGD,
SVD++, time-SGD,

time-SVD++, MFITR,
time-MFITR

[Wu et al. 2011]
Multicore C++ A log of user AUC, speedup

(TF) taxonomy-aware BOOST library online Absolute wall-clock time
latent factor model Hadoop transactions Average mean

(SGD) rank of users
[Kanagal et al. 2012]

ALS MapReduce Hadoop Netflix Average runtime
[Schelter et al. 2013] JBlas Yahoo! Music per recomputation

Bigflix (synthetic)
Truncated SVD, MapReduce Collected from MAP, NDCG

ALS Walmart.com
[Tang and Harrington 2013]

DSGD Spark, Sparkler, Netflix Execution time per epoch
[Li et al. 2013] Scala

ALS, SGD Spark, Scala, Matlab Netflix Scalability
[Sparks et al. 2013] GraphLab, Mahout,

Matlab-Mex
Execution time

Maxios Spark, Scala MovieLens 1M, Netflix Scalability
[Du et al. 2014] Matlab Yahoo! Music RMSE vs. time

Logistic MF
[Johnson 2014]

MapReduce Spotify data Mean percentage ranking
(MPR)

PCA Spark Netflix Iteration time (sec)
[Udell et al. 2014] Scala
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similarities. Batch recommendation can be completed in a map-only phase if the sim-
ilarity matrix fits into the memory. Otherwise, a reduce phase is used. To reduce the
algorithm’s cost, which is dominated by “power users,” only a randomly selected part of
their interactions contributes to the recommendation. Sensitivity analysis is given for
the effects of the user interaction reduction. Both the MovieLens and Flixster datasets
are used for measuring the algorithm’s accuracy. Furthermore, the algorithm is evalu-
ated based on scalability and runtime on the Yahoo! Music dataset.

DSingCF [Xu et al. 2014] is a two-phase algorithm, which in addition to using only
item pairs uses unique item ratings in the recommendation procedure. During the first
phase, the missing ratings are estimated such that all possible item pairs can have a
similarity value. The second phase is dedicated to finding the most similar users. Two
map-reduce phases are executed during the first phase: one for the calculation of each
user’s average rating and one for the calculation of the missing ratings. The second
phase of the algorithm is completed with one map-reduce phase.

5.2. Model-Based Implementations

A parallel version of the LDA algorithm is presented by Chen et al. [2009]. LDA’s
parallelization is accomplished with the MPI library and MapReduce. Subsets of the
users and their ratings are divided among the available machines. The communication
and the synchronization among the processes are accomplished with MPI, whereas
map and reduce functions are defined with the MapReduce framework. A detailed
description of the MPI-based PLDA algorithm and a version of MapReduce are given by
Wang et al. [2009]. The MPI implementation is publicly available; thus, the experiments
can be reproduced.

The only implementation that utilizes the Pervasive DataRush library [Actian
DataRush 2009] develops a parallel implementation of the Bregman co-clustering al-
gorithm [Daruru et al. 2009]. Both co-clustering training and prediction algorithms
are implemented using a dataflow graph. The Pervasive DataRush library is used to
construct and execute the dataflow graphs. The number of used cores influences the
number of data partitions that will be processed. An evaluation is provided, and a
few optimizations, such as the use of JOMP or adjusting the distance computations
according to a technique better suited for sparse data, are proposed.

A parallel SGD algorithm for MapReduce is described by Zinkevich et al. [2010]. In
the presented method, SGD runs in parallel on different computers, and their results
are aggregated. The only communication needed between the computers is during the
collection of the results; thus, only one map-reduce phase is needed. The experiments
are run on a dataset formed by an email system, and the results are evaluated based
on the RMSE.

Gemulla et al. [2011] also develop a stratified variant of SGD that is adjusted to
obtain the distributed algorithm DSGD. The input data are distributed over the nodes
at the beginning of the execution, and smaller matrices are transmitted during the
remainder of the execution. Each node creates a local training sequence from the data
that it receives. During each iteration, a step size and a stratum are chosen. Then SGD
runs on the training points in such a way that the entire training set is finally covered.
For the experiments, two clusters are used: a cluster of 32 cores for the in-memory
implementation, which is based on R and C, and a Hadoop cluster consisting of 320
cores. The Netflix dataset is used, and speedup and the elapsed wall-clock time are
measured.

An extension of the preceding SGD algorithm is presented by Ali et al. [2011]. This
approach is designed to operate on streaming data and is implemented on a cluster
composed of 10 machines using the Hadoop Map-Reduce and Storm frameworks. The
master node dynamically assigns data chunks to workers, therein taking care to avoid
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the need for the simultaneous update of the same rows or columns. To compute a
stratum, the input to the map phase is the ratings matrix and the U and M matrices.
If the rating belongs to the current stratum, the mapper outputs the key-value pairs
that correspond the stratum blocks to the ratings that they contain. The reducers
receive the information that belongs to a stratum block, and SGD runs on them. The
MovieLens dataset is used, and the results are presented on plots of the total elapsed
time versus RMSE and of the number of iterations versus RMSE.

Wu et al. [2011] implement an open-source collaborative filtering library using
the GraphLab parallel machine learning framework. The implemented algorithms
are ALS, Wals, BPTF, SGD, SVD++, Item-kNN, time-kNN, time-SGD, time-SVD++,
MFITR, and time-MFITR. Although a few memory-based algorithms are implemented,
emphasis is given to the matrix factorization algorithms. Experiments are conducted
on a cluster composed of 32 cores and on the BlackLight supercomputer [Pittsburgh
Supercomputing Center 2009] (4,096 cores). The RMSE metric is measured on the vali-
dation dataset, and the speedup is calculated on BlackLight. The Yahoo! Music dataset
is used.

Kanagal et al. [2012] develop a parallel multicore implementation of the taxonomy-
aware latent factor model (TF), implemented in C++. The BOOST library is also used.
The SGD algorithm is applied via a multithreaded implementation. Using Hadoop, a
different part of the set of users is assigned to each node. The input data is a log of
user online transactions. The AUC metric and the average mean rank of the users are
used to compare the proposed model with the basic latent factor model. In addition,
absolute wall-clock times and speedup are measured on a 12-core machine.

Schelter et al. [2013] parallelize the ALS algorithm on MapReduce using a parallel
broadcast-join. Each machine has a local part of the matrix A that contains the user’s
interactions over the set of items. Furthermore, the smaller of the feature matrices
U and M that contain the user and item information, respectively, is replicated to all
available machines. A map phase joins the local part of Aand the replicated copy of the
feature matrix and recomputes the other feature matrix. The experiments are realized
using three datasets: Netflix, Yahoo! Music, and Bigflix, which is a synthetic dataset
constructed from the Netflix dataset. The average runtime for a recomputation of the
feature matrix is measured.

Tang and Harrington [2013] propose a two-stage matrix factorization. The truncated
SVD algorithm is first run on a MapReduce cluster. Then the ALS algorithm is applied,
starting with the matrix that has been received as a result of the truncated SVD
instead of using a random matrix Q. The matrix P is calculated with one map-reduce
step. To evaluate this approach, two metrics are used: mean average precision (MAP)
and normalized discounted cumulative gain (NDCG). Unfortunately, these metrics are
not used in other similar experiments, and no information is given on whether the data
collected from the Walmart.com site can be made publicly available.

Li et al. [2013] implement DSGD on Spark [Zaharia et al. 2012] and on an extension
of Spark called Sparkler. Spark is a distributed in-memory framework applicable to
iterative methods. Sparkler is adequate for matrix factorization using a distributed
memory abstraction for large factors, called Carousel Map. Using Spark, each node has
a copy of the latent factor matrices. The ratings are separated into blocks that belong
to stratums, and the blocks of the stratums are distributed over the nodes. The blocks
of each stratum are processed in parallel, and each node updates the corresponding
parts of the factor matrices. DSGD on Sparkler differs from this approach. Carousel
Map is used to process the data that are distributed over the nodes and to handle
the communication among the nodes. Li et al. [2013] compare the performance of the
DSGD algorithm on Spark and Sparkler.
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Sparks et al. [2013] present an application called MLI for distributed machine learn-
ing algorithms built on Spark. To evaluate their application, they develop two algo-
rithms. The performance of SGD and ALS on MLI is compared to that of Matlab
versions.

Du et al. [2014] propose a weighted nonnegative matrix factorization algorithm
for large sparse matrices, Maxios, implemented on Spark. The computation time of
Maxios is reduced by calculating the missing values only once, after all updates have
been completed, and by using alternating direction methods of multipliers (ADMM)
to update the multipliers in each iteration. Each worker node has a copy of the rows
and columns of the latent factor matrices and the ratings matrix. In each iteration, the
latent factors are broadcast to the worker nodes.

Johnson [2014] presents a probabilistic matrix factorization model for music recom-
mendations called Logistic MF. The behavior of the users toward the items and the
popularity of the items are expressed in the model via biases. The summations needed
to compute the gradients of each iteration are calculated in parallel using MapRe-
duce. The input matrix is partitioned into submatrices. Each mapper receives the user
and item vectors of a block that corresponds to a specific user and item and updates
the gradients. During the reduce phase, users or items are used as keys according to
whether the performed iteration is a user or an item iteration, and the summations
are aggregated.

Low-rank matrix approximation is addressed by Udell et al. [2014], who use Spark to
develop a distributed implementation of PCA. Each machine has a part of the data, and
the cores of each machine process different parts of the data. Communication occurs at
each iteration. The implementation has been designed for models that fit in memory.

High activity in the development of collaborative filtering algorithms using platforms
has been observed recently. A preference for the development of model-based algorithms
is noticed, and most of the implementations are developed on Hadoop and follow the
MapReduce model. Interest in the development of model-based algorithms using the
Spark framework has also been observed recently. In platform-based approaches, both
scalability and accuracy are evaluated.

Among the platform-based implementations, only one hybrid implementation com-
bining both model- and memory-based techniques is observed. In addition, there is no
definite trend in favor of one of the two categories. Both model- and memory-based
algorithms have been chosen for implementation on frameworks. The algorithms more
often employed among the model-based implementations on frameworks are LDA,
SGD, and SVD, and among the memory-based algorithms, user-based and item-based
collaborative filtering are most often employed.

Various datasets are used to evaluate the discussed approaches. Although many
approaches are evaluated on a variety of datasets, the dominating datasets are Netflix,
MovieLens, and Yahoo! Music. The majority of the applications are implemented on the
Hadoop MapReduce framework; however, especially for model-based implementations,
various approaches that combine Hadoop with other parallel computing libraries, such
as MPI or Pervasive DataRush, have been developed. In addition, many algorithms
have been implemented on GraphLab and Spark.

Concerning the most commonly used metrics, a preference is noticed for RMSE, MAE,
running time, and speedup. The fact that the implementations have been executed on
systems that significantly differ in the number and specifications of used cores proves
that it is difficult to attain an overall comparison.

6. HETEROGENEOUS IMPLEMENTATIONS

A few hybrid collaborative filtering implementations have recently been developed on
both shared and distributed memory systems. Most of these implementations have
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Table XVIII. List of Heterogeneous Implementations

Reference Category Description
Narang et al. [2011b] MODEL Co-clustering
Narang et al. [2011a] MODEL Co-clustering

Karydi and Margaritis [2012b] MEMORY Slope one
Guan et al. [2012] MEMORY Semisparse multilayer optimization

on item based
Schelter et al. [2014] MODEL Factorbird

Table XIX. Heterogeneous Implementations

Algorithm Technologies Datasets Metrics
Distributed MPI, OpenMP Netflix RMSE, scalability

co-clustering Training time
[Narang et al. 2011b] Prediction time per rating

Distributed MPI, OpenMP Netflix (Weak, strong, data ) Scalability
co-clustering Yahoo KDD Cup RMSE

variations
[Narang et al. 2011a]

Slope one MPI, OpenMP MovieLens Scalability, speedup
[Karydi and Margaritis 2012b] Total elapsed time

Prediction per second
Prediction time per rating

Semisparse MPI MovieLens Speedup
multilayer optimization Pthreads Netflix Elapsed CPU time

(item based)
[Guan et al. 2012]

Factorbird Scala, HDFS, Subset of Twitter graph RMSE
[Schelter et al. 2014] MapReduce

been performed with MPI and OpenMP or Pthreads. For the remainder of this section,
they will be described starting with the oldest and proceeding to the most recent
implementation. Table XVIII presents a list of these approaches. The datasets used in
each implementation, as well as the metrics considered, can be found in Table XIX.

A distributed model–based algorithm based on co-clustering is presented by Narang
et al. [2011b]. The algorithm partitions row and column clusters into the nodes, which
are further partitioned into each node’s threads. Iterations are executed until reaching
the desired RMSE convergence. One thread on each node, apart from contributing to
the computations, takes over the necessary communication to collect the results of the
computations assumed by the remaining threads. The Netflix Prize dataset is used on
a 1,024-node Blue Gene/P architecture. Training and prediction times as well as the
RMSE are measured. A detailed scalability analysis is also presented.

Other variations of the distributed co-clustering–based collaborative filtering algo-
rithm are presented by Narang et al. [2011a]. A distributed flat co-clustering algorithm
is implemented using MPI, and a flat hybrid algorithm is developed using MPI and
OpenMP. Hierarchical co-clustering algorithms are also developed. The algorithms are
evaluated on the Blue Gene/P architecture, and the utilized datasets and metrics can
be found later in Table XIX.

Karydi and Margaritis [2012b] present a hybrid version of the slope one algorithm
and compare its performance to that of the multithreaded version, which is described
in Karydi and Margaritis [2012a]. Parts of the ratings matrix are distributed over
the system’s nodes. The master-worker model is followed. The master node assumes
the data partitioning and distribution, whereas the worker nodes are devoted to the
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computations. Finally, all workers’ results are gathered and sent to the master node,
where the predictions are made. This implementation is evaluated on a heterogeneous
cluster composed of 30 cores and a homogeneous cluster composed of 24 cores. The
MovieLens dataset is used for the performance and scalability evaluation, and total
elapsed time, speedup, number of predictions per second, and prediction time per rating
are measured.

A semisparse algorithm that attempts to accelerate the common memory-based col-
laborative filtering algorithms is proposed by Guan et al. [2012]. Three optimization
methods are applied. First, a semisparse algorithm that locally concentrates the se-
lected sparse vectors is used to speed up the similarity computations. On a multicore
architecture, threads are wrapped into a thread pool, and a reduced vector is used to
reduce the use of locks. Moreover, to reduce the communication overhead among differ-
ent nodes, a shared zip file that contains the sparse rating matrix is read. Experiments
are conducted on three different multicore systems and on a cluster of eight nodes.

Schelter et al. [2014] present an algorithm based on SGD. Factorbird is based on a
parameter server architecture [Li et al. 2014]. A part of the machines is used to learn
the model, and another part is used as parameter servers that hold the parts of the
factor matrices. The data are partitioned over the learner machines, and each machine
runs a multithreaded SGD. To avoid conflicting updates, the algorithm is based on
Hogwild [Recht et al. 2011]. A cluster is used for the parameter machines, and Scala
[Odersky et al. 2004] and the HDFS file system are used for the learner machines. The
data are a subset of Twitter’s interaction graph, and the algorithm is evaluated based
on the RMSE.

Heterogeneous implementations that combine several parallelization techniques
are very few in number, and mainly, distributed memory approaches are combined
with shared memory models. More heterogeneous implementations can be developed,
therein combining various parallelization techniques.

Unfortunately, the results of the heterogeneous implementations cannot be compared
to each other, not only because of the use of different datasets but also because of the use
of different cluster architectures with significant difference in the number of nodes. No
preference is given to either model-based or memory-based algorithms. In all of these
implementations, the communication among the cluster nodes is accomplished via MPI,
and OpenMP or Pthreads is used for shared memory parallelization. The dominating
datasets are the Netflix and MovieLens datasets. For these implementations, priority is
given to measuring their scalability and speedup, whereas measuring the algorithm’s
accuracy via the RMSE metric is of less interest.

Among the memory-based algorithms, user-based algorithms are implemented more
often, followed by item-based algorithms. The most frequently implemented model-
based algorithms are SVD, SGD, ALS, and co-clustering models. Among the implemen-
tations of hybrid algorithms, no main scheme can be distinguished.

7. DISCUSSION AND CONCLUSIONS

Because research works concerning recommender systems are published in a variety
of journals that focus on different disciplines [Park et al. 2012] and because the field
of recommendation algorithms exhibits high activity, it is not easy to ensure that all
existing implementations are considered in this survey. Regardless, no changes to the
conclusions drawn from this work are expected if a few more works appear.

An initial observation is that regardless of the parallel or distributed method used,
fewer hybrid implementations exist compared to memory- and model-based implemen-
tations. Hence, additional hybrid algorithms could be developed that would benefit
from both categories’ advantages. Another fact worth mentioning is that no memory-
based implementations have been developed on distributed memory systems, and only
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one has been developed on a shared memory environment. However, because memory-
based collaborative filtering algorithms also deliver good results, they should not be
ignored.

The present work demonstrates that the field of parallel and distributed collabo-
rative filtering is active and evolving quickly. We have attempted to catalog as many
implementations that have been published in scientific journals or conferences before
the end of 2015 as possible. Furthermore, a category of works that make slight use of
recommender systems but whose main focus is on neural networks or other artificial
intelligence techniques has been omitted from the present work.

Recently, many parallel and distributed collaborative filtering approaches have been
developed, particularly in employing GPUs or taking advantage of various platforms.
However, more research needs to be conducted to exploit the benefits of parallel and
distributed computing techniques and improve the collaborative filtering algorithms in
such a way so as to handle the huge amounts of data that are available more efficiently.

It would be interesting to apply a multilevel heterogeneous method, using many ma-
chines to efficiently handle big data and subsequently combine a variety of techniques
according to the addressed problem. In recent years, although a variety of parallel and
distributed techniques have been applied, a preference is noticed for the use of graphics
accelerators and frameworks. Thus, the use of an adequate framework in combination
with MPI and GPU accelerators would be intriguing. One aspect that is determinant
for the selection of a technique is the nature of the available data. If it is difficult to
collect all data in one machine, then distributed methods should be preferred, whereas
clusters or methods based on shared memory environments are better suited for when
data are easily assembled in one place.

Briefly summarizing the findings of the research work discussed in this article, the
preference of the research community for the development of model-based collabora-
tive filtering algorithms is clear. Memory-based and especially hybrid algorithms are
implemented less often. Still, the development of hybrid algorithms seems promising
because both methods’ benefits could be utilized.

In recent years, a main trend for the use of frameworks and GPU accelerators has
been noticed, with MPI-based and shared memory techniques in second place. The use
of frameworks is anticipated to be more flexible in the future and to be combined with
other techniques.

As far as the evaluation of the implementations is concerned, initially, algorithmic
accuracy, which was measured using the MAE metric, was the main interest. Lately,
the interest has turned toward scalability analysis and the achievement of lower exe-
cution times. A few approaches are tested on self-collected data, which are not publicly
available for further experiments. However, the majority of the implementations are
tested on the well-known Netflix, MovieLens, and Yahoo! Music datasets.

Despite the fact that many algorithms are sufficiently accurate, the availability of
multiple data sources, such as social networks and the variety of possible items to rec-
ommend, is motivating researchers toward constantly improving existing algorithms
and designing new algorithms such that more information can be utilized in the recom-
mendation procedure. Therefore, the design of recommendation algorithms for parallel
and distributed systems that can take advantage of social information or other implicit
data could significantly advance the field.

Another open issue in the field of parallel and distributed recommendation algo-
rithms is the development of algorithms that can be scalable when running on a variety
of systems. Adaptive algorithms that will be able to recognize the system’s available
hardware and utilize the provided heterogeneity could represent a great solution to-
ward providing portable code for heterogeneous systems.
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As a conclusion, new technologies are continuously contributing to the development
of parallel and distributed collaborative filtering algorithms. There is no specific pattern
to be followed because the selection of the adequate technology is highly related to the
nature of the available data, the characteristics of the algorithms, and the available
hardware. The work discussed in this article is expected to provide a useful starting
basis to offer helpful directions for both the selection oftechnologies and algorithms
and to inspire the development of more sophisticated approaches.
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