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Mapping Virtual Machines onto Physical Machines
in Cloud Computing: A Survey
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Cloud computing enables users to provision resources on demand and execute applications in a way that
meets their requirements by choosing virtual resources that fit their application resource needs. Then, it
becomes the task of cloud resource providers to accommodate these virtual resources onto physical resources.
This problem is a fundamental challenge in cloud computing as resource providers need to map virtual
resources onto physical resources in a way that takes into account the providers’ optimization objectives.
This article surveys the relevant body of literature that deals with this mapping problem and how it can be
addressed in different scenarios and through different objectives and optimization techniques. The evaluation
aspects of different solutions are also considered. The article aims at both identifying and classifying research
done in the area adopting a categorization that can enhance understanding of the problem.
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1. INTRODUCTION

Cloud computing has been established as a paradigm that provides computing
resources on a pay-per-use basis by dynamically configuring such resources to ac-
commodate varying workload needs. This is made possible by exploiting the benefits
of virtualization, which enables the creation of virtual machines (VMs) that share
physical resources. A VM is an operating system or software that emulates through
virtualization the behavior of a computing system with a specified set of resource char-
acteristics, for example, CPU and memory capacity. Virtualization is a topic with a
long history [Smith and Nair 2005] that has continuously evolved to provide different
capabilities, such as the execution of an application onto heterogeneous systems, the ex-
ecution of multiple applications in parallel, and the movement of running applications
to other hosts. Overall, virtualization technologies allow the dynamic management of
resources to increase their cost-efficient utilization by creating a virtual layer, which
enables the multiplexing of hardware resources so applications of different users can
share the resources of a physical machine (PM) transparently and in isolation from
each other. The main goal of this layered approach, where applications are mapped
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onto a virtual layer of virtual machines, which are then mapped onto the physical
machines (cloud resources), is cost-efficient resource utilization.

The existence of such a virtual layer facilitates the deployment of user requests by
allocating a number of VMs to cater for user needs. The allocated VMs may belong
to different classes with varying characteristics in terms of the physical resources
assigned to them; these characteristics may include different CPU speeds, different
memory size, different storage capacity, and many more. A specific amount of resources
can be assigned to a VM when it is required or freed when it is no longer needed. At
the same time, multiple VMs, hosted by different physical machines, may serve the
needs of a single user application. Typically, in this paradigm, a user will have the first
word in choosing suitable VMs; the provider will have to accommodate the chosen VMs
onto PMs in a way that meets the provider’s criteria for cost-efficient utilization of the
resources, while making sure that user requirements, often captured by a Service Level
Agreement (SLA) [Wieder et al. 2011], are met.

As consumers wish to use a provider’s computing resources in a way that meets their
varying (application) requirements while providers (owners) wish to optimize the use
of their resources (and, consequently, their income), the ramification is that computer
resources should be available on demand. For example, providers would not wish to
keep computing resources idle; they may switch them off if not needed and switch them
back on when they are required as application resource needs fluctuate. Cloud services
are often abstracted using different cloud service models, such as Infrastructure as a
Service (IaaS) or Platform as a Service (PaaS) models. In IaaS models, cloud providers
deliver resources as VMs on demand. Users deploy their applications on VMs while
maintaining the operating systems and application software. In the case of PaaS, users
(application developers) can develop and run the software on the computing platform
offered by the cloud providers without the need of maintaining their own hardware
resources, such as the database and web servers. The provider delivers server, storage,
and network resources while the user can deploy the software and configure the settings
using the provider’s libraries.

The ability of scaling up and down computing resources in an automatic manner has
been known as elasticity [Herbst et al. 2013]. Although the concept of elasticity may be
overloaded in reality, it is still useful to highlight the main challenge of cloud comput-
ing, which, in abstract terms, can be described as a problem of matching at each point
in time current demand with available resources [Herbst et al. 2013]. This resource
management problem is a matching problem that can be solved through appropriate
actions that involve the intermediate layer of virtual machines. Such actions need to
answer questions and solve two fundamental problems related to both the selection
of the characteristics of the virtual machines and how the machines are mapped onto
physical machines. Clearly, these two problems are interrelated. For example, speci-
fying VMs with a capacity larger than the needs of an application will result in bad
resource utilization regardless of how VMs are mapped onto PMs. Conversely, mapping
VMs well tailored to the needs of an application on PMs of much larger capacity will
also result in bad resource utilization. As a result, it has been common in the literature
to treat these two problems, often termed as configuration (of VMs) and placement (of
VMs to PMs), as integral aspects of the cloud computing challenge. However, as the
complexity of this challenge grows, partly due to multiple optimization objectives and
partly due to the trend to offer practically unlimited opportunities for VM configura-
tion, it becomes desirable to understand and tackle the two problems separately. It
is worth noting, for example, that a number of cloud providers allow fine-tuned VM
configurations (e.g., ElasticHosts1 allows users to choose from about 184 million dif-
ferent combinations for the size of each of CPU, memory, and storage). Still, from the

1https://www.elastichosts.com.
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Fig. 1. Cloud computing architecture.

provider’s point of view, it is important to optimize utilization so it translates into
increased income while minimizing operating costs, with the highest cost often related
to energy consumption [Beloglazov et al. 2012; Schulz 2009].

In view of the above, this article surveys research on VM placement for cloud com-
puting, particularly focusing on how different optimization objectives can be met. In
contrast to existing surveys [Galante and Bona 2012; Jennings and Stadler 2014],
which typically consider the problem of managing VMs on the cloud using a holistic
approach that includes both configuration and placement as defined above, we believe
there is scope and it is time to produce a comprehensive survey that reviews the ever-
increasing body of research by elaborating further on VM placement per se, which has
become a key challenge for service providers. The idea is to enhance understanding
of the VM placement problem by viewing it primarily as a scheduling and mapping
problem using different objectives and not simply as a mechanism to tackle the wide
problem of elasticity as has been common in previous surveys. This problem needs to
be addressed either to accommodate new VMs (initial placement) or, dynamically, to
optimize the allocation of existing VMs to PMs (reallocation, triggered by some ob-
servation). The underlying assumption of the survey is that this mapping problem (of
VMs to PMs) is addressed by the provider following configuration of VMs through user
(or other) intervention. Given some specific choices for VMs, the problem is how these
VMs can be mapped onto PMs to optimize for different objectives and how one could
evaluate the efficiency of different solutions in different situations.

The rest of this article is organized as follows. Section 2 presents an overview, dis-
cussing the aim of VM scheduling and mapping, the architecture, the purpose, and the
context of the survey. Section 3 presents the VM placement actions. Section 4 analyzes
the optimization objectives of the scheduling policies and describes common optimiza-
tion techniques. Section 5 presents the application characteristics that utilize the cloud
computing platform and the evaluation metrics used in the literature to assess the per-
formance of the approaches used and categorizes the cloud computing tools. Section 6
concludes the article and summarizes challenges that have to be addressed. Finally,
four tables in Sections 3–5 summarize the characteristics of representative work from
the literature in relation to the focus of the relevant sections.

2. OVERVIEW

Throughout this article, we assume a pretty standard cloud computing system ar-
chitecture, as diagrammatically depicted in Figure 1. Although different architecture
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Fig. 2. Mapping VMs onto PMs in cloud computing.

diagrams can be found in the literature [Jennings and Stadler 2014; Mian et al. 2013;
Van et al. 2010; Cardellini et al. 2011; Addis et al. 2010], the fundamental system
characteristics from a resource management point of view do not differ. As shown on
the right-hand side of the figure, there are three layers, which give rise to two fun-
damental mapping phases: first, user applications are mapped onto VMs; then VMs
are mapped onto PMs. The two mapping phases are in principle handled by two key
entities: the VM Configuration Manager and the VM Placement Manager, respectively.
VM configuration will deal with issues related to the provisioning of VMs, both in terms
of their number and their size (individual characteristics); user choices typically play
a key role in the process. As already mentioned, VM configuration is not the focus of
this article. In contrast, we assume that VM configuration has already taken place and
we exclusively focus on the next phase, VM placement, which aims at optimizing the
mapping of VMs onto PMs subject to different optimization objectives and applying
different optimization techniques.

From a cloud provider’s point of view, as the workload of the resources keeps chang-
ing, VM placement should be regarded as a continuous process. Even though an initial
VM placement may take place every time before a new application’s VMs start using
PMs, this initial allocation may need to be reassessed as the load of physical resources
changes. For example, termination of some VMs may enable the provider to switch
some resources off by moving (reallocating) any VMs running on underutilized hosts.
Such a reallocation may be used, for instance, to aggregate the system’s load into a
small number of PMs. As a result, it is useful to separate the VM placement problem
to two subproblems: initial placement and reallocation, which may be invoked periodi-
cally according to certain triggering criteria. Regardless of this separation, the problem
of VM placement should be viewed as a mapping problem subject to some optimization
objectives. Such optimization objectives may revolve around improved resource utiliza-
tion, increased income or reduced expenditure, most notably energy. Finally, different
optimization techniques may target different applications and may be evaluated using
different metrics and tools.

The categorization above, as diagrammatically shown in Figure 2, describes the
problem of mapping VMs onto PMs in its entirety and corresponds to the structure
adopted by this survey.

3. VM CONFIGURATION AND PLACEMENT

As discussed in previous sections, the process of mapping VMs onto PMs involves an
initial configuration phase that determines the characteristics of VMs followed by a
placement phase that attempts to place such VMs onto PMs in a cost-efficient manner
according to some optimization objectives. This section focuses on the specifics of this
mapping, treating it as part of a scheduling problem, which is orthogonal to particular
optimization objectives.
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3.1. VM Configuration

During the VM configuration phase, users may select the combination of resources that
fit to their application needs. Providers may offer VMs of predefined VM types, with
each VM type characterized by specific hardware characteristics. For example, Amazon
EC22 offers different VM types that can cope for different user needs. However, cloud
providers, such as Amazon EC2, usually offer best-effort provisioning policies that do
not guarantee for performance on different workload scenarios [Naskos et al. 2015].
Also, some cloud providers may offer different resource capacity combinations with
the provisioning of each selected resource capacity being charged separately; example
providers are CloudSigma3 or ElasticHosts.1 With the different VM configurations,
different tradeoffs between application performance and cost (price to pay to a provider)
may arise. Cost-efficient configurations may vary depending on a provider’s pricing
model [Sharma et al. 2011; Zaman and Grosu 2011]. Cloud brokering mechanisms,
which involve some mediation between providers and users, are also used to manage
pricing heterogeneity [Anastasi et al. 2014; Tordsson et al. 2012; Lucas-Simarro et al.
2013]. Providers may also deploy combinatorial auctions where users bid for a bundle
of resources of different sizes under a specific budget [Zaman and Grosu 2011]. Finally,
bidding strategies and allocation mechanisms for combinatorial auctions are proposed
in Zaman and Grosu [2011, 2013] and Fu et al. [2014].

In principle, VM configuration aims at assigning the proper amount of resources
to avoid under- and over-provisioning. Over-provisioning of resources—provisioning
more resources than required—results in resource wastage as resources remain idle.
On the other hand, under-provisioning—provisioning fewer resources than required—
may result in performance degradation as application requirements are not satisfied.
As applications often exhibit a dynamic behaviour, their resource needs may change
over time. This implies that efficient resource provisioning may require a model to
estimate application resource needs over time.

For example, the tenant-based resource allocation model in Espadas et al. [2013]
determines the number of VMs required to serve a certain workload so the chance of
under-provisioning that may result in performance degradation is minimized, over-
provisioning occurrences are kept at a minimum so resource wastage is avoided, and
the policy is still cost-effective. The work in Stillwell et al. [2010] aims at maximizing
application performance by optimizing the yield, a metric introduced to represent the
fraction of computing capacity to be allocated to a task to the capacity consumed in
the case the task would run alone on the host. The resources are fairly distributed
to the requests while maintaining efficient resource utilization. In Van et al. [2010],
decision making is based on utility functions that attempt to strike a balance between
application performance and energy cost, differentiating the importance (priority) level
of applications and using a coefficient to achieve a desirable tradeoff between these two
optimization parameters. In Chang et al. [2010], a cost-aware resource provisioning
algorithm that allows the reuse of resources freed by other tasks is presented. In order
to determine appropriate VM configuration actions, different techniques can be used to
predict the application resource needs, such as probabilistic, stochastic, and statistical;
machine-learning based; or simple analytical models [Watson et al. 2010; Niehorster
et al. 2011; Xu et al. 2012; Pietri et al. 2014].

Finally, the configuration of the VMs may be dynamically adjusted (VM reconfigura-
tion or resizing) to customize the VMs when application resource requirements change,
as in Dutreilh et al. [2010], Mao et al. [2010], Huu and Montagnat [2010], Calheiros

2http://aws.amazon.com/ec2.
3https://www.cloudsigma.com/.
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et al. [2011], and Van et al. [2009]. Existing cloud providers, such as CloudSigma3

and ElasticHosts,1 allow us to dynamically adjust resource provisioning at runtime.
Windows Azure4 and Rackspace5 also provide autoscaling to respond to unpredicted
changes in demand. Extra resources can be assigned to an application in order to
avoid an SLA violation. Conversely, unused resources can be freed when the SLA re-
quirements are fulfilled to avoid over-provisioning. In that way, load balancing can be
achieved while maintaining some desired level of application performance. The pro-
visioning scheme in Liu and He [2014] addresses the problem of fair sharing among
different tenants, supporting mechanisms to trade resources among tenants and adjust
the resource share among VMs of the same tenant in order to exploit unused resources.
The application utility function in Jung et al. [2010] shows the level at which the
performance requirements are satisfied, being either a reward when response time
constraints are met or a penalty in the case of a violation. In Ferretti et al. [2010], re-
sponse time is monitored to adjust dynamically the system configuration and avoid SLA
violations. Additional SLA requirements may also include high application throughput
and availability, resource utilization, and cost minimization for the user [Frincu and
Craciun 2011; Addis et al. 2010; Kokkinos et al. 2013].

After determining a specific VM configuration that meets application resource needs,
the allocation of the VMs to PMs can take place in a way that meets the provider’s
optimization objectives without compromising the application (user) performance ob-
jectives. This allocation of VMs to PMs includes the VM initial placement actions to
allocate newly arrived VMs but also VM reallocation actions to optimize the placement
of existing VMs (partially or as a whole) and improve the current state of the resources.

3.2. VM Initial Placement

VM initial placement refers to the mapping of VMs to PMs (or hosts) to serve the new
requests. The aim of this action is to allocate the application VMs to the PMs efficiently
according to the optimization objectives. The challenge that arises in VM placement is
which VMs to allocate to which PMs in order to achieve the targeted goals.

The optimization problem in VM placement can be formulated as an integer pro-
gramming problem that is NP-hard. Determining whether a feasible solution exists
is NP-complete. Solutions can be obtained using various algorithms. In Shi and Hong
[2011], the placement problem with the goal to maximize provider’s profit subject to
SLA and power budget constraints is formulated, and the First Fit heuristic is used
to solve it. A similar approach is used in Zhang and Ardagna [2004] to solve the flow
resource allocation problem. The problem is reduced to a multi-choice binary knapsack
problem, and a tabu-search algorithm is applied in order to maximize provider’s profit
but also meet utility-based multi-class SLAs in terms of response time. The scheme is
applied for independent tiers, although it can be extended for multi-tier applications.
An integer linear problem is stated in Sharma et al. [2011] to determine the transitions
needed to minimize infrastructure cost; a greedy heuristic is used to solve it.

Various packing algorithms, which provide good results and require low execution
time, may also be used. For example, a multi-capacity bin packing algorithm is evalu-
ated in Stillwell et al. [2009] to solve the resource allocation problem. The algorithm
runs quickly and provides better or equal results with the other examined algorithms,
by optimizing the yield and the failure rate. Also, an ordered Best Fit algorithm was
evaluated in Berral et al. [2011] exhibiting low execution time and close-to-optimal
solutions. A First Fit heuristic is used in Shi and Hong [2011] to efficiently solve the
multi-level generalized assignment problem developed; this places an unallocated VM

4https://www.windowsazure.com.
5https://www.rackspace.com/.
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to the first PM in the list of available machines that satisfy the SLA and power con-
straints. First Fit policies are also included in the Eucalyptus6 software framework. A
modified Best Fit Decreasing heuristic is used in Beloglazov and Buyya [2010b] to sort
the available hosts by decreasing resource utilization and place each VM to the PM
where the allocation results in the smallest increase in power consumption.

Various application and system constraints may also be considered when making
placement decisions. For example, in Ardagna et al. [2007], the SLA revenues obtained
by the minimization of response time and the cost incurred by the use of resources
are incorporated into an optimization problem to find a tradeoff between these two,
apparently contradicting, parameters. The work in Netto and Buyya [2009] focuses on
the scheduling of bag-of-tasks applications. Applications with short deadlines are given
a higher priority when execution can finish in time. Jobs are scheduled according to
the specified deadlines to avoid SLA violations or minimize the delay if the deadline
cannot be met, distributing the requests among the various providers. The consolida-
tion approach used in Borgetto et al. [2009] aims at minimizing the number of hosts
while guaranteeing Quality of Service (QoS) to the users in order to increase energy
efficiency. Power-aware placement of HPC applications is the focus in Verma et al.
[2008] with power consumption modelling for benchmark applications and the impact
of virtualization on the placement of applications being examined.

3.3. VM Reallocation

VM reallocation involves the rescheduling or reshuffling of VMs to the PMs to adjust
the mapping to the changes in resource needs and provide scalability and reliability.
Such changes may be due to applications terminating, a surge in user requests, users
suspending the execution of their applications at runtime [Lee et al. 2010], or varying
application resource needs over time [Stillwell et al. 2010]. In such cases, reallocation
actions are required to better utilize the resources. During such a reallocation, decisions
can be made proactively or reactively to improve the mapping of the VMs to PMs
[Beloglazov et al. 2012]. The question that arises in VM reallocation is which VMs
to select and to which PMs to allocate them, an action also known as VM migration.
Decisions can be based on different optimization goals.

Although reallocation actions may improve the state of the system, VM migrations
may lead to a system overhead and performance degradation of the migrated and collo-
cated VMs. As the migration overhead may not be negligible, reallocation actions can be
selected so multiple or frequent migrations are avoided. In reality, the migration over-
head needs to be taken into account in the decision making; to do this, the time taken for
migration can be modelled as a migration cost [Liu et al. 2013]. However, as modelling
individual migration costs may be difficult, the total number of migrations may also
be considered [Breitgand and Epstein 2011]. Reallocation decisions are performed in
Petrucci et al. [2010] in order to provide power and performance optimization, modelling
the transition costs of migrations and switching operations. In Ferreto et al. [2011], the
number of migrations used to improve host consolidation is minimized by avoiding real-
locating VMs with steady resource needs, without impacting significantly the number
of required hosts. The algorithm in Ghribi et al. [2013] controls the number of mi-
grations required while minimizing energy consumption via consolidation. In Sharma
et al. [2011], migration costs are incorporated in a framework aiming at minimizing
total costs. In order to manage VM migration efficiently, the work in Lu et al. [2013]
introduces a multi-domain pricing and penalty model that is used from the allocation
policy to select VMs for migration and reallocate them to hosts. Finally, the VMware7

6http://www.eucalyptus.com.
7https://www.vmware.com.
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scheduler makes migration decisions according to the goodness of the processor CPUs,
a metric computed based on various criteria, such as the CPU utilization and Load-Line
Calibration (LLC)-level CPU load of the CPUs as well as the topological distance and
communication among the CPUs. As exhaustive search of the solution space may be
computationally expensive, the search space is heuristically adjusted in order to deter-
mine good candidates for migration at acceptable cost and avoid frequent migrations.

VM reallocation actions also target at achieving load balancing among the hosts,
reducing power consumption, or improving application performance. In Maguluri et al.
[2012], a stochastic model that focuses on distributing the load among the PMs to serve
the newly allocated jobs at each timeslot is used. VM reallocation actions are invoked
periodically in order to maximize system throughput, without impacting system perfor-
mance with delays. In the Sandpiper framework [Wood et al. 2009], a greedy algorithm
determines the VMs that have to be reallocated to migrate increased load from busy
hosts to the least busy ones, while reducing migration overhead. Dynamic cost-based
greedy heuristics are the focus in Le and Bianchini [2011] to allocate incoming re-
quests and distribute the load so the placement to the PMs minimizes the additional
cost of power consumption incurred. In Feller et al. [2011], an ant colony-based algo-
rithm for dynamic VM mapping is proposed. The host consolidation approach achieves
energy savings by increasing utilization and lowering the number of machines used.
The scheduler proposed in Bobroff et al. [2007] reallocates VMs by using an autore-
gressive model to predict resource demand. In Petrucci et al. [2011], response time is
the performance parameter to be controlled while minimizing the energy consumed
by the system. Finally, an adaptive scheduling algorithm for workflows is proposed in
Rahman et al. [2013] to remap the workflow tasks to the resources based on the critical
path of the workflow graph.

3.4. Trigger of VM Placement/Reallocation

VM reallocation actions may improve the state of the system but may also be a
computationally expensive procedure. For example, the algorithms used to determine
the actions to be deployed, such as bin-packing algorithms, may be costly with the
execution of the algorithm taking longer than the desired time. Also, frequent migra-
tions need to be avoided, especially when the migration cost exceeds the gain from the
new placement or when the performance of other running applications is significantly
affected [Chen et al. 2011]. This raises the question of when it is a good time to reassess
the mapping of VMs onto PMs. If this is happening often, then the cost may outweigh
the benefits. On the other hand, a delayed response may lead to the rejection of new
requests during a peak period or an increase in cost from resource over-provisioning.
As a result, well-thought-out triggering mechanisms are required to reassess and
optimize the current state of the resources in a timely, yet cost-efficient, manner.
Such triggering mechanisms, or simply triggers, can be event driven, periodic, or
hybrid.

Event-Driven Invocation. Event-driven triggers may relate to the arrival of new VM
requests, requests to resize existing VMs, or the termination of some VMs. When new
VMs arrive, some action needs to be taken to map VMs onto PMs. This action may
involve only the new VMs [Lee et al. 2010; Stillwell et al. 2010] or may also include a
reassessment and possible reallocation of already running VMs [Berral et al. 2010; Yang
et al. 2014]. Requests for VM resizing may invoke both reconfiguration and reallocation
actions to respond to the changes in application resource needs. For example, a new
VM type may be required to fit the workload (due to VM resizing). Following this,
reallocation actions may be invoked to better utilize the resources [Li et al. 2009; Wu
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et al. 2011]. Finally, when the execution of a workload finishes, the assigned resources
are released. Then, there is scope to reallocate the remaining VMs trying to identify
opportunities to switch off underloaded hosts [Li et al. 2009; Lin et al. 2011].

Periodic Invocation. Scheduling actions can also be invoked periodically using prede-
fined schedule intervals. In that case, the controller (typically controlling a scheduler)
is invoked periodically to determine the actions to be taken in each scheduling round
[Ardagna et al. 2007; Bobroff et al. 2007; Petrucci et al. 2010]. In von Laszewski et al.
[2009], the controller sleeps for the predefined time interval and schedules the VMs
waiting in the queue in each round based on the power profile of each host. In Van den
Bossche et al. [2010], a 1h step is used to trigger the cost-aware controller. Periodic
control is also used in Ardagna et al. [2007] to provide load balancing and scheduling
in the proposed SLA-based allocation policy. Finally, in Bobroff et al. [2007], VM reallo-
cation actions are periodically triggered to minimize the number of the hosts required
to run the workload without exceeding a specified rate of SLA violations.

Hybrid Invocation. A combination of event-driven and/or periodic invocation of
scheduling actions is also used in many studies, like in Ferretti et al. [2010], Goiri
et al. [2010b], and Van et al. [2010]. In Goiri et al. [2010b], separate events, such as a
new VM arrival or VM termination, trigger scheduling actions, while SLA violations
are periodically detected. The scheduling actions aim at reducing overall power con-
sumption, while meeting the SLA requirements of the applications. In Van et al. [2010],
the triggering of the control loop can be configured so the configuration and placement
actions are invoked sequentially or at different time scales. In Li et al. [2009], perfor-
mance metrics are monitored periodically to determine whether extra resources are
required for the workload execution, while VM resizing may trigger VM migration ac-
tions. The proposed allocation scheme adjusts the over-provision ratio, the percentage
of extra resources to be allocated to a workload than actually needed, to control the trig-
gering of resizing events and as a result frequent migrations. The approach developed
in Calcavecchia et al. [2012] combines both continuous deployment to allocate newly
arrived VMs to the PMs and periodic reallocation to optimize the placement of the VMs
using historical data of the VM resource usage to predict the demand behavior of each
VM in the future. The VMware scheduler described earlier in Section 3.3 is invoked
when a time quantum allocated to a virtual CPU (vCPU) expires or a vCPU changes
state (e.g., idle or ready state).

Threshold-Based Triggering. In threshold-based triggering, performance metrics are
monitored to trigger the reallocation of VMs when a threshold is exceeded for a partic-
ular time interval. For example, utilization metrics are periodically collected to trigger
the reallocation of VMs from overloaded hosts to less loaded hosts [Choi et al. 2008].
The proposed learning model adjusts automatically the utilization thresholds in order
to distribute the load and better utilize the resources, while triggering a moderate
number of migrations. In Mastroianni et al. [2011], CPU utilization of each host is
controlled periodically and VM reallocation actions are invoked when it is not within
the specified limits. In Wood et al. [2009], a hotspot event is invoked only when the
threshold is exceeded for a number of observations within a time interval to control
the number of migrations and avoid frequent transitions.

Table I summarizes the work in relation to this section with some representative
examples.

4. OPTIMIZATION OBJECTIVES

This section categorizes and describes the optimization objectives of scheduling ac-
tions, which typically attempt to optimize one or more system parameters. In practice,
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Table I. Representative Work on VM Configuration and Placement

Example
Description and Main

Objectives
Scheduling
Type Focus Techniques Used Evaluation

VM
Configuration:
FlexPRICE
[Henzinger
et al. 2010]

A flexible model to
provide a set of
options that matches
execution time and
price

VM Configu-
ration at
specific time
intervals

Construct price curves.
Various scheduling
heuristics were
employed

Simulation
with synthetic
data

VM Initial
Placement:
Borgetto et al.
[2009]

Minimizing the
number of physical
machines while
respecting application
QoS

(Event-
driven) VM
Placement

A bin packing
algorithm that uses
the energetic yield
introduced to find a
placement that
achieves a tradeoff
between energy
efficiency and QoS
performance, allowing
the handling of
workload
concentration

Simulation
with synthetic
data generated
using normal
distribution

VM
Reallocation:
Petrucci et al.
[2010]

Dynamic
management of power
consumption and
application
performance

VM
placement
and
reallocation
with
periodical
control

Mixed Integer
Programming model
that incorporates
transition costs and
allows workload
balancing

Simulation
with web
applications
(World Cup
Web traces)

Event-driven
Triggering: Wu
et al. [2011]

Algorithms that aim
at minimizing
infrastructure cost
and SLA violations
for example, response
time

VM reconfig-
uration,
placement
and
reallocation
with event
driven
invocation

Minimum available
space policy

Simulations on
CloudSim
using synthetic
data

Periodic
Triggering:
Beloglazov
et al. [2012]

Energy efficient
algorithms with QoS
fulfilment

VM
(re)allocation
periodically

Power Consumption
model and priority
queue

Simulations on
CloudSim with
synthetic data
using
distributions

Hybrid
Control: Goiri
et al. [2010b]

Energy-aware
consolidation aiming
at reducing the
number of physical
machines while
respecting application
QoS in terms of
deadlines

VM
Placement
and
reallocation
and system
reconfigura-
tion with
hybrid
invocation

A greedy heuristic
with cost model that
incorporates SLA, VM
migration and creation
penalties and
rewarding of loaded
and reliable nodes,
allowing power
management with
switching on/off
operations

Simulations
based on
OMNET++ for
HPC
applications
with hybrid
resource needs
using a
workload from
Grid5000

Windows Azure
resource
manager

Automatic scaling of
resources

Threshold-
based VM
reconfigura-
tion

Using predefined
application rules

Real PaaS
platform

VMWare
scheduler

Scheduling to achieve
load balancing and
maximize resource
utilization in order to
optimize system
throughput

VM
reallocation
with hybrid
invocation

Use of heuristics to
achieve good decision
making and avoid
frequent migrations

Middleware
platform
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system and user goals may be often conflicting; thus, considering a tradeoff between
different parameters may be the goal of many scheduling actions. Three key categories
to describe optimization objectives in VM scheduling become of interest:

—Resource utilization
—Monetary units
—Energy consumption

4.1. Resource Utilization

Increasing resource utilization is one of the main goals of cloud providers. Resource
wastage may lead to increased energy consumption and costs due to underloaded (or un-
derutilized) hosts but also profit loss due to the reduction of the number of applications
that can be accepted. Although optimizing resource utilization is a performance-related
problem, it may also be examined in relation to fairness as well. For example, in Stillwell
et al. [2009], resource utilization is increased by maximizing the yield, a metric defined
as the fraction of computing capacity to be allocated to a task to the capacity consum-
ing when running the task on the host alone, so performance and fairness (defined in
relation to stretch or slowdown [Bender et al. 1998]) are taken into account in the de-
cision making. To address resource utilization, actions may be needed both in relation
to hosts and the distribution of workload onto them; these are grouped next.

Host consolidation, that is, the allocation of multiple VMs onto PMs to share the
hardware resources, can be used to increase resource utilization [Meng et al. 2010; Lee
and Zomaya 2012; Wang et al. 2011; Farahnakian et al. 2014]. The model in Meng et al.
[2010] improves host consolidation by multiplexing VMs with complementary resource
need trends. The VMs are initially divided into groups according to their utilization
and performance patterns and resources are allocated to each group instead of each
application VM separately. The algorithm allocates the amount of the joint required
resources to the group, which is the minimum required capacity to be allocated due to
the complementarity of the VM resource needs. In that way, resource utilization is im-
proved while VMs do not interfere or impact the performance of each other. The work
in Eyraud-Dubois and Larchevêque [2013] focuses on the dynamic allocation of the
VMs to PMs so overall resource utilization is increased while meeting the VM resource
requirements over time. The proposed approach uses a bin packing algorithm that
achieves efficient allocation even with unpredictable change in the CPU utilization of
the VM, migrating VMs to correct and minimize SLA violations if needed. The work in
Carrera et al. [2012] addresses the problem of VM placement for heterogeneous work-
loads with dynamic resource sharing, managing long running jobs, and transactional
applications to achieve fairness among the different application targets and meet the
SLA objectives. Finally, the work in Gupta et al. [2012, 2013] improves resource utiliza-
tion, taking into account the cross-VM interference of the applications in the proposed
bin packing heuristic to combine HPC applications and consolidate the VMs to the PMs
so application performance is not compromised.

A performance model to represent different VM combinations and performance inter-
ference among VMs and evaluate system performance in a virtualized environment is
developed in Kimura et al. [2014]. The problem of scheduling VMs onto shared hosts so
interference among collocated VMs is reduced is also the subject in Salimi and Sharifi
[2013]. A mathematical model to estimate the interference among collocated VMs is
developed and used to pause and resume VMs so workload performance is improved.
The consolidation approach in Wang et al. [2011] formulates the optimization problem
as a stochastic bin packing problem that takes into account the network bandwidth
constraints by modelling the bandwidth demands of the VMs as a probabilistic distribu-
tion. The algorithm reduces the number of required hosts. Although host consolidation
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may increase resource utilization, tight consolidation of the hosts may affect the per-
formance of the running workloads due to some resource sharing. For instance, Corradi
et al. [2014] focuses on power, host, and networking resource sharing and evaluates
performance degradation and consolidation constraints. Finally, in Lovász et al. [2013],
a model to predict the performance degradation of a service running on a consolidated
host is proposed. The model is used by two energy-aware heuristics to take into ac-
count the performance constraints of the consolidated services and approximate the
formulated energy-optimal and performance-aware problem. Finally, the work in Chen
et al. [2012] uses queuing theory modelling to predict application performance metrics
on multi-core systems, taking into account the interference and load-dependent char-
acteristics of the collocated VMs. The model is used to improve the consolidation of
the VMs, maximizing resource utilization while meeting the application performance
requirements.

Workload concentration is also used to improve resource utilization by aggregating
the load to an optimal number of hosts, which is achieved by switching on and off hosts.
The framework in Li et al. [2009] minimizes the number of running hosts using both
static and adaptive scheduling actions in order to reduce energy consumption. Addi-
tionally, resource over-provisioning is used to avoid frequent VM resizing. Selecting
the host with the least available space to map the next incoming VM waiting to be
allocated is another scheduling policy used to achieve workload concentration, such as
the Least Free Capacity scheme in Do and Rotter [2012]. The profit- and priority-based
placement policy in Lee et al. [2010] reduces the number of instances created in order
to increase the utilization of the hosts without exceeding the SLA constraints. To do so,
scheduling is based on the proposed pricing model that incorporates processor-sharing
and the time-varying utility function where the price charged depends on the expected
response time of the service. The scheduler assigns the requests to the instances based
on both the profit and response time criteria to control the incoming rate of requests of
each VM instance.

An underutilized host that is not expected to serve new incoming requests can be set
in a retiring state—waiting for the still running VMs to finish without accepting new
incoming requests—so the host can be set to a lower-power-consuming state (e.g., to be
switched off or set to idle state). When the execution of the remaining VMs is expected
to continue for a long period, the remaining VMs can be migrated to other active hosts
so the underutilized host can be set to a lower-power-consuming state earlier. In Lin
et al. [2011], a dynamic round-robin scheme that follows these two power saving rules
is proposed. The dynamic round-robin scheme combined with the First Fit heuristic
further improves energy efficiency.

Workload balancing techniques are used to distribute the load among the hosts and
avoid host overloading that may impact application performance, such as response
time. Workload balancing policies include round-robin scheduling to distribute evenly
the requests among the available hosts, Join the Shortest Queue scheduling to balance
the number of waiting VMs at the queues by assigning the request to the shortest
waiting queue, the least connections algorithm that allocates a new request to the host
with the least number of active connections or requests, and the Maximum Available
Space policy to increase the utilization of the less loaded hosts. Amazon EC2 and
Rackspace5 support different workload balancing algorithms, such as round-robin,
weighted round-robin, least connections, and weighted least connections. The weighted
round-robin (and least connections) policy is a modified version of the round-robin (and
least connections, respectively) strategy that enables us to specify the frequency with
which a request is assigned to a host. In that way, the load is distributed among
heterogeneous hosts so more requests are allocated to more efficient hosts. A weighted
round-robin method is also used in Petrucci et al. [2011] to balance the load among the
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hosts based on the current capacity of each host. In Petrucci et al. [2010], the round-
robin algorithm can dynamically respond to QoS requirements and energy issues,
supporting reconfiguration, migrations, and Dynamic Voltage and Frequency Scaling
(DVFS) techniques to optimize the current state of the system. An approach similar
to the Join the Shortest Queue heuristic is used by the OpenNebula8 scheduler in
order to distribute the VMs to the hosts when the striping policy mode is selected.
The heuristic assigns each pending VM for (re)allocation to the host with the least
number of running VMs in order to maximize the resources available to the VMs. An
alternative policy to the Join the Shortest Queue heuristic is applied in Maguluri et al.
[2012]. In this policy, a host is randomly selected in each round and compared with the
host selected in the previous round in terms of the queue length. The host with the
shortest queue is then used for the placement of the VMs in the current round. In that
way, throughput is increased without impacting system performance with delays. The
Maximum Available Space policy is used during the migration phase in Calheiros et al.
[2009] to migrate the VMs from overloaded hosts to less loaded ones. Each migrated
VM is reallocated to the host with the lowest utilization (load), while respecting the
bandwidth and latency constraints. Finally, an ant colony optimization approach is
used in Ferdaus et al. [2014] in order to achieve workload balancing.

4.2. Monetary Units

Cost-based and utility-driven approaches express the optimization problem in some
monetary units. Minimizing the operating costs or maximizing the profit and utility
gain are goals from the provider’s perspective, while minimization of the application
cost or meeting budget constraints are goals from the user’s perspective. Economic or
cost functions are used to model the cost of a configuration and the total profit of the
provider. The infrastructure cost, transition costs to model transition overhead, penalty
costs from SLA violations, and/or the revenue from the users are some of the factors
incorporated in the cost models. Revenues may also account for resource outsourcing
and insourcing (renting) to other providers.

In Liu et al. [2009], the cost function comprises migration costs, energy costs, and the
cost of overloaded hosts to model the potential impact of overloading on system perfor-
mance. The proposed approach aims at achieving a tradeoff between energy efficiency
and the provided performance. The cost model in Maurer et al. [2011] incorporates
penalty costs due to SLA violations, costs due to unused resources, and the cost of ac-
tions (the percentage of the actions to be executed compared to all possible actions that
could be executed) in order to optimally adjust the utilization thresholds that invoke
the actions to be executed. The infrastructure cost mainly comprises the energy con-
sumed by the used hosts and the energy spent for cooling [Le and Bianchini 2011]. The
energy consumed by a host is computed taking into account the idle power consumed
while the host is idle and the dynamic power required to execute the jobs, depend-
ing on the utilization level of each resource. Resource outsourcing to other providers
and switching on/off operations are also incorporated in the cost model in Goiri et al.
[2010a].

Operating Costs. Minimizing the operating costs has been the focus of many studies
[Mian et al. 2013; Quiroz et al. 2009; Le and Bianchini 2011]. These studies may
include electricity costs due to energy consumption, penalty costs due to SLA violations,
and overhead costs due to transitions or migrations. Resource and penalty costs are
incorporated in the model in Mian et al. [2013]. In Quiroz et al. [2009], a tradeoff
between the over-provisioning cost (the additional cost from unused resources) and the

8http://www.opennebula.org.
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wait cost that models the time between the arrival and execution of an application
request (the delay of the instantiation of new VMs) is achieved. Electricity costs are
taken into account in Le and Bianchini [2011] to schedule the jobs based on the energy
price, cooling, and peak power demand costs. Migrations are also considered to increase
cost savings.

Maximization of Provider’s Profit and Utility. Increasing the gain of the provider
in profit- or utility-based scheduling schemes, as in Goiri et al. [2012], Zhang and
Ardagna [2004], Cardosa et al. [2009], and Goudarzi and Pedram [2011], is another
goal used. In Goiri et al. [2012], the VMs are distributed to the hosts so the provider’s
profit is maximized taking into account energy consumption, system overheads, and
penalties from SLA violations. Also, renting costs are considered to support outsourcing
of VMs to other providers to further increase the profit. Dynamic programming is
used in Goudarzi and Pedram [2011] to maximize total profit of the provider that is
modelled taking into account the operational costs and the SLA contracts for multi-tier
applications. In Cardosa et al. [2009], the utility of an application is used to prioritize
more profitable applications and compute the total utility gain of a host under a specific
configuration. The utility function of the application is also used to determine the
resource capacity to be allocated. The optimization problem is then transformed into
finding the configuration that maximizes the total utility gain of the system while
also considering the power costs. However, the proposed approach does not consider
migrations that could further improve the consolidation.

4.3. Energy Consumption

Minimizing energy consumption has become a main challenge in cloud computing due
to the economic and environmental factors associated with increasing energy costs
[Berl et al. 2009]. Resource utilization, for example, CPU, disk, storage and network,
and associated equipment, such as cooling systems, are the main contributors to en-
ergy consumption and result in increased operating costs for the providers and CO2
emissions that impact the environment.

Minimization of Active Machines. Host consolidation policies that increase resource
utilization may also be used to reduce energy consumption. As the CPU comprises one
of the main components that consume energy and its consumption is reasonably well
understood, several studies focus on improving CPU usage and minimize the number
of active machines in order to increase energy efficiency. In Kim et al. [2014], a model
to estimate the energy consumed by a VM in a consolidated host is proposed. The
prediction is based on performance counters, monitoring events generated by the VM.
The estimation model is used by a scheduler to provide resources to a VM according
to its energy budget and control its energy consumption within each time interval,
suspending the execution of the VM when it consumes the energy budget it is allowed
for the current interval.

Switching hosts on when resource needs increase and switching unused hosts off
when resource needs decrease are among the actions that should be performed in order
to improve energy efficiency. As a result, determining the optimal number of hosts
required to serve the workload and provide scalability is one of the challenges that
arise, which is the focus of many studies [Mastroianni et al. 2011, 2013; Zhang et al.
2014]. The work in Zhang et al. [2014] proposes a framework to determine dynamically
the number of machines and adjust the provisioning of resources so a tradeoff between
energy consumption and scheduling delay is achieved. The proposed framework deals
with the heterogeneity of the workload to cluster tasks with similar requirements and
resource needs and adjust the placement to heterogeneous physical machines taking
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into account the reconfiguration cost. The policy in Dyachuk and Mazzucco [2010]
dynamically adapts the number of active hosts to minimize the number of hosts re-
quired to serve the current workload while fulfilling the performance requirements of
the requests when the traffic parameters are not known. In Mastroianni et al. [2011],
more loaded hosts are preferred over underutilized and inactive hosts to avoid power
wastage. However, VMs from overloaded hosts are migrated to avoid SLA violations,
while underutilized hosts are emptied to switch them off. Thresholds are set to avoid
overloading and frequent migrations. In Dong et al. [2013], the proposed algorithm
combines the minimum cut algorithm to cluster VMs so network traffic is reduced and
allocates the VMs to the PMs using the best-fit heuristic to increase resource utiliza-
tion and improve energy efficiency by reducing both the number of active machines
and network elements. Finally, Eucalyptus6 provides scheduling with host switching
on/off.

Dynamic Voltage and Frequency Scaling. Dynamic power management techniques,
such as DVFS techniques, is another approach used. The power consumed by the
processor is correlated with the operating frequency of the CPU. Lowering the CPU
frequency may lead to power savings and potential energy savings but may impact
application performance. This means that the same application may need to run longer
to complete execution, thereby increasing overall energy consumption [Rauber and
Rünger 2015]. In other words, in order to increase energy efficiency while meeting the
SLA constraints, algorithms to determine a good frequency to use for each application
are required.

In Garg et al. [2011], DVFS is deployed to determine the operating frequency of the
CPU so application deadlines are met. The meta-scheduler allocates each new appli-
cation to a time slot in a selected data center and determines the CPU frequency to
be assigned. Scheduling takes into account the diversity of geographically distributed
data centres by considering economic and environmental factors on the decision mak-
ing. In Kim et al. [2011], different adaptive DVFS-based provisioning schemes to in-
crease energy savings and profit are evaluated. The proposed algorithm selects the
least expensive VM and the placement that meets the required application throughput
(MIPS rate) in order to minimize the user cost. Then, DVFS is applied to increase
the profit and energy efficiency. In von Laszewski et al. [2009], the PMs are config-
ured to operate to their lowest possible voltage (frequency) in each scheduling round
and the voltage of a PM is scaled up when the performance requirements of a VM to
be allocated to it cannot be met. PMs with low voltages are preferred for the alloca-
tion of the VMs to avoid increasing the voltages. VMs are sorted according to the re-
quired frequency (in descending order), prioritizing VMs with higher resource needs. In
Pierson and Casanova [2011], DVFS is incorporated in the placement algorithm to
achieve a tradeoff between power consumption and the provided QoS level by integrat-
ing the available power states of a host in the formulated mixed integer linear problem.
In Ding et al. [2015], an energy-aware algorithm that supports DVFS is proposed. The
algorithm initially schedules deadline-constrained VMs to the cores of the PMs prefer-
ring PMs that can provide more computation resource within a certain power budget.
To do so, the PMs are prioritized according to the performance-power ratio, a metric
that is introduced to compute the ratio of the computation capacity to the peak power
of each PM. The frequency to operate each core is then determined based on the total
amount of resources required by the collocated VMs. Power-conserving mechanisms
are also used in Quan et al. [2012], Wu et al. [2014], Young et al. [2013], and Gao et al.
[2014].

Thermal Management. A significant amount of energy is consumed by cooling sys-
tems. Thermal hotspots may occur when load concentration is high and the energy
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consumption by cooling systems increases. As a result, a challenge that arises in VM
scheduling is distributing the load among the hosts so thermal hotspots are avoided.
In Sandpiper [Wood et al. 2009], resource statistics data are collected to profile the
resource usage of the VMs and PMs and are used to detect hotspots. Hotspots are re-
actively mitigated using VM resizing or migration from overloaded to less loaded hosts
preferring VMs with larger volume (load) to size (memory footprint) ratio. In Chen
et al. [2011], a proactive scheduling approach is used where temperature information
is considered to determine the VM placement of the incoming workload to achieve ther-
mal balance and avoid hotspots. In Xiao et al. [2013], the temperature hotspot, a metric
used to measure the degree of overload of a resource, is used to mitigate hotspots. The
proposed algorithm increases resource utilization of the hosts by minimizing skewness,
a metric introduced to quantify uneven resource utilization, and migrates VMs based
on the temperatures in order to eliminate hotspots (or at least reduce the temperature
at most) when the utilization of a resource is above an allowed threshold.

Representative work in relation to different optimization objectives is presented in
Table II.

4.4. Optimization Techniques

A set of common optimization techniques are typically used to achieve the optimization
goals described in the previous section. These include the following:

—Utility and Reward Functions. Utility and reward functions model the value the
execution of an application (or a configuration) has for either the user or the system
(to prioritize applications accordingly). The overall gain from the transition of the
system to a new configuration can also be modelled [Lee et al. 2010; Van et al. 2010;
Jung et al. 2010].

—Integer Programming. The optimization problem can be formulated as an Integer
Programming problem that describes the conflicting constraints and goals, as in Shi
and Hong [2011], Zhang and Ardagna [2004], Sharma et al. [2011], and Yang et al.
[2013].

—Probabilistic, Stochastic and Statistical Models. Probabilistic, stochastic, and statis-
tical models are used to predict the application resource needs and configure the
system depending on the estimated demand [Watson et al. 2010; Maguluri et al.
2012; Wang et al. 2011].

—Genetic Algorithms and Artificial Intelligence Techniques. Genetic algorithms and
artificial intelligence techniques, such as swarm intelligence and neural networks,
constitute another group of (often computationally expensive) methods used to pre-
dict application performance and transit the system to an optimal state [He et al.
2011; Jeyarani et al. 2012; Kousiouris et al. 2011; He et al. 2014; Farahnakian et al.
2014; Zheng et al. 2016].

—Machine Learning Techniques. Supervised learning algorithms, such as SVMs,
and reinforcement learning techniques are examples of machine-learning tech-
niques used to model application behaviour and plan the VM configuration actions
[Niehorster et al. 2011; Xu et al. 2012].

—Bin Packing Algorithms and Dynamic Programming. Bin-packing algorithms and
Dynamic programming techniques are mainly used for placement optimization prob-
lems [Stillwell et al. 2009; Shi and Hong 2011; Berral et al. 2011; Beloglazov and
Buyya 2010b; Goudarzi and Pedram 2011].

—Heuristics. Heuristics, often employing simple analytical models, are used to obtain
reasonably good results at a low computational time [Wood et al. 2009; Le and
Bianchini 2011; Borgetto et al. 2012; Hwang and Pedram 2013].

Table III includes representative work that uses such techniques.

ACM Computing Surveys, Vol. 49, No. 3, Article 49, Publication date: October 2016.



Mapping Virtual Machines onto Physical Machines in Cloud Computing: A Survey 49:17

Table II. Representative Work on Different Optimization Objectives

Example
Description and Main

Objectives
Scheduling Type

Focus Techniques Used Evaluation
Host
Consolidation:
Meng et al.
[2010]

A joint VM based
provisioning
framework to combine
VMs with
complementary needs
aiming to increase
resource utilization
and minimize the
number of nodes
required

VM
Configuration
and
Reconfiguration
at each time
frame

Statistical
modelling, First
Fit Decreasing
algorithm for the
bin packing
problem

Workloads
from
commercial
data centres

QoS
Requirements:
Stillwell et al.
[2009]

Resource provisioning
to increase resource
utilization and
optimize resource
availability to
applications, defining
a metric that reflects
performance and
fairness

VM
(re)configuration
and
(re)allocation

Mixed integer
linear program
and bin packing
algorithm

Experiments
using
simulations
with
synthetically
generated
applications of
hybrid needs

Monetary
Units: Sharma
et al. [2011],
Kingfisher

A cost-based
provisioning
framework that allows
minimization of
infrastructure or
transition cost

VM
(re)configuration
and reallocation
at steps

Integer linear
program with
greedy heuristic

Experiments
using the
OpenNebula
toolkit with
realistic web
applications
using the
TPC-W
benchmark
(e-commerce
application)

Energy
Efficiency:
Wood et al.
[2009],
Sandpiper

A framework that
provides thermal
management choosing
and migrating VMs
according to their
volume-to-size ratio, a
defined metric

VM
(re)allocation
and
reconfiguration
with periodical
control

Based on
auto-regressive
predictors and a
greedy heuristic
for migrations

Experiments
using RuBiS
for web
applications

Amazon EC2
load balancer

Achieve load balancing
to distribute
application traffic

VM allocation Use of (weighted)
round robin
techniques

Real IaaS
platform

OpenNebula
scheduler

Achieve different
optimization goals,
such as minimize the
number of hosts used
or distribute the load
among the hosts

VM
(re)allocation
with
event-driven
triggering

Use of heuristics
for workload
concentration and
load balancing

Middleware
platform

5. APPLICATIONS, METRICS, AND PLATFORMS

In this section, the characteristics of the applications, metrics, and tools used to imple-
ment and assess the techniques of previous sections are described.

5.1. Application Characteristics

The applications can be categorized depending on their resource needs, nature, and
domain.

Resource Needs. Key resource needs include CPU, memory, disk, and network capac-
ity. Based on the resource needs, the applications can be categorized to computationally
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Table III. Representative Work on Optimization Techniques

Example
Description and Main

Objectives
Scheduling
Type Focus Techniques Used Evaluation

Utility and
Reward
Functions:
Jung et al.
[2010], Mistral

A scheduling
framework that
considers power and
transition costs while
respecting application
performance in terms
of response time

VM
reconfiguration
and
(re)allocation
in stability
intervals based
on historical
data

Use of utility
function and a bin
packing algorithm

RUBiS
application with
realistic traces for
web applications
from the World
Cup site and a
web host system
(HP user’s)

Stochastic
Model: Bobroff
et al. [2007]

host consolidation
algorithm that aims at
improving resource
utilization while
reducing SLA
violations

Periodic
reallocation

Using historical
data for
forecasting

Use of production
workload traces

Integer
Programming
Problem:
Tordsson et al.
[2012]

A brokering
mechanism for the
placement of VMs
across multiple cloud
providers to
incorporate application
cost and QoS

VM
configuration
(periodically)

Integer linear
program
formulation and
workload
balancing

Realistic traces
from NAS Grid
Benchmarks

Genetic
Algorithm: He
et al. [2011]

VM consolidation and
resource provisioning
that aims at
minimizing transition
overhead

Periodical VM
reconfiguration
and
reallocation

A genetic
algorithm

Synthetic data for
CPU, memory and
I/O intensive
applications

Bin Packing
Algorithm:
Beloglazov and
Buyya [2010a]

Energy aware
consolidation while
respecting QoS
focusing on finding the
VMs to be migrated

VM
Reallocation in
each round
(time frame)

A modified bin
packing
algorithm,
implementation of
DVFS and
switching on/off
operations

Simulations on
CloudSim

Heuristics:
Borgetto et al.
[2012]

An energy-conscious
allocation scheme for
the tradeoff between
power consumption
and job performance

VM placement Linear program
formulation

Synthetic data
with
implementation
in Grid5000

Machine
Learning
Techniques:
Niehorster
et al. [2011]

Development of
agent-based system
that learn behaviour
models and provide
cost estimates

Event driven
VM
reallocation
and
reconfiguration

Machine learning
technique

Use of the RUBiS
benchmark

ElasticHosts
load balancer

Offer to users
cost-efficient
provisioning and good
performance

VM allocation
(and reconfigu-
ration)

Use of
round-robin
policies for load
balancing

Real IaaS
platform

Eucalyptus
scheduler

Achieve load balancing
and good performance

VM allocation Use of round
robin, First Fit
and host
switching on/off
policies

Middleware
platform
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intensive, consuming most of the execution time on the CPU, such as Matlab bench-
marks [Kousiouris et al. 2011] and HPC applications benchmarks [Goiri et al. 2010c];
data-intensive applications that process large amounts of data and may require a large
amount of memory and/or storage, such as the TPC-W and TPC-H benchmarks [Bu
et al. 2011; Mian et al. 2013]; or hybrid workloads with varying resource needs, such as
network and CPU together [Song et al. 2009; Viswanathan et al. 2011; Kim et al. 2009].

Evaluation Data. The evaluation data can be divided in terms of the way they were
generated into synthetic data, for example, using probability distributions or emulating
real data [Iqbal et al. 2010; Cardosa et al. 2009; wor 2015] or real applications [Almeida
et al. 2010; Lee and Zomaya 2010; Mao et al. 2010; Huu and Montagnat 2010; Byun
et al. 2011; von Laszewski et al. 2009].

Application Domain. The last categorization in relation to application characteris-
tics is based on the target domain of the application: web-based applications, including
traces from web servers [Almeida et al. 2010; Lucas-Simarro et al. 2012]; Wikipedia
traces [Mazzucco et al. 2010; Mazzucco and Dumas 2011; Dyachuk and Mazzucco
2010]; World Cup traces [Petrucci et al. 2010, 2011; Mi et al. 2010; Cardellini et al.
2011]; e-commerce and transaction applications [Sharma et al. 2011; Zhang et al. 2010;
Emeakaroha et al. 2011; Watson et al. 2010]; or HPC and parallel applications, includ-
ing synthetic data [Stillwell et al. 2009; Lucas-Simarro et al. 2012], traces from clusters,
and supercomputers or scientific workflows [Netto and Buyya 2009; Viswanathan et al.
2011; Cardosa et al. 2009].

5.2. Evaluation Metrics

This section describes the metrics used to evaluate the performance of different VM
mapping approaches. The metrics are divided into four different groups of metrics:
application performance metrics, host consolidation metrics, energy efficiency metrics,
and monetary metrics.

Application Performance Metrics. Application performance metrics measure user sat-
isfaction trying to capture some QoS level of performance, which may include response
time or execution time [Bu et al. 2009; Lee and Zomaya 2010; Dutreilh et al. 2010], the
ratio of the capacity provided to the application to the maximum capacity at optimal
allocation [Espadas et al. 2013; Mastroianni et al. 2011], the number of SLA violations
and delay [Lin et al. 2011; Netto and Buyya 2009; Meng et al. 2010; Wu et al. 2011],
and the number of accepted or rejected requests [Tang et al. 2007; Nathani et al. 2012;
Assunção et al. 2009].

Host Consolidation Metrics. To assess the effectiveness of techniques making use of
host consolidation, different metrics may be typically used. Total resource utilization
and system throughput [Kochut 2008; Song et al. 2009; Xu et al. 2012; Nathani et al.
2012] measure the efficiency of the system to exploit the system resources and serve
as many users as possible. Algorithm execution time [Calheiros et al. 2012; Korupolu
et al. 2009] is used to measure how quickly the system can respond to the changing
resource needs. Finally, the number of VM migrations [Beloglazov and Buyya 2010a;
Yazir et al. 2010] is also used to measure the efficiency of the algorithm as frequent
transitions may impact the performance of the system.

Energy Efficiency Metrics. Although the natural way to evaluate the degree to which a
proposed model achieves energy improvements is to consider overall power and energy
consumption [Jeyarani et al. 2012; Berral et al. 2010; Lee and Zomaya 2012], some
studies also considered the number of system resources required [Chang et al. 2010;
Berral et al. 2010], these resources being either VMs or physical hosts.
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Monetary Metrics. To evaluate mapping techniques from a monetary point of view,
one could focus on the provider’s cost (e.g., Le and Bianchini [2011] and Wu et al.
[2011]), the provider’s revenue [Shi and Hong 2011; Mazzucco and Dumas 2011], or
user cost [Mao et al. 2010; Byun et al. 2011].

5.3. Platforms

In this section, the platforms used in the literature to deploy and assess VM map-
ping techniques are described. These are divided into real platforms, middleware, and
simulation tools. Real platforms include some IaaS and PaaS models. Middleware and
software tools include cloud computing platforms to manage data centre infrastruc-
tures and deliver software. Finally, simulation tools include simulation environments
developed to test different techniques.

Real Platforms. The Amazon Elastic Compute Cloud (EC2)2 is one of the most
common real platforms used to test various mapping techniques. Following an IaaS
model, it provides on-demand instances (VMs) to users to execute their applications.
More recently, even more IaaS providers, such as ElasticHosts,1 have been used. Both
providers, ElasticHosts and Amazon EC2, offer round-robin load-balancing policies to
distribute the requests among the hosts. Finally, Windows Azure,4 following a PaaS
model, is also commonly used. Windows Azure offers users the option to automatically
scale the resources allocated to their applications by using predefined application rules.
For example, users may specify thresholds in order to keep the average CPU utilization
and memory usage within an acceptable range. The scheduler monitors and evaluates
the selected metrics in order to determine the actions required so the specified rules
are met, for example, thresholds are not exceeded in the case of a sudden workload
burst.

Middleware and Software Tools. There is a variety of middleware and software tools
that have been used to test different VM mapping mechanisms: OpenNebula,8 Aneka,9
Eucalyptus,6 Globus Nimbus,10 and OpenStack11 are some of them. OpenNebula is a
cloud management toolkit to build and manage IaaS clouds such as monitoring and
deploying the VMs. It has been used to incorporate and test the scheduling mechanisms
developed in Rodero-Merino et al. [2010], Dutreilh et al. [2010], Sharma et al. [2011],
Petrucci et al. [2011], and von Laszewski et al. [2009]. Decision making is based on
a rank scheduling policy that selects suitable hosts to allocate a VM according to dif-
ferent optimization objectives, while hosts that do not meet the resource requirements
of the VM are excluded. The ranking can be adapted by selecting suitable predefined
policy modes; these may include packing (workload concentration) modes to minimize
the number of used hosts, load balancing and striping modes to allocate VMs to hosts
with less load and distribute the VMs to the hosts, customized ranking modes to define
the ranking function and sort the candidate hosts accordingly, or fixed ranking to sort
the hosts according to predefined priorities. Also, OpenNebula supports VM migration,
offering the option to reallocate running VMs to more suitable hosts. Reallocation ac-
tions are invoked when certain conditions are met. Aneka is another software tool for
the management of resources from heterogeneous sources such as private and public
clouds, used in Vecchiola et al. [2012]. Two algorithms can be deployed to provide dy-
namic resource provisioning; the FixedQueueProvisioningAlgorithm ensures that the
size of the queue of the tasks waiting for execution does not exceed a specified thresh-
old in order to guarantee high system throughput and good performance. The Deadline

9http://www.manjrasoft.com/products.html.
10http://www.nimbusproject.org.
11https://www.openstack.org/.
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Priority Provisioning Algorithm is a best effort policy that adjusts the number of re-
sources used for the execution of an application in order to meet the specified deadline.
Eucalyptus [Nurmi et al. 2009] is an open-source software platform to deploy a cloud
infrastructure and is commonly used to perform experiments [Espadas et al. 2013;
Iqbal et al. 2010]. Eucalyptus supports three different scheduling policies; round-robin
to distribute the load among the hosts, a greedy First Fit algorithm that finds the
first host that satisfies the VM resource requirements, and the power save algorithm
that switches idle hosts off until new VMs are allocated to it [Lin et al. 2011]. Nim-
bus is another open-source IaaS platform mainly aiming at the scientific community
[Vázquez et al. 2011]. Nimbus allows administrators to deploy their own policies in
order to automatically determine the number of resources needed for the execution of
an application and manage the configuration of VMs, launching or terminating VMs
accordingly. Finally, the scheduler used at OpenStack11 filters the candidate hosts to
allocate a VM by assigning weights according to selected criteria, such as the avail-
ability zone, RAM capacity, and capability of the host. The VM is assigned to the host
with the minimum weight.

Simulation Tools. Experiments to test scheduling mechanisms are often performed
using simulation, as simulation allows controlled experiments that help study be-
haviour in isolation. By far the most common simulator in use is CloudSim,12 a
cloud-computing simulation toolkit used in numerous studies [Jeyarani et al. 2012;
Beloglazov and Buyya 2010b; Wu et al. 2011; Calheiros et al. 2009]. OMNET++13, a
modular framework used to build network simulators, has also been used often [Berral
et al. 2010; Goiri et al. 2010a, 2010b, 2012].

Representative work in relation to applications, metrics, and platforms is summa-
rized in Table IV.

6. DISCUSSION

Although techniques to map VMs onto PMs to provide scalability and/or elasticity
are well discussed in the literature, the problem still remains an issue where further
research is needed. As providers offer different pricing options and a wide range of
possible VM configurations, users can choose different combinations in line with their
performance and cost targets. However, with the increasing number of configurations
made available, choosing appropriate hardware to serve the application VMs and map
them onto PMs may risk an adverse impact on performance. For example, the per-
formance of an application is affected depending on the CPU model and location of
the used hardware when provisioning VMs of the same instance type [O’Loughlin and
Gillam 2014] and the resource requirements of the collocated VMs, while the impact
of the selected CPU frequency on application performance may vary for applications
with different characteristics such as a workload’s CPU-boundedness [Hsu and Kremer
2003]. The different combinations of application and system performance levels may
reveal potential directions for future research. The challenge is to find good matches be-
tween application and system requirements so over-provisioning or under-provisioning
of resources is avoided. At the moment, the trend of cloud providers to offer a large num-
ber of possible VM configurations suggests that sophisticated techniques for dynamic
adjustment to actual workload requirements may have to be studied. In turn, this re-
quires good profiling tools and prediction models to monitor and assess the impact of
workload execution on heterogeneous systems.

12http://www.cloudbus.org/cloudsim.
13https://www.omnetpp.org.
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Table IV. Representative Work on Applications, Metrics, and Platforms

Example
Description and Main

Objectives
Scheduling Type

Focus Techniques Used Evaluation
Application
Characteristics—
CPU Intensive
Benchmarks:
Goiri et al.
[2010c]

An allocation policy to
maximize provider’s
profit while considering
energy efficiency,
overheads and SLA
violations and
supporting resource
outsourcing

Event-driven
VM
(re)allocation
and
reconfiguration

Cost-based
heuristic with
switching on/off
operations

Use of real CPU
intensive tasks
from Grid5000
and
implementation
in OMNet++

Evaluation
Data—Synthetic
Traces: Almeida
et al. [2010]

Scheduling policy to
increase provider’s
profit while considering
QoS requirements

VM
configuration
and initial
placement with
periodical
invocation

FCFS
scheduling

Use of both
synthetic and
realistic data,
web
applications

Application
Domain—Web
Applications:
Mazzucco and
Dumas [2011]

A model that aims at
maximizing provider’s
profit

periodical VM
reallocation

Use of a
stochastic model

Use of
Wikipedia
traces for real
web
applications

Real Platforms:
Mao et al. [2010]

A scaling framework to
optimize the number of
instances used allowing
reduction of user cost
while meeting the
application deadlines

VM
reconfiguration
in intervals

Integer
programming
problem

Implementation
on Windows
Azure using
simulations and
a real scientific
application,
MODIS

Middleware and
Software Tools:
Espadas et al.
[2013]

A cost-based
provisioning and load
balancing framework
that considers
multi-tenancy, finding
the optimal number of
VM instances required

Event-triggered
VM
(re)configuration
and placement

Workload
balancing

Implementation
on Eucalyptus
and simulation
of a J2EE
application

Simulation
Tools: Calheiros
et al. [2009]

Automatic virtual
machines and links
mapping

VM
(re)allocation at
each iteration

Workload
balancing using
available CPU
utilization as
the load metric

Use of synthetic
data and
implementation
in CloudSim

OpenStack cloud
controller

Achieve different
optimization objectives
based on selected filters

Event-driven
VM allocation

Use of greedy
algorithm

Middleware
platform

Aneka scheduler Dynamic resource
provisioning to achieve
high system throughput
and meet application
performance constraints

Periodic VM
allocation and
reconfiguration

Best effort policy Middleware
platform

In addition, traditional optimization objectives typically focus on a single goal to
improve system performance. However, there are conflicting requirements, application
constraints are variable, and, no matter how simply they are defined, the mapping
problem of VMs onto PMs should be considered as a multi-objective optimization prob-
lem. Different solutions may consider what aspects of such an optimization problem
may become more relevant than others. For example, if there is a power cap on the use
of the infrastructure energy consumption may take priority when mapping VMs onto
PMs. This, in turn, may imply that a different mapping mechanism is more suitable
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in this scenario as opposed to the mapping mechanisms that are suitable in scenarios
that are not constrained by a power cap. This raises the question of studying advanced
multi-objective optimization techniques as part of the VM-to-PM mapping problem.

Finally, when and how to invoke the scheduling operations still remains an open
challenge, even though, as already mentioned in Section 3.4, there are studies focusing
on finding good time intervals for the scheduling decisions. Frequent controls may be
costly but in-time response may be required to adjust to sudden changes and maintain a
certain level of performance. To address this issue, good prediction mechanisms as well
as robust mapping schemes that cope well with changes may need to be investigated.

7. CONCLUSION

A survey and categorization of techniques to map VMs onto PMs in cloud computing has
been presented. The goal of this survey has been to focus on the scheduling actions and
what triggers them; the optimization goals and techniques deployed; and the metrics,
applications, and platforms used in evaluation of different techniques to map VMs onto
PMs. Related work has been described and categorized based on this classification to
enable a deep understanding of the problem with respect to its mapping properties.
Finally, research directions for future work have been discussed.
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