
21

Survey On Software Design-Pattern Specification Languages

SALMAN KHWAJA and MOHAMMAD ALSHAYEB, King Fahd University
of Petroleum & Minerals

A design pattern is a well-defined solution to a recurrent problem. Over the years, the number of patterns
and domains of design patterns have expanded, as the patterns are the experiences of the experts of the
domain captured in a higher-level abstraction. This led others to work on languages for design patterns to
systematically document abstraction detailed in the design pattern rather than capture algorithms and data.
These design-pattern specification languages come in different flavors, targeting different aspects of design
patterns. Some design-pattern specification languages tried to capture the description of the design pattern
in graphical or textual format, others tried to discover design patterns in code or design diagrams, and still
other design-pattern specification languages have other objectives. However, so far, no effort has been made
to compare these design-pattern specification languages and identify their strengths and weaknesses. This
article provides a survey and a comparison between existing design-pattern specification languages using a
design-pattern specification language evaluation framework. Analysis is done by grouping the design-pattern
specification languages into different categories. In addition, a brief description is provided regarding the
tools available for the design-pattern specification languages. Finally, we identify some open research issues
that still need to be resolved.

CCS Concepts: � Software and its engineering → Specification languages; Design patterns

Additional Key Words and Phrases: Design pattern specification languages, domain specific languages

ACM Reference Format:
Salman Khwaja and Mohammad Alshayeb. 2016. Survey on software design-pattern specification languages.
ACM Comput. Surv. 49, 1, Article 21 (June 2016), 35 pages.
DOI: http://dx.doi.org/10.1145/2926966

1. INTRODUCTION

A design pattern is a reflection of the developer’s experience and empirical knowl-
edge, but is more generalized because it describes a problem and gives a solution to it
[Alexander 1977; Lea 1994]. It provides a sound solution to a described problem. Riehle
and Zullighoven [1996] defined design pattern as a recurring specific software design
construct to handle a recurring issue.

Design patterns are named uniquely, but they are written in a consistent format to
allow designers, developers, and others to communicate using a common vocabulary.
Design patterns can expedite the design and development process of a system because
they provide proven solutions to the problem, which recur commonly across multiple

This work is supported by King Fahd University of Petroleum & Minerals.
Authors’ addresses: S. Khwaja, Information and Computer Science Department, King Fahd University of
Petroleum & Minerals, PO Box 1172, Dhahran 31261, Saudi Arabia; M. Alshayeb (corresponding author),
Information and Computer Science Department, King Fahd University of Petroleum & Minerals, PO Box
1172, Dhahran 31261, Saudi Arabia; email: alshayeb@kfupm.edu.sa.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2016 ACM 0360-0300/2016/06-ART21 $15.00
DOI: http://dx.doi.org/10.1145/2926966

ACM Computing Surveys, Vol. 49, No. 1, Article 21, Publication date: June 2016.

http://dx.doi.org/10.1145/2926966
http://dx.doi.org/10.1145/2926966

21:2 S. Khwaja and M. Alshayeb

domains and architectures. Moreover, they provide ideas in a consistent high-level
language.

Gabriel [1996] considered a design pattern as a constituent of expression, repetition,
and configuration, in which expression is about a certain context that is repeatable but
can also be resolved through a specific system configuration.

Formalizing design patterns is beneficial to enhancing the understandability of pat-
tern semantics [Sriharsha and Reddy 2015], representing and sharing knowledge, iden-
tifying interactions [Pan and Stolterman 2013], modeling software, generating code,
and detecting patterns [Shi 2007]. Nonetheless, design-pattern formalism received a
lot of criticism. Pan and Stolterman [2013] reported that formalizing design patterns
requires too much work to be developed; they are too formal and hard to organize; it
is hard to get people to adopt them; and they are not abstract nor concrete. Seffah
and Taleb [2012] also reported a few challenges with design-pattern specification lan-
guages. They indicated that pattern interrelationships are sometimes incomplete and
lack context-oriented perspective.

Furthermore, Buschmann et al. [2007] indicated that there are difficulties for de-
velopers to learn the pattern languages and deal with detailed specification; thus, tool
support is needed when dealing with design-pattern specification languages. They also
argued that there is no definitive formal description of patterns because it must always
be confined to a certain subset of options. Therefore, the required detail levels by formal
approaches may restrict how generic a pattern specification language is [Buschmann
et al. 2007].

The objective of this article is to present a survey and a comparison for software
design-pattern specification languages. The results of this survey are beneficial to peo-
ple who would like to know the pros and cons of design-pattern specification languages.
The results can also be used by design-pattern practitioners, designers, and developers.
In addition, in this article, we highlight different aspects of these languages to help
researchers, programmers, and others in this area to find adequate information and
knowledge on design-pattern specification languages.

1.1. Brief History of Design Patterns

Beck and Cunningham [1987] used some of the ideas of Alexander [1979] to develop
a language for novice Smalltalk programmers based on five patterns. Coplien [2002]
compiled a catalog of C++ idioms and published them as a book in 1991 [Coplien
1992]. In April 1994, the Hillside Group held the first conference on pattern languages
under the title of “Pattern Languages of Programs (PLoP) Conference [1994].” Shortly
thereafter, Erich Gamma et al. [1994] published their patterns book (known as the
Gang of Four book).

1.2. Classification of Design Patterns

Design patterns can be classified in four different ways, which are discussed in this
section.

Classification Based on Purpose/Scope: Purpose and scope are the basic criteria
for this classification. The purpose criterion deals with the kind of problem that the
pattern solves. The scope of the pattern is determined by the component used in the
pattern. If the pattern uses classes for implementing the desired behavior, then it is a
class pattern; if it uses objects to accomplish its task, then it is an object pattern [Erich
Gamma 1994].

Classification Based on Intent: Patterns can be classified based on their intent.
Metsker [2002] adopted the notion that the intent of a design pattern is usually
expressed as the need to go beyond the ordinary facilities that are built into a pro-
gramming language.

ACM Computing Surveys, Vol. 49, No. 1, Article 21, Publication date: June 2016.

Survey On Software Design-Pattern Specification Languages 21:3

Classification Based on Relationship among Design Patterns: Another classification is
based on the relationships between the design patterns [Appleton 2000]. Each pattern
has a “related patterns” section in its description. Hence, patterns can be classified
based on the relationship between them.

Classification Based on Organization: This classification resulted in a unique shape,
which is similar to the periodic table used in chemistry. At the top level, the pattern is
presented in the purest form, which is called a role model. It captures the spirit of the
model without any details. The domain-specific configurations for the design pattern
are added in the “type model” level. At the lowest level, the concrete deployment model
is presented and is named class model [Lauder and Kent 1998].

1.3. Categorization of Design-Pattern Specification Languages

Design-pattern specification languages can be categorized in three different ways
[Khwaja and Alshayeb 2013a] based on:

The Intent: Design-pattern specification languages can be divided into different
categories according to their intention: (i) defining and describing design patterns,
(ii) detection of design patterns, (iii) verification and validation of design patterns, and
(iv) graphical modeling of design patterns.

The specification languages: Design-pattern specification languages can be divided
into different categories according to their underlying syntax: (i) those based on math-
ematical formalism, (ii) those based on other modeling languages, and (iii) those based
on other languages.

The notation of the language: Design-pattern specification languages can be divided
into different categories according to the type of notation that they use: (i) textual nota-
tion, (ii) graphical notation, and (iii) amphibious design pattern specification languages
that use both textual and graphical notation.

2. RELATED SURVEYS

Most of the research work in the pattern field focuses on microarchitectural details, that
is, describing the generic aspects of software systems in an abstract fashion. It became
apparent in the academic circles that, to increase the understanding of design patterns,
the systematic investigation of both the system and the design pattern is necessary.
Currently, work has been undertaken on the comparative analyses of design patterns;
proposing precise specifications of design patterns; developing tools and rules for the
recognition of design patterns, their validation, and other aspects; and identifying the
relationships among patterns. Another area is the investigations of the impact of design
patterns on fault-proneness of the system [Jaafar et al. 2015].

Most of the time, design-pattern application is manual. This is because the effort
required to describe the specifications of design patterns is either too formal or too
generic. The manual application of design patterns is difficult and highly error prone
[Prechelt et al. 2001]. Precise and workable specifications can help promote the use
of design patterns. Another domain in which research effort has been utilized is the
identification and recovery of design patterns from the code, using the structural or
behavioral aspects of the design patterns [Bernardi et al. 2014; Chihada et al. 2015; Di
Noia et al. 2014; Yu et al. 2015]. Different surveys have also been conducted to identify
which techniques and tools are most successful in identifying the design patterns
correctly [Fulop et al. 2008; Pettersson et al. 2010; Rasool and Streitferdt 2011].

Some good research has been conducted on building a repository of design-pattern
instances for practical and research usage [Chihada et al. 2015].

ACM Computing Surveys, Vol. 49, No. 1, Article 21, Publication date: June 2016.

21:4 S. Khwaja and M. Alshayeb

Understanding design patterns’ microarchitectures is not given due importance
[Eden 1999]. In this article, we intend to capture the “essence” of design-pattern
specification languages, showing the importance of formalizing design patterns through
different languages, and present a framework for categorizing these languages.

There are different types of design patterns such as architectural, requirements,
and security patterns. However, in this article, we focus on specification languages of
object-oriented design patterns.

2.1. Document Organization

The article is organized as follows: Section 3 discusses the existing design-pattern
specification languages. Section 4 provides an overview of the framework for evaluat-
ing the design-pattern specification languages. In Section 5, we conduct an evaluation
of the design-pattern specification languages, based on the evaluation framework. Sec-
tion 6 presents an analysis of the evaluation for the design patterns. We present our
conclusions in Section 7.

3. DESIGN-PATTERN SPECIFICATION LANGUAGES

In this section, we discuss the existing design-pattern specification languages. The
languages are listed according to the underlying syntax of the design-pattern spec-
ification language. Languages based on mathematical formalism are discussed first,
followed by languages based on other modelling languages, and languages based on
other languages.

3.1. LePUS

LePUS is a formal approach to solving the design-pattern problem. It is very compre-
hensive and has been validated in the context of different design patterns; it is limited
to the description of the structure of the design pattern [Gasparis 2007].

LePUS gives an abstract representation of design patterns. The specification of Le-
PUS can be written as a formula or represented in a semantically equivalent graphical
form. Both methods are sufficiently accurate and descriptive. LePUS specifications
of design patterns consist of two major parts. The first part details the participants
involved; the second part describes the collaboration of the participants, such as the
constraints of the participants and the relationships that must or must not take place
among the participants [Baroni et al. 2003].

Most LePUS relations are depicted as edges. The exceptions are the relations Return-
Type and Argk, which have a more traditional, textual representation. Symbols in
LePUS represent relations and (typed) variables. The formula of LePUS contains typed
variables in conjunction with relation predicates. Figure 1 depicts most LePUS symbols.

The biggest restriction of LePUS is that the strong mathematical basis makes it
easy for theoretical conformance but hard for use in real-world applications by soft-
ware developers. There are more restrictions, as follows. Some of the design-pattern
restrictions cannot be accurately expressed in mathematical expression. Some of the
relationships in the design pattern, such as variants, cannot be sufficiently expressed
[Kodituwakku and Bertok 2009]. The integrated tool support for it is weak. One of the
tools based on LePUS is built on Prolog, and LePUS visual notation support is not
offered. The visual notation of LePUS defines many abstractions to make diagrams
concise. However, these elements make the diagram difficult to decipher. LePUS can
only define design-pattern structures; therefore, using it in designing a system or a
code [Mapelsden et al. 2002] is not well defined.

3.2. eLePUS

Attempts were made to rectify the shortcomings of LePUS by Eden et al. [1996]
in eLePUS. They enhanced LePUS as a language for specifications concerning

ACM Computing Surveys, Vol. 49, No. 1, Article 21, Publication date: June 2016.

Survey On Software Design-Pattern Specification Languages 21:5

Fig. 1. LePUS symbols [Gasparis 2007].

object-oriented design and architecture. They tried to overcome the ambiguities of nat-
ural languages and the incompleteness of visual representations. Their approach was
also suggested for tackling various management issues related to creating and main-
taining a repository of design patterns based on its underlying mathematical model.

eLePUS provides the formalization of three additional aspects—intent, applicability,
and collaboration of the design pattern—thereby augmenting the structural specifica-
tions of LePUS [Raje and Chinnasamy 2001]. The enhancements provided by eLePUS
are (a) amendments to basic abstractions, (b) addition of new constructs, and (c) modifi-
cations to the representation of patterns. Moreover, eLePUS allows temporal relations,
which indicate a time instance when the relation is realized.

The relationship among ground variables such as classes and functions, hierarchy
variables such as inheritance, and higher-dimension variables such as a set of entities
are specified in first-order logic. Three types of relationships are defined for the entities:
(i) ground relations, (ii) generalized relations, and (iii) commuting relations. These
relations are presented as predicates in pattern specification.

The specification problem of LePUS has not been solved completely in eLePUS.
Specification of the design pattern is defined at the higher level of abstraction, but the
creation of a design pattern requires much lower-level detail, such as the number of
objects to create. Also, the separation of different parts of the specification makes it
harder to obtain the full picture of the design pattern [Hannousse and Liu 2007].

3.3. DisCo

Mikkonen proposed the design-pattern specification language DisCo [Mikkonen 1998].
DisCo uses the concept of the layer for the formalization of the behavior of the design
pattern. The refinements of these layers are used for the final description of the design
pattern composition.

DisCo can also be defined as the combination of an object-oriented view with an
action-oriented view. The behavioral aspect of the design pattern in DisCo is described

ACM Computing Surveys, Vol. 49, No. 1, Article 21, Publication date: June 2016.

21:6 S. Khwaja and M. Alshayeb

using the Temporal Logic of Actions (TLA) [Lamport 1994]. The necessary constituents
of the formalism are (i) classes, (ii) guarded actions, and (iii) relations. The class part
of DisCo is different, as it only describes data elements, and is an object and does not
include any function information. Guarded actions receive objects as input, and perform
data manipulation. The relations part is optional and provides transient associations
among groups of objects.

The approach is successful in capturing the temporal properties of design patterns.
However, this approach lacks the necessary details for implementation. In addition,
the properties that the design pattern brings to the applications are omitted. Sepa-
rating objects from functions violates a principal tenet of object-oriented design. Thus,
the resulting specifications lack clear guidance on the structural aspect of the design
pattern. Therefore, it fails to provide a good object-oriented solution.

In addition, the behavioral guidance provided by the formalism is not easy to specify
using DisCo. As one action cannot invoke other actions directly, this makes action selec-
tion nondeterministic. Furthermore, there is no mechanism for imposing application-
level restrictions that might be required for the correctness of the design pattern. Since
the DisCo specification is not parameterized, it limits the flexibility of design patterns,
but it describes both aspects of the design pattern, that is, structure and dynamics of
the pattern [Martino and Esposito 2015].

3.4. Graphical Extension of BNF

Graphical Extended Backus Normal Form (GEBNF), developed by Bayley and Zhu
[2007], uses the class diagram for the description of the design pattern by implementing
the predicate logic.

The graphical structure in GEBNF is an extension of the BNF notation using the
reference feature. To enable GEBNF, each design pattern is constrained by the first-
order predicate so that the model satisfies an instance of the pattern. This makes
GEBNF a meta-model language comprising an abstract syntax along with the first-
order predicate. The constraints, which are based on UML, are readable and very
expressive [Hedin 1998].

The constraints of the language are defined in the GEBNF definitions. Table I ex-
plains the meta-notations of GEBNF.

GEBNF specifications consist of three parts along with the identifier, which is the
name of the pattern. The first section, Component, contains all the predicates that are
going to be used in the design pattern specification. This makes sure that the required
predicates are present for the formulae. The second portion is called Static Conditions.
This portion contains the static part of the design pattern, which is evaluated using
the class diagram. Thus, it defines the structural aspect of the design pattern. The
final portion is called Dynamic Conditions. This portion is responsible for describing
the behavioral aspect of the design pattern using the sequence and class diagrams,
if needed, through the predicates defined in the first portion. GEBNF also contains
consistency constraints to ensure that the diagrams are consistent [Riehle 1997].

The approach brings precision to design-pattern description, but it fails to capture
the properties of generality and understandability of the design pattern [Kim and
Carrington 2009]. Another limitation of the GEBNF is that it uses the predicate logic
and set theory; therefore, if the developers and users are not familiar with them, then
they will not be able to utilize GEBNF for the design pattern [Mattsson et al. 2009].

3.5. LOTOS

LOTOS is also a formal design-pattern specification language that is constructed
on temporal ordering specification, which was proposed by Saeki [2000]. For behav-
ioral specifications, LOTOS uses Calculus of Communicating Systems (CCS). Data is

ACM Computing Surveys, Vol. 49, No. 1, Article 21, Publication date: June 2016.

Survey On Software Design-Pattern Specification Languages 21:7

Table I. Meanings of GEBNF Notations [Zhu and Shan 2006]

Notation Meaning Example and explanation
X1|X2|. . .|Xn Choice of X1, X2, . . . , Xn ActorNode|UseCaseNode means

that the entity is either an actor
node or use-case node

L1:X1
L2:X2
Lk:Xk

Order sequence consists of k
fields of type X1, X2, . . . , Xk that
can be accessed by the field
names L1, L2, . . . , Lk

ClassName:Text Attributes:
Attribute∗ Methods: Method∗
means that the entity consists of
three parts called classname,
attributes, and methods,
respectively.

X∗ Repetition of X (include null) Diagram∗ means that the entity
consists of number N of
diagrams, where N � 0.

X+ Repetition of X (exclude null) Diagram+ means that the
entity consists of a number N of
diagrams, where N � 1.

[X] X is optional [Actor]: element of actor is
optional.

X Reference to an existing
element of type X in the model

ClassNode is a reference to an
existing class node.

‘abc’ Terminal element, the literal
value of a string

‘extends’: the literal value of the
string ‘extends’.

Table II. Basic Constructors of Behavior Expressions [Saeki et al. 1993]

Operators1 Naming Intuitive Meaning
a; B Action Prefix The event a occurs, followed by B.
B1 >> B2 Enabling Operator B1 first, then B2.
B1 [] B2 Choice Either B1 or B2 is executed.
[G1] → B1 [G2] → B2 Choice with guard conditions If Gi (i = 1, 2), then Bi is executed.
B1 [> B2 Disabling Operator During B1, B1 is discarded and B2 is

executed.
B1 ‖| B2 Interleaving Operator B1 and B2 are independently, that is,

asynchronously, executed in parallel.
B1 ‖ B2 Synchronizing Operator B1 and B2 are executed in parallel

and synchronously with all events.
B1 | [a1, , an] | B2 General Parallel Operator B1 and B2 are executed in parallel

and synchronously with a1, ,
an.

specified using the algebra of abstract data type (ADT). LOTOS was originally cre-
ated by the International Organization for Standardization (ISO) for describing and
modeling the interaction of open system interconnection (OSI) layers.

The behavior specifications are the interaction sequences for the desired system.
These interaction sequences are called processes. A process can be decomposed into
multiple subprocesses hierarchically until it becomes an event. An event is the atomic
unit of synchronized interaction, which cannot be further decomposed. The observable
behavior of the process is described in the behavior expressions. Several operators are
used in LOTOS for constructing behavior expressions. These constructors are listed in
Table II.

LOTOS does not provide simple and clear specifications, as its strength lies in de-
scribing the network layer specifications. Saeki used LOTOS only for the example of
Command and Composite pattern from the Erich Gamma [1994] design patterns. It is
a very lengthy specification in LOTOS and only specifies the behavioral aspect of the
design patterns [Taibi 2007].

ACM Computing Surveys, Vol. 49, No. 1, Article 21, Publication date: June 2016.

21:8 S. Khwaja and M. Alshayeb

Table III. Structure of a BPSL Formula [Taibi 2007]

� x1, . . . , xq1, y1, . . . ,yq2
⊂C∪V∪M ∧iPRi (xj,yk)

{1 <= I <= q, 1 <= j <q1; 1 <= k <= q2}

TR1(z1<cz1>,t1<ct1>), . . . ,TRm(zm<czm>,tm<ctm>)� TR; {z1, . . . ,zm,t1, . . . ,
tm � C}u1, . . . ,un � (Member of C)�V;
Init� � P
N � A1 ∨. . .∨ Ar
U � < ui, . . . ,uj>

�� Init� ∧� [N]u ∧ WFu(A)

{P is the initial predicate}
{A1. . . Ar are actions}
{1 < = I < = n and 1 < = j< = n}
{A = Ai1 . . . Ai2, 1 < = i1 < = i2 < = r}

3.6. BPSL

Balanced Pattern Specification Languages (BPSL) is another formal specification
design-pattern specification language. The main objective for the development of BPSL
was to complement the existing informal approaches for the design-pattern specifica-
tion languages and to remove the shortcomings of the formal approaches. BPSL pro-
vides a formal structural and behavioral specification of patterns. BPSL uses layers
of abstraction for the specification. These layers are pattern composition, pattern, and
pattern instances [Taibi and Ngo 2003].

In BPSL, the structural description of the pattern is described in first-order logic
(FOL), but the behavioral aspect of the design pattern is described in TLA. The most
interesting point of the BPSL approach is the introduction of a very high abstract
layer in the description of the behaviors of design patterns. Angel and Moreno-Navarro
[2007] introduced temporal relations (predicates) between instances; the behavior is
specified as temporal actions defined on those predicates.

The building blocks of BPSL are entities and relations. Entities (participants) include
classes, attributes, methods, objects, and untyped values. The irreducible units form the
primary entities. The collaboration between entities is handled by relations. Relations
can be either permanent or temporal.

A temporary relation in BPSL means a relation that lasts only for a limited time
then disappears, but it can appear again in the future [Taibi and Ngo 2003]. BPSL
consist of three parts. The first part is SBPSL, for which S symbolizes the structural
aspect of the design part, which is presented as a well-formed formula. The second
part is BBSPL, for which first B symbolizes the behavioral aspect. This part consists
of variables and temporal relations. The final part carries the BBPSL formula for the
behavioral aspect. The structure of BPSL is shown in Table III.

The main idea of BPSL is based on LePUS and DisCo; therefore, it also shares
many advantages and disadvantages of these two languages. The strength of BPSL
lies in capturing the structural specifications of the design pattern. In addition, the
specifications are less complex because it uses FOL, but it reduces the expressivity
of the language. It has not been determined if the additional expressivity offered by
LePUS helps to better capture structural properties. The abilities and limitations of
BPSL in handling the behavioral properties of the design pattern are identical to those
of DisCo.

Critics of the formally defined design-pattern specification languages argue that it
is not clear why formal descriptions are needed. Also, the benefits of describing design
pattern formally is still a questionable investment of time and effort [Henninger and
Corrêa 2007].

3.7. Object Calculus

Object calculus claims to be a more appropriate formalism for reasoning about patterns
because it deals directly with actions and operations as first-class elements, and with
timing properties and properties of system states at general time points [Lano 2007].

ACM Computing Surveys, Vol. 49, No. 1, Article 21, Publication date: June 2016.

Survey On Software Design-Pattern Specification Languages 21:9

A design pattern is one example of model transformation that can be achieved
through object calculus. Object calculus theory contains a collection of types and sym-
bols. There are three types of symbols that are used in the description of the design
pattern. The constant symbols denote constants in the design pattern. The variables
that change with time are represented through attribute symbols. Finally, the variables
that are used in the operations are called action symbols. Attributes and the dynamic
properties of the actions are handled through the set of axioms. Linear Temporal Logic
operators are used in specifying these axioms: X (in the next state), P (in the previous
state), U (strong until), S (strong since), G (always in the future), and F (sometime in
the future).

The formalism in object calculus provides some advantages in regard to the rigorous
reasoning and transformation of design patterns. As object calculus is textual formal
language, the structural and behavioral aspects of design patterns and the relationship
among design patterns are not straightforward. In addition, the language fails in
providing concrete design guidelines to the developers [Aoyama 2000]. Furthermore,
the requirement of a mathematics and formal logic background has made it difficult
for pattern authors to adopt it for design patterns [Kim et al. 2003].

3.8. Extended Object-Oriented Programming Language Grammar

Extended Object-oriented Programming Language Grammar (EOOPLG) uses attribute
extensions to specify the design patterns. EOOPLG extends the static semantics of the
language to use for the design-pattern specification, but the base conventions and
the syntax of the base language is retained [Hedin 1998]. The main purpose of the
extensions is to handle the programming convention of the design pattern. The basis of
the EOOPLG is in attribute grammars, and the semantics rules are used for describing
the conventions [Hedin 1997].

The extension grammar can automatically generate a convention checker just as
attribute grammar can generate an attribute evaluator. Three distinct specifications
are used in this technique.

A base grammar interface: This provides the base language for the context-free
grammar. All static semantic information, such as type of object or name binding, is
contained in it. Functions can be used to reference other nodes in the syntax tree.

An extension grammar: To support multiple programming conventions, the extension
grammar is used. The basic information is used from the base grammar interface to
avoid duplicating efforts and information.

Attribute comments: To annotate an application program, special comments are used.
These comments are called attribute comments: for example, /∗= a =∗/ is an attribute
comment that defines a Boolean attribute to have the value true [Hedin 1998].

This approach is definitely unique, but it is very complex for describing compound
patterns. In addition, the presence of a high number of participants in the design
pattern can increase the complexity. Finally, it lacks complete specification of a design
pattern [Mak et al. 2004].

3.9. Formal Specification of Design Patterns

Graphical notations are used mainly for the proper and clear description of several de-
sign patterns, and help visualize the system design. Graphical notations, such as UML
class diagrams and sequence diagrams, are generally used. The Formal Specification of
Design Pattern (FSDP) uses the textual content of UML class diagrams and represents
it in a formal way. It also represents structural aspects, such as class methods and
attributes, in a formal way as well as the behavioral nature, such as the relationships,

ACM Computing Surveys, Vol. 49, No. 1, Article 21, Publication date: June 2016.

21:10 S. Khwaja and M. Alshayeb

association, and cardinality among the participating classes [Deya and Bhattacharyab
2010].

FSDP language is described by a grammar, which determines exactly what defines
a particular token and what sequence of tokens is decreed as valid. If the language
being used is exactly as defined in the grammar, the parser will be able to recognize the
patterns that make certain structures and group these together. The character set of
the proposed grammar includes the set {A-Z,a-z,0-9} along with some special characters
{., ; : {} () | _ /}. The terminals and string literals are in capitals and boldface while
nonterminals are in lowercase.

No complete illustration of the software design pattern is available. An example
of system-level design has been provided, but FSDP did not define the Gang of Four
design pattern. The language is highly complex and lengthy. The major emphasis is on
the verification of the design pattern through UML. Another goal of the language is
the extension mechanism for the design pattern, based on the work of Taibi and Ngo
[2003] and Jing et al. [2007].

3.10. DPML

Mapelsden et al. [2002] proposed the Design Pattern Modeling Language (DPML).
DPML is a visual modeling language for design-pattern specification. DPML uses a
generalization concept; it defines a metamodel of the design pattern and the instance of
the design pattern is specified using a notation. In the metamodel, the logical structure
of objects is described, which can be used to create an instance of a design pattern.
DPML notations are diagrammatic notations, representing the model visually. DPML
can represent only the generalized solution of the design pattern and not the instance
of the design pattern.

The target of DPML is to provide a reasonable formalism along with a powerful
representation, without being complex, which restricts the use of the design patterns
in the programmer community.

In DPML, the basic pattern model is shown using specification diagrams. The no-
tation for a specification diagram is shown in Figure 2. An abstract metamodel is the
second specification diagram in DPML, and can be described as a UML class diagram.

A tailored instance of a design pattern can be created from a default instance of DPML
metamodel, which is called an instance model. The default metamodel of a design
pattern encompasses all objects and constraints, so that it can create any customized
instance model according to the requirement of the system.

A pattern is created by binding the elements of the pattern to the elements of the
UML model. The created model consists of “proxy” elements, which are instantiated
from the pattern participants, and “real” elements, which are specific to the applica-
tion created during the realization of the pattern. “Dimension” plays the role of the
participant, which can be carried out by more than one model element.

DPML does not provide the complete design-pattern model, only a generalized so-
lutions model [Mapelsden et al. 2002]. Therefore, DPML descriptions are at a high
level of abstraction and do not contain detailed information. DPML cannot be used
accurately to identify design patterns in source code. Finally, the creation of the new
notation for DPML is not very clear when DPML is created for the UML models.

3.11. RBML

Kim proposed the Role-Based Metamodeling Language (RBML) for the specification
of design patterns that is based on UML metamodeling technique [Kim 2007]. RBML
is based on the concept of role elements, which is used by Montes and Vela [2003] in
depicting pattern diagrams. The idea of role elements and bonds is not well defined in
pattern diagrams. However, in RBML, visual notations are based on UML 1.4. Also, to

ACM Computing Surveys, Vol. 49, No. 1, Article 21, Publication date: June 2016.

Survey On Software Design-Pattern Specification Languages 21:11

Fig. 2. Basic DPML notation [Mapelsden et al. 2002].

specify pattern properties, the Object Constraint Language (OCL) was employed [OMG
2005]. Therefore, RBML is more elaborative and addresses more aspects of solutions
proposed by design patterns [Bohdanowicz 2005].

RBML uses a family of UML models for the specification of the design pattern as
model roles [Kim 2007]. A model role consists of the UML metaclass, its properties, and
model elements. It is linked to the role’s base metaclass. A set of model roles specifies
all aspects and restrictions of design-pattern specification.

The UML infrastructure is defined as a four-layer metamodel architecture: the top
layer, M3, is used for the metamodel specification language. The next layer, M2, speci-
fies the UML metamodel. UML models are specified in M1; the last layer, M0, contains
the configurations of the object for the UML model defined at layer M1. Pattern roles
are defined at level M2 as a specialization of a UML metaclass.

An instance of design pattern can be created from the RBML metamodel as shown
in Figure 3, which defines the abstract syntax for RBML specifications. The meta-
model stipulates that every pattern role must have a name, the base metaclass, and
a realization multiplicity. A realization multiplicity is defined by the lower bound and
upper bound of the role. In Figure 3, the subclasses of the PatternRole class are the
types of structural pattern roles that define specializations of their base in the UML
metamodel. The instances (roles) of the RBML metaclasses are expressed in the UML
notation, thus observe the syntax of the UML.

The main drawback of the RBML is that it requires an extension of the UML meta-
model with new elements. Metamodeling is a first-class extension mechanism of UML

ACM Computing Surveys, Vol. 49, No. 1, Article 21, Publication date: June 2016.

21:12 S. Khwaja and M. Alshayeb

Fig. 3. A partial RBML kernel [Kim 2007].

2.0, handled through the Metaobject Facility (MOF). It provides almost unlimited
possibilities of extending the UML 2.0 metamodel. Moreover, the notation for repre-
senting a design-pattern instance proposed in RBML is not clearly defined.

The major advantages of RBML are the following: it allows and supports the use
of a design pattern directly through UML; it has the capability to capture various
perspectives of a design pattern; its direct reliance on UML makes it easier to be
supported by UML; it provides precise and concise representation of pattern properties;
it provides a rigorous notion of pattern conformance for UML models; and it offers tool
support that facilitates the systematic use of patterns in the development of UML
models [Kim 2007].

3.12. Constraint Diagrams

This model utilizes constraint diagrams along with UML for the description of selected
design patterns. This is achieved through the utilization of recent progress made in
visual modeling notation to achieve greater clarity without requiring the use of obtuse
mathematical symbols [Lauder and Kent 1998].

Constraint diagrams are based on a collection of sets, upon which constraints can be
specified that will apply to the members of the set. Sets are shown as Venn diagrams.
The members of the set are shown by arbitrary numbers of dots within or on the edge of
the set. Distinct members are shown as two or more unconnected dots. A single element
can exist in two or more positions and is represented by multiple dots connected with
an arc. However, an element may exist at one position only at any given time [Kent
1997].

An instance of class is represented by extending the UML notation. An extension is
done in class symbol of UML to hold the constraint diagram for the abstract instances
of the class.

The top layer is the role model. The pattern is expressed in abstract states and
abstract behavioral semantics, and forms the constraint sets. The abstract layer lacks

ACM Computing Surveys, Vol. 49, No. 1, Article 21, Publication date: June 2016.

Survey On Software Design-Pattern Specification Languages 21:13

domain-specific details or application-specific details and depicts only the essential
part of the design pattern.

The domain-specific refinements to the design pattern are contained in the second
layer. The second layer is the type model. This converts the abstract semantics of the
earlier layer into the concrete syntax.

The last layer is the class model. It contains the application-specific conditions by
applying the attributes and method implementations on the earlier state to reach
concrete states and semantics.

The spirit of the pattern is captured using the role model. It does not contain
nonessential features, thus describing only the basic structure for the pattern through
objects and their static and dynamic properties. State and behavioral constraints can
be included in the role model.

Constraint diagrams show that visual notations can represent the spirit of design
patterns precisely and clearly. The essential part of the pattern is defined in a role
model. Type models and class models are used to further refine and implement the
pattern. Three-layer modeling is used to achieve abstraction without losing clarity and
generality in describing the pattern. The easier interpretation of the formal specifica-
tion of design patterns is also one of the goals of this language.

The notation of constraint diagrams is difficult because the differences between dia-
grams at different levels are not very clear and can be hard to understand [Mapelsden
et al. 2002].

3.13. Design-Pattern Definition Language

XML is a markup language that is used to represent information as semistructured
data [W3C 2008]. XML documents cannot be processed if they are not well formed. The
Design-Pattern Definition Language (DPDL) [Khwaja and Alshayeb 2013b] is based
on XML. XML provides flexibility, simplicity, and is quite common in the computing
world. The XML schema of the DPDL language is shown in Figure 4. DPDL divides
the schema based on the structural and behavioral aspects of the design pattern. The
constituents of the design pattern are grouped in the structuralAttributes element of
the DPDL schema. The interactions of these constituents of the design pattern are
defined in the behavioralAttributes element of the schema. There is another element
ForFuture in the schema, which is left for extending the schema in the future.

3.14. RSL

Sterritt et al. [2010] designed RSL for a formal specification of the GoF pattern, which
is based on the RAISE language. The main objective of the language is the modeling
and verification of the design patterns using a tool developed specifically for Java. A
tool DePMoVe is also created with the design-pattern specification language for pattern
modeling and verification.

RSL is a formal model for specifying design patterns. The RSL model is subdivided
into 7 different types of schemas. These schemas and their grouping is the construct of
all design patterns. The schemes also satisfy the well-formedness condition. Table IV
list the seven main RSL schemas.

3.15. SPINE

SPINE is loosely based on Prolog, as the HEDGEHOG proof engine uses an internal
proof system similar to Prolog’s execution [Blewitt 2007]. Pattern definitions are con-
sidered declarative by nature. Prolog is a declarative language; thus, Prolog is a nice
fit for pattern definitions.

Patterns are defined in terms of a number of standard predicates that correspond
to the structural and semantic constraints. For example, structural predicates include

ACM Computing Surveys, Vol. 49, No. 1, Article 21, Publication date: June 2016.

21:14 S. Khwaja and M. Alshayeb

Fig. 4. DPDL high-level schema [Khwaja and Alshayeb 2013b].

Table IV. RSL Schemas as the Formal Basis [Flores et al. 2007]

Scheme Description Identifier
Types General definitions of the model. G
Methods Operations or methods that form a class interface. M
Classes Structure and behavior of classes in an OO design. C
Relations Set of valid relations that link classes on a design. R
Design_Structure Consistent link between classes and their

interrelations.
DS

Renaming Correspondence between names from design to
those from a pattern, that is, setting of pattern roles
played by design entities.

DR

Design_Pattern Set of generic functions that sum the previous ones
and help to formally describe any design pattern.

isAbstract(C) and typeOf(M). The arguments for these predicates are literals that
identify the elements of the source code; for the sake of simplicity, references to Java
classes and methods adopt the JavaDoc notation com.Example#method(type). Thus,
isAbstract(‘com.Example’) is true when com.Example is an abstract type.

These can be joined with standard connectives, such as “and,” “or,” and implied to
form logical statements over a range of classes and methods. As a result, it is possible
to be very specific that a particular class has some combination of methods or field
types. It is also possible to specify a constraint that exists over a range of classes.
The two quantifiers “forAll” and “exists” can be used to iterate over set operators,
such as methodsOf and subclassesOf (or even literal lists of classes). For example,
and([isAbstract(C),forAll(subclassesOf(C),Cs. isFinal(Cs)]) declares that both C is an

ACM Computing Surveys, Vol. 49, No. 1, Article 21, Publication date: June 2016.

Survey On Software Design-Pattern Specification Languages 21:15

Table V. SLAM-SL Quantifiers [Herranz et al. 2002]

Symbol Generalizes
Exists � with false
exists1 As exists, but limiting the count to 1
Forall V with true
Sum + with 0
Prod x with 1
Count inc with 0 (counting!)
Select Searching
Max Max
Maxim Maximizers
Filter Filters
Map Apply a function to every element in a collection

abstract class and all of its subclasses (Cs) are final. At evaluation time, the forAll() is
expanded into a conjunction([isFinal(Cs), . . .,isFinal(Csn)]) [Blewitt 2007].

Together, these statements can be used to define certain properties of classes. This
technique works for any statements about class implementation, though, so far, it has
only been used to reason about patterns.

HEDGEHOG is used for interoperating the pattern specified using SPINE. It allows
the user to specify relationships between classes and path-insensitive analysis of the
semantics. Some complicated semantic analysis is hard-wired to the built-in capabil-
ities of HEDGEHOG predicates. This means that SPINE is, to some extent, bounded
by the limitations of HEDGEHOG [Kumar and Kumar 2010].

The main purpose of SPINE is the automatic verification of design patterns in Java.
It also has low precision in detecting design patterns. As design patterns are defined
as constraints on the Java language, it is not as generic as the design patterns are and
is limited only to Java. In addition, instead of capturing the essence and underlying
concept of the design pattern, SPINE tries to capture the behavioral aspect of the
design pattern to identify it in the code. This approach may be good for detecting a
design pattern, but it is certainly not good for representing or implementing a design
pattern.

3.16. SLAM-SL

Herranz et al. [2002] used the reflective features of the SLAM language for the for-
malization of design patterns. It is an object-oriented, formal specification language.
A development environment is also provided to generate a readable code for program-
ming languages such as Java and C++. It also integrates algebraic specifications and
model-based specifications.

The toolkit of SLAM-SL is based on existing types from Booleans to tuples and col-
lections, which are part of normal programming language. The syntax is a combination
of type with its values. A sequence contains the type along with the value, for example,
[integer] [1, 2], in which the first part of the sequence indicates the type and the second
part indicates the value. Similarly, the values of tuple of type (Char, Integer) can be
written as (‘a’, 32), and so on.

Some of the predefined quantifiers of SLAM-SL with a description are given in
Table V.

SLAM-SL is created for developers who are fluent in object-oriented programming
languages. Its syntax and semantics are easy for object-oriented programmers. The
main purpose was to obtain a code in high-level programming language such as Java,
which can then be edited and improved by a programmer. This reduced the capability
of expressing logic in the language itself [Herranz and Moreno-Navarro 2003].

ACM Computing Surveys, Vol. 49, No. 1, Article 21, Publication date: June 2016.

21:16 S. Khwaja and M. Alshayeb

Fig. 5. Metamodeling architecture of OWL [Dietrich and Elgar 2007].

3.17. ODOL (OWL)

The W3C Web Ontology Language (OWL) [2004] is used to describe vocabularies for
resources. OWL is based on the open-world assumption, which is used for pattern
descriptions. The second component of ODOL is RDF (resource description framework)
[2004]. RDF is used to define relationships between different resources, which are
identified by URIs. Both OWL [2004] and RDF [2004] are standards of the W3C [2004]
semantic web initiative. There are special constructs in OWL, which can be used to
merge or disjoin design pattern models.

In OWL, the design patterns, their participants, and the properties of and relation-
ships between the participants are based on OWL ontology, which is based on the
system of OWL classes, their properties, and relationships. The proposed metamodel
is shown in Figure 5.

The lower layers correspond to MOF M0 (application objects) and M1 (application
classes, members, and associations). M1 artifacts instantiate the pattern participants
defined using the pattern description language (PDL). These are the variables found
in pattern definitions such as the AbstractFactory and the AbstractProduct in the
AbstractFactory [Erich Gamma 1994] pattern. These variables are types. The types are
constraints restricting the kind of (M1) artifact that can instantiate these variables.
These types are modeled in the object design ontology layer (ODOL). In ODOL, the
(OWL) ontology defined is the base for the pattern definitions. It contains classes such
as ClassTemplate and MethodTemplate and their relationships, as well as the Pattern
class representing patterns themselves. The metamodel of ODOL is OWL—ODOL
contains instances of OWL classes (e.g., owl:Class and owl:ObjectProperty).

In particular, object properties are associated with OWL property types. For these
types, the OWL semantics defines rules that can be used by reasoners to check the
consistency of the model, and to infer additional assertions. Table VI shows some of the
built-in rules.

ACM Computing Surveys, Vol. 49, No. 1, Article 21, Publication date: June 2016.

Survey On Software Design-Pattern Specification Languages 21:17

Table VI. ODOL Rules (Selection) [Dietrich and Elgar 2007]

Property Domain Range Rule(s)
isSubPatternOf Pattern Pattern transitive
contains ClassTemplate MemberTemplate inverseOf “owner”
owner MemberTemplate ClassTemplate inverseOf “contains,” functional
associationClient AssociationTemplate ClassTemplate functional, inverseOf “isClientIn”
associationSupplier AssociationTemplate ClassTemplate functional
isClientIn ClassTemplate AssociationTemplate inverseOf “associationClient”
isSubclassOf ClassTemplate ClassTemplate transitive
overrides MethodTemplate MethodTemplate transitive

In addition to these rules, the ontology contains references to informal definitions of
some of the concepts defined. ODOL contains formal semantics intended for machine
processing as well as informal semantics intended for human processing.

3.18. URN Design Pattern Formalizing Techniques

The User Requirements Notation (URN) was developed to model and evaluate the
requirements with goals and scenarios by the International Telecommunication Union
in 2008. URN is built on Goal-oriented Requirement Language (GRL) for modeling
agents and intentions. For describing scenarios and architectures, another notation—
Use Case Maps (UCM)—is used [Roy et al. 2006].

Pattern formalization through URN is based on trade-off analysis using the solution
description. For design-pattern formalization, URN is used along with the GRL. GRL
is used for the description of the behavioral aspect of the design pattern. GRL is used
for handling the nonfunctional requirements of the design pattern. URN and GRL are
used in combination [Itu-T 2002].

The second language of URN, UCM, handles the flow of responsibilities in a scenario,
which is then mapped on the structure of components. UCM represents the activities
(i.e., operations, tasks, functions, and so on) to be performed or the responsibilities to
be dispatched. These activities can be performed on software constructs (e.g., objects,
databases, servers) and also on nonsoftware constructs such as actors or hardware
resources [Itu-T 2002].

Pattern representation uses GRL to add an explicit model of the forces addressed
by a pattern and the rationale behind them. It also allows the relationships between
patterns to be modeled.

Patterns are modeled as tasks (hexagons), which are ways of achieving a goal or a
soft goal. The nodes of this goal graph can be connected by different types of links. The
direct contributions of a pattern on the goals are shown as straight lines. Side effects
(indirect contributions called correlations) are shown as dotted lines. Contributions can
be labeled with a “+” (the default value if none is present) or “–” to indicate that they
are positive or negative.

A main objective of URN is to help designers select the appropriate design-pattern
specification language for their application. Therefore, it lacks the syntax to compre-
hensively define the implementation aspects of the design pattern.

3.19. Layered Object Model

The layered object model (LayOM) is a custom-built language for design-pattern rep-
resentation in programming languages. LayOM is an object-oriented language with
special components to cater to the needs of design patterns, such as states, categories,
and layers [Bosch 1996a, b].

ACM Computing Surveys, Vol. 49, No. 1, Article 21, Publication date: June 2016.

21:18 S. Khwaja and M. Alshayeb

An object in LayOM contains instance variables and methods. The semantics also
match conventional object models. The difference between conventional and LayOM
objects is that, in a LayOM object, the instance variable can encapsulate a layer for
additional functionality to handle the state of the variable. The default state of the
object is a concrete state from which an externally visible abstract state of an object
can also be created. The abstract state is a simpler version of the state with a lower
number of dimensions and domains. An expression of the client category provides the
subset of the clients that can be handled by the class.

The behavioral aspect of design patterns is handled by the categories. LayOM clas-
sifies relations into three categories: structural, behavioral, and application-domain
relations. The structural relation types are applicable on the structure of the class
and their reusability. The concept of inheritance and delegation, which the structure
of the class uses, are examples of the structure relation types. The behavioral rela-
tions are used to depict the relations between an object and its clients. The object uses
the methods of the class; different objects can obtain different outputs from the same
method. Therefore, the behavioral relations depend on the object and restrict the be-
havior of the class, based on the type of the object. The application-domain relation is
the last relation type that handles the cases in which reusability can be achieved at
the application-domain level; for example, control relation is a domain-level relation
for the process control.

The special components of LayOM—such as layers, categories, and states—provide
some useful and ingenious ways to define the roles of different actors in the design
pattern. The solution of LayOM for design-pattern specification is elegant, concise,
and comprehensive, and preserves their essence and spirit. Unfortunately, there is no
readily available specification for design patterns available in the literature. Also, the
specifications are highly specialized, and no generic solution has been devised as yet
[Eden et al. 1997].

3.20. Abstract Data View

An Abstract Data View (ADV) is a formal model for pattern definition and application.
ADV divides designs into both objects and views in order to maintain a separation of
concerns. ADV provides a systematic design method that is independent of specific ap-
plication environments. It allows the specification for the steps in pattern instantiation
unambiguously [Alencar et al. 1995].

An Abstract Data Object (ADO) is an object responsible for an application that is
closed and is not linked directly with other entities. ADO provides a public interface,
which can be used to check the state of the object and to update the state of the object.
ADV extends ADO by providing a user interface to a view or a public interface to the
ADO, thus changing the way an ADO is viewed by other ADOs. A view may change
the state of an associated ADO through an input action (event) in a user interface or
through the action of another ADO.

Since an ADV is conceived to be separate from an ADO, yet specifies a view of an
ADO, the ADV should incorporate a formal association with its corresponding ADO.
An ADV knows the name of any ADO to which it is connected, but an ADO does not
know the name of its attached ADVs. Due to the separation between the view and the
object, it is possible to use several ADVs to create different views for a single collection
of ADOs.

Components of the ADV model are called objects since their schema specifications
describe behavior over the lifetime of the object, and involve both static and dynamic
properties. Both interface and application components are composed of dynamic prop-
erties that specify changes in the attributes representing the state memory of the
objects.

ACM Computing Surveys, Vol. 49, No. 1, Article 21, Publication date: June 2016.

Survey On Software Design-Pattern Specification Languages 21:19

Fig. 6. An ADV schema for a view [Alencar et al. 1995].

Fig. 7. A descriptive schema for ADV [Alencar et al. 1995].

ADVs and ADOs have distinct roles in a software system; as a consequence, they are
described by different schemas [Alencar et al. 1995], as shown in Figures 6 and 7.

ADV is built on the idea of separation of action from the definition. This clear sep-
aration is believed to provide easier maintenance and understandability of the design
pattern. This philosophy makes it difficult to handle the diverse possible relations
between constructs of OOPLs [Eden et al. 1997].

4. EVALUATION CRITERIA

In this article, we adopt the design-pattern specification language evaluation frame-
work that we proposed earlier in Khwaja and Alshayeb [2013a]. The framework is
divided into two parts: basic properties and core properties, which are further subdi-
vided. Table VII lists the properties of the evaluation framework. The details of each
evaluation criterion can be found in Khwaja and Alshayeb [2013a].

ACM Computing Surveys, Vol. 49, No. 1, Article 21, Publication date: June 2016.

21:20 S. Khwaja and M. Alshayeb

Table VII. Evaluation Framework for Design-Pattern Specification Languages

1. Basic Properties
Ease of Use • Basis

• Learning curve for programmers
• Target

Support • Platform independence
• Integratable in IDEs
• Template support
• UML support
• Graphical support

2. Core Properties
Conciseness • Capability to identify participants distinctly

• Capability to identify the structure distinctly
• Capability to identify collaborations distinctly

Formalism • Original formalism
• Textual formalism provided by the language

Comprehensiveness • Ability to handle multiple entities
• Ability to address object-oriented paradigm
• Capability to formalize OO patterns
• Other features

Expressiveness • Graphical notation provided by the language
• Supported views
• Textual notation provided by the language

In addition to the evaluation framework properties that we identified in Khwaja and
Alshayeb [2013a], we add another category of properties: tool capabilities.

5. DESIGN-PATTERN SPECIFICATION LANGUAGE EVALUATION

In this section, we evaluate the surveyed design-pattern specification languages using
the framework presented in Section 4 [Khwaja and Alshayeb 2013a].

5.1. Basic Properties Comparison

Table VIII presents the evaluation of the basic properties of the languages.

5.2. Core Properties Comparison

Tables IX and X show the evaluation of the core properties of the surveyed design-
pattern specification languages.

5.3. Tool Capabilities of the Languages

We add another category of properties: tool capabilities. In the following section, we
present these properties, then conduct an evaluation of these tool features for all the
surveyed design-pattern specification languages.

Tool name: Name of the tool, if it exists.
Ability to create design pattern: This feature enables a user to create design patterns.

Some tools enable a user only to display the design pattern.
Ability to verify the design pattern: This feature enables a user to validate and verify

the design-pattern instance according to some proven design-pattern template.
Ability to detect the design pattern: This feature enables a user to use the tool to find

and detect a design pattern used in the source code of the software, as not all design-
pattern specification languages are designed with the intention of detecting design
patterns from the source code.

ACM Computing Surveys, Vol. 49, No. 1, Article 21, Publication date: June 2016.

Survey On Software Design-Pattern Specification Languages 21:21

Table VIII. Evaluation of the Basic Properties of Design-Pattern Specification Languages—Part A

Ease of Use
Language Name Basis Learning curve Target

Languages Based on Mathematical Formalism
LePUS Mathematical

Logic
High Verification of design pattern on

first-order logic basis
eLePUS Mathematical

Logic
High Design pattern designing through

mathematical formalism
DisCo Temporal Logic of

Action
High Capturing behavioral aspects of design

patterns
GEBNF Mathematical

Logic
Medium Capturing structural and behavioral

aspects of design patterns in a
well-structured format

LOTOS Temporal Logic of
Action

High Verifying the behavioral aspect of design
patterns

BPSL Temporal Logic of
Action

High Capturing behavioral aspect of design
patterns

Object-Calculus Mathematical
Logic (using
axioms)

High To prove design pattern as refinement
transformation

EOOPLG Attribute
Grammar

High Automatic checking of design patterns
for correctness

FSDP Mathematical
Logic

Medium To specify and recognize design patterns
from the UML class diagram

Languages Based on Existing Modeling Languages
DPML UML based Medium Creating design patterns in UML
RBML UML based Medium Adding support of design patterns in

UML
Constraint Diagram Constraint

Diagrams + UML
Medium A precise visual specification of design

patterns
DPDL XML Low Easy initiation and implementation in

software development
Languages Based on Other Languages

RSL Based on RAISE
language

High For checking design correctness and
pattern-based modelling

SPINE Prolog High Verification of design pattern
implementation in applications

SLAM-SL Based on SLAM
language

Medium To use the reflection capabilities of
SLAM language to specify design
patterns

ODOL (OWL) RDF and OWL Medium Open and extensible description of
design patterns to facilitate the sharing
of knowledge

URN GRL + UCM High For modelling and analyzing design
patterns with goals and scenarios

LayOM New
object-oriented
language

Medium For explicit representation of design
patterns in programming language

ADV ADV+ADO High To clearly specify and formally separate
interface from the design patterns

Ability to visualize the design pattern: This feature enables a user to convert the
design pattern to any visual form.

Ability to save the design pattern: This feature enables a user to save an instance or
a template of the design pattern so that it can be opened later in the same state as it
was before it was saved.

ACM Computing Surveys, Vol. 49, No. 1, Article 21, Publication date: June 2016.

21:22 S. Khwaja and M. Alshayeb

Table VIII. Evaluation of the Basic Properties of Design Pattern Specification Languages—Part B

Support

Language Name
Platform

Independence
Integratable

in IDEs
Template
Support

UML
Support

Graphical
Support

Languages Based on Mathematical Formalism
LePUS NA No Yes No No
eLePUS NA No Yes No No
DisCo NA No Yes No No
GEBNF NA No Yes Yes Yes (Optional)
LOTOS NA No No No No
BPSL NA No Yes No No
Object-Calculus Yes No Yes No No
EOOPLG NA No Yes No No
FSDP NA Partial Yes Yes Yes

Languages Based on Existing Modeling Languages
DPML Yes No Yes Yes UML
RBML Yes No Yes Yes UML
Constraint
Diagram

NA No Yes Yes Yes

DPDL Yes Yes (using
XML)

Yes Yes Yes (Optional)

Languages Based on Other Languages
RSL NA No Yes No Yes (Optional)
SPINE NA No Yes No No
SLAM-SL No No No No No
ODOL (OWL) No No Yes Yes Yes (Optional)
URN No No No No Yes
LayOM No Partial Yes No No
ADV No No No No Yes

Ability to open the design pattern: This feature enables a user to open the saved
instance of a design pattern in the same state as it was at the time of saving.

Save Format: This feature enables a user to identify the format that the tool accepts
for saving and opening a design pattern file.

Tool purpose: This feature explains the main purpose for creating the design-pattern
tool. The evaluation of the tool features is shown in Table XI.

6. DISCUSSION

In this section, we present an analysis of the comparison results.

6.1. Basic Analysis

6.1.1. Capability to Identify Participants Distinctly. This property enables individual units
to be identified separately in the design-pattern specification language. All languages,
except those belonging to languages based on mathematical formalism, can identify de-
sign pattern participants individually, except for object calculus. Object calculus uses
collections with the action symbol, which makes it hard to identify all individual partic-
ipants distinctly. Not all languages based on existing models have this capability. The
DPDL and Constraint Diagram have the capability to identify participants distinctly.
The DPDL uses XML when one group is for the objects of design patterns. In the Con-
straint Diagram, sets are used in a Venn diagram, in which each member is shown as
a dot. Languages based on other languages are also mostly not capable of identifying
participants distinctly, the only exceptions being LayOM and SLAM-SL. Both LayOM

ACM Computing Surveys, Vol. 49, No. 1, Article 21, Publication date: June 2016.

Survey On Software Design-Pattern Specification Languages 21:23

Table IX. Evaluation of the Core Properties of Design-Pattern Specification Languages—Part A

Conciseness Formalism

Design Pattern

Capability
to identify

participants
distinctly

Capability
to identify
structure
distinctly

Capability
to identify

collaborations
distinctly

Original
formalism

Textual
formalism

Languages Based on Mathematical Formalism
LePUS Yes No Yes Yes Yes
eLePUS Yes No Yes No Yes
DisCo Yes No Yes Yes Yes
GEBNF Yes Yes Yes No Yes
LOTOS No Yes No Yes Yes
BPSL Yes No Yes Yes Yes
Object-Calculus No No No Yes Yes
EOOPLG Yes Yes Yes No Yes
FSDP No No No Yes Yes

Languages Based on Existing Modeling Languages
DPML No Yes Yes No Yes
RBML No Yes Yes No No
Constraint
Diagram

Yes Yes Yes No No

DPDL Yes Yes Yes No Yes
Languages Based on Other Languages

RSL Partial Yes Yes Yes Yes
SPINE No No No No Yes
SLAM-SL Yes No Unclear Yes Yes
ODOL (OWL) No Yes Yes Yes Yes
URN No No Yes Yes Yes
LayOM Yes Yes Yes Yes Yes
ADV No No No No Yes

and SLAM-SL are based on the object-oriented language. Therefore, they are able to
identify the objects of the design patterns distinctly.

6.1.2. Capability to Identify Structure Distinctly. This capability is present when the lan-
guage description of the design pattern is sufficient to create a class diagram of the
design pattern. Most of the languages based on mathematical formalism are not capa-
ble of identifying structure distinctly, the only exceptions being GEBNF and EOOPLG.
GEBNF has a graphic component that makes it capable of identifying structures dis-
tinctly. All languages based on modeling languages support this capability. Modeling
languages based on UML inherently provide class diagram support. Only three of the
seven design pattern specification languages in the third group have this capability.
The purpose of SPINE is to verify the design pattern through the behavior aspect;
therefore, it does not have the capability to identify the structures of design patterns
distinctly. SLAM-SL involves algebraic expressions for the formalization of design pat-
terns. URN is based on GRL and UCM, which lacks the capability to identify structures
distinctly. ADV provides individual object-level identification but cannot group these
objects in a structure; rather, it focuses on interactions and collaborations at the object
level.

6.1.3. Capability to Identify Collaborations Distinctly. The capability to identify collabora-
tions distinctly refers to behavioral aspects of the design pattern. Method calls and
parameters can help in identifying some collaborations; however, a simple way to know
if the design-pattern specification language is capable of identifying all collaborations

ACM Computing Surveys, Vol. 49, No. 1, Article 21, Publication date: June 2016.

21:24 S. Khwaja and M. Alshayeb

Table X. Evaluation of the Core Properties of Design Pattern Specification Languages—Part B

Comprehensiveness Expressiveness

Design
Pattern

Ability to
handle

multiple
entities

Ability to
address OO
paradigm

Capability
to formalize
OO patterns

Other
features

Graphical
notation

Support
Views

Textual
Notation

Languages Based on Mathematical Formalism
LePUS Yes Yes Yes Yes No Yes Yes
eLePUS Yes Yes Yes Yes Yes Yes Yes
DisCo No Yes No No No Unclear Yes
GEBNF Yes Yes Yes No Yes Yes Yes
LOTOS Yes Yes Yes No No Yes Yes
BPSL Yes Partial Yes No No Yes Yes
Object-
Calculus

Yes Yes Yes No No Yes Yes

EOOPLG Yes Yes Unclear No No Unclear Yes
FSDP Yes Yes Yes No No No Yes

Languages Based on Existing Modeling Languages
DPML Yes Partial Yes Unclear Yes Yes No
RBML Yes Yes Yes No Yes Yes No
Constraint
Diagram

Yes Yes Yes No Yes Yes No

DPDL Yes Yes Yes Yes No Yes Yes
Languages Based on Other Languages

RSL Yes Partial Yes No No No Yes
SPINE Yes Yes Yes No No No Yes
Slam-SL Yes Yes Yes No No No Yes
ODOL (OWL) Yes Yes Yes No No Yes Yes
URN Yes No No Yes Yes Partial No
LayOM Yes Yes Yes Yes No Yes Yes
ADV Yes Yes Yes Yes No Yes Yes

distinctly is when it is able to produce a sequence diagram. Languages based on mathe-
matical formalism mostly are capable of identifying collaborations distinctly; however,
LOTOS, Object Calculus and FSDP do not have this capability. All languages based on
existing modeling languages are capable of identifying collaborations distinctly. Most
of the languages based on other languages are capable of identifying all collaborations
between objects distinctly, except for SPINE, which can provide some collaborations
through method calls and parameters [Shi 2007].

6.1.4. Original Formalism. The original formalism identifies whether the language intro-
duces some original rules and specifications or if it is based on some existing rules and
specifications and extends or modifies them to handle design patterns. Most languages
based on mathematical formalism utilize original formalism. None of the existing mod-
eling languages utilize original formalism, as they are based on modeling languages.
All languages based on other languages utilize their own formalism, except for ADV
and SPINE. ADV was developed to enhance design reuse by creating a specification for
interfaces; SPINE extends the formalism defined in Prolog.

6.1.5. Textual Formalism. Textual formalism identifies if the language provides some
textual formalism to describe a design pattern. All languages based on mathematical
formalism utilize textual formalism because mathematical formalism is represented
best in textual notations. Most of the languages based on modeling languages do not
provide textual formalism. DPDL provides textual formalism, as it is based on XML,

ACM Computing Surveys, Vol. 49, No. 1, Article 21, Publication date: June 2016.

Survey On Software Design-Pattern Specification Languages 21:25

Table XI. Comparison of Tool Support Features of Design-Pattern Specification Languages
Ability to
Create/

Generate DP

Ability to
verify DP

Ability to
detect DP

Ability to
visualize

DP

Ability to
save DP

Ability to
Open DP

Save
Format Tool Purpose Tool Name

Languages Based on Mathematical Formalism
LePUS Not created by Author
eLePUS Not created by Author
DisCo Yes Yes No Yes No No Verification and

code generation
DisCo

Scanerio Tool
GEBNF Not created by Author
LOTOS No Yes No No No No No For checking

behavioral
consistency

LOTOS
Simulator

BPSL No No No No No No No Generating Java
code from BPSL

specification

BPSL Tool

Object-
Calculus

Not created by Author

EOOPLG Not created by Author
FSDP No Yes No Yes Yes Yes XML For creating

graphical
notation & Java

code

ANTLR

Languages Based on Existing Modeling Languages
DPML Yes Yes No Yes Yes Yes No Design pattern

modelling and
instantiation

DPTool

RBML Yes Yes Yes Yes Yes No No Systematic use of
patterns in UML

model

RBML-PI and
RBML-CC

Constraint
Diagram

Yes Yes No Yes No No No Creation and
verification of
design pattern

Constraint
Diagram Tool

DPDL No No No Yes No Yes DPDL
(xml)

For creating UML
class diagram &

sequence diagram

DPDL Tool

Languages Based on Other Languages
RSL Not created by Author
SPINE No Yes No No No No NA For verifying the

pattern
HEDGEHOG

SLAM-SL Yes Yes No Yes No No NA To generate code,
check conditions
for incorporating
design patterns
in the project

SLAM-SL

ODOL
(OWL)

Yes Yes Yes Yes Yes Yes RDF To facilitate the
use of pattern as

knowledge
artifacts

Online
Repository

URN Yes Yes No Yes No No No To elicit, analyze,
specify and
validate the

design pattern

jUCMNav

LayOM Yes No No No No No No To translate the design into
C++ code.

ADV Yes No No Yes No No NA To translate the
design into C++

code.

ADV Tools

which was designed to describe data; however, RBML, DPML, and Constraint Diagram
do not provide textual formalism. All languages based on other languages utilize textual
formalism.

6.1.6. Ability to Handle Multiple Entities. Design patterns have the ability to handle mul-
tiple objects if they are able to group them into some form of set. All the languages in
all groups have this capability. Languages based on mathematical formalism provide

ACM Computing Surveys, Vol. 49, No. 1, Article 21, Publication date: June 2016.

21:26 S. Khwaja and M. Alshayeb

this capability through sets. Languages based on UML usually add an extra layer to
provide the capability of grouping the objects together.

6.1.7. Ability to Address the OO Paradigm. Some design patterns are based on OO con-
cepts. If these concepts are not covered in the design-pattern specification language, the
design pattern cannot be expressed completely and concisely. Examples of such design
patterns are abstract factory, builder, and factory method. Most of the design pat-
terns use certain concepts of object-oriented programming; therefore, a design-pattern
specification language with this ability will be able to handle design patterns using
the object-oriented paradigm. All design-pattern specification languages in all groups
have the capability of addressing the object-oriented paradigm except URN, as URN
is based on capturing scenarios against different goals and finding the best one, based
on trade-offs. RSL is based on the RAISE language, which was designed for industrial
software engineering. Its capability to handle all the object-oriented features, such as
polymorphism and encapsulation, is not clear.

6.1.8. Capability to Formalize OO Patterns. The capability to formalize object-oriented
patterns does not only depend on the ability of the design pattern to address the object-
oriented paradigm but also on other features related to collaborations and interactions
in the design pattern. DisCo is one of the languages that lacks the capability to for-
malize object-oriented patterns, as it separates objects from functions; this violates
the object-oriented design philosophy. URN is the other language from the group of
languages based on existing languages that does not have the ability to address the
object-oriented paradigm.

6.1.9. Other Features. Although most design-pattern specification languages do not
have additional features, some provide features that are beyond the requirements of a
complete and concise definition of a particular design pattern. URN identifies the side
effects of design patterns and can provide the performance aspects of design patterns.
Similarly, in the LayOM language, the states of the variables of design patterns are
captured over time, and also identify the default state of the variable.

6.1.10. Graphical Notation. This property checks if the design-pattern description lan-
guage provides some sort of graphical symbol to describe the design pattern. This is
not restricted to UML diagrams. Most of the languages belonging to the group based
on mathematical formalism do not have a graphical notation, the exception being e-
LePUS, which is based on LePUS and has added graphical notations. GEBNF is the
other language belonging to this group, which has a graphical notation. GEBNF ex-
tends the BNF notation with graphical notations. UML-based languages belonging
to the group of languages based on existing modeling languages have graphical no-
tations, and include DPML and RBML. Constrain Diagram is another language that
has a graphical notation. DPDL is based on XML, although it can generate class dia-
grams and sequence diagrams, but it does not provide a graphical notation. From the
third group, the languages based on other languages, only URN provides a graphical
notation. All other languages do not have graphical notations, mainly because these
languages are based on a textual language and they have not been extended to include
graphical notations.

6.1.11. Support Views. A design pattern has multiple aspects: structural, behavioral,
and functional. Some languages only handle one aspect of design patterns; other lan-
guages handle multiple aspects and handle them distinctly. Some languages do not
provide a distinction between these aspects, and expect the user to separate them.
Most of the languages belonging to the group of mathematical formalism and modeling

ACM Computing Surveys, Vol. 49, No. 1, Article 21, Publication date: June 2016.

Survey On Software Design-Pattern Specification Languages 21:27

Table XII. Relationship of Intent With Complexity
in Design-Pattern Specification Languages

Language Intent Complexity
DPDL Description Low
GEBNF Analysis Medium
FSDP Detection Medium
DPML Description Medium
RBML Description Medium
Constraint
Diagram

Description Medium

SLAM-SL Description Medium
ODOL (OWL) Description Medium
LayOM Description Medium
LePUS Verification High
eLePUS Description High
DisCo Analysis High
LOTOS Verification High
BPSL Analysis High
Object-Calculus Verification High
EOOPLG Verification High
RSL Verification High
SPINE Detection High
URN Analysis High
ADV Description High

languages provide support for separate views, the only exception being FSDP. FSDP
concentrates on the structural aspect of design patterns and uses the class diagram,
represented in a formal way based on textual notation. From the group of languages
based on other languages, RSL, SLAM-SL and URN do not provide support for multiple
distinct views. RSL and SPINE, being verification languages, rely on structural seman-
tics to identify the design patterns in the source code. Slam-SL syntax is a sequence
of algebraic expressions in a single description. Identifying structural, behavioral, and
other aspects has to be done manually. URN’s main focus is to evaluate certain goals
against specific scenarios, so that it can provide output on multiple goals and scenar-
ios. However, the structural, behavioral, and functional aspects in software engineering
terminology cannot be produced by the language.

6.1.12. Textual Notation. All the languages belonging to the group of languages based on
mathematical formalism use textual notation for the specification of design patterns.
Of the group of languages based on existing modeling languages, RBML, DPML, and
Constraint Diagram have no textual notation. They rely only on graphical notation.
DPDL, which lacks graphical notation, relies on textual notation. Almost all design-
pattern specification languages based on other languages have textual notation, the
only exception being URN, which has graphical notation only.

6.2. Individual Trends

As discussed in Section 1.3, design-pattern specification languages based on intent can
be divided into four categories: description, analysis, detection, and verification.

The first trend that is observed is that languages with the intent of verification
always have high complexity, as shown in Table XII. One of the reasons for that is
that verification languages not only need to define the design pattern, they also need
to define the sequence of steps to identify the design pattern in the source code, which

ACM Computing Surveys, Vol. 49, No. 1, Article 21, Publication date: June 2016.

21:28 S. Khwaja and M. Alshayeb

Table XIII. Relationship of Intent With Complexity
in Design-Pattern Specification Languages

Language Intent Graphical Support
DisCo Analysis No
BPSL Analysis No
eLePUS Description No
SLAM-SL Description No
LayOM Description No
SPINE Detection No
LePUS Verification No
LOTOS Verification No
Object-Calculus Verification No
EOOPLG Verification No
GEBNF Analysis Yes
URN Analysis Yes
DPML Description Yes
RBML Description Yes
Constraint Diagram Description Yes
DPDL Description Yes
ODOL (OWL) Description Yes
ADV Description Yes
FSDP Description Yes
RSL Description Yes

adds complexity in the design pattern. This observation is strengthened by noting
that most of the languages with the intent of description only have medium or low
complexity. The languages with the intent of analysis usually fall into the medium-
and high-complexity categories.

From Table XIII, we observe that the languages with the verification intent mostly
lack graphical support. There is only one language with detection intent that does not
have graphical support. This might be because the language objective is to identify
design patterns instead of representing or describing them. Description languages fall
into both categories, that is, sometimes they have graphical support and sometimes
they lack graphical support, depending on the syntax on which they are based and the
type of description that they are targeting.

Another trend, identified in Table XIV, is that although detection languages detect
design patterns in languages, they do not provide information regarding collaboration
between different objects distinctly. Languages with the purpose of description always
provide information on collaboration in the design pattern distinctly.

One last individual trend that is observed is the capability of the languages to identify
the structure individually. In Table XV, we observe that the languages with the analysis
intent are always capable of identifying participants distinctly. One of the reasons for
this could be that they analyze the structural aspects of the design pattern. This
observation is further strengthened by noting that the only language with the analysis
intent that does not have the capability of identifying the participants distinctly is
URN. URN focuses on the analysis of design patterns against goals that do not need
the structural aspects of the design pattern.

6.3. Collective Trend

We first try to determine if the notation of the design pattern specification language has
an impact on the number of properties that are handled. From Table XVI, we see that

ACM Computing Surveys, Vol. 49, No. 1, Article 21, Publication date: June 2016.

Survey On Software Design-Pattern Specification Languages 21:29

Table XIV. Relationship of Intent With the Capability to Identify Collaborations
Distinctly in Design-Pattern Specification Languages

Language Intent Capability to identify collaborations distinctly
LOTOS Verification No
Object-Calculus Verification No
FSDP Detection No
SPINE Detection No
ADV Description No
SLAM-SL Description Unclear
LePUS Verification Yes
eLePUS Description Yes
DisCo Analysis Yes
GEBNF Analysis Yes
BPSL Analysis Yes
EOOPLG Verification Yes
DPML Description Yes
RBML Description Yes
Constraint Diagram Description Yes
DPDL Description Yes
RSL Verification Yes
ODOL (OWL) Description Yes
URN Analysis Yes
LayOM Description Yes

Table XV. Relationship of Intent With the Capability to Identify Participants
Distinctly in Design-Pattern Specification Languages

Language Intent Capability to identify participants distinctly
LOTOS Verification No
Object-Calculus Verification No
FSDP Description No
DPML Description No
RBML Description No
SPINE Detection No
ODOL (OWL) Description No
URN Analysis No
ADV Description No
RSL Verification Partial
LePUS Verification Yes
eLePUS Description Yes
DisCo Analysis Yes
GEBNF Analysis Yes
BPSL Analysis Yes
EOOPLG Verification Yes
Constraint Diagram Description Yes
DPDL Description Yes
SLAM-SL Description Yes
LayOM Description Yes

ACM Computing Surveys, Vol. 49, No. 1, Article 21, Publication date: June 2016.

21:30 S. Khwaja and M. Alshayeb

Table XVI. Summary of Design-Pattern Specification Languages Against the Evaluation
Framework with the Notation of the Language

Language Number of framework properties handled Language notation
LayOM 11 Textual
LePUS 10 Textual
eLePUS 10 Amphibious
GEBNF 10 Amphibious
DPDL 10 Textual
ODOL (OWL) 9 Textual
LOTOS 8 Textual
BPSL 8 Textual
Constraint Diagram 8 Graphical
Object-Calculus 7 Textual
EOOPLG 7 Textual
DPML 7 Graphical
RBML 7 Graphical
RSL 7 Textual
SLAM-SL 7 Textual
DisCo 6 Textual
FSDP 6 Textual
URN 6 Graphical
ADV 6 Textual
SPINE 5 Textual

the languages that have textual notation handle more properties than the languages
that only have graphical notation.

One thing that should be kept in mind is that the intent of design-pattern specifica-
tion languages is based on the purpose described by the authors of these languages;
thus, we are not verifying the intent. For example, two languages with detection intent
do not mean that they will have the same capability of detecting design patterns. It can
be very possible that one language detects a few design patterns from the OO paradigm
and another detects all the design patterns in the OO paradigm [Fulop et al. 2008].
Also, one design-pattern specification language may work on only Java code and the
other works on UML diagrams only.

Second, we compare how many properties of the design-pattern evaluation frame-
work are handled by each language. The first observation from Table XVII is that the
complexity of design languages has nothing to do with the number of design-pattern
evaluation framework features a design language handles. The second observation is
that the languages with description intent usually handle more evaluation properties,
which tells us that the evaluation framework features are geared more toward the
description of the design pattern than their capability of detecting or verifying design
patterns.

Finally, we compare how many times each property of the design-pattern evaluation
framework is satisfied.

Table XVIII shows that design-pattern specification languages have the greatest
ability to handle multiple entities. One interesting observation is that the capability to
identify collaboration distinctly is satisfied 14 times, whereas identifying participants
and structure distinctly is satisfied 10 times. One reason for this could be that iden-
tifying collaboration is more important in the detection, verification, and description
of design patterns. Similarly, we see that textual notation and textual formalism are
higher than graphical notation, as observed earlier.

ACM Computing Surveys, Vol. 49, No. 1, Article 21, Publication date: June 2016.

Survey On Software Design-Pattern Specification Languages 21:31

Table XVII. Summary of Design-Pattern Specification Languages Against the Evaluation Framework

Language Intent Complexity Number of framework properties handled
LayOM Description Medium 11
LePUS Verification High 10
eLePUS Description High 10
GEBNF Analysis Medium 10
DPDL Description Low 10
ODOL (OWL) Description Medium 9
LOTOS Verification High 8
BPSL Analysis High 8
Constraint Diagram Description Medium 8
Object-Calculus Verification High 7
EOOPLG Verification High 7
DPML Description Medium 7
RBML Description Medium 7
RSL Verification High 7
Slam-SL Description Medium 7
DisCo Analysis High 6
FSDP Description Medium 6
URN Analysis High 6
ADV Description High 6
SPINE Detection High 5

Table XVIII. Number of Times Design-Pattern Evaluation Framework Property is Satisfied

Property Number of times design language satisfies the property
Ability to handle multiple entities 19
Textual formalism 18
Capability to formalize OO patterns 17
Textual notation 16
Ability to address OO paradigm 15
Capability to identify collaborations distinctly 14
Support views 13
Original formalism 11
Capability to identify participants distinctly 10
Capability to identify structure distinctly 10
Other features 6
Graphical notation 6

7. CONCLUSION

Design patterns are the interaction of classes and objects based on certain relationships.
Therefore, in the realization of a design pattern, the actor performing the action is
more than the implementation of the algorithm. This means that the implementation
is important in the design pattern under the bounds of the protocol and sequences
[Sterritt et al. 2010]. If we have to simplify the most important goals for software design-
pattern description, these are as follows: generality, precision, and understandability.

Generality: Natural language is used in describing the traditional patterns along
with graphical notations. The problem is that the important details of design patterns
are hidden in the instantiation of objects; therefore, the pattern description should
be generic to handle different usage scenarios of design patterns, but can also cover
the specific details of instantiation. UML [UML 2003]–based object notations normally
have limitations in describing design patterns abstractly. A pattern description should

ACM Computing Surveys, Vol. 49, No. 1, Article 21, Publication date: June 2016.

21:32 S. Khwaja and M. Alshayeb

be generic enough so that different applications and domain-specific realizations of
the pattern can be achieved. The most common example is that the number of classes
of concrete factory in abstract factory design pattern are not easy to handle using
UML-based design-pattern specification languages [Erich Gamma 1994].

Precision: Precision is also important in the description of design patterns. When
used for model transformation, the precise description of patterns is needed to derive
the set of rules. Conventional object-oriented languages have many limitations in this
area, such as the relationship between create product operation in the concrete factory
and create product in concrete product class of abstract factory design pattern. How-
ever, association and dependencies are usually used in representing these relations in
pattern description, which is not adequate. In short, the precise specification of pattern
structure and behavior produces correct and accurate implementation of the design
pattern.

Understandability: Although it can be argued that generality and precision are the
most important goals for a pattern-description language, if the pattern is not under-
standable to developers and users, then the precision and generality is of no use.
Therefore, we have added this as one of the goals of pattern-description languages.
An unnecessarily complex design-pattern specification language will reduce the use of
that language for pattern description and can be the reason for the incorrect use of the
design pattern.

The computing discipline is changing rapidly and expanding into new territories
such as mobile, cloud, distributed, and ubiquitous computing. This is giving rise to new
problems and new design patterns to resolve these issues [Ali et al. 2014; Atkinson et al.
2015; Crane et al. 1995; Fehling et al. 2014; Meseguer 2014; Ravindran et al. 2014;
Zaki and Forbrig 2011]. Therefore, there is a need for new design-pattern specification
languages to handle emerging design patterns. This provides a reason for ongoing
analysis of design-pattern specification languages and their categorization. This also
raises the need for a unified framework for the evaluation of design patterns across
different domains.

ACKNOWLEDGMENT

The authors would like to acknowledge the support provided by the Deanship of Scientific Research at King
Fahd University of Petroleum and Minerals, Saudi Arabia.

REFERENCES

P. S. C. Alencar, D. D. Cowan, D. German, K. J. Lichtner, C. Lucena, and L. A. Nova. 1995. Formal Approach
to Design Pattern Definition & Application. World Congress on Formal Methods. 576–594.

C. Alexander. 1977. A Pattern Language. Oxford University Press, New York, NY.
C. Alexander. 1979. The Timeless Way of Building. Oxford University Press, New York, NY.
M. M. Ali, A. F. Elsharkawi, M. El Said, and M. Zaki. 2014. Design patterns for multimedia mobile applica-

tions. Journal of Computer Science 1, 2.
H. Angel and J. J. Moreno-Navarro. 2007. Modeling and reasoning about design patterns in slam-sl. Design

Pattern Formalization Techniques 206–235.
M. Aoyama. 2000. Evolutionary Patterns of Design and Design Patterns. IEEE, 110–116.
B. Appleton. 2000. Patterns and Software: Essential Concepts and Terminology. Accessed April 2016,

http://www.sci.brooklyn.cuny.edu/∼sklar/teaching/s08/cis20.2/papers/appleton-patterns-intro.pdf.
C. Atkinson, P. Bostan, and D. Draheim. 2015. Foundational MDA patterns for service-oriented computing.

Journal of Object Technology 14, 1.
A. L. Baroni, Y. G. Gueheneuc, and H. Albin-Amiot. 2003. Design patterns formalization. Rapport De

Recherche, Département D’informatique, École Des Mines De Nantes, 03, 03.
I. Bayley and H. Zhu. 2007. Formalising Design Patterns in Predicate Logic. IEEE, 25–36.

ACM Computing Surveys, Vol. 49, No. 1, Article 21, Publication date: June 2016.

http://www.sci.brooklyn.cuny.edu/protect $
elax sim $sklar/teaching/s08/cis20.2/papers/appleton-patterns-intro.pdf

Survey On Software Design-Pattern Specification Languages 21:33

K. Beck and W. Cunningham. 1987. Using pattern languages for object oriented programs. OOPSLA -
Conference on Object-Oriented Programming, Systems, Languages, and Applications.

M. L. Bernardi, M. Cimitile, and G. Di Lucca. 2014. Design pattern detection using a DSL-driven graph
matching approach. Journal of Software: Evolution and Process 26, 12, 1233–1266.

A. Blewitt. 2007. SPINE: Language for Pattern Verification, IGI Global, Hershey, PA.
D. Bohdanowicz. 2005. Toward Tool Support for Usage of Object-Oriented Design Patterns Expressed in

Unified Modeling Language, Blekinge Institute of Technology, Ronneby, Sweden.
J. Bosch. 1996a. Language Support for Design Patterns. (1996), 197–210.
J. Bosch. 1996b. Relations as object model components. Journal of Programming Languages 4, 39–61.
F. Buschmann, K. Henney, and D. C. Schmidt. 2007. Pattern Oriented Software Architecture, Volume 5: On

Patterns and Pattern Languages, Wiley, Hoboken, NNJ.
A. Chihada, S. Jalili, S. M. H. Hasheminejad, and M. H. Zangooei. 2015. Source code and design conformance,

design pattern detection from source code by classification approach. Applied Soft Computing 26, 357–
367.

O. Coplien. 1992. Advanced C++ Programming Styles and Idioms. Addison-Wesley, New York, NY.
J. O. Coplien. 2002. Advanced C++ Programming Styles and Idioms. Addison-Wesley, New York, NY.
S. Crane, J. Magee, and N. Pryce. 1995. Design Patterns for Binding in Distributed Systems. Citeseer.
S. Deya and S. Bhattacharyab. 2010. Formal specification of structural and behavioral aspects of design

patterns. Journal of Object Technology 9, 6, 99–126.
T. Di Noia, M. Mongiello, and E. Di Sciascio. 2014. Ontology-Driven Pattern Selection and Matching in

Software Design, Springer.
J. Dietrich and C. Elgar. 2007. An Ontology Based Representation of Software Design Patterns, IGI Global,

Hershey, PA.
A. H. Eden. 1999. Precise Specification of Design Patterns and Tool Support in their Application. Tel Aviv

University, Tel Aviv.
A. H. Eden, J. Y. Gil, and A. Yehudai. 1996. A Formal Language for Design Patterns. Washington University,

St. Louis, MO.
A. H. Eden, A. Yehudai, and J. Gil. 1997. Precise Specification and Automatic Application of Design Patterns.

IEEE, 143–152.
R. H. Erich Gamma, Ralph Johnson, and John Vlissides. 1994. Design Patterns: Elements of Reusable Object-

Oriented Software. Addison Wesley, New York, NY.
A. Flores, A. Cechich, and G. Aranda. 2007. A Generic Model of Object-Oriented Patterns Specified in RSL,

IGI Global, Hershey, PA.
L. J. Fulop, R. Ferenc, and T. Gyimothy. 2008. Towards a Benchmark for Evaluating Design Pattern Miner

Tools. IEEE, 143–152.
R. Gabriel. 1996. Patterns of Software: Tales from the Software Community. Oxford University Press, New

York, NY.
E. Gasparis. 2007. LePUS: A Formal Language for Modeling Design Patterns, IGI Global, Hershey, PA.
A. H. Hannousse and Z. Liu. 2007. Towards A Calculus for Design Patterns. International Institute for

Software Technology.
G. Hedin. 1997. Attribute extensions—a technique for enforcing programming conventions. Nordic Journal

of Computing 4, 1, 93–122.
G. Hedin. 1998. Language support for design patterns using attribute extension. Object-Oriented Technolo-

gies 137–140.
S. Henninger and V. Corrêa. 2007. Software pattern communities: Current practices and challenges. 14th

Conference on Pattern Languages of Programs (PLoP’07).
A. Herranz and J. J. Moreno-Navarro. 2003. Formal agility. how much of each. Taller De Metodologias Agiles

en el Desarrollo Del Software. JISBD 47–51.
A. Herranz, J. Moreno, and N. Maya. 2002. Declarative reflection and its application as a pattern language.

Electronic Notes in Theoretical Computer Science 76, 0, 197–215.
U. Itu-T. 2002. Focus group: Draft rec. Z. 151–goal-oriented requirements language (GRL). Geneva,

Switzerland.
F. Jaafar, Y. G. Guéhéneuc, S. Hamel, F. Khomh, and M. Zulkernine. 2015. Evaluating the impact of design

pattern and anti-pattern dependencies on changes and faults. Empirical Software Engineering 1–36.
D. Jing, Y. Sheng, and Z. Kang. 2007. Visualizing design patterns in their applications and compositions.

IEEE Transactions on Software Engineering 33, 7, 433–453.

ACM Computing Surveys, Vol. 49, No. 1, Article 21, Publication date: June 2016.

21:34 S. Khwaja and M. Alshayeb

S. Kent. 1997. Constraint Diagrams: Visualizing Invariants in Object-Oriented Models. ACM, 327–341.
S. Khwaja and M. Alshayeb. 2013a. A framework for evaluating software design pattern specification lan-

guages. In The 12th IEEE/ACIS International Conference on Computer and Information Science. 16–20.
S. Khwaja and M. Alshayeb. 2013b. Towards design pattern definition language. Software: Practice and

Experience 43, 7, 747–757.
D. K. Kim. 2007. Role-Based Metamodeling Language for Specifying Design Patterns, IGI Global, Hershey,

PA.
D. K. Kim, R. France, S. Ghosh, and E. Song. 2003. A UML-based metamodeling language to specify design

patterns. Workshop Software Model Engineering (WiSME) with Unified Modeling Language Conference.
S. K. Kim and D. Carrington. 2009. A formalism to describe design patterns based on role concepts. Formal

Aspects of Computing 21, 5, 397–420.
S. Kodituwakku and P. Bertok. 2009. A mathematical approach to object oriented design patterns. Journal

of the National Science Foundation of Sri Lanka 36, 3.
P. Kumar and A. Kumar. 2010. MCDMfJ : Mining creational design motifs from java source code. Interna-

tional Journal of Computer and Network Security 2, 1 (2010), 11–14.
L. Lamport. 1994. The temporal logic of actions. ACM Transactions on Programming Languages and Systems

16, 872–923.
K. Lano. 2007. Formalising Design Patterns as Model Transformations, IGI Global, Hershey, PA.
A. Lauder and S. Kent. 1998. Precise visual specification of design patterns. ECOOP’98—Object-Oriented

Programming, 114–134.
D. Lea. 1994. Christopher Alexander, an introduction for object-oriented designers. Software Engineering

Notes 19, 1 (1994), 39–46.
C. Fehling, F. Leymann, R. Retter, W. Schupeck, and P. Arbitter. 2014. Cloud Computing Patterns: Funda-

mentals to Design, Build, and Manage Cloud Applications. Springer.
J. K. Mak, C. S. Choy, and D. P. Lun. 2004. Precise Modeling of Design Patterns in UML. IEEE, 252–261.
D. Mapelsden, J. Hosking, and J. Grundy. 2002. Design Pattern Modelling and Instantiation Using DPML.

Australian Computer Society, Inc., Sydney, Australia.
B. D. Martino and A. Esposito. 2015. A rule-based procedure for automatic recognition of design patterns in

UML diagrams. Software: Practice and Experience 46, 7, 983–1007.
A. Mattsson, B. Lundell, B. Lings, and B. Fitzgerald. 2009. Linking model-driven development and software

architecture: A case study. IEEE Transactions on Software Engineering, 35, 1, 83–93.
J. Meseguer. 2014. Taming distributed system complexity through formal patterns. Science of Computer

Programming 83, 3–34.
S. J. Metsker. 2002. Design Patterns Java Workbook, Addison Wesley, New York, NY.
T. Mikkonen. 1998. Formalizing design patterns. In Proceedings of the 20th International Conference on

Software Engineering. Los Alamitos, CA, USA.
J. L. I. Montes and F. L. G. Vela. 2003. Structural modeling of design patterns: REP diagrams. In The 3rd

Latin American Conference on Pattern Languages of Programming.
OMG. 2005. Object Constraint Language Specification, Version 2.0. Available: http://www.omg.org/spec/OCL/.
Pattern Languages of Programs Conference. 1994. Monticello, Illinois, USA.
Y. Pan and E. Stolterman. 2013. Pattern Language and HCI: Expectations and Experiences, ACM, Paris,

France.
N. Pettersson, W. Löwe, and J. Nivre. 2010. Evaluation of accuracy in design pattern occurrence detection.

IEEE Transactions on Software Engineering, 36, 4, 575–590.
L. Prechelt, B. Unger, W. F. Tichy, P. Brossler, and L. G. Votta. 2001. A controlled experiment in maintenance:

Comparing design patterns to simpler solutions. IEEE Transactions on Software Engineering, 27, 12,
1134–1144.

R. R. Raje and S. Chinnasamy. 2001. eLePUS—a Language for Specification of Software Design Patterns,
ACM, Las Vegas, NV.

G. Rasool and D. Streitferdt. 2011. A survey on design pattern recovery techniques. Journal of Computer
Science 8, 2.

R. Ravindran, R. Suchdev, Y. Tanna, and S. Swamy. 2014. Context Aware and Pattern Oriented Machine
Learning Framework (CAPOMF) for Android. IEEE, 1–7.

D. Riehle. 1997. Composite Design Patterns. ACM, 218–228.
D. Riehle and H. Zullighoven. 1996. Understanding and using patterns in software development. Theory and

Practice of Object Systems 2, 1, 3–13.

ACM Computing Surveys, Vol. 49, No. 1, Article 21, Publication date: June 2016.

http://www.omg.org/spec/OCL/

Survey On Software Design-Pattern Specification Languages 21:35

J. F. Roy, J. Kealey, and D. Amyot. 2006. Towards integrated tool support for the user requirements notation.
System Analysis and Modeling: Language Profiles 198–215.

M. Saeki. 2000. Behavioral Specification of GOF Design Patterns with LOTOS, IEEE Computer Society,
Washington, DC.

M. Saeki, T. Hiroi, and T. Ugai. 1993. Reflective Specification: Applying a Reflective Language to Formal
Specification. IEEE, 204–213.

A. Seffah and M. Taleb. 2012. Tracing the evolution of HCI patterns as an interaction design tool. Innovations
in Systems and Software Engineering 8, 2, 93–109.

N. Shi. 2007. Reverse Engineering of Design Patterns from Java Source Code. University of California, Davis.
A. V. Sriharsha and A. R. M. Reddy. 2015. Empirical analysis of design pattern metrics for building modest

formalized catalog. International Journal of Information Research and Review 2, 10, 1232–1236.
A. Sterritt, S. Clarke, and V. Cahill. 2010. Precise specification of design pattern structure and behaviour.

Modelling Foundations and Applications 277–292.
T. Taibi. 2007. An Integrated Approach to Design Patterns Formalization, IGI Global, Hershey, PA.
T. Taibi and D. C. Ngo. 2003. Formal specification of design pattern combination using BPSL. Information

and Software Technology 45, 3, 157–170.
OMG UML. 2003. Superstructure Specification Version 2.4.1. Available: http://www.omg.org/spec/UML/

2.4.1/2011.
W3C. 2008. Extensible Markup Language (XML) Version 1.0. Available: http://www.w3.org/TR/REC-

xml/2008.
W3C. 2004. OWL Web Ontology Language Guide. Available: https://www.w3.org/TR/owl-guide/.
W3C. 2005. Resource Description Framework (RDF). Available: https://www.w3.org/RDF/.
D. Yu, Y. Zhang, and Z. Chen. 2015. A comprehensive approach to the recovery of design pattern instances

based on sub-patterns and method signatures. Journal of Systems and Software 103 1–16.
M. Zaki and P. Forbrig. 2011. User-Oriented Accessibility Patterns for Smart Environments, Springer.
H. Zhu and L. Shan. 2006. Well-formedness, consistency and completeness of graphic models. Proceedings of

UKSIM 6, 47–53.

Received December 2015; revised March 2016; accepted April 2016

ACM Computing Surveys, Vol. 49, No. 1, Article 21, Publication date: June 2016.

http://www.omg.org/spec/UML/2.4.1/2011
http://www.omg.org/spec/UML/2.4.1/2011
http://www.w3.org/TR/REC-xml/2008
http://www.w3.org/TR/REC-xml/2008
https://www.w3.org/TR/owl-guide/
https://www.w3.org/RDF/

