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In the current hyperconnected era, modern Information and Communication Technology (ICT) systems form
sophisticated networks where not only do people interact with other people, but also machines take an
increasingly visible and participatory role. Such Human-Machine Networks (HMNs) are embedded in the
daily lives of people, both for personal and professional use. They can have a significant impact by producing
synergy and innovations. The challenge in designing successful HMNs is that they cannot be developed
and implemented in the same manner as networks of machines nodes alone, or following a wholly human-
centric view of the network. The problem requires an interdisciplinary approach. Here, we review current
research of relevance to HMNs across many disciplines. Extending the previous theoretical concepts of socio-
technical systems, actor-network theory, cyber-physical-social systems, and social machines, we concentrate
on the interactions among humans and between humans and machines. We identify eight types of HMNs:
public-resource computing, crowdsourcing, web search engines, crowdsensing, online markets, social media,
multiplayer online games and virtual worlds, and mass collaboration. We systematically select literature on
each of these types and review it with a focus on implications for designing HMNs. Moreover, we discuss
risks associated with HMNs and identify emerging design and development trends.
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1. INTRODUCTION

Since the invention of the Gutenberg press, machines have had a transformative im-
pact on human interaction. As a result of the Industrial Revolution, machine influence
on how we communicate, exchange, and cooperate with each other has become more
immediate and pervasive. Today, with the ever-increasing proliferation of networked
technology in support of human and machine interaction, human actions and interac-
tions have become so interrelated with technology that it is difficult to know whether
society changes because of technology or the other way around.

Increasingly, the interactions of humans and machines form interdependent net-
works. We conceptualize these networks as Human-Machine Networks (HMNs), that
is, assemblages of humans and machines that interact to produce synergistic effects.
Ever more activities in work and private life are conducted within HMNs. For exam-
ple, actions to address environmental problems are executed in networks involving
government, interest organizations, citizens, smart devices, and sensor networks. Sys-
tems for emergency response and rescue involve complex interactions between sensors,
smart machines, victims, volunteers, and emergency response organizations. Scientific
research is increasingly conducted in networks of scientists, crowdsourced volunteers
and amateurs, and networked machine resources, and many more examples.

In consequence, HMNs increasingly influence our society. For the individual worker
and citizen, the form, experience, and outcome of life may sometimes depend less
on the characteristics of the individual and more on the characteristics of the online
and offline networks in which they are embedded. For companies, the public sector,
and organizations, productivity, innovativeness, and civic participation depend on the
characteristics of the networks of which workers and citizens are part. Hence, an
advanced understanding of HMNs, and how to benefit from their characteristics, is
important to strengthen productivity and innovation, as well as citizen participation
and quality of life.

The challenge is that HMNs cannot be developed and implemented in the same
manner as networks of machine nodes alone. Creating successful solutions for HMNs
requires awareness concerning the kind of network to be established, the actors that
are involved, the interactions, and the capabilities and behaviors emerging within the
network. By establishing such awareness, we may benefit from the existing knowledge
and experience when designing the HMNs of the future.

There are four major fields of research of relevance to our understanding of HMNs:
Socio-Technical Systems (STS) theory, Actor-Network Theory (ANT), Cyber-Physical-
Social Systems (CPSS) theory, and the emerging theory on social machines. STS theory
provides insight into the dual shaping of technology and the social (work) context in
which it is implemented [Leonardi 2012], recognizing organizations as complex sys-
tems of humans and technology that aim to reach given goals in the context of a given
organizational environment [Emery and Trist 1965]. ANT aims at fundamentally re-
vising what should be considered part of the social, and argues that we explicitly need
to take into account that any social system is an association of heterogeneous elements
such as humans, norms, texts, devices, machines, and technology [Latour 2005; Law
1992], granting equal weight to humans and nonhuman (machine) entities in the anal-
ysis of the social. Hence, whereas STS theory considers the social as part of technology,
ANT considers technology (and other nonhuman entities) as part of the social. More re-
cently, CPSS theory has extended the STS approach and called attention to the human
and social dimensions present in systems that use computational algorithms to con-
trol or monitor physical devices [Wang 2010; Sheth et al. 2013]. Representing a fourth
perspective, the emerging theory on social machines refers to systems that combine
social participation with machine-based computation [Burégio et al. 2013; Shadbolt
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et al. 2013; Smart et al. 2014], connecting with Berners-Lee’s original vision of the Web
more as a social creation than a technical one, “to support and improve our Web-like
existence in the world” [Berners-Lee 2000, p. 123].

However, even if these theories conceptualize humans and machines as forming a
single system, as opposed to perspectives where social structures are seen as merely
mediated in machine networks (e.g., social network theory), they do not provide the
insight and guidance needed to support the design of contemporary and future HMNs.
Furthermore, these theories do not contribute to a unified framework for understand-
ing HMNs, as is seen from the plethora of theoretical positions in which current studies
of such networks are based. As will be seen in Section 3, the volume of publications
concerning HMNs is rapidly increasing across a wide range of academic fields. Such
breadth in academic attention is beneficial for the development of knowledge on HMNs.
However, this breadth also implies a potential risk for fragmentation, barring opportu-
nities for the transfer of knowledge and experiences across academic as well as practical
fields of study.

To initiate the broad theoretical basis needed to bridge the rapidly evolving field of
HMNs, we have conducted a cross-disciplinary literature survey of key studies that
concern different types of HMNs. Multiple surveys of particular types of HMNs exist
[Crowston et al. 2012; Guo et al. 2013; Yahyavi and Kemme 2013; Guo et al. 2015;
Pejovic and Musolesi 2015] but we are the first to present a comprehensive overview of
the field within a unifying framework. The objective of our article is to systematically
review the existing literature, with a specific focus on the human and machine actors
and the interactions between them. This analysis provides a first step toward inte-
grating current academic efforts to understand the emerging phenomenon of HMNs.
Furthermore, the analysis demonstrates how the identification of key characteristics
in different HMNs may serve to expose issues related to the design of HMNs, as well as
to support the transfer of knowledge and experience across academic disciplines and
types of HMNs.

In Section 2, we discuss the scope and approach to the systematic literature review
we have conducted. In Section 3, we present real-world examples and insights from
the literature on different types of HMNs. We discuss common challenges, emergent
behavior, and trends in Section 4. We conclude in Section 5.

2. BACKGROUND AND SCOPE

In this section, we provide a definition of an HMN, discuss background literature on
the actors that make up HMNs and their interactions, and establish the scope and
approach taken to conduct this survey.

2.1. Definition

HMNs are assemblages of humans and machines whose interactions have synergistic
effects. This means that the effects generated by the HMN should exceed the combined
effort of the individual actors involved. In particular, the HMN should serve a purpose
that would not have been achieved merely by the effects of the individual actors.
Typically, the synergistic effect is achieved by combining human strengths and machine
strengths. Interactions in the HMNs are expected to result in outputs that neither a
pure social network nor a computer network could achieve independently.

The concept of HMNs is to be understood as a perspective for analysis or conceptu-
alization. Given our concern for synergistic effects, the networks of main interest are
those where the synergistic effects between humans and machines are immediately
evident such as in systems for mass collaboration (see Section 3.8). Networks of lesser
interest include, for example, simple communication and broadcasting networks such
as telephone, telegraph, e-mail, or TV networks, as the medium here may be said to
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hold more the role of a noninterfering intermediary. In other words, for a network to be
considered an HMN, the machines need to transform and/or influence, not just trans-
mit. In the parlance of actor-network theory, we focus on networks where machines
serve as mediators, by affecting and transforming the interaction that takes place.

2.2. Actors

The two types of actors in HMNs are the human and the machine. By “human” we
mean an entity that behaves like a single person (even if the entity is an organization).
In contrast to machines, humans have the capacity for emotions, attitudes, sociality,
meaning-making, creativity, and intent. Compared with machines, human behavior is
typically more unpredictable, yet susceptible to influence.

In most cases, any person can participate in an HMN. Participation is more often
determined by the benefits and costs the individual perceives than the individual’s so-
cial status or geographic location. The benefits can be divided into economic, intrinsic,
and social [Ardichvili 2008; Chiu et al. 2006; Yee 2006]. Individuals profit economi-
cally when they receive payments (in money, goods, or services) or obtain skills and
qualifications for their paid career. They gain intrinsically when they contribute to
a good cause, share knowledge, or help others. Some are also intrinsically motivated
to gain or create knowledge for its own sake. Individuals may also benefit socially if
participation in the HMN allows them to create, build, and maintain reputation and
social capital, or simply enjoy social interaction. In general, people often have complex
motivations to participate and contribute, and motivation strategies such as competi-
tion and gamification make use of this by offering a combination of economic, intrinsic,
and social benefits. Time and effort are the two obvious costs that people incur when
they participate in HMNs. Another significant cost is the risk of breached privacy
[Krasnova et al. 2010; Sheehan 2002]. Leaking private information to the public and
stealing a user’s identity can entail significant financial losses, family distress, and
social embarrassment.

Regarding machines, any device with connectivity can be part of an HMN: per-
sonal computers, smartphones, tablets, wearable technology, sensors, embedded chips,
servers running algorithms, and so on. These machines take input in the form of
text, media, or sensor data, such as vital signs or environmental measures, printed or
coded instructions and software, signals and alerts from multiple sources, including
other machines as well as humans. This input can be entered by the user or collected
automatically. A machine with computational capabilities can aggregate, clean, or oth-
erwise transform the input data in order to output something else or even fuse data
from different sources to make complex decisions to be interpreted by other machines
or by human experts [Atzori et al. 2010; Castells 2011; Lee et al. 2015].

To facilitate the functioning of the HMN, the machines need to be available, con-
nected, and secure. Compared to humans, the machines do not have motivation, do not
experience trust or reliance, and do not behave altruistically or irrationally of their
own volition: they have no agency in that sense [Jia et al. 2012; Rose et al. 2005]. With
autonomic computing, however, there may be a promise of some level of self-regulation
and “healing” [Huebscher and McCann 2008; Kephart and Chess 2003; White et al.
2004]. Moreover, machines are increasingly capable of solving complex data analysis
problems that humans would struggle to tackle not least at such speed, although ef-
fective responses and the subtlety of nuanced behaviors remain elusive [Norman et al.
2003; Pantic and Rothkrantz 2003; Picard et al. 2001]. Further, machine learning and
data mining crucially depend on large datasets generated and annotated by humans.
In such cases, a quasi-balanced collaboration is required. Machines are therefore now
becoming increasingly significant contributors to HMNs, and no longer simply commu-
nication channels or facilitators of highly distributed human-to-human connectivity.
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2.3. Interactions

Machines enable new forms of interaction between humans. Different HMNs allow
participants to interact with different levels of intensity and involvement. In some
networks (e.g., crowdsourcing platforms such as Amazon Mechanical Turk), partici-
pants do not have the opportunity to directly interact. In others, they can observe each
other’s contributions. Depending on the application, they can browse all contributions
(as in an online market such as eBay), see algorithmically selected contributions (as in
Reddit, which is a content site), see algorithmically customized contributions (e.g., via
the Newsfeed algorithm on Facebook), or only view aggregate results (as in prediction
markets). Once being able to observe contributions, participants can then evaluate
them by approving them (e.g., “likes” on Facebook), approving or disapproving them
(“upvotes” and “downvotes” on Reddit), rating them (Amazon product “stars”), or
commenting on them. Finally, participants can sometimes modify others’ contributions
by editing or deleting them. For example, Wikipedia editors can revert edits and Linux
developers can fix code contributed by others. Human-human interactions largely
depend on trust [Dwyer et al. 2007; Jones and Leonard 2008]. Phenomena such as
trolling, cyber-bullying, and cyber-stalking signify the erosion of trust. Human-human
interactions also involve social influence [Bond et al. 2012; Muchnik et al. 2013;
Onnela and Reed-Tsochas 2010]. Social influence can lead to large-scale behavioral or
emotional contagion. This can be both positive, if it results in the spread of pro-social
or health-conscious behavior, and negative, if it leads to dangerous herd behavior or
unproductive groupthink.

When the role of the machine in an HMN may be seen as that of a mediator (i.e.,
its output does not equal the input from the other nodes in the HMN), it is relevant to
analyze the human-machine interaction. To some degree, human-machine interactions
are gated only by the communication protocol used. Input can be provided via different
channels including keyboards, data channels, speech, and movement and gesture, ac-
tively or even passively. Interactions in HMNs are therefore increasingly multimodal,
with different HMNs allowing individuals to contribute or interact in different ways
sometimes dictated only by ease of use [Lin 2003; Lin et al. 2003]. Similarly, the output
channel may depend on the service or application (signage, broadcasting, experimen-
tation, web searches, and so forth) or on the preferences of the recipient (a recorded
message, a printout, or a visual display).

With respect to what humans input, individuals make contributions to different ex-
tents. In some networks, users do not have to do anything to contribute data beyond
interacting with the service or even simply turning on the service. In these cases, par-
ticipants contribute passively. Their social interactions, personal characteristics, and
site behavior are automatically collected by the service. These data are then analyzed
and often used to recommend actions (as some crowdsensing applications do), social
contacts (as in LinkedIn), or products (as in Netflix). In other HMNs, contributors need
to make the effort and take the time to contribute actively. They contribute by filling
out surveys, composing and editing text, writing code, sending sensor measurements,
or uploading videos, photos, and news links. In more extreme cases, participants can
also modify the content on the HMN or the rules by which the content is collected,
managed, and distributed. Consumers then become “prosumers,” and can still switch
between the two modes as suits the service or their own needs.

With respect to what machines output, different HMNs may introduce different
levels of control over the content. Machines may simply list or show the contributions,
as is common in online marketplaces and in direct response to a specific query.
Alternatively, they may employ complex algorithms to filter and select contributions,
as Web search engines do, for example, personalizing or customizing results to reflect
previous user behaviors. Or they may even use bots and human intelligence to

ACM Computing Surveys, Vol. 50, No. 1, Article 12, Publication date: April 2017.



12:6 M. Tsvetkova et al.

modify contributions. For example, Wikipedia uses vandalism-detection algorithms
and forums employ censorship algorithms, while content sites like Digg maintain
centralized content management.

2.4. Scope and Approach

To narrow the scope of this survey, we simplify the analysis of machine-machine inter-
actions. In particular, when the underlying or enabling machine networks are perceived
as one and the same unit by all the relevant nodes of the HMN, we analyze and repre-
sent the machine subnetwork as a single node. This is not to say that machine-machine
interactions will not be considered; rather, they will be considered only to the extent
that is valuable to the analysis at hand.

Thus, our discussion focuses on the human-human and human-machine interactions
in the context of contemporary HMNs. There are clearly differences in the relative
roles and status of machines and human actors across the different types of network.
For instance, there will be cases where the machines act as a “human proxy” to facil-
itate what is essentially human-to-human relationships. In other cases, they become
semiautonomous agents that act alongside and in collaboration with human agents in
the network. We base our analysis on the existence and intensity of these interactions
and the extent to which they are essential for the functioning of the HMN.

Based on different possible permutations of interaction types, we identify and differ-
entiate between eight types of HMNs: public resource computing, crowdsourcing, Web
search engines, crowdsensing, online markets, social media, multiplayer online games
and virtual worlds, and mass collaboration (Figure 1). These types are to be seen as
an organizing framework for the survey, not as a complete taxonomy of HMNs. We
used keywords associated with these types to systematically select relevant literature,
with a focus on recent and high-impact articles. Details of our selection procedure are
described in the online appendix.

3. ANALYSIS OF HMNS

The number of publications on HMNs, as measured by the number of articles retrieved
by our keywords from the Scopus bibliographical database (www.scopus.com), has in-
creased over the last 20 years (Figure 2). More importantly, the pattern of publications
has changed over time. During the late 1990s, relatively few publications used the
particular terms in their title, keywords, or abstract. The earliest increase was in the
eCommerce area (part of the online markets type), where publications increased from
192 in 1999 to 772 in 2000, and remained near or above 1,000 publications per year
after that. The second area to gain prominence is file sharing, which increased from
less than 50 publications annually in 2000 to approximately 2,000 per year by 2005.

The pattern for social media is particularly striking in the chart, showing a steep
rise starting in 2008 (n=708) and accelerating by 2010 (n=2,560) to a high of 8,991
publications by 2014. Mass collaboration as a topic, on the other hand, shows a more
steady rise over the last 10 years, peaking at 5,165 publications in 2014.

We next look at the extent to which ideas relating to human-machine interaction have
penetrated various disciplines as indicated by the journals where these publications
appear. In Figure 3, we use the methods described in Leydesdorff et al. [2013] and
Leydesdorff et al. [2015] to create an overlay map of the journals in the data extracted
from Scopus. The method involves extracting the journal names and processing them
with Leydesdorff ’s tools.1 These tools match our Scopus data with a standardized map
of science generated using journal-journal citations to discover the closeness of journals
to each other, and thus the relative location of disciplines. The underlying map thus

1The tools are available at http://www.leydesdorff.net/scopus_ovl/.
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Fig. 1. Types of HMNs.

represents “all of science,” or at least as much of it as is represented in the 19,600
journals indexed by Scopus.

We observe that HMNs, as defined by our keywords, spread across all areas of science.
There is a concentration one might expect in the upper left portion of the figure in the
computer science-related journals, but there is nearly as much publication activity in
the physical sciences at the upper right, the medical sciences at the lower right, and in
the social sciences and (to a lesser extent) the humanities in the lower left.

In what follows, we present the most prominent articles from this interdisciplinary
literature, related to human participation and to human-human and human-machine
interactions.
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Fig. 2. Publications related to HMNs.

3.1. Public Resource Computing

Public Resource Computing (PRC) projects are distributed computing networks, where
each processing unit is a personal computer voluntarily embedded in the network to col-
laboratively solve computational problems. The majority of PRC projects are dedicated
to scientific projects in fields as diverse as astrophysics, mathematics, molecular biol-
ogy, and seismology, where extremely computation-intensive tasks are common. PRC
networks are the simplest HMNs as far as the human-human and human-machine in-
teractions are concerned (Figure 1(A)). Once volunteers sign up for a PRC project, they
are no longer required to actively contribute time or effort apart from what their CPU
is contributing. At the same time, they will not receive any substantial feedback from
the project either. The first PRC systems were launched in 1996–1997: GIMPS (The
Great Internet Mersenne Prime Search) and Distributed.net [Anderson et al. 2002].
SETI@home is another early instance of a PRC network. It was launched in 1999 with
the goal to analyze radio signals from space in search of extraterrestrial intelligent
life. Further examples include the World Community Grid, intended to tackle scientific
research projects in any field [Hachmann et al. 2011] and GPUGRID, designated to
molecular dynamics simulation methods [Buch et al. 2010].

The design of PRC systems crucially depends on building the machine-machine
interaction infrastructure. Nevertheless, considerations regarding the recruitment and
motivation of contributors remain important. To attract participants, successful PRC
platforms have emphasized the social value of their scientific projects and let mass
media news coverage and word-of-mouth do the rest [Anderson et al. 2002]. To retain
participants and increase contributions, they have built reputation systems based on
numeric measures of contributed computation and allowed the ability to view others’
profiles, participate in message boards, and form and join teams [Anderson 2004;
Beberg et al. 2009]. Such an infrastructure stimulates individual and group compe-
tition. Empirical research suggests that team competition is particularly important.
Being affiliated with a team significantly increases one’s contribution. More impor-
tantly, being part of a team maintains high levels of contribution over time [Nov et al.
2010].
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Fig. 3. Journals publishing articles related to HMNs. The colored dots are Scopus journals that include
articles with the key terms we identified; the background uncolored dots do not include such articles. The
colors represent broad “community” groupings distinguished by the visualization software. Larger dots with
corresponding larger labels have more published articles, and smaller dots/labels have fewer.

As PRC systems have grown in popularity and sophistication, new design challenges
have emerged. These have been reflected in the structure of the machine-machine
subnetwork. One of the major issues in PRC is managing the expected high rates
of machine node unavailability. In current PRC implementations, this has led to re-
dundant computing [Anderson 2004; Mayer et al. 2015]. Redundancy also helps resolve
erroneous computational results due to malevolent users or, more often, malfunctioning
machines. Alternative solutions to node unavailability include designing a framework
core architecture that contains an extra layer that monitors, manages, and brokers
resources [Cuomo et al. 2012] and designing a hybrid resource architecture by supple-
menting volunteer computers with a small set of dedicated, reliable computers [Lin
et al. 2010].

Another major problem in current PRC systems is the back-end bottleneck due to
the centralized storage of results. This problem can be resolved by combining PRC
with public resource storage, thus limiting the volume of data transfer as well [Beberg
et al. 2009]. Additional issues of unique authentication, authorization, resource access,
and resource discovery can be resolved by borrowing ready-made solutions from grid
computing [Foster et al. 2001].
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Finally, current implementations of PRC are limited to tasks with independent par-
allelism, meaning that participating machines are not required to communicate with
each other [Anderson et al. 2002]. Newer projects, however, take the form of peer-to-peer
networks. For example, Marozzo et al. [2012] develop a MapReduce-based peer-to-peer
PRC system in which autonomous nodes are dynamically assigned slave roles, master
roles, or backup master roles. In another example, Mayer et al. [2015] implement a
Cloud system of a loose set of voluntarily provided heterogeneous machine nodes that
uses a gossip-style protocol for communication.

3.2. Crowdsourcing

Jeff Howe originally coined the term crowdsourcing in the June 2006 issue of Wired
magazine to denote situations where a company or institution take a function once
performed by employees, and outsource it to an undefined network of people in the
form of an open call [Howe 2006]. The term “crowdsourcing” has since been used in
a very broad sense to denote a range of HMNs [Doan et al. 2011; Geiger et al. 2011].
Here, we use it to denote systems that are based on open calls for the voluntary
undertaking of tasks [Estelles-Arolas and González-Ladrón-de Guevara 2012], hence
closely aligned with Howe’s original definition. Crowdsourcing (CSO) is, as such, a top-
down initiated process, and usually distinctly different from mass collaboration as in,
for example, open software development (see Section 3.8). The defining characteristics
of these HMNs are that humans actively select tasks and contribute to them but do not
generally interact and collaborate with each other directly. More importantly, humans
rarely receive any feedback from the machine—they do not obtain any information
on or direct benefits from the project they contribute to (Figure 1(B)). In a sense,
CSO platforms are similar to distributed computing systems: each user is equivalent
to a processor that needs to solve a task requiring human intelligence [Kittur et al.
2013].

Prominent examples of CSO HMNs include online microwork platforms such as Ama-
zon Mechanical Turk and Crowdflower, voluntary mapping websites such as Ushahidi
and OpenStreetMap, and citizen science projects such as Zooniverse and FoldIt. Com-
panies and organizations may also crowdsource innovation tasks to the general public
(as with Threadless) or experts beyond the organization’s boundaries (such as Inno-
Centive) [Brabham 2008], a practice which is often utilized within the field of open
innovation. Perhaps the CSO project that is most familiar to the general public is re-
CAPTCHA. Web users contribute to reCAPTCHA when they take a Turing test on a
website in order to confirm that they are human and not a computer. As part of the
test, they transcribe scanned words that optical character recognition programs failed
to recognize and thus help digitize large volumes of old text.

The successful functioning of CSO HMNs requires recruiting and maintaining a pool
of intelligent, diverse, and capable contributors [Saxton et al. 2013] and managing
and processing their contributions. Various approaches can be undertaken to success-
fully recruit and keep contributors. One way is to make the contributions implicit, as
in reCAPTCHA. Most individuals complete the task unbeknownst to them—they are
simply trying to register for an online service or make a purchase, for example. Impor-
tantly, reCAPTCHA is neither more difficult nor more time-consuming than a regular
CAPTCHA test [von Ahn et al. 2008].

Another method to motivate contributors is to remunerate them. Payments can be
fixed or success-based. They can come in the form of a piece rate, a piece rate with a
bonus, a quota rate, or a contest prize. Experimental research has shown that higher
piece rates increase the quantity but not the quality of contributions; further, quota
rates result in higher quality work for a smaller budget than piece rates [Mason and
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Watts 2010]. Prize-based contests are optimal for highly uncertain innovation problems
as they involve a high number of entrants who execute multiple independent trials,
which increases the probability for a maximally performing solution [Lakhani et al.
2013]. The effect of payment is not always straightforward, however, as it may reduce
social motivation [Frey and Jegen 1999].

Much participation in CSO projects is voluntary and indeed driven by intrinsic and
social motivation. To attract more volunteers, CSO platforms can emphasize the con-
nection between people’s contributions and the project outcomes. For example, citizen
science projects can keep participants updated on the articles published as a result of
their contributions [Cooper et al. 2010]. Volunteer-mapping sites can successfully rally
on social media around natural disasters [Zook et al. 2010].

Gamification is another strategy to recruit volunteers and encourage their prolonged
engagement in a CSO project. A game offers the players a varied motivation set that
leverages ambition, competition, and cooperation. Thus, a gamified CSO project should
allow for short-term and long-term rewards through tracking game score and player
rank, social praise by allowing comments on chats and forums, and collaboration by
enabling the formation of teams [Cooper et al. 2010]. These strategies have been suc-
cessfully implemented in biology projects for discovering protein structures [Cooper
et al. 2010], aligning multiple sequences of DNA [Kawrykow et al. 2012], and solving
in vitro RNA design problems [Lee et al. 2014].

Managing the contributors’ work poses the second major challenge in designing CSO
platforms. Contributions need to be collected, processed, and aggregated. Although the
quantity of contributions is what makes CSO work [Surowiecki 2005], the quality of
contributions remains of paramount importance.

One major challenge with CSO is dealing with biases and errors in contributors’ sub-
mitted work, whether malevolent or accidental. Quinn and Bederson [2011] propose
multiple techniques to do this: output agreement, input agreement, economic incen-
tives, defensive task design, reputation systems, redundancy (combined with majority
consensus), ground truth seeding, statistical filtering, multilevel review, expert review,
and automatic check. Allahbakhsh et al. [2013] add to the list runtime support, work-
flow management, worker selection, and contributor evaluation. The latter two have
been implemented in sophisticated algorithms that assign weights to workers based on
the quality of their contributions in order to account for biased responses [Ipeirotis et al.
2010; Raykar et al. 2010] and eliminate responses by spammers [Raykar and Yu 2011].

Beyond correcting for intentional or unintentional errors that have already oc-
curred, one could implement more foresighted strategies to improve the quality of
contributions. These strategies usually involve creating and structuring interactions
between contributors. For example, Kittur et al. [2011] and Bernstein et al. [2010]
implemented frameworks that manage the coordination between users to let them
complete complex tasks such as writing and editing articles. Silvertown et al. [2015]
purposefully connected participants with experts in a hybrid learning-CSO platform
for the identification of biological species. Khatib et al. [2011] introduced tools for free
collaboration between contributors that lead to the discovery of new algorithms for the
folding of proteins. Bayus [2013] suggests that encouraging contributors to comment
on diverse sets of ideas proposed by others could prevent creativity stagnation due
to the “fixation effect” and help maintain an ongoing supply of good new ideas in
idea-generating CSO platforms.

3.3. Web Search Engines

A Web Search Engine (WSE) is a system that searches and returns content from the
Web. Apart from formulating queries, users do not actively contribute to the system.
Their contribution is passive: the WSE observes and analyzes their search behavior to
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improve and customize search results. Additionally, the search results are filtered and
ranked, which is the most important function of these HMNs (Figure 1(C)).

The greatest challenge that WSEs need to address is keeping up with the scale of
content on the Web [Arasu et al. 2001; Brin and Page 2012]. Since this problem entails
complex technical solutions at the level of machine-machine interactions, it is out of
the scope of the present survey. Instead, we here focus on design solutions related to
the motivation of users to participate in the improvement of the output of WSEs. These
design solutions are typically aimed at making user participation an implicit part of
their search task as well as their linking behavior, which is reminiscent of the user mo-
tivation strategies of crowdsourcing HMNs such as reCAPTCHA discussed previously.

Another key challenge of WSEs is providing users with relevant search results,
quickly. Query assistance is one mechanism introduced to help with this, which is ad-
dressing the direct interaction between the users and the WSE interface. One approach
is to do this based on the user’s own input of a query and subsequent query reformula-
tions [Huang and Efthimiadis 2009]. Alternatively, other users’ inputs can be used by
mining query associations from multiple users [Carpineto and Romano 2012], which
utilizes the HMN further.

To improve the search results, filtering and ranking can also use information about
users’ behavior. For example, the links between Web pages imply recommendations
from users (owners of the respective Web pages) [Arasu et al. 2001]. This implicit
notion is encapsulated in Google’s PageRank algorithm, for example, as it determines
the importance of a page based on the importance of the pages that link to it [Page
et al. 1999]. Another well-known ranking algorithm, HITS, also uses recursive logic to
differentiate two types of important Web pages, hubs and authorities: hubs are pages
that point to many authorities and authorities are pages that are pointed to by many
hubs [Kleinberg 1999]. Newer ranking algorithms tend to use even more information
about the linking structure. For example, ClusterRank takes into account not only a
page’s number of linked neighbors and the neighbors’ influence scores but also the
neighbors’ links with each other [Chen et al. 2013].

Gollapudi and Sharma [2009] suggest that WSEs need to intentionally diversify
results to improve user satisfaction; simply providing users with the highest ranked
pages is not considered sufficient. To personalize search results and improve their rele-
vance, WSEs can also analyze individual behavior [Steichen et al. 2012]. For example,
Collins-Thompson et al. [2011] propose algorithms to rerank search results based on an
estimation of the user’s reading proficiency. Jansen et al. [2008] suggest that WSEs can
use knowledge of user intent (whether informational, navigational, or transactional)
to provide more relevant results.

Finally, WSEs can also use peers’ behavior to improve the results from individual
searches. This relatively recent model is known as social search. First, WSEs can
potentially incorporate search data from social bookmarking [Heymann et al. 2008].
Second, WSEs can mine the profiles of a user’s online social network friends and return
results based on their recommendations [Morris et al. 2010]. WSEs can also be adapted
to support collaborative search in real time [Morris and Horvitz 2007; Morris 2013].

3.4. Crowdsensing

In crowdsensing (CSE) applications, users with computing and sensing devices (e.g.,
smartphones or fitness trackers) share data and the application uses the data to mea-
sure and map certain phenomena [Ganti et al. 2011]. The contributions by users can be
active, as well as passive. The contributions are then analyzed and action and behavior
recommendations are sent back to the user (Figure 1(D)).

CSE has been employed in many different areas, including traffic, health, and envi-
ronmental monitoring [Khan et al. 2013]. Applications have been developed to create
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real-time awareness of earthquakes [Faulkner et al. 2014], track and encourage phys-
ical activity and healthy lifestyle [Consolvo et al. 2008], track personal transportation
patterns to encourage “green” transportation behavior [Froehlich et al. 2009], and pre-
dict bus arrival times [Zhou et al. 2012], among many others.

Participating in CSE incurs real costs: increased consumption of energy and
bandwidth, as well as increased risk of leaked personal information [Ra et al. 2012]. As
a result, most research on CSE has focused on designing monetary incentives for par-
ticipation, reducing participation load, improving energy efficiency, and guaranteeing
privacy.

To guarantee an adequate number of participants, some researchers have proposed
monetary incentives through reverse auctions, whereby users claim bid prices for their
sensing data [Koutsopoulos 2013; Lee and Hoh 2010]. Others have suggested that
this could be achieved through opportunistic sensing, that is, sensing that is fully
automated and does not require the user’s active involvement [Lane et al. 2010]. Full
automation, however, is difficult to achieve technically, as the application needs to
combine data from multiple sensors to infer the context. Instead, others have focused
on improving the energy efficiency of the CSE applications. Lu et al. [2010] present
methods to turn sensing on and off depending on the quality of input data and the user’s
long-term behavior and mobility patterns. Sheng et al. [2012] propose a collaborative
sensing approach, whereby data collected from mobile phones is analyzed in real time
on servers in a Cloud in order to calculate the best sensing schedule and inform the
phones when and where to sense.

Guaranteeing privacy is a more challenging problem to solve. CSE applications are
in danger of leaking personal data such as users’ location, speech, potentially sensitive
images, or biometric data [Christin et al. 2011]. Even if sensing data look safe, they
may be reverse-engineered to reveal invasive information. Last but not least, there
is also the “second hand smoke” problem: a person with a sensor can undermine the
privacy of nearby third parties [Lane et al. 2010].

Effective privacy-protection measures can be implemented at every stage of the path
of the data, from collection to consumption [Christin et al. 2011]. When reporting data,
spatial cloaking techniques can be combined with data perturbation to improve user
anonymity without affecting aggregate data estimates [Huang et al. 2010]. During
that stage, phones can also combine their data with data from their neighbors before
transmitting it to the application server [Li et al. 2014]. Techniques like this can
be effectively combined to allow even for anonymity-preserving reputation systems
[Wang et al. 2013]. However, it has been shown that even if the collected temporally
and geographically tagged data are anonymized, only few data points can be uniquely
linked to individuals in large crowds [de Montjoye et al. 2013].

Processing and analyzing the collected data presents the second substantial design
challenge for CSE systems. Due to user mobility, density, and privacy preferences, the
data delivered often have many measurement gaps in both time and space [Ganti et al.
2010]. To be able to generalize from a sparse sampling of high-dimensional spaces, CSE
systems can employ sophisticated data interpolation techniques [Mendez et al. 2013].
Further, to make best use of the data a user reports, they can infer the context with
the help of machine learning techniques [Pejovic and Musolesi 2015]. Finally, they can
combine context-rich data from multiple users to predict models of future behavior and
offer action recommendations [Pejovic and Musolesi 2015].

3.5. Online Markets

Under the type “online markets” we group a number of HMNs that involve the ex-
change of goods and services. The things that are exchanged differ but what unites
these HMNs is the common relational structure. In particular, users can view each
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other’s contributions and, in some cases, evaluate them, but cannot modify them. More
importantly, while users actively make contributions, the service does not filter or rank
them but simply lists them, either individually or in an aggregate form (Figure 1(E)).
In other words, the service usually does not bias the content a user is exposed to.

Online markets are very familiar to most Web users. First, there are consumer-to-
consumer markets such as Craigslist, eBay, Uber, and Airbnb, which connect users
who offer material goods and services with users who seek those goods and services.
File sharing networks such as Gnutella and BitTorrent are similar with the exception
that the exchanged goods are digital. Finally, prediction markets, such as the Iowa
Electronic Markets and TradeSports, where users trade “stocks” tied to future events,
are another prominent example of online markets.

Peer-to-peer (P2P) and file sharing markets involve unregulated direct interuser
transactions and as a result, their functioning crucially depends on trust. The problem
of trust online is most commonly addressed by designing and implementing reputation
systems [Jøsang et al. 2007]. In a reputation system, users rate each other after a
transaction and the aggregated ratings inform other users in their own transaction
decisions. When designing reputation systems, it is important to take certain well-
established empirical facts about social influence into consideration. Previous research
has shown that when users deal with unknown sellers or providers, positive reputation
matters but negative reputation is much more decisive [Standifird 2001]. The opposite
appears to be true when users interact with well-known brands: positive information
has a stronger effect on purchasing decisions than negative information [Adjei et al.
2010]. High reputation means high trust by others but who those others are also
matters [Baek et al. 2012]. For example, recognition by a well-known other, such as
an institution, affects one’s trust positively to a higher extent than recognition by
one’s peers [Jones and Leonard 2008]. The idea to weigh reputation by the trustee’s
importance in the trusting network has been implemented in two recent reputation
algorithms. The EigenTrust algorithm [Kamvar et al. 2003] is based on the rule of
transitive trust: if I trust a user I am also likely to trust the people that that user trusts.
The PowerTrust algorithm [Zhou and Hwang 2007] relies on the idea of identifying the
few power users who can indisputably serve as authorities.

Individuals’ estimated trust and reliability could also inform structural redesigns of
the online market. For example, Saroiu et al. [2001] propose to use this information
to delegate different responsibilities to different users in P2P file sharing applications.
Such intervention is intended to mitigate free riding, where most users consume with-
out paying back to the community in return [Hughes et al. 2005].

Information on existing social structure can be used to improve not only trust and
cooperation in online markets but also content search. Sripanidkulchai et al. [2003]
proposes to preserve the anonymity of the system but group users by interests (not
externally visible). Since users who already share interests are likely to have more
interests in common, a content location algorithm that exploits the interest overlay
network results in faster content queries, lower system load, and improved scalabil-
ity. Such implicit grouping by similarity in interests and behavior has already been
implemented in “collaborative filtering” recommender systems, which are common in
online markets [Schafer et al. 1999, 2001]. In contrast, Pouwelse et al. [2008] propose
deanonymizing the P2P system by introducing social-network capabilities in order to
improve content discovery and recommendation.

Prediction markets differ from P2P and file sharing markets because the exchanges
in them are centrally regulated. Consequently, they are less affected by the problem of
trust. Instead, the major problem they face is how to improve predictions. Once again,
the solution has to do with careful design of the underlying user-to-user interaction
structure. Prediction markets work because of the diversity of users [Surowiecki 2005].
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This makes them robust to manipulation by a small group of individuals [Hanson et al.
2006; Wolfers and Zitzewitz 2004]. However, social influence can undermine diversity:
it both shifts the average estimate and increases the users’ confidence in it [Lorenz
et al. 2011]. Hence, prediction markets should reduce possibilities for interactions
between users, such as observing users’ current prediction, past performance, or formal
expertise. Nevertheless, to improve the prediction market performance, it is possible to
combine the predictions by the crowd with predictions by a panel of experts [Prokesch
et al. 2015].

3.6. Social Media

In one of the most cited definitions, Social Media (SM) is defined as “a group of
Internet-based applications that build on the ideological and technological founda-
tions of Web 2.0, and that allow the creation and exchange of User Generated Content”
[Kaplan and Haenlein 2010, p. 61]. Kaplan and Heinlein’s definition is very broad,
with the consequence that they include virtual worlds such as Second Life and mass
collaboration projects such as Wikipedia as examples of SM. We use a more subtle def-
inition and understanding, focusing on the typical interactions among the nodes in the
network. In SM, human nodes assess each other’s contributions (rather than modify
them) (see Figure 1(F)). SM is intended to enable users to form online communities
and interact and share information in them [Kim et al. 2010]. In SM, users can con-
tribute content actively. They are also actively involved in observing and evaluating
each other’s contributions. The applications use these evaluations to filter the content
that users receive. This filtering can be site-wide or user-specific.

SM includes social network applications such as Facebook and LinkedIn. In these
applications, users maintain a profile and a list of users with whom they are connected,
both of which can be viewed by others [Boyd and Ellison 2007; Donath and Boyd
2004]. SM also includes content communities such as Reddit and Tumblr, where users
share news and media and vote and comment on each other’s contributions. Some SM
applications have the properties of both social network and news-sharing applications,
for example, Twitter [Kwak et al. 2010]. Additional examples include review and rating
applications such as Yelp and TripAdvisor and discussion forums and question-and-
answer sites such as Yahoo Answers and College Confidential.

Participation in SM highly depends on users’ motivation and concern for privacy.
Based on data from Facebook users, Lin and Lu [2011] found that enjoyment is the
strongest motivator to use SM. Still, utilitarian considerations play a role: users often
use SM to organize social events and disperse news in an effective way [Xu et al.
2012]. Further, SM is self-affirming, in the sense of satisfying the users’ need for
self-worth by allowing them to exhibit a successful, attractive, and well-connected
version of themselves [Toma and Hancock 2013]. More interestingly, there is a network
externality effect on motivation: high levels of adoption of SM among one’s peers not
only increases the perceived enjoyment of the SM [Lin and Lu 2011] but also directly
increases one’s likelihood of adoption [Sledgianowski and Kulviwat 2009].

Protecting personal data and privacy is a complex problem in SM. Even if users keep
their profiles private, their friendships and group affiliations sometimes remain visible.
In addition, some of their friends may have public profiles. Previous research has
shown that friendships, group memberships, and rating behavior can be used to infer
sensitive personal attributes and information [Kosinski et al. 2013; Zheleva and Getoor
2009]. Users’ privacy is threatened by other untrustworthy users, ill-intentioned third
parties, as well as the SM providers themselves. To protect users from other users,
SM developers can analyze the SM network structure to infer users’ trust [Mislove
et al. 2007]. Further, they can develop machine learning models to describe a user’s
privacy preferences toward each of their network contacts; these models can then be
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used to configure that user’s privacy settings automatically [Fang and LeFevre 2010;
Gilbert and Karahalios 2009]. For even more strict privacy, the architecture of the SM
application can be decentralized so that users store their private data on other users’
machines, such as individuals whom they trust in real life [Cutillo et al. 2009].

One of the most significant functions of SM is user-specific filtering and customization
of content due to the sheer volume of data. While this addresses a practical issue from
the users’ perspective, it inevitably introduces bias (intended or not) that influences the
users. SM employs complex algorithms to predict the news that users would like to read,
the media they would like to see, the people they would like to befriend, and the ads they
are likely to succumb to. For example, SM applications can analyze user relationships
to select high-quality content [Agichtein et al. 2008]. They can also incorporate various
behavioral information, such as locational co-occurrences, to recommend new links
[Scellato et al. 2011]. SM applications can take even more proactive roles. They can
implement algorithms using the political valence of contributions to influence a user’s
opinion [Bakshy et al. 2015]. They can filter content based on their emotional valence to
sway a user’s affect [Kramer et al. 2014]. They can also encourage links that cut across
traditional age and gender homophily in order to expose users to more diverse sources
of information and influence [Centola and van de Rijt 2015]. These strategies can help
alleviate one of the major downsides of SM—the potential for knowledge bubbles and
misinformation epidemics due to selective interaction.

3.7. Multiplayer Online Games and Virtual Worlds

Multiplayer Online Games (MOGs) and Virtual Worlds (VWs) are simulated environ-
ments in which users participate and interact with each other and the environment
via avatars that represent their identity. Users’ actions and contributions impact other
users’ experiences both directly and indirectly, by affecting the game world as a whole.
In fact, in VWs, it is users who create the game world [Ondrejka 2004]. Apart from
providing the interaction rules and settings, the MOG/VW service does not usually
modify user contributions (Figure 1(G)).

The question as to why users repeatedly participate in MOGs and VWs has attracted
much research attention. As with SM, survey studies have shown that providing op-
timal personal and social interactions improves users’ experience and increases their
loyalty [Choi and Kim 2004]. For MOGs, gratification from achievement and social
interaction together with game incentives and fairness have been shown to make users
more likely to continue playing [Wu et al. 2010]. For VWs, perceived usefulness has
been found to additionally increase the likelihood to participate [Verhagen et al. 2012].
Moreover, the functional, experiential, and social motivations appear to be roughly
equally important [Zhou et al. 2011]. What is particularly unique for MOGs and VWs,
however, is the sense of immersion or “flow” [Yee 2006]. Flow experience is the men-
tal state of being fully absorbed and losing track of time [Goel et al. 2013]. Providing
optimal personal experiences and meaningful social interactions cause individuals to
experience flow, which in turn increases their likelihood to continue interacting and
playing [Choi and Kim 2004; Goel et al. 2013]. Customization (e.g., of one’s avatar)
further increases loyalty [Teng 2010].

How does one design for meaningful social interactions in MOGs and VWs? Users
may be involved in both negative interactions, such as attacks, and positive inter-
actions, such as communication and exchange [Szell et al. 2010]. Overall, however,
observational research has shown that MOG users do not interact directly with other
users as much as expected [Ducheneaut et al. 2007]. This may be considered subopti-
mal because, in theory, MOGs and VWs can serve as a venue for informal sociability
that fosters bridging social relations, which are relations that improve access to diverse
information [Steinkuehler and Williams 2006]. Ducheneaut and Moore [2004] propose

ACM Computing Surveys, Vol. 50, No. 1, Article 12, Publication date: April 2017.



Understanding Human-Machine Networks: A Cross-Disciplinary Survey 12:17

to force social interaction among users through the game design. For example, MOG
developers can design interdependencies among characters and then design locations
where these interdependencies can play out. Another solution to socially engage users
is to design for indirect interactions. Ducheneaut et al. [2006] argue that MOG users
do not interact directly and collaborate with other users as much as use them as an
audience, a source of entertainment, and a source of information and chatter.

Designing a MOG/VW to keep users playing is a different problem from designing
it to keep attracting new users. The more users there are, the more interactive and
complex the virtual environment is. In order to guarantee continuous growth of the
MOG/VW, one can reduce the learning and personalization costs in the short term
[Zhang et al. 2014]. In the long term, however, the problem of scalability looms large.
A successful MOG/VW should provide consistent and secure service with fast response
times for thousands of users simultaneously [Claypool and Claypool 2006; Yahyavi and
Kemme 2013]. Traditional client-server architectures, however, have inherent scala-
bility limitations. In contrast, P2P architectures can achieve high scalability at low
infrastructure cost [Hu et al. 2006; Yahyavi and Kemme 2013]. In the context of MOGs
and VWs, a P2P architecture means that each user’s machine may hold master copies
of some of the game objects and be responsible for propagating updates to other nodes.
While improving scalability, such an architecture is vulnerable to cheating, security at-
tacks, and churn, problems that remain outstanding design challenges today [Yahyavi
and Kemme 2013].

3.8. Mass Collaboration

Compared to the other HMNs, mass collaboration networks involve highly intense
interactions among humans and machines in the context of a “project” set up for a spe-
cific purpose (Figure 1(H)). They require the highest level of involvement from users
in terms of time and effort. Users can modify and reject each other’s contributions
and affect the project as a whole. Their contributions and the project content are often
monitored and adjusted by the project leaders. This centralized oversight can happen
automatically, for example, through vandalism-detection algorithms. Nevertheless, of-
ten, the organization of these HMNs is bottom-up.

Wikis and Open-Source Software (OSS) projects present two of the most prominent
examples of mass collaboration HMNs. Wikis enable the simultaneous collaborative
creation, modification, and deletion of content [Tapscott and Williams 2011]. Wikipedia,
the online encyclopedia is the largest, most successful, and most popular wiki project.
OSS projects allow the collaborative development and free distribution of computer
software. Examples include the Firefox web browser, the Apache HTTP Server, and the
Linux operating system.

Mass collaboration projects are developed by geographically and organizationally
dispersed contributors, most of whom are volunteers. As a result, recruiting and re-
taining contributors is a critical design issue for OSS and wiki communities. Von Krogh
et al. [2003] suggest that “joining scripts” are important if users want to gain access to
the collaboration community. These “scripts” are implicit constructs that determine the
typical level and type of activity a joiner needs to go through before becoming a contrib-
utor. Users often decide to join and participate in a collaboration project because they
have pragmatic considerations or expect external rewards. Survey results have shown
that external rewards have greater weight for participation than internal factors, such
as intrinsic motivation, altruism, and community identification [Hars and Ou 2001]. In
fact, a high number of developers are paid for their OSS development efforts; others use
their participation to improve their own software; still others receive benefits in terms
of reputation and self-development. Contributors are able to learn even from mundane
tasks such as reading and answering users’ questions [Lakhani and von Hippel 2003].
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In addition, contributors can benefit by exchanging valuable work with each other.
A theoretical model has shown that since more modular codebases with more option
value foster such exchanges, they increase recruitment and retention and decrease free
riding [Baldwin and Clark 2006].

Still, external rewards are not the sole motivator. First, they appear to be less impor-
tant to wiki contributors, compared to OSS contributors [Oreg and Nov 2008]. Second,
they appear to be only driving the decision to join but not the decision to stay [Shah
2006]. Sustained participation appears to be better predicted by group identity and
community belonging. For example, Hertel et al. [2003] show that self-identification as
a Linux developer is one of the factors that determine engagement in the Linux project.
Fang and Neufeld [2009] similarly find that situated learning and identity construc-
tion are positively linked to sustained participation, at least in the phpMyAdmin OSS
community. Bagozzi and Dholakia [2006] confirm that active participation is associated
with group-referent intentional actions.

In addition to recruiting and retaining contributors, mass collaboration platforms
need to organize the leadership, coordination, and collaboration among the contributors
[Crowston et al. 2012]. Analyses of the e-mail communication network of contributors
to several OSS projects reveal that subcommunities emerge naturally to mirror collab-
oration relations [Bird et al. 2008]. The community further subdivides into a core of
usually 10–15 developers who create about 80% of the code functionality, a much larger
group around the core who repair defects in the code, and an even larger periphery of
users who report problems [Mockus et al. 2002]. Members of the core usually know and
trust each other and communicate intensely to manage the dependencies among the
contributed code.

How do these naturally emerging structures affect the growth and the success of the
OSS/wiki project? Crowston and Howison [2005] analyzed 230 project teams on Source-
Forge to find that larger projects tend to have more decentralized communication net-
works. Based on a longitudinal analysis of an-order-of-magnitude larger SourceForge
sample, Singh et al. [2011] conclude that internal cohesion, as defined by repeat ties,
third-party ties, and structural equivalence among contributors, is also associated with
project success. Similarly, Hahn et al. [2008] find that a project is likely to attract more
developers if prior collaborative relations in the OSS developer network exist. However,
contributors’ external embeddedness has more complex effects on success. While a high
number of external contacts increases success, only moderate technological diversity
of the external network and moderate external cohesion are beneficial [Singh et al.
2011]. Further, contributors’ participation in multiple projects can both improve and
aggravate the project’s chances for technical success [Grewal et al. 2006].

4. DISCUSSION

Based on the HMNs reviewed earlier, here we provide further discussion on the emerg-
ing trends, common challenges, design implications, and future considerations.

4.1. Emerging Trends

Our survey suggests five major trends that concern most of the HMNs.
First, human-human interactions appear to be intensifying in HMNs. Many systems

are starting to allow for social interactions among their users. In addition, many of them
are looking for ways to make the social interactions more immediate and intense. In a
sense, everything can now become a social network; everything can be “shared.” Social
events and meet-ups have been shown to be effective in recruiting new users as well as
stabilizing the commitment of preexisting users [Hristova et al. 2013]. Social trading,
based on text-based chats among the traders in a company, has also been introduced
recently [Saavedra et al. 2011]. Both of these cases are examples of machine mediated
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collective behaviors in which social interactions are not included in the original
design.

Efforts toward strengthening social interactions have been evident in numerous
other research areas as well. For instance, Marcin et al. [2014] discuss two studies
conducted with an affective dialog system in which text-based system-user communi-
cation was used to model, generate, and present different affective and social interac-
tion scenarios in order to intensify human-human interactions within HMNs. In the
same framework, the SoCS project aimed to support higher quality online delibera-
tion in HMNs, especially by supporting a number of “social deliberative skills” such
as perspective taking, empathy, self-reflection, tolerance for uncertainty, listening and
question-asking skills, and meta-dialog in online contexts [Murray et al. 2014].

Second, and related to the first trend, human-machine interactions are becoming less
demanding. By introducing social functionality, HMN designers capitalize on social mo-
tivations to encourage participation. In some cases, HMN designers have also started
introducing monetary incentives, as in paying for contributions on review and rating
sites or for crowdsensing applications. Last but not least, automated data collection
is gaining prominence. These changes serve to reduce the effort on behalf of human
participants and increase their gains from participation. HMNs no longer need to rely
on “altruists” to continue functioning and growing. Previous research has shown that
the introduction of social functionality in HMNs eases their overall operation and node
interaction. For instance, Murray-Rust et al. [2014] present models and techniques
for coordination of human workers in crowdsourced software development environ-
ments. The techniques augment the existing Social Compute Unit concept—a general
framework for management of ad-hoc human worker teams. This approach allows the
researchers to combine coordination and quality constraints with dynamic assessments
of software-users’ desires, while dynamically choosing appropriate software develop-
ment coordination models, leading to easier human-machine interactions.

Third, machine-human interactions are also becoming more prominent. Machines
now customize and filter any information that users receive and consume. This is
evident in numerous HMNs nowadays. A typical example is Facebook and the content
control carried out within this network. Even in such a massive network, advanced
content control algorithms are applied and have proven to be quite effective [Bakshy
et al. 2015]. Similar algorithms are applied in several other HMNs enhancing machine-
human interactions.

Fourth, not just the nature of interactions but also the actual structure of the HMNs is
starting to evolve. There is a trend toward redesigning HMNs as peer-to-peer networks.
A typical example regarding that trend is Bitcoin. The Bitcoin cryptocurrency is built
on top of a decentralized P2P network used to propagate system information such
as transactions or blockchain updates. The Bitcoin architecture does not rely on a
centralized server. Instead, a distributed approach has been adopted to support the
system [Donet Donet et al. 2014]. Such an approach can be used in many of a system’s
facets, including data storage, data confirmation, and data transmission. The major
reason for this is that P2P architectures improve the scalability of HMNs. But they also
entail certain undesirable consequences. In P2P networks, machines become equivalent
with users, as each user contributes a machine to store, process, and transmit data.
This means that machines start to exhibit some of the problems that humans have:
unavailability, unreliability, distrustfulness, and untrustworthiness. This implies that
social science knowledge and approaches are starting to be indispensable even for the
engineering of HMNs.

The fifth trend is a product of the previous four—the number of HMNs that cut
across the eight types we have identified is starting to increase. For example, cryp-
tocurrencies such as Bitcoin have the properties of both public-resource computing and
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online markets. Online and mobile dating services such as Match.com and Tinder have
characteristics from both online markets and social media. Wildlife@Home, a project
aimed at analyzing videos of wildlife, combines public resource computing with crowd-
sourcing [Desell et al. 2013]. Open innovation projects often extend the crowdsourcing
approach to mass collaboration, by combining ideation with collaborative refinement
of ideas. Opportunistic Internet of Things systems combine crowdsensing with social
media [Guo et al. 2015]. Since these hybrid types of HMNs are relatively new, the
literature on them is still growing. Our survey methodology placed an emphasis on
publication impact and as a result, down-weighted these networks. Nevertheless, this
trend of hybridization renders our survey particularly valuable, as it emphasizes the
need for the transfer of knowledge and design solutions across different types of HMNs.

4.2. Common Challenges

In this survey, we analyzed different types of interactions to identify different types of
HMNs. However, there are risks and challenges in relation to the interactions that are
common among all HMNs. Here we discuss issues related to user motivation, trust,
user experience, privacy, and scalability.

Attracting users and keeping them motivated to participate and contribute is a ma-
jor challenge across all identified HMNs. A number of approaches to mitigating this
challenge have been proposed, as we have seen in Section 3. A basic distinction between
these approaches concerns whether to exploit extrinsic or intrinsic motivational fac-
tors, and different types of HMNs exploit such motivational factors differently. HMNs
for public resource computing and multiplayer online games typically aim for intrinsic
participant motivation, for example by targeting the civic benefit or experiential value
of the HMN. HMNs for crowdsensing and online markets, on the other hand, typically
address recruitment and motivation challenges through extrinsic motivational factors
such as remuneration or utilitarian gains. Possibly, when designing for increased user
recruitment and motivation for one HMN type, it could be beneficial to look to other
HMN types for inspiration. For instance, design for participant recruitment and mo-
tivation in crowdsensing systems could perhaps to a greater degree accentuate the
civic value of participation and, hence, to a greater degree benefit from intrinsically
motivated participation. To make such intrinsically motivated participation practically
feasible, however, participation costs would need to be reduced. One way is to follow the
example of crowdsourcing initiatives such as reCAPTCHA where the contributions are
made as integrated parts of users’ everyday behavior [von Ahn et al. 2008]. Another
example of making data collection an integrated part of users’ everyday behavior is
the use of mobile phone network position data to monitor traffic flow [Calabrese et al.
2011]. Such integrated approaches to data collection could possibly also be applied in
crowdsensing.

Other approaches to participation, recruitment, and motivation are more specific to
particular HMN types. For example, the use of informal joining scripts [Von Krogh et al.
2003] has been shown to be an efficient approach of relevance to establish participant
motivation in systems for mass collaboration, in particular as existing collaborators
need to filter out nonserious newcomers. However, for other HMN types, such as online
markets or crowdsourcing, a more adequate approach for the same purpose may be
to apply traditional recommender systems [Schafer et al. 2001], as participants here
typically connect in multiple brief engagements and informal joining scripts are there-
fore neither effective nor efficient.

Trust is another major challenge for HMNs. Some participants may struggle with
a concern that the technology will undermine their own position or may be unwilling
to rely entirely on the capabilities of the machines [Lee and Moray 1992; Lee and See
2004]. Others may be mainly concerned with the security of their private data [Dwyer
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et al. 2007]. In response, machines need to be transparent and predictable, to create
a perception of trustworthiness [Cheshire 2011; Corritore et al. 2003; McEvily et al.
2003; Schoorman et al. 2007]. On the other hand, they may also need to identify and
counteract deliberate malevolence: hacking, vandalism, and intentional abuse of their
algorithms, such as Google bombs and link farms.

Machine interventions to the content that observers see and use can lead to unde-
sirable self-reinforcing feedback loops that can negatively impact the service rendered.
For example, if the number of users who see a particular contribution increases the
chance of others seeing it, the diversity of content can decrease. From the participants’
point of view, there is again the problem of trust, since the machines in HMNs often
employ “black-box” algorithms that can affect one’s behavior and mood without the
participant’s knowledge and explicit consent [Bond et al. 2012; Kramer et al. 2014].
These two related effects have been labeled “filter bubble” [Pariser 2011]. However,
such filtering or adaptation of content may be both necessary and beneficial. Without
such filtering, the result may be information overload on the humans in the HMN.
Further, from a machine network perspective, the size and amount of content to be
delivered will impact network performance and therefore potentially undermine the
Quality of Experience (QoE) for the user. This may lead to the monetization of content
delivery, imposing strict controls and monitoring of throughput especially in last-mile
segments.

A concern for QoE in machine-human interactions is closely related to Quality of
Service (QoS) between machines within a network supporting HMN capabilities. In
traditional Plain Old Telephone Service (POTS) networks, this often came down to
routing and providing redundant configurations to ensure that point-to-point commu-
nication could be guaranteed irrespective of potential failures or bottlenecks. HMNs
similarly require complex assemblages of multiple computers and devices; in some
cases dedicated links and subnetworks are required to guarantee QoS at least (such as
Content Delivery Networks). The machines communicate via Bluetooth, the Internet,
or satellite, depending on proximity and the required QoS. Since not all such machines
will be owned by the same service provider or carrier, contractual arrangements must
be in place in support of agreed levels of service. As and when these are in place, there is
also potentially the issue of transmission speeds and throughputs, leading to dedicated
networks, packet-inspection, and/or local caching. Although justified on the basis of ser-
vice delivery, this could compromize fairness as well as privacy [Gedik and Liu 2008;
Julian et al. 2002; Kamble and Sharma 2004]. With privacy and data sensitivity in
mind, there may be a need to impose a logical network on top of the existing structures
(Virtual Private Network), requiring specific security protocols agreed between the dif-
ferent components of a network. Security architectures often mimic interpersonal trust
relationships in this way, effectively introducing trust transfer into a purely machine-
based exchange [Hardjono and Weis 2004; McEvily et al. 2003; Stewart 2003]. In other
cases, often in connection with issues of robustness as well as privacy, dedicated net-
works, including private and reserved broadcast wavelengths will be used to carry data
for specific purposes or in special cases [Chiti et al. 2008; Salkintzis 2006]. There may
even be specific automated practices introduced to impose security compliance without
human intervention.

Another significant challenge faced by most HMNs is scalability [He et al. 2011;
Ugander and Backstrom 2013]. As the number of humans in the HMN grows, ma-
chines need to connect, communicate, and compute in a more efficient way, including
sometimes sophisticated routing and resource allocation management to ensure con-
nection between the right user(s) and the right machine(s) [Baran and Wu 1989; Broch
et al. 1998; Cardellini et al. 1999]. In addition, they need to be able to provide con-
sistently good bandwidth, guarantee compatibility between different communication
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protocols and operating systems, and improve data structures for efficient querying,
caching, and storage [Chen et al. 2008; Mehlhorn and Näher 1989].

4.3. Design Implications

Our framework helps identify common design approaches to the challenges that differ-
ent HMNs share. We can group the design implications according to the four types of
interactions we investigated: human-human, human input to machine, machine output
to humans, and machine-machine.

Regarding human-human interactions, the major design concern is how to recruit
human actors and encourage productive or constructive interaction between them. To
secure a solid base of users, special attention should be given to attracting new users
through peer influence and protecting them from bouncing by streamlining their first
contributions and preventing harassment by more experienced users. Further, design
solutions should be geared toward improving engagement and collaboration between
users and creating a feeling of community. This could be achieved by, for example,
organizing offline social events, symbolically rewarding users with badges, applying a
loyalty ladder, strengthening within-platform communication, and strengthening trust
through rich profiles and recommendations.

The design implications concerning human input are more typically associated with
the User Interface (UI) and the more traditional Human-Computer Interaction (HCI)
domain. They relate to encouraging as well as facilitating human interaction. Human
actors need to be encouraged to use the interface and to behave in ways that provide
the types of input required. This may be associated with the persuasiveness of the
interface, although this is not the whole story. Continued use requires efficiency and
perceived usefulness, as captured in the technology acceptance model [Venkatesh 2000].
Further, trust and privacy should be ensured, for example, by offering strict and clear
privacy policies and employing transparent algorithms. Additional design solutions
include organizing contributions around campaigns rather than routine as is often
done with crowdsourcing projects related to natural disasters and encouraging shared
responsibility for the HMN by requesting regular feedback from users on the the overall
state of the project.

The design issues regarding machine output concern how machines respond to hu-
mans and what they do with the information and content provided. It is important
that machines respond proactively and are perceived as positive contributors. Design
solutions should consider not only advanced content filtering functionality to address
information overload but also algorithms to detect original and emerging content be-
yond popular authoritative sources. Algorithms can route content and tasks to users
according to their interests and expertise in order to improve the quality of contribu-
tions and retain contributors. Further, algorithms can sift through content to select
high-quality contributions to show as examples to users in order to improve their fu-
ture contributions. Machines can also creatively employ the geographical distribution
of the HMN users to encourage the formation of local collaboration groups, distribute
work load or even server load [Ugander and Backstrom 2013], and tackle projects and
tasks that are inconceivable otherwise. For example, projects that require continuous
input can be intelligently routed to users from different time zones.

Regarding machine-machine interactions, it is not enough for human actors to per-
ceive the effectiveness of the machine components they are most clearly involved with,
that is, their own computers. Instead, for the HMN to be a success, there must also be
a correspondingly productive interplay between the machines themselves as effective
participants. Security is of primary concern here. When machine agents in a network
wish to interact with others, often unknown to them, there needs to be a separate
security negotiation including authentication and authorization. One way around this
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would be to introduce a single “authority” who would vouch for individual machine
agents to mediate their access to other services.

4.4. Future Considerations

Most previous work on networks has tended to focus either on social networks as com-
munities of people sharing and interacting with one another online or offline, or on
machine networks in terms of their robustness and complexity. It is our view, however,
that in combining the two, we begin to appreciate how human-machine interactions can
and often do lead to subtly interdependent behaviors that would have been impossible
before. Most earlier analysis of networks and behavior has tended to treat the actors
or entities within the network as equivalent within their defined type. Moreover, the
characteristics and behavior of those entities were seen to remain fixed and predictable
once defined [Boccaletti et al. 2006]. In order to develop a more advanced and compre-
hensive analysis of HMNs, we need to consider that the exhibited characteristics of
nodes are dependent upon context, which may change in a complex way in response to
a number of different factors [Milo 2002; Newman 2003]. For example, human actors
may be described as in-group and out-group, which defines their behavior in relation
to other connected humans [Giles and Giles 2012; Hogg and Reid 2006]. Similarly, a
human actor may take the role of leader (or “seed”) at one point in time, but may re-
linquish that role in favor of other actors in authority at a later point in time [Aguirre
et al. 1998; Lemonik Arthur 2013].

Machines are, as ever, more predictable than humans, but it is still conceivable that
they may take more than one role in a network—for example, a mobile phone may be
a communication device, a display device, or a sensor under different circumstances
or at different stages of an evolving network situation [Arminen 2006; Raento et al.
2009; Vinciarelli et al. 2012]. Each entity in the network can be characterized by a
number of attributes, some of which are intrinsic to the entity (such as patient, doctor,
collaborator, contributor) and some of which are context sensitive (such as leader, seed,
follower, in-group, out-group, passivity) [Horwitz et al. 2004; Newman 2003]. Similarly,
the relationship between entities can be characterized as a function of both context and
time—so trust and reliance are an attribute of the evolving relationship between two
entities [Rousseau et al. 1998; Schoorman et al. 2007; Söllner et al. 2012; Söllner and
Leimeister 2013], whereas trustworthiness is an attribute of a single entity fulfilling
a specific role [Corritore et al. 2003; Rousseau et al. 1998]. These attributes of entities
should be identified and characterized, their potential to adopt different behaviors and
likelihood to adapt or respond to unexpected interactions, as well as the time-variant
or dynamic nature of the relationships should be incorporated [Milo 2002; Newman
2003].

The connections between entities in a network, edges, are often taken simply to
represent the existence of a relationship, effectively taking the form of an infinite
capacity conduit [Boccaletti et al. 2006]. However, the edge itself may also display
characteristics that influence behavior in the network. The edge is effectively a path
across which information flows between two entities, but it can influence both the type
of interaction and the perception by a human entity of another machine or human
node [Lusseau 2003; Newman 2003]. For example, the connection may be a slow or
unreliable link, it will have a capacity limit, which determines the type of information
it can carry (text, data, audio, images), and as such may influence the level of trust
or reliance between nodes and may therefore affect the response that a person has to
the information available to them [Lu et al. 2007; Newman and Park 2003]. Future
analysis therefore needs to take into account the intrinsic characteristics of the edge
as well as relate it to other network characteristics that may be influenced by it.
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In reality, the emergence of new behaviors in an HMN is very difficult to predict,
although the effect that new user behavior has on the operation of a network can be
profound [Jones 2010; Lusseau 2003]. As an example, consider the impact of social me-
dia usage on networks of people mediated by smartphones. The shift in behavior from
verbal communication (telephony) to text communication has driven the developing
capabilities of smart phones and the demand for universal-wide bandwidth data con-
nection. The inclusion of cameras of ever-increasing resolution and sophistication and
biosensors in smartphones, and the ubiquity of apps has resulted in behavioral change
in the users of such devices and networks. In social media networks such as Twitter
and Instagram, the emergence of the use of hashtags has revolutionized the sharing
and discovery of information and has led to the adoption by the network of concepts
such as “trending” [Brock 2012; Doctor 2013; Fortunato 2013; Glasgow and Fink 2013].
These examples are indications of the way in which human users of any technology
will adapt it to their own requirements, often beyond the expectations of the originator
of the technology, and, once adopted and widespread, the technology provider will then
move to incorporate the new usage into their offering. This is another aspect of the
dynamic nature of a technology-based network.

That networks evolve has been established earlier, along with the reasons for their
evolution. Any characterisation of a network therefore needs to embody the dynamic
nature of the entities and connections between them, particularly in relation to the
changing context of both the individuals and the network as a whole [Fortunato 2010;
Milo 2002]. Moreover, the underlying capabilities of the network will evolve with time,
possibly leading to “tipping points” at which new or emergent behavior becomes possi-
ble, and this is paralleled by the developing competence of the network users whereby
they are able to use the technology more effectively [Boyatzis 2006; Rogers 2008]. The
very existence of the network and the sharing of experience between people using the
network ensure that behavior can become “viral” and spread rapidly between users
[Bakshy et al. 2012; Kietzmann et al. 2012]. This is not just “herd behavior”, although
it can lead to such phenomena [Langley et al. 2014; Ronson 2015], but can also be part
of a shared learning phenomenon, which can ultimately lead to modifications in the
way that the technological components of the network are implemented [Benbya and
McKelvey 2006].

5. CONCLUSION

This survey presented the state of the art in the field of HMNs. We focused on the
actors in these networks and the interactions between them. We identified eight types
of HMNs: public resource computing, crowdsourcing, web search engines, crowdsens-
ing, online markets, social media, multiplayer online games and virtual worlds, and
mass collaboration. These types differ in the structure and intensity of the interac-
tions among and between humans and machines. We systematically collected relevant
research on these types, with an emphasis on recent and high-impact work. We re-
viewed this work with a focus on issues related to designing the HMNs: motivating
participants, guaranteeing their privacy, designing reputation, recommendation, and
content-ranking algorithms, aggregating and processing contributions, and so on.

We have identified and discussed five emerging trends in HMNs: human-human
interactions are intensifying in HMNs; human-machine interactions are becoming less
demanding; machine-human interactions are becoming more prominent; the structure
of HMNs is evolving; more hybrid types of HMNs are emerging. The five development
trends suggest that the differences between the eight HMN types we identified are
starting to blur. Nevertheless, our analytical framework remains useful for identifying
specific niches for development and innovation. Some possibilities include citizen
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science projects that encourage collaboration between users, search engines that rely
on users explicitly ranking sites, and social network sites that enable file sharing.

Our framework helped us identify shared challenges, such as those related to user
motivation, trust, user experience, privacy, and scalability. Our framework also helped
organize the design implications from these challenges. An avenue for further work is to
more systematically delineate types of HMNs and characteristics relevant to describing
them in order to identify transferable solutions that may benefit ICT developers when
designing new HMNs. Building upon the survey presented here, Eide et al. [2016] have
already taken first steps toward a more systematic typology.

Key to our definition of an HMN is the synergistic effect that can occur from the inter-
actions between humans and machines. Synergy may result from emergent behavior,
which can be challenging to predict. We have discussed several aspects of emergent
behavior and network dynamics pertaining to, for example, context of use, changing
role in the network, and type of connections between actors. Characterization of an
HMN needs to embody the dynamic nature of the actors and the connections between
them. How to characterize HMNs to allow for the prediction of emergent behavior is
another interesting avenue for further work.

Our framework has its intrinsic limitations as well. We have simplified the type of
interactions and limited the possible combinations. Moreover, we only considered few
modes of contributions by actors, and we did not allow the actors to take different roles.
Still, the simplicity of the provided framework allows for straightforward extensions
in future iterations.

REFERENCES

Mavis T. Adjei, Stephanie M. Noble, and Charles H. Noble. 2010. The influence of C2C communications in
online brand communities on customer purchase behavior. Journal of the Academy of Marketing Science
38 (2010), 634.

Eugene Agichtein, Carlos Castillo, Debora Donato, Aristides Gionis, and Gilad Mishne. 2008. Finding high-
quality content in social media. In Proceedings of the International Conference on Web Search and Web
Data Mining (WSDM’08). ACM, New York, 183.

B. E. Aguirre, Dennis Wenger, and Gabriela Vigo. 1998. A test of the emergent norm theory of collective
behavior. Sociological Forum 13, 2 (1998), 301–320.

Mohammad Allahbakhsh, Boualem Benatallah, Aleksandar Ignjatovic, Hamid Reza Motahari-Nezhad, Elisa
Bertino, and Schahram Dustdar. 2013. Quality control in crowdsourcing systems: Issues and directions.
IEEE Internet Computing 17, 2 (2013), 76–81.

David P. Anderson. 2004. BOINC: A system for public-resource computing and storage. In Proceedings of the
5th IEEE/ACM International Workshop on Grid Computing. IEEE, 4–10.

David P. Anderson, Jeff Cobb, Eric Korpela, Matt Lebofsky, and Dan Werthimer. 2002. SETI@home: An
experiment in public-resource computing. Communications of the ACM 45, 11 (2002), 56–61.

Arvind Arasu, Junghoo Cho, Hector Garcia-Molina, Andreas Paepcke, and Sriram Raghavan. 2001. Searching
the web. ACM Transactions on Internet Technology 1, 1 (2001), 2–43.

Alexandre Ardichvili. 2008. Learning and knowledge sharing in virtual communities of practice: Motivators,
barriers, and enablers. Advances in Developing Human Resources 10, 4 (2008), 541–554.

Ilkka Arminen. 2006. Social functions of location in mobile telephony. Personal and Ubiquitous Computing
10, 5 (2006), 319–323.

Luigi Atzori, Antonio Iera, and Giacomo Morabito. 2010. The internet of things: A survey. Computer Networks
54, 15 (2010), 2787–2805.

Hyunmi Baek, JoongHo Ahn, and Youngseok Choi. 2012. Helpfulness of online consumer reviews: Readers’
objectives and review cues. International Journal of Electronic Commerce 17, 2 (2012), 99–126.

Richard P. Bagozzi and Utpal M. Dholakia. 2006. Open source software user communities: A study of
participation in Linux user groups. Management Science 52, 7 (2006), 1099–1115.

Eytan Bakshy, Solomon Messing, and Lada Adamic. 2015. Exposure to ideologically diverse news and opinion
on facebook. Science 348, 6239 (2015), 1130–1132.

ACM Computing Surveys, Vol. 50, No. 1, Article 12, Publication date: April 2017.



12:26 M. Tsvetkova et al.

Eytan Bakshy, Itamar Rosenn, Cameron Marlow, and Lada Adamic. 2012. The role of social networks in
information diffusion. In Proceedings of the 21st International Conference on World Wide Web (WWW’12).
ACM, 519.

Carliss Y. Baldwin and Kim B. Clark. 2006. The architecture of participation: Does code architecture mitigate
free riding in the open source development model? Management Science 52, 7 (2006), 1116–1127.

Mesut E. Baran and Felix F. Wu. 1989. Network reconfiguration in distribution systems for loss reduction
and load balancing. IEEE Transactions on Power Delivery 4, 2 (1989), 1401–1407.

Barry L. Bayus. 2013. Crowdsourcing new product ideas over time: An analysis of the Dell ideastorm
community. Management Science 59, 1 (2013), 226–244.

Adam L. Beberg, Daniel L. Ensign, Guha Jayachandran, Siraj Khaliq, and Vijay S. Pande. 2009. Fold-
ing@home: Lessons from eight years of volunteer distributed computing. In Proceedings of the 2009
IEEE International Symposium on Parallel & Distributed Processing. IEEE, 1–8.

Hind Benbya and Bill McKelvey. 2006. Toward a complexity theory of information systems development.
Information Technology & People 19, 1 (2006), 12–34.

Tim Berners-Lee. 2000. Weaving the Web: The Original Design and Ultimate Destiny of the World Wide Web.
Collins Business, London. 256 pages.

Michael S. Bernstein, Greg Little, Robert C. Miller, Björn Hartmann, Mark S. Ackerman, David R. Karger,
David Crowell, and Katrina Panovich. 2010. Soylent: A word processor with a crowd inside. In Proceed-
ings of the 23nd Annual ACM Symposium on User Interface Software and Technology (UIST’10). ACM,
New York, 313.

Christian Bird, David Pattison, Raissa D’Souza, Vladimir Filkov, and Premkumar Devanbu. 2008. Latent
social structure in open source projects. In Proceedings of the 16th ACM SIGSOFT International Sym-
posium on Foundations of Software Engineering (SIGSOFT’08/FSE-16). ACM, New York, 24.

Stefano Boccaletti, Vito Latora, Yamir Moreno, Martin Chavez, and Dong-Uk Hwang. 2006. Complex net-
works: Structure and dynamics. Physics Reports 424, 4–5 (2006), 175–308.

Robert M. Bond, Christopher J. Fariss, Jason J. Jones, Adam D. I. Kramer, Cameron Marlow, Jaime E. Settle,
and James H. Fowler. 2012. A 61-million-person experiment in social influence and political mobilization.
Nature 489, 7415 (2012), 295–298.

Richard E. Boyatzis. 2006. An overview of intentional change from a complexity perspective. Journal of
Management Development 25, 7 (2006), 607–623.

Danah M. Boyd and Nicole B. Ellison. 2007. Social network sites: Definition, history, and scholarship. Journal
of Computer-Mediated Communication 13, 1 (2007), 210–230.

Daren C. Brabham. 2008. Crowdsourcing as a model for problem solving. Convergence: The International
Journal of Research into New Media Technologies 14, 1 (2008), 75–90.

Sergey Brin and Lawrence Page. 2012. Reprint of: The anatomy of a large-scale hypertextual web search
engine. Computer Networks 56, 18 (2012), 3825–3833.

Josh Broch, David A. Maltz, David B. Johnson, Yih-Chun Hu, and Jorjeta Jetcheva. 1998. A performance
comparison of multi-hop wireless ad hoc network routing protocols. In Proceedings of the 4th Annual
ACM/IEEE International Conference on Mobile Computing and Networking. ACM, 85–97.
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