
66

Scientific Workflows: Moving Across Paradigms

CHEE SUN LIEW, University of Malaya
MALCOLM P. ATKINSON and MICHELLE GALEA, University of Edinburgh
TAN FONG ANG, University of Malaya
PAUL MARTIN, University of Amsterdam
JANO I. VAN HEMERT, Optos Plc

Modern scientific collaborations have opened up the opportunity to solve complex problems that require both
multidisciplinary expertise and large-scale computational experiments. These experiments typically consist
of a sequence of processing steps that need to be executed on selected computing platforms. Execution poses
a challenge, however, due to (1) the complexity and diversity of applications, (2) the diversity of analysis
goals, (3) the heterogeneity of computing platforms, and (4) the volume and distribution of data.

A common strategy to make these in silico experiments more manageable is to model them as workflows and
to use a workflow management system to organize their execution. This article looks at the overall challenge
posed by a new order of scientific experiments and the systems they need to be run on, and examines how
this challenge can be addressed by workflows and workflow management systems. It proposes a taxonomy of
workflow management system (WMS) characteristics, including aspects previously overlooked. This frames
a review of prevalent WMSs used by the scientific community, elucidates their evolution to handle the
challenges arising with the emergence of the “fourth paradigm,” and identifies research needed to maintain
progress in this area.

Categories and Subject Descriptors: A.1 [General Literature]: Introductory and Survey; C.1.4 [Parallel
Architectures]: Distributed Architectures; D.2.11 [Software Engineering]: Software Architectures; H.4.1
[Information Systems Applications]: Office Automation—Workflow management

General Terms: Algorithms, Design, Language, Measurement, Performance

Additional Key Words and Phrases: Data-intensive science, workflows, workflow management systems

ACM Reference Format:
Chee Sun Liew, Malcolm P. Atkinson, Michelle Galea, Tan Fong Ang, Paul Martin, and Jano I. Van Hemert.
2016. Scientific workflows: Moving across paradigms. ACM Comput. Surv. 49, 4, Article 66 (December 2016),
39 pages.
DOI: http://dx.doi.org/10.1145/3012429

1. INTRODUCTION

Computational science has increasingly stood alongside experimental and theoretical
science in scientific discovery over the last five decades. However, the phrase “fourth

Authors’ addresses: C. S. Liew and T. F. Ang, Faculty of Computer Science & Information Technology,
University of Malaya, 50603 Kuala Lumpur, Malaysia; email: csliew@um.edu.my; angtf@um.edu.my; M. P.
Atkinson, School of Informatics, University of Edinburgh, 10 Crichton Street, Edinburgh EH8 9AB, UK;
email: Malcolm.Atkinson@ed.ac.uk; M. Galea, The Data Lab, University of Edinburgh, 15 South College
Street, Edinburgh, EH8 9AA; email: michelle.galea@ed.ac.uk; P. Martin, Informatics Institute, University
of Amsterdam, Science Park 904 1098XH Amsterdam, Netherlands; email: p.w.martin@uva.nl; J. I. van
Hemert, Optos, Queensferry House, Carnegie Campus, Enterprise Way, Dunfermline KY11 8GR, UK; email:
jvanhemert@optos.com.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2016 ACM 0360-0300/2016/12-ART66 $15.00
DOI: http://dx.doi.org/10.1145/3012429

ACM Computing Surveys, Vol. 49, No. 4, Article 66, Publication date: December 2016.

http://dx.doi.org/10.1145/3012429
http://dx.doi.org/10.1145/3012429

66:2 C. S. Liew et al.

paradigm” was coined by Gray [2009] to draw attention to a new methodology in
science that complements those three paradigms—one that addresses the increasing
importance of digital data in science.

Advances in computing technology foster the use of simulations to perform complex
analyses in theoretical modeling; these simulations generate large volumes of data,
which are stored in databases and files. At the same time, the revolution in digital tech-
nology has increased the volume of observational data used in experimental science
as the extensive use of digital sensors has been coupled with highly automated data
collection, for example, digital imaging devices in astronomy and microarray DNA se-
quencers in genomics [Interagency Working Group on Digital Data 2009]. The scientific
community is facing a massive data challenge, such as petabytes of live data streams1

and petabytes of curated data.2 The complexity and diversity of data pertinent to re-
search topics is also increasing rapidly; for example, ELIXIR-supporting European life
scientists host 24 curated reference data collections, each of which evolves and grows
rapidly.3

With the 21st century, the fourth paradigm has emerged, known as data-intensive
science [Hey et al. 2009] or data-driven science, where scientists discover new knowl-
edge by systematically processing large volumes or complex collections of data captured
in experiments or generated by simulations. As Jim Gray observed [Gray 2009], most
astronomers do not look through the sophisticated and expensive new telescopes; in-
stead, they work at the end of a data pipeline, analyzing derived information on their
own workstations. Computing software is used extensively to integrate and analyze
data in order to extract new knowledge. Data-driven science does not replace exist-
ing scientific methods; it complements existing paradigms—an iterative cycle to link
knowledge with observations [Kell and Oliver 2004].

The examples that follow highlight some projects from various scientific domains
that are dealing with large-scale distributed data:

Optical astronomy. The Pan-STARRS project4 for detecting potentially hazardous
objects in the solar system is equipped with four 1.4 Gigapixel resolution digital
cameras that capture more than 1PB of raw data and generate 100TB data within
its catalog database each year. Every day, a Load workflow creates about 700
new Load databases storing nightly detected objects, and once a week, a Merge
workflow merges 50,000 Load databases with 12 offline Cold databases using
Trident [Simmhan et al. 2009]. These data may be analyzed directly or used in
combination with other observations, using standards mediated by the IVOA.5
Radio astronomy. LOFAR,6 for observing the universe using very low-frequency
radio telescopes, is producing high-quality interferometric data on baselines rang-
ing from 100m up to more than 1,000km, from 24 core stations (within a 2km
radius in The Netherlands), 16 remote stations (within 100km), and eight inter-
national stations (including France, Germany, Sweden, and the United Kingdom)
[Heald et al. 2011]. The data processing pipeline involves correlating and reduc-
ing data from all of the stations connected through a wide-area network using an
IBM Blue Gene/P supercomputer; real-time analysis and model tuning using a
general-purpose cluster; temporary storage of the raw data; and archival of final

1The SKA (www.skatelescope.org) will generate 2.5 to 7.5PB of raw data/second [Broekema et al. 2012].
2The LHC (cms.web.cern.ch) preserves 30PB of data per year [Chalmers 2014] and the Large Synoptic
Survey Telescope (www.lsst.org) will generate several petabytes of saved images and catalogs every year.
3ELIXIR services: https://www.elixir-europe.org/services.
4Panoramic Survey Telescope & Rapid Response System (Pan-STARRS): pan-starrs.ifa.hawaii.edu.
5International Virtual Observatory Alliance (IVOA): www.ivoa.net.
6Low Frequency Array (LOFAR): www.lofar.org.

ACM Computing Surveys, Vol. 49, No. 4, Article 66, Publication date: December 2016.

http://www.skatelescope.org
http://cms.web.cern.ch
http://www.lsst.org
https://www.elixir-europe.org/services
http://pan-starrs.ifa.hawaii.edu
http://www.ivoa.net
http://www.lofar.org

Scientific Workflows: Moving Across Paradigms 66:3

data products for further use [Romein et al. 2011]—this is both data intensive
and computationally complex.
Seismology. The VERCE project7 is delivering an e-Science environment to the
seismological community to exploit the increasingly large volume of seismological
data. It provides an integrated architecture for diverse data-intensive applications
in data analysis and modeling and the interconnection of community data infras-
tructures with HPC infrastructures [Atkinson et al. 2015]. This is a framework
for executing heterogenous tasks that process large volumes of data (e.g., 100TB
of raw data to analyze the 2011 Tōhoku earthquake and 5PB of simulation results
to model the corresponding subsurface processes), from geographical distributed
and diverse data sources, on grid, cloud, and HPC computing resources.
Experimental biology. OME8 provides flexible data management and interoper-
ability tools for biological light microscopy that deal with over 150 microscopy
file formats and distributed image processing. Its OMERO project [Allan et al.
2012] provides tools for extracting measurements from microscopy images.
OMERO uses multiple storage schemes (i.e., binary image repositories, relational
databases, and HDF59), middleware, and client applications (i.e., scripts written
in Java, C, and Python, and for web browsers) to enable diverse and complex
biomedical research.
Environmental science. The study of the pattern of bird species occurrence to
understand how they are influenced by environmental changes [Kelling et al.
2013] is data intensive. It involves merging data from different organizations
(e.g., NASA,10 USGS,11 NOAA,12 AKN,13 and citizen scientists), using a high-
performance computing infrastructure to explore complex models and large vol-
umes of data through statistical analyses and visualizations, using VisTrails
[Callahan et al. 2006].

These projects, like many others, involve the challenges of data creation, exploration,
exploitation, and preservation in many scientific communities. The rapidly growing
and diverse data opens many new opportunities in business, research, design, policy
formulation, and decision making, but these opportunities can only be exploited if we
improve our knowledge discovery apparatus as we enter the data-intensive era.

Managing the data deluge not only requires larger storage space and more computa-
tional power but also demands new advances (e.g., scalable data processing algorithms
that can handle massive datasets), new data management technologies for distributed
and heterogeneous data sources, and new high-speed networks for transferring large
volumes of data [Gorton et al. 2008]. Many datasets (e.g., three-dimensional spatial
time-series data in seismology) may be stored in DBMSs designed for efficient trans-
action processing and not for scientific data. Boncz et al. [2008] discuss how they
redesigned the database architecture in MonetDB, making use of modern technology
to avoid the performance bottleneck in main-memory access, while Stonebraker et al.
[2009] have specified a common set of requirements for new scientific database sys-
tems (e.g., a new array data model and operators to process time series). Budavári et al.
[2013] have developed the SkyQuery Language, extending SQL to better express every
aspect of cross-identification problems in large-scale astronomy archives.

7Virtual Earthquake and seismology Research Community e-science environment in Europe: www.verce.eu.
8Open Microscopy Environment (OME): www.openmicroscopy.org.
9HDF5: www.hdfgroup.org/HDF5.
10National Aeronautics and Space Administration (NASA): www.nasa.gov.
11United States Geological Survey (USGS): www.usgs.gov.
12National Oceanic and Atmospheric Administration (NOAA): www.noaa.gov.
13Avian Knowledge Network (AKN): www.avianknowledge.net.

ACM Computing Surveys, Vol. 49, No. 4, Article 66, Publication date: December 2016.

http://www.verce.eu
http://www.openmicroscopy.org
http://www.hdfgroup.org/HDF5
http://www.nasa.gov
http://www.usgs.gov
http://www.noaa.gov
http://www.avianknowledge.net

66:4 C. S. Liew et al.

The growing wealth of data (with increasing diversity and complexity across all
domains) is not the only challenge that the scientific community is facing. Another
challenge is the complexity and the heterogeneity of the computing systems that sup-
port the experiments, the applications, and the data. Some efforts are underway that
attempt cross-architectural implementation (e.g., Grid/Cloud [Deelman 2010; Deelman
et al. 2016; Kacsuk et al. 2014]), but their integration processes are proving challenging.
There are a number of reasons for this:

—It is not unusual to run experiments that read raw data from distributed file systems,
metadata from the databases, and live data streams from remote sensors. When
collaborative work is involved, these resources may not be located at one site or
managed by a single organisation. The data integration process needs to deal with
different resource types and with a variety of access constraints.

—Even if the experiment only involves data stored in a file system, there are different
storage solutions available. The Sphere parallel data processing engine can efficiently
perform massive parallel in-storage data processing on data stored in the Sector file
system (twice as fast as Hadoop MapReduce [Gu and Grossman 2009]). However, it
cannot process data stored on a Gfarm file system.14

—There is a broad spectrum of applications, from arithmetically intensive to data in-
tensive. Each type of application is suitable to run on certain hardware architectures.
For instance, a commodity cluster provides high computing power with hundreds to
hundreds of thousands of cores and usually is intrinsically attached to a storage area
network to store the data. This architecture is adapted to solve compute-intensive
problems. However, running data-intensive applications often incurs higher commu-
nication costs and achieves lower performance because disk I/O rates and network
bandwidths become performance bottlenecks. In this case, data-intensive computing
machines, as described in Dobos et al. [2013], Givelberg et al. [2011], and Norman
and Snavely [2010], outperform commodity clusters.

—The execution context itself differs. For instance, Pegasus is a popular workflow
management system (WMS) used to manage the execution of in silico experiments.
It works well with DAGMan and HTCondor15 [Litzkow et al. 1988; Thain et al. 2005]
handling batch processing, which stages in data and executable script onto a HPC
cluster and stages out the results after each task has been executed. In some con-
texts, many of the functions a data-driven researcher requires are packaged as web
services, for example, access to curated data collections (see ELIXIR earlier) or stan-
dard transformations. Some WMSs, such as Taverna [Wolstencroft et al. 2013], are
designed to orchestrate the use of such services. A way to exploit coarse-grained
interoperability is to treat the workflows as “black boxes” and orchestrate them by
nesting WMSs, as in the SHIWA platform [Korkhov et al. 2013].

This complexity and heterogeneity cannot be eliminated by unification of technolo-
gies as there are powerful drivers for continued diversity. Forcing a community to
abandon their existing investments and converge on a common technology is unaccept-
able as it would destroy their research momentum. Much pooled intellectual effort and
funds are spent over many years to develop the operational practices and their asso-
ciated data interchange standards. When boundary-crossing research links two such
“islands” of homogeneity, neither can afford to disrupt its community to align with
the other. Some legacy systems are hard to replace or too expensive (e.g., methods use
programs written decades ago); it is infeasible to marshal experts to rewrite them.

14Gfarm file system: datafarm.apgrid.org.
15HTCondor was known as “Condor” from 1988 until its name changed in 2012.

ACM Computing Surveys, Vol. 49, No. 4, Article 66, Publication date: December 2016.

file:datafarm.apgrid.org

Scientific Workflows: Moving Across Paradigms 66:5

Even if a community were to agree on a standard technology, the diversity will
eventually reappear due to the independent evolution of technology in separate groups.
The Swift system was developed by the GriPhyN Virtual Data System (VDS)16—a
collaboration to automate the analysis of the large quantities of high-energy physics
data via a set of workflow tools. Initially, VDS used the Chimera virtual data language
[Foster et al. 2002] to express the logical organization of operations, Pegasus (see
Section 3.1) as its workflow planner, and HTCondor DAGMan as its execution engine.
The Swift system (see Section 3.4) has since grown to be a stand-alone workflow system
for petascale parallel execution [Wilde et al. 2009], using its own SwiftScript for iterative
operations and Falkon [Raicu et al. 2007] for task submission.

The third factor sustaining complexity and diversity is the socioeconomic power of
identity. Cloud computing [Armbrust et al. 2010] has emerged as a new paradigm that
provides dynamic and scalable infrastructure for applications, computing, and stor-
age. The key players in the industry have shown their interest and have populated
this niche in the Internet ecosystem, for example, Amazon,17 Google,18 Microsoft,19

and Rackspace.20 Each has its own strengths and market share. Brynjolfsson et al.
[2010] examine the cloud computing model in comparison with other utility models,
such as electricity, and conclude that cloud offerings will not be interchangeable across
providers. This is currently a barrier for cross-platform experiments. Juve and Deelman
[2010] discuss how the scientific communities may adapt cloud computing technologies,
which primarily target business needs. Zhao et al. [2015] identify the challenges of such
adaptation and share their experience in integrating the Swift into the cloud. Cała et al.
[2016] discuss their experience in porting a life science workflow onto Microsoft Azure
cloud and provided a balanced view of the key benefits and drawbacks we observed
during the migration. We argue in Section 4.1 that cross-platform working and inter-
operation between workflows encoded in different notations should be facilitated.

Section 2 reviews the established characteristics of workflows from a data-intensive
viewpoint. It then discusses architectures for providing workflows and draws atten-
tion to some features not normally considered in order to establish a framework for
discussing workflow systems. Using this framework, Section 3 analyzes six workflow
systems and their utility for data-intensive scientific research. It concludes with a sum-
mary and an assessment of their data handling and optimization strategies. Section 4
charts the anticipated development of scientific workflow languages as they handle
more computation and much more data. Three topics are addressed: (1) how to tran-
scend technical and cultural boundaries while respecting community and individual
needs; (2) how to empower scientists so that they can drive their own research agenda,
only calling on other experts exceptionally; and (3) possible technical developments
taking account of external influences and trends. This anticipates a more complex and
integrated context for scientific workflows with strong influences from advances in the
ways in which scientific data are stored and organized. The concluding section finishes
with a clarion call for a combined effort, not only from the scientific workflow commu-
nity but also from the scientific data storage, archiving, and curation communities, to
develop an integrated approach to facilitating the fourth paradigm. This will require
a formal framework, a pervasive campaign establishing interchange standards, and
many carefully integrated advances in the engineering underpinning data handling,
data organization, and their interplay with workflow enactment. Above all, it will

16GriPhyN VDS: www.ci.uchicago.edu/wiki/bin/view/VDS/VDSWeb/WebMain.
17Amazon Elastic Compute Cloud (Amazon EC2): aws.amazon.com/ec2/.
18Google App Engine: www.google.com/apps.
19Microsoft Windows Azure: www.microsoft.com/windowsazure/.
20Rackspace Cloud: www.rackspace.com/cloud/.

ACM Computing Surveys, Vol. 49, No. 4, Article 66, Publication date: December 2016.

http://www.ci.uchicago.edu/wiki/bin/view/VDS/VDSWeb/WebMain
http://aws.amazon.com/ec2/
http://www.google.com/apps
http://www.microsoft.com/windowsazure/
http://www.rackspace.com/cloud/

66:6 C. S. Liew et al.

Fig. 1. Common workflow in scientific experiments.

require logical and conceptual notations that enable a wide range of researchers in
science, biomedicine, and engineering to take charge of their data-intensive methods.

2. WORKFLOWS

The emergence of computational and data-driven science as the third and fourth
paradigms increases the demand for modern technologies. With the help of data anal-
ysis experts who master statistical methods or data-mining techniques, domain scien-
tists21 try to discover new knowledge from simulation, observation, and experimental
data. This often involves (1) moving data from data sources to computational resources;
(2) cleaning, calibrating, and normalizing data; (3) constructing a model using part of
that preprocessed data; (4) validating the model with the remaining data; (5) visual-
izing the results; and (6) moving the results to a storage system. Simulations explore
and test the implications of mathematical models of phenomena; they may be included
in workflows as a source of data. For example, for the recent discovery of gravity waves
[Abbott et al. 2016], the parameters describing the masses, momentum, and separa-
tion of the colliding black holes had to be adjusted until the output from a simulation
matched the detected signal—this used the Pegasus workflow system. Similarly, to
develop tomographic Earth models, through seismic inversion, the wave propagations
from many earthquakes have to be simulated, and the finite-element models of wave
velocity have to be adjusted by adjunct wave propagation until the results match the
seismic observations [French and Romanowicz 2015]. Such processes can be modeled
as workflows, which are defined here as a set of interrelated computational and data-
handling tasks designed to achieve a specific goal.

2.1. Workflow Characteristics

A workflow comprises three components: a list of tasks or operations, the set of de-
pendencies between the interconnected tasks (the flow), and the set of data resources
used to generate or terminate the flow.22 In a graph representation, the tasks and data
resources are the vertices and the dependencies are the edges connecting vertices, as
shown in Figure 1. The edges can represent two kinds of dependency: control flow and
data flow [Shields 2007].

Control-flow graphs comprise tasks and precedence constraints. The tasks are op-
erations and edges specify the order of operations. An example workflow in Figure 1
demonstrates a basic pattern. The two tasks in the data integration phase may be run

21In commerce, the person who grasps the business issues is called the “domain expert,” for example, the
marketing strategist, financial controller, or logistics planner. In science, an expert in the discipline fills that
role.
22Data resources include data sources and data sinks (e.g., data stores and archives).

ACM Computing Surveys, Vol. 49, No. 4, Article 66, Publication date: December 2016.

Scientific Workflows: Moving Across Paradigms 66:7

concurrently, while the tasks in the data preparation stage form a sequence that runs
after these have both completed, wherein each task is executed before the tasks at
the arrow end of connecting edges. The sequence is then split, but the arc from Ex-
tractModel to EvaluateModel ensures a model has been produced before it is evaluated.
A workflow graph can be directed cyclic (DCG) or directed acyclic (DAG). The main
difference is that DCG supports iteration and DAG does not. Bharathi et al. provide a
characterization of scientific workflow structures [Bharathi et al. 2008], and van der
Aalst et al. describe basic workflow patterns [van der Aalst et al. 2003]. The Workflow
Pattern initiative catalogs more patterns [van der Aalst and ter Hofstede 2014].

In a data-flow graph, dependencies between tasks represent flows of data. Data move
along arcs and are transformed by tasks. If Figure 1 denotes a data-flow graph, then
data from the Query operator (metadata) and data from the Read operator (raw images)
flow into the Preprocess operator. The Preprocess operator transforms every data item
(raw image) and transmits the results to the succeeding operator Generate Features.
Data-flow graphs permit the operators’ executions to overlap in a processing pipeline.

These workflow graphs are logical models, known as abstract workflows, defining the
steps to be taken in scientific experiments. Abstract workflows define the tasks and
their dependencies. To run the experiments, the tasks need to be mapped to executable
software components, generating a concrete workflow. The workflow life cycle has been
defined for both business and scientific domains [Deelman et al. 2009; Görlach et al.
2011; Ludäscher et al. 2009], each proposing their own sequence of phases. Görlach
et al. [2011] suggest three phases, while Ludäscher et al. [2009] suggest four phases,
with a “workflow preparation” phase staging data into computing resources prior to the
execution phase. Only Deelman et al. [2009] discuss a “provenance capture” phase, col-
lecting information for workflow reproducibility. However, they all make the following
observations, which apply for all forms of data-driven analysis:

—These phases are from the scientists’ perspective as they create and run workflows.
—Scientists compose, operate, analyze, and refine workflows.
—Scientific workflows are exploratory; that is, it is common to reuse workflows and

refine them using trial and error.
—Scientific methods are often repeated; that is, scientists rerun workflows with differ-

ent parameters and datasets.
—Runtime monitoring and diagnostics are important; that is, scientists monitor

progress and may steer or decide to abort or suspend an execution.

Spinuso has pioneered the active use of provenance at runtime to trigger responses
to conditions and to support job, data, and research-campaign management [Spinuso
et al. 2016]. Making provenance immediately useful is a significant step in engaging
researchers [Myers et al. 2015].

2.2. Workflow Architectures

A wide range of WMSs have been developed, for example Pegasus [Deelman et al. 2015],
Kepler [Ludäscher et al. 2006], Taverna [Wolstencroft et al. 2013], Triana [Taylor et al.
2007a], Swift [Zhao et al. 2007], Trident [Barga et al. 2008], Galaxy [Blankenberg et al.
2010], ASKALON [Fahringer et al. 2007], WS-PGRADE/gUSE [Kacsuk et al. 2012],
Meandre [Llorà et al. 2008], and Apache Airavata [Marru et al. 2011]. Studies [Taylor
et al. 2007b; Goble and De Roure 2009; Görlach et al. 2011] identify the following roles
for workflows:

—Support for collaborative research by enabling scientific communities to share auto-
mated and formalized processes such as data analysis

ACM Computing Surveys, Vol. 49, No. 4, Article 66, Publication date: December 2016.

66:8 C. S. Liew et al.

—Construction free from distracting details about workflow management and
execution

—The ability to automate workflow steps, that is, their mapping and execution, and to
repeat in silico experiments

—Integrating resources from distributed and heterogeneous enactment platforms
—Handling large volumes of data and complex computations
—Improving the execution through various optimization strategies

We summarize several studies that classify the architecture of WMSs; they propose
widely used taxonomies. We then introduce potential improvements.

Becker et al. [2002] identify three classes of business process: (1) workflow-
supported organizational processes (facilitating human actions during those processes),
(2) workflow-driven software processes (entirely automated computational tasks), and
(3) hybrid processes (a mixture of the two). They add an organizational dimension, that
is, inter- and intra-organization level. Grefen and Vonk [2006] describe a transactional
workflow model and discuss its support from the conceptual (specification language)
and the system (workflow architecture) points of view.

Over the last two decades, scientific communities have used workflow technolo-
gies to automate their computational experiments that exploit distributed and high-
performance computing infrastructures (e.g., grids) and access data, cloud, and HPC
resources, which are often geographically dispersed and independently managed. Yu
and Buyya [2005] classify various approaches to mapping workflows onto grids. They
review 13 existing WMSs and suggest research directions. Deelman et al. [2009] de-
velop a general taxonomy of features for WMSs relevant to scientists and use these to
characterize and compare the abilities of WMSs throughout the life cycle.

A number of papers regarding specific aspects of WMSs have been published, includ-
ing the following:

—Scheduling — Wieczorek et al. [2009] analyze five facets of workflow scheduling:
workflow model, scheduling criteria, scheduling process, resource model, and task
model, in each case giving an extensive taxonomy and a survey of related WMSs.

—Verification and validation to improve the correctness of grid workflows. Chen and
Yang [2008] propose a taxonomy for workflow verification: structure, performance,
and resources, and validation of consistency between processes and specifications.

—Provenance — Provenance data are often specific to the WMS that gathers them
and prove difficult to integrate across systems. Many of the systems in Section 3 are
adopting W3C PROV23 to enable the interchange of provenance data [Groth et al.
2012]. Da Cruz et al. [2009] distinguish perspectives of provenance (i.e., capture,
access, subject, and storage) and provide a taxonomy of provenance. They survey 11
provenance systems, including Pegasus, Taverna, Kepler, and Swift.

—Data publishing — Murphy et al. [2015] define data publishing as providing discov-
erable, standard, and trusted data repositories that allow scientists from different
disciplines to access, reuse, and analyze the unique datasets over the longer term.
The published data should be well documented, identified, curated, interoperable,
and archived. The RDA/WDS Publishing Data Workflows Working Group24 will ana-
lyze a representative range of workflows and standards for data publishing, including
deposit and citation, and recommend reference models and implementations for ap-
plication in new workflows. Garijo et al. [2012] propose the publication of the work-
flows, components, and datasets as Linked Data [Heath and Bizer 2011] to make
scientific workflows more reusable and to increase the reproducibility of scientific

23W3C PROV-Overview: www.w3.org/TR/prov-overview.
24Research Data Alliance (RDA): www.rd-alliance.org.

ACM Computing Surveys, Vol. 49, No. 4, Article 66, Publication date: December 2016.

http://www.w3.org/TR/prov-overview
http://www.rd-alliance.org

Scientific Workflows: Moving Across Paradigms 66:9

Fig. 2. Architectural characterizations of WMSs.

results [Garijo 2015]. EUDAT25 and DataONE26 are each developing a data infras-
tructure compliant with the Open Archival Information System (OAIS).

These studies improve our understanding of WMSs. However, they omit a few charac-
teristics from their taxonomies, which are illustrated in Figure 2.

Processing elements (PEs), the building blocks of workflows, are software compo-
nents that encapsulate a particular functionality to perform their task. Gannon [2007]
distinguishes two types of workflow depending on the way a PE is implemented: (1)
component-based workflows, also known as task based, are accessed through a specific
interface, such as a function call, an interprocess communication, or a job submission—
they may be written in any language and need to be deployed explicitly during enact-
ment, (2) PEs in service-based workflows are implemented as web services, which are
self-contained and self-describing programs exposed via web servers [Wang et al. 2004]
that are invoked and respond using web service protocols addressed to already-running
instances.

The coordination of the execution differs significantly in the two types of workflow. In
component-based workflows, the PEs are often stand-alone applications that receive
input data, perform their task, and produce a result. A WMS deploys and connects
these PEs together by fetching results, often as files, and supplying them as input to
subsequent components. In service-based workflows, the web services are independent,
predeployed, and potentially dispersed web instances. A workflow is constructed by a
collection of web services communicating with each other and with a WMS controller
through message passing, with an explicit coordination method.

The coordination method falls into two categories: orchestration and choreography.
Orchestration has a single controller and oversees the execution flow and invokes
services based on a workflow written in an orchestration language, WS-BPEL.27 Written

25EUDAT: www.eudat.eu B2 services.
26DataONE: www.dataone.org.
27Web Services Business Process Execution Language (WS-BPEL): docs.oasis-open.org/wsbpel/2.0/OS/
wsbpel-v2.0-OS.html.

ACM Computing Surveys, Vol. 49, No. 4, Article 66, Publication date: December 2016.

http://www.eudat.eu
http://www.dataone.org
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html

66:10 C. S. Liew et al.

initially for business applications, BPEL has been adapted to the scientific domains
[Emmerich et al. 2005; Slominski 2007].

Choreography describes a collaboration between services to achieve an agreed-upon
goal; it involves messages between multiple parties, where no one party truly owns the
conversation [Barker et al. 2009]. WS-CDL28 is used for choreography. Service orches-
tration works well in business domains, but not for scientific applications, where data
and applications are often large and use dispersed services managed by multiple or-
ganizations, because service choreography invokes more communication. Barker et al.
[2008] propose a hybrid model with centralized control flow but distributed data flow,
which provides robustness and reduces data movement.

The workflow representation can meet two goals: (1) human presentation, an exter-
nal representation for creators and editors of a workflow, with graphical, textual, and
formal variants, and (2) computer communication, an internal representation used for
communication between subsystems to achieve enactment. The graphical representa-
tion may facilitate the composition of workflows using GUI editors. It increases the
usability of the WMSs but may not be suitable for describing workflows with a large
number of tasks in detail, which leads to textual representations that may be human
comprehensible or XML based. The representations denoting abstract workflows used
by workflow editors are transformed into internal representations and are passed to
the workflow manager to organize the execution. It may apply graph transformation
before generating a concrete execution plan to be sent to the execution engine. Three
common internal representations are scripting languages, XML-based descriptions,
and internal DAG-based representations. These representations are also employed for
storing workflows [Elmroth et al. 2010].

The data processing model of a workflow matches the internal data processing model
of the PEs, which can be divided into bulk data, where PEs receive whole datasets for
example, files (which may contain multiple data elements), and produce their results
as bulk data, and stream data, where data units arrive from continuous and time-
varying data streams, such as the output from sensors [Babcock et al. 2002]. For
stream data, a PE produces data units on its output streams for each data unit that
arrives on an input stream. It is best to describe both using an operations/operators
terminology. In the bulk data model, PEs are operations, which are instantiated to
process a dataset and terminated after it has been processed. WMSs execute these
operations in sequence, and some operations may be executed concurrently provided
there are no interdependencies between them. This is called batch processing. For
stream data, PEs are operators that keep on working on data items as they arrive
and will not be terminated as long as more data is expected. These operators can
be connected to form a pipeline, a successor operator processing the data items its
predecessors have produced, their execution therefore overlapping. The choice between
batch and stream processing may be determined by nonfunctional requirements, such
as continuously monitoring an observed system, or it may be based on the optimization
issues discussed later and lead to research questions presented in Section 4.

The last characteristic concerns at which stage which optimization is performed:
build time—workflow composition and planning the mapping to resources, or runtime—
the deployment, execution, and monitoring phases. An execution engine uses status
information and size of data to dynamically optimize. Build-time optimization focuses
mainly on graph transformation, for example, task clustering and parallelization.

These characteristics all concern how WMSs operate in practice. They significantly
affect how WMSs interoperate, for example, how workflows are expressed, man-
aged, operated, and optimized. Section 3 analyzes current WMSs in terms of those

28Web Services Choreography Description Language (WS-CDL): www.w3.org/TR/ws-cdl-10/.

ACM Computing Surveys, Vol. 49, No. 4, Article 66, Publication date: December 2016.

http://www.w3.org/TR/ws-cdl-10/

Scientific Workflows: Moving Across Paradigms 66:11

Fig. 3. Pegasus architectural diagram.

characteristics, as researchers will consider them when deciding which existing WMSs
to adopt. In Section 4, we discuss how the limitations of existing WMSs may be
overcome.

3. REVIEW OF SELECTED EXISTING WORKFLOW MANAGEMENT SYSTEMS

A review of all WMSs is not feasible, so we discuss seven: Pegasus, Kepler, Taverna,
Swift, KNIME, Airavata, and Meandre. The first six are well established and widely
used in multiple domains. Meandre is less widely used, but its data-flow system exploits
fine-grained data streaming and is closest to our view of future trends (see Section 4).
We briefly review their technology and discuss their salient features, such as archi-
tecture, development environment, and workflow language, and conclude this section
with a summary based on the additional characteristics defined above.

To aid our comparison of these WMSs, we sketch a system architecture diagram
for each one (e.g., see Figure 3) that shows the workflow composition tool (colored in

), the resource mapping mechanism (colored in), and the workflow exe-
cution engine (colored in). We superimpose that system architecture diagram
onto an hourglass figure—the upper part of the hourglass denotes the development
and refinement of the logic in the workflow and supports activities such as sharing and
debugging; the lower part represents computation across diverse distributed comput-
ing infrastructures (DCIs) evaluating instances of the workflows. The arguments for
this “hourglass model” are given in Atkinson and Parsons [2013]. Both the upper and
lower cones grow as capabilities are added and as the set of available DCIs evolve—see
Section 4. The narrow neck of the hourglass allows each part to evolve independently

ACM Computing Surveys, Vol. 49, No. 4, Article 66, Publication date: December 2016.

66:12 C. S. Liew et al.

of the other, protecting scientific and user-support investments in the upper cone from
obsolescence as DCIs evolve. There is a challenge developing a stable and sufficiently
powerful notation that is not too closely tied to a target DCI; for example, Pegasus
(Section 3.1) uses DAX at an upper level and HTCondor DAG at a target-specific level,
whereas Taverna (Section 3.3) is now on its third version of a language, SCUFL2, to com-
municate between composition and execution. Wider integration and mappings that
bridge technologies are required to meet interdisciplinary challenges (see Section 4.1),
making the design of this critical and stable communication channel a key research
challenge—most current scientific workflow systems leak properties of the underlying
platform into the upper cone, thereby distracting users and causing lock-in.

3.1. Pegasus

Pegasus29 is a well-known WMS that is widely used across domains, for example, earth
science [Maechling et al. 2007] and astronomy [Berriman et al. 2010]. Together with
Wings, DAGMan, and HTCondor,30 it provides a complete workflow solution for handling
scientific experiments. Wings is a semantically rich workflow system, used to create
and validate workflows and generate metadata. Workflows are created and stored in
workflow libraries. At this stage, they are workflow templates, logical definitions of
process plans, with no bindings to data or executable programs. The metadata that
semantically describe the components and requirements of the workflow templates are
stored in repositories, so they may be discovered, shared, and reused by different users
and experiments. Wings helps researchers find templates and data to create workflow
instances, which are also known as abstract workflows. Workflow instances have the
data to be used specified, but are still independent from the execution resources. Pe-
gasus maps the workflow instance onto execution resources to create an executable
workflow, which is fully specified: the data and their location, the computing resources,
and the required data movements. DAGMan and HTCondor take over and execute the
workflow on a distributed environment. Figure 3 shows the architecture with interac-
tion between these subsystems.

Wings plays two roles in the life cycle: workflow composition [Gil et al. 2006] (se-
mantically rich construction) and provenance tracking [Kim et al. 2008] (provenance of
workflow instances and metadata for data products). The second phase of the workflow
life cycle, resource mapping, is handled by Pegasus. Pegasus is a workflow planner and
does not execute workflows. It can exploit various execution engines, for example, HT-
Condor and Globus.31 Its input is an abstract workflow written in an XML format,
called DAX, from which it generates a concrete workflow as the input to DAGMan.

The mapping relies on three catalogs. The Site Catalog describes the available com-
pute resources. A site can be a cluster, virtual machines in clouds, or local machines.
Pegasus exploits heterogenous DCI spread across grid and cloud [Deelman 2010]. The
Replica Catalog maintains a mapping from logical to physical file names for data dis-
covery. The Transformation Catalog maps logical operations to physical executables.
A user can define whether a component is stageable from other sites. Pegasus uses
Kickstart [Vöckler et al. 2006] to launch programs and capture their exit status and
monitoring information, which are then stored in the Provenance Tracking Catalog
[Deelman et al. 2006] and used for debugging.

Pegasus is popular because (1) its planner automatically adds staging and registra-
tion jobs to the concrete workflow; (2) it is flexible and scalable [Callaghan et al. 2010];
and (3) it performs optimization, such as clustering small jobs together, automatically

29Pegasus: pegasus.isi.edu [Deelman et al. 2015].
30Wings: wings-workflows.org; HTCondor: research.cs.wisc.edu/htcondor/.
31Globus: www.globus.org.

ACM Computing Surveys, Vol. 49, No. 4, Article 66, Publication date: December 2016.

file:pegasus.isi.edu
http://wings-workflows.org
http://research.cs.wisc.edu/htcondor/
http://www.globus.org

Scientific Workflows: Moving Across Paradigms 66:13

releasing storage, and reusing results from previous runs [Chen and Deelman 2011].
With the integration into the HUBZero framework [McLennan and Kennell 2010], Pe-
gasus has extended its powerful workflow automation and management services to a
wider research community [McLennan et al. 2015].

A key architectural question concerns the value of a mapper; a WMS could require
composition using executable components explicitly. Pegasus demonstrates the benefits
of abstraction that separates the workflow design from the target technology. This lets
scientists focus on their scientific work without being distracted by low-level details. It
increases reusability: allowing the same workflow to apply to different datasets and to
run on different DCIs. Abstraction increases the scope for optimization.

3.2. Kepler

Kepler32 originated from the Science Environment for Ecological Knowledge project,33

which combined EcoGrid (data storage, sharing, and analysis), Semantic Mediation
(reasoning to discover and integrate data), and Analysis and Modeling (visual environ-
ment for ecologists to compose workflows—motivating Kepler) [Michener et al. 2005].
Kepler has become a general workflow infrastructure supporting many domains, in-
cluding chemistry,34 geology,35 molecular biology,36 and oceanography.37

Kepler is built on Ptolemy II [Eker et al. 2003], which facilitates actor-oriented com-
putation [Bowers and Ludäscher 2005]. This model matches the exploratory nature of
scientific workflows during design, prototyping, and execution. Each process is mod-
eled as an actor that encapsulates required functions. Actors are independent and
communicate using message passing.

To achieve different execution semantics within a single architecture, Kepler sepa-
rates the orchestration from the execution engine and uses directors to organize col-
laborating actors. The actors define “what” are the processing tasks and the directors
determine “when” their processing occurs. Kepler supports the following coordination
models: Process Networks (PNs), Dynamic Dataflow (DDF), Synchronous Dataflow
(SDF), Continuous Time (CT), and Discrete Events (DEs). These meet different re-
quirements: CT and DE are used for workflows that depend on time (e.g., processing
data from sensors and analyzing population growth); DDF and SDF are used to trans-
form and filter non-time-series data; and PN manages parallel threads and distributed
execution.

The actor/director model gives Kepler extensibility and flexibility (see Figure 4). It
can be extended easily by developing the necessary set of actors, such as:

—integrating applications, for example, use actors RExpression and MatlabExpression
to run an R or a Matlab, respectively;

—integrating web services, for example, WebService as an actor for WSDL and actors for
RESTful web services, and Opal38 that wraps scientific applications as web services;

—data movement with specific protocols, for example, GridFTP, SSHFileCopier, and
FTPClient

32Kepler Project: www.kepler-project.org [Ludäscher et al. 2006].
33Science Environment for Ecological Knowledge: seek.ecoinformatics.org.
34RESearch sURGe ENabled by CyberinfrastructurE: ocikbws.uzh.ch/resurgence.
35Geosciences Network: www.geongrid.org/.
36Scientific Data Management Center: sdm.lbl.gov/sdmcenter/.
37Real-time Observatories, Applications, and Data Management Network: www.roadnet.ucsd.edu/.
38Opal: nbcr.ucsd.edu/data/docs/opal/.

ACM Computing Surveys, Vol. 49, No. 4, Article 66, Publication date: December 2016.

http://www.kepler-project.org
file:seek.ecoinformatics.org
http://ocikbws.uzh.ch/resurgence
http://www.geongrid.org/
http://sdm.lbl.gov/sdmcenter/
http://www.roadnet.ucsd.edu/
http://nbcr.ucsd.edu/data/docs/opal/

66:14 C. S. Liew et al.

Fig. 4. Kepler architectural diagram.

—interacting with DCI; for example, JobCreator and JobSubmitter create and submit
jobs to clusters, GlobusJob submits to Globus, SRBConnect accesses SRB,39 and
DataGridTransfer accesses iRODS services;40

—executing shell scripts and applications on local machines using ExternalExecutor.

The set of directors can be extended to support new modes of computation; for exam-
ple, Abramson et al. [2008] built Nimrod/K on Kepler’s runtime engine and created a
new Tagged Dataflow Architecture director to achieve dynamic and parallel workflow
execution.

Kepler provides high usability through a powerful workbench by using the Ptolemy
Vergil GUI [Brooks et al. 2007] that is used to construct and monitor workflows and to
access their provenance archives [Altintas et al. 2006; Bowers et al. 2007]. The prove-
nance framework provides APIs for collecting assertions and data dependencies and
for querying the provenance database. They deliver provenance-based fault tolerance,
such as the Checkpoint actor, “exception handling” that stops a subworkflow when an
error is detected [Crawl and Altintas 2008]. Kepler avoids redundant work by using
provenance records during recovery [Bowers et al. 2007].

Kepler maintains a searchable repository of actors and workflows to increase their
reuse and accelerate workflow development. It has over 350 ready-to-use actors that
provide access to the EarthGrid41 ecological data described using the Ecological Meta-
data Language.42 Kepler saves workflows in XML format using Ptolemy’s Modeling

39Storage Resource Broker (SRB): www.sdsc.edu/srb/.
40Integrated Rule-Oriented Data System (iRODS), irods-consortium.org.
41Knowledge Network for Biocomplexity: knb.ecoinformatics.org/.
42EML: knb.ecoinformatics.org/software/eml/.

ACM Computing Surveys, Vol. 49, No. 4, Article 66, Publication date: December 2016.

http://www.sdsc.edu/srb/
file:irods-consortium.org
http://knb.ecoinformatics.org/
http://knb.ecoinformatics.org/software/eml/

Scientific Workflows: Moving Across Paradigms 66:15

Markup Language, which specifies components and parameters. They may be saved
in Kepler Archive Format to extend reproducibility as they can then be imported and
rerun. Kepler promotes its “smart rerun” mechanism for handling parameter sweeps,
where data dependency is used to only execute subworkflows affected by the parameter
changes. These features make Kepler a highly usable and automated WMS.

The Kepler provenance work [Cuevas-Vicenttı́n et al. 2012] has been extended in
the DataONE project,43 a worldwide collaboration to provide a cyber-infrastructure for
environmental science. The DataONE Scientific Workflows and Provenance Working
Group is developing a provenance architecture for WMSs [Missier et al. 2012], which
includes a provenance data model (D-OPM) and query language for D-OPM. They have
“stitched together” traces from Kepler and Taverna workflows [Missier et al. 2010a].

3.3. Taverna

Taverna44 is an open-source, service-based, and domain-independent WMS created by
the myGrid team,45 which has focused on supporting the life sciences community (bi-
ology, chemistry, and medical imaging) [Oinn et al. 2006]. myGrid provides tools to
help e-Science researchers: (1) Taverna, their workflow management tool; (2) myEx-
periment,46 their workflow collaboration facility; (3) SysMO-DB,47 their data sharing
facility; (4) Utopia,48 their protein sequence and structure analysis tools; (5) BioCat-
alogue,49 a curated catalog of Life Science Web Services; and (6) BioVeL,50 a virtual
e-laboratory for biodiversity researchers. This sustained collaboration with the life
science community makes Taverna one of the most popular systems for “in silico”
experiments.

Taverna makes it easy for domain experts to create workflows via the Taverna
workbench. They can obtain workflows from a local repository, a remote URL, or
myExperiment—a virtual research environment for sharing workflows [De Roure et al.
2009]. Workflows are data-flow objects serialized as t2flow files. Reusability is achieved
in two ways: (1) workflows may be reused with different parameters or datasets, and
(2) workflow fragments may be reused when constructing new workflows.

Taverna’s libraries offer over 3,500 services, and users can add and announce new
services. The service discovery mechanism searches public registries (e.g., UDDI51 and
Grimoires52). Services may be specified as URLs or be stored locally [Oinn et al. 2007].
Taverna has built-in services for basic operations (e.g., file I/O).

The Taverna workbench submits workflows to a local or remote Taverna Engine,
where instances (i.e., WorkflowInstanceFacade) are created to represent the running
workflows, as shown in Figure 5. Two differences distinguish Taverna from Pegasus
and Swift:

—Taverna workflows connect web services, coordinate their executions, and arrange
for data to flow between them, whereas in Pegasus and Swift workflows denote a
logically ordered sequence of computing tasks, which are typically performed by
submitting jobs, supplying their data, and collecting their results.

43Data Observation Network for Earth (DataONE): www.dataone.org.
44Taverna: www.taverna.org.uk/ [Wolstencroft et al. 2013].
45myGrid: www.mygrid.org.uk/.
46myExperiment: www.myexperiment.org/.
47SysMO-DB: www.sysmo-db.org/.
48Utopia: utopia.cs.man.ac.uk/utopia/.
49NioCatalogue: www.biocatalogue.org/.
50Biodiversity Virtual e-Laboratory www.biovel.eu/.
51Universal Description, Discovery, and Integration (UDDI) Standard: uddi.xml.org/uddi-org.
52Grimoires: twiki.grimoires.org/bin/view/Grimoires.

ACM Computing Surveys, Vol. 49, No. 4, Article 66, Publication date: December 2016.

http://www.dataone.org
http://www.taverna.org.uk/
http://www.mygrid.org.uk/
http://www.myexperiment.org/
http://www.sysmo-db.org/
http://utopia.cs.man.ac.uk/utopia/
http://www.biocatalogue.org/
http://www.biovel.eu/
http://uddi.xml.org/uddi-org
http://twiki.grimoires.org/bin/view/Grimoires

66:16 C. S. Liew et al.

Fig. 5. Taverna architectural diagram.

—Taverna has no centralized enactment engine, the workflow itself performs the enact-
ment (each PE is mapped to an object, which starts its own execution when all of its
inputs are ready, and sends its outputs to its successor objects [Missier et al. 2010b]);
Pegasus and Swift organize the staging of input data and results and dispatch jobs
to their execution platforms.

Taverna invokes the relevant services, sending them references to the actual data.
The services then use reference services to retrieve the data. Provenance information
is captured for two purposes: execution monitoring (i.e., users can view intermediate
results) and reproducibility (i.e., they can reapply a workflow for performance assess-
ment, debugging, or data validation). They do this via the workbench.

Similar to Kepler’s actor model, Taverna’s plugin model is extensible. Plugins allow
Taverna to use more than web services. For instance, the BioCatalogue plugin supports
browsing and use of its life science services. The UNICORE plugin enables the use of
UNCORE,53 while the PBS plugin allows submission to PBS queues.

Taverna’s workflow language has evolved. In the earlier versions, workflows were
written in the Simple Conceptual Unified Flow Language (SCUFL), a high-level XML-
based language [Oinn et al. 2004]. SCUFL is a data-flow language that defines a graph
of data interactions between web services. However, SCUFL does not have a unified
way to extend service definitions via plugins or support for new features in the Taverna
Engine. Thus, it was replaced by t2flows, a serializable XML format (easy to be shared
and transported) in Taverna 2, which is more verbose but allows finer-grained detail.

53Uniform Interface to Computing Resources: www.unicore.eu/.

ACM Computing Surveys, Vol. 49, No. 4, Article 66, Publication date: December 2016.

http://www.unicore.eu/

Scientific Workflows: Moving Across Paradigms 66:17

The SCUFL2 language used in Taverna 354 combines the simplicity of SCUFL and
expressiveness of t2flows.

Taverna provides a web-based interface, namely, Taverna Player,55 to allow users to
execute existing workflows using a browser. This has eliminated the hassle of down-
loading and installing local software components [Mathew et al. 2014]. Taverna 2 has
been integrated with Galaxy, another popular web-based WMS, in Tavaxy [Abouelhoda
et al. 2012], which provides a fine-grained integration of Taverna and Galaxy work-
flows. Both JSON objects of Galaxy workflows and SCUFL/t2flow of Taverna workflows
are translated into tSCUFL objects in Tavaxy, to allow design-time integration. Users
can now include Taverna workflows as part of their Galaxy workflows.

3.4. Swift

Swift56 was initiated by the GriPhyN project to automate the processing of large
datasets from high-energy physics experiments. From a simple virtual data language,
Swift has matured into a powerful parallel scripting language [Zhao et al. 2007] with
an extensive runtime system based on CoG Karajan [von Laszewski and Hategan
2005] that efficiently runs large-scale loosely coupled computations on clusters, clouds,
and grid resources for different domains, for example, medical research [Stef-Praun
et al. 2007], protein structure modeling [Adhikari et al. 2012], and climate model-
ing [Woitaszek et al. 2011]. The Swift scripting language, SwiftScript, provides data-
oriented constructs to specify processing of collections of files by mapping file-system
objects into Swift variables with iteration and branching over them. Swift automat-
ically parallelizes processing, chooses computing sites, handles staging of input and
output files (specified by mappers), and invokes remote execution. It formalizes and
abstracts applications as functions, with input files as parameters and output files as
results.

Figure 6 shows the Swift architecture with a set of services to deliver parallel,
distributed, and efficient workflow execution. A SwiftScript can be constructed using
any editor; the SwiftScript compiler then produces an abstract computation plan. This is
dispatched to execution sites, described in the site catalog, by the execution engine, CoG
Karajan, to obtain remote job execution, file transfer, and data management through
abstract interfaces called providers. A data provider supports file transfer and data
management via a wide range of protocols, for example, GridFTP, SCP, FTP, and direct
copy. An execution provider enables the job execution via a variety of schedulers, for
example, GRAM, HTCondor, Sun Grid Engine, and Portable Batch System. The provider
interfaces allow Swift to be easily extended to other DCI environments. Swift supports
task execution using a provisioning and dispatching system, for example, Coasters
[Hategan et al. 2011] and Falkon [Raicu et al. 2007]. Coasters is a node provisioning
system for DCI that supports pilot jobs57 on grid, cluster, and cloud resources.

The Swift execution model is simple: noncollection data elements are single assign-
ment and the functional formalization enables implicit parallelization. The foreach
construct specifies that the functions applied to the elements defined by its in clause
may be executed in parallel. The evaluation of the Swift script is centralized and may
become a scalability bottleneck. Then Turbine [Wozniak et al. 2013a], a distributed
data-flow engine, can be used as the Swift runtime [Wozniak et al. 2013b].

54Taverna is moving to the Apache Incubator: taverna.incubator.apache.org.
55Taverna Player: mygrid.github.io/taverna-player/.
56Swift: swift-lang.org [Zhao et al. 2007].
57Pilot jobs make a series of jobs appear as one job to the host system. They are distributed to remote sites
and signal to a scheduler when they are ready for another job. This avoids repeated queuing and setup.

ACM Computing Surveys, Vol. 49, No. 4, Article 66, Publication date: December 2016.

file:taverna.incubator.apache.org
http://mygrid.github.io/taverna-player/
file:swift-lang.org

66:18 C. S. Liew et al.

Fig. 6. Swift architectural diagram.

Like Pegasus, Swift use the VDS Kickstart to record provenance. Swift replicates
and automatically resubmits failed invocations. It does not provide a workbench for
workflow composition but is used as the back end for Science Gateways [Wu et al. 2010]
and for Generic Portals for Science Infrastructure [Uram et al. 2011]. Swift enables
Galaxy to run large-scale workflows on parallel DCI [Maheshwari et al. 2013].

3.5. KNIME

The KNIME58 Desktop is an open-source, workflow-based, data analysis platform
[Berthold et al. 2009]. Its GUI is an Eclipse workbench, with panes for designing
workflows, listing workflow components (called nodes), describing nodes, organizing
workflows and projects, viewing execution error messages, obtaining workflows from
servers, and so on. KNIME is used for applications including social media analysis,
game analytics, pharmaceutical research, and chemo-informatics [Beisken et al. 2013].

A KNIME workflow is created by dragging nodes onto the design pane and then
configuring and connecting these nodes using the workbench (see Figure 7). Configuring
a node sets its parameters, such as specifying the file name, path, and column delimiters
for a file reader node, or the number of clusters and maximum number of iterations for
a k-means clustering node. Connections between nodes transfer data (for processing
and analyses, or to configure the subsequent nodes) and can transfer models (such as
a derived classification tree).

A workflow can be executed entirely or up to a selected node. Partial execution of a
workflow aids debugging by allowing a user to inspect intermediate data and models,
to reset node parameters, and to rerun the workflow or resume its execution from a

58KNIME: www.knime.org [Berthold et al. 2009].

ACM Computing Surveys, Vol. 49, No. 4, Article 66, Publication date: December 2016.

http://www.knime.org

Scientific Workflows: Moving Across Paradigms 66:19

Fig. 7. KNIME architectural diagram.

checkpoint. A workflow is stored in its project directory, which stores all workflow nodes
and their settings (in XML), and any data and models that they produce.

The repository provides an extensive library of components with node categories that
include I/O, database, data manipulation, mining, and flow control (i.e., loops, switches,
and variables). This is supplemented by integration with packages such as R and Weka,
and user-community contributions in several application areas including image pro-
cessing, bio- and chemoinformatics, and text retrieval. Comprehensive documentation
is provided for users developing their own KNIME nodes (by extending specified Java
classes and creating an XML file describing the node and its configuration options).
The KNIME Desktop also provides access to public workflows for reuse.

The open-source KNIME Desktop provides opportunities for collaboration via the
import or export of KNIME workflows. It also supports optimization of large or compute-
intensive workflows insomuch as the nodes automatically exploit multithreading and
may be set to cache data to disk to improve throughput. These requirements are
catered for more effectively in some of the KNIME commercial extensions: KNIME
Team Space allows users to work within a shared space, KNIME Cluster Execution
enables workflows to be executed on a cluster, while KNIME.com’s partnership with
Pervasive59 has resulted in RushAnalytics for KNIME, giving access to Pervasive’s
execution engine that uses horizontal, vertical, and pipelining parallelism.

59Pervasive: bigdata.pervasive.com.

ACM Computing Surveys, Vol. 49, No. 4, Article 66, Publication date: December 2016.

file:bigdata.pervasive.com

66:20 C. S. Liew et al.

Fig. 8. Airavata architectural diagram.

3.6. Apache Airavata

Airavata60 is an open-source campaign developing a WMS that executes applications
on a variety of DCIs. The architecture (see Figure 8) is service oriented and use dis-
tributed messaging for workflow composition and orchestration. It includes XBaya,
GFac, and Registry-API, and thereby provides a complete workflow solution for in sil-
ico experiments. Airavata is used in various projects, for which it delivers (1) a dynamic
workbench to execute workflows on Amazon EC2 for BioVLAB [Yang et al. 2010], (2)
computational workflows for SEAGRID/GridChem [Dooley et al. 2006], (3) web ser-
vices and workflow orchestration for oreChem [Challa et al. 2010], and (4) parameter
optimization and analysis for ParamChem [Ghosh et al. 2011].

XBaya is a workflow suite for Airavata. It consists of a GUI that is used for workflow
composition and monitoring. Users create workflows via the XBaya workbench using
a drag-and-drop GUI. An abstract DAG that is independent of target platforms is
then generated. The resulting workflow can be mapped to various targets, such as
BPEL 2.0 for Apache ODE [Gunarathne et al. 2009], SCUFL for Taverna, DAGman for
Pegasus, Jython scripts, and Java. Users can select the workflow runtime that suits
their applications.

XBaya has an interpreter for dynamic and interactive workflow execution. When
users launch a workflow, the interpreter starts executing the workflow DAG. As in the
case of KNIME, Airavata demonstrates the benefits of an execution model where users
can stop and resume the execution of workflow at any time as the interpreter provides

60Apache Airavata: airavata.apache.org [Marru et al. 2011].

ACM Computing Surveys, Vol. 49, No. 4, Article 66, Publication date: December 2016.

file:airavata.apache.org

Scientific Workflows: Moving Across Paradigms 66:21

fine-grained control. This enables users to reconfigure an active workflow and resume
its execution with the update immediately incorporated by the interpreter.

When users have submitted a workflow for execution, they can monitor its progress
using the XBaya monitoring component, which provides the state of job submissions to
batch queues and the progress of data transfers. This component supports synchronous,
when the workflow uses the interpreter, and asynchronous, when the workflow has been
submitted to a batch queue, that is, monitoring. Airavata uses RabbitMQ61 [Marru
et al. 2015] to send WS-Event notifications between XBaya, the workflow interpreter,
monitoring, and GFac. Visualizations of WS-events let users observe their workflow’s
progress—similar to active provenance in Spinuso et al. [2016].

The Generic Application Service GFac provides a framework to wrap an application in
a service interface. GFac can generate SOAP, REST, and Java interfaces to applications.
Application providers register their applications by providing definitions of inputs,
outputs, work-space directories, and remote access mechanisms. Once applications
are registered, GFac constructs requests to computational resources to host specific
operations with support for file staging and security.

Airavata has a thick-client API to achieve portability across infrastructures. The
registry API can be reused by XBaya and GFac to store and retrieve data. This provides
a unified API that can be layered on top of various content repositories. In addition,
the API is used to catalog workflow inputs and outputs.

Using their browser, users can experiment with workflows and retrieve their output
using the Science gateway.62 This eliminates the complexities of installing Airavata
software but assumes sufficient computational resources behind the gateway. Applica-
tion developers register workflows. Users initiate runs by supplying data and param-
eters to those workflows.

3.7. Meandre

Meandre63 is a semantically enabled, web-driven, data-intensive, flow execution envi-
ronment developed under the Software Environment for the Advancement of Scholarly
Research64 project, which created a virtual research environment for humanities schol-
ars to exploit the rich digital data becoming available in their disciplines and to share
their data and research. The design principles of Meandre aim for a robust and scalable
system for data-intensive research, scaled from a single laptop to a high-performance
cluster, with collaboration encouraged by sharing components [Llorà et al. 2008]. Web-
scale music analysis using NEMA65 used Meandre to run genre classification workflows
on the NCSA66 supercomputing facility [De Roure et al. 2011].

Among the WMSs in this section, Meandre is the only one using a data-streaming
model. It has two types of component connected to form a flow—a workflow in our
context: (1) executable components that perform computational tasks without human
interactions and are executed according to their predefined firing policy and (2) control
components that permit user interaction via an HTML form or an Applet.

Meandre’s approach to fostering sharing and increasing reusability of components
and flows uses semantic web RDF metadata to cross application domain, enterprise,
and community boundaries. Metadata for components and flows have the form name,
description, tags, and right. Executable components have additional metadata describing

61RabbitMQ: www.rabbitmq.com.
62Apache Airavata web gateway: testdrive.airavata.org/.
63Meandre: seasr.org/meandre/ [Llorà et al. 2008].
64Software Environment for the Advancement of Scholarly Research (SEASR): seasr.org/.
65Networked Environment for Music Analysis: www.music-ir.org/?q=nema/overview.
66NCSA: www.ncsa.illinois.edu/.

ACM Computing Surveys, Vol. 49, No. 4, Article 66, Publication date: December 2016.

http://www.rabbitmq.com
http://www.music-ir.org/?q=nema/overview.
http://www.ncsa.illinois.edu/

66:22 C. S. Liew et al.

behavior and location, for example, firing policy, runnable, format, and resource_location.
Flow components have additional metadata describing connections, for example, com-
ponent instances, connectors, connector instance source, and connector instance target.
The RDF metadata are interpreted by the execution engine to find and initialize com-
ponents, to determine the form of connection between them and when to execute them.

Meandre has three parts [Ács et al. 2010]: (1) tools for creating components and flows,
the Meandre workbench, and an Eclipse67 plugin; (2) a high-level workflow language,
ZigZag; and (3) a semantically described service-oriented execution environment. The
Meandre workbench offers discovery, creation, and execution of flows by dragging and
dropping components from the repository panel and linking them by clicking on their
ports. A declarative language, ZigZag, defines flows as directed graphs.

Meandre has a compiler to convert ZigZag flows into self-contained tasks, called Me-
andre Archive Units, as files with a .mau extension containing metadata describing the
components and flows, and their implementation. Their heterogeneity and scalability
are hidden from users. The mau file can be executed by the Meandre execution engine
on a laptop or as a batch job on a grid environment via SGE. These files can be shared
via myExperiment [De Roure et al. 2010]. A significant achievement is automatic par-
allelization, that is, the [+AUTO] tag tells the compiler it may parallelize an instance,
or users can specify parallel instantiation (e.g., [+4] creates four instances).

Meandre offers a simple and flexible environment for data flow; its server has a meta-
data store, user-interaction services, and an execution engine. Scalability is achieved
by the server being instantiated on demand, that is, run as a single server locally or
as multiple servers on a cluster (as shown in Figure 9). The Meandre server can be
managed through a web GUI, where users can browse and manage their shared com-
ponents and flows, and run and monitor flows. The engine initiates a thread for each
component and executes them based on their firing policy, recovering resources after
termination.

3.8. Summary

We revisit the architectural characterisations from Section 2.2, summarized in Table I.
Pegasus and Swift have similarities because they evolved from the GriPhyN VDS

project; their processing elements are executable programs. They have a logical
workflow layer that encodes data flow between and temporal ordering of their process-
ing elements. They use catalogs to map logical names to physical files and programs.
Both handle large workflows; examples involving more than a million tasks have been
reported. Pegasus has the bulk data processing model (Section 2.2) with work underway
to support the datastream model. Swift uses pipeline execution to improve efficiency
[Zhao et al. 2007].

Kepler, Taverna, and Airavata originated separately with different communities
(i.e., ecology, life sciences, and meteorology), but they had the same raison d’être: to
facilitate scientific experiments using web services and data integration across orga-
nizational and geographical boundaries. They all provide an easy-to-use workbench to
enable scientists to design and run their workflows, and support program execution
on local machines and web services. Kepler uses pipeline execution [McPhillips and
Bowers 2005] and has run streaming workflows on cloud platforms [Dou et al. 2011;
Zinn et al. 2011; Kohler et al. 2012]. Taverna uses pipelined streaming to reduce work-
flow execution times [Missier et al. 2010b]. Their data granularity differs, however:
Taverna performs a coarse-grained pipelining by allocating a thread for each input

67Eclipse: www.eclipse.org/.

ACM Computing Surveys, Vol. 49, No. 4, Article 66, Publication date: December 2016.

http://www.eclipse.org/

Scientific Workflows: Moving Across Paradigms 66:23

Fig. 9. Meandre architectural diagram.

Table I. Characterizing the Workflow Management Systems

Pegasus Kepler Taverna Swift KNIME Airavata Meandre
processing
element

executable
program

executable
program &
web service

executable
program &
web service

executable
program

executable
program

executable
program &
web service

executable
programs

system
architecture

orchestrate orchestrate orchestrate orchestrate orchestrate orchestrate orchestrate

optimization
stage

build time none none runtime runtime none runtime

user
interface

textual graphical both textual graphical both both

data
processing
model

bulk data bulk data
& stream

data

bulk data
& stream

data

bulk data
& stream

data

bulk data bulk data
& stream

data

stream
data

item, while Kepler supports pipelining of nested collections [McPhillips and Bowers
2005]. Neither performs fine-grained data streaming.

The KNIME commercial extension, that is, Cluster Execution, supports bulk data
processing on a cluster. Both Airavata and KNIME provide fine-grained control over
the workflow execution where users can stop, update workflow activity, and resume
the execution. Meandre uses web-oriented, data-driven concepts with a streaming data
model. Its components are executable programs that process a stream of data. Data
analysis experts develop components and publish them in a repository. The workbench
is used to build a workflow as a graph of these components.

ACM Computing Surveys, Vol. 49, No. 4, Article 66, Publication date: December 2016.

66:24 C. S. Liew et al.

All seven systems coordinate using orchestration, with a controller overseeing poten-
tially distributed execution. They use a bottom-up approach for workflow construction,
where their visual tools or workflow language are used to compose a graph of pro-
cessing elements, most of which have been previously defined by experts. The level of
abstraction in the workflow language varies significantly.

Pegasus does not have a user-oriented workflow language. Its DAX format describes
the directed graph that forms the workflow. It is translated to an abstract workflow
using two catalogs. DAX requires too much technical information for scientists and
changes in the platform require modification of the DAX. In contrast, Swift’s scripting
language has better abstraction delivered by the SwiftScript compiler and mapper. Its
compilation into parallel execution programs is transparent to its users. The mapper
reduces explicit data management for large-scale analyses of distributed and heteroge-
nous data. Most scientists find that abstraction and automation improve their produc-
tivity. However, in some cases (e.g., for the gravity-wave detection), they require one to
inspect every detail to verify the precise validity of the encoding.

Kepler and Taverna have their own workflow languages, that is, MoML and SCUFL.
MoML describes workflows rather than abstracting over them. However, Kepler has its
own mechanism to hide the complexity and diversity. Its actor/director model is exten-
sible and allows data-intensive engineers to encode powerful patterns. For instance,
Kepler has been extended with a tagged data-flow architecture [Abramson et al. 2008].

Users compose workflows in Airavata by building an abstract DAG, which is indepen-
dent of target technologies. The composed workflow can be mapped to multiple targets
(e.g., BPEL, SCUFL, DAGman, Jython, and Java). Using XBaya interpreter or GFac, the
workflow can be executed locally or remotely using different execution engines.

The last characteristic relates to workflow optimization. Kepler, Taverna, and
Airavata depend on manual optimization, helped by their good provenance and moni-
toring systems, which provide crucial data for optimization experts. Swift has implicit
parallelization and pipeline execution delivered by runtime optimization. KNIME per-
forms runtime optimization that uses multithreading. Meandre has automatic paral-
lelization that multiply instantiates components tagged in the ZigZag script. At build
time, Pegasus refines execution plans by (1) workflow reduction (reusing available in-
termediate data products and removing the corresponding tasks), (2) task clustering
(reducing scheduling overhead by submitting groups of small tasks as a composite task)
[Chen et al. 2015], and (3) data cleanup (removing data that are no longer needed to
release resources sooner) [Srinivasan et al. 2014].

Exploiting today’s wealth of data exposes further issues, which trigger research and
lead to new workflow execution strategies on sophisticated data-intensive platforms.
Those platforms deliver reliable and high-throughput enactment, as they handle scal-
ability, recovery after partial failures, and optimized mappings to the rapidly evolving
commercial systems. This delegates much of the responsibility for the lower half of the
hourglass to others and amortizes its R&D and operation to a much wider community.
The main focus for workflow research, described in the next section, then becomes
improvements in the characteristics of the upper part of the hourglass, for example,
accommodating greater scale and diversity, delivering better tooling to more practi-
tioner roles, and developing improved mappings to the rapidly evolving data-intensive
platforms.

4. SCIENTIFIC WORKFLOW DIVERSITY, SCOPE, AND FLEXIBILITY

In virtually every research domain, the quantity and diversity of data are grow-
ing rapidly because the capacity of storage is increasing [Walter 2005], digital
communication is pervasive and increases in capacity [Zhao et al. 2011], and the sensi-
tivity, speed, diversity, and deployed numbers of digital data collection devices exhibit

ACM Computing Surveys, Vol. 49, No. 4, Article 66, Publication date: December 2016.

Scientific Workflows: Moving Across Paradigms 66:25

a compound growth. This is combined with a growing drive to share data [Intera-
gency Working Group on Digital Data 2009; EU Parliament 2007], enabled by many
organizations’ standardization efforts (e.g., W3C, OGC, FDSN68 IVOA, and RDA) and
a growing need to combine data across discipline boundaries to address today’s soci-
etal challenges.69 This growth in scale and complexity makes automation of scientific
methods essential. More and more sciences and researchers will choose workflows to
automate and formalize their scientific methods. The benefits include (1) increased pro-
ductivity and lower error rates as tedious chores are automated, (2) improved scientific
methods as many different specialists pool advances to their parts of a method, and
(3) achievement of new goals by combining computational power with the increased
wealth of data. We review two questions: (1) Why are scientific workflow systems un-
able to support this increased use? (2) What research will be needed to make them
ready?

4.1. Boundaries Limit Growth

Each community develops its own culture—a body of knowledge, established methods,
practices, and ethics—shaped for its own research goals and professional practices. It
is promulgated to new practitioners through education and induction. It takes effort
and leadership for this to incorporate the technological advances and growing data
wealth. Inevitably, differences develop, but the foundations of cognate subjects and
common factors in the technical environments and working practices provide overlaps
that can lead to successful interdisciplinary collaboration, particularly in long-running
research campaigns. A crucial form of such interdisciplinary collaboration is synergy
between three groups of experts: (1) domain experts who identify the key goals and
bring scientific insights; (2) data scientists: mathematicians, statisticians, and algo-
rithmic experts who formulate steps, simulation of models, and extraction of evidence;
and (3) data-intensive experts who develop improved ways of mapping methods onto
computing infrastructure exploiting technical advances and changes in the forms of
provision [Atkinson and Parsons 2013]. Workflow systems provide a framework for
this key relationship, but they need to ensure that (1) each group of experts can work
effectively (i.e., the higher levels of abstraction in WMSs must meet the needs of the
other experts) and (2) the representations available facilitate communication across
these key boundaries.

Subdisciplines, organizations, and communities often commit to different workflow
systems (e.g., those in Section 3) for many reasons. They develop significant intellectual,
cultural, and financial investment in their chosen system, as can be judged by the
numbers of components and workflows in their repositories (see Section 3.3). This may
build substantial momentum and form identities that have significant value to each
community. But it inhibits collaboration, as each technology separates its adherents
from similar researchers using a different technology. They use a different language
to express their scientific methods, draw on different libraries of components, and
depend on different enactment systems. When this happens within a discipline, it
means multiple implementations of the key workflows, subworkflows, and components.
This may be beneficial competition, but more often, it means effort is wasted, the results
are not as easily compared, and improvements created in one technological island do
not propagate to the others. Even widely different research domains need very similar
workflow fragments; for example, many require a mechanism to enable a researcher to
identify a collection of results as valuable and to send them for curation with the issue

68W3C: www.w3.org; OGC: www.opengeospatial.org; and International FDSN: www.fdsn.org.
69Societal challenges: ec.europa.eu/programmes/horizon2020/en/h2020-section/societal-challenges.

ACM Computing Surveys, Vol. 49, No. 4, Article 66, Publication date: December 2016.

http://www.w3.org
http://www.opengeospatial.org
http://www.fdsn.org
http://ec.europa.eu/programmes/horizon2020/en/h2020-section/societal-challenges

66:26 C. S. Liew et al.

of a persistent identifier (PID) and permanent links to metadata. The organization of
such common subtasks can be shared by many disciplines, as in the EUDAT70 project.

There are already several research campaigns underway to reduce the isolating
effect of these technological islands. Some of these are bridges between pairs of work-
flow systems; examples were given in Section 3. Here we review a sample of more
generic approaches. For the upper hourglass, the myExperiment project initiated pool-
ing of workflow repositories across multiple workflow systems [De Roure et al. 2009],
enabling workflow developers to search for useful input from any of the participating
technological communities. Extended research objects were used to bundle background
material with workflow fragments to increase appropriate reuse and share insights.
The Wf4Ever project71 further developed this approach and extended the workflow
representation to prolong workflow reuse [Belhajjame et al. 2015]. For the lower hour-
glass, the project ER-flow72 enabled the composition of workflows encoded for different
systems into a larger “meta-workflow,” hiding much of the necessary housekeeping and
interfacing from its users [Kacsuk et al. 2014; Terstyánszky et al. 2014]—it accommo-
dates 15 WMSs and maps them to multiple DCIs [Kozlovszky et al. 2014]. However,
it leaves the users working with the concepts, terms, and notations of each WMS. To
address these conceptual difficulties, Gesing et al. propose integration in the upper
hourglass as a meta-workflow composition framework [Gesing et al. 2014].

4.2. Empowering Scientists

Although a great deal of work is routine—using established methods—scientists also
need to explore new ways of using data and simulations, to improve existing methods,
and to develop understanding of what may be becoming possible. The routine work is
well supported by workflows that are packaged via portals in tailored science gateways
[Kacsuk 2014].73 Here experts can invest time in formulating and hand-optimizing the
relevant workflows and in coupling them to the portal as this effort is amortized over
many repeated uses of a stable method. There remain four problems: (1) as the encoded
scientific method is hidden and often includes many technical details, it is no longer
reviewed by the scientists; (2) as scientists do not engage directly in the formalization
and automation, they do not develop intuitions about what may be becoming possible;
(3) as the optimizations are tuned to contemporary technology, the encoding tends to
become obsolescent; and (4) as the number and scope of automated scientific methods
increase, the shortage of relevant experts to package methods in a science gateway
delays advances. The problems with reviewing and understanding these encapsulated
workflows are ameliorated by provenance systems that allow their end-users to exam-
ine the background to results and trees of derivatives and to request replays [Kim et al.
2008; Cuevas-Vicenttı́n et al. 2012; Santana-Perez et al. 2016; Spinuso et al. 2016]. The
extension of reusability draws on formalizations mentioned earlier [Belhajjame et al.
2015]. Replay is facilitated by bundles that pack input data and parameters with the
workflow activation request [Rogers et al. 2013], but bundling data and keeping copies
become infeasible as volumes increase and when continuous streams are handled.

To overcome the distancing from workflows, due to gateway packaging and reformu-
lation by experts, it is necessary to keep innovative domain experts engaged with all
phases of workflow refinement. Production experience stimulates revision of scientific
methods. For most practitioners and for most of the time for innovators, the produc-
tivity benefits win over direct engagement. When innovation and quality checks are

70EUDAT: www.eudat.eu/.
71Wf4Ever: www.wf4ever-project.org/.
72ER-flow: www.erflow.eu/.
73http://sciencegateways.org/ with relevant publications at http://iwsg-life.org/site/iwsglife/publications.

ACM Computing Surveys, Vol. 49, No. 4, Article 66, Publication date: December 2016.

http://www.eudat.eu/
http://www.wf4ever-project.org/
http://www.erflow.eu/
http://sciencegateways.org/
http://iwsg-life.org/site/iwsglife/publications

Scientific Workflows: Moving Across Paradigms 66:27

needed, it is best if domain experts still have a comprehensible and accurate view of
the workflow, so that they can explore potential improvements, conducting in silico ex-
periments in a good emulation of the production, up to reasonable scales, depending on
automated mappings and optimizations. This is complementary to the input of work-
flow and DCI experts, who take over the revised workflow and tune it for production
before deploying it in a repackaged form. This duality of viewpoints corresponds to the
upper and lower hourglass and requires (1) a suitable representation for domain ex-
perts to work with that is not obscured by too much detail; (2) automated handling for
exploratory and one-off work with the semantics matching that of production exactly
for local tests and medium-scale experiments; (3) a means for the other experts to apply
their expertise, which will include technical and mathematical detail; (4) extraction of
the domain view whenever required; (5) reuse of as much of the expert annotation as
possible when revised workflows move into production. The overall effect should be
fluent interchange between domain-led method refinement and production running.
However well developed automated planners, mappers, and optimizers become, there
will remain extremely demanding data-driven science methods where expert statis-
tical, algorithmic, or engineering refinements will be necessary. Research into WMS
engineering should reduce the proportion of times that this is necessary, but the growth
in data and data-driven science will mean the absolute demand will increase. Thus,
good tooling for these experts is also an imperative; demand will outgrow their capacity
unless their productivity is also improved.

The Wings composition system for Pegasus, SwiftScript, and Meandre’s ZigZag (see
Section 3.1, Section 3.4, and Section 3.7) provide conceptual models during workflow
composition, but the reverse mappings (e.g., for diagnostics) are not supported. The Dis-
pel language focuses on this conceptual level [Martin and Yaikhom 2013], and Atkinson
[2013] reports its focus on the logic of data-intensive methods. Meandre (see Section 3.7)
aspires to deliver continuity from a method on a laptop to its enactment on a powerful
DCI. Virtually all of the workflow systems provide an effective workbench for initial
development; KNIME (Section 3.5) and Galaxy [Blankenberg et al. 2010] are particu-
larly successful at delivering comprehensible representations. These representations
are typically graphical, but that does not always match the scientists’ preferences. For
example, the seismologists, like many scientists, prefer to work in the productive en-
vironment of tools and libraries provided by Python [Koepke 2014]. As a consequence,
it was necessary to wrap the Dispel conceptual model as a Python library, dispel4py
[Filguiera et al. 2016], that behind the scenes maps automatically to multiple DCIs
to provide the required continuity between development and production. This con-
text illustrates an additional boundary-crossing challenge; the data used for research
is collected by long-running observational networks that include aspects of the data
preparation—the same is true of astronomical sky surveys and many other shared
research infrastructures. The innovative researchers may want to revisit these early
stages or may want to propose improvements to them. However, in many of today’s
research infrastructures, the use of different technologies for data capture and for
data-driven research inhibits quick explorations. Service roles, such as hazard moni-
toring in seismology, introduce further impediments to change [Ringler et al. 2015]. In
summary, we see good though diverse support for initial creation in the upper hourglass
with often sophisticated mapping to the lower hourglass, but subsequent workflow life
cycle stages and reverse mappings remain a research goal.

4.3. Toward a Consistent Context for Data-Intensive Research

Every aspect of scientific workflow systems will be subject to improvement, and we note
later some directions in which they will advance. However, we consider first responses
to two pervasive pressures: (1) increasing data intensity partially driven by Kryder’s

ACM Computing Surveys, Vol. 49, No. 4, Article 66, Publication date: December 2016.

66:28 C. S. Liew et al.

law [Walter 2005] and new technologies (e.g., 3D Xpoint) and (2) increasing complexity
from composing improvements and from workflow systems interworking.

The growing volumes of scientific data, the increased focus on data science, and
the inexorable march of Kryder’s law combine to overload the capacity of disk I/O—
or more generally the bandwidth between RAM and external devices. This will drive
increased adoption of data streaming between workflow stages, as these avoid a write
out to disk followed by reading in, or double that traffic if files have to be moved.
As long as stages can process a succession of data units and stream data units to
subsequent stages, the code in the stages can remain resident, and the coupling can
use in-RAM, local, or intersite communication mechanisms.74 As with disk-mediated
communication, moving data reduction as early as logically possible and employing
lossless compression has benefits [Filgueira et al. 2014]. This approach mirrors shared-
nothing and distributed query processing [Buil-Aranda et al. 2013] developed and
refined in the database context [Stonebraker et al. 2013]. It is latent in the auto-
iteration of Taverna and has been developed for Kepler [Kohler et al. 2012]. It is the
model used by Meandre [Ács et al. 2010] and motivated the design of Dispel [Atkinson
2013]. It is the underpinning enactment model of dispel4py [Filguiera et al. 2016]
and Bobolang [Falt et al. 2014]. As well as improving performance, this approach
offers two extra benefits: (1) those working with live observations of time-dependent
behavior—for example, observing the dynamics of natural phenomena or monitoring
engineering or human systems, using data streaming workflows with the live data, and
using exactly the same workflows with archived observations; and (2) as the interstage
connection cost has been made small, it is feasible to include very simple stages—
“fine-grained composition.” Of course, large subsystems and services are also used in
scientific methods encoded this way; for example, Python objects in dispel4py can wrap
and interface with legacy code.

Workflow systems grow in complexity as extensions are added to accommodate more
target DCIs, to handle more aspects of optimization, to automate frequently occur-
ring actions, and to provide appropriate work environments for all three categories
of experts contributing to data-intensive methods [Atkinson and Parsons 2013]. This
growing complexity slows the rate at which these systems can respond to scientists’
needs and exploit new opportunities. A two-pronged strategy is needed: (1) partitioning
the system into manageable parts and (2) developing a formal framework to ensure
parts and enhancements are consistent and work well together. The systems reported
earlier have various partitioning strategies. Kepler uses an actor framework to par-
tition parts and has a separate set of directors for orchestration. Pegasus uses three
major partitions: the Wings framework for high-level composition, the planner and
target-independent optimizers, and then the dynamic optimization during enactment
delivered by DAGman and HTCondor. The WS-PGRADE/gUSE system has the par-
titions Data-avenue [Hajnal et al. 2014] and DCI-Bridge [Kozlovszky et al. 2014] to
handle interfacing with data storage systems and with DCI, respectively. Independent
repository management provides another partition, for example myExperiment and
Wf4Ever (see earlier), or the WS-PGRADE/gUSE repository [Terstyánszky et al. 2014].
As workflow providers deploy more optimizations, as the paths between lightweight
development and production environments are made smooth, and as interworking be-
tween workflow systems becomes more prevalent, these partitions will need to be kept
small, with tightly defined consistent APIs. Agreeing on such an architectural structure
is a research priority.

74Of course, capture of intermediary streams is needed for diagnostics during experiments and development.

ACM Computing Surveys, Vol. 49, No. 4, Article 66, Publication date: December 2016.

Scientific Workflows: Moving Across Paradigms 66:29

Fig. 10. Future partitioned and coupled workflow systems.

An envisaged future environment of services meeting the needs of scientists is shown
in Figure 10. There are four major groups of subsystems: (1) the mobile device and web-
enabled user interaction will deploy the latest web-enabled GUIs as a Dashboard and
host a wide range of tools that can be tailored to the requirements of communities,
groups, and individuals—this will handle interaction locally and depend on a wide
range of underlying microservices; (2) the knowledge base accumulates workflows;
workflow components; information about sessions, users, enactments, and community
relationships; provenance records; and derivatives of these collected data, such as frag-
ments that are often reused [Garijo 2015]—it supports interaction, including relaunch-
ing sessions; it supports security and controls; it provides information for optimizers
and provides a basis for recommendations; it will integrate data from multiple appli-
cation domains, communities, and technologies, interfacing with existing repositories
and credential services; (3) the enactment service supports immediate execution for
development and sophisticated choice of DCI targets with optimized mappings and dy-
namic optimization during execution for production; and (4) the diverse DCI resources
are provided via many organizations, academic and commercial, and are shaped by
many other requirements beyond scientific research and workflow enactment. There
are many fronts on which scientific workflow systems will advance, and the capabilities
they deliver to researchers will depend on combined advances.

5. CONCLUSIONS

Scientific communities have increasingly adopted workflow technologies to automate
scientific methods. The emergence of data-driven science as the fourth paradigm has

ACM Computing Surveys, Vol. 49, No. 4, Article 66, Publication date: December 2016.

66:30 C. S. Liew et al.

posed a new data challenge for scientific workflows, compounded by the increasing
complexity and diversity of both applications and computing platforms.

In this article, we have proposed a taxonomy of WMSs that covers some aspects that
have been overlooked in the related studies. Based on these architectural characteri-
zations, we have reviewed seven prevalent WMSs that are widely adopted by research
communities. These WMSs focused on different research communities with their spe-
cialist domains (e.g., life sciences, geosciences, high-energy physics, astronomy, and
humanities) and slowly emerged into cross-disciplinary workflow infrastructures over
the years. We took a bottom-up approach to analyzing these WMSs and presented a
detailed architectural comparison that exposes their commonalities and diversity.

Section 4 identified a growing need for workflow systems that can be used directly by
scientists to automate and formalize research methods. This will increase the pressure
on workflow system research to make substantial advances in usability, interopera-
tion, performance, and stability. It is crucial to reduce barriers associated with differ-
ent modes of use and different technologies; this includes better access to distributed
computing infrastructures, particularly those adapted to data-intensive requirements.
Facilitating scientists experimenting with their own workflows will empower them to
innovate and to exploit the growing data wealth to the fullest. The need for experts
improving automated planning, mapping, and optimization and applying their own
hand-crafted tuning in the cases where it is needed will continue. That will require
improving the experts’ productivity by equipping them with better tools and by auto-
matically reusing their improvements.

There are deep technical challenges. A central one is the long-term growth of data
storage and data acquisition outgrowing Moore’s law by substantial factors. The inter-
working of WMSs will need to incorporate the advances in scientific database technolo-
gies and data-intensive middleware platforms. The extended data-intensive WMSs will
need to be made accessible and comprehendible from web-enabled dynamic workplaces.
This requires substantial advances in the conceptual and formal models describing the
whole data-intensive infrastructure and the workflow languages that exploit it.

The emergent architecture for WMSs should support coalitions of the user commu-
nities associated with different WMSs as today’s wealth of data and pressing societal
challenges will require pooling intelligence and combining the best ideas and meth-
ods from many disciplines. The breadth of viewpoints and range of data and method
ownership models will grow. For example, consider the food shortage challenge. Agri-
cultural researchers need to combine all of the ’omic data from genomics to proteomics
for every crop, animal, pest, and pathogen with data at many scales concerning soil
type, aspect, climate and climate change, anthropogenic effects, farm management,
and agro-pharma developments and create models to predict environmental effects,
vulnerabilities, and yields at scales from individual plots to global [Rawlings 2014].

The power of data science drawing on today’s growing wealth of data will only be
realized if the WMS research rises to the challenge. Some of the issues to be faced
have emerged in this review. A campaign is called for that builds both the theory
and practice; that draws on all the intellectual and engineering powers of the many
workflow experts, both in industry and academia; and that yields new families of
mutually supporting, flexible, scalable, multiapplication, multicommunity, multipur-
pose, and sustainable workflow management systems with greatly increased power
and platform independence and dramatically improved usability. They will need to
be well integrated with data curation and all aspects of data sharing [Sansone et al.
2012]. We need a “moon-shot” culture where every effort and skill of the wider research
community that will be needed to reach this goal is focused on achieving it; the prob-
lems encountered will need ingenious collaboration across discipline, organizational,
technical, theoretical, and architectural boundaries.

ACM Computing Surveys, Vol. 49, No. 4, Article 66, Publication date: December 2016.

Scientific Workflows: Moving Across Paradigms 66:31

ACKNOWLEDGMENTS

We thank James Cheney, University of Edinburgh (UoE), and Alessandro Spinuso of KNMI for alerting
us to work on provenance and its standardization; Murray Cole, UoE, for encouraging our architectural
comparison of WMSs; and Rosa Filgueira, UoE, and Oscar Corcho, Universidad Politécnica de Madrid, for
their suggestions. We thank our reviewers for giving valuable insights. We particularly thank Paul Watson
of Newcastle University for suggesting this article. Our work is supported by the Ministry of Education
Malaysia (UMRG RP001F-13ICT and CG009-2013), the e-Science Core Programme Senior Research Fellow
programme (UK EPSRC EP/D079829/1), and the EU projects ADMIRE, VERCE, and ENVRIplus (FP7 ICT
215024, FP7 RI 283543, and H2020 654182).

REFERENCES

B. P. Abbott, R. Abbott, T. D. Abbott, M. R. Abernathy, F. Acernese, K. Ackley, C. Adams, T. Adams, P. Addesso,
and others. 2016. Observation of gravitational waves from a binary Black Hole merger. Phys. Rev. Lett.
116, 6 (Feb. 2016), 061102. DOI:http://dx.doi.org/10.1103/PhysRevLett.116.061102

Mohamed Abouelhoda, Shadi Issa, and Moustafa Ghanem. 2012. Tavaxy: Integrating Taverna and Galaxy
workflows with cloud computing support. BMC Bioinformatics 13, 1 (2012), 77. DOI:http://dx.doi.org/
10.1186/1471-2105-13-77

David Abramson, Colin Enticott, and Ilkay Altinas. 2008. Nimrod/K: Towards massively parallel dynamic
grid workflows. In Proc. ACM/IEEE Conference on Supercomputing (SC’08). IEEE Press, Piscataway,
NJ, USA, Article 24, 11 pages. DOI:http://dx.doi.org/10.1109/SC.2008.5215726

Bernie Ács, Xavier Llorà, Loretta Auvil, Boris Capitanu, David Tcheng, Mike Haberman, Limin Dong, Tim
Wentling, and Michael Welge. 2010. A general approach to data-intensive computing using the Meandre
component-based framework. In Proc. 1st International Workshop on Workflow Approaches to New Data-
centric Science (WANDS’10). ACM, Article 8, 12 pages. DOI:http://dx.doi.org/10.1145/1833398.1833406

Aashish N. Adhikari, Jian Peng, Michael Wilde, Jinbo Xu, Karl F. Freed, and Tobin R. Sosnick. 2012. Modeling
large regions in proteins: Applications to loops, termini, and folding. Protein Science 21, 1 (Jan. 2012),
107–121. DOI:http://dx.doi.org/10.1002/pro.767

Chris Allan, Jean-Marie Burel, Josh Moore, Colin Blackburn, Melissa Linkert, Scott Loynton, Donald
MacDonald, William J Moore, Carlos Neves, and others. 2012. OMERO: Flexible, model-driven data
management for experimental biology. Nature Methods 9, 3 (March 2012), 245–253. DOI:http://dx.
doi.org/10.1038/nmeth.1896

Ilkay Altintas, Oscar Barney, and Efrat Jaeger-Frank. 2006. Provenance collection support in the Ke-
pler scientific workflow system. In Provenance and Annotation of Data. LNCS, Vol. 4145. 118–132.
DOI:http://dx.doi.org/10.1007/11890850_14

Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph, Randy Katz, Andy Konwinski, Gunho
Lee, David Patterson, Ariel Rabkin, Ion Stoica, and Matei Zaharia. 2010. A view of cloud computing.
Commun. ACM 53, 4 (April 2010), 50–58. DOI:http://dx.doi.org/10.1145/1721654.1721672

Malcolm P. Atkinson. 2013. Data-Intensive thinking with Dispel. In The Data Bonanza – Improving Knowl-
edge Discovery for Science, Engineering and Business, Malcolm P. Atkinson, Rob Baxter, Paolo Besana,
Michelle Galea, Mark Parsons, Peter Brezany, Oscar Corcho, Jano van Hemert, and David Snelling
(Eds.). John Wiley & Sons, Inc., Hoboken, NJ, USA, Chapter 4, 61–122. DOI:http://dx.doi.org/10.1002/
9781118540343.ch4

Malcolm P. Atkinson, Michele Carpené, Emanuele Casarotti, Steffen Claus, Rosa Filgueira, Anton Frank,
Michelle Galea, Tom Garth, André Gemünd, and others. 2015. VERCE delivers a productive e-Science
environment for seismology research. In Proc. IEEE International Conference on e-Science (e-Science
2015). DOI:http://dx.doi.org/10.1109/eScience.2015.38

Malcolm P. Atkinson and Mark Parsons. 2013. The Digital-Data Challenge. In The Data Bonanza –
Improving Knowledge Discovery for Science, Engineering and Business, Malcolm P. Atkinson, Rob Bax-
ter, Paolo Besana, Michelle Galea, Mark Parsons, Peter Brezany, Oscar Corcho, Jano van Hemert, and
David Snelling (Eds.). John Wiley & Sons, Inc., Hoboken, NJ, USA, Chapter 1, 5–13. DOI:http://dx.doi.
org/10.1002/9781118540343.ch1

Brian Babcock, Shivnath Babu, Mayur Datar, Rajeev Motwani, and Jennifer Widom. 2002. Models and
issues in data stream systems. In Proc. 21st ACM SIGMOD-SIGACT-SIGART Symposium on Princi-
ples of Database Systems (PODS’02). ACM, New York, NY, USA, 1–16. DOI:http://dx.doi.org/10.1145/
543613.543615

Roger Barga, Jared Jackson, Nelson Araujo, Dean Guo, Nitin Gautam, and Yogesh Simmhan. 2008. The
trident scientific workflow workbench. In Proc. e-Science’08. IEEE Computer Society, Los Alamitos, CA,
USA, 317–318. DOI:http://dx.doi.org/10.1109/eScience.2008.126

ACM Computing Surveys, Vol. 49, No. 4, Article 66, Publication date: December 2016.

http://dx.doi.org/10.1103/PhysRevLett.116.061102
http://dx.doi.org/10.1186/1471-2105-13-77
http://dx.doi.org/10.1186/1471-2105-13-77
http://dx.doi.org/10.1109/SC.2008.5215726
http://dx.doi.org/10.1145/1833398.1833406
http://dx.doi.org/10.1002/pro.767
http://dx.doi.org/10.1038/nmeth.1896
http://dx.doi.org/10.1038/nmeth.1896
http://dx.doi.org/10.1007/11890850_14
http://dx.doi.org/10.1145/1721654.1721672
http://dx.doi.org/10.1002/9781118540343.ch4
http://dx.doi.org/10.1002/9781118540343.ch4
http://dx.doi.org/10.1109/eScience.2015.38
http://dx.doi.org/10.1002/9781118540343.ch1
http://dx.doi.org/10.1002/9781118540343.ch1
http://dx.doi.org/10.1145/543613.543615
http://dx.doi.org/10.1145/543613.543615
http://dx.doi.org/10.1109/eScience.2008.126

66:32 C. S. Liew et al.

Adam Barker, Christopher D. Walton, and David Robertson. 2009. Choreographing web services. IEEE Trans.
on Services Computing 2, 2 (April-June 2009), 152–166. DOI:http://dx.doi.org/10.1109/TSC.2009.8

Adam Barker, Jon B. Weissman, and Jano van Hemert. 2008. Orchestrating data-centric workflows. In Proc.
8th IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGRID 2008). IEEE
Computer Society, 210–217. DOI:http://dx.doi.org/10.1109/CCGRID.2008.50

Jörg Becker, Michael zur Muehlen, and Marc Gille. 2002. Workflow application architectures: Classification
and characteristics of workflow-based information systems. In Workflow Handbook 2002, Layna Fischer
(Ed.). Future Strategies, 39–50.

Stephan Beisken, Thorsten Meinl, Bernd Wiswedel, Luis de Figueiredo, Michael Berthold, and Christoph
Steinbeck. 2013. KNIME-CDK: Workflow-driven cheminformatics. BMC Bioinformatics 14, 1 (2013),
257. DOI:http://dx.doi.org/10.1186/1471-2105-14-257

Khalid Belhajjame, Jun Zhao, Daniel Garijo, Kristina Hettne, Raul Palma, Óscar Corcho, José-Manuel
Gómez-Pérez, Sean Bechhofer, Graham Klyne, and Carole Goble. 2015. Using a suite of ontologies for
preserving workflow-centric research objects. Web Semantics: Science, Services and Agents on the World
Wide Web 32 (2015), 16–42. DOI:http://dx.doi.org/10.1016/j.websem.2015.01.003

G. Bruce Berriman, Ewa Deelman, Paul T. Groth, and Gideon Juve. 2010. The application of cloud com-
puting to the creation of image mosaics and management of their provenance. In Software and Cyber-
infrastructure for Astronomy, Nicole M. Radziwill and Alan Bridger (Eds.), Vol. 7740. SPIE, 77401F.
DOI:http://dx.doi.org/10.1117/12.856486

Michael R. Berthold, Nicolas Cebron, Fabian Dill, Thomas R. Gabriel, Tobias Kötter, Thorsten Meinl, Peter
Ohl, Kilian Thiel, and Bernd Wiswedel. 2009. KNIME - The Konstanz information miner. SIGKDD
Explorations 11, 1 (Nov. 2009), 26–31. DOI:http://dx.doi.org/10.1145/1656274.1656280

Shishir Bharathi, Ann Chervenak, Ewa Deelman, Gaurang Mehta, Mei-Hui Su, and Karan Vahi. 2008.
Characterization of scientific workflows. In Proc. Workflows for Science (WORKS’08). IEEE Computer
Society, 1–10. DOI:http://dx.doi.org/10.1109/WORKS.2008.4723958

Daniel Blankenberg, Gregory Von Kuster, Nathaniel Coraor, Guruprasad Ananda, Ross Lazarus, Mary
Mangan, Anton Nekrutenko, and James Taylor. 2010. Galaxy: A Web-Based Genome Analysis Tool for
Experimentalists. John Wiley & Sons, Inc. DOI:http://dx.doi.org/10.1002/0471142727.mb1910s89

Peter A. Boncz, Martin L. Kersten, and Stefan Manegold. 2008. Breaking the memory wall in MonetDB.
Commun. ACM 51, 12 (Dec. 2008), 77–85. DOI:http://dx.doi.org/10.1145/1409360.1409380

Shawn Bowers and Bertram Ludäscher. 2005. Actor-oriented design of scientific workflows. In Conceptual
Modeling – ER 2005. LNCS, Vol. 3716. 369–384. DOI:http://dx.doi.org/10.1007/11568322_24

Shawn Bowers, Timothy McPhillips, Martin Wu, and Bertram Ludäscher. 2007. Project histories: Managing
data provenance across collection-oriented scientific workflow runs. In Data Integration in the Life
Sciences. LNCS, Vol. 4544. 122–138. DOI:http://dx.doi.org/10.1007/978-3-540-73255-6_12

P. Chris Broekema, Rob V. van Nieuwpoort, and Henri E. Bal. 2012. ExaScale high performance com-
puting in the square kilometer array. In Proc. Astro-HPC’12. ACM, New York, NY, USA, 9–16.
DOI:http://dx.doi.org/10.1145/2286976.2286982

Christopher Brooks, Edward A. Lee, Xiaojun Liu, Stephen Neuendorffer, Yang Zhao, and Haiyang Zheng.
2007. Heterogeneous Concurrent Modeling and Design in Java (Volume 1: Introduction to Ptolemy
II). Technical Report UCB/EECS-2007-7. EECS Department, University of California, Berkeley.
http://www.eecs.berkeley.edu/Pubs/TechRpts/2007/EECS-2007-7.html.

Erik Brynjolfsson, Paul Hofmann, and John Jordan. 2010. Cloud computing and electricity: Beyond the
utility model. Commun. ACM 53, 5 (May 2010), 32–34. DOI:http://dx.doi.org/10.1145/1735223.1735234

Tamás Budavári, László Dobos, and Alexander S. Szalay. 2013. SkyQuery: Federating astronomy archives.
Computing in Science & Engineering 15, 3 (2013), 12–20. DOI:http://dx.doi.org/10.1109/MCSE.2013.41

Carlos Buil-Aranda, Marcelo Arenas, Oscar Corcho, and Axel Polleres. 2013. Federating queries in {SPARQL}
1.1: Syntax, semantics and evaluation. Web Semantics: Science, Services and Agents on the World Wide
Web 18, 1 (2013), 1–17. DOI:http://dx.doi.org/10.1016/j.websem.2012.10.001 Special Section on the Se-
mantic and Social Web.

Jacek Cała, Eyad Marei, Yaobo Xu, Kenji Takeda, and Paolo Missier. 2016. Scalable and efficient whole-
exome data processing using workflows on the cloud. Future Gener. Comput. Syst. 65 (2016), 153–168.
DOI:http://dx.doi.org/10.1016/j.future.2016.01.001

Scott Callaghan, Ewa Deelman, Dan Gunter, Gideon Juve, Philip Maechling, Christopher Brooks,
Karan Vahi, Kevin Milner, Robert Graves, Edward Field, David Okaya, and Thomas Jordan.
2010. Scaling up workflow-based applications. J. Comput. System Sci. 76, 6 (2010), 428–446.
DOI:http://dx.doi.org/10.1016/j.jcss.2009.11.005

Steven P. Callahan, Juliana Freire, Emanuele Santos, Carlos E. Scheidegger, Cláudio T. Silva, and
Huy T. Vo. 2006. Managing the evolution of dataflows with VisTrails. In Proc. 22nd International

ACM Computing Surveys, Vol. 49, No. 4, Article 66, Publication date: December 2016.

http://dx.doi.org/10.1109/TSC.2009.8
http://dx.doi.org/10.1109/CCGRID.2008.50
http://dx.doi.org/10.1186/1471-2105-14-257
http://dx.doi.org/10.1016/j.websem.2015.01.003
http://dx.doi.org/10.1117/12.856486
http://dx.doi.org/10.1145/1656274.1656280
http://dx.doi.org/10.1109/WORKS.2008.4723958
http://dx.doi.org/10.1002/0471142727.mb1910s89
http://dx.doi.org/10.1145/1409360.1409380
http://dx.doi.org/10.1007/11568322_24
http://dx.doi.org/10.1007/978-3-540-73255-6_12
http://dx.doi.org/10.1145/2286976.2286982
http://www.eecs.berkeley.edu/Pubs/TechRpts/2007/EECS-2007-7.html
http://dx.doi.org/10.1145/1735223.1735234
http://dx.doi.org/10.1109/MCSE.2013.41
http://dx.doi.org/10.1016/j.websem.2012.10.001
http://dx.doi.org/10.1016/j.future.2016.01.001
http://dx.doi.org/10.1016/j.jcss.2009.11.005

Scientific Workflows: Moving Across Paradigms 66:33

Conference on Data Engineering Workshops (ICDEW’06). IEEE Computer Society, Washington, DC,
USA, 71. DOI:http://dx.doi.org/10.1109/ICDEW.2006.75

Sashi Kiran Challa, Marlon Pierce, and Suresh Marru. 2010. Integrating chemistry scholarship with web
architectures, grid computing and semantic web. In Proc. Gateway Computing Environments Workshop
(GCE’10). 1–8. DOI:http://dx.doi.org/10.1109/GCE.2010.5676123

Matthew Chalmers. 2014. Large Hadron Collider: The big reboot. Nature 514 (2014), 158–160.
Jinjun Chen and Yun Yang. 2008. A taxonomy of grid workflow verification and validation. Concur-

rency and Computation: Practice and Experience 20, 4 (March 2008), 347–360. DOI:http://dx.doi.org/
10.1002/cpe.1220

Weiwei Chen, Rafael Ferreira da Silva, Ewa Deelman, and Rizos Sakellariou. 2015. Using imbalance metrics
to optimize task clustering in scientific workflow executions. Future Gener. Comput. Syst. 46 (2015), 69–
84. DOI:http://dx.doi.org/10.1016/j.future.2014.09.014

Weiwei Chen and Ewa Deelman. 2011. Workflow overhead analysis and optimizations. In Proc. WORKS’11.
ACM, New York, NY, USA, 11–20. DOI:http://dx.doi.org/10.1145/2110497.2110500

Daniel Crawl and Ilkay Altintas. 2008. A provenance-based fault tolerance mechanism for scien-
tific workflows. In Provenance and Annotation of Data and Processes. LNCS, Vol. 5272. 152–159.
10.1007/978-3-540-89965-5_17

Vı́ctor Cuevas-Vicenttı́n, Saumen Dey, Sven Köhler, Sean Riddle, and Bertram Ludäscher. 2012. Scientific
workflows and provenance: Introduction and research opportunities. Datenbank-Spektrum 12, 3 (2012),
193–203. DOI:http://dx.doi.org/10.1007/s13222-012-0100-z

Sérgio Manuel Serra da Cruz, Maria Luiza M. Campos, and Marta Mattoso. 2009. Towards a taxonomy
of provenance in scientific workflow management systems. In Proc. 2009 IEEE Congress on Services -
Part I (SERVICES’09). IEEE Computer Society, 259–266. DOI:http://dx.doi.org/10.1109/SERVICES-I.
2009.18

David De Roure, Carole Goble, Sergejs Aleksejevs, Sean Bechhofer, Jiten Bhagat, Don Cruickshank, Paul
Fisher, Nandkumar Kollara, Danius Michaelides, and others. 2010. The evolution of myExperiment. In
Proc. e-Science’10. IEEE, 153–160. DOI:http://dx.doi.org/10.1109/eScience.2010.59

David De Roure, Carole Goble, and Robert Stevens. 2009. The design and realisation of the myExperiment
virtual research environment for social sharing of workflows. Future Gener. Comput. Syst. 25, 5 (2009),
561–567. DOI:http://dx.doi.org/10.1016/j.future.2008.06.010

David De Roure, Kevin R. Page, Benjamin Fields, Tim Crawford, J. Stephen Downie, and Ichiro Fujinaga.
2011. An e-research approach to web-scale music analysis. Phil. Trans. R. Soc. A 369, 1949 (Aug. 2011),
3300–3317. DOI:http://dx.doi.org/10.1098/rsta.2011.0171

Ewa Deelman. 2010. Grids and clouds: Making workflow applications work in heterogeneous distributed
environments. International Journal of High Performance Computing Applications 24, 3 (Aug. 2010),
284–298. DOI:http://dx.doi.org/10.1177/1094342009356432

Ewa Deelman, Scott Callaghan, Edward Field, Hunter Francoeur, Robert Graves, Nitin Gupta, Vipin
Gupta, Thomas H. Jordan, Carl Kesselman, and others. 2006. Managing large-scale workflow execution
from resource provisioning to provenance tracking: The cybershake example. In Proc. e-Science’06. 14.
DOI:http://dx.doi.org/10.1109/E-SCIENCE.2006.261098

Ewa Deelman, Dennis Gannon, Matthew Shields, and Ian Taylor. 2009. Workflows and e-Science: An
overview of workflow system features and capabilities. Future Gener. Comput. Syst. 25, 5 (May 2009),
528–540. DOI:http://dx.doi.org/10.1016/j.future.2008.06.012

Ewa Deelman, Karan Vahi, Gideon Juve, Mats Rynge, Scott Callaghan, Philip J. Maechling, Rajiv Mayani,
Weiwei Chen, Rafael Ferreira da Silva, Miron Livny, and Kent Wenger. 2015. Pegasus, a work-
flow management system for science automation. Future Gener. Comput. Syst. 46 (2015), 17–35.
DOI:http://dx.doi.org/10.1016/j.future.2014.10.008

Ewa Deelman, Karan Vahi, Mats Rynge, Gideon Juve, Rajiv Mayani, and Rafael Ferreira da Silva. 2016.
Pegasus in the cloud: Science automation through workflow technologies. IEEE Internet Computing 20,
1 (Jan. 2016), 70–76. DOI:http://dx.doi.org/10.1109/MIC.2016.15

László Dobos, István Csabai, Alexander S. Szalay, Tamás Budavári, and Nolan Li. 2013. Graywulf: A platform
for federated scientific databases and services. In Proc. 25th International Conference on Scientific
and Statistical Database Management (SSDBM). ACM, New York, NY, USA, Article 30, 12 pages.
DOI:http://dx.doi.org/10.1145/2484838.2484863

Rion Dooley, Kent Milfeld, Chona Guiang, Sudhakar Pamidighantam, and Gabrielle Allen. 2006. From pro-
posal to production: Lessons learned developing the computational chemistry grid cyberinfrastructure.
Journal of Grid Computing 4, 2 (2006), 195–208. DOI:http://dx.doi.org/10.1007/s10723-006-9043-7

Lei Dou, Daniel Zinn, Timothy McPhillips, Sven Kohler, Sean Riddle, Shawn Bowers, and Bertram Ludäscher.
2011. Scientific workflow design 2.0: Demonstrating streaming data collections in Kepler. In Proc. IEEE
ICDE’11. 1296–1299. DOI:http://dx.doi.org/10.1109/ICDE.2011.5767938

ACM Computing Surveys, Vol. 49, No. 4, Article 66, Publication date: December 2016.

http://dx.doi.org/10.1109/ICDEW.2006.75
http://dx.doi.org/10.1109/GCE.2010.5676123
http://dx.doi.org/10.1002/cpe.1220
http://dx.doi.org/10.1002/cpe.1220
http://dx.doi.org/10.1016/j.future.2014.09.014
http://dx.doi.org/10.1145/2110497.2110500
http://www.10.1007/978-3-540-89965-5_17
http://dx.doi.org/10.1007/s13222-012-0100-z
http://dx.doi.org/10.1109/SERVICES-I.2009.18
http://dx.doi.org/10.1109/SERVICES-I.2009.18
http://dx.doi.org/10.1109/eScience.2010.59
http://dx.doi.org/10.1016/j.future.2008.06.010
http://dx.doi.org/10.1098/rsta.2011.0171
http://dx.doi.org/10.1177/1094342009356432
http://dx.doi.org/10.1109/E-SCIENCE.2006.261098
http://dx.doi.org/10.1016/j.future.2008.06.012
http://dx.doi.org/10.1016/j.future.2014.10.008
http://dx.doi.org/10.1109/MIC.2016.15
http://dx.doi.org/10.1145/2484838.2484863
http://dx.doi.org/10.1007/s10723-006-9043-7
http://dx.doi.org/10.1109/ICDE.2011.5767938

66:34 C. S. Liew et al.

Johan Eker, Jörn W. Janneck, Edward A. Lee, Jie Liu, Xiaojun Liu, Jozsef Ludvig, Stephen Neuendorffer,
Sonia Sachs, and Yuhong Xiong. 2003. Taming heterogeneity - the Ptolemy approach. Proc. IEEE 91, 1
(Jan. 2003), 127–144. DOI:http://dx.doi.org/10.1109/JPROC.2002.805829

Erik Elmroth, Francisco Hernández, and Johan Tordsson. 2010. Three fundamental dimensions of scientific
workflow interoperability: Model of computation, language, and execution environment. Future Gener.
Comput. Syst. 26, 2 (Feb. 2010), 245–256. DOI:http://dx.doi.org/10.1016/j.future.2009.08.011

Wolfgang Emmerich, Ben Butchart, Liang Chen, Bruno Wassermann, and Sarah Price. 2005. Grid service
orchestration using the business process execution language (BPEL). Journal of Grid Computing 3, 3
(Sept. 2005), 283–304. DOI:http://dx.doi.org/10.1007/s10723-005-9015-3

EU Parliament. 2007. Directive 2007/2/EC of the European parliament and of the council of 14 march 2007
establishing an infrastructure for spatial information in the european community (INSPIRE). Official
Journal of the European Union 50, L108 (April 2007).

Thomas Fahringer, Radu Prodan, Rubing Duan, Jüurgen Hofer, Farrukh Nadeem, Francesco Nerieri, Stefan
Podlipnig, Jun Qin, Mumtaz Siddiqui, and others. 2007. ASKALON: A development and grid computing
environment for scientific workflows. In Workflows for e-Science: Scientific Workflows for Grids, Ian
J. Taylor, Ewa Deelman, Dennis B. Gannon, and Matthew Shields (Eds.). Springer London, 450–471.
DOI:http://dx.doi.org/10.1007/978-1-84628-757-2_27

Zbyněk Falt, David Bednárek, Martin Kruliš, Jakub Yaghob, and Filip Zavoral. 2014. Bobolang: A lan-
guage for parallel streaming applications. In Proc. HPDC’14. ACM, New York, NY, USA, 311–314.
DOI:http://dx.doi.org/10.1145/2600212.2600711

Rosa Filgueira, Malcolm Atkinson, Yusuke Tanimura, and Isao Kojima. 2014. Applying selectively parallel
I/O compression to parallel storage systems. In Euro-Par 2014 Parallel Processing. LNCS, Vol. 8632.
282–293. DOI:http://dx.doi.org/10.1007/978-3-319-09873-9_24

Rosa Filguiera, Amrey Krause, Malcolm Atkinson, Iraklis Klampanos, and Alexander Moreno. 2016. dis-
pel4py: A python framework for data-intensive scientific computing. International Journal of High
Performance Computing Applications (2016), 1–19. DOI:http://dx.doi.org/10.1177/1094342016649766

Ian Foster, Jens Vöckler, Michael Wilde, and Yong Zhao. 2002. Chimera: A virtual data system for rep-
resenting, querying, and automating data derivation. In Proc. SSDBM’02. 37–46. DOI:http://dx.doi.
org/10.1109/SSDM.2002.1029704

Scott W. French and Barbara Romanowicz. 2015. Broad plumes rooted at the base of the Earth’s mantle
beneath major hotspots. Nature 525, 7567 (03 09 2015), 95–99. 10.1038/nature14876.

Dennis Gannon. 2007. Component architectures and services: From application construction to scien-
tific workflows. In Workflows for e-Science: Scientific Workflows for Grids, Ian J. Taylor, Ewa Deel-
man, Dennis B. Gannon, and Matthew Shields (Eds.). Springer London, 174–189. DOI:http://dx.doi.org/
10.1007/978-1-84628-757-2_12

Daniel Garijo. 2015. Mining Abstractions in Scientific Workflows. Ph.D. Dissertation. Departamento de
Inteligencia Artficial Escuela Técnica Superior de Ingenieros Informáticos, Madrid, Spain.

Daniel Garijo, Facultad De Informática, and Yolanda Gil. 2012. Towards Open Publication of Reusable
Scientific Workflows: Abstractions, Standards and Linked Data. Technical Report. (Jan. 2012).

Sandra Gesing, Malcolm Atkinson, Rosa Filgueira, Ian Taylor, Andrew Jones, Vlado Stankovski, Chee
Sun Liew, Alessandro Spinuso, Gabor Terstyanszky, and Peter Kacsuk. 2014. Workflows in a dash-
board: A new generation of usability. In Proc. WORKS’14. IEEE Press, Piscataway, NJ, USA, 82–93.
DOI:http://dx.doi.org/10.1109/WORKS.2014.6

Jayeeta Ghosh, Suresh Marru, Nikhil Singh, Kenno Vanomesslaeghe, Ye Fan, and Sudhakar Pamidighan-
tam. 2011. Molecular parameter optimization gateway (ParamChem): Workflow management through
teragrid ASTA. In Proc. TeraGrid (TG’11). ACM, 35:1–35:8. DOI:http://dx.doi.org/10.1145/2016741.
2016779

Yolanda Gil, Jihie Kim, Varun Ratnakar, and Ewa Deelman. 2006. Wings for Pegasus: A semantic approach
to creating very large scientific workflows. In Proc. Workshop on OWL: Experiences and Directions
(OWLED’06), Vol. 216.

Edward Givelberg, Alexander Szalay, Kalin Kanov, and Randal Burns. 2011. An architecture for a data-
intensive computer. In Proc. Network Aware Data Management (NDM’11). ACM, New York, NY, USA,
57–64. DOI:http://dx.doi.org/10.1145/2110217.2110226

Carole Goble and David De Roure. 2009. The impact of workflow tools on data-centric research. In The
Fourth Paradigm: Data-Intensive Scientific Discovery, Tony Hey, Stewart Tansley, and Kristin Tolle
(Eds.). Microsoft, 137–145.

Katharina Görlach, Mirko Sonntag, Dimka Karastoyanova, Frank Leymann, and Michael Reiter.
2011. Conventional workflow technology for scientific simulation. In Guide to e-Science. 323–352.
DOI:http://dx.doi.org/10.1007/978-0-85729-439-5_12

ACM Computing Surveys, Vol. 49, No. 4, Article 66, Publication date: December 2016.

http://dx.doi.org/10.1109/JPROC.2002.805829
http://dx.doi.org/10.1016/j.future.2009.08.011
http://dx.doi.org/10.1007/s10723-005-9015-3
http://dx.doi.org/10.1007/978-1-84628-757-2_27
http://dx.doi.org/10.1145/2600212.2600711
http://dx.doi.org/10.1007/978-3-319-09873-9_24
http://dx.doi.org/10.1177/1094342016649766
http://dx.doi.org/10.1109/SSDM.2002.1029704
http://dx.doi.org/10.1109/SSDM.2002.1029704
http://www.10.1038/nature14876
http://dx.doi.org/10.1007/978-1-84628-757-2_12
http://dx.doi.org/10.1007/978-1-84628-757-2_12
http://dx.doi.org/10.1109/WORKS.2014.6
http://dx.doi.org/10.1145/2016741.2016779
http://dx.doi.org/10.1145/2016741.2016779
http://dx.doi.org/10.1145/2110217.2110226
http://dx.doi.org/10.1007/978-0-85729-439-5_12

Scientific Workflows: Moving Across Paradigms 66:35

Ian Gorton, Paul Greenfield, Alex Szalay, and Roy Williams. 2008. Data-intensive computing in the 21st
century. Computer 41, 4 (April 2008), 30–32. DOI:http://dx.doi.org/10.1109/MC.2008.122

Jim Gray. 2009. Jim gray on escience: A transformed scientific method. In The Fourth Paradigm: Data-
Intensive Scientific Discovery, Tony Hey, Stewart Tansley, and Kristin Tolle (Eds.). Microsoft, xix–xxxiii.

Paul Grefen and Jochem Vonk. 2006. A taxonomy of transactional workflow support. International Jour-
nal of Cooperative Information Systems 15, 1 (March 2006), 87–118. DOI:http://dx.doi.org/10.1142/
S021884300600130X

Paul Groth, Yolanda Gil, James Cheney, and Simon Miles. 2012. Requirements for provenance on the web.
International Journal of Digital Curation 7, 1 (2012), 39–55.

Yunhong Gu and Robert L. Grossman. 2009. Sector and sphere: The design and implementation
of a high-performance data cloud. Phil. Trans. R. Soc. A 367, 1897 (June 2009), 2429–2445.
DOI:http://dx.doi.org/10.1098/rsta.2009.0053

Thilina Gunarathne, Chathura Herath, Eran Chinthaka, and Suresh Marru. 2009. Experience with adapting
a WS-BPEL runtime for escience workflows. In Proc. GCE’09. ACM, 7:1–7:10. DOI:http://dx.doi.org/
10.1145/1658260.1658270

Ákos Hajnal, Zoltán Farkas, Péter Kacsuk, and Tamás Pintér. 2014. Remote storage resource management
in WS-PGRADE/gUSE. In Science Gateways for Distributed Computing Infrastructures: Development
Framework and Exploitation by Scientific User Communities, Péter Kacsuk (Ed.). Springer, Chapter 5,
69–81. DOI:http://dx.doi.org/10.1007/978-3-319-11268-8_5

Mihael Hategan, Justin Wozniak, and Ketan Maheshwari. 2011. Coasters: Uniform resource provisioning
and access for clouds and grids. In Proc. 4th IEEE International Conference on Utility and Cloud
Computing (UCC’11). IEEE Computer Society, 114–121. DOI:http://dx.doi.org/10.1109/UCC.2011.25

George Heald, Michael Bell, Andreas Horneffer, André Offringa, Roberto Pizzo, Sebastiaan van der Tol,
Reinout van Weeren, Joris van Zwieten, James Anderson, and others. 2011. LOFAR: Recent imag-
ing results and future prospects. Journal of Astrophysics and Astronomy 32, 4 (Dec. 2011), 1–10.
DOI:http://dx.doi.org/10.1007/s12036-011-9125-1

Tom Heath and Christian Bizer. 2011. Linked Data: Evolving the Web into a Global Data Space (1st ed.).
Number 1-136 in Synthesis Lectures on the Semantic Web: Theory and Technology. Morgan & Claypool.

Tony Hey, Stewart Tansley, and Kristin Tolle (Eds.). 2009. The Fourth Paradigm: Data-Intensive Scientific
Discovery. Microsoft Research.

Interagency Working Group on Digital Data. 2009. Harnessing the Power of Digital Data for Science and
Society: Report of the Interagency Working Group on Digital Data to the National Science and Technology
Council. Technical Report. Executive office of the President, Office of Science and Technology, USA.

Gideon Juve and Ewa Deelman. 2010. Scientific workflows and clouds. Crossroads 16, 3 (March 2010), 14–18.
DOI:http://dx.doi.org/10.1145/1734160.1734166

Péter Kacsuk (Ed.). 2014. Science Gateways for Distributed Computing Infrastructures: Development Frame-
work and Exploitation by Scientific User Communities. DOI:http://dx.doi.org/10.1007/978-3-319-11268-8

Peter Kacsuk, Zoltan Farkas, Miklos Kozlovszky, Gabor Hermann, Akos Balasko, Krisztian Karoczkai,
and Istvan Marton. 2012. WS-PGRADE/gUSE Generic DCI gateway framework for a large variety
of user communities. Journal of Grid Computing 10, 4 (2012), 601–630. DOI:http://dx.doi.org/10.1007/
s10723-012-9240-5

Peter Kacsuk, Gabor Terstyánszky, Ákos Balaskó, , Krisztian Karóczkai, and Zoltan Farkas. 2014. Executing
multi-workflow simulations on mixed cloud and grid infrastructure using the SHIWA and SCI-BUS
technology. In Cloud Computing and Big Data, C. Catlett, W. Gentzsch, L. Grandinetti, and G. Joubert
(Eds.). Ios Pr Inc, 141–162.

Douglas B. Kell and Stephen G. Oliver. 2004. Here is the evidence, now what is the hypothesis? The comple-
mentary roles of inductive and hypothesis-driven science in the post-genomic era. BioEssays 26, 1 (Jan.
2004), 99–105. DOI:http://dx.doi.org/10.1002/bies.10385

Steve Kelling, Daniel Fink, Wesley Hochachka, Ken Rosenberg, Robert Cook, Theodoros Damoulas, Claudio
Silva, and William Michener. 2013. Estimating species distributions – across space, through time and
with features of the environment. In The Data Bonanza – Improving Knowledge Discovery for Science,
Engineering and Business, Malcolm P. Atkinson, Rob Baxter, Paolo Besana, Michelle Galea, Mark
Parsons, Peter Brezany, Oscar Corcho, Jano van Hemert, and David Snelling (Eds.). John Wiley & Sons
Inc., Hoboken, NJ, USA, Chapter 22, 441–458. DOI:http://dx.doi.org/10.1002/9781118540343.ch22

Jihie Kim, Ewa Deelman, Yolanda Gil, Gaurang Mehta, and Varun Ratnakar. 2008. Provenance trails in
the Wings/Pegasus system. Concurrency and Computation: Practice and Experience 20, 5 (April 2008),
587–597. DOI:http://dx.doi.org/10.1002/cpe.1228

Hoyt Koepke. 2014. Why Python Rocks for Research. Technical Report. University of Washington.

ACM Computing Surveys, Vol. 49, No. 4, Article 66, Publication date: December 2016.

http://dx.doi.org/10.1109/MC.2008.122
http://dx.doi.org/10.1142/S021884300600130X
http://dx.doi.org/10.1142/S021884300600130X
http://dx.doi.org/10.1098/rsta.2009.0053
http://dx.doi.org/10.1145/1658260.1658270
http://dx.doi.org/10.1145/1658260.1658270
http://dx.doi.org/10.1007/978-3-319-11268-8_5
http://dx.doi.org/10.1109/UCC.2011.25
http://dx.doi.org/10.1007/s12036-011-9125-1
http://dx.doi.org/10.1145/1734160.1734166
http://dx.doi.org/10.1007/978-3-319-11268-8
http://dx.doi.org/10.1007/s10723-012-9240-5
http://dx.doi.org/10.1007/s10723-012-9240-5
http://dx.doi.org/10.1002/bies.10385
http://dx.doi.org/10.1002/9781118540343.ch22
http://dx.doi.org/10.1002/cpe.1228

66:36 C. S. Liew et al.

Sven Kohler, Supriya Gulati, Gongjing Cao, Quinn Hart, and Bertram Ludascher. 2012. Sliding window
calculations on streaming data using the Kepler scientific workflow system. Procedia Computer Science
9, 0 (2012), 1639–1646. DOI:http://dx.doi.org/10.1016/j.procs.2012.04.181

Vladimir Korkhov, Dagmar Krefting, Tamas Kukla, Gabor Z. Terstyánszky, Matthan W. A. Caan, and Silvia D.
Olabarriaga. 2013. Exploring workflow interoperability for neuroimage analysis on the SHIWA platform.
Journal of Grid Computing 11, 3 (2013), 505–522. DOI:http://dx.doi.org/10.1007/s10723-013-9262-7

Miklos Kozlovszky, Krisztián Karóczkai, István Márton, Péter Kacsuk, and Tibor Gottdank. 2014. DCI
Bridge: Executing WS-PGRADE workflows in distributed computing infrastructures. In Science Gate-
ways for Distributed Computing Infrastructures: Development Framework and Exploitation by Sci-
entific User Communities, Péter Kacsuk (Ed.). Springer, Chapter 4, 51–67. DOI:http://dx.doi.org/
10.1007/978-3-319-11268-8_4

Michael Litzkow, Miron Livny, and Matthew Mutka. 1988. Condor - A hunter of idle workstations. In Proc. 8th
International Conference of Distributed Computing Systems. IEEE Computer Society Press, 104–111.
DOI:http://dx.doi.org/10.1109/DCS.1988.12507

Xavier Llorà, Bernie Ács, Loretta S. Auvil, Boris Capitanu, Michael E. Welge, and David E. Goldberg.
2008. Meandre: Semantic-driven data-intensive flows in the clouds. In Proc. e-Science’08. 238–245.
DOI:http://dx.doi.org/10.1109/eScience.2008.172

Bertram Ludäscher, Ilkay Altintas, Chad Berkley, Dan Higgins, Efrat Jaeger, Matthew Jones, Edward A.
Lee, Jing Tao, and Yang Zhao. 2006. Scientific workflow management and the Kepler system. Concur-
rency and Computation: Practice and Experience 18, 10 (August 2006), 1039–1065. DOI:http://dx.doi.
org/10.1002/cpe.994

Bertram Ludäscher, Mathias Weske, Timothy McPhillips, and Shawn Bowers. 2009. Scientific workflows:
Business as usual? In Business Process Management. LNCS, Vol. 5701. 31–47. DOI:http://dx.doi.
org/10.1007/978-3-642-03848-8_4

Philip Maechling, Ewa Deelman, Li Zhao, Robert Graves, Gaurang Mehta, Nitin Gupta, John Mehringer,
Carl Kesselman, Scott Callaghan, David Okaya, Hunter Francoeur, Vipin Gupta, Yifeng Cui, Karan
Vahi, Thomas Jordan, and Edward Field. 2007. SCEC cybershake workflows—Automating probabilistic
seismic hazard analysis calculations. In Workflows for e-Science: Scientific Workflows for Grids, Ian
J. Taylor, Ewa Deelman, Dennis B. Gannon, and Matthew Shields (Eds.). Springer London, 143–163.
DOI:http://dx.doi.org/10.1007/978-1-84628-757-2_10

Ketan Maheshwari, Alex Rodriguez, David Kelly, Ravi Madduri, Justin Wozniak, Michael Wilde, and
Ian Foster. 2013. Enabling multi-task computation on Galaxy-based gateways using swift. In Proc.
IEEE International Conference on Cluster Computing (CLUSTER 2013). 1–3. DOI:http://dx.doi.org/
10.1109/CLUSTER.2013.6702701

Suresh Marru, Lahiru Gunathilake, Chathura Herath, Patanachai Tangchaisin, Marlon Pierce, Chris
Mattmann, Raminder Singh, Thilina Gunarathne, Eran Chinthaka, and others. 2011. Apache aira-
vata: A framework for distributed applications and computational workflows. In Proc. GCE’11. ACM,
21–28. DOI:http://dx.doi.org/10.1145/2110486.2110490

Suresh Marru, Marlon Pierce, Sudhakar Pamidighantam, and Chathuri Wimalasena. 2015. Apache aira-
vata as a laboratory: Architecture and case study for component-based gateway middleware. In Proc.
SCREAM’15. 19–26. DOI:http://dx.doi.org/10.1145/2753524.2753529

Paul Martin and Gagarine Yaikhom. 2013. Definition of the DISPEL language. In The Data Bonanza –
Improving Knowledge Discovery for Science, Engineering and Business, Malcolm P. Atkinson, Rob Baxter,
Paolo Besana, Michelle Galea, Mark Parsons, Peter Brezany, Oscar Corcho, Jano van Hemert, and
David Snelling (Eds.). John Wiley & Sons Inc., Hoboken, NJ, USA, Chapter 10, 203–236. DOI:http://dx.
doi.org/10.1002/9781118540343.ch10

Cherian Mathew, Anton Güntsch, Matthias Obst, Saverio Vicario, Robert Haines, Alan Williams, Yde de Jong,
and Carole Goble. 2014. A semi-automated workflow for biodiversity data retrieval, cleaning, and quality
control. Biodiversity Data Journal 2 (Dec. 2014), e4221. DOI:http://dx.doi.org/10.3897/BDJ.2.e4221

Michael McLennan, Steven Clark, Ewa Deelman, Mats Rynge, Karan Vahi, Frank McKenna, Derrick Kear-
ney, and Carol Song. 2015. HUBzero and Pegasus: Integrating scientific workflows into science gate-
ways. Concurrency and Computation: Practice and Experience 27, 2 (2015), 328–343. DOI:http://dx.
doi.org/10.1002/cpe.3257

Michael McLennan and Rick Kennell. 2010. HUBzero: A platform for dissemination and collaboration in
computational science and engineering. Computing in Science Engineering 12, 2 (March 2010), 48–53.
DOI:http://dx.doi.org/10.1109/MCSE.2010.41

Timothy M. McPhillips and Shawn Bowers. 2005. An approach for pipelining nested collections
in scientific workflows. SIGMOD Record 34, 3 (Sept. 2005), 12–17. DOI:http://dx.doi.org/10.1145/
1084805.1084809

ACM Computing Surveys, Vol. 49, No. 4, Article 66, Publication date: December 2016.

http://dx.doi.org/10.1016/j.procs.2012.04.181
http://dx.doi.org/10.1007/s10723-013-9262-7
http://dx.doi.org/10.1007/978-3-319-11268-8_4
http://dx.doi.org/10.1007/978-3-319-11268-8_4
http://dx.doi.org/10.1109/DCS.1988.12507
http://dx.doi.org/10.1109/eScience.2008.172
http://dx.doi.org/10.1002/cpe.994
http://dx.doi.org/10.1002/cpe.994
http://dx.doi.org/10.1007/978-3-642-03848-8_4
http://dx.doi.org/10.1007/978-3-642-03848-8_4
http://dx.doi.org/10.1007/978-1-84628-757-2_10
http://dx.doi.org/10.1109/CLUSTER.2013.6702701
http://dx.doi.org/10.1109/CLUSTER.2013.6702701
http://dx.doi.org/10.1145/2110486.2110490
http://dx.doi.org/10.1145/2753524.2753529
http://dx.doi.org/10.1002/9781118540343.ch10
http://dx.doi.org/10.1002/9781118540343.ch10
http://dx.doi.org/10.3897/BDJ.2.e4221
http://dx.doi.org/10.1002/cpe.3257
http://dx.doi.org/10.1002/cpe.3257
http://dx.doi.org/10.1109/MCSE.2010.41
http://dx.doi.org/10.1145/1084805.1084809
http://dx.doi.org/10.1145/1084805.1084809

Scientific Workflows: Moving Across Paradigms 66:37

William Michener, James Beach, Shawn Bowers, Laura Downey, Matthew Jones, Bertram Ludäscher, Deana
Pennington, Arcot Rajasekar, Samantha Romanello, Mark Schildhauer, Dave Vieglais, and Jianting
Zhang. 2005. Data integration and workflow solutions for ecology. In Data Integration in the Life Sciences.
LNCS, Vol. 3615. 734–734. DOI:http://dx.doi.org/10.1007/11530084_32

Paolo Missier, Bertram Ludascher, Shawn Bowers, Saumen Dey, Anandarup Sarkar, Biva Shrestha,
Ilkay Altintas, Manish Kumar Anand, and Carole Goble. 2010a. Linking multiple workflow prove-
nance traces for interoperable collaborative science. In WORKS’10. 1–8. DOI:http://dx.doi.org/
10.1109/WORKS.2010.5671861

Paolo Missier, Bertram Ludäscher, Saumen C. Dey, Michael Wang, Timothy M. McPhillips, Shawn Bow-
ers, Michael Agun, and Ilkay Altintas. 2012. Golden trail: Retrieving the data history that mat-
ters from a comprehensive provenance repository. IJDC 7, 1 (2012), 139–150. DOI:http://dx.doi.org/
10.2218/ijdc.v7i1.221

Paolo Missier, Stian Soiland-Reyes, Stuart Owen, Wei Tan, Alexandra Nenadic, Ian Dunlop, Alan Williams,
Tom Oinn, and Carole Goble. 2010b. Taverna, Reloaded. In Scientific and Statistical Database Manage-
ment. LNCS, Vol. 6187. 471–481. DOI:http://dx.doi.org/10.1007/978-3-642-13818-8_33

Fiona Murphy, Publishing Data Workflows WG, Theodora Bloom, Sunje Dallmeier-Tiessen, Claire C. Austin,
Angus Whyte, Jonathan Tedds, Amy Nurnberger, Lisa Raymond, Martina Stockhause, and Mary
Vardigan. 2015. WDS-RDA Publishing Data Workflows Working Group Analysis sheet. (June 2015).
DOI:http://dx.doi.org/10.5281/zenodo.19107

James Myers, Margaret Hedstrom, Dharma Akmon, Sandy Payette, Beth A. Plale, Inna Kouper, Scott
McCaulay, Robert McDonald, Isuru Suriarachchi, and others. 2015. Towards sustainable curation and
preservation. In Proc. e-Science’15. 526–535. DOI:http://dx.doi.org/10.1109/eScience.2015.56

Michael L. Norman and Allan Snavely. 2010. Accelerating data-intensive science with Gordon and Dash.
In Proc. TG’10. ACM, New York, NY, USA, Article 14, 7 pages. DOI:http://dx.doi.org/10.1145/1838574.
1838588

Thomas Oinn, Matthew Addis, Justin Ferris, Darren Marvin, Martin Senger, Mark Greenwood, Tim
Carver, Kevin Glover, Matthew Pocock, Anil Wipat, and Peter Li. 2004. Taverna: A tool for the com-
position and enactment of bioinformatics workflows. Bioinformatics 20, 17 (Nov. 2004), 3045–3054.
DOI:http://dx.doi.org/10.1093/bioinformatics/bth361

Tom Oinn, Mark Greenwood, Matthew Addis, M. Nedim Alpdemir, Justin Ferris, Kevin Glover, Carole Goble,
Antoon Goderis, Duncan Hull, and others. 2006. Taverna: Lessons in creating a workflow environment
for the life sciences. Concurrency and Computation: Practice and Experience 18, 10 (2006), 1067–1100.
DOI:http://dx.doi.org/10.1002/cpe.993

Tom Oinn, Peter Li, Douglas B. Kell, Carole Goble, Antoon Goderis, Mark Greenwood, Duncan Hull,
Robert Stevens, Daniele Turi, and Jun Zhao. 2007. Taverna/myGrid: Aligning a workflow system
with the life sciences community. In Workflows for e-Science: Scientific Workflows for Grids, Ian J.
Taylor, Ewa Deelman, Dennis B. Gannon, and Matthew Shields (Eds.). Springer London, 300–319.
DOI:http://dx.doi.org/10.1007/978-1-84628-757-2_19

Ioan Raicu, Yong Zhao, Catalin Dumitrescu, Ian Foster, and Mike Wilde. 2007. Falkon: A fast and light-
weight tasK executiON framework. In Proc. SC’07. ACM, New York, NY, USA, Article 43, 12 pages.
DOI:http://dx.doi.org/10.1145/1362622.1362680

Christopher Rawlings. 2014. Big data in the agricultural and ecological sciences — a growing challenge.
Keynote EGI Community Forum 2014. (May 2014).

A. T. Ringler, M. T. Hagerty, J. Holland, A. Gonzales, L. S. Gee, J. D. Edwards, D. Wilson, and A. M. Baker.
2015. The data quality analyzer: A quality control program for seismic data. Computers & Geosciences
76 (2015), 96–111.

David Rogers, Ian Harvey, Tram Truong Huu, Kieran Evans, Tristan Glatard, Ibrahim Kallel, Ian Taylor,
Johan Montagnat, Andrew Jones, and Andrew Harrison. 2013. Bundle and pool architecture for multi-
language, robust, scalable workflow executions. Journal of Grid Computing 11, 3 (2013), 457–480.

John W. Romein, Jan David Mol, Rob V. van Nieuwpoort, and P. Chris Broekema. 2011. Processing LO-
FAR telescope data in real time on a blue Gene/P supercomputer. In General Assembly and Scientific
Symposium, 2011 XXXth URSI. 1–4. DOI:http://dx.doi.org/10.1109/URSIGASS.2011.6051270

Susanna-Assunta Sansone, Philippe Rocca-Serra, Dawn Field, Eamonn Maguire, Chris Taylor, Oliver
Hofmann, Hong Fang, Steffen Neumann, Weida Tong, and others. 2012. Toward interoperable bioscience
data. Nat. Genet. 44, 2 (02 2012), 121–126. DOI:http://dx.doi.org/10.1038/ng.1054

Idafen Santana-Perez, Rafael Ferreira da Silva, Mats Rynge, Ewa Deelman, Marı́a S. Pérez-Hernández,
and Oscar Corcho. 2016. Reproducibility of execution environments in computational science us-
ing Semantics and Clouds. Future Gener. Comput. Syst. 67 (2016), 354–367. DOI:http://dx.doi.org/
10.1016/j.future.2015.12.017

ACM Computing Surveys, Vol. 49, No. 4, Article 66, Publication date: December 2016.

http://dx.doi.org/10.1007/11530084_32
http://dx.doi.org/10.1109/WORKS.2010.5671861
http://dx.doi.org/10.1109/WORKS.2010.5671861
http://dx.doi.org/10.2218/ijdc.v7i1.221
http://dx.doi.org/10.2218/ijdc.v7i1.221
http://dx.doi.org/10.1007/978-3-642-13818-8_33
http://dx.doi.org/10.5281/zenodo.19107
http://dx.doi.org/10.1109/eScience.2015.56
http://dx.doi.org/10.1145/1838574.1838588
http://dx.doi.org/10.1145/1838574.1838588
http://dx.doi.org/10.1093/bioinformatics/bth361
http://dx.doi.org/10.1002/cpe.993
http://dx.doi.org/10.1007/978-1-84628-757-2_19
http://dx.doi.org/10.1145/1362622.1362680
http://dx.doi.org/10.1109/URSIGASS.2011.6051270
http://dx.doi.org/10.1038/ng.1054
http://dx.doi.org/10.1016/j.future.2015.12.017
http://dx.doi.org/10.1016/j.future.2015.12.017

66:38 C. S. Liew et al.

Matthew Shields. 2007. Control- versus data-driven workflows. In Workflows for e-Science: Scientific Work-
flows for Grids, Ian J. Taylor, Ewa Deelman, Dennis B. Gannon, and Matthew Shields (Eds.). Springer
London, 167–173. DOI:http://dx.doi.org/10.1007/978-1-84628-757-2_11

Yogesh L. Simmhan, Roger Barga, Catharine van Ingen, Ed Lazowska, and Alex Szalay. 2009. Building
the trident scientific workflow workbench for data management in the cloud. In Proc. 3rd International
Conference on Advanced Engineering Computing and Applications in Sciences (ADVCOMP’09). 41–50.
DOI:http://dx.doi.org/10.1109/ADVCOMP.2009.14

Aleksander Slominski. 2007. Adapting BPEL to scientific workflows. In Workflows for e-Science: Scientific
Workflows for Grids, Ian J. Taylor, Ewa Deelman, Dennis B. Gannon, and Matthew Shields (Eds.).
Springer London, 208–226. DOI:http://dx.doi.org/10.1007/978-1-84628-757-2_14

Alessandro Spinuso, Rosa Fligueira, Malcolm Atkinson, and Andre Gemuend. 2016. Visualisation meth-
ods for large provenance collections in data-intensive collaborative platforms. In Geophysical Research
Abstracts - EGU General Assembly 2016, Vol. 18.

Sudarshan Srinivasan, Gideon Juve, Rafael Ferreira da Silva, Karan Vahi, and Ewa Deelman. 2014. A
cleanup algorithm for implementing storage constraints in scientific workflow executions. In Proc.
WORKS’14. IEEE Press, 41–49. DOI:http://dx.doi.org/10.1109/WORKS.2014.8

Tiberiu Stef-Praun, Benjamin Clifford, Ian Foster, Uri Hasson, Mihael Hategan, Steven L. Small, Michael
Wilde, and Yong Zhao. 2007. Accelerating medical research using the swift workflow system. Studies in
Health Technology and Informatics 126 (2007), 207–216.

Michael Stonebraker, Jacek Becla, David J. DeWitt, Kian-Tat Lim, David Maier, Oliver Ratzesberger, and
Stanley B. Zdonik. 2009. Requirements for science data bases and SciDB. In Proc. Biennial Conference
on Innovative Data Systems Research (CIDR’09).

Michael Stonebraker, Paul Brown, Donghui Zhang, and Jacek Becla. 2013. SciDB: A database management
system for applications with complex analytics. Computing in Science & Engineering 15, 3 (2013), 54–62.

Ian Taylor, Matthew Shields, Ian Wang, and Andrew Harrison. 2007a. The Triana workflow environ-
ment: Architecture and applications. In Workflows for e-Science: Scientific Workflows for Grids, Ian
J. Taylor, Ewa Deelman, Dennis B. Gannon, and Matthew Shields (Eds.). Springer London, 320–339.
DOI:http://dx.doi.org/10.1007/978-1-84628-757-2_20

Ian J. Taylor, Ewa Deelman, Dennis B. Gannon, and Matthew Shields. 2007b. Workflows for e-Science:
Scientific workflows for grids. Springer London. DOI:http://dx.doi.org/10.1007/978-1-84628-757-2

Gabor Terstyánszky, Edward Michniak, Tamás Kiss, and Ákos Balaskó. 2014. Sharing science gateway
artefacts through repositories. In Science Gateways for Distributed Computing Infrastructures: Devel-
opment Framework and Exploitation by Scientific User Communities. Springer, Chapter 9, 123–135.
DOI:http://dx.doi.org/10.1007/978-3-319-11268-8_9

Douglas Thain, Todd Tannenbaum, and Miron Livny. 2005. Distributed computing in practice: The Con-
dor experience. Concurrency and Computation: Practice and Experience 17, 2-4 (2005), 323–356.
DOI:http://dx.doi.org/10.1002/cpe.938

Thomas D. Uram, Michael E. Papka, Mark Hereld, and Michael Wilde. 2011. A solution looking for lots of
problems: generic portals for science infrastructure. In Proc. TG’11. ACM, New York, NY, USA, Article
44, 7 pages. DOI:http://dx.doi.org/10.1145/2016741.2016788

Wil M. P. van der Aalst and Arthur H. M. ter Hofstede. 2014. Workflow Patterns. http://www.workflow
patterns.com. (2014).

Wil M. P. van der Aalst, Arthur H. M. ter Hofstede, B. Kiepuszewski, and A. P. Barros. 2003. Work-
flow Patterns. Distributed and Parallel Databases 14, 1 (July 2003), 5–51. DOI:http://dx.doi.org/
10.1023/A:1022883727209

Jens Vöckler, Gaurang Mehta, Yong Zhao, Ewa Deelman, and Michael Wilde. 2006. Kickstarting Remote
Applications. In Second International Workshop on Grid Computing Environments.

Gregor von Laszewski and Mike Hategan. 2005. Workflow Concepts of the Java CoG Kit. Journal of Grid
Computing 3, 3 (Sept. 2005), 239–258. DOI:http://dx.doi.org/10.1007/s10723-005-9013-5

Chip Walter. 2005. Kryder’s Law: The doubling of processor speed every 18 months is a snail’s pace compared
with rising hard-disk capacity, and Mark Kryder plans to squeeze in even more bits. Scientific American
(August 2005), 32–33.

Hongbing Wang, Joshua Zhexue Huang, Yuzhong Qu, and Junyuan Xie. 2004. Web services: Problems and
future directions. Web Semantics: Science, Services and Agents on the World Wide Web 1, 3 (April 2004),
309–320. DOI:http://dx.doi.org/10.1016/j.websem.2004.02.001

Marek Wieczorek, Andreas Hoheisel, and Radu Prodan. 2009. Towards a general model of the multi-
criteria workflow scheduling on the grid. Future Gener. Comput. Syst. 25, 3 (March 2009), 237–256.
DOI:http://dx.doi.org/10.1016/j.future.2008.09.002

ACM Computing Surveys, Vol. 49, No. 4, Article 66, Publication date: December 2016.

http://dx.doi.org/10.1007/978-1-84628-757-2_11
http://dx.doi.org/10.1109/ADVCOMP.2009.14
http://dx.doi.org/10.1007/978-1-84628-757-2_14
http://dx.doi.org/10.1109/WORKS.2014.8
http://dx.doi.org/10.1007/978-1-84628-757-2_20
http://dx.doi.org/10.1007/978-1-84628-757-2
http://dx.doi.org/10.1007/978-3-319-11268-8_9
http://dx.doi.org/10.1002/cpe.938
http://dx.doi.org/10.1145/2016741.2016788
http://www.workflowpatterns.com
http://www.workflowpatterns.com
http://dx.doi.org/10.1023/A:1022883727209
http://dx.doi.org/10.1023/A:1022883727209
http://dx.doi.org/10.1007/s10723-005-9013-5
http://dx.doi.org/10.1016/j.websem.2004.02.001
http://dx.doi.org/10.1016/j.future.2008.09.002

Scientific Workflows: Moving Across Paradigms 66:39

Michael Wilde, Ian Foster, Kamil Iskra, Pete Beckman, Zhao Zhang, Allan Espinosa, Mihael Hategan, Ben
Clifford, and Ioan Raicu. 2009. Parallel scripting for applications at the petascale and beyond. Computer
42, 11 (Nov. 2009), 50–60. DOI:http://dx.doi.org/10.1109/MC.2009.365

Matthew Woitaszek, John M. Dennis, and Taleena R. Sine. 2011. Parallel high-resolution climate data analy-
sis using swift. In Proc. ACM International Workshop on Many Task Computing on Grids and Supercom-
puters (MTAGS’11). ACM, New York, NY, USA, 5–14. DOI:http://dx.doi.org/10.1145/2132876.2132882

Katherine Wolstencroft, Robert Haines, Donal Fellows, Alan Williams, David Withers, Stuart Owen, Stian
Soiland-Reyes, Ian Dunlop, Aleksandra Nenadic, and others. 2013. The Taverna workflow suite: Design-
ing and executing workflows of Web Services on the desktop, web or in the cloud. Nucleic Acids Research
41, W1 (2013), W557–W561. DOI:http://dx.doi.org/10.1093/nar/gkt328

Justin M. Wozniak, Timothy G. Armstrong, Ketan Maheshwari, Ewing L. Lusk, Daniel S. Katz, Michael
Wilde, and Ian T. Foster. 2013a. Turbine: A distributed-memory dataflow engine for high performance
many-task applications. Fundamenta Informaticae 128, 3 (01 2013), 337–366. DOI:http://dx.doi.org/
10.3233/FI-2013-949

Justin M. Wozniak, Timothy G. Armstrong, Michael Wilde, Daniel S. Katz, Ewing Lusk, and Ian T. Foster.
2013b. Swift/T: Large-scale application composition via distributed-memory dataflow processing. In Proc.
IEEE/ACM CCGRID’13. 95–102. DOI:http://dx.doi.org/10.1109/CCGrid.2013.99

Wenjun Wu, Thomas Uram, Michael Wilde, Mark Hereld, and Michael E. Papka. 2010. Accelerating science
gateway development with Web 2.0 and Swift. In Proc. TG’10. ACM, New York, NY, USA, Article 23, 7
pages. DOI:http://dx.doi.org/10.1145/1838574.1838597

Youngik Yang, Jong Youl Choi, Chathura Herath, Suresh Marru, and Sun Kim. 2010. Biovlab:Bioinformatics
data analysis using cloud computing and graphical workflow composers. In Cloud Computing and
Software Services: Theory and Techniques, Syed A. Ahson and Mohammad Ilyas (Eds.). Number 309-
327. CRC Press, Inc.

Jia Yu and Rajkumar Buyya. 2005. A taxonomy of workflow management systems for grid com-
puting. Journal of Grid Computing 3, 3–4 (Sept. 2005), 171–200. DOI:http://dx.doi.org/10.1007/
s10723-005-9010-8

Yong Zhao, Mihael Hategan, Ben Clifford, Ian Foster, Gregor von Laszewski, Veronika Nefedova, Ioan
Raicu, Tiberiu Stef-Praun, and Michael Wilde. 2007. Swift: Fast, reliable, loosely coupled parallel
computation. In Proc. IEEE SERVICES’07. IEEE Computer Society, 199–206. DOI:http://dx.doi.org/
10.1109/SERVICES.2007.63

Yong Zhao, Youfu Li, Ioan Raicu, Shiyong Lu, Wenhong Tian, and Heng Liu. 2015. Enabling scalable sci-
entific workflow management in the Cloud. Future Gener. Comput. Syst. 46 (2015), 3–16. DOI:http://
dx.doi.org/10.1016/j.future.2014.10.023

Zhiming Zhao, Paola Grosso, Jeroen van der Ham, Ralph Koning, and Cees de Laat. 2011. An agent based
network resource planner for workflow applications. Multiagent and Grid Systems 7, 6 (2011), 187–202.

Daniel Zinn, Quinn Hart, Timothy McPhillips, Bertram Ludäscher, Yogesh Simmhan, Michail Gi-
akkoupis, and Viktor K. Prasanna. 2011. Towards reliable, performant workflows for streaming-
applications on cloud platforms. In Proc. IEEE/ACM CCGRID’11. 235–244. DOI:http://dx.doi.org/
10.1109/CCGrid.2011.74

Received March 2015; revised May 2016; accepted September 2016

ACM Computing Surveys, Vol. 49, No. 4, Article 66, Publication date: December 2016.

http://dx.doi.org/10.1109/MC.2009.365
http://dx.doi.org/10.1145/2132876.2132882
http://dx.doi.org/10.1093/nar/gkt328
http://dx.doi.org/10.3233/FI-2013-949
http://dx.doi.org/10.3233/FI-2013-949
http://dx.doi.org/10.1109/CCGrid.2013.99
http://dx.doi.org/10.1145/1838574.1838597
http://dx.doi.org/10.1007/s10723-005-9010-8
http://dx.doi.org/10.1007/s10723-005-9010-8
http://dx.doi.org/10.1109/SERVICES.2007.63
http://dx.doi.org/10.1109/SERVICES.2007.63
http://dx.doi.org/10.1016/j.future.2014.10.023
http://dx.doi.org/10.1016/j.future.2014.10.023
http://dx.doi.org/10.1109/CCGrid.2011.74
http://dx.doi.org/10.1109/CCGrid.2011.74

