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Security metrics have received significant attention. However, they have not been systematically explored
based on the understanding of attack-defense interactions, which are affected by various factors, including
the degree of system vulnerabilities, the power of system defense mechanisms, attack (or threat) severity,
and situations a system at risk faces. This survey particularly focuses on how a system security state can
evolve as an outcome of cyber attack-defense interactions. This survey concerns how to measure system-level
security by proposing a security metrics framework based on the following four sub-metrics: (1) metrics of
system vulnerabilities, (2) metrics of defense power, (3) metrics of attack or threat severity, and (4) metrics of
situations. To investigate the relationships among these four sub-metrics, we propose a hierarchical ontology
with four sub-ontologies corresponding to the four sub-metrics and discuss how they are related to each other.
Using the four sub-metrics, we discuss the state-of-art existing security metrics and their advantages and
disadvantages (or limitations) to obtain lessons and insight in order to achieve an ideal goal in developing
security metrics. Finally, we discuss open research questions in the security metrics research domain and
we suggest key factors to enhance security metrics from a system security perspective.
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1. INTRODUCTION

How to develop security metrics has been identified as one of the hard problems by many
key organizations including the US INFOSEC Research Council [Council 2007], the US
National Science and Technology Council [Science and Council 2011], and the Science
of Security Lablets [Nicol et al. 2015]. As one of the efforts to address this problem, the
US National Institute of Standards and Technology (NIST) proposed security metrics
in implementation, effectiveness, and impact [Chew et al. 2008]. The Center for Internet
Security (CIS) defined 28 security metrics in management, operational, and technical
aspects of a system [CIS 2010]. However, these efforts are exclusively geared towards
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cyber defense administrations and operations. To the best of our knowledge, there has
been little discussion on how security metrics may be used as parameters in security
modeling. Further, the gaps or limitations between the state-of-the-art security metrics
and the desirable ultimate goals, and how to fill these gaps have not been discussed
in the literature. In this article, we make contributions to address these issues by
proposing a security metric framework based on a system-level security perspective. We
hope this effort can provide insightful guidelines and concrete directions for developing
security metrics in this research domain.

1.1. Contributions

We propose a perspective for structuring systems security metrics, which is centered on
measuring the dynamic systems security state (e.g., situation awareness for security
decision-making) with three components: system vulnerabilities, attacks (or threats)
severity, and power of defense mechanisms. This perspective allows us to easily tackle
how to quantify security by seeking the mathematical abstractions or functions that
can map multiple metrics associated with security into security state metrics. In this
sense, our article makes the following contributions:

—We describe the following four sub-metrics based on key characteristics of attack-
defense interactions: (1) metrics of system vulnerabilities, (2) metrics of defense
strength, (3) metrics of attack (or threat) severity, and (4) metrics of situation un-
derstanding. These metrics reflect that attackers attempt to exploit system vulner-
abilities despite the presence of defense mechanisms, and the strengths of defense
mechanisms and attacks significantly impact a system’s security state.

—We are particularly interested in the dynamic evolution of systems security over
time, where a system needs to deal with attackers and employs various types of de-
fense mechanisms [LeMay et al. 2011; Xu 2014a]. Investigating key factors affecting
the dynamic evolution of systems security state provides the potential to enhance
decision-making ability for cyber defense operations in highly dynamic, real-time
situations.

—By categorizing many existing metrics into the four sub-metrics, we discuss their
advantage and limitations and suggest future research directions. By investigating
existing systems security metrics under these four metric areas, we propose a set of
ideal metrics that can provide an insightful, forward-looking perspective to advance
security metrics research.

—We discuss several gaps between the state of the art and the ultimate goals of secu-
rity metrics. We leverage ontology-based methodologies to embrace comprehensive
dimensions of systems security metrics, which enables systematically building a hier-
archical structure of existing systems security metrics. This effort will substantially
help define core systems security metrics where flooding terms of similar security
metrics have been used in the field without any agreement or justification.

The rest of this article is organized as follows. Section 2 discusses existing survey
papers on security metrics and makes clear the additional contributions of our article.
Section 3 clarifies the scope and survey methodology in our article. For Sections 4–7, we
discuss existing metrics categorized by the aforementioned four sub-metrics. Section 8
identifies the gaps between existing security metrics and ideal security metrics. Last,
Section 9 concludes the article and suggests future research directions.

2. EXISTING SURVEY ON METRICS

Verendel [2009] conducted a survey on the literature published between 1981 and
2008 on the topic of quantitative security. The surveyed papers were categorized based
on their (i) perspective (e.g., security goals, economic and risk, reliability), (ii) targets
(e.g., economic incentives, framework for selecting quantification method, threats),
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(iii) assumptions (e.g., independence, rationality, stationarity), and (iv) validation
methods (e.g., hypothetical, empirical, simulation-based, theoretical). Verendel argued
that “quantified security is a weak hypothesis” because the validity of results was not
clear due to the lack of statistically sound evidence to either corroborate or contradict
them. The main cause of this issue is the lack of security data to validate the methods.

Villarrubia et al. [2004] classified security metrics based on security goals (i.e., confi-
dentiality, integrity, availability, and authentication), control areas (i.e., management,
operations, and technical aspects), temporal dimension (i.e., prevention, detection, re-
sponse, and recovery), or targeted users (e.g., technical personnel, decision-maker, ex-
ternal authority). Unlike Verendel [2009] and Villarrubia et al. [2004], our work uses
a holistic perspective to develop system-wide security metrics based on the four key
dimensions of attack-defense interactions.

To the best of our knowledge, this is the first work to systematically survey systems
security metrics. Nevertheless, other related efforts have been made in the literature.
For example, Landwehr et al. [1994] discussed a taxonomy of program flaws, Nicol
et al. [2004] discussed model-based evaluation of dependability, Chandola et al. [2009]
surveyed anomaly detection, Milenkoski et al. [2015] surveyed the evaluation of In-
trusion Detection Systems (IDS), Roundy and Miller [2013] reviewed the problem of
obfuscation, and Ugarte-Pedrero et al. [2015] surveyed packing tools. However, we
still find that our survey article makes a unique contribution by using the proposed
dynamic security metric framework dealing with key factors impacting the overall se-
curity of a system in multiple dimensions and discussing the existing metrics and their
merit/demerit.

3. SURVEY APPROACH

3.1. Scope

To achieve an appropriate scope, we conduct our survey based on the following criteria:

—The articles used in this survey article were selected based on the types of security
metrics because we focus on the definitions of security metrics used by each article.
We treat analysis approaches as an orthogonal issue because a security metric may
be analyzed via multiple approaches.

—We emphasized the latest security metrics. For example, we review the Common
Vulnerability Scoring System (CVSS) v3.0 [FIRST 2015], which supersedes CVSS
v2.0.

—We focused on investigating systems security metrics, excluding building-blocks secu-
rity metrics (e.g., security metrics of cryptographic primitives). Our goal is to propose
a metric framework applicable to many contexts, providing a generic framework of
security metrics that can be the basis of a security metrics standard.

3.2. Terminology

This work uses the following terminologies:

—Security metrics and measurements: Although there is no standard definition
of security metrics, security metrics have been considered to reflect quantitative
security attributes based on certain scales (e.g., nominal, ordinal, interval) [Jansen
2009; Böhme and Freiling 2008]. Note that a metric refers to assigning a value to an
object while measurement is the process of estimating attributes of an object.

—Systems: This work focuses on systems security metrics. In this context, we consider
the two types of systems as follows:
(1) Enterprise systems refer to networked systems of multiple computers/devices,

clouds, or even the entire cyberspace; and
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(2) Computer systems represent individual computers/devices. We interchangeably
use the terms node, device, or computer to refer to a single entity. Since an
enterprise system consists of multiple entities, measuring security of individual
entities can lead to measuring security of the enterprise system.

—Attackers: These are attacking entities representing computers or IP addresses from
which cyber attacks are launched against other normal entities.

—Incident: It represents a successful attack (e.g., malware infection or data breach).

3.3. Scales of Metrics

Attributes of an object should be measured by certain scales. We discuss the five
types of scales [Stevens 1946]. The five types of the scales formulate a hierarchy in
terms of invariance of transformation where each scale has its associated permissible
procedures for statistical inference and data analysis [Roberts 1979; Stevens 1946;
Böhme and Freiling 2008]. The hierarchy may not be comprehensive for security
metrics [Velleman and Wilkinson 1993] and the discussion of its validity is beyond the
scope of this work. The six types of scales are as follows:

—Nominal: This scale is also known as a categorical scale, represented by a discrete
unordered set. For example, an attacker’s attack vector can be denoted as a set of
exploits with respect to a set of software vulnerabilities. Measurement in a nom-
inal scale can be compared using standard set operations. Nominal scales can be
transformed between each other via some methods for one-to-one mapping.

—Ordinal: This scale is a discrete ordered set, in which we can use operators such as
“greater than” to compare two measurements on the same ordinal scale. This scale
can measure severity of vulnerabilities or attacks. Ordinal scales can be transformed
between each other based on monotonic (i.e., order-preserving) one-to-one mapping
methods. Ordinal scales are one step higher (i.e., more accurate in the measurement)
than nominal scales in the hierarchy of scales because it can downgrade to nominal
scale at the cost of information loss.

—Interval: This scale extends the ordinal scale such that the distance between adja-
cent points on the scale is constant. This equal-distance property allows the difference
operator by which one can compare the difference between two points and the dif-
ference between another two points. One can define linear transformations between
two interval scales, which preserve constant distance between two points on the
same scale. An example is the measurement of temperature at the Fahrenheit or
Celsius scale, between which there is a well-known transformation. Interval scales
can be analyzed via statistical analysis, such as mean, variance, and even higher mo-
ments. Interval scales can be downgraded to ordinal (and therefore nominal) scales
by relaxing the equal-distance condition on the scale.

—Ratio: This scale extends the interval scale by defining the origin (i.e., value of 0)
in a natural fashion. Examples are length, mass, pressure, time, temperature on the
Kelvin scale, or amount of money. Ratio scales can be operated with multiplication,
logarithm, and finding roots. Transformations can be defined between ratio scales.

—Absolute: This measures things measurable only in a single method. Counting is
a simple example of absolute scale. Clearly, any kind of statistical analysis can be
applied to measurements in the absolute scale.

—Distribution: This scale is used to measure an attribute with inherent uncertainty.
For instance, projected vulnerabilities should be measured as random variables,
which can be compared based on their distributions [Da et al. 2014].

Discussion. Using a different scale gives a different level of accuracy, leading to a
different degree of understanding in a given value as a metric. A higher level of scale
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Fig. 1. Attack-defense interactions in an enterprise system at time t.

in the hierarchy gives higher accuracy that can be easily transformed to a low level of
scale. Measurements using a higher level of scale permits richer statistical inference.

3.4. Methodology

The perspective of cyber attack-defense interactions is equally applicable to both en-
terprise systems and computer systems.

3.4.1. Enterprise Systems. Figure 1 illustrates a snapshot of an enterprise system under
attack-defense interactions. At time t, the enterprise system consists of n entities
(i.e., computers), denoted by the vector C(t) = {c1(t), . . . , cn(t)}, where n can vary over
time t. Each entity, ci(t), has a vector vi(t) of vulnerabilities, such as zero-day and/or
some unpatched software vulnerabilities. Red arrows refer to attacks and blue bars
represent defenses, where defense mechanisms are placed at both individual entities
(e.g., anti-malware tools) and an enterprise system (e.g., firewalls). We use the thickness
of red arrows and blue bars to illustrate the intuitive notion of strength (or power) of
attack and defense. Some attacks penetrate through the defenses while others fail.
The outcome of the attack-defense interaction at time t is reflected by a global security
state vector S(t) = {s1(t), . . . , sn(t)}, where si(t) = 0 means entity ci(t) is secure at time
t and si(t) = 1 means entity ci(t) is compromised at time t. However, the defender’s
observation of the security state vector S(t), denoted by O(t) = {o1(t), . . . , on(t)}, is
imperfect due to detection errors or inherent noises.

3.4.2. Individual Systems. Figure 2 illustrates a computer system ci(t) at time t,
representing an individual entity in the enterprise system discussed above. We use
the same notations to represent the strength of defense and attack as used in an
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Fig. 2. Attack-defense interactions in a computer (or device), ci(t), in the enterprise system at time t.

enterprise system. Entity ci(t) may have a range of vulnerabilities (e.g., giving an error
range), denoted by vi(t) in Figure 1. The vulnerabilities include a user’s vulnerability
(or susceptibility) to social-engineering attacks, the use of weak passwords, or software
vulnerabilities. The defense for protecting entity ci(t) may include, for example, the
use of some filtering mechanisms deployed at the enterprise system perimeter to block
traffic from malicious or blacklisted IP addresses, the use of some attack detection
mechanisms to detect and block attacks before they reach ci(t), and the use of proactive
defense mechanisms (e.g., address space randomization) to mitigate vulnerabilities
exploitable by attackers (i.e., exploitability).

An example scenario is illustrated in Figure 2 as follows. An attacker can perform
a vector of 11 attacks, Ai for i = 1, . . . , 11, some of which may successfully penetrate
through the defense of ci(t). For instance, A1 successfully compromises ci(t) because the
user is lured into clicking a malicious URL; A4 successfully compromises ci(t) because
the user’s password is correctly guessed; A6 and A7 successfully compromise ci(t) by
exploiting a zero-day vulnerability, even under proactive defense mechanisms placed
on ci(t); and A9 successfully compromises ci(t) because the vulnerability is unpatched
and the attack is neither filtered nor detected. Some defense mechanisms along with
patches of potential vulnerabilities can block all of the other attacks.

3.4.3. Situation Understanding. The attack-defense interaction perspective leads to an
intuitive formulation of security modeling. In principle, the outcome of attack-defense
interaction is the evolution of the situation or situation(t), which is described by three
classes of metrics including the aforementioned dynamic security state S(t). That is,
situation(t) can be represented as a mathematical function f (·):

situation(t) = f (V (t), D(t), A(t)), (1)

where V (t) is a function of vulnerabilities at time t, D(t) is a function of defenses
at time t, and A(t) is a function of attacks at time t. Note that S(t) is a function of
security at time t that can be captured as one of the factors captured in situation(t) as
discussed in Section 7. S(t) is naturally affected by V (t), D(t), and A(t) as well. While
still preliminary, initial progress has been made towards explicit representation of the
various kinds of f (·)’s corresponding to different kinds of attack-defense interactions
[Xu 2014a]: preventive and reactive defense dynamics with or without accommodating
the dependence between the relevant random variables [Li et al. 2011; Xu and Xu 2012;
Xu et al. 2012b, 2014a, 2015a; Da et al. 2014]; proactive defense dynamics [Han et al.
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Table I. Metrics and Measurement of Vulnerabilities, Defenses, Attacks, and Situations

Vulnerability metrics Defense metrics Attack metrics Situation metrics
Measurement vulnerabilities of an

enterprise system
V (t), or a computer
system vi(t)

strength of defense
mechanisms D(t)

strength of attacks
A(t)

situation(t),
including system’s
security S(t)

Target an enterprise system
C(t) or computer
system ci(t)

defense mechanisms
D(t) employed at C(t)
or ci(t)

attacks A(t) against
C(t) or ci(t)

evolution of
situation and
environment

Types users’ vulnerabilities;
interface-induced
vulnerabilities;
software
vulnerabilities

preventive, reactive
(e.g., detection),
proactive (e.g.,
Moving-Target
Defense (MTD)), and
overall defense
strength

zero-day attacks,
targeted attack,
botnets, malware
spreading (e.g.,
infection rate), and
evasion techniques

security state,
security incidents,
security
investment

Reference
Figures

Figures 1(a) and (b),
Figure 2

Figure 1(c) and
Figure 2

Figure 1(d) and
Figure 2

Figure 1(e) and
Figure 2

Fig. 3. A high-level ontology of systems security metrics consisting of four metrics.

2014]. The basic idea is to use some model parameters to represent the V (t), D(t), and
A(t) and then use some advanced models to describe the attack-defense interactions
while accommodating these parameters. This allows one to characterize and predict
what phenomena can happen under certain f (·)’s and in certain parameter regimes.
Moreover, Equation (1) offers a solution to compare the global effect of deploying two
different sets of defenses, say, D(t) and D′(t), by comparing the corresponding outcome
situation(t) and situation′(t).

The attack-defense interaction accommodated in Equation (1) leads to natural tax-
onomies of systems security metrics that measure and represent vulnerabilities, de-
fenses, attacks, and situations. Table I provides a summary of the four types of metrics
for measuring the security state of a given system as illustrated in Figures 1 and 2.

3.4.4. Security Metric Ontology. A security metric ontology is illustrated based on the
four sub-metrics in Figure 3. In this ontology, a system “has” vulnerabilities, can be
“defended by” defense mechanisms, can be “attacked by” attacks (e.g., attack vectors),
and is “described by” situations including its security state. Accordingly, vulnerabil-
ities, defenses, attacks, and situations are respectively “described by” vulnerability
metrics, defense metrics, attack metrics, and situations metrics. Each category of met-
rics are “measured by” a type of scales (e.g., nominal, ordinal, interval, etc.), which are
omitted for simplicity in Figure 3. The relationship between the aspects are described
as follows: Attacks “exploit” vulnerabilities; attacks and defense “interact with” each
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other; vulnerabilities, attacks, and defenses all “affect” the situation. Corresponding
to Equation (1), situation metrics are formulated by the contributions of vulnerability,
attack, and defense metrics. Each sub-metric will have a corresponding sub-ontology
that respectively corresponds to one of the following four sections.

4. VULNERABILITY METRICS

Vulnerability metrics refer to how to measure a level of system vulnerability. This
section discusses how to measure the following vulnerabilities: user vulnerabilities,
interface-induced vulnerabilities, and software vulnerabilities.

4.1. Metrics for Measuring User Vulnerabilities

We discuss two types of user vulnerabilities in terms of (i) users’ cognitive bias (or error)
and (ii) users’ cognitive limitation. A user’s susceptibility to phishing attacks or insider
threat is a typical example of vulnerabilities exposed by the user’s cognitive bias, while
weak password often happens due to limited human memory. Weak password can be
easily broken by attackers, breaking an authentication mechanism.

4.1.1. Metrics for Measuring Phishing Susceptibility. Typical metrics are false positives (FP)
or false negatives (FN), where FP indicates the percentage of flagging genuine email
as phishing email while FN captures the percentage of detecting a phishing email as
a genuine email [Sheng et al. 2010]. Often human cognitive bias or personality traits
can affect phishing susceptibility [Cho et al. 2016]. The phishing susceptibility can be
measured in a ratio scale.

4.1.2. Metrics for Measuring Malware Susceptibility. Malware susceptibility is closely re-
lated to a user’s online behavior. Users who often install many applications are more
likely exposed to malware. In addition, if users visit many websites, then there is a
higher vulnerability for malware infection [Levesque et al. 2013]. This malware sus-
ceptibility is also estimated in a ratio scale.

Discussion. It would be ideal if we could measure the intuitive metric of users’
susceptibility to attacks such as social engineering. In order to estimate the overall
vulnerability caused by a collection of individual vulnerabilities, it is critical to inves-
tigating the key factors a user relies on to make security decisions such as the user’s
characteristics, including disposition, personality, or biases [Neupane et al. 2015]. Al-
though little work has investigated this issue [Howe et al. 2012; Sheng et al. 2010;
Levesque et al. 2013], it is crucial to examining the relationships between an individ-
ual user’s vulnerability based on his/her cognitive bias or personality traits in order to
accurately assess vulnerability. Investigating users’ personality traits, cognitive biases,
and/or disposition and their impact on the users’ susceptibility to attacks can be used
to design defense mechanisms for mitigating the user’s susceptibility to attacks.

4.1.3. Metrics for Measuring Password Vulnerabilities. Using a password is a common way to
authenticate a user. While entropy is the most intuitive metric to measure the strength
of a password, it is not a trivial task. Entropy is often estimated using heuristic rules
such as the NIST rule, “a bonus of up to 6 bits of entropy is added for an extensive
dictionary check” [Burr et al. 2006]. The estimated entropy of passwords is known
to only offer a rough approximation of password weakness or strength. However, the
estimated entropy cannot tell which passwords are easier to crack than others [Weir
et al. 2010; Kelley et al. 2012]. Two password metrics have emerged recently, password
guessability and password meter, which have been used in different contexts.

—Password guessability metrics: This metric aims to measure password vulnera-
bility via the time or number of guesses that a password-cracking algorithm takes
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to recover a password or a set of passwords [Ur et al. 2015, 2012; Kelley et al. 2012;
DellAmico et al. 2010]. This metric is attractive because it is easy to use and can be
used to compare password-cracking algorithms. This metric has two variants:

(1) Statistical password guessability metric: This metric measures the guessabil-
ity of a set of passwords (rather than for individual passwords) by an “idealized”
attacker with the assumption of a perfect guess [Bonneau 2012a, 2012b; Kelley
et al. 2012]. This metric mostly uses a ratio scale.

(2) Parameterized password guessability metric: This metric measures the
number of guesses an attacker needs to make via a particular cracking algo-
rithm (i.e., a particular threat model) before recovering a particular password and
training data [Weir et al. 2010; Bonneau 2012a; Kelley et al. 2012; Ur et al. 2015].
Note that using different password cracking algorithms leads to different results
[Ur et al. 2015]. This means that when uncertainty towards attack behaviors is
high, multiple cracking strategies need to be considered, which incurs high com-
putational cost. This metric is easier to use than the former one. This metric uses
an absolute scale.

—Password meter metrics: This metric is often used when one registers or updates a
password [Castelluccia et al. 2012; Carnavalet and Mannan 2015]. Password meters
use a more intuitive metric, called password strength. In principle, this metric mea-
sures the password strength via an estimated effort to guess the password, where the
effort may be represented by a real number on a scale (e.g., probability of cracking),
while considering factors such as the character set (e.g., special symbols are required
or not), password length, whitespace permissibility, password entropy, and black-
listed passwords being prevented or not. One variant metric is adaptive password
strength, which is used to improve the accuracy of strength estimation by comput-
ing the probability of occurrence of n-grams in passwords with respect to a n-gram
database. Multiple scales can be used for measuring the strength of passwords, such
as an ordinal scale.

Discussion. Although passwords are commonly used as an authentication mech-
anism due to their simplicity, building a set of rigorous and well accepted rules for
quantifying password vulnerabilities remains as an important research problem. For
example, it should be avoided that a password is diagnosed as strong by one metric
but treated as weak by another metric. There should be an effort to derive an accurate
result based on multiple diagnosed results from different metrics so a unified metric
can represent a valid quality of a given password. It seems ideal if we can consistently
and systematically measure the intuitive metric of password strength, which may be
considered in the worst-case or average-case scenario and may be considered in the
parameterized setting.

4.2. Metrics for Measuring Interface-Induced Vulnerabilities

The interface to access software from the outside world (i.e., service access points) offers
potential opportunities for launching cyber attacks against the software. Attack surface
metrics [Manadhata and Wing 2011] aim to measure the ways by which an attacker can
compromise a targeted software. This metric was devised because many attacks against
a software can be conducted by entering data from the environment (in which the
software runs) to the software (e.g., buffer overrun) or by receiving data via interactions
with the software. These attacks typically interact with the software by connecting to
a channel (e.g., socket) or invoking a method (e.g., Application Programming Interface)
offered by the software or sending/receiving data items to/from the software.

The methods, channels, and data items are considered as resources. An entry-point-
exit-point framework [Manadhata and Wing 2011] was introduced to identify relevant
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resources, where an entry point is a method for receiving data from the environment,
and an exit point is a method for sending data to the environment. Each resource may
or may not contribute to a software’s attack surface. The contribution of a resource to
the software’s attack surface is the likelihood that the resource can be abused to launch
attacks, where the likelihood depends on the privilege needed for using the resource.
The potential damage caused by the abused resource is called damage potential. On
the other hand, an attacker needs to make efforts to have privileges to use resources.

The potential damage of a method m can be defined as the number of calls to the
method, implying that the higher the number of m method calls, the greater the poten-
tial damage. The effort to call a method mcan be defined as the number of methods, Nm.
The smaller the Nm, the greater the effort because in a sense the attacker has fewer
options. For resource r, the ratio of the potential damage and effort is Rd,e(r) �→ q,
where q ∈ Q and Q is the set of rational numbers. The quantity Rd,e(r) reflects the
contribution of resource r to attack surface. This idea is equally applicable to all kinds
of resources, namely methods (or entry and exit points, denoted by M), channels of-
fered by the software (denoted by C), and data items of the software (denoted by I).
Therefore, the attack surface of the software measures the subset of resources that can
be abused to compromise the software, and it is defined as a tuple as follows:〈 ∑

m∈M
Rd,e(m),

∑
c∈C

Rd,e(c),
∑
i∈I

Rd,e(i)

〉
. (2)

This metric is specific to an environment, implying that one can compare the attack sur-
faces of two different versions of the same software running on the same environment.
This metric is measured by an absolute scale.

Discussion. Attack surface is not defined dependent on software vulnerabilities.
Reducing the attack surface (e.g., uninstalling a security software) does not necessarily
improve security [Nayak et al. 2014]. Putting the interface-induced vulnerabilities into
the context of Equation (1), a desirable metric would be the susceptibility of a software
system to certain attacks according to a threat model, perhaps through how the exercise
of attack surface is dependent on the features of attack surfaces, measured by a ratio
scale. It is critical for predicting interface-induced system susceptibilities, namely the
interfaces that will be exploited to launch attacks in the near future. This will allow
the defender to employ tailored defenses targeting for these interfaces.

4.3. Metrics for Measuring Software Vulnerabilities

We divide software vulnerability metrics into three categories: temporal attributes of
vulnerabilities, individual vulnerabilities, and collective vulnerabilities.

4.3.1. Metrics for Measuring Temporal Attributes of Vulnerabilities. These metrics can be fur-
ther divided into two sub-categories of metrics for measuring: (i) the evolution of vul-
nerabilities and (ii) vulnerability lifetime [Al-Shaer et al. 2008; Ahmed et al. 2008].

—Metrics for measuring the evolution of vulnerabilities include:
(1) Historical vulnerability metric measures the degree that a system is vulner-

able (i.e., frequency of vulnerabilities) in the past.
(2) Historically exploited vulnerability metric measures the number of vulner-

abilities exploited in the past.
(3) Future vulnerability metric measures the number of vulnerabilities that will

be discovered during a future period of time.
(4) Future exploited vulnerability metric measures the number of vulnerabilities

that will be exploited during a future period of time.
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(5) Tendency-to-be-exploited metric measures the tendency that a vulnerability
may be exploited, where the “tendency” may be derived from information sources
such as posts on Twitter before vulnerability disclosures [Sabottke et al. 2015].

This type of metrics may be used to prioritize vulnerabilities for patching (e.g.,
depending on their tendency-to-be-exploited). This metric can use a ratio scale an
absolute scale or a distribution scale depending on an application’s need.

—Metrics for measuring vulnerability lifetime measures how long it takes to
patch a vulnerability since its disclosure, measured by an absolute scale. The three
vulnerabilities can be considered to measure different vulnerability lifetimes as:
(1) Client-end vulnerabilities are often exploited to launch targeted attacks (e.g.,

spear-fishing) [Hardy et al. 2014; Marczak et al. 2014]. It often takes a long time
to patch all infected devices or possibly infeasible to patch all [Frei and Kristensen
2010; Nappa et al. 2015].

(2) Server-end vulnerabilities are usually more rapidly patched than client-end
vulnerabilities. Some example cases of patching server-end vulnerabilities can be
found in Yilek et al. [2009] and Durumeric et al. [2014].

(3) Cloud-end vulnerabilities have been reported by many clouds (e.g., Amazon),
but the patching process is rather slow [Zhang et al. 2014].

Discussion. Vulnerability lifetime is a critical factor affecting vulnerabilities V (t)
and the situation situation(t), especially the global security state S(t). This insight
offers a new problem that appears to not have been investigated such as prioritizing
vulnerabilities according to their impact on situation(t), especially S(t), according to
Equation (1). We should analyze the risk of not patching an entity ci(t), which is affected
by the severity of vulnerabilities that will be discussed in the following sections.

4.3.2. Metrics for Measuring Severity of Individual Software Vulnerabilities. The CVSS aims to
measure software vulnerabilities with an emphasis on ranking them for prioritizing
patching operations [FIRST 2015]. The Common Weakness Scoring System (CWSS)
aims to prioritize software weaknesses for a different purpose [MITRE 2014]. In this
work, we focus on CVSS version 3.0 [FIRST 2015] based on three categories of the
following metrics: base metrics (including exploitability and impact), temporal metrics,
and environmental metrics. Due to space constraints, we provide a brief summary in
Table II.

Discussion. Despite the tremendous effort such as the CVSS, our understanding
is still limited because some intuitive metrics still remain to be investigated, such as
patching priority and global damage of vulnerabilities.

4.3.3. Metrics for Measuring Severity of a Collection of Vulnerabilities. Many attacks in the real
world are performed in multiple steps and exploit multiple vulnerabilities. Correspond-
ingly, there have been efforts on analyzing the consequences of multiple vulnerabilities,
including attack graphs [Phillips and Swiler 1998; Sheyner et al. 2002; Ritchey and
Ammann 2000; Jha et al. 2002; Ammann et al.; Albanese et al. 2012; Homer et al. 2013;
Cheng et al. 2014], Bayesian Networks [Liu and Man 2005; Frigault and Wang 2008;
Frigault et al. 2008], attack trees [Schneier 2000], and privilege trees [Dacier et al. 1996;
Ortalo et al. 1999]. We survey two types of metrics measuring the severity of a collection
of vulnerabilities particularly in attack graphs: deterministic and probabilistic.
Deterministic Severity Metrics
These metrics are mainly defined over attack graphs. Two sub-metrics are as follows:

—Topology metrics are for measuring how the topological properties of attack graphs
(e.g., connectivity) affect network attacks. The following two metrics are commonly
discussed under the topology metrics:
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Table II. CVSS Version 3.0 Metrics for Measuring Severity of Individual Software Vulnerabilities,
Where ‘*’ Means That the Scales Are the Same as the Base Metrics

Metric Definition Scale
Base metrics: Exploitability

Attack vector Describes whether a vulnerability can be exploited remotely,
adjacently, locally, or physically (i.e., attacker must have physical
access to the computer)

Nominal

Attack
complexity

Describes the conditions that must hold before an attacker can
exploit the vulnerability, such as low or high

Ordinal

Privilege
required

Describes the level of privileges that an attacker must have in order
to exploit a vulnerability, such as none, low, or high

Ordinal

User
interaction

Describes whether the exploitation of a vulnerability requires the
participation of a user (other than the attacker), such as none or
required.

Nominal

Authorization
scope

Describes whether or not a vulnerability has an impact on resources
beyond its privileges (e.g., sandbox or virtual machine), such as
unchanged or changed

Nominal

Base metrics: Impact
Impact metrics The impact of a successful exploitation of a vulnerability in terms of

confidentiality, integrity, and availability, such as none, low, high
Ordinal

Temporal metrics
Exploit code
maturity

The likelihood a vulnerability can be attacked based on the current
exploitation techniques, such as undefined, unproven,
proof-of-concept, functional, or high

Ordinal

Remediation
level

Describes whether or not a remediation method is available for a
given vulnerability, such as undefined, unavailable, workaround,
temporary fix, or official fix

Nominal

Report
confidence

Measures the level of confidence for a given vulnerability as well as
known technical details, such as unknown, reasonable, or confirmed

Nominal

Environmental metrics
Security
requirement

Describes environment-dependent security requirements in terms of
confidentiality, integrity, and availability, such as not defined, low,
medium, or high.

Nominal

Modified base Base metrics customized to a specific environment *

(1) Depth metric refers to a ratio of the diameter of a domain-level attack graph
over the diameter in the most secure case, implying that the larger the diameter,
the more secure the network [Noel and Jajodia 2014];

(2) Existence, number, and lengths of attack paths metrics use the attributes
of attack paths from an initial state to the goal state [Ritchey and Ammann 2000;
Sheyner et al. 2002; Jha et al. 2002; Cheng et al. 2014; Idika and Bhargava 2012].
These metrics can be used to compare two attacks. For example, an attack with
a set X of attack paths is more powerful than an attack with a set Y of attack
paths, where Y ⊂ X.

—Effort metrics capture the degree of effort by a defender to mitigate vulnerability
exploitation by attackers or by an attacker to exploit a given vulnerability. The
common metrics under this metric category are as follows:
(1) Necessary defense metric estimates a minimal set of defense countermeasures

necessary for thwarting a certain attack [Sheyner et al. 2002];
(2) Effort-to-security-failure metric measures an attacker’s effort to reach its goal

state [Dacier et al. 1996; Ortalo et al. 1999];
(3) Weakest adversary metric estimates minimum adversary capabilities required

to achieve an attack goal [Pamula et al. 2006];
(4) k-zero-day-safety metric measures a number of zero-day vulnerabilities for an

attacker to compromise a target [Wang et al. 2010].
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Discussion. Deterministic severity metrics are typically defined according to attack
graphs based on known vulnerabilities. However, devastating attacks in the real world
often exploit zero-day vulnerabilities whose measurement still remains unsolved. To
measure system vulnerabilities, the following designs should be considered: (i) iden-
tification of vulnerabilities that have never been exploited, (ii) the degree of scanner
capability in depth and completeness, and (iii) different types of zero-day attacks. The
consideration of these components are closely related to measuring situation aware-
ness as a vulnerability metric, which provides temporal vulnerability states of a system,
namely V (t) or vi(t). Assessing accurate vulnerability state V (t) can provide accurate
prediction of future attacks.

Probabilistic Severity Metrics
The deterministic metrics mentioned above assume that vulnerabilities can certainly
be exploited, implying that they measure what is possible rather than what is more
likely than others [Ou and Singhal 2011; Singhal and Ou 2011]. To be more realistic,
one can associate an exploit node (i.e., a node that can be exploited) in an attack graph
with a success probability. There are two approaches for defining probabilistic security
metrics, differing in treating CVSS scores as atomic parameters or not.

—Metrics treating CVSS scores as atomic parameters: The likelihood of exploita-
tion metric measures the probability that an exploit will be executed by an attacker
with certain capabilities [Wang et al. 2008; Ou and Singhal 2011]. In an attack graph,
there are two types of vertices, exploit node e and condition node c, and two types
of arcs, e → c (meaning execution of exploit e leads to a satisfaction condition c)
and c → e (meaning satisfaction condition c is necessary for executing exploit node
e). Each exploit node e is associated with a probability p(e) for the event that e is
executed when all conditions c with c → e are satisfied, where p(e) is determined
based on expert knowledge or CVSS scores. Each condition node is associated with
a probability p(c) for the event that c is satisfied when all exploits e with e → c are
executed. Given an attack graph (or the corresponding Bayesian Network) and the
associated p(e)’s and p(c)’s, one can calculate the likelihood of exploitation, namely
the overall probability that an exploit node e is executed by an attacker with certain
capabilities.

—Metrics not treating CVSS scores as atomic parameters: Given an attack graph
and a subset of exploits, the effective base metric aims to adjust the CVSS base metric
by taking the highest value of the ancestors of an exploit to reflect the worst-case
scenario, while the effective base score metric is calculated based on the effective base
metric [Cheng et al. 2012].

Discussion. The preceding metrics are combinatorial in nature and assume a static
system environment. While the temporal metrics surveyed in Section 4.3.1 consider
dynamic aspects of security, it is not clear how to reconcile these combinatorial metrics
with the continuous evolution of systems rather than investigating these systems at
individual snapshots over time. Along this direction, a starting point is to convert an
attack graph into a Bayesian Network where nodes are binary variables corresponding
to the exploit nodes in the attack graph and arcs encode conditional relationships
between the variables [Frigault and Wang 2008; Frigault et al. 2008].

5. DEFENSE METRICS

Defense metrics aim to measure the strength of defense mechanisms placed in a system.
We discuss how to measure the strength of preventive, reactive, and proactive defense
mechanisms in addition to the strength of an overall system defense.
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5.1. Metrics for Measuring the Strength of Preventive Defenses

Preventive defenses aim to block attacks. We focus on measuring the strength of the fol-
lowing preventive defenses: blacklisting, Data Execution Prevention (DEP, also known
as W⊕X), and Control-Flow Integrity (CFI).

5.1.1. Metrics for Blacklisting. Blacklisting is a useful, lightweight defense mechanism.
Suppose a malicious entity (e.g., attacking computer, IP address, malicious URL, botnet
command-and-control server, and drop-zone server) is observed at time t. Then, traffic
flowing to or from the malicious entity can be blocked starting at some time t′ ≥ t.
Under this situation, two metrics can be derived:

—Reaction time metric captures the delay between the observation of the malicious
entity at time t and the blacklisting of the malicious entity at time t′ (i.e., t′ − t)
[Kührer et al. 2014], measured by an absolute scale.

—Coverage metric estimates the portion of blacklisted malicious players [Kührer
et al. 2014]. This metric is measured by an ordinal scale.

Discussion. These metrics can be used to compare the strength of different blacklists
and guide the design of blacklisting solutions. Based on our envisaged overall security
metric in Equation (1), delay and coverage can be used to derive the strength of dynamic
attacks based on the probabilities that a certain fraction of entities are compromised
at time t, contributing to obtaining the dynamic security state. A measure such as
the probability that a malicious entity (e.g., computer, IP address, URL) is or is not
blacklisted can be useful in capturing the dynamic security state.

5.1.2. Metrics for DEP. Code injection was a popular method for injecting some mali-
cious code into a running program and directing the processor to execute it. The attack
requires the presence of a memory region executable and writable because operating
systems do not distinguish code from data (e.g., native stacks on Linux and Windows
were executable). The attack can be defeated by deploying DEP, which ensures that a
memory page can be writable or executable at any time but not both. To the best of
our knowledge, no metrics have been defined to measure the effectiveness of DEP. The
effectiveness of DEP can be measured based on the probability of being compromised
by a certain attack A(t) over all possible classes of attacks. This requires the precise
definition and measurement of this metric.

5.1.3. Metrics for CFI. Memory corruption is a key factor in code injection and code reuse
attacks. CFI aims to mitigate such attacks by extracting a program’s Control-Flow
Graph (CFG), representing the possible execution paths of the program. CFI further
instruments the binary code to abide by the CFG at runtime. This is implemented by
runtime checking of the tags assigned to the indirect branches in the CFG, such as
indirect calls, indirect jumps, and returns, while noting that direct branches do not
need validity checking because the pertinent targets are hard coded and cannot be
modified by the attacker. CFI mechanisms vary greatly in terms of the types of indirect
branches subject to validation and the number of targets with respect to a branch.
These factors lead to different tradeoffs between security and performance. We discuss
the well-known three metrics as a measure of CFI’s quality as follows:

—Average indirect target reduction measures the overall reduction in terms of the
number of targets exploitable by the attacker where smaller targets are more secure
[Burow et al. 2016]. A defense leading to few but large targets offers less security
than a defense leading to more, but smaller, targets. This metric can be measured by
an absolute scale.
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—Average target size is defined as the ratio between the size of the largest target
and the number of targets. The smaller the ratio, the better the security [Burow
et al. 2016]. An inherent tradeoff exists between efficiency of enforcing CFI and
the accuracy of CFG (e.g., granularity of CFI vs. accuracy of CFG affected by the
soundness and completeness of the pointer analysis) [Göktas et al. 2014; Davi et al.
2014; Carlini and Wagner 2014].

—Evasion resistance is measured against control flow bending attacks, reflecting
the effort (or premises) that an attacker must make (or satisfy) for evading the CFI
scheme [Carlini et al. 2015; Niu and Tan 2015].

Discussion. Applying the metrics of CFI strength in Equation (1), the metric for
enforcing CFI can be applied as the probability that code-reuse attacks are blocked,
representing the strength of CFI against the attacks. To measure evasion resistance
against attacks, we need to have a formalism to precisely classify attacks. It is a chal-
lenging task to derive a right formalism under a high volume of attack types.

5.2. Metrics for Measuring the Strength of Reactive Defenses

Detection mechanisms are well-known strategies for reactive defenses, including in-
trusion detection systems (IDSs) and anti-malware programs. We discuss metrics for
monitoring and measuring their individual, relative, and collective strengths.

5.2.1. Metrics for Monitoring. Attackers can be detected by monitoring mechanisms. Cur-
rent monitoring practices only consider configurations of intrusion detection monitors,
but not monitoring cost or impact of the existing compromised monitors. The common
metrics to measure the quality of monitoring mechanisms are [Thakore 2015]:

—Coverage metric measures the fraction of events detectable by a specific sensor
deployment, reflecting a defender’s need in monitoring events.

—Redundancy metric estimates the amount of evidence provided by a specific sensor
deployment to detect an event. The amount of redundancy can be counted by the
amount of sensors providing same information towards a same event.

—Confidence metric measures how well-deployed sensors detect an event in the
presence of compromised sensors. This task needs to quantify truthfulness of the
reports received from individual sensors.

—Cost metric measures the amount of resources consumed by deploying sensors in-
cluding the cost for operating and maintaining sensors.

Discussion. It is important to define metrics for systematically measuring the
strength and robustness of monitor deployments against possibly sophisticated at-
tacks. Since a monitor deployment would have an inherent capability in terms of the
set of attack vectors it can detect, it is important to characterize the attack vectors that
can and cannot be detected by a specific monitor deployment. These metrics could be
immediately used as model parameters D(t) in Equation (1).

5.2.2. Metrics for Detection Mechanisms. Detection mechanisms can be measured via their
individual, relative, and collective strengths.
Metrics for the Individual Strength of Defense Mechanisms

—Detection time: For instrument-based attack detection, this metric is used to mea-
sure the delay between the time t0 at which a compromised computer sends its
first scan packet and the time t that a scan packet is observed by the instrument
[Rajab et al. 2005]. This metric depends on several factors, including the size of the
monitored IP address space and the locations of the instrument.

ACM Computing Surveys, Vol. 49, No. 4, Article 62, Publication date: December 2016.



62:16 M. Pendleton et al.

—Intrusion detection metrics: For IDS, including anomaly-based, host-based, and
network-based IDS, their strength can be measured by:
(1) True-positive rate (Pr(A|I)) is the probability that an intrusion, I, is detected as

an attack, A.
(2) False-negative rate (Pr(¬A|I)) is the probability that an intrusion, I, is not de-

tected as an attack, ¬A.
(3) True-negative rate (Pr(¬A|¬I)) is the probability that a non-intrusion, ¬I, is not

detected as an attack, ¬A.
(4) False-positive rate (Pr(A|¬I)), or false alarm rate, is the probability that a non-

intrusion, ¬I, is detected as an attack, A. Note that Pr(A|I)+Pr(¬A|I) = Pr(¬A|¬I)+
Pr(A|¬I) = 1.

(5) Intrusion detection capability metric is the normalized metric of I(I,O) with
respect to H(I) based on the base rate where I is the input to the IDS as a stream
of 0/1 random variables (0 for benign/normal and 1 for malicious/abnormal), O
is the output of the IDS as a stream of 0/1 random variables (0 for no alert or
normal; 1 for alert / abnormal), H(I) and H(O), respectively, denote the entropy
of I and O, and I(I,O) = H(I) − H(I|O) is the mutual information between I
and O [Gu et al. 2006].

(6) Receiver operating characteristic (ROC) curve reflects the dependence of the
true-positive rate Pr(A|I) on the false-positive rate Pr(A|¬I), reflecting a tradeoff
between the true-positive and the false-positive rates.

(7) Intrusion detection operating characteristic (IDOC) curve describes the de-
pendence of the true positive rate Pr(A|I) on the Bayesian detection rate Pr(I|A),
while accommodating the base rate Pr(I) [Cardenas et al. 2006].

(8) Cost metric includes the damage cost incurred by undetected attacks, the re-
sponse cost spent on the reaction to detected attacks including both true and false
alarms, and the operational cost for running an IDS [Stolfo et al. 2000; Lee et al.
2002; Strasburg et al. 2009].

Discussion. The metrics mentioned above are mainly geared towards measuring
the detection strength of individual detection systems and comparing the strength of
two detection systems. The base rate Pr(I) of intrusions, if not adequately treated,
may cause misleading results; this is called the base-rate fallacy [Axelsson 2009]. For
example, the ROC curve does not consider the base rate information and therefore can
be misleading when the base rate is very small; whereas the IDOC curve accommodates
the base rate information, meaning that it does not suffer from this problem and can
be used to compare different IDSs that operate in environments with different base
rates [Cardenas et al. 2006]. The use of the ROC curve and cost metrics together to
evaluate IDSs is introduced in Gaffney Jr and Ulvila [2001]. A general cost-sensitive
evaluation of IDSs should consider both the security objective and the incurred cost,
while noting that the cost incurred by an IDS should not be exceed the loss caused by
intrusions [Lee et al. 2002; Cardenas et al. 2006; Strasburg et al. 2009; Stakhanova
et al. 2012]. Gu et al. [2008] present a method for aggregating the decisions of multiple
IDSs by taking into consideration the false-alarm cost and the false-negative damage.
According to a review of the publications appeared between 2000 and 2008 [Tavallaee
et al. 2010], most experimental studies in anomaly-based intrusion detection lack a
scientific rigor. Milenkoski et al. [2015] discuss more details for metrics of detection
mechanisms. When modeling intrusion detection systems in a holistic perspective, D(t)
in Equation (1), the detection probability metric refers to the conditional probability
that a compromised computer at time t is indeed detected as compromised at time t,
Pr(oi(t) = 1|si(t) = 1). This detection probability is often dependent on other factors
such as attack severity or strength of defense mechanisms.
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Metrics for the Relative Strength of Defense Mechanisms
This metric reflects the strength of a defense tool when employed in addition to other
defense tools [Boggs and Stolfo 2011; Boggs et al. 2014]. A defense tool does not offer
any extra strength if it cannot detect any attack undetected by other defense tools in
place. Let A denote a set of attacks, D = {d1, . . . , dn} denote the set of n defense tools,
and Xd denote the set of attacks detected by a defense tool d ∈ D. The relative strength
of a defense tool d′ ∈ D′ with respect to a set of defense tools D ⊂ D′ is defined as
|Xd′−∪d∈D Xd|

|A| . The metric is measured by a ratio scale.

Discussion. These metrics can be applied as parameters D(t) in Equation (1) for
characterizing the defense tools. They can be useful in predicting future or unknown
attacks, which can enhance security decision making capability.

Metrics for the Collective Strength of Defense Mechanisms
This metric measures the collective strength of IDSs and anti-malware programs
[Boggs and Stolfo 2011; Morales et al. 2012; Boggs et al. 2014; Mohaisen and Al-
rawi 2014; Yardon 2014]. Denote by A a set of attacks, D = {d1, . . . , dn} a set of defense
tools and Xd the set of attacks detected by defense tool d ∈ D. The collective detec-
tion strength of defense tools is defined as |∪d∈D Xd|

|A| [Boggs and Stolfo 2011; Boggs et al.
2014]. For malware detection, the collective use of multiple anti-malware programs
still cannot detect all malware infections [Morales et al. 2012; Mohaisen and Alrawi
2014; Yardon 2014]. For example, Yardon [2014] showed that anti-malware tools are
only able to detect 45% of attacks. This metric is measured by a ratio scale.

Discussion. These metrics can be used to compare the collective strength of two sets
of detection tools. They can be used as parameters D(t) in Equation (1) for characteriz-
ing the strength of defense in depth. They might need to be estimated with respect to
known and unknown attacks.

5.3. Metrics for Measuring the Strength of Proactive Defenses

We discuss metrics for measuring two major proactive defense mechanisms, Address
Space Layout Randomization (ASLR) and Moving Target Defense (MTD). These mech-
anisms are proactive because a system can be constantly re-configured to hinder the
attack process. On the other hand, preventive and reactive defenses often only incur
changes to the defense tools (e.g., updating malware detection signatures or rules).

5.3.1. Address Space Layout Randomization (ASLR). ASLR was first introduced by the
Linux PaX project to defend against code reuse attacks by randomizing the base ad-
dresses (i.e., shuffling the code layout in the memory) such that the attacker cannot find
useful gadgets. Coarse-grained ASLR has the vulnerability that the leak or exposure of
a single address gives the attacker adequate information to extract all code addresses.
Fine-grained ASLR does not suffer from this problem (e.g., page-level randomization
[Backes and Nürnberger 2014; Larsen et al. 2014]) but is still susceptible to attacks
that craft attack payloads from Just-In-Time (JIT) code [Snow et al. 2013].

This attack can be defeated by destructive code read, namely that the code in ex-
ecutable memory pages is garbled once it is read [Tang et al. 2015]. ASLR can also
be enhanced by preventing the leak of code pointers, while rendering leakage of other
information (e.g., data pointers) useless for deriving code pointers [Lu et al. 2015]. Two
metrics for measuring the strength of ASLR are as follows:

—Entropy metric measures the entropy of a memory section, while noting that a
greater entropy would mean a greater effort in order for an attacker to compromise
the system. For example, a brute-force attack can feasibly defeat a low-entropy ASLR
on 32-bit platforms [Shacham et al. 2004].
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—Effective entropy metric measures the entropy in a memory section that the at-
tacker cannot circumvent by exploiting the interactions between memory sections
[Herlands et al. 2014].

5.3.2. Moving Target Defense (MTD). There have been some initial efforts to measure the
strength of MTD. Han et al. [2014] proposed a metric to measure the effectiveness of
MTD by measuring the degree that an enterprise system can tolerate some undesir-
able security configurations in order to direct the global security state S(t) towards a
desired stable system state. Similar studies have been conducted via experimentation
[Zaffarano et al. 2015], emulation [Eskridge et al. 2015], and simulation [Prakash and
Wellman 2015]. However, they do not explicitly define the metrics while measuring an
abstract level of metrics through the experimental platform.

Discussion. The effectiveness of individual or collective proactive defense mecha-
nisms can be measured based on the probabilities in a ratio scale or distribution scale.
The resulting metrics, especially those measuring their strength on individual com-
puters, could be incorporated into Equation (1) as model parameters D(t) to reason
security state S(t) as part of situation(t). Potential useful metrics can capture security
gain or an extra effort required by attackers after the use of MTD.

5.4. Metrics for Measuring the Strength of Overall Defenses

We discuss the two metrics aiming to measure the strength of overall defenses of a
given system as follows:

—Penetration resistance (PR) can be measured by running a penetration test to es-
timate the level of effort (e.g., person-day or cost) required for a red team to penetrate
into a system [Levin 2003; Carin et al. 2008]. This metric can be used to compare the
defense strength of two systems against a same red team.

—Network diversity (ND) measures the least or average effort an attacker must
make to compromise a target entity based on the causal relationships between re-
source types to be considered as the inclusion in an attack graph [Zhang et al. 2016].
For example, in the attack graph, this metric can be defined as the ratio of the min-
imum number of pathwise distinct resources among all attack paths, representing
the least effort an attacker must make to the length of the shortest attack path.

Discussion. PR is estimated based on a particular red team scenario. An important
research question is how to bridge the gaps between identification of security holes and
quantification of security [Sanders 2014]. PR can consider novel attacks, which may
exploit some known or zero-day vulnerabilities based on “what-if” analysis scenarios.
Key aspects to investigate or improve ND include software diversity and the associated
maintenance overhead considering dynamics of a given setting.

6. ATTACK METRICS

Attack metrics measure the strength of attacks performed against a system. We discuss
the following attacks, which have high impact when they are defeated: zero-day attacks,
targeted attacks, botnets, malware spreading, and evasion techniques.

6.1. Metrics for Measuring Zero-Day Attacks

Two metrics to measure how many zero-day attacks were launched during certain past
period are as follows [Bilge and Dumitras 2012]:

—Lifetime of zero-day attacks measures the period of time between when an attack
was launched and when the corresponding vulnerability is disclosed to the public.
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—Victims by zero-day attacks measures the number of computers compromised by
zero-day attacks.

Discussion. Zero-day metrics typically measure the consequence in retrospect. How-
ever, if we can capture the degree of the susceptibility of a device to zero-day attacks,
then we can prioritize resource allocation to the ones requiring higher attention for
mitigating the damage. This can be considered as the part of the attack abstraction
A(t) in Equation (1) based on the number of zero-day attacks at time t.

6.2. Metrics for Measuring Targeted Attacks

The success of targeted attacks or Advanced Persistent Threats often depends on the
delivery of malware and the tactics to lure a target to open malicious email attachments.
Let α denote a social engineering tactic, ranging from the least sophisticated to the
most sophisticated (e.g., α ∈ {0, . . . , 10}). Let β denote a technical sophistication of the
malware in the attacks, ranging from the least sophisticated to the most sophisticated
(e.g., β ∈ [0, 1]). The targeted threat index metric, indicating the level of targeted
malware attacks, can be defined as α × β [Hardy et al. 2014].

Discussion. Little work has been done in measuring the intensity or severity of
targeted attacks. Measuring the level of susceptibility to a given attack (e.g., social-
engineering attacks such as phishing emails) for a particular type of user (e.g., per-
sonality traits, cognitive biases/limitations) can be a first step to enhance defense
mechanisms and to allocate right defense resources at the right places. Progress on
this matter can be incorporated into Equation (1) as model parameters A(t).

6.3. Metrics for Measuring Botnets

The threat of botnets can be characterized by the following metrics:

—Botnet size refers to the number of bots, x, that can be instructed to launch attacks
(e.g., distributed denial-of-service attacks) at time t, denoted by y(t). Due to time
zone difference, y(t) is often much smaller than the actual x as some of x is turned
off during night time at time zones [Dagon et al. 2006].

—Network bandwidth indicates the network bandwidth that a botnet can use to
launch denial-of-service attacks [Dagon et al. 2007].

—Botnet efficiency can be defined as the network diameter of the botnet network
topology [Dagon et al. 2007]. It measures a botnet’s capability in communicating
command-and-control messages and updating bot programs.

—Botnet robustness measures the robustness of botnets under random or intelligent
disruptions [Dagon et al. 2007]. The idea was derived from the concept of complex
network robustness [Albert and Barabasi 2002], characterized by the percolation
threshold under which a network is disrupted into small components.

Discussion. Defining a metric of botnet attack power is a key to prioritize the coun-
termeasures against botnets. A metric of measuring dynamic robustness can reflect
the degree of countermeasures that can be exploited by attackers when defenders fight
against the botnets. These metrics can be incorporated into Equation (1) as model
parameters A(t). Metrics of botnet attack power and botnet resilience with counter-
countermeasures (i.e., the attacker attempts to dynamically mitigate the defender’s
process for disrupting a botnet) can be useful in guiding defense operations.

6.4. Metrics for Measuring Malware Spreading

Malware spreading is a common attack where a malware can spread out at a certain
rate. The infection rate metric, denoted by γ , measures the average number of vul-
nerable computers that are infected by a compromised computer (per time unit) at the
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early stage of spreading. Intuitively, γ depends on the scanning strategy. Let z denote
the number of scans and infections made by an infected computer (per time unit) and
w denote the number of vulnerable computers. With random scanning over the IPv4
address space, the infection rate is γ = zw/232 [Chen and Ji 2007].

6.5. Metrics for Measuring Attack Evasion Techniques

Sophisticated attacks can evade defense mechanisms placed in a system using several
strategies. We discuss two types of metrics for measuring the strength of those types
of attacks: adversarial machine learning and obfuscation.

6.5.1. Metrics for Measuring Adversarial Machine Learning Attacks. Attackers can manipu-
late some features that are used in the detection models (e.g., classifiers). This problem
is generally known as adversarial machine learning [Dalvi et al. 2004; Lowd and Meek
2005; Huang et al. 2011; Šrndic and Laskov 2014]. Depending on the knowledge an
attacker has about a detection model, various evasion scenarios can be possible. The
spectrum of evasion scenarios includes that an attacker knows (i) a set of features
used by a defender; (ii) both a set of features and training samples used by the de-
fender; and (iii) a set of features, the training samples, and the attack detection model
(e.g., classifiers) used by the defender [Šrndic and Laskov 2014; Xu et al. 2014b]. The
strength of attacks can be measured by typical detection metrics such as increased
false-positive and increased false-negative rates as a consequence of applying a certain
evasion method. A framework for evaluating classifiers at their learning phase via
“what-if” analysis of attacks is presented in Biggio et al. [2014].

6.5.2. Metrics for Measuring Obfuscation Attacks. Obfuscation based on tools such as run-
time packers have been widely used by malware writers to defeat static analysis. Little
is understood about how to quantify the obfuscation capability of malware, except for
the following two metrics:

—Obfuscation prevalence metric measures the occurrence of obfuscation in mal-
ware samples [Roundy and Miller 2013].

—Structural complexity metric measures the runtime complexity of packers in
terms of their layers or granularity [Ugarte-Pedrero et al. 2015].

Discussion. Measuring the evasion capability of attacks not only allows compar-
ing the evasion power of two attacks but also allows computing the damage caused
by evasion attacks. There is potential in measuring the obfuscation sophistication of
malware in terms of the amount of effort required for unpacking packed malware. This
can help distinguish the malware needing a manual unpacking process from the mal-
ware that can be unpacked automatically. These metrics can be incorporated as model
parameters A(t) in Equation(1).

7. SITUATION METRICS

Situation metrics, denoted as situation(t) in this work, reflect the comprehensive man-
ifestation of attack-defense interactions with respect to an enterprise or computer
system. These metrics can be divided into three sub-categories: security states S(t),
historical security incidents, and historical security investments.

7.1. Metrics for Measuring Security State

As illustrated in Figures 1 and 2, the security state of an enterprise system S(t) =
(s1(t), . . . , sn(t)) and the security state si(t) of computer ci(t) both dynamically evolve
as an outcome of attack-defense interactions. We discuss the following two types of
security state metrics in this section: data driven and model driven.
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7.1.1. Data-Driven State Metrics. This type of metric measures system state based on
data. The examples of data-driven state metrics are as follows:

—Network maliciousness metric estimates the fraction of blacklisted IP addresses
in a network. According to Zhang et al. [2014], there were 350 autonomous systems
that had at least 50% of their IP addresses blacklisted. Moreover, there was a corre-
lation between mismanaged networks and malicious networks, where “mismanaged
networks” are those networks that do not follow accepted policies/guidelines.

—Rogue network metric captures the population of networks used to launch drive-by
download or phishing attacks [Stone-Gross et al. 2009].

—ISP badness metric quantifies the effect of spam from one ISP or Autonomous
System (AS) on the rest of the Internet [Johnson et al. 2012].

—Control-plane reputation metric calibrates the maliciousness of attacker-owned
(i.e., rather than legitimate but mismanaged/abused) ASs based on their control
plane information (e.g., routing behavior), which can achieve an early-detection time
of 50–60 days (before these malicious ASs are noticed by other defense means) [Konte
et al. 2015].

—Cybersecurity posture metric measures the dynamic threat imposed by the attack-
ing computers [Zhan et al. 2014]. It may include the attacks observed at honeypots,
network telescopes, and/or production enterprise systems. These metrics reflect the
aggressiveness of cyber attacks.

7.1.2. Model-Driven Metrics. This type of metric measures system states in terms of the
outcome of attack-defense interaction models.

—Fraction of compromised computers is denoted by |{i : i ∈ {1, . . . , n} ∧ si(t) = 1}|/n.
Under certain circumstances, there is a fundamental connection between a global
security state and a very small number of nodes that can be monitored carefully [Xu
et al. 2012a].

—Probability a computer is compromised at time t is represented as Pr[si(t) = 1]
as illustrated in Figure 1. This metric is proposed to quantify the degree of security
in enterprise systems by using modeling techniques based on a holistic perspective
[LeMay et al. 2011; Xu and Xu 2012; Da et al. 2014; Xu 2014a; Zheng et al. 2015; Xu
et al. 2015a, 2015b; Xu 2014b; Han et al. 2014; Xu et al. 2014a; Lu et al. 2013; Xu
et al. 2012a, 2012b; Li et al. 2011]. These models aim to quantify the laws governing
the evolution of the security state S(t).

Discussion. As indicated by Equation (1), it is vital for the defender to have knowl-
edge of dynamic states of system security that provides right directions to defend
against attacks. For example, if a compromising probability towards a device is known,
it is helpful for a defender to use an appropriate threshold cryptographic mechanism
[Desmedt and Frankel 1989] to mitigate the compromising action. Moreover, it is im-
portant to know S(t) and si(t) for any t rather than for t → ∞ [Xu 2014a].

7.2. Metrics for Measuring Security Incidents

Measuring security incidents is another aspect of situation(t). To obtain the severity
and impact of incurred security incidents, we discuss how to measure the frequency
and damage of the security incidents.

7.2.1. Measuring Frequency of Security Incidents. Security incidents can be measured by
the following:

—Encounter rate measures the fraction of computers that encountered some malware
or attack during a period of time [Yen et al. 2014; Mezzour et al. 2015].
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—Incident rate measures the fraction of computers successfully infected or attacked
at least once during a period of time [CIS 2010]. An incident rate tends to be
substantially smaller than the corresponding encounter rate because the encoun-
tered malware may not successfully infect a system [Microsoft 2014].

—Blocking rate is the rate an encountered attack is successfully defended by a de-
ployed defense [Yen et al. 2014].

—Breach frequency metric measures how often breaches occur [Edwards et al. 2015].
—Breach size metric gives the number of records breached in individual breaches

[Edwards et al. 2015].
—Time-between-incidents metric measures the period of time between two incidents

[CIS 2010; Holm 2014].
—Time-to-first-compromise metric estimates the duration of time between when a

computer starts to run and the first malware alarm is triggered on the computer
where the alarm indicates detection rather than infection [Jonsson and Olovsson
1997; Madan et al. 2002; Holm 2014].

Discussion. These metrics may be used as alternatives to the global security state
S(t), especially when S(t) is difficult to obtain for arbitrary t. An ideal metric may be
an incident occurrence frequency as an approximation of the number of compromised
computers, namely |{i : i ∈ {1, . . . , n} ∧ si(t) = 1}|, represented as a mathematical
function of system features. It is also important to predict a frequency of incident
occurrence as an approximate number of compromised computers at a future time t. A
recent study shows the possibility of predicting data breaches from symptoms such as
network mismanagement or blacklisted IP addresses [Liu et al. 2015].

7.2.2. Measuring Damage of Security Incidents. The damage to a system after a security
incident occurs can be estimated based on the degree of impact caused by the security
incident. The impact can be estimated by the following metrics:

—Delay in incident detection measures the time between the occurrence and detec-
tion [CIS 2010], implying that a longer delay is a higher damage.

—Cost of incidents may include both the direct cost (e.g., the amount of lost money)
and the indirect cost (e.g., negative publicity and/or the recovery cost) [CIS 2010].

Discussion. Accurate estimation of potential damage (or impact) due to a security
incident is critical to estimating the degree of risk on security failure. The level of
risk one can take is significantly affected by the degree of consequence on the security
incident (e.g., risk-seeking, risk-neutral, or risk-averse).

7.3. Metrics for Measuring Security Investment

Investment to ensure an enterprise’s security can be measured as follows:

—Security spending indicates a percentage of IT budget [Chew et al. 2008; CIS
2010]. This metric is important because enterprises want to know whether their
security expenditure is justified by the security performance and is comparable to
other organizations’ security investments.

—Security budget allocation estimates how the security budget is allocated to var-
ious security activities and resources [CIS 2010].

—Return on security investment (ROSI) is a variant of the classic return on invest-
ment (ROI) metric [Berinato 2002; Böhme and Nowey 2008], measuring the financial
net gain of an investment based on the gain from investment minus the cost of in-
vestment. Since security is not a real investment (i.e., not generating a revenue),
the ROSI metric actually measures the reduction in the loss caused by incompetent
security [Wei et al. 2001; Berinato 2002; Böhme and Nowey 2008].
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—Net present value measures the difference between the present economic value
of future inflows and the present economic value of outflows with respect to an
investment [Gordon and Loeb 2006]. When determining the benefit of an investment
decision (e.g., adopting a new security/defense mechanism), a positive net present
value means a profitable investment.

Discussion. Measuring security investment is important for security practitioners
to justify security investment. Although they need to juggle between cost and bene-
fit where security investment does not generate revenues but aims to prevent loss,
the absence of effective and efficient systematic security metric makes this decision
more challenging. Understanding the payoff of security investment requires in-depth
investigation on the relationship between the cost and benefit of using security/defense
mechanisms to be employed in a system. Although security investment is indirectly
accommodated in Equation (1) via vulnerability parameters V (t) and defense parame-
ters D(t), the investment metrics are closely related to the dynamic security state S(t)
to justify necessity of the investment.

8. DISCUSSION ON OPEN PROBLEMS IN SECURITY METRICS RESEARCH

8.1. Critical Dimensions of Measurements

Figure 4 gives a pictorial description of the taxonomy of the four types of systems
security metrics reviewed in the previous sections. Figure 5 is a pictorial description
of the taxonomy of the desirable systems security metrics reviewed in the previous
sections. Table 1 in the Appendix summarizes these metrics with references (i.e., second
column), and the desirable metrics corresponding to the sub-categories of security
metrics (i.e., third column). We observe that there are big gaps between the existing
metrics and the desirable metrics. The gaps further highlight an important issue,
namely “what can be measured” (i.e., measurability) vs. “what to measure” (i.e., core
attributes to measure). This issue has been discussed as a fundamental but challenging
problem in measurements and metrics [Pfleeger 2009]. To some extent, measuring the
four types of security metrics can answer the question of “what to measure.”

As highlighted in Equation (1), we proposed four dimensions of security metrics:
situation(t) including the dynamic system security state S(t), vulnerabilities V (t), de-
fenses D(t), and attacks A(t). For each of these metrics, we need to identify the rep-
resentations of the dynamic vulnerabilities V (t), defenses D(t), and attacks A(t). Each
metric function can be described by a few key parameters. This explains why we used
the thickness of blue bars and red arrows in Figures 1 and 2 to illustrate the defense
strength and attack strength, respectively. However, it remains to discover what met-
rics can adequately reflect the thickness. As surveyed in this article, many metrics
have been proposed to measure defense strength and attack strength. Although we
have identified some metrics that well describe the respective factors in the third col-
umn of Table 1, whether these metrics are sufficient for fulfilling the vision described
in Equation (1) remains unanswered.

8.2. Completeness of Security Metrics

At a high level, V (t) can be represented by one or multiple model parameters mea-
suring an overall system vulnerability, D(t) measuring an overall defense strength, and
A(t) measuring an overall attack strength. In devising each metric function, we need
to consider (i) how many parameters we need to consider for each metric as a mini-
mum, (ii) what attributes we need to consider the intuitive meaning of each metric, and
(iii) how to represent parameters in each metric. Although there can be more, we limit
our discussion due to space constraints. In particular, the issues of (i) and (ii) are
interwoven because as more key attributes are considered, more parameters need to
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Fig. 5. A pictorial taxonomy of the desirable systems security metrics discussed in the text.

Fig. 6. An illustration of the system security state as determined by the metrics of vulnerabilities, defenses,
and attacks.

be considered. As a potential approach to embrace comprehensive measurements of
attributes that maximize the completeness of metrics, we can derive a set of suffi-
cient attributes or dimensions that can adequately reflect the intuition for each metric
behind. After then, by leveraging aggregation methods, we can categorize a set of suffi-
cient dimensions into key measurement attributes. However, it is unavoidable to deal
with a tradeoff issue between dimensions of data and accuracy. That is, how to reflect
the completeness of attributes measured in metrics explains the part of why developing
good metrics is a hard problem.

8.3. Relationships between Metrics

In this section, we summarize the relationships of the proposed security metric frame-
work consisting of the four sub-metrics as shown in Figure 6. Given an asset with a
certain level of criticality, a different level of defense mechanism(s) can be deployed
to the asset. Based on the level of defense deployed in each asset, a different level of
vulnerability can be exposed, which also affects an attacker’s effort to penetrate into
an asset or system. The attack’s strength can make a different impact to the asset or an
entire system with a different level of damage made to it. The outcome of the defense-
attack interactions can be fed back to enhance or maintain a current defense state.
This suggests that investigating critical dependence between key components of met-
rics can contribute to building desirable design features a security metric framework
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should deal with to maximize adaptive, learning decision making taken by defenders
considering dynamics and novel behaviors of attackers.

Figure 3 presents a higher-level ontology of vulnerability metrics, defense metrics,
attack metrics, and situation metrics and their relationships. We have defined an
ontology to describe the relationships between the systems security metrics. Due to
space limitation and the infeasibility of depicting the entire ontology with any reason-
able visual effect, we use Figure 7 to show a portion of the vulnerability sub-ontology
corresponding to two sub-categories of metrics for measuring vulnerabilities, temporal
characteristics of vulnerabilities and severity of individual vulnerabilities. The ontology
captures relationships between the following security metrics:

—Exploit maturity “increases” future exploited vulnerability and tendency-to-be-
exploited metrics because attack tools become available.

—Attack complexity, privilege required, and user interaction metrics “affect” future
exploited vulnerability and tendency-to-be-exploited metrics because some attacks
demand more attack skills or cooperation of the innocent user.

8.4. Scales for Measurements

Security metrics are difficult to measure in practice due to their inherent existence of
uncertainty. The uncertainty can be derived from multiple reasons. First, unknown
attack behaviors are hard to be accurately predicted by a defender. For example,
vulnerabilities are dynamically discovered while an attacker may identify some zero-
day vulnerabilities unknown to the defender. Moreover, the defender is uncertain about
what exploits the attack possess. Some attack incidents are never detected by the de-
fender. These indicate that uncertainty is inherent to the threat model the defender is
confronted with. As a consequence, security metrics should often be treated as random
variables rather than numbers. This implies that there should be an effort to charac-
terize distributions of random variables representing security metrics rather than the
means of random variables only.

Second, uncertainty is often caused by estimation error(s) in that observed evi-
dence does not necessarily reflect an actual system state such as S(t) �= O(t) as illus-
trated in Figure 1. The estimation error(s) can be from detection errors by machines
(e.g., misdetection) or cognitive limitations/bias by humans where both can affect secu-
rity decisions to make. In addition, this justifies why measurements based on random
variables can be useful to reflect such as distributions of observations rather than giv-
ing a single value to represent a quality of system security. Probabilistic metrics are
also another promising direction to consider the degree of uncertainty in metrics [Wang
et al. 2008; Ou and Singhal 2011; Cheng et al. 2012]. However, more effort is strongly
encouraged in this research because the evolution of security state S(t) inherently
follows some stochastic processes.

8.5. Granularity vs. Overall Security

It is not a trivial issue to determine whether to aggregate multiple metrics into one
or not. For example, if we aggregate multiple metrics to represent an overall system
state with a single value, granularity of representing many different metrics will be
lost. In particular, when we want to make defense decisions based on the level of
system security observed, some decisions associated with resource allocation need more
detailed information of metrics (e.g., what attack is performed where, how, and what
target). On the other hand, if we do not aggregate any measurements into a certain
high-level system attribute (e.g., availability, integrity, reliability), it would be endless
to report all the details of attack, impact, and countermeasures, and so forth. This is
known as the challenge in “measurability.”
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Lampson [2006] first raised an issue of why security should be considered at mul-
tiple abstraction layers. For example, we should use a specific metric to measure the
effectiveness of CFI in stopping control-flow hijack attacks because an overall security
metric would be useful for decision making in cyber defense operations but may not
give any specific solution to this specific problem. Although some specific attacks can
be detected by specific security metrics, an overall security metric based on the aggre-
gation of multiple security metrics also gives great insights to system designers who
aim to build defense mechanisms under limited resources. Therefore, the key issue is
narrowed down how to aggregate and to what extent to aggregate [Pfleeger and
Cunningham 2010; Pfleeger 2009].

Regarding how to aggregate multiple security metrics, the main challenge comes
from the dependence between security metrics. For example, some dependence may
exist between the security investment, security coverage, and damage of incidents. When
the mean of random variables, representing metrics, is the only concern, we may indeed
aggregate multiple measures into a single value via linear combination techniques.
However, a mean of random variables is just one decision-making factor because we
often need to consider the variance of random variables as a measure of uncertainty or
confidence.

8.6. Key Properties of Security Metrics

Now we discuss several perspectives towards good metrics as follows:

—Conceptual perspective says that a good metric should be intuitively easy to
understand with high usability to both researchers and defense operators [Reiter
and Stubblebine 1999; Lippmann et al. 2012].

—Measurement perspective claims that a good metric should be in units of mea-
sure, be represented numerically, have a specific context (i.e., a threat model), be
measured with high consistency and repeatability, and be easily and cost-effectively
(i.e., inexpensively) to collect [Jaquith 2007].

—Utility perspective provides a view that a good metric should allow both horizontal
comparison between enterprise systems and temporal comparison (e.g., an enterprise
system in the present year vs. the same enterprise system in the last year) [Lippmann
et al. 2012].

Security metrics do not possess the properties of metrics in mathematics, where
a metric measures the distance between any two points in some metric space. As
discussed in McHugh [2006] and Wagner and Eckhoff [2015], security (and privacy)
metrics are not necessarily meant to measure the distance between the security of one
system and the security of another system. Instead, security metrics are commonly used
to measure, among other sense, the security of a system. Even in the narrower context of
measuring security of systems (because there are other kinds of security properties that
need to be measured as well, such as the power of exploit), it is not immediately clear
under what conditions the distance between the security of one system and the security
of another system makes a good sense or under what conditions we can compare the
security of two systems. This research direction needs a good progress.

8.7. Key Suggestions

In this section, we discuss how security metrics research can be further stimulated
to gear towards developing desirable metrics to measure levels of system security. We
suggest the following action items:

—Security publications should specify explicit definitions of security met-
rics they use. This effort can be made in terms of both bottom-up and top-down
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approaches. For the bottom-up approach, each publication should define specific se-
curity metrics and their attributes. For the top-down approach, the security metrics
used should achieve security goals in a broad sense such as five security goals includ-
ing availability, integrity, confidentiality, non-repudiation, and authentication. One
may consider a security metric in terms of its temporal characteristics, its spatial
characteristics, and connect them with the above high-level security goals.

—Security curriculum should include substantial materials for educating and
training future generations of security researchers and practitioners with
a systematic body of knowledge in security metrics. This has been largely hin-
dered by the lack of systematic treatment. We hope to see more curriculum materials
on security metrics.

—Security metrics research should be proceeded based on productive collab-
oration between the government, industry, and academia. Only leading by
one party, either the government or industry/academia, cannot achieve developing a
generic security metric framework that can be widely accepted and used by research
community. In particular, while academic researchers tend to be obligated to pro-
pose what to measure, they often encounter the lack of real data for verification and
validation of their proposed metrics. The industry may have datasets but is often
prohibited from sharing them with academic researchers because of legitimate con-
cerns (e.g., privacy). Although the government has already incentivized data sharing
through projects such as PREDICT (www.predict.org), our research experience hints
that semantically richer data is imperative for tackling the problem of security met-
rics. Thus, the productive collaboration between these three parties is the first step
for security metrics research to be fruitful in a meaningful way.

9. CONCLUSION

This article conducted a systematic survey of systems security metrics. Based on the
in-depth survey and discussions related to each metric, we proposed the following di-
mensions of metrics to represent an overall system security metric: vulnerabilities,
defenses, attacks, and situations. In particular, the situation metric is centered on the
current security state of a given system at a particular time in order to consider dy-
namics related to system security states including the level of vulnerabilities, attacks,
and system defenses. We discussed the gaps between the state-of-the-art metrics and
the desirable metrics when discussing each dimension of these metrics. We also raised
fundamental challenges that must be adequately addressed for bridging these gaps and
resolving the current challenges, including what academia, industry and government
should do in order to catalyze research in security metrics domain.
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