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• Application development for sensor networks differs in many ways from 

programming “traditional” distributed computing systems. 

• Examples of such differences include the continuous interaction of sensor 
nodes with their physical environment, the stringent resource constraints 
of sensor nodes, the ad hoc deployment of many sensor networks, and the 
frequent changes in network topology due to failures or mobility. 

• From the network developer’s perspective, the goal is to design and 
program a reliable and efficient wireless sensor network that can cope with 
the dynamics and uncertainties present in sensing systems.
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• From the user’s perspective, the network is often viewed as a database and 

the users interact with sensor nodes via queries, which must be responded 
to in a reliable and efficient fashion. 

• Many simulation tools and techniques are closely tied to the operating 
system used on sensor nodes.

• Sensor network programming approaches can be classified as either node-
centric or application-centric. 

• Node-centric languages and programming tools focus on the development 
of sensor software on a per-node level. 

• In contrast, programming using an application-centric approach considers 
parts or all of the network as one single entity
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• A sensor network differs from traditional computing environments in various 

aspects, thereby necessitating programming frameworks and tools that consider 
a sensor network’s unique characteristics. 

• Specifically, the following characteristics significantly affect the design of sensor 
network programming tools:

• 1. Reliability: Wireless sensor networks are inherently more unreliable than other
distributed systems. 

• Therefore, sensor networks are built to adapt to changing dynamics and node 
and link errors such that the network continues to serve its intended purpose
even when parts of the network have failed. 

• While many faults in a network will never be noticed by an application (e.g., a 
routing protocol autonomously reroutes traffic around a failed node), resilience 
to failures and topology changes should be supported by a programming 
environment.
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• Resource constraints: Wireless sensor networks are typically very 

resource-constrained, which affects the programming approach, 
maximum code size, and other aspects of application development. 

• Most notably, energy efficiency is particularly critical in WSNs and
penetrates every aspect of sensor network design, from duty cycles to 
routing protocols to in-network data processing. 

• Therefore, programming tools and models should allow a developer 
to effectively exploit energy-saving techniques and approaches, while 
details should be hidden from the programmer
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• Scalability: Sensor networks can scale up to hundreds and thousands 

of sensor nodes, therefore programming models should support 
developers in designing applications and software for large-scale (and 
possibly heterogeneous) networks. 

• Manual configuration, maintenance, and repair of individual sensor 
nodes will be infeasible due to the large number of devices, therefore 
necessitating support for self-management and self-configuration.

• The scale of a network can also be addressed by using programming
models that consider the entire network as one whole entity instead 
of focusing on each individual device
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• Data-centric networks: In many wireless sensor networks, not only are the individual

sensor nodes of interest, but also the data they generate and disseminate. 

• Sensor network applications are therefore concerned about obtaining useful information 
in a timely fashion, where it is irrelevant which sensor node(s) generated this 
information. 

• Many applications are only concerned with the collection of data at a central point, for 
example, a server that stores, analyzes, or visualizes the sensor data. 

• Other applications require immediate processing and analysis of data within the 
network, for example, to eliminate redundant information, to aggregate data from 
multiple sensors, and to quickly identify if sensor data should be propagated further or 
acted upon. 

• Each category will require different programming models, where the latter category will 
also require support for collaboration, that is, programming a network results in 
generating distributed algorithms that must work across many or all nodes in a resource-
efficient manner.
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• Under the node-centric model, programming abstractions, languages, 

and tools focus on the development of sensor software on a per-node 
level. 

• The overall network-wide sensing application is then described as a 
collection of pairwise interactions of individual sensor nodes. This 
section describes examples of programming models that focus on 
software development for individual nodes
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• The combination of the TinyOS operating system and the nesC (Gay et al. 

2003) programming language has become the de facto standard for node-
centric programming in WSNs.

• The programming language nesC is an extension to the popular C 
programming language and provides a set of language constructs to 
implement code for distributed embedded systems such as motes. 

• TinyOS is a component-based OS written in nesC.
• Unlike traditional programming languages, nesC must address the unique

challenges of WSNs. 
• For example, activities in a sensor network (e.g., sensor acquisition,

message transmission and arrival) are initiated by events such as the
detection of a change in the physical environment.
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• These events may occur while a node is processing data, that is, 

sensor nodes must be able to concurrently perform their processing 
tasks while responding to events. 

• In addition, sensor nodes are typically very resource-constrained and 
prone to hardware failures; 

• therefore, programming languages for sensor nodes should take 
these characteristics into consideration.

• Applications based on nesC consist of a collection of components, 
where each component provides and uses interfaces. 
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• A “provides” interface in nesC is a set of method calls that are 

exposed to higher layers, while a “uses” interface is a set of method 
calls that hide details of lower-layer components. 

• An interface describes the use of some kind of service (e.g., sending a 
message). 

• The following code shows a concrete example from the TinyOS timer 
service. This example provides the StdControl and Timer interfaces 
and uses a Clock interface (Gay et al. 2003).
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• This example also shows the definitions for the Timer, StdControl, 

Clock, Send (communication), and sensor (ADC) interfaces. 

• The Timer interface defines two types of commands (which are 
essentially functions): start and stop. 

• The Timer interface further defines an event, which is also a function. 
While commands are implemented by the providers of an interface,
events are implemented by the users. 

• Similarly, all other interfaces in this example define both commands 
and events.
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• Besides the interface specification, components in nesC also have an 

implementation.

• Modules are components implemented by application code, while 
configurations are components that are implemented by connecting 
interfaces of existing components. 

• Every nesC application has a top-level configuration that describes 
how components are wired together.



Προγραμματισμός ασύρματων δικτύων 
αισθητήρων
• Functions (i.e., commands and events) in nesC are described as f.i, 

where f is a function in an interface i. 

• Functions are invoked using the call operation (for commands) and 
the signal operation (for events). 

• The following code shows a brief excerpt of an implementation of an 
application that periodically obtains sensor readings (Gay et al. 2003).
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• In this example, StdControl.init is called at boot time, where it 

creates a repeat timer that expires every 1000 ms.

• Upon timer expiration, a new sensor sample is obtained by calling
ADC.getData, which triggers the actual sensor data acquisition 
(ADC.dataReady).

• Returning to the TinyOS timer example, the following code sequence 
shows how the timer service in TinyOS (TimerC) is built by wiring two 
subcomponents, TimerModule and HWClock (which provides access 
to the on-chip clock).
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• In TinyOS, code executes either asynchronously (in response to an 

interrupt) or synchronously (as a scheduled task). 

• Race conditions can occur when concurrent updates to shared state are 
performed. 

• In nesC, code that is reachable from at least one interrupt handler is called 
asynchronous code (AC) and code that is only reachable from tasks is called 
synchronous code (SC). 

• Synchronous code is always atomic to other synchronous codes, because 
tasks are always executed sequentially and without preemption. 

• However, race conditions are possible when shared state is modified from 
AC or when shared state is modified from SC that is also modified from AC.
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• Therefore, nesC provides programmers with two options to ensure 

atomicity. 
• The first option is to convert all of the sharing code to tasks (i.e., SC only). 
• The second option is to use atomic sections to modify shared state, that is, 

brief code sequences that nesC will always run atomically. 
• Atomic sections are indicated with the atomic keyword, which indicates 

that a block of statements should be executed atomically, that is, without 
preemption, as shown in the following code excerpt.

• Nonpreemption can be obtained by disabling interrupts for the duration of 
an atomic section.

• However, to ensure that interrupts are not disabled for too long, no call 
commands or signal events are allowed within atomic sections
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• TinyGALS (Cheong et al. 2003) is a globally asynchronous and locally 

synchronous (GALS) approach for programming event-driven 
embedded systems. 

• A TinyGALS program consists of modules, which are composed of 
components (the most basic elements). 

• A component C has a set of internal variables VC, a set of external 
variables XC,. and a set of methods IC that operate on these variables. 
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• Methods are further divided into calls in the ACCEPTSC set (which can 

be called by other components) and calls in the USESC set (which are 
those needed by C and may belong to other components).

• Similar to nesC and TinyOS, TinyGALS defines components using an 
interface definition and an implementation.

• For example, a possible interface description of a component
DownSample is shown below, where the interface has two methods 
in the ACCEPTS set and one method in the USES set.
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• The following code sequence shows the corresponding 

implementation for the Down-Sample component

• where _active is an internal boolean variable that ensures that for 
every other fire() method called, the component will call the fireOut() 
method with the same integer argument.



Προγραμματισμός ασύρματων δικτύων 
αισθητήρων
• TinyGALS modules consist of one or more components. 

• A module M is a 6-tuple M =(COMPONENTSM, INITM, INPORTSM, 
OUTPORTSM, PARAMETERSM, LINKSM), 

• COMPONENTSM is the set of components of M, 

• INITM is a list of methods of M’s components, 

• INPORTSM and OUTPORTSM specify the inputs and outputs of the 
module, 

• PARAMETERSM is a set of variables external to the components, 

• LINKSM specifies the relationships between the method call
interfaces and the inputs and outputs of the module. 
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• Modules are further connected to each other to form a complete TinyGALS

system, 
• A system is a 5-tuple S = (MODULESS, GLOBALSS, VAR_MAPSS, 

CONNECTIONSS, STARTS). 
• The set of modules is described in MODULESS, global variables are 

described in GLOBALS, 
• a set of mappings (each of which maps a global variable to a parameter of 

a module in MODULESS) is contained in VAR_MAPSS, 
• CONNECTIONSS is a list of the connections between module output ports 

and input ports, 
• and STARTS is the name of an input port of exactly one module, which is 

used as a starting point for the execution of the system.
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• The highly structured architecture of TinyGALS can be exploited to 

automate the generation of scheduling and event handling code, 
freeing software developers from writing error-prone concurrency 
control code

• Code generation tools can automatically produce all of the necessary 
code for component links and module connections, system 
initialization, start of execution, intermodule communication, and 
global variables reads and writes.

• Further, through the use of message passing, modules in TinyGALS
become decoupled from each other, therefore facilitating their 
independent development.
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• Each message passed will trigger the scheduler and activate a receiving 

module. 
• However, this may become quickly inefficient if there is global state that 

must be updated frequently. 
• Therefore, TinyGALS provides another mechanism, called TinyGUYS

(Guarded Yet Synchronous) variables, where modules may read global 
variables synchronously (without delay), but writes to the variables are 
asynchronous in the sense that all writes are buffered. 

• The buffer is of size 1, that is, the last module that writes to a variable wins. 
• TinyGUYS variables are updated by the schedule only when it is safe to do 

so, for example, after one module finishes and before the scheduler 
triggers the next module.
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• The Sensor Network Application Construction Kit (SNACK) is a 

configuration language, component and service library, and compiler for 
the development of sensor network applications (Greenstein et al. 2004). 

• SNACK’s goal is to provide smart libraries that can be combined to form 
sensor network applications, while, on one hand, simplifying the 
development process and, on the other, not losing control over efficiency. 

• For example, to program a sensor node to periodically take temperature 
and light measurements and forward the sensor data to some sink, it 
should be possible to write a simple code sequence such as:



Προγραμματισμός ασύρματων δικτύων 
αισθητήρων
• The following examples shows the syntax of SNACK code. 

• Here, n :: T declares an instance named n of a component type T , that is, an 
instance is effectively an object of the given type. 

• Further, n[i : τ ] indicates an output interface on component n with name i and 
interface type τ (similarly, [i : τ ]n refers to an input interface).

• A component provides its input interfaces and uses its output interfaces
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• The SNACK library of components and services contains a variety of 

components for sensing, aggregation, transmission, routing, and data 
processing. 

• For example, the messaging architecture of SNACK supports several 
core components, including 
• Network (which receives messages from and sends messages to the TinyOS

radio stack), 

• MsgSink (which ends inbound call chains and destroys buffers it receives), 

• and MsgSrc which periodically generates empty SNACK messages and passes 
them on via an outbound interface).



Προγραμματισμός ασύρματων δικτύων 
αισθητήρων
• The SNACK Timing system has two core components: 

• TimeSrc, which generates a timestamp signal, emitted over its signal interface at a 
specified minimum rate, 

• and TimeSink, which consumes that signal. 

• Storage in SNACK is implemented by components such as Node-Store64M, 
which implements an associative array of eight-byte values keyed by node 
ID.

• Finally, the SNACK Service library contains a variety of services, that is, 
combinations of primitive components. 

• For example, the RoutingTree service implements a tree designed to send 
data up to some root.
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• The thread-based paradigm is popular in many computing systems and it 

has recently also found its way into sensor networks. 
• In traditional event-based systems, event handlers are executed in 

response to events, and these handlers (tasks) run to completion without 
interruption from other tasks.

• The main advantage of the thread-based approach is that multiple tasks 
can make progress in their execution without the concern that a task may 
block other tasks (or be blocked by other tasks) indefinitely. 

• For example, a task scheduler can execute a task for a certain amount of 
time, then preempt this task in order to execute another task.

• This time-slicing approach simplifies the programming of sensor systems, 
but also comes at the cost of increased operating system complexity
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• An example of a thread-based operating system for sensor networks 

is the MANTIS (MultimodAl system for NeTworks of In-situ wireless 
Sensors) OS, 

• which occupies less than 500 bytes of RAM and about 14 kbytes of 
flash memory (Bhatti et al. 2005). 

• For example, the ATMega128 sensor nodes have 4 kbytes of RAM and 
128 kbytes of flash storage, that is, MANTIS OS leaves sufficient space 
for multiple sensor application threads.

• Besides memory efficiency, MANTIS OS also aims for energy efficiency 
by switching the microcontroller to a low-power sleep state after all 
active threads have called the operating system’s sleep() function.
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• The goal of the TinyThread (McCartney and Sridhar 2006) library is to add 

support for multithreaded programming to sensor networks based on TinyOS and 
nesC. 

• TinyThread enables procedural programming of sensor nodes and includes a suite 
of interfaces that provide several blocking I/O operations and synchronization 
primitives that make multithreaded programming safe and easy.

• Protothreads (Dunkels et al. 2005) are a very lightweight stackless type of 
threads. Instead of using a stack for each protothread, all protothreads run on the 
same stack and context switching is done by stack rewinding. 

• A limitation of protothreads is that contents of variables must be explicitly saved 
before calling a blocking wait, since variables with function-local scope that are 
automatically allocated on the stack are not saved across such wait calls.
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• Finally, Y-Threads (Nitta et al. 2006) is another lightweight threading 

model that provides preemptive multithreading. 

• Application developers identify the preemptable and 
nonpreemptable parts of a program. 

• All threads share a common stack for their nonblocking
computations, while each thread has its own stack for blocking calls. 

• The key concept behind this approach is that the blocking portions of 
a program require only small amounts of stack, therefore achieving 
better memory utilization compared to other preemptive 
multithreading approaches.
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• Macroprogramming refers to a development approach where the focus is 

not on individual sensor nodes, but on the programming of groups of 
sensor nodes, including approaches that treat an entire network as a single 
entity. 

• In-network processing is often performed to address the bandwidth and 
energy limitations of WSNs. 

• However, decomposing data collection tasks into parallel programs with 
local communication among sensor nodes can be a challenging problem. 

• Therefore, the goal of abstract regions (Welsh and Mainland 2004) is to 
provide higher-level programming interfaces that hide complex details 
from the developer, while still being flexible enough to support the 
implementation of efficient algorithms.
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• Many sensor applications are often characterized by group-level 

cooperation, 
• that is, a group of nodes work together to sample, process, and 

communicate sensor data. 
• Therefore, abstract regions are a communication abstraction intended to 

simplify the development process by providing a region-based collective 
communication interface. 

• An abstract region defines the neighborhood relationship between a node 
and other nodes in the network, for example, as expressed by “the set of 
nodes within distance d”. 

• Specifically, the type of definition of an abstract region will depend on the 
type of application
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• Examples of implementations of abstract regions include N-radio hop (nodes within N 

radio hops), k-nearest neighbor (k nearest nodes within N radio hops), and spanning tree 
(a spanning tree rooted at a single node, used for aggregating data over the entire 
network). 

• For example, for regions defined using hop distances, discovery of region members can 
be achieved using periodic broadcasts (advertisements). 

• Data among region members can be shared using either a “push” (broadcasting updates 
to neighboring nodes) or “pull” (issue a fetch message to the corresponding node) 
approach. 

• Reduction is another programming abstraction, which takes a shared variable key and an 
associative operator (e.g., sum, max, or min) and reduces the shared variable across 
nodes in the region. 

• In abstract regions based on hop distances, reduction involves collecting shared variable 
values locally, combining them with the reduction operator, and storing the result in a 
new shared variable
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• The EnviroTrack (Abdelzaher et al. 2004) object-based middleware library is a 

programming abstraction geared toward target-tracking sensor applications. 

• Its goal is to free the developer from the details of interobject communication, 
object mobility, and the maintenance of tracking objects and their state. 

• Similar to abstract regions, EnviroTrack uses the concept of groups. 

• However, instead of concrete descriptions of the shape or size of a group, groups 
in EnviroTrack are formed by sensors which detect certain user-defined entities in 
the physical environment, with one group formed around each entity. 

• Groups are identified by context labels, which can be thought of as logical 
addresses that follow the external tracked entity around in the physical 
environment. 

• Further, objects can be attached to context labels to perform context-specific 
operations. These tracking objects are executed on the sensor group of the 
context label.
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• The type of context label depends on the entity being tracked (e.g., a 

context label of car is created wherever a car is tracked). 

• A programmer must provide several pieces of information to declare 
a context label of some type e. 

• First, a function sensee() describes the sensory signature identifying 
the tracked environmental target, for example, for a car-tracking 
application, sensee() might be a function of magnetometer and 
motion sensor readings. 

• Whenever the EnviroTrack middleware detects a target, it creates a 
sensor group around the target.
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• This function is also used to maintain group membership, that is, all nodes 

that sense the given target (i.e., sensee() is true) are group members. 

• Next, a programmer declares an environmental state shared by all objects 
attached to a context label by defining an aggregation function statee() 
that acts on the readings of all sensors for which sensee() is true. 

• Aggregation is performed locally by a sensor node that acts as group 
leader. 

• The EnviroTrack library contains a variety of distributed aggregation 
functions such as addition, averaging, and median computation. 

• Finally, the programmer specifies which objects are to be attached to a 
context label.
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• Another commonly used abstraction for sensor network 

programming is to treat a WSN as a distributed database that can be 
queried (e.g., using SQL-like queries) to obtain sensor data. 

• A representative example of a distributed query processor for sensor 
nodes is TinyDB (Madden et al. 2005). 

• Here, the network is represented logically as a table (called sensors) 
that has one row per node per instant in time. 

• Each column in this table corresponds to a type of sensor reading 
such as light, temperature, pressure, etc.
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• A new record in this virtual table (i.e., a new row) is added only when 

a sensor is queried and this new information is usually stored for a 
short period of time only. 

• Queries in TinyDB are very much like any other SQL-based database, 
that is, they use clauses such as SELECT, FROM, WHERE, and GROUP 
BY to build queries. 

• For example, the following query specifies that each device should 
report its own identifier (nodeid), light reading, and temperature 
reading once per second for 10 seconds:
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• As a result of this query, nodes initiate data collection at the beginning of 

each epoch (as specified in the SAMPLE PERIOD clause) and the results of 
such a query are streamed to the root of the network.

• TinyDB also supports grouped aggregation queries, that is, as data from an 
aggregation query flows up the tree, it is aggregated in-network according 
to an aggregation function and value-based partitioning specified in the 
query. 

• For example, imagine a user who wishes to use microphone-equipped 
sensor nodes to monitor the occupancy of a room on a particular floor of a 
building. 

• Assuming that rooms have multiple sensors, the goal is to look for rooms 
where the average volume is over a certain threshold. A query for this 
sensing request could be expressed as:


