
Ασύρματα Δίκτυα 
Αισθητήρων

Πέππας Κωνσταντίνος



Eρωτήσεις επανάληψης

4.10 How is concurrency supported in TinyOS?

In TinyOS tasks are executed up to completion, which 
means only one task accesses a resource at a time.



Eρωτήσεις επανάληψης

• 4.11 What is a split phase programming and how is it useful in 
wireless sensor networks?

• A split phase program divides a function call into a call (which will be 
immediately

• acknowledged) and return (which will be notified as an asynchronous 
event when the

• called function completes execution).



Eρωτήσεις επανάληψης

• 4.12 Explain the difference between configuration components and 
modules in TinyOS.

• A configuration component describes how different modules are 
interconnected to build an executable service or application, whereas 
a module is an implementation of an interface.



Eρωτήσεις επανάληψης

• 4.13 Why do threads require their own separate stacks and what is 
the problem with this approach in wireless sensor networks?

• Threads require separate stacks in order to store their own context. 

• This requires a memory space larger than a single stack based 
execution. 

• Since memory is a scarce resource in wireless sensor networks, 
multithreading is expensive.



Eρωτήσεις επανάληψης

• 4.14 Give three reasons for supporting dynamic reprogramming in 
wireless sensor networks.

• (a) The sensing task may change overtime;

• (b) The application code may need debugging and correction; and

• (c) Policies related to the environment in which the wireless sensor 
network operates may change and therefore, the network may need 
to adapt to this change.



Eρωτήσεις επανάληψης

• 4.15 Explain the difference between event based and thread based operating 
systems. Discuss some of the advantages and disadvantages of the two 
approaches in the context of wireless sensor networks.

• In event based programming, interaction between processes is based on events and 
event handlers. 

• Tasks are executed to completion, unless they are interrupted by events. 

• This way concurrency is supported and execution is efficient. 

• Since only one task is executed at a time, long duration tasks may block short
duration tasks, but this problem can be overcome by using a sorted queue 
scheduling.

• In multithreaded programming, multiple threads run concurrently.

• Threads can be suspended ensuring non blocking operation. 

• However, thread management introduces resource overhead on the operating 
system.



Eρωτήσεις επανάληψης

• 4.16 Explain the difference between static and dynamic memory 
allocation.

• In a static memory allocation, memory is allocated to a piece of program at 
compilation time. 

• If the memory requirement of the program is known at compilation time 
and this requirement remains unchanged, static memory allocation is 
efficient. 

• But sometimes it is difficult to foresee the memory requirements of a piece 
of program, in which case static memory allocation is inflexible.

• In dynamic memory allocation, the memory requirement of a piece of 
program is decided at runtime, and memory is allocated accordingly.

• While it is flexible, programs are usually allocated memory a little more 
than they require, which can be inefficient in resource constrained devices.



Eρωτήσεις επανάληψης

• 4.17 How is separation of concern supported in the following operating systems:

• (a) Contiki

• Contiki distinguishes between core services (which are essential to theOS and remain
unchanged once the system is running) and dynamic reloadable services which can be 
reprogrammed at runtime.

• (b) SOS

• SOS provides a small monolithic kernel and reloadable (reprogrammable) modules.

• SOS saves the context of a module outside of the module so that context transfer during 
dynamic reprogramming is possible.

• (c) LiteOS

• In LiteOS, applications are not a part of the OS, so each can be independently developed.



Eρωτήσεις επανάληψης

• 4.18 Explain the following concepts in TinyOS:

• (a) Commands

• Commands are nonblocking requests for service.

• (b) Tasks

• Tasks are monolithic processes that should be executed to completion

• (c) Events

• An event is an occurrence of interest outside of a process and 
prompts the process to act (or handle the event).



Eρωτήσεις επανάληψης

• 4.19 What is the difference between a TinyOS command and a SOS 
message?

• The two are the same in that both are executed asynchronously and 
both are scheduled before they are processed. 

• Whereas tasks are executable processes, messages require message 
handlers to process



Eρωτήσεις επανάληψης

• 4.20 Why is the state of a module stored in a separate memory 
space (outside of the module) in SOS? 

• So that dynamic module update or reprogramming is possible. 

• If a module’s state is stored outside of it, it can easily be replaced or 
modified.



Eρωτήσεις επανάληψης

• 4.21 Explain how SOS supports dynamic reprogramming.
• When a new module is available, a code distribution protocol advertises it 

in the network. 
• The local distribution protocol evaluates the advertisement in terms of 

relevance and resource requirements and if all is fine, proceeds with 
downloading. 

• Once the downloading is successfully completed, module insertion takes 
place. 

• During module insertion, the kernel creates metadata to store the absolute 
address of the handler, a pointer to the dynamic memory holding the 
module state and the identity of the module.

• Then the SOS kernel invokes the handler of the module by scheduling an 
init message for the module



Eρωτήσεις επανάληψης

• 4.22 How is multithreading supported in a Contiki environment?

• Contiki is by default an event based operating system, but offers 
multithreading an alternative library service, which can be 
dynamically loaded and integrated as a part of the application code.



Eρωτήσεις επανάληψης

• 4.23 What is the function of a program loader in Contiki and why is 
it important?

• The program loader is responsible for dynamically loading a module. 

• If the module is available locally, it loads it from the program memory 
into the active memory, but if the module is not available locally, then 
it employs the communication module to fetch the binary image



Eρωτήσεις επανάληψης

• 4.24 How is module replacement supported in Contiki?

• Contiki supports dynamic reprogramming by separating replaceable 
modules from the core services (which make up the program loader, 
the communication service and the kernel).

• The former can be replaced by employing the core services



Eρωτήσεις επανάληψης

• 4.25 What is the advantage of considering a wireless sensor 
network as distributed file system in LiteOS?

• Users can easily navigate through and programthe sensor nodes. 

• For both aspects LiteOS provides intuitive interfaces, particularly, for 
Linux users.



Eρωτήσεις επανάληψης

• 4.26 What is differential patching in LiteOS?

• A differential patching estimates the location of a program in the 
active memory and carry out module update based on this 
knowledge.



Eρωτήσεις επανάληψης

• 4.27 Explain the functions of the following message handlers in SOS:

• (a) inithandler

• The inithandler is called by the scheduler when first a module is
initialized. 

• During dynamic module replacement, it is useful to pass over the 
context of the previous module.

• (b) finalhandler

• The finalhandler is called before a module is removed from the active 
memory so that it can gracefully release all the resources it owns.



Eρωτήσεις επανάληψης

• 4.28 Which type of scheduling strategy do the following operating 
systems employ:

• (a) TinyOS: FIFO

• (b) SOS: FIFO

• (c) Contiki: FIFO, Priority scheduling (for poll handlers)

• (d) LiteOS: Priority scheduling with an optional round robin



Eρωτήσεις επανάληψης

• 4.29 How does TinyOS deal with dynamic reprogramming?

• TinyOS requires a separate module (outside of the OS) to support 
dynamic programming

• 4.30 Why is separation of concern in TinyOS not a priority?

• Because of code efficiency



Eρωτήσεις επανάληψης

• Describe the difference between nodecentric and application
centric programming.

• Node centric programming focus on the development of sensor 
applications and software for each sensor device, whereas application
centric programming considers and develops software for the 
networks as a whole.



Eρωτήσεις επανάληψης

• Explain the difference between provides and uses interfaces in nesC.

• The provides interface is a set of method calls that are exposed to 
higher layers. 

• The uses interface describes the use of some kind of service.



Eρωτήσεις επανάληψης

• What options does nesC provide developers to prevent race 
conditions?

• Race conditions can be prevented by using synchronous code, which 
is always atomic to other synchronous codes. 

• If asynchronous code is used, one option is to convert code that 
modifies shared state into synchronous code. 

• Another option is to use atomic sections, i.e. brief code sequences 
that nesC will always run atomically.



Eρωτήσεις επανάληψης

• A common strategy to ensure atomicity is to disable interrupts in an 
operating system as long as atomic operations are being executed.
What is the danger of disabling interrupts?

• Important events that trigger interrupts, may not be reported (either 
at all or only after a delay, i.e. after interrupts have been reenabled), 
which can have severe consequences.



Eρωτήσεις επανάληψης

• What are the main advantages and disadvantages of thread based
programming models?

• The thread based programming model allows multiple tasks to make 
progress in their execution without the concern that a task may block 
other tasks indefinitely.

• However, thread based approaches increase the operating system 
complexity and may also require more complex synchronization 
support in the operating system.



Eρωτήσεις επανάληψης

• We introduced several macro programming models. Contrast how these different 
models are able to address multiple (or all) sensor nodes simultaneous

• Abstract regions groups sensors together using certain neighborhood relationships, e.g. 
“the set of nodes within distance d”. 

• Discovery of region members can be achieved using periodic advertisements. 

• In EnviroTrack, groups are formed by sensors which detect certain user defined entities in 
the physical world, with one group formed around each entity. 

• Groups are then identified by context labels, which are logical addresses that follow the 
external tracked entity around in the physical environment

• Database approaches treat a wireless sensor network like a distributed database that 
can be queried to obtain sensor data. 

• That is, the network can be represented logically as a database table that has (as an 
example) one row per node per instant in time and each column corresponds to a type of 
sensor reading.



Eρωτήσεις επανάληψης

• Why is it necessary to provide the opportunity to dynamically reprogram a sensor 
network? What is challenging in distributing a new program to all sensor nodes in the 
network?

• Reasons for reprogramming a sensor network are that details of certain applications and 
application characteristics may not be known until after deployment, sensor applications 
may need upgrades or bug fixes, and usage scenarios of sensor networks may change 
during their lifetimes.

• Challenges in reprogramming include the need for reliable code distributions (all nodes 
must receive all pieces of the code), quick code dissemination (to limit downtimes), and 
energy efficient dissemination.

• Reprogramming should interfere with the goals of the sensor network as little as 
possible. 

• Another challenge is that during reprogramming, different sensors may run different 
applications or versions of applications. In such scenarios, it is important to prevent 
failures and miscommunications due to version mismatches.


