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Reactive N  Unreactive N

¢ Unreactive_ N is N, (78% of earth’'s atmosphere)

¢ Reactive N (Nr) includes all biologically,
chemically and physically active N compounds in
the atmosphere and biosphere of the Earth
— e.g., ammonia, organic N, nitric oxides, nitrous ox ide,
nitrates
¢ Nitrogen controls productivity of most natural
ecosystems

¢ N, Is converted to Nr by nature primarily via:
— Biological Nitrogen Fixation  (N,--> organic N)

¢ N, is converted to Nr by humans via:
— Fossil fuel combustion (N, ----> NO,)

— Haber Bosch process (N, ----> NH,)
— Legume cultivation (N, ----> organic N; BNF)




Nitrogen Cycle

¢ Forms of Nr in the atmosphere:

Inorganic: (NO, NO,, N,O, HNO;, NO5", NO4, N,Ox)
NOx = NO + NO,,

Organic N:

Amines, Aminoacids, Hydrazines, Nitramines, (R  -N
Type)

Alkyl nitrites (RONO), alkyl nitrates (RONO?2),

Alkylperoxynitrates (ROONO?2),
Peroxyacylnitrates (RC(O)OONO ,=PAN).

NOy= HNO, + NO, + PAN + NO, + N,Og +......
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The History of Nitrogen
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*1898, Sir William Crookes, president of the British Association for the Advancement of Science
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The History of Nitrogen
--N, Creation, Fossil Fuel Combustion --
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BNF sources
(today)

Source estimate

Seed legumes

10 (8-12 Tg Nyr+1)

Leguminous cover
crops

(forages and green manures such as clover,

alfalfa, vetches)

12 (10-14 Tg Nyr?)

Wet rice and sugar
cane fields

5-9 Tg Nyr?)

Non-Rhizobium N-
species

4 (2—6 Tg Nyr?)

Total
BNF in 1860

30-34
15




*The conversion of N , to Nr requires energy to
break the N:N triple bond.

In the natural world, physical (lightning) and
biological (BNF) processes provide this energy.

*Nr creation by lightning is highest in tropical
terrestrial

regions where convective activity is the largest.
BNF rates in terrestrial systems are also generally
highest in tropical regions.



eRelative to cultivation-induced BNF, about three
times as much Nr was created with the Haber-
Bosch process.

In 1995, 100 Tg N of NH3 was created. Of this
amount, about 86% was used to make fertilizers
and the rest was dispersed to the environment
during processing or used in the manufacture of
refrigerants, explosives, plastics, rocket fuels
etc.

*The increase In energy production by fossil
fuels resulted in increased NOx emissions from
0.3 Tg N in 1860 to 24.5 Tg Nin the early 1990s.



eSUumMmmary

In the early 1990s, Nr creation by anthropogenic
activitieswas 156 Tg N, a factor of 10 increase
over 1860, contrasted to only a factor of 4.5
Increase in global population.

Food production accounted for 77%, energy
production accounted for 16%, and production
for industrial uses accounted for 9%.
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1860

The Global Nitrogen Budget in 1860 and mid-1990s, T  gN/yr
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Nitrogen Deposition
Past and Present

mg N/m 2/yr

1860 19

Frank Dentener, 2002



Nr and Agricultural Ecosystems

Haber-Bosch has facilitated
agricultural intensification

40% of world’s population is
alive because of it

An additional 3 billion people
by 2050 will be sustained by
it

But, all N that enters
agroecosystem is released
to the environment.




Nr and the Atmosphere

¢ NO, emissions contribute to4
and OH, which define the
oxidizing capacity of the
atmosphere

NO, emissions are responsil
for tens of thousands of exces

deaths per year in the United
States

O; and NO contribute to
atmospheric warming

N,O emissions contribute to
stratospheric Odepletion




Nr and Terrestrial Ecosystems

¢ N is the limiting nutrient in
most temperate and polar
ecosystems

Nr deposition increases and
then decreases forest and
grassland productivity

Nr additions probably decrease
biodiversity across the entire
range of deposition (e.g. Aber

et al., 1995).




Nr and Freshwater Ecosystems

¢ Surface water
acidification
— Tens of thousands of
lakes and streams

— Biodiversity losses

¢ As reductions in SO,
emissions continue, Nr
deposition becomes
more important.




Nr and Coastal Ecosystems

Contributions of N deposition to "new" N inputs in estuarine and

coastal waters (Paerl, 2000)

¢ Pamlico Sound, NC

Paerl and Fogel 1994

North Sea
GESAMP 1989
Waquoit Bay, MA
Valiela et al. 1996

Narragansett Bay
Nixon 1995

Long Island Sound
L. I. Sound Study 1996

New York Bight
Valigura et al. 1996

Barnegat Bay, NJ
Moser et al. 1999

Rhode River, MD
Correll and Ford 1982

~30%

~30%

29%

12%

20%

38%

40%

40%

Sarasota/Tampa Bay, FL 30%

Sarasota Bay NEP 1996




Nr and Open Ocean Ecosystems
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¢ Atmospheric deposition is a
more important Nr source than
riverine injection.

¢ Atmospheric Nr inputs to open
ocean have increased 3-fold
since 1860, and will double by
2050 (Galloway et al. 2002).

Episodic Nr deposition to mid-
ocean gyres has the potential
to have significant effect on
primary production (SOLAS,
2002; Jickells, 2002).




THE BIG PICTURE

¢ Food and energy production results in creation of
~160 Tg N/yr of new Nr, most of which is released to
the environment.

¢ We know where some of it goes and we generally
know what it does when it gets there.
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THE BIG PICTURE

¢ Food and energy production results in creation of
~160 Tg N of new Nr, most of which is released to
the environment.

¢ We know where some of it goes and we generally
know what it does when it gets there.

¢ We do not know:

— How much is stored in ecosystems vs. how much is
denitrified to N..

— How to feed and fuel the global population without releasing
excess N to environmental reservoirs.
¢ We know another thing--Nr creation will increase
In the future, as will Nr accumulation and an
iIntensification of the N Cascade.
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Nr Creation Rates by Food and
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The Future of Nitrogen
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The Challenge to all Parties

Maximize food and energy
production while maintaining
environmental and human health!







Table 1. Global iron fluxes to the ocean (in Tg

of Fe year-"). From Poulton and Raiswell (4],
with modified atmospheric inputs from Fig.
2. "Authigenic fluxes” refer to releases from
deep-sea sediments during diagenesis. We
distinguish only separately dissolved and

particulate for fluvial inputs, because it is
clear that fluvial particulate iron, along with

iron from coastal erosion and glacial sedi-
ment sources does not reach the oceans,

whereas authigenic, atmospheric, and hy-
drothermal iron all reach the oceans regard-

less of their phase.

Source Flux
Fluvial particulate total iron 625 to 962
Fluvial dissolved iron 1.5
Glacial sediments 34 to 211
Atmospheric 16
Coastal erosion 8
Hydrothermal 14

Authigenic 5

From
Jickells et
al., 2005



Iron is an essential nutrient for all organisms.

Iron is very insoluble under oxidizing conditions above pH
4,

The main source of iron is rivers. However, fluvial and
glacial particulate iron is efficiently trapped in near-coastal
areas.

Hence, the dominant external input of iron to the surface
of the open ocean is aeolian dust transport, mainly from
the great deserts of the world.



In large areas of the world ocean where the concentrations
of nutrients are high, chlorophyll is low (HNLC waters;
equatorial Pacific and much of the southern oceans).

Martin [1990] hypothesized that primary productivity in
HNLC regions was limited by the availabllity of iron.

Additionally, certain nitrogen fixing organisms
such as trichodesmium have higher iron requirements.

Increased supplies of iron may impact the production of the
macronutrient fixed nitrogen and influence productivity in
oligotrophic tropical waters.
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Dust has important but uncertain direct impacts on
climate and radiative budgets and possibly rainfall
patterns.

The iron content of soil dust is on average, 3.5%. At a
seawater pH of 8, soluble ferric iron rapidly
reprecipitates, setting up a competition between
adsorption to water column particulates, active biological
uptake, and organic complexation.



*An average enrichment factor of 1.3 has been
reported for iron implying additional noncrustal
sources.

oIf other iron sources are significant, it means that in
addition to perturbing the iron cycle by changing dust
source production, we may be influencing it by
human activity producing modest amounts of rather
soluble iron.

More data Is required to address the importance of
alternative sources of iron.



land surface properties
and dust availability

s *

temperature, precipitation anthrnpugenic

changes in sofl moisture

and vegelation land-use
change

wind speed
dust entrainment efficiency

precipitation
dust transport efficiency
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to the open ocean
refief of Fa imiation,
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*The previous figures demonstrates the complexity of the
global iron cycle.

Low Fe solubility leads to limitation of marine productivity,
with potentially large-scale feedbacks (either positive or
negative) within the global climate system.

*There are however considerable uncertainties in our
understanding of these interactions, requiring research that
Integrates across the whole Earth system such as on

*(1) dust deposition processes,

o(i1) aerosol iron bioavailability, and

o(1ll) the iImpact of iron on marine nitrogen fixation and trace

gas emissions.



