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As, CryptMT, FISH, Grain, HC-256,
ISAAC, MUGI, PANAMA, Phelix,
Py, Rabbit, RC4, SEAL, SNOW,
SOBER, Trivium, VEST -

Lucifer/DES, IDEA, RCg,

Rijndael/AES, Blowfish, Serpent



One-Time Pad

» Developed by Gilbert Vernam in 1918, another name: Vernam Cipher
» The key

a truly random sequence of 0's and 1’s
the same length as the message

use one time only
- The encryption
addingthe key to the message modulo 2, bit by bit.

1

Encryption c,=m, Dk, =1 110 Y.

=~ @Dk F T
Decryption m, =c, Pk, i =212 B
m; : plain-text bits.
k; . key (key-stream ) bits

C; . cipher-text bits.
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Linear Feedback Shift Registers - LFSR




Non linear Feedback Shift Register - NLFSR
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Stream Ciphers

* Generate a pseudo-random key stream &
xor to the plaintext.

« Key: The seed of the PRNG

« Traditional PRNGs (e.g. those used for simulations) are not
secure.
E.qg., the linear congruential generator:
Xi=aX,;+b modm
for some fixed a, b, m.
It passes the randomness tests, but it is predictible.

Stavros NIKOLOPOULOS Stream Ciphers
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Linear Feedback Shift Reqgisters

Feedback shift register:

xn‘ xn_l ....... ‘ X, > outputbits . ...

(“reqgister”, “feedback”, “shift”)

LFSR: Feedback fnc. is linear over Z, (i.e., an xor):

M Xn| Xnd v e e e e X, > - -

Very compact & efficient in hardware.

Stavros NIKOLOPOULOS Stream Ciphers



Stream Ciphers from LFSRs

LFSR,

T

LFSR,

4@—' key stream . . ..

%

LFSR,

Desirable properties of f:
— high non-linearity
— long “cycle period” (~2n1#n2+...4+nk)
— low correlation with the input bits

Stavros NIKOLOPOULOS Stream Ciphers
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Example LFSR-Based Ciphers

 Geffe Generator:
— Three LFSRs

— LFSR; is used to choose between LFSR, & LFSR;:
y = ()((1) A x(2)) D (_,)dl) A X(3))

— Correlation problem: P(y = x®) =0.75 (or, P(y = x®)))
« Stop-and-Go Generators:

— One (or more) LFSR is used to clock the others

— E.g.: The alternating stop-and-go generator:
Three LFSRs. If xY is 0, LFSR, is forwarded; otherwise LFSR;. Output is
x(2) @ x3).

Stavros NIKOLOPOULOS Stream Ciphers
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LFSR-Based Ciphers (cont'd)

* The Shrinking Generator:
— Two LFSRs

— If xM is 1, output x,
Else, discard both x() & x(@: forward the LFSRS.

A5 (the GSM standard):
— Three LFSRs; 64 bits in total.
— Designed secretly. Leaked in 1994.
— A5/2 is completely broken. (Barkan et al., 2003)

« EO (Bluetooth’'s standard encryption)
— Four LFSRs; 128 bits in total.

Stavros NIKOLOPOULOS Stream Ciphers
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GSM A5/1
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 The A5/1 stream cipher uses three LFSRS.

« Areqister is clocked if its clocking bit (orange) agrees with one or
both of the clocking bits of the other two registers. (majority match)

Stavros NIKOLOPOULOS Stream Ciphers



Software-Oriented Stream Ciphers

« LFSRSs slow In software
o Alternatives:

— Block ciphers (or hash functions) Iin
CFB, OFB, CTR modes.

— Stream ciphers designed for software:
RC4, SEAL, SALSA20, SOSEMANUK...

Stavros NIKOLOPOULOS Stream Ciphers
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RCA4
(Rivest, 1987)

« Simple, byte-oriented, fast in s/w.

* Popular: Google, MS-Windows, Apple,
Oracle Secure SQL, WEP, etc.

Algorithm:

« Works on n-bit words. (typically, n = 8)

« State of the cipher: A permutation of {0,1,...,N-1}, where N = 2",
stored at S[0,1,...,N-1].

« Key schedule: Expands the key (40-256 bits) into the initial state
table S.

Stavros NIKOLOPOULOS Stream Ciphers
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RC4 (cont'd)

The encryption (i.e., the PRNG) algorithm:
| — 0
j<—0
loop: {
| — 1+ 1
J—j+ S]]
Sli] < S[]
output S[S[i] + S[j]]
}

Stavros NIKOLOPOULOS Stream Ciphers
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Speed of Software-Oriented Stream Ciphers

(Crypto++ 5.6 benchmarks, 2.2 GHz AMD Opteron 8354,
March 2009.)

Algorithm Speed (MiByte/s.)
3DES/CTR 17

AES-128/ CBC 148
AES-128/CTR 198
RC4 124
SEAL 447
SOSEMANUK 767
SALSA20 953

Stavros NIKOLOPOULOS Stream Ciphers



RC4 & WEP

WEP: Wired Eqv. Privacy (802.11 encryption prot.)
* RC4 encryption, with 40-104 bit keys.

« 24-bit IV is prepended to the key; RCA4(IV || k). IV Is
changed for each packet.

* Integrity protection: By encrypted CRC-32 checksum.
(What are some obvious problems so far?)

« Key management not specified. (Typically, a key is
shared among an AP and all its clients.)

« Design process: Not closed-door, not very public either.

Stavros NIKOLOPOULOS Stream Ciphers
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Attacks on WEP
(Borisov, Goldberg, Wagner, 2000)

Obvious problems:

« 24-bit IV too shot; recycles easily. (And in most systems, implemented as a
counter starting from 0.)

 CRC is linear; not secure against modifications.
« Even worse: Using CRC with a stream cipher.

Passive decryption attacks:

 Statistical frequency analysis can discover the plaintexts encrypted with the
same |V.

* An insider can get the key stream for a packet he sent (i.e., by xoring
plaintext and ciphertext); hence can decrypt anyone’s packet encrypted with
the same IV.

Stavros NIKOLOPOULOS Stream Ciphers 21



Attacks on WEP (cont’'d)

Authentication: challenge-response with RC4
« server sends 128-bit challenge

 client encrypts with RC4 and returns

« server decrypts and compares

* Problem: attacker sees both the challenge & the
response,; can easily obtain a valid key stream & use it to

respond to future challenges.

Stavros NIKOLOPOULOS Stream Ciphers
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Attacks on WEP (cont'd)

An active attack:

« Since RC4 is a stream cipher, an attacker can modify the
plaintext bits over the ciphertext and fix the CRC
checksum accordingly.

» Parts of the plaintext is predictable (e.g., the upper-layer
protocol headers).

 Attacker sniffs a packet and changes its IP address to
his machine from the ciphertext.
(If the attacker’s machine is outside the firewall, the TCP
port number could also be changed, to 80 for example,
which most firewalls would not block.)

« Hence, the attacker obtains the decrypted text without
breaking the encryption.

Stavros NIKOLOPOULOS Stream Ciphers
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Attacks on WEP (cont’'d)

A table-based attack:
* An insider generates a packet for each IV.
« Extracts the key stream by xoring the ciphertext with the plaintext.

« Stores all the key streams in a table indexed by the IV. (Requires ~15GB in
total.)

 Now he can decrypt any packet sent to that AP.

Note: All these attacks are practical. Some assume a shared key,
which is realistic.

Stavros NIKOLOPOULOS Stream Ciphers
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Attacks on WEP (cont’'d)

« The final nail in the coffin:
(Fluhrer, Mantin, Shamir, 2001)
The way RC4 is used in WEP can be broken completely: When IV
IS known, it Is possible to get k in RC4(IV || k).

« WEP2 proposal: 128-bit key, 128-bit IV.
This can be broken even faster!

Stavros NIKOLOPOULOS Stream Ciphers 25



Replacements for WEP

. WPA (inc. TKIP)

— encryption: RC4, but with a complex IV-key mixing
— Integrity: cryptographic checksum (by lightweight Michael algorithm)
— replay protection: 48-bit seq.no.; also used as IV

« WPA2 (long-term replacement, 802.11i std.)
— encryption: AES-CTR mode
— Integrity: AES-CBC-MAC

Stavros NIKOLOPOULOS Stream Ciphers
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AAyopiBpol opadag - Block ciphers

ApxIko Keipevo 1001010100100

v e sl gl paanoe |

o worlal renbiuy apusil; 1010101001001
S

’

|
I__,J 0101000100101

1001010100100
1010101001001 1001010010010 \L Turua

Tunuoartotroinan

0101000100101 MnvopaTog

1001010010010 KpuTrToypagnuevo

Tunua Mnvoparog

K puTITOY pagIKr)
ZuvapTtnon

.

MuoTikd
KALI10I

0111010101110




AAyopiBpol opadag - Block ciphers

Initialization Vector (1Y)
HEERERERERRER

| | l

block cipher block cipher block cipher
encryption encryption encryption

Ciphertext Ciphertext Ciphertext
<[ TTTTITITITIT] <[TTTTITITITIT] <[ TTTTTTTTTTTT]g

HEEEEEEEEEEEE Lty HEEEEEEEEEEEE
Plaintext Plaintext Plaintext

Key —= Key —= Key —=

Cipher Feedback (CFB) mode decryption




Block Ciphers & S-P Networks

* Block Ciphers: Substitution ciphers with large block size
(= 64 bits)

« How to define a good substitution for such large blocks?
« “SP Networks” NERREEN 111

(Shannon, 1949) SIS .. S

— small, carefully designed e P
substitution boxes | 'S' L 'S' | | 'S' |
(“confusion”) TTT TTT] T

— their output mixed by
a permutation box
(“diffusion”) S S| .... 1|s

— Iterated a certain =
number of times TTTT TTT1 T

Stavros NIKOLOPOULOS Lucifer & DES



Lucifer

« Early 1970s: First serious needs for civilian encryption (in electronic banking)
« |IBM'’s response: Lucifer, an iterated SP cipher

 Lucifer (vO):
— Two fixed, 4x4 s-boxes, X
S, &5, Sy L s
— Afixed permutation P B Ij_','_','j:::::;.-.-;;-.-.---. 'Il |

— Key bltS determin e I III IIII I| -
which s-box is to be |S|°|S|l |S|°|S|1 Ce e |S|°|S|l
used at each position :

— 8 x 64/4 = 128 key bits SSIss ... . '8'0'8'1
(for 64-bit block, 8 rounds) [1T1T 1117 [11]

Stavros NIKOLOPOULOS Lucifer & DES 35



Feistel Ciphers

« A straightforward SP cipher needs twice the hardware:
one for encryption (S, P), one for decryption (S, P1).

 Feistel’s solution:

— X\
L R where the
8 f | f function .
T A is SP: STsT sl
—1—— :
" f , v
|
hy? (x, k)

. F (xhy?)

Ex(X)

* Lucifer vl: Feistel SP cipher; 64-bit block, 128-bit key,
16 rounds.

Stavros NIKOLOPOULOS Lucifer & DES
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Data Encryption Standard (DES)

* Need for a standardized cipher to protect
computer and communications data

 NBS' request for proposals (1973)

* |BM'’s submission Lucifer is adopted after a
revision by NSA.

Stavros NIKOLOPOULOS Lucifer & DES

37



From Lucifer to DES

« 8 fixed, 6x4 s-boxes
(non-invertible)

e expansion E (simple
duplication of 16 bits)

* round keys are used only
for xor with the input

« 56-bit key size

« 16 x 48 round key bits
are selected from the

56-bit master key by the
“key schedule”.

Stavros NIKOLOPOULOS Lucifer & DES

32 bits

M e — X

l5 48
K

L 32

f(x, k;)
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The DES Controversy

» Design process not made public.
Any hidden trapdoors in the s-boxes?

* 56-bit key length is too short.
IS it so that NSA can break it?

Stavros NIKOLOPOULOS Lucifer & DES
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Strengthening DES

« Multiple DES encryption
3DES: Ey3(Dra(Exi(X)))
— Why not 2DES? (112-bit key not long enough?)
— Why “D”?
— Two-key 3DES: K3 =K1
 DES-X (Rivest, 1995)
E (X ® K1) ® K2
— overhead cost minimal
— construction is provably secure (Rogaway & Killian)

— Why not
E (X) © K2
or
E.(x® K1) ?

Stavros NIKOLOPOULOS Lucifer & DES
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Introduction

Intended as an overview
Practical focus

Cover many topics instead of a few in-depth

Examples of ciphers — show variety of
designs while using basic building blocks

46



Uses

Types of data

Files, disk, large plaintext

Not streaming, unless in keystream mode of encryption

Random number generator. RSA token, VASCO digipass (OTPs)

47



Symmetric Key Cryptography

Secret key — one key

General categories of algorithms
* Block Ciphers
« Stream Ciphers

Heuristics
 Well analyzed
« Components based on defined properties
« But, unlike public key, no formal security proof exists

Faster than public key algorithms

48



Why Understand Symmetric Key Cipher
Design?

* If develop own library — efficient implementation, need to avoid
errors due to misunderstanding or “alterations” to obtain resource

savings
* If involve in selecting ciphers for an application, lack of analysis
may result in problems later — ex. cellular encryption algorithms

« Using a proprietary cipher is generally not feasible — it will be
reversed engineered

49
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Block Ciphers

* Input data (plaintext) and a secret key
« Get output (ciphertext)

secret key

l

Plaintext P

—

Encryption

Ciphertext C

—

Plaintext P

secret key

l

Decryption -

Ciphertext C

51



Block Ciphers - Definition

A block cipher operating on b-bit inputs is a family of
permutations on b bits with the key given to the block
cipher used to select the permutation.

K: g-bit key.
P: b-bit string denoting a plaintext.
C: b-bit string denoting a ciphertext.

52



Block Ciphers - Definition

2 bit block cipher, 2 bit key with encryption function defined by:
Key 00 Key 01 Key 10 Key 11

P |C P |C P |C P |C
00 (10 00|11 00 |11 00 |01
01 |11 01|00 01 |10 01 |00
10 |01 10|01 10 |01 10 |11
11 |00 11 |10 11 |00 11 |10

secret key 01
In practice, infeasible to |
store representation of 01 00
block cipher as tables: _
example: 2128 " Encryption "




Block Ciphers - Definition

* An encryption function: E = {E,} Is a family of 29
permutations on b bits indexed by k, where k is
g bits

* Adecryption function: D = {D,} is a family of 29

permutations on b bits indexed by k such that D,
IS the inverse of E,.

* Given a b-bit plaintext, P, and key, k, if C = E,(P)
then P = D, (C).
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Block Ciphers - Definition

* In practice, a block cipher will take as input a secret key, k, and apply a
function, F, called a key schedule, to k that expands k into an expanded key,

ek= F(Kk).
* kis usually 128, 192 or 256 bits and ek is often more than 100 bytes.

« Discuss later — key schedules defined to be computationally efficient at the
cost of a lack of randomness in the expanded-key bits.
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Block Ciphers - Definition

« Consider a block cipher with 128 bit plaintext and 128 bit key
« 2128 possible plaintexts
« 21281 possible permutations

« Key Is index to permutation to use:
« Only 2128 permutations used by the block cipher

56



Pseudorandom Permutation
Definition

Property of ideal (in theory) block cipher: strong PRP

Box contains either the block cipher or a random
permutation

Pseudorandom permutation (PRP): Attacker cannot
make polynomial many adaptive chosen plaintext or
adaptive chosen ciphertext queries (but not both) and
determine contents of box with probability 2 + e for non-
negligible e > 0.

P1,P2 Pn . C1,C2 :Cn "

S7



Strong PRP Definition

« Strong PRP (SPRP): same idea as PRP, but can
make gueries in both directions

P1/P4 Pi C1,C4 Ci '
> R o\~
PP ... P, C,C, .. C.

58



Typical Block Cipher Structure

. P,C are fixed length (e.g. 128 or 256 bits)

. Secret key, K, expanded via a function called
a key schedule to create round keys ki ks, ...

kr plaintext P

r rounds Round
round i uses k; : Function

ciphertext C

59



Parameters

* Block size: 128 bits minimum, 256 bits (64-bit ciphers still in use
due to existing implementations — ex. 3DES, Kasumi)

« Key size: 128 typical, 192, 256 bits

60



Modes of Encryption

* Block cipher is used in a mode of encryption

* Block-by-block encryption (ECB — Electronic Code Book)
can result in patterns being detectable

« Common modes presented later
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Standards Competitions

* NIST Advanced Encryption Standard (AES) —
US, November 2001

 New European Schemes for
Signatures, Integrity, and Encryption (NESSIE)
— European Union, March 2003

« Cryptography Research and Evaluation
Committee (Cryptrec) — Japan’s government,
August 2003
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Standards Competitions

NIST: AES (Rijndael)
NESSIE: AES, Camellia
Cryptrec: AES, Camellia, Hierocrypt-3*, SC2000*

NIST AES runner-ups: Mars, RC6, Serpent, Twofish
NESSIE 64-bit: MISTY1
Cryptrec 64-bit: CIPHERUNICORN

Other:

« Kasumi (64-bit block, 128-bit key): 1999 — modified MISTY1, used in
3GPP

« DES (64-bit block, 64-bit key with 56 bits used — 3DES, NIST
standard 1976-2001)

*Also submitted to NESSIE but not selected
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Requirements - NIST

« Security:

Resistance to cryptanalysis
Soundness of the mathematical basis
Randomness of the ciphertext

e (Costs:

System resources (hardware and software) required
Monetary costs

« Algorithm and implementation characteristics

Use for other cryptographic purposes (hash function, a random bit
generator and a stream cipher - such as via CTR mode)

Encryption and decryption using the same algorithm
Ability to implement the algorithm in both software and hardware

Simplicity: reduces implementation errors and impacts costs, such as
power consumption, number of hardware gates and execution time
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Requirements - NESSIE

"Simplicity and clarity of design are important considerations. Variable
parameter sizes are less important.”

Selection criteria divided into four areas:
« Security: resistance to cryptanalysis.

« Market requirements: feasibility of implementation from a technical
perspective (cost-efficient implementations) and business perspective
(free of licensing restrictions).

« Performance and flexibility: range of environments in which the
algorithm could efficiently be implemented. Software considerations
Included 8-bit processors (as found in inexpensive smart cards), 32-bit
and 64-bit processors. For hardware, both field-programmable gate
array_iI (FPdGAs) and application-specific integrated circuits (ASICs) were
considered.

 Flexibility: use in multiple applications and for multiple purposes
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Requirements - NESSIE

Three categories of block ciphers:
* High security: keys > 256 bits, block length of 128 bits.
* Normal security: keys > 128 bits and a block length of 128 bits.
« Normal legacy: keys > 128 bits and a block length of 64 bits.

» In all categories: minimal attack workload must be least O(2°°)
triple DES encryptions
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Terms

Confusion:
« obscure relationship between plaintext and ciphertext
Diffusion:

« Spread influence of a plaintext bit and/or key bit over ciphertext
(avalanche effect)

« Hides statistical relationships between plaintext and ciphertext

 Ideally (not in practice) if a single plaintext bit changes, every
ciphertext bit should change with probability V5.

Suppose encrypting plaintext 1111111111111111 produces
ciphertext 0110110000101001

Then encrypt 1111111011111111, can’t predict anything
about ciphertext
69



Terms

Differential
« Two inputs to a function: P,, P,
« Corresponding outputs C,,C,
 Differential is P, ©® P,, C; & C,

Linear relationship
* Input P, output C, key K
 Linear equation consisting of P;, C;, K; bits that holds with probability 2 + e for non-
negligible e
« Example: P; ® K, = C,,with probability %
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Common Building Blocks

Substitution-Permutation Network (SPN)
« General term for sequence of operations that performs
substitutions and permutations on bits
Feistel Network (will see example later)
« Forinput L, || R, and any function F
* L=Ry
* R=L,®FR,K)
» K= other input to F, (ex. key material)
Whitening
« XOR data with key material (X @ K)

* Helps break relationship between output of one round and
Input to next round
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Common Building Blocks

Substitution Boxes (S-Box)
« Based on data (and sometimes key bhits),

replace data

« Designed to minimize differential and linear

relationships

data
bits

key bits

00

01

10

11

00

10

11

01

00

01

11

01

00

10

10

01

00

10

11

11

00

10

11

01

73



AES — 128 bit block

128 bit plaintext

l

AddRoundKey } initial whitening

S-Box
Shiftrows
MixColumns >~ 9 rounds
AddRoundKey
v /
I
v
S-Box )
Shiftrows
l > last round

AddRoundKey

v
128 bit ciphertext




128 bit Plaintext
data block
AddRoundKey
* A\ 4
SubBytes (S-Box)
ShiftRows
MixColumns
AddRoundKey
N d _ \ 4
Mrixr((:)glnur;ns Ciphertext

not in last round

AES

Variable key length
and # of rounds.

Decryption not same as encryption.

whitening

AES

Keyless permutations
and substitutions.

I @ with expanded key bytes

Key Nk=# |Nb=#o0of [Nr=
length |Of words in  |# of
in bits |32 bit input/output | rounds
words  [(128 bits)
in key
128 4 4 10
192 6 4 12
256 8 4 14




AES Round Function Components:
Encryption

SubBytes S-Box (table lookup at byte level,
see FIPS197 for table values)

ShiftRows
sO0 |sO1 |[s02 |s03 s00 sO1 s02 | s03
. 10 11 12 13 > 11 12 13 10
A: S el el Shiftrowi |omfo— > 1
s20 | s21 |[s22 |s23 i positions s22 s23 s20 | s21
sij is a byte s30 s31 s32 | s33 (i=0to 3) s33 s30 s31 | s32
MixColumns
4 N
02 03 01 01 Usually implemented as a table lookup
A <« 01 02 03 01| 4 A Coefficients of a polynomial
01 01 02 03
03 01 01 02)
(in hex)
AddRoundKey

A <« round key @ A



Round 1

Input

After ShiftRows

Note: AddRoundKey has
no impact on diffusion

AES Diffusion:

Single Byte

Round 2

s’00

s’01

s’02

s'03

s'12

s’13

s’10

s’11

s'20

s'21

s'22

s'23

s'32

s’33

s’30

s’'31

s”00

S”01

s"02

s”03

s"12

s"13

s”"10

s"11

s"20

sO00 | sO1 | s02 | sO3
s10 | s11 |s12 |si13
s20 | s21 | s22 |s23
s30 | s31 | s32 |s33
sO0 |sO01 |s02 |[s03
sl1 |sl12 |sl13 | s10
s22 |s23 |s20 | s21
s33 |s30 |s31 |s32
s’00 |s’01|s'02 |s’03
11 | s'12|s'13 | s’10
s'22 |s’23 |s'20 | s’21
s’33 |s’30 | s'31 | 8’32

After MixColumns

s”’21

s’22

s"23

s"32

s”33

s”30

s”31




AES Round Function

e Can be collapsed to 4 table lookups and 4 XORs using 32-bit
values (tables for last round differ — no MixColumns step)

« XOR result with round key
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AES Decryption

SubBytes S-Box inverse
(see FIPS197 for table values)
ShiftRows reverse shift
s00 sO1 s02 | s03
/\_ s10 sll sl12 | s13 <
' s20 |s21 |s22 |s23 | Shiftrowi
| positions
s30 |s31 |s32 |s33 (i=0to 3)
MixColumns . .
OE OB OD 09
09 OE 0B 0D
A < 0D 09 OE 0B
0B 0D 09 OE
(in hex)
AddRoundKey
A <« round key @ A

s00 sO1 s02 | s03
sl11 sl2 s1l3 | s10
s22 s23 s20 | s21
s33 s30 s31 | s32
sij is a byte
* A



AES Key Schedule

w; = i 32 bit word of the expanded key

For 15t Nk words: w; = it" word of key (Nk=4 for 128 bit keys)
I.e. key Is used as initial whitening (the first AddRoundKey step)

Loop 40 times for

For remaining words (i = Nk to Nb*(Nr+1) -1) { 128-bit key, 128-bit block

iIf i is not a multiple of Nk Most expanded
Wi = Wi.g © Wiy \ key words are @ of
if i is a multiple of Nk and Nk < 8 110 [QUrEVIOUE 1Ol

w; = (S-Box applied to a rotation of w; ;) @ w;_, ® round constant

if Nk=8andimodNk=4
w; = (S-Box applied to w;_;) © W,

}

S-Box and rotations are applied at the byte level.
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(Balanced) Feistel Network

( b bits

left half right half
A rounq )
L= function |[°

round

>

round
function

Note: unbalanced =
b bits divided into
two unequal portions

round
function

J } plaintext

each half is input to
round function once

two rounds are a cycle

b bits ] } ciphertext
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Feistel Network

Advantages:

* Run network in reverse to decrypt
 Round function does not have to be invertible

* Implementation benefit — same code/hardware used for encryption
and decryption

 If the round function is pseudorandom permutation (theoretical
concept), provable properties about 3 and 4 rounds

Disadvantages:

« Diffusion can be slow: %2 of bits have no impact in first application
of the round function

* One round differential characteristic with probability of 1
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PRPs, SPRPs from Feistel

* Round functions independently and randomly chosen

PRPs,

* rrounds and n bit input to round function, randomly select
“tables” representing round functions

* First selection from 2" tables, then from 2" -1, 2™M-2, ... 2"l-r+1
tables

3 round Feistel network 1s PRP
4 round Feistel network is a SPRP

* Luby-Rackoff,
* Naor-Reingold
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amellia 128-bit Key and Block

"i""l.i'bl_l_' -'_"“""Jbl_l
Loveq Roves)
Kipeiy Kapea) Kapea)
Mija) Aaisd) Mered)
E-Rowind
l amIER lll.ll | ]
LT | ”‘ | &)
Mrjedl Agisdl Mojed)
Ny V1o, * jes) &-Routrd
Myeq— FL | L "“'erJ

X iziga) Xaupen, Ko ges
K ise) Mrmiea, ¥ e
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Camellia F Function

F(x,k) = P(S(x @ K)), where S is a S-Box on 8-bytes. P is a function that XORs bytes of its 8-byte
Input to form an 8-byte output.
P function:
Output Byte : Input Bytes XORed
:1,3,4,6,7,8
:1,2,4,5,7,8
0 1,2,3,5,6,8
:2,3,4,5,6,7
:1,2,6,7,8
:2,3,5,7,8
: 3,4,5,6,8
:1,4,5,6,7

00O NO Ol WDN P

diffusion

Byte 1:
Byte 2:
Byte 3:
Byte 4:
Byte 5:
Byte 6:
Byte 7:
Byte 8:

1,2,5,8
2,3,4,5,6
1,3,4,6,7
1,2,4,7,8
2,3,4,6,7,8
1,3,4,5,7,8
1,2,4,5,6,8
1,2,3,5,6,7

85



Camellia F Function

The substitution performed by S is done by viewing the data as 8 bytes and
using one of four S-Boxes, (S1, S2, S3, S4), on each byte.

 Bytes 1 and 8 have S1 applied

 Bytes 2 and 5 have S2 applied

« Bytes 3 and 6 have S3 applied

* Bytes 4 and 7 have S4 applied

One table, S represents S1,52,53,54

Create S1,52,53,54 as follows:

For i =0 to 255:
S1[i] = S[i]
S2[i] = (S[i] >> 7 ® S[i] << 1) & Oxff
S3[i] = (S[i] >> 1 ® SJi] << 7) & Oxff
S4[i = S[((1)) << 1 @ i >>7) & Oxff
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Camellia F Function

» P function: diffusion amongst bytes

* S-box: Allows for time/memory tradeoff in
Implementations

« Can store four tables S1,52,53,54
« Can store only S and compute values
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Camellia FL Function

The FL function takes a 64-bit input and 64 expanded key bits.

Let X, and Xy denote the left and right halves of the input,
respectively

Let Y, and Y denote the left and right halves of the output,
respectively.

Let kI, and kl; denote the left and right halves of the 64 key bits.

FL is defined as:
Yr = (XL Nkl <<<1) ® Xg incorporating key bits
Y, = (Y Ukl) @ X,
FL1is:
X, = (Yg UKl ® Y,
Xq = (X, A Kl) <<< 1) @ Y,

U IS bitwise OR N is bitwise AND <<< is left rotation
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amellia 192,256-bit Keys

m

Koiga) Mg Yavel
Kaiga), Rsies) Kesd)

H:I'ls"'.'_.-l FL | | .rL*]-—.'c

Krpga)y bgen fges),
K soveay Ko zgssy X136

Mueg—[_rc | [ _rt s

N P

K iz, Kosgsay Kasie,

K ayed), Ko miga X L8 &-Fotird

.'l'l":l-é_.J_'l

K oorea), Kaoyed), K2uie4),
K oy Kazjesy Kage



Camellia Key Schedule

Let K be the key.

Applies rounds of Camellia with constants for the round keys to K.
XORs round’s output with the K then applies additional rounds.
Let KA be the final output of the rounds.

Each round key is part of KA or K rotated.
« KA, K values used in multiple rounds

* For example:
« initial whitening uses K
« 9t gpplication of F uses the left half of KA rotated 45 bits to the left.

90



MISTY1

b bits

/\
- N

left 32 bits right 32 bits

round
function <




MISTY1 FL Function

The FL function takes a 32-bit input and 32 bits of expanded key bits.
Let X, and Xg denote the left and right halves of the input, respectively.
Let KL, and KL denote the left and right halves of the 32 key bits. The
Index i refers to the component.

Yr= (X KL & Xg
Y =(Yr UKLRg) ® X,
The 32 bit outputis Y, || Yg

The inverse of FL is used in decryption and is defined by

XL=(Y_rUKLg)®Y,

Xg=(X_Ln KL,) @ Yg

The 32 bit output is X || X Combines key and data
bits; some diffusion

between two 16-bit data
segments
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MISTY FO Function

« A 32-bit input, a 64-bit key and 48-bit key (from expanded key bits).
« LetlL,and R, denote the left and right halves of the input
* Let KO, be the 64-bit key and KI; be the 48 bit key.

« KO, and Kl; are each divided |nto 16 bit segments. KO; and KI; denote
the jth 16 bit segment of KO, and KI;, respectively.

For (j=1; ) < 3; ++)) {
R_=FI((L; ® KOy.KI) ®R;;
L= R4

}

The value (L; © KO,,)|| R; Is returned

Combines key and data
bits; some diffusion
between two 16-bit data
segments
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MISTY FI Function

16 bit input, X;, and a 16 bit key, K.

Let X; = Lgg) || Roizy  (X) Indicates x bits

Let Kl;; = Kl 7 || Kljreo)

S7 and S9: two S-Boxes mapping 7 and 9-bit inputs to 7 and 9-bit
outputs.

* Refer to the paper on MISTY1 for the table values

« S-Boxes: each output bit corresponds to the multiplication and XOR of a
subset of input bits.

ZE(X): 7-bit input, X, and adds two 0's as the most significant bits.
TR(x): 9-bit input, X, and discards the two most significant bits.
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MISTY FI Function

L1 = Rog)
Ri9) = S9Lo) © ZE(Ry)
Loy = Ry) @ Klireg
Ry = S7(Ly7) © TR(Ryq) @ Kl 7
L3z = Rog)
R39) = S9(Lyg) © ZE(Ry7))
Fl returns Ly || Ry
Combines key and data bits;
“shifts” bits so 16-bit halves used in F,

FO functions are altered — helps diffusion
between two 16-bit data segments
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MISTY1 Key Schedule

One 128-bit key is divided into eight 16 bit values.
Let K be the it" 16 bit portion.
Note: i =i-8fori>8
Create eight 16 bit values using the K _i's and the FI function:
K'i = FI(K;Kisy)
KO;; = K
KO;; = Ky
KO;3 = Kiy7
KOs = Kisg
Klip = K'iss
Klip = K'ig
Kliz = K'iss
KL, = K'(41y2 When i is odd and K', . , when i is even
KLir = K'441y2+6 When iis odd and K, ., when i is even
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MARS

128 bit data block 3 main stages

128 to 448 bit keys
plamtext: D[3] D[Z] D[1] D[]

~_ whitening
key addition i i i |
. forward mixing QUiCk diffusion

eight rounds of
unkeyed forward mixing

S S T S
eight rounds of keyed
forward transformation | " Type 3

l l l l 4 cryptographic .
eight rounds of keyed core” Feistel
backwards transformation Network

S T T T
eight rounds of
unkeyed backwards mixing

( bockwards mixing Decryption differs
key subtraction & Gl [T] [F ‘\K from encryption
v v " whitening

ciphertext: D'[3] D°’[2] D'[1] D[0]

Images downloaded from
http://islab.oregonstate.edu/koc/ece575/00Project/Galli/MARSReport.html,
original source unknown. 97
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MARS - Detalls

Forward Mixing

D[1] D[0] /

whitening

Backward Mixing

DI3] DI2] D[3] D[2] D[1] D[]
= K[3] E%‘H K[2] EEI'H K[1] EIIEI"E— K[0] Mol ]
P | S1}
S0 L Mool
i S0 B = 50 Fade
- =l
i Sl T [ Sl
T |—|SG b= El'F
= Sl k
=
ﬂ _ = Exs=l
E B== g e =
Bp==> =l
STt e
=fH . = 51
N twice x2 T =
g . S0 £
R
: ! o
Bp=> B
=150 = ;
Sy S
- 51] -5
SO ® B Bl L
Epe '—|S] B L= T
Koo L2 | B s
=
50 =6 9 |
- -
K[39] K[38] K[37]
; / %IF %-&
B exclusiveor % x 12 S-boxes . . £(— b subtraction (a-b) 8 x 32 S-boxes
B  addition 8=>>  right-rotation by 8 Wh Iten I ng 5= exclusive-or 8<<< left-rotation by 8

twice

%——K[m 1
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D[]

D[1]

D[2]

D[3]

D[0]

D[1]

D[2]

D[3]

MARS - Detalls

Core  Odd bit rotations

X Forward mode 1 l
Il | g J L ¥
E E
outl outl
| -
out? outl]
(i |
[
out3) outd
r 1
Backwards mode 1a
E E
out3 lout3
3

[mm]

o2

ot 2

T

ot 1

out 1

L

fHB exclusive-or

H addition

LT

32 x 96 expansion function
13<=< left-rotation by 13

16 rounds: 8 each of
forward and backward mode.

Alternate
blocks
entering E.

in

E Function

[mum] [ o
T 5 5 R
34<< Kk’ (odd)
1
k
g aa &<k =

& exclusive-or 9x 32 S-box

B addition n<<< left-rotation by n

B multiplication afﬂr data-dependent rotation

Data dependent rotation
Odd bit rotations
Multiplication

S-Box, addition

outd

out?

outl
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Serpent

Plaintext :
128 bit data block
IP
— v 256 bit keys,
32rounds | [ pads shorter keys
----------- DK | < whitening
S- 32 copies of S-Box used.
i mod 8 4 bit input to each.
! Linear
_ _ Bitj =0 to 127: i
Linear Transformation Odd J XOR of 3 bits TranSfOrmathﬂ
(exfe'ot last round) Even j: XOR of 7 bits Output bits =

....................................... @ Of input bitS

whitening——| @ Kj,

Ciphertext Decryption differs from encryption
100




Diagram downloaded from
http://www.opencores.org/projects/twofish _team/

n
I WO f I S h Original source unknown.

128,192,256

128 bit data

[ P (128 bits) ]

L D e |wims, it keys
whitening — : pads shorter keys
4 key : —'lﬁ D -+ Mixbits
dependent ///
S-Boxes :
Saa S
J > |
16 rounds i Maximize
(Not Feistel — g %3 difference
1 bit rotations.) : ~ in outputs
whitening {; K.__.ég%ﬂ.]w‘.:::::.}.
C (128 bits | Decryption differs

from encryption.
yp 101
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RCG6

break input into 4 words

RC6_encrypt(A,B,C,D) {

B =B + S[0];

D =D + S[1];

for (i=0; i <r; ++i) {
t = (B*(2B+1)) <<< log2(w);
u = (D*(2D+1)) <<< log2(w);
A=((A@t) <<<u) + S[2i];
C=((C®u)<<<t) + §[2i+1];
(A,B,C,D) = (B,C,D,A);

}

A=A+ S[2r+2];

C=C+ S[2r+3];

return (A,B,C,D);

whitening

whitening

Consists of @, +, *

modify half of data,

@ with other half, shift
whitening

swap “halves”

r = # of rounds

S = expanded key (2r+3 words)
w = word size

* = multiplication mod 2%

+ = addition mod 2%

<<< = left rotate

Decryption use: >>>, -
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RC6 Key Schedule

Key schedule for RC6-w/r/b

Input: User-supplied b byte key preloaded into the e-word
array L|0,...,ec— 1]

Number r of rounds
Output: w-bit round kevs S[0,...,2r + 3]

Procedure: S[0] = P,

fori=1to 2r+ 3 do
Sli] = Sli — 1] + Qu

A=B=i=j=0

v =3 x max{c, 2r + 4}
for s =1 towv do

{
A=S8[i]=(S[i] + A+ B)=«3
B=Lljl=(Llj]+ A+ B)= (A+ B)
i =i+ 1)mod (2r + 4)
j=1(j+1)mode

}

P, = B7TE15163 Q,, = 9E3779B9
Constants really are arbitrary and can be changed.
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RC6

Decryption with RC6-w /r/b

Input: Ciphertext stored in four w-bit input registers A, B, C, D
Number r of rounds
w-bit round keys S[0,...,2r + 3|

Output: Plaintext stored in A, B,C, D

Procedure: €= C — S[2r + 3]
A=A4-52r+2
for i = r downto 1 do
{
(4, 8.C,D)=(D,A,B,C)
u=(Dx=x(2D+1))=lgw
t=(Bx(2B+1)) =lgw
C=(C-S52i+1])=t)du
A=((A-S[2i]) = u) st
}
D — 5§[1]
B — 5[0]

D
B
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RC6 Encryption

i i
T e
[+ %—
Lo
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Key Schedules

 ldeal key schedule
— pseudorandom expanded key bits
— efficient
« Existing key schedules
— Unique per block cipher
— Lack of randomness/independence
— Contributes to attacks — if find few expanded key bits can plug into key schedule
— Design for efficiency
« Suggestion: Use a generic key schedule
— Generate as many expanded key bits as needed
— Single implementation
— Increase randomness compared to existing key schedules
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Key Schedules — Existing

AES:

— 11 128-bit strings created each as 4 32-bit words (11 whitening
steps)

— The 128-bit key is split into four 32-bit words. Additional 128-bit
strings are formed by:

« 1stword: a table lookup on a previous word then XOR it with a
constant and a previous word.

« 2 to 4t words: XORing two previous words
Camellia, MISTY1: expanded key bits used in multiple
locations

RC6: more complex relationship between expanded key
bits
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Example: Use of a Block Cipher to Create
Random BIts

RSA SecurlD®
* Provides a one time password

* Previous version used proprietary algorithm that
was reversed engineered.

 Current version uses AES as a hash function
 Algorithm to handle timing issues
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Agenda

Introduction
*Block Ciphers
*Definition
Standards Competitions and Requirements
Common Building Blocks
Examples
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ECB Mode

Pl I32 I:)n
E, ST [ —— E,
l l l
Cl C2 Cn

sldentical plaintext blocks produce identical
ciphertext block: pattern detection

Patterns not likely in normal text — newspaper, book —
due to need to align on block boundary

-Patterns likely in structured text — log files
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ECB Mode

Splice ciphertexts
Replace ciphertext blocks
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CBC Mode

112



CBC Mode - Splicing
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Blockwise Adaptive

Consider a block cipher and CBC mode

Environment where see ciphertext from plaintext block |
before having to input plaintext block i+1

M1,M2,M3 are three distinct 2b-bit plaintexts.
Know one of M1 and M2 was encrypted. Ciphertext, Cx

M1, M2 ? | CBC mode

» CX

« Can form M3 to determine if it is M1 or M2.
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Blockwise Adaptive

« M3: for first block send an arbitrary b-bit bits,
receive the ciphertext, C3[1]

* Generate the next b bits of M3 by XORIng the
first block from Cx, C3[1] and M1[2]

Notation: X][i] = i"" block of X
115



Blockwise Adaptive

M3[2] = Cx[1]
MT[” ® C3[1] ® M1[2]
IV —® S
l l ................. Cx[1] ® M1[2]
E, E,
C3[1}— C3[2]

C3[2] = Cx[2] if Cx is the encryption of M1
C3[2] # Cx[2] if Cx is the encryption of M2.
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CTR Mode

\Y IV+1 IV+n-1

E, E. | E,
Pr—e Pr—o Pn—><£

) ) )

C, C, C,

Creates key stream and XORs with plaintext

Need to avoid reusing key and IV+i value combination
117



OFB Mode

Il+tilttso b — -
L=Iv £ 1,
E, E,
Xl l discarded X2 l discarded
Pl —»E_'B — P
Cl Cz

X; = leftmost x bits of the b bit output from the cipher

PJ- IS X bits
=14 bits x+1 to b || X1

.., bits
Xx+1tob

Xn-l

l discarded
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CFB Mode

Ilﬁitts b + o1 Inflbtiésb s S
=V = oy ” __'f |
E, Eo | E,
X bits l l discarded x hits l l discarded X bitsl v discarded
P, —>'@/P2 —>? /Pn—j)
Cl C2 Cn

Cipher outputs b bits, the rightmost b-x bits are discarded.
P, is x bits
=1, bitsx+1tob || C,
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Ciphertext Stealing

Example using CBC mode

P, P, Pn1 PallY
| x|
VN—7p —e — —® [
v v v v
E, STEN I —— E, E,
c, — G — Chi— G
X~
Length preserving Use bits from next to last block of

ciphertext to pad last plaintext block
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Disk Encryption

 Modes seen so far process block, move on

— no backward diffusion

— can easily distinguish output from random by encrypting a few plaintexts

— ex. If P1 = P2 in first x blocks, encrypt with same key then first x blocks of ciphertext are identical
« Tweakable modes:

— narrow-block encryption modes: LRW, XEX, XTS

— wide-block encryption: CMC, EME

— designed to securely encrypt sectors of a disk
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XEX

M
A
EH ﬂ=i1:.11ftii'---n§:k H
N = Eg(N)
SP A Disk encryption:
' N = sector index
o, | = i,l,...I, = block index

XTS is XEX-based Tweaked CodeBook mode (TCB)
with CipherText Stealing (CTS)
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CMC Mode

T

k —

P1

M-%%}

X1

A 4

»
L

:ﬁ
\i/

y y

G
C4

k —

L
\i/

C3

T = G(tweak) using key k, T = 0 if no tweak

M = 2(X1 @ X4)

K— K—

X4
M—»E[; M—»E[;
k—» G Kk — G

C2 C1l

Halevi and Rogaway



EME mode

EME: ECB-mask-ECB
Mask Is different from that of CMC mode

CMC creates PRP/SPRP in theory on m
blocks
EME does not

— Flaw — authors stated in CMC paper not
fixable

Patented
Used for disk encryption in practice
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