Comparison of Software Design Models: An Extended
Systematic Mapping Study

LUCIAN JOSE GONCALES and KLEINNER FARIAS, University of Vale do Rio dos Sinos, Brazil
TOACY CAVALCANTE DE OLIVEIRA, Federal University of Rio de Janeiro, Brazil
MURILO SCHOLL, University of Vale do Rio dos Sinos, Brazil

Model comparison has been widely used to support many tasks in model-driven software development. For
this reason, many techniques of comparing them have been proposed in the last few decades. However,
academia and industry have overlooked a classification of currently available approaches to the comparison
of design models. Hence, a thorough understanding of state-of-the-art techniques remains limited and incon-
clusive. This article, therefore, focuses on providing a classification and a thematic analysis of studies on the
comparison of software design models. We carried out a systematic mapping study following well-established
guidelines to answer nine research questions. In total, 56 primary studies (out of 4,132) were selected from
10 widely recognized electronic databases after a careful filtering process. The main results are that a majority
of the primary studies (1) provide coarse-grained techniques of the comparison of general-purpose diagrams,
(2) adopt graphs as principal data structure and compare software design models considering structural prop-
erties only, (3) pinpoint commonalities and differences between software design models rather than assess
their similarity, and (4) propose new techniques while neglecting the production of empirical knowledge from
experimental studies. Finally, this article highlights some challenges and directions that can be explored in
upcoming studies.

CCS Concepts: » Software and its engineering — System modeling languages;
Additional Key Words and Phrases: UML, model comparison, model similarity, software design models

ACM Reference format:

Lucian José Gongales, Kleinner Farias, Toacy Cavalcante de Oliveira, and Murilo Scholl. 2019. Comparison of
Software Design Models: An Extended Systematic Mapping Study. ACM Comput. Surv. 52, 3, Article 48 (July
2019), 41 pages.

https://doi.org/10.1145/3313801

1 INTRODUCTION

The comparison of software design models plays a pivotal role in several model-centric software
development tasks, e.g., identifying commonalities and differences between software design mod-
els, or even pinpointing conflicting changes as the relevant models are executed in parallel by

This study was financed in part by the Coordenacgéo de Aperfeicoamento de Pessoal de Nivel Superior - Brasil (CAPES) -
Finance Code 001.

Authors’ addresses: L. José Gongales, K. Farias, and M. Scholl, University of Vale do Rio dos Sinos, Graduate Pro-
gram in Applied Computing, Sao Leopoldo, RS, Brazil; emails: lucianj@edu.unisinos.br, kleinnerfarias@unisinos.br,
mrscholl@edu.unisinos.br; T. Cavalcante de Oliveira, Federal University of Rio de Janeiro, Rio de Janeiro, R], Brazil; email:
toacy@cos.ufrj.br.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2019 Association for Computing Machinery.

0360-0300/2019/07-ART48 $15.00

https://doi.org/10.1145/3313801

ACM Computing Surveys, Vol. 52, No. 3, Article 48. Publication date: July 2019.

48

https://doi.org/10.1145/3313801
mailto:permissions@acm.org
https://doi.org/10.1145/3313801

48:2 L. J. Gongales et al.

different software development teams. The term “comparison of software design models” can be
briefly defined as a set of tasks that should be executed over two input models, M4 and Mg, to
analyze the equivalence or similarity between their elements. Many approaches to the compari-
son have been proposed in the last few decades (e.g., MADMatch [32], GaMMa [21], SiDiff [52],
DSMDiff [34], and UMLDIft [64]) to support researchers and practitioners compare models like
the UML (Unified Modeling Language), structural and behavioral models [41], and business pro-
cess models [40]. Previous studies [33, 53, 59] have pointed out that measuring similarity remains
an error-prone and time-consuming task [33, 53]. Regardless, researchers and practitioners in the
industry still need to choose from among the available approaches in the literature the one that
best fits their needs. Unfortunately, this choice is not trivial for two reasons.

The first is that the number of studies in the literature that have systematically classified ap-
proaches to the comparison of software models is still small. We noted this after a careful search
to find a systematic map of model comparison approaches. Most studies explore issues in the field
of model comparison, including comparative analysis and surveys of studies [30, 57], use of design
comparison in the versioning of design models [4], brief reviews of approaches to the compari-
son of UML models [54], use of model comparison to promote artifact reuse [49], introductions to
model comparison approaches and their main applications [57], and the elaboration of comparison
techniques [2, 32, 64]. The second reason for why the choice of model is non-trivial is that although
some studies have aimed to survey the literature, they fail to reflect a thorough understanding of
the area. The review protocols used are not as rigorous and detailed as those found in a systematic
mapping study (SMS) or a systematic literature review (SLR). Instead, the review procedures do
not make clear important points, including research questions, retrieval and filtering procedures,
and steps used to synthesize the collected data.

We also think that while many comparison approaches [2, 32, 64] were proposed between 2003
and 2018, academia and the industry have neglected their careful classification. A comprehensive
understanding of the literature on these issues is severely lacking, including the software design
models that are supported, the data structures that are often used, criteria that are considered to
define the similarity between design models, how fine-grained the similarity measures are, the em-
pirical methods used to evaluate the comparison approaches, and the level of automation. In gen-
eral, current literature reviews use classification criteria based not on rigorous and broad reviews,
but on choices based on expert judgment. Hence, a thorough understanding of state-of-the-art
approaches remains limited and inconclusive. Even worse, researchers and industry professionals
end up lacking the knowledge needed to help them in a judicious choice of comparison approaches,
and in setting new directions for their research.

This article, therefore, aims at (1) providing a classification and a thematic analysis of studies
on the comparison of software design models (Section 5), and (2) pinpointing gaps and directions
of research for further investigation (Section 6). To this end, we carried out an SMS based on
well-established guidelines [24, 26, 43]. A robust review protocol is elaborated by combining au-
tomatic and heuristic search in 10 widely recognized electronic databases and running a careful
filtering process over a sample of 4,132 potentially relevant studies. In total, 56 primary articles
were selected to answer nine research questions. We chose SMS as review method instead of SLR
for three reasons. First, the goal of SMS is to classify and analyze literature on a particular topic
[26, 63]. SLR aims to discuss and contrast related studies to identify gaps and progress. Second, the
research questions explored in SMS are generic and often related to research trends, whereas SLR
investigates specific ones, usually derived from findings and outcomes of empirical studies. Third,
the expected results in SMS are selections of articles on research topics. SMS categorizes the se-
lected articles based on a variety of dimensions and classifies the work into various categories. On

ACM Computing Surveys, Vol. 52, No. 3, Article 48. Publication date: July 2019.

Comparison of Software Design Models: An Extended Systematic Mapping Study 48:3

the contrary, SLR seeks to aggregate outcomes of the selected studies to answer specific research
questions [26, 63].

This article is a substantially extended version of our previous work [18] in a number of aspects.
First, this study includes new research dimensions explored through the nine research questions,
instead of two research questions. Second, the entire research protocol was revisited to make its
review procedures as more rigorous as possible. The study selection procedures were improved by
supporting more refined selection criteria, the number of filtering steps to identify representative
studies was increased from four to eight, and the search scope was enhanced to support 10 elec-
tronic databases instead of six. Third, we identified 56 primary studies, representing an increase
of 16 studies over the previous version. Moreover, this article presents additional discussion, iden-
tifies open challenges and trends, and outlines key underlying issues that need to be tackled in
future investigation.

The remainder of this article is organized as follows: Section 2 gives a comprehensive resume
of the background needed to understand this study and Section 3 introduces our review protocol.
Section 4 describes the procedures to filter potentially relevant studies and Section 5 presents the
collected results. Section 6 introduces a discussion and a delineation of outstanding challenges,
and Section 7 reports actions taken to minimize threats to the validity of our results. Section 8
describes related work and Section 9 presents our final remarks and directions for future work in
the area.

2 BACKGROUND

This section discusses the main terms used throughout this article. Section 2.1 presents key con-
cepts by describing a comprehensive example of model comparison. Section 2.2 outlines the use
of software design models. Section 2.3 compares SMS and SLR, and discusses some benefits of the
former.

2.1 Model Comparison

Figure 1 presents an illustrative example of a UML class diagram [41] to understand model compar-
ison. Figure 1(a) has two models, Model A and Model B. The first can be seen as a base model while
the second represents an evolution of Model A. Suppose a developer needs to combine the contents
of Model A and Model B to produce a consolidated view, i.e., Model AB as shown in Figure 1(b).
For this, before combining Model A and Model B, the developer needs to identify the equivalence
between them. For example, the class Researcher in Model A is defined as a concrete class (i.e.,
Researcher.isAbstract = false), whereas in Model B, it is set as an abstract one (i.e., Re-
searcher.isAbstract = true). They have similar names but different values assigned to the meta-
attribute isAbstract." These contradicting values should be solved. Thus, the developer should
answer the following question: What is the proper value of the “isAbstract” property? Based
on the desired model in Figure 1(b), the correct answer is that Researcher is abstract—i.e., Re-
searcher.isAbstract = true. Moreover, the attributes Researcher.name, found in Model A and Model B
are equal. However, their attributes Researcher.salary have different types. Third, the methods calc-
Salary() and reportSalary() have different names but an identical purpose (i.e., computing salary).
Although they have different signatures, their semantics are the same.

Moreover, the classes Associate in Model A and Model B have the same attributes and methods.
Furthermore, both classes have an inheritance relationship with the class Researcher. Thus, they are
equivalent, forming a single class Associate in Model AB. Furthermore, there is no matching pair for
the remaining classes, i.e., Visitor and Assistant in Model A, and Professor and Graduate in Model B.

IThis meta-attribute is defined in the UML metamodel [41].

ACM Computing Surveys, Vol. 52, No. 3, Article 48. Publication date: July 2019.

48:4 L. J. Gongales et al.

Model A Model B
Researcher Researcher
- name: String - name: String
- salary: double - salary: double
4
[T 1
Visitor i Associate Professor Associate
- email: String - email: String - email: String - email: String - email: String
+ getSalary(): double | |+ getSalary(): double| |+ getSalary(): double| [+ getSalary(): double| |+ getSalary(): double
T
Graduate

-id:int
- university: String

(a)
Model AB
Researcher
- name: String
- salary: double
N
[T T |
Professor Assistant Associate Visitor
- email: String - email: String - email: String - email: String
+ getSalary(): double| |+ getSalary(): double| |+ getSalary(): double| |+ getSalary(): double
Graduate
-id:int
- university: String
(b)
Model A Model B
LA Equivalent oce Model AB
| Researcher [#==========-----c-o-ooooooooo Researcher
LSyt ' |
77777 1 | | | |
Visitor Asssistant E,_"ﬂﬁs_?fiﬁt_"; “i p,-ofelssf,r | Associate i Professor Asssistant Associate Visitor
A A | S
! i Graduate
Graduate Equivalent
(c) (d)
Match Rule Similarity Matrix
rule MatchClass Researcher | Professor | Graduate | Associate
match a:modelA
with b:modelB{ Researcher 0.8 0.2 0.2 0.2
Compare { Visitor 0.2 0.2 0.2 0.2
a.name = b.name N
} Assistant 0.2 0.2 0.2 0.2
I Associate 0.2 0.2 0.2 1
(e) f)

Fig. 1. An illustrative example of two UML class diagrams (Model A and Model B) that need to be analyzed
to identify commonalities and differences (a). Model AB represents a consolidated view of the contents of
Model A and Model B (b). Models A and B are illustrated by a tree representation in (c), and Model AB in (d).
Developers can use matching rules to compare the contents of Models A and B. MatchClass represents an
introductory example of a match rule using the Epsilon comparison language (e). The similarity between the
elements of Models A and B can be characterized by assigning a value of 0 to 1 for each element in them (f).

None of them is equivalent to another, and they are inserted into Model AB. Figure 1(c) presents
the tree representation of Model A and Model B, and Figure 1(d) shows the tree representation of
Model AB. The broken arrows show that elements of Model A and Model B are equivalent.

We now highlight the three main approaches to comparison commonly used to compare design
models:

(1) Rule-Based Technique. This approach aims to find equivalences between design models by
allowing users to manually specify a set of matching rules (e.g., [28] and [29]). Figure 1(e)

ACM Computing Surveys, Vol. 52, No. 3, Article 48. Publication date: July 2019.

Comparison of Software Design Models: An Extended Systematic Mapping Study 48:5

presents an introductory example of Epsilon’s matching rule. This rule is a script that de-
scribes how to process a comparison of model elements. In this case, the matching rule
compares elements of Models A and B based on their signatures (i.e., names). Typically,
the matching rules are elaborated by considering a set of properties (like name and isAb-
stract) defined in the language metamodel used to specify the design models. Developers
can create matching rules according to their needs. A rule library can also be created to
promote rule reuse.

(2) Similarity Technique. The main purpose of this is to determine how close two software
design models are by calculating a similarity value, which often ranges from zero to one.
Figure 1(f) presents an illustrative example of a similarity matrix. For example, the classes
ModelA.Researcher and ModelB.Researcher are the most similar, with similarity equal to 0.8.
This technique can be used for clone detection where a high similarity between fragments
of design models might indicate the presence of clones. It can also be used in the context
of model merging to calculate similarity between model elements. For this purpose, a
similarity matrix might be used to store values from zero to one to indicate the similarity
between model elements. Similar model elements might be combined to form a merged
model. Al-Khiaty et al. [3] applied a greedy algorithm to compute similarity between UML
class diagrams.

(3) Matching Technique. The main purpose of this technique is to locate equivalent model
elements (e.g., [60]). Current modeling tools assign an identifier (i.e., ID) to each model el-
ement created. That is, if some model elements are created, new IDs are assigned to them.
By contrast, as model elements are removed, their IDs are removed as well. In Figure 1(a),
for example, the class Researcher, found in Model A and Model B, has the same ID, as Model
B can be seen as an evolution of Model A. These IDs are used to identify the equivalence
between model elements. Model elements with equal IDs are considered equivalent. Thus,
matching design models is intended to find model elements with the same IDs. These
approaches focus on detecting and reporting differences between models, typically con-
secutive versions of design models. Matching techniques are often used in the context of
model evolution by “tracking” the model elements added, removed, or changed from one
version to another.

2.2 Software Design Models

Software design models (e.g., UML models) capture important aspects and concepts of software de-
sign represented from a certain point of view, thereby simplifying or abstracting the rest [48]. Such
models are elaborated using a modeling language (e.g., UML [41]), and thus have well-formed syn-
tax, semantics, and notations [48]. These issues need to be considered by comparison approaches.
Software design models can be used for several purposes [48]. First, developers can capture and
state requirements and domain knowledge so that all stakeholders may understand and agree on
them. Second, developers can use them to think about the design of a system, getting the overall
architecture right before detailed design begins. At low cost, developers can be innovative and
creative due to the simplicity of creating and modifying small, editable architecture abstractions.
Using design models, developers can explore several design solutions and architectures more easily
before writing code. Third, developers may represent design decisions required for implementing
a set of software requirements. For example, they might use UML class diagrams to define internal
classes and operations that implement external behaviors expected by stakeholders. Given that
there are many ways to implement these behaviors, developers can make use of UML sequence
diagrams to express how the internal classes should collaborate with one another. Fourth, de-
velopers can master complex systems and generate usable work products. For example, the UML

ACM Computing Surveys, Vol. 52, No. 3, Article 48. Publication date: July 2019.

48:6 L. J. Gongales et al.

component diagram transforms complex design decisions of object-oriented software systems into
human-readable abstractions. Thus, it becomes possible to deal with complexity without getting
lost in comprehensibility.

Today, many design model notations graphically represent static and dynamic views of such
object-oriented software systems, such as UML. Chaudron et al. [7] noted that UML can be seen
as a standard modeling language. Five reasons explain its widespread use. First, UML provides 14
diagrams [41], of which UML sequence and class diagrams are the most used [10]. Second, most
modeling tools are dedicated to create and manage UML extensions and its models, such as the IBM
Rational Software Architect Designer (RSAD) [20]. Third, the UML is a general-purpose modeling
language that can represent many aspects of a software system [41]. Finally, as the UML is the basis
of most modeling languages today, its results are transferable to other modeling languages based
on it. Finally, our work is not limited to looking for approaches to UML model comparison, but
instead conducts a broader search. The following section contrasts SMS and SLR, and highlights
the benefits of each.

2.3 Systematic Mapping Study (SMS) and Systematic Literature Review (SLR)

SMS aims at exploring broad research areas by classifying the most representative studies in a
particular subject and investigating generic research questions. Examples of these questions are:
research issues investigated; methodologies used; and research gaps identified with sufficient back-
ground for supporting future investigation [26]. SLR in turn focuses on research questions that can
be investigated by further empirical research. It seeks to investigate, for example, whether a par-
ticular technique is better than another. The selection process of the most representative studies is
narrowly influenced by the research questions formulated, as specific techniques need to be iden-
tified so that the findings can be properly produced. Thus, the SMS is valuable and beneficial for
practitioners as it provides a general view of the literature in a research area [26, 63].

Broader Scope of SMS. In terms of scope, SMS tends to have a broader scope while SLR is more fo-
cused. Even though a wide range of articles related to a topic are considered in SMS, classification
data concerning such studies are typically produced. By contrast, SLR contains a narrow range
of studies related to a research question on a specific issue, and looks to extract specific research
outcomes from each study. It also seeks to aggregate the most representative articles selected in
relation to the research results, at same time analyzing the results for validation [26]. In SMS,
the studies are classified and aggregated based on a predefined classification scheme formed by a
set of categories. Researchers usually elaborate these categories regarding the information avail-
able in articles, including the type of techniques, research venue, publication type, and research
method used. Consequently, SMS tends to often explore a larger number of research questions
than SLR.

Relevance of This Study. In performing an SMS, this article becomes relevant to model compari-
son for two reasons. First, the SMS protocol ensures that the review is rigorous and reproducible.
This protocol enables us to systematically search and analyze past work and collect all relevant
articles on the comparison of software design models. Second, it provides a general view of a
broad research issue and identifies more detailed issues. Each issue can generate an SLR if there
are sufficient fundamentals for it. Moreover, this study provides a classification of the literature,
and identifies gaps and research directions for further investigation. With the results of this study
at hand, researchers can explore the reported gaps (Section 6).

Educational Benefits of Our SMS. We also point out that researchers and students can benefit
from our study in a number of ways. Based on [26], we list some educational benefits of SMS.

ACM Computing Surveys, Vol. 52, No. 3, Article 48. Publication date: July 2019.

Comparison of Software Design Models: An Extended Systematic Mapping Study 48:7

First, students can learn how to search literature and organize the results of their searches. For Ph.D
students, for example, SMS provides an important starting point for research as it provides reusable
research skills. Second, students can replicate our SMS study, or even use the proposed review
protocol to run similar studies in other software engineering contexts. Third, the learning curve
and bias related to performing literature reviews can be reduced as our SMS protocol (Section 3)
can serve as a guide for future studies. Finally, a list of gaps in the literature can be easily accessed,
thereby saving effort to locate them. Budgen et al. [6] corroborated these educational benefits and
emphasized that “mapping studies serve as a starting point for Ph.D students who need to organize
and understand existing research works in a specific domain.” Further, they also noted that “SMS
can provide beginning researchers with a body of knowledge as starting point for their research
rather than forcing every researcher to start from scratch.”

Main Benefits for the Industry. Practitioners can benefit from our results typically when per-
forming software modeling tasks, like creating, evolving, or even changing UML design models.
By listing potentially relevant comparison approaches, developers can spend their development
efforts on selecting approaches more appropriate to their needs, rather than having to scour the
literature. Using appropriate approaches, they can pinpoint equivalences between design models
more appropriately, boosting the effectiveness of comparison. Our study also provides some edu-
cational benefits for practitioners. The reported findings can server as a starting point to develop
innovative comparison techniques while avoiding unnecessary effort to identify the gaps in and
characteristics of current comparison approaches.

In the industry, teams of software analysts often need to co-evolve and eventually converge
design models created in parallel, eliminating redundancies and bringing complementary parts
together. For this, analysts need first to compare such models to identify commonalities and dif-
ferences, and combine the parts co-evolved concurrently so that a consolidated view can be formed.
To date, comparing and merging design models is considered a tedious, time-consuming, and
error-prone task [33, 53, 66]. In this context, our work adds value for analysts by presenting a
multidimensional classification scheme of comparison approaches, including type of model, data
structure, and algorithm employed.

3 SMS PLANNING
3.1 Objective and Research Questions

The objective of this work is twofold: (1) to provide a classification of the literature on model
comparison and (2) to identify gaps and promising research directions for further investigation.
To explore these objectives better, we formulate nine research questions (RQ) to carefully scrutinize
different facets of our objectives. Table 1 summarizes the investigated RQs. According to Petersen,
RQs in SMS should be generic for uncovering research trends over time and topics already explored
in the literature [43]. The motivations to inquire into these RQs are as below.

RQ1: What are the diagrams supported by comparison techniques? Several contemporaneous
modeling languages, such as UML [41], have been proposed in the last few decades. Likewise,
many comparison approaches have been developed to support comparisons between diagrams of
such modeling languages. However, few studies have considered mapping and determining the
types of diagram that have been most investigated and explored in the context of model compari-
son. This also helps understand the diagrams that have been prioritized.

RQ2: What are the commonly used data structures in current techniques? Some studies have re-
ported that comparing models is an NP-hard problem [34, 47]. If data structures are improperly
chosen, the comparison of large-scale software design models may encounter severe performance

ACM Computing Surveys, Vol. 52, No. 3, Article 48. Publication date: July 2019.

48:8 L. J. Gongales et al.

Table 1. Research Questions Investigated

Research Question Motivation Variable
RQ1: What are the diagrams Determine the diagram types that Supported diagram
supported by comparison have been most investigated and
techniques? explored.
RQ2: What are the commonly used | Discover and understand the data Data structures
data structures in current structures that are most used in the
techniques? literature.
RQ3: What aspects are considered Understand the different aspects Comparison aspects
for comparing design models? considered for comparing software

design models.
RQ4: How fine-grained is the Grasp how fine-grained the Granularity
measurement of similarity? similarity measures are.
RQ5: What are the types of model Reveal and quantify how the Comparison types
comparison? comparison types spread over work

already published.
RQ6: What are the empirical Uncover the research methods used | Research methods
methods used to evaluate to evaluate model comparison
comparison techniques? approaches.
RQ7: What is the level of Investigate how the comparison Degree of automation
automation of comparison process is conducted, e.g., manual,
techniques? semi-automatic, or automatic.
RQ8: What are the most commonly | Reveal the most commonly used Comparison techniques
used comparison techniques? comparison techniques.
RQ9: Where have the studies been | Elicit the target vehicles used to Research venue
published? disclose the results.

problems. Unfortunately, knowledge on how design models are represented and manipulated is
still scarce. To account for this, RQ2 seeks to discover data structures most used in the literature.

RQ3: What aspects are considered for comparing design models? Multiview software modeling
tends to be applied to a wide range of contexts (e.g., software factory) and application domains (e.g.,
health, finance, aerospace, and e-commerce). Comparing models that represent small parts of an
overall architecture is not a trivial task, as many aspects can be considered, including syntactical,
semantic, structural, and layout related. RQ3 aims at uncovering the different aspects considered
for comparing software design models.

RQ4: How fine-grained is the measurement of similarity? The granularity of comparison refers to
the number of model properties considered to compare different aspects of design models. Exam-
ples of these aspects are syntactical, structural, layout related, and semantic. Little is known about
the extent to which current comparison approaches are fine or coarse grained. Exploring this issue
is important because modeling languages (e.g., UML [41]) are used for documenting, specifying,
and constructing the abstractions of a software system under development. Such languages are
general purpose, and can represent concepts from several programming paradigms (e.g., object
orientation (O0)), and can be utilized for diverse application domains (e.g., oil, health, education,
and finance) and implementation platforms (e.g., Java Enterprise Edition (JEE), .NET, and NodeJS).

RQ5: What are the types of model comparison? In the last few decades, academia and industry
have proposed a wide variety of comparison techniques. While some techniques are based on ID
or signature comparison—even focusing on proposing a measurement of similarity that considers

ACM Computing Surveys, Vol. 52, No. 3, Article 48. Publication date: July 2019.

Comparison of Software Design Models: An Extended Systematic Mapping Study 48:9

the commonalities and differences between models—others piece together the syntax and seman-
tics of models. Unfortunately, a comprehensive analysis of the available comparison techniques is
still lacking. We are thus looking to scrutinize contemporary comparison techniques to recognize,
differentiate, and understand their rationales.

RQ6: What are the empirical methods used to evaluate comparison techniques? Little is known
about the kinds of methods that have been applied to the comparison of software design models.
We want to understand how these methods have been used to evaluate model comparison tech-
niques. This can reveal, for example, how practical knowledge, findings, and insights have been
generated about a particular technique.

RQ7: What is the level of automation of comparison techniques? A comparison technique can be
used to reduce development effort by automating tasks or more precisely executing manual tasks.
Unfortunately, comparison techniques have not been classified based on degree of automation.
Without this knowledge, it is particularly challenging, especially for developers, to choose com-
parison techniques given a particular constraint.

RQ8: What are the most commonly used comparison techniques? Based on knowledge generated
from RQ5, we determine the types of comparison techniques that have been used or adopted most
often. Despite widespread interest in comparing diagrams in several fields of software engineering,
there is little quantitative evidence on how types of comparison techniques have been adopted.
Moreover, we seek to identify possible trends of use.

RQY: Where have the studies been published? The main objective is to scrutinize recent trends in
publication as the vehicle representing work on model comparison. That is, we look to understand
the main research venue for the publication and dissemination of work related to the comparison
of software design models.

3.2 Search Strategy

This section describes the strategy used to search the literature in this study. We specified an
unbiased and iterative search strategy by considering well-known guidelines [24, 43] related to
the definition of the search scope and the construction of search strings. We systematized the
selection of a list of potentially relevant studies strictly related to the research questions defined in
Section 3.1. The search strategy was iteratively elaborated so that we could pinpoint and evaluate
literature reviews (i.e., SLR, SMS, and surveys) quantitatively and qualitatively.

3.2.1 Construction of Search Strings. The results depended on how well the search strings (SS)
had been formalized. To systematically identify the terms of the search strings, we adopted the
PIO (populations, interventions, and outcomes) criteria. We chose this method because it has been
applied to a wide range of empirical studies [27, 45]. Kitchenham et al. [27] advocate breaking down
research questions into facets. Thus, a list of synonyms, abbreviations, and alternative spellings
can be drawn up [27]. Innovative search strings can be thus constructed using Boolean ANDs and
ORs.

The populations refer to the terms related to the main object being investigated, such as diagram,
design model, and structure. Although UML is widely used as a modeling language of software
systems [7], there is a wide range of specific notations to represent the features of Domain Specific
Languages (DSL). To the best of our knowledge, to list all these variants is not a viable task since
all of them are not known. Therefore, the inclusion of specific terms in the search string such
as UML, and the notations of DSL variants was not considered. This may limit the search to just
a few design notations. The intervention is related to the terms considering a specific process or

ACM Computing Surveys, Vol. 52, No. 3, Article 48. Publication date: July 2019.

48:10 L. J. Gongales et al.

Table 2. A Description of the Major
Terms and Their Synonyms

Major Terms Synonym Terms
Diagram Model OR Design OR Structure
Comparison Similarity OR Match OR Differencing

context involving the population, such as comparison and matching. The outcomes concern factors
important to the practitioners, for example, reduced effort, improved precision, and reduced time
to market [24, 43]. In the context of our work, it can refer to the precision of model comparison and
the level of automation for comparing software design models. Given that we are not concerned
with restricting our search units considering such factors, the outcomes were not included in the
search terms. To sum up, the following steps were executed to define our search terms:

o Step 1: Define Candidate Keywords. For this, we read two articles [4, 57] to pinpoint the
main terms. These articles were chosen because they are extensive literature reviews closely
related to the subject explored in our SMS.

o Step 2: Identify Related Words and Alternative Terms or Synonyms Related to the Initial Key-
words. To this end, we scrutinized the literature based on keywords defined in Step 1. An
initial sample of articles was found and the candidate keywords refined.

o Step 3: Verify if the Major Keywords Are in Articles in the Research Area, i.e., Comparison of
Design Models. In this sense, we manually checked if the selected terms were commonly
found in our initial sample of retrieved articles. This analysis was done in an interactive
and incremental way by the authors. The result of this step was a set of terms commonly
used in our initial sample.

o Step 4: Associate Synonyms, Alternative Words or Terms Related to the Main Keywords using
the Boolean Operator “OR.” The terms carefully identified in Step 3 were brought together
using the operator “OR.”

e Step 5: Relate the Major Terms with Boolean Operator “AND.”

Table 2 shows two major terms and their synonyms. Even though many combinations of the
search terms could be formulated, we verified that many of them returned similar results. Thus,
the majority of important results returned by search engines (Table 3) were obtained using the
following search string:

((diagram OR model OR design OR structure) AND
(comparison OR similarity OR match OR differencing))

3.2.2 Source of Information. Table 3 shows 10 electronic databases (our search scope) used
to retrieve potentially relevant articles. Our search string was applied to each database listed in
Table 3. This extensive number of electronic databases was considered to cover the main confer-
ences, journals, and workshops in computer science. The search looked at studies published in
conferences proceedings, educational institutions, and electronic digital libraries of journals. We
also considered papers written in English and published before April 2018.

3.3 Exclusion and Inclusion Criteria

This section establishes the exclusion and inclusion criteria used to filter the studies retrieved from
the selected electronic databases. The following list specifies the Exclusion Criteria (EC) used in
this article. EC excluded studies where:

ACM Computing Surveys, Vol. 52, No. 3, Article 48. Publication date: July 2019.

Comparison of Software Design Models: An Extended Systematic Mapping Study 48:11

Table 3. List of Electronic Databases

Search Engines Link

ACM Digital Library http://dl.acm.org/

CiteSeerX Library http://citeseerx.ist.psu.edu/
Google Scholar https://scholar.google.com.br/
IEEE Explore http://ieeexplore.ieee.org/

Inspec http://digital-library.theiet.org/
Scopus http://www.scopus.com/

Science Direct http://www.sciencedirect.com/
Springer Link http://link.springer.com/

Web of Science http://apps.webofknowledge.com/

Wiley Online Library http://onlinelibrary.wiley.com/

e EC1I. The title, abstract or any other part of their content was closely related to the search
keywords (described in Section 3.2.1), however, the study clearly belongs to another re-
search domain, such as, biology, and finance.

e EC2. A patent had been registered, or the study was not published in English (the default
language considered in our study), or was in an initial stage, typically presenting an abstract
and summary of future steps;

e EC3. The title did not have any term defined in the search string, or the meaning of the title
does not address the issues in the research questions;

e EC4. The abstract did not address any aspect of the research questions;

e ECS5. The study was duplicate; and

e EC6. The full text did not address issues about model comparison techniques.

Four Inclusion Criteria (IC) were used to add studies to our sample. The IC inserted studies that:

e [C1. were articles, master dissertations, doctoral theses, books, or book chapters on com-
parisons of software design models;

e [C2. were published or disseminated in English;

e [C3. were published in scientific journals, conferences or workshops; and

e [C4. were published before April 2018.

3.4 Data Extraction Strategy

This section defines the data extraction strategy used to collect data on our RQs. A classification
scheme (Table 4) was produced to guide data extraction related our RQs from primary studies. This
taxonomy was created based on the consensus of the authors after reading and peer reviewing the
articles, and categorizing the collected information related to our RQs. To this end, two meeting
cycles were required. An extraction form (Figure 2) was also elaborated based on the classification
scheme to mitigate error during data extraction. Our form was inspired by previous work, such
as Fernandez-Saez et al. [14] and Smite et al. [56]. The authors filled out the form considering
the taxonomy values of each work explored. We used spreadsheets to store and generate statistics
from the collected data.

Three review cycles were performed in the data extraction process. This process was conducted
collaboratively by the authors to avoid false negatives and false positives, and to cover impor-
tant open issues. At least two authors reviewed and classified each study using the data extraction
form and the classification scheme. The spreadsheets generated were consolidated into one spread-
sheet. To this end, the authors met in person to discuss and resolve conflicting data in spreadsheets

ACM Computing Surveys, Vol. 52, No. 3, Article 48. Publication date: July 2019.

http://dl.acm.org/
http://citeseerx.ist.psu.edu/
https://scholar.google.com.br/
http://ieeexplore.ieee.org/
http://digital-library.theiet.org/
http://www.scopus.com/
http://www.sciencedirect.com/
http://link.springer.com/
http://apps.webofknowledge.com/
http://onlinelibrary.wiley.com/

48:12 L. J. Gongales et al.
Table 4. Classification Scheme Used to Extract Data From the Studies
Question Variable Answers

Generic, Metamodels, Business Process Models, Use Case Diagram,

RQ1 Supported diagram
Class Diagram, Sequence Diagram, Activity Diagram, Statechart Diagram

RQ2 Data structures Graph, Tree

RQ3 Comparison aspects | Structure, Syntactic, Semantics, Layout, Lexical, Multicriteria

RQ4 Level of granularity Coarse-grained, Partial, Fine-grained

RQ5 Comparison types Similarity, Matching, Rule-based
Evaluation Research, Solution Proposal, Validation Research, Philosophical Papers,

RQ6 Research methods — -
Opinion Papers, Experience Papers

RQ7 Degree (?f Automatic, Semi-automatic, Manual

automation
R Comparison UUID, Heuristic, Search-based, Rule-based
8 .
9 techniques Signature-based, None
RQ9 Research venue Publication year, Name of venue, Kind of venue

Article's Data

Title

First Author
Source (name of
;journal/conference)
Year of Publication
Type of Publication

Conference | | Journal Workshop

R hQ

Diagram Type

Data Structure
Aspects

Granularity
Comparison Approach
Research Method
Automation Degree

[Coarse-Grained| [Partial | | Fine-Grained

[EEENCTETTT—

Manual

Fig. 2. Data extraction form (inspired by [14] and [56]).

generated in parallel. Finally, we performed a third parallel review cycle so that improper classifi-
cations could be uncovered. We discuss the classification scheme created in more detail as follows:

RQ1: Supported Diagram. We counted the types of diagrams supported by the selected studies
considering the following diagrams: (1) generic (GD), (2) metamodels (MM), (3) business process
models (BPM), (4) use case diagrams (UC), (5) class diagrams (CD), (6) sequence diagrams (SD),
(7) activity diagrams (AD), and (8) statechart diagrams (SCD). Even though some diagrams may be
based on specific UML notations, we did not consider the UML versions in question.

RQ2: Data Structure. We list below the data structures considered as follows: (1) Graph: The
algorithms used the structure of a graph to compute similarity between diagrams; and (2) Tree:
The approaches used tree structure to compare elements.

RQ3: Comparison Aspects. Even though there is no predefined set of aspects of comparison for
model evaluation in the literature, we identified six commonly used ones in recent approaches:
(1) Structure: It considers the structure of model elements to compute how similar they are;
(2) Syntactic: It takes into account the constructs of the language for comparing design mod-
els; (3) Semantics: The meaning of the model elements is considered to compare input models;

ACM Computing Surveys, Vol. 52, No. 3, Article 48. Publication date: July 2019.

Comparison of Software Design Models: An Extended Systematic Mapping Study 48:13

(4) Layout: The approach considers visual aspects, e.g., color and position, directly related to com-
prehensibility issues; (5) Lexical: These name-based comparison approaches consider the value of
properties of model elements to infer their similarities; and (6) Multicriteria: This aspect considers
approaches that use two or more of the previous aspects to compare models.

RQ4: Granularity. We considered three degrees of granularity: (1) Coarse-grained: Only one at-
tribute is analyzed to compute differences between the models to be compared, e.g., the names
of the elements only; (2) Partial: A quantity of partial attributes is evaluated for a comparison
of elements, i.e., more than one element; and (3) Fine-grained: It uses all possible attributes for
comparing model elements.

RQ5: Comparison Types. We analyzed three types of comparison: (1) Similarity: The goal is to
identify similarity, returning values indicating how similar elements are; (2) Matching: The mech-
anism produces a set of elements considered equivalent. In some cases, these sets are separated
considering the types of comparison of the model elements, i.e., deleted, inserted, or updated ele-
ments; and (3) Rule-based: This is matching based on pre-defined rules.

RQé6: Research Methods. This question provides an overview of the direction of current studies,
i.e., the kinds of studies that academia has produced. Wieringa et al. [62] presented a list of em-
pirical strategies as follows: (1) Evaluation Research: It evaluates commonly used approaches in
the industry; (2) Solution Proposal: It proposes a solution based on a new or a previous approach;
(3) Validation Research: These studies focus on evaluating techniques not yet known in the indus-
try; (4) Philosophical Papers: These discuss a new and revolutionary manner to conduct comparison
techniques; (5) Opinion Papers: These studies report the experience of authors related to a partic-
ular subject; and (6) Experience Papers: They argue what must be done to resolve the addressed
problem based on personal experience.

RQ7: Degree of Automation. The goal of this item is to classify studies considering their levels
of automation: (1) Automatic: It requires no human involvement; (2) Semi-automatic: It requires
that users specify configuration parameters before differentiation. Approaches that require manual
user intervention for correcting evaluation procedures are also classified as semi-automatic; and
(3) Manual: The comparison of models is conducted by hand.

RQ8: Comparison Techniques. This examines the types of techniques used to compare model
elements: (1) UUID: These techniques present match-by-identifier approach, i.e., ID-based ones;
(2) Heuristic: Elements are equivalent through combinations of metrics; (3) UUID-Heuristics: Some
studies provide functionality for comparing models using UUID or heuristics; (4) Search-based:
These algorithms use metrics as scores to restrict search-space to find equivalences; (5) Rule-based:
Here, elements are compared according to pre-defined semantic or logical rules; (6) Signature-
based: Similarity is based on signatures of model elements; and (7) None: Study does not specify
the matching technique used.

RQ9: Research Venue. It scrutinizes recent research trends in the context of model comparison.
We extracted the following information: publication year, name of venue, and kind of venue (i.e.,
conference, journal, or workshop).

3.5 Selection Procedures

This section presents the filtering process used to select the most relevant studies. Petersen et al.
[43] have noted that “a larger number of articles may not be better than fewer, if the fewer are a
better representation of the population of articles for the targeted topic.” With this in mind, the fol-
lowing filtering process aimed to present the procedures used to select the representative studies:

ACM Computing Surveys, Vol. 52, No. 3, Article 48. Publication date: July 2019.

48:14 L. J. Gongales et al.

o Step 1: Initial Search. The process collected the search results after submitting a search string
to digital libraries.

o Step 2: Remove Impurities. The process removed discrepancies obtained in the search results.
For this, the exclusion criteria EC1 and EC2 were applied. Calls for papers to conferences,
special issues of journals, patent specifications, research reports, and non-peer-reviewed
materials are examples of work retrieved improperly.

o Step 3: Filter by Title and Abstract. The process filtered studies by applying the exclusion
criteria, EC3 and EC4. Thus, we discarded any study whose title and abstract had no term
from the search string, and those not related to the main issues addressed in our research
questions (Table 1).

e Step 4: Combination. In the previous steps, the primary studies were in their respective
directories of the search engines. Therefore, all filtered studies from the last step were then
brought together.

e Step 5: Duplicate Removal. Usually, a study can be found in two or more digital libraries.
Thus, we applied EC5 to remove all duplicates, thereby ensuring the uniqueness of each
study.

o Step 6: Study Addition by Heuristic. Although the search mechanisms of the digital libraries
are widely recognized, some works may not be found in them sometimes. Thus, we added
certain studies manually to our sample of primary studies according to expert opinions.

e Step 7: Filter by Full Text. The process filtered studies by applying EC6 to the full text, ex-
cluding studies not relevant to model comparison or matching.

o Step 8: Representative Work Selection. The process defined the final list of primary studies.

3.6 Quality Assessment

We defined a quality assessment questionnaire to provide insight into the quality of the retrieved
studies and help us filter them based on qualitative issues. In total, nine questions were formulated.
They were chosen because they had already used in previous studies [14, 27, 45]. This qualitative
analysis helped us grasp the literature in terms of quality, and generated insights more appropri-
ately. It also helped reduce threats to the replication of this study. The nine questions (Q) of the
quality assessment questionnaire are as follows:

Q1I: Is there a clear statement of the goals investigated?

Q2: Is the context well defined?

Q3: Does the work carefully describe related work?

(Q4: Has the work provided a clear explanation of the comparison technique?
Q5: Have the authors evaluated the approach?

Q6: Do the researchers discuss threats to validity?

Q7 Do the authors write clear conclusions?

Q8: Do the conclusions comply with the objectives or research questions?
Q9: Do the authors present suggestions for further research?

3.7 Data Synthesis

The data synthesis in this work is based on concepts of Grounded Theory [17] and descriptive
analysis. We also followed lessons learned concerning data synthesis [24]. First, literature reviews
in software engineering are mostly qualitative (i.e., descriptive) in nature. Second, meta-analysis is
challenging even when quantitative information is collected, as the reported protocols tend to vary
between studies [15]. Third, data tabulation is a crucial means to producing results by aggregating

ACM Computing Surveys, Vol. 52, No. 3, Article 48. Publication date: July 2019.

Comparison of Software Design Models: An Extended Systematic Mapping Study 48:15

the extracted data, but it is pivotal to scrutinize how the aggregated data answer the research
questions.

Grounded Theory. The classical Grounded Theory is formed by three general coding phases [65]:
open coding, selective coding, and theoretical coding. The first aims at generating codes for percep-
tions that may be clustered into concepts and categories (i.e., coding phase). The second focuses
on pinpointing core categories that can better explain variations in the extracted data [65] (i.e.,
categorizing phase). In this study, we used the first two to help us synthesize the data obtained.
We clustered the works considering the presented classification scheme (summarized in Table 4),
so that the quantity and percentage of works by category could be produced. The third coding
phase of grounded theory was not used because the main purpose of this SMS was not to generate
theories. Sbaraini et al. [51] reported that data analysis might be conducted based on a process
of (1) splitting data up into smaller issues, labeling and classifying those issues (i.e., coding), and
(2) comparing the classified data to explain and grasp variations in our perceptions (i.e., categoriz-
ing). The produced classifications are more abstract. With this in mind, after reading the filtered
articles, the first three authors separately created a short observation-based memo recording their
perceptions of the issues addressed in each research question. After that, their notes were com-
pared, organized, and compiled according to the classification scheme shown in Table 4. Note that
Table 4 was created to present the values of each question as a classification scheme. The results
are shown in Table B.1.

Descriptive Analysis. Spreadsheets were used to integrate the results obtained from data extrac-
tion (described in Section 3.4). All descriptive information was calculated and organized using MS
Excel™. In Appendix B, Table B.1 presents a general classification of the primary studies. The
collected data are used to generate graphs and tables. While the columns address the research
questions summarized in Table 1, the rows store values based on the classification scheme intro-
duced in Table 4. For example, as the third column addresses results related to RQ2, its rows store
the values assigned to RQ2, i.e., graph or tree. In particular, the descriptive analysis was performed
on the tree steps. First, the total number of answers to each question was computed. Second, the
median, average, and standard deviation were computed for each answer. We noted that too many
granular values near one usually were related terms that could be combined into more general
groups, i.e., the multiple criteria in RQ3, and heuristic and search-based categories in RQ8. Third,
the percentage of correspondent answers was calculated. Finally, the values and related primary
studies formed each table in the results’ section. At least two researchers read each primary study
and coded their contents according to Table 4. The results collected are visually illustrated using
charts and tables.

4 STUDY FILTERING

This section explains how the study filtering process and quality assessment of the selected studies
were executed.

4.1 Execution of Study Filtering

The execution of the study filtering process consisted of applying the eight steps defined in the
selection procedures (described in Section 3.5) of potentially relevant works. These selection steps
were performed sequentially, i.e., starting at the first step and ending at the eighth. Figure 3 shows
the results obtained from the execution of each step of the filtering process. The results are avail-
able as additional material on the study website.?

2https://luciangoncales.github.io/studies/acmcs2018/.

ACM Computing Surveys, Vol. 52, No. 3, Article 48. Publication date: July 2019.

https://luciangoncales.github.io/studies/acmcs2018/

48:16 L. J. Gongales et al.

Remove Filter Duplicate Study Filter by
Impurities by Title & Abstract Combination Removal Addition by Full Text Representative
Search (EC1&EC2) (EC3 & EC4) p (EC5) Heuristic (EC6) Work Selection

) 4.05% 4 81.6%]
i ltered

Initial

i 123
11.22%
Google 1 iltered
(& o™=
14.11%
IEEE Siltered
Explore 170

56%
Jiltered

175

27.2%
Jiltered

77

3.55%

169

56

Wiley i Jfiltered ?
Online Library| | 112 78 :2
1

Total 21% filtered ! 94.6% ﬁlteredi 2.87%. filtered 1 3.55% added : 56% filtered 527.2% filtered
otal 14132 13261 i 174 1169 1175 177

!
E

Fig. 3. The obtained results from the execution of the study filtering process.

Our initial search retrieved 4,132 articles. We then applied two exclusion criteria, EC1 and EC2
(described in Section 3.3), to remove impurities, and then applied EC3 and EC4 to the remaining
3,261 studies, 99% (3,087/3,261) of the articles having been filtered through title and abstract re-
view. The remaining studies were brought together to produce a sample of 174 studies. The next
step was to remove duplicate studies by applying EC5: 2.87% (5/174) were discarded. We added six
studies by applying heuristics, producing a sample of 175 studies, an increase of 3.55%. C6 was then
applied to the 175 studies, and 56.3% (98/175) of the articles were discarded. By examining the re-
maining 77 studies, we observed that some were technically similar. That is, works were produced
based on previous ones, and their contributions were closely related. Thus, 27.2% (21/77) were
excluded. Finally, 56 works were selected as the most representative, hereinafter called primary
studies (Appendix A).

4.2 Execution of Quality Assessment

Before exploring the primary studies, we assessed their quality to check the studies that could be
used to respond to the research questions. For this, we applied the nine questions of our qual-
ity assessment questionnaire (Section 3.6). Our focus was to prioritize high-quality studies to re-
spond to our research questions, generate insight, and delineate future challenges. In Appendix B,
Table 17 presents the quality assessment applied to the primary studies. If a primary study satisfies
a question, the symbol v'is used to represent “yes.” ; otherwise, the symbol X is applied, meaning
“no.” For each satisfied question, a point was added for a study and a question. The last column
(i.e., points) represents the number of points obtained for each study. The last line (i.e., total) shows
the total points for each question.

All 56 primary studies fulfilled questions Q1, Q2, Q7, and Q8. By contrast, only one study satis-
fied the sixth question (i.e., Q6). Other questions—Q3, Q4, Q5, Q6, and Q9—were partially satisfied.
The results indicate that 13 studies (23.2%, 13/56) did not mention any related work (Q3), eight
studies (14.3%, 8/56) did not evaluate the proposed approach (Q5), and 13 studies (23.2%, 13/56) did

ACM Computing Surveys, Vol. 52, No. 3, Article 48. Publication date: July 2019.

Comparison of Software Design Models: An Extended Systematic Mapping Study 48:17

Table 5. Classification of the Primary Studies Based on Their Supported Diagrams (RQ1)

Diagram types #Studies Percentage List of primary studies

Class diagram 22 39% [S7], [S10], [S22], [S24], [S25], [S26], [S28], [S32],
[S33], [S35], [S36], [S37], [S38], [S40], [S41],
[S42], [S45], [S47], [S48], [S52], [S53], [S56]

Generic diagram 17 30% [S2], [S3], [S4], [S8], [S9], [S11], [S14], [S19],
[S20], [S21], [S23], [S34], [S39], [S44], [S46],
[S50], [S51]

Metamodels 3 5% [S12], [S29], [S49]

Sequence diagram 4 7% [S30], [S31], [S35], [S55]

Statechart 3 5% [S15], [S16], [S43]

All UML diagrams 3 5% [S18], [S27], [S54]

Activity diagram 2 4% [S13], [S56]

Business process model 1 2% [S6]

Use case 1 2% [S5]

Component and connector 1 2% [S1]

UML profile 1 2% [S17]

Total 58*

*[S35] appears in two categories: Class diagram and Sequence diagram.
*[S56] appears in two categories: Activity diagram and Class diagram.

not discuss future work (Q9). We noted that S46 [52] fulfilled the lower number of questions (only
five questions). On the contrary, 28 studies answered eight questions. As all articles answered at
least five questions, none was discarded. Therefore, the articles selected had the quality required
to respond to the research questions.

5 SMS RESULTS

This section presents the results for the research questions formulated (Table 1) after analyzing the
56 primary studies (Appendix A). Our findings are based on numerical processing and graphical
representation of interesting aspects of our results.

5.1 RQ1: What Are the Diagrams Supported by Comparison Techniques?

Table 5 introduces the diagrams supported by the primary studies. These results reveal two inter-
esting findings. First, there may be a relation between diagrams supported by comparison tech-
niques and their adoption. We learned from previous empirical studies [10, 44] that the UML class
diagram and generic diagrams are the most commonly used in practice. They were also the most
frequently supported diagrams in our primary studies. UML class diagrams and generic diagrams
were supported by 39% (22/56) and 30% (17/56) of the studies, respectively. The least adopted dia-
grams, UML profile, were also the least supported by the comparison approaches.

The second finding is that the primary studies tended to support the main UML behavioral and
structural diagrams, such as sequence and class diagrams. This was the case in 46% (26/56) of the
primary studies. Chaudron et al. [7] also emphasized that these diagram types are the most com-
monly used. Dobing and Parsons [10] reported that they were the most commonly used in main-
stream software projects. By contrast, the primary studies overlooked diagrams used for specify-
ing business processes (e.g., business process model), software requirements (e.g., UML use case),
representing architectural design (e.g., component and connector), describing workflows of step-
wise activities and actions supporting iteration and concurrency (e.g., UML activity diagram), and

ACM Computing Surveys, Vol. 52, No. 3, Article 48. Publication date: July 2019.

48:18 L. J. Gongales et al.

Table 6. Primary Studies Classified in Relation to Types of Data Structures Used (RQ2)

Data structures #Studies Percentage List of primary studies

Graph 37 66% [S4], [S8], [S9], [S10], [S12], [S13], [S14], [S18], [S20],
[S21], [S22], [S23], [S25], [S26], [S27], [S29], [S30], [S31],
[S33], [S34], [S35], [S36], [S39], [S40], [S41], [S42], [S43],
[S44], [S46], [S47], [S48], [S49], [S50], [S53], [S54]. [S55],
[S56]

Tree 6 11% [S1], [S2], [S3], [S19], [S32], [S38]

Other 13 23% [S5], [S6], [S7], [S11], [S15], [S16], [S17], [S24], [S28],
[S37], [S45], [S51], [S52]

Total 56

extending the UML metamodel (e.g., UML profiles). These diagrams were supported by only one
primary study.

Third, generic diagrams had representative support (30%, 17/56). They were used to represent
design decisions more abstractly, like node-link diagrams. The nodes were typically used as en-
tities (i.e., concepts in a particular domain) while links (i.e., relationship between such concepts)
were represented as lines. This diagram fitted well in the industry environment, where develop-
ers make selective (or informal) use of UML diagrams. Petre [44] reinforced this observation. She
interviewed 50 practitioners and concluded that 22% tended to use generic UML diagrams in a
personal, selective, and informal way to generically represent software abstractions for as long
as they were considered useful. Moreover, little was done to support all diagrams (5%, 3/56), or
even a comparison of metamodels (5%, 3/56). Kessentini et al. [21] developed a tool supporting
the comparison of metamodels. Some other works [22, 34, 57, 61] have associated the problem of
comparing metamodels with the widely known graph isomorphism problems, a well-known class
of NP-hard problems.

Finally, while most comparison approaches were developed and assessed to support generic dia-
grams and UML class diagram (39%, 22/56), not much was done to support such widely used design
diagrams as UML sequence, activity diagrams, and business process models. Even worse, knowl-
edge of how to port these techniques to cope with more semantically enriched software design
models is still lacking. In particular, the comparison of semantically enriched models (e.g., busi-
ness process models) is an ever-present problem [46] because semantic information concerning
business rules is seldom included in any formal way.

5.2 RQ2: What Are the Commonly Used Data Structures in Current Techniques?

Table 6 presents the commonly used data structures in the primary studies. Grasping a data struc-
ture is pivotal to understanding how the software design models are represented to address, for
example, performance issues [4]. The collected data highlight a strong trend toward the adoption
of graph structures (66%, 37/56). This superior adoption might be explained by the ease of mapping
of several software design models into graph. Given that model comparison is strictly related to the
problem of graph isomorphism [4], researchers and practitioners end up applying graph matching
solutions to comparison problems. We think that the graph is widely recognized as an important
data structure, as many software design models can be represented like a graph. Examples vary
from UML class diagrams to business process models that are used to carefully represent business
rules.

In addition to the use of graphs, the primary studies also adopted trees as data structures in
11% (6/56) of cases. They used trees to represent hierarchical structures, such as component-and-
connector diagrams [1]). Van den Brand et al. [60] applied trees to represent metamodels (i.e., a

ACM Computing Surveys, Vol. 52, No. 3, Article 48. Publication date: July 2019.

Comparison of Software Design Models: An Extended Systematic Mapping Study 48:19

Table 7. Classification of Primary Studies Based on Their Aspects of Comparison (RQ3)

Comparison aspects #Studies Percentage List of primary studies
Structure 28 50% S1], [S2], [S3], [S4], [S5], [S8], [S10], [S14], [S18],

%szo], [5215, [S22], [S25], [S28], [S29], [S30], [S31],
[S32], [S35], [S36], [S40], [S43], [S44], [S47], [S48],
[S49], [S51], [S55]

Multi-criteria 18 32% [S6], [S12], [S15], [S16], [S17], [S26], [S27], [S33],
[S37], [S38], [S39], [S41], [S42], [S46], [S50], [S53],
[S54], [S56]

Semantic 5 9% [S7], [S11], [S13], [S45], [S52]

Lexical 3 5% [S19], [S24], [S33]

Syntactic 1 2% [S23]

Layout 1 2% [S9]

Total 56

non-hierarchical diagram) in their comparison technique. They argued that prevalent algorithms
dealt with comparison in polynomial time, as a structure is imposed on a tree [8, 67]. We note
that the choice of data structure is related to performance and precision. These issues are nar-
rowly related to the capability to cope with complex comparisons, e.g., ones caused by severe
architecture-level changes. Farias et al. [11, 12] have reported that heuristics to match and com-
bine software design models are inefficient for implementing wide changes in architectural scope,
such as the refinement of architecture based on the MVC (model-view-controller) pattern, layout
changes that modify the position of model elements, or even the renaming of global variables.
This problem can be explained by the fact that name-based model comparison (sometimes
known as signature-based comparison) cannot identify more tangled relationships of equivalence
among model elements. We observed that such name-based comparison approaches tended to be
limited and error prone whenever there was a 1:N or an N:N correspondence among elements
of two or more software design models. These approaches pinpoint equivalences between model
elements by comparing the values of their metaproperties, such as isAbstract found in the UML
class diagram. However, more global correspondences cannot be computed because they compute
at most one correspondence for each model element property that has been changed (e.g., isAb-
stract). Finally, graphs and trees are promising data structures for supporting evolving software
design models. However, little is known about the extent to which graph- or tree-based comparison
techniques may scale up to large software design models with many changes made in parallel.

5.3 RAQ3: What Aspects Are Considered for Comparing Design Models?

Table 7 presents the results concerning aspects used to compare software design models. The
collected data show that most works (50%, 28/56) relied on structural aspects to differentiate mod-
els. Multicriteria comparison (32%, 18/56) was in second place, where two or more characteristics
were used for comparison. Semantic aspects (9%, 5/56), in turn, compare models by considering the
meanings of their elements. Lexical comparison studies (5%, 3/56) evaluated the distance between
labels of model elements. Studies that compared by taking into account syntactic (2%, 1/56) and
layout-related aspects (2%, 1/56) were in the minority. We noted the use of several characteristics
of models to level up the precision of comparison.

We also noted that syntactic, semantic, and lexical aspects were related to multicriteria com-
parison. Table 8 specifies each aspect considered in primary studies classified as multicriteria.
Therefore, considering only lexical or semantic comparison is not enough to produce accurate

ACM Computing Surveys, Vol. 52, No. 3, Article 48. Publication date: July 2019.

48:20 L. J. Gongales et al.
Table 8. The Classification of Primary Studies Based on Their Multicriteria Aspects
Multi-criteria category List of primary studies
Semantic and Syntactic [S06], [S17], [S33], [S38], [S39], [S46], [S56]
Lexical and Structural [S12]
Syntactic and Structural [S15], [S16], [S42], [S50], [S53], [S54]
Syntactic and Layout [S27]
Syntactic, Semantic, and Structural ~ [S37], [S41]
Table 9. Classification of Primary Studies Based on Their Granularity (RQ4)
Granularity #Studies Percentage List of primary studies
Coarse-grained 43 77% [S1], [S2], [S3], [S4], [S5], [S6], [S7], [S8], [S11], [S13],
[S14], [S18], [S19], [S20], [S21], [S22], [S23], [S24], [S25],
[S27], [S28], [S29], [S30], [S31], [S32], [S34], [S35], [S36],
[S39], [S41], [S42], [S43], [S44], [S45], [S46], [S47]. [S48],
[S50], [S52], [S53], [S54], [S55], [S56]
Partial 8 14% [S9], [S10], [S12], [S15], [S16], [S26], [S33], [S40]
Fine-grained 5 9% [S17], [S36], [S37], [S49], [S51]
Total 56

comparisons. Moreover, no work has been done on issues related to the comprehensibility of de-
sign models. For example, no study has explored layout-related issues. In some situations, the
colors and positions of elements helped the relevant approach achieve a more precise result.

5.4 RQ4: How Fine-Grained Is the Measurement of Similarity?

Table 9 presents data collected concerning the granularity of the primary studies. Altmanninger
et al. [4] noted that granularity refers to comparison units used to identify the commonalities and
differences between input models. The authors also emphasized that granularity depends on the
modeling language as each language is defined by its abstract syntax expressed in its metamodel.
Thus, comparing two UML models means that the metaproperties defined in the UML metamodel
should be considered. Likewise, metaproperties defined in the BPMN 2.0 metamodel should be
taken into account to compare two business process models.

The collected data suggest that most primary studies proposed approaches with coarse-grained
(77%, 43/56) or partial-grained (14%, 8/56) granularity, rather than fine-grained one (9%, 5/56). This
means that the greater part of primary studies considered a set of properties of model elements,
rather than taking into account all properties. Still, most current studies did not consider properties
of the model elements defined in the metamodel of the relevant modeling language. This reduced
their capacity to pinpoint differences among the software design models to be compared. For ex-
ample, these studies were unable to carefully pinpoint differences among the model elements of
semantically enriched and structurally complex software design models.

A persistent challenge is (1) to define the level of granularity of the comparison techniques and
(2) to understand their impact on the accuracy and scalability of the comparison of large-scale soft-
ware design models used in practice. If the level of detail is high, the technique should consider a
large number of properties of model elements. With coarse-grained comparison techniques (e.g.,
match by name), developers can detect correspondences (or even differences) between the names
of common model elements as well as those that have been removed, added, changed, or moved.

ACM Computing Surveys, Vol. 52, No. 3, Article 48. Publication date: July 2019.

Comparison of Software Design Models: An Extended Systematic Mapping Study 48:21

Table 10. Classification of Primary Studies Based on Their Comparison Types (RQ5)

Comparison types #Studies Percentage List of primary studies

Matching 34 61% [S1], [S2], [S3], [S4], [S5], [Se], [S7], [S8], [S9], [S10],
[S12], [S13], [S14], [S19], [S21], [S22], [S23], [S24],
[S25], [S27], [S29], [S30], [S32], [S33], [S34], [S37],
[S39], [S43], [S46], [S47], [S48], [S49], [S50], [S56]

Similarity 19 34% [S15], [S16], [S17], [S18], [S20], [S28], [S29], [S31],
[S35], [S36], [S38], [S40], [S41], [S42], [S44], [S52],
[S53], [S54], [S55]

Rule-based 3 5% [S11], [S45], [S51]

Total 56

Because of their very coarse granularity, however, name-based comparison techniques fail to pre-
cisely determine equivalences, for example, wide-scoped equivalences (1:N or N:M), where one
model element can be equivalent to “n” model elements.

Finally, we also noted that some works had proposed a rigid number of model properties to
be considered. Future techniques should be flexible enough to allow developers to define how
fine-grained the comparison technique should be. Thus, the number of model properties to be
considered during the comparison step will also be defined based on the purpose of the comparison.
For example, developers will be able to choose a smaller number of model properties to compare
more abstract software design models (e.g., domain models), whereas a larger number will be
considered to compare more detailed software design models (e.g., UML class diagrams used for
implementations where the relation between model and code is almost 1:1). Still, this approach
might also avoid jeopardizing the flexibility and accuracy of the comparison techniques.

5.5 RQ5: What Are the Types of Model Comparison?

Table 10 introduces the collected data related to the types of model comparison. The majority of
primary studies (61%, 34/56) proposed matching approaches. In general, these techniques are used
to detect structural, semantic, and syntactic differences (or correspondences). Usually, these tech-
niques produce an output with a set of categorized elements considering the operations performed,
such as the removal of, changes to, and addition of model elements. These operations may over-
lap with each other or occur separately. For example, matching approaches are used to identify
changes in software design models to support evolution.

Second, similarity approaches have also been largely covered (34%, 19/56) in academia. This
wide adoption can explain the existence of many kinds of metrics that might be the number of
nodes [58], neighbors [3], string distance [21], and many others. Third, rule-based approaches
were in the minority (5%, 3/56). The small number of rule-based approaches can be explained as
follows: First, they make use of uncommon techniques to find correspondences. For example, Maoz
et al. [35, 36] proposed a technique based on formal rules in which the results are neither user-
friendly nor reproducible. Hence, this reduces the chance of other tools using these techniques.
Another example is the Epsilon approach [30], which demands additional effort to specify the
comparison rules manually, thereby making the comparison more error prone [13].

Finally, there is a lack of a comprehensive taxonomy of the types of correspondences between
software design models. This taxonomy can be supported by more flexible, multicriteria compar-
ison techniques so that more effective correspondence relationships can be produced. This will
allow us to better grasp the commonalities and differences between software design models in
practical comparison scenarios.

ACM Computing Surveys, Vol. 52, No. 3, Article 48. Publication date: July 2019.

48:22 L. J. Gongales et al.

Table 11. Classification of Primary Studies in Relation to Their Research Methods (RQ6)

Research method #Studies Percentage List of primary studies
S3], [S5], [Se], [S7], [S8], [S9], [S10], [S11],

Proposal of solution 45 80%

1], [S2], [
S12], [S13], [S14], [S15], [S17], [S18], [S19], [S20],
S21], [S22], [S26], [S28], [S29], [S30], [S31], [S32],
$33], [S36], [S38], [S39], [S40], [S41], [S42], [S43],
S44], [S45], 1, [S49], [S50], [S51], [S52], [S53],
S54], [S55], [S56]

]

3

[

[

[

[S48], [S49],

> [

S4], [S23], [S27], [S35], [S46]
[S2

(S
[
[
[
[
[
[
(S1
[
(

Philosophical paper 5 9%

Evaluation research 4 7% S16], [S24], [S25], [S34]
Experience papers 1 2% S37]

Validation research 1 2% S47]

Opinion papers 0 0%

Total 56

5.6 RQ6: What Are the Empirical Methods Used to Evaluate Comparison Techniques?

Table 11 presents the relation between the primary studies and six empirical methods [62]. We
discuss these relations as follows: Most studies (80%, 45/56) focused on proposing new solutions.
This result suggests that the primary studies were chiefly concerned with closing research gaps
by proposing innovative comparison techniques. Second, some studies (9%, 5/56) were classified
as philosophical papers. These articles addressed frameworks defining broad concepts and studies
explaining future research venues. In this group, three frameworks were proposed [5, 42, 52].
Moreover, Kolovos [31] presented a rule-based approach as a comparison solution, while Ohst
et al. [39] analyzed the quality issues related to model comparison tools.

Third, few evaluation researches (7%, 4/56) were proposed in the primary studies. These articles
were limited to evaluating their own proposed approaches, often measuring precision and recall
under some evaluation scenarios. This means that empirical investigations of the effects of com-
parison tools have not been explored in a systematic way. Hence, their benefits and drawbacks
are still unknown. The presence of few studies reporting evaluation research can be explained
by a few reasons. Even though the comparison of design models is an important activity, no sin-
gle tool has been widely adopted in the industry for it. This can affect the execution of empirical
studies, such as case studies and controlled experiments, because they often require stable and
easy-to-use tools. This even discourages academia from designing and running empirical studies
to evaluate such techniques under different circumstances following a rigorous protocol. The lack
of robust and handy techniques makes it challenging for both researchers and practitioners to
properly elaborate them in more realistic scenarios or determine the best option under the given
circumstances. Another reason is that running careful comparative studies requires at least com-
parable techniques so that they can be evaluated. Based on the results presented in Section 5.1,
for example, the comparison of some diagrams was supported by only one approach. Hence, it is
controversial to compare techniques without a range of counterpart approaches. Even worse, little
is known about the software design models that offer proper tool support.

Moreover, only one primary study (2%, 1/56) was a validation paper. This means that the litera-
ture is only slightly concerned with validating comparison techniques. Studies to test comparison
techniques in enterprise environments have been rarely explored [9, 19]. For example, the work of
Girschick and Darmstadt [16] was classified as a validation paper because it reported a case study
designed to validate the proposed approach to the differentiation of class diagrams. In practice, this
validation consisted of a case study run to determine the differences between different versions

ACM Computing Surveys, Vol. 52, No. 3, Article 48. Publication date: July 2019.

Comparison of Software Design Models: An Extended Systematic Mapping Study 48:23

Table 12. Classification of Primary Studies Based on Their Degree of Automation (RQ7)

Automation degree #Studies Percentage List of primary studies
Automatic 36 64% S2], [S4], [S5], [S6], [S7], [S9], [S10], [S11], [S12],
S13], [S14], [S15], [S16], [S17], [S18], [S21], [S22],
S25], [S26], [S28], [S29], [S31], [S33], [S34], [S35],
S39], [S40], [S44], [S45], [S47], [S49], [S52], [S53],
S54], [S55], [S56]

—_ —— —————

Semi-automatic 19 34% S1], [S3], [S8], [S19], [S23], [S24], [S27], [S30], [S32],
S36], [S38], [S41], [S42], [S43], [S46], [S48], [S50], [S51]

Manual 1 2% S17]

Total 56

of an academic system. However, this validation was limited to only analyzing the results of the
evaluated tool. Therefore, this work neither considers a rigorous experimental design, supported
by statistical methods, to analyze the results derived from the tools, nor does it explore the gains
in productivity from the perspective of the developers. Moreover, the validation should be more
rigorous and performed in practical, large-scale production environments so that important issues
like reusability, precision, accuracy, and the scalability of comparison approaches can be properly
assessed.

Finally, the collected data did not feature any opinion paper. Only one personal experience pa-
per was identified, in which the authors described their experience of conducting manual merge
activities. We note that flexible and generic model comparison frameworks are required. At the
same time, this area requires more research effort to overcome technical limitations [9].

5.7 RQ7: What Is the Level of Automation of the Comparison Techniques?

Table 12 classifies the primary studies in terms of their degree of automation, including automatic,
semi-automatic, or manual. The collected data suggest a strong tendency toward automatic ap-
proaches. Most primary studies (64%, 36/56) compared models in an automatic way while a smaller
number (34%, 19/56) compared them in a semi-automatic way, where users needed to make adjust-
ments during the comparison. Only one study (2%, 1/56 studies) analyzed how people manually
compare UML diagrams.

Usually, automatic approaches allow users to configure how the comparison should be per-
formed. This configuration allows them to explore specific characteristics of the models. To ex-
emplify, we revisit the example shown in Figure 1. We saw there an example of matching rules
in which specific features of the models were considered. Formulating rules considering specific
characteristics of the models can increase the accuracy of the comparisons, as they consider partic-
ularities of the models. However, using such rules does not allow us to customize the comparison
at run time. Semi-automatic approaches allow the user to act as the comparison is performed,
which enhances the quality of comparison. This is due to the possibility of users customizing the
parameters for comparison based on the level of abstraction of software design models, thus im-
proving comparison accuracy. Manual approaches were scarce. Only one study was identified, in
which comparison was used to support model integration.

5.8 RQ8: What Are the Most Used Comparison Techniques?

Table 13 presents the most commonly used comparison techniques. Figure 4 shows how the pri-
mary studies were published over the years. The collected data revealed some trends. First, most
studies (57%, 32/56) used heuristics as the main comparison technique. Tables 14 and 15 specify the

ACM Computing Surveys, Vol. 52, No. 3, Article 48. Publication date: July 2019.

48:24 L. J. Gongales et al.

Table 13. Classification of Primary Studies Based on Type of Comparison Technique Used (RQ8)

Comparison technique #Studies Percentage List of primary studies

Heuristic 32 57% [S1],[S4], [S5], [S9], [S12], [S15], [S16], [S17], [S18], [S19],
[S20], [S21], [S22], [S25], [S30]. [S32], [S33], [S34], [S35],
[S36], [S38], [S39], [S40], [S42], [S43], [S44], [S48], [S50],
[S52], [S54], [S55], [S56]

Search-based 8 14% [S8], [S10], [S26], [S28], [S31], [S41], [S49], [S53]
Rule-based 5 9% [S11], [S23], [S29], [S45], [S51]

None 4 7% [S7], [S13], [S37], [S46]

Signature-based 3 5% [S24], [S27], [S47]

UUID-Heuristics 2 4% [S3], [S6]

UUID 2 4% [S2],[S14]

Total 56

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

mUuID m Heuristic m Search-based # Rule-based m UUID- isti = Sig) based = None

Fig. 4. Number of comparison techniques proposed over the years.

Table 14. Classification of Primary Studies Based on the Heuristics Used to Compare Design Models

Heuristic-based technique List of primary studies

Static [S1], [S3], [S4], [Se], [S12], [S17], [S18], [S19], [S20], [S21], [S22],
[S25], [S30], [S32], [S33], [S34], [S35], [S36], [S38], [S39], [S40],
[S43], [S44], [S48], [S50], [S52], [S54], [S55], [S56]

Static and Behavioral [S15], [S16]

Tree-to-tree correction optimization [S1]

Bayesian inference [S9]

Table 15. Classification of Primary Studies Based on the Search-based
Technique Used to Compare Design Models

Search-based technique List of primary studies
Tabu search [S8],[S10]

Genetic algorithm [S28],[S31]
Greedy algorithm [S41],[S42]
Hybridized Greedy-Genetic algorithm [S53]

Simulated Annealing [S26]

ACM Computing Surveys, Vol. 52, No. 3, Article 48. Publication date: July 2019.

Comparison of Software Design Models: An Extended Systematic Mapping Study 48:25

heuristics and search-based techniques, respectively, used in the primary studies. This work also
categorized heuristics according to Nejati et al. [38], i.e., into on static and behavioral heuristics.
A smaller number (14%, 8/56) explored search-based approaches to find correspondences between
model elements. The numbers of studies based on rules and signatures registered were small, 9%
(5/56) and 5% (3/56), respectively. Moreover, two studies (4%, 2/56) proposed an approach based on
UUID and heuristics (classified into both categories). A few studies (7%, 4/56) did not mention the
comparison technique used.

The focus on heuristic-based approaches decreased as that on search-based ones increased. In
Figure 4, the growth in the number of published works began in 2005, reaching its peak in 2011.
Note that in addition to being the most adopted type, the number of publications did not focus on a
specific year; on the contrary, studies were published evenly from 2005 to 2012. The number of pub-
lications decreased from 2013 to 2016, returning to its average of three papers published per year
in 2017, and one paper was published in 2018. Finally, academia aimed to produce heuristic-based
model comparison techniques while modeling tools were proposed based on IDs. Furthermore,
current commercial tools still do not use a search-based comparison. On the contrary, some arti-
cles, e.g., Kpodjedo et al. [32] and Kessentini et al. [21], had applied this technique in 2013 and in
2014, respectively.

5.9 RQ9: Where Were the Studies Published?

This section examines when and where the primary studies were published over the last few years
to uncover publication trends. Figure 5 provides a chronology of our primary studies, groups them
by publication type, and shows the number of studies per year.

Number of Publications. To reveal the year in which the largest number of articles were pub-
lished, we assigned one point for each published article. The dashed blue line in Figure 5 summa-
rizes the number of published articles per year. The largest numbers of publications were obtained
in 2008, 2011, and 2014. This helps us understand how the studies were distributed and where
they were published. The search strategy included studies published until 2018, but no work pub-
lished before 2003 was considered in the selection procedures (Section 3.5), likely because the MDA
(model-driven architecture) and MDE (model-driven engineering) paradigms emerged at the be-
ginning of 2000 and prompted research on model comparison. Note also that between 2003 and
2018, research on model comparison witnessed a strong increase.

Venue of Publication. Figure 5 also shows the percentage in relation to the venue of publication
of the primary studies. The results show that 70% (39/56) of the primary studies originated in
conferences. Six primary studies (S01, S14, S21, S22, S45, and S28) were published in ASE, one
(S11) in MODELS, and three studies (544, S15, S46) were published in ICSE. Two studies each were
published in ICSESS (S26 and S42), and in ICECC (S38 and S47). The other studies were presented
at distinct conferences. A total of 25% (14/56) were obtained from journals. Of these, three (S08,
S09, and S16) were issued in IEEE Transactions on Software Engineering (TSE), two (524 and S56) in
Software and Systems Modeling, one (S30) in IEEE Software, one (S35) in Information and Software
Technology (IST), and an article (S49) was published in the Journal of System and Software. Finally,
5% (3/56) were published in workshops.

Trends. The number of studies grew until 2008. Following this, the frequency of publications be-
gan to oscillate, i.e., reaching a minimum number in 2015 without any publication. However, after
2008 the area produced more work. The number of articles published was larger than the range
before 2008. Moreover, 2011 witnessed a higher number of articles produced than another years. A
considerable number of primary studies was published in high-impact conferences and journals.

ACM Computing Surveys, Vol. 52, No. 3, Article 48. Publication date: July 2019.

48:26 L. J. Gongales et al.

7
,x\
Publication Type Percentage ,,/ \\
Conference 70% ' I‘QSE
S ™, \
Journal 25% (\836) cVsM
Worksho 5% ’ AN
P ° ICALT \4 4
3 - o ——— x
3 .
[— x ASE 1ccc ECMDA ASE

JUCS @ ICECC ICMT

1 g :
1 P 7,
SE (523} GaMMa WCRE TWMCP
oo X o
IEEE
$30 IEEE
@ fcsM Software _/ ASE @ ASE ICSE e ferce TSE
2003 2004 2005 2006 2007 2009 2010

9

x
ECOOP
ESEM

N\ 1
$35[IST g8
h
‘\
ASE

\

ICSESS
‘\

4
1x\
JCSSE @ vIC
“‘ ,/(Pn\w‘r(. Computer
\\ 1/ \
MODELS < @ csIT N1
W0 - %
X" LNSE @ 1ccs SoSyM

9]
=)
@@(E]) -

P

6161010)

-~

5031 TWME
(03 SRC sos) 10 SEKE
2011 2012 2013 2014 2015 2016 2017 2018 Year
aa?
Legend: O Conference Paper (| Workshop Paper D Journal Paper
S

Fig. 5. The research venues that primary studies were published over the last few years.

Five studies (S08, S09, S24, S35, S49) were published in premier journals® (IEEE TSE, IST, JSS, and
SoSym), while 10 papers (S01, S11, S14, S15, S21, S22, S45, S28, S44, S46) were published in MODELS,
ICSE, and ASE. Although a considered number of studies were published, there remain outstanding
challenges and open questions to be resolved, and these are discussed in the following section.

6 DISCUSSION AND CHALLENGES FOR FUTURE RESEARCH

Figure 6 shows a bubble chart that organizes primary studies in three dimensions (d;, dz, ds), where
d; represents the research method used (Figure 6(a)) or the supported diagram (Figure 6(b)), d; is
the publication year, and ds is the number of primary studies. Each bubble has values assigned to
di, dy, and ds. This bubble chart helps understand relations among the supported diagrams (RQ1)
or research methods used (RQ6), year, and the number of studies. That is, it shows how primary
studies were distributed over the past 15 years, considering the research methods used and design
models explored. Some insights are as follows:

(1) Lack of Empirical Studies. There is a pattern of distribution in the use of research methods
over the years. Studies proposing solutions (80%, 45/56) were the most common research method
used. The other methods together registered a small number (20%, 11/56), i.e., evaluation research

3Journals with h5-median higher than 40 according to the Google Scholar (https://scholar.google.com/).

ACM Computing Surveys, Vol. 52, No. 3, Article 48. Publication date: July 2019.

https://scholar.google.com/

Comparison of Software Design Models: An Extended Systematic Mapping Study 48:27

I 2018 > N
4 2017 é— D @
2016 @
2015
N — 7 2014 @ 4 DD
...... 2 2013 @ 2
3 2012 @ v D D
. s (20— 3 B PP D—@
e oot 20100 +
D 2009 fll‘
-1 / 2008 — 2 3 D D
i — |
@4 3 2007 fi\ Q) D
Py W — 2006 _.qp_é
3 2005 @ @ @D
D 2004 D
D 2003 D
ER PS VR PP orP PE cc GD BPM UC CcD MM] AD SC UMLP. AUD
() (b)
Legend:
ER: Evaluation research OP: Opinion paper CC: Component and connector UC: Use case diagram SD: Sequence diagram UML P.: UML profile
PS: Proposal of solution PP: Philosophical paper ~GD: Generic diagram CD: Class diagram AD: Activity diagram AUD: All UML diagrams
VR: Validation research PE: Personal experience BPM: Business process models MM: Metamodel SC: Statechart diagram

Fig. 6. Bubble chart that shows the relationship among three variables. The x-axis shows the research
method used (a) and the supported diagrams (b). The y-axis represents year. The size of the disks consists of
the number of primary studies classified according to the criteria along the x- and y-axes.

(7%, 4/56), philosophical papers (9%, 5/56), personal experience (2%, 1/56), validation research (2%,
1/56), and opinion papers (no case). That is, the number of studies proposing solutions was almost
four times higher. This may mean that empirical studies are needed to evaluate methods that have
already been proposed in the literature.

Another interesting feature is that the primary studies mostly focused on proposing comparison
techniques for class (39%, 22/56) and generic (30%, 17/56) diagrams over the years, representing
69% (39/56) of the total. On the contrary, other diagrams were investigated at most in three pri-
mary studies. In 2008, seven proposals covered four types of diagrams. Specifically, three studies
focused on class diagrams, two on generic diagrams, one on metamodels, and one on UML profiles.
Moreover, generic diagrams received strong attention for approximately three years in academia
from 2008 to 2011. In practical terms, this means that the literature is still in its infancy. Only early
proof-of-concept techniques have been proposed, rather than user-friendly, handy techniques with
verified effectiveness in practical scenarios. Further, few empirical studies have been performed
to evaluate whether techniques in the literature are reliable for application to software projects in
the industry, where there are limitations of cost and time.

(2) Approaches Aware of Architecturally Relevant Changes. In general, several techniques have
been proposed in the literature to compare software design models by considering several as-
pects, including structural, syntactical, semantic, lexical, layout-related, and even multicriteria ap-
proaches (Table 7). However, at a closer look at the available approaches, most tend to follow
a primitive approach of structural comparison. This allows them to resolve a set of elementary
comparison cases. Nevertheless, these approaches are prone to error in determining correspon-
dences between semantically enriched design models. They are often unable to pinpoint structural

ACM Computing Surveys, Vol. 52, No. 3, Article 48. Publication date: July 2019.

48:28 L. J. Gongales et al.

similarities, or differences, caused by restructuring changes, for example. This type of modification
is typically found in changes that are wide in scope in software design models owing to refactor-
ing tasks or the refinement of architectural styles, such as client-server, component-based, MVC,
three-tier, or service-oriented styles). Therefore, an interesting direction of research is to create
comparison techniques that are aware of coarse-grained structural changes (N: N), rather fine-
grained ones (1:1). Thus, a relevant question is: To what extent can current techniques produce
appropriate correspondences between elements of the design model in the context of architec-
turally relevant changes?

(3) Hybrid Techniques to Boost Quality of Comparison. Another avenue of research is to build
hybrid comparison techniques based on features of prevalent methods. For example, it would be
helpful for the seamless integration of aspects of comparison (e.g., structural, syntactical, semantic,
lexical, and layout-related) into a flexible multicriteria approach so that more precise and adaptable
techniques can be produced. For example, developers can improve precision if they can tailor the
level of detail of the comparison process according to an appropriate level of abstraction of the
diagrams. In model-based software development, developers can derive a UML class diagram from
a UML component diagram. Thus, this is relevant to understand the extent to which a UML class
diagram (more detailed) is comparable (or close to) to a particular UML component diagram (more
abstract).

(4) Effects of Comparison Approaches on Quality Attributes. Another interesting direction of re-
search is the generation of empirical evidence concerning the quality of current techniques, e.g.,
granularity, accuracy, and scalability. Evaluations to date have been based on the opinions and
intuitions of experts rather than practical evidence. We also found evidence that the adoption of
comparison techniques in projects has not been supported by findings obtained from experimental
studies, but these findings are supported by mere opinions of experts [11, 13].

Most comparison techniques have been evaluated using simple software design models, usu-
ally represented in generic modeling languages, rather than using semantically enriched software
design models, e.g., business process models. For example, BPMN 2.0 [40] presents a standard for
business process modeling by providing a graphical notation for specifying business processes. It is
inspired by a flowcharting technique analogous to activity diagrams found in the UML. Although
they are based on flowcharts, their constructs are semantically different. Thus, it is questionable
whether findings derived from an empirical study using simple models are generalizable to mod-
els that are semantically enriched. The practical reality of software projects today is that modelers
have been defining the “goodness” of correspondences between model elements supported based
on feedback from experts. Therefore, researchers and practitioners should focus on running more
experimental studies to address practical issues, which not only consider the accuracy of the cor-
respondence identified, but are also concerned with the effort and time needed to identify the
desired correspondences between software design models. In the following section, we describe
some implications for future studies in greater detail.

7 THREATS TO VALIDITY

This section discusses measures adopted to minimize threats to the validity of our results. Many
aspects threaten the validity of this study, such as the validity of the construct, internal validity,
and the validity of the statistical conclusions [63]. External validity was not considered because
our work cannot be generalized to the industry.

Construct Validity. This discusses the statement validity in this article. It consists of the degree to
which our SMS explores what it claims to be exploring. The mismatch between our search string
and the keywords of the study may cause some studies to be excluded. To avoid this problem, we

ACM Computing Surveys, Vol. 52, No. 3, Article 48. Publication date: July 2019.

Comparison of Software Design Models: An Extended Systematic Mapping Study 48:29

used rigorous procedures for retrieving and filtering the potential studies. Keywords and their syn-
onyms were defined according to well-established methods presented in previous studies [24, 43].
We also included a long list of search engines (Table 3) and added studies by heuristics. Moreover,
we avoided grey literature (non-peer-reviewed material), such as, technical reports, or documents
describing that a patent has been registered, where the review process is more superficial than
in traditional journals, or conferences. Finally, to ensure the removal of duplicated studies, we
verified the title and article’s full-text in a separate directory.

Internal Validity. This determines whether the conclusions derived from the data are internally
valid [55]. In this sense, we categorized the primary studies by considering the hierarchical struc-
ture proposed by Altmanninger et al. [4], and Mens [37], to avoid incorrect classification. Nonethe-
less, understanding and mapping each technique can itself be seen as a threat to validity. We thus
sought to mitigate this risk by discussing and analyzing all papers. Moreover, an ever-present
concern throughout the study was to ensure that the selected primary studies were consistently
identified and analyzed. For this, we invested considerable effort in screening the primary studies.

Conclusion Validity. This threat is strictly related to problems that can affect the reliability of
our conclusions. To mitigate this, we followed the steps provided by well-established SMS proto-
cols [23-26, 43]. We also extensively described all steps of the SMS. Finally, all the conclusions in
this article were made after collecting the results, thus avoiding the fishing problem [63].

8 RELATED WORK

The analysis in this study contributes to (a) providing an in-depth understanding of state-of-the-
art model comparison in a broader context (Section 5), and (b) pinpointing open questions and
future opportunities, and outlining important issues that need to be tackled (Section 6). Table 16
presents an overview of six related works (RWs) that were explored, and their main features are
highlighted.

RW1 [57] presented a state-of-the-art survey of model comparison. It covered 31 articles pub-
lished until 2013, considered proprietary tools, but did not follow a research protocol. It examined
techniques that support two branches of applications: model evolution and similarity. The authors
considered four types of comparison strategies: static identity, similarity, signature, and custom
language specific. On the contrary, we considered structural, lexical, syntactic, layout-related, and
multicriteria strategies. Finally, the authors of RW1 measured the “work required for comparison”
by evaluating the usability of the comparison tools. However, they did not explore the literature
using a rigorous research protocol.

RW2 [4] examined contemporary techniques of the version control system (VCS) for model
artifacts. Ten works published until 2009 were analyzed through a survey. This work emphasized
the key role of model comparison in supporting model versioning, and described the main aspects
of model comparison, such as level of granularity, techniques used to compare models, and the
data structure used to represent them. Although VCS encompasses several comparison activities,
and is representative of broader issues, no claim was made about how generalizable such activities
or the results are. The processes of study selection and filtering used are also not clear.

RW3 [30] conducted a comparative study of 11 approaches to model comparison published
till 2009. The main aim was to compare the state-of-the-art model matching approaches based
on the type of comparison (i.e., signature, static identity, or similarity based) and flexibility (i.e.,
independent or specific language). Following this, RW3 carried out a case study investigating how
four comparison approaches behaved with the same input models, i.e., a UML class diagram. The
effort for the comparison and the required set-up to perform the comparison were discussed. The
authors reported that the more configurable the precision and the more manageable the effort to
be invested, the better the comparison technique.

ACM Computing Surveys, Vol. 52, No. 3, Article 48. Publication date: July 2019.

48:30 L. J. Gongales et al.

Table 16. Main Features about the Related Works Explored

Research Search Search

1D Method Sample Protocol Goals Period Research questions™

RW1 [57] Survey 31 No Presents the current state of Until What is the state of the art in model
model comparison research and 2013 comparison research?
discusses future directions of
research.

RW2 [4] Survey 10 No Describes the functionalities of Until What is the current literature in
techniques on model versioning 2009 model versioning approaches?

systems. Identifies challenges to
model versioning.

RW3 [30] Comparative 11 No Investigates contemporary Until What are the approaches to
Study approaches to model matching, 2009 identifying equivalent model
which were evaluated using elements?

accuracy and precision as
measures.

RW4 [50] Systematic 17 Yes Points out and reviews current Until “RQ1: What is the level of
Literature works on traceability 2011 automation suggested by
Review management in MDE methodological proposals for the
(model-driven engineering). generation of trace links? RQ2: How

do methodological proposals
suggest that traceability be
managed and analyzed? RQ3: Are
there tools or frameworks that
provide technological support for
the management of traceability in
the context of MDE? RQ4: What are
the limitations of the state of the art
in traceability management in the
context of MDE? RQ5: Are there
forums (e.g., journals or
conferences) that explore
traceability management in MDE?”

RWS5 [49] Survey 19 No Investigates current approaches Until What is the current literature on
to UML artifacts’ reuse. 2013 UML artifacts’ reuse?
Investigates the retrieval of
design models, tool and artifact
support, and the controlled
experiments produced.

RW6 [54] Literature 5 No Presents a synthesis of key Until What are UML-based model
review characteristics of currently 2007 comparison approaches?
available UML-based model
comparison approaches, and
compares commonalities and
differences.

*Research questions identified in the studies

RW4 [50] analyzed literature on the traceability management of design models for MDE ap-
proaches. The authors ran an (SLR systematic literature review) [24]. Five research questions were
used to examine 29 primary studies published until 2011, and specific issues, such as the level of
automation, limitations in current studies, and common places where traceability management
studies were published, were addressed. RW4 aimed at specific research questions in traceability
management in MDE. By contrast, our mapping study aimed at broader topics concerning model
comparison.

RW5 [49] analyzed literature on UML diagram reuse published until 2012. It examined 15 works
based on four dimensions: artifact support, retrieval method, experiments performed, and tool
support. The study revealed that the UML class, sequence diagrams, and use case diagrams are the
UML artefacts most commonly supported by tool. The authors also recommended future directions
of research on artifacts reuse. Similar to Stephan and Cordy [57] and Altmanninger et al. [4], this
analysis did not follow a rigorous research protocol to survey the literature.

RWE6 [54] explored five studies published until 2007 to synthesize the key characteristics of
UML-based approaches to model comparison. The study explored potential comparison usage

ACM Computing Surveys, Vol. 52, No. 3, Article 48. Publication date: July 2019.

Comparison of Software Design Models: An Extended Systematic Mapping Study 48:31

scenarios and motivated research by citing a lack of clear understanding of how corresponding
model elements are identified. RW6 did not follow a rigorous research protocol for selecting stud-
ies, and extracting and synthesizing the collected data as presented in our study (Section 3).

9 CONCLUSION AND FUTURE WORK

This article reported an SMS on model comparison. We performed an in-depth literature review
using 10 widely used electronic databases. In total, 56 primary papers were selected after a careful
filtering process applied to a sample of 4,132 potentially relevant studies. The work was motivated
by the idea that a lack of a comprehensive overview and understanding of past results in the field of
model comparison hampers surveys focusing on research gaps, challenges, and trends. Researchers
and developers may benefit from our findings typically when starting a new research, adopting a
methodology to run a study considering a broader software engineering topic than was considered
in an initial similar study, developing new techniques of comparison by identifying gaps in the
literature, and choosing reusable research skills, like the proposed SMS planning.

Moreover, some research opportunities reported are as follows: (1) Research on how to compare
software design models based on quality attributes is still lacking; (2) Further studies are needed
to develop comparison techniques and tools that can address more robust comparisons of real-
istic software design models of open-source projects, including cloud-based and service-oriented
projects with rapid development cycles; and (3) A refined classification scheme can be designed
based on the findings presented here. Such a scheme, derived from the concepts presented in
Section 3.4, will allow for the re-categorization of primary studies, and can provide a firm ground
for pinpointing related research in sub-fields of model comparison.

Further empirical studies are required to generate practical knowledge and advice for re-
searchers and practitioners concerning the circumstances in which a particular comparison tech-
nique (e.g., rule-based technique) would be acceptable, those in which another (e.g., heuristic-based
technique) would be the best option. Despite all research efforts, the literature is lacking studies
on the large-scale collaborative development of software models by focusing on scalability and
applicability. More empirical evidence on the reusability, precision, accuracy, and scalability of
comparison approaches is necessary, and the amount of time and effort needed to detect and re-
solve equivalences between software design models need to be investigated. We also need easier
ways to specify which parts of software design models that must be compared, and efficient ways
of managing similar parts as models on an enterprise software system grow in size.

Finally, other investigations concerning scalability may examine how comparison techniques
perform with multiple fragments of software design models created or changed in parallel by dif-
ferent software-development teams. Usually, developers work on changes in parallel to the same
software artefact. Then, prevalent techniques should be able to simultaneously compare more than
two parallel versions of software design models. However, most techniques support only a com-
parison of two software design models at a time. We also expect that the results and findings
outlined here can motivate researchers to examine them further. This work can be considered an
initial step on improving surveys of state-of-the-art techniques of comparison.

APPENDIXES
A LIST OF SELECTED PRIMARY STUDIES

S01 M. Abi-Antoun, J. Aldrich, N. Nahas, B. Schmerl, & D. Garlan. 2008. Differencing and merg-
ing of architectural views. In Int. Conf. on Automated Software Engineering, v 15, n 1,
pp 35-74.

ACM Computing Surveys, Vol. 52, No. 3, Article 48. Publication date: July 2019.

48:32

S02

So3

S04

So5

S06

So7

S08

S09

S10

S11

S12

S13

S14

S15

S16

S17

S18

S19

L. J. Gongales et al.

M. Brand, Z. Protic, & T. Verhoeff. 2010. Fine-grained Metamodel-assisted Model Compari-
son. In Int. Workshop on Model Comparison in Practice, pp. 11-20, July, Malaga, Spain.

M. Brand, Z. Protic, & T. Verhoeff. 2010. RCVDiff-a stand-alone tool for representation, cal-
culation and visualization of model differences, In Int. Workshop on Models and Evolution-
ME.

C. Brun & A. Pierantonio. 2008. Model differences in the eclipse modeling framework. Up-
grade Journal, v 9, n 2, pp. 29-34.

M. El-Attar. 2011. UseCaseDiff: An Algorithm for Differencing Use Case Models. Int. Conf.
on Soft. Eng. Res. Man. and App, pp. 148-152.

C. Gerth, M. Luckey, J. M. Kuster, & G. Engels. 2011. Precise Mappings between Business
Process Models in Versioning Scenarios. In IEEE International Conference on Services Com-
puting, pp. 218-225.

V. Costa, R. Monteiro, & L. Murta. 2014. Detecting Semantic Equivalence in UML Class Dia-
grams. In International Conference on Software Engineering and Knowledge Engineering,
pp. 318-323.

S. Kpodjedo, F. Ricca, P. Galinier, G. Antoniol, & Y. Gueheneuc. 2013. MADMatch: Many-
to-Many Approximate Diagram Matching for Design Comparison. IEEE Transactions on
Software Engineering, v 39, n 8, pp. 1090-1111.

D. Kimelman, M. Kimelman, D. Mandelin, & D. Yellin. 2010. Bayesian Approaches to Match-
ing Architectural Diagrams. IEEE Transactions on Software Engineering, v. 36, n. 2, pp.
248-274.

S. Kpodjedo, F. Ricca, P. Galinier, & G. Antoniol. 2008. Error Correcting Graph Matching
Application to Software Evolution. In Working Conference on Reverse Engineering, pp. 289-
293.

P. Langer, T. Mayerhofer, & G. Kappel. 2014. Semantic Model Differencing Utilizing Be-
havioral Semantics Specifications, In Model-Driven Engineering Languages and Systems, v.
8767, pp. 116-132.

Q. Liu, M. Mernik, & B. Bryant. 2012. MMDiff: A Modeling Tool for Metamodel Comparison,
In Annual South. Reg. Conf., pp. 118-123.

S. Maoz, J. Ringert, & B. Rumpe. 2011. ADDiff: Semantic Differencing for Activity Diagrams,
ACM Symp. and European Conference on Foundations of Software Engineering, pp. 179-
189, Sept., Szeged, Hungary.

A. Mehra, J. Grundy, &]J. Hosking. 2005. A Generic Approach to Supporting Diagram Dif-
ferencing and Merging for Collaborative Design, Int. Conf. on Automated Software Engi-
neering, pp. 204-213, Nov., Long Beach, CA, USA.

S.Nejati, M. Sabetzadeh, M. Chechik, S. Easterbrook, & P. Zave. 2007. Matching and Merging
of Statecharts Specifications, International Conference on Software Engineering, pp. 54-64.
S. Nejati, M. Sabetzadeh, M. Chechik, S. Easterbrook, & P. Zave. 2012. Matching and merg-
ing of variant feature specifications. IEEE Transactions on Software Engineering, v 38, n 6,
pp. 1355-1375.

K. Oliveira, K. Breitman, & T. Oliveira. 2009. A Flexible Strategy-Based Model Compari-
son Approach: Bridging the Syntactic and Semantic Gap. Journal of Universal Computer
Science, v 15, n 11, pp. 2225-2253.

U. Kelter, J. Wehren, & J. Niere. 2005. A Generic Difference Algorithm for UML Models.
Software Engineering, 64, pp. 4-9.

C. Treude, S. Berlik, S. Wenzel, & U. Kelter. 2007. Difference Computation of Large Models,
Joint Meeting of the Eur. Soft. Eng. Conf. and the ACM SIGSOFT Symp. on the Foundations
of Software Engineering, pp. 295-304, Croatia.

ACM Computing Surveys, Vol. 52, No. 3, Article 48. Publication date: July 2019.

Comparison of Software Design Models: An Extended Systematic Mapping Study 48:33

S20

S21

S22

S23

S24

S$25

S26

S27

S28

S29

S30

S$31

S$32

S$33

S34

S35

S36

S$37

S38

S$39

S40

S$41

K. Voigt & T. Heinze. 2010. Metamodel Matching Based on Planar Graph Edit Distance,
International Conference on Theory and Practice of Model Transformations, pp. 245-259.
Z. Xing. 2010. Model Comparison with GenericDiff, IEEE/ACM Int. Conf. on Automated
Software Engineering, pp. 135-138, Sept., Antwerp, Belgium.

Z.Xing & E. Stroulia. 2005. UMLDIff: An Algorithm for Object-oriented Design Differencing,
Automated Soft. Eng., pp. 54-65.

D. Kolovos, R. Paige, & F. Polack. 2006. Model Comparison: A Foundation for Model Compo-
sition and Model Transformation Testing, Int. Workshop on Global Integrated Model Man-
agement, pp. 13-20, Shanghai, China.

V. Milovanovic & D. Milicev. 2015. An interactive tool for UML class model evolution in
database applications, Software & Systems Modeling, n 14, v 3, pp. 1273-1295.

Z.Xing & E. Stroulia. 2007. Differencing logical UML models, Int. Conf. on Automated Soft-
ware Engineering, v. 14, n. 2, pp 215-259.

M. Al-Khiaty & M. Ahmed. 2014. Similarity assessment of UML class diagrams using a
greedy algorithm, International Computer Science and Engineering Conference, pp. 228-
233.

D. Ohst, M. Welle, & U. Kelter. 2003. Difference tools for analysis and design documents, In
Proc. of Int. Conf. on Soft. Maint., pp. 13-22.

H. Salami & M. Ahmed. 2013. Class Diagram Retrieval Using Genetic Algorithm, Int. Conf.
on Machine Learning. and App., pp. 96-101.

M. Asztalos & L. Lengyel. 2008. A Metamodel-Based Matching Algorithm for Model Trans-
formations, In IEEE International Conference on Computational Cybernetics, pp. 151-155.
W. Robinson & H. Woo. 2004. Finding reusable UML sequence diagrams automatically. IEEE
Software, v. 21, n. 5, pp. 60-67.

H. Salami & M. Ahmed. 2014. Retrieving sequence diagrams using genetic algorithm, Inter-
national Joint Conference on Computer Science and Software Engineering, pp. 324-330.

N. Tsantalis, N. Negara & E. Stroulia. 2011. Webdiff: A generic differencing service for soft-
ware artifacts, International Conference on Software Maintenance, pp. 586-589.

L. Auxepaules, D. Py & T. Lemeunier. 2008. A Diagnosis Method that Matches Class Dia-
grams in a Learning Environment for Object-Oriented Modeling, International Conference
on Advanced Learning Technologies, pp. 26-30.

L. Zaman, A. Kalra, & W. Stuerzlinger. 2011. DARLS: Differencing and Merging Diagrams
Using Dual View, Animation, Re-layout, Layers and a Storyboard, In Extended Abstracts on
Human Factors in Computing Systems, pp. 1657-1662.

W. Park & D. Bae. 2011. A two-stage framework for UML specification matching, Inf. and
Software Technology, v. 53, n. 3 pp. 230-244.

S. Uhrig. 2008. Matching Class Diagrams: With Estimated Costs Towards the Exact Solution?
International Workshop on Comparison and Versioning of Software Models, pp. 7-12.

R. Lutz, D. Wurfel & S. Diehl. 2011. How Humans Merge UML-Models, Int. Symp. on Emp.
Soft. Eng. and Measurement, pp. 177-186.

K. Oliveira, K. Breitman & T. Oliveira. 2009. Ontology Aided Model Comparison, Int. Conf.
on Engineering of Complex Computer Systems, pp. 78-83.

Y. Lin, J. Gray, & F. Jouault. 2007. DSMDiff: a differentiation tool for domain-specific models,
European Journal of Information Systems, v. 16, n. 4, pp. 349-361.

J.Su &]J. Bao. 2012. Measuring UML Model Similarity, Int. Conference on Software Paradigm
Trends, pp. 319-323.

M. Al-Khiaty & M. Ahmed. 2016. UML Class Diagrams: Similarity Aspects and Matching.
Lec. Notes on Soft. Engineering, v. 4, pp. 41-47.

ACM Computing Surveys, Vol. 52, No. 3, Article 48. Publication date: July 2019.

48:34

S42

S$43

S44

S45

S46

S47

S48

S49

S50

S51

S$52

S53

S54

S55

$56

L. J. Gongales et al.

M. Al-Khiaty & M. Ahmed. 2014. Similarity assessment of UML class diagrams using a
greedy algorithm, International Computer Science and Engineering Conference, pp. 228-
233.

K. Bogdanov & N. Walkinshaw. 2009. Computing the structural difference between state-
based models, In Working Conference on Reverse Engineering, pp. 177-186.

D. Mandelin, D. Kimelman, & D. Yellin. 2006. A Bayesian Approach to Diagram Matching
with Application to Architectural Models, International Conference on Software Engineer-
ing, pp. 222-231, Shanghai, China.

S. Maoz, J. Ringert, & B. Rumpe. 2011. CDDiff: Semantic Differencing for Class Diagrams,
European Conf. on Object-Oriented Programming, v. 6813, pp. 230-254.

M. Schmidt & T. Gloetzner. 2008. Constructing Difference Tools for Models Using the SiDiff
Framework, Conf. Soft. Eng., pp. 947-948.

M. Girschick & T. Darmstadt. 2006. Difference detection and visualization in UML class
diagrams, Technical University of Darmstadt, Technical Report, pp. 1-15.

R. Lutz & S. Diehl. 2014. Using Visual Dataflow Programming for Interactive Model Com-
parison. International Conference on Automated Software Engineering, pp. 653-664, Sept.,
Sweden.

M. Kessentini, A. Ouni, P. Langer, M. Wimmer, & S. Bechikh. 2014. Search-based Metamodel
Matching with Structural and Syntactic Measures, Journal of Systems and Software, v 97,
pp. 1-14.

G. M. Kapitsaki & A. P. Achilleos. 2012. Model Matching for Web Services on Context De-
pendencies, In International Conference on Information Integration and Web-based Appli-
cations Services, pp. 45-53, Dec., Bali, Indonesia.

D. Kolovos. 2009. Establishing Correspondences between Models with the Epsilon Com-
parison Language, Model Driven Architecture: Foundations and Applications, pp. 146-157,
June, Netherlands.

E. Kaundal & E. Kaur. 2017. CoMSS: Context based Measure for Semantic Similarity be-
tween Conceptual models. International Conference on Intelligent Computing and Control
Systems, pp. 1080-1088, June, India.

M. AL-Khiaty & M. Ahmed. 2017. Matching UML Class Diagrams using a Hybridized
Greedy-Genetic Algorithm. International Scientific and Technical Conference on Computer
Sciences and Information Technologies, pp. 161-166, Sept., Lviv, Ukraine.

A. Adamua & W. Zainon. 2017. Multiview Similarity Assessment Technique of UML Dia-
grams. Proc. Comp. Science, v. 124, pp. 311-318.

A. Adamua & W. Zainon. 2017. Similarity Assessment of UML Sequence Diagrams Using
Dynamic Programming, Int. Visual Inform. Conf., pp. 270-278.

S. Maoz, & J. O. Ringert. 2018. A framework for relating syntactic and semantic model dif-
ferences. Software & Systems Modeling, v. 17, n.3, pp 753-777.

B GENERAL CLASSIFICATION AND QUALITY ASSESSMENT OF PRIMARY STUDIES

ACM Computing Surveys, Vol. 52, No. 3, Article 48. Publication date: July 2019.

48:35

: An Extended Systematic Mapping Study

Comparison of Software Design Models

(panunuo))
uonnjog paurerd swreigerq
L X , , X , ,r Vi Vi /S 0UDIJUOD) JTSLINAE] onewoy Jjo resodoxg Arequng -251B0D) 2In3onIns ydern TNQ TV 81S
uonnjos paurerd BLIDILID
g , Vi , X , , , , , [ewmof onsundy | onewojny Jo esodoxg Arrerung -autg -nmy »YO ayoId TN | LIS
YoIeasay RLIDILID
L , Vi » X , » X , » [eumof opsumey | onewony uoneneAy Ayrreqrung eneq Ny 0 weyarels | 91s
uonnjos RLIILID
L 2 2 , X , , 2 , , DUIAYUOD) ONSLINSE onewony Jjo [esodorg Ayurequrg Tenreq -nmy Y0 FEIREIIIN SIS
uonnjog paureid
L X , , X , , 2 , , DUDIAYUO) amnn onewoIny Jjo [esodoxg Suryorey -981800) ampnng ydein wrerder(] dLRuUIY P18
uonnjog paurerd
L X , 2 X , 2 2 , 2 9OUDIYUOD) QUON snewony Jjo [esodorg Suryorepy 981800 RISENEN ydein wesderq A1andy €IS
uonnjog BLIDILID
8 2 , 2 X 2 , 2 2 2 2DUDIYUOD) SNSLINDH snewony Jjo [esodorg Sunyorepy renaeq -nmpy ydern S[OPOWEIN 218
paseq uonnjog paurerd
8 , , Vi X , , Va v v OUDIJUOD) -ormy onewony Jjo resodoxg paseq-amy -9s180D) Jnuewag PYI0 urexger(y oLoUaD) 118
paseq uonnog
8 , , , X , , Vi Va v OUDIJUOD) BURACEIN onewoIny Jo resodoxg Suryoepy Tenreq 2In3PNNg ydern wrexSer(sser) 01S
uonnog
8 , , ,r X , , Vi ,r /S Tewno(JNSLINSF JnewoIny Jo resodoxg Suryoepy Tenreq mofeT ydern urexger(y oLLUAL 6S
paseq onewone uonnog paurerd
8 , , , X 1 , , Vi Vi Tewrnof RURICEIN -Tuag Jjo resodoxg Surnpiey -3s180)) 2InPNNg ydern wreIder(] JLAUID) 8S
uonnjog paurerd
8 Vs 2 , X , , 2 , , UIIYUOD SuoN onewoIny Jjo [esodoxg Sunprey 951800 RIIENEN Y0 wrexder(ssefy LS
SONSLINA uonnjos paureid BLIIIID ToPOIN
8 2 2 1 X , , 2 , 2 UIIYUOD) -ainn snewony Jjo [esodoxg Suryorey 981800 -nmy Y0 $590014 ssaursng 95
uonnjos paureid
L 2 2 , X , 2 X , 2 DUDIAYUOD) SNSLINAH onewoIny Jjo [esodoxg Suryorey -981800) ampnng Y0 ased as() <S
1adeg paureid
L , 2 , X , , X 2 , [eunof SNSLINdH snewony rearydosoyryg Sunyorey 981800 ampnng ydern wrexder(] dLRUIY $S
SOTSLINAH onewojne uonnjog paurerd
L X , , X , , 1 , , doysyrom -dInn -TuRg Jjo resodoxg Suryoepy -9s180)) amjnng Qa1], wrexSer(] d1oUID) €S
uonnjog paurerd
L , , Vi X X Vi Va , Va doysyyrom aimnn onewony Jjo resodoxg Suryoepy -9s180D) 2InjoNNg Q91], urexger(y oLoUaD) zS
snewojne uonnjog paurerd 10195UU00)
L X , , X , v Va Va Va OUDIJUOD) JUSLINDH -Tuag Jjo resodoxg Suryoepy -9s180D) 2In3oNNg Q91], pue jusuoduro) 1S
sjuroq 60 80 L0 90 SO 70 €0 20 10 604 80d LOY 908 sOd yOu £Od 20" 104 at
JUDUISSISSY %.—mmﬂ—i@ UOTIBIYISSE]I [RIdUID

sa1pni§ Alewig JO JuaWISSasSy AJ[erip) pue uoljedlyisse|) [eI1auan L' d|qel

ACM Computing Surveys, Vol. 52, No. 3, Article 48. Publication date: July 2019.

L. J. Gongales et al.

36

48

(ponumuo)
weiderq
Tadeg paured aouanbag
8 , , , X , , , , , Tewnof oustmoy | onewoy eorydosoqyg | Ajrreqruarg -2s1000) ampnng | ydern puesse)) | ses
Yoreasay paurerd
L Vi , , X X Vi , , Vi OUIBJUOD) JNSLINSE orjewoINy uonjeneAq Sumydreny -9s180D) jcaleelh] ydein weIder(JLIaUID $€S
uonnjos LI
L , , , X 2 , X Vs 2 OUIAYUOD ONSLINAEY snewoIny Jo [esodoxg Suryprey Teneq -nmy ydern urexger(ssep) €€s
onewone uonnjos paured
9 , , 2 X X , X 2 , UIIAYUOD OIISLINAEY BUIEIN Jo [esodoxg Suryorepy -3s1B0D) ampnng Q1] wrexder(y sse[) 268
paseq uonnjos paureid werderq
L X , , X , , , 1 , OUIIJUOD -yoresg onewoINy Jo resodoxg Aurepmurg -951800) amjponng ydein souanbag 1€S
Jrjewione uonnjos paureid werderq
9 X , , X 1 , X , , Tewmof oISLINAE BUICN Jjo resodoxg Suryorepy -as180)) amonng ydein 9ouanbag 0€s
paseq uonn[og paurerd
8 , , , X X , , 2 , Q0UAIJUOD) -y orewoINy Jo resodoxg Suryorey -95180) amjonng ydein S[opouwejafy 628
paseq uonnjog paured
g , Vi v X Vi , , Vi Va OUDIJUO) -yoIeag onewoINy Jjo resodoxg Aqurerung -9s180D) aminng PYI0 urexger(y ssep) 828
paseq Jrewone 1adeg paured RLIDILID swrexderq
8 , , , X , , , , , PudrguO) | -dnjeudiy -Tuag reorydosoqyg | Surprey -2sTR0) | ydero TNOTV | LeS
paseq uonnjog RLIDILID
8 , , Va X Vi Va , Vi , UDIJUO) -oIeas orjewoINy Jo Tesodoxg Areqrug Tenreq -now ydein urexger(y ssep) 928
yoIeasay paurerd
8 , , , X , Vi Vi , Vi Tewmnof JNSLINSE orewoINy uonjeneAq Sumydreny -9s180D) ampnng ydein wrexder(y sse[) 54
paseq onjewone YOIBISRY paurerd
8 , 2 2 X Vs , , Vs , Tewnof -ormnjeusrs BUIEIN uoreneAy Suryprey 951800 [eoTxoT PO urexder(sse[) $2S
paseq JrewoNE 1adeq paurerd
8 , , , X 2 , , 2 , doysyropm oy BUIEIN rearydosoiyg Suryorepy -3s180D) onpejuig ydern weIFer(dLLUIY €28
uonnog paured
8 , , , X , , , , , OUIIJUOD oISLINSY onewoINy Jo resodoxg Suryorey -351800) amjpnng ydein urexger(y ssep) 28
uonnog paureid
8 , , , X 1 , , 1 , 0UIIYUOD oISLIMAY onewoNy Jo resodoxg Suryorepy -9s180)) amjonng ydein wrerger(y ouaua0 128
onewojne uonn[og paurerd
8 , , , X 2 , , 2 , Q0UAIYUOD) SIISLINAE] TG Jo resodoxg Aqureqrung -95180) amjonng ydein urerger(y oLaUaD 0zs
onewojne uonnjog paured
L X Vi v X Vi , , Vi , OUDIJUO) JNSLNO -G Jjo resodoxg Surnyporen -9sI80D) jcalsel] Q01], urerger(q ouaUID 61S
sjutog 60 80 L0 90 [510) 70 €0 20 10 60d 80d LO" 90" [0): O €04 20" 104 ar
Juawssassy AJrengy UOIJBIYISSE[I [BIIUID

panunuo) °L'g d|qeL

ACM Computing Surveys, Vol. 52, No. 3, Article 48. Publication date: July 2019.

48:37

: An Extended Systematic Mapping Study

Comparison of Software Design Models

(ponunuo))
paseq onewone uonnjog paurerd
L Vs , , X X , 2 , 2 2dUAIJUO) -y -Tuag Jjo resodoxg paseq-apy -aurg amponng Y0 urexger(y oLLUAD 158
snewone uonnjog paureid BLIDIID
8 2 , , X , , 2 , , DUIIYUOD ONSLINSE -Tuag Jjo [esodoxg Suryorey -3s180) -nmw ydein urerger(] oLAUIY 0SS
paseq uonnjog paureid
8 , , , X , , 2 , , Tewnof RICMEN onewoNy Jjo resodoxg Suryorey -aury amjonng ydern S[PpOWedY 6VS
srewojne uonnjog paured
L X , , X , , , , , UAIIUOY OIISLINSE BUICN Jjo resodoxg Suryorey -35180) amjonng ydein wexder(sse[) 8%S
paseq YoTBISNY paurerd
8 , , , X , , 2 , , 9dUAIIUOD -amjeusig onewoNy uonepIeA Suryorey -95180) amjonng ydern wrexder(sse[) L¥S
onjewoine 1adeg paurerd BLIDILIO
9 X , , X X , X , , QdUAIIUOD ELGN -TuRg reorydosoryg Suryoepy -9s180)) -nmpy ydern urexSer(] d1oUID) 9%S
paseq uonnjog paurerd
8 2 , , X , , 2 , , 2dUAIJUOD) -y JnewoINy Jjo resodoxg paseq-ay -25180) onuewag 710 wrexder(sse[) SBS
uonnjog paurerd
L 2 , 2 X , , X) , 2oUAIJUO)) SUSTINAEY JrewoINY Jjo resodoxg Ayurequrrg -2s180) amjonng ydern urexger(y oLLUan 5S
onewoine uonnjog paurerd
8 2 , 2 X , 2 2 2 , QdUAIJUO) SUSTINIEY -Turag Jjo resodoxg Suryogepy -2s180) amjonng ydern BRI RENLEIN 52
onewone uonnjog paurerd BLIDILID
L , , , X 1 , X 2 , oUdIRJUOD) oTSLINA RUIEN Jjo resodoxg Ayirequng -9s180D) RN ydein uresder(ssep) s
paseq snewone uonnjog paurerd BLIDIID
L Vi v Vi X Vi Vi X , , ewnof RIGMEN RUICN Jo resodoxg Ayurequng -3s180) -nmw ydein wreIder(ssep) 15S
wonnjog
L , , , X , , X , , dUAIIUOD OISLINSE] onewony Jjo resodoxg Ajurequrg Tenaeg amjonng ydein wexder(sse[) 0%S
uonnjog paured BLIDILID
L X , , X , , 2 , , ewmnof OISLINSE] onewoNy Jjo resodoxg Suryorey -3s180) -nmw ydern wresger(] oLaUaD) 6€S
srewojne uonnjog paurerd BLIDILID
9 , , , X X , X , , dUAIIUOD OISLINDE BUICIN Jjo resodoxg Ayureprurg -aurg -nmpw Qa1], wexder(sse[) 8¢S
s1adeg paurerd BLIDILID
8 X , , 2 , , 2 , , QdUAIJUOD QUON [enuepy Qouatradxy Suryoepy -aurg -nmp P10 wrexder(sse[) L€S
onewojne uonnjog paurerd
9 2 , , X X , X , , doysyrom. JISLINDY -TuRg Jjo resodoxg Ayurequrrg -98180)) amyonng ydern wrexder(sse[) 9¢S
syurog 60 80 LD 90 o) 70 €0 20 10 604 804 LOY 90d sod ¥Od £0d 20d 104 ar
Juaussassy Ajreng) UOIJBIYISSE[I [BIIUID
panunuo) °L'g d|qeL

ACM Computing Surveys, Vol. 52, No. 3, Article 48. Publication date: July 2019.

L. J. Gongales et al.

-ad £ uoryeoriqnd :6()Y ‘senbruyoa) uostreduwroos :g(HY ‘92139p uoTRWOINE /(N ‘SPOYIAW YII1eISAI 90Ny ‘SodA) wostreduwrod 6Oy
“Arepnuersd 50y ‘s1oadse uostredwrod :g(yY ‘seanjonys eyep gy ‘wreiderp pajroddns [y Apnys Arewrrad oy Jo oyrpuLpr (1

:puadoy
[32 54 95 95 1 g 9g 54 95 95 [eI0L

swrexderq
uonn[og paurerd LI Injed] pue

8 , , , X ,r , , , , [eumof onsumay onEwoy Jo esodoxg Suryey -as1000) -no | ydero ‘sse[D Kandy | 968
uonn[os paurerd wrexderq

8 Va , v X Va Vi v , Vi 2UIIJUOD) OnSLIMaH onewomy Jjo resodoxg Aqurequg -98180)) aInnag ydero 2ouanbag 668
uonnjos paureid BLIDILID wrexderq

2 , , , X , , , , , [euanof onsLmay onewony Joesodorg | Arepug -9s1000) oy | ydern TANQTY | ¥SS

paseq uonnjog paureid RLIDIID
i Va Va Va X Va Va Va Va v UIFUOD -[yo1esg dnewony Jjo resodoxg Aqurequng -9s180)) - ydern urexger(y sse[) €6S
uonnjog paureid
L X Va , 5’ Va Va Va Va Va OUIFUOD) ONSLINAH dnewony Jo resodoxg Aurequg -98180D) plstidiselN PYI0 urexger(y sse[) 258
syurog 60 80 LO 90 <O 0 €0 20 10 604 80 L0 904 sOd 04 €04 204 109 ar
Juawssassy Ajengy UOTJBIYISSE[D [BIIUID)

:38

48

panunuod ‘1'g 3|qeL

ACM Computing Surveys, Vol. 52, No. 3, Article 48. Publication date: July 2019.

Comparison of Software Design Models: An Extended Systematic Mapping Study 48:39

ACKNOWLEDGMENTS

We thank Dr. Jon Whittle for reviewing the manuscript and providing insightful recommendations.

REFERENCES

(1]
(2]
(3]
(4]
(5]
(6]
(7]

(15]
(16]
(17]

(18]

Marwan Abi-Antoun, Jonathan Aldrich, Nagi Nahas, Bradley Schmerl, and David Garlan. 2008. Differencing and
merging of architectural views. Automated Software Engineering 15, 1 (2008), 35-74.

Mojeeb Al-Rhmam Al-Khiaty and Moataz Ahmed. 2016. UML class diagrams: Similarity aspects and matching. Lecture
Notes on Software Engineering 4, 1 (2016), 41-47.

Mojeeb Al-Rhman Al-Khiaty and Mariwan Ahmed. 2014. Similarity assessment of UML class diagrams using a greedy
algorithm. In International Computer Science and Engineering Conference. IEEE, Thailand, 228-233.

Kerstin Altmanninger, Martina Seidl, and Manuel Wimmer. 2009. A survey on model versioning approaches. Inter-
national Journal of Web Information Systems 5, 3 (2009), 271-304.

Cédric Brun and Alfonso Pierantonio. 2008. Model differences in the eclipse modeling framework. The European
Journal for the Informatics Professional 9, 2 (2008), 29-34.

David Budgen, Mark Turner, Pearl Brereton, and Barbara Kitchenham. 2008. Using mapping studies in software
engineering. In Proceedings of PPIG, Vol. 8. 195-204.

Michel Chaudron, Werner Heijstek, and Ariadi Nugroho. 2012. How effective is UML modeling? Software & Systems
Modeling 11, 4 (2012), 571-580.

Sudarshan S. Chawathe, Anand Rajaraman, Hector Garcia-Molina, and Jennifer Widom. 1996. Change detection in
hierarchically structured information. In ACM SIGMOD Record, Vol. 25. ACM, 493-504.

Jesus S. Cuadrado, Javier L. C. Izquierdo, and Jesus G. Molina. 2014. Applying model-driven engineering in small
software enterprises. Science of Computer Programming 89, Part B (2014), 176-198.

Brian Dobing and Jeffrey Parsons. 2006. How UML is used. Communications of ACM 49, 5 (May 2006), 109-113.
Kleinner Farias. 2012. Empirical Evaluation of Effort on Composing Design Models. Ph.D. Dissertation. Department of
Informatics, PUC-Rio. Rio de Janeiro, Brazil.

Kleinner Farias, Alessandro Garcia, and Jon Whittle. 2010. Assessing the impact of aspects on model composition
effort. In Proceedings of the 9th International Conference on Aspect-Oriented Software Development. 73—-84.

Kleinner Farias, Alessandro Garcia, Jon Whittle, Christina Flacha Garcia Chavez, and Carlos Lucena. 2014. Evaluating
the effort of composing design models: A controlled experiment. Software & Systems Modeling 14, 4 (2014), 1349-1365.
Ana M. Fernandez-Saez, Marcela Genero, and Michel RV. Chaudron. 2013. Empirical studies concerning the main-
tenance of UML diagrams and their use in the maintenance of code: A systematic mapping study. Information and
Software Technology 55, 7 (2013), 1119-1142.

Matthias Galster, Danny Weyns, Dan Tofan, Bartosz Michalik, and Paris Avgeriou. 2014. Variability in software sys-
tems: A systematic literature review. IEEE Transactions on Software Engineering 40, 3 (March 2014), 282-306.

Martin Girschick and T. Darmstadt. 2006. Difference Detection and Visualization in UML Class Diagrams. Technical
University of Darmstadt Technical Report TUD-CS-2006-5 (2006), 1-15.

Barney Glaser and Anselm Strauss. 1999. The Discovery of Grounded Theory: Strategies for Qualitative Research. Aldine
Transaction.

Lucian Gongales, Kleinner Farias, Murilo Scholl, Mauricio Veronez, and Toacy de Oliveira. 2015. Comparison of design
models: A systematic mapping study. International Journal of Software Engineering and Knowledge Engineering 25
(2015), 1765-1769.

John Hutchinson, Mark Rouncefield, and Jon Whittle. 2011. Model-driven engineering practices in industry. In Pro-
ceedings of the 33rd International Conference on Software Engineering (ICSE’11). 633-642.

IBM. 2017. Rational Software Architect Designer (RSAD). http://www-03.ibm.com/software/products/en/
ratsadesigner

Marouane Kessentini, Ali Ouni, Philip Langer, Manuel Wimmer, and Slim Bechikh. 2014. Search-based metamodel
matching with structural and syntactic measures. Journal of Systems and Software 97, C (Oct 2014), 1-14.

Samir Khuller and B. Raghavachari. 1996. Graph and network algorithms. Comput. Surveys 28, 1 (March 1996), 43-45.
Barbara Kitchenham, Pearl Brereton, and David Budgen. 2010. The educational value of mapping studies of software
engineering literature. In Proceedings of the 32nd ACM/IEEE International Conference on Software Engineering - Volume
1. 589-598.

Barbara Kitchenham and Stuart Charters. 2007. Guidelines for Performing Systematic Literature Reviews in Software
Engineering. Technical Report. Keele University and University of Durham. EBSE-2007-01, Version 2.3.

Barbara A. Kitchenham, David Budgen, and O. Pear] Brereton. 2010. The value of mapping studies - A participant-
observer case study. In Proceedings of the 14th International Conference on Evaluation and Assessment in Software
Engineering. 25-33.

ACM Computing Surveys, Vol. 52, No. 3, Article 48. Publication date: July 2019.

http://www-03.ibm.com/software/products/en/ratsadesigner
http://www-03.ibm.com/software/products/en/ratsadesigner

48:40 L. J. Gongales et al.

[26]
(27]
(28]
[29]

(30]

[31]

[32]

(33]

[34]
[35]

[36]

(37]
(38]
[39]

[40]
[41]

[42]
(43]
[44]
(45]

[46]

(47]
(48]
(49]

[50]

[51]

Barbara A. Kitchenham, David Budgen, and O. Pearl Brereton. 2011. Using mapping studies as the basis for further
research - A participant-observer case study. Information Software Technology 53, 6 (June 2011), 638-651.

Barbara A. Kitchenham, Emilia Mendes, and Guilherme H. Travassos. 2007. Cross versus within-company cost esti-
mation studies: A systematic review. IEEE Transactions on Software Engineering 33, 5 (May 2007), 316-329.
Dimitrios Kolovos. 2009. Establishing correspondences between models with the epsilon comparison language. In
5th European Conference on Model Driven Architecture - Foundations and Applications. 146—157.

Dimitris Kolovos, Louis Rose, Antonio Garcia-Dominguez, and Richard Paige. 2017. The Epsilon Book. Eclipse,
http://www.eclipse.org/epsilon.

Dimitrios S. Kolovos, Davide Di Ruscio, Alfonso Pierantonio, and Richard F. Paige. 2009. Different models for model
matching: An analysis of approaches to support model differencing. In Workshop on Comparison and Versioning of
Software Models, ICSE. 1-6.

Dimitrios S. Kolovos, Richard F. Paige, and Fiona A. C. Polack. 2006. Model comparison: A foundation for model
composition and model transformation testing. In Internat. Workshop on Global Integrated Model Management. 13-20.
Segla Kpodjedo, Filippo Ricca, Philippe Galinier, Giuliano Antoniol, and Yann-Gael Gueheneuc. 2013. MADMatch:
Many-to-many approximate diagram matching for design comparison. IEEE Transactions on Software Engineering 39,
8 (Aug 2013), 1090-1111.

Marcello La Rosa, Marlon Dumas, Reina Uba, and Remco Dijkman. 2013. Business process model merging: An ap-
proach to business process consolidation. ACM Transactions on Software Engineering and Methodology 22, 2 (2013),
11.

Yuehua Lin, Jeff Gray, and Frédéric Jouault. 2007. DSMDiff: A differentiation tool for domain-specific models. Euro-
pean Journal of Information Systems 16, 4 (2007), 349-361.

Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. 2011. ADDIff: Semantic differencing for activity diagrams. In
Proceedings of the ESEC/FSE (ESEC/FSE’11). 179-189.

Shahar Maoz, Jan Oliver Ringert, and Bernhard Rumpe. 2011. CDDIff: Semantic differencing for class diagrams. In
European Conference on Object-Oriented Programming. Lecture Notes in Computer Science (LNCS), vol. 6813. Springer,
Berlin, 230-254.

Tom Mens. 2002. A state-of-the-art survey on software merging. IEEE Transactions on Software Engineering 28, 5 (May
2002), 449-462.

Shiva Nejati, Mehrdad Sabetzadeh, Marsha Chechik, Steve Easterbrook, and Pamela Zave. 2012. Matching and merg-
ing of variant feature specifications. IEEE Transactions on Software Engineering 38, 6 (2012), 1355-1375.

Dirk Ohst, Michael Welle, and Udo Kelter. 2003. Difference tools for analysis and design documents. In Proceedings
of the International Conference on Software Maintenance. 13-22.

OMG. 2014. Business Process Model and Notation, Version 2.0.2. Technical Report. http://www.omg.org/spec/BPMN.
OMG. 2017. Unified Modeling Language - Infrastructure, Version 2.5.1. Technical Report. https://www.omg.org/spec/
UML/2.5.1/.

Wei-Jin Park and Doo-Hwan Bae. 2011. A two-stage framework for UML specification matching. Information and
Software Technology 53, 3 (2011), 230-244.

Kai Petersen, Sairam Vakkalanka, and Ludwik Kuzniarz. 2015. Guidelines for conducting systematic mapping studies
in software engineering: An update. Information and Software Technology 64 (2015), 1-18.

Marian Petre. 2014. “No shit” or “Oh, shit!”: Responses to observations on the use of UML in professional practice.
Software & Systems Modeling 13, 4 (2014), 1225-1235.

Dong Qiu, Bixin Li, Shunhui Ji, and Hareton Leung. 2014. Regression testing of Web service: A systematic mapping
study. Computing Surveys 47, 2, Article 21 (Aug. 2014), 46 pages.

Marcello La Rosa, Marlon Dumas, Reina Uba, and Remco M. Dijkman. 2013. Business process model merging: An
approach to business process consolidation. ACM Transactions on Software Engineering Methodology 22, 2 (2013),
11:1-11:42.

Julia Rubin and Marsha Chechik. 2013. N-way model merging. In Proceedings of the 9th Joint Meeting on Foundations
of Software Engineering (ESEC/FSE 2013). 301-311.

James Rumbaugh, Ivar Jacobson, and Grady Booch. 1999. The Unified Modeling Language Reference Manual. Addison-
Wesley.

Hamza Salami and Moataz Ahmed. 2014. UML artifacts reuse: State of the art. arXiv:1402.0157 (2014).

Ivan Santiago, Alvaro Jiménez, Juan Manuel Vara, Valeria De Castro, Ver6Nica A Bollati, and Esperanza Marcos.
2012. Model-driven engineering as a new landscape for traceability management: A systematic literature review.
Information and Software Technology 54, 12 (2012), 1340-1356.

Alexandra Sbaraini, Stacy M. Carter, R. Wendell Evans, and Anthony Blinkhorn. 2011. How to do a grounded theory
study: A worked example of a study of dental practices. BMC Medical Research Methodology 11, 1 (2011), 1-10.

ACM Computing Surveys, Vol. 52, No. 3, Article 48. Publication date: July 2019.

http://www.eclipse.org/epsilon
http://www.omg.org/spec/BPMN
https://www.omg.org/spec/UML/2.5.1/
https://www.omg.org/spec/UML/2.5.1/

Comparison of Software Design Models: An Extended Systematic Mapping Study 48:41

(52]

(53]

Maik Schmidt and Tilman Gloetzner. 2008. Constructing difference tools for models using the SiDiff framework. In
Companion of the 30th International Conference on Software Engineering. ACM, New York, NY, USA, 947-948.
Andreas Schoknecht, Tom Thaler, Peter Fettke, Andreas Oberweis, and Ralf Laue. 2017. Similarity of business process
models — A state-of-the-art analysis. ACM Computing Surveys (CSUR) 50, 4 (2017), 52.

Petri Selonen. 2007. A review of UML model comparison approaches. In Nordic Workshop on MDE. 37.

William R. Shadish, Thomas D. Cook, and Donald Thomas Campbell. 2002. Experimental and Quasi-experimental
Designs for Generalized Causal Inference. Wadsworth Cengage Learning.

Darja Smite, Claes Wohlin, Tony Gorschek, and Robert Feldt. 2010. Empirical evidence in global software engineering:
A systematic review. Empirical Software Engineering 15, 1 (2010), 91-118.

Matthew Stephan and James R. Cordy. 2013. A survey of model comparison approaches and applications. In Model-
sward. 265-277.

Jie Su and Junpeng Bao. 2012. Measuring UML model similarity. In Proceedings of the 7th International Conference on
Software Paradigm Trends. 319-323.

Tom Thaler, Andreas Schoknecht, Peter Fettke, Andreas Oberweis, and Ralf Laue. 2016. A comparative analysis of
business process model similarity measures. In Proceedings of the International Conference on Business Process Man-
agement. 310-322.

Mark Van den Brand, Zvezdan Proti¢, and Tom Verhoeff. 2010. Fine-grained metamodel-assisted model comparison.
In Proceedings of the 1st International Workshop on Model Comparison in Practice. 11-20.

Konrad Voigt. 2011. Structural Graph-B ased Metamodel Matching. Ph.D. Dissertation. University of Desden.

Roel Wieringa, Neil Maiden, Nancy Mead, and Colette Rolland. 2005. Requirements engineering paper classification
and evaluation criteria: A proposal and a discussion. Requirements Engineering 11, 1 (December 2005), 102-107.
Claes Wohlin, Per Runeson, Martin Host, Magnus C. Ohlsson, Bjorn Regnell, and Anders Wesslén. 2012. Experimen-
tation in Software Engineering. Springer Science & Business Media.

Zhenchang Xing and Eleni Stroulia. 2005. UMLDIff: An algorithm for object-oriented design differencing. In Proceed-
ings of the 20th IEEE/ACM International Conference on Automated Software Engineering. 54-65.

Chen Yang, Peng Liang, and Paris Avgeriou. 2016. A systematic mapping study on the combination of software
architecture and agile development. Journal on Systems and Software 111, C (January 2016), 157-184.

Jae young Bang, Yuriy Brun, and Nenad Medvidovic. 2018. Collaborative design conflicts: Costs and solutions. IEEE
Software (2018).

Kaizhong Zhang, Rick Statman, and Dennis Shasha. 1992. On the editing distance between unordered labeled trees.
Information Processing Letters 42, 3 (1992), 133-139.

Received May 2018; revised December 2018; accepted February 2019

ACM Computing Surveys, Vol. 52, No. 3, Article 48. Publication date: July 2019.

