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Deep Neural Networks (DNNs) are becoming an important tool in modern computing applications. Acceler-
ating their training is a major challenge and techniques range from distributed algorithms to low-level circuit
design. In this survey, we describe the problem from a theoretical perspective, followed by approaches for
its parallelization. We present trends in DNN architectures and the resulting implications on parallelization
strategies. We then review and model the different types of concurrency in DNNs: from the single operator,
through parallelism in network inference and training, to distributed deep learning. We discuss asynchronous
stochastic optimization, distributed system architectures, communication schemes, and neural architecture
search. Based on those approaches, we extrapolate potential directions for parallelism in deep learning.
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1 INTRODUCTION

Machine Learning, and in particular Deep Learning [149], is rapidly taking over a variety of aspects
in our daily lives. At the core of deep learning lies the Deep Neural Network (DNN), a construct
inspired by the interconnected nature of the human brain. Trained properly, the expressiveness
of DNNs provides accurate solutions for problems previously thought to be unsolvable, merely by
observing large amounts of data. Deep learning has been successfully implemented for a plethora
of fields, ranging from image classification [110], through speech recognition [6] and medical di-
agnosis [44], to autonomous driving [22] and defeating human players in complex games [223].
Since the 1980s, neural networks have attracted the attention of the machine-learning
community [150]. However, DNNs’ rise into prominence was tightly coupled to the available
computational power, which allowed to exploit their inherent parallelism. Consequently, deep
learning managed to outperform all existing approaches in speech recognition [152] and image
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Table 1. Yearly arXiv Papers in Computer Science
(Al and Computer Vision)

Year 2012 2013 2014 2015 2016 2017 2018
cs.,AI 1,081 1,765 1,022 1,105 1,929 2,790 4,251
cs.CV 577 852 1,349 2,261 3,627 5,693 8,583
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Fig. 1. Summary of concurrency in deep learning.

classification [142], where the latter increased the accuracy by a factor of two, sparking academic
and industrial interest.

As datasets increase in size and DNNs in complexity, the computational intensity and memory
demands of deep learning increase proportionally. Training a DNN to competitive accuracy to-
day essentially requires a high-performance computing cluster. To harness such systems, different
aspects of training and inference (evaluation) of DNNs are modified to increase concurrency.

In this survey, we discuss the variety of topics in the context of parallelism and distribution
in deep learning, spanning from vectorization to efficient use of supercomputers. In particular,
we present parallelism strategies for DNN evaluation and implementations thereof, as well as
extensions to training algorithms and systems targeted at supporting distributed environments.
To provide comparative measures on the approaches, we analyze their concurrency and average
parallelism using the Work-Depth model [21].

This article surveys 252 other works, obtained by recursively tracking relevant bibliography
from seminal papers in the field, dating back to the year 1984. We include additional papers result-
ing from keyword searches on Google Scholar! and arXiv.? Due to the quadratic increase in deep
learning papers on the latter source (Table 1), some works may not have been included. The full
list of categorized papers in this survey can be found online.® Figure 1 shows an overview of this
survey.

1.1 Related Surveys

Bengio [17] discusses scaling deep learning from various perspectives, focusing on models, opti-
mization algorithms, and datasets. The paper also overviews some aspects of distributed comput-
ing, including asynchronous and sparse communication. Surveys of hardware architectures mostly
focus on the computational side of training rather than the optimization. This includes a recent
survey [233] that reviews computation techniques for DNN operators (layer types) and mapping
computations to hardware. The survey also includes discussion on data representation reduction
(e.g., via quantization) to reduce overall memory bandwidth within the hardware. Other surveys

Thttps://scholar.google.com/.
Zhttps://www.arxiv.org/.
Shttps://spcl.inf.ethz.ch/Research/Parallel_Programming/DistDL/.
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discuss accelerators for traditional neural networks [117] and the use of FPGAs in deep learning
[144].

2 TERMINOLOGY AND ALGORITHMS

This section establishes theory and naming conventions for the material presented in the survey.
We first discuss the class of supervised learning problems, followed by relevant foundations of
parallel programming.

2.1 Supervised Learning

In machine learning, Supervised Learning [219] is the process of optimizing a function from a
set of labeled samples (dataset) such that, given a sample, the function would return a value that
approximates the label. It is assumed that both the dataset and other, unobserved samples, are
sampled from the same probability distribution.

Throughout the survey, we refer to the operators P and E as the probability and expectation of
random variables; z ~ D denotes that a random variable z is sampled from a probability distribu-
tion D; and E .. p [ f(z)] denotes the expected value of f(z) for a random variable z. The notations
are summarized in Table 2.

Formally, given a probability distribution of data 9, random variable z ~ D, a domain X where
we construct samples from, a label domain Y, and a hypothesis class H containing functions
f:X — Y, we wish to minimize the generalization error, defined by the loss function Ly (f) =
P [f(z) # h(z)], where h(z) represents the true label of z. In practice, it is common to use a class
‘H of functions f,, that are defined by a vector of parameters w (sometimes denoted as 0), to define
a continuous hypothesis space. For example, H may represent an N-dimensional hyperplane that
separates between samples of two classes, where w; are its coefficients. In deep neural networks,
we define w in multiple layers, namely, w; ; is the parameter at layer [ and index i.

We wish to find w* that minimizes the above loss function, as follows:

w" =argminLy (f,y) =argminE,_p [€ (w,2)], (1)
weH weH
where £ : H x X — R, is the loss of an individual sample.

In this work, we consider two types of supervised learning problems, from which the sample
loss functions are derived: (multi-class) classification and regression. In the former, the goal is to
identify which class a sample most likely belongs to, e.g., inferring what type of animal appears
in an image. In regression, the goal is to find a relation between the domains X and Y, predicting
valuesin Y for new samples in X. For instance, such a problem might predict the future temperature
of a region, given past observations.

For minimization purposes, a sample loss function £ should be continuous and differentiable.
In regression problems, it is possible to use straightforward loss functions such as the squared
difference €(w, z) = (fw(z) — h(z))%. However, in classification problems, a simple definition of
loss such as €(w, z) = 0if f,,(z) = h(z) or 1 otherwise (also known as binary or 0-1 loss), does not
match the continuity and differentiability criteria.

To resolve this issue, prominent multi-class classification problems define Y as a probability dis-
tribution of the inferred class types (see Figure 2), instead of a single label. The model output is

typically normalized to a distribution using the softmax function o(z); = %.
tion then computes the difference of the prediction from the true label “distribution,” e.g., using
cross-entropy: £(w,z) = = 3}; h(z);log o (fi,(2));. The cross-entropy loss can be seen as a gener-
alization of logistic regression, inducing a continuous loss function for multi-class classification.
Minimizing the loss function can be performed by using different approaches, such as iterative

methods (e.g., BFGS [185]) or meta-heuristics (e.g., evolutionary algorithms [211]). Optimization

The loss func-
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Table 2. Summary of Notations

Name Definition ]
D Data probability distribution E
S Training dataset | o |
weH Model parameters. wgt) denotes parameter [ o |

i at SGD iteration # [ o |
fw(z) Model function (learned predictor) Cr;z;—fnztgopy o]
h(z) Ground-truth label (in Supervised Learning) Sample Predicted Label True Label
f(w, z) Per-sample loss function ? fo@ "
Vi(w, z) Gradient of £ Fig. 2. Multi-class classification loss.

u(g, w, t)  Parameter update rule. Function of loss
gradient g, parameters w, and iteration ¢

in machine learning is prominently performed via Gradient Descent. Since the full D is, how-
ever, never observed, it is necessary to obtain an unbiased estimator of the gradient. Observe that
VLyp (w) = E,.p [V€ (w, z)] (Equation (1), linearity of the derivative). Thus, in expectation, we
can descend using randomly sampled data in each iteration, applying Stochastic Gradient Descent
(SGD) [215].

ALGORITHM 1: Stochastic Gradient Descent (SGD)

1: fort =0to T do > SGD iterations
2: z « Random element from S > Sample dataset S
3: g« Ve(w®), z) > Compute gradient of ¢
4 wlt+D) (1) 4 u(g, w(0-) 1) > Update weights with function u
5: end for

SGD (Algorithm 1) iteratively optimizes parameters defined by the sequence { w(‘)}tho, using

samples from a dataset S sampled from D with replacement. SGD is proven to converge at a rate
of O(1/VT) for convex functions with Lipschitz-continuous and bounded gradient [181].

Prior to running SGD, one must choose an initial estimate for the weights w(®). Due to the ill-
posed nature of some problems, the selection of w(®) is important and may reflect on the final
quality of the result. The choice of initial weights can originate from random values, informed
decisions (e.g., Xavier initialization [81]), or from pre-trained weights in a methodology called
Transfer Learning [197]. In deep learning, recent works state that the optimization space is riddled
with saddle points [149], and assume that the value of w(® does not affect the final loss. In practice,
improper initialization may have an adverse effect on generalization as networks become deeper
[93].

In line 1, T denotes the number of steps to run SGD for (known as the stopping condition or
computational budget). Typically, real-world instances of SGD run for a constant number of steps,
for a fixed period of time, or until a desired accuracy is achieved. Line 2 then samples random
elements from the dataset, to provide the unbiased loss estimator. The gradient of the loss function
with respect to the weights w(*) is subsequently computed (line 3). In deep neural networks, the
gradient is obtained with respect to each layer (w}t)) using backpropagation (Section 4.2). This
gradient is then used for updating the weights, using a weight update rule (line 4).

2.1.1  Weight Update Rules. The weight update rule, denoted as u in Algorithm 1, can be defined
as a function of the gradient g, the previous weight values w©®_ . w(® and the current iteration
t. Table 3 summarizes the popular u functions used in training. In the table, the basic SGD update
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Table 3. Popular Weight Update Rules

Method Formula Definitions
Learning Rate wlttD) = (1) _ . Yy Vw®) = Ve(wh), 2)
Adaptive Learning Rate wlttD) = (8 _ . V(D)
Momentum [205] wH) = 4w 4y (W) — D) g T
Nesterov Momentum [182] w(t*) = w(®) 4 o, Vppr = pi -0 — 1 - VE(WD — - vy, 2)
(t+1) _ (1) _ gV _ ()2
AdaGrad [70] w = w - N A=Yt (Vwi )
(1) _ () _ 9w ;o / ()2
RMSProp [96] w; =w; - N A =B A +(1-P) (Vwi )
(t+1) _ (6) _ _mMY) (m) _ B M +(0=B) (V)"
Adam [136] w; =w; e M, = s
rule is ug4q(g9) = —n - g, where 1 represents the learning rate.  controls how much the gradient

values will overall affect the next estimate w!*!), and in iterative nonlinear optimization methods
finding the correct n is a considerable part of the computation [185]. In machine-learning problems,
it is customary to fix 5, or set an iteration-based weight update rule u,;,(g,t) = —n; - g, where n;
decreases (decays) over time to bound the modification size and avoid local divergence.

Other popular weight update rules include Momentum, which uses the difference between cur-
rent and past weights w(*) — w(*~1 to avoid local minima and redundant steps with natural motion
[182, 205]. More recent update rules, such as RMSProp [96] and Adam [136], use the first and sec-
ond moments of the gradient to adapt the learning rate per-weight, enhancing sparser updates
over others.

Factors such as the learning rate and other symbols found in Table 3 are called hyper-parameters,
and are set before the optimization process begins. In the table, y, B, f1, and f, represent the mo-
mentum, RMS decay rate, and first and second moment decay rate hyper-parameters, respectively.
To obtain the best results, hyper-parameters must be tuned, which can be performed by value
sweeps or by meta-optimization (Section 7.5.2). The multitude of hyper-parameters and the re-
liance upon them is considered problematic by a part of the community [207].

2.1.2 Minibatch SGD. When performing SGD, it is common to decrease the number of weight
updates by computing the sample loss in minibatches (Algorithm 2), averaging the gradient with
respect to subsets of the data [147]. Minibatches represent a tradeoff between traditional SGD,
which is proven to converge when drawing one sample at a time, and batch methods [185], which
make use of the entire dataset at each iteration.

ALGORITHM 2: Minibatch Stochastic Gradient Descent with Backpropagation

1: fort =0to % - epochs do

2 Z « Sample B elements from S > Obtain samples from dataset
3 Wi — wt) > Load parameters
4 [« (wmp, 2, h(2)) > Compute forward evaluation
5: Imp — VE(wmp, f) > Compute gradient using backpropagation
6 Aw — u(gmp, w(®-t) ) > Weight update rule
7 wt+h) Wb + Aw > Store parameters
8: end for

In practice, minibatch sampling is implemented by shuffling the dataset S, and processing that
permutation by obtaining contiguous segments of size B from it. An entire pass over the dataset is
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Fig. 3. Parallel architectures in deep learning.

called an epoch, and a full training procedure usually consists of tens to hundreds of such epochs
[84, 260]. As opposed to the original SGD, shuffle-based processing entails without-replacement
sampling. Nevertheless, minibatch SGD was proven [221] to provide similar convergence
guarantees.

2.2 Parallel Computer Architecture

We continue with a brief overview of parallel hardware architectures that are used to execute
learning problems in practice. They can be roughly classified into single-machine (often shared
memory) and multi-machine (often distributed memory) systems.

2.2.1 Single-machine Parallelism. Parallelism is ubiquitous in today’s computer architectures,
internally on the chip in the form of pipelining and out-of-order execution, as well as exposed
to the programmer in the form of multi-core or multi-socket systems. Multi-core systems have a
long tradition and can be programmed with either multiple processes (different memory domains),
multiple threads (shared memory domains), or a mix of both. The main difference is that multi-
process parallel programming forces the programmer to consider the distribution of the data as
a first-class concern while multi-threaded programming allows the programmer to only reason
about the parallelism, leaving the data shuffling to the hardware system (often through hardware
cache-coherence protocols).

Out of the 252 reviewed papers, 159 papers present empirical results and provide details about
their hardware setup. Figure 3(a) shows a summary of the machine architectures used in research
papers over the years. We see a clear trend toward GPUs, which dominate the publications be-
ginning from 2013. However, even accelerated nodes are not sufficient for the large computa-
tional workload. Figure 3(b) illustrates the quickly growing multi-node parallelism in those works.
This shows that, beginning from 2015, distributed-memory architectures with accelerators such
as GPUs have become the default option for machine learning at all scales today.

2.2.2  Multi-machine Parallelism. Training large-scale models is a very compute-intensive task.
Thus, single machines are often not capable to finish this task in a desired time-frame. To accelerate
the computation further, it can be distributed across multiple machines connected by a network.
The most important metrics for the interconnection network (short: interconnect) are latency,
bandwidth, and message-rate. Different network technologies provide different performance. For
example, both modern Ethernet and InfiniBand provide high bandwidth but InfiniBand has signif-
icantly lower latencies and higher message rates. Special-purpose HPC interconnection networks
can achieve higher performance in all three metrics. Yet, network communication remains gener-
ally slower than intra-machine communication.
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Fig. 4. Characteristics of deep learning clusters.

Figure 4(a) shows a breakdown of the number of nodes used in deep learning research over the
years. It started very high with the large-scale DistBelief run, reduced slightly with the introduc-
tion of powerful accelerators and is on a quick rise again since 2015 with the advent of large-scale
deep learning. Out of the 252 reviewed papers, 80 make use of distributed-memory systems and
provide details about their hardware setup. We observe that large-scale setups, similar to HPC
machines, are commonplace and essential in today’s training.

2.3 Parallel Programming

Programming techniques to implement parallel learning algorithms on parallel computers depend
on the target architecture. They range from simple threaded implementations to OpenMP on single
machines. Accelerators are usually programmed with special languages such as NVIDIA’s CUDA,
OpenCL, or in the case of FPGAs using hardware design languages. Yet, the details are often hidden
behind library calls (e.g., cuDNN or MKL-DNN) that implement the time-consuming primitives.

On distributed memory clusters, one can either use primitive communication mechanisms such
as TCP/IP and Remote Direct Memory Access (RDMA), or programmable networks [14]. One can
also use more convenient libraries such as the Message Passing Interface (MPI) or Apache Spark.
MP1 is a low level library focused on providing portable performance while Spark is a higher-level
framework that focuses more on programmer productivity.

Figure 4(b) shows a breakdown of the different communication mechanisms that were specified
in 55 of the 80 papers using multi-node parallelism. It shows how the community quickly recog-
nized that deep learning has very similar characteristics than large-scale HPC applications. Thus,
beginning from 2016, the established MPI interface became the de-facto portable communication
standard in distributed deep learning.

2.4 Parallel Algorithms

We now briefly discuss some key concepts in parallel computing that are needed to understand
parallel machine learning. Every computation on a computer can be modeled as a directed acyclic
graph (DAG). The vertices of the DAG are the computations and the edges are the data depen-
dencies (or data flow). The computational parallelism in such a graph can be characterized by two
main parameters: the graph’s work W, which corresponds to the total number of vertices, and the
graph’s depth D, which is the number of vertices on any longest path in the DAG. These two pa-
rameters allow us to characterize the computational complexity on a parallel system. For example,
assuming we can process one operation per time unit, then the time needed to process the graph
on a single processor is T; = W and the time needed to process the graph on an infinite number
of processes is T, = D. The average parallelism in the computation is W /D, which is often a good
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number of processes to execute the graph with. Furthermore, we can show that the execution time
of such a DAG on p processors is bounded by: min{W/p,D} < T, < O(W/p + D) [8, 26].

Most of the operations in learning can be modeled as operations on tensors (typically tensors as a
parallel programming model [228]). Such operations are highly data-parallel and only summations
introduce dependencies. Thus, we will focus on parallel reduction operations in the following.

In a reduction, we apply a series of binary operators @ to combine n values into a single value,
eg.y=x1Dxy Dx3- - ®xp_1 D x,. If the operation @ is associative, then we can change its ap-
plication, which changes the DAG from a linear-depth line-like graph as shown in Figure 5(a) to
a logarithmic-depth tree graph as shown in Figure 5(b). It is simple to show that the work and
depth for reducing n numbers is W = n — 1 and D = [log, n], respectively. In deep learning, one
often needs to reduce (sum) large tables of m independent parameters and return the result to all
processes. This is called allreduce in the MPI specification [86, 173].

In multi-machine environments, these tables are distributed across the machines that partici-
pate in the overall reduction operation. Due to the relatively low bandwidth between the machines
(compared to local memory bandwidths), this operation is often most critical for distributed learn-
ing. Even if we fully overlap communication and computation [102], (nonblocking) allreductions
often turn into a bottleneck. We analyze the algorithms in a simplified LogP model [54], where
we ignore injection rate limitations (0 = g = 0), which makes it similar to the simple a-f model:
L = a models the point-to-point latency in the network, G = ff models the cost per byte,and P < p
is the number of networked machines. Based on the DAG model from above, it is simple to show
a lower bound for the reduction time T, > Llog,(P) in this simplified model. Furthermore, be-
cause each element of the table has to be sent at least once, the second lower bound is T, > ymG,
where y represents the size of a single data value and m is the number of values sent. This bound
can be strengthened to T, > Llog,(P) + 2ymG(P — 1)/P if we disallow redundant computations
[29].

Several practical algorithms exist for the parallel allreduce operation in different environments
and the best algorithm depends on the system, the number of processes, and the message size. We
refer to Chan et al. [29] and Hoefler and Moor [103] for surveys of collective algorithms. Here,
we summarize key algorithms that have been rediscovered in the context of parallel learning, and
illustrate them in Figure 5(c). The simplest algorithm is to combine two trees, one for summing
the values to one process, similar to Figure 5(b), and one for broadcasting the values back to all
processes; its complexity is Ty, = 2log,(P)(L + ymG). Yet, this algorithm is inefficient and can
be optimized with a simple butterfly pattern, reducing the time to Tyg, = log,(P)(L + ymG). The
butterfly algorithm is efficient (near-optimal) for small ym. For large ym and small P, a simple
linear pipeline that splits the message into P segments is bandwidth-optimal and performs well in
practice, even though it has a linear component in P: Tjjy, = 2(P — 1)(L + y 5G). For most ranges
of ym and P, one could use Rabenseifner’s algorithm [206], which combmes reduce-scatter with
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allgather, running in time T,4p, = 2L1log,(P) + 2ymG(P — 1)/P. This algorithm achieves the lower
bound [198] but may be harder to implement and tune.

Other communication problems needed for convolutions and pooling, illustrated in Figure 5(d),
exhibit high spatial locality due to strict neighbor interactions. They can be optimized using well-
known HPC techniques for stencil computations such as MPI Neighborhood Collectives [104] (for-
merly known as sparse collectives [106]) or optimized Remote Memory Access programming [15].
In general, exploring different low-level communication, message scheduling, and topology map-
ping [105] strategies that are well-known in the HPC field could significantly speed up the com-
munication in distributed deep learning.

3 THE EFFICIENCY TRADEOFF: GENERALIZATION VS. UTILIZATION

In the previous section, we mentioned that SGD can be executed concurrently through the use
of minibatches. However, setting the minibatch size is a complex optimization space on its own
merit, as it affects both statistical accuracy (generalization) and hardware efficiency (utilization) of
the model. As illustrated in Figure 6(a), minibatches should not be too small (region A), to harness
inherent concurrency in evaluation of the loss function; nor should they be too large (region C),
as the quality of the result decays once increased beyond a certain point.

We can show the existence of region C by combining SGD with the descent lemma for a function
f with L-Lipschitz gradient: E,[f(w*1)] < F(w) = ne|[V£(wO) |2 + 2 LEL[IIV £ (w) 2],
where z ~ D and Vf; is the stochastic subgradient for z. This indicates that a large minibatch
(with adjusted learning rate) can increase the convergence rate (negative term), but along with it
the gradient variance and learning rate, which causes the last term to hinder convergence.

Indeed, the illustrated behavior is empirically shown for larger minibatch sizes in Figure 6(b),
and typical sizes lie between the orders of 10 and 10,000. Also, large-batch methods only converge
and generalize when: (a) learning rates are adjusted statically [84, 141] or adaptively [259]; (b) us-
ing a “warmup” phase [84]; (c) using the batch size to control gradient variance [78]; (d) adaptively
increasing minibatch size during training [226]; or (e) when using specific learning-rate schedules
[169]. The use of large-batch methods and reduced floating-point precision has sparked a “race”
toward accelerating the training process of specific model/dataset combinations in image process-
ing [84, 123, 176, 191, 256] and language modeling [192, 203, 257]. Overall, such works increase the
upper bound on feasible minibatch sizes but do not remove it.

4 DEEP NEURAL NETWORKS

We now describe the anatomy of a Deep Neural Network (DNN). In Figure 7, we see a DNN in two
scales: the single operator (Figure 7(a), also ambiguously called layer) and the composition of such
operators in a layered deep network (Figure 7(b)). In the rest of this section, we describe popular
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operator types and their properties, followed by the computational description of deep networks
and the backpropagation algorithm. Then, we study several examples of popular neural networks,
highlighting the computational trends driven by their definition.

4.1 Neurons

The basic building block of a deep neural network is the neuron. Modeled after the brain, an ar-
tificial neuron (Figure 7(a)) accumulates signals from other neurons connected by synapses. An
activation function (or axon) is applied on the accumulated value, which adds nonlinearity to the
network and determines the signal this neuron “fires” to its neighbors. In feed-forward neural net-
works, the neurons are grouped to layers strictly connected to neurons in subsequent layers. In
contrast, recurrent neural networks allow back-connections within the same layer.

4.1.1 Feed-forward Operators. Neural network operators are implemented as weighted sums,
using the synapses as weights. Activations (denoted o) can be implemented as different functions,
such as Sigmoid, Softmax, hyperbolic tangents, Rectified Linear Units (ReLU), or variants thereof
[93]. When color images are used as input (as is commonly the case in computer vision), they are
usually represented as a four-dimensional tensor-sized NXCXHXW. As shown in Figure 8, N is
number of images in the minibatch, where each HXW image contains C channels (e.g., image RGB
components). If an operator disregards spatial locality in the image tensor (e.g., a fully connected
layer), then the dimensions are flattened to N X (C - H - W). In typical DNN and CNN construc-
tions, the number of features (channels in subsequent layers), as well as the width and height of
an image, change from layer to layer using the operators defined below. We denote the input and
output features of a layer by C;,, and C,,;, respectively.

A fully connected layer (Figure 7(a)) is defined on a group of neurons x (sized N x C,, disregard-
ing spatial properties) by y; . = o(wx; « + b), where w is the weight matrix (sized C;,, X Coyr) and
b is a per-layer trainable bias vector (sized C,,;). While this inner product is usually implemented
with multiplication and addition, some works use other operators, such as similarity [46].
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Not all operators in a neural network are fully connected. Sparsely connecting neurons and
sharing weights is beneficial for reducing the number of parameters; as is the case in the popular
convolutional operator. In a convolutional operator, every 3D tensor x (i.e., a slice of the 4D mini-
batch tensor representing one image) is convolved with C,,; kernels of size C;,xK,XK,, where
the base formula for a minibatch is given by

Cin-1Ky-1K,—1

Yijkl = Z Z Z Xiym, ket Lk * Wiom, ky ke (@)

m=0 k,=0 k=0

where y’s dimensions are N X Coy X H' X W/, H' = H —= K, + 1, and W' = W - K + 1, account-
ing for the size after the convolution, which does not consider cases where the kernel is out of the
image bounds. Note that the formula omits various extensions of the operator [71], such as variable
stride, padding, and dilation [262], each of which modifies the accessed indices and H’, W’. The
two inner summations of Equation (2) are called the convolution kernel and the kernel (or filter)
size is Ky X Kj.

While convolutional operators are the most computationally demanding in CNNs, other oper-
ator types are prominently used in networks. Two such operators are pooling and batch normal-
ization. The former reduces an input tensor in the width and height dimensions, performing an
operation on contiguous sub-regions of the reduced dimensions, such as maximum (called max-
pooling) or average, and is given by

Yijk,l = Xi, j, ke, I+ky -

max
kx€[0,Kx), ky €[0,Ky)
The goal of this operator is to reduce the size of a tensor by sub-sampling it while emphasizing
important features. Applying subsequent convolutions of the same kernel size on a sub-sampled
tensor enables learning high-level features that correspond to larger regions in the original data.

Batch Normalization (BN) [121] is an example of an operator that creates inter-dependencies
between samples in the same minibatch. Its role is to center the samples around a zero mean and a
variance of one, which, according to the authors, reduces the internal covariate shift. BN is given
by the following transformation:

Xijki—E [x*,j,k,l]
Yij k1 = Y+ B,
Var [x*,j,k,l] +e€

where y, § are scaling factors, and € is added to the denominator for numerical stability.

4.1.2  Recurrent Operators. Recurrent Neural Networks (RNNs) [72] enable connections from a
layer’s output to its own inputs. These connections create “state” in the neurons, retaining per-
sistent information in the network and allowing it to process data sequences instead of a single
tensor. We denote the input tensor at time point ¢ as x(*).

The standard Elman RNN layer is defined as y*) = wy - (Wp - heog + wy - x®)) (omitting bias,
illustrated in Figure 9(a)), where h; represents the “hidden” data at time-point ¢ and is carried
over to the next time-point. Despite the initial success of these operators, it was found that they
tend to “forget” information quickly (as a function of sequence length) [19]. To address this issue,
Long-Short Term Memory (LSTM) [100] (Figure 9(b)) units redesign the structure of the recurrent
connection to resemble memory cells. Several variants of LSTM exist, such as the Gated Recurrent
Unit (GRU) [40] (Figure 9(c)), which simplifies the LSTM gates to reduce the number of parameters.
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4.2 Deep Networks

According to the definition of a fully connected layer, the expressiveness of a “shallow” neural
network is limited to a separating hyperplane, skewed by the nonlinear activation function. When
composing layers one after another, we create deep networks (as shown in Figure 7(b)) that can ap-
proximate arbitrarily complex continuous functions. While the exact class of expressible functions
is currently an open problem, it has been shown [47, 60] that neural network depth can reduce
breadth requirements exponentially with each additional layer.

A Deep Neural Network (DNN) can be represented as a function composition, e.g., £(Lar(way, - . -
Ly(wa, L1(w1,x)))), where each function L; is an operator, and each vector w; represents operator
i’s weights (parameters). In addition to direct composition, a DNN DAG might reuse the output
values of a layer in multiple subsequent layers, forming shortcut connections [94, 110].

Computation of the DNN loss gradient V¢, which is necessary for SGD, can be performed by re-
peatedly applying the chain rule in a process commonly referred to as backpropagation. As shown
in Figure 10, the process of obtaining V£(w, x) is performed in two steps. First, £(w, x) is computed
by forward evaluation (top portion of the figure), computing each layer of operators after its depen-
dencies in a topological ordering. After computing the loss, information is propagated backward
through the network (bottom portion of the figure), computing two gradients — Vx (w.r.t. input
data), and Vw; (w.r.t. layer weights). Note that some operators do not maintain mutable parameters
(e.g., pooling, concatenation), and thus Vw; is not always computed.

In terms of concurrency, we use the Work-Depth (W-D) model to formulate the costs of com-
puting the forward evaluation and backpropagation of different layer types. Table 4 shows that
the work (W) performed in each layer asymptotically dominates the maximal operation depen-
dency path (D), which is at most logarithmic in the parameters. This result reaffirms the state of
the practice, in which parallelism plays a major part in the feasibility of evaluating and training
DNNE.

As opposed to feed-forward networks, RNNs contain self-connections and thus cannot be
trained with backpropagation alone. The most popular way to solve this issue is by applying back-
propagation through time (BPTT) [246], which unrolls the recurrent layer up to a certain amount
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Table 4. Asymptotic Work-Depth Characteristics of DNN Operators

Operator Type Eval. Work (W) Depth (D)
Activation y O(NCHW) o(1)

Vw O(NCHW) o(1)

Vx O(NCHW) o(1)
Fully Connected y O(Cout - Cin - N) O(log Cin)

Vw O(Cin - N -Cour) O(log N)

Vx O(Cin - Cour - N) O(log Cout)
Convolution (Direct) y O(N - Cout - Cin -H" - W' - Ky - Ky) O(log Kx +log Ky +log Cip)

Vw O(N - Cout - Cin -H"- W' - Ky - Ky) O(log Ky +log Ky +log Cip)

Vx O(N - Cout - Cin - H-W - Ky - Ky) O(log Ky +log Ky +log Cip)
Pooling y O(NCHW) O(log Kx +log Ky)

Vw - —

Vx O(NCHW) o(1)
Batch Normalization y O(NCHW) O(log N)

Vw O(NCHW) O(logN)

Vx O(NCHW) O(logN)

Table 5. Popular Neural Network Characteristics

Property LeNet [151] AlexNet [142] GoogLeNet [234] ResNet[94] DenseNet [110]
|w| 60K 61M 6.8M 1.7M-60.2M ~15.3M-30M
Layers (« D) 7 13 27 50-152 40-250
Operations (< W, ImageNet-1k) N/A 725M 1,566M ~1,000M-2,300M  ~600M-1,130M
Top-5 Error (ImageNet-1k) N/A 15.3% 9.15% 5.71% 5.29%
Top-1 Error (CIFAR-10) N/A N/A N/A 6.41% 3.62%

of sequence length, using the same weights for each time-point. This creates a larger, feed-forward
network that can be trained with the usual means.

4.3 Trends in DNN Characteristics

To understand how successful neural architectures orchestrate the aforementioned operators, we
discuss five influential convolutional networks and highlight trends in their characteristics over the
past years. Each of the networks, listed in Table 5, has achieved state-of-the-art performance upon
publication. The table summarizes these networks, their concurrency characteristics, and their
achieved test accuracy on the ImageNet [62] (1,000 class challenge) and CIFAR-10 [140] datasets.

The listed networks, as well as other works [37, 45, 57, 91, 114, 162, 224, 280], indicate three
periods in the history of classification neural networks: experimentation (~1985-2010), growth
(2010-2015), and resource conservation (2015-today).

In the experimentation period, different types of neural network structures (e.g., Deep Belief
Networks [18]) were researched, and the methods to optimize them (e.g., backpropagation) were
developed. Once the neural network community has converged on deep feed-forward networks
(with the success of AlexNet cementing this decision), research during the growth period yielded
networks with larger sizes and more operations, in an attempt to both increase model parallelism
and solve increasingly complex problems. This trend was supported by the advent of GPUs and

ACM Computing Surveys, Vol. 52, No. 4, Article 65. Publication date: August 2019.



65:14 T. Ben-Nun and T. Hoefler

Fig. 11. Performance of cublasSgemm on a tesla K80 GPU for various matrix sizes (adapted from Refer-
ence [193]).

other large computational resources (e.g., the Google Brain cluster), increasing the available pro-
cessing elements toward the average parallelism (W/D).

However, as over-parameterization leads to overfitting, and since the resulting networks were
too large to fit into consumer devices, efforts to decrease resource usage started around 2015, and
so did the average parallelism (see table). Research has since focused on increasing expressiveness,
mostly by producing deeper networks, while also reducing the number of parameters and oper-
ations required to forward-evaluate the given network. Parallelization efforts have thus shifted
toward concurrency within minibatches (data parallelism, see Section 6). By reducing memory
and increasing energy efficiency, the resource conservation trend aims to move neural processing
to the end user, i.e., to embedded and mobile devices. At the same time, smaller networks are faster
to prototype and require less information to communicate when training on distributed platforms.

5 CONCURRENCY IN OPERATORS

Given that neural network layers operate on four-dimensional tensors (Figure 8(a)) and the high
locality of the operations, there are several opportunities for parallelizing layer execution. In most
cases, computations (e.g., in the case of pooling operators) can be directly parallelized. However,
to expose parallelism in other operator types, computations have to be reshaped. Below, we list
efforts to model DNN performance, followed by a concurrency analysis of three popular operators.

5.1 Performance Modeling

Even with work and depth models, it is hard to estimate the runtime of a single DNN operator, let
alone an entire network. Figure 11 presents measurements of the performance of the highly-tuned
matrix multiplication implementation in the NVIDIA CUBLAS library [189], which is at the core of
many operators. The figure shows that as the dimensions are modified, the performance does not
change linearly, and that in practice the system internally chooses from one of 15 implementations
for the operation, where the left-hand side of the figure depicts the segmentation.

In spite of the above observation, other works still manage to approximate the runtime of a
given DNN with performance modeling. Using the values in the figure as a lookup table, it was
possible to predict the time to compute and backpropagate through minibatches of various sizes
with ~5-19% error, even on clusters of GPUs with asynchronous communication [193]. The same
was achieved for CPUs in a distributed environment [255], using a similar approach, and for Intel
Xeon Phi accelerators [244] strictly for training time estimation (i.e., not individual layers or DNN
evaluation). Paleo [204] derives a performance model from operation counts alone (with 10-30%
prediction error), and Pervasive CNNs [229] uses performance modeling to select networks with
decreased accuracy to match real-time requirements from users. To further understand the perfor-
mance characteristics of DNNs, Demmel and Dinh [61] provide lower bounds on communication
requirements for the convolution and pooling operators.
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Table 6. Work-Depth Analysis of Convolution Implementations

Method Work (W) Depth (D)

Direct N:-Coyr -H - W’ - Ci - Ky - K [og, Cin1 + [log, K1 + [log, K1

im2col N-Cour -H - W' - Cip - Ky - Ky Mog, Cin1 + [log, K1 + [log, K1

FFT ¢« HW log,(HW) - (Cour - Cint 2[log, HW] + [log, Cin]
N:-Cin+N-Cour) + HWN - Cip, - Coyy

Winograd a(r’* +ar+2a? + am+m?) + Cour - Cin - P 2[log, r] + 4[log, a] + [log, Ci, ]|

(mxmtiles, (a=m-r+1, P=N-[H/m]-[W/m])
r X r kernels)

5.2 Fully Connected Layers

As described in Section 4.1, a fully connected layer can be expressed and modeled (see Table 4) as a
matrix-matrix multiplication of the weights and the neuron values (column per minibatch sample).
To that end, efficient linear algebra libraries, such as CUBLAS [189], MKL [119], and ESSL [116],
can be used. The BLAS [183] GEneral Matrix-Matrix multiplication (GEMM) operator, used for
this purpose, also includes scalar factors that enable matrix scaling and accumulation, which can
be used when batching groups of neurons.

Vanhoucke et al. [239] present a variety of methods to further optimize CPU implementations
of fully connected layers. In particular, the paper shows efficient loop construction, vectorization,
blocking, unrolling, and batching. The paper also demonstrates how weights can be quantized to
use fixed-point math instead of floating-point.

5.3 Convolution

Convolutions constitute the majority of computations involved in training and inference of DNNs.
As such, the research community and the industry have invested considerable efforts into optimiz-
ing their computation on all platforms. Figure 12 depicts the convolution methods detailed below,
and Table 6 summarizes their work and depth characteristics.

While a convolution operator (Equation (2)) can be computed directly, it will not fully utilize
the resources of vector processors (e.g., Intel’s AVX registers) and many-core architectures (e.g.,
GPUs), which are geared toward many parallel multiplication-accumulation operations. It is pos-
sible, however, to increase the utilization by ordering operations to maximize data reuse [61],
introducing data redundancy, or via basis transformation.

The first algorithmic change proposed for convolutional operators was the use of the well-
known technique to transform a discrete convolution into matrix multiplication, using Toeplitz

ACM Computing Surveys, Vol. 52, No. 4, Article 65. Publication date: August 2019.



65:16 T. Ben-Nun and T. Hoefler

matrices (colloquially known as imZ2col). The first occurrence of unrolling convolutions in CNNs
[31] used both CPUs and GPUs for training (since the work precedes CUDA, it uses Pixel Shaders
for GPU computations). The method was subsequently popularized by Coates et al. [45], and it
consists of reshaping the images in the minibatch from 3D tensors to 2D matrices. Each 1D row in
the matrix contains an unrolled 2D patch that would usually be convolved (possibly with overlap),
generating redundant information (see Figure 12(a)). The convolution kernels are then stored as a
2D matrix, where each column represents an unrolled kernel (one convolution filter). Multiplying
those two matrices results in a matrix that contains the convolved tensor in 2D format, which can
be reshaped to 3D for subsequent operations. Note that this operation can be generalized to 4D
tensors (an entire minibatch), converting it into a single matrix multiplication. Alternatively, the
kernels can be unrolled to rows (kn2row) for the matrix multiplication [242].

While processor-friendly, the GEMM method (as described above) consumes a considerable
amount of memory, and thus was not scalable. Practical implementations of the GEMM method,
such as in cuDNN [38], implement “implicit GEMM,” in which the Toeplitz matrix is never mate-
rialized. It was also reported [49] that the Strassen matrix multiplication [231] can be used for the
underlying computation, reducing the number of operations by up to 47%.

A second method to compute convolutions is to make use of the Fourier domain, in which
convolution is defined as an element-wise multiplication [172, 241]. In this method, both the data
and the kernels are transformed using FFT, multiplied, and the inverse FFT is applied on the result:

Cin
Yi,jx,x = F! (Z F (xi,m,*,*) ° fﬂ:(Wj,m,*,*)>,
m=0

where ¥ denotes the Fourier Transform and o is element-wise multiplication. Note that for a single
minibatch, it is enough to transform w once and reuse the results.

Experimental results [241] have shown that the larger the convolution kernels are, the more
beneficial FFT becomes, yielding up to 16X performance over the GEMM method, which has to
process patches of proportional size to the kernels. Additional optimizations were made to the
FFT and IFFT operations [241], using DNN-specific knowledge: (a) The process uses decimation-
in-frequency for FFT and decimation-in-time for IFFT to mitigate bit-reversal instructions; (b) mul-
tiple FFTs with sizes <32 are batched together and performed at the warp-level on the GPU; and
(c) pre-computation of twiddle factors.

Working with DNNs, FFT-based convolution can be optimized further. In ZNNi [278], the au-
thors observed that due to zero-padding, the convolutional kernels, which are considerably smaller
than the images, mostly consist of zeros. Thus, pruned FFT [230] can be executed for transform-
ing the kernels, reducing the number of operations by 3x. In turn, the paper reports 5x and 10X
speedups for CPUs and GPUs, respectively.

The prevalent method used today to perform convolutions is Winograd’s algorithm for minimal
filtering [249]. First proposed by Lavin and Gray [146], the method modifies the original algorithm
for multiple filters (as is the case in convolutions), performing the following computation for one
tile:

Cin
yi,j,*,* = AT (Z GWj,m,*,*GT o BTxi,m,*,*B)A,
m=0
with the matrices A, G, B constructed as in Winograd’s algorithm.
Since the number of operations in Winograd convolutions grows quadratically with filter
size, the convolution is decomposed into a sum of tiled, small convolutions, and the method is
strictly used for small kernels (e.g., 3 X 3). Additionally, because the magnitude of elements in the

ACM Computing Surveys, Vol. 52, No. 4, Article 65. Publication date: August 2019.



Demystifying Parallel and Distributed Deep Learning: An In-depth Concurrency Analysis 65:17

expression increases with filter size, the numerical accuracy of Winograd convolution is generally
lower than the other methods, and decreases as larger filters are used.

Table 6 lists the concurrency characteristics of the aforementioned convolution implementa-
tions, using the Work-Depth model. From the table, we can see that each method exhibits different
behavior, where the average parallelism (W/D) can be determined by the kernel size or by image
size (e.g., FFT). This coincides with experimental results [38, 146, 241], which show that there is no
“one-size-fits-all” convolution method. We can also see that the Work and Depth metrics are not
always sufficient to reason about absolute performance, as the Direct and im2col methods exhibit
the same concurrency characteristics, even though im2col is faster in many cases, due to high
processor utilization and memory reuse (e.g., caching) opportunities.

Data layout also plays a role in convolution performance. Li et al. [154] assert that convolution
and pooling operators can be computed faster by transposing the data from NXCxHXW tensors
to CxHXWXN. The paper reports up to 27.9x performance increase over the state-of-the-art for
a single operator, and 5.6x for a full DNN (AlexNet). The paper reports speedup even in the case
of transposing the data during the computation of the DNN, upon inputting the tensor to the
operator.

DNN primitive libraries, such as cuDNN [38] and MKL-DNN [120], provide a variety of convo-
lution methods and data layouts. To assist users in choosing an algorithm, such libraries provide
functions that select the best-performing method, given tensor sizes and memory constraints. In-
ternally, the libraries may run all methods and pick the fastest one.

5.4 Recurrent Units

The complex gate systems that occur within RNN units (e.g., LSTMs, see Figure 9(b)) contain mul-
tiple operations, each of which incurs a small matrix multiplication or an element-wise operation.
Due to this reason, these layers were traditionally implemented as a series of high-level opera-
tions, such as GEMMs. However, further acceleration of such layers is possible. Moreover, since
RNN units are usually chained together (forming consecutive recurrent layers), two types of con-
currency can be considered: within the same layer, and between consecutive layers.

Appleyard et al. [7] describe several optimizations that can be implemented for GPUs. The first
optimization fuses all computations (GEMMs and otherwise) into one function (kernel), saving
intermediate results in scratch-pad memory. This both reduces the kernel scheduling overhead,
and conserves round-trips to the global memory, using the multi-level memory hierarchy of the
massively parallel GPU. Other optimizations include pre-transposition of matrices and enabling
concurrent execution of independent recurrent units on different multi-processors on the GPU.

Inter-layer concurrency is achieved through pipeline parallelism, with which Appleyard et al.
implement stacked RNN unit computations, immediately starting to propagate through the next
layer once its data dependencies have been met. Overall, these optimizations result in ~ 11X per-
formance increase over the high-level implementation.

From the memory consumption perspective, dynamic programming was proposed [87] for
RNNs (see Figure 13(a)) to balance between caching intermediate results and recomputing for-
ward inference for backpropagation. For long sequences (1,000 time-points), the algorithm con-
serves 95% memory over standard BPTT, while adding ~33% time per iteration. A similar result
has been achieved when re-computing convolutional operators as well [36], yielding memory costs
sublinear in the number of layers.

Persistent RNNs [65] are an optimization that addresses two limitations of GPU utilization:
small minibatch sizes and long sequences of inputs. By caching the weights of standard RNN
units on the GPU registers, they optimize memory round-trips between timesteps (x(*)) during
training (Figure 13(b)). For the registers not to be scheduled out, this requires the GPU kernels that
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execute the RNN layers to be “persistent,” performing global synchronization on their own and
circumventing the normal GPU programming model. The approach attains up to ~30x speedup
over previous state-of-the-art for low minibatch sizes, performing on the order of multiple TFLOP/s
per-GPU, even though it does not execute GEMM operations and loads more memory for each
multi-processor. Additionally, the approach reduces the total memory footprint of RNNs, allowing
users to stack more layers using the same resources.

6 CONCURRENCY IN NETWORKS

The high average parallelism (W/D) in neural networks may not only be harnessed to compute
individual operators efficiently but also to evaluate the whole network concurrently with respect
to different dimensions. Owing to the use of minibatches, the breadth (o« W) of the layers, and
the depth of the DNN (c« D), it is possible to partition both the forward evaluation and the back-
propagation phases (lines 4-5 in Algorithm 2) among parallel processors. Below, we discuss three
prominent partitioning strategies, illustrated in Figure 14: partitioning by input samples (data
parallelism), partitioning by network structure (model parallelism), and partitioning by layer

(pipelining).

6.1 Data Parallelism

In minibatch SGD (Section 2.1.2), data is processed in increments of N samples. As most of the op-
erators are independent with respect to N (Section 4), a straightforward approach for paralleliza-
tion is to partition the work of the minibatch samples among multiple computational resources
(cores or devices). This method (initially named pattern parallelism, as input samples were called
patterns), dates back to the first practical implementations of artificial neural networks [273]. We
refer to Shallue et al. [220] for an in-depth study of the effects of data parallelism on training.

It could be argued that the use of minibatches in SGD for neural networks was initially driven
by data parallelism. Farber and Asanovi¢ [75] used multiple vector accelerator microprocessors
(Spert-II) to parallelize error backpropagation for neural network training. To support data paral-
lelism, the paper presents a version of delayed gradient updates called “bunch mode,” where the
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gradient is updated several times prior to updating the weights, essentially equivalent to minibatch
SGD.

One of the earliest occurrences of mapping DNN computations to data parallel architectures
(e.g., GPUs) were performed by Raina et al. [208]. The paper focuses on the problem of train-
ing Deep Belief Networks [98], mapping the unsupervised training procedure to GPUs by run-
ning minibatch SGD. The paper shows speedup of up to 72.6x over CPU when training Restricted
Boltzmann Machines. Today, data parallelism is supported by the vast majority of deep learning
frameworks, using a single GPU, multiple GPUs, or a cluster of multi-GPU nodes.

The scaling of data parallelism is naturally defined by the minibatch size (Table 4). Apart from
Batch Normalization (BN) [121], all operators mentioned in Section 4 operate on a single sample
at a time, so forward evaluation and backpropagation are almost completely independent. In the
weight update phase, however, the results of the partitions have to be averaged to obtain the gra-
dient w.r.t. the whole minibatch, which potentially induces an allreduce operation. Furthermore,
in this partitioning method, all DNN parameters have to be accessible for all participating devices,
which means that they should be replicated.

6.1.1  Neural Architecture Support for Large Minibatches. By applying various modifications to
the training process, recent works have successfully managed to increase minibatch size to 8k
samples [84], 32k samples [259], and even 64k [226] without losing considerable accuracy. While
the generalization issue still exists (Section 3), it is not as severe as claimed in prior works [218].
One bottleneck that hinders scaling of data parallelism, however, is the BN operator, which re-
quires a full synchronization point upon invocation. Since BN recurs multiple times in some DNN
architectures [94], this is too costly. Thus, popular implementations of BN follow the approach
driven by large-batch papers [84, 107, 259], in which small subsets (e.g., 32 samples) of the mini-
batch are normalized independently. If at least 32 samples are scheduled to each processor, then
this synchronization point is local, which in turn increases scaling.

Another approach to the BN problem is to define a different operator altogether. Weight Nor-
malization (WN) [216] proposes to separate the parameter (w) norm from its directionality by
way of re-parameterization. In WN, the weights are defined as w = (ﬁ) - v, where g represents
weight magnitude and v a normalized direction (as changing the magnitude of v will not intro-
duce changes in V{). WN decreases the depth (D) of the operator from O(log N) to O(1), removing
inter-dependencies within the minibatch. According to the authors, WN reduces the need for BN,
achieving comparable accuracy using a simplified version of BN (without variance correction).

6.1.2 Coarse- and Fine-grained Data Parallelism. Additional approaches for data parallelism
were proposed in literature. In ParallelSGD [277], SGD is run (possibly with minibatches) k times in
parallel, dividing the dataset among the processors. After the convergence of all SGD instances, the
resulting weights are aggregated and averaged to obtain w, exhibiting coarse-grained parallelism.

ParallelSGD, as well as other deep learning implementations [125, 147, 267], were designed with
the MapReduce [58] programming paradigm. Using MapReduce, it is easy to schedule parallel tasks
onto multiple processors, as well as distributed environments. Prior to these works, the potential
scaling of MapReduce was studied [42] on a variety of machine-learning problems, including NNs,
promoting the need to shift from single-processor learning to distributed memory systems.

While the MapReduce model was successful for deep learning at first, its generality hindered
DNN-specific optimizations. Therefore, current implementations make use of high-performance
communication interfaces (e.g., MPI) to implement fine-grained parallelism features, such as
reducing latencies via asynchronous execution and pipelining [79] (Figure 15(a)), sparse com-
munication (see Section 7.3), and exploiting parallelism within a given computational resource
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Fig. 15. Data parallelism schemes.

[194, 278]. In the last category, minibatches are fragmented into micro-batches (Figure 15(b))
that are decomposed [278] or computed sequentially [194]. This reduces the required memory
footprint, thus making it possible to choose faster methods that require more memory, as well as
enabling hybrid CPU-GPU inference.

6.2 Model Parallelism

The second partitioning strategy for DNN training is model parallelism [76] (also known as net-
work parallelism). This strategy divides the work according to the neurons in each layer, namely,
the C, H, or W dimensions in a four-dimensional tensor. In this case, the sample minibatch is copied
to all processors, and different parts of the DNN are computed on different processors, which can
conserve memory (since the full network is not stored in one place) but incurs additional commu-
nication after every layer.

Since the minibatch size does not change in model parallelism, the utilization vs. generalization
tradeoff (Section 3) does not apply. Nevertheless, the DNN architecture creates layer interdepen-
dencies, which, in turn, generate communication that determines the overall performance. Fully
connected layers, for instance, incur all-to-all communication (as opposed to allreduce in data
parallelism), as neurons connect to all the neurons of the next layer.

To reduce communication costs in fully connected layers, it has been proposed [179] to introduce
redundant computations to neural networks. In particular, the proposed method partitions an NN,
such that each processor will be responsible for twice the neurons (with overlap) and thus would
need to compute more but communicate less.

Another method proposed for reducing communication in fully connected layers is to use Can-
non’s matrix multiplication algorithm, modified for DNNs [74]. The paper reports that Cannon’s
algorithm produces better efficiency and speedups over simple partitioning on small-scale multi-
layer fully connected networks.

Model parallelism in convolutions may scale less efficiently, depending on input dimensions. If
samples are partitioned across processors by feature (channel), then each convolution requires a
collective summation over all processors (resulting in allreduce or allgather operations depend-
ing on the decomposition). Exploiting parallelism across the spatial dimensions (H, W) can yield
speedups for certain input sizes, since halo exchanges can be overlapped by other computations
in the forward and backward passes [68]. To mitigate the halo exchange issue, convolution filters
can be decomposed over the processor in Tiled and Locally-Connected Networks [184] (LCNs, Fig-
ure 16(a)), where the former partially share weights, whereas LCNs do not. Using LCNs and model
parallelism, the work presented by Coates et al. [45] managed to outperform a CNN of the same
size running on 5,000 CPU nodes with a three-node multi-GPU cluster. Due to the lack of weight
sharing (apart from spatial image boundaries), training is not communication-bound, and scaling
can be achieved. Successfully applying the same techniques on CNNs requires fine-grained control
over parallelism, as we shall show in Section 6.4. Unfortunately, weight sharing is an important
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part of CNNs, contributing to memory footprint reduction as well as improving generalization,
and thus standard convolutional operators are used more frequently than LCNs.

A second form of model parallelism is the replication of DNN elements. In TreeNets [153], the
authors study ensembles of DNNs (groups of separately trained networks whose results are aver-
aged, rather than their parameters), and propose a mid-point between ensembles and training a
single model: a certain layer creates a “junction,” from which multiple copies of the network are
trained (see Figure 16(b)). The paper defines ensemble-aware loss functions and backpropagation
techniques, to regularize the training process. The training process, in turn, is parallelized across
the network copies, assigning each copy to a different processor. The results presented in the paper
for three datasets indicate that TreeNets essentially train an ensemble of expert DNNs.

6.3 Pipelining

In deep learning, pipelining can either refer to overlapping computations, i.e., between one layer
and the next (as data becomes ready); or to partitioning the DNN according to depth, assigning
layers to specific processors (Figure 14(c)). Pipelining can be viewed as a form of data parallelism,
since elements (samples) are processed through the network in parallel but also as model paral-
lelism, since the length of the pipeline is determined by the DNN structure.

The first form of pipelining can be used to overlap forward evaluation, backpropagation, and
weight updates. This scheme is widely used in practice [1, 48, 124, 238] and increases utilization
by mitigating processor idle time. In a finer granularity, neural network architectures can be de-
signed around the principle of overlapping layer computations, as is the case with Deep Stacking
Networks (DSN) [63]. In DSNs, each step computes a different fully connected layer of the data.
However, the results of all previous steps are concatenated to the layer inputs (see Figure 17(a)).
This enables each layer to be partially computed in parallel, due to the relaxed data dependencies.

GPipe [111] uses layer partitioning to train many-parameter DNNs, achieving state-of-the-art
accuracy on ImageNet and CIFAR-10. There are several advantages for a multi-processor pipeline
over both data and model parallelism: (a) there is no need to store all parameters on all processors
during forward evaluation and backpropagation (as with model parallelism); (b) there is a fixed
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number of communication points between processors (at layer boundaries), and the source and
destination processors are always known. Moreover, since the processors always compute the
same layers, the weights can remain cached to decrease memory round-trips. Two disadvantages
of pipelining, however, are that data (samples) have to arrive at a specific rate to fully utilize the
system, and that latency proportional to the number of processors is incurred.

In the following section, we discuss two implementations of layer partitioning—DistBelief
[57] and Project Adam [39]—which combine the advantages of pipelining with data and model
parallelism.

6.4 Hybrid Parallelism

The combination of multiple parallelism schemes can overcome the drawbacks of each scheme.
Below, we overview successful instances of such hybrids.

In AlexNet, most of the computations are performed in the convolutional layers, but most of
the parameters belong to the fully connected layers. When mapping AlexNet to a multi-GPU node
using data or model parallelism separately, the best reported speedup for 4 GPUs over one is ~2.2X
[254]. One successful example [141] of a hybrid scheme applies data parallelism to the convolu-
tional layer, and model parallelism to the fully connected part (see Figure 17(b)). Using this hybrid
approach, a speedup of up to 6.25X can be achieved for 8 GPUs over one, with less than 1% accu-
racy loss (due to an increase in minibatch size). These results were also reaffirmed in other hybrid
implementations [16], in which 3.1X speedup was achieved for 4 GPUs using the same approach,
and derived theoretically using communication cost analysis [80], promoting 1.5D matrix multi-
plication algorithms for integrated data/model parallelism.

AMPNet [79] is an asynchronous implementation of DNN training on CPUs, which uses an in-
termediate representation to implement fine-grained model parallelism. In particular, internal par-
allel tasks within and between layers are identified and scheduled asynchronously. Additionally,
asynchronous execution of dynamic control flow enables pipelining the tasks of forward evalu-
ation, backpropagation, and weight update (Figure 15(a), right). The main advantage of AMPNet
is in recurrent, tree-based, and gated-graph neural networks, all of which exhibit heterogeneous
characteristics, i.e., variable length for each sample and dynamic control flow (as opposed to ho-
mogeneous CNNs). The paper shows speedups of up to 3.94x over the TensorFlow [1] framework.

Last, the DistBelief [57] distributed system combines the three parallelism strategies. In the im-
plementation, training is performed on multiple model replicas simultaneously, where each replica
is trained on different samples (data parallelism). Within each replica, the DNN is distributed ac-
cording to neurons in the same layer (model parallelism), and according to the different layers
(pipelining). Project Adam [39] extends upon the ideas of DistBelief and exhibits the same types
of parallelism. However, in Project Adam pipelining is restricted to CPU cores on the same node.

7 CONCURRENCY IN TRAINING

So far, we have discussed training algorithms where there is only one copy of w, and its up-to-
date value is directly visible to all processors. In distributed environments, there may be multiple
instances of SGD (training agents) running independently, and thus the overall algorithm has to
be adapted. Distribution schemes for deep learning can be categorized along three axes: model
consistency, parameter distribution, and training distribution; where Figures 18 and 19 sum-
marize the applied techniques and optimizations.

7.1 Model Consistency

We denote training algorithms in which the up-to-date w is observed by everyone as consistent
model methods (see Figures 20(a) and 20(b)). Directly dividing the computations among nodes
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creates a distributed form of data parallelism (Section 6), where all nodes have to communicate
their updates to the others before fetching a new minibatch. To support distributed, data parallel
SGD, we can modify Algorithm 2 by changing lines 3 and 7 to read (write) weights from (to)
a parameter store, which may be centralized or decentralized (see Section 7.2). This incurs a
substantial overhead on the overall system, which hinders training scaling.

Recent works relax the synchronization restriction, creating an inconsistent model (Figure 20(c)).
As a result, a training agent i at time ¢ contains a copy of the weights, denoted as w(*? for 7 < t,
where t — 7 is called the staleness (or lag). A well-known instance of inconsistent SGD is the HOG-
WILD shared-memory algorithm [213], which allows training agents to read parameters and up-
date gradients at will, overwriting existing progress. HOGWILD has been proven to converge
for sparse learning problems [213], where updates only modify small subsets of w, for general
convex optimization [56], and nonconvex optimization [160]. Based on foundations of distributed
asynchronous SGD [237], the proofs impose that (a) write-accesses (adding gradients) are always
atomic; (b) Lipschitz continuous differentiability and strong convexity on f,,; and (c) that the stal-
eness, i.e., the maximal number of iterations between reading w and writing Vw, is bounded.

The HOGWILD algorithm was originally designed for shared-memory architectures but has
since been extended [57, 186] to distributed-memory systems, in which it still attains convergence
for deep learning problems. To mitigate the interference effect of overwriting w at each step, the
implementation transfers the gradient Vw instead of w from the training agents. Asymptotically,
the lack of synchronization in HOGWILD and its gradient-communicating variants admits an op-
timal SGD convergence rate of O(1/VmT) for m participating nodes [2, 59, 160], as well as linear
scaling, as every agent can train almost independently.

To provide correctness guarantees in spite of asynchrony, Stale-Synchronous Parallelism (SSP)
[99] proposes a compromise between consistent and inconsistent models. In SSP (Figure 20(d)),
the gradient staleness is enforced to be bounded by performing a global synchronization step after
a maximal staleness may have been reached by one of the nodes. This approach works especially
well in heterogeneous environments, where lagging agents (stragglers) are kept in check. To that
end, distributed asynchronous processing has the additional advantage of adding and removing
nodes on-the-fly, allowing users to add more resources, introduce node redundancy, and remove
straggling nodes [57, 195].

7.2 Centralization

The choice between designing a centralized and a decentralized network architecture for DNN
training depends on multiple factors [159], including the network topology, bandwidth, commu-
nication latency, parameter update frequency, and desired fault tolerance. A centralized network
architecture would typically include a parameter server (PS) infrastructure (e.g., Figures 20(a), 20(c),
and 21), which may consist of one or more specialized nodes; whereas a decentralized architecture
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(Figures 20(b) and 20(d)) would rely on allreduce to communicate parameter updates among the
nodes. Following communication, centralized parameter update is performed by the PS, whereas
the decentralized update is computed by each node separately. In the latter case, every node creates
its own optimizer.

The tradeoff of the distribution schemes can be modeled by the communication cost per global
update. While the allreduce operation can be implemented efficiently for different message sizes
and nodes (Section 2.4), the PS scheme requires each training agent to send and receive informa-
tion to/from the PS nodes. Thus, not all network routes are used, and in terms of communication
the operation is equivalent to a reduce-then-broadcast implementation of allreduce, taking Tiye.
time. However, the PS can keep track of a “global view” of training, averaging the gradients at
one location and enabling asynchronous operation of the agents. This, in turn, allows nodes to
communicate less information by performing some of the computations on the PS [39], as well as
increases fault tolerance by dynamic spin-up and removal of nodes during training.

The PS infrastructure is an abstract concept, and is not necessarily represented by one physical
server. Sharded parameter servers [39, 57] divide the ownership of w over multiple nodes, each
containing a segment of its elements. In conjunction with model parallelism and layer pipelining
(Sections 6.2 and 6.3), this alleviates some of the congestion at the PS, as shown in Figure 21(a),
in which each portion of a “model replica” (training agent) transmits its gradients and receives
its weights from a different shard. Hierarchical parameter servers [89, 263] (Figure 21(b)) further
alleviate resource contention by assigning training agents with PS “leaves,” propagating weights
and gradients from specific agent groups up to the global parameter store. Rudra [89] also studies
the tradeoff in allowed staleness, number of agents, and minibatch size, showing that SSP performs
better, but requires adapting the learning rate accordingly.

A PS infrastructure is not only beneficial for performance but also for fault tolerance. The sim-
plest form of fault tolerance in machine learning is checkpoint/restart, in which w(*) is periodically
synchronized and persisted to a non-volatile data store (e.g., a hard drive). This is performed lo-
cally in popular deep learning frameworks, and globally in frameworks such as Poseidon [265].
Besides checkpoints, fault tolerance in distributed deep learning has first been tackled by Dist-
Belief [57, 148]. In the system, training resilience is increased by both introducing computational
redundancy in the training agents (using different nodes that handle the same data), as well as
replicating parameter server shards. In the former, an agent, which is constructed from multi-
ple physical nodes in DistBelief via hybrid parallelism (Section 6.4), is assigned multiple times to
separate groups of nodes. Allocating redundant agents enables handling slow and faulty replicas
(“stragglers”) by cancelling their work upon completion of the faster counterpart. As for the latter
resilience technique, in DistBelief and Project Adam [39], the parameters on the PS are replicated
and persisted on non-volatile memory using a dedicated manager. Project Adam further increases
the resilience of distributed training by using separate communication endpoints for replication
and using Paxos consensus between PS nodes.

Applying weight updates in a distributed environment is another issue to be addressed. In Sec-
tion 2.1, we establish that all popular weight rules are first-order with respect to the required gra-
dients (Table 3). As such, both centralized and decentralized schemes can perform weight updates
by storing the last gradient and parameter values. Since GPUs are commonly used when training
DNNs (Figure 3(a)), frameworks such as GeePS [52] implement a specialized PS for accelerator-
based training agents. In particular, GeePS incorporates additional components over a general CPU
PS, including CPU-GPU memory management components for weight updates.

In addition to reducing local (e.g., CPU-GPU) memory copies, PS infrastructures enable reducing
the amount of information communicated over the network. Project Adam utilizes the fact that the
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PS is a compute-capable node to offload computation in favor of communicating less. In particular,
it implements two different weight update protocols. For convolutional operators, in which the
weights are sparse, gradients are communicated directly. However, in fully connected layers, the
output of the previous layer x € X¢"*N and error 2—5 € XCour*N are transmitted instead, and Vw
is computed on the PS. Therefore, with m nodes communication is modified from m - C,; - C;ip, to
m - N - (Coyr + Cip), which may be significantly smaller, and balances the load between the agents
and the normally under-utilized PS.

Parameter servers also enable handling heterogeneity, both in training agents [125] and in net-
work settings (e.g., latency) [109]. The former work models distributed SGD over clusters with
heterogeneous computing resources, and proposes two distributed algorithms based on stale-
synchronous parallelism. Specifically, by decoupling global and local learning rates, unstable
convergence caused by stragglers is mitigated. The latter work [109] acknowledges that train-
ing may be geo-distributed, i.e., originating from different locations, and proposes a hierarchi-
cal PS infrastructure that only synchronizes “significant” (large enough gradient) updates be-
tween data centers. To support this, the Approximate Synchronous Parallel model is defined,
proven to retain convergence for SGD, and empirically shown to converge up to 5.6X faster with
GoogLeNet.

In a decentralized setting, load balancing can be achieved using asynchronous training. How-
ever, performing the parameter exchange cannot use the allreduce operation, as it incurs global
synchronization. One approach to inconsistent decentralized parameter update is to use a fixed
communication graph, via neighbor-based gradient/parameter exchange [161]. Another approach
is to use Gossip Algorithms [24], in which each node communicates with a fixed number of random
nodes (typically in the order of 3). In the random case, with very high probability [67], commu-
nicating for 1.639 - logam time-steps with m nodes will disseminate the data across all others. As
strong consistency is not required for distributed deep learning, this method has shown marginal
success for SGD [55, 126, 209], attaining both convergence and faster performance than allreduce
SGD up to 32 nodes. On larger systems, the resulting test accuracy degrades. One approach to
improve this could be to employ deterministic correction protocols [101].

7.3 Parameter and Gradient Compression

The distributed SGD algorithm requires global reduction operations to converge. As discussed
above, reducing the number of messages (via an inconsistent view of w or efficient collective op-
erations) is possible. Here, we discuss reducing the size of each message.

There are two general ways to conserve communication bandwidth in distributed deep learning:
compressing the parameters with efficient data representations, and avoiding sending unnecessary
information altogether, resulting in communication of sparse data structures. While the methods
in the former category are orthogonal to the network infrastructure, the methods applied in the
latter category differ when implemented using centralized (PS) and decentralized topologies.

7.3.1 Quantization. A prominent data representation for gradient (or parameter) compression
is quantization, i.e., mapping continuous information into buckets that represent sets of values
(usually ranges). It has been shown [138] that the distributions of parameter and gradient values
are narrowly dispersed (Figure 22(a)), thus these methods are effective in representing the working
range to reduce the number of bits per parameter. This method has been successfully utilized in
deep learning, both during training [64, 88, 112] and for inference, where values are quantized
post-training [210, 276]. Some papers go so far as to quantize gradients to binary [51, 217] or
ternary [156] values, while still attaining convergence with marginally reduced accuracy.
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Fig. 22. Parameter and gradient compression.

Quantization is commonly performed by way of reducing floating-point dynamic range [56,
64, 88]. In particular, such methods represent IEEE 754 32-bit floating-point values with fewer bits.
While already applied to inference hardware [35], the first successful instance of reduced precision
for training [88] was performed with IEEE 754 16-bit float values (“half precision”). As evaluated
in the paper, quantized training does not work “out-of-the-box” for lossy compression such as
reduced precision. Rather, it depends on rounding the parameters in a way that preserves the
expected value (E) of the parameters. To resolve this issue, the paper proposes Stochastic Rounding
[88], which randomly rounds numbers down or up, providing correct values in expectation.

Other forms of quantization extend upon these ideas. QSGD [5] generalizes stochastic rounding
to stochastic quantization, and proposes multi-level gradient quantization schemes. Deep Com-
pression [91] also employs the lossless Huffman Coding [113] to further increase storage effi-
ciency without impairing convergence. Binarized Neural Networks (BNNs) [50], Ternary Weight
Networks [156], TernGrad [245], and DoReFa-Net [276] quantize networks to binary parame-
ters, ternary parameters, ternary gradients, and binary parameters+ternary gradients, respectively.
Both BNNs (in some cases) and TernGrad use stochastic rounding to lower the input represen-
tation. Last, FlexPoint [138] implements block floating-point arithmetic [247], which computes
the mantissa portion of the floating-point values as fixed-point math, and shares the exponent
part among multiple parameters/gradients. To accommodate changes to the exponents, predictive
analysis is used for estimating subsequent values.

Essential to the convergence of SGD with lossy quantization is local gradient accumulation.
Particularly in distributed environments, where the updates are inconsistent, it is important to
carry the quantization error to the next gradient, accumulating error to avoid drift. The idea orig-
inates from Sigma-Delta Modulation [217] and has proven to be successful in many cases. Deep
Gradient Compression [163] extends this idea by accumulating momentum locally as well, further
decreasing the loss in accuracy to become non-negligible and even resulting in a minor accuracy
increase.

7.3.2  Sparsification. DNNs (and CNNs in particular) exhibit sparse gradients during parameter
updates. This is primarily due to the very large number of parameters that do not necessarily
change all at once; and operators such as convolutions, in which the optimization process may
improve the accuracy of certain convolution kernels. Therefore, the full gradient is not necessary
to retain convergence, and various methods that leverage this feature have been proposed.

The first application of gradient sparsification [232] prunes gradients using a static threshold,
below which an element should not be sent. Results show up to 54x speedup for 80 nodes and up
to 1.8% reduction in error. The authors achieved a compression ratio (which also includes 32-bit
fixed point quantization) of 846-2,871x for a non-convolutional DNN. Subsequent works propose
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Fig. 23. Parameter consistency spectrum.

relative (e.g., top 1%) [3, 32, 222] and adaptive thresholds [69] to transmit only the “important” gra-
dients, based on their absolute value. To counter the accuracy loss as a result of sparsification, some
works suggest to condition gradient values by changing the DNN architecture, adding normaliza-
tion operators [3]; whereas others [163] propose local gradient clipping and warm-up training.

In a centralized setting (Section 7.2), distributing sparse gradients is straightforward—sparse
messages are sent between the training agents and the PS. However, implementing the necessary
allreduce in a decentralized setting is not as simple, because each agent may contribute different
non-zero indices (dimensions) in its gradient. Kylix [274] implements sparse allreduce in two steps,
first exchanging the indices and then the data. While this is desirable for systems where the sparsity
pattern per node does not change, in deep learning the gradient indices differ with each iteration.
SparCML [214] targets the specifics of deep learning explicitly by supporting arbitrarily changing
indices in a framework for sparse allreduce operations, as illustrated in Figure 22(b). SparCML
combines sending only the top-k most significant indices with quantization and supports sparse
vectors of heterogeneous sizes. The system switches between a sparse and dense representation
automatically, informed by a simple performance model. SparCML achieves a speedup of more
than 20X over a well-tuned CNTK implementation on Ethernet.

7.3.3  Other Techniques. In Section 7.2, we discuss Project Adam sending activations and errors
instead of parameters, decreasing the overall footprint for fully connected layers in favor of redun-
dant computation on the PS. The Poseidon (formerly Petuum) framework [252, 264, 265] extends
the idea of transmitting decomposed outer products u - v of w, generalizing the concept to other
fields in machine learning as Sufficient Factor Broadcasting (SFB) [251]. With SFB, the activations
are not sent to the PS, but rather disseminated among the training agents for local recomposition.
SFB works best in centralized topologies, as recomposing the gradients in a decentralized environ-
ment causes each agent to process m — 1 additional outer products with each step, where m is the
number of agents.

A different approach to reduce DNN memory footprint is to design them specifically for that
purpose [41, 114, 135, 155]. Such works make use of memory-efficient operators and techniques,
mostly applied to convolutions, to train networks that fit on devices such as FPGAs and mobile
phones. Applied techniques include layers constructed from a multitude of 1 X 1 convolutions
[114], reshaping [155] or applying Tucker Decomposition [135] on convolution tensors, and sepa-
rable convolutions (sequential application of reduced-dimension convolutions) [41, 108]. The pa-
pers show that DNNs can decrease in size (up to 50X) and evaluation time (6.13x), exhibiting minor
reduction in accuracy.

7.4 Model Consolidation

In this section, we discuss the far (inconsistent) end of the parameter consistency spectrum (shown
in Figure 23) in distributed deep learning. In such cases, parameter updates are highly infrequent
(or nonexistent), and thus precautions must be taken with the received values. In particular, rather
than running data-parallel SGD on multiple nodes, distributed deep learning can be achieved by
assigning training agents with different copies of w and combining the resulting models, either
post-training or several times during training. While the latter can be seen as a generalization of
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an inconsistent view of w, the former may entirely change the training and inference processes,
depending on the method.

7.4.1  Ensemble Learning and Knowledge Distillation. A widely used technique for post-training
consolidation is ensemble learning [118, 153, 225]. With ensembles, multiple instances of w are
trained separately on the same dataset, and the overall prediction is the average of the predictions
of the ensemble members, i.e., f(x) = % 2o fiwrn (x). Ensemble learning has been used exten-
sively in machine learning before the deep learning era [66] as a form of boosting, and typically
increases the overall accuracy over a single model. Thus, it is routinely applied in machine-learning
competitions such as ILSVRC [62] and in industrial applications. Distributed training of ensembles
is a completely parallel process, requiring no communication between the agents. However, works
such as TreeNets [153] (Section 6.2) combine ensemble learning with custom (ensemble-aware) loss
functions to promote diversity between ensemble members.

Given that ensembles consume a factor of m more memory and compute power, another post-
training model consolidation technique is to reduce the size of a DNN using knowledge distillation
[10, 97]. In this scheme, training is performed in two steps: in the first step, a large network or
an ensemble is trained normally; and the second step trains a single neural network to mimic the
output of the large ensemble. Results [97] show that the second network is easier to train on the

ensemble than on a labeled dataset, attaining the same word error rate as an ensemble of 10 DNNs.

7.4.2  Model Averaging. Another technique for consolidating models is model averaging [201].
Such methods may separately run m SGD instances on different machines, aggregating the pa-
rameters only once (post-training) [277] or every few iterations [33, 174]. While these methods are
proven to converge, applying stale-synchronous SGD (Section 7.1) leads to higher overall accuracy.

To overcome accuracy degradation as a result of infrequent averaging, more sophisticated con-
solidation methods include Elastic Averaging SGD (EASGD) [268] and Natural Gradient Descent
[202]. EASGD is based on a centralized environment (i.e., including a PS), extending direct aver-
aging by using elastic forces between the training agents’ view of w (w(*>?)) and the PS’s view (w).
This allows the agents to “explore” further by increasing the possible distance of each agent from
the average, and also allows to communicate sparsely with respect to time (iterations). EASGD
was reported [268] to outperform the DistBelief [57] SGD method in terms of accuracy, shown
to be tolerant in terms of update delay, and was used successfully in practice for communication
reduction by other works [159, 258].

Natural Gradient Descent (NG-SGD) can also be used to deal with diverging parameters in dif-
ferent agents [202]. NG-SGD modifies SGD to define learning-rate matrices, approximating the
inverse Fisher information matrix and thus natural gradients. By averaging agent parameters only
every k samples (typically in the order of hundreds of thousands), the algorithm allows agents to
gradually diverge and synchronize less than traditional SGD. Natural Gradients were also approx-
imated for distributed deep learning using Kronecker Factorization (K-FAC) [11], where the work
is divided between gradient- and statistics-computing agents (for Fisher matrix blocks).

In distributed settings, algorithms are also inspected w.r.t. fault tolerance. Krum [20] is a Byzan-
tine fault-tolerant [145] SGD algorithm, allowing up to f Byzantine training agents. In particular,
the paper shows that any gradient aggregation rule based on linear combination cannot sustain
a single Byzantine agent. By combining specific m — f gradients (that are closest to each other),
Krum is able to overcome adversarial gradient inputs from the network.

7.5 Optimization Algorithms and Architecture Search

As training in deep learning is a nonlinear optimization problem, other algorithms that ex-
hibit concurrency can be used in SGD’s stead [23]. Furthermore, it is possible to use excess
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computational power to perform meta-optimization, searching for better hyper-parameters and
DNN architectures.

7.5.1  Parameter Search. Supervised learning can either be viewed as a stochastic optimization
process that uses one or a minibatch of samples at a time, or it can be expressed as a batch op-
timization problem, where the entire dataset is necessary to obtain gradients for descent. Batch
optimization has been used for deep learning since the inception of DNNs [151], using first- and
second-order methods [185] such as Levenberg-Marquardt, Conjugate Gradient (CG), and L-BFGS.
Although considerably more computationally expensive than SGD, there are several advantages to
such approaches, including increased concurrency (as data-parallelism increases) and better the-
oretical convergence guarantees (e.g., second-order methods converge locally at a quadratic rate).
As mentioned in Sections 3 and 6.1, large-minibatch training represents a middle ground between
SGD and batch methods. Such methods combine the “best of both worlds”—on one hand, they ex-
hibit increased inherent concurrency (as higher-order methods); on the other hand, they employ
stochasticity, which, despite the sublinear rate of convergence, works well in practice.

For distributed deep learning, batch methods [147] (specifically CG and L-BFGS) and Hessian-
free second-order optimization [43, 95, 171] have initially been favored due to their apparent scal-
ability compared to traditional SGD (Algorithm 1). However, due to the superior generalization
properties of first-order stochastic optimization, and the successful DistBelief [57] implementa-
tion of inconsistent SGD (called Downpour SGD, based on HOGWILD [213]); it was found that
the quadratic increase of batch methods in memory, communication, and computations due to
high dimensionality is not desirable. To overcome these issues, stochastic variants of L-BFGS have
been proposed [28, 177] that estimate the inverse Hessian matrix and proven to converge at a
linear rate in strongly-convex, Lipschitz-continuous settings [177].

Other optimization algorithms applied to deep learning attempt to: (a) reduce the variance of
SGD incurred by random sampling [128], (b) use the Alternating Direction Method of Multipliers
(ADMM) [25] to skip the backpropagation altogether [235], (c) use K-FAC to approximate second
order information [191], or (d) use the Neumann series expansion to approximate the Hessian
matrix [139], scaling to large minibatch sizes (32k with no accuracy loss, 131k with minimal loss)
without substantial computational overhead.

Gradient-free evolutionary algorithms have also been employed for deep learning, where exam-
ples include Genetic Algorithms [199, 250], Neuro-Evolution [175, 243], and Particle-Swarm Opti-
mization [168]. Apart from recombination/evolution steps, training behavior is similar to ensemble
learning, and thus these algorithms are more amenable to parallelism than traditional gradient de-
scent. As we show in the rest of this section, the gradient-independent nature of such algorithms
enable their use for meta-optimization of both hyper-parameters and DNN architectures.

7.5.2  Hyper-parameter Search. The multitude of hyper-parameters in SGD (e.g., learning rate,
momentum, maximal staleness) and their adverse effect on the resulting accuracy hinders research
efforts into new techniques in machine learning. Until recently, the prominent method for hyper-
parameter search was to perform parameter sweeps (i.e., grid search over feasible ranges). Since
this method increases the overall time exponentially with the number of hyper-parameters, its
effectiveness is limited by the availability of computing power.

Several methods try to expand beyond simple parameter sweeps by making educated guesses
and tuning hyper-parameters during training. In the former class, methods include Bayesian op-
timization [227], predictive analysis of the learning curves (e.g., training error, validation error)
[13, 137] for dropping undesirable configurations, and sampling the hyper-parameter space effi-
ciently using spectral methods such as Compressed Sensing [92].

ACM Computing Surveys, Vol. 52, No. 4, Article 65. Publication date: August 2019.



Demystifying Parallel and Distributed Deep Learning: An In-depth Concurrency Analysis 65:31
Conv —V‘ Conv — Conv —— Conv — Conv
Population RL Step Sequential: 1-01-001-0001
Agent1 fwD,g,) —TR0_ £0,@0 ) D) gy | ¥
Conv ( Conv ——» Conv ——» Conv -—> Conv
Agent 2. (042, 0,) s 2, 05) > (413, g, - Residual: 1.01-101-0001 o
Exploit
Agent m fOm, 6,0 T30 __ @ 6, D, 55— - - i e 3 |
Lodepeonning Explore Conv | Conv Conv. J—» Conv. —> Conv
° ~ 1
DenseNet: 1-11-171-1111
(a) Population-Based Trainingmz] (b) Genetic Encoding of DNN Connections [25]

Fig. 24. Methods for automated hyper-parameter and architecture search.

As for tuning hyper-parameters during training, Omnivore [90] employs predictive analysis
and grid searches every predetermined number of minutes to modify the momentum and a hyper-
parameter controlling local gradient staleness. The paper shows that in distributed environments,
controlling the synchronous SGD node-group size during training can increase both accuracy and
performance. YellowFin [266] uses the local gradient curvature and variance to tune momentum,
working especially well on LSTM-based models and asynchronous environments, performing up
to 3.28x faster than the Adam optimizer (Table 3).

Metaheuristic optimization algorithms can inherently integrate hyper-parameter tuning with
training and are thus used for DNNs. Such methods include Particle Swarm Optimization (PSO)-
based deep learning [168]; and CoDeepNEAT [175], a modification of the NEAT algorithm that
simultaneously searches for hyper-parameter and architecture configurations (see below). Such
methods scale almost linearly, due to abundance of independent computations.

Last, Population-based Training [122] (PBT) uses a reinforcement learning approach to “ex-
plore” and “exploit” the hyper-parameter space. As illustrated in Figure 24(a), each training agent
independently samples (exploits) information from other agents every few SGD iterations. The
information is then used to select the best configuration (e.g., using a t-test), and hyper-parameters
are in turn perturbed (explored) to continue learning. This creates a decentralized topology where
communication is nondeterministic (i.e., exploitation is performed with a randomly sampled
agent), which may scale better as the number of training agents increases.

7.5.3  Architecture Search. Like feature engineering before the era of deep learning, manually
crafting DNN architectures is naturally limited by human resourcefulness and creativity. This lim-
itation promoted a recent rise of research into automated neural architecture search. Architecture
search can be categorized into three approaches: Sequential Model-based Optimization (SMBO),
Reinforcement Learning (RL), and Evolutionary Algorithms (EA).

SMBO-based search methods rely on optimizing an architecture candidate, defining a finite set
of states to explore (e.g., search tree children), and traversing those sets. As a result, concurrency
depends on the number of points in the search space at a given time. Examples of SMBO in-
clude DeepArchitect [180], which proposes a DNN definition language that allows programmers
to explicitly define the space; PNASNet [164], which searches for networks ordered by increasing
complexity using a search algorithm based on A*, conserving half the evaluated models compared
to an equivalent RL approach [280]; SMASH [27], which assesses optimality (fitness) of candi-
date networks using another CNN that maps the given DNN architecture to weights for testing;
and DARTS [166], which formulates architecture search as a bi-level, differentiable optimization
problem.
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Many recent DNN architectures (Section 4.3) exhibit self-similarity and repeating sub-units
(modules). This observation can be leveraged to dramatically reduce the number of explored archi-
tectures, composing networks hierarchically out of modules and basic blocks (e.g., convolution).
This approach has been used successfully in the community, creating new candidates for both
CNN modules [164, 165, 175, 211, 275, 280] and RNN units [200, 279].

RL-based architecture search uses the accuracy of the resulting network as a reward function,
whereas modifications to the DNN or its hyper-parameters are actions. In Neural Architecture
Search (NAS) [279], the parameters of each layer can be modified, but the number of layers is
fixed. A sharded PS-based distributed system, in conjunction with policy gradient optimization
[248], is used for training. Other examples include MetaQNN [12] and BlockQNN [275], which
operate similarly to NAS, but use Q-learning for optimization; and ENAS [200], which significantly
reduces computational time over NAS (by three orders of magnitude) by sharing parameters across
children DNNss (i.e., networks in the immediate search space).

Evolutionary Algorithms (EA) are advantageous for architecture search, as any function (not
necessarily differentiable) can be optimized using these methods. HyperNEAT was the first EA
successfully applied [243] to deep learning, used for training weights and DNN architecture at the
same time; and CoDeepNEAT [175] defines a variant of the NEAT algorithm to optimize hyper-
parameters and architecture, using the self-similarity feature of DNNs by optimizing “blueprints”
that are composed of modules. Genetic CNNs [250] uses Genetic Algorithms (GAs) by encoding
the DNN connections as binary genes (as required in GAs, shown in Figure 24(b)), and training
the population of DNNs with every time-step, using the final accuracy as the fitness function. GAs
are highly amenable to parallelism, and have been successfully used for very large-scale training
[261], where 18,000 nodes were used on the Titan supercomputer for 24h to obtain state-of-the-art
accuracy for segmentation and reconstruction problems.

Large-Scale Evolution [212] also uses GAs, but defines a set of specific mutations (e.g., insert
convolution, alter stride) that can be applied. Large-Scale Evolution outperforms some existing
RL-based methods in terms of accuracy, as well as in terms of scalability, as GAs can run the entire
population in parallel (where accuracy increases with population size in expectation). However,
in the general case GA requires synchronous reductive communication between time-steps for
selection of the fittest candidates. To overcome this issue, the paper employs tournament selection
[82], which only performs pairwise comparisons between population members.

Additional GA architecture search methods include the use of multi-level hierarchical represen-
tations of DNNs [165], which implement an asynchronous distributed tournament selection (cen-
tralized, queue-based implementation) with specialized mutation. Regularized Evolution (Amoe-
baNets) [211] further extends GA with tournament selection by removing the oldest sample from
the population each iteration (akin to death in nature), thus regularizing the optimization process.
AmoebaNets outperform all existing methods [111], including manually engineered DNNs and
RL-based searches, with 3% top-5 error for ImageNet and 1.5% top-1 error for CIFAR-10 (compared
to 5.29% and 3.62% on the best instances of DenseNet, see Table 5).

8 CONCLUDING REMARKS

The world of deep learning is brimming with concurrency. Nearly every aspect of training, from
the computation of a convolution to the meta-optimization of DNN architectures, is inherently
parallel. Even if an aspect is sequential, its consistency requirements can be reduced, due to the
robustness of nonlinear optimization, to increase concurrency while still attaining reasonable ac-
curacy, if not better. In this article, we give an overview of many of these aspects, the respective
approaches documented in literature, and we provide concurrency analysis using the W-D model
when possible.
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It is hard to predict what the future holds for this highly active field of research (many have
tried over the years). Below, we highlight potential directions for future research in parallel and
distributed deep learning.

As research progresses, DNN architectures are becoming deeper and more interconnected, be-
tween consecutive and non-consecutive layers (“skip connections”). Apart from accuracy, consid-
erable effort is devoted to reducing the memory footprint and number of operations [108, 211], to
successfully run inference on mobile devices. This also means that post-training DNN compres-
sion [91] will likely be researched further, and training compressible networks will be desirable.
Since mobile hardware is limited in memory capacity and has to be energy efficient, specialized
DNN computational hardware is frequently proposed [233]. We see this trend with the NVIDIA
Tensor Cores [188], the Tensor Processing Unit [129], other ASICs and FPGAs [35, 187], and even
neuromorphic computing [4]. Handling DNN sparsity (e.g., after compression) is a focus for some
ASICs [269], and advances in recurrent networks and attention learning [30, 253] indicate that
training and inference hardware would also need to work efficiently with variable-length inputs.

Computing individual operators is highly optimized today (Section 5), and thus current re-
search is oriented toward inter-layer and whole-DNN optimization. TensorFlow XLA [83], Tensor
Comprehensions [240], Latte [236], and TVM [34] compile entire neural network graphs at once,
performing a variety of transformations (e.g., fusion) to optimize execution time, achieving 4x
speedup over manually tuned individual operators. We expect research to continue in this direction
to the point where DNN evaluation is close to optimal in terms of operations and shared-memory
optimizations.

Techniques applied in distributed deep learning are converging to the point where a standard
programming interface (or framework) can be designed. In the future, ecosystems such as Ease.ml
[158] may make the definition of a training scheme (e.g., with respect to centralization and gradient
consistency) easier, hiding most of the low-level infrastructure setup. Combining the increasing
support for cloud systems [271] and elastic training [195] (where nodes can be spun up and re-
moved at will) with the latest developments in evolutionary algorithms (see Section 7.5), we may
see adaptive and financially viable optimization methods rising to prominence.

Finally, deep learning is being used to solve increasingly complex problems such as routing algo-
rithms [85] and hierarchical task combination [77]. Research toward Artificial General Intelligence
is now focusing on multi-purpose networks [127, 130], which creates new, unexplored opportuni-
ties for model parallelism and different training algorithms. Searching for adequate multi-purpose
networks may be beyond the ingenuity of a human team, and as meta-optimization (specifically,
architecture search) and progressive training [132] increase in usability and quality; parameter
sweeps and manual DNN architecture engineering will become obsolete. Supporting this claim is
the fact that the current state-of-the-art CNN in computer vision [211] (CIFAR-10 and ImageNet
datasets) is the result of an automated architecture search. Exploiting parallelism is necessary for
such breakthroughs and others, going hand in hand with the advancement of deep learning as a

field.
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