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1 INTRODUCTION

Advances in robotics and artificial intelligence plus the explosion of low-cost mobile phones,
drones, embedded devices, and the Internet of Things (IoT) are leading to the massive deploy-
ment of autonomous systems. These systems will include intelligent autonomous devices able to
collaborate, to gather fine-grained information from the operating environments, and to physi-
cally act in these environments. Many such devices will have very rich cognitive capabilities and
be able to control other devices autonomously and will need to interact with other autonomous
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devices. Controls need to be in place to manage these interactions so that they are not harmful
to any of the individual or collective devices. Devices, especially mobile devices, will move into
physically unprotected spaces and will have to interact with “unknown” devices [48]. However,
in order for autonomous devices to effectively and efficiently carry out their tasks, proper policy-
based management is critical. At a higher level, policies can be defined as directives given by a
managing party to one or more managed parties in order to guide their behavior. Policies can be
of different types, for example:

• Constraint policies govern actions executed by the managed parties, by which different ac-
tions are deemed allowed, not allowed, or obligatory. Access control policies [49] represent
a well-known example of constraint policies.

• Goal-based policies state goals that the managed parties must achieve, for example, main-
tain a minimum threshold of utilization or try to finish a task before a specific deadline.

• Utility-based policies aim at producing the best outcome according to some value function,
such as minimizing energy consumption.

However, because policies represent the key input for policy-based management, it is critical
that they be “correct and fit for their use.” This requirement has thus motivated research on meth-
ods and tools for policy analysis to determine whether sets of policies verify some given properties
(e.g., consistency), and for assessing the impact of policy changes. We believe that in the context
of present and future operations for autonomous devices, ensuring that policies are correct and
adequate to address a large variety of situations is a critical requirement. Policy analysis is also
crucial to support policy evolution as the analysis results can provide indications on how to best
modify policies to fit continuously changing contexts and situations. In this respect, methods and
tools to analyze policies and to support policy evolution and adaptation will be increasingly rel-
evant. The goal of this survey is thus to provide a comprehensive view of existing methods and
tools developed for policy analysis in different domains and for different analysis goals. Moreover,
given that there are no policy analysis tools for autonomous devices in the IoT context and in other
contexts, this survey aims at outlining, as conclusions, the key requirements for next-generation
policy-based management systems. We emphasize that, as policies will be increasingly crucial for
autonomous systems, analysis methods for policies will be critical.

The article is organized as follows. Section 2 briefly discusses the most relevant policy domains:
access control and network management. Section 3 covers the properties that the different analysis
methods address; Section 4 presents a comprehensive taxonomy of the analysis methods. Section 5
presents an overview of several well-known approaches and frameworks, while Section 6 com-
pares them under different dimensions, including the analysis methods used. Section 7 outlines a
few novel research directions.

2 POLICY DOMAINS

In this section, we briefly discuss policies in the two major areas in which policy-based manage-
ment has been widely deployed: access control and computer network management.

2.1 Access Control Policies

Access control policies specify which subject (e.g., user, process, and application) can access which
resources (e.g., files) for performing which actions (e.g., read, write). Many access control models
have been proposed, including models that take time and location into account [47, 72] and mod-
els for privacy-sensitive data [183]. Access control mechanisms are embedded in many different
systems, ranging from operating systems to database management systems. In what follows, we
briefly describe a few relevant models and refer the reader to Bertino et al. [49] for details.
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2.1.1 Role-Based Access Control (RBAC). The RBAC model consists of four components [84,
196]: users, roles, permissions, and sessions. A role represents an organizational function within
a given domain, such as a coalition. Roles are granted permissions required for the execution of
their functions. A permission consists of the specification of a protected object and an action,

The RBAC model definition includes several functions. The user assignment (UA) function spec-
ifies which user is assigned to which roles, whereas the permission assignment (PA) function spec-
ifies the set of permissions assigned to a role. In a particular system, when a user ui ∈ U becomes
active, the user function assigns a session si ∈ S to ui , while the roles function maps si to the sub-
set of roles that are associated with ui . The following definition (adapted from Sandhu et al. [196])
formally defines the RBAC model.

Definition 1 (RBAC Model [47]). The model consists of the following components.

• U , R, P , S refer to the set of users, roles, permissions, and sessions, respectively.
• PA is the permission assignment function that assigns permissions to roles (i.e., PA ⊆ R × P

and PA(ri ) ⊆ P , ∀ri ∈ R).
• UA is the user assignment function that assigns users to roles (i.e., UA ⊆ U × R and

UA(ui ) ⊆ R, ∀ui ∈ U ).
• The user function assigns a session to a single user (i.e., user : S −→ U | user (si ) ∈ U ).
• The roles function assigns a session to the roles associated with the user that activated the

corresponding session (i.e., roles ⊆ S × 2R | roles (si ) = {r | (user (si ), r ) ⊆ UA}).
• RH is the role hierarchy function (i.e., RH ⊆ R × R), which refers to the partially ordered

role hierarchy (written ≥).

The original definition of RBAC does not include the notion of “signed authorization” (i.e., pos-
itive or negative authorization). By default, all permissions granted to a role are positive autho-
rization, but negative authorizations are useful when dealing with large sets of protected objects
organized according to hierarchies. Signed authorizations have been widely investigated [191] and
also introduced in access control systems of commercial products (e.g., the access control model
of the SQL Server provides the negative authorization by the DENY authorization command SQL
[9]). See [45] for a definition of RBAC with signed authorizations.

Example: In a healthcare organization, there are different roles, including doctor, nurse, man-
ager, and intern. As an example, the doctor role is responsible for predefined actions such as perform-
ing diagnosis, prescribing medication, ordering laboratory tests, and writing reports. Hence, we have
Roles = {doctor , nurse, manaдer , intern}, Actiondoctor = {per f orm, prescribe, order , write},
andObjectdoctor = {diaдnosis, medication, laboratory test , report }. An example of a signed pos-
itive authorization policy is:

R :=< role : doctor , action : prescribe, object : medication, siдn : + >.

RBAC has been extended in different directions. For example, Bertino et al. [47] introduced
Temporal-RBAC (TRBAC) to address the challenge of the temporal dependencies among roles.
Due to the tremendous increase in location-based services and mobile applications, the GEO-RBAC
model was introduced that extends RBAC with geospatial information [72]. In GEO-RBAC, roles
are activated based on the geo-location of users. For supporting both spatial and temporal con-
straints, Kumar and Newman [128] introduced the Spatial-Temporal RBAC model (STRBAC).

2.1.2 Extensible Access Control Markup Language (XACML). XACML [3] is an XML-based lan-
guage by the OASIS standards organization for the specification of access control policies. In
XACML, a policy is organized according to four elements: subject, resource, action, and environ-
ment. The subject is the entity requesting access with a particular type of action on a resource (e.g.,
data, service, or system component) within a context (i.e., environment); the policy either decides

ACM Computing Surveys, Vol. 51, No. 6, Article 121. Publication date: February 2019.



121:4 A. Abu Jabal et al.

to allow the request or to deny it. The XACML model can be characterized as an attribute-based
access control (ABAC) model since the policy elements are associated with attributes (i.e., prop-
erties) that are essential for characterizing subjects and objects and making appropriate decisions
based on these attributes. The main concepts of XACML policies are as follows.

• The Policy Set is a set of XACML policies while a Policy comprises a Target and a set of Rules.
• The Policy Target specifies the requests that are controlled by a particular policy. The Target

specifies the attributes of the subjects, resources, actions, and environments that character-
ize the access requests.

• Each Rule is mainly composed of two elements; Condition and Effect. The Condition element
specifies constraints on the request’s attributes (i.e., subject, resource, action, and environ-
ment) while the Effect element specifies whether the request is allowed (Permit) or denied
(Deny) based on the condition. A rule contains optionally the Target element, which also
specifies the requests applicable to the corresponding rule. The result of enforcing a rule
on an access request can take one of four possible values: Permit, Deny, Indeterminate (i.e.,
the decision cannot be made due to an error or some missing value), or Not Applicable
(i.e., the request cannot be answered by this service).

• The Rule Combining Algorithm resolves the case when multiple rules are applicable to a
request, but these rules have different effects on the corresponding request. XACML sup-
ports several conflict resolution strategies: permit-overrides (i.e., permit the request), deny-
overrides (i.e., deny the request), deny-unless-permit (i.e., deny the request unless one of the
rules permits it), permit-unless-deny (i.e., permit the request unless one of the rules denies
it), first-applicable (i.e., apply the first rule in the policy file) and only-one-applicable (i.e.,
no decision is provided to the request when multiple rules are applicable).

• The Obligation is a function that can be executed before or after the policy is enforced on
an access request. An example of such an obligation function is to log information about
the corresponding policy and request.

Example: A user can create a financial transaction if the user’s credit balance is not lower than
the amount of transaction and banking cost. Also, the transaction is valid during the office hours. This
policy is modeled in XACML as follows:

< Policy PolicyId = “p1” RuleCombinationAlдId = “Deny −Overrides” >
< Rule RuleId = “r1” Effect = “Permit” >
< Tarдet >

< subject > Bank < /subject >
< resource > Transaction < /resource >
< action > Create < /action >
< condition > transaction_value + bankinд_cost < credit_balance < /condition >

< /Tarдet >
< /Rule >
< Rule RuleId = “r2” Effect = “Permit” >
< Tarдet >

< subject > Bank < /subject >
< resource > Transaction < /resource >
< action > Create < /action >
< condition > current_day ∈ [Mon, Fri] ∧ current_time ∈ [08AM, 6PM] < /condition >

< /Tarдet >
< /Rule >
< /policy >
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We assume that the values of transaction_value ,bankinд_cost , credit_balance , current_day, and
current_time are constrained. The type of policy isDeny −Overrides,which returns permit if all rule
evaluations return permit.

2.2 Network Policies

Network policies are sets of rules composed of conditions, constraints, and settings governing the
operations (e.g., access to resources) within a network or across networks. Such rules allow one
to specify which subject is authorized to connect to the network and the circumstances under
which the subject can or cannot connect. Here, we discuss two types of network policies: firewall
and software-defined networking (SDN). We discuss those two types separately for two reasons:
(a) SDN policies are more general than firewall policies and (b) firewall policies have been the
focus of a large body of research. Hence, in order to discuss firewall policies with adequate depth,
we separate their discussion from SDN.

2.2.1 Firewall Policies. The firewall is a network element that filters traffic between network
segments [58]. In particular, it filters out packets based on their characteristics and performs ac-
tions on the packets that do not match the firewall rules. The firewall thus contains a list of firewall
rules (a.k.a. firewall policies) that specify the matching conditions for the traffic and the actions
to be taken against the packets. Firewall rules follow the event-condition-action (ECA) paradigm,
where an event (e.g., an incoming packet) triggers the automatic validation of the stated conditions
and actions. Firewall rules are specified using network fields, including the protocol type, the IP
address and port number of the source, and the IP address and port number of the destination.
Commonly, a firewall rule follows the following format [21]:

Rule :=< order >< protocol >< srcip > [< srcpor t >] < dstip > [< dstpor t >] < action >,

where order ∈ Z≥ (i.e., any non-negative integer), protocol ∈ {TCP ,UDP , ∗}, srcip and dstip ex-
press, respectively, source and destination IP address represented (in IPv4 format) as address :=
x1.x2.x3.x4, xi ∈ [0, . . . , 255] ∪ {∗}, action ∈ {allow,deny}, port ∈ Z≥ ∪ {∗}, and ∗ is used to denote
the keyword any or a domain range.

If the traffic matches the specified filtering rule, the action of the rule is executed; otherwise,
the next rule, as defined by the order sequence, is executed, and so on.

Example: Consider the following firewall rules: “R1 :=< 1 : TCP , 140.192.37.∗, any, ∗. ∗ . ∗
.∗, 80, deny >” and “R2 :=< 2 : TCP , ∗. ∗ . ∗ .∗, any, 161.120.33.40, 80, accept > .”

First, R1 (order = 1) denies all traffic from srcip (140.192.37.*) and destined to any address on port
80. Then, R2 (order = 2) accepts all traffic destined to dstip (161.120.33.40) on port 80. These firewall
rules with this ordering have the effect of denying all traffic coming from srcip (140.192.37.*) and
destined to dstip (161.120.33.40) on port 80. However, the same traffic will be accepted if the order is
reversed.

2.2.2 SDN Policies. SDN is a networking model designed for existing network infrastructures
to separate the control logic module from other underlying modules that control traffic forwarding
(i.e., routers and switches) [167, 204]. The policy enforcement and network reconfiguration in an
SDN architecture are thus significantly simplified. We refer the reader to Kreutz et al. [127] for a
comprehensive survey and details of SDN.

OpenFlow [168] is a well-known technology that standardizes the communication between the
switches and the software-based controller in an SDN architecture. OpenFlow specifies the flow
table structure that describes how packets are processed in the switches. Specifically, a flow table
is composed of a set of flow rules (i.e., policies) and each rule consists of three parts:
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• A matching rule that comprises different fields, including switch port, source IP address,
MAC address and port number; destination IP address, MAC address and port number; and
VLAN tag

• An action that can be either dropping, forwarding, or modifying the matched packets
• Counters that record statistical data about the matched packets

The matching process starts with the arrival of a new packet; then, flow tables are searched
sequentially for a matching rule. OpenFlow enables implementing the SDN policies in an assembly-
like machine language. A number of benchmark tools (such as Cbench [2], OFCBenchmark [113],
PktBlaster [10]) have been proposed to evaluate the performance of OpenFlow. Also, in order to
enhance flexibility, several high-level networking languages have been suggested, such as FlowLog
[180], Pyretic [174], Frenetic [86], NetCore [173], FML [102], and HFT [83]. There are several open-
source implementations of OpenFlow Controller as well as commercial versions [5].

To improve OpenFlow, several tools have been developed. FLOWGUARD [104] was designed
to detect and resolve security policy violations in OpenFlow-based networks. This tool employs
five resolution strategies: flow removing, tendency breaking, update rejecting, flow rejecting, and
packet blocking. VANT-GUARD [205] is an extension to OpenFlow; it addresses security challenges
in OpenFlow by increasing data plane intelligence. VANT-GUARD protects SDN applications from
saturation attacks. It also enhances detection and responsiveness to threats. Other tools, such as
VeriCon [33], can verify the correctness of SDN programs on different topologies and for a se-
quence of network events.

Example: Assume that the information about two subnetworks is as follows: Subnetwork 1 (S1):
100.0.1.0/24 and Subnetwork 3 (S3): 100.0.2.0/24. Mary is a developer (in S1) allowed to access the
resources at S3 and the destination TCP port is Telnet. The policy can be written as

Rule := p : path | (S1_S3) ∧ protocol = TCP ∧ port = 24 ∧ Mary : user ∈ Developer .

3 ANALYSIS GOALS

Policy analysis is typically carried out for two different purposes: verifying the satisfaction of a
set of quality requirements, and designing and organizing a set of policies. In what follows, we
describe in more detail these policy analysis goals.

3.1 Assessment of Policy Quality

The notion of policy quality was introduced by Bertino et al. [45, 46] as a set of basic policy re-
quirements. Ensuring the quality of a set of policies can be stated as the problem of making sure
that the set of policies be consistent, minimal, relevant, complete, and correct. They should also
minimize the exceptions that may occur at runtime. In what follows, we describe each of these
quality requirements.

3.1.1 Consistency. Consistency (CON ) refers to making sure that the policy sets do not include
policies that contradict each other. For example, in the case of access control, ensuring consistency
means making sure that a policy set does not include a policy allowing an access request and
a policy denying the same request. Inconsistent policies lead to conflicts at policy enforcement.
There are different types of conflicts [34, 70, 170], including modality conflicts (an inconsistency
in policy specification of two policies that are applied to a request with different signs), conflict
of duty (when a system fails to assert the separation of duty principle), conflict of interest, and
conflicts of priorities.

3.1.2 Minimality. Minimality (MIN ) refers to making sure that the sets of policies do not in-
clude redundant policies. For example, consider a file directory and an access control policy stating
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that a user can read all the files in the directory. Then, assigning the same user a read permission
on each single file in the directory would result in a policy set with redundant policies. Redundant
policies increase the administrative work required to manage policies. For example, if a user is no
longer required to access a given object, all policies controlling such an access must be properly
modified, thus increasing the security risk if these changes are not properly propagated.

3.1.3 Relevance. Relevance (REL) requires that the sets of policies do not contain policies that
do not apply to any action executed by the users. In the case of access control, irrelevant policies
may undermine security. For example, an attacker may try to compromise a user in order to exploit
the permissions of this user. Hence, making sure that users do not have permissions for accesses
that they are not expected to execute minimizes the consequences of such exploitations.

3.1.4 Completeness. Completeness (COM) refers to making sure that all actions executed in
the domain controlled by a policy-based management system are covered by some policies. For
example, in the case of access control policies, ensuring that a set of policies is complete means
ensuring that for each access request issued by a subject, there is a policy either allowing the access
or denying it. Incomplete policy sets may lead to an unpredictable outcome and increase the cost
of manual security administration.

3.1.5 Correctness. Correctness (COR) requires that the policies be free of faults and compliant
with their intended goals and system requirements. Ensuring the correctness of policies includes
validating their syntax and verifying their ability to achieve their goals in all possible contexts and
scenarios.

3.2 Policy Design and Organization

In many cases, it is critical to maintain an optimal design and organization of policy sets in case of
policy evolution or integration of policies from different organizations. To properly reorganize and
evolve policy sets, it is often important to assess the similarity of different policies to determine
whether one can consolidate similar policies into a single policy. It is also critical to assess the
impact of policy modifications.

3.2.1 Policy Set Structuring. The policy set structure (PSS) has a primary effect on the cost
complexity of policy management and policy enforcement. In particular, organizing the policies
and rules in policy sets [156] helps in optimizing policy enforcement. Moreover, ensuring optimal
structuring for policy components, which covers all potential components, affects the construction
of policy management systems (e.g., role mining in RBAC systems [172]).

3.2.2 Similarity Analysis. The policy similarity analysis (SA) is the characterization of the
relationships among a set of policies [131]. SA is an important step for policy integration and
organizations collaboration since the collaboration can be planned based on the SA results of
the collaborators’ policies [165]. Several approaches have been proposed for policy SA including
Mazzoleni et al. [164], Lin et al. [132], Mazzoleni et al. [165], and Lin et al. [131]. In particular,
Mazzoleni et al. [165] defined a model for policy similarity based on the reaction of policies to
a set of requests, while Lin et al. [132] and Lin et al. [131] proposed other models based on the
policy structure and components.

3.2.3 Change Impact Analysis. Change impact analysis (CIA) refers to assessing and evaluat-
ing the extent of the change on the specifications of a set of policies by identifying the potential
consequences and estimating the risks associated with the change. Thus, it provides an accurate
understanding of the implications of a proposed change. CIA techniques typically evaluate the
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Fig. 1. Taxonomy of the methods used in policy analysis.

changes among two versions of a policy by providing a set of counterexamples that show seman-
tic differences between the two policies.

4 TAXONOMY OF ANALYSIS METHODS

Various methods have been proposed for policy analysis, which we review in what follows.
Figure 1 shows a taxonomy of these methods.

4.1 Formal Methods (FM)

A large body of research exists in the area of formal methods for policy analysis based on a variety
of formalisms, including event calculus and argumentation-based reasoning. In what follows, we
briefly summarize the formal methods most commonly used for policy analysis.

4.1.1 Matrix-Based Methods. A matrix is a collection of elements organized in rows and
columns. A matrix is denoted by its dimensions (i.e., a matrix A that is composed ofm rows and n
columns is denoted as anm × n matrix), and an element in A is denoted as ai, j .

In the context of policy analysis, matrices are used as a representation mechanism for the pol-
icy components. In particular, Boolean matrices (a.k.a. binary matrices or logical matrices) are
mainly used to relate two finite sets according to 0 or 1 values. The existence of a relationship
between two corresponding elements in the set is denoted by 1 and by 0 otherwise. For example,
in RBAC [217], the user-role assignment is modeled by matrix A,whose dimensions arem × k and
the role-permission association is modeled by matrix B,whose dimensions are k × n. The Boolean
multiplication of A and B (see Definition 2) returns the full set of user permissions.

Definition 2 (Boolean Matrix Multiplication [217]). A Boolean matrix multiplication between

Boolean matrices A ∈ {0, 1}m×k and B ∈ {0, 1}k×n is A ⊗ B = C , where C is in space {0, 1}m×n and

ci j =

k∨

l=1

(ail ∧ bl j ).

Moreover, the complete set of role hierarchies in RBAC can be represented using the transitive
closure of roles [105]. For example, let R denote a set of roles and H denote the role hierarchy
defined over R. Thus, the pair (ri , r j ) ∈ H implies that the role r j is a child of the role ri .

The transitive closure of H on R (see Definition 3) is the relation H+ such that (ri , r j ) ∈ H+
means that there are several hierarchy levels between the roles ri and r j .
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Table 1. Predicates Defined by the Specifications of Event Calculus [59]

Predicate Description
Happens (a, t ) The event a occurs at a time point t .
Initiates (a, f , t ) The event a sets the fluent f to true at time t and after that.
Terminates (a, f , t ) The event a sets the fluent f to false at time t and after that.
HoldsAt ( f , t ) The fluent f is true at time t .
Clipped (t1, f , t2) Between the times t1 and t2, an event occurs that sets the fluent f to false.
Declipped (t1, f , t2) Between the times t1 and t2, an event occurs that sets the fluent f to true.

Definition 3 (Transitive Closure). The transitive closure is a union set defined by the formula:

H+ =
⋃

i ∈{1,2,3, ... }
H i ,

where H i is the ith power of H , defined inductively by H 1 = H , and for i > 0, H i+1 = H ⊗ H i .

Several algorithms for policy analysis have been proposed that use different forms of matrices
(e.g., conflict matrix [223], and access control matrix [100]) while other analysis frameworks use
matrices for policy representation in conjunction with other analysis techniques [217].

4.1.2 Reasoning Methods. There are various forms of logical reasoning, including deductive, in-
ductive, and abductive reasoning. Deductive reasoning is the process of using one or more premises
about the system behavior together with the history of events occurring in the system to reach
a certain logical conclusion about the state of the system properties. Inductive reasoning can be
defined as the derivation of a general conclusion about the system behavior based on premises on
the observed history of events and the state of system properties. Abductive reasoning is a form of
logical inference that starts with an observation of the system behavior to provide the best expla-
nation using the sequence of events to reach a state of system properties. The conclusion of both
inductive and abductive reasoning might be uncertain based on the premises given, whereas the
truth of the deductive reasoning’s conclusion is definite.

In the context of policy analysis, some approaches [215] use reasoning associated with an SMT
solver (see Section 4.2.1). While other approaches [35, 38, 59] use reasoning utilizing the policy
representation by Event Calculus (see Section 4.1.3). Another reasoning-based approach to analyze
policies was proposed by Halpern and Weissman [96] based on a first-order logic approach that
helps in reasoning about policies and preserving traceability.

4.1.3 Event Calculus. Event calculus (EC) is a logic-based formal model for expressing and rea-
soning about the occurrence of events. Being able to express the dynamic aspects of events, EC has
been used for representing the specification of policies and analyzing them (e.g., [35, 38, 59]). EC
has many variants, but the one widely used for policy analysis is the variant proposed by Russo
et al. [194]. The specifications of this variant comprise a set of time-varying properties referred
to as f luents , a set of positive integers referred to as timepoints , and a set of actions referred to
as events . This variant also includes predicates describing the order of action, such as Happens ,
Initiates ,Terminates , and HoldsAt , and some auxiliary predicates such asClipped and Declipped
(see Table 1).

4.1.4 Argumentation Methods. Argumentation is a method for reaching conclusions through
logical reasoning on conflicting information [219]. In the artificial intelligence area, Dung
[79] proposed an abstraction argumentation framework, later extended to logic-based [50] and
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value-based [42] frameworks. In Dung’s framework, argumentation is formally defined as a pair
<T , A>, where T is a set of abstract arguments that represent data or a proposition and A is a
binary attaching relation on the subsets of T where the relation shows the conflicts between the
arguments. In particular, for any two arguments t1, t2 ∈ T , we say that t1 attacks t2 when the rela-
tion (t1, t2) ∈ A. Argumentation reasoning is given through the notion of an admissible argument
as defined in Definition 4. In the framework <T , A>, T is represented in a logic language L.

Definition 4 (Admissibility of Arguments [37]). Given an argumentation framework <T , A>, an
argument ti ∈ T is admissible⇔ (ti , ti ) � A (i.e., ti does not attack itself) ∧ (∀tj | tj ∈ T ∧ (tj , ti ) ∈
A ∧ i � j → (ti , tj ) ∈ A) (i.e., for any other argument that attacks ti , ti counterattacks it).

In the context of policy analysis, argumentation policies can be modeled as arguments. The at-
tack relation defined over the set of arguments serves as a criterion to deal with possible conflicts
among policies and to select a set of compatible policies that achieve a set of requirements. Argu-
mentation has been used for analyzing firewall policies [29, 36, 37] and access control policies [51,
52, 185].

4.2 Model-Checking (MC) Methods

The model-checking technique has been introduced to exhaustively and automatically verify the
correctness of properties and specifications of concurrent finite-state systems. To achieve this goal,
a mathematical representation is used to characterize the system’s model and specifications. A
typical model-checking system can be described by two components: (a) the preprocessor, which
extracts a set of states S from a program and models them using a state transition graph M , and
(b) the engine, which takes the state transition graph M and a temporal formula f and determines
whether the formula is true or false (i.e., counterexample).

Model checking has some advantages compared with other verification techniques, such as au-
tomated theorem proving and proof checking [65]. However, the size of state transition graphs can
be exponential, which is the main drawback of model checking. Therefore, several techniques—
such as symbolic model checking, bounded model checking (e.g., SAT), compositional reasoning,
abstraction, and partial order reduction—have been proposed to address the issue [82]. In those
methods, the model-checking problem reduces to a graph search problem, and binary decision
diagrams (BDD) or other temporal logic methods can be used for the traversal of the state space.
Model checking has been widely used for policy analysis to detect, for example, conflicts between
access control policies or security errors in access control policies.

In what follows, we describe model-checking methods that have been applied to policy analysis.

4.2.1 SAT and SMT Solvers. The Boolean satisfiability (SAT) problem is the problem of
evaluating the satisfiability of a given Boolean formula. The SAT problem is formulated in
Definition 5.

Definition 5 (The SAT problem [68]). Given a Boolean formula ϕ composed of

• n Boolean variables: x1, x2, . . . ,xn ;
• m Boolean connectives: any Boolean function such as ∧ (AND), ∨ (OR), ¬ (NOT), → (im-

plication),⇔ (if and only if); and
• Parentheses: One pair of parentheses per a Boolean connective.

The Boolean satisfiability problem posed on ϕ aims at finding some values that can be assigned
to the variables composing ϕ to make its value true. If such values exist, then ϕ is satisfiable.
Otherwise, ϕ is unsatisfiable.
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The SAT problem is known to be NP-hard [67]. However, there has been tremendous progress
(see [230]) in developing efficient mechanisms for solving the SAT problem. These algorithms
are known as SAT solvers. Some SAT solvers are complete (e.g., the Davis-Putnam-Logemann-
Loveland (DPLL) algorithm [74, 75]), while others are stochastic (e.g., random walk-based algo-
rithms, such as WALKSAT [200]). For any given instance of a SAT problem, a complete solver is
able to find the variable values that solve the problem in case it is satisfiable or proves that it is
unsatisfiable. Meanwhile, a stochastic SAT solver is not able to prove the unsatisfiability for some
instances.

Advances in SAT solvers have made them attractive underlying reasoners for policy analysis
w.r.t. propositional logic formulas used to model various access control policies. However, native
SAT solvers do not support efficient reasoning over non-Boolean variables, such as temporal con-
straints, which play a significant role in analyzing the correctness of policies. These non-Boolean
variables are often left uninterpreted, hence restricting analysis capabilities [215]. An extension
of SAT is Satisfiability Modulo Theories (SMTs) [39] which extend the Boolean SAT representa-
tion with additional operators, such as linear arithmetic and equality. Consequently, various SMT
solvers were proposed (e.g., Z3 [77] and openSMT [7]) that support a more efficient fine-grained
analysis than native SAT-based policy analysis tools.

Since policies are essentially a set of constraints over a set of resources, the policy analysis
can be intuitively mapped into logic formulas. As a consequence, satisfiability checking can be
employed to validate requirements, such as security requirements, over a given set of policies.
Several algorithms and frameworks for policy analysis have been developed that use SAT [106,
116, 131] or SMT [25, 26, 114, 215] solvers.

4.2.2 Alloy. Alloy is a declarative logical language for expressing structural constraints and
behavior of a system [1, 111]. The language is simple and based on standard first-order logic. Its
syntax uses the following notations:

• Signatures: A signature is a data type in Alloy. It can be considered equivalent to a class in
object-oriented languages since a signature can be instantiated.

• Relations: A relation is a tuple that maps instances of signatures to each other.
• Functions: A function maps one instance of a signature to an instance of another signature.

When modeling system constraints using the Alloy language, the Alloy Analyzer [112] is exe-
cuted to find structures that satisfy the constraints. Thus, the Alloy Analyzer can be used both to
explore the model by generating sample structures and to check the properties of the model by
generating counterexamples. The core of the analyzer engine is reduced to a Boolean SAT solver.

Since policy constraints can be modeled using the Alloy language, several frameworks for policy
analysis use Alloy as the underlying building block [99, 101, 120, 154, 187, 198].

4.2.3 Binary Decision Diagrams. A binary decision diagram (BDD) is a data structure for rep-
resenting a Boolean function that takes Boolean arguments as inputs and returns a Boolean out-
put [20]. A BDD is represented as a rooted, directed, acyclic graph G (N ,E) composed of nodes N
and edges E. The set of nodes N are categorized into two types: decision nodes corresponding to
the Boolean arguments and terminal nodes corresponding to the Boolean decision (0-terminal and
1-terminal). The edges represent the Boolean values branching from nodes. Consider the Boolean
function f defined in Equation (1) [20]. Figure 2 shows two examples of BDD representing f .
Given n arguments in a Boolean function, there are 2n different possible inputs; thus, an instance
of BDD contains at most 2n possible paths corresponding to the truth table for f (e.g., Figure 2(a)).
For efficiency, the BDD is designed with the minimum number of paths by omitting the redundant
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Fig. 2. Two binary decision diagrams of Equation (1) [20].

test of Boolean arguments (e.g., Figure 2(b)).

f = A ∨ ¬B ∧C (1)

The BDD structure has been extended to the multi-terminal BDD (MTBDD) structure [87] where
a terminal node is allowed to have a finite set of values instead of binary values (i.e., 0 or 1). The
MTBDD structure is also known as an algebraic decision diagram (ADD) [32]. The implementation
of both BDD and MTBDD is provided by the CUDD package [208]. BDD and MTBDD are used as
the underlying representation of policies that facilitate the analysis process (e.g., [56, 85, 131, 186,
228]).

4.3 Data Mining (DM) Methods

Data mining is a technique for exploring massive datasets and finding interesting trends or pat-
terns to guide decisions for further analysis. DM algorithms can be classified as supervised and
unsupervised. Supervised algorithms require a learning stage on a historical dataset for building a
model that summarizes the identified patterns. Unsupervised algorithms detect patterns in datasets
without the need of the learning phase. Examples of supervised algorithms include classification
while unsupervised algorithms include association rule mining and clustering. Some of the DM
methods are described in what follows.

4.3.1 Association Rule Mining (ARM). ARM [17] is a technique for detecting statistical
relations—referenced as association rules defined in Definition 6 (adapted from Tan et al. [213])—
between items in a database. The mechanism aims at discovering all rules that satisfy a certain
threshold on two metrics: support and confidence. The support metric indicates how often a rule
applies to a given dataset; hence, it is used to eliminate uninteresting rules and capture the fre-
quency of the rule. The confidence metric represents the quality of the rule. Hence, it measures
both the reliability of the inference made by the rule and the strength of the relation between the
items sets. The inference indicated by the association rule suggests a strong co-occurrence rela-
tionship between items in the antecedent and consequent of the rule. There are various algorithms
designed for ARM, including the Apriori Algorithm [18], FP-growth [97], and Eclat [229].

Definition 6 (Association Rule [213]). Given a set of items I = {i1, i2, . . . , in } and a database D
composed of a set of transactionsT where each transaction t ∈ T is composed of a set of items t ⊆ I ,
an association rule is an implication expression of the form X −→ Y where X and Y are disjoint
subsets of I (i.e., X ⊆ I , Y ⊆ I , and X ∩ Y = ϕ). The association rule X −→ Y has two metrics:

• The support value s, which denotes the fraction of transactions containing both X and Y in
the whole database D (i.e., s (X −→ Y ) = p (X ∪ Y )); and

• The confidence value c, which denotes the fraction of transactions that contain both X and
Y among the transactions that contain X (i.e., c (X −→ Y ) = p (X ∪ Y )/p (X )).
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Then, in an association rule (X −→ Y ), where X and Y are attribute values, a confidence of the
rule is conditional probability of X given Y , Pr (X |Y ) and support is the prior probability of X and
Y , Pr (X and Y ). The algorithm used minimum support and minimum confidence to identify the
largest itemset and the best rules.

The ARM-based policy analysis techniques explore large datasets to identify interesting rules
for further analysis. For example, Ma et al. [153] used ARM in the context of policy analysis to
classify constraints in RBAC. Cardinality constraints on the number of users, roles, and permis-
sions are represented in terms of association rules. Bauer et al. [41] employed ARM to anticipate
misconfiguration in access control policies. By applying ARM to the history of accesses, associa-
tion rules are identified (the rules are mined by the Apriori algorithm [18]). Based on the rules, the
data is analyzed and potential misconfigurations of access control policies are detected. Golnabi
et al. [89] proposed an ARM-based technique to detect firewall anomalies defined in terms of the
superset, subset, and correlation relationship among criteria. Firewall log files are mined to extract
attributes (such as protocol, direction, source IP, destination IP, source port, and destination port).

4.3.2 Clustering. Clustering is a mechanism for distributing a set of objects into groups (re-
ferred to as clusters) where the intra-similarity among the objects of a group is higher than the
inter-similarity with the other groups. The clustering technique defines the groups of objects based
on some measure of inherent similarity or distance (e.g., Euclidean and Manhattan distance). Each
cluster has a centroid object that identifies the corresponding cluster. After constructing the clus-
ters, a new object is assigned to the cluster whose centroid is the closest one.

Well-known clustering algorithms include k-means [149], mean-shift [66], and spectral cluster-
ing [181]. In addition to the basic clustering techniques, hierarchical clustering builds a hierar-
chy of clusters. Hierarchical clustering follows two strategies: bottom-up approach (referenced
as agglomerative [207]), and top-down approach (divisive [121]). Several open-source libraries
(e.g., scikit-learn [184] and Weka [95]) provide implementations in different languages of these
algorithms.

Clustering-based approaches partition access control policies into clusters. For example, for
XACML policies in distributed applications, after extracting the rules in each policy, similar rules
(identified based on some similarity scores) are assigned to the same cluster [19, 44]. Each cluster
is separately analyzed for quality (such as redundancy, and inconsistency). A k-means clustering
method [222] has been proposed by Marouf et al. [155, 156] to optimize the evaluation of XACML
policies in the case of large numbers of requests. This approach clusters similar subjects (i.e., sub-
jects in one cluster share a large number of policies relevant to all of them) to find relevant policies
for incoming requests with the best rule orders. The best ordering is dynamically identified based
on incoming requests, history of requests, and executions. Moreover, Benkaouz et al. [44] proposed
a K-nearest neighbors-based technique for RBAC policies to enhance flexibility and reduce policy
dimensionality in large-scale applications.

4.3.3 Data Classification. Classification is a learning technique for assigning an item to a set of
predefined classes or groups (a.k.a. labels). Classification algorithms include two stages: training
and prediction. In the training stage, the algorithm discovers the patterns of the attributes charac-
terizing the items for each predefined class and summarizes these patterns in a training model. In
the prediction stage, the algorithm uses the training model to predict the class of a new item.

Data classification techniques can handle complicated Boolean expressions, missing and con-
tinuous attributes. Unlike the formal logic approaches for inconsistency detection, classifica-
tion techniques do not suffer from exponential growth and computational complexity [203]. In
data classification, each rule (Ri ) is represented by a set of attributes (A1,A2, . . . ,An ) based on
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which decisions are made (e.g., role, subject) and a class of the rule (C) (e.g., allowed, denied),
(Ri : A1 ∧A2 ∧ . . . ∧An −→ C). Data classification techniques—such as C4.5 [190], ID3 [189], lim-
ited search induction algorithm (LSIA) [55], and ASSISTANT’86 [57] (with some modifications)—
are mainly used for detecting incompleteness [201, 202] and inconsistency [31, 201, 203], which
are formally defined in Definitions 7 and 8. In Definition 7, incompleteness is defined for attribute-
based policies. Thus, a complete policy set requires the rules in the set to cover all possible values
that the attribute domains can take. However, such a requirement may be difficult to meet, es-
pecially when the domains are infinite or the domains are not fully known in advance. Hence,
approaches that analyze the actual system behavior would be more suitable.

Definition 7 (Incompleteness [201]). Given a rule set�, a rule Ri ∈ �, and a set of attributes A,
let ϒ(Ak ), Ak ∈ A denote the set of all possible values that can be assigned to attribute Ak and let
v (Ri .Ak ) denote the set of values assigned to attribute Ak in rule Ri .� is incomplete with respect
to Ak if and only if:

⋃

Ri ∈�
v (Ri .Ak ) ⊂ ϒ(Ak ).

Definition 8 (Mutual Inconsistency [201]). Given a rule set � and two rules Ri ,R j ∈ �, let
v (Ri .Ak ) and v (R j .Ak ) denote the set of values assigned to attribute Ak in rules Ri and R j , re-
spectively. Ri and R j are mutually inconsistent if and only if:

1. ∀Ak ∈ A, v (Ri .Ak ) ∩v (R j .Ak ) � ϕ and

2. v (Ri .Permission) � v (R j .Permission).

4.3.4 Role Mining. Role mining (RM) is an application of DM specifically designed for trans-
forming a non-RBAC system into an RBAC system by finding user roles in the observed poli-
cies [217]. The RM problem is formally defined in Definitions 9 and 10. RM is a tool for examining
whether roles are appropriately assigned to existing functions and business processes.

Definition 9 (Role Mining Problem [217]). Given a set of users U , a set of permissions P , and a
user-permission assignment UPA, find the minimal set of roles R where user-to-role assignment
UA, a role-to-permission assignment PA, and user-to-permission assignmentUPA are 0-consistent
(i.e., δ = 0).

Definition 10 (δ -Consistency [217]). A given user-to-role assignmentUA, role-to-permission as-
signment PA and user-to-permission assignment UPA are δ -consistent if and only if:

‖ M (UA) ⊗ M (PA) −M (UPA) ‖1 ≤ δ ,

where M (UA), M (PA), and M (UPA) denote the matrix representation of UA, PA, and UPA, re-
spectively. δ -consistency bounds the degree of difference between the UA, PA, and UP .

RM is an NP-hard problem [217] for which various algorithms have been proposed. In particular,
Schlegelmilch and Steffens [199] designed the ORCA RM tool, which is based on a hierarchical
clustering on permissions. Another algorithm is RoleMiner (proposed by Vaidya et al. [218]), which
is based on subset enumeration. Moreover, Molloy et al. [172] designed an RM algorithm that
considers the semantic meanings of the roles. In addition to being a method for policy analytics,
RM can be used to migrate from or to an RBAC model [212, 227].
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4.4 Graph-Based Modeling (GM) Methods

In the context of policy analysis, a set of policies can be represented as a graph (i.e., nodes con-
nected with edges) or a tree (a special form of a graph), which helps to efficiently query, analyze,
and verify the corresponding policies by using the graph operations. In particular, graph traversal,
graph union, graph intersection, and graph difference are used to analyze properties of policies.
The preparatory step of the analysis process is to transform a given policy set into a single graph
(referenced as Policy Graph) or tree (referenced as Policy Tree). Transforming the set of policies
into a graph includes modeling the policy components (e.g., roles in RBAC policies) into nodes
and constructing a path (i.e., a sequence of edges connecting certain nodes) for every policy. The
transformation includes multiple graph operations, such as traversing and updating the graph.
The graph-based policy model has been used for ensuring that the specifications of the policies
comply with their goals and the system requirements [14, 21–24, 27, 28, 45, 76, 210, 226].

4.5 Mutation Testing (MT) Methods

Mutation testing [78] is a technique for software testing that involves generating several versions
of the software by making one small change at a time. Mutation testing uses mutation operators
that differ based on the corresponding programming language. Each generated version is called a
mutant; the goal is to create test cases that are able to detect all faults in the mutants. A major limi-
tation of mutation testing is its computational cost. Hence, several algorithms have been proposed
for reducing the number of mutants without affecting the effectiveness of tests. This problem is
referred to as the Mutant Reduction Problem [118] as described in Definition 11. Several techniques
were introduced to address this problem, including mutant sampling [15, 54], mutant clustering
[107], selective mutation [163], and higher-order mutation [117].

Definition 11 (The Mutant Reduction Problem [118]). For a given set of mutants M , and a set of
tests T , MST (M ) denotes the mutation score of the test set T applied to mutants M . Find a subset
of mutants M ′ from M , where MST (M ) ≈MST (M ′).

Mutation testing has been adopted for policy testing and verification [159–162, 177, 178, 188] in
three consequent steps: (1) inject faults into the original policies to generate a set of mutant poli-
cies; (2) create various scenarios to enforce both original and mutant policies; and (3) measure the
percentage of mutant policies whose enforcement output is different from their original policies.
The percentage calculated in the last step is referred to as detection percentage of mutant policies,
which indicates the correctness level of the policy set. Consequently, mutation testing helps in
discovering certain scenarios where the corresponding policies are specified incorrectly. To gen-
erate mutant policies for mutation testing, it is crucial to design an efficient mutation mechanism
(known as mutation operators). Several researchers [81, 130, 175, 176] defined generic operators
that are independent of the policy model.

5 SYSTEMS AND FRAMEWORKS FOR POLICY ANALYSIS

In this section, we survey several well-known systems and frameworks that address the challenge
of policy analysis in various domains.

5.1 Environment for XACML-Based Policy Analysis and Management (EXAM)

EXAM is a comprehensive framework for policy analysis composed of five components: policy
annotator, policy filter, policy similarity analyzer, and policy integration framework. The policy
annotator preprocesses policies by adding annotations to represent the semantics of the policies
[131]. The policy filter evaluates the similarity of each pair of policies using a policy similarity
measure [132]. The similarity measure for a pair of policies produces a similarity score that is used
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for reducing the number of analyzed policies by eliminating the low-score policy pairs. The policy
similarity analyzer supports three types of analysis queries: (a) policy metadata queries related to
the metadata associated with the policies, (b) policy content queries related to the content of poli-
cies, and (c) policy effect queries related to the interactions among the policies and their outcomes.
The analyzer component is based on two methods: MTBDD and SAT solver. The policy integra-
tion represents policies in the MTBDD model to combine policies based on the use of algebraic
operations defined by the fine-grained integration algebra (FIA) [192].

5.2 Margrave

Margrave is a software suite for analyzing XACML policies [85]. It uses the MTBDD structure as
the underlying representation of policies. Margrave has two components: verification and change
impact analysis. The verification component is an engine for querying policies and evaluating a
particular property. The change impact analysis component uses a decision diagram, referred to
as a change-analysis decision diagram, to analyze the changes among a pair of policies and outline
the semantic differences between them. The analysis results are represented by a MTBDD that
enables exploring them by different verification queries.

5.3 MIsconfiguRAtion ManaGEr (MIRAGE)

MIRAGE is a management framework for the analysis of network policies deployed in network
devices (e.g., firewalls, intrusion detection systems, and VPN routers) [88]. The framework de-
tects anomalies and verifies consistency, relevancy, and correctness of network security policies
by using bottom-up and top-down approaches. The bottom-up approach analyzes the configura-
tion errors in deployed components and the top-down approach refines global security policies
into configuration of security components. These approaches are mainly based on representing
policies using a formal model and using Boolean functions and reasoning methods. MIRAGE is
composed of four services: intra-component analysis, inter-component analysis, aggregation
mechanism, and refinement mechanism. The intra-component analysis detects the inconsistencies
between the policies of a single security appliance, while the inter-component analysis detects the
inconsistencies between the policies of different security appliances. The aggregation mechanism
merges the policies of all security appliances into one global minimal consistent set of policies.
The refinement mechanism deploys the aggregated global set of policies to newly added security
appliances.

5.4 Policy Conflict Analysis for Quality of Service Management

Charalambides et al. [59] proposed a policy management technique to handle conflicts in the net-
work management domain with a focus on quality of service (QoS) management. It classifies con-
flicts into application-specific (e.g., routing conflict) and domain-independent (e.g., redundancy
and mutual exclusion) conflicts. To detect conflicts, it uses abduction and explanation of conflict oc-
currence. The detection approach concentrates on policies for network dimensioning (ND) (which
is a component of the TEQUILA framework). It defines conflict rules for the Ponder [73] language;
it then searches the policy repository to check whether there is a policy violating conflict rules.

5.5 A Toolkit for Firewall Modeling and Analysis (FIREMAN)

FIREMAN [228] is a framework for firewall modeling and analysis. FIREMAN provides static
analysis methods to detect misconfigurations, inconsistencies, redundancies, and irrelevancies of
firewall rules by modeling them in BDDs. FIREMAN can be used for both individual and dis-
tributed firewall systems. Thus, it supports analysis services at various levels: intra-firewall, inter-
firewall, and cross-path. The analysis framework adopted by FIREMAN is a bottom-up strategy by
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employing a local analysis for each individual firewall and then performing a global analysis con-
sidering the interactions between the distributed set of firewalls.

5.6 FLCheck

FLCheck is a framework to specify, enforce, and verify access control policies [56]. FLCheck uses
BDDs for performing the analysis of access control policies. In particular, it analyzes the RBAC
properties (e.g., consistency, safety, and domain-dependent conditions) and indicates how domain-
dependent assumptions can be merged into the check without a need to modify policies.

5.7 Event Calculus Framework for Policy Specification and Analysis

Bandara et al. [38] proposed an approach to formalizing policy specifications and system behav-
ior rules using EC. Through the proposed formal representation and using abductive reasoning
techniques, it performs policy analysis to generate a refined set of policies while ensuring correct-
ness, consistency, minimality, and completeness of the generated policy set. The approach aims to
achieve consistency by detecting different actual and potential types of conflicts: modality conflict,
conflict of duty, conflict of interest, and conflicts of priorities.

5.8 Analysis Tools for SELinux Security Policy

Different policy analysis tools, such as SLAT [94] and PAL [197], have been developed to analyze
the security policies of SELinux [150]. Security-Enhanced Linux Analysis Tools (SLAT) [94] uses
formal methods and model-checking techniques to verify that SELinux policies achieve their in-
tended security goals. It translates access control policies written in SELinux’s policy language
into logic programs and then uses query evaluations for analysis. Policy Analysis using Logic-
Programming (PAL) [197] uses an information flow model of SLAT for policy analysis. Function-
alities of SLAT and PAL are similar, though they differ with respect to query languages. To repre-
sent queries, SLAT uses a special-purpose language determining information flow paths between
security contexts. PAL, unlike SLAT, is implemented in XSB (i.e., it is a logic-programming and
deductive database system based on tabled resolutions) [8]. To improve the understandability of
SELinux policy analysis results, Xu et al. [225] developed a visualization tool based on both ad-
jacency metrics and semantic substrates (i.e., a visualization technique that uses the user-defined
semantic substrate to generate graph layouts) [206]. The framework enables administrators to de-
tect possible policy violations by running visualization-based queries on the policies.

5.9 Graph-Based Policy Analysis (GPA)

GPA [226] is a framework for analyzing information flow in networks, representing policy queries,
and identifying integrity violation of SELinux policies. GPA displays policy layouts by using two
visual techniques: semantic substrates and adjacency matrices. It allows system administrators to
apply a specific query on policies. Then, a policy violation graph (generated by the framework)
displays violations recognized by an integrity model. The integrity model is developed based on the
trusted computing base (TCB), the notion of transaction procedure in the Clark-Wilson security
model, and Biba concepts. GPA introduces filtering and ignoring techniques to remove violations
from policy graphs.

5.10 Tierless Programming and Reasoning for Software-Defined Networks

Nelson et al. [180] proposed an SDN-based declarative programming language, called Flowlog.
Flowlog enables the writing of SDN policies as well as their analysis. In particular, it allows con-
verting a Flowlog ruleset to Alloy (see Section 4.2.2) specifications. Upon compiling Flowlog rules
into Alloy, their correctness is verified using the Alloy analyzer.
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5.11 Access Control Policy Evaluator and Generator (AcPeg)

AcPeg [232] is a Java-based framework that enables analyzing policies using model checking [231].
The algorithm uses the symbolic model-checking approach [169] to support various goals, includ-
ing checking whether the policies provide enough permissions to users and identifying policy
weaknesses. For analyzing access control policies with this framework, they have to be specified
in a formal language, called RW (Read-Write) [92]. However, the framework also supports the
translation of the description of a policy from the RW language into the XACML format.

5.12 MOHAWK

Jayaraman et al. [115] introduced a framework called MOHAWK that enables error detection in
ARBAC [195] access control policies. The policy analysis algorithm supported by MOHAWK com-
bines both abstraction-refinement and bounded model-checking techniques. The algorithm first
applies abstraction to a set of input policies (with successive refinements, if necessary) to efficiently
evaluate an abstract form of these policies. The level of abstraction can be configured based on the
scale of the access control policies (e.g., for a small number of policies, the user can configure the
tool to abstract less). After the abstraction step, the algorithm applies model checking for verify-
ing the abstract version of policy against a set of security properties. For this purpose, MOHAWK
translates the abstract form of the policy to NuSMV specifications [6]. NuSMV is a model-checking
library that uses both types of model-checking techniques, BDD and SAT.

5.13 Firewall Policy Advisor (FPA)

FPA [21–24] is a Java-based tool for analyzing firewall policies using a tree-based method. FPA
supports two approaches for analyzing policies: intra-firewall and inter-firewall. The intra-firewall
analysis approach evaluates policies within a single firewall while the inter-firewall analysis as-
sesses policies between inter-connected firewalls. The analysis approaches aim at detecting in-
consistency, redundancy, and irrelevancy in the policy set. In addition, FPA includes an editor that
supports managing firewall policy rules. It also displays the appropriate order of the added or
modified rules and the effect of the removed rules on the policy set.

5.14 Structured Firewall Design

A firewall is often designed as a sequence of rules leading to three main problems: consistency,
completeness, and compactness [90]. To address these problems, Gouda and Liu [90] proposed
a method called structured firewall design based on a firewall design diagram (FDD) instead of a
sequence of rules that often conflict with each other. An FDD is an acyclic and directed graph. Two
algorithms, FDD reduction and FDD marking, are used to combine rules. A firewall compaction
algorithm to remove the redundant rules has also been proposed [134, 146]. The FDD is used to
represent the semantics of a firewall. The FDD reduction algorithm is used to reduce the number of
decision paths (i.e., generated rules) in an FDD. In the proposed method, the user deals only with
the firewall decision diagram, which is a formal specification of the firewall. This requires the
user to know the formal specification of the firewall, making the method less generic. Moreover,
the FDD reduction is based on a graph traversal method that may be time consuming if the FDD
specified by the user is very large.

Owing to a large number of firewall rules in a firewall, analyzing and understanding the firewall
rules is a difficult task. An effective way to analyze and understand deployed firewall rules is by
issuing queries. An SQL-like query language called Structured Firewall Query Language (SFQL)
has thus been proposed [143, 144]. Furthermore, an algorithm for efficiently processing firewall
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queries has also been proposed by Liu and Gouda [143]. The FDD is used as the core data structure
by the query processing algorithm and engine.

The correctness of firewall rules and configuration are crucial for an effective security perimeter
deployment. However, ensuring the correctness of firewall policies is a challenging task, since a
firewall may have a large number (e.g., hundreds to a few thousand) of rules and firewall rules are
often added at different times by different firewall administrators for various reasons. To address
this challenge, Hwang et al. [109] proposed a systematic structural testing approach. The proposed
method is based on the firewall policy coverage concept, used to test a firewall policy’s structural
entities (i.e., rules, predicates, and clauses). The method allows one to check whether each en-
tity is specified correctly. Three structural coverage measurements, which monitor whether rules,
predicates, or clauses are covered when evaluating packets against the policy under test, have
been defined [109]: (1) rule coverage measurement is the percentage of the number of covered rules
(i.e., predicates being evaluated to true) in a policy; (2) predicate coverage measurement is the per-
centage of the number of covered predicates (i.e., predicates being evaluated to true or false); and
(3) clause coverage measurement is the percentage of the number of covered true or false values of
clauses. Instead of exhaustively testing all possibilities, these measurements enable the testing to
cover only specific entities.

A configuration of firewall very often leads to errors (i.e., misconfiguration). Such misconfigu-
ration, considered as a policy fault, either creates security holes that allow malicious traffic into
private networks or blocks legitimate traffic and disrupts normal services. A faulty firewall policy
misclassifies some packets, thus leading to unexpected decisions. In [63, 64], a fault model is pro-
posed for firewall policies, including five types of faults: wrong order, missing rules, wrong decisions,
wrong predicates, and wrong extra rules. For each type of fault, an automatic correction technique
is proposed. An approach that employs these techniques is proposed to automatically correct all
or part of the misclassified packets of a faulty firewall policy.

5.15 Gorgias-B

Gorgias-B [4, 209] is a tool that combines argumentation reasoning with preference-based rules
and abductive logic programming for making informed decisions. It can help users not only to
define their decision policy but also execute scenarios to test it. Gorgias-B has been used for con-
flict resolution in various applications such as data access control [4], autonomous systems (e.g.,
Drones), and firewall configuration management [37].

6 COMPARISON

In this section, we compare 133 research publications describing either a system, framework, or a
research approach for policy analysis. Our comparison considers three dimensions (see Table 3):
policy domain, analysis goals1, and analysis methods. The abbreviations for both policy analysis
goals and methods used in the comparison table (Table 3) are listed in Table 2.

Figure 3 shows some statistics about the set of surveyed articles. Among the surveyed articles,
access control is the policy domain that is the focus of the majority of them. In particular, RBAC and
XACML are the models that are widely considered. Articles related to the network policy domain
consider mainly the firewall rules model. Thus, research is needed for methods and tools to analyze
other network policy models, such as the rule models of SDN. With respect to the analysis goals,
most systems and frameworks focus on consistency and correctness. Therefore, research is needed
on methods for analyzing completeness and relevancy, which are critical in dynamic contexts.

1If the field related to the analysis goals (i.e., policy quality or policy design) is marked as “N/A,” this means that the policy

analysis approach proposed by the corresponding research work does not address that goal.
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Table 2. Symbols for Both Policy Analysis Goals and Methods

Policy Analysis Goals Policy Analysis Methods

Symbol Description Symbol Description

CON Consistency FM Formal Methods
COM Completeness MC Model Checking
MIN Minimality DM Data Mining
REL Relevance GM Graph-Based Modeling
COR Correctness MT Mutation Testing
PSS Policy Set Structuring
SA Similarity Analysis
CIA Change Impact Analysis

Fig. 3. Statistics about the 133 research publications describing the systems and frameworks compared in

Table 3.

Also, analysis techniques addressing policy design and organization (e.g., similarity analysis and
change impact analysis) need to be further explored. With respect to the analysis methods, the
most used techniques are model checking and formal methods since these methods can be used
for almost all of the analysis goals. DM is the least used technique because it is computing intensive,
time-consuming, and error prone.

None of the policy analysis systems and frameworks is able to support all of the analysis goals.
In particular, none of the systems is able to support the analysis of policies with respect to all policy
quality requirements. In the access control policy domain, ProFact [14, 45]2 considers all quality
requirements except correctness, while in the network policy domain, the Mirage [88] and FPA
[21–24] frameworks consider all quality requirements except completeness. Figure 4 shows the
association ratios of the analysis goals in the surveyed publications. All analysis goals are tightly
associated with consistency, which is the focus of the majority of the articles, except for the goal of
change-impact analysis that is tightly associated with correctness. This is owing to the similarity
between the analysis goals of both correctness and change-impact analysis in terms of purpose
and underlying algorithms. In addition, all goals are associated loosely with the similarity analysis

2ProFact is a policy analysis framework that uses provenance metadata in addition to the set of access control policies.

Provenance metadata is a rich set of logged information about the system behavior at runtime [11–13].
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Table 3. Comparison of Systems and Frameworks for Policy Analysis

Publications Policy Domain
Policy

Quality Policy Design Method

MIRAGE [88] Network—Firewall CON , MIN ,
REL, COR

N/A FM—Reasoning

TEQUILA [59, 60] Network CON , MIN N/A FM—Event Calculus,
FM—Reasoning

Wu et al. [223] Access Control CON , MIN N/A FM—Matrix based

Vaidya et al. [217,
218]

RBAC N/A PSS FM—Matrix based,
DM—Role Mining

Bandara et al. [38] Access Control,
Management

CON N/A FM—Event Calculus,
FM—Reasoning

Bandara et al. [35] Network CON N/A FM—Event Calculus,
FM—Reasoning

Bandara et al. [36,
37]

Network—Firewall CON , MIN ,
COR

N/A FM—Argumentation

Bandara et al. [34] Access Control CON , COR N/A FM—Reasoning

Turkmen et al.
[215]

XACML CON , COR CIA FM—Reasoning,
MC—SMT Solver

Applebaum et al.
[29]

Network—Firewall MIN N/A FM—Argumentation

Boella et al. [51,
52]

Access Control CON N/A FM—Argumentation

Moffett and
Sloman [170]

Management CON N/A FM—Reasoning

Kolovski et al.
[126]

XACML CON , MIN ,
COR

SA FM—Reasoning

Lin et al. [132] XACML N/A SA GM—Tree,
DM—Clustering

Lupu and Sloman
[151]

RBAC CON N/A FM—Reasoning

McDaniel and
Prakash [166]

Access Control CON , COR N/A FM—Reasoning

Craven et al. [69,
70]

XACML CON ,
COM , MIN

SA FM—Event Calculus,
FM—Reasoning

Halpern and
Weissman [96]

Access Control CON N/A FM—Reasoning

Benferhat et al.
[43]

RBAC CON N/A FM—Reasoning

Cuppens et al. [71] Rule-BAC,
Or-BAC

CON , MIN N/A FM—Reasoning

Adi et al. [16] CA-BAC CON N/A FM—Reasoning

Wang et al. [221] Access Control CON , MIN N/A FM—Reasoning

Sun et al. [211] Access Control CON N/A GM—Tree

Kolaczek [124] RBAC CON , COR N/A FM—Reasoning

Liu [135] Network—Firewall MIN , COR CIA MC—Decision Diagrams,
FM—Reasoning

Gupta et al. [93] RBAC CON N/A FM—Reasoning

EXAM [131] XACML N/A SA MC—SAT Solver, MTBDD

(Continued)
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Table 3. Continued

Publications Policy Domain
Policy

Quality Policy Design Method

Margrave [85] XACML CON CIA MC—MTBDD

FIREMAN [228] Network CON , MIN N/A MC—BDD

FLCheck [56] RBAC CON N/A MC—BDD

Pina Ros et al.
[186]

XACML MIN N/A MC—BDD

Hughes and
Bultan [106]

XACML COR N/A MC—Alloy, MC—SAT
Solver

Jeffrey and Samak
[116]

Network COR N/A MC—SAT Solver

Alberti et al. [25,
26]

RBAC MIN , COR N/A FM—Reasoning,
MC—SMT Solver

MOHAWK [115] RBAC COR N/A MC—BDD, MC—SAT
Solver

Jayaraman et al.
[114]

Network CON , COR CIA MC—SMT Solver

Mankai and
Logrippo [154]

XACML CON N/A MC—Alloy

Hassan et al. [101] XACML CON N/A MC—Alloy

Power et al. [187] RBAC COR CIA MC—Alloy

Karimi et al. [119],
Karimi and Cowan
[120]

RBAC, XACML CON , COR N/A MC—Alloy, MC—SAT
Solver, MC—BDD

Schaad and
Moffett [198]

RBAC CON N/A MC—Alloy

Haraty and Naous
[99]

Network CON N/A MC—Alloy

Guttman et al. [94] Access Control COR N/A MC—BDD

Tanvir and
Tripathi [214]

RBAC CON ,
COM , COR

N/A MC—SAT Solver

AcPeg [231, 232] XACML COM , COR N/A MC—BDD

Ma et al. [152] Access Control CON ,
COM , COR

N/A MC—SAT Solver

Hu and Ahn [103] RBAC CON , COR N/A MC—Alloy, MC—SAT
Solver, FM—Reasoning

Hwang et al. [110] XACML COR N/A MC—SAT Solver,
MC—BDD

PoliVer Koleini
and Ryan [125]

Access Control COR N/A FM—Reasoning,
MC—BDD

Ngo et al. [182] XACML MIN , COR N/A MC—MIDD

Nelson et al. [180] Network—SDN COR N/A MC—Alloy

Mazzoleni et al.
[164, 165]

XACML N/A SA FM—Reasoning

Golnabi et al. [89] Network—Firewall MIN N/A DM—Association Rule
Mining

Bauer et al. [41] RBAC CON , COR N/A DM - Association Rule
Mining

(Continued)
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Table 3. Continued

Publications Policy Domain
Policy

Quality Policy Design Method

Ma et al. [153] RBAC COM , COR N/A DM—Association Rule
Mining

Marouf et al. [155,
156]

XACML N/A PSS DM—Clustering

Ait El Hadj et al.
[19]

XACML MIN N/A DM—Clustering

Shaikh et al. [201,
202, 203]

Access Control CON ,
COM , MIN

N/A DM—Classification

Aqib and Shaikh
[31]

Access Control CON N/A DM—Classification

Schlegelmilch and
Steffens [199]

RBAC N/A PSS DM—Role Mining,
DM—Clustering

Molloy et al. [172] RBAC N/A PSS DM—Role Mining

Dunlop et al. [80] Management CON N/A DM—Classification

Mukkamala et al.
[179]

RBAC COR N/A DM—Role Mining

Basile et al. [40] Network—Firewall CON , MIN N/A DM—Classification

Xu et al. [226] Access Control COR CIA GM—Graph

Staniford-Chen
et al. [210]

RBAC COR N/A GM—Graph

Alves and
Fernández [27, 28]

RBAC COR N/A GM—Graph

ProFact [14, 45] RBAC CON ,
COM ,
MIN , REL

N/A GM—Tree,
DM—Classification

Davy et al. [76] Network CON N/A GM—Tree

Al-Shaer et al.
[21–24]

Network—Firewall CON , MIN ,
REL, COR

N/A GM—Tree

Sarna-Starosta and
Stoller [197]

Access Control CON ,
COM , COR

N/A GM—Graph

Koch et al. [123] LBAC CON N/A GM—Graph

Russello et al.
[193]

Access Control CON N/A GM—Graph

Mohan et al. [171] XACML CON N/A GM—Tree

Huang et al. [105] RBAC CON N/A GM—Graph

Bravo et al. [53] Access Control CON N/A GM—Graph

Aqib and Shaikh
[30]

Access Control CON , COR N/A GM—Tree

Martin et al.
[157–161]

XACML COR CIA MT

Pretschner et al.
[188]

RBAC COR N/A MT

Mouelhi et al.
[175, 176, 177, 178]

RBAC, XACML,
OrBAC

CON , COR N/A MT

Masood et al. [162] RBAC COR N/A MT

(Continued)
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Table 3. Continued

Publications Policy Domain
Policy

Quality Policy Design Method

Elrakaiby et al.
[81]

RBAC COR CIA MT

Le Traon et al.
[130]

RBAC COR N/A MT

Xu et al. [224] XACML COR N/A MT

Gorgias-B
Spanoudakis et al.
[209]

Access Control,
Network—Firewall

CON N/A FM—Reasoning

Gouda and Liu [90,
91]

Network—Firewal CON ,
COM , MIN

N/A MC—Decision Diagram

Liu and Gouda
[140, 142]

Network—Firewall MIN CIA MC—Decision Diagram

Liu and Gouda
[143]

Network—Firewall CON N/A MC—Decision Diagram

Liu [133] Network—Firewall COR N/A MC—Decision Diagram

Liu et al. [141, 144,
146]

Network—Firewall MIN N/A MC—Decision Diagram

Liu and Chen [136,
137]

Network—Firewall CON , COM N/A MC—Decision Diagram

Liu et al. [138, 139] XACML CON , COM N/A MC—Decision Diagram

Liu et al. [147, 148] Network—Firewall CON ,
COM , MIN

N/A MC—Decision Diagram

Hwang et al. [108,
109]

Network—Firewall COR CIA MT

Chen et al. [63, 64] Network—Firewall CON ,
COM , COR

CIA MC—Decision Diagram,
MT

Khakpour and Liu
[122], Liu and
Khakpour [145]

Network—Firewall CON , COM N/A MC—Decision Diagram,
FM—Matrix based

Chen et al. [61, 62] Network—Firewall CON ,
COM , MIN

PSS MC—Decision Diagram

Fig. 4. Association among the analysis goals addressed by the policy analysis systems and frameworks de-

scribed in the surveyed articles.
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Fig. 5. The distribution of the analysis methods used for each analysis goal addressed by the policy analysis

systems and frameworks described in the surveyed articles.

Fig. 6. The distribution of techniques per analysis methods used by the policy analysis systems and frame-

works described in the surveyed articles.

and policy set structuring goals. In particular, the policy set analysis goal is associated with only
three other goals: consistency, completeness, and minimality.

Figure 5 shows the distribution of the methods used for verifying each goal for the policy analy-
sis systems described in the surveyed articles. In general, every goal is assessed by various methods.
Consistency, correctness, minimality, and completeness are mainly evaluated by model checking
and formal methods because these methods are comprehensive and easy to use. Hence, policy
analysis approaches using model checking and formal methods can be a baseline or benchmark
when developing new systems. Other analysis goals (i.e., change-impact analysis, relevancy, and
policy set structuring) are analyzed using other techniques that suitably fit the nature of these
goals. For example, change-impact analysis is evaluated using mutation testing since it is the most
relevant method for applying various changes to the available set of policies in order to determine
the impact on the quality of the analyzed policies.

Figure 6 shows the distribution of the various techniques for each analysis method used in the
surveyed articles. In general, the distribution of the techniques among every method is almost
uniform except for formal methods and model checking. For formal methods, the most-used tech-
nique is reasoning while the least-used technique is the matrix-based one. The reasoning methods
are widely used because of their ability to generate analytical findings and results based on partial
knowledge and observations of policies. The matrix-based methods are the least used because of
their complexity and usage limitations. For model-checking methods, the most-used technique is
the decision diagram–based technique while the least-used technique is the Alloy-based one. De-
cision diagrams are widely used because of their ability to represent all possible states of policies,
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hence reducing the ambiguities that arise in policy enforcement systems, resulting in accurate and
comprehensive analysis results.

7 RESEARCH DIRECTIONS

The area of methods, systems, and frameworks for policy analysis has been widely investigated,
especially in the context of access control systems and network management systems. However,
as our previous section has shown, there are no comprehensive systems able to support a vari-
ety of analysis with different goals. Most systems focus on some specific type of analysis with
specific goals, for example, consistency analysis. It is thus clear that more general policy analysis
systems are needed. In what follows, we discuss several relevant directions for analysis systems
and methods.

7.1 New Goals for Policy Analysis

Policy analysis is an area in which there are still important open research directions specifically
motivated by the deployment of policy-based management in the context of distributed systems
consisting of autonomous intelligent devices. A first relevant research direction is related to the
identification of analysis goals for such contexts. Two important goals are the assessment of en-
forceability and risk. Enforceability refers to an assessment of the feasibility and cost of enforcing
a set of policies. For example, a policy whose enforcement requires access to top secret informa-
tion may be very difficult to enforce in an insecure enforcement environment as the transfer of
the top secret information into the enforcement system may not be possible. This means that this
policy may be difficult to enforce and may require a specialized partitioned architecture that may
be expensive. Assessing the risks arising from the use of specific policies is critical and non-trivial,
as risks are usually application and context dependent. Further, the risk appetite of system own-
ers could change. Therefore risk assessment methods are required to able to assess policies with
respect to specific applications and also to able to continuously assess risks to deal with changing
contexts and situations. Thus, policy changes may be required in response to such a changing risk
and risk appetite.

7.2 New Methods for Policy Analysis

New methods for policy analysis ought to take into account policy goals of enforceability and
risk and evaluate them in the presence of uncertainty or unpredictability of the context in which
systems operate. Therefore they cannot be restricted to only traditional analysis tasks nor they
can assume “perfect” inference about properties of the environment and of the system state. The
new methods of analysis will need to be more stochastic in nature in both the representation of
new policy goals and the analysis process. For example, analysis methods based on probabilistic
model-checking techniques (e.g., PRISM [129]) could be used to support automated verification
of quantitative analysis of enforceability and risk. Probabilistic model checking can support the
analysis of several types of probabilistic models (e.g., discrete-time Markov chains, probabilistic
automata, and probabilistic timed automata) with respect to properties expressed in probabilis-
tic temporal logic (PCTL). Risk scenarios could be modeled using Markov chain (MC) models of
stochastic (discrete) risk-related policy-driven scenarios, and probabilistic model checking could
be used to evaluate expected risk implied by these models by expressing these goals using prob-
ability formalisms (e.g., PCTL [98]) and evaluating the models against these properties. A similar
approach can be used for the analysis of the enforceability of policies. MC models are normally ex-
tended with notions of costs and rewards used to estimate resources and their use. The challenge
is how to express policy specifications into these models for the purpose of analysis and what
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types of properties to express in order to capture notions of risk and enforceability. A recently
proposed technique that combines probabilistic and abductive inference for reasoning about most
likely explanations of violations of given goals [216] could also provide an alternative underpin-
ning framework for new methods of policy analysis. Such methods would constitute a natural
extension of established state-of-the-art policy analysis techniques based on abductive inference
to the context of uncertainty and risk. Both proposals would cover the case of static analysis of
policies with respect to new classes of goals. Analysis methods based on runtime executions of au-
tonomous intelligent systems could also be envisaged. These would rely on analysis of outcomes
of enforced policies. Advanced machine-learning algorithms could be used to recognize patterns
of risk and/or (lack of) enforceability of policies through past execution traces. Policies could then
be analyzed with respect to these learned patterns and outcomes of the analysis could be used to
inform ways to revise and adapt the policies. The trained machine-learning architectures could
also be applied to new (unseen) situations to predict future goal violations.

7.3 New Analysis Frameworks for Distributed Systems

Another interesting research direction concerns policy analysis in large-scale distributed systems
and refers to whether policy analysis (and possibly consequent policy evolution) must be carried
centrally or locally at different subsystems. Ensuring that a set of policies is of high quality at a
global level may be difficult if at all possible, as different portions of the system may be charac-
terized by different access patterns and different contexts. On the other hand, carrying out policy
analysis according to a distributed strategy so that policies are analyzed at different subsystems
may result in policy analysis and evolution that are optimal with respect to local contexts but
not optimal with respect to a more global level. A possible approach is to have a flexible analysis
infrastructure able to support and possibly combine both approaches depending on the specific
requirements of the system of interest. This is particularly relevant in dynamic network environ-
ments (e.g., coalitions and federated networks) that may involve network entities from different
parties.

7.4 Next-Generation Policy-Based Management for Autonomous Devices

Finally, a newly emerging approach in the area of policy-based management is represented by the
notion of generative policies [220] that has been proposed as the next-generation policy-based
management approach for cognitive autonomous devices and IoT devices. In a generative pol-
icy framework, devices are given policy templates; they can autonomously instantiate and refine
such templates according to their own missions and contexts. The generative policy framework
will require novel analysis techniques to analyze policy templates and how these templates are
instantiated by different devices in different contexts and for different missions (e.g., cognitive
and distributed collaborative applications) and compare different instantiations to determine, for
example, the optimal ones for specific contexts. Since the generative policy approach brings the
agility of generating policies based on the contexts, an analysis of the change impact might be
needed to assess the potential consequences and risks associated with the change. An efficient
mechanism is required for conducting such a dynamic policy analysis for cognitive autonomous
devices with limited storage and computation capabilities. Also, for IoT devices that have limited
computing capabilities, some of the functions for policy generation may have to be delegated to
more powerful devices and systems, such as edge servers. For those devices, an important issue is
to analyze policies in order to determine the costs of policy enforcement with respect to energy
and storage.
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