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Recommender systems are one of the most successful applications of data mining and machine-learning
technology in practice. Academic research in the field is historically often based on the matrix completion
problem formulation, where for each user-item-pair only one interaction (e.g., a rating) is considered. In many
application domains, however, multiple user-item interactions of different types can be recorded over time.
And, a number of recent works have shown that this information can be used to build richer individual user
models and to discover additional behavioral patterns that can be leveraged in the recommendation process.

In this work, we review existing works that consider information from such sequentially ordered user-item
interaction logs in the recommendation process. Based on this review, we propose a categorization of the cor-
responding recommendation tasks and goals, summarize existing algorithmic solutions, discuss methodolog-
ical approaches when benchmarking what we call sequence-aware recommender systems, and outline open
challenges in the area.
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1 INTRODUCTION

Recommender Systems (RS) are software applications that support users in finding items of inter-
est within larger collections of objects, often in a personalized way. Today, such systems are used
in a variety of application domains, including, for example, e-commerce or media streaming, and
receiving automated recommendations of different forms has become a part of our daily online
user experience. Internally, such systems analyze the past behavior of individual users or of a user
community as a whole to detect patterns in the data. On typical online sites, various types of rele-
vant actions of a user can be recorded, for example, that a user views an item or makes a purchase,
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and several of the actions of a single user may relate to the same item. These recorded actions
and the detected patterns are then used to compute recommendations that match the preference
profiles of individual users.

In academic environments, the predominant problem abstraction is that of matrix completion
where we are given a user-item rating matrix and the goal is to predict the missing values. This ab-
straction is generally well-suited to train machine-learning models that aim to capture longer-term
user preference profiles. The corresponding algorithms, however, typically implement no specific
means to take the users’ short-term behavior or intents into account in their recommendations;
nor are they designed to use the rich information that is contained in the sequentially ordered user
interaction logs that are often available in practical applications.

In practice, however, there are many application scenarios where considering short-term user
interests and longer-term sequential patterns can be central to the success of a recommender. A
typical example problem setting is that of session-based recommendation [45, 56], where no longer-
term user histories are available. Instead, we have to adapt the recommendations according to
the assumed short-term interests of an anonymous user. The goal in such scenarios usually is to
recommend objects that match a given sequence of user actions.

Typical algorithmic approaches in that context learn to predict the best next item from sequen-
tial user interaction logs. Considering such sequences is, however, not only relevant for the short-
term adaptation of the recommendations. The sequential logs can also be used to derive longer-
term behavior patterns, e.g., to detect interest drifts of individual users over time [85], to identify
short-term popularity trends in the community that can be exploited by recommendation algo-
rithms [54, 62], or to reason about the best point in time to remind users of certain items they have
seen or purchased before [70]. Finally, there are application domains where the recommendation
of one item (e.g., an accessory) only makes sense after some other object was purchased. Such weak
or strict ordering constraints might correspondingly be learned from the data and considered by
a sequence-aware recommender.

Overall, sequence-aware recommendation scenarios are highly relevant in practice and a num-
ber of relevant works were proposed in the recent past. Research in the field is, however, compa-
rably scattered and no common understanding of the different facets of the problem exists. In this
survey work, we therefore (i) categorize the various scenarios of sequence-aware recommenda-
tion approaches in the academic literature, (ii) we review the various algorithmic approaches that
were proposed to extract and leverage patterns from interaction logs, and (iii) we finally discuss
specific issues when benchmarking different recommendation methods. One of the major goals of
the review in that context is to lay the path for more standardized and better reproducible research
works in the field.

The article is organized as follows. In Section 2 and Section 3, we characterize and categorize
different types of sequence-aware recommendation problems that can be found in the literature.
Section 4 reviews existing algorithms and Section 5 discusses methodological questions regard-
ing their evaluation and comparison. Section 6 finally gives a brief outlook on future research
directions.

2 CHARACTERIZING SEQUENCE-AWARE RECOMMENDER SYSTEMS

Sequence-aware recommendation problems are different from the traditional matrix-completion
setup in a number of ways. Figure 1 gives a high-level overview of the problem, its inputs, outputs,
and specific computational tasks. In general, the ordering of the objects can be relevant both with
respect to the inputs and to the outputs. We will discuss these aspects in more detail next.
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Fig. 1. High-level overview of sequence-aware recommendation problems.

2.1 Inputs, Outputs, Computational Tasks, and Abstract Problem Characterization

Inputs. The main input to sequence-aware recommendation problems is an ordered and often
timestamped list of past user actions. Users can be already known by the system or anonymous
ones. Each action can be associated with one of the recommendable items. Finally, each action can
be one of several pre-defined types and each action, user, and item may have a number of additional
attributes. Overall, the inputs can be considered as a sort of enriched clickstream data.

In the traditional matrix completion setup, all ratings are attached to one of the known users
and items. We do not require this to be the case for sequence-aware recommenders. Anonymous
user actions are not uncommon, for example, in the e-commerce domain, where users are often not
logged in. Nonetheless, relevant information can be extracted from past anonymous sessions. We
also do not require that each action is related to an item, since, for example, relevant information
can be extracted from the users’ search or navigation behavior as well [53]. Finally, in most ap-
plication scenarios, each action will have an assigned action type (e.g., item-view, item-purchase,
add-to-cart). And, depending on the domain, additional information might be available that de-
scribes further details of an action (e.g., whether an item was discounted when the action took
place), the users (e.g., demographics), or the items (e.g., metadata features).

Generally, such forms of input data are available in many practical applications, for example,
in the form of application or web server logs. Usually, we do not, however, assume to have larger
quantities of explicit ratings available in sequence-aware recommender systems.

Outputs. The output of a sequence-aware recommender are ordered lists of items as will be de-
scribed more formally below. In this general form, the outputs are similar to those of a traditional
“item-ranking” recommendation setup. However, in some sequence-aware recommendation sce-
narios, the ordering of the objects in the recommendation list can be relevant as well. Instead of
considering the list of recommendations as a set of alternatives for the user, there are scenarios
where the user should consider all recommendations and do this in the provided order. Typical
examples include the recommendation of a sequence of tracks in music recommendation or the
recommendation of a series of learning courses. We will describe such application scenarios in
more detail later in the article.

Computational Tasks. Different computational tasks of sequence-aware recommenders can be
identified in the literature. Most commonly, a task that is not present in traditional matrix comple-
tion setups is the identification of sequence-related patterns in the recorded user actions. These
can be sequential patterns, where the order of the actions is relevant, or they can be co-occurrence
patterns, where it is only important that two actions happened together, for example, within the
same session. In some cases, also distance patterns can be relevant, for example, when the problem

ACM Computing Surveys, Vol. 51, No. 4, Article 66. Publication date: July 2018.



66:4 M. Quadrana et al.

is to compute a good point in time to remind the user of something through a recommendation.
Note that the corresponding patterns do not have to be made explicit, as often done, e.g., in se-
quential pattern mining [79], but can be implicitly encoded in complex machine-learning models
as well.

Besides the identification of such patterns that are subsequently used in the recommendation
task, another computational task of a sequence-aware recommender can be to reason about order
constraints. Such constraints can be either prescribed and given for an application domain as strict
constraints (e.g., in terms of a given curriculum for the learning course recommendation problem),
given as heuristics (e.g., in terms of track transition rules for next-track music recommendation),
or be implicitly derived from the given input data as a sort of weak constraints.

Finally, the patterns (or more generally, the learned models) that were identified in the data and
the constraints have to be related with the point in time for which the recommendation is sought
for. In a session-based recommender, one might consider the last few user actions and then look
for past sessions that were similar to the current one. On the other hand, when a recommender
is used as a reminder for the repeated purchase of consumables, the distance (in time) to the last
purchase action of the user to the present time might be relevant.

Abstract Characterization. Adopting the formalisms of [3], we can describe the problem at a
more formal, abstract level as follows. Let C be a set of users and I a set of recommendable items.
In contrast to matrix-completion problems, we are not interested in predicting a utility value for
each i € I and for each ¢ € C, but in computing an ordered list of objects L of length k for each user,
where each element of | € L corresponds to an element of i € I. Technically, each sequence L is an
element of the set of all permutations up to length k of the powerset of I, that is, L € S (P (I)). We
denote this latter set of possible lists as L*.

Let u be a function that returns a utility score of a given sequence L for a user ¢, thatis, u : C X
L* — R. The sequence-aware recommendation problem then consists of determining the sequence
I/ € L* that maximizes the score for the user, i.e.,

Ve € C, I = argmax u(c,1). (1)
leL*

The main problem in recommender systems is to learn or extrapolate the utility function u from
some given data. In the matrix completion problem, which underlies the work in [3], the input
is a sparse matrix of user-item ratings. In sequence-aware recommender systems, we in contrast
assume that the underlying data is a dataset D consisting of sequence! of user actions where
each user action A € D has a number of attributes. A sequence dataset D can be considered as an
enriched log of actions of a user community, where the attributes of each action A includes some
sort of user ID? and additional optional attributes like the action type (e.g., an item view or click
event) or a timestamp.

Overall, our function u is not limited to characterizing utility scores for individual items, but
for entire ordered lists of items. This makes it possible to consider additional aspects of utility
in sequence-aware recommendation problems, including the diversity of the set as a whole, the
quality of the ordering itself, for example, in terms of transitions between objects, or the degree
of fulfillment of weak or strict order constraints in L. How these quality factors are considered
within existing algorithms will be discussed later in this work in Section 4.

Generally, the design of the utility function u depends on the specific type of value the rec-
ommender system should provide to the user, or its purpose in the sense of [50]. In the literature

1A sequence, as usual, is considered as an ordered set of objects.
%In practice, the user ID can either refer to a known user or it is created from a cookie in an ongoing user session.
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on recommender systems, researchers often do not explicitly discuss the underlying purpose of
the system, which could be information filtering but also discovery support. Instead, they focus
on optimizing an abstract computational task like predicting a hidden rating. The situation in the
context of sequence-aware recommenders is often similar with the difference that the computa-
tional task is mainly to predict the hidden elements of a session given the session beginning. While
the performance of an algorithm that predicts the next hidden user action can be assessed with
standard measures from information retrieval (such as precision and recall), in other cases specific
measures (e.g., diversity metrics) are required in the evaluation process.

2.2 Relation to Other Areas

Implicit-Feedback Recommender Systems. Our characterization of the sequence-aware recom-
mendation problem mainly targets scenarios in which we observe the individual and collective
behavior of a user community over time instead of asking for explicit item ratings. A number of
research works exist that focus on implicit user feedback like purchase events. The problem for-
mulation is, however, often based again on matrix completion, where multiple interactions of one
user with an item are not taken into account. Explicit item ratings, on the other hand, can also
be taken into account in a sequence-aware recommender as one of several types of user actions.
One potential problem in that context, however, is that the point in time when users provide a rat-
ing can be quite different from the point in time when they consumed or purchased an item (e.g.,
when registering for a movie recommendation service, users initially rate a bunch of movies they
have watched in the past). The sequence and timestamp of the ratings might therefore mislead a
sequence-aware recommender.

Context-Aware and Time-Aware Recommender Systems. In some of the application scenarios dis-
cussed in the next sections, sequence-aware recommender systems represent a special form of
context-aware recommender systems. In session-based recommendation, the users’ short-term
intents, which can be estimated from their very last actions, can represent an important piece
of context information to be taken into account when recommending [56].

Time-aware recommender systems (TARS) usually consider time information that is associated
with past user actions to adapt the recommendations accordingly (see [17] for an overview). TARS
share a number of commonalities with sequence-aware recommenders, for example, in terms of
how we can compare different approaches in offline settings. The focus of sequence-aware recom-
menders is, however, often less on the exact point of time of the past user interactions, but on the
sequential order of the events. Furthermore, a number of proposals on time-aware recommenders
mainly rely on the matrix completion problem setting when modeling temporal dynamics [68].

Research in Other Related Fields. Some aspects of sequence-aware recommender systems were
finally explored also in neighboring fields. Examples are the problem of query suggestion in the field
of information retrieval or the problem of interest drift in the more general field of user modeling.
In this article, we concentrate on works where the recommendation problem itself is the main
focus, in contrast to works that, for example, aim to develop methods to capture changes in the
user preferences over time. When searching for papers to consider in our survey, we therefore
used a corresponding search string and selection strategy when we queried a digital library, as
will be described in more detail in Section 3.5.

3 A CATEGORIZATION OF SEQUENCE-AWARE RECOMMENDATION TASKS

We identified four main goals in the academic literature that can be achieved with the help of
sequence-aware recommender systems in different application scenarios:
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(1) Context Adaptation

(2) Trend Detection

(3) Repeated Recommendation

(4) Consideration of Order Constraints and Sequential Patterns

We will discuss these four categories in more detail in the next sections and will then also look
at typical application domains for sequence-aware recommenders. Note that all types of problem
settings discussed next are based on the same formal problem characterization described in Equa-
tion (1), but require specific algorithmic approaches that use the sequence information in the input
datasets (see Section 4). The problems are also not mutually exclusive and multiple aspects (e.g.,
trends and repetitions) can be considered in parallel, as was done, for example, in [62] for the
e-commerce domain.

3.1 Context Adaptation

In many domains, the relevance of a recommendable item not only depends on the users’ general
preferences, but also on their current situation and their short-term intents and interests. Context-
aware recommenders take such additional types of information into account. Typical contextual
factors in the literature include the user’s geographical position, the current weather, or the time
of the day [4]. Context factors like these are examples of what is called the representational context
[28], which is defined by a predefined set of “observable” context variables.

Contextual factors like the user’s current shopping intent in an e-commerce setting or their
current mood are, however, not directly observable. These types of information, which represent
what is called the user’s interactional context, therefore have to be derived from the users most
recent actions and eventually on behavioral patterns of the user and the community as a whole [40,
87]. Considering interactional context factors is particularly important for systems where there are
many new or anonymous users. Since no historical data is available about their past preferences,
it is important to make full use of interactional context information, as representational context
information can only help to partition anonymous users into coarse-grained categories, without
any real personalization [32]. Overall, understanding the users’ situation and goals and making
context-adapted recommendations from past interaction data represents a main goal of sequence-
aware recommender systems.

Categorization Based on Importance of Long- and Short-Term Interactions. Depending on the avail-
ability of historical data for individual users and the importance of focusing on the most recent
interactions, we can differentiate between the following types of context-adaptation situations.

— Last-N Interactions-Based Recommendation: In these scenarios, only the last N user actions
are considered. A typical problem setting is that of predicting the next location (or check-in)
in a location-aware recommender system [21, 72, 76]. The reason to limit oneself to the last
actions could be that not many past interactions of that type exist or that the other previous
actions of the same type (e.g., check-in events) are not predictive for the next action.

— Session-Based Recommendation: In this problem scenario only the last sequence of actions of
a user is known and this sequence of actions is limited to a session, that is, a limited period
of time when the user interacted with the site. Typical application examples include news
recommendation [32], e-commerce, video, and classified advertisement recommendation
[46].

— Session-Aware Recommendation: Finally, there are situations in which we have knowledge
both about the users’ actions in the last session and about their past behavior. This type
of problem setting occurs if we have returning customers that can be identified. In this
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situation, a sequence-aware recommender system can be based on a combination of
long-term and short-term interest models, for example, in e-commerce settings or for app
recommendation [9, 40, 56, 91].

Note that our problem definition in Equation (1) covers all three scenarios, that is, the output is
a ranked list of items. In the case of a session-aware adaptation problem, the underlying sequence
dataset D is, however, usually split into two components, where one that contains the older inter-
actions is used for building a long-term model, and the other is used to consider short-term user
intents. How the different models are learned or combined then depends on the specific algorith-
mic approach that is used to maximize the utility function u, which might, for example, return
higher scores when recommendations are a mix of familiar and novel items for the user.

On Utility Functions and Recommendation Purposes. Most of the papers on context-adaptation
problems in the literature do not make explicit statements about the characteristics of the utility
function in the application scenarios they considered. As mentioned above, they in most cases
implicitly define the goal through the evaluation procedure and aim to predict hidden elements
of a given user session. Thereby, they implicitly assume that this next action is in some sense the
best recommendation for the given purpose.

The task of recommenders in context-adaptation scenarios can most often be characterized as
“find matching items” for a given session beginning, without any further explicit specification of
what represents a good recommendation. In some works—and in practical environments—a num-
ber of more specific purposes can be identified (see also [50]). The task of a recommender can
be, for example, to create a list of alternatives for the currently inspected items (similar items). In
other applications, in contrast, the task can be to determine complements, for example, accessories
to a main shopping item in e-commerce. In yet other application domains, the recommendations
should represent suitable or logical continuations of either the current session (e.g., next-track
music recommendations) or the user’s longer-term behavior (e.g., next-basket recommendations).
Finally, we can differentiate if the user is assumed to pick one of the recommendations (e.g., one
alternative in e-commerce scenarios), or consider all of them together (e.g., playlist recommenda-
tion for audio and video streaming). This latter scenario was recently addressed in [101] for the
news domain. In their work, the authors model the user’s expected utility of an item during the
course of a session and try to diversify the recommended content within a session accordingly.

3.2 Trend Detection

The detection of trends in a given sequence dataset is another potential, but less explored, goal
that can be accomplished by sequence-aware recommenders. We can distinguish between the fol-
lowing types of information that can be extracted from sequential log information to be used in
the recommendation process.

— Community Trends. Considering the popularity of items within a user community can be
important for successful recommendations in practice, for example, in streaming media
recommendation [35]. Since the popularity of items can change over time in different do-
mains, sequence-aware recommenders can aim to detect and utilize popularity patterns in
the interaction logs to improve the recommendations. Such trends can be long-term (e.g.,
things becoming outdated or out-of-fashion over time), seasonal, or reflect short-term and
one-time popularity peaks. In the fashion domain, for example, considering the commu-
nity trends of the last few days can represent a successful strategy when selecting items for
recommendation [54].
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— Individual Trends. Changes in the interest in certain items can also happen at an individual
level. These interest changes can be caused when there is a “natural” interest drift, for ex-
ample, when users grow up, or when their preferences change over time, for example, due
to the influence of other people, due to exceptional events, or when they discover some-
thing new. In the news domain, for example, individual interests change over time and are
influenced by global and local news trends [75]. Another example problem is the task of
modeling the dynamics of the musical taste of users [85].

3.3 Repeated Recommendation

In some application domains, recommending items that the user already knows or has purchased
in the past can be meaningful. Such scenarios are not considered at all in the traditional matrix
completion setup. We can identify the following categories of repeated recommendation scenarios.

— Identifying Repeated User Behavior Patterns. Past interaction logs can be used by sequence-
aware recommenders to identify patterns of repeated user behavior. A typical application
example could be the repeated purchase of consumables, like printer ink. Such patterns can
be both mined from the behavior of individual users, as in [109, 122, 123], or the community
as a whole. Repeated user actions are particularly relevant for app recommendation prob-
lems. In this context, patterns of repeated user behavior can be used to provide shortcuts to
applications that are frequently launched in a certain sequence by the user. An example is
to suggest to launch the “e-mail” or “calls” app after opening the “contacts” app. The general
goal here is to enhance the user experience with the device [9, 78, 87].

— Repeated Recommendations as Reminders. In a different scenario, repeated recommendations
can help to remind users of things they found interesting in the past. Depending on the do-
main, these reminders could relate to objects that the user has potentially forgotten (e.g., an
artist that she or he liked in the past), or to objects that the user has recently interacted with
[70]. The latter scenario is particularly relevant in e-commerce, and the recommendation
of recently inspected items is common on platforms like Amazon.com.

Note that from the viewpoint of our problem characterization in Section 2, the two scenarios
are identical. In the first case, however, there is often an underlying “logical” reason why an item
should be recommended again, which is not the case for scenarios of the latter class, that is, the
recommendation of assumedly “forgotten” or recently relevant items.

In both mentioned scenarios, besides the selection of items to repeatedly recommend, a
sequence-aware recommender has to reason about the timing of the recommendations. In the
reminding scenario in e-commerce, the time frame to remind users of previously seen items might
be narrow and objects may become obsolete soon, for example, if they were not purchased after
a few view events. Nonetheless, always reminding users of items they have inspected in the last
session might be inappropriate if the user’s current shopping intent does not match that of the
previous session. In the context of the recommendation of consumables, items can be repeatedly
recommended after longer periods of time, for example, weeks or even months. Proper timing can,
however, still be important and such types of repeated recommendations share similar problems
as proactive recommenders [26], for example, that their recommendations might interrupt the user
at the wrong time.

3.4 Consideration of Order Constraints and Observed Sequential Patterns

In Section 3.1 on short-term context adaptation, we have discussed different tasks of sequence-
aware recommender systems in which the order of objects—either in the logs, in the current
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session, or in the recommendations—can play a role. Considering such orderings can be central to
sequence-aware recommendation tasks also outside the context of the user’s last session, which
is why we discuss this aspect in some more depth in this section.

Specifically, there are two types of information about sequentiality one can additionally consider
when determining a suitable order of the recommendations.

(a) First, there can be “external” domain knowledge in the form of strict or weak ordering
constraints that prescribes the ordering. In the domain of recommending a sequence of
learning courses, for example, there might be strict requirements regarding the order of
different courses that have to be considered by the recommender (e.g., when one cannot
attend one course before another one was completed [88, 113]). In the domain of movie
recommendation, in contrast, it might be reasonable to recommend a sequel to a movie
only after a user has watched the preceding episode. Such a constraint is, however, not
necessarily strict.

(b) Second, one can try to identify such sequential consumption patterns from the user be-
havior, and, for example, automatically infer that users who watched a certain movie later
on watched its sequel. From a technical perspective, sequential pattern mining techniques
have, for example, been applied in different application domains of recommenders (e.g.,
for predicting the next navigation actions of users on websites [83, 86] or to find next
tracks to play in music recommendation problems [15]).

When considering these factors that can influence the ordering, a number of application-specific
variations might have to be considered, among them the following.

— Importance of the Order of the Recommendations. Depending on the specifics of the applica-
tion scenario and the goals of the recommendation service, the order of the recommended
items can be relevant or not, even in the same domain. In the context of next-track music
recommendation, one can try to determine a playlist continuation where all elements are
generally a good fit for the current listening session [57]. In contrast, one could, however,
also try to make sure that also the transitions between the tracks are smooth or that the re-
sulting playlist has certain characteristics, for example, a continuous increase of the tempo
[80].

— Importance of the Exact Order of the Past Events. Similarly, the exact order of the past events
may or may not be relevant for the recommendation task. Again in the domain of the music
recommendation, one can try to look for sequential patterns in past sessions as in [40] or
simply consider track co-occurrence patterns, as done in the neighborhood-based approach
in [15]. In cases where the order is relevant, one might additionally consider the age of the
individual events in the log and reduce the importance of older events.

— Existence of Implicit Order Constraints. When recommending complements (e.g., accessories
for a given item), there might be implicit constraints of what can be reasonably recom-
mended and these constraints can depend on the specific domain or product category. One
can recommend a memory card as an accessory to a camera, but not the other way around.
For other categories, however, recommendations in both directions can be plausible.

In general, besides the identification of sequential patterns from past data to select and rank

items, an additional task for the recommender is to ensure that such strict and weak order con-
straints are respected in the resulting lists.
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3.5 Categorization of Existing Works

In this section, we will classify existing research works according to our categorization scheme
in order to obtain a better understanding of which aspects of sequence-aware recommenders are
comparably well explored and which areas need further investigation.

We selected the papers to be considered in this categorization as follows. We issued a query to
the ACM Digital Library using a set of relevant search terms,” sorted the first 1,000 search results
by relevance, and manually inspected the abstracts of the first 100 papers. If a paper made explicit
use of sequences of user actions, it was considered relevant and its referenced papers were scanned
as further potential candidates to consider. Table 1 shows a summary of the papers that were finally
considered relevant for this work.

In the table, the first column shows the context-adaptation type of each approach according to
our categorization. The second column indicates which form of ordering constraints were consid-
ered; the third column mentions the main application domain addressed in the papers.

3.5.1 Categorization Based on Context-Adaptation Type. We differentiate between session-
aware, session-based, and last-interaction adaptation approaches. Figure 2 shows the number of
research works that fall into the different categories.

We can see that a large fraction of the papers focuses only on the very last visited object when
determining the next object to be recommended. A slightly smaller number of papers consider
session-based recommendation scenarios. However, we can observe increased interest in such
session-based recommendation problems in the recent years, which is fueled both by the indus-
try* and by the emergence of new deep learning—based sequence-learning techniques, as we will
discuss in Section 4. In fact, more than half of the papers on session-based and session-aware
recommendation were published starting from 2014. Finally, even fewer papers also take the long-
term preferences of the user into account. While short-term user intents might in many cases
be more relevant than long-term preferences, some works—like the ones by [56, 91]—show that
considering long-term preferences can be important to achieve more accurate recommendations.

The limited number of works on session-aware systems might partially be due to the lack of
publicly available benchmark datasets. Overall, however, the results shown in Figure 2 indicate
more research is required to better understand the interplay between long-term and short-term
preferences in sequence-aware recommenders.

3.5.2  Order Constraints. As the column labeled “Ord.” in Table 1 shows, most existing works in
sequence-aware recommendation rely on implicitly derived (and correspondingly weak) ordering
constraints and only a few works address scenarios where explicit and strong order constraints
have to be considered. This can again be caused by the focus of the research community on cer-
tain application domains like media (movie) recommendation [55], where ordering constraints
exist—consider movie sequels or follow-up news stories—but are often not considered in the cor-
responding algorithmic approaches.

3.5.3 Categorization Based on Domain. Figure 3 finally shows in which application domain
sequence-aware recommenders were investigated. In the following, we give examples of typical
research works in each domain.

E-commerce is the most often investigated domain, which is not surprising as session-based
recommendation and session-aware recommendation, as defined above, are common tasks in e-

3The exact query was “sequence sequential trend next basket bundles repeat session order + recommend.”
4For example, a major e-commerce platform provided a new dataset in the context of the 2015 ACM RecSys Challenge
about session-based recommendation.
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Table 1. Categorization of Works Regarding Context-Adaptation Type, Order Constraints, and Domain

Paper Context  Ord. Domain Paper Context Ord. Domain
Baeza-Yates et al. [9] SA I APP Parameswaran et al. [88] - S Cs
Chen et al. [19] LI WI MUS Pauws et al. [89] — S MUS
Chen et al. [20] LI WI MUS Quadrana et al. [91] SA 1 ECVID
Cheng et al. [21] LI 1 POI Reddy et al. [92] — w CS
Chou et al. [22] LI 1 MUS Rendle et al. [94] LI I EC
Feng et al. [30] LI I POI Rudin et al. [95] LI 1 EC
Garcin et al. [32] SB 1 NEWS Shani et al. [97] LI 1 ECWWW
Grbovic et al. [37] LI 1 EC Soh et al. [98] SB 1 OTH
Greenstein-Messica et al. [38] SB 1 EC Song et al. [99] SB 1 ECVID
Hariri et al. [40] SB WI MUS Song et al. [100] SB I NEWS
He et al. [42] SB 1 QRY Sordoni et al. [102] SB 1 QRY
He and McAuley [43] LI I EC,POI Tagami et al. [103] LI I ADS
He et al. [41] LI 1 POIL Tavakol and Brefeld [104] SB 1 EC
Hidasi et al. [46] SB 1 ECVID Trevisiol et al. [105] SB 1 WWW.NEWS
Hidasi et al. [45] SB 1 EC Turrin et al. [106] SB 1 MUS
Hosseinzadeh Aghdam et al. [47] LI 1 MUS Twardowski [107] SB 1 EC
Hsueh et al. [48] LI I EC Vasile et al. [108] SB WI MUS
Jannach et al. [56] SA 1 EC Wang and Zhang [109] LI 1 EC
Jannach et al. [57] SA WI MUS Wang et al. [110] LI 1 EC
Jannach and Ludewig [54] SA — EC Wu et al. [111] SB WI MUS
Lerche et al. [70] SA 1 EC Xiang et al. [112] SA 1 OTH
Letham et al. [71] LI 1 EC Xu et al. [113] — S CS
Lian et al. [72] LI I POI Yan et al. [114] SB I ORY
Lim et al. [73] LI S POI Yap et al. [115] LI 1 WWwWw
Liu et al. [76] LI SI POI Yu and Riedl [117] LI S OTH
Liu et al. [77] LI 1 POI Yu et al. [116] LI 1 EC
Luetal. [78] SB 1 APP Zang et al. [118] LI 1 EC
Maillet et al. [80] - w MUS Zhang et al. [121] LI I ADS
McFee and Lanckriet [81] LI WI MUS Zhang et al. [120] LI 1 POIL
Mobasher et al. [83] SB 1 WwWw Zhao et al. [122] LI 1 EC
Moling et al. [84] SB — MUS Zhao et al. [123] LI 1 EC
Moore et al. [85] LI WI MUS Zheleva et al. [124] SA — MUS
Nakagawa and Mobasher [86] SB 1 WWWwW Zhou et al. [125] LI 1 WWW
Natarajan et al. [87] SA 1 MUS,APP Zimdars et al. [126] LI 1 WWWwW

Context: SA: Session-aware, SB: Session-based, LI: Last-N interactions; Order Constraints: W: Weak, I: Inferred, S:
Strong; Application Domain: APP: App recommendation, MUS: Music domain, QRY: Query recommendation, EC: E-
Commerce domain, CS: Learning courses recommendations, AD: Advertisements, WWW: Web navigation recommenda-
tion, OTH: Others.

commerce scenarios and investigated, for example, in [45, 46] or [56]. Other problem settings in
the e-commerce domain include next-basket recommendation [94, 110, 116] and the problem of
reminding users, for example, in [122, 123] and [70].

Music recommendation is another “natural” application domain of sequence-aware recom-
menders. The consumption of music is often session-based and the listener’s interest can change
strongly from one session to another. The user experience can furthermore be influenced by the
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Fig. 2. Distribution of types of context adaptation in the analyzed research works.

30
25

z Hﬂﬂ

E-commerce  Music POI WwWw Apps Others

Fig. 3. Distribution of research works per application domain.

order in which the tracks are played, that is, weak ordering constraints can exist between the
tracks. Such constraints can either be explicitly given by the user [89] or can be inferred from
listening logs of a user community as done, for example, in [19] and [57]. Constraints can be
inferred on the basis of the transitions between pairs of songs [19, 20], or based on metadata and
other attributes of tracks that are usually “played together” [57, 108]. This knowledge can then
be leveraged by sequence-aware recommenders to generate playlists or plausible continuations
of listening sessions (see, e.g., [57] or [106]).

POIrecommendations make predictions on the user’s next location or make recommendations for
the next place to visit. Moving between places is a sequential process, where the user’s movements
are usually limited by distance, time, or budget constraints. Sequence-aware recommenders have
been applied in this context in different ways to predict the next user location (e.g., based on the
user’s current location [21, 43]). Considering several past user locations has shown to be helpful,
for example, for travel planning [73], or when predicting which place the user will most probably
visit at a specific time [77].

Web navigation prediction is an early application area of sequence-aware recommenders [83,
86, 125]. Web browsing is usually a sequential process and next-page visit predictions can help to
recommend users interesting links that fit their current browsing session or to pre-load web pages.

App recommendation or app usage prediction is a more recent application field of sequence-
aware recommenders, where considering the user’s current context is crucial. A typical example
of a research work is described in [9], where repeated usage patterns are mined from activity logs
to pre-fetch applications or to make contextual suggestions on which app to use.

Others. Finally, there are a number of other application domains of sequence-aware recom-
menders which have, however, only been explored by a few research works. Examples include
advertisement recommendation [121], news recommendation [32], job posting recommendation
[91], the recommendation of videos in streaming platforms [46, 91], query recommendation [8, 18,
42,102], or the recommendation of next activities to add during workflow modeling [59].

ACM Computing Surveys, Vol. 51, No. 4, Article 66. Publication date: July 2018.



Sequence-Aware Recommender Systems 66:13

Table 2. Categorization of Works Regarding Repeated
Recommendation and Trend Detection

Repeated Recommendation

* Find items for repeated recommendation [54, 70]

* Find timing for repeated recommendation  [76, 77, 109, 122, 123]
Trend detection

* Detect individual trends [85, 109]
* Detect community trend [100, 109]
* Detect seasonal trends [109]

3.5.4 Specific Tasks of ASequence-aware Recommendation. Table 2 lists works that considered
the problems of repeated recommendations and trend detection.

Repeated recommendations, while useful in practical applications [70], were rarely the focus
of researchers in the context of sequence-aware recommenders. Similarly, the detection of trends
has also not been investigated to a large extent, even though a recent work suggests that taking,
in particular, short-term trends can be important in the e-commerce domain [51]. A few works
consider community trends and some investigate seasonal aspects. Interestingly, only two works
analyzed here considered individual consumer trends and potentially outdated user tastes [85, 109].

Finally, there are only few works that explicitly mention that the goal is to recommend similar
items [38, 57, 85] or complements [104]. A large number of papers in the literature focus explicitly
on next-item recommendation [9, 42, 46, 78, 83, 86, 87, 99, 102, 121, 125] and list continuation [40,
57,80, 117]. The problem of next-basket recommendation in e-commerce was also the focus of only
a few works [72, 94, 110, 116].

4 ALGORITHMS FOR SEQUENCE-AWARE RECOMMENDER SYSTEMS

We can identify three main classes of algorithms in the literature that are used for the extrac-
tion of patterns from the sequential log of user actions: sequence learning, sequence-aware matrix-
factorization, and hybrids. Each of these classes can be further decomposed into subcategories,
leading to the taxonomy of algorithms in Table 3. A few comparably uncommon technical ap-
proaches are listed under the category “Others.”

The majority of the reviewed works rely on some form of sequence-learning methods. Such
approaches are a natural choice for the given problem, and frequent pattern mining techniques,
for example, have been applied for a long time (e.g., for the prediction of user navigation patterns
on websites [83, 86]). Other approaches, in particular the ones based on recurrent neural networks
and distributed item representations, were only recently successfully transferred from domains
like Natural Language Processing to sequential recommendation problems [37, 46]. We discuss
the different approaches in more detail in the next sections.

4.1 Sequence Learning

Sequence-learning methods are useful in application domains where the data to be analyzed has
an inherent sequential nature, like in Natural Language Processing, time-series prediction, DNA
modeling, and, as the focus of this work, sequence-aware recommendation.

4.1.1 Frequent Pattern Mining.

Methods. Frequent Pattern Mining (FPM) techniques were originally developed to discover
user consumption patterns within large transaction databases. Early Association Rule Mining
approaches [5] focused on identifying items that frequently co-occur in the same transaction,
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Table 3. Taxonomy of Algorithms for Sequence-Aware Recommender Systems

Examples of research

Class Sub-class Family works
Sequence learning Frequent pattern Frequent itemsets [48, 56, 83, 86, 106, 118]
Mining Frequent sequences  [78, 83, 86, 95, 115, 125]
Sequence modeling Markov models (32, 42, 47, 81]
Reinforcement (84, 97, 104]
Learning
Recurrent neural [29, 45, 46, 77, 98, 100,
networks 102, 107, 116, 121]
Distributed item Latent Markov [19, 20, 30, 111]
representations embeddings
Distributional [9, 27, 37, 92, 103, 108,
embeddings 124]
Supervised models [9, 110, 126]
w/sliding window
Matrix factorization [107, 117, 122, 123]
Hybrid methods Factorized Markov [21, 41, 43, 72, 94]
chains
LDA/Clustering w/ [40, 87, 99]
sequence learning
Others Graph-based [77, 105, 112, 120]
Discrete optimization [57, 73, 89, 113]

regardless of the order of their appearance. Later on, Sequential Pattern Mining [6] techniques
were developed that considered item co-occurrences only as a pattern when the items appeared
in the same order. An extreme case finally is Contiguous Sequential Patterns, which require that
the co-occurring items are adjacent in the sequence of actions within a transaction.

Technically, in all approaches the patterns are mined in an offline process and usually translated
into a set of association rules or another compact form of knowledge representation (see, e.g., [83,
115]). Usually, the resulting rules have values attached (e.g., confidence and support) that express
their strength. In the prediction phase, we are given a partial transaction (e.g., an item that a
user has recently bought) for which we seek additional items. These items are then determined
by scanning the database for matching rules and by applying them on our partial transaction.
In recommendation scenarios, the most simple approach is to determine only pairwise item co-
occurrence frequencies in order to implement buying suggestions of the form “Customers who
bought ... also bought.”

Application Examples. In one of the earlier works on sequence-aware recommenders [83, 86],
researchers compared Association Rules (AR), Sequential Patterns (SP), and Contiguous Sequen-
tial Patterns (CSP) for a web usage mining scenario, where the problem is to predict a user’s next
navigation action for page prefetching or for context-adaptation in session-based scenarios. Tech-
nically, they used a fixed-sized sliding window of the current user session in the prediction phase.
Given the last N user actions in this window, they look up and apply rules of size N + 1 and rank
the recommendations (i.e., the elements of the rule consequents) based on the confidence value of
the firing rules.” The obtained results showed that the less constrained patterns (AR and SP) lead

5 A technically similar approach was later on proposed by Zhou et al. [125].
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to better recommendations, whereas the usage of CSPs was more helpful for the page prefetch-
ing task. Other kinds of sequential patterns, such as closed patterns and negative patterns, were
explored too. See, for example, the works of Zang et al. [118] and Hsueh et al. [48] for context-
adaptation based solely on the last few user actions.

When using frequent pattern approaches, personalization is obtained by matching the activity of
the user with the pre-extracted patterns. In a more recent work, Yap et al. [115] propose to further
personalize the method and to weight the patterns according to their estimated relevance for the
individual user. They designed three schemes to determine personalized pattern relevance scores
and compared it to a popularity-based method. Their empirical evaluation indicates that applying
personalized rule scoring schemes yields more accurate personalized next-item recommendations
for the target users.

As an example of a comparably recent application domain, Lu et al. [78] present the MASP
(Mobile Application Sequential Patterns) mining method for the problem of providing context-
adaptation to smartphones by predicting the user’s next used app. In their approach, transactions
are composed of sequences of app usages which are annotated with the location of the user at each
time. The MASP-mine algorithm takes into account both the user movements and app launches
to discover the sequential patterns. At prediction time, the single pattern with the maximal sup-
port value that matches the recent user movements and activity is used to predict the app that is
launched next.

Discussion. Frequent pattern mining techniques are well-explored and also easy to implement
and interpret. The main drawbacks include the limited scalability of some of the approaches and,
probably more importantly, the problem of finding suitable threshold values for the offline mining
task. Usually, the main parameter is the minimum support value. If it is set too low, too many (often
noisy) patterns are identified; if it is set too high, only rules for the most frequently occurring items
will be found. To deal with the problem, one can start to search for the highest-quality rules in
a database that was created with a fixed minimum-support threshold, and iteratively relax the
quality constraints until a matching rule is found. Alternatively, different algorithm variants were
proposed that use multiple minimum support values or “adjusted” confidence scores [95].

Another common challenge when using frequent pattern mining techniques is to decide be-
tween the different variants (AR, SP, CSP). Determining sequential patterns (SP, CSP) is often not
only computationally more expensive given the more strict type of rules to be mined,® but it can
also easily lead to much smaller rule bases. This in turn can result in situations at prediction time
where no matching rule is found. Which method works best can furthermore depend on the ap-
plication domain. The ordering of the events can be very important, for example, in the context of
query or app recommendation [78, 125]. In other problem settings, for example, web page recom-
mendation or next-track music recommendation, considering the item orderings might result in
too small rule bases or have only small positive effects [14] that probably do not outweigh the ad-
ditional computational complexity. Finally, in some domains, simple co-occurrence patterns were,
despite their simplicity, employed with good success (e.g., in e-commerce and music recommen-
dation [52, 56, 106]).

4.1.2  Sequence Modeling.

Methods. The input to sequence-aware recommenders, that is, the ordered and often times-
tamped log of past user actions, can be considered as a time series with discrete observations.
Therefore, in many cases existing and sometimes complex time series prediction methods could,

%See [5, 6] for a detailed analysis on the computational complexity of FPM methods.
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in principle, be applied. In RS applications, however, the timestamps are often merely used to sort
the actions,” which allows us to apply “simpler” sequence models, that do not necessarily consider
the complex underlying temporal dynamics of the observed sequences of actions.

In general, sequence modeling techniques aim to learn models from past observations to predict
future ones, which are in our case user actions. Sequence modeling methods for sequence-aware
recommendation mainly belong to three categories: Markov Models, Reinforcement Learning, and
Recurrent Neural Networks (see Table 3).

— Markov Models consider sequential data as a stochastic process over discrete random vari-
ables (or states). The Markov property limits the dependencies of the process to a finite
history. For example, in first-order Markov Chains (MCs) the transition probability of ev-
ery state depends only on the previous state. Higher-order MCs use longer temporal de-
pendencies to model more complex relationships between the states.® In sequence-aware
recommender systems, the Markov property translates into assuming that the next user
actions depend only on a limited number of the most recent preceding actions.

— Reinforcement Learning (RL) techniques learn by interacting with the environment, and are
sequential in nature. In a recommendation scenario, the interaction consists of a recommen-
dation of an item to the user (the action) for which the system then receives a feedback (the
reward).’ For instance, in the music domain, the system recommends a song and monitors
if the user listens to or skips the recommended song. In this example, we assign a positive
reward if the user listens to the song and zero otherwise. The problem is typically formu-
lated as a Markov Decision Process (MDP) and the goal of the system is to maximize the
cumulative reward computed over a number of interactions.

— Recurrent Neural Networks (RNNs) are distributed real-valued hidden state models with non-
linear dynamics.!® At each timestep, the hidden state of the RNN is computed from the
current input in the sequence and the hidden state from the last step. The hidden state is
then used to predict the probability of the next items in the sequence. The recurrent feed-
back mechanism memorizes the influence of each past data sample in the hidden state of
the RNN, hence overcoming the fundamental limitation of MCs. RNNs are therefore well
suited for modeling the complex dynamics in user action sequences. Variants of RNNs such
as Long Short-Term Memory (LSTM) [36] and Gated Recurrent Unit (GRU) [23], by means
of their sophisticated hidden dynamics, can model much longer and complex temporal de-
pendencies than other approaches like Hidden Markov Models (HMMs) [34].

Application Examples (Markov Models). MCs in most cases cannot be naively applied to sequence-
aware recommendation since data sparsity quickly leads to poor estimates of the transition matri-
ces. Shani et al. [97] therefore enhance their MC-based approach with several heuristics—namely,
skipping, clustering, and finite mixture modeling—to mitigate the impacts of data sparsity. In their
application, the input data consists of purchase records of an online book store and their exper-
iments show the superiority of sequential models over non-sequential ones in predicting what
books to recommend next given the sequence of the last few user interactions. In a different appli-
cation domain, McFee and Lanckriet [81] use MC mixtures for the problem of music playlist gener-
ation, a typical list continuation problem, where a mixture is a weighted ensemble of several MCs

"The work of Du et al. [29] represents an exception in that respect.
8See [31] for details on Markov Models for pattern recognition.
9See [65] for a comprehensive review on Reinforcement Learning.
10See [74] for an overview of Recurrent Neural Networks.
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(uniform, weighted, and k-nearest neighbors) whose weights are learned via maximum-likelihood
optimization on a training dataset of playlists.

Another challenge when applying MCs usually lies in the choice of the order of the model.
In the context of a session-based next-query recommendation problem, He et al. [42] therefore
use a mixture of Variable-order Markov Models (VMMs, sometimes called context trees'!), which
use a context-dependent order to capture both large and small Markov dependencies. A different
approach is adopted by Garcin et al. [32] in the context of a news recommendation application.
They assign one predictor (expert) to each context (node) in the context-tree, where each node is
associated with a different order of the Markov model. Each predictor is then trained to predict
the article to suggest next given the last sequence of user actions. As the sequence of actions of the
user grows, deeper nodes in the tree become active and contribute to the final recommendations.

Hidden-state models, in particular HMMs, address some of the limitations of MC models and
are, for example, applied in [47] for the contextual next-track music recommendation problem. In
HMMs, each hidden (or latent) state is a discrete variable associated with a probability distribu-
tion over the observed variables. In conformity with the Markov property, every hidden state is
conditionally dependent only on the previous one [34]. There already exist a few applications of
HMMs to time-aware collaborative filtering [96, 119]. In [47], the hidden states is used to model
the (unobserved) context of the user. Discrete-valued hidden states are, however, limited in terms
of the contextual information they can store, which to some extent limits their applicability for
sequence-aware recommendation.

Application Examples (Reinforcement Learning). Reinforcement learning based on MDPs are used
in [97] and [84] for sequence-aware recommendation in online shops. These approaches make it
possible to tailor recommendations not only to the recent user activity but also to the expected
reward (income) for the shop. Since the state space of MDPs can quickly become unmanageable in
realistic scenarios, Tavakol and Brefeld [104] factorize the space over a set of mutually independent
item attributes. In their application case of a clothing marketplace, dress characteristics such as
category, color, or price can be considered; the sequential relationships between attributes are then
independently modeled by an MDP to predict the characteristics of the products the user will likely
search or buy next.

Application Examples (RNNs). Zhang et al. [121] use RNNs for click prediction for online adver-
tisements. At each timestep, they train the RNN to predict the next click of the users given their
last click and the previous state of the network using a classification loss measure (cross-entropy).

For the domains of e-commerce and media recommendation, Hidasi et al. [45] explore the use
of GRUs [23]—a variant of RNNs—for modeling user activity in a session-based scenario. Tech-
nically, as in [121], the model is trained to predict the next item in a sequence given the current
one, but different loss functions were used, which at the end led to better performance. Later on,
Hidasi et al. [46] included item features into the sequence model. The proposed paralle]l-RNNs
model is able to capture the interdependencies between item identifiers and their features, leading
to a further improved recommendation accuracy. Quadrana et al. [91] employ hierarchical RNNs
for modeling user preferences across sessions. The first level of the hierarchy, which represents
the state of the user across sessions, is used to initialize and propagate information to the second
level of the hierarchy, which is used to generate recommendations within a session. Transferring
the information from prior sessions ultimately led to better recommendations. Yu et al. [116] fi-
nally employ RNNs for next-basket recommendation in e-commerce. In their case, the RNN is fed

11See [11] for a comprehensive analysis of algorithms for learning VMMs.
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with real-valued representations of the baskets as an input—that is, the sets of items the user has
interacted with at each step of the sequence—and trained to rank the items in the next basket.

A number of further technical variants of RNNs and problem encodings were recently proposed
for different application domains like e-commerce, online ads, and query or POI recommenda-
tion. Twardowski [107], for example, addresses the problem of providing personalized recommen-
dations to anonymous users by using RNNs to generate a compact representation of the user’s
interactional context. Such representation is later combined with item representations to gener-
ate contextual recommendations. Liu et al. [77] aim at detecting interest trends of individual users
over time in an RNN-based POI recommender system. Both Sordoni et al. [102] and Soh et al.
[98] address the context adaptation problem. Sordoni et al. [102] propose a generative model for
session-based query recommendation based on Hierarchical Recurrent Encoder-Decoder neural
networks. The higher level of the hiercarchy encodes the latent intent of the user in the current
search session, while the lower level generates next-query suggestions tailored to this intent. Soh
et al. [98] employ RNNs to represent sequences of user interactions to personalize user interfaces.

Song et al. [100] propose a context adaptation approach to build a session-aware recommender
that can handle long-term (e.g., seasonal) and short-term changes in user preferences in the news
domain. In their work, the authors propose the Temporal Deep Semantic Structured Model to
combine user and item features with user temporal features into a joint model. Static features are
modeled by several feed-forward neural networks, whereas the temporal features are modeled by
a set of RNNs.

Du et al. [29] address the list continuation problem in a wide range of application domains, from
taxi drop-off to financial transactions. Given data with timestamps for the actions, their model
combines RNNs with Marked Temporal Point Processes, a mathematical tool that models the dis-
tance between subsequent events as a random process. The idea of modeling the distance between
subsequent events as a random process is used also by Wang and Zhang [109], who employ a hi-
erarchical Bayesian framework based on hazard models to represent the probability of purchasing
a product at a given time, while modeling time-dependent patterns between follow-up purchases
at the same time. Both models allow one to compute the utility of recommendations as a function
of the sequence of past user actions and of the recommendation timing.

Discussion. Sequence modeling approaches have been successfully applied for a variety of
sequence-aware recommendation problems. Our review, however, shows that Markov Models
in most cases cannot be directly applied in a naive manner for sequence-aware recommenda-
tion problems, due to problems of data sparsity and computational complexity, which is why re-
searchers often rely on specific model variants or embed heuristics into the learning process. Still,
it is not always fully clear if such model variants scale to real-world problems.

Deep learning-based techniques, on the other hand, have been increasingly explored in the
past few years. Among the factors that contributed to the recent revival of neural networks are
the availability of large datasets for training and the increased computational capacities of modern
computer hardware.

The computational demands of deep learning approaches can, however, still represent a bar-
rier to their practical use, for example, because of the need for testing and optimizing different
(hyper-)parameter configurations. Despite these limitations, researchers should not stop explor-
ing more advanced algorithmic approaches in the future, given the sometimes low-quality impres-
sion of today’s recommender systems in practice [61] and the fact that some of today’s first deep
learning-based approaches are sometimes not yet much better than computationally more simple
approaches [52]. More research in this area is also particularly important as naive methods can
have certain limitations like a bias to recommend mostly popular items, which are not captured
by today’s problem formulations and common performance measures like precision and recall.
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4.1.3 Distributed Item Representations.

Methods. Distributed item representations are dense, lower-dimensional representations of the
items. The representations are derived from sequences of events and preserve the sequential rela-
tionships between the items. Similar to latent factor models, every item is associated with a real-
valued embedding vector, which represents its projection into a lower-dimensional space in which
certain item transition properties are preserved. For example, some representations are based on
the co-occurrence of items in similar contexts [37, 108]. Others translate pairwise transition proba-
bilities into distances in a Euclidean space [19, 20]. In sequence-aware recommendation problems,
we can recommend the next item(s) given the user’s most recent actions by traversing the embed-
ding space in a stochastic fashion [19] or by searching the nearest neighbors to the last item(s)
that were explored by the user [37].

Application Examples. Distributed Item Representations have been explored, for example, in the
domain of playlist generation. Zheleva et al. [124] build a session-level long-term Latent Dirichlet
Allocation (LDA) model based on the community of users and merges it with a short-term LDA
model based on the current user session. Chen et al. [19] propose the Latent Markov Embedding
(LME) approach, a regularized maximum-likelihood embedding of MCs in the Euclidean space. In
their method, every item is projected into a space in a way that the distance between any pair of
items in this space is proportional to their transition probability in a first-order MC. The learn-
ing procedure directly exploits the weak ordering between tracks in playlists. The resulting vector
spaces can then be traversed stochastically to generate new sequences (in their case, playlists) or
continuations of existing ones. Later on, Chen et al. [20] extend LME by clustering items and by
adding cluster-level embeddings to account for locality in item transitions. Wu et al. [111], on the
other hand, propose a Personalized LME version where both items and users are projected into a
Euclidean space in a way that the strength of their relationship is reflected by the projection. This
allows them to incorporate long-term user preferences into the model and to use them for recom-
mendation. More recently, Reddy et al. [92] employ a similar approach for the recommendation of
learning courses. Students, lessons, and assessments are embedded in a common latent skill space,
in which the evolution of the student knowledge is formalized by a HMM. The goal of Feng et al.
[30] is personalized POI recommendation based on the last-N points of interest visited by the user.
In their approach, they use a pairwise ranking function similar to Bayesian Personalized Ranking
(BPR) [93] to condition the transition probabilities on the personalized ranking preferences of the
users.

A different technical approach—in their case to deliver personalized product ads—was chosen
by Grbovic et al. [37]. Their work is based on leveraging the so-called “distributional hypothesis,”
which in the domain of linguistics states that semantically equivalent words occur frequently in
the same contexts,'? for sequence-aware recommendation. The proposed Prod2Vec recommenda-
tion method learns distributed item representations from sequences of emails containing purchase
receipts. Similar to the LME method, every item is projected into a lower-dimensional space.
Specifically, Prod2Vec uses the skip-gram model, which projects items that tend to have similar
neighboring items (i.e., items that tend to be “surrounded” by the same set of items) close to each
other. Given the sequence of the last few observations for a user, the most similar items in the
lower-dimensional space represent the recommendation candidates. Different enhancements of
the recommendation scheme of Prod2Vec were proposed, including the usage of time decay factors
for older email receipts or the consideration of directed order dependencies between the inter-

12The distributional hypothesis forms the basis of the recent Word2Vec [82] and GloVe [90] approaches for Natural Lan-
guage Processing.
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Fig. 4. Sequence-aware recommendation as supervised learning with sliding windows.

actions [27]. Furthermore, Vasile et al. [108] propose Meta-Prod2Vec, an enhanced version of the
skip-gram model that conditions the item embeddings also on their metadata. Greenstein-Messica
et al. [38] employ Word2Vec and Glove to create item embeddings based on click sequences and
item metadata, and use these embeddings to enhance session-based recommendation with RNNs.

A technically different approach to use distributed item representations to learn a model from
session-based user data is proposed by Tagami et al. [103]. The authors use the Paragraph Vector
(PV-DV) model [69], which learns an additional user vector along with the item representations.
In this approach, the user vectors computed from 1 day of interaction data are used as features in
a multi-label classification problem to predict the set of ads the user will click on the next day.

Discussion. Distributed representations were successfully applied, in particular, in the domain of
Natural Language Processing [82] and, in the context of recommender systems, as an alternative
method for representing textual data in content-based approaches [7]. While the applications dis-
cussed in this section indicate that using such representations can be helpful for sequence-aware
recommendation scenarios as well, some embedding approaches can be computationally demand-
ing and sometimes require extensive parameter tuning to yield good results. Similar to sequence
modeling methods, approaches based on distributed representations require a substantial amount
of training data to be effective.

While embedding methods exploit the sequential relations between items to learn the item rep-
resentations, these methods do not make direct use of the sequence of recent user interactions to
generate the recommendations. They instead rely on approximate methods like time-decay nearest
neighbors [37] or on additional supervised learning layers [9, 103] to predict the next interactions
of the user. This in turn can lead to limited effectiveness in domains with strict ordering con-
straints for which sequence modeling methods can be preferable. Using an indirect approach can
also further increase the computational costs of these methods.

For some works, the significance and practicability of some of the proposals in real-world en-
vironments is not always fully clear. The playlist generation method of [19], for example, is not
only computationally very intensive, it was also evaluated with a specific measure (the average
log likelihood), which does not truly inform us about the quality of the resulting playlists [15].

4.1.4  Supervised Learning with Sliding Windows.

Methods. Sliding window models convert the next-in-sequence prediction problem into a tradi-
tional supervised learning problem that can be solved with any classifier such as decision trees,
feed-forward neural networks, and learning-to-rank methods. The general idea of the approach,
which resembles autoregressive models, is as follows. A sliding window of size W is moved over
each sequence (see Figure 4). At each step, all items within the window are used to derive the fea-
ture values of the supervised learning problem and the identifier of the immediately next item is
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used as a target variable. As a result, the sequence prediction problem is turned into a multi-class
classification problem, or into a multi-label classification in case multiple target items are allowed.

Application Examples. In an early approach of that type, Zimdars et al. [126] frame sequential
click prediction in a web usage mining scenario as a binary prediction problem. In their approach,
clickstream data is first expanded by defining a set of “accumulator” variables (lagged and cache
variables) to represent the contextual and historical activity of the user. Then, a page-level proba-
bilistic decision-tree model is trained and at recommendation time the pages are ranked according
to the predicted probability of being the next page.

More recently, Baeza-Yates et al. [9] use contextual features that were extracted from the last
12 hours of the app usage log to predict which (mobile) app will be used next in a session-aware
scenario. Their contextual features include some basic features, such as the geolocation and phone
usage characteristics, as well as session features, which are basically the Word2Vec representations
[82] of the actions of the user in the sliding window. Finally, they use a parallelized version of the
Tree Augmented Naive Bayes algorithm for the classification (prediction) of the next used app.

In the e-commerce domain, Wang et al. [110] use feed-forward neural networks for next-basket
recommendation. For the predictions, only the items in the previous basket were used to rank the
items for the next one (i.e., the window size is 1). The first layer of the neural network encodes the
previous basket as a fixed-size real-valued feature vector that is computed by taking the element-
wise maximum (max-pooling) or average (mean-pooling) of the embeddings of the items of the
basket. The second and final layer of the network learns to rank the items in the next basket by
taking as input the concatenation of the user’s current and previous basket’s embeddings.

Discussion. The main advantage of this class of approaches is that it is general, conceptually sim-
ple, and that a variety of existing classification methods and libraries can in many cases be applied
off-the-shelf. There are, however, also a number of shortcomings. First, as in many classification
problems, the effectiveness of the approach depends on the quality of the feature engineering
phase. Finding the best features can be challenging and often the features are domain-dependent
and cannot be re-used across domains. Second, the obtained results can be highly sensitive on the
choice of the window size. Finally, setting up a multi-class (or multi-label) classification problem
can be computationally expensive when the set of items grows. Furthermore, the quality of the
learned model can be strongly affected by unbalanced distributions of the target variable, which
is a common situation in real-life recommendation scenarios.

4.2 Sequence-Aware Matrix Factorization

Method. Sequence-aware recommendation is different in various ways from the traditional
matrix-completion problem formulation. However, there are a few cases where sequence infor-
mation, which is usually derived from timestamps, is also considered within algorithms that are
designed for matrix completion.'®

Application Examples. Zhao et al. [122, 123] focus on an e-commerce recommendation scenario,
where the problem is to fill the missing cells of a given user-item purchase matrix. Specifically, they
study the problem of finding the timing for repeated recommendations. Their proposed method
factorizes the matrix using a weighted loss function that maximizes the expected utility for the
user. The novel aspect of their approach is that the utility is determined based on the observed time
intervals between purchases of each pair of items. The resulting model can predict the personalized

131n this section, we focus on sequence-aware and time-interval-based algorithms and do not discuss general time-aware
collaborative filtering techniques as described, for example, in [17] and [68].
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relevance of an item depending on the time at which the recommendations are generated and
thereby takes the available sequence information into account.

Yu and Riedl [117] analyze the problem of generating interactive personalized story continua-
tions. Stories are represented in a prefix graph, in which each node represents a prefix of a story,
that is, a possible sequence of point plots. In their problem encoding, they are given a “prefix-rating
matrix” to be completed, where the items are replaced by possible story prefixes and users provide
ratings only to some of the prefixes. Matrix factorization is used to predict the missing entries. The
highest scoring full story that descends from the current “story-so-far” of the user is used to sug-
gest the next plot point. The rating of the user is collected on the next plot point, and the process
(factorization, recommendation, rating) continues iteratively until the story reaches an end.

Finally, Twardowski [107] not only proposes an RNN-based method as discussed above but
also a matrix factorization approach to session-based recommendation for the next-in-sequence
recommendation problem in e-commerce. In this approach, session events such as click, add-to-
cart, and so forth, as well as the items are encoded by separate latent feature vectors. Sessions are
then represented by the time-decayed sum of event vectors associated with the actions performed
by the user so far in the current session. The prediction of the next items is then based on the
factorization of the observed session-item tuples, which can be obtained with standard ranking
loss functions.

Discussion. The advantage of the discussed approaches is that standard matrix factorization al-
gorithms from the literature can often be applied. A main challenge, however, lies in the definition
of a suitable and computationally feasible encoding of the given application problem. Consider-
ing, for example, the proposal in [117], one not only has to collect user feedback at each step of
the sequence, but the given encoding can easily lead to a huge matrix due to the combinatorial
explosion of the possible sequences. It also requires continuous updates of the factorization model
as users have to provide new ratings for every suggested next step in the sequence.

The approaches discussed in this section can be seen as special cases of matrix factorization
algorithms for time-aware recommendation (e.g., [68]). These algorithms mostly focus on tracking
changes of user behavior over large time spans, usually through time-evolving user and item latent
factors. However, such methods, as discussed in more detail on [17], can however often not be
updated in real-time. In some application domains they should therefore be extended or combined
with methods that support the short-term adaptation according to the user’s current preferences
[56].

4.3 Hybrid Methods

Methods. Hybrid models often combine the flexibility of sequence-learning methods with the ro-
bustness to data sparsity of factorization-based matrix-completion techniques. Furthermore, such
forms of hybridization enable sequence-learning methods to use the power of modern collabo-
rative learning-to-rank models such as BPR [93], which usually cannot be easily embedded in
standard sequence-learning approaches.!*

Application Examples. Among the first proposals for such a hybrid technique is the Factorized
Personalized Markov Chain (FPMC) method of Rendle et al. [94]. The method combines matrix
factorization with MCs for the problem of next-item recommendation given the last-N interactions
of the user, for example, in e-commerce settings. In the case of first-order MCs, user interactions
can be represented as a three-dimensional (user, current item, next item) tensor. Each entry in the
tensor corresponds to an observed transition between two items performed by a specific user.

14The works presented in [45] and [46] represent exceptions that combine RNNs with BPR’s ranking loss criterion.
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The proposed method then uses pairwise factorization to predict the unobserved entries in the
sparse tensor, that is, to predict personalized transitions between pairs of items. Overall, FPMC
can be seen as a first-order MC whose transition matrix is jointly factorized with a standard two-
dimensional user-item matrix factorization approach. This joint factorization at the end makes it
possible to infer the unobserved transitions in the MC from the transition pairs of other users. At
recommendation time, the items are ranked according to their likelihood to be the next item given
the last item the user has interacted with.

In addition to e-commerce settings, the FPMC method has been successfully applied to other
problem settings, for example, for POI recommendation or check-in prediction in location-based
social networks [41, 72]. He and McAuley [43] present a variation of the FPMC method where
the matrix factorization technique is replaced by a Factored Item Similarity Model (FISM) [64].
The resulting method, named Factorized Sequential Prediction with Item Similarity Model (Fos-
sil), models users as a combination of the factors of the items they have interacted with, which
in turn allows Fossil to provide sequential recommendations also for cold-start users—the FPMC
method is limited in that respect since it relies on user-item matrix factorization—as long as the
item representations can be estimated accurately. The method was tested in different application
domains such as clothes, toy, or electronic devices recommendation.

A number of other hybrid approaches were proposed in the literature. In the context of playlist
recommendation, Hariri et al. [40] use LDA [13] to extract latent topics from playlists, where
playlists are taken as documents and tracks as words for the LDA step. A sequential pattern min-
ing technique is then applied to find patterns of such latent topics in the playlists. When generating
continuations from existing sessions or playlists, the frequent patterns are mapped to the topics
extracted from the current listening session and used to filter the recommendations that are gen-
erated by a classical nearest-neighbor-based recommender.

Song et al. [99] propose the States Transition Pairwise Ranking Model, which combines LDA
with first-order MCs to simultaneously model the user’s long- and short-term favorites. The user’s
long-term favorites, for example, in the movie domain, are determined by the topics generated in
the LDA step with a user-specific prior. The short-term favorites are captured by an MC transition
matrix. The combined model is then basically a HMM whose latent states are controlled by the
personalized LDA generative model, which can be trained via Markov Chain Monte Carlo (MCMC)
Bayesian inference and then be used to predict the next-item given the last few interactions of the
user.

Finally, in the context of next-app recommendation, Natarajan et al. [87] propose a method based
on behavioral clustering to introduce personalization into session-aware models. In the behavioral
clustering step, users with similar sequential behavior are grouped by applying k-means clustering
on the per-user transition matrices of a first-order MC. A personalized PageRank algorithm is then
used to build transition models at the cluster level. At recommendation time, the user is mapped
to its corresponding cluster and the cluster-level transition model is used to provide sequential
recommendations.

Discussion. Hybrid approaches are often used to build recommendation systems due to their
capability of overcoming the shortcomings of individual methods, e.g., in terms of limited con-
tent discovery support or in the context of user- or item cold start situations [16]. The typical
challenges when designing hybrid recommender systems include the problem of finding the best
way of combining the predictions of the different recommendation channels and of determining
importance weights for each individual method in the final prediction.

Some of the discussed approaches circumvent these issues by combining different competing
methods in a unified model, like the combinations of MCs with matrix factorization [94] or with
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LDA [99], in a way that the final recommendations are computed by a single algorithm. Other
approaches rely on a cascade of algorithms [40], where a sequential model is used to filter the
predictions generated by a sequence-agnostic one, or a meta-level approach [87], where a first
sequence-aware model is used as the basis for deriving another one.

4.4 Other Methods

Only a handful of the methods proposed in the literature do not fit into the above categories, and
most of them are either graph-based or based on discrete optimization techniques.

Graph-Based Methods. Xiang et al. [112] focus on context adaption to detect short-term user
intents and interests. The paper describes a graph-based approach which is evaluated based on
implicit feedback datasets in the area of social bookmarking. In their approach, long-term and
short-term user preferences are fused into a two-sided bipartite graph, the Session-Based Temporal
Graph. One side of the graph connects users with the items they have interacted with in the past.
The other side of the graph connects session identifiers with the items the user has interacted
with in the current session. The edges are weighted to balance the influence of long-term and
short-term preferences. The relationships between the items are propagated through the graph
via Injected Preference Fusion, and at recommendation time the graph is traversed via a random
walk to generate session-aware recommendations.

Liu et al. [77] aim to detect interest trends of individual users over time for POI recommendation.
Their method integrates static user interests and evolving sequential preferences based on tempo-
ral interval assessments. Similar to [122], the time intervals between POI visits are assessed from
user check-in sequences in a POI-to-POI transition matrix. Then, a bi-weighted low-rank graph is
constructed to learn the individual user’s behavioral preferences by identifying a set of common
graph bases. As a result, the static interests and evolving sequential preferences of the user are
learned simultaneously with the graph. As in [122], recommendations are generated by ranking
the POIs by their expected relevance for a given time period.

In the same application domain, Zhang et al. [120] try to detect if there are order constraints when
visiting POIs. Their method, named LORE, mines sequential patterns from location sequences and
represents the patterns as a location-location transition graph. The probability of a user visiting
a new location is modeled through an additive n-th order MC, in order to incorporate sequential
dependencies between locations.

Finally, Trevisiol et al. [105] apply contextual adaptation to address the new user problem in news
recommendation. In their approach, the users’ browsing behavior is represented by two graphs: the
BrowseGraph, which collects the behavior of all user sessions, and the ReferrerGraph, a subgraph
of the BrowseGraph which is induced by browsing sessions of users coming from the same referrer
domain.’®> When the user enters the news portal from the referrer domain, the recommendation
candidates are chosen among the neighbors of the article in the Referrer Graph, using the Browse
Graph as fallback. The article’s neighbors are ranked according to various strategies, such as by
random, by popularity, by content similarit, and by edge weight.

Discrete Optimization Methods. Discrete optimization is often employed for sequence-aware rec-
ommendation problems when weak or strict ordering constraints between items exist. Typical
application examples include travel planning, learning course sequence generation, and playlist
generation.

Both Jannach et al. [57] and Pauws et al. [89] address the list continuation problem to generate
playlists in the music domain. Jannach et al. [57] propose a two-stage method to determine suitable

ISExamples of referrer domains considered in the paper are Facebook, Twitter, and Reddit.
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continuations to a music listening session. In a first step, the recommendable tracks are scored
based on a variety of features (including track co-occurrences and musical characteristics). Then,
the first elements of the resulting list are re-ranked in a greedy approach in order to optimize the
coherence of the track continuations with the recently listened tracks. Pauws et al. [89] include
explicit order constraints, either global to all users or local to a single user, in their model. The
authors first formulate the problem as an integer linear programming (ILP) problem, which is
NP-hard in its solution, and then implement a local search heuristic to make the solution scalable.

Similar to [89], Xu et al. [113] address the list continuation problem with explicit order constraints,
but in a different application domain: personalized course sequence recommendation. The specific
goal is to find a sequence of courses that (a) will minimize the time-to-graduation of the students
and maximizes their GPA, (b) at the same time matches the interests of the user, and (c) respects
the sequential constraints between the courses (called the prerequisite graph). Similar to [57], they
propose a two-stage algorithm. First, candidate sequences with short time-to-graduation are ex-
tracted from the prerequisite graph using a Forward-Search Backward-Induction algorithm. Then,
an online regret minimization algorithm based on multi-armed bandits is used to select course
sequences that are expected to maximize the students’ GPAs.

Generally, most discrete optimization methods for sequence-aware recommendation do not rely
on exact or exhaustive search. Instead, due to the computational complexity of the underlying
problems, they usually resort to heuristic search or greedy optimization techniques (see also [63]).

4.5 Summary and Pros and Cons of Selected Approaches

The main ideas of the most important families of algorithms along with a selection of their most
typical advantages and disadvantages are summarized in Table 4. Note that the entries in the table
mainly serve as a rough orientation and that specific pros and cons for individual algorithms within
each family can exist.

5 EVALUATION OF SEQUENCE-AWARE RECOMMENDER SYSTEMS
5.1 Common Evaluation Approaches for Recommender Systems

In academic environments, the evaluation of recommender systems is dominated by “offline”
(simulation-based) experiments on historical rating or implicit feedback datasets. The common
offline evaluation methodology when using the matrix completion abstraction is to split the given
preference data into training and test splits, use the training data to learn a model and predict
the held-out preferences based on this model. The quality of the outputs of an algorithm can then
be assessed with the help of measures such as Root Mean Square Error (RMSE), or Precision and
Recall. In addition, one can analyze a number of other quality factors of the recommendations, for
example, in terms of the diversity of the list, the general popularity of the recommended items, or
the algorithm’s catalog coverage.

User (laboratory) studies are an alternative to offline experiments. Such studies are often used
to assess the potential impact of recommendations on the behavioral intentions of users, an aspect
which cannot be determined based on simulation studies. Finally, field studies (e.g., in the form of
A/B tests) are used to analyze the effects of recommenders on their users in real-world environ-
ments. This latter form of evaluation is, however, comparably rare in academic environments.

5.2 Offline Evaluation of Sequence-Aware Recommenders

While in principle all three mentioned evaluation forms (offline studies, user studies, field tests)
can be applied for sequence-aware recommenders, slightly different evaluation methodologies are
used in offline studies. Generally, several aspects of the evaluation protocols used for sequence-
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Table 4. Summary of the Main ldeas, Pros, and Cons of the Algorithms
for Sequence-Aware Recommendation
Algorithm Main idea Pros Cons
FPM Discover patterns in user action  « Easy implementation « Complex configuration
sequences « Explainable results « Suffers from data sparsity
« Limited scalability
MC Compute transition probabilities  « Explainable results « Fixed transition order
over fixed-length sequences « Suffers from data sparsity
« Limited scalability
VMM Compute transition probabilities « Variable transition orders « Suffers from data sparsity
over variable-length sequences Explainable results
HMM Model the causal factors in user  « Learns from variable-length « Limited explainability
sequences as transitions between , inputs Robust to data sparsity « Huge number of discrete parameters
discrete hidden states
RL Directly maximize the customer « Dynamically adapt recommendationsto ~ « MDP-based approaches have same is-
and seller reward over time future (unknown) rewards sues as MCs
« Under active research « Limited explainability
RNN Model the causal factors in user  «Learns from variable-length inputs « Complex configuration
sequences with non-linear « Learns long-term dependencies « Limited explainability
tr‘ansitions between continuous Robust to data sparsity « Benefits not fully clear in some domains
hidden states i
« Compact hidden states
« Under active research
EMB Embed items into latent spaces  « Robust to data sparsity « Need auxiliary methods to make recom-
that preserves seq}lential « Visually interpetable embeddings mendations
transition properties « Under active research + Limited explainability
SL Use supervised learning over « Easy implementation « Explainability depends on the chosen
features extracted from fixed-size . Uge off-the-shelf supervised algorithms supervised method
sliding windows over sequences « Feature engineering
MF Define new inputs and loss « Extensive literature available « Non-trivial input and loss design

functions for MF to handle
sequences
Algorithm: FPM: Frequent Pattern Mining, MC: Markov Chains, VMM: Variable-order Markov Models, HMM: Hidden
Markov Models, RL: Reinforcement Learning, RNN: Recurrent Neural Networks, EMB: Distributed Item Representations,
SL: Supervised Learning w/ Sliding Windows, MF: Matrix Factorization.

« Robust to data sparsity « Concerns regarding scalability

aware recommenders are closely related to those that are used for Time-Aware Recommender
Systems (TARS), for which Campos et al. [17] provide a formalization and a detailed analysis. In
our subsequent analysis we will therefore take this framework as a reference.

5.2.1 Evaluation Methodologies. Campos et al. [17] discuss evaluation methodologies for TARS
along three dimensions: data partitioning, definition of the target items, and cross-validation.

Dataset Partitioning. In standard matrix completion setups, the partitioning of the ratings into
training and test sets is often done by sampling ratings randomly. Common variants are to either
take samples from the entire dataset or sample ratings per user. For TARS, one can additionally
consider a rating order criterion and, for example, select the most recent ratings (of the individ-
ual user or the community) for the test set. For sequence-aware recommenders, the rating order
criterion, that is, in our case the sequence of actions, is already given by definition.

Two forms of splitting the data into training and test set are possible: event-level and session-
level splitting. When splitting the data at the event-level we can assign all events before a certain
point in time to the training set and the remaining events to the test set, as done in [37]. With this
procedure, an event is therefore assigned to one of the sets independent of the user or the session
it might belong to. Similarly, one can apply a time-based splitting criterion at the session-level, that
is, we do not split up sessions but consider the timestamp of the first event of a session to decide
if the session goes in the training or test set [45, 106].

ACM Computing Surveys, Vol. 51, No. 4, Article 66. Publication date: July 2018.



Sequence-Aware Recommender Systems 66:27

Both event-level and session-level partitioning can be applied to either the whole set of users
(community-level partitioning) or to a subset of the users (user-level partitioning). In the latter case,
one can select a number of training users and put all their data into the training set. Interactions
of the remaining test users are further split—either at event or session-level—into a user profile and
test data [56]. The user profile includes the less recent interactions and is used as input to the
recommender; the test data contains the most recent interactions to be predicted. Finally, mixed
approaches are, in principle, possible as well. One can, for example, select a number of users as test
users and put all data into the training set except for the most recent sessions of the test users [91].

Besides the question of the splitting criterion, different options exist of how to apply size con-
ditions [17]. Placing 80% into the training set and 20% in the test set is a common approach. In
sequence-aware recommenders, additional options exist. One can use time-based splits and place
events (or sessions) prior to a give time into the training set and use the rest for testing [30]. Or,
we can use fixed-size splits and place the last k events of each sequence into the test set and the
remaining into the training set [21].

Our survey shows that no common standard exists in the community regarding data partition-
ing procedures. In the context of session-based or session-aware recommendation problems, it
is, however, advisable to use a session-level partitioning procedure to avoid that individual user
sessions are split up. This is, in particular, necessary to mimic the behavior of session-based and
session-aware recommender systems that are batch-trained on instances of past sessions for effi-
ciency reasons. In the specific case of session-aware recommendation problems, community-level
partitioning has to be applied to ensure that a recommender can also learn longer-term models for
individual users. In the case of session-based recommender systems, user-level partitioning has to
be preferred to ensure that a recommender is able to provide recommendations to new users (i.e.,
users with no records of past interactions with the system).

Also with respect to the size conditions, no community standards exist so far. In some works,
for example in [45], all sessions except those of the last day are placed into the training set. While
the maximum amount of data is provided for learning in such a setting, only one single training-
test split can be used. The size of the training data can also be chosen based on domain-specific
requirements. In domains such as news recommendation or e-commerce, focusing on the most
recent interactions in some cases is sufficient or even advisable, for example, because news can
quickly become outdated or because e-commerce shoppers might concentrate on trending or re-
cently added items [52]. In general, when using time-based splitting, the evaluation should be per-
formed with different time splits, which allows us to evaluate the learning rate of the algorithm
(i.e., the minimum amount of training data that provide stable recommendations).

Definition of the Target Items. In traditional evaluation setups, we aim to predict ratings for a set
of target items or search for an optimal ranking of these items. In sequence-aware recommenders,
we are usually interested in predicting future actions of a user (or, generally, events), where actions
as described above usually have an associated type and item. In addition, the input to the evaluation
step is not limited to a user or user-item pair for which a ranked list or rating prediction is sought
for, but the input can also include a sequence of events, for example, an entire session from the test
set in session-based or session-aware recommendation scenarios. If such a sequence of events is
given, the general idea in most evaluation approaches is to hide a subset or all of the events of the
given sequence and predict the user’s (next) actions. Different variations of the evaluation scheme
can be found in the literature.

— Sequence-agnostic prediction. In this case, the order of the hidden actions is not relevant and
a recommendation is considered successful if it correctly predicts one or more of the hidden
actions [122, 123].
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— Given-N next-item prediction. In this protocol variant, the first N elements of the sequence
are “revealed” to the algorithm and the task of the recommender is to predict the immediate
next action. Jannach et al. [56] propose to use one specific value for N when evaluating. In
the domain of next-track music recommendation, often only the last element of a sequence
is hidden (i.e., N = 1) [40]. In [45, 46, 91], an approach is taken where N is incrementally
increased.

— Given-N next-item prediction with look-ahead. This is a combination of the above protocols
and used in [37, 45]: the set of revealed events is continuously increased. The order of the
hidden actions (which form the look-ahead set) is not relevant.

— Given-N next-item prediction with look-back. In addition to the first N items of the current
sequence, the idea of this protocol is to also reveal a set of actions that happened before the
current sequence [56, 70, 91].

Besides the different ways of evaluating the predictions for a given sequence or user session,
one can limit the evaluation to actions of certain types, for example, to purchase actions, as done
in [56] and in the context of the 2015 ACM RecSys challenge. !

The choice of the best evaluation protocol depends both on the specific research question and
on the application domain. When evaluating session-based recommender systems, given-N next-
item prediction (with or without look-ahead) usually is preferred. In case the goal is to assess how
quickly a system is able to adapt its recommendations to the user’s assumed short-term intents, one
might use a given-Nprotocol where N is incrementally increased. Hiding only the last element of a
sequence can be done in different application scenarios to assess the recommendation performance
when more information is available (“warm start”). Finally, when the goal is to evaluate the value
of combining short-term and long-term user preferences or the effectiveness of different reminding
strategies, the given-N next-item prediction with look-back protocol can represent an appropriate
choice.

Cross-Validation. Using a randomized cross-validation procedure is not possible in all application
areas of sequence-aware recommenders. In the case of next-track music recommendations, where
the goal is to predict the next track within a given playlist [40, 57], the given sets of playlists can
be randomly split into training and test sets as long as the creation time of the playlists is not
relevant.

In many other cases, however, sequence or time dependencies exist, which make it impossible
to randomly assign events to the training and test splits. Some works like [45] therefore only use
one single training-test split, which can, however, lead to biased results. Therefore, alternative val-
idation approaches like repeated random subsampling procedures should be applied. One can, for
example, split the data into several, potentially overlapping time slices of about the same length
(“sliding window”) and use the events at the end of these time slices as test sets [52, 56]. Alterna-
tively, in the case of large datasets, one can in addition repeatedly sample a subset of the users and
consider their last n actions in the test set.

5.2.2 Evaluation Metrics. For many application scenarios of sequence-aware recommenders,
standard classification and ranking metrics can be used for performance evaluation. The set of

metrics used in the reviewed papers include Precision, Recall, Mean Average Rank (MAR), Mean
Average Precision (MAP), Mean Reciprocal Rank (MRR), Normalized Discounted Cumulative Gain

1®http://2015.recsyschallenge.com/.
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(NDCG), and the F1 metric. Typically, most of the ranking metrics are highly correlated when
evaluated with a fixed-size split and their choice does not largely affect the outcomes [25, 44].

For some application domains, such as context adaptation, we can use standard classifica-
tion metrics (e.g., precision and recall) since the recommendation problem is a classical one and
sequence-based techniques are used to generate better recommendations. However, when the ap-
plication domain requires recommendations to fulfill an explicit or implicit order constraint, rank-
ing metrics such as MAP have to be preferred over classification metrics. Error metrics were con-
sidered only in [117] and, in general, do not fit sequence-aware recommendation problems well,
where in almost all situations it is important to consider entire lists of recommended items.

In some application domains, ranking metrics alone cannot fully inform us about the quality
of the recommendations. In playlist recommendation, for example, we may want to assess the
capability of the recommender in generating good quality transitions between subsequent songs.
Given a current track, there may be many other tracks that are almost equally likely good to
be played next, and ranking metrics do not take that aspect into account. This can in turn lead
to the effect that more popular tracks are favored by an algorithm [58]. Therefore, alternative
metrics derived from natural language processing, like the Average Log-Likelihood, can be adopted
instead [19, 20]. However, several concerns on the actual quality of the recommendations and on
the interpretability of the results with these metrics have been raised [15].

Generally, when the goal of a recommender is not limited to predicting the next-best action but
a sequence or set of events that are related to each other, alternative “multi-metric” evaluation
approaches are required that can take multiple quality factors into account in parallel. They can
consider, as mentioned, the order of the recommendations or the internal coherence or diversity
of the recommended list as a whole. In the music domain, one might also be interested that the
set of next tracks is coherent not only in itself but with the last played tracks. In many cases, the
different quality factors can lead to tradeoff situations like “accuracy vs. diversity,” which have to
be balanced by a recommendation algorithm [63].

Differently from conventional recommender systems, many sequence-aware application do-
mains recommend also items that the user already knows or has purchased in the past (see Sec-
tion 3.3). In these application scenarios, the evaluation protocol has to be adapted in order to
consider already known items when computing the metrics.

Finally, sequence learning methods are often computationally more complex than traditional
matrix-completion algorithms. Therefore, the evaluation of sequence-aware recommender sys-
tems should also discuss the time and space complexity of the methods and report running times
for typical training data sets so that the scalability can be assessed.

Overall, a general open issue in the field is the lack of “standard” metrics to assess quality criteria
when recommendation lists as a whole should be evaluated, for example, with respect to their
diversity or coherence. Usually, a selection of meta-data features is used to measure, for example,
intra-list diversity or the smoothness of the transitions between the objects in the list. However,
to which extent such measures reflect the users’ quality perceptions often remains largely open.

5.2.3 Datasets. In recent years, more and more datasets to benchmark different sequence-
aware algorithms in a reproducible way have become available to researchers. Table 5 shows the
characteristics of a number of public datasets that were used in existing works.

Some researchers rely on traditional rating datasets with timestamps to evaluate sequence-
aware algorithms. In reality, however, the point in time when users rate an item might be quite
different from the one when the user experienced the item (e.g., watched a movie). The design of
corresponding algorithms and the interpretation of the results must therefore be done with care.
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Table 5. Publicly Available Datasets for Sequence-Aware Recommendation

Short name Domain Users Items Events Sessions Reference
Amazon EC 20M 6M 143M N/A [43]
Epinions EC 40k 110k 181k N/A [43]
RecSys Chall. 2015 EC N/A 38k 34M 9.5M [45]
Ta-feng EC 32k 24k 829k N/A [110, 116]
TMall EC 1k 10k 5k N/A [110, 116]
AVITO EC N/A 4k 767k 32k [107]
Retailrocket EC 1.4M 235k 2.7M N/A [1]
Microsoft WWWwW 27k/13k 8k 13k/55k 32k/5k [125, 126]
MSNBC WWW  1.3M/87k 1k 476k/180k  N/A [115, 126]
Delicious WWW 8.8k 3.3k 60k 45k [112]
CiteULike WWW 53k 18k  2.1M 40k [112]
Outbrain WWW 700M 560" 2B N/A [2]

AOL Query 650k N/A 17M 2.5M [102]
Adressa News 15k 923 2.7M N/A [39]
Foursquare 1 POI 31k N/A N/A N/A [41]
Foursquare 2 POI 225k N/A 22.5M N/A [21, 43]
Gowalla 1 POI 54k 367k 4M N/A [21, 43]
Gowalla 2 POI 196k N/A  64M N/A (76, 77]
NYC Taxi Dataset POI N/A 299 N/A 670k [29]
Global Terrorism DB POI N/A N/A N/A N/A [76]

Art Of the Mix Music N/A 218k N/A 29k [40, 57, 81]
30Music Music 40k 5.6M 31M 2.7M [106, 108]

EC: E-commerce, WWW: Web browsing, POI: points of interest, “number of sites.

5.3 On User Studies and Field Tests

User studies, which for example aim to evaluate the subjective quality perception of users in
sequence-aware recommendation scenarios, are comparably rare. In a recent study in the con-
text of next-track music recommendation [66], researchers compared the quality perception of
different algorithms. They designed an online experiment where the main task for the 277 partici-
pants was to pick one of the recommendations that were provided by four different algorithms as
the best continuation of a given playlist.'” One of the main results of the study was that consider-
ing musical features not only helps to increase the homogeneity of the recommendations in terms
of computational (offline) measures, but also to a better quality perception by users. At the same
time, focusing on generally popular tracks, which are in many cases already known to the users,
showed to be a comparably “safe” strategy, at least in the short term. While the study provided
evidence that in this particular domain, the chosen offline measures can be suitable proxies for
certain aspects, user studies also have their limitations, for example, in terms of the often artificial
setup.

The number of reports on field tests for sequence-aware recommendation scenarios is limited
as well. The few papers that exist include [33], [37], [62], [84], and [97]. In [62], the authors, for
example, report the results of an A/B test, where one strategy was to simply remind users of
previously seen items in a session-aware recommendation scenario. In that experiment it turned

17 A similar study in the music domain was presented in [10].
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out that reminding users of recently seen items is not only leading to comparably high accuracy
in offline experiments, but also to a certain business value in the real world. Differently from this
work, the studies of Garcin et al. [33] in the news domain revealed that the results of an offline
experiment were not indicative for the performance of algorithms when deployed in a real system.
Specifically, a session-based algorithm showed to be much more effective than a popularity-based
strategy that worked best in the offline experiments. Overall, finding good proxy measures to
predict the success of a recommender based on offline simulations is similarly challenging for
sequence-aware approaches as for other types of recommendation problems.

6 SUMMARY AND FUTURE DIRECTIONS

Sequence-aware recommendation—in particular in the forms of session-based and session-aware
recommendation—is a highly relevant problem in practice. Researchers have developed a variety
of algorithmic proposals over the past 15 years, and with this survey, our goal is to categorize
these approaches and to review the research practice in the field. Throughout the article, we have
identified a number of open research questions, among them the following.

Intent Detection. Context-adaptation is one major goal in session-aware recommendation, and
the most crucial task here is to estimate the users’ context and short-intents. However, these intents
cannot always be reliably estimated from the first few interactions of a session. For example, in the
music streaming domain, is the user in the mood to discover something new or rather interested
in consuming known things [67]? In e-commerce, is the user currently browsing the catalog to
understand the range of options, or is she or he interested in re-inspecting a short list of candidates
to purchase? To address these questions, future works could, for example, consider existing works
in the field of query intent understanding from the information retrieval field, using, for example,
external knowledge [49]. In addition, research could build on existing theories from other fields like
Marketing, where models like AIDA (Attention, Interest, Desire, and Action) are used to describe
the different phases of a consumer, from becoming aware of an offering to the actual purchase.
As discussed in [101], there are also domains where the user’s interest can change even within
a session; for example, when a user has read a number of news stories of a certain category and
then becomes satiated with the topic. Finally, in the context of intent detection, very little research
exists on how to give users the opportunity to correct the system’s assumption in case they are
wrong. On Amazon.com, some basic mechanisms for user control exist, but it is unclear if they are
broadly used by consumers [60].

Combining Short-Term and Longer-Term Profiles. To be able to assess the consumers’ state in the
decision-making process, information about their behavior during recent sessions and probably
also their longer-term behavior has to be taken into account. The most recent works in the field
focus on the session-based recommendation problem, where this past information is not available.
However, there are many domains where longer-term user profiles exist and more research is
required to better leverage this information. Some works [56] show that while the short-term
intentions should be predominant in the selection of the recommendations, considering longer-
term behavioral patterns and preferences of the individual user (e.g., toward certain brands in an
e-commerce scenario) can be important. Existing works like [12] use a simple static weighting of
long-term and short-term models or rely on on re-ranking the results of the long-term models
based on assumed short-term intents [56, 63]. Better integrated models as used, for example, in
[91] are therefore still needed.

Leveraging Additional Data and General Trends. Generally, in the context of user profiling, re-
searchers often rely on one or a few types of specific user interactions like item view events or
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check-ins at certain locations. In real-world applications, usually much richer types of information
are available. Not only are there multiple additional actions related to certain items (e.g., add-to-
wishlist, add-to-cart in the e-commerce domain), there are also other relevant user actions like
search or category navigation which are not considered to a large extent in today’s research. Also,
the information about how the users entered the site (e.g., through a search engine) can be a valu-
able piece of information to assess the user intent from the first few interactions. Going beyond
behavioral patterns of the individual, more research is also required in terms of detecting behav-
ioral trends and interest shifts in the entire user community. In different application domains where
item recency plays a role, including news, music, and e-commerce, being able to detect and lever-
age short-term trends in a community is highly important. For the e-commerce domain, works
like [52] or [62] show that focusing on items that were trending on the platform in the last few
days can be crucial to further improve the recommendation quality.

Toward standardized and more comprehensive evaluations. Finally, our review shows that today
a variety of protocol variants and computational metrics are used to compare sequence-aware
algorithms, making it difficult to assess how the field progresses. Going beyond the subtle details of
the evaluation protocols (e.g., of how to specifically determine the hold-out set), today’s research in
sequence-aware recommenders is still largely focused on accuracy measures. While this is a known
issue also for the matrix-completion formulation of the recommendation problem, in sequence-
aware recommendation, and in particular in session-aware recommendation, the usefulness of
certain recommendations can largely depend on the contextual situation of the users, for example,
if they are exploring the item space, inspecting a smaller choice set, looking for complements to
a recently inspected item, and so forth. These aspects call for more purpose-oriented evaluation
approaches [24, 50], which take the users’ specific contextual situation and goals into account.
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