Quantitative analysis methods for public policies

Regression

Jean Monnet Module · EuroPolA :: European-focused Policy Analytics

Keywords

- Simple linear regression
- Multiple linear regression
- Dependent variable
- Independent variables
- R² value
- Regression coefficients

When do we apply it?

- It is a step forward from the correlation analysis in the sense that prediction is now the new element in the analysis
- More specifically, there is a set of variables (called independent variables-IV) that presumably affect one other variable (called dependent variable-DV).
- Examples include the relationship between income and a set of independent variables such as years of education, previous job experience, etc.
- > The researcher wishes to investigate two things:
- (a) Do the IV as a whole affect the DV?
- (b) If yes, which is the contribution of each IV?
- (c) How well can we predict the DV for specific values of the IV?

Comments

> Initially, only continuous variables will be considered.

- Extensions include discrete DV (logistic regression) and a mix of discrete and continuous IV (Analysis of variance/covariance)
- There may other IV which fit our regression model better but are not available to the researcher.
- In case of one DV (IV is always one), we have the case of simple linear regression denoted by the equation

$Y = \alpha + \beta X + \varepsilon$

Where Y stands for the DV, X for the IV and ε for the omnipresent statistical error.

Comments (2)

- In the previous simple linear regression equation a and b are the regression coefficients.
- Since they are not known (the error is unknown), they are estimated in a way that the error is made as small as possible
- Thus, a and b are called the regression coefficients and help us predict the value of Y for specific value of X.
- In the simple linear regression model their relationship may be described with a line among the data. The direction of the line is based on the estimation of the regression coefficients a and b.
- Example: Let Y=student grade in a 20-point scale and X=hours of daily study. The regression line may look like the one in the next diagram.

Regression line

Jean Monnet Module · EuroPolA :: European-focused Policy Analytics

Interpretation of the results

- The software provides an estimation of the regression coefficients as well as a hypothesis test to check if they are statistically significant from zero (i.e., if the regression model is meaningful or not).
- Suppose that a=8.02 and b=1.42. Thus we have the equation that:

Predicted Grade=8.02+1.42*Hours

Assuming that these tests are significant, the researcher can gain valuable information about the predicted grade. Thus for 4 hours of study the predicted grade is expected to be 13.7 (8.02+1.42*4)

Interpretation of the results (2)

- > The value of b denotes the expected gain in grade if the student studies one hour more.
- Note the use of the term "expected" since the actual change may vary (although not by much if the error term is small)
- Thus, 5 more hours of study are expected to increase the grade by 1.42*5=7.1 points.
- The value of a means that if a student does not study at all (X=0), she he is expected to take 8.02 in the test.
- Note that the interpretation of a may not always be meaningful. For example if X is years of age then X=0 does not apply to students.
- Another important value is R². The closer to 100%, the better the estimation is. In social sciences most R² values are around 30%-40%

Multiple linear regression

> It includes more than one IV.

- It becomes exceedingly difficult or simply impossible in most cases to produce a regression line or a plot
- A difference from the case of the simple linear regression is the fact that the researcher initially examines if the IV as a set significantly affect the DV
- If the overall effect is significant then each separate DV is examined to gauge the biggest impact
- ➤ The interpretation of the regression coefficients remain mostly the same with the addition that a change in one of the X's (the IV) should not result to the simultaneous change of some of the other X's.

Analysis of Variance (ANOVA)

The main difference from regression analysis is that the IV are discrete.

- It investigates the effect of one or more discrete IV to a continuous DV.
- Examples include the effect of Gender and educational level in people's income
- In the case of one DV, the model is called one-way Analysis of Variance or one-way ANOVA.

One-way ANOVA

- Let's assume that a researcher wishes to examine the effect of educational level (recorded as primary/secondary/tertiary) to employees income.
- This is a straightforward setup of one-way ANOVA examining the effect of the 3-level education IV on the continuous income DV
- The idea is to examine if the average income across the three educational level varies significantly.
- If a statistical difference is established among the three level of education, then the researcher wishes to examine in which pair(s) this difference lies (primary-second / primary-tertiary /secondarytertiary)

Logistic regression

- The main difference from regression analysis is that the DV is discrete.
- It investigates the effect of one or more discrete or continuous IV to a discrete DV.
- Examples include the effect of Gender and educational level in being employed
- The case of a DV having only two values is the most common one and is referred to as binary logistic regression.

Binary logistic regression

- Let's assume that a researcher wishes to examine the effect of being a minority (yes/no) to the probability of someone being employed or not.
- This is a straightforward setup of a binary logistic regression on a discrete IV. It may be handled also through chi-square testing, although in the case of more than one IV a logistic regression models is necessary.
- The idea is to examine if the probability of having a job (or not) differs across the two minority levels significantly. Furthermore, one of the two minority levels is set arbitrarily as a reference level to examine the difference in the probability of the other one compared to that level.

