
8
• Captured Animation and Image Sequences
• Digital Cel and Sprite Animation
• Key Frame Animation
• Web Animation and Flash

• The Timeline and Stage

• Motion Graphics
• 3-D Animation
• Virtual Reality

• VRML
• QuickTime VR

Animation

8 Animation may be defi ned as the creation of moving pictures
one frame at a time; the word is also used to mean the
sequences produced in this way, as in ‘a Disney animation’ or

‘Web animation’. Throughout the twentieth century, animation was
used for entertainment, advertising, instruction, art and propaganda
on fi lm, and latterly on video; it is now also widely employed on the
World Wide Web and in multimedia presentations.

To see how animation works, consider making a sequence of draw-
ings or paintings on paper, in which those elements or characters
intended to change or move during the sequence are altered or
repositioned in each drawing. The changes between one drawing and
the next may be very subtle, or much more noticeable. Once the draw-
ings are complete, the sequence of drawings is photographed in the
correct order, a single frame at a time. When the fi lm is played back,
this sequence of still images is perceived in just the same way as the
sequence of frames exposed when live action has been fi lmed in real
time: persistence of vision causes the succession of still images to be
perceived as a continuous moving image. If you wish to convey the
illusion of fast movement or change, the differences between succes-
sive images in the sequence must be much greater than if the change
is to be gradual, or the movement slow.

‘Animate’ literally means ‘to bring to life’, which captures the essence
of the process: when played back at normal fi lm or video speeds, the
still characters, objects, abstract shapes, or whatever, that have been
photographed in sequence, appear to come to life.

As fi lm is projected at 24 frames per second, drawn animation in
traditional media, as we have just described it, technically requires
24 drawings for each second of fi lm, that is, 1440 drawings for every
minute – and even more for animation made on video. In practice,
animation that does not require seamlessly smooth movement can

242

 Animation 2438
be shot ‘on 2s’, which means that two frames of each drawing, or
whatever, are captured rather than just one. This gives an effective
frame rate of 12 frames per second for fi lm, or 15 for NTSC video.
Digital animation can actually be played back at these lower frame
rates, with the same saving in labour.

If an animation is made solely from drawings or paintings on paper,
every aspect of the image has to be repeated for every single frame
that is shot. In an effort to reduce the enormous amount of labour this
process involves, as well as in a continuing search for new expressive
possibilities, many other techniques of animation have been devised.
The best known and most widely used – at least until very recently
– has been cel animation. In this method of working, those elements
in a scene that might move – Homer Simpson, for example – are drawn
on sheets of transparent material known as ‘cel’, and laid over a back-
ground – the Simpsons’ living room, perhaps – drawn separately. In
producing a sequence, only the moving elements on the cel need to
be redrawn for each frame; the fi xed parts of the scene need only be
made once. Many cels might be overlaid together, with changes being
made to different ones between different frames to achieve a greater
complexity in the scene. To take the approach further, the background
can be drawn on a long sheet, extending well beyond the bounds of
a single frame, and moved between shots behind the cels, to produce
an effect of travelling through a scene. The concepts and techniques
of traditional cel animation have proved particularly suitable for
transfer to the digital realm, and many popular cel-like cartoons on
TV are now produced digitally.

Largely because of the huge infl uence of the Walt Disney studios,
where cel animation was refi ned to a high degree, with the use of
multi-plane set-ups that added a sense of three-dimensionality to
the work, cel has dominated the popular perception of animation. It
was used in nearly all the major cartoon series, from Popeye to The
Simpsons and beyond, as well as in many full-length feature fi lms,
starting with Snow White and the Seven Dwarfs in 1937. However,
from the very beginnings of moving pictures in the 1890s, animation
has been successfully created by employing a variety of other means.
Many artists do indeed work by drawing each frame separately on
paper, while others, even more painstaking, have painted directly
on to fi lm, or scratched the emulsion of blackened fi lm stock; others
have worked with sand or oil paint on glass, or chalks on paper or
card, making changes to the created image between every shot; still
others have manipulated front or back lit cut-outs under the camera

– Terry Gilliam’s distinctive work for the Monty Python TV series is
a well-known example of cut-out animation. Sometimes animators
have invented a completely new way of working for themselves, such
as Alexeieff and Parker’s pin screen, in which closely spaced pins are
selectively pushed through a board and lit so that the shadows they
cast form an image, which is changed between each shot.

A distinct alternative to all of these essentially two-dimensional forms
is three-dimensional, or stop-motion, animation. This encompasses
several techniques, but all use miniature three-dimensional sets,
like stage sets, on which objects are moved carefully between shots.
The objects may include articulated fi gures, whose limbs can be
repositioned, or solid fi gures whose parts are replaced, or substituted,
between shots, to produce an effect of gestures, walking, and so on.
Figures and other objects made out of a malleable modelling material,
such as Plasticine, may be used instead; these can be manipulated
between shots, to produce both natural movement and otherwise
impossible changes and transformations. This latter form of anima-
tion – often called clay animation – has achieved recent prominence
with the work of the Aardman studios whose output includes the
Wallace and Gromit fi lms.

Although it may be convenient to consider the various techniques of
animation separately, hybrid forms of animation are often produced
– mixing cel and 3-D, for example. There is also a long tradition of
combining animation with live footage. The most celebrated example
of this is perhaps Who Framed Roger Rabbit? (1988), but a mixture
of live action and animation was employed in some of the earliest
fi lms ever made, including Georges Méliès’ well known ‘trick fi lms’,
and Max Fleischer’s Out of the Inkwell series of the 1920s, which did
much to popularize animation as a form of entertainment. Recently,
the eager adoption of digital technology by the fi lm industry has led
to a substantially increased use of animation in conjunction with live
action, particularly in special effects movies. It is perhaps not always
realised by an audience that much of what they perceive as ‘special
effects’ has been achieved by basic animation techniques, whether
traditional, as in the 1933 classic King Kong and many other monster
movies, or digital, as in The Matrix and its sequels, for example.

All of the traditional forms of animation have their counterparts in the
digital realm. Moreover, digital technology affords new opportunities
for using animation and techniques derived from it in new contexts.

244

 Animation 2458
Captured Animation and Image Sequences
As we will see, digital technology has brought new ways of creating
animation, but computers can also be used effectively in conjunction
with the older methods discussed above, to produce animation in a
digital form, suitable for incorporation in multimedia productions.
Currently, preparing animation in this way – using digital technology
together with a video camera and traditional animation methods
– offers much richer expressive possibilities to the animator working
in digital media than the purely computer-generated methods we will
describe later in this chapter.

Instead of recording your animation on fi lm or videotape, a video
camera is connected directly to a computer, to capture each frame of
animation to disk – whether it is drawn on paper or cel, constructed
on a 3-D set, or made using any other technique that does not depend
on actually marking the fi lm. Instead of storing the entire data stream
arriving from the camera, as you would if you were capturing live
video, you only store the digital version of a single frame each time
you have set up a shot correctly. Many small utilities are available
for performing frame grabbing of this sort, and some video editing
applications provide the facility – Premiere , for example, offers a Stop
Frame command on its Capture menu. Frame grabbers all work in
roughly the same way: a recording window is displayed, showing
the current view through the camera. You can use this to check the
shot, then press a key to capture one frame, either to a still image
fi le, or to be appended to an AVI or QuickTime movie sequence.
You then change your drawing, alter the position of your models, or
whatever, and take another shot. Frames that are unsatisfactory can
be deleted; usually, an option allows you to see a ghost image of the
previously captured frame, to help with alignment and making the
appropriate changes. When you have captured a set of frames that
forms a sequence, you can save it as a QuickTime movie or a set of
sequentially numbered image fi les (see below). The latter option is
useful if you want to manipulate individual images in Photoshop or
import them into Flash, for example.

Capturing animation to disk in the manner just outlined not only
opens up the possibilities of non-linear editing and post-production
that we described in Chapter 7, it also allows animation in traditional
media to be combined with purely digital animation and motion
graphics; Figure 8.2 shows an example from a work produced in this
hybrid fashion.

Figure 8.1 A cel-like digital
animation sequence

246 Captured Animation and Image Sequences

For certain types of traditional animation, it is not even necessary
to use a camera. If you have made a series of drawings or paintings
on paper, you can use a scanner to produce a set of image fi les from
them. You can also manipulate cut-outs on the bed of a scanner,
almost as easily as under a camera. A fi lm scanner will even allow
you to digitize animation made directly onto fi lm stock. You can
to use a digital stills camera instead of a video camera, provided it
allows you to download images directly to disk. In all of these cases
you are able to work at higher resolution, and with a larger colour
gamut, than is possible with a video camera.

For drawn or painted animation you can dispense with the external
form and the digitization process entirely by using a graphics pro-
gram to make your artwork, and save your work as a movie or as a
sequence of image fi les. You can use the natural media brushes of
Painter or recent versions of Photoshop to produce animation that
looks (somewhat) as if it was produced with traditional materials, or
you can take advantage of the pixel manipulating facilities of these
programs to produce work with a characteristic digital look. Even
when you are producing your animation a frame at a time, a program
can sometimes save you work, by letting you record macros or scripts
for drawing repeated elements or applying fi lters to many frames.

Sequences of image fi les provide a very fl exible representation of an anima-
tion. Individual fi les can be opened in a graphics program to be altered; single
fi les can be removed from the sequence, replaced or added. The sequence
can then be imported into a video editing application and converted into an
AVI or QuickTime movie. However, managing a collection of image fi les can
become complicated, especially if you eventually want to import them into
a video editing program. In order for this to be possible without tying you
to a particular combination of programs, the fi les’ names must conform to
some convention. For example, on the Macintosh, Premiere can only import a

Figure 8.2 Stop-frame animation captured to disk and combined with digital animation

 Animation 2478

sequence of PICT fi les if they are all in the same folder, and all the fi les have a
suffi x consisting of a period followed by the same number of digits, for exam-
ple Animation.001, Animation.002, … Animation.449. (Failure to provide the
necessary leading zeroes will have consequences that you can probably guess
at.) If you make any changes to the set of images, you must take care not to
disturb the numbering, or to adjust it if necessary.

Several computer programs, including Painter and Flash (which we
will describe in more detail later) let you open a movie and modify
its individual frames. (Photoshop can open fi les in a special fi lmstrip
format, which Premiere can export and re-import, for similar pur-
poses.) This offers new possibilities. You can, for example, paint onto
or otherwise alter original video material, which is one way of adding
animation to live action.† Another option is to trace, frame by frame
on a layer, selected elements from a live action video clip, which is
subsequently deleted. This process, whether achieved digitally or by
older means, is what is properly referred to as rotoscoping, and has
long been used to create animation that accurately reproduces the
forms and natural movements of people and animals.

Rotoscoping is named after the rotoscope, a device patented by Max Fleischer
(of Betty Boop and original animated Popeye fame) in 1915. Fleischer’s device
projected movie footage, one frame at a time, onto a light table, giving a
back-projected still image over which the animator could place a sheet of
animation paper. When the tracing of one frame was complete, the fi lm was
advanced to the next by means of a hand crank.

Instead of using a set of still image fi les to hold an animation
sequence, you can sometimes use a single ‘image’ fi le to hold several
images. While a surprising number of fi le formats – including, but not
exclusively, formats intended for use with animation software – offer
this facility, by far the most common is GIF.

† In computer graphics circles, this
process of painting onto existing
video frames is sometimes called
‘rotoscoping’, but the use of the
term is inaccurate, as explained
below.

248 Captured Animation and Image Sequences

 GIF fi les’ ability to store a sequence of images has been used to
provide a cheap and cheerful form of animation for Web pages. Most
Web browsers will display each image contained in a GIF fi le in turn
when they load the fi le. If the displaying happens fast enough, the
images will be seen as an animation. The GIF89a version of the format
provides for some optional data items that control the behaviour of an
animated GIF, as these fi les are called. In particular, a fl ag can be set
to cause the animation to loop, either for a stipulated number of times
or indefi nitely, and a minimum delay between frames, and hence a
frame rate, can be specifi ed. However, animated GIFs do not provide a
very reliable way of adding animated features to Web pages. As with
most aspects of a browser’s behaviour, the way in which animated
GIFs are displayed can be changed by users – looping can be turned
off, animation can be prevented, and if image loading is disabled, ani-
mated GIFs will not appear at all – and not all browsers offer a proper
implementation. The main advantage of animated GIFs is that they
do not rely on any plug-in, or the use of scripting (see Chapter 16), so
they will be viewable using a wider range of browsers.

Several free or inexpensive utilities are available on the major
platforms for combining a set of images into a single animated GIF;
Premiere and Flash allow you to save a movie in this form, too,
and dedicated Web graphics programs, such as ImageReady and
Fireworks, can be used to create animated GIFs from scratch or by
altering existing images. Potentially, therefore, GIF fi les can be used
to store any form of animation. However, even when GIF animation
is properly implemented and enabled, it has many shortcomings. You
cannot add sound; you are restricted to a 256 colour palette; your
images are losslessly compressed, which may conserve their quality,
but does not provide much compression, a serious consideration that
effectively prevents the use of this format for any extended animation
sequences. Usually, each frame of an animated GIF is displayed by
the browser as it arrives. Network speeds mean that there may be
excessive, and probably irregular, delays between frames, making
any frame rate that may be specifi ed in the fi le irrelevant. However, if
an animation is set to loop, once it has played through the fi rst time
it will have been copied into the browser’s local cache (unless it is
too big), and subsequent loops will play at a speed only limited by
the user’s processor and disk (which are completely unknown to the
animator). In general, there is little chance of an animated GIF con-
sistently playing back at a suffi ciently high frame rate to give smooth
animation, unless it is small. Usually, therefore, animated GIFs are not

 Animation 2498
used for realistic animation, but for more stylized changing images,
often resembling neon advertising signs. Possibly for this reason, by
association of ideas, Web page advertising is what animated GIFs are
most often used for. It is probably fair to say that, because of the ease
with which animated advertisements can be incorporated into a Web
page by almost anybody, they have been used for some of the worst
animation ever produced. (Possibly as a result, the use of animated
GIFs has declined in recent years.)

For captured animation of any duration, especially if it is accompa-
nied by sound, the best results will be achieved using a video format.
Once you have captured or painted an animation sequence and saved
it as, or converted it to, QuickTime, for example, what you have is
just an ordinary QuickTime movie, so it can be edited, combined
with other clips, have effects applied, and be embedded in a Web
page, just like any other video clip. However, animation clips may
have some distinctive features which affect the way you deal with
them. In particular, certain styles of drawn animation tend to feature
simplifi ed shapes and areas of fl at colour. (This is not invariably the
case; the characteristics of the images depend on the individual ani-
mator’s style.) Material of this type may be more amenable to lossless
compression than other types of video. QuickTime’s Animation codec
is designed to take advantage of the characteristics of simple cartoon-
style drawn animation, which, as we will see later in this chapter, are
often shared by computer-generated 3-D animation. Compression is
based on run-length encoding (RLE), and, when the codec is used at
its highest quality setting, is lossless. There is also a lossy mode that
can be used to achieve higher compression ratios. Because it is based
on RLE, this codec can compress areas of fl at colour well, which is
what makes it suitable for animation in the particular styles just
mentioned.

‘Digital Cel’ and Sprite Animation
Our earlier description of cel animation may have put you in mind of
 layers, as described in Chapter 3. Layers allow you to create separate
parts of a still image – for example, a person and the background of a
scene they are walking through – so that each can be altered or moved
independently. The frames of an animated sequence can be made by
combining a background layer, which remains static, with one or
more animation layers, in which any changes that take place between
frames are made. Thus, to create an animation, you would begin by
creating the background layer in the image for the fi rst frame. Next,

250 ‘Digital Cel’ and Sprite Animation

on separate layers, you create the elements that will move; you may
want to use additional static layers in between these moving layers if
you need to create an illusion of depth. After saving the fi rst frame,
you begin the next by pasting the background layer from the fi rst;
then, you add the other layers, incorporating the changes that are
needed for your animation. In this way, you do not need to recreate
the static elements of each frame, not even using a script.

Where the motion in an animation is simple, it may only be necessary
to reposition or transform the images on some of the layers. To take
a simple example, suppose we wish to animate the movement of a
planet across a background of stars. The fi rst frame could consist of
a background layer containing the star fi eld, and a foreground layer
with an image of our planet. To create the next frame, we would copy
these two layers, and then, using the move tool, displace the planet’s
image a small amount. By continuing in this way, we could produce
a sequence in which the planet moved across the background. (If we
did not want the planet to move in a straight line, it would be neces-
sary to rotate the image as well as displace it, to keep it tangential to
the motion path.)

Using layers as the digital equivalent of cel saves the animator time,
but, as we have described it, does not affect the way in which the
completed animation is stored: each frame is saved as an image fi le,
and the sequence will later be transformed into a QuickTime movie,
an animated GIF, or any other conventional representation. Yet there
is clearly a great deal of redundancy in a sequence whose frames are
all built out of the same set of elements. Possibly, when the sequence
comes to be compressed, the redundant information will be squeezed
out, but compressing after the event is unlikely to be as successful as
storing the sequence in a form that exploits its redundancy in the fi rst
place. In general terms, this would mean storing a single copy of all
the static layers and all the objects (that is, the non-transparent parts)
on the other layers, together with a description of how the moving
elements are transformed between frames.

This form of animation, based on moving objects, is called sprite
animation, with the objects being referred to as sprites. Slightly
more sophisticated motion can be achieved by associating a set of
images, sometimes called faces, with each sprite. This would be suit-
able to create a ‘walk cycle’ for a humanoid character, for example
(see Figure 8.3). By advancing the position of the sprite and cycling
through the faces, the character can be made to walk.

 Animation 2518
QuickTime supports sprite tracks, which store an animation in the
form of a ‘key frame sample’ followed by some ‘override samples’.
The key frame sample contains the images for all the faces of all the
sprites used in this animation, and values for the spatial properties
(position, orientation, visibility, and so on) of each sprite, as well as
an indication of which face is to be displayed. The override samples
contain no image data, only new values for the properties of any
sprites that have changed in any way. They can therefore be very
small. QuickTime sprite tracks can be combined with ordinary video
and sound tracks in a movie.

We have described sprite animation as a way of storing an animated
sequence, but it is often used in a different way. Instead of storing
the changes to the properties of the sprites, the changed values can
be generated dynamically by a program. Simple motion sequences
that can be described algorithmically can be held in an even more
compact form, therefore, but, more interestingly, the computation of
sprite properties can be made to depend upon external events, such
as mouse movements and other user input. In other words, the move-
ment and appearance of animated objects can be controlled by the
user. This way of using sprites has been extensively used in computer
games, but it can also be used to provide a dynamic form of interac-
tion in other contexts, for example, simulations.

Key Frame Animation
During the 1930s and 1940s, the large American cartoon produc-
ers, led by Walt Disney, developed a mass production approach to
animation. Central to this development was division of labour. Just
as Henry Ford’s assembly line approach to manufacturing motor cars
relied on breaking down complex tasks into small repetitive sub-tasks
that could be carried out by relatively unskilled workers, so Disney’s
approach to manufacturing dwarfs relied on breaking down the
production of a sequence of drawings into sub-tasks, some of which,
at least, could be performed by relatively unskilled staff. Disney was
less successful at de-skilling animation than Ford was at de-skilling
manufacture – character design, concept art, storyboards, tests, and
some of the animation, always had to be done by experienced and
talented artists. But when it came to the production of the fi nal cels
for a fi lm, the role of trained animators was largely confi ned to the
creation of key frames.

We have met this expression already, in the context of video compres-
sion and also in connection with QuickTime sprite tracks. There,

Figure 8.3 Sprite faces for a
walk cycle

252 Key Frame Animation

key frames were those which were stored in their entirety, while the
frames in between them were stored as differences only. In traditional
animation, the meaning has a slightly different twist: key frames are
typically drawn by a ‘chief animator’ to provide the pose and detailed
characteristics of characters† at important points in the animation.
Usually, key frames occur at the extremes of a movement – the
beginning and end of a walk, the top and bottom of a fall, and so on
– which determine more or less entirely what happens in between,
but they may be used for any point which marks a signifi cant change.
The intermediate frames can then be drawn almost mechanically by
‘in-betweeners’. Each chief animator could have several in-between-
ers working with him‡ to multiply his productivity. (In addition, the
tedious task of transferring drawings to cel and colouring them in
was also delegated to subordinates.)

 In-betweening (which is what in-betweeners do) resembles what
mathematicians call interpolation: the calculation of values of a
function lying in between known points. Interpolation is something
that computer programs are very good at, provided the values to
be computed and the relationship between them can be expressed
numerically. Generally, the relationship between two key frames of
a hand-drawn animation is too complex to be reduced to numbers
in a way that is amenable to computer processing. But this does not
prevent people trying – because of the potential labour savings.

All digital images are represented numerically, in a sense, but the
numerical representation of vector images is much simpler than that
of bitmapped images, making them more amenable to numerical
interpolation. To be more precise, the transformations that can be
applied to vector shapes – translation, rotation, scaling, refl ection and
shearing – are arithmetical operations that can be interpolated. Thus,
movement that consists of a combination of these operations can be
generated by a process of numerical in-betweening starting from a
pair of key frames. This means that cartoon-like animation can be
created digitally in programs like Flash with considerable savings of
effort compared with traditional methods.

If we just consider motion in a straight line, the simplest form of inter-
polation is linear. This means that an object moves an equal distance
between each frame, the distance moved per frame being the total
distance between the object’s positions in the starting and ending key
frames, divided by the number of frames in the sequence. Putting it

† The mass production approach to
animation is almost invariably
associated with cartoons featuring
characters.

‡ This ‘him’ is not a casual slip: the
big cartoon studios of those days
did not have what we would consider
an enlightened attitude to women
as animators.

di
sp

la
ce

m
en

t

kf1 kf2

ve
lo

ci
ty

kf1 kf2

1

Figure 8.4 Linearly
interpolated motion

 Animation 2538
more simply, the symbol moves at a constant velocity, which causes
two problems.

First, motion begins and ends instantaneously, with objects attaining
their full velocity as soon as they start to move, and maintaining it
until they stop. Nothing really moves like that. To produce a more
natural movement, programs that implement interpolated motion
(including Flash) borrow a technique from hand-made animation:
the transition from stasis to movement is made more gradual by using
smaller, slowly increasing, increments between the fi rst few frames
(i.e. the object accelerates from a standstill to its fi nal velocity), a
process referred to as easing in. The converse process of deceleration
is called easing out. Figure 8.4 shows the way the horizontal displace-
ment and velocity of an object changes with time when it is moved
from an initial position in key frame 1 (kf1) of (0, 0) to a fi nal position
in key frame 2 (kf2) of (50, 50), using linear interpolation over 50
frames. Figures 8.5 and 8.6 show how the change might be modifi ed
when the motion is eased in or out – we have shown a style of easing
that uses quadratic interpolation, that is, the acceleration is constant.
More complicated styles are possible and might be preferred. When
applying easing in Flash, the animator can set the degree of eas-
ing using a slider that moves from maximum easing in, through a
constant velocity, to maximum easing out. In effect, this moves the
displacement curve from one like Figure 8.5, via similar curves with
less pronounced bulge, through Figure 8.4 and beyond to Figure 8.6.
(That is, the acceleration goes from some maximum positive value,
through zero, to a maximum negative value.)

The second problem with linear interpolation can be seen in
Figure 8.7, which shows how displacement and velocity change if
we now append to our original sequence a second one of 50 frames,
during which our object moves from its position in kf2 of (50, 50) to a
new position at (75, 75) in kf3. Because each sequence is interpolated
separately as a straight line, there is a sharp discontinuity at kf2; as
the velocity graph clearly shows, this will appear as a sudden decel-
eration at that point in the animation. Again, this is an unnatural sort
of movement, that will rarely be what is desired. By clever manipu-
lation of the easing slider, it would be possible to smooth out this
abruptness, but a more general solution to the problem is available.
In Chapter 4, we stressed that Bézier curves’ most attractive property
is that they can be joined together smoothly by aligning their tangent
vectors. By using Bézier curves instead of straight lines to interpolate
between key frames, smooth motion can be achieved. Note that we do

di
sp

la
ce

m
en

t

kf1 kf2

ve
lo

ci
ty

kf1 kf2

2

Figure 8.5 Easing in
di

sp
la

ce
m

en
t

kf1 kf2

ve
lo

ci
ty

kf1 kf2

2

Figure 8.6 Easing out

254 Web Animation and Flash

not mean that objects should follow Bézier shaped paths, but that the
rate at which their properties change should be interpolated using a
Bézier curve. Flash does not offer the option of any form of non-linear
interpolation but other, more elaborate, key frame animation systems
do. Although we have only considered displacement in one direction,
you should be able to see that similar considerations apply to any
transformations that might be interpolated.

Web Animation and Flash
 Animation can be added to Web pages in the form of animated GIFs
or embedded video, but the most popular Web animation format is
Shockwave Flash (SWF), which is usually generated using Macromedia
Flash. SWF is a vector animation format, which makes it particularly
suitable for Web animation, since graphic objects can be compactly
represented in vector form, and, as we outlined in the previous sec-
tion, motion can be represented as numerical operations on the vector
data. Thus, SWF animations can have lower bandwidth requirements
than video or any bitmapped format. The price paid for this lower
bandwidth is that vector animations do not offer the full range of
visual possibilities available in bitmaps.

Although SWF fi les may be small, only needing low bandwidth, they are
not necessarily so. Flash does allow bitmapped images to be imported into
animations, and certain styles of drawing and animation lead to vector
animations that are of considerable size. In fact, many Flash animations
found on the Web take an unacceptable time to load over a dial-up connec-
tion. If bandwidth considerations are important to you, you need to make a
conscious effort to avoid using bitmaps, draw simple vector shapes and use
interpolated motion as much as possible in your animations.

Flash is more than an animation program. It supports a powerful
scripting language, called ActionScript, which makes it possible to add
interactivity to animations and to build Web applications with user
interfaces created in Flash. We will return to these aspects of Flash in
Chapter 16. Scripting can also be used to create animations in Flash,
by using algorithms to set the position of movie clip symbols. Instead
of creating motion by hand, objects can be made to move according to
the laws of physics, or some mathematical description of behaviour,
such as the way fl ocks of birds move as a group.

di
sp

la
ce

m
en

t

kf1 kf2

ve
lo

ci
ty

kf1 kf2

1

Figure 8.7 Abrupt change of
velocity

 Animation 2558
The Timeline and Stage
An animation being created in Flash is organized using a timeline,
a graphical representation of a sequence of frames, similar to the
timeline in video editing applications. Animations can be built up
a single frame at a time, by inserting key frames into the timeline
sequentially.

Flash ’s stage is a sub-window in which frames are created by drawing
objects. Objects can be created on the stage using some built-in draw-
ing tools, similar to but less comprehensive than those of Illustrator
or Freehand, or they can be imported from those applications. Bitmap
images, in formats including JPEG and PNG, may also be imported
and auto-traced to make vector objects; images can be used in bitmap
form within a Flash frame, but cannot then be rotated or scaled
without potentially degrading the image. Comprehensive support
is provided for text; characters in outline fonts can be decomposed
into their component outline paths, which can be edited or animated
separately. Layers can be used to organize the elements of a frame;
they also play a key role in interpolating motion. Figure 8.8 shows the
stage and timeline as they appear in Flash. The Flash interface also
contains a toolbox, containing the vector drawing tools, and a host
of palettes, for colour mixing, alignment, applying transformations,
setting typographic options, and so on.

Figure 8.8 The timeline
(top) and stage (below) in a
simple Flash movie

256 Web Animation and Flash

When a movie is fi rst created, it contains a single empty key frame.
When a key frame is added to the timeline immediately after an
existing key frame, it starts out with a copy of the contents of the pre-
ceding key frame. Since most animation sequences exhibit only small
changes between frames, an effi cient way of working on animations
created a frame at a time is by adding key frames incrementally at the
end of the current sequence and making changes to their contents.
To assist with this sort of animation, Flash provides an onion-skin-
ning facility; when this is turned on, up to fi ve preceding frames are
displayed semi-transparently under the current frame. This makes it
easier to see the changes between frames, and to align objects cor-
rectly.

As well as key frames, the timeline can also hold simple frames.
These contain no objects of their own; when the movie is played
back, they continue to display the contents of the most recent key
frame. That is, they hold on the key frame. You can add frames and
key frames independently to different layers, so one layer may hold
a static background image with moving elements on layers above it.
The background layer will have just one key frame at the beginning,
while the moving layers will have key frames at every point where an
object moves. This may be every single frame.

Symbols and Tweening
Graphical objects can be stored in a library in a special form, called a
 symbol, that allows them to be reused. Multiple instances of a symbol
may be placed on the stage. They will all be fundamentally identical,
but transformations can be applied, to change the size and orientation
of each instance. Instances remain linked to the symbol; if the symbol
is altered, every instance is automatically altered too.

Since interpolated animations, almost by defi nition, reuse objects,
interpolating (or tweening, as Flash puts it) the motion of an object
turns it into a symbol. You can create tweened motion in several
ways. In the simplest, a key frame is selected in the timeline, and an
object is drawn on the stage. The command Create Motion Tween is
selected from the Insert menu; this sets up the tweening and, as a
side-effect, stores the object in the library as a symbol. Another key
frame is created at the end of the tweened sequence, and the symbol
is moved to a new position in this new frame. The tweening is shown
on the timeline as an arrow between the two key frames, as you can
see in Figure 8.8, where the two character layers have been tweened
to move the creature across the screen in a straight line, as shown in
Figure 8.9. (The fi gure only shows every fourth frame of the anima-

 Animation 2578
tion.) An animation may be built up as a sequence of automatically
tweened segments, between key frames that have been arranged by
hand, by repeating this process.

Moving a single symbol about the stage in a straight line offers little
in the way of artistic gratifi cation. Tweening can be applied to differ-
ent layers, with key frames in different places, though, allowing the
independent animation of many symbols, each of which may be part
of a single character. To further ease the work of animating motion, an
object can be moved along a path drawn on a hidden layer; this motion
path need not be a straight line, so movements that would have to be
constructed using many key frames if only rectilinear movements
were possible can be achieved in a single tweened sequence with just
two key frames. Finally, although the process we have described is
referred to as ‘motion tweening’, an object’s size, orientation, opacity
and colour may also be interpolated in the same way.

As well as motion tweening, Flash supports shape tweening, or mor-
phing, as it is commonly known. This is a form of interpolation where
the shapes of graphical objects are transformed between key frames,
for example, a square can be turned into a circle. In the animation
shown at the beginning of this chapter and in Figures 8.10 to 8.12,
the motion of the spray and ripples on the sea was created by shape
tweening.

There are, in fact, three different sorts of symbol in Flash. Graphic
symbols are simply reusable vector objects; the symbols created for
motion tweening are graphic symbols by default. Button symbols are
a specialized type of symbol, used for adding interactivity to Flash
movies; we will describe them in Chapter 16. Movie clip symbols are
self-contained animations with their own timelines, that play within
the main movie. For example, the dolphins leaping picturesquely out
of the water in the animation of the sailing ship were added to the
basic animation of the ship, sea and clouds by creating a movie clip
symbol of a single dolphin jumping, as in Figure 8.10; instances of
this single dolphin symbol were added to the main movie, to make a
school of dolphins to accompany the ship on its voyage.

Since movie clip symbol instances have their own timelines, they
will continue to play, even when the main movie has been stopped.
Figure 8.12 shows that the schools of dolphins carry on leaping,
even when the ship has been frozen (by stopping the movie in the
player). Compare these frames with the ones at the beginning of the
chapter, to see how the compound animation has been built out of
the independent movement of its elements. Figure 8.13 shows how the

Figure 8.9 A simple
animation created by motion
tweening

258 Web Animation and Flash

Figure 8.10 Movie clip symbol of a leaping dolphin (superimposed on grey for clarity)

Figure 8.11 Movie clip
symbols playing in sync with
other action in the main
movie

 Animation 2598

Figure 8.12 Movie clip symbols playing independently of the main movie

260 Web Animation and Flash

composition was created out of many layers, with shape and motion
tweening, as well as movie clips. Note how the images on the stage
extend beyond the frame; tweening causes them to move into shot in
the completed animation.

The nature of vector drawing and tweening leads to a compact repre-
sentation of animations created in this way. An SWF fi le consists of
items, which are divided into two broad classes: defi nitions and con-
trol items. The former are used to store defi nitions of the symbols used
in an animation into a dictionary; the latter are instructions to place,
remove, or move a symbol (identifi ed by its name in the dictionary).
Placement and movement are specifi ed using transformation matri-
ces, so that the position and any scaling or rotation are specifi ed at
the same time. An SWF fi le is thus rather like a program, comprising
as it does defi nitions of some objects and instructions that manipulate
them. SWF data is encoded in a binary form and compressed, result-
ing in very small fi les.

Figure 8.13 Timeline and stage for a complex Flash animation

 Animation 2618
Motion Graphics
 Interpolation between key frames can be applied to bitmapped imag-
es. Since bitmaps do not contain identifi able objects, the use of layers
to isolate different elements of an animation is essential. The analogy
with cel animations is more or less complete – each layer is like a
transparent sheet of acetate with something painted on it. Layers
can be moved independently, so an animation can be constructed by
placing different elements on different layers, and moving or alter-
ing the layers between frames. Where the movement or alteration is
easily described algorithmically, it can be interpolated between key
frames, just as in-betweeners interpolate between a chief animator’s
key frames. Typically, between key frames, a layer may be moved to
a different position, rotated or scaled. These geometrical transforma-
tions are easily interpolated, but since we are now concerned with
bitmapped images, they may require resampling, and consequently
cause a loss of image quality, as we explained in Chapter 5.

AfterEffects is the leading desktop application for animation of this
kind. Because of their shared provenance, AfterEffects works well in
conjunction with Photoshop and Illustrator. A Photoshop image can
be imported into AfterEffects, with all its layers – including adjust-
ment layers – and alpha channels intact; an Illustrator drawing can be
imported and rasterized, again with its layers intact. A common mode
of working, therefore, is to use the tools and facilities of Photoshop or
Illustrator to prepare the elements of an animation on separate layers,
and import the result into AfterEffects where the layers are animated.
Photoshop images should be prepared at an appropriate resolution
and size for your intended delivery medium. If they are to be scaled
down, they must be large enough to accommodate the maximum
reduction that will be applied. Illustrator fi les can be either rasterized
when they are imported and then treated as bitmaps, or continuously
rasterized for each frame in the animation. This means that if they
are scaled, for example, no detail will be lost.

The simplest animations are made by repositioning layers, either by
dragging them or by entering coordinates, and interpolating motion
between key frames. By combining layers and adding effects and
fi lters that also vary over time, moving graphic designs are obtained.
The countdown sequence shown in Figure 8.14 was made by import-
ing a set of still images into AfterEffects and animating them in this
way. Apart from the interpolated motion of the complete bitmaps, no
moving elements were used. The effects that can be achieved using

262 Web Animation and Flash

motion and time-varying fi lters on bitmapped images have more
in common with graphic design than with mainstream cartoons or
art animations. They are often known by the more suggestive name
of motion graphics. Many of the techniques fi rst appeared in title
sequences for feature fi lms, and credit sequences remain a typical
application.

Interpolation can be applied to other properties of a layer. In particu-
lar, its angle can be varied, so that it appears to rotate. Angles may
be set by hand in key frames and interpolated, or the rotation may be
determined automatically in conjunction with movement, to maintain
the orientation of a layer with respect to its motion path. Scaling,
which may be used as a perspective effect to convey the impression of

Figure 8.14 Simple motion graphics

 Animation 2638

approaching or receding movement, or as a zoom in or out, can also
be set in key frames and interpolated.

AfterEffects supports both linear and Bézier interpolation, in both
space and time. Linear interpolation leads to abrupt changes in direc-
tion; with Bézier interpolation the changes in direction are smooth.
These are different forms of spatial interpolation, which are set by
moving the layer in the window that shows the image. Temporal
interpolation affects the rate of change of position with respect to
time. Again, this may be linear, with a constant velocity and instanta-
neous starting and stopping, as discussed earlier in connection with
Flash, or Bézier, where the acceleration is smooth. The temporal and

264 Web Animation and Flash

spatial interpolation methods are independent: you can use linear
temporal interpolation with Bézier motion paths, and vice versa.

The degree of control over the interpolation of these spatial properties
offered by AfterEffects is considerable. Using a conventional Bézier
pen tool, the graphs showing how a value varies with time may be
redrawn. Key frames are inserted automatically when control points
are added to the graph. Absolute values may be entered numerically,
allowing complete control over positioning and the rate of movement.
Nevertheless, the type of motion that can be produced by interpolat-
ing the position, angle, and size of a single layer is restricted. Objects
appear to move as a whole, with an unrealistic gliding motion, resem-
bling that seen in simple, low-budget, cut-out animation, as favoured
for some pre-school entertainment and education on television. Key
frame animation of bitmapped images is therefore more frequently
used for stylized motion. As we mentioned in Chapter 7, travelling
mattes are often made by animating a still image in AfterEffects.
Another popular application is the animation of text. Individual
characters or words can be placed on layers and animated, just like
any other layer, or text may be placed on a path, as in Illustrator, and
then moved along that path over time.

As our countdown example demonstrates, bitmapped representation
allows other properties of the image besides its position, angle and
size to be altered over time. So, in addition to geometrical transfor-
mations, more radical time-based alterations of the layers can be
achieved. As we described in Chapter 5, bitmapped images can be
treated with many different effects and fi lters. Most of these fi lters
have parameters, such as the radius of a Gaussian blur, or the bright-Figure 8.15 Interpolating

fi lters

 Animation 2658
ness of glowing edges. Such parameters can be made to change over
time, using the same mechanism of interpolation between key frames
as is used for interpolating motion. Doing so allows some unique
effects to be generated.

For example, Figure 8.15 shows a sequence of frames extracted from
the title sequence of a short fi lm. The title, ‘part of’, emerges from
darkness as a vague blur, becomes sharper and brighter until it
reaches maximum clarity, where it is held for a few seconds before
receding back into the darkness. This was achieved by applying a
time-varying Gaussian blur to the text, in conjunction with varying
the brightness. The actual text was a single still image, made in
Photoshop, that was otherwise unaltered. Figure 8.15 also shows the
graphs of the Gaussian blur and brightness values that were used. The
blur starts with a very high value, which renders the text illegible;
in the same key frame, the brightness is substantially reduced. The
values are interpolated to a point where the blur is removed and the
brightness brought right up. Bézier interpolation is used to ensure a
smooth fade up. The values are held constant between the middle two
key frames, as shown by the fl at portions of the graphs, and then, to
make the title fade back into nothing, a symmetrical interpolation is
used to a fi nal key frame where the values are identical to those at the
beginning.

Figure 8.16 A purely temporal effect

266 3-D Animation

As well as varying the parameters of still image fi lters and effects over
time, you can also apply new effects which become possible when a
temporal dimension is added to images. Figure 8.16 shows part of an
alternative version of the countdown animation, with a shatter effect
applied to the numerals.

3-D Animation
 3-D animation is easy to describe, but much harder to do. No new
concepts beyond those already introduced in this chapter and in
Chapter 4 are needed to understand the essence of the process.
The properties of 3-D models are defi ned by numerical quantities.
Changing the numbers changes properties such as an object’s posi-
tion in space, its rotation, its surface characteristics, and even its
shape. The intensity and direction of light sources and the position
and orientation of a camera are also numerically defi ned. In order to
animate a three-dimensional scene, therefore, all that is necessary is
to set up an initial scene and render it as the fi rst frame of the anima-
tion, make some changes to parameters, render the next frame, and
so on. Because the values that are being changed are numerical, some
kinds of change can be interpolated between key frames; a timeline
can be used as a convenient way of organizing the animation, and
 motion paths in three dimensions (often 3-D Bézier splines) can be
used to describe movement. Because 3-D models must be rendered as
2-D images, which implies the presence of a viewpoint or camera, as
well as moving objects in a scene, we can move the camera, making it
fl y through a landscape or round some objects, as in Figure 8.17.

Whereas simple 3-D animations, such as tumbling logos and rotat-
ing globes, really can be made very easily – and there are dedicated
packages available for such tasks – high-quality photo-realistic ani-
mations, such as those employed in television advertisements, music
videos, and fi lm special effects, require huge resources: time, proces-
sor power and memory, dedicated software, and above all, highly
skilled specialized personnel. Multimedia production can rarely afford
these resources. For this reason our description of 3-D animation is
limited – readers interested in a fuller treatment of the subject should
consult the relevant references given in the bibliography.

There are several factors that make 3-D animation more diffi cult than
it might appear. The fi rst is the diffi culty that most people have in
visualizing in three dimensions. When we add time, there are four
dimensions to be handled through the medium of a two-dimensional
computer screen. This diffi culty is exacerbated by the second prob-

 Animation 2678
lem, which is the amount of processing power needed to render a 3-D
animation. Advanced shading algorithms, such as ray tracing, take a
long time to process a single image. In animation, we need at least 12,
and up to 30, images to be processed for every second of completed
animation. This makes generating fully rendered previews impos-
sible on anything but the most powerful workstations or networks of
distributed processors.

Large budgets, patience and practice can overcome these problems,
but what remains is the necessity to change a large number of param-
eters in such a way as to produce convincing movements. At the very
highest level of 3-D computer-generated animation, the solution that
is adopted is to provide a rich interface giving the animator complete
control over movement. For animating fi gures, this resembles the type
of control used by a puppeteer to control a mannequin – body suits
equipped with motion sensors, like those used to control animatronic
puppets, are even used sometimes. This is in marked contrast to
the approach taken to animation by computer programmers, whose
well-trained instinct is to try to automate everything. In an attempt
to overcome the limitations of simple interpolation schemes, consid-
erable research efforts have been expended on ways of producing
convincing motion in three dimensions automatically.

One of the key approaches is to provide certain kinds of behaviour
that can be applied to objects and the way they interact. A simple
type of behaviour consists of making one object point at another. This
is most useful when the pointing object is a camera or light. If a cam-
era is pointed at an object, it will maintain that object in its fi eld of
view, no matter where it moves; a spotlight pointed at an object will
automatically follow it, as a real spotlight follows a dancer on a stage,
for example. Actual objects in the scene can also be made to point at
each other: a sunfl ower can be made to point always at the sun, for
example. A variation on this behaviour is to have one object track
another, i.e. follow its motion at a distance. This can be used crudely
to animate chase scenes. Like pointing, it can be applied to a camera,
allowing it to follow an object or character through a scene, even in
places where it would be physically impossible for a real camera to
go.

Some 3-D animation systems incorporate behaviour based on the
physical laws of motion. For example, they allow the user to specify
that an object should accelerate from zero under the infl uence of an
external force whose magnitude is specifi ed as a parameter. Taking

Figure 8.17 Moving the
camera around a 3-D scene

268 3-D Animation

this further, moving objects can be made to collide realistically, or
bounce off solid surfaces. These behaviours are based on simple laws
of physics that encapsulate the possible motion in a few equations.
Unfortunately, many realistic types of movement cannot be so easily
described, and other methods must be used.

 Kinematics is the study of the motion of bodies without reference to
mass or force. That is, it is only concerned with how things can move,
rather than what makes them do so. In animation, it is most useful
in connection with jointed structures, such as the limbs of human or
animal fi gures. Because they are joined together, the various parts of
your arm, for example, can only move in certain ways. To produce
realistic movement, a 3-D model of an arm must obey the same kin-
ematic constraints as a real arm: if the upper arm is raised, the lower
arm and hand must come with it, for example. Whereas, in reality,
it is the motion of the upper arm that propels the rest of the arm, in
an animation system, modelling movement in this way – from the
beginning of a chain of connected elements to the end – is not very
helpful to the animator. It is more useful to be able to position the
object which is at the end of the chain – a hand, say – and then make
the other elements – the rest of the arm – move to accommodate it. It
is usually the extremities that impose limitations on movement; when
walking, a foot must stay above the ground, resting on it at each step,
for example. It takes considerable understanding of the way limbs
move to ensure that this will happen correctly by moving the thigh,
so it is preferable for the software to work out the movements of the
leg from the animator’s placement of the foot, and so on. This type of
modelling is called inverse kinematics, since it works backwards from
effect to cause. Inverse kinematics can be applied to any structure
that is modelled as a linked chain of objects. It is routinely provided
by 3-D animation programs that support such structures. Poser, for
example, can be set to automatically apply inverse kinematics to the
arms and legs of fi gures.

A little experimentation will show you that computation of movement
using inverse kinematics is not entirely straightforward. In particular,
the kinematic constraints on arms and legs do not uniquely determine
the possible movements that the limbs can make to accommodate
movements of the extremities. Try lifting your right hand to touch
the tip of your nose with your fi rst fi nger. How many different ways
can your right elbow move while you do so? In order to fi x a par-
ticular type of movement, extra constraints, such as minimizing the

 Animation 2698
potential energy of the whole structure, must be added. To produce
movements that defy these constraints, while still being physically
possible, inverse kinematics must be abandoned, and the parts must
be positioned by hand.

Virtual Reality
 Originally, the phrase ‘virtual reality’ was used to describe an immer-
sive sensory experience of a synthetic world. Head-mounted displays,
which are sensitive to head movements, are used to project images on
the user’s eyes, modifying them as the head is moved, so that the user
appears to be inside a 3-D world, looking around. Data gloves track
hand movements, allowing the display to incorporate an image of the
user’s arm; haptic interfaces provide tactile feedback, so that users
can touch and feel objects in the virtual world. Taken to the extreme,
virtual reality of this sort would be the ultimate in multimedia,
stimulating all the senses at once.

The high cost of the interface hardware required by immersive
virtual reality (together with the understandable reluctance on the
part of most of the adult population to immerse their body in strange
electronic devices) has confi ned it to fl ight and industrial simulations,
and specialist games arcades. A more modest vision of virtual reality
(VR), as 3-D graphics that can be explored, has evolved. Even this
version of VR has not yet achieved widespread acceptance, largely
because the heavy demands it makes on processor power lead to
disappointing results on desktop computers. Two VR technologies
deserve a brief mention, since they can be incorporated in Web pages
with some success, and promise to become more important as compu-
ter power catches up with the vision of VR enthusiasts.

VRML
 The Virtual Reality Modeling Language (VRML) was created on a wave
of enthusiasm for VR and the World Wide Web in 1994. The intention
was to provide a mechanism for distributing virtual worlds over the
Internet, using Web browsers as the interface. To this end, VRML
was a text-based language, that allowed 3-D objects and scenes to be
described in a programming language-like notation. VRML 1.0 did lit-
tle more; the main additional feature was the capability of embedding
hyperlinks in scenes, using URLs. Subsequently VRML 2.0 added
support for interactivity, via scripting of the sort to be described in
Chapter 16, and allowed for video and audio to be embedded in
VRML worlds (so, for example, a television set could be made to show
a movie). VRML became an ISO standard in December 1997. Figure 8.18 ‘Knee bone’s

connected to the thigh bone…’

270 3-D Animation

VRML allows the specifi cation of objects, in terms of their geometry
(whether they are a cube, cylinder, sphere, and so on) and the mate-
rial of which they are composed. Textures can be mapped onto the
surfaces of objects, which can be placed in 3-D space using transfor-
mations. Scenes can be lit in a variety of ways, by specifying the type
and position of light objects. The basic language thus provides a way
of describing the sorts of scenes that can be constructed with conven-
tional 3-D modelling programs, although it lacks some of the more
elaborate features, such as NURBS and metaballs. The description is
explicit: for example, a terrain might be modelled as an elevation grid,
a type of VRML object that specifi es a set of points, forming a grid,
each at a different height. In VRML, the dimensions of the grid and
the height of each grid point must be explicitly specifi ed. Constructing
VRML scenes by hand is thus a painstaking and error-prone business.
Most 3-D modellers will generate VRML as output from their normal
interactive modelling tools, however, which provides an easier way of
constructing scenes.

It might appear that VRML is no more than an alternative representa-
tion of the output of a modeller, and, as far as the language goes,
this is more or less the case. It does, as we noted earlier, provide
additional features for interactivity and embedding multimedia, but
the main distinctive feature lies not so much in the language as in
the way it is displayed. Once a VRML fi le has been downloaded into a
suitable browser – either a Web browser with an appropriate plug-in,
or a dedicated VRML browser – the user can explore the 3-D world it
describes. That is, they can move the viewpoint through the space of
the model, as if they were moving about in it. To that extent, VRML
deserves to be considered a form of virtual reality.

To create the illusion of moving through a 3-D space, VRML must
be rendered in real-time. As we have stated several times, realistic
rendering of 3-D models is a computationally intensive task, which
is usually only feasible with special hardware, such as 3-D accelera-
tor cards. This is one of the main obstacles to the widespread use of
VRML, although a lack of commitment to the format by major soft-
ware vendors may be more signifi cant. At the time of writing, a host
of competing – mostly proprietary – formats for delivering 3-D models
over the World Wide Web is available, with none, as yet, achieving
any widespread use.

 Animation 2718
QuickTime VR
QuickTime VR (or QTVR, for short), part of QuickTime, offers a very
basic VR experience. There are two types of QuickTime VR movies:
panoramic movies and object movies. The former presents a 360°
view of a scene – the interior of a room, or a valley surrounded by
mountains, for example. Using their mouse, a user can drag the scene,
as if looking around. It is also possible to zoom in or out, in order to
view the scene in more or less detail. Object movies, in contrast,
allow the user to examine an object from different angles, as if by
walking round it, again by dragging with the mouse. QTVR movies of
either sort may contain hot spots, which are active areas that contain
links to other movies. Clicking on a hot spot causes the linked movie
to replace the current one. A typical use of hot spots is to allow a user
to go through a door from one room into another.

QTVR movies can be generated from some 3-D programs, such as
Bryce. They can also be made from photographs, allowing them to
represent real scenes and objects. To achieve the best results, a special
rotating rig is used to hold the camera (for panoramas) or an object.
A sequence of pictures is taken, with the rig being rotated a fi xed
amount between each picture. These are then scanned (or read in to
the computer if a digital camera is being used) and special software
‘stitches’ them together and renders the result as QTVR. The purpose
of the rig is to ensure that the individual pictures fi t together perfectly.
If an ordinary tripod is used for panoramas, or a record turntable or
similar device for object movies, there may be discontinuities; stitch-
ing software will attempt to compensate for these, but the result may
be distortion of the images.

Since QTVR is part of QuickTime, panoramas and object movies can
be combined with audio and video. Most usefully, they can be viewed
by any software that uses QuickTime; in particular, the QuickTime
plug-in for Web browsers allows QTVR to be embedded in Web pages,
in the same way as video clips can be (see Chapter 12).

QuickTime VR and VRML might be considered travesties of the
original vision of immersive virtual reality, but they have the advan-
tage of being implementable without special interface devices or
powerful workstations. They offer the possibility of new approaches
to interfaces to multimedia, based on the organization of media in
three-dimensional spaces.

Exercises
1 What are the advantages and disadvantages of using a scanner or

a digital stills camera to capture traditional art work as animation
sequences? For what types of animation, if any, would you have to
use a video camera connected to a computer?

2 How could you incorporate drawn animation into a live-action video
sequence without using a special effects program?

3 If an animation sequence is to be saved as QuickTime, what factors
will infl uence your choice of codec? Under what circumstances
would it be appropriate to treat the animated sequence exactly like a
live-action video sequence?

4 When would it be appropriate to use an animated GIF for an anima-
tion sequence? What problems are associated with animated GIFs?

5 In what ways is a sprite animation track radically different from a
video track containing animation?

6 For what type of work would sprite animation be particularly suit-
able and why?

7 What problems are associated with using basic linear interpolation
to do ‘in-betweening’ between key frames?

8 How would you use Flash’s easing facility to set up a movement that
eases in and out?

9 Describe the motion of an object whose position is animated in
AfterEffects using Bézier interpolation for the motion path, and
linear interpolation for the velocity.

10 Create a very simple title for a video clip as a single image in a bit-
mapped graphics application such as Photoshop or Painter, and save
it as a still image fi le. Using whatever tools are available (Premiere,
AfterEffects, etc.), create a pleasing 10-second title sequence by
simply applying time-varying effects and fi lters to this single image.
(If you want to go for a more sophisticated result, and have the nec-
essary tools, you might create your original image on several layers
and animate them separately.)

11 Do the models generated by 3-D applications contain enough infor-
mation to be used in conjunction with a haptic interface to provide
tactile feedback to a user? If not, what extra information is needed?

272 Exercises

