
1
DSP Development System

1

• Testing the software and hardware tools with Code Composer Studio
• Use of the TMS320C6713 DSK
• Programming examples to test the tools

Chapter 1 introduces several tools available for digital signal processing (DSP).
These tools include the popular Code Composer Studio (CCS), which provides an
integrated development environment (IDE), and the DSP starter kit (DSK) with
the TMS320C6713 floating-point processor onboard and complete support for input
and output.Three examples illustrate both the software and hardware tools included
with the DSK. It is strongly suggested that you review these three examples before
proceeding to subsequent chapters.

1.1 INTRODUCTION

Digital signal processors such as the TMS320C6x (C6x) family of processors are like
fast special-purpose microprocessors with a specialized type of architecture and an
instruction set appropriate for signal processing. The C6x notation is used to desig-
nate a member of Texas Instruments’ (TI) TMS320C6000 family of digital signal
processors. The architecture of the C6x digital signal processor is very well suited
for numerically intensive calculations. Based on a very-long-instruction-word
(VLIW) architecture, the C6x is considered to be TI’s most powerful processor.

Digital signal processors are used for a wide range of applications, from com-
munications and controls to speech and image processing. The general-purpose

Digital Signal Processing and Applications with the C6713 and C6416 DSK By Rulph Chassaing
ISBN 0-471-69007-4 Copyright © 2005 by John Wiley & Sons, Inc.

digital signal processor is dominated by applications in communications (cellular).
Applications embedded digital signal processors are dominated by consumer prod-
ucts. They are found in cellular phones, fax/modems, disk drives, radio, printers,
hearing aids, MP3 players, high-definition television (HDTV), digital cameras, and
so on. These processors have become the products of choice for a number of con-
sumer applications, since they have become very cost-effective.They can handle dif-
ferent tasks, since they can be reprogrammed readily for a different application.
DSP techniques have been very successful because of the development of low-cost
software and hardware support. For example, modems and speech recognition can
be less expensive using DSP techniques.

DSP processors are concerned primarily with real-time signal processing. Real-
time processing requires the processing to keep pace with some external event,
whereas non-real-time processing has no such timing constraint. The external event
to keep pace with is usually the analog input. Whereas analog-based systems with
discrete electronic components such as resistors can be more sensitive to tempera-
ture changes, DSP-based systems are less affected by environmental conditions.
DSP processors enjoy the advantages of microprocessors. They are easy to use,
flexible, and economical.

A number of books and articles address the importance of digital signal proces-
sors for a number of applications [1–22]. Various technologies have been used for
real-time processing, from fiberoptics for very high frequency to DSPs very suitable
for the audio-frequency range. Common applications using these processors have
been for frequencies from 0 to 96kHz. Speech can be sampled at 8kHz (the rate at
which samples are acquired), which implies that each value sampled is acquired at
a rate of 1/(8kHz) or 0.125ms. A commonly used sample rate of a compact disk is
44.1kHz. Analog/digital (A/D)-based boards in the megahertz sampling rate range
are currently available.

The basic system consists of an analog-to-digital converter (ADC) to capture an
input signal. The resulting digital representation of the captured signal is then
processed by a digital signal processor such as the C6x and then output through a
digital-to-analog converter (DAC). Also included within the basic system are a
special input filter for anti-aliasing to eliminate erroneous signals and an output
filter to smooth or reconstruct the processed output signal.

1.2 DSK SUPPORT TOOLS

Most of the work presented in this book involves the design of a program to imple-
ment a DSP application. To perform the experiments, the following tools are used:

1. TI’s DSP starter kit (DSK). The DSK package includes:

(a) Code Composer Studio (CCS), which provides the necessary software
support tools. CCS provides an integrated development environment
(IDE), bringing together the C compiler, assembler, linker, debugger, and
so on.

2 DSP Development System

DSK Support Tools 3

(b) A board, shown in Figure 1.1, that contains the TMS320C6713 (C6713)
floating-point digital signal processor as well as a 32-bit stereo codec for
input and output (I/O) support.

(c) A universal synchronous bus (USB) cable that connects the DSK board
to a PC.

(d) A 5 V power supply for the DSK board.

2. An IBM-compatible PC. The DSK board connects to the USB port of the PC
through the USB cable included with the DSK package.

3. An oscilloscope, signal generator, and speakers. A signal/spectrum analyzer is
optional. Shareware utilities are available that utilize the PC and a sound card
to create a virtual instrument such as an oscilloscope, a function generator, or
a spectrum analyzer.

All the files/programs listed and discussed in this book (except some student
project files in Chapter 10) are included on the accompanying CD. Most of the
examples (with some minor modifications) can also run on the fixed-point C6416-
based DSK. See Appendix H for the appropriate support files along with five illus-
trative examples. Reference 1 contains examples implemented on the C6711-based
DSK (which has been discontinued). A list of all the examples is given on pages
xv–xviii.

1.2.1 DSK Board

The DSK package is powerful, yet relatively inexpensive ($395), with the necessary
hardware and software support tools for real-time signal processing [23–43]. It is a
complete DSP system.The DSK board, with an approximate size of 5 ¥ 8 in., includes
the C6713 floating-point digital signal processor and a 32-bit stereo codec
TLV320AIC23 (AIC23) for input and output.

The onboard codec AIC23 [37] uses a sigma–delta technology that provides ADC
and DAC. It connects to a 12-MHz system clock. Variable sampling rates from 8 to
96kHz can be set readily.

A daughter card expansion is also provided on the DSK board. Two 80-pin con-
nectors provide for external peripheral and external memory interfaces.Two project
examples in Chapter 10 illustrate the use of the external memory interface (EMIF)
with light-emitting diodes (LEDs) and liquid-crystal displays (LCDs) for spectrum
display.

The DSK board includes 16MB (megabytes) of synchronous dynamic random
access memory (SDRAM) and 256kB (kilobytes) of flash memory. Four connectors
on the board provide input and output: MIC IN for microphone input, LINE IN for
line input, LINE OUT for line output, and HEADPHONE for a headphone output
(multiplexed with line output). The status of the four user dip switches on the
DSK board can be read from a program and provides the user with a feedback
control interface.The DSK operates at 225MHz.Also onboard the DSK are voltage

4 DSP Development System

(a)

(b)

FIGURE 1.1. TMS320C6713-based DSK board: (a) board; (b) diagram. (Courtesy of Texas
Instruments)

regulators that provide 1.26V for the C6713 core and 3.3V for its memory and
peripherals.

Appendix H illustrates a DSK based on the fixed-point processor C6416.

1.2.2 TMS320C6713 Digital Signal Processor

The TMS320C6713 (C6713) is based on the VLIW architecture, which is very well
suited for numerically intensive algorithms. The internal program memory is struc-
tured so that a total of eight instructions can be fetched every cycle. For example,
with a clock rate of 225MHz, the C6713 is capable of fetching eight 32-bit instruc-
tions every 1/(225MHz) or 4.44ns.

Features of the C6713 include 264kB of internal memory (8kB as L1P and L1D
Cache and 256kB as L2 memory shared between program and data space), eight
functional or execution units composed of six arithmetic-logic units (ALUs) and
two multiplier units, a 32-bit address bus to address 4GB (gigabytes), and two sets
of 32-bit general-purpose registers.

The C67xx (such as the C6701, C6711, and C6713) belong to the family of the
C6x floating-point processors, whereas the C62xx and C64xx belong to the family
of the C6x fixed-point processors. The C6713 is capable of both fixed- and floating-
point processing. The architecture and instruction set of the C6713 are discussed in
Chapter 3.

1.3 CODE COMPOSER STUDIO

CCS provides an IDE to incorporate the software tools. CCS includes tools for code
generation, such as a C compiler, an assembler, and a linker. It has graphical capa-
bilities and supports real-time debugging. It provides an easy-to-use software tool
to build and debug programs.

The C compiler compiles a C source program with extension .c to produce an
assembly source file with extension.asm. The assembler assembles an.asm source
file to produce a machine language object file with extension.obj. The linker com-
bines object files and object libraries as input to produce an executable file with
extension.out. This executable file represents a linked common object file format
(COFF), popular in Unix-based systems and adopted by several makers of digital
signal processors [25]. This executable file can be loaded and run directly on the
C6713 processor. Chapter 3 introduces the linear assembly source file with exten-
sion .sa, which is a cross between C and assembly code. A linear optimizer opti-
mizes this source file to create an assembly file with extension .asm (similar to the
task of the C compiler).

To create an application project, one can “add” the appropriate files to the
project. Compiler/linker options can readily be specified. A number of debugging
features are available, including setting breakpoints and watching variables; viewing
memory, registers, and mixed C and assembly code; graphing results; and monitor-

Code Composer Studio 5

ing execution time. One can step through a program in different ways (step into,
over, or out).

Real-time analysis can be performed using real-time data exchange (RTDX)
(Chapter 9). RTDX allows for data exchange between the host PC and the target
DSK, as well as analysis in real time without stopping the target. Key statistics and
performance can be monitored in real time. Through the joint team action group
(JTAG), communication with on-chip emulation support occurs to control and
monitor program execution. The C6713 DSK board includes a JTAG interface
through the USB port.

1.3.1 CCS Installation and Support

Use the USB cable to connect the DSK board to the USB port on the PC. Use the
5-V power supply included with the DSK package to connect to the +5-V power
connector on the DSK to turn it on. Install CCS with the CD-ROM included with
the DSK, preferably using the c:\C6713 structure (in lieu of c:\ti as the default).

The CCS icon should be on the desktop as “C6713DSK CCS” and is used to
launch CCS.The code generation tools (C compiler, assembler, linker) are used with
CCS version 2.x.

CCS provides useful documentations included with the DSK package on the
following (see the Help icon):

1. Code generation tools (compiler, assembler, linker, etc.)

2. Tutorials on CCS, compiler, RTDX

3. DSP instructions and registers

4. Tools on RTDX, DSP/basic input/output system (DSP/BIOS), and so on.

An extensive amount of support material (pdf files) is included with CCS. There
are also examples included with CCS within the folder c:\C6713\examples.
They illustrate the board and chip support library files, DSP/BIOS, and so on. CCS
Version 2.x was used to build and test the examples included in this book.A number
of files included in the following subfolders/directories within c:\C6713 (suggested
structure during CCS installation) can be very useful:

1. myprojects: a folder supplied only for your projects. All the folders in the
accompanying book CD should be placed within this subdirectory.

2. bin: contains many utilities.

3. docs: contains documentation and manuals.

4. c6000\cgtools: contains code generation tools.

5. c6000\RTDX: contains support files for real-time data transfer.

6. c6000\bios: contains support files for DSP/BIOS.

7. examples: contains examples included with CCS.

8. tutorial: contains additional examples supplied with CCS.

6 DSP Development System

Note that all the folders containing the programs and support files in the accom-
panying book CD should be transferred to the subdirectory myprojects. Change
the properties of all the files included so that they are not read-only (all the folders
can be highlighted to change the properties of their contents at once).

1.3.2 Useful Types of Files

You will be working with a number of files with different extensions. They include:

1. file.pjt: to create and build a project named file

2. file.c: C source program

3. file.asm: assembly source program created by the user, by the C compiler,
or by the linear optimizer

4. file.sa: linear assembly source program.The linear optimizer uses file.sa
as input to produce an assembly program file.asm

5. file.h: header support file

6. file.lib: library file, such as the run-time support library file
rts6700.lib

7. file.cmd: linker command file that maps sections to memory

8. file.obj: object file created by the assembler

9. file.out: executable file created by the linker to be loaded and run on the
C6713 processor

10. file.cdb: configuration file when using DSP/BIOS

1.4 QUICK TEST OF DSK

1. On power, a program post.c (Power On Self Test), stored in onboard flash
memory, uses the board support library (BSL) to test the DSK. It tests the
internal, external, and flash memories, the two multichannel buffered serial
ports (McBSP), direct memory access (DMA), the onboard codec, and the
LEDs. If all tests are successful, all four LEDs blink three times and stop (with
all LEDs on). During the testing of the codec, a 1-kHz tone is generated for
1sec.

2. Launch CCS from the icon on the desktop. A USB enumeration process takes
place. Then CCS will be opened and the LEDs will turn off. Press GEL Æ
Check DSK Æ Quick Test. The Quick Test can be used for confirmation of
correct operation and installation. The following message is then displayed:

Switches: 15

Board Revision: 1

CPLD Revision: 2

This assumes that the four dip switches (0, 1, 2, 3) are all in the up position. Change
the switches to (1110)2 so that the first three switches (0, 1, 2) are up and press the

Quick Test of DSK 7

fourth switch (3) down. Repeat the procedure to select GEL Æ Check DSK Æ
Quick Test and verify that the value of the switches is now 7 (with the display
“Switches: 7”). You can set the value of the four user switches from 0 to 15. Within
your program you can then direct the execution of your code based on these 16
values.

Alternative Quick Test of DSK
1. Open/launch CCS from the icon on the desktop if this has not been done

already. Select File Æ Load Program. Click on the folder sine8_LED\Debug
within myprojects to load the file sine8_LED.out. This loads the executable
file sine8_LED.out into the C6713 processor. This assumes that you have
already copied all the folders on the accompanying CD into your folder:
c:\c6713\myprojects.

2. Select Debug Æ Run. Press the dip switch #0, which should light LED #0 on
and generate a 1-kHz tone. Connect the LINE OUT (or the HEADPHONE)
on the DSK board to a speaker or to an oscilloscope and verify the
generation of the 1-kHz tone. The four connectors on the DSK board for I/O
(MIC, LINE IN, LINE OUT, and HEADPHONE) use a 3.5-mm jack audio
cable.

1.5 SUPPORT FILES

The following support files located in the folder support (except the library files)
are used for most of the examples and projects discussed in this book:

1. C6713dskinit.c: contains functions to initialize the DSK, the codec, the
serial ports, and for I/O. It is not included with CCS.

2. C6713dskinit.h: header file with function prototypes. Features such as
those used to select the mic input in lieu of line input (by default), input gain,
and so on are obtained from this header file (modified from a similar file
included with CCS).

3. C6713dsk.cmd: sample linker command file. This generic file can be
changed when using external memory in lieu of internal memory.

4. Vectors_intr.asm: a modified version of a vector file included with CCS
to handle interrupts. Twelve interrupts, INT4 through INT15, are available,
and INT11 is selected within this vector file.They are used for interrupt-driven
programs.

5. Vectors_poll.asm: vector file for programs using polling.

6. rts6700.lib,dsk6713bsl.lib,csl6713.lib: run-time, board, and
chip support library files, respectively. These files are included with CCS
and are located in C6000\cgtools\lib, C6000\dsk6713\lib, and c6000\bios\lib,
respectively.

8 DSP Development System

1.6 PROGRAMMING EXAMPLES TO TEST THE DSK TOOLS

Three programming examples are introduced to illustrate some of the features of
CCS and the DSK board. The primary focus is to become familiar with both the
software and hardware tools. It is strongly suggested that you complete these three
examples before proceeding to subsequent chapters.

Example 1.1: Sine Generation Using Eight Points with
DIP Switch Control (sine8_LED)

This example generates a sinusoid using a table lookup method. More important, it
illustrates some features of CCS for editing, building a project, accessing the code
generation tools, and running a program on the C6713 processor. The C source
program sine8_LED.c shown in Figure 1.2 implements the sine generation and is
included in the folder sine8_LED.

Program Consideration
Although the purpose is to illustrate some of the tools, it is useful to understand the
program sine8_LED.c. A table or buffer sine_table is created and filled with
eight points representing sin(t), where t = 0, 45, 90, 135, 180, 225, 270, and 315 degrees

Programming Examples to Test the DSK Tools 9

//Sine8_LED.c Sine generation with DIP switch control

#include "dsk6713_aic23.h" //support file for codec,DSK
Uint32 fs = DSK6713_AIC23_FREQ_8KHZ; //set sampling rate
short loop = 0; //table index
short gain = 10; //gain factor
short sine_table[8]={0,707,1000,707,0,-707,-1000,-707};//sine values

void main()
{
 comm_poll(); //init DSK, codec, McBSP
 DSK6713_LED_init(); //init LED from BSL
 DSK6713_DIP_init(); //init DIP from BSL
 while(1) //infinite loop
 {
 if(DSK6713_DIP_get(0)==0) //=0 if switch #0 pressed
 {
 DSK6713_LED_on(0); //turn LED #0 ON
 output_sample(sine_table[loop]*gain); //output every Ts (SW0 on)
 if (++loop > 7) loop = 0; //check for end of table
 }
 else DSK6713_LED_off(0); //LED #0 off
 } //end of while (1)
} //end of main

FIGURE 1.2. Sine generation program using eight points with dip switch control
(sine8_LED.c).

(scaled by 1000). Within the function main, another function, comm_poll, is
called that is located in the communication and initialization support file
c6713dskinit.c. It initializes the DSK, the AIC23 codec onboard the DSK, and
the two McBSPs on the C6713 processor. Within c6713dskinit.c, the function
DSK6713_init initializes the BSL file, which must be called before the two sub-
sequent BSL functions, DSK6713_LED_init and DSK6713_DIP_init, are
invoked that initialize the four LEDs and the four dip switches.

The statement while (1) within the function main creates an infinite loop.
When dip switch #0 is pressed, LED #0 turns on and the sinusoid is generated.
Otherwise, DSK6713_DIP_get(0) will be false (true if the switch is pressed) and
LED #0 will be off.

The function output_sample, located in the communication support file
C6713dskinit.c, is called to output the first data value in the buffer or table
sine_table[0] = 0. The loop index is incremented until the end of the table is
reached, after which it is reinitialized to zero.

Every sample period T = 1/Fs = 1/8000 = 0.125ms, the value of dip switch #0 is
tested, and a subsequent data value in sine_table (scaled by gain = 10) is sent
for output. Within one period, eight data values (0.125ms apart) are output to gen-
erate a sinusoidal signal. The period of the output signal is T = 8(0.125ms) = 1ms,
corresponding to a frequency of f = 1/T = 1kHz.

Create Project
In this section we illustrate how to create a project, adding the necessary files for
building the project sine8_LED. Back up the folder sine8_LED (change its name)
or delete its content (which can be retrieved from the book CD if needed), keeping
only the C source file sine8_LED.c and the file gain.gel in order to recreate
the content of that folder. Access CCS (from the desktop).

1. To create the project file sine8_LED.pjt. Select Project Æ New. Type
sine8_LED for the project name, as shown in Figure 1.3. This project file is
saved in the folder sine8_LED (within c:\c6713\myprojects).The .pjt
file stores project information on build options, source filenames, and
dependencies.

2. To add files to the project. Select Project Æ Add Files to Project. Look in the
folder support, Files of type C Source Files. Double-click on the C source
file C6713dskinit.c to add it to the project. Click on the “+” symbol to the
left of the Project Files window within CCS to expand and verify that this C
source file has been added to the project.

3. Repeat step 2, use the pull-down menu for Files of type, and select ASM
Source Files. Double-click on the assembly source vector file
vectors_poll.asm to add it to the project. Repeat again and select
Files of type: Linker Command File, and add C6713dsk.cmd to the project.

10 DSP Development System

Programming Examples to Test the DSK Tools 11

(a)

(b)

FIGURE 1.3. CCS Project windows for sine8_LED: (a) project creation; (b) project view
files.

4. To add the library support files to the project. Repeat the previous step,
but select files of type: Object and Library Files. Look in
c:\c6713\c6000\cgtools\lib and select the run-time support library
file rts6700.lib (which supports the C67x architecture) to add to the
project. Continue this process to add the BSL file dsk6713bsl.lib located
in c:\c6713\c6000\dsk6713\lib, and the chip support library (CSL) file
csl6713.lib located in c:\c6713\c6000\bios\lib.

5. Verify from the Files window that the project (.pjt) file, the linker command
(.cmd) file, the three library (.lib) files, the two C source (.c) files, and the
assembly (.asm) file have been added to the project. The GEL file
dsk6713.gel is added automatically when you create the project. It initial-
izes the C6713 DSK invoking the BSL to use the phase-locked loop (PLL) to
set the central processing unit (CPU) clock to 225MHz (otherwise, the C6713
runs at 50MHz by default).

6. Note that there are no “include” files yet. Select Project Æ Scan All File
Dependencies. This adds/includes the header files c6713dskinit.h, along
with several board and chip support header files included with CCS.

The Files window in CCS should look as in Figure 1.3b. Any of the files (except
the library files) from CCS’s Files window can be displayed by clicking on it. You
should not add header or include files to the project. They are added to the project
automatically when you select: Scan All File Dependencies. (They are also added
when you build the project.)

It is also possible to add files to a project simply by “dragging” the file (from a
different window) and dropping it into the CCS Project window.

Code Generation and Options
Various options are associated with the code generation tools: C compiler and linker
to build a project.

Compiler Option
Select Project Æ Build Options. Figure 1.4a shows the CCS window Build Options
for the compiler. Select the following for the compiler option with Basic (for
Category): (1) c671x{-mv6710} (for Target Version), (2) Full Symbolic Debug (for
Generate Debug Info), (3) Speed most critical (for Opt Speed vs. Size), and (4)
None (for Opt Level and Program Level Opt). Select the Preprocessor Category
and type for Define Symbols{d}: CHIP_6713, and from the Feedback Category,
select for Interlisting: OPT/C and ASM{-s}. The resulting compiler option is

-g -s

The -g option is used to enable symbolic debugging information, useful during the
debugging process, and is used in conjunction with the option -s to interlist the C

12 DSP Development System

Programming Examples to Test the DSK Tools 13

(a)

FIGURE 1.4. CCS Build options: (a) compiler; (b) linker.

source file with the assembly source file sine8_LED.asm generated (an additional
option, -k, can be used to retain the assembly source file). The -g option disables
many code optimizations to facilitate the debugging process. Press OK.

Selecting C621x or C64xx for Target Version invokes a fixed-point implementa-
tion. The C6713-based DSK can use either fixed- or floating-point processing. Most
examples implemented in this book can run using fixed-point processing. Selecting
C671x as Target Version invokes a floating-point implementation.

If No Debug is selected (for Generate Debug Info) and -o3:File is selected
(for Opt Level), the Compiler option is automatically changed to

-s -o3

The -o3 option invokes the highest level of optimization for performance or exe-
cution speed. For now, speed is not critical (neither is debugging). Use the compiler
options -gs (which you can also type directly in the compiler command window).
Initially, one would not optimize for speed but to facilitate debugging. A number of
compiler options are described in Ref. 28.

Linker Option
Click on Linker (from CCS Build Options). The output filename sine8_LED.out
defaults to the name of the .pjt filename, and Run-time Autoinitialization defaults
for Autoinit Model. The linker option should be displayed as in Figure 1.4b. The
map file can provide useful information for debugging (memory locations of func-

14 DSP Development System

(b)

FIGURE 1.4. (Continued)

tions, etc.).The -c option is used to initialize variables at run time, and the -o option
is used to name the linked executable output file sine8_LED.out. Press OK.

Note that you can/should choose to store the executable file in the subfolder
“Debug,” within the folder sine8_LED, especially during the debugging stage of a
project.

Again, these various compiler and linker options can be typed directly within the
appropriate command windows.

In lieu of adding the three library files to the project by retrieving them from
their specific locations, it is more convenient to add them within the linker option
window Include Libraries{-l}, typing them directly, separated by a comma. However,
they will not be shown in the Files window.

Building and Running the Project
The project sine8_LED can now be built and run.

1. Build this project as sine8_LED. Select Project Æ Rebuild All or press the
toolbar with the three down arrows.This compiles and assembles all the C files
using cl6x and assembles the assembly file vectors_poll.asm using
asm6x. The resulting object files are then linked with the library files using
lnk6x. This creates an executable file sine8_LED.out that can be loaded
into the C6713 processor and run. Note that the commands for compiling,
assembling, and linking are performed with the Build option. A log file
cc_build_Debug.log is created that shows the files that are compiled and
assembled, along with the compiler options selected. It also lists the support
functions that are used. Figure 1.5 shows several windows within CCS for the
project sine8_LED. The building process causes all the dependent files to be
included (in case one forgets to scan for all the file dependencies).

2. Select File Æ Load Program in order to load sine_LED.out by clicking on
it (CCS includes an option to load the program automatically after a build).
It should be in the folder sine8_LED\Debug. Select Debug Æ Run or use
the toolbar with the “running man.” Connect a speaker to the LINE OUT
connector on the DSK. Press the dip switch #0. You should hear a tone. You
can also use the headphone output at the same time.

The sampling rate Fs of the codec is set at 8kHz. The frequency generated
is f = Fs/(number of points) = 8kHz/8 = 1kHz. Connect the output of the DSK to
an oscilloscope to verify a 1-kHz sinusoidal signal with an approximate amplitude
of 0.8V p-p (peak to peak).

Correcting Program Errors
1. Delete the semicolon in the statement

short gain = 10;

Programming Examples to Test the DSK Tools 15

in the C source file sine8_LED.c. If it is not displayed, double-click on it
(from the Files window).

2. Select Project Æ Build to perform an incremental build or use the toolbar
with the two (not three) arrows. The incremental build is chosen so that only
the C source file sine8_LED.c is compiled.With the Rebuild option (toolbar
with three arrows), files compiled and/or assembled previously would again
go through this unnecessary process.

3. An error message, highlighted in red, stating that a “;” is expected, should
appear in the Build window of CCS (lower left). You may need to scroll up
the Build window for a better display of this error message. Double-click on
the highlighted error message line. This should bring the cursor to the section
of code where the error occurs. Make the appropriate correction, Build again,
load, and run the program to verify your previous results.

Monitoring the Watch Window
Verify that the processor is still running (and dip switch #0 is pressed) . Note the
indicator “DSP RUNNING” at the bottom left of CCS. The Watch window allows
you to change the value of a parameter or to monitor a variable:

16 DSP Development System

FIGURE 1.5. CCS windows for project sine8_LED.

1. Select View Æ Quick Watch window, which should be displayed on the lower
section of CCS. Type gain, then click on “Add to Watch.” The gain value of
10 set in the program in Figure 1.2 should appear in the Watch window.

2. Change gain from 10 to 30 in the Watch window. Press Enter. Verify that the
volume of the generated tone has increased (with the processor still running
and dip switch #0 is pressed). The amplitude of the sine wave has increased
from approximately 0.8V p-p to approximately 2.5V p-p.

3. Change gain to 33 (as in step 2). Verify that a higher-pitched tone exists,
which implies that the frequency of the sine wave has changed just by chang-
ing its amplitude. This is not so. You have exceeded the range of the codec
AIC23. Since the values in the table are scaled by 33, the range of these values
is now between ±33,000. The range of output values is limited from -215 to
(215 - 1), or from -32,768 to +32,767.

Since the AIC23 is a stereo codec, we can send data to both 16-bit chan-
nels within each sampling period. This is introduced in Chapter 2. This can be
useful to experiment with the stereo effects of output signals. In Chapter 7,
we use both channels for adaptive filtering where it is necessary to input one
type of signal (such as noise) on one 16-bit channel and another signal (such
as a desired signal) on the other 16-bit channel. In this book, we will mostly
use the codec as a mono device without the need to use an adapter that is
required when using both channels.

Applying the Slider Gel File
The General Extension Language (GEL) is an interpretive language similar to (a
subset of) C. It allows you to change a variable such as gain, sliding through differ-
ent values while the processor is running. All variables must first be defined in your
source program.

1. Select File Æ Load GEL and open the file gain.gel, which you retained
from the original folder, sine8_LED (that you backed up). Double-click on
the file gain.gel to view it within CCS. It should be displayed in the Files
window. This file is shown in Figure 1.6. By creating the slider function gain
shown in Figure 1.6, you can start with an initial value of 10 (first value) for
the variable gain that is set in the C program, up to a value of 35 (second
value), incremented by 5 (third value).

2. Select GEL Æ Sine Gain Æ Gain. This should bring out the Slider window
shown in Figure 1.7, with the minimum value of 10 set for the gain.

3. Press the up-arrow key to increase the gain value from 10 to 15, as displayed
in the Slider window. Verify that the volume of the sine wave generated has
increased. Press the up-arrow key again to continue increasing the slider,
incrementing by 5 up to 30. The amplitude of the sine wave should be about
2.5V p-p with a gain value set at 30. Now use the mouse to click directly on
the Slider window and slowly increase the slider position to 31, then 32, and

Programming Examples to Test the DSK Tools 17

verify that the frequency generated is still 1kHz. Increase the slider to 33 and
verify that you are no longer generating a 1-kHz sine wave. The table values,
scaled by the gain value, are now between ±33,000 (beyond the acceptable
range by the codec).

Changing the Frequency of the Generated Sinusoid
1. Change the sampling frequency from 8 to 16kHz by setting fs in the C source

program to DSK6713_AIC23_FREQ_16KHZ. Rebuild (use incremental
build) the project, load and run the new executable file, and verify that the
frequency of the generated sinusoid is 2kHz. The sampling frequencies
supported by the AIC23 codec are 8, 16, 24, 32, 44.1, 48, and 96kHz.

2. Change the number of points in the lookup table to four points in lieu of eight
points—for example, {0, 1000, 0, -1000}. The size of the array sine_table
and the loop index also need to be changed. Verify that the generated
frequency is f = Fs/(number of points).

Note that the sinusoid is no longer generated if the dip switch #0 is not
pressed. If a different dip switch such as switch #3 is desired (in lieu of switch
#0), the BSL functions DSK6713_DIP_get(3), DSK6713_LED_on(3), and
DSK6713_LED_off(3) can be substituted in the C source program.

18 DSP Development System

/*gain.gel Create slider and vary amplitude (gain) of sinewave*/

menuitem "Sine Gain"

slider Gain(10,35,5,1,gain_parameter) /*incr by 5,up to 35*/
{
 gain = gain_parameter; /*vary gain of sine*/
}

FIGURE 1.6. GEL file to slide through different gain values in the sine generation program
(gain.gel).

FIGURE 1.7. Slider window for varying the gain of generated sine wave.

Two sliders can readily be used, one to change the gain and the other to change
the frequency. A different signal frequency can be generated by changing the loop
index within the C program (e.g., stepping through every two points in the table).
When you exit CCS after you build a project, all changes made to the project can
be saved. You can later return to the project with the status as you left it before.
For example, when returning to the project after launching CCS, select Project Æ
Open to open an existing project such as sine8_LED.pjt (with all the necessary
files for the project already added).

Example 1.2: Generation of the Sinusoid and
Plotting with CCS (sine8_buf)

This example generates a sinusoid with eight points, as in Example 1.1. More impor-
tant, it illustrates CCS capabilities for plotting in both time and frequency domains.
The program sine8_buf.c, shown in Figure 1.8, implements this project. This
program creates a buffer to store the output data in memory.

Create this project as sine8_buf.pjt, and add the necessary files to the
project, as in Example 1.1 (use the C source program sine8_buf.c in lieu of
sine8_LED.c). Note that the necessary header support files are added to
the project by selecting Project Æ Scan All File Dependencies. The necessary

Programming Examples to Test the DSK Tools 19

//sine8_buf Sine generation. Output buffer plotted within CCS

#include "dsk6713_aic23.h" //codec-DSK support file
Uint32 fs=DSK6713_AIC23_FREQ_8KHZ; //set sampling rate
int loop = 0; //table index
short gain = 10; //gain factor
short sine_table[8]={0,707,1000,707,0,-707,-1000,-707};//sine values
short out_buffer[256]; //output buffer
const short BUFFERLENGTH = 256; //size of output buffer
int i = 0; //for buffer count

interrupt void c_int11() //interrupt service routine
{
 output_sample(sine_table[loop]*gain); //output sine values
 out_buffer[i] = sine_table[loop]*gain; //output to buffer
 i++; //increment buffer count
 if(i==BUFFERLENGTH) i=0; //if @ bottom reinit count
 if (++loop > 7) loop = 0; //check for end of table
 return; //return from interrupt
}

void main()
{
 comm_intr(); //init DSK, codec, McBSP
 while(1); //infinite loop
}

FIGURE 1.8. Sine generation with output stored in memory as well (sine8_buf.c).

support files for this project, c6713dskinit.c, vectors_intr.asm and
C6713dsk.cmd, are in the folder support, and the three library support files can
be added using Project Æ Build Options and selecting the linker option (Include
Libraries). Type them, separating each by a comma. Note that since this program is
interrupt-driven (in lieu of polling), the vector file vectors_intr.asm (in lieu of
vectors_poll.asm) is added to the project.

Within the function main, comm._intr (in lieu of comm_poll in Example 1.1) is
called. This function resides in c6713dskinit.c to support interrupt-driven pro-
grams. The statement while(1) within the function main creates an infinite loop
to wait for an interrupt to occur. On interrupt, execution proceeds to the inter-
rupt service routine (ISR) c_int11. This ISR address is specified in the file
vectors_intr.asm with a branch instruction to this address, using interrupt
INT11. Interrupts are discussed in more detail in Chapter 3.

Within the ISR, the function output_sample, located in the communication
and initialization file c6713dskinit.c, is called to output the first data value in
sine_table. The loop index is incremented until the end of the table is reached;
after that, it is reinitialized to zero. An output buffer is created to capture a total of
256 (specified by BUFFERLENGTH) sine data values. Execution returns from ISR
to the while (1) infinite loop to wait for each subsequent interrupt.

Build this project as sine8_buf. Load and run the executable file
sine8_buf.out and verify that a 1-kHz sinusoid is generated with the output con-
nected to a speaker or a scope (as in Example 1.1).

Plotting with CCS
The output buffer is being updated continuously every 256 points (you can readily
change the buffer size). Use CCS to plot the current output data stored in the buffer
out_buffer.

1. Select View Æ Graph Æ Time/Frequency. Change the Graph Property Dialog
so that the options in Figure 1.9a are selected for a time-domain plot (use the
pull-down menu when appropriate). The starting address of the output buffer
is out_buffer. The other options can be left as default. Figure 1.10 shows a
time-domain plot of the sinusoidal signal within CCS.

2. Figure 1.9b shows CCS’s Graph Property Display for a frequency-domain plot.
Choose a fast Fourier transform (FFT) order so that the frame size is 2order.
Press OK and verify that the FFT magnitude plot is as shown in Figure 1.10.
The spike at 1000Hz represents the frequency of the sinusoid generated.

You can obtain many different windows within CCS. From the Build window,
right-click and select Float In Main Window. To change the screen size, right-click
on the Build window and deselect Allow Docking. For example, you can get the
time-domain plot (separated). Right-click on the time-domain plot, select Float In
Main Window, and again right-click on the same time-domain plot window and des-
elect Allow Docking. You can then move it.

20 DSP Development System

Programming Examples to Test the DSK Tools 21

(a)

(b)

FIGURE 1.9. CCS Graph Property Dialog for sine8_buf: (a) for time-domain plot;
(b) for frequency-domain plot.

Viewing and Saving Data from Memory in a File
To view the content of that buffer, select View Æ Memory and specify out_buffer
for the address, and select the 16-bit signed integer (or hex, etc.) for the format.

To save the content of the output buffer in a file, select File Æ Data Æ Save. Save
the file as sine8_buf.dat (as type hex, for example) in the folder sine8_buf. From the
Storing Memory window, use out_buffer as the buffer’s address with length 256.
You can then plot this data [with MATLAB for example] and verify the 1-kHz sinu-
soidal waveform (with 8kHz as the sampling rate).

Example 1.3: Dot Product of Two Arrays (dotp4)

Operations such as addition/subtraction and multiplication are the key operations
in a DSP. A very important operation is multiply/accumulate, which is useful in a
number of applications requiring digital filtering, correlation, and spectrum analy-
sis. Since the multiplication operation is executed commonly and is essential for
most DSP algorithms, it is important that it executes in a single cycle.With the C6713
we can actually perform two multiply/accumulate operations within a single cycle.

This example illustrates additional features of CCS, such as single-stepping,
setting breakpoints, and profiling for the benchmark. Again, the purpose here is to

22 DSP Development System

FIGURE 1.10. CCS windows for sine8_buf showing both time- and frequency-domain plots
of a generated 1-kHz sine wave.

become more familiar with the tools.We invoke C compiler optimization to see how
performance or execution speed can be drastically increased.

The C source file dotp4.c in Figure 1.11 takes the sum of products of two arrays,
each with four numbers, contained in the header file dotp4.h in Figure 1.12. The
first array contains the four numbers 1, 2, 3, and 4, and the second array contains
the four numbers 0, 2, 4, and 6. The sum of products is (1 ¥ 0) + (2 ¥ 2) + (3 ¥ 4) +
(4 ¥ 6) = 40.

The program can be readily modified to handle a larger set of data. No real-time
implementation is used in this example, and no real-time I/O support files are
needed. The support functions for interrupts are not needed here.

Create this project as dotp4 and add the following files to the project (see
Example 1.1):

Programming Examples to Test the DSK Tools 23

//Dotp4.c Multiplies two arrays, each array with 4 numbers

int dotp(short *a,short *b,int ncount);//function prototype
#include <stdio.h> //for printf
#include "dotp4.h" //header file with data
#define count 4 //# data in each array
short x[count] = {x_array}; //declaration of 1st array
short y[count] = {y_array}; //declaration of 2nd array

main()
{
 int result = 0; //result sum of products

 result = dotp(x, y, count); //call dotp function
 printf("result = %d (decimal) \n", result); //print result
}

int dotp(short *a,short *b,int ncount) //dot product function
{
 int sum = 0; //init sum
 int i;

 for (i = 0; i < ncount; i++)
 sum += a[i] * b[i]; //sum of products
 return(sum); //return sum as result
}

FIGURE 1.11. Sum-of-products program using C code (dotp4.c).

//dotp4.h Header file with two arrays of numbers

#define x_array 1,2,3,4

#define y_array 0,2,4,6

FIGURE 1.12. Header file with two arrays each with four numbers (dotp4.h).

1. dotp4.c: C source file

2. vectors_poll.asm: vector file defining the entry address c_int00

3. C6713dsk.cmd: generic linker command file

4. rts6700.lib: library file

Do not add any “include” files using “Add Files to Project” since they are added
by selecting Project Æ Scan All File Dependencies. The header file stdio.h is
needed due to the printf statement in the program dotp4.c to print the result.

Implementing a Variable Watch
1. Select Project Æ Options with -gs as the compiler option and the default

linker option with no optimization.

2. Rebuild All by selecting the toolbar with the three arrows (or select Project
Æ Rebuild All). Load the executable file dotp4.out within the folder
dotp4\Debug.

3. Select View Æ Quick Watch. Type sum to watch the variable sum and click on
“Add to Watch.” The message “identifier not found” associated with sum is
displayed (as Value) because this local variable does not exist yet.

4. Set a breakpoint at the line of code

sum += a[i] * b[i];

by placing the mouse cursor (clicking) on that line, then right-click and select
the Toggle breakpoint. Or, preferably, with the cursor on that line of code (at
the extreme left), double-click. A red circle to the left of that line of code
should appear. (Note: placing the cursor on a line of code with a set break-
point and double clicking will remove the breakpoint.)

5. Select Debug Æ Run (or use the “running man” toolbar). The program exe-
cutes up to (excluding) the line of code with the set breakpoint. A yellow
arrow will also point to that line of code.

6. Single-step using F8. Repeat or continue to single-step and observe/watch the
variable sum in the Watch window change in value to 0, 4, 16, 40. Select Debug
Æ Run and verify that the resulting value of sum is printed as

sum = 40 (decimal)

7. Note the printf statement in the C program dotp4.c for printing the result.
This statement (while excellent for debugging) should be avoided after the
debugging stage, since it takes over 6000 cycles to execute.

Animating
1. Select File Æ Reload Program to reload the executable file dotp4.out. Or,

preferably, select Debug Æ Restart. Note that after the executable file is

24 DSP Development System

loaded, the entry address for execution is c_int00, as can be verified by the
disassembled file.

2. The same breakpoint should be set already at the same line of code as before.
Select Debug Æ Animate or use the equivalent toolbar in the left window
(below the Halt running man). Observe the variable sum change in values
through the Watch window. The speed of animation can be controlled by
selecting Option Æ Customize Æ Animate Speed (the maximum speed is set
to default at 0 second).

Benchmarking (Profiling) without Optimization
In this section we illustrate how to benchmark a section of code: in this case, the
dotp function. Verify that the options for the compiler (-g) and linker (-c -o
dotp4.out) are still set. To profile code, you must use the compiler option -g for
symbolic debugging information. Remove any breakpoint by double-clicking on the
line of code with the set breakpoint (or right-click and select the Toggle breakpoint).

1. Select Debug Æ Restart.

2. Select Profiler Æ Start New Session and enter dotp4 as the Profile Session
Name. Then press OK.

3. Click on the icon to “Create Profile Area” (see Figure 1.13a). This icon is the
third icon from the bottom left in Figure 1.13b. Figure 1.13b shows the added
profile area for the function dotp within the C source file dotp4.c.

Programming Examples to Test the DSK Tools 25

(a)

FIGURE 1.13. CCS display of project dotp4 for profiling: (a) profile area for function dotp;
(b) profiling function dotp with no optimization; (c) profiling function dotp with level 3 opti-
mization; (d) profiling printf.

26 DSP Development System

(b)

(c)

(d)

FIGURE 1.13. (Continued)

4. Run the program. Verify the results shown in Figure 1.13b. This indicates that
it takes 191 cycles to execute the function dotp (with no optimization).

Benchmarking (Profiling) with Optimization
In this section we illustrate how to optimize the program using one of the opti-
mization options, -o3. The program’s execution speed can be increased using the
optimizing C compiler. Change the compiler option (select Project Æ Build
Options) to

-g -o3

and use the same linker options as before (you can type this option directly). The
option -o3 invokes the highest level of compiler optimization. Various compiler
options are described in Ref. 28. Rebuild All (toolbar with three arrows) and load
the executable file dotp4.out (or select File Æ Reload Program). Re-create the
Profile Area as in Figure 1.13a.

Select Debug Æ Run. Verify that it takes now 25 cycles (from 191) to execute
the dotp function, as shown in Figure 1.13c. This is a considerable improvement
using the C compiler optimizer. The code size is reduced from 172 to 72. The dot
product example can be also optimized using an intrinsic function or the code opti-
mization techniques discussed in Chapter 8.

Profiling Printf
Again restart the program (Debug Æ Restart). Click on the icon Ranges at the
bottom of the profile area. Highlight printf from the C source program, drag it to
the profiling area window, and drop it by releasing the cursor. Verify that the code
size of printf is 32 and that it takes 6316 cycles to execute, as shown in Figure 1.13d.

Note that in lieu of using Figure 1.13a to profile the function dotp, you can high-
light it, drag it, and drop it with your mouse in the profiling area.

1.7 SUPPORT PROGRAMS/FILES CONSIDERATIONS

The following support files are used for practically all the examples in this book:
(1) c6713dskinit.c, (2) vectors_intr.asm or vectors_poll.asm, and
(3) c6713dsk.cmd. For now, the emphasis associated with these files should be on
using them.

1.7.1 Initialization/Communication File (c6713dskinit.c)

Several BSL and CSL support functions are included in the initialization and com-
munication (init/comm) file c6713dskinit.c. A partial listing is shown in Figure
1.14. It includes functions to initialize the DSK and provide for input and output.

Support Programs/Files Considerations 27

//C6713dskinit.c Partial list of init/comm file.Includes CSL/BSL funct
...
void c6713_dsk_init() //dsp-peripheral init
{
DSK6713_init(); //BSL to init DSK-EMIF,PLL
hAIC23_handle=DSK6713_AIC23_openCodec(0, &config);//handle to codec
DSK6713_AIC23_setFreq(hAIC23_handle, fs); //set sample rate
MCBSP_config(DSK6713_AIC23_DATAHANDLE,&AIC23CfgData);//32bits interface
MCBSP_start(DSK6713_AIC23_DATAHANDLE,MCBSP_XMIT_START | MCBSP_RCV_START
 | MCBSP_SRGR_START | MCBSP_SRGR_FRAMESYNC,220); //start data channel
}

void comm_poll() //comm/init using polling
{

poll = 1; //1 if using polling
c6713_dsk_init(); //init DSP and codec

}

void comm_intr() //for comm/init using interrupt
{
 poll = 0; //0 since not polling
 IRQ_globalDisable(); //disable interrupts
 c6713_dsk_init(); //init DSP and codec
CODECEventId=MCBSP_getXmtEventId(DSK6713_AIC23_codecdatahandle);//Xmit
 ...
 IRQ_setVecs(vectors); //point to the IRQ vector
 IRQ_map(CODECEventId, 11); //map McBSP1 Xmit to INT11
 IRQ_reset(CODECEventId); //reset codec INT 11
 IRQ_globalEnable(); //globally enable interrupts
 IRQ_nmiEnable(); //enable NMI interrupt
 IRQ_enable(CODECEventId); //enable CODEC eventXmit INT11
 output_sample(0); //start McBSP interrup out a sample
}

void output_sample(int out_data) //out to Left and Right channels
{
 short CHANNEL_data;
 AIC_data.uint=0; //clear data structure
 AIC_data.uint=out_data; //32-bit data -->data structure
 ...
 if(poll) while(!MCBSP_xrdy(DSK6713_AIC23_DATAHANDLE));//ready to Xmit?
 MCBSP_write(DSK6713_AIC23_DATAHANDLE,AIC_data.uint);//write data
}

void output_left_sample(short out_data) //for output->left channel
{
 AIC_data.uint=0; //clear data structure
 AIC_data.channel[LEFT]=out_data; //data->Left channel->data structure
 if(poll) while(!MCBSP_xrdy(DSK6713_AIC23_DATAHANDLE));//ready to Xmit?
 MCBSP_write(DSK6713_AIC23_DATAHANDLE,AIC_data.uint);//out->leftchannel
}

void output_right_sample(short out_data) //for output->right channel
...
Uint32 input_sample() //for 32-bit input
{
 short CHANNEL_data;

FIGURE 1.14. Partial listing of communication/initialization support program
(C6713dskinit.c).

28

The function comm_intr() in an interrupt-driven program or comm_poll()
in a polling-based program calls the appropriate functions to initialize the DSK.
These two functions are located in the init/comm. file. When using an interrupt-
driven program, interrupt #11 (INT11) is configured and enabled (selected). The
nonmaskable interrupt bit must be enabled as well as the global interrupt enable
(GIE) bit. A different interrupt, such as INT12, can be selected readily by modify-
ing slightly the init/comm. file and the vector file that contains the branching address
to the corresponding ISR in the main C source program. INT11 is generated via the
serial port (McBSP).

The function input_sample() is used to input data and the function
output_sample() to output data. Most of the examples throughout the book
utilize the AIC23 codec in a mono format, defaulting to the left channel to read or
write a 16-bit data.The example loop_stereo.c in Chapter 2 illustrates the stereo
capability of the codec to input 16-bit data into each (left and right) channel and
output a 16-bit data from each channel. Some adaptive filtering examples in Chapter
7 use both input channels to acquire two different 16-bit input data signals.

The code input = input_sample();, casting input as a short, acquires
16-bit data through the left (default) channel. Similarly, output_sample ((short) . . .);
outputs 16-bit data from the left (default) channel.

A polling-based program (non-interrupt-driven) continuously polls or tests
whether or not data are ready to be received or transmitted. This scheme is in
general less efficient than the interrupt scheme. For input, the content of the serial
port control register (SPCR) bit 1 [the second least significant bit (LSB)], as shown
in Figure B.8 (Appendix B), is continuously tested to determine when data are avail-
able to be received or read. For output, the content of SPCR bit 17 is tested (Figure
B.8) to determine when data are available to be transmitted. An input data value is
accessed through the data receive register of the McBSP. An output data value is
sent through the data transmit register of McBSP.

Support Programs/Files Considerations 29

 if (poll) while(!MCBSP_rrdy(DSK6713_AIC23_DATAHANDLE));//receiveready?
 AIC_data.uint=MCBSP_read(DSK6713_AIC23_DATAHANDLE); //read data
 ...
 return(AIC_data.uint);
}

short input_left_sample() //input to left channel
{
 if(poll) while(!MCBSP_rrdy(DSK6713_AIC23_DATAHANDLE));//receiveready?
 AIC_data.uint=MCBSP_read(DSK6713_AIC23_DATAHANDLE);//read->left chan
 return(AIC_data.channel[LEFT]); //return left channel data
}

short input_right_sample() //input to right channel
...

FIGURE 1.14. (Continued)

The MCBSP1 transmit interrupt is used and INT11 is selected in the examples
throughout the book. If the program is polling-based, the McBSP is continuously
tested before reading (for input) or writing (for output).

Within the function output_sample() used for output, in the code segment

If (poll) while(!MCBSP_xrdy(...)); MCBSP_write(...);

the first line of code continuously tests (if polling-based) the transmit ready xrdy
register bit. If it is a 1, then the subsequent line of code is executed to write (output).
If the transmit ready bit is a 0 (not ready), then the while() statement becomes
while (true) and execution remains in an infinite loop until the transmit ready bit
becomes a 1 (ready). If the program is not polling-based, then the transmit ready
bit is not tested and writing (output) occurs every sample period.

Similarly, within the function input_sample() used for input, in the code
segment

If (poll) while(!MCBSP_rrdy(...)); MCBSP_read(...);

the first line of code continuously tests (if polling-based) the receive ready rrdy reg-
ister bit. If it is a 1 (ready), the subsequent line of code reads the data. If it is a 0
(not ready), the while () statement causes execution to remain in an infinite loop
until the receive ready bit register becomes a 1. If the program is not polling-based,
the receive ready bit is not tested and reading occurs every sample period.

The examples throughout the book use both interrupt-driven and polling-based
programs. A polling-based program can be readily changed to interrupt-driven and
vice versa. Interrupts are discussed further in Chapter 3.

Header File (c6713dskinit.h)
The corresponding header support file c6713dskinit.h contains the function
prototypes as well as various register settings associated with the AIC23 codec. For
example (see c6713dskinit.h):

1. The mic input can be set in lieu of the line input by changing the value of reg-
ister 4 from the (default) value of 0x0011 to 0x0015.

2. In Chapter 2, a loop program yields an output that is the delayed input, with
the same frequency but attenuated (by default). To increase the gain of the
(default) left line input channel, change the value of register 0 from 0x0017 to
0x001c. This value will produce an output of the same amplitude as the input.
Note that either the line input or the mic input can be made active.

1.7.2 Vector File (vectors_intr.asm/vectors_poll.asm)

To select interrupt INT11, a branch instruction to the ISR c_int11 located in the
C program (see sine8_buf.c) is placed at the address INT11 in vectors_
intr.asm. A listing of the file vectors_intr.asm is shown in Figure 1.15. Note

30 DSP Development System

Support Programs/Files Considerations 31

*Vectors_intr.asm Vector file for interrupt INT11
 .global _vectors ;global symbols
 .global _c_int00
 .global _vector1
 .global _vector2
 .global _vector3
 .global _vector4
 .global _vector5
 .global _vector6
 .global _vector7
 .global _vector8
 .global _vector9
 .global _vector10
 .global _c_int11 ;for INT11
 .global _vector12
 .global _vector13
 .global _vector14
 .global _vector15

 .ref _c_int00 ;entry address

VEC_ENTRY .macro addr ;macro for ISR
 STW B0,*--B15
 MVKL addr,B0
 MVKH addr,B0
 B B0
 LDW *B15++,B0
 NOP 2
 NOP
 NOP
 .endm

_vec_dummy:
 B B3
 NOP 5

 .sect ".vecs" ;aligned IST section
 .align 1024
_vectors:
_vector0: VEC_ENTRY _c_int00 ;RESET
_vector1: VEC_ENTRY _vec_dummy ;NMI
_vector2: VEC_ENTRY _vec_dummy ;RSVD
_vector3: VEC_ENTRY _vec_dummy
_vector4: VEC_ENTRY _vec_dummy
_vector5: VEC_ENTRY _vec_dummy
_vector6: VEC_ENTRY _vec_dummy
_vector7: VEC_ENTRY _vec_dummy
_vector8: VEC_ENTRY _vec_dummy
_vector9: VEC_ENTRY _vec_dummy
_vector10: VEC_ENTRY _vec_dummy
_vector11: VEC_ENTRY _c_int11 ;ISR address
_vector12: VEC_ENTRY _vec_dummy
_vector13: VEC_ENTRY _vec_dummy
_vector14: VEC_ENTRY _vec_dummy
_vector15: VEC_ENTRY _vec_dummy

FIGURE 1.15. Vector file for an interrupt-driven program (vectors_intr.asm).

32 DSP Development System

/*C6713dsk.cmd Linker command file*/

MEMORY
{
 IVECS: org=0h, len=0x220
 IRAM: org=0x00000220, len=0x0002FDE0 /*internal memory*/
 SDRAM: org=0x80000000, len=0x00100000 /*external memory*/
 FLASH: org=0x90000000, len=0x00020000 /*flash memory*/
}
SECTIONS
{
 .EXT_RAM :> SDRAM
 .vectors :> IVECS /*in vector file*/
 .text :> IRAM
 .bss :> IRAM
 .cinit :> IRAM
 .stack :> IRAM
 .sysmem :> IRAM
 .const :> IRAM
 .switch :> IRAM
 .far :> IRAM
 .cio :> IRAM
 .csldata :> IRAM
}

FIGURE 1.16. Generic linker command file (C6713dsk.cmd).

the underscore preceding the name of the routine or function being called. The ISR
is also referenced in vectors_intr.asm using .ref _c_int11.

For a non-interrupt-driven or polling-based program, a separate file
vectors_poll.asm is used, in lieu of vectors_intr.asm, by

1. Deleting the reference to the interrupt service routine (ISR) .ref _c_int11

2. Replacing the branch instruction to the ISR for interrupt INT11 by (NOP),
which is a no operation instruction.

1.7.3 Linker Command File (c6713dsk.cmd)

The linker command file C6713dsk.cmd is listed in Figure 1.16. It shows that sec-
tions such as .text reside in internal RAM (IRAM), which is mapped to the inter-
nal memory of the C6713 digital signal processor. It can be used as a generic sample
linker command file even though some portion of it is not necessary. Chapter 2 con-
tains an example illustrating the use of the pragma directive to specify a section
such as EXT_RAM in synchronous DRAM (SDRAM). SDRAM is a section in
external memory that starts at the address 0x80000000. Chapter 2 contains an
example illustrating the use of the onboard flash memory (burning the flash) that
starts at address 0x90000000. In Chapter 4, we illustrate the implementation of a
digital filter is assembly code using external memory SDRAM. Chapter 10 contains

two projects that utilize the EMIF 80-pin connector on the DSK, which starts at
address 0xA0000000, to interface to external LEDs and LCDs.

Linker options include -heap size to specify the heap size in bytes for dynamic
memory allocation (default is 1kB) and the option -stack size to specify the C
system stack size in bytes. Other linker options can be found in Ref. 26.

The linker allocates the program in memory using a default location algorithm.
It places the various sections into appropriate memory locations, where code and
data reside. By using a linker command file with extension .cmd, one can customize
the allocation process, specifying MEMORY and SECTIONS directives within the
linker command file. The linker directive MEMORY (uppercase) defines a memory
model and designates the origin and length of various available memory spaces.The
directive SECTIONS (uppercase) allocate the output sections into defined memory
and designate the various code sections to available memory spaces.

Most of the examples in the book invoke internal memory. The generic sample
linker command file, shown in Figure 1.16, can be used for almost all of the exam-
ples in the book, even if neither external nor flash memory is utilized.

1.8 COMPILER/ASSEMBLER/LINKER SHELL

In previous examples the code generation tools for compiling, assembling, and
linking were invoked within CCS while building a project. The tools may also be
invoked directly outside CCS using a DOS shell.

1.8.1 Compiler

The compiler shell can be invoked using

cl6x [options] [files]

to compile and assemble files that can be C files with extension .c, assembly files
with extension .asm, and linear assembly (introduced in Chapter 3) with extension
.sa. A linear assembly program file is a cross between C and assembly that can
provide a compromise between the more versatile C program and the most efficient
assembly program. For example, the command

Cl6x -gks -o3 file1.c, file2, file3.asm, file4.sa

invokes the C compiler to compile file1 and file2 (defaults to extension .c) and
generates the assembly files file1.asm and file2.asm. This also invokes the
assembler optimizer to optimize file4.sa and create file4.asm. Then the assem-
bler (invoked with the shell command cl6x) assembles the four assembly source
files and creates the four object files file1.obj, . . . , file4.obj. The option
-gs adds debugger-specific information for debugging purposes and interlists C

Compiler/Assembler/Linker Shell 33

statements into assembly files, respectively.The -k option is used to keep the assem-
bly source files generated.

Four levels of compiler optimizations are available, with -o3 to invoke the
highest level of optimization. Level 0 allocates variables to registers. Level 1 per-
forms all level 0 optimizations, eliminates local common expressions, and removes
unused assignments. Level 2 performs all the level 1 optimizations plus loop opti-
mizations and rolling. Level 3 performs all level 2 optimizations and removes func-
tions that are not called. There are also compiler optimizations to minimize code
size (with possible degradation in execution speed).

Note that full optimization may change memory locations that can affect the
functionality of a program. In such cases, these memory locations must be declared
as volatile. The compiler does not optimize volatile variables. A volatile variable is
allocated to an uninitialized section in lieu of a register. Volatiles can be used when
memory access is to be exactly as specified in the C code.

Initially, the functionality of a program is of primary importance. One should not
invoke any (or too-high-level) optimization option initially while debugging, since
additional debugger-specific information is provided to enhance the debugging
process. Such additional information suppresses the level of performance. It is also
difficult to debug a program after optimization, since the lines of code are usually
no longer arranged in a serial fashion. Compiler options can also be set using the
environment variable with C_OPTION.

1.8.2 Assembler

An assembly-coded source file file3.asm can also be assembled using

asm6x file3.asm

to create file3.obj.The .asm extension is optional.The resulting object file is then
linked with a run-time support library to create an executable COFF file with exten-
sion .out that can be loaded directly and run on the DSp. Examples using assem-
bly-coded source files are introduced in Chapter 3.

1.8.3 Linker

The linker can be invoked using

lnk6x -c prog1.obj -o prog1.out -l rts6700.lib

The -c option tells the linker to use special conventions defined by the C environ-
ment for automatic variable initialization at run time (another linker option, -cr,
initializes the variables at load time). The -l option invokes a library file such as
the run-time support library file rts6700.lib. These options [-c (or -cr) and

34 DSP Development System

-l] must be used when linking.The object file prog1.obj is linked with the library
file(s) and creates the executable file prog1.out. Without the -o option, the exe-
cutable file a.out (by default) is created.

The linker can also be invoked with the compiler shell command with the -z
option

Cl6x -gks -o3 prog1.c prog2.asm -z -o prog.out -m prog.map
-l rts6700.lib

to create the executable file prog.out. The -m option creates a map file that pro-
vides a list of all the addresses of sections, symbols, and labels that can be useful for
debugging.

The linker also links automatically a boot program when using C programs to
initialize the run-time environment, setting the entry point to c_int00.The symbol
_c_int00 is defined automatically when the linker option -c (or -cr) is invoked.
The function _c_int00, included in the run-time support library, is the entry point
in the boot program that sets up the stack and calls main. The run-time library
support program boot.c is used to auto-initialize variables. The linker option -c
invokes the initialization process with boot.c. Note that it is defined in the vector
files vectors_intr.asm and vectors_poll.asm.

The book CD contains all the main source files used in this book, located in sep-
arate folders, and some support files necessary for many examples and projects are
located in the folder support. Other needed support files are included with CCS
within c:\C6713.

1.9 ASSIGNMENTS

1. Write a program to generate a cosine with a frequency of 666.66Hz. Verify
your output result using LINE OUT, as well as plotting the generated cosine
in both time and frequency domains.

2. Write a polling-based program so that once dip switch #3 is pressed, LED #3
turns on and a 666.66Hz cosine is generated for approximately 5 seconds.
[Hint: also use (incorporate) the delay associated with turning a LED on.]

3. Write a program to multiply two arrays, each containing the five numbers 1,
2, 3, 4, and 5 (i.e., 12 + 22 + 32 + 42 + 52). Verify your result using a watch window
and printing it within CCS in the Build window.

4. Write an interrupt-driven program to capture an input sinusoidal signal of
amplitude 3V p-p and a frequency of 1kHz, and output that sampled signal
every 0.0625ms. Use the function input_sample in a similar fashion as the
function output_sample used in Examples 1.1 and 1.2—for example,

input = input_sample();

Assignments 35

casting input as short (16-bit). Verify that the output signal has the same fre-
quency as the input signal but is reduced in amplitude. Increase the input
signal frequency until the output is reduced drastically. What is the approxi-
mate frequency at which this occurs? This represents the bandwidth of the
onboard AIC23 codec (as illustrated in Chapter 2).

REFERENCES

Note: References 23 to 43 are included with the DSK package.

1. R. Chassaing, DSP Applications Using C and the TMS320C6x DSK, Wiley, New York,
2002.

2. R. Chassaing, Digital Signal Processing Laboratory Experiments Using C and the
TMS320C31 DSK, Wiley, New York, 1999.

3. R. Chassaing, Digital Signal Processing with C and the TMS320C30, Wiley, New York,
1992.

4. R. Chassaing and D. W. Horning, Digital Signal Processing with the TMS320C25, Wiley,
New York, 1990.

5. N. Kehtarnavaz and M. Keramat, DSP System Design Using the TMS320C6000,
Prentice Hall, Upper Saddle River, NJ, 2001.

6. N. Kehtarnavaz and B. Simsek, C6x-Based Digital Signal Processing, Prentice Hall,
Upper Saddle River, NJ, 2000.

7. N. Dahnoun, DSP Implementation Using the TMS320C6x Processors, Prentice Hall,
Upper Saddle River, NJ, 2000.

8. Steven A. Tretter, Communication System Design Using DSP Algorithms with Labora-
tory Experiments for the TMS320C6701 and TMS320C6711, Kluwer Academic, New
York, 2003.

9. J. H. McClellan, R. W. Schafer, and M. A. Yoder, DSP First: A Multimedia Approach,
Prentice Hall, Upper Saddle River, NJ, 1998.

10. C. Marven and G. Ewers, A Simple Approach to Digital Signal Processing, Wiley, New
York, 1996.

11. J. Chen and H. V. Sorensen, A Digital Signal Processing Laboratory Using the
TMS320C30, Prentice Hall, Upper Saddle River, NJ, 1997.

12. S. A. Tretter, Communication System Design Using DSP Algorithms, Plenum Press, New
York, 1995.

13. A. Bateman and W. Yates, Digital Signal Processing Design, Computer Science Press,
New York, 1991.

14. Y. Dote, Servo Motor and Motion Control Using Digital Signal Processors, Prentice Hall,
Upper Saddle River, NJ, 1990.

15. J. Eyre, The newest breed trade off speed, energy consumption, and cost to vie for an
ever bigger piece of the action, IEEE Spectrum, June 2001.

36 DSP Development System

16. J. M. Rabaey, ed., VLSI design and implementation fuels the signal-processing revolu-
tion, IEEE Signal Processing, Jan. 1998.

17. P. Lapsley, J. Bier, A. Shoham, and E. Lee, DSP Processor Fundamentals: Architectures
and Features, Berkeley Design Technology, Berkeley, CA, 1996.

18. R. M. Piedra and A. Fritsh, Digital signal processing comes of age, IEEE Spectrum, May
1996.

19. R. Chassaing, The need for a laboratory component in DSP education: a personal
glimpse, Digital Signal Processing, Jan. 1993.

20. R. Chassaing,W.Anakwa, and A. Richardson, Real-time digital signal processing in edu-
cation, Proceedings of the 1993 International Conference on Acoustics, Speech and Signal
Processing (ICASSP), Apr. 1993.

21. S. H. Leibson, DSP development software, EDN Magazine, Nov. 8, 1990.

22. D. W. Horning, An undergraduate digital signal processing laboratory, Proceedings of
the 1987 ASEE Annual Conference, June 1987.

23. TMS320C6000 Programmer’s Guide, SPRU198G, Texas Instruments, Dallas, TX, 2002.

24. TMS320C6211 Fixed-Point Digital Signal Processor–TMS320C6711 Floating-Point
Digital Signal Processor, SPRS073C, Texas Instruments, Dallas, TX, 2000.

25. TMS320C6000 CPU and Instruction Set Reference Guide, SPRU189F, Texas Instru-
ments, Dallas, TX, 2000.

26. TMS320C6000 Assembly Language Tools User’s Guide, SPRU186K, Texas Instruments,
Dallas, TX, 2002.

27. TMS320C6000 Peripherals Reference Guide, SPRU190D, Texas Instruments, Dallas, TX,
2001.

28. TMS320C6000 Optimizing C Compiler User’s Guide, SPRU187K, Texas Instruments,
Dallas, TX, 2002.

29. TMS320C6000 Technical Brief, SPRU197D, Texas Instruments, Dallas, TX, 1999.

30. TMS320C64x Technical Overview, SPRU395, Texas Instruments, Dallas, TX, 2000.

31. TMS320C6x Peripheral Support Library Programmer’s Reference, SPRU273B, Texas
Instruments, Dallas, TX, 1998.

32. Code Composer Studio User’s Guide, SPRU328B, Texas Instruments, Dallas, TX, 2000.

33. Code Composer Studio Getting Started Guide, SPRU509, Texas Instruments, Dallas, TX,
2001.

34. TMS320C6000 Code Composer Studio Tutorial, SPRU301C, Texas Instruments, Dallas,
TX, 2000.

35. TLC320AD535C/I Data Manual Dual Channel Voice/Data Codec, SLAS202A, Texas
Instruments, Dallas, TX, 1999.

36. TMS320C6713 Floating-Point Digital Signal Processor, SPRS186, Texas Instruments,
Dallas, TX.

37. TLV320AIC23 Stereo Audio Codec, 8- to 96-kHz, with Integrated Headphone Amplifier
Data Manual, SLWS106G, Texas Instruments, Dallas, TX, 2003.

References 37

38. TMS320C6000 DSP Phase-Locked Loop (PLL) Controller Peripheral Reference Guide,
SPRU233, Texas Instruments, Dallas, TX.

39. Migrating from TMS320C6211/C6711 to TMS320C6713, SPRA851, Texas Instruments,
Dallas, TX, 2003.

40. How to begin Development Today with the TMS320C6713 Floating-Point DSP,
SPRA809, Texas Instruments, Dallas, TX, 2003.

41. TMS320C6000 DSP/BIOS User’s Guide, SPRU423, Texas Instruments, Dallas, TX, 2002.

42. TMS320C6000 Optimizing C Compiler Tutorial, SPRU425A, Texas Instruments, Dallas,
TX, 2002.

43. TMS320C6000 Chip Support Library API User’s Guide, SPRU401F, Texas Instruments,
Dallas, TX, 2003.

44. B. W. Kernigan and D. M. Ritchie, The C Programming Language, Prentice Hall, Upper
Saddle River, NJ, 1988.

45. G. R. Gircys, Understanding and Using COFF, O’Reilly & Associates, Newton, MA,
1988.

38 DSP Development System

