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1 Introduction

Because of the increased hygiene concern in biometric systems and the difficulty in recog-
nizing fingerprints of manual laborers and elderly people, hand geometry has been currently
employed in many systems for personal verification mostly as a complement to finger-print
authentication.

Traditional hand geometry-based systems use low-resolution cameras or scanners to cap-
ture users’ hand images with the help of peggies or by forcing them to touch a screen. Those
systems measure a hand shape to extract its features, like lengths and widths of fingers, and
hand contour, for recognition. Unfortunately, traditional techniques face unsolved prob-
lems: low discriminability due to low-resolution hand images and bad user acceptability
because users worry about hygienic issues when they have to touch screens.

To improve discriminability and user acceptability, our new hand recognition systems have

to acquire high-resolution hand images without peggy constraints and also contacts. How-
ever, those new hand images rise new challenges, like hand texture, motion and shadow, to
extract hand shapes, and measure hand features. Our project aims at those new challenges
and gives a machine learning solution.

2 Related works

Most of the hand-based biometric schemes use geometric features of the hand. Oden used
geometric features and implicit polynomial invariants of fingers. The classifiers are based
on Mahanlanobis distance [1]. Duta-Jain designed a classifier based on mean average dis-
tance of contours [2]. Kumar designed correlation-like similarity measurement to distin-
guish different hands [3]. All of them require certain constraints. We face, in the context of
contactless requirements, new challenges like image segmentation, feature extraction and
recognition are introduced. We proposed a suit of algorithms to address these individual
problems, highlighted the following algorithms: a robust color segmentation algorithm,

a pose and illumination insensitive hand extremities localization algorithm, an affine and
Euclidean invariant implicit polynomial fitting algorithm and a novel indexing method for
quick and accurate identification.

3 Method

3.1 Hand Segmentation

The segmentation procedure aims to separate the hand region from a hand image and ex-
tract the hand contour, also called hand boundary. However, this traditional method like



edge detectors, do not work here because they might find noise boundaries caused by ar-
tifacts, like rings, and specially creases, which can not be ignored in our high- resolution
images. The hand contour must be accurate since the difference between hand of different
individuals could be minute. Small biases in hand contour can lead to significant errors in
feature detection and further hand recognition. Hence, the problem we have to face is how
to distinct hand boundaries from other non-hand boundaries. Obviously, no edge detection
algorithm or image segmentation algorithm addresses this problem in the literature.

Motivated by using skin color in face detection [5], we consider using hand skin color to
do hand segmentation. The intuition behind it is that the (R, G, B) colors of pixels in hand
region should follow some pattern, called hand color pattern. By learning this pattern,
we can classify whether any pixel has the hand color, and then we can extract the hand
boundary without worrying about noise boundaries.

[5] gives a color pattern for face colors, which is a heuristic classify rule consisting of
seven conditions. The rule is listed as follows: (R, G, and B represent color levels of a
pixel in RGB space.)

R > 95 andG > 40 andB > 20 andmaxz{R, G, B} — min{R,G, B} > 15 and
|[R— G| > 15andR > G andR > B.

However, after careful observation, the above rule actually can be simplified to the follow-
ing equivalent rule.

R > 95andG > 40 andB > 20 andR — G > 15andR > B

We test this rule over our hand image databases. The rule does correctly classify most of
pixels in hand regions, but does badly classify pixels in over-exposed hand regions and
gray parts of boundaries. The reason is that the parameters (numbers) in the above rule are
learned from face images specially under different illumination. Learning those parameters
directly from our hand training image would improve the performance. Unfortunately, the
rule proposed by [8] is found empirically, and no algorithm is given to find those parameters
automatically. In this project, we propose an algorithm to find the parameters in rules
automatically.

Another finding in our experiments is th& > 95 dominatesz > 40 and B > 20, and
thus the rule can be further simplified. In the rest of this section, we igore 40 and
B > 20 conditions.

Let us take a look at this rule again in another view. The condiian 95 can be rewritten

asR — 95 > 0. We can thinkR — 95 > 0 is a linear regression classifier over R subspace

of RGB color space. SimilarlyR — G > 15 can also be rewritten aB — G — 15 >

0, a linear regression classifier over RG subspaces. Hence, the rule can be viewed as a
combination of three linear classifiers over different RGB subspaces. However, how can
we learn parameters of three classifiers together. We propose the following method by
extending logistic regression.

Let X be RGB data of training pixels with training label Y. L&t = {X%, XL, XL} be

thel — th pixel andY be its class label, skin pixel or not. For each subspace R, R&G and
R&B, we define a parametric logistic regression model for it. For example, we have logistic
regression model R & G subspace. We let paraméiéss; = {W 3., Wha, Wi}, and

have

1
Pra(Yi=0|XY = 1

o X =13 exp(W0 + Whe XL + W2, XE) )
PRG(YI — 1|Xl) _ exp(WI%G + Wll%GXil + WI%GXlG) (2)

1+ eap(Whe + WheXE + WaeXE)

Similarly, we have also logistic regression models for R subspace, denotéd asgth



parameterdVy , for R&B, denoted as’rp with parameter$¥zg. Now, we learn those
parameter$V = {Wgq, Wgr, Wgrp} that satisfy

W — argmazw I Pr(Y' | X") Pra(Y!|X") Prp (Y X") (3)

Those parameters can be updated by just using the same way as updating parameters in the
logistic regression classifier. The motivation using the above goal function is to maximize
the probability of three classifiers can correctly classify a pixel together.

In our hand image database, each hand image is 3008 * 2000 pixels. It's no way to label the
fullimage for training. Instead, we pick up two small regions and label them manually. One
has 300673 pixels as our training sample, and the other has 63024 pixels as our test sample.
We train our classifiers using logistic regression to get the following ral&:28306 +
0.01530% R > 0 and—0.14815+0.23601x R—0.25353+«G > 0 and—0.1459440.18861

R —0.21689 « B > 0. We get 99.51% accuracy over the test samples by using classifier,
but the original rule has 98.54% accuracy. Although we only get one percentimprovement,
we have a machine learning way to learn those parameters, and have comparable accuracy
with empirical results.

Finally, we use a boundary walk algorithm to find the hand boundary. It works as following:
We define a pixel is in the boundary if it has skin color but one of its bottom, top, left,

right neighborhood pixels has no skin color. We first find one boundary pixel, and then
recursively find boundary pixels in its neighbors.

3.2 Localization of Hand Extremities

Detecting and localizing the hand extremities, the fingertips and the valley between fin-
gers is the first and most important step in feature extraction. The precision and robustness
requirement on this procedure are high otherwise recognition will suffer from augmented
measurement errors. Naive gradient method suffered from artifacts and unsmoothed con-
tour, reported in [4].

Inspired by both gradient gram algorithm and radial distance method [4], we proposed a
new method that iteratively refining hand extremities. The algorithm makes no assumption
on the fingers’ pose like gradient gram algorithms and it outperforms the previous radial
distance method as duplicate reference points are used to find unique global maxima in the
refinement iterations. Along with the upper and lower wrist points, we extracted 13 out of
following 15 measurements in Figure 1 for recognition excluding measurements 1 and 11.

Algorithm 1: Fingertips and valley localization
Input: p (a set of hand contour points in counter-clockwise order)
Output: Location of fingertips and valley between fingers

1. Plot averaged gradient gram of the contour
¢; = Y (arctan((y; — yi—s)/ (@i — xi—s))), S is the step size, centroid of clustered
local minima are sought as initial fingertip locations;

2: Starting from thumb’s fingertip, find the radial distance maxima using two nearby
fingertips as reference points. Label this maximum as valley between fingers.

3: Refine fingertip of index finger, middle finger, ring finger using its two neighbor
valleys found by the step 2. For thumb and little finger fingertips, use the only
neighbor valley.

4: Iterate this process to the next finger until little finger fingertips is refined.
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Figure 1: Measurements

3.3 Self Calibrate Implicit Polynomial Fitting

Implicit polynomials are known to be effective in representing non-star complex shapes
in two dimensions. However, when objects are complex, low degree implicit polynomial
fails to describe it and high degree implicit polynomial suffers from unstable results. These
results are highly sensitive to noise, rotation and transformation. We propose a new method
here to address this dilemma and our algorithm produce Euclidean and Affine invariant
implicit polynomial fitting.

3.3.1 Implicit Polynomial Fitting

An implicit polynomial of degree N is a polynomial functigifz, y) = 0 where

flz,y) =m"a 4
, misthe(N x 1) column vector of monomials’y’,i+j <= N, and aisthé N x 1) poly-
nomial coefficients. “Implicit polynomial fitting” is the task to firdmplicit polynomial
coefficients that minimize its distance to the data points. The goal of implicit polynomial
fitting is to approximatey,, the set of data points ifx, y) represents a 2D object of interest
by the zero level set of a implicit polynomial functigfz,y). This is accomplished by
minimizing the error function

E= Y fay) ©

(w,y)€no
3.3.2 3L Fitting Algorithm

Blane shows 3L implicit polynomial fitting algorithm is significant faster and more re-
peatable than existing methods [6]. The algorithm computes two ribbon belts (level sets)
1—¢, N+c Of the interested image boundary usiDgEuclidiandistance transform function

o(z,y).
The least-squares solution fetis obtained by,

a= Mz'b (6)
hereMsy, = [M,_, M,, M, ] ,b=[—c0 + c|, where(M, , M,, M, ) are the(N_, *
|C]), (Ng * |C|), (N4 * |C|) matrics of monomials for the corresponding sets of points in

the ribbon surface(x, y), and—c¢, 0, and+-c are the(N_. = 1), (Np * 1) and (N, = 1)
column vectors having valuesc, 0, and+-c.

However, the result zero level set, as well as the algebraic and geometric invariants of 3L
fitting computed from the coefficients afare subject widely to rotations and translations

of the data. This is because 3L fitting algorithm is inherently Euclidean but not affine
invariant, refer to Equation 6. Levels sets., ;. are computed byp-Euclidiandistance
transform function from the 2D object boundagypoint by point. As a result, distance of

two points is not preserved under an affine transformation [7].



3.3.3 Self calibrate 3L fitting

3L implicit polynomial algorithm produces physically meaningful representations of com-
plex objects but poses new challenges of affiant transformation unstableness. We proposed
a new method that addresses the affine transformation problem while preserving 3L fitting
Euclidean invariants.

To ensure a robust mathematical representation of implicit polynomial, it is good idea to
convert the contour data to a standard position and coordination relative to its distribu-
tion. Intuitively, data points of the same shape have the same distribution in space. This
is naturally translated into a question: what is the best way to “re-express” the original
recorded data set invariant to transformation and rotation. Observations lead us to make
an assumption that directions with largest variance in measurement vector space contain
the dynamics of interest.
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Figure 2: Self-calibrate fit for index, middle, ring and little fingers

This assumption suggests that the basis for which we are searching are the directions cov-
ering most variances in data, in other words, directions that minimizes the squared recon-
struction errors. Principle Component Analysis (PCA) provides a practical solution to this
problem with a orthogonal basis vectors [8]. Assume data is set of d-dimension vectors,
where nth vector ig™ = z7,...,z};. These vectors can be represented in terms of d or-

thogomial basis vectorg™ = Zle zlu;, wiuj = 0. PCA searches foty, ..., ups that
minimizes Ey; = SN |la™ — 272, wherei™ = Z + 3¢, 2Mu; and mean equals

=11
z=1/N ZnN:1 xz™. Instead of mapping the data into lower dimension, we projected the
data using all orthogonal basis vectors to avoid information loss. In case of huge data di-
mension is involved, we replace PCA with SVD and select eigenvectors that €5veicf
total data variances. Algorithm 2 fuses the eigenvector decomposition with the 3L implicit

polynomial fitting to produce Affine and Euclidean invariant results.

Algorithm 2: Self Calibrate 3L fitting
Input: p (a 2D object represented by its boundary)
Output: Affine and Euclidean invariant implicit polynomial efficients

1: Uniformly sample the original dat¥, setratio = 1/5, collectX®.

2: Perform PCA or SVD on the sample dat&, compute eigenvalug,, ..., A\; and
corresponding eigenvectois= uy, ..., ugq.

3: Project original data to the orthogonal spate- XU

4: Bring the centroid of the projected data to point (0,0), the center of the new coordinate
system.

5: Fit 3L imlplicit polynomial to the transformed data points, compute the coefficients
a = M 'b.



4 Experiments

In this section, we compare different feature selection and classification methods. Two
different feature selection as well as six classifiers are chosen and results are compared
and analyzed. In detail, we will evaluate the performance of feature selection methods:
Relief-F and SVM-RFE. The classification algorithms to be compared include decision
tree, Logistic Regression, Artificial Neural Network, Naive Bayes, 1-Nearest-Neighbor
and linear SVM.

4.1 Data Acquisition

Our database consists of 48 frontal hand images. These are taken from 16 distinctive person
and 3 image per person using Professor Sweeney’s “Hand Capture Device”. The database
is available online dtttp://austin.cs.uiowa.edu/xjia/lhandGeometry/rawdatdde result of

hand segmentation in Section 3.1 produce smooth contours like Figure 3.

Figure 3: Color based segmentation

After feature extraction in section 3.2 and section 3.3, 13 measurement featurgs-and
implicit polynomial coefficients for the index finger, the middle finger, the ring finger and
the little finger are collected. Note that we fit three degree implicit polynomial to the
segmented fingers. We used Matlab 7.0 and Weka [9] to conduct some of the experiments
in this paper.

4.2 Experiment Result
4.2.1 \Verification

We evaluated the verification performance of various algorithms in terms of accuracy.

We first compared two different feature selection methods Relief-F and CfsSubsetE-

val(forward). The top 5 features selected &g7,8,6,4] and[2,3,4,5, 7] respectively.

Table 1 summarizes the comparison under 3-fold cross validation using these features.
(Note that 3 is maximum number of fold since we have only 3 samples/class.)

It can be observed that the performance of using Relief-F features is slightly better than
that of CfsSubsetEval(forward)’s. This coincides with our believe that greedy algorithm
like CfsSubsetEval(forward) sometimes miss the correlation across potentially dependent
features.

We further studied the performance of different classifiers as we gradually increase input
features. Table 4(b) summarized the top 1 match accuracy rates of a few popular clas-
sification algorithms. The input features are obtained using Relief-F algorithm discussed



Table 1. Accuracy of the top 5 features selected by Relief-F and CfsSubsetEval(forward)
under different algorithms using 3-cross validation

Methods Relief accuracy CfsSubsetEval(forward)
Decision Tree (DT) 0.56 0.56

Logistic Regression (LR) 0.85 0.79

ANN 0.87 0.833

NB 0.71 0.64

1 nearest neighbour (1NN) 0.92 0.895

Linear SVM 0.92 0.83

above. In specific, the features in this experiment|[8y®, 8,6, 4,3, 5,12, 15, 14], ranked

in descending order. We iteratively add new features and run the classifiers. Revealed by
Figure 4(a), our best performer is 1-Nearest-Neighbor in this specific experiment setting.
The highest accuracy #1% with input featur€9, 7, 8, 6, 4, 3.

Table 2: Top 1 match accuracy with various size of input features

Methods 1 2 3 4 5 6 7 8 9 10
Decision Tree 040 048 054 063 056 056 063 056 056 0.56
LR 046 063 071 085 085 088 085 0.8 0.88 0.88
ANN 0.17 048 0.75 087 087 0.88 0.88 0.88 0.90 0.83
NB 048 063 065 064 071 071 065 0.71 0.67 0.65
INN 090 0.79 0.77 090 092 094 090 092 094 0.92

Linear SVM 049 071 081 087 092 090 088 092 083 0.81

4.2.2 ldentification

The cost for recognizing hand geometry in large databases could be very expensive. Here
we provide a simple solution using implicit polynomial coefficients described in section 3.3
for fast indexing. We binary coded the signs of coefficieAts= aq,...,ay of X =

T1,..., TN INOS = s1,...,si. GivenD is the degreeN = [(d + 1)(d + 2)]/2. A search

for similar hand shapes is pruned by counting the numbég aifter XO R two encoded
coefficients. If there are multiple options after pruning, we used the best-performance
algorithms in the verification section 4.2.1. Because we have only limited samples of hands,
we tested our algorithm on the Brown Shape Indexing of Image Databases (SIID). We
selected a tool achieve to evaluate the performance. A sample run is illustrated in Figure 4
and top 1 match rate on this sample achievé0i8% and88.24% on average. We then

felt confident to apply the same algorithm to our hand geometry database. The average
searching was reduced B$% while the best accuracy rate was preserved.

5 Conclusion

This paper introduced a machine learning solution for contactless hand recognition. We
tried to address the new challenges such as hand texture, free motion, shadow and shape
deformation. In this writing, we proposed a robust color segmentation algorithm, a pose
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Figure 4: (a) (b)Similarity between database shapes in terms of signs. In each row, large
number corresponds to the similar shapes.

and illumination insensitive hand extremities localization algorithm, an Affine and Euclid-
ean invariant implicit polynomial fitting algorithm and a novel indexing method for quick
and accurate identification. Recognition accuracy is evaluated using two feature selection
methods and a few popular classifiers. Among these results, the best matching accuracy
is obtained by the nearest neighbor algorithm peakiti. This encourages our further
effort along the same lines. Upon obtaining more subject hands and more sample for each
hand, we expect our algorithm will have better performance.

References

[1] C. Oden, A. Ercil and B. Buke, “Combining implicit polynomials and geometric features for

hand recognition”, Pattern Recognit. Lett., vol 24, pp. 2145-2152, 2003
[2] A. K. Jain and N. Duta,“Deformable matching of hand shapes for verification,” presented at the

Int. Conf. Image Processing, Oct. 1999. ) o ] ]
[3] Y. A. Kumar, D. C.M.Wong, H. C. Shen, and A. K. Jain, “Personal verification using palmprint
and hand geometry biometric.”, in Proc. 4th Int. Conf. Audio Video-Based Biometric Person

Authentication, Guildford, U.K., Jun. 9-C11, 2003, pp. 668-C678 -
[4] Yoruk, E. Konukoglu, E. Sankur, B. Darbon, J., “Shape-based hand recognition”, IEEE transac-

tions on image processing, Vol. 15, Issue 7, Page 1803-1815, 2006 )
[5] Jure Kovac, Peter Peer, Franc Solina (2003), "Human Skin Colour Clustering for Face Detec-

tion.”, International Conference on Computer as a Tool, pp.144- 148. .
[6] Michael M. Blane, Zhibin Lei, “The 3L Algorithm for Fitting Implicit Polynomial Curves and

Surfaces to Data.”, IEEE transaction on PAMI, Vol. 22 No. 3, March 2000. .
[7] Hakan Civi, “The Classical Theory of Invariants and Object Recognition Using Algebraic Curve

and Surfaces.” Journal of Mathematical Imaging and Vision 19: 237-253, 2003., .
[8] Shlens, J., “A Tutorial on Principal Component Analysis:  Derivation, Discus-

sion and Singular Value Decomposition.” Technical report, Available online from

http://www.snl.salk.ed@hlens/pub/notes/ pca.pdf, 2003. ) )
[9] lan H. Witten and Eibe Frank (2005) “Data Mining: Practical machine learning tools and tech-

niques”, 2nd Edition, Morgan Kaufmann, San Francisco, 2005.



