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Abstract

The primary goal of pattern recognition is supervised or unsupervised classi-
fication. Among the various frameworks in which pattern recognition has been
traditionally formulated, the statistical approach has been most intensively stud-
ied and used in practice. More recently, neural network techniques and methods
imported from statistical learning theory have been deserving increasing attention.
The design of a recognition system requires careful attention to the following issues:
definition of pattern classes, sensing environment, pattern representation, feature
extraction and selection, cluster analysis, classifier design and learning, selection of
training and test samples, and performance evaluation. In spite of almost fifty years
of research and development in this field, the general problem of recognizing com-

plex patterns with arbitrary orientation, location, and scale remains unsolved. New
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and emerging applications, such as data mining, web searching, retrieval of mul-
timedia data, face recognition and cursive handwriting recognition, require robust
and efficient pattern recognition techniques. The objective of this review paper is
to summarize and compare some of the well-known methods used in various stages
of a pattern recognition system and identify research topics and applications which

are at the forefront of this exciting and challenging field.

Keywords: Statistical pattern recognition, classification, clustering, feature extraction,

feature selection, error estimation, classifier combination, neural networks.

1 Introduction

By the time they are five years old, most children can recognize digits and letters.
Small characters, large characters, handwritten, machine printed, or rotated—all are easily
recognized by the young. The characters may be written on a cluttered background, on
crumpled paper or may even be partially occluded. We take this ability for granted until
we face the task of teaching a machine how to do the same. Pattern recognition is the study
of how machines can observe the environment, learn to distinguish patterns of interest
from their background, and make sound and reasonable decisions about the categories
of the patterns. In spite of almost fifty years of research, design of a general-purpose
machine pattern recognizer remains an elusive goal.

The best pattern recognizers in most instances are humans, yet we do not understand
how humans recognize patterns. Ross [140] emphasizes the work of Nobel Laureate Her-
bert Simon whose central finding was that pattern recognition is critical in most human

decision making tasks: “The more relevant patterns at your disposal, the better your



decisions will be. This is hopeful news to proponents of artificial intelligence, since com-
puters can surely be taught to recognize patterns. Indeed, successful computer programs
that help banks store credit applicants, help doctors diagnose disease and help pilots land
airplanes depend in some way on pattern recognition. ... We need to pay much more
explicit attention to teaching pattern recognition.” Our goal here is to introduce pattern
recognition as the best possible way of utilizing available sensors, processors, and domain

knowledge to make decisions automatically.

1.1 What is Pattern Recognition?

Automatic (machine) recognition, description, classification, and grouping of patterns
are important problems in a variety of engineering and scientific disciplines such as biol-
ogy, psychology, medicine, marketing, computer vision, artificial intelligence, and remote
sensing. But what is a pattern? Watanabe [163] defines a pattern “as opposite of a chaos;
it is an entity, vaguely defined, that could be given a name.” For example, a pattern
could be a fingerprint image, a handwritten cursive word, a human face, or a speech sig-
nal. Given a pattern, its recognition/classification may consist of one of the following two
tasks [163]: (i) supervised classification (e.g., discriminant analysis) in which the input
pattern is identified as a member of a predefined class, (ii) unsupervised classification (e.g.,
clustering) in which the pattern is assigned to a hitherto unknown class. Note that the
recognition problem here is being posed as a classification or categorization task, where
the classes are either defined by the system designer (in supervised classification) or are
learned based on the similarity of patterns (in unsupervised classification).

Interest in the area of pattern recognition has been renewed recently due to emerging

applications which are not only challenging but also computationally more demanding



(see Table 1). These applications include data mining (identifying a “pattern”, e.g., cor-

Table 1: EXAMPLES OF PATTERN RECOGNITION APPLICATIONS

Problem Domain Application Input Pattern Pattern Classes
Bioinformatics Sequence Analysis DNA /Protein sequence | Known types of genes/
patterns
Data mining Searching for Points in multi- Compact and well-
meaningful patterns dimensional space separated clusters
Document Internet search Text document Semantic categories
classification (e.g., business, sports,
etc.)
Document image Reading machine for Document image Alphanumeric
analysis the blind characters, words
Industrial automation | Printed circuit board Intensity or range Defective / non-defective
inspection image nature of product
Multimedia database Internet search Video clip Video genres (e.g.,
retrieval action, dialogue, etc.)
Biometric recognition | Personal identification Face, iris, Authorized users for
fingerprint access control
Remote sensing Forecasting crop yield Multispectral image Land use categories,
growth pattern of crops
Speech recognition Telephone directory Speech waveform Spoken words
enquiry without
operator assistance

relation, or an outlier in millions of multi-dimensional patterns), document classification
(efficiently searching text documents), financial forecasting, organization and retrieval of
multimedia databases, and biometrics (personal identification based on various physical
attributes such as faces and fingerprints). Picard [125] has identified a novel application
of pattern recognition, called affective computing which will give a computer the ability
to recognize and express emotions, to respond intelligently to human emotion, and to
employ mechanisms of emotion that contribute to rational decision making. A common
characteristic of a number of these applications is that the available features (typically, in
the thousands) are not usually suggested by domain experts, but must be extracted and
optimized by data-driven procedures.

The rapidly growing and available computing power, while enabling faster processing
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of huge data sets, has also facilitated the use of elaborate and diverse methods for data
analysis and classification. At the same time, demands on automatic pattern recognition
systems are rising enormously due to the availability of large databases and stringent per-
formance requirements (speed, accuracy and cost). In many of the emerging applications,
it is clear that no single approach for classification is “optimal” and that multiple methods
and approaches have to be used. Consequently, combining several sensing modalities and
classifiers is now a commonly used practice in pattern recognition.

The design of a pattern recognition system essentially involves the following three as-
pects: (i) data acquisition and preprocessing, (ii) data representation, and (iii) decision
making. The problem domain dictates the choice of sensor(s), preprocessing technique,
representation scheme, and the decision making model. It is generally agreed that a well-
defined and sufficiently constrained recognition problem (small intra-class variations and
large inter-class variations) will lead to a compact pattern representation and a simple de-
cision making strategy. Learning from a set of examples (training set) is an important and
desired attribute of most pattern recognition systems. The four best known approaches
for pattern recognition are: (i) template matching, (ii) statistical classification, (iii) syn-
tactic or structural matching, and (iv) neural networks. These models are not necessarily
independent and sometimes the same pattern recognition method exists with different
interpretations. Attempts have been made to design hybrid systems involving multiple
models [57]. A brief description and comparison of these approaches is given below and

summarized in Table 2.



Table 2: PATTERN RECOGNITION MODELS

Approach Representation Recognition function Typical criterion
Template matching Samples, pixels, curves | Correlation, distance measure | Classification error
Statistical Features Discriminant function Classification error
Syntactic or structural Primitives Rules, grammar Acceptance error
Neural networks Samples, pixels, features Network function Mean square error

1.2 Template Matching

One of the simplest and earliest approaches to pattern recognition is based on tem-
plate matching. Matching is a generic operation in pattern recognition which is used
to determine the similarity between two entities (points, curves or shapes) of the same
type. In template matching, a template (typically, a 2D shape) or a prototype of the
pattern to be recognized is available. The pattern to be recognized is matched against
the stored template while taking into account all allowable pose (translation and rotation)
and scale changes. The similarity measure, often a correlation, may be optimized based
on the available training set. Often, the template itself is learned from the training set.
Template matching is computationally demanding, but the availability of faster proces-
sors has now made this approach more feasible. The rigid template matching mentioned
above, while effective in some application domains, has a number of disadvantages. For
instance, it would fail if the patterns are distorted due to the imaging process, view-point

change, or large intra-class variations among the patterns. Deformable template models



[69] or rubber sheet deformations [9] can be used to match patterns when the deformation

cannot be easily explained or modeled directly.

1.3 Statistical Approach

In the statistical approach, each pattern is represented in terms of d features or mea-
surements and is viewed as a point in a d-dimensional space. The goal is to choose those
features that allow pattern vectors belonging to different categories to occupy compact
and disjoint regions in a d-dimensional feature space. The effectiveness of the representa-
tion space (feature set) is determined by how well patterns from different classes can be
separated. Given a set of training patterns from each class, the objective is to establish
decision boundaries in the feature space which separate patterns belonging to different
classes. In the statistical decision theoretic approach, the decision boundaries are deter-
mined by the probability distributions of the patterns belonging to each class, which must
either be specified or learned [41], [44].

One can also take a discriminant analysis-based approach to classification: first a para-
metric form of the decision boundary (e.g., linear or quadratic) is specified; then the “best”
decision boundary of the specified form is found based on the classification of training
patterns. Such boundaries can be constructed using, for example, a mean squared er-
ror criterion. The direct boundary construction approaches are supported by Vapnik’s
philosophy [162]: “If you possess a restricted amount of information for solving some
problem, try to solve the problem directly and never solve a more general problem as an
intermediate step. It is possible that the available information is sufficient for a direct

solution but is insufficient for solving a more general intermediate problem.”



1.4 Syntactic Approach

In many recognition problems involving complex patterns, it is more appropriate to
adopt a hierarchical perspective where a pattern is viewed as being composed of simple
sub-patterns which are themselves built from yet simpler sub-patterns [56, 121]. The
simplest/elementary sub-patterns to be recognized are called primitives and the given
complex pattern is represented in terms of the interrelationships between these primitives.
In syntactic pattern recognition, a formal analogy is drawn between the structure of
patterns and the syntax of a language. The patterns are viewed as sentences belonging
to a language, primitives are viewed as the alphabet of the language, and the sentences
are generated according to a grammar. Thus, a large collection of complex patterns can
be described by a small number of primitives and grammatical rules. The grammar for
each pattern class must be inferred from the available training samples.

Structural pattern recognition is intuitively appealing because, in addition to classifi-
cation, this approach also provides a description of how the given pattern is constructed
from the primitives. This paradigm has been used in situations where the patterns have a
definite structure which can be captured in terms of a set of rules, such as EKG waveforms,
textured images, and shape analysis of contours [56]. The implementation of a syntactic
approach, however, leads to many difficulties which primarily have to do with the seg-
mentation of noisy patterns (to detect the primitives) and the inference of the grammar
from training data. Fu [56] introduced the notion of attributed grammars which unifies
syntactic and statistical pattern recognition. The syntactic approach may yield a com-
binatorial explosion of possibilities to be investigated, demanding large training sets and

very large computational efforts [122].



1.5 Neural Networks

Neural networks can be viewed as massively parallel computing systems consisting
of an extremely large number of simple processors with many interconnections. Neural
network models attempt to use some organizational principles (such as learning, general-
ization, adaptivity, fault tolerance and distributed representation and computation) in a
network of weighted directed graphs in which the nodes are artificial neurons and directed
edges (with weights) are connections between neuron outputs and neuron inputs. The
main differences between neural networks and the other approaches to pattern recogni-
tion are that these networks have the ability to learn complex non-linear input-output
relationships, and use sequential training procedures. Moreover, they have the general
characteristic of adapting themselves to the data.

The most commonly used family of neural networks for pattern classification tasks [83]
is the feed-forward network, which includes multilayer perceptron and Radial-Basis Func-
tion (RBF) networks. These networks are organized into layers and have unidirectional
connections between the layers. Another popular network is the Self-Organizing Map
(SOM), or Kohonen-Network [92], which is mainly used for data clustering and feature
mapping. The learning process involves updating network architecture and connection
weights so that a network can efficiently perform a specific classification/clustering task.
The increasing popularity of neural network models to solve pattern recognition problems
has been primarily due to their seemingly low dependence on domain-specific knowledge
(relative to model-based and rule-based approaches) and due to the availability of efficient
learning algorithms for practitioners to use.

Neural networks provide a new suite of nonlinear algorithms for feature extraction (us-



ing hidden layers) and classification (e.g., multilayer perceptrons). In addition, existing
feature extraction and classification algorithms can also be mapped on neural network
architectures for efficient (hardware) implementation. In spite of the seemingly different
underlying principles, most of the well known neural network models are implicitly equiv-
alent or similar to classical statistical pattern recognition methods (see Table 3). Ripley
[136] and Anderson et al. [5] also discuss this relationship between neural networks and
statistical pattern recognition. Anderson et al. point out that “neural networks are statis-
tics for amateurs . . . Most NNs conceal the statistics from the user.” Despite these
similarities, neural networks do offer several advantages such as, unified approaches for
feature extraction and classification and flexible procedures for finding good, moderately

nonlinear solutions.

Table 3: LINKS BETWEEN STATISTICAL AND NEURAL NETWORK METHODS

Statistical Pattern Recognition Artificial Neural Networks
Linear Discriminant Function Perceptron
Principal Component Analysis Auto-Associative Network, and various PCA networks
A Posteriori Probability Estimation Multilayer Perceptron
Nonlinear Discriminant Analysis Multilayer Perceptron
Parzen Window Density-based Classifier | Radial Basis Function Network
Edited K-NN Rule Kohonen’s LVQ

1.6 Scope and Organization

In the remainder of this paper we will primarily review statistical methods for pattern
representation and classification, emphasizing recent developments. Whenever appropri-
ate, we will also discuss closely related algorithms from the neural networks literature.
We omit the whole body of literature on fuzzy classification and fuzzy clustering which

are in our opinion beyond the scope of this paper. Interested readers can refer to the
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well-written books on fuzzy pattern recognition by Bezdek [15] and by Bezdek and Pal
[16]. In most of the sections, the various approaches and methods are summarized in
tables as an easy and quick reference for the reader. Due to space constraints, we are
not able to provide many details and we have to omit some of the approaches and the
associated references. Our goal is to emphasize those approaches which have been exten-
sively evaluated and demonstrated to be useful in practical applications, along with the
new trends and ideas.

The literature on pattern recognition is vast and scattered in numerous journals in
several disciplines (e.g., applied statistics, machine learning, neural networks, and signal
and image processing). A quick scan of the table of contents of all the issues of the IEEE
Transactions on Pattern Analysis and Machine Intelligence, since its first publication
in January 1979, reveals that approximately 350 papers deal with pattern recognition.
Approximately 300 of these papers covered the statistical approach and can be broadly
categorized into the following subtopics: curse of dimensionality (15), dimensionality re-
duction (50), classifier design (175), classifier combination (10), error estimation (25) and
unsupervised classification (50). In addition to the excellent textbooks by Duda and
Hart [44]', Fukunaga [58], Devijver and Kittler [39], Devroye, Gyorfi and Lugosi [41],
Bishop [18], Ripley [137], Schurmann [147], and McLachlan [105], we should also point
out two excellent survey papers written by Nagy [111] in 1968 and by Kanal [89] in 1974.
Nagy described the early roots of pattern recognition, which at that time was shared
with researchers in artificial intelligence and perception. A large part of Nagy’s paper
introduced a number of potential applications of pattern recognition and the interplay

between feature definition and the application domain knowledge. He also emphasized

Tts second edition by Duda, Hart, and Stork is in press.
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the linear classification methods; nonlinear techniques were based on polynomial discrim-
inant functions as well as on potential functions (similar to what are now called the kernel
functions). By the time Kanal wrote his survey paper, more than 500 papers and about
half-a-dozen books on pattern recognition were already published. Kanal placed less em-
phasis on applications, but more on modeling and design of pattern recognition systems.
The discussion on automatic feature extraction in [89] was based on various distance
measures between class-conditional probability density functions and the resulting error
bounds. Kanal’s review also contained a large section on structural methods and pattern
grammars.

In comparison to the state of the pattern recognition field as described by Nagy and
Kanal in the sixties and seventies, today a number of commercial pattern recognition sys-
tems are available which even individuals can buy for personal use (e.g., machine printed
character recognition and isolated spoken word recognition). This has been made possible
by various technological developments resulting in the availability of inexpensive sensors
and powerful desktop computers. The field of pattern recognition has become so large
that in this review we had to skip detailed descriptions of various applications, as well as
almost all the procedures which model domain-specific knowledge (e.g., structural pattern
recognition, and rule-based systems). The starting point of our review (Section 2) is the
basic elements of statistical methods for pattern recognition. It should be apparent that
a feature vector is a representation of real world objects; the choice of the representation
strongly influences the classification results.

The topics of probabilistic distance measures and error bounds are currently not as
important as 20 years ago, since it is very difficult to estimate density functions in high

dimensional feature spaces. Instead, the complexity of classification procedures and the

12



resulting accuracy have gained a large interest. The curse of dimensionality (Section 3)
as well as the danger of overtraining are some of the consequences of a complex classifier.
It is now understood that these problems can, to some extent, be circumvented using
regularization, or can even be completely resolved by a proper design of classification pro-
cedures. The study of support vector machines (SVMs), discussed in Section 5, has largely
contributed to this understanding. In many real world problems, patterns are scattered
in high-dimensional (often) nonlinear subspaces. As a consequence, nonlinear procedures
and subspace approaches have become popular, both for dimensionality reduction (Sec-
tion 4) and for building classifiers (Section 5). Neural networks offer powerful tools for
these purposes. It is now widely accepted that no single procedure will completely solve
a complex classification problem. There are many admissible approaches, each capable
of discriminating patterns in certain portions of the feature space. The combination of
classifiers has, therefore, become a heavily studied topic (Section 6). Various approaches
to estimating the error rate of a classifier are presented in Section 7. The topic of unsu-
pervised classification or clustering is covered in Section 8. Finally, Section 9 identifies
the frontiers of pattern recognition.

It is our goal that most parts of the paper can be appreciated by a newcomer to the
field of pattern recognition. To this purpose, we have included a number of examples
to illustrate the performance of various algorithms. Nevertheless, we realize that, due to
space limitations, we have not been able to introduce all the concepts completely. At
these places, we have to rely on the background knowledge which may be available only

to the more experienced readers.
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2 Statistical Pattern Recognition

Statistical pattern recognition has been used successfully to design a number of com-
mercial recognition systems. In statistical pattern recognition, a pattern is represented by
a set of d features, or attributes, viewed as a d-dimensional feature vector. Well-known
concepts from statistical decision theory are utilized to establish decision boundaries be-
tween pattern classes. The recognition system is operated in two modes: training (learn-
ing) and classification (testing) (see Fig. 1). The role of the preprocessing module is to
segment the pattern of interest from the background, remove noise, normalize the pattern,
and any other operation which will contribute in defining a compact representation of the
pattern. In the training mode, the feature extraction/selection module finds the appro-
priate features for representing the input patterns and the classifier is trained to partition
the feature space. The feedback path allows a designer to optimize the preprocessing and
feature extraction/selection strategies. In the classification mode, the trained classifier
assigns the input pattern to one of the pattern classes under consideration based on the

measured features.

Feature o
p;ftsetm - Preprocessing » |V easurement|———» Classification |—— »
Classification A
Training
training Feature .
———» Preprocessing > Extraqt|on/ Learning
pattern Sdlection —

T [}

Figure 1: Model for statistical pattern recognition.

The decision making process in statistical pattern recognition can be summarized as

follows. A given pattern is to be assigned to one of ¢ categories w;, ws, ..., w. based

14



on a vector of d feature values @ = (x1, 2, -- ,x4). The features are assumed to have a
probability density or mass (depending on whether the features are continuous or discrete)
function conditioned on the pattern class. Thus, a pattern vector « belonging to class w; is
viewed as an observation drawn randomly from the class-conditional probability function
p(x|w;). A number of well-known decision rules, including the Bayes decision rule, the
maximum likelihood rule (which can be viewed as a particular case of the Bayes rule),
and the Neyman-Peason rule are available to define the decision boundary. The “optimal”
Bayes decision rule for minimizing the risk (expected value of the loss function) can be

stated as follows: Assign input pattern x to class w; for which the conditional risk

R(wi|z) = Z L(wi, wj) - P(wjlz) (1)

is minimum, where L(w;,w;) is the loss function incurred in deciding w; when the true
class is w; and P(wj|z) is the posterior probability [44]. In the case of the 0/1 loss
function, as defined in Eq. 2, the conditional risk becomes the conditional probability of

misclassification.

L(w;,wj) = (2)
1, i#]

For this choice of loss function, the Bayes decision rule can be simplified as follows (also

called the maximum a posteriori (MAP) rule): Assign input pattern @ to class w; if

P(w;|z) > P(wj|z) for all j # i. (3)
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Various strategies are utilized to design a classifier in statistical pattern recognition, de-
pending on the kind of information available about the class-conditional densities. If all
of the class-conditional densities are completely specified, then the optimal Bayes decision
rule can be used to design a classifier. However, the class-conditional densities are usually
not known in practice and must be learned from the available training patterns. If the
form of the class-conditional densities is known (e.g., multivariate Gaussian), but some
of the parameters of the densities (e.g., mean vectors and covariance matrices) are un-
known, then we have a parametric decision problem. A common strategy for this kind of
problem is to replace the unknown parameters in the density functions by their estimated
values, resulting in the so-called Bayes plug-in classifier. The optimal Bayesian strategy
in this situation requires additional information in the form of a prior distribution on the
unknown parameters. If the form of the class-conditional densities is not known, then we
operate in an nonparametric mode. In this case, we must either estimate the density func-
tion (e.g., Parzen window approach) or directly construct the decision boundary based
on the training data (e.g., k-nearest neighbor rule). In fact, the multilayer perceptron
can also be viewed as a supervised nonparametric method which constructs a decision
boundary.

Another dichotomy in statistical pattern recognition is that of supervised learning (la-
beled training samples) versus unsupervised learning (unlabeled training samples). The
label of a training pattern represents the category to which that pattern belongs. In an
unsupervised learning problem, sometimes the number of classes must be learned along
with the structure of each class. The various dichotomies that appear in statistical pat-
tern recognition are shown in the tree structure of Fig. 2. As we traverse the tree from

top to bottom and left to right, less information is available to the system designer and
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as a result, the difficulty of classification problem increases. In some sense, most of the
approaches in statistical pattern recognition (leaf nodes in the tree of Fig. 2) are attempt-
ing to implement the Bayes decision rule. The field of cluster analysis essentially deals
with decision making problems in the nonparametric and unsupervised learning mode
[81]. Further, in cluster analysis the number of categories or clusters may not even be
specified; the task is to discover a reasonable categorization of the data (if one exists).
Cluster analysis algorithms along with various techniques for visualizing and projecting

multi-dimensional data are also referred to as exploratory data analysis methods.

Class—Conditional

Densities
Known Unknown
— - — ~
/ \
| | Bayes Decision | | Supervised Unsupervised
| Theory \ Learning Learning
\ \
\ ~_
N —
AN N
\\ Parametric \\ Nonparametric Parametric Nonparametric
| \
| S~
‘ e —
|| "optimal” Plug—in Density || Decision | | Mixture Cluster
\ Rules Rules Estimation || | Boundary Resolving Analysis
\ ’ | Construction | |
~N — C —_— //
Density—Based Approaches Geometric Approach

Figure 2: Various approaches in statistical pattern recognition.

Yet another dichotomy in statistical pattern recognition can be based on whether the
decision boundaries are obtained directly (geometric approach) or indirectly (probabilistic
density-based approach) as shown in Fig. 2. The probabilistic approach requires to esti-

mate density functions first, and then construct the discriminant functions which specify
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the decision boundaries. On the other hand, the geometric approach often constructs
the decision boundaries directly from optimizing certain cost functions. We should point
out that under certain assumptions on the density functions, the two approaches are
equivalent. We will see examples of each category in Section 5.

No matter which classification or decision rule is used, it must be trained using the
available training samples. As a result, the performance of a classifier depends on both
the number of available training samples as well as the specific values of the samples.
At the same time, the goal of designing a recognition system is to classify future test
samples which are likely to be different from the training samples. Therefore, optimizing
a classifier to maximize its performance on the training set may not always result in the
desired performance on a test set. The generalization ability of a classifier refers to its
performance in classifying test patterns which were not used during the training stage.
A poor generalization ability of a classifier can be attributed to any one of the following
factors: (i) the number of features is too large relative to the number of training samples
(curse of dimensionality [80]), (ii) the number of unknown parameters associated with
the classifier is large (e.g., polynomial classifiers or a large neural network), and (iii) a
classifier is too intensively optimized on the training set (overtrained); this is analogous
to the phenomenon of overfitting in regression when there are too many free parameters.

Overtraining has been investigated theoretically for classifiers that minimize the ap-
parent error rate (the error on the training set). The classical studies by Cover [33]
and Vapnik [162] on classifier capacity and complexity provide a good understanding of
the mechanisms behind overtraining. Complex classifiers (e.g., those having many in-
dependent parameters) may have a large capacity, i.e. they are able to represent many

dichotomies for a given dataset. A frequently used measure for the capacity is the Vapnik-
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Chervonenkis (VC) dimensionality [162]. These results can also be used to prove some
interesting properties, for example, the consistency of certain classifiers (see, Devroye et
al. [40, 41]). The practical use of the results on classifier complexity was initially lim-
ited because the proposed bounds on the required number of (training) samples were too
conservative. In the recent development of support vector machines [162], however, these
results have proved to be quite useful. The pitfalls of over-adaptation of estimators to
the given training set are observed in several stages of a pattern recognition system, such
as dimensionality reduction, density estimation, and classifier design. A sound solution
is to always use an independent dataset (test set) for evaluation. In order to avoid the
necessity of having several independent test sets, estimators are often based on rotated
subsets of the data, preserving different parts of the data for optimization and evaluation
[166]. Examples are the optimization of the covariance estimates for the Parzen kernel
[76] and discriminant analysis [61], and the use of bootstrapping for designing classifiers
[48], and for error estimation [82].

Throughout the paper, some of the classification methods will be illustrated by simple

experiments on the following three data sets:

Dataset 1: An artificial dataset consisting of two classes with bivariate Gaussian density

1 0
with the following parameters: m; = (1,1), ms = (2,0), ¥; = and ¥y =
0 0.25
0.8 0
. The intrinsic overlap between these two densities is 12.5%.
0 1

Dataset 2: Iris dataset consists of 150 4-dimensional patterns in three classes (50 pat-
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terns each): Iris Setosa, Iris Versicolor and Iris Virginica.

Dataset 3: The digit dataset consists of handwritten numerals (‘0’—‘9’) extracted from a
collection of Dutch utility maps. Two hundred patterns per class (for a total of 2,000 pat-
terns) are available in the form of 30 x 48 binary images. These characters are represented
in terms of the following six feature sets: (i) 76 Fourier coefficients of the character shapes;
(ii) 216 profile correlations; (iii) 64 Karhunen-Loeve coefficients; (iv) 240 pixel averages
in 2 x 3 windows; (v) 47 Zernike moments; (vi) 6 morphological features. Details of this
dataset are available in [160]. In our experiments we always used the same subset of 1,000
patterns for testing and various subsets of the remaining 1,000 patterns for training?.
Throughout this paper, when we refer to “the digit dataset”, just the Karhunen-Loeve

features (iii) are meant, unless stated otherwise.

3 The Curse of Dimensionality and Peaking

Phenomena

The performance of a classifier depends on the interrelationship between sample sizes,
number of features, and classifier complexity. A naive table-lookup technique (partition-
ing the feature space into cells and associating a class label with each cell) requires the
number of training data points to be an exponential function of the feature dimension [18].
This phenomenon is termed as “curse of dimensionality”, which leads to the “peaking phe-
nomenon” (see discussion below) in classifier design. It is well known that the probability

of misclassification of a decision rule does not increase as the number of features increases,

2The  dataset is  available through the UCI  Machine Learning Repository
(http://www.ics.uci.edu/ mlearn/MLRepository.html)
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as long as the class-conditional densities are completely known (or, equivalently, the num-
ber of training samples is arbitrarily large and representative of the underlying densities).
However, it has been often observed in practice that the added features may actually
degrade the performance of a classifier if the number of training samples that are used to
design the classifier is small relative to the number of features. This paradoxical behavior
is referred to as the peaking phenomenon® [80, 131, 132]. A simple explanation for this
phenomenon is as follows. The most commonly used parametric classifiers estimate the
unknown parameters and plug them in for the true parameters in the class-conditional
densities. For a fixed sample size, as the number of features is increased (with a corre-
sponding increase in the number of unknown parameters), the reliability of the parameter
estimates decreases. Consequently, the performance of the resulting plug-in classifiers, for
a fixed sample size, may degrade with an increase in the number of features.

Trunk [157] provided a simple example to illustrate the curse of dimensionality which we
reproduce below. Consider the two-class classification problem with equal prior probabil-
ities, and a d-dimensional multivariate Gaussian distribution with the identity covariance

matrix for each class. The mean vectors for the two classes have the following components

1 1
m1:(1,—,—,---,

2 V3

1 1 1

RV RNV MR )

) and mg=(—

Sl-

Note that the features are statistically independent and the discriminating power of the
successive features decreases monotonically with the first feature providing the maximum
discrimination between the two classes. The only parameter in the densities is the mean

vector, m = my; = —m.

3In the rest of this paper, we do not make distinction between the curse of dimensionality and the
peaking phenomenon.
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Trunk considered the following two cases:
(i) The mean vector m is known. In this situation, we can use the optimal Bayes
decision rule (with a 0/1 loss function) to construct the decision boundary. The probability

of error as a function of d can be expressed as:

P.(d) = /00 e \/LQ_’]T e 27 dz. (4)

It is easy to verify that limg .o Pe(d) = 0 . In other words, we can perfectly discriminate
the two classes by arbitrarily increasing the number of features, d.

(ii)) The mean vector m is unknown and 7 labeled training samples are available.

Trunk found the maximum likelihood estimate 7 of m and used the plug-in decision rule

(substitute 7 for m in the optimal Bayes decision rule). Now the probability of error

which is a function of both n and d can be written as:

* 1 12
P.(n,d) = / —— e 2% dz , where (5)
o(d) V21

> ia(3)

0(d) = — .
Ja+H T () +

(6)

Trunk showed that lims, Pe(n,d) = 3, which implies that the probability of error
approaches the maximum possible value of 0.5 for this two-class problem. This demon-
strates that unlike case (i), we cannot arbitrarily increase the number of features when
the parameters of class-conditional densities are estimated from a finite number of train-

ing samples. The practical implication of the curse of dimensionality is that a system

22



designer should try to select only a small number of salient features when confronted with
a limited training set.

All of the commonly used classifiers, including multilayer feed-forward networks, can
suffer from the curse of dimensionality. While an exact relationship between the prob-
ability of misclassification, the number of training samples, the number of features and
the true parameters of the class-conditional densities is very difficult to establish, some
guidelines have been suggested regarding the ratio of the sample size to dimensionality. It
is generally accepted that using at least ten times as many training samples per class as
the number of features (n/d > 10) is a good practice to follow in classifier design [80]. The
more complex the classifier, the larger should the ratio of sample size to dimensionality

be to avoid the curse of dimensionality.

4 Dimensionality Reduction

There are two main reasons to keep the dimensionality of the pattern representation
(i.e., the number of features) as small as possible: measurement cost and classification
accuracy. A limited yet salient feature set simplifies both the pattern representation and
the classifiers that are built on the selected representation. Consequently, the resulting
classifier will be faster and will use less memory. Moreover, as stated earlier, a small
number of features can alleviate the curse of dimensionality when the number of training
samples is limited. On the other hand, a reduction in the number of features may lead
to a loss in the discrimination power and thereby lower the accuracy of the resulting
recognition system. Watanabe’s ugly duckling theorem [163] also supports the need for a

careful choice of the features, since it is possible to make two arbitrary patterns similar
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by encoding them with a sufficiently large number of redundant features.

It is important to make a distinction between feature selection and feature extraction.
The term feature selection refers to algorithms that select the (hopefully) best subset of
the input feature set. Methods that create new features based on transformations or com-
binations of the original feature set are called feature extraction algorithms. However, the
terms feature selection and feature extraction are used interchangeably in the literature.
Note that often feature extraction precedes feature selection; first, features are extracted
from the sensed data (e.g., using principal component or discriminant analysis) and then
some of the extracted features with low discrimination ability are discarded. The choice
between feature selection and feature extraction depends on the application domain and
the specific training data which is available. Feature selection leads to savings in mea-
surement cost (since some of the features are discarded) and the selected features retain
their original physical interpretation. In addition, the retrieved features may be impor-
tant for understanding the physical process that generates the patterns. Finding features
can thereby be a goal on its own. On the other hand, transformed features generated
by feature extraction may provide a better discriminative ability than the best subset
of given features, but these new features (a linear or a nonlinear combination of given
features) may not have a clear physical meaning.

In many situations, it is useful to obtain a two- or three- dimensional projection of
the given multivariate data (n x d pattern matrix) to permit a visual examination of
the data. Several graphical techniques also exist for visually observing multivariate data,
in which the objective is to exactly depict each pattern as a picture with d degrees of
freedom, where d is the given number of features. For example, Chernoff [29] represents

each pattern as a cartoon face whose facial characteristics, such as nose length, mouth
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curvature, and eye size, are made to correspond to individual features. Fig. 3 shows three
faces corresponding to the mean vectors of Iris Setosa, Iris Versicolor, and Iris Virginica

classes in the Iris data (150 4-dimensional patterns; 50 patterns per class). Note that

Setosa Versicolor Virginica

Figure 3: Chernoff Faces corresponding to the mean vectors of Iris Setosa, Iris Versicolor and
Iris Virginica.

the face associated with Iris Setosa looks quite different from the other two faces which
implies that the Setosa category can be well separated from the remaining two categories
in the four-dimensional feature space (This is also evident in the two-dimensional plots
of this data in Fig. 5).

The main issue in dimensionality reduction is the choice of a criterion function. A com-
monly used criterion is the classification error of a feature subset. But, the classification
error itself cannot be reliably estimated when the ratio of sample size to the number of fea-
tures is small. In addition to the choice of a criterion function, we also need to determine

the appropriate dimensionality of the reduced feature space. The answer to this question

25



is embedded in the notion of the intrinsic dimensionality of data. Intrinsic dimensionality
essentially determines whether the given d-dimensional patterns can be described ade-
quately in a subspace of dimensionality less than d. For example, d-dimensional patterns
along a reasonably smooth curve have an intrinsic dimensionality of one, irrespective of
the value of d. Note that the intrinsic dimensionality is not the same as the linear di-
mensionality which is a global property of the data involving the number of significant
eigenvalues of the covariance matrix of the data. While several algorithms are available
to estimate the intrinsic dimensionality [81], they do not indicate how a subspace of the
identified dimensionality can be easily identified.

We now briefly discuss some of the commonly used methods for feature extraction and

feature selection.

4.1 Feature Extraction

Feature extraction methods determine an appropriate subspace of dimensionality m
(either in a linear or a nonlinear way) in the original feature space of dimensionality d
(m < d). Linear transforms, such as principal component analysis, factor analysis, linear
discriminant analysis, and projection pursuit have been widely used in pattern recogni-
tion for feature extraction and dimensionality reduction. The best known linear feature
extractor is the principal component analysis (PCA) or Karhunen-Loeéve expansion, that
computes the m largest eigenvectors of the d x d covariance matrix of the n d-dimensional

patterns. The linear transformation is defined as
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where X is the given n x d pattern matrix, Y is the derived n X m pattern matrix, and H is
the d x m matrix of linear transformation whose columns are the eigenvectors. Since PCA
uses the most expressive features (eigenvectors with the largest eigenvalues), it effectively
approximates the data by a linear subspace using the mean squared error criterion. Other
methods, like projection pursuit [53] and independent component analysis (ICA) [31], [11],
[24], [96] are more appropriate for non-Gaussian distributions since they do not rely on
the second-order property of the data. ICA has been successfully used for blind-source
separation [78]; extracting linear feature combinations that define independent sources.
This de-mixing is possible if at most one of the sources has a Gaussian distribution.

Whereas PCA is an unsupervised linear feature extraction method, discriminant analy-
sis uses the category information associated with each pattern for (linearly) extracting the
most discriminatory features. In discriminant analysis, inter-class separation is empha-
sized by replacing the total covariance matrix in PCA by a general separability measure
like the Fisher criterion, which results in finding the eigenvectors of S, 'S, (the product
of the inverse of the within-class scatter matrix, S,,, and the between-class scatter ma-
trix, Sp) [58]. Another supervised criterion for non-Gaussian class-conditional densities is
based on the Patrick-Fisher distance using Parzen density estimates [41].

There are several ways to define nonlinear feature extraction techniques. One such
method which is directly related to PCA is called the Kernel PCA [73], [145]. The basic
idea of kernel PCA is to first map input data into some new feature space F' typically
via a nonlinear function ® (e.g., polynomial of degree p) and then perform a linear PCA
in the mapped space. However, the F' space often has a very high dimension. To avoid
computing the mapping ® explicitly, kernel PCA employs only Mercer kernels which can

be decomposed into a dot product, K(z,y) = ®(z)-P(y). As a result, the kernel space has
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a well-defined metric. Examples of Mercer kernels include p"*-order polynomial (z — y)?

. _llz—yl?
and Gaussian kernel e ¢

Let X be the normalized n x d pattern matrix with zero mean, and ®(X) be the pattern
matrix in the F' space. The linear PCA in the F' space solves the eigenvectors of the
correlation matrix ®(X)®(X)T, which is also called the kernel matrix K (X, X). In kernel
PCA, the first m eigenvectors of K (X, X) are obtained to define a transformation matrix,
E. (E has size n x m, where m represents the desired number of features, m < d). New
patterns & are mapped by K (x, X)FE, which are now represented relative to the training
set and not by their measured feature values. Note that for a complete representation,
up to m eigenvectors in E may be needed (depending on the kernel function) by kernel
PCA, while in linear PCA a set of d eigenvectors represents the original feature space.
How the kernel function should be chosen for a given application is still an open issue.

Multidimensional scaling (MDS) is another nonlinear feature extraction technique. It
aims to represent a multidimensional dataset in 2 or 3 dimensions such that the distance
matrix in the original d-dimensional feature space is preserved as faithfully as possible in
the projected space. Various stress functions are used for measuring the performance of
this mapping [20]; the most popular criterion is the stress function introduced by Sammon
[141] and Niemann [114]. A problem with MDS is that it does not give an explicit mapping
function, so it is not possible to place a new pattern in a map which has been computed
for a given training set without repeating the mapping. Several techniques have been
investigated to address this deficiency which range from linear interpolation to training a
neural network [38]. It is also possible to redefine the MDS algorithm so that it directly
produces a map that may be used for new test patterns [165].

A feed-forward neural network offers an integrated procedure for feature extraction
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and classification; the output of each hidden layer may be interpreted as a set of new,
often nonlinear, features presented to the output layer for classification. In this sense,
multi-layer networks serve as feature extractors [100]. For example, the networks used by
Fukushima [62] and Le Cun [95] have the so called shared weight layers that are in fact
filters for extracting features in two-dimensional images. During training, the filters are
tuned to the data, so as to maximize the classification performance.

Neural networks can also be used directly for feature extraction in an unsupervised
mode. Fig. 4(a) shows the architecture of a network which is able to find the PCA

subspace [117]. Instead of sigmoids, the neurons have linear transfer functions. This

Y. Y, y3 Y Y. Y, y3 Y,

Figure 4: Auto-associative networks for finding a 3-dimensional subspace. (a) linear, (b) non-
linear (not all the connections are shown).

network has d inputs and d outputs, where d is the given number of features. The inputs

are also used as targets, forcing the output layer to reconstruct the input space using only
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one hidden layer. The three nodes in the hidden layer capture the first three principal
components [18]. If two nonlinear layers with sigmoidal hidden units are also included
(see Fig. 4(b)), then a nonlinear subspace is found in the middle layer (also called the
bottleneck layer). The nonlinearity is limited by the size of these additional layers. These
so-called auto-associative, or nonlinear PCA networks offer a powerful tool to train and
describe nonlinear subspaces [98]. Oja [118] shows how auto-associative networks can be
used for ICA.

The Self-Organizing Map (SOM), or Kohonen Map [92], can also be used for nonlinear
feature extraction. In SOM, neurons are arranged in an m-dimensional grid, where m is
usually 1, 2, or 3. Each neuron is connected to all the d input units. The weights on the
connections for each neuron form a d-dimensional weight vector. During training, patterns
are presented to the network in a random order. At each presentation, the winner whose
weight vector is the closest to the input vector is first identified. Then, all the neurons in
the neighborhood (defined on the grid) of the winner are updated such that their weight
vectors move towards the input vector. Consequently, after training is done, the weight
vectors of neighboring neurons in the grid are likely to represent input patterns which
are close in the original feature space. Thus, a “topology-preserving” map is formed.
When the grid is plotted in the original space, the grid connections are more or less
stressed according to the density of the training data. Thus, SOM offers an m-dimensional
map with a spatial connectivity, which can be interpreted as feature extraction. SOM is
different from learning vector quantization (LVQ) because no neighborhood is defined in
LVQ.

Table 4 summarizes the feature extraction and projection methods discussed above.

Note that the adjective nonlinear may be used both for the mapping (being a nonlinear
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Table 4:

FEATURE EXTRACTION AND PROJECTION METHODS

Method

Property

Comments

Principal Component
Analysis (PCA)

Linear map; fast;
eigenvector-based.

Traditional, eigenvector based method, also known
as Karhunen-Loeve expansion; good for Gaussian
data.

Linear Discriminant
Analysis

Supervised linear map;
fast; eigenvector-based.

Better than PCA for classification; limited to (¢ — 1)
components with non-zero eigenvalues.

Projection Pursuit

Linear map; iterative;
non-Gaussian.

Mainly used for interactive exploratory data-
analysis.

Independent Component
Analysis (ICA)

Linear map, iterative,
non-Gaussian.

Blind source separation, used for de-mixing
non-Gaussian distributed sources (features).

Kernel PCA

Nonlinear map;
eigenvector-based.

PCA-based method, using a kernel to replace inner
products of pattern vectors.

PCA Network

Linear map; iterative.

Auto-associative neural network with linear transfer
functions and just one hidden layer.

Nonlinear PCA

Linear map; non-Gaussian
criterion; usually iterative

Neural network approach, possibly used for ICA.

Nonlinear auto-
associative network

Nonlinear map; non-Gaus-
sian criterion; iterative.

Bottleneck network with several hidden layers; the
nonlinear map is optimized by a nonlinear
reconstruction; input is used as target.

Multidimensional
scaling (MDS), and
Sammon’s projection

Nonlinear map; iterative.

Tterative; often poor generalization; sample size
limited; noise sensitive; mainly used for
2-dimensional visualization.

Self-Organizing Map
(SOM)

Nonlinear; iterative.

Based on a grid of neurons in the feature space;
suitable for extracting spaces of low dimensionality.

function of the original features) as well as for the criterion function (for non-Gaussian

data). Fig. 5 shows an example of four different two-dimensional projections of the four-

dimensional Iris dataset. Figs. 5(a) and (b) show two linear mappings, while Figs. 5(c)

and (d) depict two nonlinear mappings. Only the Fisher mapping (Fig. 5(b)) makes use

of the category information, this being the main reason why this mapping exhibits the

best separation between the three categories.

4.2 Feature Selection

The problem of feature selection is defined as follows: given a set of d features, select a

subset of size m that leads to the smallest classification error. There has been a resurgence
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Figure 5: Two-dimensional mappings of the Iris dataset (+: Iris Setosa; *: Iris Versicolor; o:

Iris Virginica). (a) PCA, (b) Fisher Mapping, (c) Sammon Mapping, (d) Kernel PCA with
second order polynomial kernel.
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of interest in applying feature selection methods due to the large number of features
encountered in the following situations: (i) multi-sensor fusion: features, computed from
different sensor modalities, are concatenated to form a feature vector with a large number
of components; (ii) integration of multiple data models: sensor data can be modeled using
different approaches, where the model parameters serve as features, and the parameters
from different models can be pooled to yield a high-dimensional feature vector.

Let Y be the given set of features, with cardinality d and let m represent the desired
number of features in the selected subset X, X C Y. Let the feature selection criterion
function for the set X be represented by J(X). Let us assume that a higher value of J
indicates a better feature subset; a natural choice for the criterion function is J = (1—F,),
where P, denotes the classification error. The use of P, in the criterion function makes
feature selection procedures dependent on the specific classifier that is used and the sizes
of the training and test sets. The most straightforward approach to the feature selection
problem would require (i) examining all (7’;) possible subsets of size m, and (ii) selecting
the subset with the largest value of J(-). However, the number of possible subsets grows
combinatorially, making this exhaustive search impractical for even moderate values of m
and d. Cover and Van Campenhout [35] showed that no non-exhaustive sequential feature
selection procedure can be guaranteed to produce the optimal subset. They further showed
that any ordering of the classification errors of each of the 2¢ feature subsets is possible.
Therefore, in order to guarantee the optimality of, say, a 12-dimensional feature subset
out of 24 available features, approximately 2.7 million possible subsets must be evaluated.
The only “optimal” (in terms of a class of monotonic criterion functions) feature selection
method which avoids the exhaustive search is based on the branch and bound algorithm.

This procedure avoids an exhaustive search by using intermediate results for obtaining

33



bounds on the final criterion value. The key to this algorithm is the monotonicity property
of the criterion function J(-); given two features subsets X; and X, if X; C X5, then
J(X1) < J(X3). In other words, the performance of a feature subset should improve
whenever a feature is added to it. Most commonly used criterion functions do not satisfy
this monotonicity property.

It has been argued that since feature selection is typically done in an off-line manner,
the execution time of a particular algorithm is not as critical as the optimality of the
feature subset it generates. While this is true for feature sets of moderate size, several
recent applications, particularly those in data mining and document classification, involve
thousands of features. In such cases, the computational requirement of a feature selection
algorithm is extremely important. As the number of feature subset evaluations may easily
become prohibitive for large feature sizes, a number of suboptimal selection techniques
have been proposed which essentially tradeoff the optimality of the selected subset for
computational efficiency.

Table 5 lists most of the well-known feature selection methods which have been proposed
in the literature [85].  Only the first two methods in this table guarantee an optimal
subset. All other strategies are suboptimal due to the fact that the best pair of features
need not contain the best single feature [34]. More generally formulated: good larger
feature sets do not necessarily include the good small sets. As a result, the simple method
of selecting just the best individual features may fail dramatically. It might still be useful,
however, as a first step in decreasing very large feature sets (e.g., hundreds of features).
Further selection has to be done by more advanced methods that take feature dependencies
into account. These operate either by evaluating growing feature sets (forward selection)

or by evaluating shrinking feature sets (backward selection). A simple sequential method
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Table 5: FEATURE SELECTION METHODS

Method

Property

Comments

Exhaustive Search

Evaluate all (?) possible subsets.

Guaranteed to find the optimal sub-
set; not feasible for even moder-
ately large values of m and d.

Branch-and-Bound Search

Uses the well-known branch-and-
bound search method; only a frac-
tion of all possible feature subsets
need to be enumerated to find the
optimal subset.

Guaranteed to find the optimal sub-
set provided the criterion function
satisfies the monotonicity property;
the worst-case complexity of this
algorithm is exponential.

Best Individual Features

Evaluate all the m features individ-
ually; select the best m individual
features.

Computationally simple; not likely
to lead to an optimal subset.

Sequential Forward Selection

(SES)

Select the best single feature and
then add one feature at a time
which in combination with the
selected features maximizes the cri-
terion function.

Once a feature is retained, it cannot
be discarded; computationally
attractive since to select a subset of
size 2, it examines only (d — 1) possi-
ble subsets.

Sequential Backward Selection

(SBS)

Start with all the d features and suc-
cessively delete one feature at a
time.

Once a feature is deleted, it cannot
be brought back into the optimal
subset; requires more computation
than sequential forward selection.

“Plus [-take away r” Selection

First enlarge the feature subset by [
features using forward selection
and then delete r features using
backward selection.

Avoids the problem of feature sub-
set “nesting” encountered in SFS
and SBS methods; need to select
values of [ and r(I > r).

Sequential Forward Floating Search
(SFFS) and Sequential Backward
Floating Search (SBFS)

A generalization of “plus-I take
away-r” method; the values of | and
r are determined automatically and
updated dynamically.

Provides close to optimal solution
at an affordable computational cost.

like SF'S (SBS) adds (deletes) one feature at a time. More sophisticated techniques are

the “Plus 1 - take away r” strategy and the Sequential Floating Search methods, SFFS

and SBFS [126]. These methods backtrack as long as they find improvements compared

to previous feature sets of the same size. In almost any large feature selection problem,

these methods perform better than the straight sequential searches, SFS and SBS. SFFS

and SBFS methods find ‘nested’ sets of features that remain hidden otherwise, but the

number of feature set evaluations, however, may easily increase by a factor 2 to 10.

In addition to the search strategy, the user needs to select an appropriate evaluation
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criterion, J(-) and specify the value of m. Most feature selection methods use the clas-
sification error of a feature subset to evaluate its effectiveness. This could be done, for
example, by a k-NN classifier using the leave-one-out method of error estimation. How-
ever, use of a different classifier and a different method for estimating the error rate could
lead to a different feature subset being selected. Ferri et al. [50] and Jain and Zongker
[85] have compared several of the feature selection algorithms in terms of classification
error and run time. The general conclusion is that the sequential forward floating search
(SFFS) method performs almost as well as the branch-and-bound algorithm and demands
lower computational resources. Somol et al. [154] have proposed an adaptive version of
the SFFS algorithm which has been shown to have superior performance.

The feature selection methods in Table 5 can be used with any of the well-known
classifiers. But, if a multilayer feed forward network is used for pattern classification, then
the node-pruning method simultaneously determines both the optimal feature subset and
the optimal network classifier [26], [103]. First train a network, and then remove the least
salient node (in input or hidden layers). The reduced network is trained again, followed
by a removal of yet another least salient node. This procedure is repeated until the desired
trade-off between classification error and size of the network is achieved. The pruning of
an input node is equivalent to removing the corresponding feature.

How reliable are the feature selection results when the ratio of the available number of
training samples to the number of features is small? Suppose the Mahalanobis distance
[58] is used as the feature selection criterion. It depends on the inverse of the average
class covariance matrix. The imprecision in its estimate in small sample size situations can
result in an optimal feature subset which is quite different from the optimal subset that

would be obtained when the covariance matrix is known. Jain and Zongker [85] illustrate
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this phenomenon for a two-class classification problem involving 20-dimensional Gaussian
class-conditional densities (the same data was also used by Trunk [157] to demonstrate
the curse of dimensionality phenomenon). As expected, the quality of the selected feature
subset for small training sets is poor, but improves as the training set size increases. For
example, with 20 patterns in the training set, the branch-and-bound algorithm selected
a subset of 10 features which included only 5 features in common with the ideal subset
of 10 features (when densities were known). With 2,500 patterns in the training set, the
branch-and-bound procedure selected a 10-feature subset with only one wrong feature.
Fig. 6 shows an example of the feature selection procedure using the floating search
technique on the PCA features in the digit dataset for two different training set sizes.
The test set size is fixed at 1,000 patterns. In each of the selected feature spaces with
dimensionalities ranging from 1 to 64, the Bayes plug-in classifier is designed assuming
Gaussian densities with equal covariance matrices and evaluated on the test set. The
feature selection criterion is the minimum pairwise Mahalanobis distance. In the small
sample size case (total of 100 training patterns), the curse of dimensionality phenomenon
can be clearly observed. In this case, the optimal number of features is about 20 which
equals n/5 (n = 100), where n is the number of training patterns. The rule-of-thumb of

having less than n/10 features is on the safe side in general.

5 Classifiers

Once a feature selection or classification procedure finds a proper representation, a
classifier can be designed using a number of possible approaches. In practice, the choice

of a classifier is a difficult problem and it is often based on which classifier(s) happen to

37



0.4 ‘ ‘ ‘
—— 100 training patterns
\ - - - 1000 training patterns
0.3
S
L]
c
9
© 0.2
O
."(7—)
0
°
o \
0.1t N .
O 1 1 1 1 1 1
0 10 20 30 40 50 60

No. of Features

Figure 6: Classification error versus the number of features using the floating searching tech-
nique (see text).

be available, or best known, to the user.

We identify three different approaches to designing a classifier. The simplest and the
most intuitive approach to classifier design is based on the concept of similarity: patterns
that are similar should be assigned to the same class. So, once a good metric has been
established to define similarity, patterns can be classified by template matching or the
minimum distance classifier using a few prototypes per class. The choice of the metric
and the prototypes is crucial to the success of this approach. In the nearest mean classi-
fier, selecting prototypes is very simple and robust; each pattern class is represented by a

single prototype which is the mean vector of all the training patterns in that class. More
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advanced techniques for computing prototypes are vector quantization [115], [171] and
learning vector quantization [92], and the data reduction methods associated with the
one-nearest neighbor decision rule (1-NN), such as editing and condensing [39]. The most
straightforward 1-NN rule can be conveniently used as a benchmark for all the other clas-
sifiers since it appears to always provide a reasonable classification performance in most
applications. Further, as the 1-NN classifier does not require any user-specified parame-
ters (except perhaps the distance metric used to find the nearest neighbor, but Euclidean
distance is commonly used), its classification results are implementation independent.

In many classification problems, the classifier is expected to have some desired invariant
properties. An example is the shift invariance of characters in character recognition; a
change in a character’s location should not affect its classification. If the preprocessing
or the representation scheme does not normalize the input pattern for this invariance,
then the same character may be represented at multiple positions in the feature space.
These positions define a one-dimensional subspace. As more invariants are considered,
the dimensionality of this subspace correspondingly increases. Template matching or the
nearest mean classifier can be viewed as finding the nearest subspace [116].

The second main concept used for designing pattern classifiers is based on the prob-
abilistic approach. The optimal Bayes decision rule (with the 0/1 loss function) assigns
a pattern to the class with the maximum posterior probability. This rule can be modi-
fied to take into account costs associated with different types of misclassifications. For
known class conditional densities, the Bayes decision rule gives the optimum classifier, in
the sense that, for given prior probabilities, loss function and class-conditional densities,
no other decision rule will have a lower risk (i.e., expected value of the loss function, for

example, probability of error). If the prior class probabilities are equal and a 0/1 loss func-
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tion is adopted, the Bayes decision rule and the maximum likelihood decision rule exactly
coincide. In practice, the empirical Bayes decision rule, or “plug-in” rule, is used: the es-
timates of the densities are used in place of the true densities. These density estimates are
either parametric or nonparametric. Commonly used parametric models are multivari-
ate Gaussian distributions [58] for continuous features, binomial distributions for binary
features, and multinormal distributions for integer-valued (and categorical) features. A
critical issue for Gaussian distributions is the assumption made about the covariance ma-
trices. If the covariance matrices for different classes are assumed to be identical, then the
Bayes plug-in rule, called Bayes-normal-linear, provides a linear decision boundary. On
the other hand, if the covariance matrices are assumed to be different, the resulting Bayes
plug-in rule, which we call Bayes-normal-quadratic, provides a quadratic decision bound-
ary. In addition to the commonly used maximum likelihood estimator of the covariance
matrix, various regularization techniques [54] are available to obtain a robust estimate in
small sample size situations and the leave-one-out estimator is available for minimizing
the bias [76].

A logistic classifier [4], which is based on the maximum likelihood approach, is well

suited for mixed data types. For a two-class problem, the classifier maximizes:

X [T a@90 J[ «a@®;6);, (8)

T;Wew; ;P cws

where ¢;(x;0) is the posterior probability for pattern vector @ given class w;, 6 denotes
the set of unknown parameters, and z;) denotes the ;th training sample from class wj,

j = 1,2. Given any discriminant function D(x;#), where 6 is the parameter vector, the
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posterior probabilities can be derived as

qi(z;0) = (1 + exp(=D(x;0))) ™", g2(x; 0) = (1 + exp(D(x;0))) ", (9)

which are called logistic functions. For linear discriminants, D(z;#), Eq. (8) can be easily
optimized. Equations (8) and (9) may also be used for estimating the class conditional
posterior probabilities by optimizing D(x; ) over the training set. The relationship be-
tween the discriminant function D(x; ) and the posterior probabilities can be derived as
follows. We know that the log-discriminant function for the Bayes decision rule, given the
posterior probabilities ¢; (x; 8) and ¢o(x; 0), is log(q1 (x; 0) /go(x; 0)). Assume that D(x;6)

can be optimized to approximate the Bayes decision boundary, i.e.,

D(z;0) = log(q1(z;0)/g2(; 0)). (10)

We also have

q1(z;0) + g2 (; 0) = 1. (11)

Solving Eqs. (10) and (11) for ¢;(x;0) and go(x; 0) results in Eq. (9).

The two well-known nonparametric decision rules, the k-nearest neighbor (k-NN) rule
and the Parzen classifier (the class-conditional densities are replaced by their estimates
using the Parzen window approach), while similar in nature, give different results in
practice. They both have essentially one free parameter each, the number of neighbors
k, or the smoothing parameter of the Parzen kernel, both of which can be optimized

by a leave-one-out estimate of the error rate. Further, both these classifiers require the
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computation of the distances between a test pattern and all the patterns in the training set.
The most convenient way to avoid these large numbers of computations is by a systematic
reduction of the training set, e.g., by vector quantization techniques possibly combined
with an optimized metric or kernel [60], [61]. Other possibilities like table-look-up and
branch-and-bound methods [42] are less efficient for large dimensionalities.

The third category of classifiers is to construct decision boundaries (geometric approach
in Fig. 2) directly by optimizing certain error criterion. While this approach depends on
the chosen metric, sometimes classifiers of this type may approximate the Bayes classifier
asymptotically. The driving force of the training procedure is, however, the minimization
of a criterion such as the apparent classification error or the mean squared error (MSE)
between the classifier output and some preset target value. A classical example of this
type of classifier is Fisher’s linear discriminant that minimizes the MSE between the
classifier output and the desired labels. Another example is the single-layer perceptron,
where the separating hyperplane is iteratively updated as a function of the distances
of the misclassified patterns from the hyperplane. If the sigmoid function is used in
combination with the MSE criterion, as in feed-forward neural nets (also called multi-
layer perceptrons), the perceptron may show a behavior which is similar to other linear
classifiers [133]. It is important to note that neural networks themselves can lead to many
different classifiers depending on how they are trained. While the hidden layers in multi-
layer perceptrons allow nonlinear decision boundaries, they also increase the danger of
overtraining the classifier since the number of network parameters increases as more layers
and more neurons per layer are added. Therefore, the regularization of neural networks
may be necessary. Many regularization mechanisms are already built in, such as slow

training in combination with early stopping. Other regularization methods include the
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addition of noise and weight decay [18, 28, 137], and also Bayesian learning [113].

One of the interesting characteristics of multi-layer perceptrons is that in addition to
classifying an input pattern, they also provide a confidence in the classification, which is
an approximation of the posterior probabilities. These confidence values may be used for
rejecting a test pattern in case of doubt. The radial basis function (about a Gaussian
kernel) is better suited than the sigmoid transfer function for handling outliers. A ra-
dial basis network, however, is usually trained differently than a multi-layer perceptron.
Instead of a gradient search on the weights, hidden neurons are added until some pre-
set performance is reached. The classification result is comparable to situations where
each class conditional density is represented by a weighted sum of Gaussians (a so-called
Gaussian mixture; see Section 8.2).

A special type of classifier is the decision tree [22, 30, 129], which is trained by an
iterative selection of individual features that are most salient at each node of the tree.
The criteria for feature selection and tree generation include the information content,
the node purity, or Fisher’s criterion. During classification, just those features are used
that are needed for the test pattern under consideration, so feature selection is implicitly
built-in. The most commonly used decision tree classifiers are binary in nature and use
a single feature at each node, resulting in decision boundaries that are parallel to the
feature axes [149]. Consequently, such decision trees are intrinsically suboptimal for most
applications. However, the main advantage of the tree classifier, besides its speed, is
the possibility to interpret the decision rule in terms of individual features. This makes
decision trees attractive for interactive use by experts. Like neural networks, decision
trees can be easily overtrained, which can be avoided by using a pruning stage [63], [106],

[128]. Decision tree classification systems such as CART [22] and C4.5 [129] are available
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in the public domain* and therefore, often used as a benchmark.

One of the most interesting recent developments in classifier design is the introduction of
the support vector classifier by Vapnik [162] which has also been studied by other authors
[23], [144], [146]. It is primarily a two-class classifier. The optimization criterion here
is the width of the margin between the classes, i.e. the empty area around the decision
boundary defined by the distance to the nearest training patterns. These patterns, called
support vectors, finally define the classification function. Their number is minimized by
maximizing the margin.

The decision function for a two-class problem derived by the support vector classifier
can be written as follows using a kernel function K (z;,x) of a new pattern & (to be

classified) and a training pattern x;.

D(z) = Z a; N K (x4, ) + ap, (12)

VIE;eS

where S is the support vector set (a subset of the training set), and \; = £1 the label of

object ;. The parameters c; > 0 are optimized during training by

min, (o AKAa + C Z £5) (13)

J

constrained by A\;D(x;) > 1—¢;, Va; in the training set. A is a diagonal matrix containing
the labels A; and the matrix K stores the values of the kernel function K(x;, ) for all
pairs of training patterns. The set of slack variables €; allow for class overlap, controlled

by the penalty weight C' > 0. For C' = oo, no overlap is allowed. Equation 13 is the dual

*http:/ /www.gmd.de/ml-archive/
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form of maximizing the margin (plus the penalty term). During optimization, the values
of all o; become 0, except for the support vectors. So the support vectors are the only ones
that are finally needed. The ad hoc character of the penalty term (error penalty) and the
computational complexity of the training procedure (a quadratic minimization problem)
are the drawbacks of this method. Various training algorithms have been proposed in
the literature [23], including chunking [161], Osuna’s decomposition method [119], and
sequential minimal optimization [124]. An appropriate kernel function K (as in kernel
PCA, Section 4.1) needs to be selected. In its most simple form, it is just a dot product
between the input pattern & and a member of the support set: K(x;, @) = x; - x,
resulting in a linear classifier. Nonlinear kernels, such as K(x;, ) = (; -  + 1)P, result

th_order polynomial classifier. Gaussian radial basis functions can also be used.

inap
The important advantage of the support vector classifier is that it offers a possibility to
train generalizable, nonlinear classifiers in high-dimensional spaces using a small training
set. Moreover, for large training sets, it typically selects a small support set which is
necessary for designing the classifier, thereby minimizing the computational requirements
during testing.

The support vector classifier can also be understood in terms of the traditional template
matching techniques. The support vectors replace the prototypes with the main difference
being that they characterize the classes by a decision boundary. Moreover, this decision
boundary is not just defined by the minimum distance function, but by a more general,
possibly nonlinear, combination of these distances.

We summarize the most commonly used classifiers in Table 6. Many of them represent,

in fact, an entire family of classifiers and allow the user to modify several associated

parameters and criterion functions. All (or almost all) of these classifiers are admissible,
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Table 6: CLASSIFICATION METHODS

Method

Property

Comments

Template matching

Assign patterns to the most similar
template.

The templates and the metric have to be
supplied by the user; the procedure may
include nonlinear normalizations; scale
(metric) dependent.

Nearest Mean Classifier

Assign patterns to the nearest class
mean.

Almost no training needed; fast testing;
scale (metric) dependent.

Subspace Method

Assign patterns to the nearest class
subspace.

Instead of normalizing on invariants, the
subspace of the invariants is used; scale
(metric) dependent.

1-Nearest Neighbor Rule

Assign patterns to the class of the
nearest training pattern.

No training needed; robust performance;
slow testing; scale (metric) dependent.

k-Nearest Neighbor Rule

Assign patterns to the majority class
among k nearest neighbor using a
performance optimized value for k.

Asymptotically optimal; scale (metric)
dependent; slow testing.

Bayes plug-in

Assign pattern to the class which has
the maximum estimated posterior
probability.

Yields simple classifiers (linear or qua-
dratic) for Gaussian distributions; sensi-
tive to density estimation errors.

Logistic Classifier

Maximum likelihood rule for logis-
tic (sigmoidal) posterior probabili-
ties.

Linear classifier; iterative procedure; opti-
mal for a family of different distributions
(Gaussian); suitable for mixed data types.

Parzen Classifier

Bayes plug-in rule for Parzen den-
sity estimates with performance
optimized kernel.

Asymptotically optimal; scale (metric)
dependent; slow testing.

Fisher Linear Discriminant

Linear classifier using MSE optimi-
zation.

Simple and fast; similar to Bayes plug-in
for Gaussian distributions with identical
covariance matrices.

Binary Decision Tree

Finds a set of thresholds for a pat-
tern-dependent sequence of features.

Tterative training procedure; overtraining
sensitive; needs pruning; fast testing.

Perceptron

Iterative optimization of a linear
classifier.

Sensitive to training parameters; may pro-
duce confidence values.

Multi-layer Perceptron
(Feed-Forward Neural Net-
work)

Tterative MSE optimization of two
or more layers of perceptrons (neu-
rons) using sigmoid transfer func-
tions.

Sensitive to training parameters; slow
training; nonlinear classification function;
may produce confidence values; overtrain-
ing sensitive; needs regularization.

Radial Basis Network

Iterative MSE optimization of a
feed-forward neural network with at
least one layer of neurons using
Gaussian-like transfer functions.

Sensitive to training parameters; nonlin-
ear classification function; may produce
confidence values; overtraining sensitive;
needs regularization; may be robust to out-
liers.

Support Vector Classifier

Maximizes the margin between the
classes by selecting a minimum
number of support vectors.

Scale (metric) dependent; iterative; slow
training; nonlinear; overtraining insensi-
tive; good generalization performance.
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in the sense that there exist some classification problems for which they are the best choice.
An extensive comparison of a large set of classifiers over many different problems is the
StatLog project [109] which showed a large variability over their relative performances,
proving that there is no such thing as an overall optimal classification rule.

The differences between the decision boundaries obtained by different classifiers are
illustrated in Fig. 7 using dataset 1 (2-dimensional, two-class problem with Gaussian
densities). Note the two small isolated areas for R; in Fig. 7(c) for the 1-NN rule. The
neural network classifier in Fig. 7(d) even shows a ‘ghost’ region that seemingly has
nothing to do with the data. Such regions are less probable for a small number of hidden
layers at the cost of poorer class separation.

A larger hidden layer may result in overtraining. This is illustrated in Fig. 8 for a
network with 10 neurons in the hidden layer. During training, the test set error and the
training set error are initially almost equal, but after a certain point (3 epochs ®) the test
set, error starts to increase while the training error keeps on decreasing. The final classifier
after 50 epochs has clearly adapted to the noise in the dataset: it tries to separate isolated

patterns in a way that does not contribute to its generalization ability.

6 Classifier Combination

There are several reasons for combining multiple classifiers to solve a given classifica-
tion problem. Some of them are listed below.
(i) A designer may have access to a number of different classifiers, each developed in

a different context and for an entirely different representation/description of the same

50ne epoch means going through the entire training data once.
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Figure 7: Decision boundaries for two bivariate Gaussian distributed classes, using 30 patterns
per class. The following classifiers are used: (a) Bayes-normal-quadratic, (b) Bayes-normal-
linear, (c) 1-NN, (d) ANN-5 (a feed-forward neural network with one hidden layer containing 5
neurons. The regions R; and R for classes w; and wo, respectively, are found by classifying all
the points in the 2-dimensional feature space.

problem. An example is the identification of persons by their voice, face, as well as
handwriting.
(ii) Sometimes more than a single training set is available, each collected at a different
time or in a different environment. These training sets may even use different features.
(iii) Different classifiers trained on the same data may not only differ in their global
performances, but they also may show strong local differences. Each classifier may have

its own region in the feature space where it performs the best.
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Figure 8: Classification error of a neural network classifier using 10 hidden units trained by the
Levenberg-Marquardt rule for 50 epochs from two classes with 30 patterns each (Dataset 1).
Test set error is based on an independent set of 1000 patterns.

(iv) Some classifiers such as neural networks show different results with different initial-
izations due to the randomness inherent in the training procedure. Instead of selecting
the best network and discarding the others, one can combine various networks, thereby
taking advantage of all the attempts to learn from the data.

In summary, we may have different feature sets, different training sets, different clas-
sification methods or different training sessions, all resulting in a set of classifiers whose
outputs may be combined, with the hope of improving the overall classification accuracy.
If this set of classifiers is fixed, the problem focuses on the combination function. It is

also possible to use a fixed combiner and optimize the set of input classifiers, see Section
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6.1.

A large number of combination schemes have been proposed in the literature [172].
A typical combination scheme consists of a set of individual classifiers and a combiner
which combines the results of the individual classifiers to make the final decision. When
the individual classifiers should be invoked or how they should interact with each other
is determined by the architecture of the combination scheme. Thus, various combina-
tion schemes may differ from each other in their architectures, the characteristics of the
combiner, and selection of the individual classifiers.

Various schemes for combining multiple classifiers can be grouped into three main cat-
egories according to their architecture: (i) parallel, (ii) cascading (or serial combination),
and (iii) hierarchical (tree-like). In the parallel architecture, all the individual classifiers
are invoked independently, and their results are then combined by a combiner. Most com-
bination schemes in the literature belong to this category. In the gated parallel variant,
the outputs of individual classifiers are selected or weighted by a gating device before
they are combined. In the cascading architecture, individual classifiers are invoked in a
linear sequence. The number of possible classes for a given pattern is gradually reduced
as more classifiers in the sequence have been invoked. For the sake of efficiency, inaccu-
rate but cheap classifiers (low computational and measurement demands) are considered
first, followed by more accurate and expensive classifiers. In the hierarchical architec-
ture, individual classifiers are combined into a structure, which is similar to that of a
decision tree classifier. The tree nodes, however, may now be associated with complex
classifiers demanding a large number of features. The advantage of this architecture is
the high efficiency and flexibility in exploiting the discriminant power of different types

of features. Using these three basic architectures, we can build even more complicated

20



classifier combination systems.

6.1 Selection and Training of Individual Classifiers

A classifier combination is especially useful if the individual classifiers are largely
independent. If this is not already guaranteed by the use of different training sets, various
resampling techniques like rotation and bootstrapping may be used to artificially create
such differences. Examples are stacking [168], bagging [21], and boosting (or ARCing)
[142]. In stacking, the outputs of the individual classifiers are used to train the “stacked”
classifier. The final decision is made based on the outputs of the stacked classifier in
conjunction with the outputs of individual classifiers.

In bagging, different datasets are created by bootstrapped versions of the original
dataset and combined using a fixed rule like averaging. Boosting [52] is another re-
sampling technique for generating a sequence of training data sets. The distribution of a
particular training set in the sequence is overrepresented by patterns which were misclas-
sified by the earlier classifiers in the sequence. In boosting, the individual classifiers are
trained hierarchically to learn to discriminate more complex regions in the feature space.
The original algorithm was proposed by Schapire [142], who showed that, in principle,
it is possible for a combination of weak classifiers (whose performances are only slightly
better than random guessing) to achieve an error rate which is arbitrarily small on the
training data.

Sometimes cluster analysis may be used to separate the individual classes in the train-
ing set into subclasses. Consequently, simpler classifiers (e.g., linear) may be used and
combined later to generate, for instance, a piece-wise linear result [120].

Instead of building different classifiers on different sets of training patterns, different
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feature sets may be used. This even more explicitly forces the individual classifiers to

contain independent, information. An example is the random subspace method [75].

6.2 Combiner

After individual classifiers have been selected, they need to be combined together by
a module, called the combiner. Various combiners can be distinguished from each other
in their trainability, adaptivity, and requirement on the output of individual classifiers.
Combiners, such as voting, averaging (or sum), and Borda count [74] are static, with
no training required, while others are trainable. The trainable combiners may lead to a
better improvement than static combiners at the cost of additional training as well as the
requirement of additional training data.

Some combination schemes are adaptive in the sense that the combiner evaluates (or
weighs) the decisions of individual classifiers depending on the input pattern. In contrast,
non-adaptive combiners treat all the input patterns the same. Adaptive combination
schemes can further exploit the detailed error characteristics and expertise of individual
classifiers. Examples of adaptive combiners include adaptive weighting [156], associative
switch, mixture of local experts (MLE) [79], and hierarchical MLE [87].

Different combiners expect different types of output from individual classifiers. Xu et
al. [172] grouped these expectations into three levels: (i) measurement (or confidence),
(ii) rank, and (iii) abstract. At the confidence level, a classifier outputs a numerical value
for each class indicating the belief or probability that the given input pattern belongs to
that class. At the rank level, a classifier assigns a rank to each class with the highest rank
being the first choice. Rank value can not be used in isolation because the highest rank

does not necessarily mean a high confidence in the classification. At the abstract level,
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a classifier only outputs a unique class label or several class labels (in which case, the

classes are equally good). The confidence level conveys the richest information, while the

abstract level contains the least amount of information about the decision being made.

Table 7 lists a number of representative combination schemes and their characteristics.

This is by no means an exhaustive list.

Table 7: CLASSIFIER COMBINATION SCHEMES

Scheme Architecture Trainable | Adaptive | Info-level Comments
Voting Parallel No No Abstract Assumes independent classifiers
Sum, mean, median | Parallel No No Confidence | Robust; assumes independent con-
fidence estimators
Product, min, max | Parallel No No Confidence | Assumes independent features
Generalized ensem- | Parallel Yes No Confidence | Considers error correlation
ble
Adaptive weighting | Parallel Yes Yes Confidence | Explores local expertise
Stacking Parallel Yes No Confidence | Good utilization of training data
Borda count Parallel Yes No Rank Converts ranks into confidences
Logistic regression | Parallel Yes No Rank Converts ranks into confidences
confidence
Class set reduction | Parallel Yes / No | No Rank Efficient
cascading confidence
Dempster-Shafer Parallel Yes No Rank Fuses non-probabilistic confi-
confidence | dences
Fuzzy integrals Parallel Yes No Confidence | Fuses non-probabilistic confi-
dences
Mixture of local Gated parallel | Yes Yes Confidence | Explores local expertise;
experts (MLE) joint optimization
Hierarchical MLE Gated parallel | Yes Yes Confidence | Same as MLE; hierarchical
hierarchical
Associative switch Parallel Yes Yes Abstract Same as MLE, but no joint optimi-
zation
Bagging Parallel Yes No Confidence | Needs many comparable classifiers
Boosting Parallel Yes No Abstract Improves margins; unlikely to
hierarchical overtrain; sensitive to mislabels;
needs many comparable classifiers
Random subspace Parallel Yes No Confidence | Needs many comparable classifiers
Neural tree Hierarchical Yes No Confidence | Handles large numbers of classes
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6.3 Theoretical Analysis of Combination Schemes

A large number of experimental studies have shown that classifier combination can
improve the recognition accuracy. However, there exist only a few theoretical explanations
for these experimental results. Moreover, most explanations apply to only the simplest
combination schemes under rather restrictive assumptions. One of the most rigorous
theories on classifier combination is presented by Kleinberg [91].

A popular analysis of combination schemes is based on the well-known bias-variance
dilemma [64, 93]. Regression or classification error can be decomposed into a bias term and
a variance term. Unstable classifiers or classifiers with a high complexity (or capacity),
such as decision trees, nearest neighbor classifiers, and large-size neural networks, can
have universally low bias, but a large variance. On the other hand, stable classifiers or
classifiers with a low capacity can have a low variance but a large bias.

Tumer and Ghosh [158] provided a quantitative analysis of the improvements in clas-
sification accuracy by combining multiple neural networks. They showed that combining
networks using a linear combiner or order statistics combiner reduces the variance of the
actual decision boundaries around the optimum boundary. In the absence of network bias,
the reduction in the added error (to Bayes error) is directly proportional to the reduction
in the variance. A linear combination of N unbiased neural networks with independent
and identically distributed (i.i.d) error distributions can reduce the variance by a factor
of N. At a first glance, this result sounds remarkable for as N approaches infinity, the
variance is reduced to zero. Unfortunately, this is not realistic because the i.i.d assump-
tion breaks down for large N. Similarly, Perrone and Cooper [123] showed that under

the zero-mean and independence assumption on the misfit (difference between the desired
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output and the actual output), averaging the outputs of N neural networks can reduce the
mean square error (MSE) by a factor of N compared to the averaged MSE of the N neural
networks. For a large N, the MSE of the ensemble can, in principle, be made arbitrarily
small. Unfortunately, as mentioned above, the independence assumption breaks down as
N increases. Perrone and Cooper [123] also proposed a generalized ensemble, an optimal
linear combiner in the least square error sense. In the generalized ensemble, weights are
derived from the error correlation matrix of the N neural networks. It was shown that
the MSE of the generalized ensemble is smaller than the MSE of the best neural network
in the ensemble. This result is based on the assumptions that the rows and columns of
the error correlation matrix are linearly independent and the error correlation matrix can
be reliably estimated. Again, these assumptions break down as N increases.

Kittler et al. [90] developed a common theoretical framework for a class of combination
schemes where individual classifiers use distinct features to estimate the posterior prob-
abilities given the input pattern. They introduced a sensitivity analysis to explain why
the sum (or average) rule outperforms the other rules for the same class. They showed
that the sum rule is less sensitive than others (such as the “product” rule) to the error
of individual classifiers in estimating posterior probabilities. The sum rule is most appro-
priate for combining different estimates of the same posterior probabilities, e.g. resulting
from different classifier initializations (case (iv) in the introduction of this chapter). The
product rule is most appropriate for combining preferably error-free independent proba-
bilities, e.g. resulting from well estimated densities of different, independent feature sets
(case (ii) in the introduction of this chapter).

Schapire et al. [143] proposed a different explanation for the effectiveness of voting

(weighted average, in fact) methods. The explanation is based on the notion of “margin”

95



which is the difference between the combined score of the correct class and the highest
combined score among all the incorrect classes. They established that the generalization
error is bounded by the tail probability of the margin distribution on training data plus a
term which is a function of the complexity of a single classifier rather than the combined
classifier. They demonstrated that the boosting algorithm can effectively improve the
margin distribution. This finding is similar to the property of the support vector classifier,
which shows the importance of training patterns near the margin, where the margin is

defined as the area of overlap between the class conditional densities.

6.4 An Example

We will illustrate the characteristics of a number of different classifiers and combination
rules on a digit classification problem (Dataset 3, see Section 2). The classifiers used in
the experiment were designed using Matlab and were not optimized for the data set.
All the six different feature sets for the digit dataset discussed in Section 2 will be used,
enabling us to illustrate the performance of various classifier combining rules over different
classifiers as well as over different feature sets. Confidence values in the outputs of all
the classifiers are computed, either directly based on the posterior probabilities or on the
logistic output function as discussed in Section 5. These outputs are also used to obtain
multi-class versions for intrinsically two-class discriminants such as the Fisher Linear
Discriminant and the Support Vector Classifier (SVC). For these two classifiers, a total
of 10 discriminants are computed between each of the 10 classes and the combined set
of the remaining classes. A test pattern is classified by selecting the class for which the
discriminant has the highest confidence.

The following 12 classifiers are used (see also Table 8): the Bayes-plug-in rule assuming
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normal distributions with different (Bayes-normal-quadratic) or equal covariance matrices
(Bayes-normal-linear), the Nearest Mean (NM) rule, 1-NN, k-NN, Parzen, Fisher, a binary
decision tree using the maximum purity criterion [21] and early pruning, two feed-forward
neural networks (based on the Matlab Neural Network Toolbox) with a hidden layer
consisting of 20 (ANN-20) and 50 (ANN-50) neurons and the linear (SVC-linear) and
quadratic (SVC-quadratic) Support Vector classifiers. The number of neighbors in the
k-NN rule and the smoothing parameter in the Parzen classifier are both optimized over
the classification result using the leave-one-out error estimate on the training set. For
combining classifiers, the median, product and voting rules are used, as well as two trained
classifiers (NM and 1-NN). The training set used for the individual classifiers is also used
in classifier combination.

The 12 classifiers listed in Table 8 were trained on the same 500 (10 x 50) training
patterns from each of the 6 feature sets and tested on the same 1,000 (10 x 100) test
patterns.  The resulting classification errors (in %) are reported; for each feature set,
the best result over the classifiers is printed in bold. Next, the 12 individual classifiers
for a single feature set were combined using the five combining rules (median, product,
voting, nearest mean and 1-NN). For example, the voting rule (row) over the classifiers
using feature set No. 3 (column) yields an error of 3.2%. It is underlined to indicate that
this combination result is better than the performance of individual classifiers for this
feature set. Finally, the outputs of each classifier and each classifier combination scheme
over all the six feature sets are combined using the 5 combination rules (last 5 columns).
For example, the voting rule (column) over the six decision tree classifiers (row) yields an
error of 21.8%. Again, it is underlined to indicate that this combination result is better

than each of the six individual results of the decision tree. The 5 x 5 block in the bottom
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Table 8: ERROR RATES (IN %) OF DIFFERENT CLASSIFIERS AND CLASSIFIER COM-
BINATION SCHEMES

Feature set (see Section 2) Combination Rule
Classifier / No. 1| No. 2 | No. 3 | No. 4 | No. 5 | No. 6 || Med. | Prod. | Voting | NM | 1-NN
Combining rule
Bayes-normal- 25.7 5.8 12.8 6.2 21.2 31.0 2.8 6.3 6.8 6.7 5.0
quadratic
Bayes-normal- 21.3 3.4 5.7 9.9 18.0 29.1 3.7 3.1 5.1 3.9 4.2
linear
Nearest Mean 22.4 18.1 9.9 9.6 27.8 54.0 6.2 4.6 7.5 10.3 4.6
1-NN 19.2 9.0 44 3.7 19.7 57.0 2.6 1.7 4.0 11.3 3.0
k-NN 18.9 9.2 4.4 3.7 19.3 51.0 5.4 4.2 5.1 3.6 2.6
Parzen 17.1 7.9 3.7 3.7 18.5 52.1 2.9 2.7 5.1 3.1 3.1
Fisher 24.8 4.7 8.2 15.3 21.0 28.2 3.2 5.2 5.7 3.5 3.6
Dec. Tree 45.4 40.3 40.0 54.9 59.8 32.9 134 | 11.0 21.8 | 10.2 | 10.8
ANN-20 90.0 4.6 14.6 85.2 90.0 32.8 17.7 | 90.0 32.7 2.6 2.1
ANN-50 24.5 13.0 82.3 81.0 26.5 71.7 24.4 80.7 16.3 5.5 3.3
SVC-linear 24.6 6.6 6.1 7.7 29.4 84.8 10.8 10.1 4.7 6.0 5.8
SVC-quadratic 21.2 5.1 4.0 6.0 19.3 81.1 3.6 3.8 3.8 4.0 4.0
Median 19.0 4.3 3.6 4.5 174 28.7 2.3 2.5 5.0 1.9 5.0
Product 29.4 13.1 44 8.2 40.1 41.2 23.4 8.6 56.8 85.1 | 68.5
Voting 17.5 3.5 3.2 3.7 16.9 31.8 2.3 2.0 4.8 2.1 2.0
Nearest Mean 19.8 3.7 4.6 7.3 18.1 26.6 2.0 1.9 5.1 1.5 1.8
1-NN 18.6 3.8 4.1 7.2 17.0 32.8 1.8 1.8 4.1 1.9 1.8

right part of Table 8 presents the combination results, over the six features sets, for the
classifier combination schemes for each of the separate feature sets.

Some of the classifiers, for example, the decision tree, do not perform well on this data.
Also, the neural network classifiers provide rather poor optimal solutions, probably due
to non-converging training sessions. Some of the simple classifiers such as the 1-NN,
Bayes plug-in, and Parzen give good results; the performances of different classifiers vary
substantially over different feature sets. Due to the relatively small training set for some of
the large feature sets, the Bayes-normal-quadratic classifier is outperformed by the linear
one, but the SVC-quadratic generally performs better than the SVC-linear. This shows
that the SVC classifier can find nonlinear solutions without increasing the overtraining

risk.
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Considering the classifier combination results, it appears that the trained classifier
combination rules are not always better than the use of fixed rules. Still, the best overall
result (1.5% error) is obtained by a trained combination rule, the nearest mean method.
The combination of different classifiers for the same feature set (columns in the table) only
slightly improves the best individual classification results. The best combination rule for
this dataset is voting. The product rule behaves poorly, as can be expected, because
different classifiers on the same feature set do not provide independent confidence values.
The combination of results obtained by the same classifier over different feature sets (rows
in the table) frequently outperforms the best individual classifier result. Sometimes, the
improvements are substantial as is the case for the decision tree. Here, the product rule
does much better, but occasionally it performs surprisingly bad, similar to the combination
of neural network classifiers. This combination rule (like the minimum and maximum
rules, not used in this experiment) is sensitive to poorly trained individual classifiers.
Finally, it is worthwhile to observe that in combining the neural network results, the
trained combination rules do very well (classification errors between 2.1% and 5.6%) in

comparison with the fixed rules (classification errors between 16.3% to 90%).

7 Error Estimation

The classification error or simply the error rate, P,, is the ultimate measure of the
performance of a classifier. Competing classifiers can also be evaluated based on their
error probabilities. Other performance measures include the cost of measuring features
and the computational requirements of the decision rule. While it is easy to define the

probability of error in terms of the class-conditional densities, it is very difficult to obtain a
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closed-form expression for P,. Even in the relatively simple case of multivariate Gaussian
densities with unequal covariance matrices, it is not possible to write a simple analytical
expression for the error rate. If an analytical expression for the error rate was available,
it could be used, for a given decision rule, to study the behavior of P, as a function of the
number of features, true parameter values of the densities, number of training samples,
and prior class probabilities. For consistent training rules the value of P, approaches the
Bayes error for increasing sample sizes. For some families of distributions tight bounds for
the Bayes error may be obtained [7]. For finite sample sizes and unknown distributions,
however, such bounds are impossible [6, 41].

In practice, the error rate of a recognition system must be estimated from all the avail-
able samples which are split into training and test sets [70]. The classifier is first designed
using training samples, and then it is evaluated based on its classification performance on
the test samples. The percentage of misclassified test samples is taken as an estimate of
the error rate. In order for this error estimate to be reliable in predicting future classifi-
cation performance, not only should the training set and the test set be sufficiently large,
but the training samples and the test samples must be independent. This requirement of
independent training and test samples is still often overlooked in practice.

An important point to keep in mind is that the error estimate of a classifier, being a
function of the specific training and test sets used, is a random variable. Given a classifier,
suppose 7 is the number of test samples (out of a total of n) that are misclassified. It
can be shown that the probability density function of 7 has a binomial distribution. The
maximum-likelihood estimate, P,, of P, is given by P, = T/n, with E(Pe) = P, and
Var(P,) = P,(1 — P,)/n. Thus P, is an unbiased and consistent estimator. Because P,

is a random variable, a confidence interval is associated with it. Suppose n = 250 and
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7 =50 then P, = 0.2 and a 95% confidence interval of P, is (0.15,0.25). The confidence
interval, which shrinks as the number n of test samples increases, plays an important role
in comparing two competing classifiers, C'; and C5. Suppose a total of 100 test samples are
available and Cy and (5 misclassify 10 and 13, respectively, of these samples. Is classifier
C1 better than Cy? The 95% confidence intervals for the true error probabilities of these
classifiers are (0.04, 0.16) and (0.06, 0.20), respectively. Since these confidence intervals
overlap, we cannot say that the performance of C; will always be superior to that of Cs.
This analysis is somewhat pessimistic due to positively corrected error estimates based
on the same test set [137].

How should the available samples be split to form training and test sets? If the training
set is small, then the resulting classifier will not be very robust and will have a low
generalization ability. On the other hand, if the test set is small, then the confidence in
the estimated error rate will be low. Various methods that are commonly used to estimate
the error rate are summarized in Table 9. These methods differ in how they utilize the
available samples as training and test sets. If the number of available samples is extremely
large (say, 1 million), then all these methods are likely to lead to the same estimate of the
error rate. For example, while it is well known that the resubstitution method provides an
optimistically biased estimate of the error rate, the bias becomes smaller and smaller as
the ratio of the number of training samples per class to the dimensionality of the feature
vector gets larger and larger. There are no good guidelines available on how to divide
the available samples into training and test sets; Fukunaga [58] provides arguments in
favor of using more samples for testing the classifier than for designing the classifier. No
matter how the data is split into training and test sets, it should be clear that different

random splits (with the specified size of training and test sets) will result in different error

61



estimates.

Table 9: ERROR ESTIMATION METHODS

Method

Property

Comments

Resubstitution Method

All the available data is used for
training as well as testing; training
and test sets are the same.

Optimistically biased estimate,
especially when the ratio of sample
size to dimensionality is small.

Holdout Method

Half the data is used for training
and the remaining data is used for
testing; training and test sets are
independent.

Pessimistically biased estimate; dif-
ferent partitionings will give differ-
ent estimates.

Leave-one-out Method

A classifier is designed using (n — 1)
samples and evaluated on the one
remaining sample; this is repeated n
times with different training sets of
size (n — 1).

Estimate is unbiased but it has a
large variance; large computational
requirement because n different
classifiers have to be designed.

Rotation Method,
n-fold cross
validation

A compromise between holdout

and leave-one-out methods; divide
the available samples into P disjoint
subsets, 1 < P < n. Use (P —1) sub-
sets for training and the remaining
subset for test.

Estimate has lower bias than the
holdout method and is cheaper to
implement than leave-one-out
method.

Bootstrap Method

Generate many bootstrap sample
sets of size n by sampling with
replacement; several estimators of
the error rate can be defined (e.g.,
EO0 and E632) using the bootstrap
samples [48].

Bootstrap estimates can have lower
variance than the leave-one-out
method; computationally more
demanding; useful in small sample
size situations.

Fig. 9 shows the classification error of the Bayes plug-in linear classifier on the digit

dataset as a function of the number of training patterns. The test set error gradually

approaches the training set error (resubstitution error) as the number of training samples

increases. The relatively large difference between these two error rates for 100 training

patterns per class indicates that the bias in these two error estimates can be further

reduced by enlarging the training set. Both the curves in this figure represent the average

of 50 experiments in which training sets of the given size are randomly drawn; the test

set of 1000 patterns is fixed.

The holdout, leave-one-out, and rotation methods are versions of the cross-validation
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Figure 9: Classification error of the Bayes plug-in linear classifier (equal covariance matrices)
as a function of the number of training samples (learning curve) for the test set and the training
set on the digit dataset.

approach. One of the main disadvantages of cross-validation methods, especially for small
sample size situations, is that not all the available n samples are used for training the
classifier. Further, the two extreme cases of cross validation, hold out method and leave-
one-out method, suffer from either large bias or large variance, respectively. To overcome
this limitation, the bootstrap method [48] has been proposed to estimate the error rate.
The bootstrap method resamples the available patterns with replacement to generate a
number of “fake” data sets (typically, several hundred) of the same size as the given
training set. These new training sets can be used not only to estimate the bias of the

resubstitution estimate, but also to define other, so called bootstrap estimates of the error
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rate. Experimental results have shown that the bootstrap estimates can outperform the
cross validation estimates and the resubstitution estimates of the error rate [82].

In many pattern recognition applications, it is not adequate to characterize the per-
formance of a classifier by a single number, 156, which measures the overall error rate of
a system. Consider the problem of evaluating a fingerprint matching system, where two
different yet related error rates are of interest. The False Acceptance Rate (FAR) is the
ratio of the number of pairs of different fingerprints that are incorrectly matched by a
given system to the total number of match attempts. The False Reject Rate (FRR) is
the ratio of the number of pairs of the same fingerprint that are not matched by a given
system to the total number of match attempts. A fingerprint matching system can be
tuned (by setting an appropriate threshold on the matching score) to operate at a desired
value of FAR. However, if we try to decrease the FAR of the system, then it would increase
the FRR and vice versa. The Receiver Operating Characteristic (ROC) Curve [107] is
a plot of FAR versus FRR which permits the system designer to assess the performance
of the recognition system at various operating points (thresholds in the decision rule).
In this sense, ROC provides a more comprehensive performance measure than, say, the
equal error rate of the system (where FRR = FAR). Fig. 10 shows the ROC curve for the
digit dataset where the Bayes plug-in linear classifier is trained on 100 patterns per class.
Examples of the use of ROC analysis are combining classifiers [170], and feature selection
[99].

In addition to the error rate, another useful performance measure of a classifier is its
reject rate. Suppose a test pattern falls near the decision boundary between the two
classes. While the decision rule may be able to correctly classify such a pattern, this

classification will be made with a low confidence. A better alternative would be to reject
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Figure 10: The ROC curve of the Bayes plug-in linear classifier for the digit dataset.

these doubtful patterns instead of assigning them to one of the categories under consid-
eration. How do we decide when to reject a test pattern? For the Bayes decision rule,
a well-known reject option is to reject a pattern if its maximum a posteriori probability
is below a threshold; the larger the threshold, the higher the reject rate. Invoking the
reject option reduces the error rate; the larger the reject rate, the smaller the error rate.
This relationship is represented as an error-reject trade-off curve which can be used to set
the desired operating point of the classifier. Fig. 11 shows the error-reject curve for the
digit dataset when a Bayes plug-in linear classifier is used. This curve is monotonically
non-increasing, since rejecting more patterns either reduces the error rate or keeps it the

same. A good choice for the reject rate is based on the costs associated with reject and
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incorrect decisions (See [66] for an applied example of the use of error-reject curves).
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Figure 11: Error-reject curve of the Bayes plug-in linear classifier for the digit dataset.

8 Unsupervised Classification

In many applications of pattern recognition, it is extremely difficult or expensive, or
even impossible, to reliably label a training sample with its true category. Consider, for
example, the application of land-use classification in remote sensing. In order to obtain
the “ground truth” information (category for each pixel) in the image, either the specific
site associated with the pixel should be visited or its category should be extracted from
a Geographical Information System, if one is available. Unsupervised classification refers
to situations where the objective is to construct decision boundaries based on unlabeled
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training data. Unsupervised classification is also known as data clustering which is a
generic label for a variety of procedures designed to find natural groupings, or clusters, in
multi-dimensional data, based on measured or perceived similarities among the patterns
[81]. Category labels and other information about the source of the data influence the
interpretation of the clustering, not the formation of the clusters.

Unsupervised classification or clustering is a very difficult problem because data can

reveal clusters with different shapes and sizes (see Fig. 12). To compound the problem

.
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Figure 12: Clusters with different shapes and sizes.

further, the number of clusters in the data often depends on the resolution (fine vs. coarse)
with which we view the data. One example of clustering is the detection and delineation of
a region containing a high density of patterns compared to the background. A number of
functional definitions of a cluster have been proposed which include: (i) patterns within a
cluster are more similar to each other than are patterns belonging to different clusters, and
(ii) a cluster consists of a relatively high density of points separated from other clusters
by a relatively low density of points. Even with these functional definitions of a cluster, it

is not easy to come up with an operational definition of clusters. One of the challenges is
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to select an appropriate measure of similarity to define clusters which, in general, is both
data (cluster shape) and context dependent.

Cluster analysis is a very important and useful technique. The speed, reliability, and
consistency with which a clustering algorithm can organize large amounts of data consti-
tute overwhelming reasons to use it in applications such as data mining [88], information
retrieval [17, 25], image segmentation [55], signal compression and coding [1], and machine
learning [25]. As a consequence, hundreds of clustering algorithms have been proposed
in the literature and new clustering algorithms continue to appear. However, most of
these algorithms are based on the following two popular clustering techniques: iterative
square-error partitional clustering and agglomerative hierarchical clustering. Hierarchical
techniques organize data in a nested sequence of groups which can be displayed in the form
of a dendrogram or a tree. Square-error partitional algorithms attempt to obtain that
partition which minimizes the within-cluster scatter or maximizes the between-cluster
scatter. To guarantee that an optimum solution has been obtained, one has to examine
all possible partitions of the n d-dimensional patterns into K clusters (for a given K),
which is not computationally feasible. So various heuristics are used to reduce the search,
but then there is no guarantee of optimality.

Partitional clustering techniques are used more frequently than hierarchical techniques
in pattern recognition applications, so we will restrict our coverage to partitional methods.
Recent studies in cluster analysis suggest that a user of a clustering algorithm should keep
the following issues in mind: (i) every clustering algorithm will find clusters in a given
dataset whether they exist or not; the data should, therefore, be subjected to tests for
clustering tendency before applying a clustering algorithm, followed by a validation of the

clusters generated by the algorithm; (ii) there is no “best” clustering algorithm. Therefore,
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a user is advised to try several clustering algorithms on a given dataset. Further, issues of
data collection, data representation, normalization, and cluster validity are as important
as the choice of clustering strategy.

The problem of partitional clustering can be formally stated as follows. Given n patterns
in a d-dimensional metric space, determine a partition of the patterns into K clusters, such
that the patterns in a cluster are more similar to each other than to patterns in different
clusters [81]. The value of K may or may not be specified. A clustering criterion, either
global or local, must be adopted. A global criterion, such as square-error, represents each
cluster by a prototype and assigns the patterns to clusters according to the most similar
prototypes. A local criterion forms clusters by utilizing local structure in the data. For
example, clusters can be formed by identifying high-density regions in the pattern space
or by assigning a pattern and its k£ nearest neighbors to the same cluster.

Most of the partitional clustering techniques implicitly assume continuous-valued fea-
ture vectors so that the patterns can be viewed as being embedded in a metric space. If
the features are on a nominal or ordinal scale, Euclidean distances and cluster centers
are not very meaningful, so hierarchical clustering methods are normally applied. Wong
and Wang [169] proposed a clustering algorithm for discrete-valued data. The technique
of conceptual clustering or learning from examples [108] can be used with patterns rep-
resented by nonnumeric or symbolic descriptors. The objective here is to group patterns
into conceptually simple classes. Concepts are defined in terms of attributes and patterns
are arranged into a hierarchy of classes described by concepts.

In the following subsections, we briefly summarize the two most popular approaches to
partitional clustering: square-error clustering and mixture decomposition. A square-error

clustering method can be viewed as a particular case of mixture decomposition. We should
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also point out the difference between a clustering criterion and a clustering algorithm. A

clustering algorithm is a particular implementation of a clustering criterion. In this sense,

there are a large number of square-error clustering algorithms, each minimizing the square-

error criterion and differing from the others in the choice of the algorithmic parameters.

Some of the well-known clustering algorithms are listed in Table 10 [81].

Table 10: CLUSTERING ALGORITHMS

Algorithm

Property

Comments

K-means

Identifies hyperspherical clusters;
could be modified to find hyper-
ellipsoidal clusters using
Mahalanobis distance;
computationally efficient.

Need to specify K and the initial
cluster centers. Additional parame-
ters for creating new clusters, merg-
ing existing clusters and outlier
detection can be provided.

Fuzzy K-means

Similar to K-means except that
every pattern has a degree of mem-
bership into the K clusters (fuzzy
partition).

Need to specify K, initial cluster
centers and cluster membership
function.

Minimum Spanning Tree (MST)

Clusters are formed by deleting
inconsistent edges in the MST of
the data.

Need to provide the definition of an
inconsistent edge.

Mutual Neighborhood

Compute the mutual neighborhood
value (MNV) for every pair of pat-
terns. If z; is the p** near neighbor
of z; and z; is the ¢*" near neigh-
bor of z;, then

MNV(;,2;) = p+

pg=1,--- K.

Need to specify the neighborhood
depth, K.

Single-Link (SL)

A hierarchical clustering algorithm
which accepts a n X n proximity
matrix; output is a dendrogram or a
tree structure; a single-link cluster
is a maximally connected subgraph
on the patterns.

Single-link clusters easily chain
together and are often “straggly”;
need a heuristic to cut the tree to
form clusters (a partition).

Complete-Link (CL)

A hierarchical clustering algorithm
which accepts a n X n proximity
matrix; output is a dendrogram or a
tree structure; a complete-link clus-
ter is a maximally complete sub-
graph on the patterns.

Complete-link clusters tend to be
small and compact which combine
nicely into layer clusters even when
such a hierarchy is not warranted;
need a heuristic to form clusters (a
partition).

Mixture Decomposition

Each pattern is assumed to be
drawn from one of K underlying
populations, or clusters; population
parameters are estimated from
unlabelled data.

The form and the number of under-
lying population (K) densities are
assumed to be known; K can be
estimated using a number of criteria
(see Section 8.2).
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8.1 Square-Error Clustering

The most commonly used partitional clustering strategy is based on the square-error
criterion. The general objective is to obtain that partition which, for a fixed number
of clusters, minimizes the square-error. Suppose that the given set of n patterns in
d dimensions has somehow been partitioned into K clusters {Cy, Cs, - - -, Ci} such that
cluster C} has ny patterns and each pattern is in exactly one cluster, so that Zszl ng = n.

The mean vector, or center, of cluster Cy is defined as the centroid of the cluster, or

1)\ &
*) = — (k) 14
m (n)Zw , (14)

where mgk) is the i"* pattern belonging to cluster Cj. The square-error for cluster Cj is
the sum of the squared Euclidean distances between each pattern in C, and its cluster

center m¥). This square-error is also called the within-cluster variation

Mg T
=3 (wgk) _ m(k)) (a;,‘.’“) _ m(k)) . (15)
i=1

The square-error for the entire clustering containing K clusters is the sum of the within-

cluster variations:

Ey =) e (16)

The objective of a square-error clustering method is to find a partition containing K
clusters that minimizes F% for a fixed K. The resulting partition has also been referred

to as the minimum variance partition. A general algorithm for the iterative partitional
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clustering method is given below.

ALGORITHM FOR ITERATIVE PARTITIONAL CLUSTERING

Step 1. Select an initial partition with K clusters. Repeat steps 2 through 5 until the

cluster membership stabilizes.

Step 2. Generate a new partition by assigning each pattern to its closest cluster center.

Step 3. Compute new cluster centers as the centroids of the clusters.

Step 4. Repeat steps 2 and 3 until an optimum value of the criterion function is found.

Step 5. Adjust the number of clusters by merging and splitting existing clusters or by

removing small, or outlier, clusters.

The above algorithm, without step 5, is also known as the K-means algorithm. The
details of the steps in this algorithm must either be supplied by the user as parameters
or be implicitly hidden in the computer program. However, these details are crucial to
the success of the program. A big frustration in using clustering programs is the lack of
guidelines available for choosing K, initial partition, updating the partition, adjusting the
number of clusters, and the stopping criterion [8].

The simple K-means partitional clustering algorithm described above is computation-
ally efficient and gives surprisingly good results if the clusters are compact, hyperspherical
in shape and well-separated in the feature space. If the Mahalanobis distance is used in
defining the squared error in Eq. (16), then the algorithm is even able to detect hyper-
ellipsoidal shaped clusters. Numerous attempts have been made to improve the perfor-

mance of the basic K-means algorithm by (i) incorporating a fuzzy criterion function
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[15], resulting in a fuzzy K-means (or c-means) algorithm, (ii) using genetic algorithms,
simulated annealing, deterministic annealing, and tabu search to optimize the resulting
partition [110], [139], and (iii) mapping it onto a neural network [103] for possibly efficient
implementation. However, many of these so-called enhancements to the K-means algo-
rithm are computationally demanding and require additional user-specified parameters
for which no general guidelines are available. Judd et al. [88] show that a combination of
algorithmic enhancements to a square-error clustering algorithm and distribution of the
computations over a network of workstations can be used to cluster hundreds of thousands
of multi-dimensional patterns in just a few minutes.

It is interesting to note how seemingly different concepts for partitional clustering can
lead to essentially the same algorithm. It is easy to verify that the generalized Lloyd vector
quantization algorithm used in the communication and compression domain is equivalent
to the K-means algorithm. A vector quantizer (VQ) is described as a combination of
an encoder and a decoder. A d-dimensional V() consists of two mappings: an encoder
v which maps the input alphabet (A) to the channel symbol set (M), and a decoder
which maps the channel symbol set (M) to the output alphabet (A), i.e., y(y) : A - M
and B(v) : M — A. A distortion measure D(y,§) specifies the cost associated with
quantization, where § = ((v(y)). Usually, an optimal quantizer minimizes the average
distortion under a size constraint on M. Thus, the problem of vector quantization can
be posed as a clustering problem, where the number of clusters K is now the size of
the output alphabet, A {9s;,1 = 1,...,K}, and the goal is to find a quantization
(referred to as a partition in the K-means algorithm) of the d-dimensional feature space
which minimizes the average distortion (mean square error) of the input patterns. Vector

quantization has been widely used in a number of compression and coding applications,
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such as speech waveform coding, image coding, etc., where only the symbols for the
output alphabet or the cluster centers are transmitted instead of the entire signal [67],
[32]. Vector quantization also provides an efficient tool for density estimation [68]. A
kernel-based approach (e.g., a mixture of Gaussian kernels, where each kernel is placed at
a cluster center) can be used to estimate the probability density of the training samples.
A major issue in VQ is the selection of the output alphabet size. A number of techniques,
such as the minimum description length (MDL) principle [138], can be used to select
this parameter (see Section 8.2). The supervised version of VQ is called learning vector

quantization (LVQ) [92].

8.2 Mixture Decomposition

Finite mixtures are a flexible and powerful probabilistic modeling tool. In statistical
pattern recognition, the main use of mixtures is in defining formal (i.e., model-based)
approaches to unsupervised classification [81]. The reason behind this is that mixtures
adequately model situations where each pattern has been produced by one of a set of
alternative (probabilistically modeled) sources [155]. Nevertheless, it should be kept in
mind that strict adherence to this interpretation is not required: mixtures can also be
seen as a class of models that are able to represent arbitrarily complex probability density
functions. This makes mixtures also well suited for representing complex class-conditional
densities in supervised learning scenarios (see [137] and references therein). Finite mix-

tures can also be used as a feature selection tool [127].
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8.2.1 Basic Definitions

Consider the following scheme for generating random samples. There are K random
sources, each characterized by a probability (mass or density) function p,,(y|0.,), param-
eterized by 6,,, for m = 1,..., K. Each time a sample is to be generated, we randomly
choose one of these sources, with probabilities {ay, ..., ax}, and then sample from the
chosen source. The random variable defined by this (two-stage) compound generating
mechanism is characterized by a finite mixture distribution; formally, its probability func-

tion 1s

(¥1©x)) = Zampm (¥16m) (17)

where each pp,(y|0,,) is called a component, and @ k) = {01, ...,0k, 1, ..., _1}. It is
usually assumed that all the components have the same functional form; for example,
they are all multivariate Gaussian. Fitting a mixture model to a set of observations
y = {yY,...,y™} consists of estimating the set of mixture parameters that best describe
this data. Although mixtures can be built from many different types of components, the
majority of the literature focuses on Gaussian mixtures [155].

The two fundamental issues arising in mixture fitting are: (i) how to estimate the pa-
rameters defining the mixture model, and (ii) how to estimate the number of components
[159]. For the first question, the standard answer is the ezpectation-mazimization (EM)
algorithm (which, under mild conditions, converges to the maximum likelihood (ML)
estimate of the mixture parameters); several authors have also advocated the (compu-
tationally demanding) Markov chain Monte-Carlo (MCMC) method [135]. The second

question is more difficult; several techniques have been proposed which are summarized
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in Section 8.2.3. Note that the output of the mixture decomposition is as good as the

validity of the assumed component distributions.

8.2.2 EM Algorithm

The expectation-maximization algorithm interprets the given observations y as incom-

plete data, with the missing part being a set of labels associated with y, z = {z(!), ..., 2(8)}.

(%) (i)]T
1>

Missing variable z®) = [2;") ..., z;¢ T indicates which of the K components generated y?;

if it was the m-th component, then 2 = 1 and z,(,i) = 0, for p # m [155]. In the presence

of both y and z, the (complete) log-likelihood can be written as

n K
Le (®u),y,2) = Y Y 24 log [cmpm(y"|6:m) Z a; = 1. (18)
7j=1 m=1

The EM algorithm proceeds by alternatively applying the following two steps:

e E-step: Compute the conditional expectation of the complete log-likelihood (given y
and the current parameter estimate, @E?{)) Since Eq. (18) is linear in the missing vari-
ables, the E-step for mixtures reduces to the computation of the conditional expectation
of the missing variables: wi” = E[z% |® .Yl

e M-step: Update the parameter estimates: (:)Et;)”: argmaxg R(O k), @)E?()) For

the mixing probabilities, this becomes
- 1~
agfb“Ll):Ewaf;t),m:l,zn-,K—l. (19)

In the Gaussian case, each @,, consists of a mean vector and a covariance matrix which
are updated using weighted versions (with weights al +1)) of the standard ML estimates
[155].
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The main difficulties in using EM for mixture model fitting, which are current research
topics, are: its local nature, which makes it critically dependent on initialization; the
possibility of convergence to a point on the boundary of the parameter space with un-
bounded likelihood (i.e., one of the a, approaches zero with the corresponding covariance

becoming arbitrarily close to singular).

8.2.3 Estimating the Number of Components

The ML criterion can not be used to estimate the number of mixture components
because the maximized likelihood is a non-decreasing function of K, thereby making it
useless as a model selection criterion (selecting a value for K in this case). This is a
particular instance of the identifiability problem where the classical (x?-based) hypothesis
testing can not be used because the necessary regularity conditions are not met [155].
Several alternative approaches that have been proposed are summarized below.

EM-based approaches use the (fixed K') EM algorithm to obtain a sequence of parameter
estimates for a range of values of K, {@)(K), K = Kunin, ---y Kmax }; the estimate of K is

then defined as the minimizer of some cost function,
I?zargmlgn{C(@(K),K> , K=Kmin,...,Kmax}. (20)

Most often, this cost function includes the maximized log-likelihood function plus an
additional term whose role is to penalize large values of K. An obvious choice in this
class is to use the minimum description length (MDL) criterion [10][138], but several
other model selection criteria have been proposed: Schwarz’s Bayesian inference criterion

(BIC), the minimum message length (MML) criterion, and Akaike’s information criterion
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(AIC) [2], [148], [167].

Resampling-based schemes and cross-validation-type approaches have also been sug-
gested; these techniques are (computationally) much closer to stochastic algorithms than
to the methods in the previous paragraph. Stochastic approaches generally involve Markov
chain Monte Carlo (MCMC) [135] sampling and are far more computationally intensive
than EM. MCMC has been used in two different ways: to implement model selection cri-
teria to actually estimate K; and, with a more “fully Bayesian flavor”, to sample from the
full a posterior: distribution where K is included as an unknown. Despite their formal ap-
peal, we think that MCMC-based techniques are still far too computationally demanding

to be useful in pattern recognition applications.
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Figure 13: Mixture Decomposition Example.

Fig. 13 shows an example of mixture decomposition, where K is selected using a mod-
ified MDL criterion [51]. The data consists of 800 two-dimensional patterns distributed
over three Gaussian components; two of the components have the same mean vector but

different covariance matrices and that is why one dense cloud of points is inside another
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cloud of rather sparse points. The level curve contours (of constant Mahalanobis dis-
tance) for the true underlying mixture and the estimated mixture are superimposed on
the data. For details, see [51]. Note that a clustering algorithm such as K-means will not
be able to identify these three components, due to the substantial overlap of two of these

components.

9 Discussion

In its early stage of development, statistical pattern recognition focused mainly on the
core of the discipline: the Bayesian decision rule and its various derivatives (such as linear
and quadratic discriminant functions), density estimation, the curse of dimensionality
problem, and error estimation. Due to the limited computing power available in the
1960s and 1970s, statistical pattern recognition employed relatively simple techniques
which were applied to small-scale problems.

Since the early 1980s, statistical pattern recognition has experienced a rapid growth. Its
frontiers have been expanding in many directions simultaneously. This rapid expansion

is largely driven by the following forces.

1. Increasing interaction and collaboration among different disciplines, including neu-
ral networks, machine learning, statistics, mathematics, computer science, and bi-
ology. These multi-disciplinary efforts have fostered new ideas, methodologies, and

techniques which enrich the traditional statistical pattern recognition paradigm.

2. The prevalence of fast processors, the Internet, large and inexpensive memory and
storage. The advanced computer technology has made it possible to implement
complex learning, searching and optimization algorithms which was not feasible a
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few decades ago. It also allows us to tackle large-scale real world pattern recognition
problems which may involve millions of samples in high dimensional spaces (tens of

thousands of features).

3. Emerging applications, such as data mining and document taxonomy creation and
maintenance. These emerging applications have brought new challenges that foster

a renewed interest in statistical pattern recognition research.

4. Last but not the least, the need for a principled, rather than ad hoc, approach for
successfully solving pattern recognition problems in a predictable way. For exam-
ple, many concepts in neural networks, which were inspired by biological neural
networks, can be directly treated in a principled way in statistical pattern recogni-

tion.

9.1 Frontiers of Pattern Recognition

Table 11 summarizes several topics which, in our opinion, are at the frontiers of pat-
tern recognition. As we can see from Table 11, many fundamental research problems in
statistical pattern recognition remain at the forefront even as the field continues to grow.
One such example, model selection (which is an important issue in avoiding the curse
of dimensionality), has been a topic of continued research interest. A common practice
in model selection relies on cross-validation (rotation method), where the best model is
selected based on the performance on the validation set. Since the validation set is not
used in training, this method does not fully utilize the precious data for training which
is especially undesirable when the training data set is small. To avoid this problem, a

number of model selection schemes [71] have been proposed, including Bayesian methods
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[14], minimum description length (MDL) [138], Akaike information criterion (AIC) [2]
and marginalized likelihood [101, 159]. Various other regularization schemes which incor-
porate prior knowledge about model structure and parameters have also been proposed.
Structural risk minimization based on the notion of VC dimension has also been used for
model selection where the best model is the one with the best worst-case performance
(upper bound on the generalization error) [162]. However, these methods do not reduce
the complexity of the search for the best model. Typically, the complexity measure has to
be evaluated for every possible model or in a set of pre-specified models. Certain assump-
tions (e.g., parameter independence) are often made in order to simplify the complexity
evaluation. Model selection based on stochastic complexity has been applied to feature
selection in both supervised learning and unsupervised learning [159] and pruning in de-
cision trees [106]. In the latter case, the best number of clusters is also automatically
determined.

Another example is mixture modeling using EM algorithm (see Section 8.2), which was
proposed in 1977 [36], and which is now a very popular approach for density estimation
and clustering [159], due to the computing power available today.

Over the recent years, a number of new concepts and techniques have also been intro-
duced. For example, the maximum margin objective was introduced in the context of
support vector machines [23] based on structural risk minimization theory [162]. A clas-
sifier with a large margin separating two classes has a small VC dimension, which yields
a good generalization performance. Many successful applications of SVMs have demon-
strated the superiority of this objective function over others [72]. It is found that the
boosting algorithm [143] also improves the margin distribution. The maximum margin

objective can be considered as a special regularized cost function, where the regularizer
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is the inverse of the margin between the two classes. Other regularized cost functions,
such as weight decay and weight elimination, have also been used in the context of neural
networks.

Due to the introduction of SVMs, linear and quadratic programming optimization tech-
niques are once again being extensively studied for pattern classification. Quadratic pro-
gramming is credited for leading to the nice property that the decision boundary is fully
specified by boundary patterns, while linear programming with the L! norm or the inverse
of the margin yields a small set of features when the optimal solution is obtained.

The topic of local decision boundary learning has also received a lot of attention. Its
primary emphasis is on using patterns near the boundary of different classes to construct
or modify the decision boundary. One such an example is the boosting algorithm and
its variation (AdaBoost) where misclassified patterns, mostly near the decision boundary,
are subsampled with higher probabilities than correctly classified patterns to form a new
training set for training subsequent classifiers. Combination of local experts is also related
to this concept, since local experts can learn local decision boundaries more accurately
than global methods. In general, classifier combination could refine decision boundary
such that its variance with respect to Bayes decision boundary is reduced, leading to
improved recognition accuracy [158].

Sequential data arise in many real world problems, such as speech and on-line hand-
writing. Sequential pattern recognition has, therefore, become a very important topic
in pattern recognition. Hidden Markov Models (HMM), have been a popular statistical
tool for modeling and recognizing sequential data, in particular, speech data [130], [86].
A large number of variations and enhancements of HMMs have been proposed in the

literature [12], including hybrids of HMMs and neural networks, input-output HMMs,
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weighted transducers, variable-duration HMMs, Markov switching models, and switching
state-space models.

The growth in sensor technology and computing power has enriched the availability of
data in several ways. Real world objects can now be represented by many more mea-
surements and sampled at high rates. As physical objects have a finite complexity, these
measurements are generally highly correlated. This explains why models using spatial and
spectral correlation in images, or the Markov structure in speech, or subspace approaches
in general, have become so important; they compress the data to what is physically mean-
ingful, thereby improving the classification accuracy simultaneously.

Supervised learning requires that every training sample be labeled with its true category.
Collecting a large amount of labeled data can sometimes be very expensive. In practice,
we often have a small amount of labeled data and a large amount of unlabeled data. How
to make use of unlabeled data for training a classifier is an important problem. SVM has
been extended to perform semi-supervised learning [13].

Invariant pattern recognition is desirable in many applications, such as character and
face recognition. Early research in statistical pattern recognition did emphasize extrac-
tion of invariant features which turns out to be a very difficult task. Recently, there has
been some activity in designing invariant recognition methods which do not require in-
variant features. Examples are the nearest neighbor classifier using tangent distance [152]
and deformable template matching [84]. These approaches only achieve invariance to small
amounts of linear transformations and nonlinear deformations. Besides, they are compu-
tationally very intensive. Simard et al. [153] proposed an algorithm named Tangent-Prop
to minimize the derivative of the classifier outputs with respect to distortion parameters,

i.e., to improve the invariance property of the classifier to the selected distortion. This
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makes the trained classifier computationally very efficient.

9.2 Concluding Remarks

Watanabe [164] wrote in the preface of his 1972 book entitled “Frontiers of Pattern Recog-

nition,” that “Pattern recognition is a fast-moving and proliferating discipline. It is not

easy to form a well-balanced and well-informed summary view of the newest developments

in this field. It is still harder to have a vision of its future progress.”

Table 11: FRONTIERS OF PATTERN RECOGNITION

Topic

Examples

Comments

Model selection and generalization

Bayesian learning, MDL, AIC,
marginalized likelihood, structural
risk.

Make full use of the available data
for training.

Mixture modeling and EM
algorithm

Clustering density estimation.

Soft membership; better than k-
means clustering.

New objective functions for classi-
fication

Maximum margin (SVMs), regu-
larized cost.

Provide low VC dimension and
good generalization.

Optimization methods

Quadratic programming;
linear programming.

Leads to support vectors;
built-in feature selection.

Local decision boundary learning

SVMs, Boosting, mixture of local
experts.

Focus on boundary patterns.

Sequential pattern recognition

Hidden Markov Models (HMMs),
recurrent networks.

Successfully applied to speech and
handwriting recognition.

Local-invariant (dis)similarity mea-
sures

Deformable template matching,
tangent distance.

Invariant to local distortions.

Independent component analysis

Blind source separation, feature
extraction.

Extract statistically independent
components.

Combining multiple classifiers

See Table 7.

Improve recognition accuracy.

Emerging applications

Data mining and KDD, Document
categorization, Image database
retrieval, Financial forecasting,
Biometric recognition (fingerprint,
iris, face, voice, handwriting and
signature).

Large volume, high dimension,
mixed data types, missing data,
data modeling, model selection.
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