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Preface to
the third edition

During the lifetime of the second edition telecommunications systems have
continued to develop rapidly, with major advances occurring in mobile com-
munications and broadband digital networks and services. Digital systems have
become more even more prevalent and sophisticated signal processing tech-
niques are now common at increasinlgy higher bit rates. These advances have
prompted the inclusion of new chapters on mobile communications and broad-
band ISDN, and a considerable revision of many others.

Several readers have commented that a discussion of the transient performance
of the phase locked loop would be useful and this has now been included in
Chapter 2.

Chapter 3 has been extended to give a deeper insight into non-linear coding of
voice waveforms for PCM and a section has been included on NICAM, which has
been adopted for the digital transmission of television sound.

Chapter S now includes an introduction to coding techniques for burst errors
which dominate in modern mobile communications systems.

Chapter 11 has been completely revised to address the major developments
which have occurred in television since the second edition and a new section on
satellite television has been included.

Chapter 15 is a completely new chapter on Mobile Communication Systems
covering first generation analogue and second generation digital systems.

Geoffrey Smith is Professor of Communication Engineering at the University
of Strathclyde. His main research interests include performance evaluation of
networks, mobile communications, integrated local communications and broad-
band optical systems.

John Dunlop is Professor of Electronic Systems Engineering at the University
of Strathclyde and has been involved in international research projects in digital
mobile communications for a number of years. He also has research interests in
speech coding, local and wide area networks and underwater communications.

Preface to
the second edition

Since the first edition telecommunications have changed considerably. In par-
ticular, digital systems have become more common. To reflect such changes two
new chapters have been added to the text and several have been modified, some
considerably.

Chapter 3 has been extended to give a detailed description of the 4 law
compression characteristic used in PCM systems and substantial extra material
is included on PCM transmission techniques. A section is also included on other
digital transmission formats such as differential PCM and delta modulation.

Chapter 10 introduces several elements of switching, both analogue and
digital. In the latter case the fundamentals of both time and space switching are
discussed. The methods used to analyse the switching performance are covered
although the discussion is limited to simple cases in order to highlight the
underlying concepts. Some of the material on older signalling systems has been
omitted from this edition.

Chapter 13 deals with the topic of packet transmission which is finding
increasing use in both wide area and local networks. This chapter provides the
theoretical background for scheduled and random access transmission and
draws attention to the limitations of these theoretical descriptions and to the need
for using reliable computer models for estimating the performance of practical
systems. This chapter also introduces the concept of the 7-layer Open Systems
Interconnection reference model and illustrates how some of the OSI layers are
incorporated in packet switched systems.

An introduction to satellite communications is given in Chapter 14. So as not
to over-complicate the concepts involved, discussion is limited to geo-stationary
systems. At the time of writing, the development of direct broadcasting of
television programmes by satellite is at a very early stage, but there is little doubt
that it will become an increasingly important application.

The authors are most grateful to the many readers who have made constructive
suggestions for improvement to the text and who have identified several errors
that existed in the first edition. It is hoped that the errors have been corrected and
that a number of areas of difficulty have been removed by additional explanation
or discussion.



Preface to
the first edition

The influence of telecommunications has increased steadily since the introduc-
tion of telegraphy, radio and telephony. Now, most people are directly dependent
on one or more of its many facets for the efficient execution of their work, at home
and in leisure.

Consequently, as a subject for study it has become more and more important,
finding its way into a large range of higher education courses, given at a variety of
levels. For many students, telecommunications will be presented as an area of
which they should be aware. The course they follow will include the essential
features and principles of communicating by electromagnetic energy, without
developing them to any great depth. For others, however, the subject is of more
specialized interest; they will start with an overview course and proceed to
specialize in some aspects at a later time. This book has been written with both
types of student in mind. It brings together a broader range of material than is
usually found in one text, and combines an analytical approach to important
concepts with a descriptive account of system design. In several places the
approximate nature of analysis has been stressed, and also the need to exercise
engineering judgement in its application. The intention has been to avoid too
much detail, so that the text will stand on its own as a general undergraduate-level
introduction, and it will also provide a strong foundation for those who will
eventually develop more specialized interests.

It has been assumed that the reader is familiar with basic concepts in electronic
engineering, electromagnetic theory, probability theory and differential calculus.

Chapter 1 begins with the theoretical description of signals and the channels

through which they are transmitted. Emphasis is placed on numerical methods of
a‘nalysis such as the discrete Fourier transform, and the relationship between the
time and frequency domain representations is covered in detail. This chapter also
deals with the description and transmission of information-bearing signals.
) Chapter 2 is concerned with analogue modulation theory. In this chapter there
isa sFrong link between the theoretical concepts of modulation theory and the
pragtncal significance of this theory. The chapter assumes that the reader has a
realistic knowledge of electronic circuit techniques.

Cha;_)ter3 is devoted to discrete signals and in particular the coding and
transmission of analogue signals in digital format. This chapter also emphasizes
the relationship between the theoretical concepts and their practical significance.

Chapters 4 and 5 are concerned with the performance of telecommunications
systems in noise. Chapter 4 covers the performance of analogue systems and
concentrates on the spectral properties of noise. Chapter 5 covers the perform-

ance of digital systems and is based on the statistical properties of noise. This
chapter also deals in detail with the practical implication of error correcting
codes, a topic which is often ignored by more specialized texts in digital
communications.

In Chapter 6 the elements of high-frequency transmission-line theory are
discussed, with particular emphasis on lossless lines. The purpose is to introduce
the concepts of impedance, reflection and standing waves, and to show how the
designer can influence the behaviour of the line.

Basic antenna analysis, and examples of some commonly used arrays and
microwave antennas, are introduced in Chapter 7, while Chapters 8 and 9
describe the essential features of waveguide-based microwave components. A
fairly full treatment of the propagation of signals along waveguide is considered
from both the descriptive and field-theory analysis points of view.

Telephone system equipment represents the largest part of a country’s invest-
ment in telecommunications, yet teletraffic theory and basic system design do not
always form part of a telecommunications class syllabus. Chapter 10is a compre-
hensive chapter on traditional switching systems and the techniques used in their
analysis. Care has been taken to limit the theoretical discussion to simple cases, to
enable the underlying concepts to be emphasized.

Chapter 11 is devoted to television systems. In a text of this nature such a
coverage must be selective. We have endeavoured to cover the main topics in
modern colour television systems from the measurement of light to the trans-
mission of teletext information. The three main television systems, NTSC, PAL
and SECAM, are covered but the major part of this chapter is devoted to the PAL
system.

One of the outstanding major developments in recent years has been the
production of optical fibres of extremely low loss, making optical communication
systems very attractive, both technically and commercially. Chapter 12 discusses
the main features of these systems, without introducing any of the analytical
techniques used by specialists. The chapter is intended to give an impression of
the exciting future for this new technology.

It cannot be claimed that this is a universal text; some omissions will not turn
out to be justified, and topics which appear to be of only specialized interest now
may suddenly assume a much more general importance. However, it is hoped
that a coverage has been provided in one volume which will find acceptance by
many students who are taking an interest in this stimulating and expanding field
of engineering.
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Signals and channels

1.1 INTRODUCTION

Telecommunication engineering is concerned with the transmission of in-
formation between two distant points. Intuitively we may say that a signal
contains information if it tells us something we did not already know. This
definition is too imprecise for telecommunications studies, and we shall
devote a section of this chapter to a formal description of information. For the
present it is sufficient to say that a signal that contains information varies in
an unpredictable or random manner. We have thus specified a primary
characteristic of the signals in telecommunications systems; they are random
in nature.

These random signals can be broadly subdivided into discrete signals that
have a fixed number of possible values, and continuous signals that have any
value between given limits. Whichever type of signal we deal with, the tele-
communication system that it uses can be represented by the generalized
model of Fig. 1.1. The central feature of this model is the transmission
medium or channel. Some examples of channels are coaxial cables, radio
links, optical fibres and ultrasonic transmission through solids and liquids. It
is clear from these examples that the characteristics of channels can vary
widely. The common feature of all channels, however, is that they modify or
distort the waveform of the transmitted signal. In some cases the distortion
can be so severe that the signal becomes totally unrecognizable.

In many instances it is possible to minimize distortion by careful choice of
the transmitted signal waveform. To do this the teleccommunications engineer
must be able to define and analyse the properties of both the signals and the
channels over which they are transmitted. In this chapter we shall concentrate
on the techniques used in signal and linear systems analysis, although we
should point out that many telecommunications systems do have non-
linear characteristics.

1.2 THE FREQUENCY AND TIME DOMAINS

The analysis of linear systems is relatively straightforward if the applied
signals are sinusoidal. We have already indicated that the signals encountered
in telecommunications systems are random in nature and, as such, are non-
deterministic. It is often possible to approximate such signals by periodic
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Fig. 1.1 Basic elements of a telecommunications system.

functions that themselves can be decomposed into a sum of sinusoidal
components. The signal waveforms are functions of time and the variation of
signal amplitude with time is known as the ‘time domain representation’ of
the signal. Alternatively, if a signal is decomposed into a sum of sinusoidal
components, the amplitude and phase of these components can be expressed
as a function of frequency. This leads us to the ‘frequency domain representa-
tion’ of the signal.

The relationship between frequnecy domain and time domain is an ex-
tremely important one and is specified by Fourier’s theorem. The response of
a linear system to a signal can be determined in the time domain by using the
principle of convolution, and in the frequency domain by applying the
principle of superposition to the responses produced by the individual
sinusoidal components. We will consider the frequency domain first, as this
makes use of the theorems of linear network analysis which will be familiar to
readers with an electronics background. Time domain analysis is considered
in detail in Section 1.11. Frequency domain analysis will be introduced using
traditional Fourier methods and we will then develop the discrete Fourier
transform (DFT) which is now an essential tool in computer aided analysis of
modern telecommunications systems.

1.3 CONTINUOUS FOURIER ANALYSIS

Fourier’s theorem states that any single-valued periodic function, which has a
repetition interval T, can be represented by an infinite series of sine and cosine
terms which are harmonics of f, = 1/T. The theorem is given by Eqn (1.1).

h(t) = a—,}‘f +% Y (a,cos 2nnfyt + b, sin 2nnf,t) (1.1)
n=1

where f, = 1/T is the fundamental frequency. The response of a linear system
to a waveform h(t) that is not a simple harmonic function is found by
summing the responses produced by the individual sinusoidal components of
which h(t) is composed. The term a,/T is known as the dc component and is

the mean value of h(t).
a 1 T/2
TFQ =7 J h(t)dt
-T/2
ie.

ag = f " h(t) de (1.2)

-T/2
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The amplitudes of the sine and cosine terms are given by

T/2
a,= J h(t) cos (2nnf,t) dt

-T/2

T2
b, = j h(t) sin (2nnf,,t) dt (1.3)

-T/2

The Fourier series thus contains an infinite number of sine and cosine terms.
This can be reduced to a more compact form as follows; let

x(t) = a, cos (2nnfyt) + b, sin (2nnf,t)

a
cos ¢, = .
(a3 +b7)
sing, = b
(az + b7)

Hence ¢, =tan"! [—-b,/a,] and
x(t) = (a2 + b})''* [cos (2nnfyt) cos ¢, — sin 2nnfyt) sin ¢, ]

x (t) = (a2 + b2)''? cos 2nnfyt + ¢,)

Hence the Fourier series can be modified to

h(t)— + = Z C,cos(2nnfyt + ¢,)

where
C,=(a®>+b?Y? and ¢,=tan"! [la’-’—J (1.4)
A graph of C, against frequency is known as the amplitude spectrum of h(t)

and a graph of ¢, against frequency is known as the phase spectrum of h(t).
Note that if the voltage developed across a 1 resistance is

2C
t)y=—" t
vl =" + )
the average power dissipated in the resistance is
2
P=55Cl= Tz( a? + b?) (L.5)

A graph of C? against frequency is known as the power spectrum of 4(t). The
total power developed in a 1Q resistance by h(t) is thus given by

ag 2 2 .,
Pr=ity L G (16)
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The mean square value of h(t) is given by
T/2

02=if [h(t)| dt
T ~T/2

This is effectively the power dissipated when a voltage equal to h(t) is
developed across a resistance of 1Q. The frequency and time domain
representations of h(t) are thus related by Eqn (1.7). This equation is formally
known as Parseval’s theorem.

L™ hopa=-8 4 2. % 2 1
= HPdr=-% 4 = . 7
F| mopa-84 25 1)
EXAMPLE: Find the amplitude and power spectrum of the periodic rectangu-
lar pulse train of Fig. 1.2.

The zero frequency (mean) value is a,/T where

T/2 t1/2
aof h(t)dt=f Adt= At,

-T/2 —t172
fi/2

a, fﬂz h(t) cos 2nnfyt)dt = j A cos (2rnfyt)de

-T/2 —t1/2
ie.
A . .
a,= 2nf, [sin (nnfot,) — sin(—nnfyt,)]
hence
A .
a,= W sin(mnfyt,)
similarly
A [cos (nnfyt,) — cos(—nrnfyt,)]=0
n 2nnf0 0%1 01 -

Hence in this example C, = a,.
The amplitude spectrum is C, = At, (sin nnfot,)/mnfyt,, which is often
written C, = At, sinc (nnfyt,).

T—st 0

[ T

1
1
1
]
]
‘
1
]
1
1
]
'
i
-T2 —I% : tq/’ T/2
i
=0

Fig. 1.2 Rectangular periodic pulse train.
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Fig. 1.3 Amplitude and power spectrum of a periodic pulse train.

The amplitude spectrum is plotted in Fig. 1.3 and it should be noted that
the envelope of this spectrum is a sinc function that has unity value when
nft, = 0 and zero valtie when nft, = mn, i.e. when f=m/t,. In this particular
example ¢, = 0 indicating all harmonics are in phase. The power spectrum of
h(t) is simply the square of the amplitude spectrum.

A convenient alternative form of Eqn (1.1) can be developed by writing
the sine and cosine terms in exponential notation, i.e.

cos (2nnfyt) = [exp (j2rnfyt) — exp (—j2nnfyt)]/2
sin (2nnfyt) = [exp (j2anfot) — exp(— j2nnft)}/2]

Substitution in Eqn (1.1) gives

1 K
h) =2+ 3. (@ =jb,)exp(j2nnfo) + (a, + b exp (—j2nnft)
(a,—jb,) = J " h(t) [cos (2nnfyt) — jsin 2nnf,t)]dt
-T2
ie. if C,=(a,—jb,), then
T/2
C, =J h(t)exp(— j2nnf,t)dt (1.8)
-T/2

The complex conjugate of C, is C} =(a, + jb,), and

T/2
C*= '[ h(t) exp (j2nnf,t) dt

~T/2

e Cx=C_,.
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Hence
h(t) = a, 1

e S [Coexp(j2nnfot) + C - pexp(—2anfo)]
n=1

~|

and

/2
Co=f hityexp (j®)dt = a,

—-T/2
so that h(t) can be written

%n_z_w C,exp(j2nnf,t) (1.9
This is the exponential form of the Fourier series and the limits of the
summation are now n = + co. The spectrum that contains both positive and
negative components is known as a double-sided spectrum.

The negative frequencies are a direct result of expressing sine and cosine in
complex exponential form. In Eqn (1.8) C, is a complex quantity and can be
separated into a magnitude and phase characteristic, i.e. C, = |C,| exp( jo,);
ie.

h(t) =

e o)

MO=7 3 ICIexpliCanty +¢,)]

But since |C,| =|C_,| then

b =2+ - 3. ICalexpLinnfot + $u)] +IC,lexpl ~ j2mnfot + 6,)]
ie.
h(t) = % + %2 |C,lcos2mnfot + ¢,)

Equations (1.9) and (1.4) are therefore equivalent, but some care is required in
interpreting Eqn (1.9). The harmonic amplitude C,/T is exactly half the value
given by Eqn (1.4), but it is defined for both negative and positive values of n.
The correct amplitude is obtained by summing the equal coefficients which
are obtained for negative and positive values of n. This is quite reasonable
because only one frequency component actually exists.

The power of any frequency is derived from Eqn (1.9) in a similar way. Since
C, is a complex quantity the power at any value of n is (C,/T)-(C,*/T),
ie.

(C/T) (C}/T)=(a, — jb)(a, +jb)/T* = (a% + b2)/T

Both negative and positive values of n will contribute an equal amount of
power; the total power at any frequency is thus 2(a? + b2)/ T2. This of course
agrees with Eqn (1.5), since physically only a single component exists at any
one frequency. We can write Parseval’s theorem for the exponential series as

1 T/2 1 ]
—f Ih(t)lzdt=F > IGP? (1.10)

T -T/2 n= —a

Note that only a single value of n appears at n = 0.
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EXAMPLE: Evaluate the amplitude spectrum of the waveform in Fig. 1.2

using the exponential series
1 0 t1/2
h(t) = T Y. C,expjnnfyt) where C,= J Aexp(—j2nnfyt)dt

n=-—ow —t1/2
1.€.
_A t1/2
Com | ymazexe(=i2mnin |
2nnf, 12
_ A exP(‘f”"f0t1)"exp(_jn"foll)]
nnf, 2j
i.e.
A
C,=——sin(nnfot;)
anf,
or

C, = At, sinc (nnft,)

This is identical to the equation obtained from the cosine series.

14 ODD AND EVEN FUNCTIONS

The waveform h(t) is defined as an even function if h(t) = h(—t); it has the
property of being symmetrical about the ¢ =0 axis. If h(t) = —h(—1) the

waveform is an odd function and has skew symmetry about the t = 0 axis.

A

function that has no symmetry about the ¢t = 0 axis is neither odd nor even;

the sawtooth waveform of Fig. 1.4(c) is an example of such a waveform.

hit)

[}

(a) Even
function

Y

(b} Odd

function /\

Y

{c) Asymmetrical
function

Fig. 1.4 Examples of periodic functions.
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]

Odd and even functions have properties that may be used to simplify
Fourier analysis, e.g.
if
h(t) = a—,I? +% Y [a,cos (2nnfyt) + b, (sin 2nnfyt)]
n=1
then

h(—1)= a_’; + ’IE" Y. [a,cos(2rnfyt) — b, sin (2rnfyt)]
n=1

If h(t) = h(—1) this can only be true if b, = 0, i.e. the Fourier series of an even
function has cosine terms only. Alternatively, all phase angles ¢, in Eqn (1.4)
are 0 or + 7 and all values of C, in Eqn (1.8) are real. If h(t) = — h(—1t) then
a,=0, ie. the Fourier series of an odd function contains only sine terms.
Alternatively, all phase angles ¢, in Eqn (1.4) are + n/2 and all values of C,in
Eqn(1.8) are imaginary. If h(t) has no symmetry about ¢ = 0 the Fourier series
contains both sines and cosines, the phase angles ¢, of Eqn (1.8) are given by
tan”!(—b,/a,), and all values of C, in Eqn (1.8) are complex.

Many waveforms that are not symmetrical about ¢t = 0 can be made either
odd or even by shifting the waveform relative to the ¢ = 0 axis. The shifting
process is illustrated in Fig. 1.5. It is of interest to examine the effect of such a
shift on the Fourier series. We shall consider the Fourier series of the shifted
waveform h(t — t,). Let (t — t,) = t,; the amplitude spectrum is thus given by

t12

C,= f Aexp(—j2nnfyt,)de,
—t1/2

This evaluates to C, = At, sinc (nnf,t,); hence shifting the time axis does not

affect the amplitude spectrum. It does, however, affect the phase spectrum:

1 a
We—t)=7 3 Coexp(j2mnfytexp(—j2nnfyt,)
This effectively adds a phase shift of ¢, = — 2nnf,t, to each component in the
series. Interpreted in another way, a time delay of ¢, is equivalent to a phase
shift of 2nfyt, in the fundamental, 4nf,t_ in the second harmonic, etc.

A r—

hit)

.

hie—tg)

Fig. 1.5 Time shifting,
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1.5 WAVEFORM SYNTHESIS

This can be regarded as the inverse of Fourier analysis. In effect the Fourier
series indicates that any periodic waveform can be synthesized by adding an
infinite number of cosine waves with specific amplitudes and phases. In most
practical cases a very good approximation to a given periodic waveform can
be obtained by truncating the series to only a few terms. As the number of
terms in the series is increased the mean square error between the synthesized
waveform and the desired waveform decreases. A difficulty does arise in the
vicinity of a discontinuity, however. As the number of terms in the series tends
to infinity the mean value of the synthesized waveform approaches the mean
value of the desired waveform at the discontinuity. The amplitude of the
synthesized waveform on either side of the discontinuity is subject to error,
which is not reduced when the number of terms in the series is increased. This
error is known as Gibb’s phenomenon, and is illustrated for a synthesized
rectangular wave in Fig. 1.6.

This is in fact a convergence property of the Fourier series. The Fourier
series converges to the mean value of h(t) at discontinuities in the waveform of
h(t). The conditions required for the convergence of the series are

(1) h(t) must have a finite number of maxima and minima in the interval T;
(1) A(t) must have a finite number of discontinuities in the interval T;
(iii) h(t) must satisfy the inequality 3 |h(f)| dt < co.

Overshoot

Correct waveform

Synthesized
waveform

Fig. 1.6 Gibb’s phenomenon in waveform synthesis.

1.6 THE FOURIER INTEGRAL

The Fourier series representation of h(t) is only valid when h(t) is periodic. We
have already indicated that information-bearing signals change in a random
fashion and do not therefore belong to this category. The amplitude spectra
of non-periodic signals are obtained from the Fourier integral. The Fourier
integral may be developed from the Fourier series by allowing the period T to
approach infinity. In Fig. 1.2 allowing T— oo means that h(t) becomes a single
pulse of width ¢, seconds.

h(t) =% i C.exp(j2nnfyt) where f,=1/T

n=—o



Eﬂ LSignais and channels

and
T/2
C,= f h(t)exp (— j2nnfyt)dt
-T/2
If we let Af be the spacing between harmonics in the Fourier series then
Af=(n+1)fo—nfo=1T.

The Fourier series may thus be written

h(t) = i C,exp(j2nnf,t) Af

n=—x

As T— oo then Af— 0 and the discrete harmonics in the series merge, and an
amplitude spectrum that is a continuous function of frequency results, i.e.

lim C,=H(f)

T—ow
The harmonic number n now has all possible values and the summation of the
series can thus be replaced by an integral, i.e. nf, is replaced by a continuous
function f and

W) = f " H(f)exp(j2nfdf

[ve)

H(f)= f Wt)exp (— j2nft)dt

— 0

These two integrals are known as the Fourier transform pair. To illustrate the
use of the Fourier transform, assume h(t) is a single pulse of amplitude 4 and
duration ¢, seconds.

oG

H(f)= f h(t)exp (— j2nft) dt

— 0

=f”2 Aexp(j2nft)dt (1.11)

—t1/2

=% sinnft,
H(f)= At sinc (nft,)

A rectangular pulse in the time domain thus has a Fourier transform that is a
sinc function in the frequency domain. The converse is also true, i.e. a sinc
pulse in the time domain has a Fourier transform that is a rectangular
function in the frequency domain. Consider the sinc pulse of Fig. 1.7(b).

sin(2nf,1)
2nfit

1e.

hty=Vv where f, = 1/t,

The Fourier transform is

H(f)= Vr sin(2n £, 1)

anfa exp(—j2nft)dt
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Fig. 1.7 Relationship between frequency and time domain.

Recalling that exp (—j2nft) = cos 2n ft) — jsin (2% ft), we may write

Vv J"O sin 2 f,t) cos 2n ft)

dt

2nf, t

j V. [* sin(2af,t)sin (27tft)dt
2nf, t

The integral of an odd function betwen + o is zero; thus the second integral

of Eqn (1.12) vanishes. Using the trigonometric relationship cos ¢ sin § =

3 [sin (¢ + 0) — sin(¢ — 6)] we can say

H(f)= |4 sin 27 (f+ f)t] d — 14 sin [27 (f— f;)t]
2nf, Jo t 2nfi Jo t

H(f)=

—oC

1.12)

— 0

dt

(1.13)
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At this point we make use of the standard integral

J Slnaxdx=7t/2 fora>0
0o X

0 fora=0
—n/2 fora<0
Re-writing Eqn (1.13) as
Vv
H(f)—I,—-1
(f)znfl( 1— 1)

there are three frequency ranges of interest:
—wo<f<f givesl,=—mn/2, I,=—n/2
—fi<f<figives],=n)2, I,=—n/2
fi<f< oogives], =n/2, I,=n/2

Hence H(f) = V/2f, for — f; <f<f, = 0else. The resulting H ( f) is shown in
Fig. 1.7(d).

Comparing Fig. 1.7(a) with Fig. 1.3 shows another important relationship.
The envelope of the amplitude spectrum of a single pulse is identical to the
envelope of the amplitude spectrum of a periodic pulse train of the same pulse
width. This relationship is not restricted to rectangular pulses and is useful in
determining the spectral envelope of signals composed of randomly occurring
pulses, such as are encountered in digital communications systems.

The fact that all frequencies are present in the amplitude spectrum of a
non-periodic signal requires careful interpretation when considering the
power dissipated by such signals.

1.7 POWER AND ENERGY DENSITY SPECTRUM
The power density spectrum of a non-periodic signal is developed in a similar

way to the amplitude spectrum. If we assume that h(t) is a periodic function we
may write Eqn (1.10) as

1 T/2 1 ©
T j hOPdt== 3 (C2Af

~-T/2 n=—c0
As T— oo for non-periodic signals, this equation can be written in the limit as
1 [ 1=
= h(t)*dt = = H(f)*d 1.14
TLOI()I TL' (NI df (114
The power spectrum of a non-periodic signal is then defined as
H 2
G(f)=I ({)I (1.15)

The power spectral density is a measure of the distribution of power as a
function of frequency. It is a useful concept for random signals, such as noise,
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that have a finite power and are eternal; T is then the period of measurement.
When T is large the power is independent of the value of T. If signals exist for
a finite time only, the power spectrum approaches zero as T— oco. When
dealing with such signals the concept of energy density spectrum is more
meaningful. Equation (1.14) can also be written

%j Ih(t)lzdt=j |H(NHIPdSf (1.16)
This is Parseval’s theorem for non-periodic signals. The LHS of the equation
represents the total energy dissipated in a 1 Q resistance by a voltage equal in
amplitude to h(t). It is clear, therefore, that |H ( f)|? is an energy density, that is,
a measure of the distribution of the energy of h(t) with frequency. The double-
sided (defined for + f) energy density spectrum of h(t) is

E(f)=IH()? (1.17)

The total energy within the frequency range f; to f, is

-f1 Sf2

Ej E(f)df+f E(f)df joules (1.18)
=f2 J1

i.e. half the energy is contributed by the negative components. In particular,

asf, —f;, the total energy — 0. Thus although the energy density spectrum of

a non-periodic signal is continuous, the energy at a specific frequency is zero.

1.8 SIGNAL TRANSMISSION THROUGH LINEAR SYSTEMS

We noted in Section 1.1 that all communications channels have the common
feature of modifying or distorting the waveforms of signals transmitted
through them. The amount of distortion produced by a channel with a given
transfer function (attenuation and phase shift as a function of frequency) is
readily calculated using Fourier transform techniques.

If we assume that P(f) is the channel transfer function (often a voltage
ratio in electrical networks) we can obtain the amplitude spectrum of the signal
at the channel output by multiplying the amplitude spectrum of the input
signal by the network transfer function, i.c.

L(fy=H(f) P(f) (1.19)

We can then obtain the output signal I(¢) by taking the Fourier transform of
Eqn (1.19), i.e.

()= J H(f) P(f)exp(j2nft)dt (1.20)
Note that P(f)=|P(f)|exp(— j2nft) where| P(f)|represents attenuation
as a function of frequency (i.e. the frequency response of the channel) and
¢ (f) represents the phase shift produced. Both |P(f)| and ¢ (f) produce
signal distortion. Phase distortion is normally neglected when speech and
music signals are transmitted over a channel, but it assumes special signifi-
cance for digital transmission. This topic is covered further in Chapter 3.
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When considering signal transmission through networks, we are often
concerned with the loss of signal power or energy that occurs during
transmission. If G ( f) is the power spectral density of a signal and P (f) is the
transfer function of a channel the power spectral density at the output is

Go(f)=Gi(f)IP(f)I? (1.21)

The total power in a given frequency range f, to f, at the channel output is

W=F' Go(f)df + JIZGO(f)df watts
-f2

J1

ie.
=f1 J2
W=J G;(NIP(f)I? df+f G;(NIP(NHI*df (1.22)
~f2 St

In most practical cases Eqn (1.22) can only be solved by numerical integra-
tion. In such cases the use of the discrete Fourier transform, which is discussed
in Section 1.10, is particularly useful. To illustrate the application of Eqn
(1.22) we will consider a specific example in which the integrals can be
evaluated in closed form.

EXAMPLE: A sinc pulse of amplitude V and zero crossings at intervals of
+nt,/2is passed through a low-pass RC network of the type shown in Fig. 1.8.
If the value of ¢, for the pulse is 2 ms, find the cut-off frequency of the filter in
order that 60% of the pulse energy is transmitted.

We calculate the incident energy of the pulse using Parseval’s theorem, i.e.

E=f°° Ih(t)lzdt=r H(f))2df

We have shown that for the sinc pulse H (f) = V/2f, for —f, <f<f, and zero
otherwise.
In this example f; = 1/¢; and the energy is

1 1% 2 V2
E = — 1} df=— joules
J_h(zfl) S5y

The network transfer functionis P(f)=1/[1 +j(f/f.)] wheref, = 1/2rRC is
the network cut-off frequency. We note from Fig. 1.8 that the network
response extends to negative frequencies because H(f) is a double-sided
spectrum. For this network |P(f)|? = f2/(f* + f?).

) al e et

Fig. 1.8 Low-pass RC network.
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The energy in the transmitted signal is then
f1 %4 >2 2
Ey,= — —df
0 J‘—f1<2f1 j;‘2+f2
V21 f
() ()
2f,) L c

y2 L (f) 062
ayalctan (7) 2,

tan"1<ff-1> =0.6~J—j;l

The solution to this equation is f; /f. ~ 1.755, ie.
1
°7 1.755¢,

But E, =0.6 E;. Hence

or

=285Hz

1.9 THE IMPULSE FUNCTION

If we consider the rectangular pulse of Fig. 1.7(a) and let A = 1/t,, the pulse
area becomes unity, i.e. area = (1/¢,)-t, = 1. If t, is allowed to approach zero,
then in order to preserve unit area the pulse amplitude A4 is allowed to
approach infinity. Such a pulse cannot be produced practically, but it is
extremely useful for analytical purposes and is known as the unit impulse.
The unit impulse function is formally defined by Eqn (1.23):

b
J. 8(t—ty)dt=1 fora<ty<b, =0else (1.23)
The impulse exists only at time ¢, and has zero value for all other values of 1.
The amplitude of the impulse at ¢ = t, is undefined; instead the impulse is
defined in terms of its area (or weight) at time t =t,. If any continuous
function h(t) is multiplied by an impulse with unit weight at time t =, the
resulting function is given by

b
J ht)6(t — to)dt = h(t,) fora<ty<b, =0celse (1.24)
Hence multiplying h(t) by an impulse function at t = t, and performing the
integration of Eqn (1.24) is equivalent to taking an instantaneous sample of
h(t) at t =t,. The impulse function is defined only in integral form and
expressions such as h(t,) = h(t)- 6 (t —t,) are strictly meaningless. However, it
is common practice to express the integral equation (1.24) in this form, the
process of integration being implicit. The Fourier transform of an impulse
function is particularly important. The Fourier transform of the unit impulse
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defined by Eqn (1.23) is

A(f)= f 6 (t—to) exp(—j2nft)dt = exp (—j2nft,) (1.25)
This means that |[A(f)| has unity value for all values of f The function
exp (—j2nft) represents the phase of each component in A(f), i.e. ¢ = 2nft,,.

If, instead of a single impulse, we consider a periodic train of impulses
separated by a period T, the amplitude spectrum is obtained from the Fourier
series. The amplitude of the nth harmonic is then

C,= foo h(t)exp(—j2nfyt)dt  where h(t) = 5(t —nT)

-0

ie.

C,= r 8(t — nT)exp(—j2nf,t)dt = exp(—j2n) (1.26)

-0

Hence each component in the Fourier series has unity value and a phase of 2n
radians. This periodic train of impulses is used to obtain regularly spaced
samples of a continuous waveform h(t) and is of fundamental importance in
the digital transmission of analogue signals.

Now that we have defined the impulse (or delta) function we can show that
the Fourier integral can also be used to define the amplitude spectrum of a
periodic signal and is therefore a general transform. If

W=7 Y Coexp(j2mnfy)

n=—-w

the Fourier transform of h(r) is

HO =7 % coew(ns-nfana
=% ﬁ_ C"r exp [j2n(f— nf,)] dt
=%"=imc,l5(f-nfo) (127)

The Fourier transform of a periodic signal is thus a set of impulses located at
harmonics of the fundamental frequency Jo=1/T.

1.10 THE DISCRETE FOURIER TRANSFORM (DFT)

We pointed out in Section 1.8 the extensive use made of computer-aided
analysis in the study of modern telecommunication systems. Computers
cannot handle continuous signals but can process signals that are defined at
discrete intervals of time. The DFT is an extension of the continuous Fourier
transform designed specifically to operate on signals that have been sampled
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at regular intervals of time. The sampling process may be regarded as
multiplying the continuous signal by a periodic series of impulses. We have
shown [Eqn (1.27)] that the spectrum of such a periodic signal is a series of
harmonics all of equal amplitude. When such a spectrum is multiplied by the
spectrum of a continuous signal, each component in the continuous signal
will form sum and difference frequencies with the harmonics of the periodic
impulse train. If we assume that the impulses are separated by an interval T,
and that the maximum frequency component of the continuous signal is
W Hz, the amplitude spectrum of the sampled signal will take the form of
Fig. 1.9. It will be noted from Fig. 1.9 that, provided the sampling frequency
fi(=1/T,)is at least 2W, there will be no overlap (aliasing) between the signal
spectrum and the first lower sideband of the sampled signal spectrum. The
original signal is defined by its amplitude spectrum which is preserved in the
sampled version provided that f, > 2W. This is in fact a statement of the
‘sampling theorem’ that we consider in more detail in Chaper 3.

The DFT is developed for a periodic signal h(t) with no components at or
above a frequency f, = x/T, x being an integer and T being the period of the
signal waveform. An example of such a signal and its spectrum is given in
Fig. 1.10, which also contains the sampled version of h(t), denoted h(kAt), and
itsamplitude spectrum C (nAf). The sampling frequency (f, = 1/AT)is chosen
to equal 2f, which avoids aliasing.

The Fourier series for h(kAt) is

x=1
h(kAt) = % Y C,exp(j2rnkAt/T) (1.28)

n=-(x—1)
but over the range — (x — 1) < n < (x — 1) the coefficients C, are identical to
C(nAf);, hence

(x—1)

h(kAt) = % Y. C(nAf)exp(j2nnkAt/T) (1.29)
n=-—(x—1)

If there is a total of N samples in the interval T, then T = NAt and the range of
kisO,+1,+2... + [(N/2) — 1]. Since we can also write t = 1/2f, = T/2x then
N =2x and Eqn (1.29) becomes

1 Nj2+1

HkAD) =2 _%2 _ COf)exp(j2nnk/N) (1.30)

We observe from Fig. 1.10 that C (nA f)is periodic and thus we can change the
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Fig. 1.9 Spectrum of a sampled signal.
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Fig. 1.10 Sampling of a continuous signal.

0

range of n in Eqn (1.30) to make C (nAf) symmetrical about the frequency f;
thus

h(kAt) = NLN S Cnafyexp(j2nmk/N)
n=0

This equation is usually written using the notation of Eqn (1.31), ie.

1 N—-1

k) = - ZO C(n)exp(j2nnk/N) (1.31)

The multiplying factor 1/At is often omitted, as in Eqn (1.31). This does not
affect the relative values of h(k), but it should be included for an accurate
representation of h(k). The amplitude spectrum C (nAf) is obtained using Eqn
(1.8) and noting that, as h(z) exists only for discrete values of t, the integral can
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be replaced by a summation:
N/2-1
CnAf)= Y hkAr)exp(—j2nnkAt/T)At (1.32)
k=-Nj2-1
Here we note that At = T/N and h(kAt) is a periodic function so that the limits
of the summation may be changed to give
N-1

C(nAf)= At Y h(kAt)exp(—j2nnk/N) (1.33)
k=0

This equation is usually written in the notation of Eqn (1.34) and it should be
noted that once again it is customary to omit the multiplying factor, which in
this case is At:

N-1

C(n)= kgo h(k) exp (— j2rnk/N) (1.34)

Equation (1.34) is known as the discrete Fourier transform (DFT) of h(t), and
Eqn(1.31) is known as the inverse discrete Fourier transform (IDFT) of
C(nAf). It should be noted that in both Eqns (1.31) and (1.34) there is no
explicit frequency or time scale as the coefficients k,n and N simply have
numerical values.
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Fig. 1.11 DFT of a periodic band-limited waveform.
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Some care is required in the use of the DFT because, as we have shown, it is
valid only for the special case of a band-limited periodic signal. A waveform of
this type and its DFT is shown in Fig. 1.11. In this figure h(z) is a single tone
with four complete cycles in the interval T. The DFT has a component at a
value of n=4 (ie. the fourth harmonic of the fundamental frequency
fo=1/T) and a second component at a value of n = 28. This second compo-
nent is the equivalent of n= —4 resulting from the change of range in
Eqn (1.30). We note, therefore, that in the special case of a band-limited
periodic function the DFT produces the correct spectrum of A(t) . In all other
cases the DFT will produce only an approximation to the amplitude spec-
trum of h(z) .

Consider next the DFT of the waveform of Fig. 1.12. In this case the
interval T contains 3.5 cycles of h(t). The DFT requires the signal to be
periodic with period T, and this means that discontinuities must now exist at
the extremities of the interval T.

In other words, the periodic signal is no longer band-limited, and a
form of distortion known as leakage is introduced into the spectrum. This
form of distortion is considered in more detail in Section 1.11 after the
concept of convolution has been introduced. It suffices here to note that
sampling a non-band-limited signal produces a discrete spectrum of the
form shown in Fig. 1.12. This is clearly an approximation to the original
spectrum; the approximation can be made more accurate by increasing the

hikat)
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Fig. 1.12 DFT of a periodic signal truncated by an interval T not equal to a multiple
of the signal period.
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interval of observation T (for non-periodic signals) or by making T equal to a
multiple of the period (for periodic signals). In addition, increasing the
sampling frequency always reduces aliasing which is produced by sampling
non-band-limited signals.

The DFT can be calculated directly from Eqn (1.34) but it will be noticed
that each coefficient C(n) requires N complex multiplications and additions.
There are N spectral coefficients so that a total of N? complex multiplications
and additions will be required in the complete DFT calculation. Multiplica-
tion is a relatively slow process in a general purpose digital processor, and for
this reason the DFT is usually calculated by using the ‘fast Fourier transform’
algorithm. This is an algorithm designed to reduce the number of multiplica-
tions required to evaluate the DFT. The algorithm achieves a reduction from
NZ%to N log, N multiplications by dividing Eqn (1.34) into the sum of several
smaller sequences.’ This reduction can be very significant when N is a very
large number. (It should be noted that special purpose processors are now
available which can perform multiplication in one machine cycle.)

1.11 TIME DOMAIN ANALYSIS

The time domain and frequency domain are uniquely linked by the Fourier
transform and consequently the frequency domain analysis of the previous
sections can also be undertaken in the time domain. To illustrate this point,
consider Eqn (1.19) which relates the spectrum at a network output to the
product of the input spectrum and the network transfer function. If the input
to the network h(z) is a unit impulse we have shown in Eqn (1.25) that the
spectrum A( f) has unity value for all f. Hence the spectrum at the network
output is simply L(f)= P(f) where P(f) is the network transfer function.
The response in the time domain is the Fourier transform of P(f), and is
known as the impulse response, i.e.

p()= f P(f)exp(j2n fr)df (1.35)
Having defined impulse response we now make use of Eqn (1.24), which states
that the value of a signal h(t) at any time ¢, is obtained by multiplying h(t) by a
unit impulse centred at ¢,. The signal h(¢) can thus be regarded as an infinite
number of impulses, the weight of each impulse being equal to the instan-
taneous value of h(t) . Each of these impulses will produce an impulse
response and the network output is then obtained by the superposition of the
individual impulse responses. The response of a linear network I(t) to an input
signal h(z) is given in terms of the network impulse response by Eqn (1.36):

I(t) = fw h(t)p(t —1)dt (1.36)

In this equation 7 is a dummy time variable and both h(r) and p(t) are

continuous functions. Equation (1.36) therefore states that the output of a
linear network at time ¢ is given by the sum of all values of the input h(t)
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weighted by the appropriate value of p(z) at time ¢. The integral in Eqn (1.36)
is known as the convolution integral and the equation is often written as

l(x) = h(t)* p(t) (1.37)

where the symbol * denotes convolution. Comparing Eqn (1.37) with
Eqn (1.19) we note the important relationship that multiplication in the
frequency domain is equivalent to convolution in the time domain. The
converse is also true; that is, multiplication in the time domain is equivalent to
convolution in the frequency domain. We will now consider some examples of
convolution.

The first example concerns frequency domain convolution. If we consider
the waveform of Fig. 1.12 we note that in selecting a time window of T s we
are in effect multiplying the continuous signal h(t) by a rectangular pulse
of unity amplitude and duration T. This is equivalent to convolving the
amplitude spectrum of h(t) with the spectrum of the rectangular window
function which, as we have already seen, is a sinc function. The spectrum of
h(z) is actually a delta function at + f, since only a single frequency is present.
The convolution integral is thus

f T H()S(f—f)df + f T H(N)S(f+fy)df = H(=f)+ H(fy) (138)

The original spectrum centred at /=0 is thus transferred to frequencies + f.
The procedure is illustrated in Fig. 1.13 and it is interesting to compare this
spectrum with the DFT of Fig. 1.12. The effect of truncating the signal h(t) in
the time domain causes a spreading of the spectrum (leakage) in the frequency
domain.

We next consider the transmission of a rectangular pulse through a low-
pass RC network of the form shown in Fig. 1.8. The impulse response of this
network is p(t) = (1/RC)exp(—1t/RC). This may be proved as follows:

P(f)= f " p@exp(—j2nfde

hade ]

Since p (¢) is the impulse response of a real network it must have a value of zero
for t <0; hence

P(f) =;—waexp(— t/RC)exp(—j2nft)dt
3 -1
" RC(j2nf+ 1/RC)

[exp {—(j2nf+ 1/RC)1}]§

ie.
"~ 14j2nfRC 1 +j(f/f)

which agrees with the expression obtained by network analysis.
Before proceeding further we shall consider the physical interpretation of
Eqn (1.36). In this equation ¢ represents the present instant in time and we

P(f)
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Fig. 1.13 Convolution in the frequency domain.

note that for practical filters p (¢t — 7) must be zero for ¢t < z, in other words, the
impulse response must be zero for all time before an impulse occurs. The
impulse response of an ideal filter exists for all values of t and is therefore
unrealizable (see Section 3.3). If we confine our interest to practical networks,
then it is clear that the impulse response p (¢t — ) scans the signal h(r) and
produces a weighted sum of past inputs. The values of h(t) closest to the
present (ie. t~1) will have a greater effect on the output than values
occurring a long time in the past (r « t). For practical networks Eqn (1.36)
becomes

1(t) = J " WO pit— 1) de (1.39)

We can now consider the response of the RC network to a rectangular pulse of
width ¢,. This is split into a positive step of unit amplitude at T = O followed by
a negative step of unit amplitude at T =t¢,, as shown in Fig. 1.14. Since the
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Fig. 1.14 Response of an RC network to a rectangular pulse.

system is linear the output is obtained by superposition. Considering the
positive step first, since h(t) =0 for 7 <0, then I(t) = [{ p(t — 7)d7, ie.

l(z)=iléftexp[—(z—r)/1zc1dt

=exp %{—C-) dt ﬂ exp(t/RC)dz

Therefore
[(t)= —exp(—t/RC)[exp(t/RC)—1]=1—exp(—t/RC)

This is the step response of the filter, i.e. the output for 0 < <t,. For the
negative step

t
0= —J exp[—(t—1)/RC]dz
—1t1
ie.
1(t)=exp[(t, — )/RC] —1
The output of the filter at times in excess of t =, is therefore
I(t)=exp[(t; —t)/RC] —exp(—t/RC)

As we have already pointed out, time domain analysis is equivalent to
frequency domain analysis and it is not possible to give a general rule as to
which technique is more appropriate to particular situations. Time domain
analysis is frequently used in digital systems, especially in specifying network
characteristics to minimize signal distortion.
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1.12 CORRELATION FUNCTIONS

These functions have particular application in the time domain specification
of signals that vary in an unpredictable manner (i.e. information-bearing
signals, noise, etc.). The autocorrelation function of a waveform A(t) is defined
as

T/2
R,(t) = lim lj h(t) h(t + t) dt (1.40)
T-x 1) T/2

The autocorrelation function is the average of the product h(t) h(t + 7) and
will clearly depend on the value of 7. The function h(t + 1) is a replica of h(t)
delayed by an interval 1. The numerical value of R,(7) is a measure of the
similarity (or correlation) of h(t) and h(z + 7). If there is no similarity between
h(t) and h(t + 1) and each has zero mean value then R,(7) is zero. Completely
random signals, such as white noise, have an autocorrelation function equal
to zero. The maximum value of R, (z) for any signal will occur when 7 =0. In
these circumstances

1 (72
R, (0) = lim ~J h?(t)dt
T« -T/2
which is the mean square value of h(t).

The autocorrelation function is widely used in signal analysis for recogniz-
ing signals in the presence of noise and also for estimating the power spectral
density of random signals. We will derive, as an example, the autocorrelation
function of a periodic pulse train and a random binary data signal. Consider
the periodic waveform of Fig. 1.15: it is only necessary to average the signal
over one period and thus

1 T/2

R,(1)= —f h(t) h(t + 7)dt
T -T/2

The waveform of h(t) h(t + t)is shown in Fig. 1.15. It is a periodic pulse train of

amplitude A%, pulse duration t, —|z| and period T. The autocorrelation

function is thus

2

A
R,(1)= —
# (D) T
but because h(t + T) = h(t) the autocorrelation function is periodic. The value
of R, () is plotted as a function of 7 in Fig. 1.15.
We note that if h(t) is a single pulse the autocorrelation function is modified
to

(t, =) for—t, <1<,

R,(1)= 1 f M ok + 1) de

1 —t12

which evaluates to

Rh(r)=A2<1—|tL|> for—t, <t<t,

1
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Fig. 1.15 Autocorrelation function of a periodic pulse train.

In this case Ry(1) is a single triangular pulse of peak amplitude A2. The
autocorrelation function of a random binary pulse train is obtained in a
similar way. Assume such a signal is composed of pulses of amplitude A volts
and 0 volts and each of the duration ¢,, both of equal probability. During any
time interval T there will be an equal number of pulses of amplitude A volts
and 0 volts. The average value of h(t) h(t + 1) must therefore be

2
R, (1= A—< —m) for—t, <t<t,
2 t,
and this is the autocorrelation function of a random binary pulse train.
Equation (1.40) is very similar to the convolution integral of Eqn (1.36).
Remembering that convolution in the time domain is equivalent to multipli-
cation in the frequency domain, the Fourier transform of R, (t)is equal to the
Fourier transform of h(t) multiplied by the Fourier transform of h(t + 7). The
amplitude spectrum of h(r) is identical to the amplitude spectrum of h(t + 1),
ie.

_ro Ry (r)exp (j2nfr)dr = [H (f)[? (1.41)

— oG

Thus the power spectral density of any signal is the Fourier transform of its
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autocorrelation function. The power spectral density of the random data
signal is thus

A2 Il

G(f)= fm 7(1 —r)exp(j2nfr)dr
-0 1

Le.

o A2

G(f)=f -t—<1 _|t_Tl> [cos(2nfT) + jsin2nfr)]dt  (1.42)
- “1 1

Since R,(7) is an even function of 7 the imaginary terms in Eqn (1.42) vanish

and

0 2

G(f)= J i(l —m>cos(2nf‘c)dr
2 t,

which evaluates to G(f) = (At,)? sinc* (nft,).

The autocorrelation function is a measure of the degree of similarity
between h(f) and a delayed version of the same waveform. The cross-
correlation function is a measure of the degree of similarity between two
different waveforms h(t) and g (t). The cross-correlation function is defined as

R,,(7) = lim 1 J " h(e)g(t + 7)dt (1.43)

T—w T -T2

This function finds specific application in the detection of signals at low
signal-to-noise ratios. Correlation detection is considered in detail in
Chapter 5.

It should be clear from the previous two sections that both time domain
and frequency domain techniques are important tools in the analysis of
telecommunications systems. They should be regarded as complementary, as
it is not possible to give a general rule as to which technique is more appro-
priate to a particular situation.

1.13 INFORMATION CONTENT OF SIGNALS

In previous sections we have considered signals in terms of waveforms and
spectra. In this section we consider the information content of signals and
show how it is related to the information capacity of communication
channels.

Information is conveyed by a signal that changes in an unpredictable
fashion. It is important to have some method of evaluating the information
content of a signal because this will determine whether or not the signal can
be transmitted over a particular channel. The information content of a signal
is measured in bits which, as we shall show later, is not necessarily related to
the number of binary digits required to transmit it. The information capacity
of a communication channel is limited by bandwidth, which determines the
maximum signalling speed, and by noise, which determines the number of
distinguishable signal levels.
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We shall consider the specific example of a teleprinter which is restricted to
transmitting the four signals ABCD. If one of these symbols is transmitted
there are four (4') possible messages which are 4 or B or C or D. If two
symbols are sent there are 16 (42) possible messages, viz.

AA or AB or AC or AD
or BA or BB or BC or BD
or CA or CB or CC or CD
or DA or DB or DC or DD

If P symbols are sent the number of possible messages is 4”. If the teleprinter
can transmit n different symbols, the number of different messages that could
be transmitted when P symbols are sent is n*. Obviously the greater the
number of possible messages the less predictable is any particular message.
Intuitively we would argue that the more unpredictable a particular message
the more information it contains. It is reasonable to assume that the
information content is a function of the unpredictability of a message. In
algebraic form the information content H is

H oc f(nF) (1.44)

Equation (1.44) can be made a function of time by assuming that one symbol
is transmitted every ¢, seconds. The total number of symbols transmitted in T
seconds is thus T/t; and the information content of such a message of T
seconds duration would be

H o f(n™") (1.45)

It is reasonable to assume that a similar message of duration 2T seconds
would contain twice as much information as a message of duration T seconds;
in other words f(n™"1) should be linearly related to T. This defines the
function f as a logarithm, i.e.

H o log  (n™")
or

H=Ktzlogxn (1.46)
1

We are still required to define the numerical values of K and x. The constant
of proportionality is taken as unity and the base of the logarithm is specified
by defining the unit of information. To illustrate this idea consider the
simplest possible system, i.c. a source that can send only two possible
symbols, A or B. The simplest possible message will occur when only one of
the two possible symbols is sent. The information content of such a message is
defined as 1 bit.

In such a system, T/t, symbols are sent in T seconds and the information
transmitted is T/t bits, i.e.

T
H= ;—logxn where n=2
1
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or

T
—log, 2= T
t t

1
Hence

x=2

The information transmitted by a source that can send n different symbols is
T .
H= t—logzn bits (1.47)
1

The information rate is (1/¢,) log, n bits/s (also b/s) and the information per
symbol is log, n bits. In arriving at this result we have made the implicit
assumption that each of the n different symbols has equal probability of being
sent. When the probability is not equal our definition of information informs
us that symbols that occur least frequently contain a greater amount of
information than symbols that occur very frequently. Before considering
probability in detail it is important to note that the symbol example chosen is
not restricted to alphabetic characters.

Consider the example of a voltage pulse, and assume that each pulse can
have any one of eight different voltages. A typical signal is shown in Fig. 1.16.
If we assume that each of the eight levels is equi-probable the information per
pulse is

H =log, 8 = 3 bits/pulse

It is not always convenient to use base 2 logarithms so, making use of the
relationship

Possible levels Signal

0

Y

Fig. 1.16 Information-bearing signal.
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then
H =332log,,n bits/pulse (1.48)

The information capacity of a channel must be greater than the information
rate of the transmitted signal in order for reliable communication to occur.
We show in Section 3.7 that an ideal low-pass channel of bandwidth B can
transmit pulses at a maximum rate of 2B per second. If we use the pulse
analogy and assume that m different pulse levels can be distinguished at the
channel output, the maximum rate at which information can be transmitted
over the channel becomes

C=2Blog,m bits/s (1.49)

This relationship is known as Hartley’s law. If the capacity of a channel is
known it is possible to determine the rate at which information can be
transmitted and, consequently, the time required to transmit a given amount
of information. Hartley’s law does not give any indication of how the value of
m is determined. This depends on the signal-to-noise ratio at the channel
output, and to pursue this further it is necessary to introduce the significance
of probability in information theory.

This may be illustrated by assuming that an information source can send n
equi-likely symbols, each of which belongs to one of two groups. It is further
assumed that the receiver is not interested in the value of a particular received
symbol, rather it is concerned with knowing only to which group the
received symbol belongs. If group ! contains n; symbols and group 2
contains n, symbols there are two messages which are of interest to the receiver
and these have a probability of occurrence of P, = n,/nand P, = n,/n, respect-
ively. The information per symbol for n equi-likely symbols is log, n bits,
hence the total information in n symbols is nlog, n. It follows that the total
information in group 1 (which is not of interest to the receiver) is n, log, n,
and that the total information in group 2 (which is also not of interest to the
receiver) is n, log, n,. Thus the useful information H may be defined as the
total information less the information which is not of interest, i.e.

H=nlog,n—n log,n, —n,log,n, (1.50)
The average information is thus H,, = H/n or
n,+n n n
H,, = ('%) log,n— ;IIng n= ;2 log, n,
or
H, = " (log, n —log, n;) + 7(]082 n—long, n,)

i.e.

—-n o n n,

H,="Tllog,"t T2y, M2
av n Oan noan
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or
H,, = — P, log, P, — P,log, P, (1.51)

The more unpredictable an event the more information it contains; for
instance let P, = 0.8, which means that P, =0.2 since P, + P, = 1.
The information associated with the first event is

H,= —log,08= —332log,,0.8 =0.32bits
The information associated with the second event is
H,= —log,02= —332log,,0.2 =2.32bits

This agrees with our concept of information. The average information in this
case would be

H,,=(0.8 x 0.32) + (0.2 x 2.32) = 0.72 bits/symbol

which is considerably less than the information transmitted by the symbol
with lower probability. It is of intetest to determine the maximum value of
H,,, and to do this we eliminate P, from Eqn. (1.51), i.e.

H,, = — P log, P, + (P, —1)log,(1 —P,) (1.52)

To find the maximum value of H,, we differentiate with respect to P, and set
the result equal to zero:

dH,, 1 —1
T —P1P—l—1082P1 +(Py — 1)1_P1 +log,(1 —P))
ie.
dH,,

dP, = log,(1 — P,) —log,(P,)
which is zero when (1 — P,) = P, or P, = P, =0.5. The average information
is a maximum when the symbols are equi-probable.

In developing Eqn (1.50), the original n symbols were divided into two
separate groups. This idea can be extended for any number of groups up to a
maximum of n. When the number of groups equals the number of symbols, we
are in effect saying that each individual symbol has its own probability of
occurrence and the average information is

H,,=— ) Plog, P, (1.53)
i=1
Equation (1.53) is similar to an equation in statistical mechanics that defines a
quantity known as ‘entropy’. For this reason H,, is usually known as the
entropy of a message. In particular, if all symbols are equi-probable, P; = 1/n
and Eqn (1.53) becomes

H,=— .; P;log,n=1log,n since .Zl P,=1

Extension of the analysis for maximum entropy produces the same result as
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for the two-symbol case; that is, the entropy of a message is a maximum when
all symbols are equi-probable. In any other situation the entropy will be less
than the maximum and the message is said to contain ‘redundancy’.

When all symbols are equi-probable, the average information is a maxi-
mum and it is not possible to make other than a pure guess at what the next
symbol will be after a number have been received. In certain circumstances
this can be a serious problem because if an error occurs during transmission
the receiver will not be aware of it. When all symbols are not equi-probable, it
becomes feasible to predict what the next symbol in a received sequence
should be. The redundancy in such a message is defined as

R= —ﬁHavgm —Huv 100, (1.54)

av(max)

The significance of redundancy in a message will be illustrated by reference to
the English language. If we assumed that all letters in the English alphabet
were equi-probable, the average information per letter would be log, 26 =
4.7 bits. If the relative frequencies of occurrence of individual letters are taken
into account (E has a probability of 0.1073, Z has a probability of 0.006) the
figure works out as H,, = 4.15 bits/letter. This gives a redundancy of 11.79.
The redundancy is actually much higher than this because of the interdepen-
dence between letters, words and groups of words within English text. For
example, if the letter Q occurs in a message it is almost certain that the next
letter will be U. The U contains no information because it can be guessed with
almost 1007, certainty. If the letters IN have been received, the probability
that the next letter will be G is much higher than the probability that it will be
Z. There are many examples of this interdependence, which can be extended
to words and sentences. When all these issues are considered the redundancy
of English is estimated at 47% . The overall effect of redundancy is twofold; it
reduces the rate of transmission of information but at the same time it allows
the receiver to detect, and sometimes correct, errors.
Consider the received message

Thi ship wilp arrive on September 28

Itis clear that we can detect and correct errors in the alphabetic section of the
message. There is no way that we can detect an error in the date (unlessitisa
number greater than 30), however. The numerical part of message thus
contains no redundancy. This is very important because data transmission
occurs as a sequence of binary numbers that has no inherent redundancy. It is
important to detect occasional errors when they occur, and in data systems a
form of redundancy known as ‘parity checking’ is often employed. The binary
digits are divided into groups of 7, e.g., 1000001, and an extra digit is added
to make the total number of 1s in the group of 8 either even or odd depend-
ing on the system. The receiver then checks each group of 8 digits to deter-
mine whether an odd or even parity has been preserved. If the parity check
is not valid an error is detected. (This topic is covered in more detail in
Section 5.6.)
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1.14 INFORMATION TRANSMISSION

The information capacity of a communications channel is specified by
Hartley’s law [Eqn (1.49)], but this equation does not tell us how to evaluate
the number of detectable levels, m. All signals in telecommunications are
subject to corruption by noise, and we can make a qualitative statement to the
effect that the difference between detectable levels must be greater than the
noise present during transmission. If this were not the case, signal plus noise
could produce a false level indication. Noise is a random disturbance that
may be analysed either in terms of its statistical properties or in terms of its
spectral properties. From either description we are able to define a mean
square value for the noise that is equivalent to the power developed by the
noise voltage in a resistance of 1.

The relationship between the number of messages that can be transmitted
and noise power was obtained by Shannon? in 1948 using the mathematics of
n-dimensional space. The mathematics of n-dimensional space is a theoretical
extension of the familiar mathematics of two- and three-dimensional space.
An n-dimensional space is termed a ‘hyperspace’ and is defined by a set of n
mutually perpendicular axes. If ¢ is a point in this hyperspace, its distance
from the origin (the point of intersection of the n mutually perpendicular axes)
is d where

d2 — x% + x% + x% Ao x2 (155)

x, being the perpendicular distance from the point to the nth axis. When
dealing wih hyperspace, the ‘volume’ of an n-dimensional figure is defined as
the product of the lengths of its sides. If we are considering an n-dimensional
cube (hypercube) in which all the sides have length L units, the volume is
given by L". (Note that when n = 2 the hypercube is actually a square, and the
‘volume’ is interpreted as an area.)

A circle is a two-dimensional figure whose volume (i.e. area) is nr2. If two
concentric circles are drawn, one with a radius of 1 and the other with a radius
of 1, then one-quarter of the total area is enclosed within the inner circle
which has half the total radius. The volume of a three-dimensional sphere is
$nr’. This means that a sphere of radius ; would contain only one-eighth of
the volume of a sphere of radius 1. An n-dimensional sphere (hypersphere) has
a volume proportional to r" where r is its radius. The volume of such a
hypersphere of radius { will thus be equal to ()" of the volume of a
hypersphere of radius 1. In other words, the larger the value of n the smaller is
the percentage of total volume contained within the hypersphere of radius 3.
When n =7 only 1/128 of the total volume lies within the hypersphere of
radius §. For a hypersphere for which n = 100 it turns out that only 0.004%;
of the total volume of a hypersphere of radius 1 lies within a hypersphere of
radius 0.99. This leads to the important conclusion that for a sphere of n
dimensions (where n > 1) practically all of the volume lies very close to the
surface of the sphere. This property is fundamental to Shannon’s derivation of
the information capacity of a channel.

Shannon postulates a signal source that can send out messages of duration
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T seconds; the source is limited to a bandwidth of B Hz and has a statistically
stationary output (the properties of the output averaged over a long period
are constant). We have already indicated in Section 1.10 that any signal band
limited to B Hz can be represented by 2B samples/s. The energy in each of
these samples is proportional to the square of the sample amplitude and the
total signal energy will therefore be proportional to the sum of these mean
square values. If the signal amplitudes are denoted by x,, x,, etc., then the
total normalized signal energy is

E=xi+x2+ - +x? (1.56,
This is identical to the expression for the (distance)? of a point from the origin
of the hyperspace. If the average energy/sample is S the total energy in the
message is 2BTS joules. Hence all messages of energy 2BTS joules may be
represented as a point in a hyperspace of n dimensions. As n— oo virtually all
messages will be points very close to the surface of a hypersphere of radius
(2BTS)'/2.

Received signals are always accompanied by noise, which in an ideal case
occupies the same bandwidth as the signal. This means that the noise wave-
form can also be represented by 2BT samples. If the average energy per noise
sample is N joules the total noise energy is 2BTN joules. We have stated that
each message is represented by a point in the hypersphere of radius (2B TS)?
and therefore the sum of message and noise will be a point whose distance
is (2BTN)"? from each point representing the message alone. This means
that all possible message + noise combinations are represented by points
that are very close to the surface of a hypersphere of radius (2BTN)'/2 centred
on the point representing the noise alone. The receiver actually receives
message + noise with a total energy of 2BT(S + N) and the points representing
each combination must lie within a hypersphere of radius [2BT(S + N)]*/2.

Because each message must be a distance (2BTN)"/? from points repre-
senting message + noise, we can represent the system as a hypersphere of
radius [2BT(S + N)]'”? filled with non-overlapping hyperspheres of radius
(2BTN)'/2, The centres of the small hyperspheres represent a distinguishable
message that could have been sent. The total number of distinguishable
messages is given by the number of non-overlapping hyperspheres of radius
(2BTN)"/? which can exist within a hypersphere of radius [2BT(S + N)]"/2.
This will be equal to the ratio of the volumes of the two hyperspheres. The
physical picture is given in Fig. 1.17. If the number of dimensions is 2BT, the
ratio of the volumes of the two hyperspheres is

(2BT(S + N))'/2 25T [§4+ N BT
[ (2BTN)" ] =[ N ] (157

This gives the number of distinguishable messages that can be sent. Assuming
each message to be equi-probable, the information transmitted is

BT
log, [s ;N } =BT logz(l + 1—‘3—) bits (1.58)




Information transmission ‘ 35

Locus of all messages + noise
Locus of all messages
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Locus of noise accompanying
a message

Transmitted message

Received message + noise
Radius (287N)"%

Radius [2BT(S+N)] %

Fig. 1.17 Multidimensional representation of signal + noise.

The channel capacity is thus
C= B10g2<1 + %) bits/s

The ratio of signal energy to noise energy is identical to the corresponding
power ratio so that Shannon’s law for channel capacity is

C= Blog2<1 + E”—) bits/s (1.59)
NP
This law is a fundamental law of telecommunications, and states that if a
channel has a bandwidth B and the mean SNR is § /N, the maximum rate at
which information may be transmitted is C bits/s. In other words there is a
theoretical limit on the amount of information that can be transmitted over
any telecommunications channel and, as we shall show in later chapters, all
practical systems fall short of this theoretical limit by varying degrees. As an
illustration of the theoretical application of Shannon’s law we will assume
that a link of effective bandwidth 3 kHz is to be used for pulse transmission.
This link is to be used for six identical channels, the data rate being 1 kb/s per
channel. The SNR on the link is 2/log,, D where D is the length of the link in
kilometres. We are required to determine the maximum distance over which
reliable communication is possible.
The total data rate is 6 x 1000 = 6 kb/s. Hence from Shannon’s law

10° = 10°1 1
6 x 3x10 ogz( +log10D)
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which reduces to

2
1 =4
" log oD 0
or
D =4.64km

This example does not consider the way in which the information is actually
transmitted. In order to achieve the theoretical channel capacity Shannon
postulated that each message should be represented by a large number of
samples (data points). The receiver, in effect, compares the received message,
corrupted by noise, with each possible uncorrupted message that could have
been transmitted. These uncorrupted messages are the centres of the hyper-
spheres of radius (2BTN)'/2. The receiver then decides that the message which
was actually transmitted is the one (in the n-dimensional space) closest to the
point representing the received message + noise. As the number of data
points describing each message increases, the closer is any individual message
to the surface of the hypersphere of radius (2BTS)"/2. Alternatively, the larger
the number of data points, the more accurate is Shannon’s law.

The practical drawback is that the larger the number of data points the
longer is the time taken to transmit them over a link of fixed bandwidth. The
receiver cannot decide which message was transmitted until all data points
have been received. Thus in attempting to realize a communications system
that obeys Shannon’s law, long delays would be introduced between trans-
mission and reception (the information rate is not affected by a delay).

Shannon’s law would not seem to be a practical proposition, but it is
extremely useful as a standard for comparing the performance of various
telecommunications systems. Of particular importance is the possibility of
exchanging bandwidth and SNR in order to achieve a given information
transmission rate. We will now examine this possibility in some detail. It will
be noted from Eqn (1.59) that the value C can remain fixed when the
bandwidth Bis changed, provided that the SNR is modified accordingly. This
means that SNR and bandwidth can be exchanged without affecting the
channel capacity. Figure 1.18 shows bandwidth plotted against SNR for a
constant channel capacity of 1 b/s.

Point 4 on this graph shows that it is possible to transmit 1b/s in a
bandwidth of 0.25 Hz provided that the signal power is 15 times the noise
power. If the bandwidth is now doubled (point B on the graph) the same rate
of transmission is possible with a SNR of 3. If we assume that the noise
power is constant then evidently much less signal power is required at point
B. As a simple physical example assume that 1b/s is being transmitted at
point B on the curve using binary pulses. If the bandwidth is decreased then
clearly fewer binary pulses can be transmitted per second. To maintain the
same information rate, the binary pulses must be replaced by pulses with
more than two levels, which consequently increases the mean signal power.
For large SNRs, Shannon’s law approximates to

C = Blog,(S,/N,) (1.60)
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Fig. 1.18 Shannon’s law for C =1b/s.

This equation states that in order to maintain a given rate of transmission of
information, a linear change in bandwidth must be accompanied by an
exponential change in SNR. Thus very large increases in signal power are
required to compensate for relatively small reductions in the channel band-
width B. The assumption that noise power remains constant is not in fact
justified. In telecommunications systems the noise power is linearly related to

bandwidth, i.e.
N,=1B (1.61)

n is known as the noise power spectral density. This means that when the
bandwidth is doubled the noise power increases by 3 dB; hence the reduction
of required signal power that accompanies an increase in bandwidth is
partially offset by the extra noise power. At low SNRs, the saving in received
signal power will be cancelled by the extra noise. We can write Shannon’s law
as

C=145BIn(1 +S,/N,)

If §,/N, is very small, In(1 + S,/N,)~S,/N,. Hence C =1.45BS,/N,.
But N, =7 B; thus

C=145S5,/n bits/s (1.62)

The channel capacity now becomes independent of the bandwidth and a
further increase in bandwidth has no effect. Hence there is a limit to the
amount of information that can be transmitted with a fixed signal power
regardless of the bandwidth. Once again this is a theoretical limit and all
practical systems fall short of this limit. In the following chapters we consider
both analogue and digital communications systems and compare their
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relative performance in terms of the theoretical limits imposed by Shannon’s
law.

1.15 CONCLUSION

In this chapter we have considered, in a general way, methods of describing
both signal and channel characteristics met in telecommunications systems.
We have introduced the idea that the channel characteristic intimately
influences the signal waveform of the transmitted information. In defining
information, which is the basic entity to be transmitted, we were able to show
once again an intimate relationship between channel characteristics and the
rate at which this information can be transmitted.

In the following chapters we will be considering specific telecommunica-
tions systems in detail and showing that the relationships outlined in this
chapter are common to all systems. Of particular importance to the telecom-
munications engineer is the effect of the omnipresent noise which corrupts the
information-bearing signal, in addition to any distortion produced by channel
characteristics. The effect of noise is quite different in analogue and digital
systems, and we will show that this is one reason why digital systems have a
performance much closer to the theoretical performance of Shannon’s law
than their analogue counterparts.
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PROBLEMS

1.1 Each of the pulse trains shown in the figure represents a voltage across a 1 Q

15V emm— +BV

7/10
e T/2 —

e et by P

resistance. Find the total average power dissipated by each voltage and also the
percentage of the total average power contributed by the first harmonic in each
case.

Answer: 25W; 10W; 19.2%.

1.2 Assuming the integrator shown in the figure is ideal (the output voltage
increases at a rate of — 1/RC volts/second when the input is 1 volt), sketch the
output voltage when the input is a square wave of amplitude + A volts or — A4
volts and period T.
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1.3

14

15

16

1.7

18

19

If 1/RC = 2/T, plot the amplitude spectrum of the input and output signals.
Answer: (AT/2) sinc(nnfT/2); AT sinc? (nnfT/2).
Using the principle of superposition, or otherwise, obtain an expression for the

amplitude of the nth harmonic of the exponential Fourier series of the waveform
shown in the figure.

Voltage

anvws

— Time

*

o TR2TBT

Answer: [cos(2nn/3) — 1]nnf.

Plot the single-sided and double-sided power spectral densities for a pulsed
waveform with period 0.1 ms and pulse width of 0.01 ms. The amplitude of the
narrow pulse is 10V and the amplitude of the wide pulse is 0'V.

What fraction of the total average power is contained within a bandwidth
extending from 0 to 100 kHz?

Answer: 919, .

A rectangular pulse train with amplitude 0 V or 10 V is applied to the input of the
RC network shown in the figure, the pulse repitition rate being 20 000 per second.
If the half-power frequency of the network is 500 kHz and the pulse train has a
duty cycle of 0.01, sketch the signal power spectrum at the network output. How
much power is contained in the second harmonic?

Answer: 127 uW.

Find the Fourier transform of the function V(t) which is zero for negative values
of its argument and is equal to exp(— ¢) for positive values. Find the transform
when exp(—t) is replaced by t xexp(—¢).

Answer: 1/(1 + j2af); 1/(1 + j2rf)?

Show that the response of a linear system with a transfer function H(jf)to a
unit impulse function is

v(t)=2j.mmcos(27tft +¢)df

0

where m = | H| and ¢ = arg(H). (Hint: observe that mis an even function and ¢ is
an odd function.)

Show that the autocorrelation function of a periodic waveform has the same
period as the waveform. A voltage waveform is odd with period 2p and has the

value A volts over half its period and 0 volt over the remainder of its period.
Show that for 0 <t < P its autocorrelation function is given by

R(t)=(1 —21/p)A?
A voltage waveform e(¢) has an arithmetric mean given by
T
e=lim 12 TJ e(t)dt
T—ao T

and R(r) is its autocorrelation function. Deduce that the autocerrelation
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1.10

1.11

1.12

1.13

1.14

function of e(t) + C(where C is a constant) is
R(t)+2Ceé+C?

A system can send out a group of four pulses, each of 1 ms width and with equal
probability of having an amplitude of 0, 1,2 or 3 V. The four pulses are always
followed by a pulse of amplitude — 1 V to separate the groups. What is the
average rate of information transmitted by this system?

Answer: 1600 b/s.

The probabilities of the previous question are altered such that the 0V level
occurs one-half of the time on average, the 1V level occurs one-quarter of the
time on average, the remaining levels occurring one-eighth of the time each.
Find the average rate of transmission of information and determine the redun-
dancy.

Answer: 1400 b/s; 12.5%.

An alphabet consists of the symbol A, B, C, D. For transmission, each symbol is
coded into a sequence of binary pulses. The A is represented by 00, the B by 01,
the C by 10, and the D by 11. Each individual pulse interval is 5ms.
Calculate the average rate of transmission of information if the different
symbols have equal probability of occurrence.
Find the average rate of transmission of information when the probability of
occurrence of each symbol is P(4) = 1/5, P(B) = 1/4, P(C) = 1/4, P(D) = 3/10.

Answer: 200 b/s; 198 b/s.

A telemetering system can transmit eight different characters which are coded for
this purpose into pulses of varying duration. The width of each coded pulse is
inversely proportional to the probability of the character it represents. The
transmitted pulses have durations of 1,2,3,4, 5,6, 7 and 8 ms, respectively. Find
the average rate of information transmitted by this system.

If the eight characters are coded into 3-digit binary words find the necessary
digit rate to maintain the same transmitted information rate.

Answer: 888.8 b/s; 1019.4 digits/s.

A space vehicle at a distance of 381 000 km from the Earth’s surface is equipped
with a transmitter with a power of 6 W and a bandwidth of 9kHz. The
attenuation of the signal between the transmitter and a receiver on the Earth is
given by 10 + 7log, ,(X) dB, where X is the distance measured in kilometres.
The noise power at the receiver input is 0- 1 uW. If the receiver requires an input
signal-to-noise ratio 12dB above the value given by Shannon’s law, find the
maximum rate of transmission of information.

Answer: 50.41 kb/s.



Analogue modulation
theory

By definition, an information-bearing signal is non-deterministic, i.e. it
changes in an unpredictable manner. Such a signal cannot be defined in terms
of a specific amplitude and phase spectrum, but it is usually possible to specify
its power spectrum.

The characteristics of the channel over which the signal is to be transmitted
may be specified in terms of a frequency and phase response. For efficient
transmission to occur, the parameters of the signal must match the character-
istics of the channel. When this match does not occur, the signal must be
modified or processed. The processing is termed modulation, and the need for
it may be made clearer by considering two specific examples, viz. frequency
multiplexing and electromagnetic radiation from an antenna (aerial).

Frequency multiplexing is commonly used in long-distance telephone
transmission, in which many narrowband voice channels are accommodated
in a wideband coaxial cable. The bandwidth of such a cable is typically
4 MHz, and the bandwidth of each voice channel is about 3 kHz. The 4 MHz
bandwidth is divided up into intervals of 4kHz, and one voice channel is
transmitted in each interval. Hence each voice channel must be processed
(modulated) in order to shift its amplitude spectrum into the appropriate
frequency slot. This form of processing is termed frequency division multi-
plexing (FDM), and is discussed in more detail in Section 2.19.

In Chapter 7 we show that, for efficient radiation of electromagnetic energy
to occur from an antenna, the wavelength of the radiated signal must be
comparable with the physical dimensions of the antenna. For audio-fre-
quency signals, antennas of several hundred kilometres length would be
required —clearly a practical impossibility. For convenient antenna dimen-
sions the radiated signal must be of a very high frequency. In this particular
example the high-frequency signal would be varied (modulated) in some way
to obtain efficient transmission of the low-frequency information.

This chapter is concerned only with continuous wave (ie. sinusoidal)
modulation and assumes a noise-free environment. It should be stressed at
this point that real communication is always accompanied by noise, but it is
desirable to consider the effects of noise after the basic ideas of modulation
have been presented. The general expression for a sinusoidal carrier is

v,(t) = AcosQnf.t + ) @.1)

The three parameters 4, f, and ¢ may be varied for the purpose of transmit-
ting information giving respectively amplitude, frequency and phase modula-
tion.
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2.1 DOUBLE SIDEBAND AMPLITUDE MODULATION
(DSB-AM)

With this type of modulation the carrier amplitude is made proportional to
the instantaneous amplitude of the modulating signal. Figure 2.1 shows that
the original modulating signal is reproduced as an envelope variation of the
carrier. Let A = K + v,,(t) where K is the unmodulated carrier amplitude and
v, (t) = acos(2nf , t) is the modulating signal. The modulated carrier, assum-
ing ¢ =0, is
v.(t)=[K +acos2rf,, t)]cos(2nf, 1)

ie.

v.(t)= K[1+mcos(2rf,t)]cos(2nf.t) (2.2)
m is the depth of modulation and is defined as

modulating signal amplitude a

m= - - =
unmodulated carrier amplitude K

For an undistorted envelope, m < 1. If this condition is not observed the
envelope becomes distorted, and a carrier phase reversal occurs as shown in
Fig. 2.2.

Equation (2.2) may be expanded to yield

v.(t)=K |:cos(27rfc 1+ gcos{Zn(fc — [t} + ~r;—lcos{27r(fc +fm)t}:| (2.3)

The amplitude spectrum of the modulated carrier clearly consists of three
components: the carrier frequency f, and the lower and upper side frequen-
cies (f, — f,) and (f. + f,,)- If v, (¢) is a multitone signal, e.g.

Um(t) = a, cos(2nf, t) + a,cos(2nf,t) + a; cos(2n f5 1) 24
the modulated carrier becomes
v(t)= K[1+ m cos(2nf, t) + m,cos(2nf,t)
+ mycos(2nf, t)]cos2nf t (2.5)

V() g'—/_\\ s ’///V\\

_ Carrier envelope
=

Fig. 2.1 DSB-AM.
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Fig. 2.2 Effect of overmodulation.

The depth of modulation is m=m, + m, +m, and, once again for an
undistorted envelope, m < 1. The amplitude spectrum of v(t) now contains a
band of frequencies, termed sidebands, above and below the carrier. If the
modulating signal is expressed in terms of a two-sided amplitude spectrum
the process of full amplitude modulation (AM) (which is an alternative name
for this type of modulation) reproduces the spectrum of v,,() centred at
frequencies + f,. This process is illustrated in Fig. 2.3.

The phasor representation of Eqn (2.3) is a single component of length K
rotating with angular velocity w (= 2n f,) rad/s representing the carrier added
to two phasors of length Km/2 rotating in opposite directions with angular
velocity w,, rad/s relative to the carrier. This is illustrated in Fig. 2.4. The
resultant is a single phasor rotating with angular velocity w, rad/s with an
amplitude varying between the limits K(1 —m) and K(1 + m).

Voltage
] Lower sideband

"3 -'l "v

Cit £,

Fig. 2.3 Amplitude spectrum of DSB-AM.
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Fig. 2.4 Phasor representation of DSB-AM.
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22 DOUBLE SIDEBAND SUPPRESSED CARRIER
AMPLITUDE MODULATION (DSB-SC-AM)

The total power transmitted in a DSB-AM signal is the sum of the carrier
power and the power in the sidebands. The power in a sinusoidal signal is
proportional to the square of its amplitude. If the modulating signal is a single
tone the total transmitted power is proportional to

Km\* [(Km\?
K+ |—) +[=] watts
2 2
The useful power can be regarded as the power in the sidebands as the carrier
component carries no information. The ratio of useful power to total power is

therefore
m? m?
1+ =
2 ( * 2)

For peak modulation (m = 1) thus ratio has a maximum value of 3. If the
carrier can be suppressed, or at least reduced in amplitude, practically all
the transmitted power is then useful power. This can be important when
the received signal is distorted by noise, as it produces a higher effective
SNR than when the full carrier power is transmitted.

The price paid for removing the carrier is an increase in the complexity of
the detector. This is discussed in more detail in Section 2.10. The amplitude
spectrum of DSB-SC-AM may be derived by assuming a carrier 4 cos(2rnf, 1)
and a modulating signal given by acos(2nf, t). The modulated signal is
simply the product of these two component, i.e.

v.(t) = Acos(2nf_t)acos(2nf, 1)
ie.

o) = G eos[2n(f— Sl + Deoslan(f 4401 26

When the carrier is suppressed the envelope no longer represents the mod-

Fig. 2.5 Waveform and phasor representation.
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ulating signal. The modulated carrier and the phasor representation of
Eqn. (2.6) areillustrated in Fig. 2.5. For this specific case the resultant phasor
is a single component with angular velocity w_rad/s varying in amplitude
between the limits + (aA).

23 SINGLE SIDEBAND AMPLITUDE MODULATION
(SSB-AM)

The reason for.suppressing the carrier component was that it contained no
information. It can also be observed that the signal information transmitted
in the lower sideband is the same as is transmitted in the upper sideband.
If either one is suppressed, therefore, it is possible to transmit the same
information, but the bandwidth requirement is halved. The SSB signal that is
transmitted can be either sideband, e.g.

vc(t)=%cos[2n(fc T 1] @7

It should be noted that Eqn. (2.7) seems to infer that a single sinusoidal
component is transmitted. This is a special case since it is applicable to a
single modulating tone. When the modulating signal is multitone the SSB
signal becomes a band of frequencies. The resultant phasor is then the
resultant of several phasors each rotating with different angular velocities and
lengths. The price paid for reducing the signal bandwidth is an increase in the
complexity of the receiver, which is dealt with in Section 2.11.

It becomes clear that, since SSB-AM has half the bandwidth of DSB-AM,
twice as many independent information-bearing signals can be transmitted
over a channel of fixed bandwidth when SSB-AM is used to produce frequency
multiplexing.

24 VESTIGIAL SIDEBAND AMPLITUDE MODULATION
(VSB-AM)

This is used for wideband modulating signals, such as television, where the
bandwidth of the modulating signal can extend up to 5.5 MHz (for a 625 line
system). The required bandwidth for a DSB-AM transmission would there-
fore be 11 MHz. This is regarded as excessive both from the point of view of
transmission bandwidth occupation and of cost. It is generally accepted that
the wider the bandwidth of a receiver, the greater the cost.

Since the amplitude spectrum of a video waveform has a dc component it
would be extremely difficult to produce SSB-AM for a television signal. As a
compromise, part (i.e. the vestige) of one sideband and the whole of the other
is transmitted. A typical example is shown in Fig. 2.6.

The VSB-AM signal thus has both lower power and less bandwidth than
DSB-AM and higher power and greater bandwidth than SSB-AM. The
VSB-AM signal, however, does permit a much simpler receiver than a SSB-
AM signal.
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Fig. 2.6 Amplitude spectrum of a television signal.

2.5 DSB-AM MODULATORS

DSB-AM is produced by multiplying together the carrier and the modulating
signal. The multiplication is achieved by using a network with a non-
linear characteristic. There are basically two types of non-linear networks,
one in which the characteristic is continuous and the other in which the
characteristic is non-continuous, e.g. a switch.

Non-linear networks are not true multipliers because other components,
which have to be filtered off, are produced. The diode modulator is an
example of a modulator with a continuous non-linear characteristic of the
form shown in Fig. 2.7.

The input/output characteristic of the circuit of Fig. 2.7 can be written in
terms of a power series, i.e.

Vow=aVy, +bVZ +cV3 + ... (2.8)
If
Vi = [Acos(2nf t) + Bcos(2nf,, t)]
the output is given by
Vou = a[Acos(2nf.t) + Bcos(2nf,, 1)] + b[ A% cos® (2 nf, 1)
+ B?cos?(2nf,,t) + 2 ABcos(2 f, t) cosQ nf, t] + -

ie.

Vouw =aAcos2nf t)[1+ K, cos(2 nf,, )] + other terms 2.9

where K| = 2 B/a. If the ‘other terms’ are filtered off, Eqn. (2.9) has the same
form as Eqn. (2.2). Hence the diode produces the required modulation.

Non-linear
characteristic

Vin = Acos2nft
+ Bcos2afmt

Fig. 2.7 Diode modulator.
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Fig. 2.8 Switching modulator.

Considering the circuit of Fig. 2.8, it can be shown that when the switch is
open the circuit has a voltage gain of + 1 and when the switch is closed the
circuit has a voltage gain of — 1. If the switch is replaced by a semiconductor
device that is pulsed at the carrier frequency, the output of the amplifier is V,,
multiplied by a square wave of amplitude + 1. The Fourier series of the
square wave is

S(@t)=C, cos(2nf t) + C; cos(b6nf.t) + Cs cos(10nf t) + -
If the input is ¥V, =V, + Vp cos(2nf,,t) then the output will contain a term
C,V, cos 2rf.0)[1+ K, cos(2nf )] (2.10)

where K, = V,/(C,V,), which again has the same form as Eqn. (2.2). Hence
the switching modulator also produces DSB-AM. Filtering is required in this
case also, to remove the unwanted frequency components.

26 DSB-SC-AM MODULATORS

The switching modulator may also be used to produce DSB-SC modulation.
If the input of the circuit of Fig. 2.8 is V; cos(2xf, t) the output will contain a
term

C, Vgcos(2nf, t)cos(2nf,,t)

1e.
Vo= L 2c0sD2n(f,— 1) i1+ 5 cosD2n( . + 1) )
+ higher-frequency terms (2.11)

This equation, when compared with Eqn. (2.3), will be seen to contain no
carrier frequency f..

27 SSB-AM MODULATORS

SSB-AM can be produced from DSB-SC-AM by filtering off one of the
sidebands. The filtering process is relatively difficult to accomplish at high
frequency where the sideband separation would be a very small fraction of the
filter centre frequency. The problem is eased considerably if the initial
modulation takes place at a low carrier frequency. The selected sideband can
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then be shifted to the required frequency range by a second modulation. The
sidebands of the second modulation are widely spaced, and less exact filtering
is necessary.

The two-stage modulation process is shown in Fig. 2.9; a typical first
modulating frequency would be in the region of 100kHz. Most modern
high-power SSB-AM transmitters working the HF band (3 — 30 MHz) gen-
erate signals in this way. An interesting alternative method is based on the
Hilbert transformation. The Hilbert transform of a signal v(t) is the sum of the
individual frequency components that have all been shifted in phase by 90°.
The SSB-AM signal for a single modulating tone is

v(t) = Acos[2n(f, + fr)t]
ie.
ve(t) = A[cos(2nf t)cos(2n f,,t) — sin(Rn f t)sin(2n f,,1)] (2.12)

Equation (2.12) reveals that v (¢) is obtained by subtracting the outputs of two
DSB-SC-AM modulators, often called balanced modulators. There is a
quadrature phase relationship between the inputs of the first modulator
relative to the inputs of the second modulator. A block diagram of this type of
SSB-AM modulator is given in Fig. 2.10, and it should be noted that sideband
filters are not required. The modulator does, however, require the provision
of wideband phase-shifting networks.

Voltage Qriginal
modulating
frequencies

First carrier Bandpass filter
with low centre

frequency
»*, '.‘AI
[} . -
' = Bandpass filter with
v - * & Frequency high centre frequency
Second carrier
Upper sideband of first carrier Lower sideband of L,
becomes modulating - ) Y
signal for second /second carrier Upper sideband of /[ |\
carrier second carrier / Vo p
I -

d -

Fig. 2.9 Two-stage production of SSB-AM.

Carrier phase ot e
Modulating| i Balanceq |" 27fct sin 2nfmt
signal phase modulator
SSB-AM
——_—. +
Balanced
modulator cos 2nfgt cos 2nfpyt

Fig. 2.10 Hilbert transform production of SSB-AM.
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28 VSB-AM MODULATORS

VSB-AM modulation is produced by filtering the corresponding DSB-AM
signal. In a television transmission system the required filtering is usually
achieved by a series of cascaded high-frequency tuned amplifiers. The centre
frequency of each amplifier in the chain is chosen so that the overall cascaded
frequency response is asymmetrically positioned relative to the carrier fre-
quency.

29 DSB-AM DETECTION

The detection (i.e. demodulation) of DSB-AM can be considered broadly
under two headings; these are non-coherent detection and coherent (syn-
chronous) detection. Traditionally, broadcast receivers have been of the
superheterodyne type (see later) and have made use of envelope detection.
With the advent of the integrated phase locked loop (PLL), coherent
detectors are now attractive. The envelope (non-coherent) detector, as its
name suggests, physically reproduces the envelope of the modulated carrier.
This detector is basically a half-wave rectifier, and commonly makes use
of a silicon diode whose typical current voltage relationship is shown in
Fig. 2.11.

The diode acts as a rectifier and its effect on the envelope of a DSB-AM
signal is shown in Fig. 2.11. For large carrier amplitudes the envelope is
reproduced by the linear part of the characteristic (provided the depth of
modulation is less than 100°%] ) and no distortion results. This is termed ‘large
signal operation’. For small carrier amplitudes the envelope is reproduced by
the non-linear part of the characteristic and distortion of the envelope occurs.
Assuming the input to the detector is

Vi =K[1+ mcos(2xnf,, t)] cos(2nf.t)
when operating in the large signal mode, the output is given by
i=P[1+ mcos2nf,,t)]W1) (2.13)

where V(t) is a half-wave rectified sinusoid of carrier frequency. Representing
¥(t) by its Fourier series the output is

i=P[1+mcosQnf, t)][C,+ C,cos(2nf,t)
+ C, cos(dnf t) + C; cos(b6nf_ t) + ---] (2.14)
ie.
i=PCy+ PCycos(2nf, t) + unwanted terms (2.15)

The unwanted terms can be filtered off leaving the original modulating signal.
To ensure that the envelope remains in the linear region the depth of
modulation must be less than 100%,. When operating in the small signal
mode the diode current is given by

i=aV, +bV2: +cV3 + - (2.16)
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Fig. 2.11 Large and small signal operation of a diode detector.

Letting

Vin = K[cos2nf 1) + s mcos{2n(f, — f )t} + smcos{2n(f, + £,)t}]
The square term gives a contribution to the output current of

bK*{cos(2nf.t) + §mcos[2n(f, — f,.){] + smcos[2n(f, + f)t]}>

ie.

b{K?mcos(2nf,t) +  K*m? cos(dnf,, t)} + unwanted terms  (2.17)

The unwanted terms are outside the modulating signal bandwidth and can
be filtered off. The output current thus contains the required modulating
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frequency together with a second harmonic distortion term. For the lower
modulating frequencies the second harmonic will be within the modulating
signal bandwidth and cannot be filtered off. (When the modulating signal is
multitone, cross-modulation between the individual components will also
occur.) The ratio of fundamental to second harmonic is
2 2 m
K*m:K 5 e 1: 2
Thus, the relative distortion is proportional to the depth of modulation, m.
(For a depth of modulation of 309, the second harmonic distortion is 7%, .)

To minimize distortion, the receiver should be designed so that the signal
voltage is as large as possible. For modulating signals derived from speech or
music, the peak modulation is restricted to a depth of 809 ; this restricts the
average depth of modulation to about 309, which limits distortion under
both large and small signal operation.

The ‘unwanted terms’ which appear in Eqns (2.15) and (2.17) have frequen-
cies very much higher than the modulating frequencies and can be removed
by a simple R filter as shown in Fig. 2.12. The physical action of this detector
is identical to the action of a half-wave rectifier with capacitive smoothing.
The rc time constant is chosen such that the capacitor can follow the highest
modulating frequencies in the envelope of the rectified carrier without losing
excessive charge between carrier pulses.

In the foregoing analysis we assumed that a single modulated carrier
appeared at the input of the envelope detector. In a broadcast environment
there will be many different modulated carriers present in the antenna circuits
of all receivers. A primary function of the receiver, therefore, will be to select
one of these carriers and reject all others. The obvious way to achieve this
would be to precede the detector with a bandpass filter designed to pass the
required carrier and its sidebands and to reject the rest. In modern receivers
the necessary frequency response is obtained by use of ceramic resonators.
These circuits are available as hybrid units, and a typical example with its
frequency response is shown in Fig. 2.13(a).

The circuits can be designed to have a flat response over the required band-
width and a very large attenuation on either side. One problem, however, is
that the centre frequency has a fixed value. It is not possible to vary this centre
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Fig. 2.12 Physical action of envelope detector.
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Fig. 2.13 The superheterodyne principle. (a) Ceramic resonator circuit and frequency
response; (b) the superheterodyne receiver.

frequency, in order to receive other modulated carriers, and at the same time to
maintain the required attenuation on either side of the passband. The super-
heterodyne receiver was designed specifically to overcome such a problem by
transferring the sidebands of the selected carrier frequency to a constant
intermediate frequency (IF). A standard IF of 470 kHz has been adopted for
receivers working in the medium waveband (540 kHz to 1640 kHz).

A block diagram of the superheterodyne receiver is shown in F' ig. 2.13(b)
and by examining the functions of each of the blocks the derivation of the
term superheterodyne will become apparent. The sidebands of the selected
carrier are transferred to a frequency of 470 kHz by multiplying (heterodyning)
the carrier with the output of a local oscillator. The output of the multiplier will
contain sum and difference frequencies and the difference frequency between
the local oscillator and selected carrier is made equal to 470 kHz. To produce
this figure, the local oscillator must have a frequency of 470kHz above or
below the required carrier. If the local oscillator is above the carrier frequency
the required frequency range of the oscillator is 1010 kHz to 2110kHz for a
receiver operating in the medium waveband. This is a frequency ratio of
approximately 2:1 (i.e. one octave). If the local oscillator is below the carrier
frequency the corresponding range would be 70kHz to 1170kHz, which is
a ratio of 17:1. The local oscillator is designed to work above the required
carrier frequency as it is then required to have a range of about one octave.
Hence the derivation of the term superheterodyne.

It is not the purpose of this text to discuss in detail the design of super-
heterodyne receivers,! but there is one important point worth noting that is a



disadvantage of the superheterodyne principle. When the local oscillator is
470kHz above the required carrier the sidebands will be transferred to 470
kHz. However, if there is a second carrier at a frequency of 940 kHz above the
required carrier the difference between this second frequency and the local
oscillator frequency will also be 470kHz. This is known as the ‘image fre-
quency’ and is twice the intermediate frequency above the required carrier
frequency.

To prevent the sidebands of the image frequency from reaching the
detector it must be attenuated; hence the radio frequency amplifier in the
superheterodyne receiver also has a bandpass frequency response. A single
tuned LC circuit is usually adequate for this purpose.

It is worth noting that although Fig. 2.13(b) shows the superheterodyne
receiver as a series of separate blocks, these blocks, with the exception of the
ceramic resonator, are available on a single chip.

Coherent detection operates on the principle that is the inverse of modula-
tion, i.e. the frequency of the sidebands is translated back to baseband by
multiplying the DSB-AM signal by a sinusoid of the same frequency as the
carrier. In the case of DSB-AM the carrier is actually transmitted, so the
problem is one of extracting this component from the DSB-AM signal and
then applying the extracted component to a multiplier along with the original
modulated signal. A block diagram of the coherent detector is shown in
Fig. 2.14. The output of the coherent detector may be written

Vo= K[1+ mcos(2nf, t)] cos(2nf. t)cos(2nf 1)

ie.
V,..= K[1+ mcosQ2nf,, t)] cos*(2nf.t)
but
cos?2nf,t=3[1 + cos(dnf. )]
Therefore
Vou = 3 Kmcos(2nf,, t) + unwanted terms (2.18)

The unwanted terms will be sidebands of 2f, and are easily filtered off. A

DSB—AM Carrier
input 4 PLL p

Multiplier LT P Ouwput

Phase locked loop (PLL)

DSB-AM Carrier
. Phase detector Output .voltage Voltage controlled -
input proportional to oscillator

phase difference

1

Fig. 2.14 Coherent detection of DSB-AM.
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convenient method of extracting the carrier is to use a phase locked loop as
shown in Fig. 2.14.

The basic operation of the loop may be described as follows. The input to
the phase detector is the DSB-AM signal and a sinusoid from a voltage
controlled oscillator (VCO). The output of the multiplier is a signal propor-
tional to the phase difference between the carrier of the DSB-AM signal and
the VCO output. This error signal is fed via a low-pass filter to the VCO input.
Its effect is to cause the output frequency of the VCO to change in order to
minimize the phase error. Hence the PLL is essentially a negative feedback
system. When the loop is locked, the frequency of the VCO output is equal in
frequency to the incoming carrier.

The PLL is a very important circuit as it also finds use as a frequency
modulation (FM) detector. This is described more fully in Section 2.18.

2.10 DSB-SC-AM DETECTION

This type of modulation requires coherent detection, but since there is no
carrier transmitted the required component must be generated by a local
oscillator. Special circuits are required to ensure that the local oscillator is
locked in phase to the incoming signal. If the incoming signal is represented
by

V., = Kcos(2nf.t)cos(2nf,,t)

and the output of the local oscillator is cos(2n f .t + ¢), the output of the coherent
detector will be

V=3 KcosQnaf,t)[cos(dnf t + ¢) + cos¢] (2.19)

After filtering off the components centred at 2f, this gives a term
1K cos(2nf,,t)cos . When ¢ =0 the output is a maximum and is propor-
tional to the original modulating signal; when ¢ = 90° the output is zero. A
circuit for demodulating a DSB-SC-AM signal, which makes use of this
property, is shown in Fig. 2.15.

SCDSB—-AM Demodulated
input Multioti ~ output
plier > el
> {in phase} ~ bl
Ve ¥
vco ~ Phase
detector
90°
phase shift
Multiplier ~s
> {quadrature phase) ~

Fig. 2.15 The Costas loop.
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If the local oscillator has the same phase as the missing carrier the ‘in phase’
channel will have the correct output and the ‘quadrature channel’ will have
zero output. The output of the multiplier is a voltage required to maintain the
desired value of the VCO phase. If there is a phase error between the VCO
output and the missing carrier, the output of the ‘in phase’ channel will drop
and the output of the ‘quadrature channel’ will become non-zero.

The multiplier now produces an output signal that, when applied to the
VCO, will cause the phase error between the missing carrier and the VCO
output to tend to zero. Hence the circuit automatically produces a locally
generated sinusoid of the correct phase. This circuit was initially developed
for data communications and is known as the Costas loop.

211 SSB-AM DETECTION

SSB-AM signals require coherent detection and, once again, a local oscillator
is required, as no carrier is transmitted.

Assuming the SSB-AM signal is K cos 2xn( f, + f,)t and the local oscillator
signal is cos(2n f.t + ¢) the output of the coherent detector will be

Vou = 3K cos[2n2f, + f)t + ¢]1 + 1K cos2nf, .t — P) (2.20)

When the term at frequency (2f, + f,,)is filtered off the remaining components
can be written

1 K cos(2nf, t)cos ¢ + sin(2nf,, t)sin ¢ (2.21)

If ¢ =0 the output is the $ K cos(2nf,,t) and when ¢ =90° the output is
3 Ksin(2nf,,t). Hence in contrast to DSB-SC-AM there is also an output
(shifted in phase by 90°) when ¢ = 90°. For human listeners, whose hearing is
relatively insensitive to phase distortion, the requirement of phase coherence
can be relaxed. It is, however, necessary to have frequency coherence between
the missing carrier and the local oscillator output. Modern point-to-point
and mobile SSB-AM communications system use crystal-controlled oscil-
lators and frequency synthesizers to achieve the required frequency stability.
This is typically 1 part in 10° (i.e. a stability of 1 Hz at a frequency of 1 MHz.)

212 VSB-AM DETECTION

VSB-AM transmission is virtually exclusive to television systems, and a
typical television detection system will therefore be described in this section.
Television receivers use a conventional diode detector to demodulate the
video carrier but some pre-proccessing of the VSB-AM signal occurs in the
amplifiers that precede the detector. To illustrate the detection procedure it
will be assumed that a VSB-AM signal has been produced from a two-tone
modulating signal, i.e.

Um(t) = g cOS2nf, 1) + g, cos(2n fy 1)
The DSB-AM signal from which the vestigial sideband signal is derived will
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Fig. 2.16 VSB-AM receiver response.

be
v(t) = K[cos(2nf t) + 3m, cos {2n( f, — f1)t} + $ m, cos {2n( f, — f,)t}
+ 3mycos {2n( f, + f)t} + $m,cos{2n( £, + f)t}] (2.22)

To produce a VSB-AM signal the component at a frequency of ( f, —f,) in the
lower sideband is assumed suppressed.

It has been shown in Section 2.9 that, if the diode detector is working in the
linear region, the input signal is effectively multiplied by the carrier and its
harmonics [Eqn (2.14)]. The detector output will therefore contain compo-
nents

K[cos*(2nf t) + m, cos{2n(2f, — f,)t} + i m, cos(— 2n f,1)

+ amycos{2n(2f, + f,)t} + tm, cos(2n £, 1)

+ gmycos2n{(2f, + f,)t} + tm, cos(2n f, 1)]

+ unwanted terms (2.23)
The unwanted terms can be filtered off, and it then becomes clear that the
detector output contains components

1K [2m cos(2nf, t) + m, cos(2nf, t)]
ie.
1[2a,cos(2nf, t) + a, cos(2nf, t)]

The amplitude of the component transmitted in both sidebands is doubled
relative to the amplitude of the component transmitted in the single sideband.
To compensate for this, the gains of the amplifiers preceding the detector are
designed to be asymmetric about the carrier frequency. The characteristic is
shown in Fig. 2.16. The response is adjusted in such a way that the compo-

nents present in both sidebands add to give the same output that would occur
if only one sideband was transmitted.

2.13  ECONOMIC FACTORS AFFECTING THE CHOICE
OF AM SYSTEMS

It is apparent that the special amplifier responses would not be required if the
pre-processing was done at the transmitter, which would have the added
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advantage of reducing the transmitted power. The present standards were
chosen on an economic basis. If the processing was done at the transmitter,
the television receiver amplifier (of which there are many) would require a flat
response over a bandwidth of 6.75 MHz. When the processing is done in the
receiver, the required amplifier bandwidths are reduced to 4.25 MHz. This
represents a considerable saving in the production costs of a typical television
receiver.

The economic argument also decides to a large extent the standards adopted
in other forms of telecommunication. A local broadcast transmission system,
for example, will have a single high-power transmitter with many receivers.
The unit cost of each receiver is lowest when DSB-AM is used, which dictates
the use of DSB-AM in this particular situation. The conditions in a mobile
communications system will be somewhat different; there will usually be a
limited number of receivers, and transmitted power will be at a premium. In
this environment SSB-AM with its lower transmitted power becomes attract-
ive. SSB-AM is also used in frequency multiplexed systems over coaxial
cables. The obvious advantage here is that twice as many channels may be
transmitted as with DSB-AM for a given cable bandwidth.

214 ANGLE MODULATION

This is an alternative to amplitude modulation and, as its name suggests,
information is transmitted by varying the phase angle of a sinusoidal signal.
The sinusoidal signal can be conveniently written as

v.(t) = Acosf(t)

where 6 is a phase angle that is made proportional to a function of the
modulating signal. The time derivative of 8(¢) is defined as the instantaneous
frequency of the sinusoid. Strictly speaking, ‘frequency’ is only defined when
0(t) is a linear function of time. It is mathematically convenient to write the
derivative of 8(t) as an ‘instantaneous frequency’, i.e.

6(t) =2nf,
Angle modulation is itself divided into two categories; for example, let
0t)=2nft+ ¢+ K, v,(t) (2.24)

This is termed phase modulation because 6(t) varies linearly with the
amplitude of the modulating signal. Frequency modulation is produced if 6(¢)
varies linearly with the amplitude of the modulating signal, e.g. let

6(t) = 2nf, + 2nK ,v,(t) = 21f,; (2.25)

Therefore

t
0(t)=2nft+ ¢+ 21K, .[ vm(t) dt (2.26)
(4]
In this case 0(t) is linearly proportional to the amplitude of the integral of the
modulating signal.
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2.15 PHASE MODULATION (PM)

It is shown in Section 2.16 that angle modulation may be considered as a
non-linear process in terms of the relationship between time and frequency
domains. This means that it becomes very difficult to derive expressions for
angle-modulated waves unless very simple modulating waveforms are con-
sidered. In this context a single modulating tone may be regarded as such a
signal. The modulating signal is given by

vm(t)=acos(2nf,, 1)
The PM carrier produced by this signal has the form
v.(t) = Acos[2nft + ABcos(2rf,t)] (2.27)

where A 8 = K, ais the phase shift produced when the modulating signal has
its maximum positive value, i.e.

v (t) = Acos(2nf t) cos[A O cos(2nf,t)]
— Asin(2nf t)sin[A O cos(2nf,, )]

If A6 is restricted to a low value (A 8 « 1) then cos[A 8 cos(2nf, t)] ~1 and
sin[A cos(2n f,t) =~ A Ocos(2nf,,t). The modulated carrier may then be
approximated as

v.(t) = A[cos(2nf.t) — AOsin(2nf t) cos(2nf, t)]
This can be expanded to yield
v.(t) = A[cos(2nf.t) + 3 AOsin (2n(f, — f,)t}
+ 3 A0sin {2n(f, + fo)t}] (2.28)

When this equation is compared with the expression for DSB-AM
[Eqn (2.3)] it will be seen that, provided the maximum phase shift it restricted
to low values, the PM signal is equivalent to DSB-AM in which the carrier
has been shifted in phase by 90° relative to the sidebands. PM may thus be
produced from DSB-SC-AM by reintroducing the suppressed carrier in
phase quadrature. This process is illustrated in block schematic form in
Fig. 2.17. The phasor representation of narrowband PM (A 6 « 1) is given in
Fig. 2.18. For small values of A 8 the resultant phasor has an almost constant
amplitude but the phase angle « is a function of time.

Yot ——————————»
Batanced
modulator +
Narrowband
Carrier M
90° +
phase shift

Fig. 2.17 Phase modulation.



Frequency modulation ‘ l 59 l

we—wm

] Carrier

Fig. 2.18 Phasor representation of narrowband PM.

2.16 FREQUENCY MODULATION (FM)

The expression for a frequency modulated carrier is developed in a similar
fashion to the expression for a PM carrier. The modulating signal is again
assumed to be a single tone, and the phase of the carrier is now related to the
time integral of v, (t), i.e.

v (t) = Acos [21: ft+2nK, f acos(2nf,, t)dt:| (2.29)
Therefore 0
v,(t) = A cos [2n fit+ Kf2 2sinQnf., t):|
ie. )
v,(t) = A cos [2nf,t + Bsin(2nf, 1)] (2.30)

The constant f is termed the modulation index. By comparison with
Eqn(2.7), it is clear the K,a represents the maximum change in carrier
frequency that is produced by the modulating signal. Letting K,a = Af, the
modulation index is defined as B = Af./f,. It is important to note that f
depends both on the carrier deviation, which is linearly proportional to the

Ymll) 0

vell)

Fig. 2.19 Frequency modulated carrier.
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signal amplitude, and also on the frequency of the modulating signal. The
phase shift A that occurs in PM is independent of the modulating signal
frequency. The FM waveform that results from a single modulating tone is
shown in Fig. 2.19.

The amplitude spectrum of the FM carrier is obtained by expanding the
trigonometric function of Eqn. (2.30).

v.(t) = Acos(2nf t)cos[Bsin(2nf, )]
— Asin2nf t)sin[Bsin(2nf,_ 1)] (2.31)

It is convenient to consider Eqn (2.31) for two specific types of FM — narrow-
band FM and wideband FM. The reason for this distinction is made clearer
by considering the series expansion of the trigonometric functions

cos[Bsin(2nf,,t)] and sin[Bsin(2nf, t)].
B*sin*(2nf, 1) B*sin*(Q2nf, 1)
TR

6 o1n 6
+,3 s1n6('21rf,,nt)+

cos[Bsinnf t)]=1—

sin[Bsin@nf,0] = Bsin@nf,1)— ﬁ_s_m;fﬂ

+/9’Si’1*’5('2“ﬁni)+...

Narrowband FM is produced when § « 1. The series expansions for this case
can be approximated by

cos[Bsin2nf,t)]]=~1 and sin[Bsin(2xnf,,t)] ~Bsin2nf, 1)
Using these approximations, Eqn (2.31) can be rewritten as

v.(t)=A [cos(anc t)— gcos {2n(f. —f)t} + gcos27r{(fc +fm)t}] (2.32)

This expression shows that narrowband FM is equivalent to DSB-AM with a
phase shift of 180° in the lower sideband. The bandwidth in this case is
identical to the bandwidth of a DSB-AM signal and is exactly twice the
bandwidth of the modulating signal. The resultant phasor, which is illus-
trated in Fig. 2.20, is similar to the resultant for PM, i.e. it has almost constant
amplitude and a phase angle that is a function of time.

It is evident that as the value of B increases more terms in the series
expansions of cos[fsin(2nf,, t)] and sin[Bsin(2nf,, t)] become significant and
cannot be ignored. This illustrates the non-linear relationship between the
time domain and frequency domain, which is a feature of angle-modulated
signals. As an example, consider the series expansions of cos Bsin(2nf, t)
and sin fsin(2nf,, t) when B =0.5. The new approximation are

cos[Bsin(2nfy, )] =1 — § B2sin?(2nf,, t) =1 — L B2[1 — cos(dn S, 1)]
sin[Bsin(2nf, )] ~ Bsin(2nf,, 1)
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Fig. 2.20 Phasor and spectral representation of narrowband FM.

Equation (2.31) may be rewritten for this example as
v,(t) = A{(1 — } p*) cos2nf t
— 3 B*[cos{2n(f, — fu)t} — cos {2n(f. + fw)t}]
+ 4 B [cos{2nr(f, — 2fu)t} + cos{2n(f. + 21t} 1}  (2.33)

A simple increase in the value of § (produced by an increase in the amplitude
of the modulating signal or a decrease in its frequency) produces a decrease in
the amplitude of the component at frequency f, and results in two additional
frequency components spaced at + 2 f,, relative to f,. The bandwidth thus
effectively doubles, when compared with the previous case, simply as a result
of increasing the amplitude of the modulating signal. This non-linear rela-
tionship between time and frequency domains becomes apparent when
Fig. 2.21 is compared with Fig. 2.20.

Further increases in the value of B will clearly increase the number of
significant terms in the series expansion of the two trigonometric functions.
Both these functions are, in fact, periodic and can therefore be expressed in
terms of a Fourier series, i.e.

cos[Bsin(2nft)] = Co + C,cos(dnf,t) + Cocos(8nft) + -+
sin[Bsin(2rf )] = Csinuf,t) + Cysin(6mf,t) + -+

The Fourier coefficients C, are themselves infinite series and may only be
evaluated numerically for specific values of n and B. These coeflicients are
termed Bessel functions of the first kind, i.e. C, = J,(B). Graphs of J,(B) for
several values of n are given in Fig. 2.22. Using the Fourier series representa-
tion, Eqn. (2.31) may be rewritten as

v,(t) = Jo(B)cos2nf,t) — J () [cos {2n( f. — fwt} —cos{2n( f. + fu)t}]
+J5(B)[cos {2n(f, — 2f)t} + cos{2n( f. + 2fn)t} ]
—J5(B)[cos{2n(f, —3 f)t} —cos{2n(f. +3 f)t}]

- (2.34)

The amplitudes of the carrier and sidebands, of which there is an infinite
number, depend on the value of B which fixes the appropriate Bessel function
value. Tables of Bessel functions for a range of n and p are given in Appendix
A

The bandwidth of the wideband FM signal is apparently infinite, but in
practice some simplifying approximations are possible. With reference to
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Fig. 2.21 Non-linearity of the FM process.
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Fig. 2.22 Bessel function of order n for various values of .

Fig. 2.22, it can be observed that as the value of n is increased then  must be
made progressively larger before the appropriate value of J,(8) becomes
non-zero. Extrapolating this trend it is found that for large values of n the
value of J,(f) is approximately zero when B <n, e.g. when § =100 then
J101(B), J102(B), etc., are approximately zero since f < n. In this example,
therefore, there are 100 values of J,( §) (excluding the carrier J,()) that have
a non-zero value. Hence this leads to the approximation that when g is large
there are f values of J,( f) that are non-zero. Under these circumstances there
will be B pairs of sidebands, each spaced by f,,, in the amplitude spectrum of
the modulated signal.
The signal bandwidth thus becomes

B =2pf.=24f,

Le. for large values of B the signal bandwidth is approximately twice the
carrier deviation. An accurate figure for the bandwidth of an FM signal for
either very large or very small values of g is given by Carson’s rule, which
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states
B=2f,(1+p)

ie.
when fB>»>1 B=~2f.5=2Af.
when f«1 B=x~2f,

For other values of § the signal bandwidth must be computed from Bessel
function tables. The spectrum of the FM signal is then defined as containing
all sideband components with an amplitude > 19 of the unmodulated carrier
amplitude.

In the UK, commercial FM broadcasting stations restrict the maximum
carrier deviation to + 75kHz. A single modulating tone of frequency 15 kHz
producing peak frequency deviation of the carrier would yield a modulation
index f=5. The number of sideband terms with an amplitude of 0.01 or
greater is obtained from the Bessel function tables as 8. The bandwidth is then

B=2x8x f,=240kHz

If the peak frequency deviation is produced by a 5 kHz modulating tone the
modulation index will have a value of §=15. The number of significant
sidebands increases to 19 and the bandwidth becomes

B=2x19 x f, = 190kHz

Although the larger value of B produces more significant sidebands, the
sidebands are actually closer together and the bandwidth of the FM signal is
less.

It will be apparent from the foregoing analysis that FM and PM are very
closely related, so much so that an ‘instantaneous frequency’ and ‘modulation
index’ can also be defined for PM. It is instructive to compare PM and FM
from the point of view of these parameters, as the comparison gives some
insight into why FM is used almost exclusively in preference to PM. For
a single modulating tone the instantaneous frequency in a frequency
modulated wave has been defined as

2af,=2nf.+2nK,acos(2n f,t)
ie.
fi=f.+Af . cos(2nf 1)
which gives

Af.

m

v(t)=A cos|:27tfct + sin(27rfmt):|

For PM,
0t)y=2nf.t+Abcos2nf, 1)
Therefore
6(t)=2nf,=2nf.—AO2nf, sinnf, 1)
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ie.
0(t)=2nf, — 2rAf, sin2nf,.1)

The PM carrier may therefore be written in terms of a frequency deviation
Af,=—~ABf,, ie.

v.(t)= A cos [anc t+ ATfJZCos(21rfm t)] (2.35)

If a modulation index B, is defined for PM, Eqn. (2.35) can be written
v(t)=Acos[2nf_ t + B,cos(2n £, 1)]

which is similar to Eqn (2.30) except that B, does not depend on the value
of f,,.

Having shown that a PM carrier can be considered in this way, it is then
possible to obtain the bandwidth of a wideband PM signal by reference to
Bessel function tables. If a frequency deviation A f, = £ 75kHz s produced in
a PM carrier by a modulating tone of 15kHz there will be eight significant
sidebands and, as with the FM carrier, the bandwidth of the signal will be
approximately 240 kHz. However, since B, does not depend on the value of f,,
there will be eight sidebands for all possible values of f, = A modulating tone of
50 Hz would result in a bandwidth of 2 x 8 x 50 = 800 Hz. The value for FM
would be approximately 150 kHz. Thus it becomes apparent that PM makes
less efficient use of bandwidth than frequency modulation, since the band-
width of any receiver must be equal to the maximum bandwidth of the
received signal. It is shown in Chapter 4 that SNRs in modulated systems are
directly related to the bandwidth of the modulate wave. Hence it may be
concluded that the signal-to-noise performance of FM will be superior to
PM, and for this reason FM is usually chosen in preference to PM. (There is
one notable exception to this rule, namely the transmission of wideband data
signals, which is dealt with in Chapter 3.)

Because of the inherent non-linearity of the FM process, it is not possible to
derive the bandwidth for a multi-tone modulating signal. (The bandwidth of a
frequency modulated wave has been derived by Black? for a two-tone
modulating signal.) One observation that can be made is that if the modu-
lating signal is multitone then no single component can produce peak
frequency deviation, or overmodulation would result. Under these circum-
stances, practical measurements have shown that a reasonably accurate
measure of the signal bandwidth is given by a modified form of Carson’s rule,
ie. B=2(Af,+ D), where D is the bandwidth of the modulating signal.

2.17 FREQUENCY MODULATORS

Frequency modulation may be produced directly by varying the frequency of
a voltage-controlled oscillator or indirectly from phase modulation. Fig-
ure 2.23 illustrates two methods of producing frequency modulation directly.
The first method is based on a Rc oscillator and the second is based on a
parallel resonant Lc circuit.
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Fig. 2.23 Direct FM. (a) rRC voltage controlled oscillator, (b) Varicap diode tuning
of LC tank circuit.

The rC circuit has the advantage of requiring no inductance and operates
as described. When the output of the comparator is ¥* the diode is reversed
biased and the integrator charges the capacitor C from a current proportional
to V... When the capacitor charges to the switching voltage of the comparator
output goes to ¥V~ which forward biases the diode and produces a rapid
discharge of C. This causes the comparator output to return to ¥* reverse
biasing the diode and causing C to charge once again from V,,. The charging
time of the capacitor is inversely proportional to charging current and hence
the frequency of oscillation is linearly related to V,,. The comparator output
will be a variable-frequency pulse train; a sinusoidal frequency modulated
waveform is obtained by appropriate filtering.

The Lc circuit forms the tank circuit of a Lc oscillator. A common method
of altering the resonant frequency of such a tuned circuit is to use the
dependence of capacitance of a reverse biased p—n junction on the reverse
bias voltage. Varactor (varicap) diodes are specifically designed for this
purpose and Fig. 2.23 shows a typical arrangement of these diodes in a
parallel resonant circuit. The total capacitance in this circuit will be C = C, +
A C where A C = Kv,,(t). The resonant frequency of the circuit is given by

1 1 1
TLO T (LCY) 1+ (AC/Co) 1

If the change in capacitance is small then AC « C, and the binomial
expansion of [1 + (A C/C,)]~ */* is approximated by (1 — A C/2C,), i.e.

1 AC
= Tegm (1 =2 co)

2nf,
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Fig. 2.24 Armstrong frequency modulator.

Therefore
2nfr = 2nfc{1 - [Kvm(t)/ZCOJ}

or

Ji=J[1 - K vg(9)] (2.36)

The resonant frequency of the tuned circuit is thus directly related to the
amplitude of the modulating signal. The tuned circuit is used as the frequency
determining network in a feedback oscillator thus producing FM directly.
Such a modulator is restricted to narrowband FM since A C « C,, and fre-
quency multiplication is required to produce wideband FM.

The analysis of the previous section has shown that FM is equivalent to
PM by the time integral of the modulating signal. Narrowband PM is itself
equivalent to DSB-SC-AM with the carrier reinserted in phase quadrature.
The Armstrong indirect frequency modulator combines both these proper-
ties, and a block diagram is given in Fig. 2.24.

The maximum value of § that can be produced by this modulator is about
0.2. This means that several stages of frequency multiplication are required to
produce wideband FM. The advantage of the Armstrong modulator is that
the carrier is produced by a stable crystal oscillator. It should be noted that
when the frequency of the carrier is multiplied by n (by means of a non-linear
device) the frequency deviation, and hence the value of 8, is also multiplied by
the same factor.

218 DEMODULATION OF A FREQUENCY
MODULATED WAVE

The primary function of a frequency modulation detector is to produce a
voltage proportional to the instantaneous frequency f; of the modulated
wave. The FM waveform is given by

t

v.(t)= A cos (anct + KJ'

0

vm(?) dt)
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If this waveform is differentiated, the resultant waveform is

t

vb.()=—A[2nf. + Kv,(t)] sin (Zn:fct +K f

Um() dt>

0

This is a frequency modulated wave that now has an envelope of magnitude
proportional to the amplitude of the modulating signal v, (t). The modulating
signal may then be recovered by envelope detection. The envelope detector
willignore the frequency variations of the carrier. Traditionally FM detectors
have relied upon the properties of tuned circuits to perform the required
differentiation. This is demonstrated in Fig. 2.25, where the resonant fre-
quency of the tuned circuit is chosen such that the carrier frequency f is on
the slope of the circuit response.

The linearity of a single tuned circuit is limited to a relatively small
frequency range. This range may be extended by introducing a second tuned
circuit with a slightly different resonant frequency. A typical circuit and its
response is shown in Fig. 2.26. Each circuit is fed in antiphase by the tuned
secondary of the high frequency transformer. Several FM discriminators are
based upon this type of circuit; the circuit of Fig. 2.26 is known as a balanced
discriminator. Circuits of this type are also sensitive to fluctuations of the
amplitude of the FM wave. To avoid this the FM waveform is ‘hard limited’,
as shown in Fig. 2.27, before being applied to the discriminator.

Modern detection techniques are based upon integrated circuit technol-
ogy, where the emphasis is on inductorless circuits. The hard limited FM
signal is in fact a variable frequency pulse waveform. The instantaneous
frequency is preserved in the zero crossings of this pulsed signal. A completely
digital circuit based upon a zero crossing detector is shown in Fig. 2.28. The
number of zero crossings in a fixed interval are gated to the input of a binary
counter. The counter outputs are then used as inputs to a digital-to-analogue
converter (DAC). The analogue output voltage is thus proportional to the
number of zero crossings that occur during the gating interval. Thus the
output of the DAC is proportional to the original modulating signal v,,(t).

AV

[}
i
]

&

op---—==
L

r

Fig. 2.25 Detection of FM with a single tuned circuit.
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Fig. 2.27 Action of the limiter.

2.18.1 The phase locked loop

This is an important class of inductorless frequency modulation detector
which is widely available in integrated form. The circuit is a feedback network
with a voltage-controlled oscillator (VCO) in the feedback path. Feedback is
arranged so that the output frequency of the VCO is equal to the frequency of
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Fig. 2.28 Digital (zero crossing) FM detector.

the input waveform. If the input frequency is modulated by a voltage and the
output frequency of the VCO tracks the variation in the input frequency, then
the voltage at the VCO input must be equal to the voltage which produced the
frequency modulation. The phase locked loop therefore demodulates the
frequency modulated input.

The basic phase locked loop is shown in Fig. 2.29, and in the initial analysis
it will be assumed that the transfer function of the loop filter H(f)=1. It is
convenient to represent the frequency modulated input as

v(t)=Acos2nf .t + ¢, (1))
where

t

¢1(t) = km J~ Um(t) dt

0

ie. ¢, (1) =k, v,(t), v, (t) being the modulating voltage.
The output of the VCO may be written as

vr(t) = BCOS(znfct + ¢2(t))

The phase comparator is essentially a multiplier followed by a low-pass filter

Phase voll) Loop filter Volt)
comparator H(t) o

velt) ——————»

v, () Voltage
controlied
oscillator

Fig. 2.29 The basic phase locked loop.
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and produces an output proportional to the difference in phase between the
input waveform and the output of the VCO. The output of the multiplier
component of the phase comparator will be the product of v (f) and v,(t)
and is given by

1 ka AB[sin{¢,(t) — ¢, (1)} + sin {nfot+ (1) + ¢, (0)}]

The high-frequency components are removed by the low-pass filter compo-
nent and hence the output of the phase comparator may be written

v,(t) = skq ABsin{¢,(t) — ¢, (1)}

When the loop is locked the phase error will be very small, i.e. {¢,(t) —

é,(8)} —0.
Thus

vp(t) R 3 ka{ 1 (t) — $,(1)}
If H(f)=1 then
Oo(t) X 3 ka{dh, (1) — ¢, (1)} (2.37)

where ky is the gain of the phase comparator and has units of volts per
radian. It should be noted that when the loop is locked there is actually a
phase difference of 90° between v, (t) and v,(¢). The output frequency of the
VCO may be written as 2n f, + ¢, (1) where ¢, (1) = kqv,(t), k, being the gain
of the VCO with units of radians/second/volt, i.e.

t

¢, = kof v,(t)dt

0
Equation (2.37) can thus be written

0o() = 4 ky AB ,:ko f o0t - mm} (2.38)

Differentiation of Eqn (2.38) yields

. 25
b0 =ko| -0 2.39)

It should be noted that the product k,, k4 has dimensions of seconds ~ !, which
is a frequency. Thus if the frequency of v,(t) « k, k4 then

20,(1)
kokyAB
But d;l(t) =k, v,(t), therefore

-0 and ¢1(t)=_kovo(t)

(0= — 22000
4]

This shows that the PLL demodulates the frequency modulated input
waveform.

An insight into the physical action of the PLL can be gained by considering
the loop when the input is an unmodulated carrier. The phase of v, (t) will be a



; - Demodulation of a frequency modulated wave w ‘ n ‘

linear function of time, i.e. 2nf t, which t can then be regarded as a ramp
function. To maintain a small error at the phase detector output the phase of
the VCO output must also be a ramp of the same slope. If the frequency of v (t)
increases the slope of the ‘phase ramp’ also increases. The error between the
phase ramp of v (t) and the phase ramp of the VCO output then begins to
increase producing an increase in the phase comparator output. This increase
modifies the frequency of the VCO output and a new state of equilibrium is
reached when the two slopes are again equal, indicating that the two fre-
quencies are also equal. There will, however, be a different output from the
phase comparator indicating a different, but constant, phase error.

The analysis presented above deals only with the steady-state response of
the PLL the assumption being that the loop is locked. If this is not the case the
PLL will behave as a negative feedback system with the usual transient
properties. The transient response of the phase locked loop is an important
consideration as it determines the range of frequencies over which the loop
will acquire lock and also the range of frequencies over which a frequency
locked loop will remain in lock. The transient response of the phase locked
loop depends on the frequency response of the loop filter and when H( f) =1
the circuit is known as a first-order phase locked loop.

In order to analyse the transient response of the phase locked loop it is
convenient to represent the device as a linear system as shown in Fig. 2.30.
Thefrequency domain equivalent is derived in terms of the Laplace transform
and is also given in Fig. 2.30.

Considering the frequency domain model

Vo(s) = kg H(s) [dn 0= V2]

+ «n
Loop -
#i(0 >—’ P — v,i0

vCoO

LAt
(a)

+ &(s)
#1(s) Ky His) — V,(5)

Ko(s)

$a(s)

(b)

Fig. 2.30 Alternative time (a) and frequency (b) models of the phase locked loop.
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Hence
V.(s) sk H(s)
S = 2.40
@1(s) kes+ kokyH(s) ( )
but
Vo(s) = e(s) k4H(s)
thus
e _ s (241)

¢1(5) 5+ kokgH(s)

If H(s) =1 the loop is known as a first-order loop and Eqn (2.40) becomes
Vols) _ kgs

by(s) s+ kok4

The transient response of the loop is examined by applying a unit impulse in
frequency at the input, which is equivalent to ¢(s) = 1/s. Substituting into
Eqn (2.42) gives the frequency response of the loop as

(2.42)

ky
Vo(s)—s Tkek (2.43)
The 3 dB cut-off frequency is then
kok
fim= ;nd (2.44)

Hence in order to avoid attenuation of high frequency components in the
output signal it is necessary that the bandwidth of this signal < f 5, which
agrees with constraints applied to Eqn 2.39. For a step change in input
frequency ¢, (s) = 2nf/s?> which may be substituted in Eqn (2.41) to give the
phase error as

2nf

o) = s(s + koky)

or

e(t) = %(1 — e~ Fokat) y (¢) (2.49)
0™d

The steady-state error, after the transient interval, is
g(c0) = ksz (2.46)

In order to minimize the phase error kk, should be large, which will result in
alarge value of f; 45. In practice the bandwidth of the loop should be sufficient
only to avoid attenuation of components in the modulating signal. If the
bandwidth is significantly greater than this the noise performance of the PLL,
as a frequency demodulator deteriorates (see Chapter 4 for noise in frequency
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modulation transmission). Hence the first-order PLL is seldom used in

practice.
The second-order PLL is derived by making the transfer function of the
loop filter
1+1,s
H(s)= 2.46

A typical loop filter is shown in Fig. 2.31 and it should be noted that when
R, » R, the transfer function of the loop filter over the range of frequencies in
V(s) is approximated by

L+st,
ST,
Substituting for H'(s) in Eqn (2.40) gives
Vs) kys(st, +1)
¢1(5) 7, (s* + 2w, + 0))

w,=2nf,= /k:kd
1

is known as the natural (radian) frequency and

H(s)=

(2.47)

where

W, T,
2

is known as the damping factor. The bandwidth of the second-order loop
depends on the value of { and it is usual to operate the loop with { < 1. Under

(=

R,

O—— O

t={R + R)C
1, =R,C

L

c

O O

Fig. 2.31 Loop filter for a second-order PLL.
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these circumstances the bandwidth of the loop is approximately
20,0 kokgyt,

f3dB=

2n 2nt,

The transfer function of the second-order PLL is given by

e(s) 52

o,(s) s*+ 2w, s + w?

For a step change in input frequency ¢,(s) = 2xf/s* which may be substituted
in Eqn (2.48) to give the phase error as

2nf

T+ Aos+ w}?

(2.48)

e(s) (2.49)

or

e(t) =%\/(w—_‘nlg—z sin (a)nt 1= CZ> u(t) (2.50)

The steady-state error, after the transient interval, is
e(00)=0 (2.51)

Hence the second-order PLL has zero steady-sate error and the transient
response and bandwidth can be determined by appropriate choice of natural
frequency and damping factor. The second-order PLL is therefore the
preferred choice in most practical applications.

219 FREQUENCY DIVISION MULTIPLEX (FDM)
TRANSMISSION

This is the form of transmission used extensively in telephone systems for the
simultaneous transmission of several separate telephone circuits over a
wideband link. Each of the telephone signals has a bandwidth limited to

Frequency
frmax ] -
Signal 4
Signat 3 4
Channel
‘ bandwidth
Signal 2 " Guard band lg
Signal 1 A
fmin ) -
——8 Time

Fig. 2.32 Frequency division multiplexing.
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3.4kHz, and therefore many such signals can be transmitted over, say, a
coaxial cable with a bandwidth of several megahertz.

Each signal modulates a sinusoidal carrier of different frequency, single
sideband modulation being used. The signals are therefore effectively stacked
one above the other throughout the transmission bandwidth. To facilitate
separation of the signals at the far end of the link, adjacent signals are
separated by a guard band f, (Fig. 2.32). Each signal in a frequency division
multiplex transmission system thus occupies part of transmission bandwidth
for the whole of the transmission time.

220 CONCLUSION

The economic argument for use of the various amplitude modulated systems
was given in Section 2.13. Frequency division multiplexing of telephone
circuits is based on SSB-AM because here the emphasis is on packing as many
channels as possible into a finite bandwidth.,

The arguments for the use of frequency modulation are less well defined. It
is shown in Chapter 4 that for a fixed transmitter power frequency modula-
tion has a superior signal-to-noise performance over all types of amplitude
modulation. Consequently, frequency modulation has been adopted as the
standard for high-quality sound broadcast transmission in many countries.
Frequency modulation is also an extremely important technique used in both
analogue and digital cellular radio in which the capture effect (covered in
Section 4.11) is utilized to increase system capacity.
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PROBLEMS

2.1 A transmitter radiates a DSB-AM signals with a total power of 5kW at a depth
of modulation of 60% . Calculate the power transmitted in the carrier and also in
each sideband.

Answer: 4.24kW; 0.38kW.

2.2 A carrier wave represented by 10cos(2n10%¢) V is amplitude modulated by a
second wave represented by 3 cos(2n10%t) V. Calculate
(a) the depth of modulation;
(b) the upper and lower side frequencies;
(c) the amplitude of the side frequencies;
(d) the fraction of the power transmitted in the sidebands.

Answer: (a) 30%; (b) 1.001 MHz, 0.999 MHz; (c) 1.5V, (d) 4.3%.
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A DSB-AM transmitter produces a total output of 24 kW when modulated to a

depth of 100%,. Determine the power output when

(a) the carrier is unmodulated;

(b) the carrier is modulated to a depth of 607, , one sideband is suppressed and
the carrier component is attenuated by 26 dB.

Answer: (a) 16kW; (b) 1.48kW.

A DSB-AM receiver uses a square law detector. What is the maximum depth of
modulation that may be used if the second harmonic distortion of the modula-
ting signal, produced by the detector, is restricted to 10%; of the fundamental?

Answer: 40% .

A carrier of 5V rms and frequency 1 MHz is added to a modulating signal of
2V rms and frequency 1 kHz. The composite signal is applied to a biased diode
rectifier in which the relationship between current and voltage over the range
1 10Visi=(5+ v+ 0.05v2) ud where v is the instantaneous voltage. Find the
depth of modulation of the resulting DSB-AM signal and the frequency of each
component in the diode current.

Answer: 28.3%; 0Hz, 1kHz, 2kHz, 1 MHz, 2 MHz, 0.999 MHz, 1-001 MHz

Narrowband FM is produced indirectly by varying the phase of a carrier of
frequency 13 MHz, the maximum phase shift being 0.5 rad. Show that wideband
FM may be produced by multiplying the frequency of the modulated carrier. If
the modulating signal has a frequency of 1.5 kHz find the frequency deviation of
the carrier after a frequency multiplication of 15.

Answer: 11.25kHz.

A frequency modulated wave has a total bandwidth of 165kHz when the
modulating signal is a single tone of frequency 10kHz. Using Bessel function
tables, or otherwise, find the maximum carrier frequency deviation produced by
the modulating signal.

Answer: 50kHz.

In a direct FM transmitter an inductance of 10 uH is tuned by a capacitor whose
capacitance is a function of the amplitude of the modulating signal. When the
modulating signal is zero the effective capacitance is 1000 pF. An input signal of
4.5co0s(3n10%t) V produces a maximum change in capacitance of 6 pF. Assum-
ing the resultant FM signal is multiplied in frequency by 5, calculate the
bandwidth of the eventual output.

Answer: 60 kHz.

A single tone of frequency 7.5kHz forms the modulating signal for both a
DSB-AM and a FM transmission. When modulated the peak frequency
deviation of the FM signals is 60 kHz. Assuming that the same total power is
transmitted for each of the modulated signals, find the depth of modulation for
the DSB-AM signal when the amplitude of the first pair of sidebands of the FM
wave equals the amplitude of the sidebands of the DSB-AM wave.

Answer: 50%.



Discrete signals

The signals considered in Chapter 2 were continuous functions of time. There
are many advantages that result from the conversion of analogue signals into
abinary coded format. Two such advantages that are easily identified are that
the transmission and processing of binary signals are generally much easier to
achieve than the transmission and processing of analogue signals.

It is not possible to code a continuous analogue signal into binary format
because there is an infinite number of values of the continuous signal. Instead
the continuous signal is coded at fixed instants of time. These instants are
known as sampling instants, and it is important to determine the effect of the
sampling action on the properties of the original continuous signal. The rules
governing the sampling of continuous signals are specified by the sampling
theorem.

3.1 SAMPLING OF CONTINUOUS SIGNALS

The sampling theorem states that if a signal has a maximum frequency of
W Hz it is completely defined by samples which occur at intervals of 1/2W's.
The sampling theorem can be proved by assuming that h(t) is a non-
periodic signal band limited to W Hz. The amplitude spectrum is given by

H(/):fw h(tyexp(—j2nft)de (3.1)

Since H(f) is band limited to + W Hz it is convenient to make H(f) a

periodic function of frequency (Fig. 3.1). The value of H (f) in the region — W

to + W can be expressed in terms of a Fourier series in the frequency domain.
The time domain Fourier series is

hity=1/T i C,(expj2nnt/T)
n=-ow
and the corresponding series in the frequency domain is
H(f)=12W i X, exp(j2nnf/2W) (3.2)
n=-x
The values of the Fourier coefficients are give by

Xn=J H(f)exp(—jrnf/W)df

-W
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Hif)

Fig. 3.1 Representation of H(f) as periodic function.

But H(f) is the Fourier transform of h(z), i.e.

h(®) =f H(f)exp(j2rfr)df (3.3)
W

Hence if t = —n2W

h(—n/ZW)=J‘ H(f)exp(—jrnf/W)df
-Ww
ie.
h(—n22W)=X, (3.4)

The values h(— n/2W) are samples of h() taken at equally spaced instants of
time, the time between samples being 1/2W s. These samples define X, which
in turn completely defines H (f). Since H ( f) is the Fourier transform of h (@),
then H (f) defines h(t) for all values of t. Hence h (— n/2W) completely defines
h(t) for all values of t.

The physical interpretation of the sampling process is shown in Fig. 3.2
The continuous signal h (t) is multiplied by a periodic pulse train § (¢) in which
the pulse width is much less than the pulse period.

Since the sampling pulse train is periodic it can be expanded in a Fourier
series as

S(t)=a,+a, cos wit + a,cos2wmit + -

where w, = 21/T,. If the continuous signal h () is assumed to be a single tone
cos w,,t then the sampled waveform h(t) is given by

hy(t) = ag cos wt + (a,/2)cos (w, — w,) t + (a,/2) cos (0, + o)t
+ (a2/2) cos 2w, — wg,) t + (ay/2) cos R, + w )t + -+ (3.5)

hy(2)

Fig. 3.2 The sampling process.
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The spectrum of h(t) thus contains the original spectrum of h(t) and upper
and lower sidebands centred at harmonics of the sampling frequency. The
amplitude spectrum for h(t) when h(¢) is a multitone signal band limited to
W Hzis shown in Fig. 3.3. It can be seen from this figure that if the sampling
frequency f, =2W, the sidebands just fail to overlap. If f, <2W, overlap
(aliasing) occurs and distortion of the spectrum of h(t) results.

32 RECONSTRUCTION OF THE CONTINUOUS SIGNAL

In order to reproduce a continuous signal from the samples some form of
interpolation is required. The output from a sample-and-hold circuit is
shown in Fig. 3.4. This circuit holds the level of the last sample until a new
sample arrives and then assumes the value of the new sample. It can be seen
from the figure that there is a considerable error between the output of the
sample-and-hold circuit and the original value of h(¢). The exact interpola-
tion function is obtained by considering Eqn (3.3).

If the Fourier series representation of H(f) [Eqn (3.2)] is substituted in
Eqn (3.3), then

h(ty= JWW |:1/2W _i X, exp (jnnf/W)] exp(j2rnft)df
Changing the order of summation and integration gives

h(t)= i Xn/ZWfWWexp [j2anf(t + n/2W)]df
ie.

h(t) = i X, sinc [2nW (t + n/2W)]

n= —w

Sampling instant

Fig. 3.4 Sample and hold interpolation.
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but

X, =h(—n2W)
Therefore

h(t) = f h(—n/2W)sinc [22W (¢ + n/2W)]

n=-—«

or alternatively

h(t)= Y. h(n/2W)sinc[2nW (t — n/2W)] (3.6)
The values h(n/2W) are the samples of h(t) and sinc [2nW(t — n/2W)] is the
required interpolation function. This function is centred (has unity value) at
intervals of time spaced at 1/2W. The function has zeros at instants of time
equal to (n + p)/2W where p has integer values, except zero, between + oo.
The value of h(t) at a sampling instant, therefore, is equal to the amplitude of
the sample only, since the weights of the other samples are zero. The value of
h(t) between the sampling instants is given by the summation of the corre-
sponding sinc functions and this process is shown in Fig. 3.5.

3.3 LOW-PASS FILTERING OF A SAMPLED SIGNAL

The previous section has shown that the required interpolation function for
perfect signal reconstruction is a sinc function. This function is the impulse
response of an ideal low-pass filter. If P(f) is the transfer function of a
network and G(f) is the spectrum of an input signal, the spectrum of the
signal at the network output L(f) is given by

L(f)=P(f)G(S)

If the input to the network is a very narrow pulse (which approximates to a
unit impulse), G(f) ~ 1 and the spectrum of the output is then L(f) = P(f).

Voltage

- / \ _———
L e > ! ~ - e Time

Sael

n/2w 120 (n+2)/2W

Samples

Interpolating function

Reconstructed waveform

Fig. 3.5 Sinc fuunction interpolation.
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The response in the time domain is obtained by taking the Fourier
transform of P(f). If the network is an ideal low-pass filter with cut-off
frequency f, the transfer function is given by

P(f)=IP(f)lexp(—j2rnfty)

where
[P(f)l=1 for |[fI<f, =O0ecelse

The factor exp (— j27 ft,) is the linear phase characteristic of the ideal filter.
The impulse response p(t) is

Sfe
p®= f exp[—j2nf(t, —t)]df
_fC
1e.

sin[2nf,(t —to)]
2nf, (t —t,)
This function has the required form when f, = W.

In the frequency domain the effect of the ideal low-pass filter is to remove
completely all spectral components above W Hz (Fig. 3.6).

In practice the ideal low-pass filter is not physically realizable. This may be
seen from the fact that the impulse response exists for t < 0 which means that
an output exists before the impulse is applied, which is physically impossible.
The ideal filter may be approximated by a physically realizable network, the
approximation becoming more exact as the complexity of the network is
increased. One such approximation with a sharp cut-off characteristic is the
Chebyshev approximation. The impulse response of a fifth-order Chebyshev
low-pass filter is

p(t)=Ae™* + Be~*(cos 0t + sin 0t) + Ce ™ (cos ¢t +sin ¢t)  (3.8)

This impulse response will clearly produce some distortion, which is most
easily evaluated in the frequency domain as shown in Fig. 3.7.

Since the filter has a finite transmission above W Hz some distortion
components outside the signal bandwidth will appear in the filter output. To
minimize this distortion the sampling frequency is increased above 2W Hz. A
practical telephone channel has an upper cut-off frequency of 3.4 kHz and the
sampling rate employed is 8kHz, that is 2.35 times the maximum signal
frequency.

p(t)=2f; (3.7

Voltage

/ldeal low-pass filter characteristic

Vo

Fig. 3.6 Ideal filtering of a sampled signal.

¥ Frequency
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Voltage

Chebysher low-pass filter response
Distortion components

1 - Time

Fig. 3.7 Practical filtering of a sampled signal.

34 TIME DIVISION MULTIPLEX (TDM) TRANSMISSION

When a signal is sampled by narrow pulses there are large intervals between
the samples in which no signal exists. It is possible during these intervals to
transmit the samples of other signals. This process is shown in Fig. 3.8 and is
called ‘time division multiplex’ (TDM) transmission. Since each sampled
signal gives rise to a continuous signal after filtering, TDM transmission
allows simultaneous transmission of several signals over a single wideband
link. It is therefore an alternative to FDM transmission, described in Section
2.19.

The switches at transmitter and receiver (which would be solid-state
devices) are synchronized and perform the sampling and interlacing. The
samples themselves are very narrow and consequently have a large band-
width. When transmitted over a link with a fixed bandwidth the samples

Signam...—l Switches rotate 8 x 10° times/sec » Output A
I". ™ l:’— 4 Y
i r | Transmission link RV

. AY ’ 4 -~ ’
Signal 8 —ro . _. j— S~ =" Ne——p Qutput
Signal C Output 8

Fig. 3.8 TDM transmission.

Frequency

fmax
< Q o Q
] k] © =
c c (=4 c
S =] =) =
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fmin = Time

[
-9”(—
ot

Fig. 3.9 Spectrum/time diagram for TDM.
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spread and can overlap adjacent samples. To minimise this, guard intervals At
are allowed between adjacent signals. In the case of TDM transmission each
signal therefore occupies the whole of the transmission bandwidth for part of
the transmission time (Fig. 3.9).

3.5 PULSE CODE MODULATION (PCM)

Although it is possible to transmit the samples directly in a TDM system
there is a considerable advantage in coding each sample into a binary word
before transmission. This is because binary signals have a much greater
immunity to noise than analogue signals. A widely used form of digital
transmission is pulse code modulation, the essentials of which are shown in
Fig 3.10.

In this system, 30 speech channnels are each limited in frequency to 3.4 kHz
and sampled at 8 kHz. The sampled signals are converted into binary form for
transmission. In addition to the coded signals other signals are sent over the
link for synchronization and identification. Once each sample has been
converted into a binary code this effectively means that it has been quantized
into one of a fixed number of levels. The greater the number of quantization
levels the greater is the accuracy of the quantized representation, but also the
greater is the number of binary digits (bits) that are required to represent the
sample. Since more bits require a higher transmission bandwidth a balance
must be struck between accuracy and bandwidth.

The quantization process is shown in Fig 3.11 and it is clear that once
quantized the precise amplitude of the original sample can never be restored.
This gives rise to an error in the recovered analogue signal, known as
quantization error. The quantization error for an eight-level PCM system can
be calculated by reference to Fig 3.11 . This shows that the peak-to-peak input
is I volts. If this value is quantized into M equally spaced levels the spacing
between each level is 6V = I/M. The amplitudes reproduced after decoding
are usually the mid-point of each quantizing interval, which gives a maximum
decoded peak to-peak value of 4 =(M — 1) 6V. If a level V; is reproduced by
the decoder the true amplitude will be anywhere in the range V; + dV/2; hence

Analogue ~
~~

input 1
Analogue-

: Multiplexer |—ad to-digital

' converter
Analogue ~
input ~
30 Binary

transmission

Analogue link

output
1

Digital-to-
Demultiplexer lag—4 analogue
converter

Analogue L )
output A~

30

Fig. 3.10 Pulse code modulation system.
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Fig. 3.11 Linear quantization (8 level).

a maximum error of ¥/2 will be present on any decoded output. The error is
random in nature and is called quantization noise. In order to calculate the
magnitude of this quantization noise it is necessary to know the amplitude
probability density function of the signal to be coded. From this knowledge it
is possible to calculate the probability that the signal will be in any quantizing
interval and the mean square error for each of the quantizing steps.

The simplest case to evaluate is a signal with a uniformly distributed
amplitude density function. Such a signal is a triangular wave of amplitude
1 1/2. The density function for both a triangular wave and a sine wave are
shown in Fig 3.12. A signal with a uniform probability density has equal
probability of being in any of the quantizing intervals and also has equal
probability of having any particular amplitude within a given quantizing
interval. The error produced is shown in Fig 3.11 and has a mean square value

given by
V2 ;1% 2
- J
5= f e de =0V (39)
—avy2 12
‘Pv(u)
12 "1‘7,
\ . w[{1/2 44}
i M
AN /AR TH
A Z R
. < = Uniform
Time Seado-- density
\2/”/ function v
-172 —112 n
0

Fig. 3.12 Voltage waveforms and amplitude density functions.
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The total mean square error throughout the range of coder is
a2=3ep(V)
J

where p(V;) is the probability that the signal will be in the jth quantization
interval, i.e.

2= éz(avj)z p(V) (3.10)
J

But Z(@Vj)2 p(V)) is the mean square value of oV, ie.
j

,_@V)
12
If the signal has a uniform amplitude distribution and the quantization is
linear, then all values of dV; are equal, i.e.
_, (@V)?
M)

o2 is effectively the quantization noise power. If the uniformly distributed
signal has a maximum amplitude of + I/2, it has a mean square value of

G

(3.11)

(3.12)

I/2 1/2 V2 12
§2=I Vzpv(V)dV:J TdV=_ (3.13)
-I/2 -1/2 12
The mean signal to quantization noise power ratio (SQNR) is thus
S—'Z IZ 5
SQNR=—==—>5=
Q a2 (0V)?

In a binary system the number of bits m required to code M levels must satisfy
the relationship M = 2™; hence

SQNR = 10log,, 22" dB

ie.
SQNR =20mlog,,2 dB
or
mean SQNR =6m dB (3.14)
The maximum signal power is (I/2)2, which gives a maximum SQNR of 3M?2,
ie.
maximum SQNR =(4.8 + 6m) dB (3.15)

If the input signal is a sine wave which occupies the full coder range then
V.. (t) = (I/2) sin 27 ft and the mean square value is §2 = 12/8, which results in

mean SQNR =(1.8 + 6m) dB (3.16)
Equations (3.14) to (3.16) show that the SQNR of the decoded signal,
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measured in dB, increases linearly with m which itself is linearly related to
transmission bandwidth. This is a similar relationship between SNR and
bandwidth to that expressed by Shannon’s law. However, in the case of PCM,
the noise is quantization noise rather than fluctuation noise. The effect of
fluctuation noise on PCM transmissions is covered in Section 5.3.

Itis appropriate at this point to investigate the effect of sampling frequency
on SQNR by considering the sampling and quantization of the waveform
shown in Fig. 3.13. The error between the original waveform and the quan-
tized version is also shown in this figure and is seen to be approximately
similar to a sawtooth waveform of period 1/f, where f; is the sampling
frequency. It is clear that as the sampling frequency is increased the frequency
of the error waveform also increases. However, the quantization noise power
is fixed at (0V)?/12 and, as the sampling rate is increased, this power will be
distributed over a wider frequency range. Consequently the proportion of
quantization noise power occupying the same bandwidth as the original signal,
and passing through the reconstruction filter, will decrease as the sampling
rate is increased. Thus oversampling a bandlimited waveform will increase
the SQNR at the output of the reconstruction filter. This principle is often
used to advantage in compact disc players, for example.

In deriving Eqn (3.16) it was assumed that the input waveform fully
occupied the range of the coder, which would correspond to the loudest talker
in a telephone system. It follows that the SQNR for the quietest talker would
be considerably lower than this value. PCM encoders are designed to make
the SQNR constant over as wide a range of input amplitudes as possible and
this is achieved by making the quantization step size a function of the input

input waveform

m . /

110

Quantized waveform

101

010

N y Error
on * waveform

L/ VN\J’\[\I\!\I\I\M oy
s VNNV

11,

Fig. 3.13 Quantization error waveform.
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waveform amplitude. This is known as non-linear (or non-uniform) quantiz-
ation. Essentially the step size of a non-linear coder is reduced near zero and
increases towards the maximum input level. Non-linear coding is often
achieved in practice by first COMpressing the signal then coding the com-
pressed signal in a linear coder and finally exPANDING the decoded signal
with the inverse of the compression characteristic. The combined process is
known as COMPANDING.

The compression characteristic is required to give a constant signal to
quantization noise ratio for all levels of input. The quantization noise is
calculated by considering the linear quantization of the output of the
compression circuit. This is equivalent to the non-linear quantization of the
input signal. The linear coder and equivalent non-linear coder are shown in
Fig. 3.14. From this figure it is clear that the step size for the linear coder is
0V o = 2/M where M is the number of quantization levels. Considering the
jth quantizing interval of the non-linear coder this is assumed to have a

range of 0V, centred at V. ;. The range of voltages for the jth interval is

Vi £ Via/2- _
Assuming the M is large, then from Fig. 3.14,
dv 2/M 2/M
—_out _ / or 5Vin(j) = 4/,_.
d Vin a Vin(j) (d Vout/d Vin) |j
The mean square error produced by quantizing a voltage in the jth interval is
then
V+
&= j Vin = Vin»)*Po(Vin) Vi (3.17)
V-
1.0
" .
Linear
T_ 110 c‘t)(?'er
3 compressed
signal
101
100
—10 n=> 4o 000
001
010
011 } SVou
-10
5 A -HE S Hinear coder
N tt—, ———
o,

Fig. 3.14 Non-linear quantization.
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where

aVin(j) and V- =V, aVin(j)

V=V + ) in() ~ T

P, (V;,) 1s the amplitude distribution function of the input waveform and when
M is large then p,(V;,) may be considered constant over the jth interval: i.e.

po(V.) =p,;(V,,) = constant
The mean square error is then

3
- pv} (Vm) an(J)

which may be written

2
B2 = pvj(Vin)anm av,

in(j)

but
2/M

OV iy =
o (d Vout/d Vin) |j

hence the mean square error is
@M? Vi,
2 3.18
@ oV, )7, 12 19

The total mean square error is found by summing the contributions from
each interval: i.e.

82 = pvj(Vm)

M2 Q/M? oV,

=2 AV.): in(j)
f; PV (dVou/dVin)?|; 12

For large values of M the summation may be replaced by an integral over the
range + 1, the total MSE is then

~2 pv( ) 1
o2 B 19

The mean square signal value is

1
52 =2f V2p,(V,)dV,,
0

Hence

2‘[ ll'l pl)(V )
0 (3.20)

1
P, (Vin) 1
2 v n . _dV.
1[0 3M2 (dI/out/dI/in)2 "

If Vou = (1 kin V,,) then dV,,,/dV;, = k/V,, and the equation for SQNR has a

SQNR =




[
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constant value which is independent of the amplitude of V,,, which is the
required result: i.e.

SQNR = 3M* (3.21)
Unfortunately such a characteristic cannot be used in practice because when
V., =0then V_, = (1 + kin 0) = — co. Under these circumstance a practical

approximation to the theoretical compression characteristic is required.

36 PRACTICAL COMPRESSION CHARACTERISTICS

Two practical characteristics which overcome this disadvantage are the A law
characteristic (Europe) and the u law characteristic (North America). The 4
law characteristic is divided into two regions and is given by

AV,
ot = l—:ﬁ for 0<|V,I< % (linear)
1+1In(4V,) 1 .
Vout Y for y [V l<1 (logarithmic)  (3.22)

The linear region ensures that V_, =0 when V,, =0 and the logarithmic
region is specified so that |V ,|=1 when |V, |=1, the characteristic is
continuous at |V, | = 1/4. A is known as the compression coefficient and for
large values of A the characteristic is predominantly logarithmic. The charac-
teristic is shown in Fig. 3.15.

The relationship between input coder (non-linear) and output coder
(linear) is derived for both regions. For the linear region

AdV, dv,,. (1 +1n A)
v, =—-"" or dV, =—>——
" 14+In4d " A
For the logarithmic region
1 dv. d a
dv_. = X " since— {In(ax + b)} = —
“ 1+lnd  V, ( ! dx{ ( )j ax+b>
10 o
N \\
or;;rr:ear
Linear part
.
_10 1/A Vi —> 10
// -10

Fig. 3.15 The A4 law compression characteristic.
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|

or
dVin=dV,,(1+nA)V,

Since the characteristic is normalized with a range of + 1 then dV,,, = M/2.

When the input waveform is in the linear region of the characteristic the
quantization noise produced is

ol — (dV,.)? {1+InA)? _k_2

T2 T 3MEAr T 42

When the input waveform is in the logarithmic region the quantization noise
produced is

(3.23)

> _dVyu)? (1+1In APVE 272

log — 12 - 3M2 - log
In this case Vﬁ,g is the mean square value of the input waveform when in the
logarithmic region. In practice the input waveform will occupy both linear
and logarithmic regions of the characteristic. In order to determine the mean
quantization noise it is necessary to know the probability density function of
the input waveform. The amplitude probability density function of a typical
speech waveform may be approximated by

__1 -2V
p, (V)= ﬁafxl)( .. ) (3.25)

where o is the normalized rms voltage of the speech waveform. The probabil-

(3.24)

ity that the speech waveform is within the linear region is

1/4
Plinzf pv(V)dV

-1/4

P, =2 f 1/4 \[1 exp<@>dV=1—exp<%ﬁ>

0 20,

or

s s
The mean square value when the waveform is in the logarithmic section is

1
I‘/ﬁ,g=2f Vip,(V)dV
1/A

Integrating by parts and assuming that 4 > 1 gives

Vi, = (i + V20, + af) exp <——\ﬁ>

A2 4 Ao,

The total quantization noise is

- - 1 =
0'3 = o'lzin + 01208 = k2 [FP“" + Vﬁ’g]

and the signal-to-quantization-noise ratio becomes

2
SQNR =22
an



Practical compression characteristics } 91

Note that if 4> 1 then P, « 1 and V2 ~ o2, ie.
a2 1
ka2 k2

Thus for large values of 4 the SQNR is constant and independent of the value
of V,,. The full equation for SQNR is

SONR ~

2

SQNR = Ts
R e e e e )
A? Ao, A2 A s Ao,
(3.26)
When o, = 1/A4 then
1/42 1

SQNR = =
Q k2[1/4%(0.76) + 1/42(1 + /2 + 1)(0.24)] 1.58k?
But 10log,,(1/1.58) = —2dB, hence the effect of the linear part of the
characteristic is to cause a drop in SQNR by 2 dB for input levels below 1/4.
Thusif A >» 1 the input waveform will be in the logarithmic section for most of
the time and the SQNR will be approximately constant. The SQNR charac-
teristic for the 4 law compression characteristic is shown in Figure 3.16.

The system is thus designed so that the rms voltage produced by the
quietest talker is equal to 1/4, which will produce an effective constant SQNR
for all users. The SQNR is a function of both A and M which are in turn
chosen to give an acceptable performance for a specified dynamic range. The
required dynamic range is determined by measurements on a sample of the
population. Such measurements reveal that 98°/ of the population have an
rms voice amplitude within + 13 dB of the median talker, and 99.8% of the
population have an rms amplitude within 4+ 17 dB of the median talker. The
ratio of the rms output of the loudest talker to the quietest talker is known as
the useful volume range (UVR) and will thus be between 26 dB and 34 dB,
depending on which statistic is used.

Further measurements show that talkers have an output amplitude within
+13dB of their individual rms values for 99%, of the time. The required

SNR

_________ 1/k2
2d8{

|
|
t
|
|
|
i
|
|
(
1/A

Fig. 3.16 SQNR characteristic for A law compression.
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Fig. 3.17 Dynamic range of A law compression.

dynamic range of the coder will therefore exceed the UVR by approximately
26 dB as shown in Fig. 3.17. In this figure the peak signal has been normalized
to 0dB, hence it may be seen that the required value of the compression
coeflicient is

A=UVR+13dB

Thus if UVR = 30dB, then 20log,,(1/4)= —43 i.e. A =141,

The CCITT recommended value of A is 87.6 which gives a UVR of 26 dB.
With this value of 4 and an 8 bit code (M = 256) the signal-to-quantization-
noise ratio is 38dB. The UVR may be increased at the expense of SQNR,
e.g. for a UVR of 30dB (4 = 141) and an 8 bit code then SQNR = 36dB.
In order to give perspective to non-linear compression of voice waveforms it
is appropriate to compare the A4 law compression with linear coding through-
out (no compression). To do this it is necessary to define the maximum input
voltage which may be handled by the linear coder, in terms of probability.
The probability that the input voltage will be within the range of the coder is

12
Pcoderzj pv(V)dV

-1/2

2 _ _
Plinzzj ! exp< ﬁlV')del—exp( I)
0 ﬁas O ﬁas

The maximum input is defined in terms of the probability of being within
range of the coder 98%, of the time; i.e.

~1
098 =1—ex ( )
P\ /e,

from which o, =0.18]. The SQNR for the loudest talker is thus

12 12M?
SQNR =07 =5 = (0.18P) ~;

1e.
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le.
SQNR = 0.388 M2

To match the performance of the companded system the SQNR for the
quietest talker = 38 dB. It follows that the SQNR for the loudest talker will be
38 + 26 = 64 dB. Hence

10log,,0.388 + 20log,, M = 64

but M = 2m, hence SQNR = —4.1 + 20mlog,, 2, from which m = 11.3.

Thus 12 bits are required for a linear coder to have the same performance
as the 8§ bit coder with 4 law compression. Hence companding produces a
saving in transmission bandwidth of the order of 33%.

The actual A law compression characteristic used in practice is shown
in Fig. 3.18. In effect the coder is divided into 14 segments, 7 for positive
amplitudes and 7 for negative amplitudes. Within these segments linear quan-
tization is employed, the step size varying with segment so that the step size in
segment 7, for example, is 56 times the step size in segment 1. This produces a
similar quantization noise characteristic to that given in Eqn (3.26). The total
number of input levels in this characteristic is 8192 (2!3) and it is clear from
segment 1 that 64 input levels are transformed into 32 output levels. Hence
the low-level input values are quantized at the equivalent of 12 bits linear
quantization.

In the USA companding is carried out using the u law characteristic which
is given by

Vou=In(l+puV,) for 0<|V, <1 (3.27)

A typical figure for pu is 255. It should be noted that when V, is low
In(1 + uV,,) &~ uV,,, hence this characteristic is also approximately linear for
low input voltages.

128
6 bits equivalent
12 Segment 7 (16 intervais x 128)
7 bits equivalent
Segment 6 (16 intervals x 64)
96
8 bits equivalent Segment 5 (16 intervais x 32)
80
9bits equivalent Segment 4 (16 intervals x 16}
64
10 bits equivalent Segment 3 (16 intervals x 8)
48
11 bits equivalent Segment 2 (16 intervals x 4)
2
12 bits equivalent Segment 1 (32 intervals x 2)
0 i
W - - -
064 128 256 nput levels

Fig. 3.18 Practical 4 law quantization characteristic (positive values).
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3.7 NICAM

Near instantaneously companded audio multiplex (NICAM)is an alternative
compression technique which is used for digital transmission of high-fidelity
television stereophonic sound signals. It is essentially a bit reduction
technique which is designed to maintain a constant signal-to-quantization-
noise ratio over a wide dynamic range. In fact 4 law compression may also
be considered as a bit reduction technique. This is illustrated in Fig. 3.19
which depicts an example of non-linear quantization with 5 to 4 bit com-
pression. This is, in essence, a scaled down version of Fig. 3.18, in which
the compression is from 12 to § bits.

In Fig. 3.19 the sampled waveform is first quantized linearly into 5 bits and
the encoded signal is then processed into a non-linear form to reduce the
number of bits to 4. At the receiver the 4 bit codes are converted back into
the 5bit equivalents. This means that the quantization noise for low-level
amplitudes is determined by the full resolution of the 5 bit code. It is clearly
not possible to reproduce the individual 5 bit code words when several such
code words are compressed into a single 4 bit equivalent. In such cases the
received 4 bit word is converted into a 5 bit equivalent near the centre of the
range. Hence the resolution deteriorates (and quantization noise increases)
for the higher signal levels. The advantage of this form of compression is that
it is implemented with a simple conversion from 5 to 4 bits, and vice versa.

IRERE
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11100
YT 2x4
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170717171 } 1101 I
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10001 1001

10000 1000
..09000 0000

00001 0001

00010 0010

00011 0011
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06110 } 0101
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01001

01010 } o110
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01110
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Linear input Compressed output
code (5 bits) code (4 bits)

Fig. 3.19 Bit reduction achieved by non-linear quantization.
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Table 3.1 Transmitted bits in NICAM

bits 1 2 3 4 5 6 7 8 9 10 11 12 13 14
MSB LSB

Range 0 * * * * * * * * * *

Range 1 * LI R N S I T T

Range 2 * * &k kK kX % %

Range 3 * * * * * * * * * *

Range 4 * * * * * * * * * *

An alternative form of compression can be based on range coding in which
the input waveform amplitude is divided into a fixed number of ranges.
Different groups of bits are then transmitted for different ranges. This is the
form of compression used in NICAM transmission and has a superior
quantization noise performance, compared to 4 law, for the higher signal
amplitudes. For low input amplitudes only the least significant bits are
transmitted, while for high input signal amplitudes only the most significant
bits are transmitted. In the case of NICAM, 14 bit resolution is used and this is
compressed into 10 bits for transmission. The NICAM signal is divided into,
five ranges as shown in Table 3.1. In addition to the bits shown in this table it
is also necessary to transmit a 3 bit range code to define the range of the
transmitted bits.

If a bit reduction is to be achieved the sum of amplitude bits and range code
bits must be less than the uncoded bits. This is achieved by sending a 3 bit
range code for a block of amplitude samples, rather than for each individual
sample. This has the effect of adding a fraction of a bit per sample. The
NICAM system uses a sampling frequency of 32 kHz and transmits one range
code for a block of 32 samples. This represents a time interval of 1 ms and may
be regarded as nearly instantaneous as far as the audio signal is concerned. In
order to avoid clipping of the signal the range code corresponds to the largest
amplitude in the 1 ms block. A schematic diagram of the NICAM coder is
shown in Fig. 3.20.

If one 3bit range code is transmitted for each 32 samples then this
represents a degree of inefficiency as 3 bits can define 8 ranges. This ineffic-
iency is reduced in NICAM by collecting 3 x 32 sample blocks, which will
have 5° = 125 range code combinations and transmitting these combinations
as a 7bit word. This produces an overall delay of 3ms in the transmitted

14 14 10 bit
o bits " i sample
Analogue 14 bit linear 32 x 14 bit bits Range
input ADC store coder
3 bit
range code
Range
detector Store v

Fig. 3.20 NICAM range coder.
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audio signal. Clearly it is important to avoid errors in the range code as this
would produce a gross distortion of the reproduced voltage level. To mini-
mize errors 4 parity check digits are added to the 7 bit range code to provide
an error correction code with a Hamming distance of 4 (see Section 5.6).

The NICAM system effectively transmits the signal with 10 bits and the
relative signal to noise ratio is maintained constant as the quantization noise
varies with signal amplitude. It has been found that this system has a SQNR
improvement of approximately 12 dB over the equivalent 4 law system with
10 bits, but requires a more complex coder and decoder. A 10bit linear
quantization would produce a SQNR of approximately 60 dB, but with range
coding this is increased to a subjective equivalent of 80 dB.

3.8 PCM LINE SIGNALS

Although it is possible to encode signals at their source this is not in
widespread use. TDM transmission with PCM encoding is used extensively
between telephone exchanges. This transmission makes use of standard
telephone lines that were designed specifically for voice communications. The
standards of transmission adopted have been dictated largely by the charac-
teristics of the cables ‘already in the ground’. To minimize signal distortion
over the audio frequency band these cables are artificially loaded by induc-
tance at intervals of approximately 2 km. This produces very high attenuation
of frequencies above about 4 kHz, which makes the line totally unsuitable for
digital signals. In addition to the loss of response at high frequency the 2 km
lengths of line are transformer coupled and therefore have no dc path. The
high-frequency response of the section can be considerably improved by
simply removing the loading coil. A typical frequency response for a section of
loaded and unloaded cable is shown in Fig. 3.21.

§ Loss (dB)

40 3.4 kHz
Loaded

30 -

20
Unloaded

i ! I | g
1 2 3 4 5 6 7 log,  f

Fig. 3.21 Loss of a loaded and unloaded cable.
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Fig. 3.22 Regenerative repeating of a PCM signal.

In practical PCM systems the loading coils are replaced by regenerative
repeaters which effectively isolate each 2 km section of line. The regenerative
repeater, in fact, produces a binary signal free from noise at the start of each
section. This is shown in Fig. 3.22.

If the repeater input is above the threshold at a timing instant a binary 1 is
transmitted to the next section. If the input is below the threshold a binary Ois
transmitted. If the SNR at each repeater input is adequate few decision errors
occur and the binary signal is repeated free from noise. This is a distinct
advantage of digital transmission over analogue transmission. In the latter
case, amplifiers are required at intervals to compensate for signal attenuation.
These amplifiers boost the noise as well as the signal. The absence of a dc path
presents a serious problem for PCM signals. Its effect on a long sequence of
binary 1s is to cause a gradual droop of signal level below the decision
threshold, and this will of course produce decision errors. This is illustrated in
Fig. 3.23a.

The solution is to remove the dc component in the PCM signal. The first
stage in the process is to convert the full-width non-return-to-zero (NRZ)
pulses into half-width return-to-zero pulses (RZ). This effectively doubles the
signal bandwidth, but is necessary for synchronization purposes (Section 3.8).
The dc component in the RZ waveform is removed by inverting alternate
binary 1s, the process being called ‘alternate mark inversion’ (AMI). The
original two-level PCM signal is actually transmitted as a three-level signal
with zero dc component. The bandwidth of a PCM signal is calculated on the
basis of AMI. The processing to produce AMI is illustrated in Fig. 3.23b.

39 BANDWIDTH REQUIREMENTS FOR PCM
TRANSMISSION

The PCM signal consists of a random sequence of binary 1s and 0s. The
transmitted waveform will have maximum bandwidth when the number of
transitions per unit time is also a maximum. This corresponds, in the case of
NRZ pulses, to an alternating sequence of binary 1s and 0s. The maximum
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Fig. 3.23 Transmission waveforms.

bandwidth in the case of RZ pulses and AMI occurs for a sequence of binary
1s. The transmitted waveforms and their respective amplitude spectra are
given in Fig. 3.24.

The CCITT? recommendation specifies PCM transmission in terms of
time division multiplexing of 32 channels. Each channel is sampled 8 x 10?
times per second with each sample represented as an 8 bit code. This gives a
total frame bit rate of 2.048 Mb/s. It may be seen from Fig. 3.24 that the
minimum bandwidth requirement for AMI is approximately half the bit rate.
This is an ‘idealized’ figure based on the premise that the three levels of the
AMI signal could be extracted from a sine wave with a period of twice the bit
interval. This bandwidth is insufficient in practice owing to distortion of the
pulse waveform, which produces inter-symbol interference. To illustrate this
point assume that the line (or channel) has an ideal low-pass response with cut
off frequency f..
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|

The impulse response of such a channel is a sinc function with zeros at
intervals t = n/2f,. Hence in theory pulses transmitted at a rate of 2 f. per
second could be received free of interference from adjacent pulses. It was
stated in Chapter 1 that an ideal response cannot be realized in practice;
however, the raised cosine response is an approximation to the ideal filter
which can be synthesized in practice. The raised cosine response is shown in
Fig. 3.25 and it should be observed that the impulse response of such a
characteristic also has zeros at intervals of n/2f,.

The raised cosine response is given by

H(f)=05[1+cos(nf/2f,)] for |f|<2f, (3.28)

The impulse response of the network is given by the Fourier transform of
Eqn (3.24) and is

h(t)=2f, sinc (2nf 1) cos 2nf.t)/[1 — (4£.t)] (3.29)

Thus in order to transmit pulses at a rate of 2f, per second a raised cosine
response with cut-off frequency 2 is required. (The raised cosine response is
a linear phase response which may be approximated by Bessel polynomials3.)
Hence for AMI with a data rate of 2.048 Mb/s the overall response between

Ideal low-pass response
1.0~ fere /
N
N
A Y
AN
N\
\
\
\| . .
\ Raised cosine low-pass response
\
\
\
\
\
\
A Y
N
N
~ -~
0 ‘u —

Raised cosine puise

Fig. 3.25 Ideal and raised cosine frequency and phase response.
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Fig. 3.26 Equalization of line response.

two repeaters should be a raised cosine response with a cut-off frequency of
2.048 MHz. This is achieved by use of equalization as shown in Fig. 3.26.

The overall response H(f)= H, (f) H, (f)is designed to be a linear phase
approximation of the ideal low-pass filter, i.e. to have a raised cosine ampli-
tude response. The equalizer response H,(f), which may be realized with
digital filters, is thus designed to produce this response.

310 SYNCHRONIZATION OF PCM LINKS

A PCM link is essentially made up of many sections, each one being
terminated by a regenerative repeater. In such a system it is essential that each
repeater operates at the same clock rate as there is no provision for data
storage. It is possible to synchronize each repeater by a clock signal inserted
at one end of the link, but this would reduce the available bandwidth for
data transmission. A more efficient technique is to extract the clock signal for
each repeater from the data signal itself. The clock signal is derived from the
AMI waveform by full-wave rectification to produce a RZ spectrum. This
is necessary because, as illustrated in Fig. 3.24, the AMI waveform has no
component at the data rate. The component at ¢~ * is then extracted, possibly
by use of a phase locked loop, for repeater timing.

A practical problem arises with timing if a series of binary 0Os occurs, as
would be the case during pauses in normal speech. To maintain repeater
timing during such situations a code known as HDB3 is employed. This code
limits the maximum number of successive Os transmitted in AMI format to
three. When four successive Os occur in the binary (NRZ) signal the AMI
waveform, which would be zero, is replaced by a three-level code (— 0 +). The
actual code substituted depends upon the AMI polarity of the previous 1. The
receiver must be able to recognize the HDB3 code, and to make this possible
the transmitter produces what is termed a bipolar violation. When there is no
HDB3 code adjacent 1s in the AMI waveform will have opposite polarity. If
adjacent 1s have the same polarity the inclusion of the HDB3 code is detected
and hence decoded.

When four successive zeros occur in the binary signal, one of four
possible HDB3 line signals is transmitted. The possible three-level codes are
000 +,000 —, — 00—, + 00 +. The actual code transmitted depends on the
polarity of the preceding binary 1 and also on whether the number of binary
1s which have occurred since the last HDB3 code (bipolar violation) is odd or
even. The substitutions used are given in Table 3.2.
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Table 3.2

Polarity of Number of pulses since

preceding pulse last bipolar violation
ODD EVEN

+ 000 + — 00—

- 000 — + 00+
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Fig. 3.27 HDB3 coding of line signals.

An example of HDB3 coding is shown in Fig. 3.27 In addition to repeater
synchronization it is also necessary to synchronize the multiplexers.

In the CCITT specification two of the 32 PCM channels are reserved for
signalling and synchronization (see Section 10.33). The channels are num-
bered 0 to 31, the 32 channels being called a ‘frame’. Frame synchronization is
achieved by transmitting a fixed code word in channel 0 on alternate frames.
Circuits at the receiver search for this code word and its absence in alternate
frames and derive from it a synchronizing signal for the demultiplexer. In this
way each 8 bit word in the received frame is routed to its correct destination.

3.11 DELTA MODULATION

This is an alternative binary transmission system using a single digit binary
code. Delta modulation does not have the widespread application of stan-
dard PCM, it is however used in some rural telephone networks* and in

digital recording of analogue signals. The fundamental delta modulator, or
tracking coder is shown in Fig. 3.28.
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Fig. 3.28 The idealized delta modulator.

The analogue input is compared with the output of a DAC the input of
which is derived from an up/down counter. If the amplitude of the analogue
input exceeds the output of the DAC the comparator output will be high. This
sets the up/down counter to increment on the next clock pulse. If the output of
the DAC exceeds the amplitude of the input the comparator output will be
low. This sets the up/down counter to decrement on the next clock pulse. The
output of the DAC is thus a staircase approximation of the analogue input.
The demodulator will consist of the elements in the feedback loop of the
modulator. It will be noted from Fig. 3.28 that there are two kinds of
distortion produced by this system. Slope overload distortion occurs when
the transition from one step to the next fails to cross the input waveform.
Quantization distortion occurs due to the finite step size ov.

If ¢, is the clocking interval the condition required to prevent slope
overload is

h(n)e, < ov (3.30)
For sinusoidal waveforms h(t) = A cos 2xnf_t and thus fz(t Jmax = A27f ,, the
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condition to prevent slope overload is then A2xnf,, < dvf.. Alternatively

_ovf,
max—2nfm

where f, is the clocking frequency. It may be noted that either dv or f; can be
increased to avoid overload, but with some penalty. Increasing f, increases the
transmitted bit rate (and hence bandwidth requirement), increasing v in-
creases the quantization error.

In practice a much simpler circuit than that of Fig. 3.28 is used, which has
the additional advantage that the effect of any digit errors decreases to zero
after a given interval. (This would not be the case for the circuit of Fig. 3.28.)
The practical circuit is based on a simple RC integrator and is shown in
Fig. 3.29. The circuit will function if the output of the flip-flop is + V volts
(which may be easily achieved with a CMOS device).

The voltage across the capacitor will be a series of positive and negative
exponential decays since the capacitor charges from either + V or — V. The
capacitor voltage for a typical input waveform is illustrated in Fig. 3.29. The
error voltage in this figure is the difference between the input voltage and the
capacitor voltage. This is approximately triangular when the input signal is
zero and this is known as the idling voltage.

Considering a single RC network in which V is the charging voltage and v is
the instaneous voltage across the capacitor, then

(3.31)

V—v dv V_u
= C— and integrating gives e /RC = _——
R de grating g o,
where v; is the initial capacitor voltage. Letting v, = — V (i.e. logic 0) the
clock pulses

Comparator

Input
Capacitor
voltage Quantization

noise

Slope
overload

\/
Error waveform

Fig. 3.29 Practical rRC delta modulator and waveforms.
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capacitor voltage is
v=V(1-—2e RO

To avoid overload the slope of the capacitor voltage must be equal to or
greater than the slope of the input waveform. If it is assumed that the input
h(t) = Acos(2nf,t) the value of |h(t)|, when h(t) = v, must be less than the
slope of the capacitor voltage.

|h(t)| = A2nf,, sin(2nf,,1)
or
h(t)= A2nf_ [1 —cos?(2nf, t)]'/?
but when h(t) = v then cos(2nf,, t) = v/A which means
|A(0)] = 2nf (42 —v?)'2
Thus to avoid slope overload

V—C" > 2nf (A% — p?)12 (3.32)

The difference between the slope of the capacitor voltage and the input

waveform is

(V—v)
RC

If overload is to be avoided then D must be positive and in the limit D —0. D
changes from a positive to negative value when dD/dv =0: i.e.

b 1 2nf,

dv RC+ 2

D= —2nf (A% —v})/?

(42— v?)" 2 20=0

Thus

1 2nfyv

RC (A*-vH)'?
From which

A

S TR VA7 A G LR L HT Ts
Substituting this into Eqn (3.32) gives
vV

Ao = LT (uf 1 633
The overload characteristic has a frequency response equivalent to that of a
single lag characteristic. The optimum value of f,, is chosen with reference to
the amplitude spectrum of normal speech. In practice it is desirable to work
as close to overload as possible, and a suitable choice for f, is 150Hz as
illustrated in Fig. 3.30. This allows maximum SNR to be achieved at the
expense of some overload in the mid-frequency range.
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Fig. 3.30 Overload characteristic of rRC delta modulator.

3.11.1 Dynamic range and quantization noise

The demodulator in the practical realization is simply the RC network. The
quantization noise produced will then be the difference between the input
waveform and the voltage across the capacitor of the RC network. When the
input signal is zero the error signal is an approximate triangular waveform of
period 1/2 f; and peak-to-peak amplitude év. The slope of this waveform at
v=01is dv/dt = V/RC hence év = V/RC f,. This error waveform is shown in
Fig. 3.29 and clearly the coder will not deviate from this idling pattern unless
the signal exceeds the value 6v/2. The minimum signal level corresponding to
the threshold of coding is thus

vV
Apin= 3RCT (3.34)
The coding range of the delta modulator is thus
Apax vV 2RC,
Amin L+ ([l 172V
Le.
coding range = 2RC/, 13 (3.35)
[+ (fu/f0)}]Y

The peak-to-peak error is

2 [t t\? (ov)?
—2—_ — = —
&=y L(‘S”ts) d 12

This is the mean square quantization noise output when there is zero input.
The error when the input is a sine wave is shown in Fig. 3.29 and it has
been shown’ that the mean square error in this case is numerically equal to

g2=@

5 (3.36)
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This is constant from the threshold of coding to overload. The error wave-
form is actually random but approximately triangular in shape. The power
spectrum may thus be approximated by the spectrum of a single triangular
pulse (via the autocorrelation function), which is a sinc? function with spectral
zeros occurring at frequency intervals of n/2 f,. The total area under the sinc?
function is equal to the area under a rectangular figure of the same zero
frequency amplitude extending to a frequency of 1/3¢,, as shown in Fig. 3.31.
The total power in the error waveform can thus be represented as G( f)/3t,
where G(f) is a uniform power spectral density, hence

& =G(f)/3t, (3.37)

If the detector output is low-pass filtered, the cut-off frequency of the filter
being f,, then provided f, < 1/3t, the output quantization noise power
will be

ﬂ (0v)* S,

Ne=GNfi == =557
But év = 2nVf,/f ., thus

Ny =27V2 f,(fo)? (3.38)
The maximum signal power which the system can handle before overload is

g UV

2 201 + (fw/f0)]

hence
SONR., = VU0 ()

2[(fo)* + (fu)* 1272V 1(fo)

Assuming, on average, that f_, >» f, then

SQNR, = ) 3.39)
N = 422, (7 e
A E(f)
/ Equivalent uniform spectrum
/ Error signal spectrum
Yat, '/1/1'5

\-l//\l/ -

1 / !

/A

Fig. 3.31 Error signal power spectrum.
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This is an approximate result for single tone inputs. With speech waveforms it
is found that overload is minimized if the instantaneous speech amplitude is
limited to the amplitude of a single tone of frequency 800 Hz, which could be
transmitted without overload. Thus if f,, = 800 Hz, f, =3.4 x 10® and f, =
64 x 10° (which is equivalent to 8 bit linearly quantized PCM) the SQNR is
35dB. The corresponding figure for 8 bit linearly quantized PCM, obtained
from Eqn (3.16) is 49.8 dB. It is usually assumed that the minimum acceptable
signal to quantization noise for telephone transmission is about 26 dB. This
would give delta modulation a dynamic range of only 9 dB as compared with
a figure of 23.8 dB for linearly quantized PCM. (Both of these figures are far
short of companded PCM with a UVR of 26dB at a SQNR of 38dB.)

The dynamic range of delta modulation may be increased by a form of
companding. In the case of the delta modulator the slope of the voltage across
the integrating capacitor is varied with input signal amplitude. This gives rise
to continuously variable slope delta modulation (CVSDM). Essentially the
output of the delta modulator is monitored and when several successive
pulses have the value ‘1’ or ‘0’ (indicating that slope overload is occurring) the
amplitude of the charging voltage V is increased thereby increasing the slope
of the integrator output. When the output returns to 010101 overload is
removed and the step size may be progressively reduced. The analysis of
several forms of CVSDM is covered in Steele.®

3.12 DIFFERENTIAL PCM

A number of analogue waveforms such as speech and video exhibit the
property of predictability. This means that the change in value between one
sample and the next is small because the rate of change of the analogue
waveform is usually low compared with the sampling frequency. Alternative-
ly waveforms such as speech and video have ‘instantaneous frequencies’
considerably lower than the maximum frequency component on which the
sampling frequency is based. The next sample in a waveform can thus be
predicted from a knowledge of previous samples. There will be some predic-
tion error, but the peak-to-peak value of the error will be considerably less
than the peak-to-peak value of the original waveform. Differential pulse code
modulation (DPCM) capitalizes on this fact by coding and transmitting the
prediction error. The prediction error requires fewer quantization levels for a
given SNR and hence the required transmission bandwidth is less. A simple
predictive coder and decoder are shown in Fig. 3.32.

In Fig. 3.32(a), h(r) represents an input sample and e(t) represents the
difference between h(t) and the previous sample weighted by the coefficient
ag(< 1). T is a delay equal to the sampling period. From this figure

e(t)=h(t)—ayh(t—~T)
Considering the circuit of Fig. 3.32(b) it is evident that
h(t)=e(t)+ aoh(t—T) (3.38)

This circuit is known as a predictor because the current sample is predicted
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Fig. 3.32 Differential PCM.

from the previous sample and the error signal e(t). The predictor is incorpor-
ated into the transmitter as shown in Fig. 3.32(c) and output e(t) is known as
the prediction error. There is an advantage in incorporating the predictor
in the transmitter as the feedback loop minimizes quantization error when
an analogue-to-digital converter is employed. The receiver is simply the
feedback loop of the transmitter which, in this case, is the circuit of
Fig. 3.32(b).

In practice the estimate of the predictor circuit is based on estimates of the
previous four quantized samples as shown in Fig. 3.32(d). This figure also
contains an analogue-to-digital converter in the forward path and a digital-
to-analogue converter in the feedback path. As stated previously, the feed-
back action minimizes quantization error. The SQNR for differential PCM is
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between 5 and 10 dB higher than for PCM without differential coding. This
SQNR may be increased further by use of adaptive DPCM (ADPCM). The
quantizer step size (ie. the ADC and DAC) is adapted according to the
amplitude of the prediction error. Alternatively, with this type of coder, using
a 4bit quantizer, it is possible to transmit speech with the same quality as
64 kb/s A law compression at a bit rate of 32kb/s.

3.13 DATA COMMUNICATIONS

PCM and delta modulation have been optimized for the transmission of
coded voice signals over trunk routes. Data communications deals primarily
with the transmission of digital signals between machines. The bulk of data
communications now uses some form of packet switched network, several of
which are described in Chapter 13. Traditionally data communications was
via the public telephone network and techniques were developed for use on
this particular medium and are considered in this section. The most common
example of this form of communication is the connection of a terminal to a
distant computer via a modem.

When considering data communications, one of the basic parameters that
must be defined is the signalling speed. The unit of signalling speed is known
as the baud after the telegraph engineer Baudot. The signalling speed in baud
is in effect the rate at which pulses are transmitted over the communications
link. These pulses need not be binary, which means that the data rate, which is
usually expressed in bits/s (or b/s), does not necessarily equal the signalling
speed.

Unlike PCM, which uses unloaded lines for transmission, data signals
which are transmitted over normal telephone circuits must cope with the
severely restricted frequency response of such lines. Special problems linked
to this response therefore arise in data transmission, and these problems will
be considered in some detail. The characteristics of the data signal produced
by a VDU keyboard, for example, have two well-defined properties:

(1) low data rate, limited by human typing speed, and
(2) spasmodic output with long periods of no output at all.

To cope with the second of these characteristics, asynchronous communica-
tions is used, but it should be noted that dedicated high-speed data links use
synchronous communication.

For transmission purposes, each symbol on a keyboard is represented by a
unique binary code. The international standard code represents each charac-
ter by a 7bit word, i.e.

bebshabsbyb,b,

where b, is a binary digit. Some examples of the 7 bit code are listed in Table
3.3. The 7 bit word has an additional digit, b, called a parity check bit, added
for error-detection purposes. The parity bit is chosen so that the number of 1s
in each 8 bit word is even. If an odd number of 1s occurs at the receiver, the
receiver is aware that an error has occurred.



Spectral properties of data signals ‘ } 111 ’

Table 3.3 International 7 bit code

Character Binary Octal Hexadecimal
A 1000001 101 41
B 1000010 102 42
C 1000011 103 43
1 0110001 061 31
2 0110010 062 32
3 0110011 063 33
idle | ' 5 : i R - Idle v,
i E [l E E ] .V,
Pott 1ol oot o1
' I 'I l'
Start C Parity  Stop
bit bit bits
Y
Input Start bit Half bit Sampler omp-m
detector interval (11 bits)
delay .

Fig. 3.33 Asynchronous transmission.

The asynchronous transmission system requires extra bits to allow the
receiver at either end of the link to determine the beginning and end of each
symbol. The transmission of each symbol is preceded by a level change from
1 to 0. The O level has a duration of 1 digit interval. The symbol is then
transmitted serially, least significant digit (b,) first, followed by the parity
check bit (b,). The end of each symbol is signalled by a binary 1 which lasts for
two digit periods. The idle state (no signal) is thus equivalent to binary 1. A
typical digit sequence (10 bits) is illustrated in Fig. 3.33. All timing is initiated
by the falling edge of the start bit and the following digits are sampled at their
mid-points. This means that timing clocks do not have to be closely matched
as synchronization occurs on each start bit. A human operated VDU will
produce a maximum of about 10 characters/s, which is, of course, very slow
compared with the speed of operation of the computer to which it may be
connected. If the transmitted pulses are binary, each pulse has a duration of
9.1 ms, which is equivalent to a signalling speed of 110 baud.

314 SPECTRAL PROPERTIES OF DATA SIGNALS

We must know something of the spectral properties of data signals before we
can specify the most appropriate form of data transmission over telephone
circuits. A typical data signal will consist of a random sequence of pulses of
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Fig. 3.34 Amplitude spectrum of data signals.

binary 1s and 0s. The power spectral density of such a signal was derived
in Section 1.12 from its autocorrelation function. A random binary signal
with pulse amplitudes of 0 or A volts and pulse duration ¢, seconds has an
amplitude spectrum given by

H(f)= At sinc(n ft,)

It can be seen from Fig. 3.34 that most of the energy in the spectral envelope is
confined to frequencies below f = 1/t, hertz. The bandwidth of the data signal
is therefore usually approximated by the reciprocal of the pulse width.

The data spectrum, which has a component at zero frequency must be
modified for transmission over a telephone circuit which usually has a band-
width from 300 Hz to 3.4 kHz. Further, since two-way signalling is required
over a single circuit, it is necessary to differentiate between transmitted and
received data signals. Both these requirements are met by modulating the
data signal on to an audio frequency tone. The three possible forms of
modulation are AM, FM and PM.

3.15 AMPLITUDE SHIFT KEYING (ASK)

This is the name given to AM when used to transmit data signals. It is not
normally used on telephone lines because the large variations in circuit
attenuation which can occur make it difficult to fix a threshold for deciding
between binary 1 and 0. We shall, however, consider ASK in some detail
because it is convenient to represent FM as the sum of two ASK signals.
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Fig. 3.35 ASK amplitude spectrum.

The ASK signal is generated by multiplying the data signal by an audio
tone. This effectively shifts the data spectrum to a centre frequency equal to
that of the audio tone. The process is shown in Fig. 3.35. The bandwidth of the
modulated signal is twice the bandwidth of the original data signal. This
means that the original 110 baud signalling rate requires a transmission
bandwidth of 220 Hz using ASK:

ASK = DSBAM = (carrier + upper and lower sidebands)

316 FREQUENCY SHIFT KEYING (FSK)

This is the binary equivalent of FM. In this case a binary 0 is transmitted as an
audio frequency tone f, and a binary 1 is transmitted as a tone f,. Hence the
binary signal effectively modulates the frequency of a ‘carrier’.

Although, strictly speaking, FSK is FM, it is more convenient to consider
FSK as the sum of two ASK waveforms with different carrier frequencies. The
spectrum of the FSK wave is thus the sum of the spectra of the two ASK
waves. This spectrum is shown in Fig. 3.36. Using the FM analogy, it is
possible to define a ‘carrier frequency’ f. = f, + (f; — fg)/2 and a ‘carrier
deviation’ A f = (f, — f,)/2. The modulation index f is defined as f = A f/B,
where B = 1/t is the bandwidth of the data signal. Using these definitions the
bandwidth of the FSK signal is

Besx = 2B(1 + ) (3.39)

This is similar to Carson’s rule for continuous FM. Unlike analogue FM
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Fig. 3.36 FSK amplitude spectrum.

there is no advantage in increasing A f beyond the value A f= B since the
receiver only needs to differentiate between the two tones foand f,.

3.17 PHASE SHIFT KEYING (PSK)

This is the binary equivalent of PM, the binary information being transmitted
either as zero phase shift or a phase shift of n radians. This is equivalent to
multiplying the audio tone by either + 1 or — 1. The bandwidth is thus the
same as for ASK. Since there is no dc component in the modulating signal, the
carrier in the PSK spectrum will be suppressed. The equivalent modulating
signal and the PSK spectral envelope are shown in Fig. 3.37. This form of
PSK is sometimes referred to as binary PSK (BPSK) because the phase shift is
restricted to two possible values, and it is equivalent to binary DSB-SC-AM.

3.18 PRACTICAL DATA SYSTEMS

We have already indicated the reason for not using ASK for data communica-
tions on the public telephone network. The choice between FSK and PSK is
determined by the data rate. At low data rates FSK is employed for two-way
(duplex) communication. A typical system operating at a signalling rate of
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200 baud uses two tones of 980 Hz and 1180 Hz for binary 1 and 0 in one
direction and 1650 Hz and 1850 Hz for binary 1 and 0 in the reverse direc-
tion. The incoming FSK is separated into two tones using bandpass filters.
Envelope detection is then used to reproduce the binary signal. The com-
bined modulator/demodulator (modem) is illustrated in schematic form in
Fig. 3.38.

As the data rate is increased higher carrier frequencies are required; other-
wise, each data interval would contain very few cycles of carrier, which would
make detection extremely difficult. There is a limit on carrier frequency
imposed by the upper cut-off frequency of the telephone line. For this reason

Tuned Envelope
circuit detector
980 Hz +
FSK in Data out
Tuned -
S Envelope
circuit —
1180 Hz detector
Gate —oq-—
]
Oscillator
1650 Hz
FSK out «gp———e $——————— Data in
Oscillator
1850 Hz
[ ]
Gate

Fig. 3.38 200 baud modem.
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Fig. 3.39 Coherent detection of PSK.

FSK is limited to signalling speeds up to 600 baud. At speeds above this PSK
is employed. This type of modulation makes more efficient use of bandwidth
but requires more sophisticated coherent detectors. The reference signal for
coherent detection is derived from the PSK signal itself. Since the carrier is
suppressed in the PSK spectrum the received waveform is first rectified to
produce a component at twice carrier frequency. This component is then
limited and divided by two to produce the required reference signal. The
required signal processing is illustrated in Fig. 3.39.

In the public telephone network any connection between transmitter and
receiver will be made via several different paths which will contain several
stages of frequency multiplexing and demultiplexing. Imperfections in the
various stages of modulation result in random, slowly varying, phase shifts
which are introduced into the PSK waveform. This results in phase ambiguity
at the receiver and can produce data inversion.® The problem is greatly
reduced if differential encoding is employed.

3.19 DIFFERENTIAL PHASE SHIFT KEYING (DPSK)

DPSK has the advantage of using the phase of the previous bit interval as the
reference for the present bit interval. In order to make this possible, a binary 0

Fig. 3.40 Relationship between PSK and DPSK.
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is transmitted as the same phase as the previous digit and a binary 1 is
transmitted as a change of phase. The relationship between PSK and DPSK
is shown in Fig. 3.40. The receiver compares the phase of the current digit
with the phase of the previous digit. If they are the same the current digit is
interpreted as a 0; otherwise it is interpreted as a 1. DPSK can be produced by
pre-coding the data signal which then modulates the carriers as in standard
PSK. If A, is the present input to the encoder (4, is binary) and C, _, is the
previous output the truth table for the encoder is

4, C,_, C

n

0 0 0
0 1 1
1 0 1
1 1 0
which will be recognized as the exclusive-OR operation
C,=4,8C,_,

We have already noted that pulses can be transmitted at a rate of 1/¢, without
mutual interference over a channel of cut-off frequency t; hertz provided
that the channel has a raised cosine frequency response. This applies to the
unmodulated signal. A signalling rate of 1200 baud thus requires a raised
cosine channel of bandwidth 1200 Hz. The PSK signal will require a band-
pass channel with a raised cosine characteristic with a bandwidth of 2400 Hz.
A typical PSK signal system would operate at a carrier frequency of 1.8 kHz
and a signalling rate of 1200 baud. The bandwidth occupied by this waveform
extends from 600 Hz to 3 kHz. Hence a data rate of 1.2 kb/s is an upper limit
for BPSK.

320 ADVANCED MODULATION METHODS

The data rate of BPSK is sometimes expressed as 1 bit/baud. Since the baud
rate is fixed by the channel characteristics the data rate can only be increased
by increasing the number of levels per pulse beyond two. If each pulse has four
levels the data rate becomes 2 bits/baud and each level can produce a unique
phase shift. Thus it is possible to transmit data at a rate of 2.4 kb/s without
any increase in bandwidth. It is convenient when considering multiphase
PSK to represent the transmitted signal in terms of the sum of two quadrature
audi frequency tones, i.e.

v(t)y=acos2n ft+bsin2nft (3.40)

Each of the levels in a four-level pulse can be represented by two binary digits
called dibits. Thus it is not actually necessary in practice to produce a four-
level pulse; instead the binary signal can be grouped into dibits and each dibit
can be used to produce a unique phase shift in multiples of n/2. When
interpreted in this way each dibit represents one pulse, i.e. the signalling rate
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Table 3.4

Dibit Phase shift In-phase component Quadrature component
a b

00 /4 +1 +1

01 3n/4 —1 +1

1 —3n/4 —1 —1

10 —n/4 +1 —1

Quadrature

In phase

Fig, 341 Signal space diagram for QPSK.

in bauds equals half the bit rate. Table 3.4 lists the possible dibits and the
values of a and b in Eqn. (3.40) necessary to produce the required phase shifts.
The resulting quaternary PSK can be represented on a signal space diagram
of the type shown in Fig. 3.41.

The data signal is recovered from the QPSK waveform by using two
coherent detectors supplied with locally generated carriers in phase quadra-
ture. The data rate can be increased further by increasing the number of levels
of each pulse beyond four. For example, if the number of levels is increased to
16, it is possible to transmit data at a rate of 4 bits/baud. The QPSK signal
was characterized by the fact that the coefficients a and b of Eqn. (3.40) always
have the same magnitude, thereby producing a resultant of constant ampli-
tude and varying phase. It is also possible for a and b to have different values
and the resulting signal is in fact quadrature amplitude modulation. The
detection of QAM is covered in Section 11.11 in connection with the trans-
mission of chrominance signals in the PAL colour television system.

The signal space diagram for QAM with 16-level pulses is shown in
Fig. 3.42. Each individual level is represented by a unique combination of a
and b in Eqn (3.40). It is possible with this system to transmit data at a rate of
4.8 kb/s over a raised cosine bandpass channel, with a bandwidth of 2.4 kHz.

At these high data rates, intersymbol interference is a severe problem and
elaborate equalization networks (transversal digital filters) are always em-
ployed. The lines used are not part of the public telephone network and are
maintained to close tolerances in respect of loss and bandwidth. Such lines are
often known as leased lines. The sophisticated equalization used on these lines
means that signalling rates can approach the Nyquist rate, i.e. pulses can be
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Fig. 3.42 Signal space diagram for 16-level QAM.

transmitted at rates approaching 2400 baud. This means that it is possible to
transmit data rates up to 9.6 kb/s using 16-level QAM.

The leased lines referred to in the previous paragraph are basically high
grade voice channels. Much higher data rates are possible on specially
designed wideband links. These wideband links operate in a synchronous
fashion and modern networks are adopting packet switching techniques to
maximize the efficiency of usage of these links.

321 CONCLUSIONS

This chapter has introduced the basic concepts of digital communications
and stressed the advantages of transmission of information in digital format.
This is a huge growth area in telecommunications systems engineering and is
likely to remain so for the foreseable future. All-digital telephone networks,
including cellular mobile telephones, are progressively being installed. These
networks will gradually replace analogue systems and will provide enhanced
services and increased reliability. A detailed treatment of packetized trans-
mission is given in Chapter 13.
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PROBLEMS

3.1 The sampling theorem is normally applied to signals with a low-pass spectrum.
Show that this theorem can also be applied to signals with a bandpass spectrum,
What is the statement of the theorem in this case?

A signal with a bandwidth extending from 30 to 34 kHz is to be transmitted
through an ideal channel with a low-pass characteristic. Determine the mini-
mum theoretical cut-off frequency of the channel. Give a block diagram of the
system and describe how the original signal may be reproduced at the receiver.

Answer: 4kHz.

3.2 A signal is used to amplitude-modulate a periodic pulse train in which the
pulse width is much less than the pulse duration. The sampled signal is to be
reconstructed by a sample-and-hold circuit. Sketch the output of this circuit
and, by considering its frequency response, find the ratio of the signal frequency
amplitude to the amplitude of the lowest frequency distortion component. The
signal is a single tone of frequency 2.8 kHz sampied at 8 kHz.

Answer: 1.86:1.

3.3 Explain the difference between the actual bandwidth of a pulse and the band-
width required for pulse transmission.

Twenty-four speech signals each with a bandwidth of 0 to 4.5kHz are to be
transmitted over a line with a raised cosine frequency response by TDM.
Calculate the minimum theoretical bandwidth of the line. Would this band-
width be adequate in a practical system?

Answer: 216 kHz.

34 An equalized line with a raised cosine response has an effective bandwidth of
200kHz. Six speech channels are to be transmitted over this line using time
multiplexed PCM. Assuming linear quantization and a sampling frequency of
8 kHz for each signal, what will be the average signal power-to-noise ratio at
the decoder output. Assume quantization noise only is to be considered.

Answer: 26 dB.

3.5 A single information channel carries voice frequencies in the range 50 Hz to
4.3 kHz. The channel is sampled at a 9 kHz rate and the resulting pulses may be
transmitted either directly by pulse amplitude modulation (PAM) or by PCM.

Calculate the minimum bandwidth required for the PAM transmission
assuming a line with a raised cosine response.

If the pulses are linearly quantized into eight levels and are transmitted as
binary digits, find the bandwidth required to transmit the digital signal and
compare it with the analogue figure. If the number of levels of quantization is
increased to 128 what is the new bandwidth required? Calculate the increase in
SNR at the decoder output, assuming the peak-to-peak voltage swing at the
quantizer is 2 V.

Answer: 9kHz; 27kHz; 63 kHz; 24dB.

3.6 A PCM system employing uniform quantization and generating a 7 digit code is
capable of handling analogue signals of 5V peak-to-peak. Calculate the mean
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signal-to-quantizing noise ratio when the analogue waveform has a probability
density function given by

P(vy=Kexp(—|v]) —25<v<25 =0else
Assume uniform signal distribution within a given quantization interval.
Answer: 38.9dB.

Derive an expression for the amplitude spectrum of a single triangular pulse of
base width ¢t seconds and amplitude A volts. Hence estimate its bandwidth.

Answer: 2/t Hz.

A data signal consists of a series of binary pulses occurring at a rate of 100
digits/s. This signal is to be transmitted over a telephone line, binary 1 being sent
as a 1.5kHz tone and binary 0 as a 2.8 kHz tone. What is the bandwidth of the
transmitted signal?

If the digit rate is increased to 1000 b/s what are the required upper and lower
cut-off frequencies of the line in order that it may transmit this signal?

Answer: 1.5kHz; S00 Hz; 3.8 kHz.

If the transmission of question 3.8 is by DPSK, what is the maximum data rate
that can be transmitted over the telephone line? What is the optimum carrier
frequency in this case?

Answer: 1650 b/s; 2.35kHz.

3.10 Derive an expression for the amplitude spectrum of a FSK transmission when

the digit stream is a series of alternate 1s and Os.

3.11 A sinusoidal signal is switched periodically from 10 MHz to 11 MHz at a rate of

5000 times/s. Sketch the resulting waveform and identify the modulating signal if
the switched sine wave is regarded as FSK.

Find the approximate transmission bandwidth of the FSK signal and com-
pare this with the bandwidth required if the modulating signal is approximated
by a sine wave producing the same carrier deviation.

Answer: 1.02 MHz; 1.01 MHz.

Problems } ‘ 121 lﬁ



Noise in analogue
communications systems

4.1 INTRODUCTION

We have considered, in the previous chapters, various ways of transmitting
information from one location to another. We concern ourselves now with
the performance of these systems in a noisy environment. This comparative
analysis will provide the insight required to determine the suitability, or
otherwise, of using a particular form of transmission in a specific environ-
ment. The relative performance of various systems in noise is, of course, only
one of the factors taken into account when choosing a particular method
of information transmission. The economic considerations, e.g. cost, com-
plexity, maintenance, are sometimes of paramount importance, but are out-
side the scope of this text.

Noise is defined as any spurious signal that tends to mask or obscure the
information in the transmitted signal. The ratio of signal power to noise
power at any point in a telecommunications system is known as the SNR, and
the fundamental exchange possible between signal bandwidth and SNR is
given by Shannon’s law (see Section 1.14). In this chapter we will consider
the performance of systems using analogue transmission and then discuss
the significance of Shannon’s law for the examples chosen.

4.2 PHYSICAL SOURCES OF NOISE

Noise is usually divided into naturally occurring noise and artificial noise.
Artificial noise comes from various sources, the most important types being
ignition interference, produced whenever sparks occur at electrical contacts,
and crosstalk which is produced by inductive or capacitive coupling between
one or more communications ehannels. Artificial noise can, in theory, be
eliminated, although the cost of such elimination is often quite uneconomic.
Natural noise is produced by many different phenomena, some examples
being lightning discharges, thermal radiation and cosmic radiation. Natural
noise cannot be eliminated and communication systems must perform effi-
ciently in the presence of this type of noise, and often in the presence of
artificial noise also.

The two most important types of natural noise are thermal noise and shot
noise. Thermal noise is produced by random motion of charged particles in
resistive materials and by thermal radiation from objects surrounding a tele-
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communications system, particularly one with an antenna. Shot noise is
produced in semiconductor devices and results from the fact that currents
flow across p—n’'junctions in finite quanta rather than continuously.
Thermal noise, caused by random motion of charged particles in resistive
materials, produces a mean square noise voltage with a magnitude directly
related to the temperature of the resistive material, which is given by

92 = 4kTRAf, (volt)? (@.1)

In this expression k is Boltzmann’s constant (1.38 x 1072 J/K), T is the
absolute temperature in kelvins, R is the resistance of the material in ohms,
and Af, is the bandwidth of the measurement. The derivation of Eqn (4.1) is
given by King.! Any noisy resistance can be represented by an equivalent
circuit consisting of a noise-free resistance in series with a voltage source
whose mean square amplitude is given by Eqn (4.1). This allows the determi-
nation of the noise properties of networks using conventional network
theorems. We will consider one such calculation, of particular importance in
telecommunications, to illustrate the procedures. We wish to calculate the
noise power delivered by a resistance to a matched load, i.e. a load with the
same resistive value. The circuit is shown in Fig. 4.1.

In this circuit R, is the noise source and R, is the load. Both source and
load will produce a mean square noise voltage which will give rise to a mean
square current i2. The power delivered by R, to R, is

52
iR,
=——" 42
"R, + R “2
If R, =R, (i.e. the source and the load are matched) the power delivered by
RitoR,is
2
= i = M =kTAf, watts
4R, 4R,
This is often written
P,=nAf, (4.3)

The constant # is the single-sided noise power spectral density and is
independent of the range of frequencies Af,. If Af, is measured over both
negative and positive frequencies the double-sided noise spectral density is

Noise-free

ul resistance

Noisy
resistance

Fig. 4.1 Noise networks. (a) Equivalent circuit of a noisy resistance; (b) noise de-
livered to a matched load.
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n/2 watts/hertz. This agrees with the Fourier analysis developed in Chapter 1,
in which we indicated that half the total power was contributed each by the
negative and positive components. When the noise spectral density is in-
dependent of frequency the noise is said to be white, by analogy with white
light. When white noise is filtered by a frequency-selective network the result-
ing noise is known as coloured noise.

When thermal noise is derived from an antenna, the temperature of
the noise source is not necessarily equal to the antenna temperature. The
expression for the noise power delivered by an antenna to a matched load is
P,=kT,Af, watts. The effective noise temperature of the antenna T, is
related to the temperature of the radiating bodies surrounding the antenna
and is determined by measurement. If the radiating bodies have the same
temperature as the antenna, this is the value used for T,. Antennas pointing
into space generally receive far less radiation than antennas directed towards
bodies on the Earth’s surface and consequently have a much lower effective
noise temperature.

43 NOISE PROPERTIES OF NETWORKS

All telecommunications systems are characterized by the fact that received
signals are always accompanied by noise. The effectiveness of such a system is
measured in terms of the ratio of signal power to noise at the system output.
The SNR at any point in a telecommunications link is usually expressed in
decibels:

SNR =10log,,[S,/N,] 4.4)

The minimum acceptable SNR for reliable communication is normally
considered to be about 10 dB. Many systems operate at much higher ratios
than this: the minimum SNR for telephone circuits is around 26 dB and for
high-quality audio transmissions a figure in excess of 60 dB is typical. Some
space systems operate with an SNR much less than 10dB, but such systems
require sophisticated techniques, such as correlation detection at the receiver.
All electrical networks generate noise and it will be clear, therefore, that
when a signal passes through such a network the SNR at the network output
will always be less than at the network input. The amount of extra noise
generated by a network is specified by its noise figure. This is given the symbol

F and is defined as
F =S8NR;,/SNR_,, 4.5)

A noiseless network has a noise figure of unity and it therefore follows that
real networks always have a noise figure with a numerical value greater than
unity. The noise figure of any network is derived in terms of the schematic
diagram of Fig. 4.2. The input signal power is S; and the network power gain
is A, (not necessarily restricted to values greater than unity); the signal power
at the network output is thus §, = A_S;. If the input noise power is N, and the
noise power generated within the network is N, the total noise power at the
network output is Ny = 4 N; + N,. The output SNR is

SNR, = 4,S,/(4,N; + N,)
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SNRi—. A S SNRo

Fig. 4.2 Noise figure of a network.

le.

S, (A,N,+N,) AN +N,
F=Sit ) _ 4.6)
N, AS; AN,

The factor A, N; is the output noise power of a noise-free network; thus

_ total output noise power
" output noise power if network was noise free

4.7

We see from the definition given as Eqn (4.7) that F is not constant but is
related to the noise power at the network input. The value of F is standardized
by fixing the input noise power as that produced by a matched source at
astandard temperature of 290 K. Use of noise figures in network calculations
is thus only valid if the input noise power is kT,Af,, where T, =290K.

The usefulness of noise figures is demonstrated by considering the cascaded
networks of Fig. 4.3. Using the definition of Eqn (4.7) we can write the overall
noise figure for the cascaded network as

Fe (Ap N;i+N,)A,, + N,
Ap1Apa N,
We assume that the networks are matched, i.e. the output resistance of the
first network is equal to the input resistance of the second network, and that

the input noise N; is the noise produced by a matched source at 290 K. The
noise figure of the first network is therefore

Fl = (AplNi + Nal)/AplNi

In defining the noise figure of the second network the input power is also N;;
hence

F2 = (Ap2Ni + NaZ)/ApZNi
Thus the overall noise figure may be written

F=AplNi+Nal Na2

AplNi AplApZNi
N N N
PR A TR Ap, L
Na Nax

Fig. 4.3 Cascaded noisy networks.
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But

NaZ
Famt= (14 ) -
Therefore
F,—1

F=F, + (4.8)

pl
We see from Eqn (4.8) that if 4,, » 1, which is usually the case, the major
contribution to the overall noise figure is produced by the first network.
Evidently it becomes extremely important to ensure that the first network in
any cascaded system has as low a noise figure as possible. Equation (4.8) can
be expanded to include any number of cascaded networks. The equation for
three networks in cascade is

F,—1 F,—1
A A, A,

The effective noise temperature of a network is an alternative method of
describing the noise performance of a network. This alternative is especially
useful when considering low-noise networks or networks in which the input
noise is not produced by a matched source at 290 K. In the latter case the use
of noise figure is not valid. The effective noise temperature of a network is
determined by replacing the noisy network by a noise-free network with an
equivalent noise source at its input. The temperature of the equivalent noise
source is chosen to make the noise at the output of the noise-free network
equal to the noise at the output of the noisy network. Referring to Fig. 4.2, the
noise produced by the network is replaced by an equivalent noise source of

N,=KkT,Af,A,

F=F, + 4.9)

pl

The factor (kT Af,) is the noise delivered by an equivalent matched source
at a temperature T,. The temperature T, is known as the ‘effective noise
temperature’ of the network. If the value of T, «290K the network itself
contributes very little extra noise. The relationship between noise figure and
effective noise temperature is

o AN+ N, AKAL(T,+T)

ApN; A kAS, T,
T, is the standard temperature equal to 290 K. Hence
F=1+T/T, or T,=(F-1T, (4.10)

The maser microwave amplifier is an example of a very low noise network; the

effective noise temperature of such a device would be between 10 and 30 K,
which is equivalent to a noise figure of between 1.03 and 1.11.

It is often convenient to represent cascaded networks in terms of effective

noise temperature; substituting Eqn (4.10) into Eqn (4.9) gives
T T,

T.=T,+ 2%+
' Apl AplApZ

4.11)
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This equation is particularly useful when considering the noise performance
of a cascaded system in which the first element is an antenna with an effective
noise temperature not equal to 290 K. The cascaded system, excluding the
antenna, is replaced by a noise-free system with an equivalent matched noise
source at the input. The antenna noise is then included by adding the effective
noise temperature of the antenna to the equivalent noise temperature of the
noise source, and using the sum as the noise temperature of the matched
source.

We indicated when referring to Fig. 4.2 that the power gain A, was not
necessarily greater than unity; when A is less than unity the network is
passive and is usually characterized in terms of insertion loss rather than
power gain. The insertion loss of a passive network is the reciprocal of power
gain:
input power

insertionloss L= —————
output power

4.12)

When a passive network is matched at both the input and output the
insertion loss has the same numerical value as the network noise figure. The
noise power delivered to the network by a matched source is kTA f watts.
The noise delivered by the network to its load will be the sum of the input
noise power multiplied by the network power gain (which is less than unity
for passive networks) and the noise power generated within the network. This
latter component is represented, as in the determination of effective noise
temperature, by an equivalent noise source at the input of the network which
is then assumed noise free. The total noise power delivered to this noise-free
network is kAf, (T, + T.). The noise power delivered to the load is N, =
AkASf (T, + T,). However, the network is a matched source for its load,
and such a source delivers a noise power N, =kAf,T,. Thus these two
values must be equal or

ApkAfn(Ts + Te) = kAfn Ts
Le.
T.=T.(1-A)/A,=T(L-1) 4.13)

But T, = (F — 1) T,. Thus for a matched passive network the insertion loss
L has the same numerical value as the network noise figure, i.e. F = L. Both
F and L are usually measured in decibels.

ExAMPLE: To illustrate the significance of the analysis presented in this
section we will consider a typical system involving a domestic television
receiver. The receiver, which has a video bandwidth of 5.5 MHz, is coupled
via a 702 coaxial cable with an insertion loss of 6 dB to an antenna with an
effective noise temperature of T, = 290 K. The noise figure of the receiver,
referred to a matched source of 70Q at 290K, is 6 dB. We are requested to
find the SNR at the receiver output when the open-circuit signal voltage at
the antenna terminals is 1 mV rms.

Each component in this system will cause a degradation of the SNR. The
maximum value of SNR will occur at the input to the coaxial feeder. We begin
by determining the SNR at this point and to do this we consider the antenna
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Radiation
resistance 70

Load l‘—<>_—0—

istanc L=6dB Receiver
rest e =
L F=6dB

Fig. 4.4 Matched antenna.

as both a matched signal and noise source as shown in Fig. 4.4. We assume
that the antenna has a source (see Chapter 7) resistance of 70 Q, and is
therefore matched to the 70 Q feeder. We also assume that the receiver has an
input resistance of 70 Q.

Since the antenna open-circuit signal voltage is 1 mV rms the voltage
across the 70 Q load will be half this value, i.e. 0.5 mV rms. The signal power
delivered to the coaxial feeder will be S, = (0.5 x 10~ %)2/70. The noise power
delivered by the antenna, which acts as a matched noise source, is N, =
kAf,T,. The SNR at the feeder input is thus

SNR = 10log,,S,/N, =525 dB

We can now calculate the overall noise figure for receiver and feeder. This is
valid in this example because the antenna effective temperature is 290 K. The
overall noise figure is

F=F +(F,~1)/4,,

F, is the noise figure of the feeder = L = 6dB, ie. F 1=398. A4, is the
reciprocal of the feeder insertion loss and has a value of 0.251. F , Is the
receiver noise figure = 6 dB = 3.98.

Hence the overall noise figure is F = 15.85 (12 dB). The SNR at the receiver
output will then be

SNR,,, = 52.5dB — 12dB = 40dB

This figure is actually lower than the minimum acceptable SNR for reason-
able picture quality, which is usually considered to be 47 dB. The solution to
this problem would be the use of a low-noise pre-amplifier between antenna
and receiver. The pre-amplifier would have a typical power gain of 20 dB and
a typical noise figure of 3 dB. It is possible to connect such an amplifier either
directly to the antenna terminals (i.e. before the feeder) or directly to the
receiver input (i.e. after the feeder). We suggest that the reader examines both
cases and determines the output SNR when the pre-amplifier is included. It
will be found that the output SNR will be 6 dB higher when the pre-amplifier
1s connected directly to the antenna terminals. This verifies the earlier con-
clusion that the first network in a cascaded system has the mrajor effect on the
overall noise figure.

In this example we represented the domestic television receiver as a
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Fig. 4.5 General telecommunications system.

single network with an overall noise figure. In fact the receiver will be divided
into several distinct functional blocks including RF and IF amplifiers, vision
detector, video frequency amplifier, etc. From our consideration of the super-
heterodyne receiver in Chapter 2 it is clear that the signal bandwidth at
various points in a receiver (e.g. before and after the detector) is not necessa-
rily constant. This means that possibilities exist for exchanging bandwidth for
SNR at various points in a receiver, the theoretical relationship being given
by Shannon’s law. Thus although it is common practice to specify a single
noise figure for a receiver it is more instructive to consider the individual
sections of such a system.

A general telecommunications system can be represented in the form
shown in Fig. 4.5. In this figure the bandwidth of the signal source is B, hertz.
The signal enters the modulator and the bandwidth is changed to B, hertz.
During the transmission noise is added to the signal. It is convenient to show
this noise as a single input as in Fig. 4.5, but as we have shown, noise is
actually added at every stage of a communications system. The SNR at the
detector input is given the symbol SNR,. At this point the detector transforms
the bandwidth of the received signal back to its original value of B, hertz and
in so doing produces an output signal-to-noise ratio SNR,,. Shannon’s law
states that whenever there is a change in signal bandwidth there should be an
accompanying change in SNR. Shannon’s law is, however, a theoretical law
in which no allowance is made for any physical constraints that may exist in
practical systems. We must therefore examine each transmission system on
an individual basis and in order to do this it is necessary to develop an
algebraic technique for specifying the effect of noise.

44 ALGEBRAIC REPRESENTATION OF
BAND-LIMITED NOISE

Equation (4.3) indicates that the noise power delivered by a matched source is
nAf, watts. This means that the total noise delivered to the detector in
areceiver of bandwidth B hertz is B hertz. The algebraic representation of
this noise is derived by dividing the bandwidth B into small elements A f and
approximating the noise power within each element by a cosine wave. As the
element of bandwith Af,—O0 this gives a very accurate representation of
the noise signal. The technique is illustrated by Fig. 4.6. The noise voltage
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Fig. 4.6 Band-limited white noise.

produced in the elemental bandwidth A f is represented as

n(t) = A,cos[2n f, t + 6,(1)] (4.14)
where 3 A2 = #A f and f, is the centre frequency of the interval A f. The phase
angle 6,(¢) is an arbitrary random number. The total noise voltage produced

over the entire bandwidth B is calculated by summing the contributions of
each element Af, i.e.

Vi)=Y A,cos[2nf,t + 60,(1)] (4.15)

It is convenient at this point to introduce the substitution f, = (f, —f.) + 1,
where f, is the centre frequency of the bandwidth B. Equation (4.14) then
becomes

n(t) = A, cos [2n( f, —f )t + 0,(t)] cos 2nf.1)
— A, sin[2n(fi —f)t + 0,(t)] sin(2nf.2)

which means that Eqn (4.15) can be re-written

V.(t) = x(t)cos 2n f.t) + y(t)sin 2nf.1) (4.16)
where
x(t)= Y. (2nAf)? cos (21 f, — f.)t + 6,(1)] (4.16a)
and k
)= - ;(2'7Af )2 sin[2n(f — fo)t + 04(0)] (4.16b)

We can thus represent the noise voltage in terms of the sum of two amplitude
modulated carriers in phase quadrature. The carrier amplitudes are the
random variables x(¢) and y(¢) that have mean square values x2(t) and y*(t),
respectively. The total noise power in the bandwidth B is
X0 VD
P= XT() + X¥ watts (4.17)
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but

hence

P=x*t) or y*1) ie. P=nB watts (4.18)

Having derived this representation of band-limited noise we can now
examine the effectiveness of various signal transmission systems in the
presence of noise. This will be accomplished by comparing the SNR after
detection (or decoding) with the value that exists before detection.

4.5 SNR CHARACTERISTICS OF ENVELOPE-DETECTED
DSB-AM

The assumptions made in this section are

(i) the modulating signal is a single tone;
(i) the envelope detector has an ideal characteristic which infers that its
output is directly proportional to instantaneous carrier amplitude.

Some care is required in defining SNR at the detector input; the DSB-AM
signal consists of a carrier and two sidebands and we can specify the signal
power in terms of combination of these components. The DSB-AM signal
plus noise is written as

V.. (t)=A[1+mcos2nf,t)]cos2nft
+ x(t)cos 2mf.t) + W) sin 2n f 1) (4.19)

If we normalize this voltage to be the voltage developed across a resistance
of 1Q then the carrier power is § A2 watts, the sideband power is §(mA,)?
watts and the total power is +A42(1 +;m?) watts. The noise power is
%Wt)+{;)7(t5=)czl(0 watts. There are three commonly used methods of
specifying SNR at the detector input: these are

(1) carrier power-to-noise ratio,
(2) sideband power-to-noise ratio, and
(3) total power-to-noise ratio.

The carrier-to-noise ratio is S./N = A2/2x?(t), the sideband-to-noise ratio is
Sw/N =(mA.)?/4x*(t), and the total SNR is

S,/N = A3<1 +%2~>/27(z)

The resultant input to the detector is given by the vector sum of the amplitude
modulated waveform and the noise components. The graphical addition is
shown in Fig. 4.7, from which we can see that if the SNR is very large then the
phase angle ¢ —0. The input to the detector for large SNR is given approxi-
mately by

V()= A, (1 + mcos 2nf,t) + x(t) (4.20)
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Fig. 4.7 Signal plus noise at the decteor input.

The detector, being ideal, will have an output
Voult) =aA (1 + mcos 2nf, t) + ax(t) 4.21)

The output signal power is 3(amA.)? and the output noise power is a’x(t).
The SNR at the detector output is thus

SNR,, = (mA.)?/2x%(1) (4.22)

If we compare this figure with the carrier-to-noise ratio at the detector input
then

SNROut = mZSC/N
This has its maximum when m = 1, i.e.
SNRout(max) = Sc/N (423)

This equation states that the SNR at the detector output has the same
numerical value as the carrier-to-noise ratio at the detector input. It does not
state that the SNR at the detector output is equal to the SNR at the detector
input, which is the interpretation sometimes wrongly used in the literature.

If SNR,,, is compared with the sideband-to-noise ratio at the detector
mput, then

SNR,,, = 25,,/N (4.24)

The output SNR is 3 dB greater than the sideband power-to-noise ratio. It is
not correct, however, to say that DSB-AM produces a SNR improvement of
3dB.

To produce a realistic assessment of DSB-AM we must compare the output
SNR with the total SNR at the detector input. When m = 1 then

_2S
out_3N

The SNR at the output of an ideal envelope detector is actually lower than
the SNR at the detector input. This is explained by the fact that even when
m =1, 66.67; of the total transmitted power is contained within the carrier
component, which does not contribute at all to the signal power at the
detector output. Thus DSB-AM does not obey Shannon’s law in its strict
theoretical statement. The situation is improved somewhat if the carrier
is suppressed, as this shows an improvement of 3dB in SNR as given by
Eqn (4.24). If the carrier is suppressed, however, it is not possible to employ
envelope detection.

SNR 4.25)
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46 SNR CHARACTERISTICS OF COHERENTLY DETECTED
DSB-AM

Equation (4.20) was derived on the assumption that the SNR at the detector
input was very large. If this condition is not met the resulting values of SNR,,
given by Eqns (4.23), (4.24) and (4.25) are not valid. In fact at low values of
SNR the performance of the envelope detector deteriorates rapidly. The
envelope detector can therefore be employed only in good SNR conditions.
This is usually taken to mean that the envelope detector has a signal-to-noise
performance that is acceptable only if the SNR at the detector input is greater
than 10dB.

Coherent detection is an alternative demodulation technique for DSB-AM
and an essential technique for suppressed carrier and SSB-AM. The perfor-
mance of the coherent detector is maintained for all values of input SNR. The
coherent detector multiplies the received signal by a locally produced refer-
rence signal E cos(27nf,t). When the received signal is accompanied by noise,
the detector output is

Vo(t) = EA_[1 +mcos(2nf,t)] cos? 2nf.t)
+ Ex (t)cos? (2nf.t) + Ey(t)cos 2nf.t)sin(2nft) (4.26)

The frequency terms produced by the multiplication, which are outside the
bandwidth occupied by the modulating signal, are removed by the filter that
follows the coherent detector, the resulting output being

Vo (t)=3EA, + 3EA mcos 2nf,t + Ex(t) 4.27)

The signal and noise powers in this expression are respectively S, = § (EA.m)*
watts and N, = E*x*(t) watts. The SNR at the detector filter output is thus

SNR,. = (mA)?/2x2(t) (4.28)
This is the same result as for the envelope detector but there is no pre-
condition that the SNR should be large. In other words, the coherent detector
maintains its SNR performance for all values of input SNR and is therefore
superior to the envelope detector in poor SNR conditions.

47 SNR CHARACTERISTICS OF DSB-SC-AM

The detection of DSB-SC-AM is discussed fully in Section 2.10. If we assume
that such a detector has an ideal characteristic the output SNR will be 3dB
greater than input sideband power-to-noise ratio. In other words, DSB-
SC-AM produces a 3dB SNR improvement.

48 SNR CHARACTERISTICS OF SSB-AM

This form of modulation requires coherent detection. In this case the input to
the detector will be one sideband only, plus noise. If we assume a single
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modulating tone of frequency f,,, the signal plus noise at the detector input
will be

Vialt) = A cos [2n( f, + f)t] + x(t) cos 2n f,t) + y(t)sin 2n f.t) (4.30)
The input SNR is thus
SNR;, = 42/2x2(t) (4.31)

We should point out here that because the bandwidth of a SSB signal is
approximately half that of a DSB signal, the noise power at the detector input
will be half the equivalent noise power in a DSB system. The output of the
SSB coherent detector after filtering is

Vou () =3 EA cos2nf,t + } Ex(t) (4.32)

The SNR at the filter output is thus SNR,,,, = 4 z /2x%(t). Thus for SSB-AM
SNR,.. = SNR;, 4.33)

It is interesting to compare a SSB transmission with a DSB-SC transmission
when the transmitted power is the same in each case. We have shown that
there is a 3dB improvement in the DSB case, but because the noise power in
the SSB system is only half that of the DSB system the two are actually
equivalent in terms of output SNR when the transmitted power in each case is
the same.

It would seem on a purely SNR basis that there is little to choose between
DSB-SC-AM and SSB-AM. This is not entirely true: in certain situations
(when ionospheric reflections are used, for example) severe distortion can be
produced in DSB systems because components in the two sidebands can have
differing phase velocities resulting in partial cancellation after detection. This
problem is not encountered in SSB systems, when used for audio signal trans-
mission, because the ear is insensitive to phase distortion. In these circum-
stances there is a considerable advantage in using SSB transmission.

49 SNR CHARACTERISTICS OF FM

We will establish the SNR properties of FM by again assuming an ideal
detector, ie. one that has an output voltage directly proportional to the
‘instantaneous frequency’ of the input signal. The algebraic representation of
band-limited noise is identical to the AM case, but it should be borne in mind
that the bandwidth of a frequency modulated signal is usually considerably
greater than the bandwidth of an AM signal, and that noise power is directly
proportional to bandwidth.

The voltage at the FM detector input will be the sum of signal and noise, i.e.

Via(t) = A cos [2nf t + B sin 2n f, t)] ‘
+ x(t) cos 2n f.t) + y(t) sin 2n f .t) 434
The FM signal has constant amplitude and the signal power is also constant |

and independent of the amplitude of the modulating signal. This is a funda- ]
|
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mental difference between FM and AM. The signal power at the detector
input has a value of A2/2 watts. It is convenient to calculate the signal power
at the detector output in the absence of noise, and the noise power in the
presence of an unmodulated carrier (i.e. in the absence of signal).

If we assume that the modulating signal is a single tone of frequency f,, the
instantaneous frequency of the FM waveform is f;= f, + Af,cos(2nf,,t),
and this will produce a voltage at the detector output given by

V,=b2nAf cosnf,t) 4.35)
The signal power at the detector output will thus be
So = (b2nAf.)?/2  watts (4.36)

We calculate the noise voltage at the detector output using phasor methods.
The phasor diagram for the unmodulated carrier and quadrature noise com-
ponents is shown in Fig. 4.8. The FM detector produces an output propor-
tional to frequency, which is the time differential of the phase angle ¢. If we
assume that the SNR at the detector input is large, then the phase angle is

given by
~ -1 '_y_g.t_) ~ y(t)
¢(t) ~ tan [Ac] by 4.37)
The ‘instantaneous frequency” produced by the noise is
d(0) = % (4.38)

4

which, if we assume j(t) « A, is narrowband FM. The noise voltage at the
detector output is

b .
Vo= ZY(’) (4.39)

where b is the detector constant of proportionality. The noise waveform y (t) is
itself the sum of many elemental noise components, i.e.

y(@) = ;An sin [27( fy —f) t + 6, (1)]

The noise component at a particular frequency f; is
V()= A, sin[2xnft +6,(1)] (4.40)

where f=( f, —f.) is the frequency difference between the noise component
and the centre frequency, and can have both negative and positive values. The

Vit
yit)

|
Ac x(t)

Fig. 48 Unmodulated FM carrier plus noise.
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noise voltage at the detector output produced by an elemental noise compo-
nent at the detector input is

oV, = A£27thn cos [2nft + 6, (1)] (4.41)
where we have assumed that 0,() varies very slowly and does not contribute

to the output amplitude. The power at the detector output produced by this
elemental component is

AN, = (ngﬁi%f)_z watts (4.42)
but
A, =(2nAf)12
Le.
AN, = <2nb>2 nf2f
%
Hence
%9 =Kf? where K= ﬂ(%f)z (4.43)

In Eqn (4.43) dN,/d f represents the power spectral density of the noise at the
detector output and is no longer white but proportional to 2. This means
that the noise power at the output of an ideal FM detector increases with the
square of the frequency difference between the centre frequency and the
elemental noise frequency. The noise voltage spectral density (AN o/df )2 s
plotted as a function of fin Fig. 4.9.

The noise at the output of a frequency modulation detector will be
produced by the sum of all components within the passband of the filter that
follows the detector. If we assume that this filter has an ideal low-pass
characteristic with a cut-off frequency of + Jo (the negative figure is required
for negative values of /= (f, — £.)), then since the noise produces narrowband
FM we can determine the total noise using superposition. The total noise

b

White noise

Detector noise {output)

Fig. 4.9 FM detector noise spectral density.
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power is

Jo
N0=J dN,
—Jfo

ie.
So
No=2K fzdf
0

which evaluates to

2nb\?
No= n( — ) 33 (4.44)
The signal power at the detector output is given by Eqn (4.36). Thus the
SNR is
2
SNR,, = e (Af ) (4.45)
2nfo\ fo
It should be noted that Af_/f, # B unless f, = f,, which is not necessarily
the case.

Equation (4.45) is interpreted as stating that the SNR at the output of
a frequency modulation detector increases with the square of the carrier
deviation, which is independent of the carrier power. It might be argued that
the SNR could be increased indefinitely simply by increasing the carrier
deviation. This overlooks the fact that increasing Af, increases the signal
bandwidth with a consequent increase in the noise power, which is itself
directly proportional to bandwidth. As Af, increases a threshold is reached at
which the assumption y(f) « A, is no longer valid. Beyond this threshold
a very rapid fall in SNR at the detector output is witnessed. This threshold
effect is a characteristic of all wideband systems and is considered in more
detail in Section 4.11.

The relative performance of AM and FM systems in the presence of
noise can be compared by reference to Eqn (4.45). In this equation, f, is
the bandwidth of the filter following the detector and will be equal to the
bandwidth of the modulating signal. The factor 25 f,, is thus the noise power
that would occur at the output of an AM system with the same modulating
signal bandwidth. If we compare FM and AM transmissions in which the AM
carrier power equals the FM carrier power, the factor S_/2n f,, of Eqn (4.45) is
equal to the output SNR for an AM system when the depth of modulation
m=100%, i.e.

SNRout(FM) = SNRout(AM)3(Af;:/f0)2 (446)

If we consider a typical FM commercial broadcast system in which Af, =
75kHz and f, = 15kHz, then

SNRoul(FM) =75 SNRout(AM)

In fact, in commercial broadcast AM systems the depth of modulation is
usually restricted to 30% and the total transmitter power is (1 + 3m?) times
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the carrier power. Hence comparing FM and AM on the basis of total
transmitted power,

3(L+3imY) /AN
SNRout(FM) = —27‘ —f SNRnut(AM) (4.47)
m fo
If
m=03,Af=75kHzand f,=15kHz,
then

SNR, kv = 810.83SNR i am

Alternatively, to produce the same SNR the transmitted power in the FM
case is 29 dB less than the required power in the AM case.

One conclusion we may draw from these figures is that for a given radiated
power a FM transmitter will have a greater range than a DSB-AM ftrans-
mitter, provided that the SNR at the FM detector input is sufficiently high
for the noise to produce narrowband frequency modulation of the carrier.
In other words, the FM system must be operating above the threshold level.
This threshold level is related to both the frequency deviation and the SNR
at the detector input. For large values of Af, the threshold occurs at a SNR
of about 13 dB. The conditions required for FM to exhibit its SNR improve-
ment properties are that > 1/,/3 [assuming f, = f,, in Eqn (4.46)] and
the SNR at the detector input must exceed 13 dB. If the SNR at the detector
input is below the threshold value, the output SNR decreases rapidly and
ultimately becomes poorer than the equivalent AM value.

4.10 PRE-EMPHASIS AND DE-EMPHASIS

The analysis of the previous section was based on a single tone modulating
signal and we assumed that irrespective of the frequency of this tone the
carrier deviation had its maximum value Af.. In other words, we assumed
that the FM signal occupied the maximum possible bandwidth for a given
modulating signal. In reality the situation is somewhat different; the mod-
ulating signal is not a single tone but a complex signal with a particular
power spectral density.

The power spectral density of natural speech is closely approximated by
the graph shown in Fig. 4.10. We can see from this figure that above a certain
frequency f, the power spectrum decreases at a rate approaching 6dB/
octave. If such a signal frequency modulates a carrier, the higher-frequency
components will produce a fower carrier deviation than the low-frequency
components. In other words, the bandwidth occupied by a carrier frequency
modulated by a signal of this type will be considerably less than if the power
spectrum of the modulating signal were uniformly distributed. In practice,
therefore, the FM system would not produce the maximum SNR improve-
ment suggested by Eqn (4.46).

The theoretical SNR can be approached, however, if the power spectrum of
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Fig. 410 Power spectrum of natural speech.

the modulating signal is made uniform by emphasizing the higher-frequency
components before modulation takes place. The spectrum of the modulating
signal is restored after detection by applying a corresponding amount of the
de-emphasis. The de-emphasis will, of course, operate on the noise produced
by the detector as well as the signal, the overall effect being a reduction in the
noise power at the detector output. The process of pre-emphasis and de-
emphasis is illustrated graphically in Fig. 4.11.

The actual component values used in pre- and de-emphasis networks will
vary from circuit to circuit. The amount of pre- and de-emphasis will depend
upon the time constant of the filter used, and it is normal to express the pre-
and de-emphasis in terms of this time constant. In the UK the value of the
time constant used is 50 ps; in contrast the value used in the USA is 75 ps.

It is worth stating that the technique of pre- and de-emphasis does not
produce SNR increases above the theoretical values specified by Eqn (4.46).
The technique is one of conditioning the modulating signal in order that the
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Fig. 4.11 (a) Pre-emphasis and (b) de-emphasis in FM.
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maximum theoretical performance can be realized. It is shown by Schwartz?
that the technique of pre- and de-empbhasis is not restricted to FM but can be
used in any system in which the power spectral density of the signal decreases
more rapidly, as a function of frequency, than the noise power spectral
density. In this context, pre- and de-emphasis could be used with AM systems
to increase the overall SNR. It is not used in practice with AM system because
it is actually advantageous, from the point of view of adjacent channel
separation, to have a signal power spectrum that decreases with frequency.

4.11 THE FM CAPTURE (THRESHOLD) EFFECT

Consider the phasor diagram of Fig. 4.12(a) in which X represents the
required FM carrier and Y represents an interfering FM carrier. (Y could be
due to a second FM station at the receiver image frequency, or Y could
represent the frequency modulated carrier produced by noise entering the
detector.) It is assumed that the amplitudes X and Y are fixed and that the
angle between the phasor ¢, is uniformly distributed in the range — 7 < ¢y <
+ . It is required to find the resultant phase angle ¢, which will be
responsible for any interference generated at the detector output.

From Fig. 4.12(a)
. Ysin(¢,)
oo™ 1 Vo) (449

¢, will be a random quantity with mean square value
- +n H 2 :
(¢,)* = if {tan_ I[M]} de, (4.49)

2n) _, X + Y cos(¢,)

Equation 4.49 can be solved numerically and the rms value of ¢, is plotted
against the ratio X/Y in Fig. 4.12(b). It will be noted from this figure that

¢ ~ (rad. rms)

{
|
|
1
I
(a) 0 1 1 1 !
—20 —~10 0 10 20
(b) X/Y (dB)

Fig. 4.12 The FM capture effect phasor diagram.
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Fig. 4.13 Noise improvement obtained with FM.

avery rapid change in \/(¢,)? occurs in the region X = Y. When X/Y = 3 the
phase angle ¢, becomes very small. This means that the interference compo-
nent produced by Y (which is proportional to d¢,/dt) also becomes very
small. Hence when the ratio X/Y > 3 the carrier X takes over, or captures, the
system. The FM receiver will thus discriminate in favour of the stronger
signal. This is also true when X/Y < 1. In the latter case component
Y captures the system. Hence if Y is due to noise, a very rapid deterioration in
performance is observed. The FM threshold effect is clearly demonstrated in
Fig. 4.13 which plots the SNR at the detector output as a function of the SNR
at the detector input.

The FM capture effect is actually very useful and is employed in mobile
cellular radio (see Fig. 13.21) to suppress interference from base stations in
co-channel cells operating on the same frequency.

412 CONCLUSION

In this chapter we have compared several analogue transmission systems
from a SNR point of view. It may be concluded that wideband systems, such
as FM, produce SNR improvements, but not to the degree specified by
Shannon’s law. (This conclusion is also valid if narrowband pulse amplitude
modulation (PAM) is compared with wideband pulse frequency modulation.
We have omitted a detailed study of analogue pulse modulation because
this has been largely overtaken by digital techniques.) If SNR was the sole
figure of merit of a telecommunications system, it would be reasonable to
conclude that wide-band systems can offer superior performance to narrow-
band systems. There are, however, many other factors that influence the
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choice of modulation system. For example, the wide bandwidth of FM
precludes its use in the medium-wave broadcast band because here the main
requirement is to accommodate as many individual stations as possible in
a relatively small bandwidth. In any case SNR problems are not usually
significant in high-power broadcast transmissions.

There are many instances where the lower bandwidth of SSB is used in
preference to DSB-AM. One such instance is the frequency multiplexing of
telephone circuits for trunk transmission. In such a system it is possible to
transmit a synchronizing signal from which the individual carriers required
for coherent demultiplexing can be derived.

Traditionally medium-wave (i.e. local) broadcasts have used DSB-AM
although bandwidth is at a premium. Historically DSB receivers were
cheaper to produce and more reliable than SSB receivers. Modern technol-
ogy has completely changed the situation where complexity and reliability
are no longer closely related to cost. It is now perfectly possible, both
technically and economically, to mass-produce reliable SSB receivers. It is
unlikely that any moves will be made in this direction for some time because
of the problems of compatibility, i.e. existing DSB receivers, of which there are
many millions, would be unable to receive acceptable quality SSB trans-
mission,

Thus, as we have stated, SNR is but one of many factors that influence the
choice of a particular transmission system.
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PROBLEMS

4.1 Calculate the mean square output noise voltage when a signal generator with an
output resistance of 600 is connected to the input of the two-port network
shown.

10k

10k T

4.2 An amplifier is made up of three identical stages in cascade, each stage having
equal input and output resistances. The power gain per stage is 8dB and the
noise figure per stage is 6dB when the amplifiers are correctly matched.
Calculate the overall power gain and noise figure for the cascaded amplifier.

Answer: 24 dB; 6.6 dB.

1uf

Answer: 4.002 x 10715 V2,
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The noise figure of a receiver, relative to a matched source at a temperature of
290K, is 0.9 dB. Calculate the effective noise temperature at the input of the
receiver when an antenna of effective noise temperature 200 K is connected.

Answer: 266.6 K.

The following diagram represents a satellite receiving system coupled by
a waveguide to an antenna of effective noise temperature 70 K.

X " }—_
A Parametric Travelling Output
ntenna amplifier wave tube stage
——-
Waveguide T=20°K F=6d8 F=10dB
loss = 0.5 dB A=26dB A =23dB

(a) Calculate the equivalent noise temperature of the waveguide and travelling
wave tube (a device for amplifying frequencies in the gigahertz range).

(b) Calculate the SNR, at the output of the receiver assuming the antenna
radiation resistance to be 50Q and the available received power is 10 pW.
The bandwidth of the system is 10 MHz. (Hint: find the equivalent SNR
referred to the waveguide input.)

Answer: (a) 35K, 870K; (b) 27.5dB.

A superheterodyne receiver is connected to an antenna with a noise temperature
of 100 K by a coaxial feeder having a loss of 2 dB. The receiver characteristics are

RF bandwidth = S MHz
IF =20 MHz

IF bandwidth = 1 MHz
noise figure = 4dB

Calculate the total system noise temperature and the required signal power
delivered by the antenna to give a SNR of 20dB at the output of the IF stage.
Assume the antenna and receiver are both matched to the co-axial line.

Answer: 964 K; 1.33pW.

A single tone of amplitude 2 V rms and frequency 5.8 kHz is used to amplitude
modulate a carrier of amplitude 5V rms, the carrier and both sidebands being
transmitted. Given that the noise spectral density at the detector input is
0.1 yW/Hz, find the SNR at the detector output. The audio bandwidth of the
receiver is 10 kHz and the carrier amplitude at the detector input is 1 V rms.

Answer: 16dB.

A vhf transmitter radiates a DSB-AM signal at a depth of modulation of 45%,
with an audio bandwidth of 15kHz. This produces a SNR of 40dB at the
output of a receiver at a distance of 3 km from the transmitter. If the transmitter,
is switched to FM radiating the same total power, at a carrier deviation of
60kHz, find the theoretical distance from the transmitter for the same SNR at
the output of a FM receiver. Assume the noise spectral density at the receiver
input is the same in each case and that the received power decreases as the square
of the distance from the transmitter.

Answer: 48.5km.
A radio station transmits a DSB-SC-AM signal with a mean power of 1 kW. If

SSB-AM is used instead calculate the mean power for (a) the same signal
strength and (b) the same SNR at the detector output.
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49

4.10

A single tone of frequency 7.5kHz forms the modulating signal for both
a DSB-AM and a FM system, the power transmitted in each case being the
same. When modulated, the peak deviation of the FM carrier is 60 kHz and the
amplitude of the first pair of FM sidebands is equal to the sideband amplitude of
the AM transmission. Assuming an audio bandwidth of 7.5kHz for both AM
and FM receivers, determine the SNR advantage of the FM receiver. It may be
assumed that the noise spectral density has a constant value and is the same for
each case.

Answer: (a) 2kW, (b) 1 kW; 29.4dB.

A frequency modulation receiver consists of a tuned amplifier of bandwidth
225kHz that feeds a limiter and an ideal discriminator followed by a low-pass
filter with a bandwidth of 10 kHz. The carrier-to-noise ratio at the discriminator
input is 40 dB when the modulating signal is a 10 kHz tone, producing a carrier
deviation of 5 kHz. Calculate the SNR at the output of the filter.

If the amplitude of the modulating signal is maintained at the same value when
the frequency is changed to 1 kHz, find the new SNR at the filter output. What
would be the SNR if the amplitude of the modulating signal is halved?

Answer: 69 dB; 69 dB; 63 dB.

The SNR at the output of a coherent detector is 25dB when the input is a
SSB-AM wave. If the input to the detector is transferred to DSB-AM with m = 1,
find the increase in total power at the detector input to maintain an output SNR
of 25dB,

Answer: 4.8 dB.




Noise in digital
communications systems

The primary interest in the study of analogue communications systems is the
obscuring or masking of the transmitted signal by additive noise. This effect is
most conveniently analysed by considering the spectral properties of the
noise waveform. The situation in digital systems is quite different since only
fixed signal levels are allowed. When these levels are obscured by additive
noise the receiver is required to decide which of the allowed levels the noisy
signal represents. If the receiver decides correctly the noise has no effect on the
received signal whatever. If the receiver makes an incorrect decision the
results can be catastrophic. Decision theory is based upon the statistical
rather than the spectral properties of noise although, as one might expect,
these properties are related. The most important statistical property of white
noise, with respect to decision theory, is its amplitude distribution function.

51 THE AMPLITUDE DISTRIBUTION FUNCTION
OF WHITE NOISE

White noise is a naturally occurring phenomenon produced by the superposi-
tion of many randomly occurring events. Consequently it is not possible to
specify the instantaneous amplitude of the noise waveform at any given
instant. The alternative is to determine the probability that the noise wave-
form amplitude will exceed a given value. This is possible and requires
a knowledge of the amplitude distribution function of the noise waveform.
Suppose that n independent samples are taken of a noise waveform. (In order
for the samples to be statistically independent, these samples must be spaced
in time by an interval not less than 1/B seconds, where B is the noise
bandwidth.) Suppose also that n, of these samples have amplitudes between
v, and v,, i.e. the total number of samples in the range Av = (v, — v,)isn,. The
probability that any noise sample will be in this range is simply n,/n. If the
interval Av — 0, a continuous distribution results. However, as this limit is
approached, the probability that any sample will be in the range Av also
approaches zero. The problem is avoided if we represent probability as an
area. The probability that a sample lies within the amplitude range Av is
represented as the area of a rectangle of base width Av. The area of the
rectangle thus has the value n, /n and its height is n,/nAv which approaches
a finite value as Av —» 0 and n— oo. If the height of the rectangle is plotted for
all values of Av the resulting curve is termed the probability density function.
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The probability that a sample will be within the range v, to v, is the area
under the probability density function between these two limits. The prob-
ability density function p,(v) is formally defined by

— lim [ Mo
po)= lim, [nAv]

n— o

Referring to Fig. 5.1, the probability that v has a value between v, and v, is

P=f p,(v)dv (5.1)
The central limit theorem is an important theorem in statistics which states
that the probability density function (PDF) of the sum of many random
variables approaches a Gaussian distribution regardless of the distributions
of the individual variables. The PDF (also known as the amplitude distribu-
tion function) of white noise is therefore Gaussian and is given by

exp[— (v — a)*/26°]
\(@2no?)

In Eqn (5.2) a is known as the mean or expected value of v and ¢ is the

standard deviation. The Gaussian PDF has a characteristic bell shape with .
a width proportional to . The mean value is given by

p,(v) = (5.2)

a= f " (o) do 53

— a0

and the variance (¢?) is given by

o? = f " =P py(w)dv (54

- 0

The total area under the p,(v) curve must be unity, i.e. the probability that
a noise sample has an amplitude between — co and + o is 1, hence

Jw p.(0)dv=1 (5.3)

This gives the Gaussian curve a peak value of 1 /\/(27ro-2) at a value of v=a
(Fig. 5.2).

pylv)

>

NN

-

Fig. 5.1 Uniform PDF.
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Fig. 5.2 Gaussian PDF.

The mean value of white noise is zero; hence the variance may be inter-
preted as the mean square value. Alternatively ¢ = rms noise voltage.

A second distribution function, known as the cumulative distribution
function, is defined by Eqn (5.6):

nw=f”pmwv (5.6)

Le.

v _ M2 2 2
“@=f exp[—(v—a?/20%] |
—® J(2na?)
F,(v) is the probability that the noise will be less than some value v. Since
p,(v) is symmetrical about v = a it follows that F (v) =0.5 when v =a. As
shown in Fig. 5.3 the cumulative density function for white noise is sym-

metrical about v =0.
The probability that the noise amplitude is less than some value Ko is

Ko exp(—v?/20?)
-Ko \/ (2no?)

Substituting y = v/,/(20?) and noting that the Gaussian function is sym-
metrical about v =0 gives

(5.7)

prob(— Ko € v< Ko)= f dv (5.8)

2 K/ /2
prob(— Ko <v< Ko)= ~——J~ exp(— y?)dy (5.9
JrJo

A F v

) "/—
__/ N
0

a=0

Fig. 5.3 Cumulative density function for white noise with zero mean.
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This integral can be evaluated numerically for values of K and is known as the
error function, i.e.

P

erf(P) = \/ij exp(— y?)dy (5.10)

nJo
The error function is tabulated in Appendix C. The probability that v will
exceed Ko is

K/y2
1- —j exp(—y?)dy

Jrldo

The complementary error function is defined as

erfc(P)=1— ifpexp(— y2)dy (5.11)
Jrdo

Hence the probability that the noise voltage will be less than its rms voltage is,
from Eqn (5.9),

prob(— o < v < o) = erf(1/,/2) = 0.683

Alternatively, the probability that the noise voltage will exceed its rms value is
erfc(l /\/ 2) =0.317. Equations (5.9) and (5.11) are of fundamental importance
in determining the probability of decision errors in digital communications
systems.

5.2 STATISTICAL DECISION THEORY

This topic deals with the problem of developing statistical tests to determine
which of M possible signals was transmitted over a communications link. In
the case of binary communications M = 2, i.e. it is possible to transmit either
a binary 0 or a binary 1. The receiver takes a single sample during each bit
interval and then decides that 0 was transmitted or that 1 was transmitted.
There are clearly two types of error that can occur, i.e. deciding 1 when 0 was
transmitted or deciding O when 1 was transmitted. If the total probability of
error is to be minimized, the minimization must be based on both types of
€rTOor.

The decision rule is based on splitting all values of the received voltage
v into two regions V,, and V,. The boundary between these regions is then
chosen to minimize the total error probability. To illustrate this procedure we
will assume that P, represents the probability of transmitting 0 and P,
represents the probability of transmitting 1, clearly P, + P, = 1.

The probability that v will fall into region ¥, when a 1 is transmitted is

J p,(v)dv

where p, (v) is the probability density function of the received voltage when
a 1 is transmitted. The probability that v will fall into the region ¥, when a 0is
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transmitted is

J;/ po(v)dv

where p,(v) is the probability density function of the received voltage when
a 0 is transmitted. The overall probability of error is then

Pe=P0J po(v)dv—+-Plf p(v)dv (5.12)
Vi Vo

The region V,, + V, covers all values of v; hence

J Pl(v)dv=J pl(v)dv+f p,(v)dv=1
Vo+Vy Vo Vi

Hence we can eliminate the integral over V,, from Eqn (5.12) to give

P.=P + J; [Py po(v) — Py p;(v)]do (5.13)

If P, is known then P, can be minimized by making the integral of Eqn (5.13)
negative and as large as possible, i.e.

P, pi(v) > Py po(v)

The required decision rule is
Vool T s :
pl(v)>& an y bl )f
Po(v) P, (T
A= p,(v)/po(v) is known as the likelihood ratio. In the binary case, if 0 is
represented by zero volts and 1 is represented by A4 volts and the noise is
Gaussian, the two density functions will be

(5.14)

Pol0) = (5o expL— (%120] (5.19)
1
pi(v)= Wexp[_ (v—4)*/20%]

The region V| is defined by all values of v for which A > P,/P,, i.e.

exp[— (v — 4)*/26*] _ P,
exp[—v%/26’] ~ P,

(5.16)

Taking logarithms of Eqn (5.16)
vP—(v—A)*>20%InP,/P,
The desired region V| is thus defined by all values of v corresponding to

A 2 p
v>2 4% Inzo

7+ 25 (5.17)
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Fig. 5.4 Determination of decision thresholds.
or the boundary between the regions V, and V, is
A o> P
T==+—In3 5.18
2 A P, (5.18)

If binary 1 and 0 are equi-probable the decision threshold becomes T= A/2
which is exactly half-way between the voltage levels representing 1 and 0. If
0 is transmitted more often than 1 the threshold moves towards V. This is
illustrated in Fig. 5.4.

Once the decision threshold has been established the total probability of
error can then be calculated. If binary 0 (0 volts) is sent, the probability that it
will be received as a 1 is the probability that the noise will exceed + A/2 volts
(assuming P, = P,) i.e.

P,= f T exp(— 020 (5.19)

a2 /(2na?)

If a 1 is sent (4 volts) the probability that it will be received as a 0 is the
probability that the noise voltage will be between — A/2 and — oo, i.e.

—A/2 a2/ .2

P, - f exp(—v*/20%) | (5.20)
- J(@2na?)

These types of error are mutually exclusive, since sending a 0 precludes

sending a 1. Because of the symmetry of the Gaussian function P, = P,,, and
the total probability of error, which is PyP,, + P, P,,, can then be written

P.=P (Py+P)=P,
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Le.
—A/2 27,2
p. = j exp(— v*/20%) o (5.21)
—w J(2na?)
This equation can be written in terms of two integrals
0 _ 02202 0 L 2/9.2
Pe=f Md,,_f xXp(—0*/20%) (59
o 4/(@2no?) ~az /(2no?)

Using the fact that the Gaussian distribution is symmetrical about its mean
value, Eqn (5.22) reduces to

—4/2 2.2

P.= ! +f exp(= v /207) )dv
2 Jo J(2na?)

If we substitute y = v/,/(20) this becomes

1 1 A/(2/20)
Po=3+ —J exp(—y*)dy

2 Jrlo
ie.
P,=3{1—erf[4/(2\/20)]} (5.23)

The error probability therefore depends solely on the ratio of the peak pulse
voltage A4 to the rms noise voltage o. A graph of error probability against 4/c
is plotted in Fig, 5.5.

This figures shows that when A/ = 17.4 dB (a voltage ratio of 7.4:1), P, =
1074, i.e. on average 1 digit in 10* will be in error. If A/o is increased to 21 dB
the error probability drops to P, = 10~ 8 Hence a very large decrease in error
probability occurs for an increase in A/o of only 3.6 dB. This decrease is much
smaller for values of A/c less than 14 dB. The characteristic thus exhibits
a threshold effect for values of A/g around 18 dB. An error probability of

Threshold region
107 -

10* 4+~
10¢ +
10° +

1070

1012 } } } } - 4(dB)
6 10 14 18 22 7

Fig. 5.5 Error probability in binary transmission.
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about 107 is usually considered acceptable for practical data communica-

tions systems. This corresponds to a pulse amplitude of about ten times the
rms noise voltage.

5.3 DECISION ERRORS IN PCM

In Section 3.5 we made a somewhat simplistic assumption that the only
source of signal distortion in PCM systems was due to quantization noise.
This is only true if the probability of error during transmission is zero. In any
PCM system decision errors will occur with a low but finite probability at
each regenerative repeater. We will examine the effect of errors in a linearly
quantized PCM system with a word length of 8 digits, i.e. 256 levels.

If an error occurs in the least significant digit, this will result in an error
equal to the quantization step size 6V after the 8 digit code word is converted
to an analogue signal (see Fig. 3.11). If the next most significant digit is in
error, the voltage error of the analogue signal will be 26V, An error in the rth
digit will produce a voltage error of 6V2" ! volts. If we assume that only
1 digit in the 8 digit code is in error (a reasonable assumption if P,=10"%)the
mean square voltage error will be
8 (6V2r—1)2

rgl 8
This is the mean ‘noise power associated with each error. Since the error
probability is P,, the mean noise power at the output of a PCM link due to
decision errors is

=W (5.24)

8
W x P, =% Y P /(6V2 ™ 1)? watts.
r=1

This noise will of course be added to the quantization noise already present
on the PCM signal. In the case of PCM an error in the most significant digit is
much more serious than an error in the least significant digit. In the
transmission of high fidelity sound signals by PCM, the most significant digit
isencoded in such a way that errors can be detected, and thus corrected before
the digital signal is decoded.

5.4 DECISION ERRORS IN CARRIER-MODULATED
DATA SIGNALS

In this section we will examine the relative performance of ASK, PSK and
FSK in noisy conditions. Unlike the comparison of the analogue modulation
systems of Chapter 4, which was done on an SNR basis, we compare
modulation methods for digital systems in terms of probability of error. All
three modulation systems can, in fact, be detected using coherent detection,
although it is more usual to use envelope detection for ASK and FSK. It is
convenient, initially, to compare the performance of all three systems assum-
ing coherent detection, because the coherent detector does not alter the PDF
of the noise signal.

We consider first of all coherent detection of ASK. The input to the
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detector will be
V.. (t) = h{t)cos(2r f. 1) + x(t)cos (2 f t) + y() sin(2m f . t) (5.25)

Where h(t) is a binary function with value 4 or 0 and [x(t) cos(2nf_t) + y(¢)
sin(2n f t)] represents the band-limited white noise. It was noted in Sec-
tion 4.4 that both x(t) and y(t) are random variables. We can apply the central
limit theorem to Eqn (4.16a) which defines x(t) as the sum of many sinusoidal
components with random frequency and phase. The result is that the PDF of
both x(t) and y(t) is Gaussian. If the ASK signal plus noise is coherently
detected (i.e. muitiplied by cos[2nf_t] and filtered), the baseband output
will be

Vou(8) =2 h(t) + 5 x(1) (5.26)

This is similar to Eqn (4.27) which describes the coherent detection of
DSB-AM. Ignoring the factor of 4 in Eqn (5.26) the output of the coherent
detector is

V...= (A or 0) + x(z) (5.27)

If binary 1 and 0 are equi-probable and o2 represents the variance of x(t) the
probability of error, assuming a decision threshold of A4/2, is

Poask) = 1 {1 —erf[4/(2{/20)]} (5.28)

which is identical to Eqn (5.23) for baseband signalling.
For PSK the value of h(t) in Eqn (5.2¢) will be + 4 and the decision
threshold will be 0 volts. The error probability is then

P psk) = 3 [1 —erf(4/,/20)] (5.29)

The peak signal-to-noise power ratio for PSK is 6 dB less than for ASK for
a given error rate. If we bear in mind that ASK transmits no signal at all for
binary O(i.e. there is zero signal for half the time) it is evident that to produce
the same error rate PSK requires a mean signal-to-noise ratio 3 dB below the
value required for ASK. In other words, PSK has a 3 dB advantage, in terms
of signal-to-noise power ratio, over ASK and, as is seen from Fig. 5.6, this can
represent a significant improvement in terms of error probability.

FSK modems usually employ envelope detection and the block schematic
of such a modem is given as Fig. 3.27. A similar schematic for a FSK modem
employing coherent detection is presented in Fig. 5.7. The pre-detection
filters, which are assumed to have an ideal bandpass characteristic, determine
the bandwidth and hence the input noise power for each coherent detector.

The input voltage at each detector will be

Vi)=h(t)cos2nf,t) + x,(t) cos2n f1 ) + y, () sin(2n f1t)  (5.30a)
and
Vo(t) = hy(t) cos(2m f ) + x4 (t) cos(2m fo 1) + yo(t) sin(2rm fot)  (5.30b)

where h,(t) is the logical complement of h,(f) and x,(t) and x,(t) are
independent random variables, provided that the passband of each predetec-
tion filter does not overlap that of the other.
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Fig. 5.6 Error probabilities for constant mean signal power.
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Fig. 5.7 Coherent FSK modem.

The output of the composite detector will be
Vou(t) =(+ A or — A) + [x, (1) — x,(t)] (5.31)

Since x,(¢) and x,(t) are independent Gaussian variables, the variable
[x,(8) — xo(t)] will also be Gaussian with a variance equal to the sum of the
original variances. (This might seem to be a surprising result, but remember
that if we substract two sinusoids of different frequencies the power of the
resultant waveform is the sum of the powers in the individual sinusoids.) The
noise variance at the detector output will thus be 262, which gives an effective
peak signal-to-rms noise ratio of 24/,/20. The probability of error in this case
is then

P, sk = 4[1 — erf(4/20)] (5.32)
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This means that if FSK and PSK transmissions are to have the same error
probability the FSK transmission requires a SNR which is 3dB above the
value required for PSK.

Thus, compared on a peak power basis, for the same error probability PSK
requires an SNR that is 3dB below that of FSK which in turn requires a
SNR which is 3 dB below that of ASK. Compared on a mean power basis the
performance of ASK and FSK are identical, but the same error rate can be
obtained with PSK with a mean SNR which is 3dB lower. A comparison of
the performance of these three systems is given in Fig. 5.6, where it has been
assumed that coherent detection has been used throughout. In practice it is
more likely that envelope detection would be used for ASK and FSK. The
analysis for envelope detection is slightly different because the envelope
detector modifies the statistical properties of the noise. The envelope detector
output voltage is proportional to the instantaneous carrier envelope, which
is equal to the phasor sum of the inphase and quadrature components
of Eqn (5.25). The instantaneous detector output is thus

Vou =k [{h(0) + x()}* + {y(0)*}1"/2 (5.33)

To calculate the error probability we need to know the PDF of Eqn (5.33)
when h(t) = O (i.e. binary 0) and when h(t) = A (binary 1). In the former case
the density function has a Rayleigh distribution given by

Po(v) = (v/o?)exp(—v*/26%) for v=0
and in the latter case the density function has a Rician distribution given by
p,(v) = (v/c?)exp[ — (v? + A%)/20*]1,(vA/e?) for v<O0

I,(x) is the modified Bessel function of zero order. The Rician distribution
approaches the Gaussian distribution for A/o > 1. The envelope probability
density functions are illustrated in Fig. 5.8.

It has been shown! that the decision threshold for the envelope detector is

T= A%/26% + In(P,/P,) (5.34)

This reference also shows that for high SNRs envelope detection is marginally
poorer for both ASK and FSK than coherent detection. For lower SNRs
there is a significant deterioration in the performance of the envelope detec-
tion receiver. This, of course, is in agreement with the results for analogue
transmission considered in Chapter 4.

plv)
A=0 (Rayleigh)

Rician (signal + noise)

% >>1 (Gaussian)

f — v
4 A

Fig. 5.8 Envelope distribution for signal + noise.
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5.5 MATCHED FILTERING AND CORRELATION
DETECTION

In all digital communication systems, baseband or carrier modulated, the
probability of error ultimately depends upon the SNR. (This, of course,
ignores the influence of intersymbol interference, which we considered in
Section 3.7.) Thus it is reasonable to consider techniques that may be used to
maximize the ratio A/s. Matched filtering is one such technique, which
emphasizes the signal voltage relative to the noise. In so doing, considerable
distortion of the signal waveform usually results. Hence where waveform
fidelity is important (as in analogue systems) matched-filtering techniques are
not applicable. This is not the case with digital transmission, where the
receiver is required only to decide between signal and noise.

The matched filter is designed to maximize the SNR at a precise interval t,
after the signal is applied to its input. We will consider a general voltage
waveform h(t) with Fourier transform H(f) which is applied to a filter with
frequency response P(f). The amplitude spectrum of the output is given by
G(f)=P(f) H(f) and this has a Fourier transform

o(t) = f " P H(f)exp(j2nfo)df (5.39

—

The magnitude of this signal at time ¢, is

f i P(f)H(f)eXP(ﬂnfto)df‘

lg(to)| =

Hence the signal power (normalized) at time ¢, is
Sy=lottol = | [ PO H(exp(i28 10001

P(f)is defined for both negative and positive frequencies and it is therefore
necessary to use the double-sided power spectral density of /2 watts/hertz for
the white noise.

The noise at the filter output will no longer be white but will have a power
spectrum given by

2

(5.36)

N(f)=FIP()P
The noise power at the filter output is thus

N, =(n/2) f |P(f)I*df (5.37)
The SNR at time ¢, is thus

r P()H(f)exp( 2nfto)df
= (5.38)

an | 1porys

SNR =

The filter frequency response is then chosen to maximize the RHs of
Eqn (5.38). This is accomplished by applying the Schwartz inequality,? which
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effectively states that the sum of two sides of a triangle must always be greater
than or equal to the third side; in integral form this is usually written
2

Jw A*(x)A(x)de‘Oo B*(x)B(x)dx > Uw A*(x)B(x)dx| (5.39)

— @ -

The inequality becomes an equality when A(x) and B(x) are co-linear, i.e.

A(x) = KB(x). If A*(x)=H(f) exp(j2nft,) then its complex conjugate

A(x) = H*(f) exp(— j2n f't,), and if B(x) = P(f) then B*(x) = P*(f).
Equation (5.39) can then be written

| mcoear|”

2

(5.40)

2]

PS> ’ f P(/)H(f)exp(j2n fio)d f

a0

o

2

. Uw P(NH(f)exp(j2nfto)df
f PN ——
) f |P(f)I2df

Substituting in Eqn (5.38) we obtain

HICGRIEE
But {*_|H(f)I*df is the energy of the signal, E. The maximum value of
SNR is therefore

SNR,,, = 2E/n (5.41)

This value depends only on the ratio of signal energy to noise spectral density
and is independent of the shape of the signal waveform. The SNR is
a maximum when A(x) = KB(x), i.e.

H*(f)exp(—j2nfte) = KP(f) (5.42)

The impulse response of the matched filter is thus

plt) = Hm H*(f)exp(— j2nfto)exp( j2nf1)df

- a0

ie.
1
p(t)= Eh(t0 —1) (5.43)

The impulse response is therefore the time reverse of the input signal
waveform h(t) with respect to t,. Clearly the value of ¢, must be greater than
the duration of the signal to which the filter is matched. This is the condition
for physical realizability; in other words, the impulse response must be zero
for negative values of .

We will derive, as an example, the matched filter for a rectangular pulse of
amplitude A and duration t,. The Fourier transform of this pulse is

t1/2

H(f)= J Aexp(— j2n ft)dt

—t1/2
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Hence from Eqn (5.42) P(f)=KH*(f)exp(—j2nft,)i.e.

P(f) = [sinc(nft,) exp(—j2nft,)]/K (5:44)
This is a low-pass filter with a linear phase shift. Matched filters can be
specified for any signal shape, ¢.g. when a FSK waveform is the input to
a matched filter the SNR at the output is given by Eqn (5.41).
If we write Eqn (5.35) representing the matched filtering operation in terms
of the convolution integral it becomes

g(r)=F WO h(ty — 1) dt

h(t, — t) being the appropriate substitution for p(f). We now compare this
equation with the equation for the cross-correlation between two waveforms

h(t) and ().
Ry, (1) =J ht)y(t + 7)de

If we make y(t + 1) = h(t, — t) we see that matched filtering is equivalent to
cross-correlating the ‘noisy signal’ h(t) with a noise-free signal h(t, — ), which
is the impulse response of the matched filter. The correlation detector is based
upon this principle.

The correlation coefficient between the waveforms h(t) and y(t) is defined as

on h(t)y(t + t)dt
R(1)= == (5.45)

fw hz(t)dtfa0 y2(r)dt v

— @ -~

The denominator of this equation is a normalizing factor that makes R(z)
independent of the actual mean square values of h(t) and y(t) and restricted to
therange + 1. Note when h(t) = ky(t) then R(t) = + 1, and when h(t) = — k(1)
then R(7)= — 1.

R(7) is thus a measure of the similarity of the two waveforms h(t) and y(t).
Correlation detection is frequently used in situations where the SNR < 1, e.g.
space applications. The received waveform is correlated with several noise-
free waveforms stored at the receiver. The one that produces the largest
correlation coefficient is then assumed to have been the transmitted wave-
form.

It is found in most practical situations that the improvement obtained
using matched filters, rather than conventional low- or band-pass filters, is
marginal (usually less than 3dB). Hence filters are usually designed to
minimize intersymbol interference rather than maximize SNR. However,
where SNR is of prime importance (e.g. radar signals) matched filtering and
correlation techniques are employed.

5.6 ERROR DETECTION AND CORRECTION

The probability of error in a digital transmission system depends ultimately
upon the SNR at the receiver input. This ratio is a maximum when matched
filtering is used and this produces the lowest probability of error. A significant
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decrease in this figure can be produced by employing a type of code known as
a block code for the digital signal. The purpose of coding the signal in this
fashion is to introduce redundancy into the transmitted signal. We observed
in Section 1.13 that there are many sources of redundancy in the English
language and we showed that the redundancy present reduced the information
content but at the same time allowed the receiver to identify and correct
errors. Redundancy has the same effect in digital signals. The simplest form
of block code is the parity check 8 bit international standard code described
in Section 3.11.

The international code represents each character by seven information
digits and a single parity check digit. Either an even or an odd parity check
can be used; in the former case the parity digit is chosen to make the number
of 1sin the 8 bit word even, and in the latter case the parity digit is chosen to
make the number of 1s in the 8 bit word odd. The receiver then checks each
8 bit word for odd or even parity depending upon the system in use. If the
parity check fails the receiver notes that an error has occurred and requests
the transmitter to repeat the 8 bit word. The parity check is carried out simply
by exclusive-ORing the eight digits in each code word. If the number of 1s in
the code word is odd the result of the exclusive-OR operation is binary 1. If
the number of 1s is even, the result of the exclusive-OR operation is 0. A parity
check circuit is given in Fig. 5.9.

The error-detecting properties of this code can be demonstrated by com-
paring the probability of error in the uncoded case with the probability of an
undetected error in the coded case. We assume that the probability of error in
the uncoded case is P,. The probability of an undetected error in the coded
case will be the probability of an even number of errors. The parity check at

Parity Information
digit digits
A

r \

Serial

b
data in b ¢ b b b bs

O 0

L

Output

Fig. 5.9 Error detection using a single parity digit.
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the receiver will fail, and therefore indicate an error, only if an odd number of
errors occurs. We therefore have to compare the probability of error in the
uncoded case with the probability of an even number of errors in the coded
case.

If there are n digits in each code word the probability of one digit being in
error is the joint probability of one incorrect digit and (n — 1) correct digits,
1.e. the joint probability is

P,=P,(1—P)"! (5.46)

There are n digits in the group and Eqn (5.46) gives the probability that any
one of these digits will be received incorrectly. The total probability in the
n digits is thus

P=nP,(1—P,)"!

As an example consider the uncoded case where n=7. If P,=10"* the
probability of one error in seven digits is

P,=7x107%x(0.9999)° ~7 x 1074

The probability of r errors in a group of n digits is the joint probability that
r digits will be received incorrectly and (n — r) will be received correctly, ie.

P,=P/(1—P)""

Thereis a total of "C, possible ways of receiving r digits incorrectly in a total of
n digits where

Co= M
"orl(n—n)!

The total probability of error in this case is thus
P,="C,Pr(1—P )" (5.47)

In the coded case, an extra digit is added to the original seven so that we
require the probability of an even number of errors in eight digits.

Probability of 2 errors = 8C,(1074)%(1 — 1074)* = 2.8 x 10~ 7
Probability of 4 errors =2C,(107%*1 —107%)* =7 x 10~ 13
Probability of 6 errors =8C¢(1074)%(1 — 104> =2.8 x 1023
Probability of 8 errors = 8Cgx(107%)8 =10732

Hence the total probability of an undetected error in the coded case is
28x 1077 +70x 1075428 x 10723 ~2.8 x 10~ ". This is considerably
less than the probability of error in the original uncoded group of seven digits.
These numerical values show that a significant reduction in error probability
is possible even with a very rudimentary error-checking system.

We have assumed in this example that the digit transmission rate is
unchanged. This means that the rate of information transmission must
necessarily be reduced to gths of its value in the uncoded system. It would be
more realistic to maintain a constant information rate which means that the
transmission bandwidth should be increased to § of its original value to
accommodate the parity check digit. Such an increase would increase the
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noise power by the same ratio, i.e. the rms noise would be increased to 1.069
times its previous value. The effect of this increased noise on the error
probability must be calculated. Assuming an uncoded probability of error
P, = 10" for illustration then

erf[(4/2\/20))] =1 -2 x 107*

A/(2/20) =2.63

If the rms noise increases by a factor of 1.069, there is a corresponding
decrease in this ratio, i.e. the ratio becomes 2.46, which produces an uncoded
error probability of P, = 2.51 x 10~ *. This value must now be a used in Eqn
(5.47) to calculate the probability of an undetected error in the coded case,
which is P/ =1.75 x 107°. Thus even when the extra noise is taken into
account the reduction in undetected errors is still considerable.

This is not always the case, however, if several parity digits are added to the
information digits. The extra noise introduced by the increased bandwidth
can cancel any advantage obtained by the error-detecting code. In such cases
the error probability can sometimes be decreased by increasing the signal
power. There are many cases where error-detecting codes do produce a sig-
nificant advantage, and bearing in mind the threshold region shown by Fig.
5.5 we can only say that each case must be examined separately.

The error-detecting properties of a code can be enhanced to include error
correction by increasing the redundancy. This becomes clear by considering
an example that codes 16 information digits with 8 parity check digits, i.e. the
code redundancy is 33%. In this example the 16 information digits are
grouped into a 4 x 4 matrix. An even or odd parity check digit is transmitted
for each row and column of the matrix

Column parity digits l Column check fails
0010 0010
01 11]1 0 01 1|1 «<Row check fails
01100 01100
10001 10001
to1 111 101111

T
Row parity digits

If a single error occurs in the 16 information digits then a row and column
parity check will both fail. The point of intersection of row and column then
indicates which digit was in error. If a single parity digit is in error then only
one column or one row will fail the parity check, and again the incorrect digit
can be identified and therefore corrected. This type of code is generally known
as a forward error correcting code (FEC).

The above example was chosen to illustrate the possibility of correcting
errors, and was not a particularly efficient code. There are many more
efficient error-correcting codes in use. The block codes are based upon the
work of Hamming.®> An example of Hamming’s single-error-correcting code
will now be considered. We assume that the original information digits are
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split up into blocks of m digits to which are added c parity check digits. For
illustration assume that m = 4 and ¢ = 3. Each coded word therefore contains
seven digits and there are 27 = 128 different words. Of these 128 words only
2* =16 words are required to transmit the original information. The 16 code
words are chosen from the possible 128 to give a single-error-correcting
capability. A possible choice of code words is shown in Table 5.1.

Each of the code words in Table 5.1 differs from any other in at least three
positions. Such a code is said to have a Hamming distance of three. This
means that at least three errors are required to convert any code word into :
one of the others. If a single error occurs in a received code word it will differ
from the correct code word in one digit only and from all other code wordsin -
at least two digits. Hence the correct code word is chosen as the one with least |
difference from the received code word. This implies that the receiver requires
a list of all allowed code words and then compares each received code word
until a match is achieved. In practice this process can be reduced to one of
parity checking. {

The mathematical relationship between information digits and check
digits is based on modulo 2 addition (exclusive-OR) and was devised by :
Hamming. The rules for a 7 digit block code containing four information
digits and three check digits are '

C,=M, eM,®M,

C,=M,&@M,®M, ?,

C;=M,®M,®M, (5.48) :
Remembering that C, @ C, =0, etc., these equations can be written

C,OM, ®M,®M, =0
C,OM, ®M,®M,=0

CcdM, &M &M, =0 (5.49) |

Table 5.1

Original message Transmitted code

M, M, M, M, M, M, M, M, C C,
0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 1 0 1 1
0 0 1 0 0 0 1 0 1 0 1
0 0 1 1 0 0 1 1 1 1 0
0 1 0 0 0 1 0 0 1 1 0
0 1 0 1 0 1 0 1 1 0 1
0 1 1 0 0 1 1 0 0 1 1
0 1 1 1 0 1 1 1 0 0 0
1 0 0 0 1 0 0 0 1 1 1
1 0 0 1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0 0 1 0
1 0 1 1 1 0 1 1 0 0 1
1 1 0 0 1 1 0 0 0 0 1
1 1 0 1 1 1 0 1 0 1 0
1 1 1 0 1 1 1 0 1 0 0
1 1 1 1 1 1 1 1 1 1 1




Error detection and correction ] ‘ 163 ’

G
M,
M,
M;
C.
M,
M,

M.

JJdyuyydu

Fig. 5.10 Parity checking network.

If there are no errors at the receiver the modulo 2 additions represented by
Eqns (5.49) will all produce a binary 0 result. If there is a single error in any of
the information or check digits then one or more of Eqns (5.49) will produce
a binary 1. The parity checking circuit for the 7 digit block code is shown in
Fig. 5.10.

If we represent a correct digit by Yand an incorrect digit by N the possible
values of A, B, C for a single error are listed in Table 5.2.

The outputs A4, B, C of the parity check circuits can be regarded as a 3 x 8
matrix. The number of columns in the matrix equals the number of check
digits and each row, except the first, uniquely defines a single error position.
This means that ¢ check digits can define 2° — 1 error positions assuming only
a single error occurs.

If there are m information digits and ¢ check digits then for a single-error
correcting code the relationship between m and c is

mtc<2—1 (5.50)

Thus for an ASCII character with m = 7 it is necessary to add ¢ =4 check

Table 5.2
M

=
X
=
a
\
D

Z < < C g g
= 2 G
2, e e el
= K 2
< 2
e e e Dl
=l 7
O = OO —=O |
—~—OR—,O~OO | W
=== Ke)
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Table 5.3 Single-error-correcting codes

m ¢ Code type (m+ c,m)  Efficiency m/(m + c)
1 2 (3,1) 0.33
4 3 (7,4) 0.57
7 4 17 0.64
11 4 (15,11) 0.73
26 5 (31,26) 0.83
57 6 (63,57) 0.90
120 7 (127,120 0.94
247 8 (255,247) 0.97

digits for a single-error-correcting capability. Possible single-error-correcting
codes are listed in Table 5.3, and it may be seen from this table that the larger
the value of ¢ the more efficient the code.

Returning to Table 5.2 it is clear that in a practical system it is necessary
only to correct errors in the information digits. This means that for error-
correcting purposes only the last four rows of the parity check matrix need to
be considered. Noting the following relationship:

X®1=X and X®0=X

Then if a received digit is in error, exclusive-ORing it with binary 1 produces
the correct value. If a received digit is correct, exclusive-ORing it with binary
0 will preserve the received value. With these conditions it is possible to devise
a very simple error-correcting circuit consisting of exclusive-OR gates. This
circuit is shown in Fig. 5.11. The binary inputs w, x, y, z are derived from the
parity check matrix of Table 5.2 and are given by

w= ABC
x=ABC
y=ABC
z=ABC

Corrected

", _:,)D digits
", E)D )

w{x

Logic network
A 8 ¢C

Fig. 5.11 Error-checking network.




L Error detection and correction ‘ i 165 ‘

The (7,4) code has a Hamming distance of 3 and can correct single errors. If it
is assumed, for illustrative purposes, that an error occurs in both M, and M,
the parity checking network will produce an output of A=0, B=0, C =1,
which is equivalent to a single error in ¢,. The fact that the parity checking
network does not give A = 0, B =0, C = 0 means that a double error has been
detected, but this will be incorrectly interpreted by the circuit of Fig. 5.11.

Thus, the (7, 4) code can detect a double error provided it is not required to
correct a single error also. If it is assumed that the (7,4) code is designed to
correct a single error (using the hardware of Fig. 5.11) a double error will be
ignored. In order to evaluate the effectiveness of the (7, 4) code it is necessary
to compare the probability of two errors in seven digits with the probability of
one error in four digits. If it is desired to maintain the same information rate
the bandwidth must be increased in the ratio of 7:4, which increases the rms
noise by a factor of 1.322.

Two examples will be considered: in the first the uncoded error probability
is assumed to be P, = 10~ * and in the second case P, = 10~ %. The probability
of a single error in four digits is thus either P,=4 x 10 *or P,=4 x 1075, If
the rms noise is increased by a factor of 1.322 the corresponding error
probability for an uncoded system is P, =2.4 x 1072 or P, =6.31 x 103,
The probability of an undetected error in the coded case is the probability of
two or more errors, i.e.

Pi="C,(P)* (1= P)* +7C3(P)* (1 — PY* + 7C,(PY* (1 = P)?
+7Cs(P) (L= P)* +7C(P)° (1 = P)+7C1 (P

This evaluates to P,=1.29 x 10™* or P, =28.36 x 107 °. In the first case the
error rate is reduced from 4 x 1074 to 1.29 x 10~ *(a ratio of 3.1:1) and in the
second case from 4 x 107 ° to 8.36 x 10~ ° (a greater ratio of 4.7:1). These are
fairly modest decreases, the improvement being greater the smaller the initial
error probability. If more efficient single-error-detecting codes are used (e.g.
127, 120 code) a very significant reduction in undetected error probability is
obtained.

If the code is required to correct more than one error, then clearly the
Hamming distance must be increased. The Hamming distance for a double-
error-correcting code is 5, which means that each code word must differ from
all other code words in at least five digits. If two errors do occur, the received
code word will differ by two digits from the correct code and at least three
digits from all other code words.

Ifitis assumed that there are up to y errors in each code word the number of
ways that these errors can occur in (m + c¢) digits is

4 +
Zm CCt

t=1
The ¢ parity digits define (2°— 1) rows in the parity matrix so that the
relationship between m and ¢ for a code that corrects up to y errors is

¥y
Y omteC, <20 — 1 (5.51)

t=1

which is known as the Hamming bound. Clearly the greater the error-
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Table 5.4 Block code properties

Hamming distance Code properties

1 None

2 Single-error detecting

3 Single-error correcting or double-error detecting
4 Single-error correcting and double-error detecting
5 Double-error correcting or triple-error detecting
6 Double-error correcting and triple-error detecting
7 Triple-error detecting

correcting capability of the code the greater is the redundancy. The relation-
ship between the Hamming distance of a code and its error-combating
capabilities is listed in Table 5.4 for Hamming distances up to 7.

Table 5.4 indicates that block codes are best suited to correcting a small
number of errors in each block. As the number of errors per block rises then
block codes become less and less attractive. The interference encountered on
most communications links tends to be impulsive rather than Gaussian and
this leads to errors occurring in bursts rather than individually. Under such !
circumstances several errors can occur in a single block and hence simple |
block codes are not an effective means of error correction. Some care is |
necessary in defining the duration of an error burst as such a burst often .
contains some digits which may not be in error. An error burst is bounded by
two erroneous digits and must be separated from the next error burst by
a number of correct digits greater than or equal to the number of digits in the
error burst. This apparently convoluted definition may be clarified by the
example shown in Fig. 5.12. In this figure it becomes clear that errors 1 and '
3 could not be used to define a single burst of length 13 digits because error
4 would occur within the following 13 digits. Hence it becomes apparent that
errors 1 and 2 define an error burst of five digits and this is followed by errors
3 and 4, which define an error burst of six digits.

The unsuitability of the simple block code may be demonstrated by
considering the transmission of 7 bit ASCII characters to which have been
added four check bits to provide a single error correcting ability. If such .
characters are transmitted over a channel subject to burst errors of up to
5 bits duration, then clearly the resulting (11,7) block code would not be able .
to correct the errors even when the bursts occurred infrequently. This
problem can be overcome by a process known as interleaving in which the

Transmitted digits  11{ 00110 11110 111 100011 111011 {00
12 | 3 4
Received digits 11 10111 11110 m 000010 11101 00
5 digit 5 digit 6 digit 6 digit
error {min) error (min)
burst error burst error
free free

Fig. 5.12 Error bursts in a transmitted sequence.
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transmitter assembles five successive 11 bit blocks and transmits the first bit
of each block in sequence, followed by the second bit of each block and so on
(Le. the bits of the individual 11 bit blocks are interleaved). The receiver
performs the opposite de-interleaving process to reproduce the original 11
bit blocks. In this system if an error burst of up to 5 bits occurs during the
transmission of 55 interleaved bits then a maximum of one error per block
will occur after the de-interleaving process. Such errors can be corrected by
the (11,7) block code.

57 THE CYCLIC REDUNDANCY CHECK MECHANISM

In many instances error coding is restricted to error detection rather than
error correction, this is particularly true of packet transmission (see Chap-
ter 11). When an error is detected the transmitter is requested to repeat the
data, which clearly requires the provision of a return path between receiver
and transmitter. In such circumstances cyclic codes are often employed and
these codes are able to detect errors which occur in bursts. Cyclic codes are
used to append a cyclic redundancy check (CRC) sequence to a block of
information digits and are therefore a form of block code. In general the
addition of ¢ parity check digits to a block of m information digits enables any
burst of ¢ digits or less to be detected, irrespective of the length of the
information block. In addition the fraction of bursts of length b > ¢ which
remain undetected by a cyclic code is 27°if b > ¢ + 1. The length of the CRC
can be altered to suit the anticipated error statistics but 16 and 32 bits are
commonly used. The Ethernet packet shown in Fig. 13.1 appends a CRC of
32 bits to a block of information the length of which varies between 480 and
12112 bits, which means that if b> 33 the fraction of bursts remaining
undetected is 27 *2, which is a very small number.

The operation of the CRC mechanism can be demonstrated as follows:
assume that the information to be transmitted is a binary number M which
contains m bits. This is appended by a CRC which may be regarded as
a binary number R containing c bits. The CRC is actually the remainder of
a division by a another binary number G, known as the generator, which
contains ¢ + 1 bits. The value of R is obtained from

M x 2¢ R
c = o+ G (5.52)
where Q is the quotient. If R/G is added modulo 2 to each side of this equation,
then
M x 2¢
ijLR =Q (5.53)

This indicates that if the number represented by M x 2¢ + R is divided by G,
the remainder will be zero. The number M x 2° + R is formed by adding the
¢ bit CRC to the original m information bits which are shifted ¢ places to the
right. The number so formed has a length m + ¢ bits and is the transmitted
code word. If this code word is divided by the same number G at the receiver
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then, provided that there have been no errors, the remainder will be zero. If
errors have occurred the division will result in a non-zero remainder.

It is common practice to represent M, G and R in polynomial form in which
case G is known as the generator polynomial. In the case of the Ethernet
packet G is 33 bits long and is represented by:

sz32+X26+X23+X16+X12+X11+X10+X8+X7+X5
+ X'+ X2+ X +1 (5.54)

In effect the powers of X shown in this polynomial are the powers of 2 in the
number G. Thus G = 100000100100000010001110110110111.

In theory any polynomial of order ¢ + 1 can act as the generator poly-
nomial. However, it is found in practice that not all such polynomials provide
good error-detecting characteristics and selection is made by extensive
computer simulation.

5.8 CONVOLUTIONAL CODES

Convolutional codes are an alternative to block codes which are more suited
to correcting errors in environments in which errors occur in bursts. In
a block code the codeword depends only on the m information digits being
coded and is therefore memoryless. In convolutional codes a continuous
stream of information digits is processed to produce a continuous stream of
encoded digits each of which has a value depending on the value of several
previous information digits, implying a form of memory. In practice, convol-
utional codes are generated using a shift register of specified length L, known
as the constraint length, and a number of modulo 2 adders (exclusive OR
gates). An encoder with a constraint length of 3 and two exclusive OR gates is
shown in Fig. 5.13. Clearly, in this example, the output digit rate is double the
input digit rate and the code is known as a § rate code. (In general the code
may be a m/n rate code where m is the number of input digits and n is the
number of output digits.)

The constraint length, the number of exclusive OR gates and the way in
which they are connected determine the error-correcting properties of the
code produced. The goal of the decoder is to determine the most likely input
data stream of the encoder given a knowledge of the encoder characteristics

Input sequence Out
[N s S utput sequence
101011 ! 2 3 10 10 10 #1 01 11

Fig. 5.13 Convolutional encoder.
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and the received bit stream. The decoding procedure is equivalent to measur-
ing the distance, in a multi-dimensional space, between the point representing
the received sequence and the points representing all possible sequences
which could have been produced by the coder. The one with the minimum
distance is then chosen as the correct sequence. This minimum distance
criterion is similar to that used in the physical interpretation of Shannon’s
law, presented in Chapter 1. The actual algorithm used in the decoder is
known as the Viterbi* algorithm and is designed to minimize receiver
complexity.

59 MULTIPLE DECISIONS

We have assumed in this chapter that the receiver in a system is the only point
at which a decision is made. This is not necessarily the case; in a PCM system,
for example, a decision is made at each regenerative repeater. Hence when
evaluating error probability in a multistage link, the probability of error at
each stage must be taken into account. For simplicity we shall assume that the
probability of error at each stage in such a link is the same, although this
restriction need not apply in a real situation. A typical PCM system is
illustrated in Fig. 5.14.

It is evident that errors that may occur at one repeater can be corrected by
a second error in the same digit at a subsequent stage. If we consider
a particular digit in its passage through a multistage link when it is subject to
an even number of incorrect decisions it will be received correctly at the
destination.

If there are L decision stages the probability of making U incorrect and
L — U correct decision is

P=PUx(1—P)LY

but there are “C, possible ways of making U incorrect decisions in a total of
L decisions. Hence for a single digit the probability of making U incorrect
decisions in an L stage link is

P,= CyP x(1—P)LV (5.55)

The probability of a digit being incorrect at the receiver is found by summing
Eqn (5.55) over all odd values of U, i.e.

Po= ¥ LCyPY(1—P)L"Y (5.56)
U(odd)

If P, « 1 this approximates to P,, ~ LP,. Thus if P, is small the probability of
a single digit received incorrectly at more than one stage is negligible.

Transmitter R R R R

Fig. 5.14 Transmission system with multiple decision points.
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However, the use of L decision points makes the individual error L times as
likely.

If error coding is employed in a multistage link, equations such as Eqn
(5.47) should reflect the higher individual digit error probability, e.g.

P ="C.(LP)"(1—LP)"" (5.57)

5.10  CONCLUSION

In this chapter specific attention has been directed towards the effects of
Gaussian noise on digital communications and it has been shown that the
probability of error is related to the SNR at the receiver. This probability can
be reduced either by employing SNR enhancement techniques such as
matched filtering or by employing error-coding techniques. The major source
of signal impairment on data networks is due to inter-symbol interference,
and the noise encountered tends to be impulsive rather than Gaussian. This
leads to errors which occur in bursts and the correction of such errors
requires the use of specialized codes and techniques of interleaving. This is
also the situation in digital cellular radio, described in Chapter 15, where
burst errors result from multipath propagation which produces signal fading,

One example where block codes are used is in satellite transmissions, where
signal power is at a premium and the received noise is predominantly
Gaussian. A second example is covered in detail in Section 11.19, which deals
with teletext transmission. In this case page and row address digits are error
protected using a code with a Hamming distance of 4 which can correct
a single error and detect a double error.
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PROBLEMS

5.1 A binary waveform of amplitude + 2V or — V is added to Gaussian noise with
zero mean and variance 2. The a priori signal probabilities are P(+ 2V) = tand
P(—V)=2 If a single sample of signal-plus-noise is taken, determine the
decision threshold that minimizes overall error probability.

Answer: T = V/2 +0.2302/V.
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A teleprinter system represents each character by a 5 digit binary code that is
transmitted as either 4/2 volts or — A/2 volts. The binary signal is received in
the presence of Gaussian noise with zero mean at a SNR of 11 dB. Determine
the optimum decision level and the probability that the receiver will make an
error.

Answer: T=0V; P=5x0.000193.

In a binary transmission system, 1 is represented by a raised cosine pulse given
by

o(t)=V [l +cosnt/T) for —TR<t<T/2

where T is the pulse duration. A binary 0 is represented by the same raised
cosine waveform with amplitude — V. After transmission over a noisy
channel the signal-to-noise power ratio at the detector is 6 dB. If the binary
signal is reformed by sampling the received signal at the middle of each
pulse interval, find the probability of error. Assume 1 and O are equi-probable
and that the noise is white.

Answer: 0.000 572.

Two binary communication links are connected in series, each link having
a transmitter and a receiver. If the probability of error in each link is 0.00001,
find the overall probability that:

(a) a 01is received when a 1 is transmitted,

(b) a 0is received when a 0 is transmitted;

(¢) a1is received when a 0 is transmitted;

(d) a1 is received when a 1 is transmitted.

Answer: (a) 0.00002; (b) 0.99998; (c) 0.000 02; (d) 0.999 98.

If a simple coding scheme is used in the previous question such that each
individual digit is repeated three times, what is the probability of deciding
incorrectly at the receiver if the following rule is used?

Decide 0 if the received code is 000, 001, 010, 100

Decide 1 if the received code is 111, 110, 101, 011

Answer: 1.2 x 107°.

The noise level on a channel produces an error probability of 0.001 during
a binary transmission. In an effort to overcome the effect of noise each digit is
repeated five times, and a majority decision is made at the receiver. Find the
probability of error in this system if

(a) the digit rate remains constant;
(b) the information rate is half its original value.

Assume white Gaussian noise.
Answer: (a) 9.94 x 1079 (b) 1.445 x 10~

Use Eqns (5.35) and (5.41) to determine the maximum signal and mean square
noise voltage at the output of a matched filter.

Answer: E, En/2.

The matched filter is a linear network. This means that when the input to such
a filter is Gaussian noise the output noise will also be Gaussian but with
a modified variance.

Using this fact, calculate the probability of error in a binary transmission system
when the threshold detector is preceded by a matched filter. The transmission
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5.9

5.10

rate is 64 kb/s with 0 and 1 having equal probability. The received waveform has
a mean value (normalized) of 0 or 25mV, and is accompanied by noise with
a power spectral density of 1.68 x 10~° W/Hz.

Answer: 0.000 020 5.

A signal which is a single pulse of amplitude A volts and duration T seconds is
received masked by white Gaussian noise. Calculate the improvement in SNR
produced by a matched filter as compared with the SNR at the output of
a single-stage RC low-pass filter. Assume the 3 dB cut-off frequency of the rC
network is 1/T hertz.

Answer: 0.9 dB.

A FSK receiver consists of two matched filters, one for each of the tone bursts fo
and f,. The FSK waveform is fed to both filters, each output being sampled at
the instant of maximum signal. The samples are subtracted and then fed to
a threshold detector.

Calculate the error probability in terms of the signal energy and noise power
spectral density.

Answer: 1 — erf\/ (E/n).



High-frequency
transmission lines

The study of transmission lines is the investigation of the properties of the
system of conductors used to carry electromagnetic waves from one point to
another. Here, however, our attention will be limited to high-frequency
applications, i.c. when the length of the transmission line is of at least the same
order of magnitude as the wavelength of the signal. In this chapter an
idealized model of the line will be used to represent the many different forms
found in practice, ranging from twisted pairs to coaxial cables. The theory of
transmission lines, which was developed in the early years of the study of
electromagnetic propagation, is strictly applicable only to systems of conduc-
tors that have a ‘go’ and ‘return’ path, or that, in electromagnetic field terms,
can support a TEM wave. Hollow-tube waveguides do not fall into this
category, although, 